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Abstract 

 

Fossil communities in the wake of mass extinction are often characterised 

by small sized individuals, this is often ascribed to the Lilliput Effect (a transient 

body size reduction within a surviving species). During periods of biotic recovery 

body size should increase, this, and its relationship with other recovery 

parameters are seldom documented. In order to explore the relationships 

between size, diversity and environments bivalve taxonomic richness and body 

size are recorded from the latest Triassic and Lower Jurassic of the British Isles. 

This interval encompasses the end-Triassic mass extinction event and its 

subsequent recovery. During the post-extinction interval oxygen depleted marine 

waters are reported to have become widespread and allegedly delayed onset of 

biotic recovery.    

During the Lower Jurassic three phases of size change are noted: an initial 

size increase from the extinction event through the Hettangian Stage (Lower 

Jurassic); a phase of size decrease characterises the next Stage, the Sinemurian; 

another phase of size increase then followed during the Pliensbachian Stage. 

These trends are reported for whole communities as well as among- and within-

species. The latter is well exemplified by the dramatic size increase seen in 

Plagiostoma giganteum J. Sowerby which increases in size by 179% over the 

Hettangian. It is here proposed that within-species size increase in newly 

originating taxa following mass extinction be termed the Brobdingnag Effect, in 

honour of the giants in Gulliver’s Travels.  

Such patterns in body size act independent of other recovery metrics and 

appear unrelated to marine oxygenation which, for the Hettangian and lowermost 

Sinemurian, was oxic-dysoxic interspersed by comparably brief, localised bouts 

of anoxia. Temperature often exerts a control on the body size with creatures in 

cooler climates often being larger sized (i.e. Bergmann’s Rule). Temperature 

appears unrelated to body size patterns in the Lower Jurassic, however there are 

gaps at critical intervals.  
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Chapter 1: Introduction 

 

 

The mass extinction that struck towards the end of the Rhaetian Stage 

(Late Triassic) ranks as third greatest in terms of ecological severity and fourth 

for diversity loss (Hallam 2002; McGhee et al. 2004). Causal mechanisms behind 

this event have been greatly debated; potential culprits have included sea level 

change, meteorite impacts and the consequences of massive continental flood 

basalt volcanism (e.g. Courtillot et al. 1996; Hallam & Wignall 1999; Olsen et al. 

2002). There is now a consensus that the end-Triassic extinction (ETE) was 

linked to the continuing breakup of Pangaea and emplacement of the Central 

Atlantic Magmatic Province (CAMP, Marzoli et al. 1999, 2004; Pálfy 2003). 

 

1.1 Extinction losses 

The extinction severely affected both marine and terrestrial realms with 

notable losses on land including dicynodonts, cynodonts and crurotarsans such 

as phytosaurs and rauisuchians (Colbert 1958; Olsen et al. 1987). The late 

Rhaetian also bore witness to floristic turnover with gymnosperm forests of north-

western Europe, Greenland and North America transiently replaced by fern 

dominated communities (Fisher & Dunay 1981; Whiteside et al. 2007; van de 

Schootbrugge et al. 2009; Steinthorsdottir et al. 2011; Mander et al. 2013). In the 

marine realm 46% of genera disappeared (Dunhill et al. 2018). Diverse Triassic 

marine reptile communities were severely depleted, losses include placodonts, 

nothosaurs, thalattosaurs and many ichthyosaurs resulting in a decline in 
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disparity: only “dolphin-shaped” parvipelvian ichthyosaurs survived (Thorne et al. 

2011; Stubbs & Benton 2016). 

 Among marine invertebrates, losses were greatest among heavily 

calcified, immobile suspension feeding epifauna (Dunhill et al. 2018). Many reef 

dwelling species fall into this life mode and 96% of scleractinian species died 

(Flügel 2002), resulting in the loss of reef ecosystems (Stanley 1988; Wood 

1999). Brachiopods also suffered losses, especially amongst the Spiriferida, with 

~25% of families going extinct at this time (Ager 1987; Hallam 2002). 

Through the Late Triassic the usually diverse and rapidly evolving 

conodonts and ammonoids were in decline, culminating in the late Rhaetian 

extinction of conodonts (Swift 1989, 1999). Ammonoids were almost lost at this 

point too, with the major suborder Ceratitina disappearing and only a few smooth, 

extremely evolute Phylloceratidae ammonites surviving into the Jurassic (Guex 

1982; Guex et al. 2012). Radiolarians suffered severe losses with 

morphologically ornate Triassic taxa replaced by small, simple forms in the 

earliest Jurassic, in much the same fashion as seen amongst ammonoids (Guex 

1992; Carter & Hori 2005; Kocsis et al. 2014). 

Of particular relevance for this work is the fate of bivalves during the ETE. 

Overall around 30% of genera were lost (Hallam 2002). Locally, species-level 

losses were high with 71% of species extinct in Lombardy (Italy), 85% of bivalve 

species in the German and Austrian Northern Calcareous Alps, and 77% in 

Britain (McRoberts & Newton 1995; Wignall & Bond 2008). At a local to regional 

scale extinction losses appear to have most severe amongst infaunal species 

with European and some Asian sections recording losses of between 92 – 100% 

(Hallam 1981; McRoberts & Newton 1995; Hautmann et al. 2008a; Wignall & 

Bond 2008). In addition, no very large bivalve species survived the extinction – 
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with large taxa such as megalodontids, dicerocarditids and wallowaconchids 

dying out (Hallam 2002).  

 

1.2 Extinction mechanisms 

During the Phanerozoic large-scale mass extinction events have been 

closely associated with large igneous provinces (LIPs) (see Wignall 2001a; Bond 

& Wignall 2014). This is also the case for the ETE which has been linked to initial 

phases of rifting of the supercontinent Pangaea and resulting emplacement of the 

CAMP (e.g. Marzoli et al. 1999, 2004; Pálfy 2003). This province is amongst the 

largest of all Phanerozoic LIPs stretching from Greenland through North and 

South America and Africa, covering an area of up to 10x106 km2 (May 1971; 

Wilson 1997; Marzoli et al. 1999; Knight et al. 2004).  

A commonly cited kill mechanism induced by LIPs is extreme warming 

brought about by volcanogenic CO2 (see Bond & Grasby 2017 for a recent 

review). This has also been suggested for the ETE which is associated with a 

short, sharp negative carbon isotope excursion (CIE) of 2-4‰ magnitude, which 

is often referred to as the initial CIE (Hesselbo et al. 2002). The initial CIE has 

been noted in many boundary sections worldwide (Fig. 1.1) including Nevada 

(Guex et al. 2004), Spain (Gómez et al. 2007), Hungary (Pálfy et al. 2001), Austria 

(Morante & Hallam 1996; Kürschner et al. 2007) and Canada (Ward et al. 2001).  
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Fig. 1.1 δ
13

C
org

 curves for Triassic-Jurassic boundary sections. Kuhjoch, 

Austria (Ruhl et al. 2009); St Audrie’s Bay, Britain (Hesselbo et al. 2004); 

New York Canyon, Nevada (Bartolini et al. 2012); Kennecott Point, British 

Columbia (Williford et al. 2007); Csovar, Hungary (Pálfy et al. 2007). 

Boundary positions marked according to authors. 

Using the magnitude of the negative CIE and outgassing rates of modern 

basaltic eruptions Beerling and Berner (2002) suggested volcanogenic CO2 from 

CAMP was insufficient to satisfy the magnitude of the perturbation to the carbon 

cycle proposing additional 12C was released to the atmosphere from methane 

hydrates. Other sources may have included baking of organic-rich sediments 

during intrusion of dykes and sills (Svensen et al. 2007). 

Pre-extinction Rhaetian atmospheric CO2 concentrations were calculated 

from fossil leaf stomatal densities to have been ~1000 ppm rising to 2000-2500 

ppm across the extinction event resulting in a temperature increase of 2.5 - 5°C 

in an already hot world (McElwain et al. 1999; Steinthorsdottir et al. 2011).  
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During periods of elevated atmospheric CO2 the oceans’ dissolved CO2 

concentrations also increase, lowering pH and decreasing the carbonate 

saturation-state (Cyronak et al. 2015). This effect is known as ocean acidification 

and is popularly invoked as a mechanism for marine extinctions during the end-

Triassic (Hautmann 2004, 2012; Hautmann et al. 2008a; Kiessling & Simpson 

2011; Greene et al. 2012; Ikeda et al. 2015). However, evidence for this as a kill 

mechanism is disputable. Hautmann et al. (2008a) proposed that aragonitic 

bivalves were preferentially targeted during the ETE, but this has not been 

replicated by other studies and fails to explain the severity of losses amongst the 

non-calcareous radiolarians (Kiessling et al. 2007; Dunhill et al. 2018). An 

additional argument for extreme ocean acidification at the ETE is a purported gap 

in carbonate deposition (Hautmann et al. 2008a; Ritterbush et al. 2015), yet, 

some of the reported ‘gaps’ are attributable to regression and emergence, as 

evidenced by karstic surfaces or desiccation cracks (Hautmann 2004; Hesselbo 

et al. 2004; Wignall & Bond 2008). 

Often associated with LIPs, warming and mass extinction is the spread of 

anoxic bottom waters (cf. Bond & Grasby 2017). Yet in spite of drastic warming 

at the ETE there is little to suggest that marine anoxia played a major role in the 

extinction itself with only localised oxygen depletion, indicated by a thin black 

shale coincident with the initial CIE in the Kujoch GSSP (Bonis et al. 2010; 

Lindström et al. 2017). Some regional development of oxygen restricted waters 

within the Panthalassa Ocean is seen in Canada (Wignall et al. 2007; Kasprak et 

al. 2015) whilst the ETE coincides with a time of the most oxygenated waters of 

the same ocean when sections in Japan are considered (Fujisaki et al. 2016).  

An alternative kill mechanism related to LIPs that is often proposed but is 

usually difficult to assess is the effect of SO2 (cf. Wignall 2001a).The short-term 
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formation of aerosols in the stratosphere produces transient cooling and 

darkening which has been suggested as the cause of a collapse in primary 

productivity and food webs at the ETE (Guex et al. 2004; Schaltegger et al. 2008; 

Schmidt et al. 2015). Effects of elevated atmospheric SO2 are expressed best in 

the terrestrial realm where morphology and cuticle of fossil leaves show SO2 

related damage (Bacon et al. 2013; Steinthorsdottir et al. 2018). Additionally, the 

combination of this gas with rain water produces acid rain which likely contributed 

to floral turmoil in the late Rhaetian (van de Schootbrugge et al. 2009). 

 

1.3 Biotic recovery from mass extinctions 

Most research effort surrounding mass extinctions has focused on losses 

and extinction mechanisms, with relatively little study of the subsequent biotic 

recovery. Only the recoveries following the Permo-Triassic mass extinction (e.g. 

Schubert & Bottjer 1995; Rodland & Bottjer 2001; Payne et al. 2011; Chen & 

Benton 2012; Foster & Sebe 2017) and the Cretaceous-Paleogene extinction 

(e.g. Hansen 1988; Harries 1999; Peryt et al. 2002; Alegret 2007; Aberhan & 

Kiessling 2014; Leighton et al. 2017) have received major attention.  

Several means by which recovery can be monitored exist, perhaps the 

simplest being to document extinction and origination rates. Under this scheme 

the post extinction interval can be divided into two sections, the “survival interval” 

and the “recovery interval” (Fig. 1.2; Kauffman & Erwin 1995). The first of these 

refers to the period immediately following the extinction horizon, when 

environmental conditions remain adverse and no net diversity increase occurs. 

Fossil assemblages characteristic of this phase are dominated by only a handful 

of opportunistic species (Schubert & Bottjer 1995; Harries et al. 1996). Such 
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species are morphologically conservative, small in stature with rapid growth, 

attain maturity at young age, show high juvenile mortality and occupy limited 

levels of ecological tiers - usually only shallow infaunal or epifaunal (Guex 1992; 

Harries et al. 1996).  

 

Fig. 1.2 Schematic diagram of expected diversity during survival and 

recovery intervals, red line indicates extinction event.   

The recovery interval proper begins when origination rates exceed 

extinction rates. During this time habitats are restored, ecological niches 

repopulated, new specialised forms arise with increased morphological 

complexity, and taxonomic differentiation between habitats occurs (Harries et al. 

1996; Guex 2001; Bambach et al. 2007).  

Defining the point when recovery terminates can be problematic and 

seldom accurately placed owing to variable rates of recovery between different 

groups. Estimates of full recovery are often placed when pre-extinction taxonomic 

richness or a stable diversity has been attained.  However, for some extinction 

events this does not occur before subsequent mass extinctions deplete biotas 

again (Song et al. 2018). 

The recovery interval that has received the greatest attention is that 

following the Permo-Triassic mass extinction (PTME) (e.g. Twitchett 1999; 

Hofmann et al. 2011; Payne et al. 2011; Hautmann et al. 2015; Dai et al. 2018; 
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Foster et al. 2018a). Survival interval assemblages were dominated by the 

brachiopod Lingula, the bivalve Claraia and often prolific numbers of 

microgastropods (e.g. Schubert & Bottjer 1995; Fraiser et al. 2005; Zonneveld et 

al. 2007). The recovery is notable for its protracted nature, spanning the entirety 

of the early Triassic (some 4.7 Myr) with corals, sponges, echinoids, brachiopods 

and metazoan reef ecosystems only beginning to recover in the Middle Triassic, 

7-10 Myr after the extinction (Stanley 1988; Flügel 1994, 2002; Foster et al. 2015; 

Foster & Sebe 2017). Here is a fine example of heterogeneity inherent with 

recovery because individual groups repopulated at different rates: foraminifera, 

conodonts and ammonoids were far faster than benthic groups to recover and 

were well on their way to regaining their former diversity levels within 1.5 Myr of 

the main extinction (Song et al. 2016; Dai et al. 2018). 

Theories for the underlying cause of this extremely protracted recovery 

include the magnitude of the extinction (Harries 1999; Hautmann et al. 2015) and 

successive pulses of extinction (e.g. Twitchett et al. 2004; Zhang et al. 2015; 

Foster et al. 2017; Dai et al. 2018). A factor that perhaps is most pertinent was 

the continuation of adverse environmental conditions, with extreme temperatures 

and also persistence of widespread marine anoxia, including in shallow water 

regions, for much of the Lower Triassic (Hallam 1991; Wignall & Hallam 1992; 

Schubert & Bottjer 1995; Woods et al. 1999; Fraiser & Bottjer 2007; Tong et al. 

2007; Meyer et al. 2008, 2011; Sun et al. 2012; Wignall et al. 2016; Foster et al. 

2018b). Only once the severe oxygen depletion ameliorated did recovery begin 

(Hallam 1991; Twitchett 1999; Twitchett & Barras 2004; Foster et al. 2018b). The 

dampening effect of such severe oxygen restriction on recovery can be evidenced 

by comparing the pace of recovery in regions that show evidence for better 

aerated waters where recovery of benthic communities was perhaps as much as 
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5 Myr ahead of those areas where oxygen restriction persisted (Twitchett et al. 

2004).  

By way of contrast, the recovery interval following the Cretaceous-

Paleogene (KPg) extinction was remarkably rapid. Benthic communities were 

dominated  by low diversity, small, infaunal deposit-feeding or chemosymbiotic 

molluscs for some 300 kyr following the KPg (Hansen 1988; Hansen et al. 1993; 

Harries 1999; Aberhan et al. 2007; Alroy 2010; Aberhan & Kiessling 2015). The 

time necessary for molluscan diversity and ecological structure to return to pre-

extinction state from 0.5 to 2.7 Myr of the event (Hansen 1988; Sessa et al. 2009; 

Aberhan & Kiessling 2014; Whittle et al. 2019). 

 

1.4 Recovery from the end-Triassic extinction 

The first studies dedicated to post-ETE recovery were by Hallam (1987, 

1996). These entailed zone-by-zone species richness counts for major groups of 

marine fauna, predominantly from Europe (Fig. 1.3), that showed recovery 

occurred throughout the Hettangian (Lower Jurassic) with species richness only 

reaching a plateau during the subsequent Sinemurian Stage (approximately 2 

Myr after the ETE using the chronology of Ruhl et al. (2010), however a recent 

reappraisal of the duration of the Hettangian suggests that the stage may have 

been far longer and so recovery may have taken as long as 4 Myr; Weedon et al. 

2019). A further increase in diversity to a new, broadly stable level, occurs across 

the Sinemurian-Pliensbachian boundary, approximately 9 Myr after the ETE. 

Dunhill et al.’s (2018) global database analysis also showed that recovery of 

level-bottom communities was largely complete by the Sinemurian. As seen after 

the PTME, pelagic recovery was quicker and achieved within the Hettangian. 
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Both radiolarians and ammonites underwent a radiation in the early Hettangian 

(Guex et al. 2004), but reefal recovery was far slower, with no significant reefs 

known for 10 Myr after the extinction (Stanley 1988). Full reef recovery was not 

seen until the Middle Jurassic and it has been suggested that this was set back 

during the early Toarcian extinction event (Stanley 1988; Wood 1999; Dunhill et 

al. 2018). 

 

Fig. 1.3 Species richness plots through the British Lower Jurassic from 

Hallam (1996). A – bivalves; B – ammonite (generic richness); C – 

rhychonellid brachiopods; D – crinoids; E – foraminifera; F – ostracods; G 

– total. Vertical axis not scaled to time.  

Studies conducted at finer temporal and geographic resolution indicate a 

shorter period of recovery within the Hettangian Stage. In the British Isles the 

survival interval is characterised by an abundance of the fossil oyster Liostrea 

hisingeri (Nilsson), lending these beds the name of the Ostrea beds (Richardson 

1911). Similar high dominance communities are found in Austria at this time with 

Cardinia-dominated (McRoberts et al. 2012) and Lobothyris-dominated 

assemblages (Tomašových & Siblík 2007). However, post-extinction 

communities in Tibet (Hautmann et al. 2008b) were diverse and show no 

opportunist-dominated survival communities. 
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Following a ‘survival interval’ across key locations in southwest Britain 

Mander et al. (2008) and Pugh et al. (2014) report a sequential filling of ecological 

tiers and rising diversity. This may partly have been controlled by the transition 

from euryhaline to stenohaline faunas as fully marine conditions were established 

by transgression in the region (Hallam 1996). Pugh et al. (2014) suggested a 

latest Hettangian age (1.26-2.92 Myr) for completion of recovery based on the 

appearance of deep infaunal bivalves at this level. This trend occurred despite 

the wide extent of oxygen restricted marine waters in the European Seaway 

(Wignall & Hallam 1991; Richoz et al. 2012; van de Schootbrugge et al. 2013). It 

is claimed these conditions delayed benthic recovery (Hallam 1996; Clémence et 

al. 2010; Richoz et al. 2012; Jost et al. 2017; Luo et al. 2018); an idea supported 

by extremely rapid benthic recovery in Tibetan sections which lack evidence of 

dysoxia (Hautmann et al. 2008b).  

 

1.5 Body size  

Post mass extinction communities are typically dominated by individuals 

of small body size (e.g. Fraiser & Bottjer 2004; Sogot et al. 2014), as noted by 

Hallam (1960a, 1975) following the ETE, who noted that many marine mollusc 

species then increased in size in the Early Jurassic. Ammonites also increase 

their maximum shell size (Dommergues et al. 2002), although this is a 

phylogenetic size increase (Cope’s Rule) rather than an intraspecific one. 

Hallam’s work did not consider molluscan body sizes prior to the extinction 

and so the size increase could be considered a manifestation of the Lilliput Effect. 

This term was coined by Urbanek (1993) who documented the effects of biotic 

crises on graptolite size. He found species that crossed the extinction event 
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exhibited a transient reduction in body size during the survival interval. The name 

Lilliput was given likening the diminutive size of organisms in the immediate post 

crisis interval to the tiny race of humans (Lilliputians) encountered in Jonathan 

Swift’s novel – Gulliver’s Travels.  

The cause(s) of the Lilliput Effect are contentious (Twitchett 2007; Harries 

& Knorr 2009; Brayard et al. 2010; Metcalfe et al. 2011; Song et al. 2011; Sogot 

et al. 2014; Brom et al. 2015; Wiest et al. 2018; Chen et al. 2019). Often debate 

shifts away from explaining how and why a single species should exhibit a 

transient decrease of body size (as per the Lilliput Effect proper) and instead 

seeks to explain the prevalence of small species (not necessarily true Lilliputians) 

in the immediate aftermath of extinction intervals. There have been several 

explanations proposed to explain the latter observation (c.f. Payne 2005) 

including: preferential extinction of large taxa (Fig. 1.4A) or prevalence of 

communities dominated by small taxa. The latter may be achieved through 

increased abundances of miniature species (likely to have been opportunists) 

without an increase in their taxonomic richness or/and via preferential origination 

of small-sized species (Fig. 1.4B). In the strict sense the Lilliput Effect is a 

temporary within-species size reduction amongst surviving taxa, which return to 

pre-extinction body sizes during the recovery (Fig. 1.4C). 
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Fig. 1.4 Schematic diagrams of body size changes across extinction events 

(red line) after Twitchett (2007), Black lines represent theoretical species 

ranges.  

As the Lilliput Effect produces a temporary decrease in body size it is likely 

a response to some environmental stress affecting growth or development rates. 

There are numerous possible stressors that could achieve such a condition, 

factors like: water temperature, salinity levels, dissolved oxygen content, and 

nutrient availability (Hallam 1965; His et al. 1989; Atkinson 1994; Wacker & von 

Elert 2008). 

Marine environments exhibiting some degree of oxygen restriction often 

feature small sized invertebrates (Rhoads & Morse 1971; Richmond et al. 2006). 

Under low oxygen levels metabolic rates are reduced, and growth slowed 

(Richmond et al. 2006). Oxygen deficiency may work in tandem with absence of 

currents, which can be particularly detrimental to growth of suspension feeding 

organisms whose filtration rates scale with current speed, and the supply of food 

particles (Hallam 1965; Walne 1972). Food availability, nutritional quality and 

particle size are also known controls on body size and growth rates of organisms 

(Brown et al. 1997; von Elert et al. 2003; Wacker & von Elert 2003; Weiss et al. 

2007).  

Temperature of an organism’s environment can have a profound effect on 

body size (McNab 1971; Geist 1987; James et al. 1995; van Der Have & De Jong 
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1996; van Voorhies 1996; Atkinson & Sibly 1997; Mousseau 1997; Roy & Martien 

2001; Schmidt et al. 2004; Linse et al. 2006; Arendt 2011; Berke et al. 2013). 

Perhaps the most renowned temperature-related body size rule is Bergmann’s 

Rule, this rule states that larger species of a taxon occur in cooler climates than 

smaller bodied relatives (Bergmann 1847; translated in James 1970). 

Bergmann’s observations applied only for homeothermic animals, however this 

has since been applied to poikilotherms (McNab 1971; Partridge & Coyne 1997; 

Blackburn et al. 1999). Perhaps the largest issue with Bergmann’s Rule, is that 

the original definition included a causal mechanism which revolved around 

conservation of heat energy in homeotherms (Bergmann 1847; translated in 

James 1970). Smaller animals have a higher surface area to volume ratio, heat 

loss will thus be proportionally greater than in a larger species. Smaller taxa thus 

expend a greater amount of metabolic energy to maintain a constant body 

temperature in cooler climates and so there is an advantage to being large. This 

explanation has since been refuted as the observed size body size increases are 

grossly insufficient to satisfy heat conservation calculations (Geist 1987). This 

mechanism also provides no explanation for why some poikilotherms exhibit a 

Bergmann’s trend since their body temperature is dependent upon their 

surroundings (McNab 1971). 

 It is at this point that we consider the similar Temperature-Size Rule. This 

rule offers an alternative explanation for a Bergmann’s size distribution whereby 

growth rates and development rates are affected unequally by temperature with 

the latter being more sensitive (Atkinson 1994; Atkinson & Sibly 1997). For 

example, under elevated temperatures both growth and development rates 

increase, the latter more so, thereby promoting sexual maturity at a younger age 
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and so smaller body size. Conversely in cooler conditions metabolic rates are 

lower, growth rates slower and longevity increased.  

 

1.6 Aims  

The primary aims of this project are to document the tempo and style of 

recovery amongst marine communities following the end-Triassic mass extinction 

within the British shelf seas and to examine the potential environmental and 

evolutionary controls on the trends. Recovery is documented through taxonomic 

richness, ecology and body size metrics, especially of bivalves which dominate 

benthic communities. Body size data has been collected for 145 species including 

five of the six bivalve species reported to increase in body size by Hallam (1960a). 

Only the body size trends of Gryphaea were not studied because these are well 

known (Hallam 1968, 1975; Johnson 1994; Jones & Gould 1999; Nori & 

Lathuiliére 2003). Collecting body size data from the breadth of bivalve diversity 

of the Lias, at the species level, allows assessment for how widespread body size 

increase was at that time as well as testing for trends within ecological groups, or 

specific regions. Growth line analyses are conducted to test whether any size 

trends are due to increased/decreased growth rates or longevity.  

In addition marine redox is reconstructed because there is no record 

available over the entire span of the study/recovery interval. This is achieved 

through the use of pyrite framboid size distributions from samples that span the 

entire Hettangian and into the early Sinemurian. Changes in marine oxygenation 

and other environmental parameters, such as temperature, are compared against 

bivalve recovery, represented by both diversity and body size in order to 

investigate how such environmental factors impacted on recovery from the ETE.  
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1.7 Rationale for work 

 Body size is an important trait in any organism effecting its ecology, 

physiology and evolution (e.g. Jablonski 1996 Body size has been described to 

reset to diminutive forms in the immediate aftermath of mass extinction events 

but little is known on how body size trajectories are affected over long timescales 

(multimillion years). This work contributes to the understanding of recovery 

intervals, in a traditional sense of taxonomic richness but also through the little 

explored facet of body size.  

The British Lias sections were chosen for this analysis because these 

stratigraphic successions are well-studied and have good age control from high 

resolution ammonite biostratigraphy. Additionally, the plethora of coastal and 

inland sites are easily accessed and well-exposed permitting detailed sampling.  

The study has focussed on bivalves, many of which have undergone recent 

taxonomic study (e.g. Hodges 2000, 2018), and have long stratigraphic ranges 

(Hallam 1976) allowing for detection of long term body size trends within species.  

 

1.8 Geological overview 

As this study’s focus is on British Triassic-Jurassic boundary (TJB) and 

Lower Jurassic sections an overview of the stratigraphy is provided.  
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1.8.1 The Rhaetian 

Rhaetian stratigraphy, represented by the Penarth Group (Fig. 1.5), is 

remarkably consistent across great swathes of the British Isles as Late Triassic 

sea level rise flooded a vast desert basin nestled within Pangaea at around 30-

40°N, producing a quasimarine shallow sea punctuated by islands of 

Precambrian and Palaeozoic rock (Oates 1976; Hallam & El Shaarawy 1982; 

Simms et al. 2004).The Westbury Formation, at the base of the Penarth Group, 

mostly comprises dark, fossiliferous mudstone with occasional thin calcareous 

sandstones and tabular fibrous limestones known as ‘beef’ (Waters & Lawrence 

1987; Gallois 2007). It is succeeded by the Lilstock Formation with its constituent 

Cotham and Langport members (Warrington et al. 1980). The Cotham Member 

contains the ETE, is 2-4m thick, formed of pale-green/cream, thinly bedded 

mudstones, siltstones and limestones (Hesselbo et al. 2004; Gallois 2007, 2009; 

Wignall & Bond 2008). The Cotham Member exhibits a widespread horizon of 

soft sediment deformation (Simms 2003, 2007; Lindström et al. 2015) that is 

penetrated by deep ‘desiccation’ cracks (Waters & Lawrence 1987; Hesselbo et 

al. 2004). Both the deformed bed and crack structures are postulated to have 

resulted from tectonic activity associated with the opening of the Central Atlantic 

(Hallam & Wignall 2004; Lindström et al. 2015).  

The succeeding Langport Member is well exposed at Pinhay Bay, Devon 

where porcelaneous limestones form a striking white layer in the cliff up to 8 m 

thick (Hallam 1960b; Wignall 2001b; Gallois 2007). The Member is however 

abnormal in this location featuring an intraformational conglomerate possibly 

formed by seismically induced slumping (Wignall 2001b). In other regions of 

Britain, the Langport Member is typically a micritic mudstone, although in 

Northern Ireland this unit features shales with thin, occasionally hummocky, 
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sandstones (Simms & Jeram 2007). The upper surface of this member is marked 

by a period of sea level fall, capped by an exposure surface known as the ‘Sun 

Beds’ which feature truncated Diplocraterion burrows (Richardson 1911; Hallam 

1960b).  

Fig. 1.5 Schematic lithostratigraphy of studied sedimentary basins with 

ammonite chronozone scheme and geological stages. Modified from 

Ivimey-Cook (1971); Simms et al. (2004); Simms & Jeram (2007). Stage 

boundary ages from Ruhl et al. (2016); Wotzlaw et al. (2014); Weedon et al. 

(2019).  
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1.8.2 The Hettangian 

Placement of the TJB is defined by the lowest occurrence of the ammonite 

Plioceras spelae (Hillebrandt et al. 2013), although within Boreal provinces there 

is a distinct paucity of latest Triassic and earliest Jurassic ammonites until P. 

erugatum, which has been correlated with the uppermost tilmanni Zone 

(Lindström et al. 2017). Therefore placement of the TJB remains uncertain in 

Britain, although carbon isotope stratigraphy can assist. Traditionally the 

ammonite-barren interval above the Lilstock Formation but below the lowest 

occurrence of Jurassic ammonites, is referred to as the Pre-planorbis Beds. 

All ammonite zonation schemes herein referred to for the British Lias follow 

Northwest European Province scheme reviewed in Page (2003). For the 

Hettangian three ammonite zones are recognised above the Pre-planorbis Beds. 

These are, in ascending order: planorbis, liasicus and angulata zones. These 

ammonite zones are, in many basins, represented lithologically by the Blue Lias 

Formation that consists of small-scale cycles of limestone-marl-shale (Fig. 1.5) 

(Hallam 1957a, b, 1960a, 1964; Cope et al. 1980; Weedon et al. 2018). The 

transition from the Langport Member to the Blue Lias signifies a rapid 

transgression heralding not only the development of fully marine conditions but 

also the spread of black shales (Wignall & Hallam 1991; Wignall 2001b). The 

classical Blue Lias development is considered to represent offshore deposition, 

around the Mendips of Somerset and in areas of Glamorgan these facies pass 

laterally into marginal facies, in Glamorgan this is the Sutton Stone and 

Southerndown Beds (Tawney 1865; Trueman 1922). The Sutton Stone is formed 

of conglomerates, grainstones and packstones (Sheppard 2002), whereas the 

succeeding Southerndown Beds are transitional between Sutton Stone and 

offshore Blue Lias (Trueman 1922). 
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 Although Blue Lias facies are prevalent across much of the British Isles a 

notable exception includes the Cleveland Basin of north east England where the 

Redcar Mudstone Formation occurs (Fig. 1.5) - a fossiliferous mudstone and 

siltstone with subordinate shell beds and carbonate concretions (Powell 1984). 

 

1.8.3 The Sinemurian 

The Hettangian-Sinemurian boundary is marked by a change from 

schlotheimiid dominated ammonite assemblages to aretitids, specifically the first 

occurrence of Metophiceras (Bloos & Page 2002). The Sinemurian can be divided 

into six ammonite zones: bucklandi, semicostatum, turneri, obtusum, oxynotum 

and raricostatum. Initially, the Sinemurian continues in the same vein of the 

Hettangian with the bucklandi and lower part of the semicostatum zones seeing 

a continuation of the Blue Lias or Redcar Mudstone formations (Fig. 1.5). 

However, the Blue Lias fades out being replaced by mud dominated deposition 

primarily in the guise of the Charmouth Mudstone Formation across southern and 

central Britain (Fig. 1.5) (Cope et al. 1980; Cox et al. 1999).  

 

1.8.4 The Pliensbachian 

The base of the Pliensbachian is defined by the presence of the ammonite 

genus Apoderoceras and contains five ammonite zones: jamesoni, ibex, davoei, 

margaritatus and spinatum (Meister et al. 2004). The earliest Pliensbachian is, 

for most British basins, the same lithological formation as the latest Sinemurian 

(e.g. Charmouth Mudstone, Redcar Mudstone, Pabay Shale cf. Simms et al. 

2004). The stage is characterised by an overall regression and so the stage 



21 
 

terminates with ferruginous ooid-bearing shallow water facies (e.g. Marlstone 

Rock, Cleveland Ironstone formations; Fig. 1.5).  

 

1.9 Thesis outline 

To assess recovery among marine communities following the end-

Triassic mass extinction event this thesis is divided into a series of papers and 

chapters that consider body size changes, taxonomic richness and marine 

oxygenation during recovery. Chapter 2 provides a detailed account of 

Plagiostoma giganteum J. Sowerby, a species noted by Hallam to undergo an 

increase in its maximum size during the Hettangian and early Sinemurian. This 

chapter compares the size increase of P. giganteum to contemporaries of the 

same family, the Limidae and attempts to assess the driving mechanism behind 

the trends. Chapter 2 also introduces the Brobdingnag Effect. Chapter 3 

addresses the issue of recovery among the bivalves, its duration and whether 

oxygen restriction acted to stall their recovery. This chapter focuses on the story 

within the Blue Lias Formation. Chapter 4 builds on the previous chapter by 

assessing recovery and reconstructing redox conditions in a non-Blue Lias 

setting. Chapter 5 returns to the concepts of Chapter 2 and the Brobdingnag 

Effect. This time expanding the study to encompasses all bivalves and across a 

greater length of time (Rhaetian to latest Pliensbachian). Size changes 

documented therein are compared to other indicators of recovery such as 

diversity and further discussion on potential drivers of body size changes is 

given. Chapter 6 draws together the results of the preceding chapters and 

compares the findings to other recovery intervals. Finally, Chapter 7 provides a 

summary of the key results as well as suggestions for further areas of study.  
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2.1 Abstract 

 Reduced body size of organisms following mass extinctions are well-

known and often ascribed to the Lilliput Effect. This phenomenon is expressed 

as a temporary body size reduction within surviving species. Despite its wide 

usage the term is often loosely applied to any small post-extinction taxa. Here the 

size of bivalves of the family Limidae (Rafineque) prior to – and in the aftermath 

of – the end-Triassic mass extinction event are assessed. Of the species studied 

only one occurs prior to the extinction event, though is too scarce to test for the 

Lilliput Effect. Instead, newly evolved species originate at small body sizes and 

undergo a within-species size increase, most dramatically demonstrated by 

Plagiostoma giganteum Sowerby which, over two million years, increases in size 

by 179%. This trend is seen in both field and museum collections. We term this 

within-species size increase of newly originated species in the aftermath of mass 

extinction, the Brobdingnag Effect, after the giants that were contemporary with 

the Lilliputians in Swift’s Gulliver’s Travels. The size increase results from greater 
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longevity and faster growth rates. The cause of the effect is unclear, although 

likely relates to improved environmental conditions. Oxygen-poor conditions in 

the Early Jurassic are associated with populations of smaller body size caused 

by elevated juvenile mortality but these are local/regional effects that do not alter 

the long-term, size increase. Although temperature-size relationships exist for 

many organisms (Temperature-Size Rule and Bergmann’s Rule), the importance 

of this is unclear here because of a poorly known Early Jurassic temperature 

record.  

Key words: Body size, End-Triassic mass extinction, Lilliput Effect, Early 

Jurassic, Brobdingnag Effect.   

 

2.2 Introduction 

Intervals of biotic recovery, following mass extinctions, are important for 

the evolution of life, as new species adapt and evolve to refill ecological 

vacancies. Several models for biotic recovery have been proposed. Kauffmann 

and Erwin (1995) simply divided post extinction times into two phases: the 

survival interval and the recovery interval. This was later expanded by Twitchett 

(2006) into a four-phase process that is defined by changes in ecological tiering, 

species richness, evenness, bioturbation and – of relevance to this study – body 

size. This last factor was initially highlighted by Urbanek (1993) who documented 

the effects of biotic crises on the size of graptolites. He found that surviving 

species (those that crossed the extinction event) exhibited a reduced body size 

during the initial recovery phase, and later increased in size to return to “normal” 

pre-event body sizes; a phenomenon he termed the Lilliput Effect. Urbanek’s 

original definition was applied at the species level, however subsequent workers 
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have loosely applied this term to a range of higher taxonomic ranks (Harries and 

Knorr 2009; McGowan et al. 2009; Huang et al. 2010; Sogot et al. 2014; Chu et 

al. 2015). 

 The Hettangian and Sinemurian (Early Jurassic) intervals record the 

recovery from the end-Triassic mass extinction (Hallam 1960, 1996; Mander et 

al. 2008; Pugh et al. 2014). Based on ecological tiering and trace fossil diversity, 

biotic recovery was considered to have been completed by the angulata 

ammonite zone, approximately 1.1 million years (Myr) after the extinction 

(Twitchett & Barras 2004; Barras & Twitchett 2007; Ruhl et al. 2010; Pugh et al. 

2014). Hallam (1960) recorded an increase in the maximum dimensions of six 

bivalve species during the Hettangian and lower Sinemurian and similar trends 

have been noted for other bivalves and other groups at this time (Hallam 1975; 

1978; 1998; Johnson 1994; Dommergues et al. 2002; Barras & Twitchett 2007). 

However, this is not an example of the size increase seen in Lilliput faunas 

returning to pre-event sizes because the species concerned were not present 

before the extinction event, but instead originated as small-bodied animals during 

the recovery. A major issue with many studies on body size changes has been a 

lack of species level data, with most work usually conducted at the generic level 

(Hallam 1975; Dommergues et al. 2002; Hautmann 2004) or on whole fossil 

assemblages regardless of their taxonomy (e.g. Mander et al. 2008). Such data 

provide little information on the mechanisms of size change and fails to 

distinguish intra-species size increase from manifestations of Cope’s Rule where 

evolutionary size increase occurs in a lineage (Cope 1887; Rensch 1948; Alroy 

1998). An increase of average body size of a population can also record 

improving environments and decrease of juvenile mortality within a species or a 

record of changes in taxonomic composition as environments ameliorated.  
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 Body size is a key factor in organisms because it influences ecology, 

physiology and evolution (e.g. Jablonski 1996). Understanding the nature and 

causes of body size change may reveal how animals are likely to respond to 

future stresses.  This study aims to investigate the reported body size changes in 

bivalves of the British Isles during the latest Rhaetian, Hettangian and Sinemurian 

by considering five species of epibyssate bivalve of the family Limidae 

(Rafinesque): Plagiostoma giganteum Sowerby, Plagiostoma punctatum 

Sowerby, Antiquilima succincta (Schlotheim), (Terquem), Pseudolimea 

pectinoides (Sowerby) and Ctenostreon philocles (d’Orbigny), with each dealt 

with independently to ensure taxonomic consistency. The driving mechanisms for 

body size change and their significance for recovery from mass extinction are 

discussed.  

  

2.3 Geological setting 

  The upper Rhaetian of Britain consists of the Penarth Group (and its 

constituent Westbury and Lilstock formations). The Westbury Formation is 

dominated by dark mudstone beds with thin, rippled sandy horizons and densely 

packed shell beds (Gallois 2007). The succeeding Lilstock Formation consists of 

the Cotham and Langport members. The Cotham Member is generally 2-4 m 

thick and formed of mudstone, siltstone and rippled, fine sandstone beds that 

often show an intensely deformed bed up to 2 m thick (Simms 2003). This is 

dissected by deep fissures, often interpreted as desiccation cracks that can attain 

depths of up to 1 m (Waters & Lawrence 1987). The end-Triassic mass extinction 

horizon occurred near the base of this unit and was followed by the ‘initial’ 
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negative carbon isotope excursion just above the crack level (Wignall & Bond 

2008 and references therein). 

 The Langport Member exhibits the greatest lateral variation of the 

Rhaetian strata. In Pinhay Bay, Devon, the unit consists of micritic mudstone, 

giving a striking white appearance in the cliffs (hence the unit has also been 

known as the White Lias (Smith 1797)) and is capped by an exposure surface 

known as the Sun Beds (Richardson 1911). In places this bed has been cut-out 

and replaced by an impersistent, intraformational conglomerate (Wignall 2001). 

In Somerset the Langport Member, which is much thinner than along the 

Devonshire coast, lacks a conglomerate, instead a shaley unit termed the 

‘Watchet Beds’ is developed in the upper part (Richardson 1911; Gallois 2009). 

On the Glamorgan coastline this Member is again a micritic mudstone, whilst in 

County Antrim this unit is characterised by shales with thin, occasionally 

hummocky, sandstones.  

 For much of the Penarth Group deposition occurred within a shallow 

epicontinental sea with variable connectivity to the Tethys in the south (Swift 

1999). Abnormal salinity is suggested by the lack of stenohaline taxa such as 

ammonoids and brachiopods throughout much of the group (Hallam & El 

Shaarawy 1982). The presence of the ostracod Darwinula and the conchostracan 

Euestheria within the Cotham Member suggests brackish waters (Boomer et al. 

1999; Morton et al. 2017). However, normal marine taxa such as echinoids and 

the ostracods Ogmoconchella and Eucytherura are present in the succeeding 

Langport Member (Boomer et al. 1999; Swift 1999). 

 Across southwest England and Wales the Penarth Group is overlain by 

the Blue Lias Formation, the base of which is marked by a black shale termed 

the ‘Paper Shale’ (Richardson 1911). The Formation consists of a rhythmic 
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sequence of alternating limestones, marls, mudstones and dark shales thought 

to reflect seafloor oxygen fluctuations that were likely orbitally controlled 

(Weedon 1986; Bottrell & Raiswell 1989; Moghadam & Paul 2000; Wignall 

2001; Clémence et al. 2010; Ruhl et al. 2010). In the Larne Basin typical 

offshore Blue Lias-type facies were not developed, instead the Lilstock 

Formation was followed by the Waterloo Mudstone Formation: a succession of 

pale mudstones and thin silty beds, with thin limestone beds from the upper 

planorbis Zone onwards (Simms & Jeram 2007). Also, within the Cleveland 

Basin the Hettangian and basal Sinemurian are represented by the Calcareous 

Shale Member of the Redcar Mudstone Formation, this consists of interbedded 

mudstones and shales with limestone beds rich in the oyster Gryphaea (Powell 

2010). The lower Sinemurian of the East Midlands Shelf is represented by the 

Frodingham Ironstone Member of the Scunthorpe Mudstone Formation, the 

sequence here is much condensed and formed of ferruginous sandstones with 

chamosite ooids (Simms & Page 2004). Returning to the southwest, the Blue 

Lias Formation is followed by the Charmouth Mudstone Formation, which in its 

lower part consists of the Shales-with-Beef and basal-most Black Ven Marls. 

These are distinct from the underlying Blue Lias Formation because of the 

greater dominance of mudstones and organic-rich shales (Gallois 2008). The 

Blue Lias and Charmouth Mudstone formations were deposited under fully 

marine conditions, with the Blue Lias representing an interval of transgression, 

during which the deepest waters were attained during the lowermost 

Sinemurian (bucklandi Zone) (Hallam 1981; Sheppard 2006; Sheppard et al. 

2006). Localities on the Glamorgan coast were deposited much closer to a 

palaeo-shoreline than those across the Bristol Channel on the Somerset coast 

(Wobber 1965; Johnson & McKerrow 1995).  
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 Despite local variations, correlation between sections is afforded by a well-

constrained ammonite biostratigraphy (Bloos & Page 2002; Page 2002) except 

for the lowermost, ammonite-free Blue Lias. This level is known as the Pre-

planorbis Beds, and is thought to be equivalent to the basal Jurassic tilmanni 

Zone (Page 2010). This is followed by the planorbis, liasicus and angulata zones 

of the Hettangian Stage and the bucklandi, semicostatum and turneri zones of 

the lowermost Sinemurian Stage.  

 

2.4 Materials and methods 

2.4.1 Species studied  

 The genus Plagiostoma has an obliquely ovate shell with length exceeding 

the height and is of a moderate to strong inflation. Umbones are placed posterior 

to the middle line and an anterior umbonal ridge is well-defined. The ligament pit 

is broad and the lunule excavated. The genus is edentulous or bears up to two 

broad, longitudinal teeth (Cox et al. 1969). Of the two species studied here, 

Plagiostoma punctatum is distinguished from Plagiostoma giganteum by the 

presence of approximately 100 fine radial ribs across the body of the shell and 

on the posterior auricle (Aberhan 1994). On abraded specimens the intersection 

between radial ribs and commarginal striae are rendered as punctae in the 

interspaces (Hodges 1987). P. giganteum features radial striae confined to the 

anterior and posterior regions of the shell, although they can be weakly developed 

on the centre of the valve in some specimens. Both species show a broad, flat 

antero-dorsal margin suggesting an epibyssate life mode and the frequent 

encrustation by epibionts, especially of larger specimens, further suggests an 

epifaunal life site. 
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 Pseudolimea pectinoides bears an equivalved, subovate to orbicular, 

slightly oblique shell. The beaks are positioned centrally and are salient above 

the hinge line with small auricles (Cox et al. 1969).The shell is ornamented by 15-

20 obtuse, striated, sharp radial ribs; these may appear rounded in cross section 

on abraded specimens. Interspace ribs are variable in nature and can appear as 

sharp crests or thin rounded threads; these secondary ribs extend over the 

auricles (Hodges 1987; Aberhan 1994).  Cox (1944) remarked how Pseudolimea 

hettangiensis was often confused with P. pectinoides. Further to this Cox (1944) 

synonymized P. hettangiensis and Pseudolimea eryx, which in turn Peter Hodges 

(pers. comm. 2018) considers this to be a synonym of P. pectinoides.  

 Antiquilima succincta is obliquely subovate in outline, and only moderately 

inflated (Cox et al. 1969; Aberhan et al. 2011). The shell bears 30-56 primary ribs 

with numerous secondary ribs occupying the interspaces (Hodges 1987).  

 Ctenostreon philocles is distinguished by a thickened, suborbicular shell 

that may have a moderately irregular outline and is typically compressed. The 

auricles are large although the anterior auricle is usually the smaller. The surface 

of the shell is adorned by approximately ten rounded radial ribs that bear spines 

or tubercles and has broad interspaces (Hodges 1987).  

 

2.4.2 Sampling 

 In order to document body size changes of the aforementioned bivalves 

across the end-Triassic extinction and throughout the Lower Lias, field collections 

were made from coastal locations in Somerset, Devon, Dorset, North Yorkshire, 

South Wales and County Antrim, a river cliff section in Gloucestershire, a quarry 

in North Lincolnshire and material retrieved from the Mochras borehole housed 
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in the British Geological Survey (BGS), Keyworth, Nottingham (Fig. 2.1). These 

sections represent a range of depositional settings within the epicontinental sea 

that covered much of the British Isles in the Early Jurassic (Table 2.1). Sample 

horizons were distributed at 1-2 m vertical intervals, where exposure permitted. 

Stratigraphic height of sampled horizons was determined using published 

sedimentary logs (e.g. Hesselbo and Jenkyns 1995; Bloos and Page 2002; 

Simms 2004a,b). If no sedimentary log of sufficient resolution was available, then 

the section was logged either from the foreshore directly or from the 

corresponding cliff section and dated using ammonites. 

  

Fig. 2.1 Map depicting field locations (closed circles), see Table 2.1 for 

details, shaded regions depicting Rhaetian and Early Jurassic outcrops. 

Maps modified from Mander et al. (2008) and Powell (2010). 
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 For mudstones, shales and marls, fossils were measured and collected 

from freshly split surfaces by use of hammer and chisel from approximately 

equal volumes of rock.  For the harder limestone beds, which could not easily 

be split, fossils were measured in situ from upper bedding surfaces. Samples 

from Hock Cliff were collected from loose blocks at the foot of the river cliff, as 

the section spans only a single ammonite zone these could be ascribed to the 

bucklandi Zone (Simms & Chidlaw 2004). Where bedding was exposed in 

ledges on river banks sampling could be undertaken in situ following the above 

described methods. 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Details of field localities. Formation abbreviations: W = Westbury, 

BL = Blue Lias, L = Lilstock, CM = Charmouth Mudstone, WM = Waterloo 

Mudstone, RM = Redcar Mudstone, SM = Scunthorpe Mudstone. 
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Location  

 

Grid ref. 
Section 
type 

 

Basin Formations Zones studied 
Depositional setting 

(Exc. Penarth Grp) 

1. Lavernock Point, Glamorgan ST 188 682 – ST 183 679 Coastal Bristol Channel W-BL Pre-planorbis-liasicus Near basin margin 

becoming distal shelf 

2. Nash Point, Glamorgan SS 911 692 – SS 921 679 Coastal Bristol Channel BL angulata-bucklandi  Distal shelf 

3. Lilstock, Somerset ST 178 453 Coastal Bristol Channel W-BL Pre-planorbis-liasicus Basinal, offshore, mud-

dominated 

4. East Quantoxhead, Somerset ST 134 442 – ST 142 444 Coastal Bristol Channel BL angulata-bucklandi Basinal, offshore, mud-

dominated 

5. St Audrie’s Bay, Somerset ST 103 434 – ST 099 433 Coastal Bristol Channel W–BL Pre-planorbis-liasicus Basinal, offshore, mud-

dominated 

6. Pinhay Bay, Devon SY 317 907 – SY 333 914 Coastal Wessex L–BL Pre-planorbis–bucklandi Mud-dominated middle 
shelf 

7. Charmouth, Dorset SY 352 929 – SY 370 929 Coastal Wessex CM semicostatum–turneri Basinal, mud-dominated 

8. Hock Cliff, Gloucestershire SO 725 093 River cliff Severn BL bucklandi Mud-dominated middle 
shelf 

9. Waterloo Bay, Co. Antrim NW 558 582 Coastal Larne W–WM Pre-planorbis planorbis, 

angulata 

Nearshore, silt-
dominated 

10. Portmuck Harbour, Co. Antrim NW 558 582 Coastal Larne WM planorbis Nearshore, silt-
dominated 

11. Mochras, North 

Wales 

SH 553 259 Drill core Cardigan 

Bay 

- Pre-planorbis–turneri Mud-dominated inner 
shelf 

12. Redcar, North Yorkshire NZ 613 253 Coastal Cleveland RM angulata–bucklandi Mud-dominated shelf 

13. Robin Hood’s Bay, North 
Yorkshire 

NZ 971 028 Coastal Cleveland RM semicostatum–turneri Silt-dominated 

shelf 

14. Conesby Quarry, North 

Lincolnshire 

SE 889 145 Quarry East 

Midlands Shelf 

SM semicostatum Wave-dominated shelf 
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 Body size data were bolstered by measurements from material previously 

collected housed in the School of Earth and Environment, University of Leeds, 

and additional specimens were donated by Michael Simms. Specimens housed 

in collections from the following Museums were also incorporated: National 

Museum of Wales, Cardiff (NMW); Warwickshire Museum, Warwick (WARMS); 

Bristol City Museum and Art Gallery, Bristol (BRSMG); Yorkshire Museum, York 

(YORYM); Whitby Museum, Whitby (WHITM); Bath Royal Literary and Scientific 

Institute, Bath (BRLSI). 

 For each specimen height (H) and length (L) of the valves were measured 

(Fig. 2.2) using a pair of digital callipers with a measurement error of +/-0.02 mm. 

These parameters were used to calculate geometric mean body size (GMBS): 

𝐺𝑀𝐵𝑆 =  √(H x L). For incomplete specimens the missing value was calculated 

based on H:L ratios of coeval, complete specimens. GMBS was selected for size 

analysis over single linear measurements as it provides a better representation 

of a specimen’s overall size, is easily obtained and correlates well with other, 

more complex, body size measurements (Kosnik et al. 2006). 
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Fig. 2.2 Measurement schematic of a left valve in Limidae.  

 

 Size data were placed into time bins; ammonite zones were selected for 

this because they provide a high-resolution age model and allow museum 

specimens, with sufficient context, to be included with field observations. 

Durations of ammonite zones (including Pre-planorbis Beds) are from Ruhl et al. 

(2010).  For the Rhaetian, which lacks ammonites, the Langport Member, Cotham 

Member and Westbury Formation are used as time bins, the durations of which 

are uncertain. Additionally, owing to small samples sizes, data from the 

semicostatum and turneri zones are here combined.  

 Size distribution histograms are produced for each time bin as well as 

mean GMBS along with error bars depicting a 95% confidence interval, allowing 

the population size ranges to be represented. Maximum body size is also shown. 

This is calculated as the mean of the largest 10% of the population in order to 

reduce the effects of abnormally large outliers (Johnson 1994). To test for 
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statistical significance of size changes between time bins a Kolmogorov-Smirnov 

test (K-S test) was performed, p-values are quoted with a 95% significance 

threshold  (p < 0.05). These analyses were carried out using PAST 3.12 statistical 

software (Hammer et al. 2001). All other analyses were carried out using 

Microsoft Office Excel 2013. 

 To test for the effects of oxygen availability on body size, specimens were 

divided according to their host lithology. As the sedimentary rhythms in the  Blue 

Lias Formation are thought to represent cycles in sea-floor oxygenation, the 

bioturbated limestones are considered the most oxic (this category also includes 

the Blue Lias marginal facies – the Sutton Stone),  followed by pale 

marl/mudstone and dark, laminated mudstone in order of decreasing oxygen 

availability. Size variability between locations was also assessed.  

 

2.4.3 Growth lines 

In order to assess changes in growth rate, spacing of growth lines was 

measured from well-preserved specimens using a series of overlapping, high 

resolution images. When compiled these give a detailed transect from the umbo 

to the ventral margin of the valve. Two styles of plots were produced with these 

data, the first plots valve height against number of growth lines, the gradient of 

the resulting line is taken as an indication of growth rate, and allows for statistical 

comparison between populations. The second plots growth line separation (mm) 

against growth line number. In some specimens this reveals cycles in growth line 

density. 

 External growth lines were selected over more reliable internal growth 

increments (Lutz & Rhoads 1980) as all of the fossils within this study are formed 
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of recrystallized calcite or have been silicified and so lack original internal shell 

structures. This method is generally used in palaeontological studies (Craig & 

Hallam 1963; Wignall 1990; Morten & Twitchett 2009; Metcalfe et al. 2011) 

despite incurring potential errors introduced by abrasion, particularly around the 

umbones, and underestimation of growth lines at the clustered margins of older 

individuals and incorporation of disturbance lines (Craig & Hallam 1963).  

 

2.5 Results 

2.5.1 Body size   

2.5.1.1 Plagiostoma giganteum 

 A total of 520 specimens (including 88 museum specimens) of 

Plagiostoma giganteum were recorded from within six time bins (Pre-planorbis 

Beds – semicostatum-turneri zones). Each of these size distribution histograms 

for P. giganteum bears a slight bimodality (Fig. 2.3), with the angulata and 

bucklandi zones showing a possible third peak. All show a slight skew towards 

larger individuals except for the semicostatum-turneri zones data that show a high 

proportion of small specimens (< 40 mm in size). P. giganteum showed an 

increase in mean and maximum GMBS from its first common occurrence in the 

planorbis Zone through until the bucklandi Zone (Fig. 2.4). From the planorbis to 

liasicus Zone mean GMBS increased by 15.6% (p = 0.02). The greatest relative 

size increase occurred between the liasicus and angulata zones (76.2% increase 

in GMBS, p= 3.95 x 10-21). Mean body size continued to increase into the 

bucklandi Zone, however at a lessened rate (34.2% GMBS increase, p = 1.72 x 

10-12). Altogether from the planorbis Zone to the bucklandi Zone this species 

increased in size by 179%.  Following the bucklandi Zone, there were fewer 
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occurrences of P. giganteum, and mean body size decreased by 74% (p = 2.78 

x 10-17) into the semicostatum-turneri zones. Thus, P. giganteum at this level 

decrease to a size smaller than that seen in their earliest occurrence in the pre-

planorbis beds even though the maximum GMBS remained high (around the size 

recorded from the angulata Zone). Bed-by-bed sampling in Pinhay Bay from the 

planorbis to bucklandi Zone showed an increasing body size trend that matches 

that of the time-binned approach over the same interval (Fig. 2.5). The same was 

undertaken at Nash Point, despite the section only spanning the angulata and 

bucklandi zones, a trend towards a larger GMBS up-section was still seen. 

Throughout the studied interval minimum body size remained fairly constant 

around 10 mm, whereas both the mean and maximum GMBS increased up to the 

bucklandi Zone resulting in an increased size variance of P. giganteum 

populations.  

 

 

 

Fig. 2.3 Size distribution histograms for Plagiostoma giganteum per time 

bin. 
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Fig. 2.4 Time-binned variation in the size of Plagiostoma giganteum (top) 

and Antiquilima succincta (bottom). Lines connect successive time bins 

with >10 specimens. Error bars depict 95% confidence intervals. Sample 

size quoted per time bin. 
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Due to large samples sizes from the angulata Zone it is possible to test for body 

size differences between sampled locations (Fig. 2.6). P. giganteum specimens 

from Pinhay Bay and Nash Point were statistically indistinct of one another (p = 

0.27), whilst those from East Quantoxhead were typically smaller (p = 0.01 and 

2.00 x 10-3, when compared to Nash Point and Pinhay Bay respectively). Testing 

for a link between body size and oxygenation shows that P. giganteum was 

typically larger (and more abundant) in better oxygenated settings when 

compared with specimens measured from dysoxic settings of the same time bin.  

Nonetheless, the temporal body size increase occurs within individuals from the 

same oxygenation regimes (Fig. 2.6).  
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Fig. 2.5. Stratigraphically tied size variation of P. giganteum from Pinhay 

Bay (A) and Nash Point (B). Error bars depict 95% confidence intervals. 

Note different vertical scales. 
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Fig. 2.6 Time-binned variation in the size of Plagiostoma giganteum per 

locality, (top). Variation in size between specimens measured from different 

oxygenation regimes inferred from host lithology (bottom), see methods for 

details. Lines connect successive time bins with >10 specimens. Sample 

size quoted per time bin. 

 

2.5.1.2 Plagiostoma punctatum 

This species appeared stratigraphically earlier than Plagiostoma 

giganteum, with a single specimen found in the Westbury Formation. P. 

punctatum was fairly abundant within the Langport Member (n = 27) though less 

common in the overlying formations with a total of 101 specimens from the six 

time bins (Fig 2.7). Of the eight time bins P. punctatum was recorded from, the 

Westbury Formation, Pre-planorbis Beds, planorbis, liasicus and angulata zones 
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bore too fewer specimens to produce a meaningful histogram. The sample from 

the Langport Member showed a size distribution with a peak at 30 mm (Fig. 2.8). 

For the bucklandi and semicostatum-turneri zones the peak had shifted towards 

smaller individuals with GMBS of 10-20 mm (Fig. 2.8). Using the time bins with a 

minimum of ten specimens it is possible to see an increase in mean body size 

from the Langport Member to the planorbis Zone of 92.92% (p = 1.67 x 10-05). 

This was followed by a decline in mean GMBS from the planorbis to the bucklandi 

Zone of 63.9% (p = 8.20 x 10 -05) (Fig. 2.7). Maximum GMBS followed the same 

trend as the mean. This declining trend persisted into the semicostatum-turneri 

zones with a further 25% decline in mean GMBS from the bucklandi Zone (p = 

8.13 x 10-04). An additional 15 specimens were measured from BRLSI, one from 

YORYM and another previously collected specimen housed in the University of 

Leeds, these were recorded as being “Middle Lias” in age. Those from BRLSI 

were all collected in one location from Illminster, England. These additional 

specimens had a mean GMBS of 30.35 mm, a comparable value to those of the 

Langport Member.  
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Fig. 2.7 Time-binned variation in the size of Ctenostreon philocles (top), 

Pseudolimea pectinoides (middle) and Plagiostoma punctatum (bottom). 

Lines connect successive time bins with >10 specimens. Error bars depict 

95% confidence intervals. Sample size quoted per time bin. 
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Fig. 2.8 Size distribution histograms for Plagiostoma punctatum per time 

bin with sufficient samples. 

 

2.5.1.3 Antiquilima succincta 

A total of 31 specimens of A. succincta were assessed for this study, with 

this species being most abundantly recorded from the angulata Zone of 

Glamorgan. The largest specimen measured H 162.76 mm, L 161.93 mm, 

collected from Southam Cement Quarry, Warwickshire (WARMS G.13092). Both 

maximum and mean size show an increasing size trend for this species (Fig. 2.4). 

Mean size increased by 39% from the planorbis to the bucklandi Zone, although 

sample size is rather small. Maximum size increased by 117% over the same 

interval (planorbis to bucklandi Zone). This then decreased by 68% from the 

bucklandi to the semicostatum-turneri zones. The absolute values of maximum 

size for A. succincta were akin to, and occasionally larger than, that of P. 

giganteum (Table 2.2).  
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Table 2.2 Comparison between maximum GMBS (mm), per ammonite zone, 

of Plagiostoma giganteum and Antiquilima succincta. 

 

2.5.1.4 Pseudolimea pectinoides 

A total of 269 specimens from five ammonite zones (planorbis to 

semicostatum-turneri) were measured. These revealed a mean size increase of 

65% from the planorbis to liasicus Zone (p =0.03), thereafter mean GMBS 

remained fairly constant fluctuating slightly around 14 mm. After the liasicus Zone 

the only statistically significant size change occurred between the bucklandi and 

the semicostatum-turneri zones (29%, p = 1.45 x 10-03). Maximum size portrays 

a different trend, initially the planorbis-liasicus zone size increase was mirrored 

in the maximum size, however this trajectory continued (Fig. 2.7). Maximum 

GMBS shows a rise from the planorbis to the bucklandi Zone of 36% relative to 

the maximum during the planorbis Zone (p = 3.2 x 10-3). This size increase 

occurred over the same interval as that observed in Plagiostoma giganteum and 

Ammonite zone Plagiostoma 

giganteum 

Antiquilima succincta  

semicostatum-turneri  173.60 52.45 

bucklandi 179.97 162.34 

angulata 152.75 145.67 

liasicus 86.65 109.77 

planorbis 74.20 74.83 
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Antiquilima succincta, albeit at a lesser magnitude. For all time bins, size 

distribution histograms show a skew in favour of smaller individuals (Fig. 2.9). 

 

Fig. 2.9 Size distribution histograms for Pseudolimea pectinoides per 

ammonite zone.  

As P. pectinoides was found in a range of localities, geographic variation 

of body size was tested. Although few locations had data from multiple time bins 

(Fig. 2.10) a few generalisations can be made: specimens from South Wales and 

in the region of the Radstock and East Midlands shelves were typically larger, 

with the smaller specimens coming from the Cardigan Bay Basin and Co. Antrim. 

Further to this, as with P. giganteum, size differences between oxygenation 

regimes were also considered. This was undertaken for field observations and 

five samples from the marginal facies of South Wales (housed in the NMW). For 

all but the liasicus Zone the largest individuals were collected from the more 

aerated environments, specimens collected from sediments representing 

intervals of oxygen-restriction typically have GMBS around 5 mm smaller (p = 

0.02; Fig. 2.10). The increase in body size from the planorbis to the liasicus Zone 

is still recorded when comparing samples from individual oxygen regimes. 
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Fig. 2.10. Time-binned variation in the size of Pseudolimea pectinoides per 

locality, (top). Variation in size between specimens from different 

oxygenation regimes inferred from host lithology (bottom), see methods for 

details. Lines connect successive time bins with >10 specimens. Sample 

size quoted per time bin.  

 

2.5.1.5 Ctenostreon philocles 

Only 29 specimens of Ctenostreon philocles were measured from the Pre-

planorbis Beds to bucklandi Zone. Although always scarce, this species was 

predominantly recorded from South Wales with a high proportion of the liasicus 

Zone specimens coming from the Sutton Stone marginal marine facies. The few 

specimens show only a modest maximum size increase of 15% from the Pre-

planorbis Beds to the planorbis Zone but then remained stable between 60-64mm 
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(Fig. 2.7). Mean size was equally as unvarying. The sharp increase in the 

planorbis Zone only, was not accompanied by an increased maximum size, 

suggesting that the planorbis spike was caused by an absence of small 

individuals. During all other time bins mean size remained around 37-41 mm. 

Size differences between the liasicus and angulata Zone populations were 

indistinct (p = 0.25) despite being from different facies (the angulata Zone was 

from typical Blue Lias offshore facies, whilst the liasicus Zone data come from 

marginal facies).  

 

2.5.2 Growth patterns  

Growth line analyses were undertaken only for Plagiostoma giganteum 

due to a paucity of suitably preserved material for the other species. In addition, 

due to the small number of suitable samples, the angulata and bucklandi zones 

are combined for this analysis. Specimens collected from the planorbis Zone had 

an average of 366 growth lines, this value decreased during the liasicus Zone 

with only 226 lines typically, before returning to higher values (averaging 456 

growth lines) during the angulata-bucklandi zones. Growth rate increased from 

the planorbis to angulata-bucklandi zone (Fig. 2.11), with a significant change 

from a mean gradient of 0.13 to 0.29 (p = 0.02) and was accompanied by an 

increased variability of gradients. Of the specimens from the semicostatum-

turneri zones only one specimen was sufficiently preserved to conduct a formal 

growth line analyses, this had GMBS of 9.28 mm, and few, well-spaced growth 

lines, suggesting that this was a juvenile. In situ inspection of growth lines of 

specimens from the Charmouth Mudstone Formation confirm this. Plotting growth 

line density revealed distinct patterns in a small number of specimens with up to 
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four periods of high and low densities (e.g. from Hock Cliff; Fig. 2.12). However, 

this growth line cyclicity was not captured in every P. giganteum specimen and, 

with the exception of a single planorbis Zone specimen (NMW 20.362.G18), was 

only encountered in the bucklandi Zone.  

 

Fig. 2.11 Growth rate plot for Plagiostoma giganteum. Individual lines 

depict growth trajectories of single specimens. Shaded regions define 

spread of data per time bin. 
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Fig. 2.12 Growth line densities with a three point moving average trend line 

showing cycles in a large Plagiostoma giganteum collected from the 

bucklandi Zone of Hock Cliff. 

 

2.5.3 Museum versus field collections 

In order to test for bias towards different size classes in museum 

specimens compared to those collected and measured directly from the field the 

two data sets were plotted separately. This evaluation was undertaken for 

Plagiostoma giganteum, owing to the larger available sample sizes. For P. 

giganteum the two collection methods show the same overall trend, with body 

size increasing towards the bucklandi Zone (Fig. 2.13). For the Pre-planorbis 

Beds there were only two specimens (one museum and one field) and so little 

can be said, beyond noting that they were around the same size. For the 

planorbis Zone, museum specimens contribute 24% of the data to the time bin. 

Specimens of this Zone collected from the field had a larger mean GMBS than 
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their museum counterparts, although this difference is on the threshold of 95% 

significance (p = 0.05). For the liasicus Zone 30% of specimens are from museum 

collections, and the two collections give indistinguishable mean GMBS values. 

For the angulata and bucklandi zones the percentage contributed from museums 

decreases with only 9% and 13% of the data, for both of these time bins the data 

produced from the two collection styles are again indistinct (p > 0.05). The 

reversal of the size trajectory in the semicostatum-turneri zones was also 

recorded by museum specimens.   

 

Fig. 2.13 Variation in body size of Plagiostoma giganteum from museum 

collections (closed circles) and field observations (open circles). K-S test p 

values quoted for difference between museum collection and field sample. 

Error bars depict 95% confidence intervals. White bars show percentage of 

the time-binned sample that is comprised of museum specimens.  
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2.6 Discussion 

2.6.1 Body size 

Hallam’s original (1960) finding of size increase of the largest Plagiostoma 

giganteum in the first four ammonite zones of the Jurassic is replicated here. He 

subsequently expanded his study to include the entire Jurassic and showed that 

P. giganteum’s increase in maximum size continued into the Pliensbachian, 

though at a declining rate (Hallam 1975, 1998) before going extinct in the 

Toarcian. Size data presented here suggests this size increase was not sustained 

as previously reported, because the maximum body size plateaus out after a 

bucklandi Zone peak. The only other species shared between this study and 

those works of Hallam (1960, 1975, 1998) is Pseudolimea pectinoides 

(Pseudolimea hettangiensis in Hallam (1960)). Although the absolute values 

differ, the increased body size between the planorbis and angulata Zone reported 

by Hallam (1960) is confirmed in both the mean and maximum size data of this 

study. Our data then show mean size remained between approximately 12-14 

mm from the liasicus Zone onwards, slightly rising in the semicostatum-turneri 

zones, whilst maximum size continued to increase into the bucklandi Zone before 

reducing in the semicostatum-turneri zones; the same pattern observed in P. 

giganteum. Data for Antiquilima succincta shows that it should be added to the 

list of Early Jurassic molluscs that exhibited a within-species size increase. In 

contrast, there is no persistent size trend for Ctenostreon philocles, whilst 

Plagiostoma punctatum initially increases and then shows a sustained reduction 

in body size during the Lower Lias. Limidae size increase in the Early Jurassic is 

therefore impressive amongst some species but is not uniformly developed 

throughout the family. 
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2.6.2 Growth patterns 

Specimens of Plagiostoma giganteum from the angulata-bucklandi zone 

achieved a larger size compared to earlier individuals for comparatively fewer 

growth lines. As specimens were selected for their quality of preservation, and 

there were no variations in the style of preservation, it is likely that this is a true 

biological signal. Assuming that each growth line represents the same unit of time 

for all specimens, then P. giganteum achieved an increased size through 

improved growth rates. These findings are consistent with those reported for 

Lingula sp. (Metcalfe et al. 2011) and Pseudomytiloides dubius (Morten & 

Twitchett 2009) in the wake of the Permo-Triassic and early Toarcian mass 

extinction events respectively; diminutive forms display a greater density of 

growth lines compared to larger, later forms. A similar finding has also been 

reported for Pholadomya ambigua, Cardinia concinna (Hallam 1963) and species 

of Gryphaea (Johnson 1994) in the Early Jurassic. 

 The high growth line counts during the planorbis Zone may reflect the 

addition of disturbance rings formed during intervals of environmental stress or 

spawning (Craig & Hallam 1963; Lutz 1976; Lutz & Rhoads 1980). Therefore the 

populations of smaller body size and higher densities of growth lines may be 

stunted forms indicating growth under a highly stressed environment (Metcalfe et 

al. 2011). Specimens of P. giganteum from the bucklandi Zone of Hock Cliff, 

record clear cycles of expanded and contracted growth, this may indicate that 

these specimens lived in a stable, low stress environment and therefore have 

fewer disturbance rings masking a regular growth pattern, which may be annual. 

The greater number of growth lines on the largest individuals from the angulata-
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bucklandi zone may therefore reflect increased longevity, and so the gigantism 

was achieved through both greater growth rates and a longer life span.  

2.6.3 Contemporary Early Jurassic size increases   

Early Jurassic size changes were not restricted to the Limidae, Hallam 

(1960, 1975) reported size increases for three epifaunal, two semi-infaunal and 

two infaunal suspension feeding bivalve species and for the nautiloid Cenoceras 

striatus. For Liostrea irregularis and Cardinia concinna this size increase 

persisted until the Pliensbachian. A similar case was noted for the pectinid 

Chlamys textoria with a size increase persisting through until Pliensbachian stage 

(Nürnberg et al. 2012). During the same interval that Plagiostoma giganteum 

increases in size (planorbis to bucklandi Zone) there is a marked increase in the 

size of ammonites. However, this was a rapidly evolving group and the size 

increase occurs amongst successive species; this is a good example of Cope’s 

Rule (Hallam 1960; Dommergues et al. 2002). In contrast, the trends shown here 

occur within species and is not an evolutionary trend but an ecophenotypic 

response.  

 

2.6.4 Causes of body size and growth rate changes 

2.6.4.1 Water depth and body size  

Water depth is thought to exert a control over body size due to variation of 

factors such as availability of food and oxygen (Shirayama 1983; Peck & Harper 

2010; Shi et al. 2016). Several studies have shown that body size can decrease 

with depth (e.g. Attrill et al. 1990; Olabarria and Thurston 2003; Kaariainen and 

Bett 2006; Shi et al. 2016). This was shown by the Plagiostoma giganteum data 
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with the populations in the offshore East Quantoxhead location having a smaller 

mean body size than the contemporaneous specimens from the shallower Nash 

Point and Pinhay Bay sites. For Pseudolimea pectinoides the same pattern was 

not as clear although the largest individuals were recorded as being from the 

comparatively shallow shelf settings. Despite these observations, water depth 

does not explain the temporal pattern of body size increase in P. giganteum in 

the Blue Lias Formation because it was deposited during an overall deepening 

trend (Hallam 1981; Sheppard 2006; Sheppard et al. 2006). The initially small 

size of Plagiostoma punctatum in the Langport Member may relate to the reported 

unusual salinity at this level (Hallam 1965; Hallam & El Shaarawy 1982), but this 

is unlikely to be an influencing factor for the other species because they first 

appear above the Langport Member. 

 

2.6.4.2 Oxygen availability 

Oxygen restriction is generally regarded as a cause of reduced body size 

in marine invertebrates (Rhoads & Morse 1971; Richmond et al. 2006). Under 

low oxygen levels metabolic rates are reduced, and growth slowed (Richmond et 

al. 2006). Anoxic and euxinic conditions did develop intermittently during the 

lowermost Jurassic in our study area and are manifest as black shales and 

laminated limestones (Hallam 1987; Wignall and Hallam 1991; Wignall 2001; 

Richoz et al. 2012). These facies are best developed in the earliest Jurassic and 

typically become less frequent in the angulata and bucklandi zones, suggesting 

overall improved benthic oxygenation (Wignall & Hallam 1991). This trend 

occurred in tandem with the increased body size seen in the Limidae species. 

Greater oxygen restriction in the more offshore/deeper sections seen in the upper 
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Hettangian and Sinemurian of north Somerset may explain the smaller size of P. 

giganteum from that section.  

 The larger mean body sizes of both Plagiostoma giganteum and 

Pseudolimea pectinoides were found in bioturbated limestone and pale marls 

compared to the darker lithologies. Furthermore, P. giganteum is only common 

in the bioturbated limestones of the Blue Lias Formation further indicating its 

preference for better oxygenated conditions. These observations clearly indicate 

a link between body size and oxygen but they fail to account for the long-term 

trend of size increase because P. giganteum exhibits within-lithology (and 

therefore oxygen regime) size increase over the first 2 million years of the 

Jurassic.  

 The trend of size increase for the species of Plagiostoma giganteum and 

Antiquilima succincta was reversed in the semicostatum-turneri zones. Most of 

the data for this interval comes from the Charmouth Mudstone Formation of the 

Wessex Basin. The lower two members of this unit (Shales-with-Beef and Black 

Ven Marl members) are dominated by black shales with benthos restricted to thin 

discrete beds that likely record brief oxygenated intervals superimposed on a 

background of intense anoxia (Wignall & Hallam 1991). Inspection of valves 

revealed a low number of widely spaced growth lines indicating the small 

specimens were juveniles and not stunted adults. This is corroborated by the 

size-frequency histograms that show a left-skewed distribution (Fig. 2.3). The 

small sizes of individuals in the semicostatum-turneri zones is thus not 

comparable to the small sized specimens of the planorbis Zone but instead a 

local response to harsh conditions. This is corroborated by the continued 

presence of large, contemporary individuals of P. giganteum from the Bristol 

Channel Basin and from the East Midland Shelf which attain sizes as great as 
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170 mm. The same is true for specimens of Pseudolimea pectinoides. Thus, the 

size increase trend was locally reversed by regional anoxia but without affecting 

the overall trajectory. 

 

2.6.4.3 Temperature and body size 

The relationship between temperature and body size has been extensively 

studied for a wide range of organisms (McNab 1971; Geist 1987; James et al. 

1995; van Der Have & De Jong 1996; van Voorhies 1996; Atkinson & Sibly 1997; 

Mousseau 1997; Roy & Martien 2001; Schmidt et al. 2004; Linse et al. 2006; 

Arendt 2011; Berke et al. 2013). Perhaps the most renowned temperature-related 

size rule is Bergmann’s Rule (Bergmann 1847; translated in James 1970) 

whereby an organism’s body size increases with latitude. Although Bergmann’s 

Rule specifically refers to geographic body size distribution, it is thought to relate 

to the Temperature-Size Rule which relates solely to the effects of temperature 

on growth and final adult body size (Atkinson 1994; van Der Have & De Jong 

1996; Atkinson & Sibly 1997). Generally growth and development rates increase 

with temperature thereby shortening the time taken to reach maturity and 

producing a small adult (Atkinson 1994; Kingsolver & Huey 2008; Chown & 

Gaston 2010).  

 The role of temperature in the size increase of the Early Jurassic Limidae 

is difficult to evaluate because of a poorly constrained temperature record. The 

end-Triassic mass extinction interval is thought to have been a period of intense 

warming, with fossil leaf stomatal indices suggesting a temperature increase of 

around 3-4°C (McElwain et al. 1999). The subsequent climatic cooling is not well 

constrained although it may have occurred during the planorbis Zone (McElwain 
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et al. 1999; Bonis 2010; Mander et al. 2013). Study of British sections instead 

suggests a warming trending (derived from oxygen isotope ratios of Liostrea 

shells), from <7-14°C in the Langport Member to 12-22°C in the planorbis Zone 

(van de Schootbrugge et al. 2007; Korte et al. 2009; Clémence et al. 2010). 

However, the salinity of the Langport Member is unlikely to have been normal 

marine (Hesselbo & Jenkyns 1995; Wignall 2001; Radley et al. 2008), making 

evaluation of the isotope record difficult. Clay composition provides an indirect 

indicator of palaeoclimate with high kaolinite/illite ratios thought to indicate wetter 

and possibly warmer climatic episodes (Deconinck et al. 2003). If so, data from 

SW England suggests the planorbis and upper bucklandi zones may have been 

warm and humid intervals with the liasicus and angulata zones being cooler and 

drier (Deconinck et al. 2003). The clay mineral changes (and the oxygen isotope 

data) do not appear to relate to the long-term size increase of the Limidae and 

therefore suggest that the trend is not an example of the Temperature-Size Rule. 

However, there is a clear need for a more reliable palaeotemperature curve for 

Early Jurassic time to better assess any size-temperature link.  

2.6.4.4 Food availability 

Changes to primary productivity can influence body size and growth rate 

of organisms higher in the food chain (Hallam 1965; Epifanio 1979; Wacker & von 

Elert 2008; He et al. 2010; Brom et al. 2015) and may have played a role in the 

initially small size of bivalves after the end-Triassic mass extinction. A productivity 

crash has been postulated for this crisis (Ward et al. 2004; Bottini et al. 2016) 

resulting in unusual Early Jurassic marine primary productivity with larger red 

algae (dinoflagellates) replaced by smaller green algae: prasinophytes and 

acritarchs (van de Schootbrugge et al. 2007) and occasionally cyanobacteria 
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(Jaraula et al. 2013). Such communities prevailed during Pre-planorbis to lower 

planorbis Zone interval only (van de Schootbrugge et al. 2007; Clémence et al. 

2010; Paris et al. 2010) and may account for the small body size of bivalves 

(relative to later during the recovery). The smaller size of acritarchs and 

prasinophytes (relative to the dinoflagellates) could cause reduced efficiency of 

filtration in suspension-feeding bivalves (Weiss et al. 2007; van de Schootbrugge 

& Gollner 2013). Whilst prasinophytes and cyanobacteria lack essential long-

chained polyunsaturated fatty acids that are required for growth (Brown et al. 

1997; von Elert et al. 2003): both factors could reduce growth rates. However, 

such notions are speculative and difficult to disentangle from other co-occurring 

stresses. 

2.6.5 Lilliputians and Brobdingnagians 

The Lilliput Effect is defined as a temporary reduction in body size of a 

surviving species after a biotic crisis (Urbanek 1993), and is not applicable to the 

small-sized individuals of Plagiostoma giganteum, Antiquilima succincta and 

Pseudolimea pectinoides seen in the aftermath of the end-Triassic mass 

extinction, because these species are first recorded at this time. Their trend is 

one of within-species size increase following first appearance. We propose to 

name this as the Brobdingnag Effect (after the land inhabited by giant humans in 

Swift’s Gulliver’s Travels). We do not view this as a manifestation of Cope’s Rule 

which involves the evolution of progressively larger species which includes an 

accompanying morphological change (Rensch 1948). Were this change in body 

size to be viewed as Cope’s Rule with species succession occurring as an 

anagenetic change we would be required to erect a new species name for the 

larger bivalves in the angulata and bucklandi zones. As size alone distinguishes 



79 
 

the younger populations with no other morphological change we feel this to be 

inappropriate.  

For the Limidae examples, the size increase is caused by increased 

growth rates and greater longevity of individuals suggesting improving benthic 

conditions were responsible. These could include improved oxygenation, 

because populations of smaller body size (caused by higher juvenile mortality) 

are found in areas experiencing frequent anoxic conditions. There may be a 

temperature-size relationship but this is difficult to judge without a reliable 

palaeotemperature curve. However, the cause of the overall, long-term trend 

(spread over 2 million years) is unclear as not all species show a dramatic size.  

 Both the Lilliput and Brobdingnag Effects relate to the observation that 

small species commonly dominate in the immediate aftermath of extinction 

intervals. There have been several explanations for the former effect. Payne 

(2005) suggested four models that could have produced assemblages of small 

gastropods in the aftermath of the Permo-Triassic mass extinction (although he 

did not explicitly call any of these alternatives the Lilliput Effect): 1) size-biased 

extinctions (preferential extinction of large taxa); 2) changed relative abundances 

(increased relative abundances and dominance of small taxa thereby lowering 

the mean size of an assemblage); 3) size change within-lineages (evolutionary 

trend towards smaller species via anagenesis); 4) size-biased originations 

(origination of new species in the aftermath of the extinction that were 

preferentially small). Twitchett (2007) later considered model 3 to be the Lilliput 

Effect (although this does not fit the original definition which was a within-species 

size decrease). As Harries and Knorr (2009) noted, model 3 is an example of the 

concept of dwarfing, as defined in Marshall and Corruccini (1978), although 
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frequently it also involves speciation. We ascribe Payne’s model 4 to the 

Brobdingnag Effect with the modification that species increase in size following 

their appearance. 

 The term “Lilliput Effect” has been widely used but often applied at a higher 

taxonomic rank than species and so we suspect that many, perhaps the majority 

of examples, are in fact manifestations of the Brobdingnag Effect. Many studies 

of the supposed Lilliput Effect lack size data showing a return to pre-extinction 

sizes (e.g. Kaljo 1996; Keller and Abramovich 2009; Huang et al. 2010; Song et 

al. 2011; Martínez-Díaz et al. 2016; Belben et al. 2017), or the taxonomic rank is 

often generic or higher (e.g. Borths and Ausich 2011; Chen et al. 2013; Chu et 

al. 2015; Weronika et al. 2017), or it is applied to whole assemblages irrespective 

of taxonomy (Mander et al. 2008; Belben et al. 2017). Under such circumstances 

it may not be possible to detect if individual species crossed the extinction event, 

exhibit a reduced body size in the aftermath and then increased in size during the 

recovery, as per the Lilliput Effect. Alternatively, a surviving genus could be 

represented by new species with small bodies that then undergo a within-species 

size increase, as per the Brobdingnag Effect. These can only be tested with more 

studies conducted at the species level and for the entire recovery interval. One 

such study (Chen et al. 2019) testing for the Lilliput Effect in brachiopods following 

the end-Permian mass extinction shows that species originating in the aftermath 

did so with small body sizes and subsequently increased in size, thus following a 

Brobdingnag trend. Additionally Morten and Twitchett (2009) showed that, what 

is here termed the Brobdingnag Effect, occurred amongst three species following 

the early Toarcian mass extinction event (Acrocoelites subtriscissus, Melegrinella 

substriata, Gresslya donaciformis). With an increase in studies conducted at the 
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species level it may be found that the Brobdingnag Effect was more prevalent 

through geological time than the Lilliput Effect. 

2.7 Conclusions 

 Three species of Limidae (Plagiostoma giganteum, Antiquilima succincta 

and Pseudolimea pectinoides) show increased body size during the first 2 million 

years of the Jurassic following the end-Triassic mass extinction. Of these P. 

giganteum is the most impressive case with a substantial increase in mean shell 

size (179%) from the planorbis to the bucklandi Zone.  The larger specimens of 

P. giganteum from the bucklandi interval show an increase in the number and 

spacing of growth lines when compared to those from earlier times, indicating 

larger size was achieved by faster growth and greater longevity. We proposed 

that this within-species size increase in the aftermath of a mass extinction be 

termed the Brobdingnag Effect and argue that many so-called example of the 

Lilliput Effect (reduction in size of species across a mass extinction horizon) need 

to be re-evaluated. They may represent the origination of small, new species 

followed by subsequent size increase. The Brobdingnag Effect was not 

ubiquitous within the Early Jurassic Limidae though, because Ctenostreon 

philocles did not undergo significant size changes and Plagiostoma punctatum 

decreased in size. 

 The cause of the Brobdingnag Effect is unclear. There is apparently no 

connection with temperature fluctuations although a paucity of reliable Early 

Jurassic temperature records makes this factor difficult to evaluate.  Oxygen-poor 

conditions clearly caused Limidae populations to become smaller in body size, 

because of increased juvenile mortality, but this is a local/regional effect and does 

not influence the long-term size-increase trend. It remains a remarkable finding 
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that some bivalves are capable of substantial changes in size that presumably 

involved changes in ecological style, whilst remaining a morphologically distinct 

species. 
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3.1 Abstract 

Oxygen restricted conditions were widespread in European shelf seas 

after the end-Triassic mass extinction event and they are reported to have 

hindered the recovery of marine benthos. Here we reconstruct the redox history 

of the Early Jurassic Blue Lias Formation of southwest Britain using pyrite 

framboid size analysis and compare this with the recovery of bivalves based on 

field and museum collections. Results suggest widespread dysoxia punctuated 

by periods of anoxia in the region, with the latter developing frequently in deeper 

water settings. Despite these harsh conditions, initial benthic recovery occurred 

rapidly in the British Jurassic, especially in shallowest settings, and shows no 

relationship with the intensity of dysoxia. A stable diversity was reached by the 

first recognised ammonite zone after the end-Triassic mass extinction. This 

contrasts with the deeper-water, more oxygen-poor sections where the diversity 

increase was still continuing in the earliest Sinemurian Stage, considerably longer 

than previously reported. Similar recovery rates are seen amongst other groups 

(brachiopods and ammonites). Oxygen-poor conditions have been suggested to 

delay recovery after the Permo-Triassic mass extinction, but this is not the case 

after the end-Triassic crisis. We suggest that this was because the European 
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dysoxia was only a regional phenomenon and there were plenty of well-ventilated 

regions available to allow an untrammelled bounce back. 

 

Keywords: Pyrite framboids, Early Jurassic, Blue Lias Formation, benthic 

recovery, diversification 

 

3.2 Introduction 

Marine anoxia has been implicated as a cause of delayed biotic recovery from 

the end-Triassic mass extinction event, especially in Western Europe (Hallam 

1996; Mander et al. 2008; Clémence et al. 2010; Richoz et al. 2012; Jost et al. 

2017; Luo et al. 2018). The evidence for oxygen-restriction includes widespread 

black shale deposition in the epicontinental seaway of Europe during the earliest 

Hettangian and again during the Sinemurian (Wignall & Hallam 1991; Richoz et 

al. 2012; van de Schootbrugge et al. 2013). The intensity of oxygen deficiency 

has been assessed using a range of proxies: redox sensitive trace metals such 

as Th/U (Hallam 1995; Wignall 2001) and molybdenum (Breward et al. 2015), 

pyrite sulphur isotopes (Jaraula et al. 2013; Luo et al. 2018), uranium isotopes 

(Jost et al. 2017) and the presence of isorenieratene (Richoz et al. 2012; Jaraula 

et al. 2013; Naeher & Grice 2015; Blumenberg et al. 2016).  

Many studies have only focussed on short stratigraphic intervals in the earliest 

Hettangian sedimentary record in Western Europe, because this is the immediate 

post-mass extinction interval. These show that dysoxic conditions, punctuated by 

episodic anoxia and photic zone euxinia (PZE), were widespread at this time (e.g. 

Hallam 1995, 1997; Wignall 2001; Paris et al. 2010; Richoz et al. 2012; Jaraula 

et al. 2013; Naeher & Grice 2015). Studies in Germany, Luxemburg and 
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Switzerland demonstrate that these conditions persisted from the middle 

Hettangian to the lowermost Sinemurian (Schwab & Spangenberg 2007; Richoz 

et al. 2012; Luo et al. 2018). Away from the European epicontinental sea there is 

some suggestion of PZE from north-eastern Panthalassa (Kasprak et al. 2015) 

but oxic deposition is suggested in other regions of this ocean recorded in 

accreted terranes of Japan (Wignall et al. 2010; Fujisaki et al. 2016). In no region 

is it clear how long the marine recovery took and how it relates to the redox 

record. 

 This study aims to reconstruct redox conditions of southwestern Britain 

from the beginning of recovery following the end-Triassic mass extinction through 

to the Sinemurian Stage, using pyrite framboid size analysis. This will then be 

compared with the bivalve recovery, based on field and museum collections, to 

evaluate the notion that anoxia delayed recovery at this time. The size distribution 

of pyrite framboids is a powerful tool used to assess redox conditions (e.g. 

Wignall & Newton 1998; Huang et al. 2017). Framboids are spheres of 

aggregated pyrite microcrysts that form at the boundary between oxic and 

sulphidic waters (Wilkin et al. 1996). Under euxinic conditions the redox boundary 

occurs in the water column where framboids grow, but they do not achieve 

diameters much beyond 5 μm before sinking to the seabed (Wilkin et al. 1996). 

In contrast, in dysoxic settings the redox boundary is within the uppermost 

sediments and framboids grow to a wide range of sizes with a larger mean 

diameter (Wilkin et al. 1996). This size distribution has been shown for the 

modern (Wilkin et al. 1996) and also in ancient sediments where framboid 

analyses have been corroborated by independent palaeontological and 

geochemical redox indicators (Wignall & Newton 1998; Huang et al. 2017). 
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Variable degrees of oxygen restriction are thought to be represented by differing 

size classes of framboid populations (Table 1 in Bond & Wignall 2010). 

 Defining a biotic recovery can be problematic, and several different 

alternatives have been used. The onset of recovery is often defined as the point 

when origination rates exceed extinction rates and recovery is assumed complete 

once pre-extinction diversity is attained (Kauffman & Erwin 1995). Such a simple 

measure is not suitable for the British record of the recovery from the end-Triassic 

mass extinction, because diversity in the pre-extinction interval was low due to 

unusual salinities that were quite different to the fully marine settings that develop 

in the aftermath (Hallam & El Shaarawy 1982). A period of rising diversity followed 

by stabilisation may provide a better assessment of the recovery interval 

(Damborenea et al. 2017). An alternative four-phase model for recovery, 

incorporating ecological parameters, was created based on observations of the 

recovery following the end-Permian mass extinction (Twitchett 2006, referred to 

here as the Twitchett recovery model). Phase one consists of high abundance, 

low diversity faunas (low evenness) with small body sizes and minimal ecological 

tiering. The following stages of recovery see an expansion of benthic tiering 

levels, an increase in evenness, species richness, body size and appearance of 

key ichnotaxa. 

  

3.3 Geological setting 

The Cotham Member of the Lilstock Formation features rippled fine 

sandstones, deep fissures and severe soft sediment deformation (Simms 2003). 

It is within this member that the end-Triassic extinction is located (Wignall & Bond 

2008), and is succeeded by the Langport Member of the same formation. Micritic 
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carbonates dominate the Langport Member and were deposited within a shallow 

epicontinental sea of uncertain salinity (Hallam & El Shaarawy 1982). An erosion 

surface and intraformational conglomerate caps the Member in Devon (Wignall 

2001), although in other areas the contact is more gradational and apparently 

conformable.  

The Hettangian to lowermost Sinemurian (Early Jurassic) Blue Lias 

Formation of southwestern Britain was deposited in an epicontinental sea that 

covered much of north-western Europe during the Lower Jurassic (Hallam 1960). 

The Formation consists of rhythms of limestone, marl and shale (Hallam 1960; 

Paul et al. 2008), which are thought to record climate-driven cycles in seafloor 

oxygenation and sedimentation due to Milankovitch periodicities (Weedon 1986; 

Bottrell & Raiswell 1989; Moghadam & Paul 2000; Wignall 2001; Clémence et al. 

2010; Ruhl et al. 2010). Weedon (1986) defined the five lithotypes of the Blue 

Lias used here:  

Bioturbated limestones may occur as semi-continuous beds, or nodular 

horizons within pale marls. These often bear irregular and uneven bed contacts 

though they can also be planar. Beds are homogenous and bioturbated with up 

to seven ichnotaxa recorded and are considered to have formed under a fully 

aerated water column (Weedon 1986; Moghadam & Paul 2000). Bivalves, 

including Plagiostoma, Gryphaea and Pinna, are typically common. Total organic 

carbon (TOC) is variable, with values ranging from 0.14-1.64 wt% (Weedon et al. 

2018a). These beds become increasingly dominant in shallower water sections 

(Hallam 1964). 

Pale marls are light blue-grey, homogenous beds bearing a diverse trace 

fossil assemblage, suggesting good seafloor oxygenation. TOC is typically higher 
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than in the limestones at 0.38-4.41 wt% (Weedon et al. 2018a), and silt-grade 

quartz grains are more common (Hallam 1960).  

Dark marls are similar to pale marls, however they have a weak fissility, 

especially when weathered. These marls show planar contacts with the pale 

marls and have an increased TOC range of 0.51-6.51 wt% (Weedon et al. 2018a). 

Dark marls also have less diverse trace fossil assemblages dominated by 

Chondrites and only one or two additional ichnospecies, suggesting weaker 

oxygenation than seen in the pale marls (Moghadam & Paul 2000).  

Shales appear as dark brown or black beds, these weather to become very 

fissile, occasionally showing millimetre-scale laminae. Fossils are usually 

confined to nektic organisms and small bivalves (Hallam 1960). Of the five 

lithologies of the Blue Lias, the shale beds have the highest TOC values, typically 

between 1.53 -12.8 wt%, and record intervals of anoxia (Ebukanson & Kinghorn 

1990; Wignall & Hallam 1991; Weedon et al. 2018a). 

Laminated limestones exhibit planar bedding surfaces and are laminated. 

TOC values can be twice as great as seen in bioturbated limestones with values 

of 0.9-3 wt% and they have a fetid odour when freshly broken (Weedon 1986; 

Weedon et al. 2018a). The laminated limestones are considered to have originally 

been black shales that have been diagenetically-overprinted by carbonate 

(Arzani 2004).  

 The relative contribution of each lithology varies between location and 

stratigraphic interval allowing regional members of the Blue Lias Formation to be 

defined and correlated using ammonite biozonation schemes (Fig. 3.1).  
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Figure 3.1 Lithological correlation of members of the Blue Lias Formation, 

after Hodges (2000). Quant. – Quantock Beds, Kilve Sh. – Kilve Shales. 

Shaded regions depict sampled interval, dashed line position of extinction 

horizon. Relative sea level curve from Hesselbo and Jenkyns (1998); 

Hesselbo et al. (2004) and Wignall and Bond (2008), extinction and 

boundary ages from Wotzlaw et al. (2014) and Weedon et al. (2018b). 

 

Limestone beds are most prevalent in the Pre-planorbis Beds and planorbis and 

angulata zones, whereas the liasicus Zone has lower proportions of limestones 

and is thought to be due to deepening caused by accelerated sea level rise at 

this time (Hesselbo and Jenkyns 1998; Sheppard 2006; Weedon et al. 2018a). 

The higher proportions of limestones in the succeeding angulata Zone is 

attributed to a lowering of relative sea level prior to another deepening episode 

during the bucklandi Zone (Sheppard 2006). Limestone-rich sections on the 

Glamorgan coastline were deposited closer to a palaeo-shoreline than the mud-

dominated Somerset sections (Wobber 1965; Johnson & McKerrow 1995).  
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Fig. 3.2 Location map and palaeogeography of southwestern Britain, Early 

Jurassic islands indicated by shaded regions, modified from Martill et al. 

(2016). 

 

3.4 Materials and methods 

Sampling was undertaken in three regions (Fig. 3.2): Glamorgan (South 

Wales), Somerset and Devon (southwest England). Stratigraphic height of 

sampling was determined using published sedimentary logs where available 

(Hesselbo & Jenkyns 1995; Bloos & Page 2002; Simms 2004) or logged by the 

authors during sampling and dated by use of ammonites. For Glamorgan two 

localities were sampled: Lavernock Point (ST 188 682 – ST 183 679) spanning 

the Langport Member to liasicus Zone and Nash Point (SS 911 692 – SS 921 

679) covering the angulata to bucklandi zones. For Somerset, again two localities 
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were sampled: St Audrie’s Bay (ST 103 434 – ST 099 433) and East 

Quantoxhead (ST 134 442 – ST 142 444), spanning the upper Langport Member 

to liasicus Zone and angulata to bucklandi zones respectively. For Devon only 

Pinhay Bay (SY 317 907 – SY 333 914) was sampled, this spanning topmost 

Langport Member to bucklandi Zone. The five lithologies of the Blue Lias: 

bioturbated limestone, pale marl, dark marl, shale and laminated limestone 

(described above) were recorded and sampled.  

 At each sample horizon bivalve diversity was assessed by species counts 

and life modes assigned from published sources (Supplementary appendix B). 

First occurrence of crinoids was also noted. In mudstones, marls and shales 

bivalves were identified from freshly split surfaces of approximately equal volume 

of rock (~0.5 x 0.5 x 0.3 m). For limestone beds fossils were identified in situ on 

weathered bedding surfaces, owing to this different sampling method abundance 

data are presented separately. In addition, bivalve diversity was also assessed 

by combining field observations with occurrences based on museum specimens. 

This was undertaken only for Glamorgan due to the extensive collection of 

stratigraphically-tied specimens housed within the National Museum of Wales 

(NMW) and conducted at the resolution of ammonite zone. For the lower interval 

of the Blue Lias Formation lacking ammonites the Pre-planorbis Beds are used 

here as a time bin as is the Langport Member.  

For each section a subset of sampled horizons was used to test for 

changes in oxygenation regime using pyrite framboids. The method was adapted 

from that of Wignall and Newton (1998). Pyrite framboid diameters were 

measured from polished stone chips approximately 2 x 1 cm in size set into resin 

blocks. These were carbon coated and viewed using a Tescan VEGA3 XM 

scanning electron microscope (SEM) with a backscatter electron detector. By 
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adjusting the brightness and contrast this allows pyrite to stand out from the 

matrix. Framboids were then located by scanning across the sample surface and 

diameters measured using inbuilt measurement applications of the SEM. Each 

sample was analysed for up to one hour or until 100 framboids had been 

measured. Mean framboid diameter and standard deviation were then calculated 

per sample and plotted on what are referred to herein as a Wilkin diagram (Wilkin 

et al. 1996). Results of framboid analysis of bed H1 from Pinhay Bay presented 

in Wignall (2001) are incorporated into this study. It is important to note that each 

1 cm-thick sample area can record up to several thousands of years of deposition 

(Weedon et al. 2018b). Thus, each sample potentially records a range of 

oxygenation regimes developed during such intervals and accounts for the fact 

that euxinic populations can sometimes occur in samples with benthic fossils that 

record seafloor oxygenation (Bond & Wignall 2010).  

Mean framboid diameters and standard deviations are correlated with raw 

species richness per sample horizon using Spearman’s rank correlation, 

conducted in PAST statistical software (Hammer et al. 2001).  

 

3.5 Results 

3.5.1 Pyrite framboids 

3.5.1.1 Lithological variability  

Pyrite framboids were found in all samples from both the Langport Member 

and the Blue Lias Formation irrespective of lithology. Photographic 

representations of pyrite framboids formed under anoxic and dysoxic regimes are 

shown in Fig. 3.3. 
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Fig. 3.3 Example populations of pyrite framboids from an anoxic mudstone 

(Q39, top) and a dysoxic marl (NP15, bottom).  

 

In the Langport Member, only two samples are examined for framboids, 

these were collected from Lavernock Point (LP9 and LP21). Framboids are not 

abundant but both samples still yield at least 100, although euhedral crystals of 

pyrite are more common. These samples have an average framboid diameter of 

10.7 μm, but show wildly different standard deviations placing LP21 in the mid-

dysoxic region of a framboid mean-standard deviation plot (Wilkin diagram), 

whilst LP9 plots as being uppermost dysoxic (Fig. 3.4). 

Fifty-one samples of bioturbated limestone are analysed and, of the five 

Blue Lias lithotypes, they are found to have the least pyrite, with euhedral 

crystals, and pyrite-replaced bioclasts being more common than framboids. 

Despite this observation, only four samples failed to yield 100 framboids within 

the allotted one-hour analysis time. Framboids are typically concentrated into 

discrete clusters or loose patches. Average diameter of framboids is 8.7 μm, with 
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the largest being 70.0 μm. The populations typically plot in the mid to upper 

dysoxic region of the Wilkin diagram (Fig. 3.4).  

 

Fig. 3.4 Mean framboid diameter (μm) against standard deviation of 

framboid diameters (Wilkin diagram), samples plotted according to 

lithology. Dashed line dictated anoxic-dysoxic threshold. Shaded regions 

illustrate spread of results.  

 

Three samples plot in the anoxic field, these are two from St. Audrie’s Bay 

(SAB52, SAB53) and one from East Quantoxhead (Q76) – these are not 

laminated limestones although they do exhibit planar contacts in the field (Figs. 

3.5 & 3.6).  
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Fig. 3.5 St. Audrie’s Bay, Somerset. Box and whisker plots, box depicts 25th 

and 75th percentiles, central line is median, whiskers illustrating minimum 

and maximum framboid diameters. Shaded boxes indicate samples that 

plot below the oxic-anoxic line on a Wilkin diagram. Solid circles record raw 

species richness per sampled horizon. Approximate position of Triassic-

Jurassic boundary from Weedon et al. (2018b). 
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(Fig. 3.5 continued) 
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Fig. 3.6 East Quantoxhead Somerset, sedimentary log modified from Bloos 

and Page (2002) see Fig. 3.5 for details.  
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(Fig. 3.6 continued) 
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Forty-seven samples of bioturbated, pale marls are analysed, these 

typically contain a low to moderate abundance of pyrite with a mixture of 

framboidal and euhedral forms and void-filling internal spaces of bioclasts. Pyrite 

framboids are restricted to specific horizons or clusters often bound by a dense 

carbonate cement. Average framboid diameter is 7.9 μm with largest being 75.3 

μm (Fig. 3.4). The framboids exhibit the largest variability of all Blue Lias 

lithotypes on the Wilkin diagram, with four samples plotting as anoxic (Fig. 3.4).  

Twenty-three samples of dark marl are analysed which reveal a mixture of 

euhedral and, more commonly, framboidal forms of pyrite. In contrast to the 

framboids found in pale marls, they occur evenly distributed throughout the 

samples. Average framboid diameter is 6.9 μm, the largest being 43.2 μm. Most 

dark marl samples plot within the anoxic—mid dysoxic field (Fig. 3.4). 

Thirty-one samples of shale are studied. These contain very high 

concentrations of pyrite, with the majority being small framboids. Average 

diameter is 5.2 μm although rare, large framboids attain a maximum of 33.9 μm 

(Fig .3.4). Most plot within the euxinic/anoxic field.  

Only one sample of laminated limestone is analysed, collected from 

between two shale beds at Lavernock Point (Fig. 3.7). Pyrite is common with 

small framboids scattered evenly throughout. Average diameter is 6.9 μm placing 

it in the lower dysoxic field (Fig.  3.4).  
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Fig. 3.7 Lavernock Point, Glamorgan. Sedimentary log modified from 

Simms (2004). See Fig. 3.5 for details 

 

3.5.1.2 Regional variability  

As framboids were only analysed in the Langport Member of Glamorgan 

regional variability is only assessed for Blue Lias Formation samples. Glamorgan 

sections were deposited close to a palaeo-shoreline and are the most proximal 
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ones examined in this study (Wobber 1965; Johnson & McKerrow 1995). Overall, 

the framboids from this region have the largest average diameter (8.13 μm), and 

the greatest variability with an average standard deviation of 4.23 μm indicating 

the highest oxygenation levels. At Lavernock Point two of the beds plot in the 

anoxic field (LP10 and LP12; Fig. 3.7). The former (LP10) being from the Bull Cliff 

Member, which is distinct from other levels of the Blue Lias Formation in showing 

planar beds with a high abundance of fossil oysters. That aside, the remaining 

four samples from the Bull Cliff Member plot as mid-upper dysoxic populations. 

Despite shales and laminated limestones featuring in the planorbis Zone of 

Lavernock Point these beds do not plot as anoxic. The greater part of the 

Lavernock section plots as variably dysoxic. Very little of the Lavernock Shale 

Member was sampled as these are poorly exposed in the foreshore, however the 

succeeding Porthkerry Member is well exposed at Nash Point. This section 

shows a marked upward increase in both the abundance and thickness of 

limestone beds and lacks shales (Fig. 3.8). 
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Fig. 3.8 Nash Point, Glamorgan, see Fig. 3.5 for details. 



115 
 

 

(Fig. 3.8 continued) 
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(Fig. 3.8 continued) 

A total of 38 of the 40 samples from this section plot as mid-upper dysoxic, 

with pale marls and limestones potting within the same region and dark marls 

nestled within (Fig. 3.9).  
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Fig. 3.9 Wilkin diagram, samples plotted according to geographic region. D 

– Devon, S – Somerset, G – Glamorgan. Means of each location indicated 

as a bold white letter.  

 

two anoxic beds are recorded, the lower of these occurs within a dark, weakly 

laminated marl in the lower portion of the section where limestones are thin and 

nodular. The second occurs directly below a distinct thick, grey limestone. The 

limestone itself (NP21a) plots within the dysoxic field and makes a good marker 

bed, being one of the few limestones not of yellow-beige colour.  

 The Somerset sections record the deepest-water settings studied (Fig. 

3.2). SEM analysis shows the sediments contain less silt-grade quartz than seen 

in Glamorgan and are more coccolith- and clay-rich. Across the span of the study 

interval the classic lithological rhythms of the Blue Lias are well developed. 

Somerset, overall has the smallest average framboid diameters of the three 
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regions studied (6.72 μm and standard deviation of 3.07 μm). The framboid size 

distributions with the shales and most of the dark marls plot within the euxinic-

anoxic region whilst pale marls and limestones generally plot in the mid-upper 

dysoxic field (Figs. 3.5 & 3.6). Across Somerset an approximately 2 m-thick, blue-

grey weathering shale occurs, that contains large numbers of the ammonite 

Psiloceras, the bivalve Anningella and fish debris. The framboids from this level 

plot in the anoxic field (Fig. 3.5). Unlike the Nash Point section, East 

Quantoxhead (which is of equivalent age) features many euxinic, paper shales, 

that are often thickly developed (Figs. 3.6 & 3.8).   

Pinhay Bay is a limestone-dominated section that is by far the most 

condensed of all the sections in the three regions studied. All limestones beds 

contain framboids that plot within the dysoxic field (Figs. 3.9 & 3.10). Of the few 

marls and shales sampled the greater majority plot as anoxic, suggesting the 

anoxic-dysoxic rhythms seen in Somerset are also present in Devon (Fig. 3.10). 

Devon has an overall mean framboid diameter of 8.22 μm (standard deviation of 

3.24 μm), this being comparable to the Glamorgan average, albeit with a smaller 

standard deviation. Both Devon and Glamorgan represent deposition in 

shallower, better oxygenated waters than those of Somerset and the average 

framboid diameters reflect this, being smaller in the deeper water.  
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Fig. 3.10 Pinhay Bay, Devon. Sedimentary log modified from Hesselbo and 

Jenkyns (1995). See Fig. 3.5 for details.  
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3.5.1.3 Temporal variability  

 Dividing the 155 samples from all localities into ammonite zone time bins 

(including the Pre-planorbis Beds and the Langport Member) allows for long-term 

temporal trends to be tested. All zones plot as mostly dysoxic with occasional 

forays into anoxic or euxinic conditions (Fig. 3.11).  

 

 

Fig. 3.11 Wilkin diagram, samples plotted according to ammonite zone/time 

bin. R – Langport, Pp – Pre-planorbis Beds, P – planorbis Zone, L – liasicus 

Zone, A – angulata Zone, B – bucklandi Zone. Average for each zone 

indicated as a bold white symbol, no average is given for the Langport (R) 

owing to the large disparity in standard deviations of the two samples.  
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The average of mean framboid diameters and standard deviations varies little 

between each zone (Fig. 3.11), with no two subsequent zones showing a 

significant difference (t-test, p(a) > 0.05). There is a distinct lack of directional 

trend through time, with the only significant size increase in framboid diameters 

found when populations of the Pre-planorbis Beds and angulata Zone are 

compared (t-test, p(a) = 0.05), however these zones are indistinct from all other 

zones. The same result is found when ammonite zones are compared for 

individual areas.  

 

3.5.2 Faunas 

3.5.2.1 Field collections 

Bed-by-bed raw species counts are shown in Figs. 3.5-8 and 3.10 

alongside pyrite framboid size distributions whilst range charts for the bivalves 

are shown in Figs. 3.12-14 (for raw sampling data see supplementary appendix 

C).  
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Fig. 3.12 Species range chart and bivalve abundances for Glamorgan 

(Lavernock Point and Nash Point). For range chart dark circles show 

horizons species were encountered during field collections. Connecting 

line indicates range of species, extensions to ranges based on personal 

observations, museum collections of NMW, Bath Royal Literary and 

Scientific Institute, Bristol City Museum and Art Gallery, and published 

literature (Ivimey-Cook et al. 1999; Hodges 2000, 2018; Palmer 2010). For 

abundance plot solid line depicts bivalve abundances from mudstones and 

marls, dashed line from limestones. 
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Fig. 3.13 Species range chart for Somerset (St Audrie’s Bay and East 

Quantoxhead). See Fig. 3.12 for details.  
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Fig. 3.14 Species range chart for Devon (Pinhay Bay). See Fig. 3.12 for 

details. 

These show that bivalve diversity does not correlate with mean framboid 

diameters or standard deviation (r = +0.18, p(a) = 0.02, n = 155 and r = +0.22, 

p(a) = 0.01, n = 155 respectively). Although a higher diversity occurs in beds that 

show a larger mean framboid diameter, the converse is not always true. Similarly 

beds with an anoxic signal have been found to contain bivalves. LP12 is a pale 

marl from the base of the planorbis Zone of Lavernock Point and, despite its 

anoxic framboid population, it also contains a relatively diverse fauna including 

Modiolus and Chlamys. Another bivalve associated with framboid populations 

suggestive of anoxia is Anningella (SAB19 and SAB23; Fig. 3.5), but they are 

occasionally found attached to fossil drift wood suggesting a pseudoplanktonic 

lifestyle unhindered by seafloor conditions. In contrast, the anoxic beds from 

Devon are associated with low diversity bivalve assemblages (0-1 typically) with 

diversity showing a weak positive correlation to framboid diameters and standard 

deviations (r = +0.81, p(a) = 0.0003, n = 15 and r = +0.81, p(a) = 0.0003, n = 15  
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respectively). Generally, Glamorgan hosts the greatest bivalve diversity per zone 

(Fig. 3.15) and includes deep infaunal bivalve species (Pleuromya liasina, and 

Gresslya galathea; Fig. 3.12). The Nash Point section features several beds that 

contain the solitary coral Stylophyllopsis and large, disarticulated and 

occasionally stacked Plagiostoma shells that are heavily encrusted on all 

surfaces by Liostrea, Atreta and corals. Two of the coral beds at Nash Point 

(NP36, NP38), have framboid mean diameters that are indistinct from the rest of 

the limestone and marl beds (Fig. 3.8). Overall there is a temporal trend of 

increasing species richness per zone (Fig. 3.15). For Glamorgan and Devon the 

main rise occurs between the Pre-planorbis Beds and planorbis Zone. With 

bivalve species richness per zone remaining between seven and nine for Devon. 

The greatest species richness is achieved in the angulata Zone of Glamorgan, 

before falling slightly in the bucklandi Zone (Fig. 3.15).  For Somerset species 

richness rises at a lessening rate throughout the Hettangian and into the 

Sinemurian and fossils are rare throughout (Fig. 3.5 & 3.6).  

At the bed level the Langport Member of Glamorgan can host four times 

the diversity of species than the Pre-planorbis Beds, however in regards to 

ecological tiering this is only greater by one – featuring shallow infaunal species. 

Benthic tiering is reduced to epifauna with subordinate semi-infaunal components 

in the Pre-planorbis Beds, for Somerset the middle Pre-planorbis Beds also 

feature rare shallow infaunal bivalves (Protocardia philippianum). This latter 

tiering level is not seen in Devon until the upper planorbis Zone. Deep infaunal 

life modes are not encountered in Somerset, however they are recorded in the 

angulata and bucklandi zones of Glamorgan and Devon respectively. An increase 

in epifaunal tiering levels is noted by the presence of ossicles of the crinoid 
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Fig. 3.15 Compiled recovery metrics and oxygenation states for each of the 

three studied regions. Hollow circles show number of species encountered 

per zone, from this study. Hollow triangles show number of species per 

zone from combined field and museum collections of Glamorgan. Squares 

show species richness per zone and from range charts published in Mander 

et al. (2008) and solid triangle the same from Pugh et al. (2014). Crosses 

depict average geometric mean shell size of Plagiostoma giganteum per 

location per zone from Atkinson et al. (2019). Filled circles and arrows show 

first recorded position of key recovery features of stages from Twitchett 

recovery model, codes as follows: Lio. – Liostrea shell beds (stage 1), ShInf 

– shallow infauna (stage 2), Rh. – Rhizocorallium burrows (stage 3), Th. – 

Thalassinoides burrows, ErE – erect epifauna (crinoids, stage 3), DInf – 

Deep infauna. Medium grey bars indicate periods with dysoxic framboid 

size distributions, black bars anoxic distributions, regions crossed out lack 

data. Time scaled to Weedon et al. (2018b).   
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Isocrinus psilonoti, these first appear in the Pre-planorbis Beds of Lavernock 

Point and the planorbis Zone of St Audrie’s Bay and Pinhay Bay.  

 

3.5.2.2 Museum collections 

Bivalve diversity by zone for Glamorgan is assessed by incorporating 

bivalve specimens housed in the NMW alongside field observations. For the 

Langport Member incorporation of these specimens does not enhance diversity 

from that encountered in the field (eight species). Between the Langport Member 

and the Pre-planorbis Beds diversity increases greatly with 21 species present 

this rising to a stable diversity of around 26 species in the planorbis Zone and 

persisting into younger levels (Fig. 3.15). Deep infaunal suspension feeding 

bivalves are also recognised far sooner than seen during the field study, occurring 

in the Pre-planorbis Beds, and further members of this guild appear in the 

planorbis Zone (supplementary appendix D). Species richness rises to 29 in the 

semicostatum Zone, however this is represented by a silicified fauna that has 

been shown to be more diverse than un-silicified time-equivalent sections (Wright 

et al. 2003). 

 

3.6 Discussion   

3.6.1 Recovery  

 Most studies of recovery from the end-Triassic mass extinction in Britain 

have concentrated on the initial aftermath (planorbis to the early part of the 

liasicus zones) (Mander et al. 2008; Clémence et al. 2010). Here we extend the 

time interval of our analysis to the bucklandi Zone, of the Sinemurian Stage.  
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The majority of the beds from Pinhay Bay (Devon) suggest an environment 

with moderate oxygen restriction, with occasional intervals of anoxia. In spite of 

this, biotic recovery occurs rapidly, with a sharp increase in species richness by 

the planorbis Zone and ecological tiering being also well developed by this time.  

Our field observations show low diversity with assemblages dominated by 

Liostrea in the lower Pre-planorbis Beds. This is consistent with the findings of 

Pugh et al. (2014), and conforms to phase one of the Twitchett recovery model. 

The definition of recovery phase two is the expansion of infaunal tiering levels. 

This was reported by Pugh et al. (2014) from the upper Pre-planorbis Beds using 

the trace fossil data of Barras and Twitchett (2007) and Twitchett and Barras 

(2004). However, the range charts of Pugh et al. (2014) show the infaunal tier 

was occupied before this time by Pteromya tatei in the lower Pre-planorbis Beds 

(Bed H2). This is earlier than our own field observations which show the 

appearance of Cardinia ovalis in the planorbis Zone being the first infaunal 

species.  

Defined as an expansion in the epifaunal tiering levels, phase three occurs 

in the planorbis Zone in both our data and that of Pugh et al. (2014). The planorbis 

Zone also contains the key ichnotaxa for phase three with Rhizocorallium and 

Thalassinoides that are, at this interval, small in size (Twitchett & Barras 2004). 

Defining the final stage of recovery is less clear-cut. Pugh et al. (2014) use the 

presence of deep infaunal bivalves in the angulata Zone, however their range 

charts show that this ecology was already present in the planorbis Zone (cf. Paul 

et al. 2008). Our data shows species richness had broadly stabilised by the 

planorbis Zone, considerably earlier than reported previously (Pugh et al. 2014). 

However, a trend of shell-size increase is seen after this time which persisted 

until the late angulata Zone (Atkinson et al. 2019).  
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In Somerset, this deep-water region records a greater number of episodes 

of anoxia than the shallower regions in Glamorgan. A background of dysoxic 

condition was punctuated by anoxic intervals, a situation that persists from the 

Pre-planorbis Beds and into the bucklandi Zone. Biotic recovery is still seen, even 

in these adverse conditions, albeit represented by a gradual rise in species 

richness, several of the key features of Twitchett’s recovery model occur by the 

planorbis Zone.  

As with Devon the lower beds of the Pre-planorbis interval are dominated 

by oysters and is again consistent with phase one of recovery. The appearance 

of infaunal tiering occurs in the upper Pre-planorbis Beds according to the range 

charts of Mander et al. (2008) who reported the shallow infaunal bivalve Rollieria 

at this level and is broadly consistent with our data which shows shallow infaunal 

tiers occupied from the mid Pre-planorbis interval. There is a discordance with 

the trace fossils, Barras and Twitchett (2007) do not report any trace fossils from 

the Pre-planorbis Beds of St Audrie’s Bay.  

Phase three (epifaunal tiering development) was not reported by Mander 

et al. (2008) from Somerset. However, this is contradicted by our finding of 

Isocrinus psilonoti in the mid-planorbis Zone at St Audrie’s Bay and in upper Pre-

planorbis Beds at Lilstock. Ichnotaxa are slower to recover, although rare 

Rhizocorallium occur in the planorbis Zone, and becomes more frequent from the 

angulata Zone (Barras & Twitchett 2007). Our results show that diversity 

continues to rise steadily in the earliest Jurassic of Somerset up to the bucklandi 

Zone but at no point is benthos abundant, and deep infaunal bivalves do not 

appear. Thus, recovery phase four is much later in the offshore Somerset 

sections than in the nearer, shallower sections of Devon. 
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Glamorgan represents the most near-shore region in this study, and also 

shows fewer anoxic intervals than the more distal Somerset sections. All the 

same, no sample lacked pyrite framboids, suggesting that oxygen restriction, to 

some degree, was still present even in these shallower waters up to the 

Sinemurian. Nonetheless, biotic recovery occurred promptly as seen in both field 

and museum collections which show an early rise in species richness into the 

planorbis Zone.  

The Langport Member is discordant with the expectations of the Twitchett 

recovery model for an initial post extinction because several ecological tiers are 

occupied and no single species dominates the assemblage. At the bed level the 

Langport Member can attain a greater diversity than the succeeding Pre-

planorbis Beds however when considered as a time bin, with the inclusion of 

NMW specimens this interval is comparably depleted in bivalve diversity, with a 

great increase occurring with the transition to Blue Lias facies (Fig. 3.15). This 

may be driven by a rapid sea level rise and development of fully marine conditions 

The lower Pre-planorbis Beds, with their high numbers of Liostrea and 

Modiolus minimus, are far more characteristic of phase one than the earlier 

Langport Member. Two shallow infaunal species are present in the Langport 

Member but our field collecting did not find further infaunal bivalves until the lower 

angulata Zone, where deep infauna also appeared (Gresslya, Pleuromya and 

Pholadomya). However, Mander et al. (2008) recorded shallow infaunal deposit 

feeding bivalves in the upper Pre-planorbis Beds and specimens housed in the 

NMW include Pteromya, Protocardia, Pleuromya, Rollieria, Mactromya and 

Cardina all in the Pre-planorbis Beds. Thus, this tiering level was not lost with the 

changing facies. The expansion of epifaunal tiering (recovery phase three) is 

seen in upper Pre-planorbis Beds with the presence of Isocrinus psilonoti. 
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However, as with Somerset, key ichnotaxa of these phases are lacking, with 

Thalassinoides occurring later in the lower planorbis Zone and rare 

Rhizocorallium later still in the bucklandi Zone (Wobber 1968). The ordered 

succession of recovery phases does not match the record seen in Glamorgan. 

Based on field collecting alone, diversity rose rapidly into the planorbis 

Zone and was highest in the angulata Zone – a time when all the tiering levels 

were filled. The largest limid bivalves and Thalassinoides burrows were recorded 

from the bucklandi Zone (Hallam 1960; Wilson et al. 1990; Atkinson et al. 2019). 

However, using the data from museum collections shows that diversity and tiering 

had stabilised far earlier (in the planorbis Zone). Diversity from combined field 

and NMW collections was also far higher than direct field observations alone this 

likely relates to the ability of museum collections to capture rare faunal elements 

based on many years of collecting effort and samples from temporary exposures.  

 

In both Devon and Glamorgan recovery occurs quickly and was complete 

by the planorbis Zone, as monitored by stable, high diversity and restoration of 

tiering levels (Figs. 3.12, 3.14 & 3.15). Diversity is slower to increase in the 

offshore/deeper water Somerset sections. Based on body and burrow sizes the 

recovery is more gradual and slower taking up to the angulata and bucklandi 

zones. The recovery patterns do not fit Twitchett’s recovery model with its 

progressive development of tiers and diversity in the shelly fauna occurring out 

of synch with trace fossil records. The model only accords with the recovery 

pattern seen at Pinhay Bay, there trace fossils recover hand-in-hand with the 

shelly fauna. The timing of the appearance of key ichnotaxa and shelly fauna 

tiering and diversity is ill fitted in Somerset and Glamorgan. For example, there is 

a near absence of trace fossils in Somerset until the angulata Zone (Barras & 
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Twitchett 2007), despite the recovery of the bivalves. Recovery should be 

deemed complete once a stable diversity is attained, however we acknowledge 

the necessity for ecological factors to be also considered and retain the ideas of 

Twitchett (1999) that benthic tiering is an important indicator of recovery also. 

Body size and presence of particular trace fossils are perhaps controlled by other 

factors (substrate, sea level and so on) and do not appear relatable across 

different regions or recovery intervals.  

 Looking further afield recovery also appears to have been rapidly 

completed within the Hettangian. High diversity shell beds with low dominance 

and highly specialised forms are reported from early Hettangian of Tibet 

(Hautmann et al. 2008). In the Neuquén Basin, Argentina, recovery appears 

slower than Tibet, because there is an interval barren of bivalves roughly 

equivalent to the planorbis Zone, followed by rising diversity and increased 

occupation of tiering until the canadensis Zone equivalent to the upper angulata 

Zone (Damborenea et al. 2017).  

 Ammonites also recovered very quickly, with a rapid diversification in the 

immediate aftermath of the end-Triassic mass extinction with peak originations 

occurring in the planorbis Zone (Guex et al. 2012). This diversification was also 

accompanied by an increase in size disparity over the first four standard 

ammonite zones of the Jurassic, with some of the largest forms of the Lower 

Jurassic occurring in the bucklandi Zone (Dommergues et al. 2002). Recovery 

amongst the brachiopods occurs on broadly the same time span as seen 

amongst bivalves (Tomašových & Siblík 2007). In the Northern Calcareous Alps 

of Germany and Austria, brachiopod recovery occurs in the calliphyllum and 

megastoma zones (equivalent to planorbis to lower angulata zones of the UK, 

cf. Page 2003).  
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3.6.2 Duration of recovery  

 A recent reappraisal of the cyclostratigraphy of the Blue Lias has 

suggested that the Hettangian stage was longer than previously thought, being 

perhaps >4.1 Myr (Weedon et al. 2018b) compared to earlier estimates of 1.7- 2 

million years (Schaltegger et al. 2008; Ruhl et al. 2010, 2016; Guex et al. 2012; 

Hüsing et al. 2014). This has clear implications for the timing of the recovery. 

Evidence for a short Hettangian comes from U-Pb dating of poorly 

biostratigraphically constrained ash beds in northern Peru (Schaltegger et al. 

2008; Schoene et al. 2010; Wotzlaw et al. 2014) and cyclostratigraphic study of 

the St Audrie’s Bay and East Quantoxhead sections (Ruhl et al. 2010, 2016; 

Hüsing et al. 2014), but Weedon et al.’s (2018b) work improves on these earlier 

cyclostratigraphies by including the tilmanni Zone (encompassing part of the 

Pre-planorbis Beds), and also constructing chronologies from several Blue Lias 

sites. This has allowed for the detection of hiatuses and missing sedimentary 

cycles, and so generated a longer composite chronology for the Hettangian 

(Weedon et al. 2018a, b). Based on this new >4.1 Myr duration for the 

Hettangian and accounting for the 0.15 Myr between the End-Triassic extinction 

and the Triassic-Jurassic boundary (Wotzlaw et al. 2014) the pace of recovery 

can be assessed.  

Despite Somerset recording a greater level of oxygen restriction, the 

duration of early recovery phases between all three regions are broadly similar. 

The biotic recovery from the end-Triassic mass extinction event appears to 

have begun extremely rapidly; it was substantially complete within <0.7 Myr in 

both Somerset and Glamorgan (excluding trace fossils). Devon lagged behind 
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and took > 2 Myr to reach a similar stage. Following the initial rapid recovery 

later, incremental diversity increases were ongoing for > 4 Myr. Although we 

favour the most recent Hettangian time scale, as some controversy remains we 

also present an alternative duration of recovery using the time scales of Ruhl et 

al. (2016), under this chronology recovery was exceedingly rapid, significant 

expansion of tiering was restored within 0.22 Myr for Somerset and Glamorgan 

and with stable diversity and fully restored tiers in both Devon and Glamorgan 

within 0.53 Myr, and equally the incremental diversity increases seen in 

Somerset were ongoing for >2.14 Myr.  

 

3.6.3 Role of anoxia in recovery 

There is no suggestion of the involvement of anoxia in the end-Triassic 

extinction event itself in the region (Wignall & Bond 2008), but oxygen restriction 

clearly occurred during the earliest Jurassic and this has been suggested to 

have impeded the recovery (e.g. Hallam 1996; Mander et al. 2008; Clémence et 

al. 2010; Luo et al. 2018). Our redox study fails to shows this link. Anoxic and 

dysoxic conditions were regularly developed during the Hettangian and lower 

Sinemurian in Somerset and Devon, whilst less intense dysoxia persisted in the 

nearer shore/shallower Glamorgan sections with fewer anoxic intervals 

recorded. Much the same redox history has been demonstrated for other 

regions of the European Shelf Sea (Schwab & Spangenberg 2007; Quan et al. 

2008; Richoz et al. 2012). Despite the oxygen restriction, rapid recovery in the 

basal Jurassic occurred unhindered (Fig. 3.15). Nonetheless, some influence of 

dysoxia can be seen because the greatest diversity increase occurred in 

nearshore sections whilst the continued deposition of anoxic, black shales in 
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Somerset into the bucklandi Zone lowered the diversity and abundances at 

least at the bed level and prolonged the local recovery. 

The rapid initial recovery of the Early Jurassic is in marked contrast to the 

muted recovery seen during the Early Triassic when anoxia has also been 

proposed to have hindered recovery (e.g. Hallam 1991; Dai et al. 2018). 

However, the environmental extent of anoxia in the earlier interval was much 

greater, with anoxia frequently extending into shallow, inner shelf settings 

(Wignall & Twitchett 1996; Wignall et al. 2016). During the Early Jurassic it is 

possible that species from the shallower, dysoxic setting of South Wales 

replenished deeper water populations following periods of anoxia in the Early 

Jurassic, thereby allowing punctuated recovery even in the deeper waters. It is 

important to remember that this is a regional story for two basins, each 

responding in subtly different ways. Although episodic anoxia continued into the 

Sinemurian, uranium isotope ratios suggest that, on a global scale, a major 

expansion of sea-floor anoxia lasted for only around 45 kyr after the extinction, 

before improving gradually in the next 200 kyr (Jost et al. 2017). However, Jost 

et al.’s (2017) work used the astrochronological timescale of Ruhl et al. (2010). 

The more recent timescale of Weedon et al. (2018b) doubles the duration of the 

widespread anoxia episode. The oxygen-poor environmental conditions in NW 

Europe were unusually harsh compared to elsewhere in the Early Jurassic, 

ensuring that there were sufficient locations beyond this region where benthic 

diversity was able to diversify unimpeded.  
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3.7 Conclusions 

The Hettangian and lowermost Sinemurian shelf seas of Britain show 

pyrite framboid size distributions that suggest conditions were commonly dysoxic 

especially in more distal, offshore settings. Despite this observation, the poor 

aeration did not hinder biotic recovery from the end-Triassic mass extinction 

event as recorded by the dominant bivalve fauna. Even in deeper water where a 

greater severity of oxygen restriction was recorded a rapid initial recovery can be 

detected. It may be that diversification took place in the best oxygenated 

shallowest-water settings and helped stock the benthos in offshore, dysoxic 

settings during transient times of improved oxygenation. This is supported by the 

evidence form the nearshore sections of Glamorgan where recovery was 

potentially faster (achieved within 0.7 Myr). Other facets of the recovery, seen in 

benthic tiering levels, both epifaunal and infaunal, improved rapidly and 

synchronously: there is little support for models that view recovery to occur in a 

set of distinct stages or phases.   
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4.1 Abstract   

Redcar hosts the earliest Jurassic succession exposed on the Yorkshire 

Coast but has received little attention since the late 19th century owing to beach 

sand cover. Temporary removal of these sands by winter storms in early 2018 

allowed for a sedimentological and palaeontological study to be undertaken of a 

nearly 60 m-thick foreshore section. The rocks date to the latest Hettangian and 

early Sinemurian stages (Early Jurassic) and consist of five coarsening-upward 

cycles (parasequences) that grade from mudstones through siltstones into 

Gryphaea-rich shell beds. Ammonites are reasonably common along with a 

diverse benthos that, in addition to Gryphaea arcuata Lamarck, includes 

abundant bivalves (e.g. Cardinia, Luciniola, Plagiostoma and Oxytoma) and rarer 

serpulids, gastropods, foraminifers and solitary corals. In the upper part of the 

section, the thicker-shelled taxa are commonly bored, most frequently by 

cirripedes. Despite the diversity of the benthos and intense bioturbation, pyrite 

framboids are common with size distributions, suggesting deposition occurred 

under an oxic-dysoxic water column. Deposition at Redcar occurred 4 million 

mailto:*gy12jwa@leeds.ac.uk
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years after the end-Triassic mass extinction (during the latest Hettangian to 

Sinemurian Stage) and the diverse marine assemblages indicate recovery was 

substantially complete by this time. 

Keywords: End-Triassic mass extinction, pyrite framboid, marine recovery  

 

4.2 Introduction 

The Cleveland Basin (Yorkshire) contains one of the classic Early Jurassic 

(Liassic) records that has provided important evidence on numerous aspects of 

the Early Jurassic world, such as the Toarcian Oceanic Anoxic Event (e.g. Little 

& Benton 1995; Wignall et al. 2005; Danise et al. 2013) and it also hosts the 

Global Boundary Stratotype Section and Point (GSSP) for the Sinemurian-

Pliensbachian stage boundary (Meister et al. 2004). Older stratigraphic intervals 

have however been largely neglected because of poor coastal exposures and 

limited inland sites (mostly exposed in the 19th century) or borehole studies (Tate 

& Blake 1876; Ivimey-Cook & Powell 1991; Powell et al. 1992). Redcar Rocks is 

the only coastal locality available in the Cleveland Basin where rocks of the 

Hettangian and lowermost Sinemurian are exposed. The intertidal platforms were 

meticulously sampled by Tate and Blake and published in 1876. Their bed 

descriptions are somewhat difficult to interpret but they provided a useful sketch 

map of the foreshore depicting the location of key ammonite finds (expanded in 

Page 2004a). The succession was subsequently reported in Gad’s (1966) 

unpublished Ph.D thesis and van Buchem and McCave (1989) although neither 

provided a detailed section or any palaeontological study. The problem with the 

Redcar sequence is its frequent cover beneath beach sand, as Tate and Blake 

(1876, p. 56) noted:- “the occasions, however, when so large an expanse of rock 
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is in view, as we have shown on the plan, are few”. Fortunately, the storms in 

February-March 2018 removed great quantities of the sand cover exposing a 

section almost as good as seen by Tate and Blake over 140 years before. Our 

study provides a detailed sedimentary succession and record of fossil 

occurrences. We assess the palaeoenvironments through fossil occurrences, 

sedimentary facies and reconstruction of palaeoredox conditions using 

framboidal pyrite size distributions (cf. Atkinson & Wignall 2019). Redcar Rocks 

provide a new perspective on the Hettangian and Sinemurian interval that allows 

comparison with the well-documented Blue Lias Formation of southwest Britain 

and contributes new data on the changing environmental conditions and biotic 

recovery following the end-Triassic mass extinction event.   

 

4.3 Geological setting 

The Cleveland Basin formed as part of a series of small extensional basins 

within a shallow epicontinental seaway (Powell 2010). During the Lower Lias the 

basin was bordered by the Pennine High landmass to the west and the Market 

Weighton High to the south. The oldest Jurassic-aged rocks within the Cleveland 

Basin are assigned to the Redcar Mudstone Formation, a mud and silt rich 

succession that is divided into the following members: a lowermost Calcareous 

Shale Member defined by the presence of carbonate nodules, the Siliceous Shale 

Member (bearing sandy horizons), the Pyritous Shale Member (a dark shale, rich 

in pyrite) and the Ironstone Shale Member (characterized by beds of siderite 

nodules). Combined, the Redcar Mudstone Formation is c. 283 m thick near 

Redcar thinning southward (Powell 1984). The Redcar Rocks outcrop exposes 

much of the Redcar Mudstone, whilst the nearby Coatham Rocks feature the 
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overlying lower Pliensbachian-aged Staithes Sandstone Formation, albeit 

exposed only at very low tide (Fig. 4.1). Only intermittent exposure of this 

sequence is available however, even when much of the beach sand has been 

removed. A companion section is well exposed in the cliffs and reefs of Robin 

Hood’s Bay some 40 km to the southeast, but only the upper 20 m or so of the 

Calcareous Shale is exposed there, meaning that these lower beds can only be 

studied at Redcar.  

 

Fig. 4.1 UK location map showing Lower Jurassic outcrop and key 

sedimentary basins modified from Gründel et al. (2011)  Basin codes as 

follows: BCB – Bristol Channel Basin; DB – Dorset Basin; CSB – Central 

Somerset Basin; EMS – East Midlands Shelf; SB – Severn Basin; MWH – 

Market Weighton High; CB – Cleveland Basin. Foreshore map of Redcar 

and Coatham rocks with geological units and scar names (Page 2004a).  
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4.4 Materials and methods 

Logging of the Calcareous Shale Member was undertaken along the 

foreshore at Redcar Rocks using a high-precision Jacob’s staff with laser sight 

(Patacci 2016), and sampled beds were allocated numbers (Red 1 – 31). At these 

semi-regular intervals benthic diversity was assessed by species counts. In 

mudstone bivalves were identified from freshly split surfaces of approximately 

equal volume of rock (~0.5 x 0.5 x 0.3 m). For shell beds fossils were identified 

in situ from bedding surfaces. Species range extensions are inferred from 

occurrences higher in the section at Robin Hood’s Bay, Staithes and Hawsker 

Bottoms using occurrence data presented in Atkinson and Wignall (under review; 

Appendix E). Sediments were also studied in thin sections which allowed 

occurrences of microfossils (especially foraminifera) and shell fragments to be 

noted.  

A subset of sampled horizons were used to test for changes in oxygenation 

regime using pyrite framboids. Employing the method from Wignall and Newton 

(1998), pyrite framboid diameters were measured on carbon-coated polished 

stone chips approximately 2 x 1 cm in size set into resin blocks and viewed using 

a Tescan VEGA3 XM scanning electron microscope (SEM) with a backscatter 

electron detector. Diameters were measured using inbuilt measurement 

applications of the SEM. Ideally 100 framboids were measured from each 

sample, if this could be achieved within a designated one-hour analysis time. 

Mean framboid diameter and standard deviation were calculated for each sample 

and plotted on what are referred to herein as a Wilkin diagram (cf. Wilkin et al. 

1996). 
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4.5 Results 

4.5.1 Sedimentology 

The measured section spans some 50 metres predominantly of mudstone 

and silty-mudstone, with thin calcareous shell-rich beds (Fig. 4.2). Spacing of 

shell beds occurs with some degree of cyclicity. Between 16-22 m (beds 66-98 

of Tate and Blake) there are 16 closely stacked shell beds, these form a 

projection out to sea known as Jenny Leigh’s Scar (Fig. 4.1). The alternate 

regions dominated by softer mudstones produces a series of embayments 

between harder weathering reefs or “scars”. Shell beds between 36-38 m form 

Stokesley Scar (beds 35-53 of Tate and Blake). Towards the top of the measured 

section these cycles become closer in their spacing, with sandy beds measured 

at 42 m and above, forming East Scar (beds 32-11 of Tate and Blake). The 

mudstones are medium to light grey in colour with little of the primary fabric 

retained owing to pervasive bioturbation, resulting in silt-grade quartz and detrital 

carbonate grains being scattered throughout, and shell fragments often rotated 

to high angles (Fig. 4.3A). Occasional horizons of carbonate concretions occur 

within the mudstone intervals usually in close association with shell beds. 

Between around 24-32 m (beds 55-64 of Tate and Blake) siderite nodules are 

found either scattered or forming distinct horizons. This part of the succession 

bears the lowest concentration of shell beds (Fig. 4.2).  

The shell beds are up to 0.3 m thick and are formed of abundant thin 

shelled debris, including recognisable bivalve and echinoderm fragments and 

also large numbers of disarticulated Gryphaea and Cardinia shells (Figs. 4.3B & 

4.4). The bases of the shell beds are seen as a mudstone with a high proportion 
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of thin shell fragments, grading up into siltier and sandier strata with larger and 

more numerous bioclasts (mostly Gryphaea) and culminating in shelly limestones 

cemented by sparite (i.e. biosparite, Fig. 4.3C). Small patches of mudstone can 

persist between shells. Shell beds sampled at horizons Red 8, 9, 15 and 17 all 

contain glauconite-replaced echinoderm fragments.  
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Fig. 4.2 Graphic log of Redcar Rocks including box and whisker plots of 

pyrite framboid results. Box and whisker plots, box depicts 25th and 75th 

percentiles, central line is median, whiskers illustrating minimum and 

maximum framboid diameters. Solid circles show record raw species 

richness per sampled horizon. 
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Fig. 4.3 Photomicrographs of thin sections. A, Red 23, shell fragment 

rotated by burrowing. B, Red 28, example shell bed including Gryphaea 

shell with simple boring on the right. C, Red 6, example of biosparite D, 

Red 24, phosphatic nodule featuring burrow mottling. E, Red 8, two nests 

of serpulid tubes.   
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Above 40 m the succession increases in grain size becoming increasingly 

silty, until at 42-47 m height fine sandstone beds form East Scar (Fig. 4.2). Initially 

these are composed of homogeneous siltstone of quartz and detrital carbonate 

grains that then grade up into carbonate-cemented fine sandstones rich in shell 

debris and Gryphaea. This part of the succession also features elongate, cigar-

shaped phosphatic nodules, approximately 5 cm long, which preserve burrow 

mottling (Fig. 4.3D).  

Viewed under a SEM many of the Redcar beds feature rice-shaped 

ankerite grains, typically <10 μm in length, often at high abundances within some 

samples (Fig. 4.5A). Red 27 and 29 also feature numerous iron oxide grains and 

infilling chambers of foraminifera seen in thin section, which may originally have 

been siderite or pyrite grains and pyrite infills respectively, prior to oxidation.   

 

Fig. 4.4 Gryphaea-rich shell bed at outcrop. Hammer 30 cm long.  

 

4.5.2 Fauna 

Ammonite faunas of the lower 9 m of the section are dominated by 

Schlotheimia of the angulata Zone, of latest Hettangian age (Fig. 4.6A). These 

are replaced by Arietitidae in the basal Sinemurian, conybeari Subzone 
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(bucklandi Zone), including Metophioceras spp.. No ammonites were found from 

Jenny Leigh’s Scar during this survey, although previously reported finds include 

Coroniceras ex grp rotiforme (J. de C. Sowerby) and ?Arietites sp. indicating the 

rotiforme and bucklandi subzones respectively (Page 2004a). 

 

Fig. 4.5 SEM images. A, Red 11, abundant rice-shaped ankerite grains (pale 

grey). B, Red 15, pyrite framboids surrounded by a cloud of dissociated 

pyrite microcrysts,  

 

 Placement of the rotiforme-bucklandi Subzone boundary is unclear 

although Coroniceras ex grp multicostatum (J. Sowerby) suggests late bucklandi 

Subzone by horizon Red 14. The lowest part of the succeeding semicostatum 

Zone is recognisable from the upper beds of Stokesley Scar on the basis of 

Paracoroniceras sp. with well preserved and encrusted examples of Arnioceras 

also collected from the mudstones above (Fig. 4.6B). The scipionanum Subzone 

is recognised by Agassiceras with Arnioceras acuticarinatum (Simpson). 

Using range-through species richness benthic diversity was modest during the 

angulata Zone, with fewer than 10 species present, but then rises markedly to 15 

species in the first shell bed of Jenny Leigh’s Scar. Above this level diversity 
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increases further to a stable diversity of around 22 for the remainder of the 

succession (Fig. 4.7). The assemblages are dominated by bivalves with a full 

range of ecologies present. Of the suspension feeding guilds of bivalve there is 

one epifaunal reclining species, two cementing, one epifaunal facultative motile, 

nine epibyssate and three endobyssate, three shallow infaunal, and two deep 

infaunal (Table 4.1). There are also six species of deposit-feeding, shallow 

infaunal bivalves and one abundant species that likely hosted sulphur-oxidising 

chemosymbiotic bacteria. After bivalves, gastropods form the next significant 

component with large forms present (up to 66 mm height, and width) such as 

Pleurotomaria cognata Chapuis & Dewalque (Fig. 4.6C), however the majority of 

gastropods are small (~1-2 mm) high spired forms identified only in thin section 

(Fig. 4.6D). Echinoderms are a common component with shell beds especially 

echinoid spines and ophiuroid plates. Red 12 also contained articulated 

specimens of Isocrinus psilonoti (Quenstedt) including cirri (Fig. 4.6E). Serpulids 

are locally common, with several species present, with dense, intergrown nests 

of small diameter specimens found in Red 8 (Fig. 4.3E). 
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Fig. 4.6 Examples of fossils collected from Redcar. A, Red 1, Schlothemia 

sp.; B, Red 21, Arnioceras sp. encrusted by Liostrea irregularis (Munster); 

C, Red 17, Pleurotomaria cognata  Chapuis & Dewalque; D, Red 2 

photomicrograph of microgastropod in thin section; E, Red 12 Isocrinus 

psilonoti (Quenstedt), partially articulated specimen with cirri, 

photographed in situ; F-I, Red 15, Cardinia listeri (J. Sowerby) featuring a 

range of cirripede borings. J, cross-section through part of C. listeri shell 

(I) showing potential Simonizapfes; K, detail of C. listeri shell (I) with 

possible bryozoan borings; L, C. listeri with growth defect, dashed line 

projects normal shell outline. A-C, whitened using ammonium chloride, 

scales bars 1 cm unless otherwise stated. 
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Gryphaea arcuata occurs throughout the entire succession and is the most 

notable fossil especially in the shell beds where their thick shells dominate (Fig. 

4.4). In the upper shell beds of Jenny Leigh’s Scar Cardinia listeri (J. Sowerby) is 

also found in high numbers alongside G. arcuata, again a thick shelled species. 

Shell beds also contain subordinate faunas including Luciniola limbata (Terquem 

& Piette) and the solitary coral Trocharea guettardi (Blaniville) (c. 35 m, bed 55 

of Tate and Blake). Cardinia and Gryphaea specimens in the shell beds of 

Stokesley and East Scar frequently display a range of borings, which are infilled 

by matrix testifying they are of Jurassic origin (Fig. 4.6F-L). The majority of the 

bore marks are slit-like in form and pinched at one end, typical of barnacle borings 

(Häntzschel 1975) such as Zapfella, Rogerella and Simonizapfes; the last has a 

distinctive sock-shaped cross section, seen a in broken Cardinia from Red 15 

(Fig. 4.6J). A fine network-like boring was seen on Cardinia shells. These do not 

penetrate the shell to any significant depth however, and may have been formed 

by boring bryozoans (Fig. 4.6K). Other borings include simple rounded holes and 

elongate gashes (Fig. 4.6H). Evidence for constrained growth in a specimen of 

Cardinia was also found, this specimen shows normal growth was impeded 

partway during the individual’s life resulting in irregular growth lines and a miss-

shaped outline (Fig. 4.6L).  In the shell beds of Jenny Leigh’s Scar almost no 

boring was seen and shells are generally in a better state of preservation with 

more articulated Cardinia fossils. 
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Table 4.1 Bivalve ecologies encountered within the Redcar sequence, 

assigned from published literature (Johnson 1984; Hodges 1991, 2018; 

Wignall 1990; Damborenea & Manceñido 2005; Ros-Franch et al. 2014). 

 

 

SPECIES ECOLOGY 

Gryphaea arcuata Lamarck surficial, non-motile, reclining suspension 
feeder 

Atreta intusstriata (Emmrich) surficial, cemented, suspension feeder 

Terquemia difformis (Schlotheim) surficial, cemented, suspension feeder 

Liostrea irregularis (Munster) surficial, cemented, suspension feeder 

Plagiostoma giganteum J. Sowerby surficial, byssate, suspension feeder 

Plagiostoma punctatum J. Sowerby surficial, byssate, suspension feeder 

Pseudolimea pectinoides (J. Sowerby) surficial, byssate, suspension feeder 

Antiquilima succincta (Schlotheim) epibyssate, suspension feeder 

Grammatodon (Cosmetodon) sp. epibyssate, suspension feeder 

Oxytoma inequivalvis (J. Sowerby) epibyssate, suspension feeder 

Camptonectes cf. auritus (Schlotheim) epibyssate, suspension feeder 

Chlamys textoria (Schlotheim) epibyssate, suspension feeder 

Entolium lunare (Roemer) surficial, facultative motile, suspension feeder 

Modiolus sp. endobyssate, suspension feeder 

Pinna sp.  endobyssate, suspension feeder 

Gervillia hagenowi (Dunker) endobyssate, suspension feeder 

Neocrassina sp. shallow infaunal, suspension feeder 

Cardinia listeri (J. Sowerby) shallow infaunal, suspension feeder 

Protocardia philippianum (Dunker) shallow infaunal, suspension feeder 

Luciniola limbata (Terquem & Piette) shallow infaunal suspension feeder with 
chemosymbionts 

Dacryomya heberti (Martin) shallow infaunal, deposit feeder 

Palaeonucula navis (Piette) shallow infaunal, deposit feeder 

Ryderia doris (d’Orbigny) shallow infaunal, deposit feeder 

Rollieria bronni (Andler) shallow infaunal, deposit feeder 

Palaeoneilo elliptica (Goldfuss) shallow infaunal, deposit feeder 

indeterminate protobranch shallow infaunal, deposit feeder 

Gresslya sp. deep infaunal, suspension feeder 

Pleuromya liasina (Zieten) deep infaunal, suspension feeder 
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Fossils are most conspicuous in the shell beds, but many species occur 

within the mudstones. These often include thin-shelled protobranch species as 

well as Luciniola limbata, Oxytoma inequivalvis (J. Sowerby) and Pseudolimea 

pectinoides (J. Sowerby) (Fig. 4.7). Large logs of fossilised wood were also noted.  

Several foraminifera were identified from thin sections these are 

predominately elongate, uniserial forms (Pseudonodosaria, Paralingula, 

Dentalina), these are shallow infaunal forms (Rita et al. 2016). Discoidal coiled 

forms (Glomospirella) was found in Red 2 this being an epifaunal morphology 

(Rita et al. 2016). Red 27 hosted the greatest abundance of foraminifera with 

numerous examples of Lenticulia, an opportunistic form. Ostracods were also 

encountered in several beds (Red 2, 3, 15, 20, 24). 
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Fig. 4.7 Species range chart and range through (RT) species richness for 

Redcar Rocks. For range chart dark circles show horizons species were 

encountered during field collections, shaded squares for species only 

encountered in thin sections. Connecting line indicates range of species, 

extensions to ranges based on personal observations and species 

occurrence data presented in Atkinson and Wignall (under review, 

Appendix E). Inverted black triangles on the left depict the five 

parasequences. 
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4.5.3 Framboid analysis 

Pyrite was found in all samples, both as euhedral crystals and framboidal 

pyrite and locally replaces the matrix (Red 28). Framboids often occur in clusters 

or streamers surrounded by clouds of dissociated pyrite microcrysts (Fig. 4.5B). 

In all bar two samples over 100 framboids were counted within the one-hour 

analysis time (however the two samples still contained >70 framboids each). All 

samples show framboid populations that plot in the oxic-dysoxic field of the Wilkin 

diagram (Fig. 4.2 & 4.8). There is no distinction between framboid populations 

measured from shell beds and mudstones and, equally, no systematic change in 

framboid diameters or standard deviation up-section. Overall the Redcar Rocks 

have an average framboid diameter of 8.35 microns and standard deviation of 

4.31 microns.  

 

Fig. 4.8 Mean framboid diameter (μm) against standard deviation of 

framboid diameters (Wilkin diagram) for Redcar. Dashed line dictated 

anoxic/euxinic-oxic/dysoxic threshold (Wilkin et al. 1996). Samples plotted 

as either being from shell beds or the intervening mudstones and siltstones 

with shaded regions illustrating the spread of results. 
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4.6 Discussion 

Redcar presents a mudstone dominated succession encompassing the 

Hettangian-Sinemurian boundary (angulata-bucklandi zonal boundary) with a 

reasonably diverse benthic fauna. Quiet water mudstone deposition was 

interspersed by periods of prolonged winnowing generating shell beds dominated 

by the thick-shelled Cardinia and especially Gryphaea. The associated grain size 

increase suggests the shelly horizons represent shallower/more proximal 

environments.  

There are five distinct parasequences (shallowing-up cycles) each passing 

from mudstone-dominated to shell bed-dominated facies. The first parasequence 

forms the base of the section to the top of Jenny Leigh’s Scar, the second 

culminates in the top of Stokesley Scar, the third and fourth occur in East Scar 

and the base of the fifth is at the top of the section (Fig. 4.7). Superimposed on 

this succession there is a long-term, weakly expressed, upwards coarsening that 

coincides with a reduction in parasequence thickness, suggesting that 

accommodation space was declining. The long-term increase in boring intensity, 

culminating in the shells found in Stokesley and East Scar, indicates more 

prolonged exposure on the sea floor compared with shells from the 

stratigraphically older, and more expanded, Jenny Leigh’s Scar shell beds. The 

mud/siltstone-shell bed cycles continue into higher levels of the semicostatum 

Zone with similar beds reported from the younger succession at Robin Hood’s 

Bay 40 km to the south east (Page 2004b).  

An Early Jurassic eustatic sea level curve has been developed, based 

primarily on data from UK sections (Hesselbo & Jenkyns 1998; Hesselbo 2008). 

Relative water depths seen in the Redcar succession are only partially in accord 
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with this curve. Thus, a relative sea level fall during the rotiforme Subzone is 

coincident with the formation of the Jenny Leigh’s Scar shell bed but, deepening 

then purportedly occurs through the bucklandi Subzone to peak in a lyra Subzone 

highstand (Hesselbo 2008). At Redcar this initial deepening is coincident with the 

deposition of mudstones (24-32 m, beds 55-64 of Tate and Blake), but intervals 

of shallowing saw the formation of the Stokesley Scar shell beds in the bucklandi 

Subzone. The lyra Subzone at Redcar records relatively shallow deposition in 

parasequences of relatively limited thickness compared with the underlying 

examples. This could record a transition from early, aggradation-dominated 

parasequences to late, progradation-dominated, highstand deposition expressed 

in a relatively nearshore setting. 

 The faunal assemblage recorded from Redcar is diverse and features a 

wide range of ecological groups also seen elsewhere in contemporary British 

Liasic successions (Atkinson & Wignall 2019). It differs slightly from these other 

records in the paucity of large Plagiostoma giganteum J. Sowerby and Pinna 

similis Chapuis & Dewalque which abound, most notably in the limestone 

dominated successions of Glamorgan (Hallam 1960; Atkinson & Wignall 2019; 

Atkinson et al. 2019). The most distinctive faunal component of the Redcar rocks 

is Gryphaea arcuata which inspired Tate and Blake (1876) to propose the term 

“Gryphites” for the shell-rich strata. The uppermost angulata to semicostatum 

zones of the British Lias is characterised by high numbers of Gryphaea, that are 

often prolifically abundant, possibly owing to the preservability of their robust 

shells (Pugh et al. 2014), espcieally so in condenesd and winowed settings. 

Similar Gryphites to those seen at Redcar are reported from near Scunthorpe, on 

the East Midland Shelf, and Hock Cliff in the Severn Basin (Simms 2004; Radley 

2008). In both instances these are bucklandi Zone in age, and are developed as 
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comparably thin beds within mudstone-dominated sections (Simms 2004; Radley 

2008). 

Although Tate and Blake reported four coral-hosting beds at Redcar only 

their second uppermost coral bed (bed 55 of Tate and Blake), was seen during 

this study, which hosts solitary coral Trocharea guettardi (Blainville) and scallop 

Chlamys textoria (Schlotheim). Solitary corals like Trocharea are widespread in 

the British Isles of the angulata and bucklandi zones, being recorded from 

Lincolnshire, Larne in Northern Island and Glamorgan (Trueman 1930; Negus 

1983).  

 

Basin angulata bucklandi 

Cleveland 7 25 

Dorset 8 Nd. 

Central Somerset 11 12 

Bristol Channel 17 13 

Severn Nd. 13 

 

Table 4.2 Bivalve species richness per zone for four basins of the classic 

Blue Lias Formation compared to the Cleveland Basin. Bivalve species 

richness data from Atkinson and Wignall (2019) and Atkinson and Wignall 

(under review, Appendix E). 
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The Redcar succession records an interval of marine recovery > 4 Myr 

after the end-Triassic mass extinction, based on the most recent age model of 

Weedon et al. (2019). Sections elsewhere in the UK show that this recovery was 

rapid, with bivalve diversity essentially stabilised by the mid-Hettangian (Atkinson 

& Wignall 2019). Bivalve diversity per ammonite zone in the Calcareous Shale 

Member at Redcar can be compared with the recovery trend in the contemporary 

Blue Lias Formation of the southern UK (Table 4.2). For the angulata Zone the 

Redcar section has an equivalent bivalve species richness to that of the Blue Lias 

in southwest Britain, but this then increases greatly in the bucklandi Zone, far 

exceeding the numbers from field collections of the Blue Lias (Atkinson & Wignall 

2019). This may reflect the more habitable conditions of the shallower water 

Cleveland Basin site, although the prevalence of framboidal pyrite and common 

occurrences of Luciniola suggest the presence of H2S within the sediment, no 

horizons contained a framboid size distribution suggestive of an anoxic water 

column. With this respect the Cleveland Basin was similar to the Bristol Channel 

Basin of South Wales (Fig. 4.9). 
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Fig 4.9 Average framboid diameter and standard deviation for three Blue 

Lias hosting basins in southwest Britain. D – Dorset Basin; B – Bristol 

Channel Basin; S – Central Somerset Basin (from Atkinson and Wignall 

2019); C – Cleveland Basin (this study).  

 

4.7 Conclusions 

Redcar Rocks provide an alternative section to the classical Blue Lias 

sequences of southwest Britain and adds new insights to possible sea level 

changes around the Hettangian/Sinemurian boundary. The Calcareous Shale 

Member lacks the cyclical development of limestone-marl-shale as seen in the 

Blue Lias Formation of equivalent age, but, instead, features coarsening-up 

cycles that range from mudstones to mass accumulations of Gryphaea arcutata 

and Cardinia listeri in sandy shell beds or limestones. Benthic diversity is 

comparably high through much of the section with a wide range of ecologies 

represented suggesting advanced levels of recovery from the end-Triassic mass 

extinction event some 4 Myr earlier. Reconstructing marine oxygenation from 

pyrite framboid populations, suggests oxic-upper dysoxia conditions in the 
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Cleveland Basin and compliments the recent findings of Atkinson and Wignall 

(2019).  
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5.1 Abstract  

Fossils in the immediate aftermath of mass extinctions are often of small 

size, a phenomenon attributed to the Lilliput Effect (temporary, size reduction of 

surviving species). There has been little attempt to study size trends during 

subsequent recovery intervals nor has the relationship between size, diversity 

and environmental controls been evaluated. Here we examine the recovery 

following the end-Triassic mass extinction amongst bivalves of the British Lias. 

Three distinct phases of size change are seen that are independent of other 

recovery metrics: initially bivalves are small but the Lilliput Effect is a minor factor, 

the majority of small taxa belong to new species that undergo an intraspecific size 

increase (the Brobdingnag Effect) throughout the subsequent Hettangian Stage. 

New species that appeared during the Hettangian were also progressively larger 

and Cope’s Rule (size increase between successive species) is reported – 

notably amongst ammonites. The size increase was reversed during the 

Sinemurian Stage, when bivalves once again exhibited small body sizes. During 

the Pliensbachian Stage another phase of size increase occurred with further 

evidence of the Brobdingnag Effect. These three phases of size change are seen 

across all suspension feeding ecological guilds of bivalve but are not expressed 
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among deposit feeding life modes. Local environmental conditions explain some 

aspects of size patterns, but factors such as temperature, marine oxygenation 

and sea level, do not correlate with the long-term size trends. The Brobdingnag 

Effect may record increased availability/quality of food during the recovery 

interval: a factor that controlled bivalve size but not evolution. 

 

Keywords: Brobdingnag Effect; Lilliput Effect; Cope’s Rule; Lower Jurassic 

palaeoenvironments 

 

5.2 Introduction 

The causes and nature of size changes during mass extinction events 

have been much debated (Twitchett 2007; Harries & Knorr 2009; Brayard et al. 

2010; Metcalfe et al. 2011; Song et al. 2011; Sogot et al. 2014; Brom et al. 2015; 

Wiest et al. 2018; Atkinson et al. 2019; Chen et al. 2019). Species that survive 

mass extinctions are often unusually small and are termed “Lilliput taxa” (Urbanek 

1993), although the more general term “Lilliput Effect” is used to describe the 

prevalence of smaller species at this time. The cause of the size reduction is often 

unclear and there are several possible mechanisms including preferential 

extinction of large taxa, dwarfing of species that cross the extinction boundary 

and proliferation of small, fecund species (opportunists) in the high stress 

conditions of the extinction interval (Batten & Stokes 1986; Payne 2005; Twitchett 

2007; Harries & Knorr 2009). Implicit in the Lilliput concept is that species return 

to larger sizes in the subsequent post-extinction interval as the stressful 

conditions ameliorate. However, a recent study of sizes changes in limid bivalves 

in the aftermath of the end-Triassic mass extinction revealed a prolonged size 
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increase of species that first appeared after the extinction but with no precursory 

size reduction (Atkinson et al. 2019). This has been termed the Brobdingnag 

Effect, after the race of giants in Gulliver’s Travels, and its importance during 

post-extinction recovery remains unexplored. The Brobdingnag Effect is an 

intraspecific size increase and is thus distinct from Cope’s Rule which is an 

increase in size between successive species in a lineage (Cope 1887; Rensch 

1948; Jablonski 1997; Alroy 1998).  

Here we examine the size-recovery relationships of the entire bivalve 

fauna from the British Lower Jurassic record to determine the extent of the 

Brobdingnag Effect and its possible causes following the end-Triassic mass 

extinction event. Body size of marine invertebrates is influenced by factors like 

water temperature, dissolved oxygen content, salinity and nutrient availability 

(e.g. Rhoads & Morse 1971; His et al. 1989; Atkinson 1994; Wacker & von Elert 

2008). It is likely that each species responds to environmental changes in their 

own unique manner with each species having a different optimal body size for a 

certain environment (Hallam 1965; Carey & Sigwart 2014).  

Oxygen restriction has been demonstrated as a cause of reduced body 

sizes (Rhoads & Morse 1971; Richmond et al. 2006) due to reduced metabolic 

and growth rates (Richmond et al. 2006), although some low-oxygen tolerant 

species can increase in size as oxygen levels decline (Wignall 1990). 

Temperature exerts a control on the concentration of dissolved gasses within the 

waters, but it can also affect body size directly. Perhaps the most renowned 

temperature-size trend is Bergmann’s Rule, although this is strictly a positive 

correlation with body size and latitude – taken as an approximation of 

temperature (Bergmann 1847; James 1970; Blackburn et al. 1999). As the current 

study has little in the way of a latitudinal gradient it is perhaps better, in order to 
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avoid confusion, to refer to the rather unambiguously named Temperature-Size 

Rule (Atkinson 1994; Atkinson & Sibly 1997). This rule explains how growth rates 

and development rates are affected unequally by temperature with the latter 

being more sensitive. For example, under low temperatures both growth and 

development rates are slowed, the latter more so thereby delaying sexual 

maturity allowing an increased duration of growth which can result in larger 

animals.  

Food availability and quality are known controls on body size (von Elert et 

al. 2003; Wacker & von Elert 2003). Amongst bivalves, red algae (dinoflagellates) 

are preferable for good growth over green algae (prasinophytes and acritarchs) 

because the latter are smaller which reduces the capture rate by the gills of 

bivalves, and also green algae lack key long-chained polyunsaturated fatty acids 

essential for growth (Brown et al. 1997; von Elert et al. 2003; Weiss et al. 2007). 

Turbidity of the water has also been suggested as a factor affecting body size 

because it lowers filtration rate in the bivalves, and causes them to spend more 

time with valves closed (Loosanoff & Tommers 1948).  

Single species distributed over a broad range of water depths are often 

(although not exclusively) smaller at greater bathymetries (Attrill et al. 1990; 

Olabarria & Thurston 2003; Kaariainen & Bett 2006). This is likely a manifestation 

of numerous depth-linked factors such as food and dissolved oxygen 

concentrations (Shirayama 1983; Peck & Harper 2010; Shi et al. 2016).  

Most of the size-control factors that are outlined above can be evaluated 

in the geological record and are considered here in order to distinguish 

environmental controls from temporal trends in bivalve body size in the Lower 

Jurassic following the end-Triassic mass extinction.  
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5.3 Geological setting 

During the Rhaetian and Lower Jurassic the British Isles formed part of an 

epicontinental sea that extended across much of northwest Europe (Hallam 

1960). This Rhaetic sea was likely of variable salinity, as it lacked stenohaline 

taxa (Hallam & El Shaarawy 1982; Swift 1999). Fully marine conditions developed 

around the Triassic-Jurassic boundary and persisted into the Early Jurassic. 

Many islands dotted this Jurassic sea, and consequently a range of depositional 

environments are recorded across different basins in relation to proximity to these 

landmasses (Fig. 5.1). For example the Bristol Channel Basin passes onto the 

Welsh Massif, where Carboniferous limestones are onlapped by marginal facies 

(Sheppard 2006). Likewise, there are similar facies around the Shepton Mallet 

area of Somerset (Simms 2004). 
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Fig. 5.1 Palaeogeography of the British Isles with Hettangian landmasses 

(indicated by shaded regions) and sedimentary basins. Based on 

Deconinck et al. (2003); Simms et al. (2004); Copestake & Johnson (2014); 

Martill et al. (2016); Lindström et al. (2017). Codes as follows: HB – Hebrides 

Basin; LB – Larne Basin; ClB – Cleveland Basin; MWH – Market Weighton 

High; EMS – East Midlands Shelf; ChB – Cheshire Basin; CBB – Cardigan 

Bay Basin; BCB – Bristol Channel Basin; CSB – Central Somerset Basin; 

SB – Severn Basin; WM – Welsh Massif; WB – Wessex Basin; MH – Mendips 

High; DB – Dorset Basin; LP – London Platform. Location numbers: 1 – 

Redcar, North Yorkshire (NZ 613 253); 2 – Staithes, North Yorkshire (NZ 781 

190); 3 – Hawsker Bottoms (NZ 952 076) and Robin Hood’s Bay, North 

Yorkshire (NZ 971 028); 4 – Conesby Quarry, Scunthorpe (SE 889 145); 5 – 

Robin’s Wood Hill Quarry, Gloucestershire (SO 835 148); 6 – Hock Cliff, 

Gloucestershire (SO 725 093); 7 – Lavernock Point, Glamorgan (ST 188 682 

– ST183.679); 8 – Nash Point, Glamorgan (SS 911 692 – SS 921 679); 9 – 

Doniford (ST 083 431), St Audire’s Bay (ST 103 434 – ST 099 433), East 

Quantoxhead to Kilve (ST 134 442 – 142 444), and Lilstock (ST 178 453), 

Somerset; 10 – Pinhay Bay to Charmouth (SY 317 907 – SY 970 929), 

Devon/Dorset; 11 – Llanbedr (Mochras Farm) borehole, North Wales (SH 

553 259); 12 – Larne (NW 558 582) and Portmuck Harbour (NW 558 582) 

County Antrim; 13 – Cloghfin Port (NW 624 490) and Cloghfin Point (NW 608 

454), County Antrim.  
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Fig. 5.2 Schematic lithostratigraphy of studied sedimentary basins. 

Modified from   Ivimey-Cook (1971); Simms et al. (2004); Simms & Jeram 

(2007). Stage boundary ages from Wotzlaw et al. (2014); Ruhl et al. (2016), 

Weedon et al. (2019).  

There were, broadly speaking, four phases of sedimentation in the British 

Lias (outlined below). Between the basins and shelves these intervals are 

correlated using a well-defined ammonite biostratigraphy (Fig. 5.2). 

Rhaetic sedimentation in the British Isles is recorded in the Penarth Group, 

consisting of the shallow-water, quasimarine Westbury and Lilstock formations. 

The end-Triassic mass extinction occurs within the Cotham Member of the 

Lilstock Formation during a regressive interval (Wignall & Bond 2008). 
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Subsequent deposition saw progressive deepening, although a minor sea level 

fall occurred at the top of the Group (Wignall 2001). 

Pre-planorbis to bucklandi zones sees the onset of the Blue Lias 

Formation, a cyclic limestone-marl-shale unit that represents offshore deposition 

(Hallam 1960; Weedon 1986; Moghadam & Paul 2000). In the liasicus Zone 

limestone beds are rarer – likely due to deepening (Ivimey-Cook 1975; Weedon 

et al. 2018). The Blue Lias Formation is found chiefly in southern regions of 

Britain, and passes northwards into mudstone-dominated successions (Fig. 5.2; 

Simms and Page 2004). However, the Blue Lias is also developed in the Hebrides 

Basin of north-west Scotland and passes laterally into the shallower-water 

bioclastic limestones of the Breakish or Broadford Formation (Oates 1978). 

Mudstone dominates sedimentation from the semicostatum to davoei 

zones (e.g. the Charmouth Mudstone, Redcar Mudstone and Pabay Shale 

formations, Fig. 5.2). Within the semicostatum to obtusum interval deposition 

within the Dorset Basin is characterised by sediments of high organic carbon 

content and evidence for sea-floor anoxia, these being the Shales-with-Beef and 

Black Ven Marls of the Charmouth Mudstone Formation (Wignall & Hallam 1991; 

Gallois 2008). Similarly the obtusum Zone of the Mendips is represented by dark 

laminated limestones (Simms 2004). To the north of this region lithologies are 

more variable. The northern part of the East Midlands Shelf (EMS) is especially 

distinct during the semicostatum to obtusum zones with the deposition of the 

Frodingham Ironstone Member of the Scunthorpe Mudstone Formation (Hallam 

1963). Deposition in the Hebrides Basin during this interval was dominated by 

siltstones of the misleadingly named Pabay Shale Formation (Oates 1978; 

Morton 1989). Deposition here occurred under shallower water depths than seen 



186 
 

in several basins at this time and was above the storm wave-base (Morton & 

Oates 2004).  

Siltstone deposition dominated the davoei to margaritatus interval across 

much of the British Isles (Fig. 5.2). Once again conditions were shallower than 

elsewhere in the Hebrides Basin where the Scalpay Sandstone Formation formed 

(Hesselbo et al. 1998; Radley 2003; Donovan et al. 2005). Within the Cleveland 

Basin the later part of this interval saw the Staithes Sandstone Formation 

replaced by the Cleveland Ironstone Formation, that shows coarsening-up cycles 

capped by oolitic ironstone beds (Howarth 1955; Howard 1985). Indeed many 

basins show an overall coarsening upwards during this interval that culminates in 

the spinatum Zone (Fig. 5.2). This is not expressed in the Cardigan Bay Basin 

where siltstone dominates the thick succession from the jamesoni Zone upwards 

(Ivimey-Cook 1971).  

 

5.4 Materials and methods 

Bivalve size data were collected from the Westbury Formation to the 

topmost spinatum Zone, encompassing the Rhaetian, Hettangian, Sinemurian 

and Pliensbachian stages. The bivalves Plagiostoma giganteum J. Sowerby and 

all species of Gryphaea were excluded from our analysis because their size 

trends are already well documented (Hallam 1978; Johnson 1994; Atkinson et al. 

2019). Latest Rhaetian and Liassic bivalve data were collected via two methods: 

direct field observations and museum collections. Field collections were made 

from coastal locations in Devon, Dorset, Somerset, Glamorgan, North Yorkshire, 

and County Antrim, a river cliff section and quarry in Gloucestershire, a quarry in 

North Lincolnshire and material retrieved from the Llanbedr (Mochras Farm) 
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borehole, Wales housed in the British Geological Survey, Keyworth, Nottingham 

(Fig. 5.1). These sections represent the full spectrum of sedimentary basins and 

depositional settings of the epicontinental sea that covered much of the British 

Isles in the Early Jurassic. For softer lithologies (mudstones, siltstones, shales 

and marls), fossils were measured and collected from freshly split surfaces from 

approximately equal volumes of rock (50 cm2 width and 20-30 cm depth). For the 

harder limestone and ironstone beds, which could not easily be split, fossils were 

measured in situ from upper bedding surfaces or from scree if zonal affinity could 

be confirmed.  

Museum collections include specimens with sufficient biostratigraphic 

context from the following institutes: National Museum of Wales, Cardiff (NMW); 

Warwickshire Museum, Warwick (WARMS); Bristol City Museum and Art Gallery, 

Bristol (BRSMG); Yorkshire Museum, York (YORYM); Whitby Museum, Whitby 

(WHITM); Bath Royal Literary and Scientific Institute, Bath (BRLSI). In addition, 

personal collections made by Michael Oates and JWA from the Hebrides Basin, 

material from Blockley Station Quarry, Long Itchington Quarry and Somerset 

collected previously by PBW housed in the School of Earth and Environment, 

University of Leeds and specimens from Northern Ireland donated by Michael 

Simms, are included. These are amalgamated under ‘museum collections’ as no 

conscious effort to avoid size biased sampling could be guaranteed.  

For each specimen a series of measurements were recorded (Fig. 5.3) 

using a pair of digital callipers with a measurement error of +/-0.02 mm. For 

inequivalved species the larger, left valves were measured. Growth line spacing 

was measured from high resolution photographs in order to assess changes in 

growth rates. Height and length measurements were used to calculate geometric 

mean body size (GMBS). This being the square root of the product of height and 
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length. For incomplete specimens the missing values are calculated based on 

height to length ratios of coeval, complete specimens.  

 

Fig. 5.3 Measurement schematic for a variety of bivalve morphologies. 

 

GMBS is used for size analysis as it provides a better representation of a 

specimen’s overall size than a single linear measurement, and correlates well 

with other, more complex, body size measurements, whilst being easy to obtain 

(cf. Kosnik et al. 2006).  

Ammonite zones are selected for time bins providing a high-resolution age 

model suitable for both museum specimens (with sufficient context), and field 

observations. In some instances, data from the semicostatum and turneri zones 

were pooled, owing to low sample sizes. Durations of ammonite zones (including 

Pre-planorbis Beds) are primarily from astrochronological timescales of Weedon 

et al. (2019) and Ruhl et al. (2016) with exception to the interval spanning the 

semicostatum to oxynotum zones, duration for these zones are based on the 

assumption of equal duration of subzones. For the Rhaetian, which lacks 
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ammonites, the Westbury Formation and the constituent members of the Lilstock 

Formation are used as time bins, although these are of uncertain durations. The 

resultant floating chronology is tied using the U-Pb radiometric dates for the end-

Triassic mass extinction and Triassic-Jurassic boundary of Wotzlaw et al. (2014). 

Size plots feature mean GMBS and maximum GMBS per time bin. Error 

bars on mean body size depict 95% confidence intervals, representing the range 

of population body sizes. Maximum body size is herein referring to mean of the 

largest 10% of the population, rather than the single largest specimen and is only 

calculated when n ≥ 10. This approach was used in order to reduce the effects of 

abnormally large outliers (Johnson 1994). Percentage size changes are quoted 

relative to the size in the previous time bin, unless otherwise stated. The 

autecology of each species is assigned using a modified version of the scheme 

presented in Ros-Franch et al. (2014) (See supplementary appendix B). 

Where sufficient sample sizes are available from an ammonite zone, size 

differences between locations (and thereby environment) are considered. For 

species present within the Blue Lias Formation there is a further test as a single 

ammonite zone at a single location may encompass a variety of lithologies 

(Atkinson & Wignall 2019). In order to test for the effects of lithology related 

variation on body size, specimens were divided into samples from limestones, 

pale marls, dark marls and shales: - the succession of lithologies seen in the Blue 

Lias Formation. 

Additionally, body size of specimens housed in museum collections are 

compared to field observations in order to test for size bias and assess the 

usability of the wealth of material housed in museums for these such studies. To 

test for the statistical significance of size changes between time bins a 
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Kolmogorov-Smirnov test (K-S test) was performed and for correlation a 

Spearman’s rank test, p-values are quoted with a 95% significance threshold 

(p(a) < 0.05). These analyses were carried out using PAST 3.12 statistical 

software (Hammer et al. 2001). All other analyses were carried out using 

Microsoft Office Excel 2013. 

 

5.5 Results 

5.5.1 All bivalves 

A total of 6509 bivalve specimens, belonging to 145 species, were 

measured (Supplementary Appendix E). When the entire dataset is plotted three 

distinct phases of size change can be seen: the Westbury Formation to the 

angulata Zone; bucklandi Zone to oxynotum Zone and raricostatum Zone to 

spinatum Zone. The first phase is one of increasing body size (Fig. 5.4A). Over 

this interval maximum size increases by 195%. Mean size increases also, this 

reaches a plateau of 23-25 mm from the liasicus to bucklandi Zone. Between the 

Westbury Formation and the liasicus Zone mean body size increases by 182%. 

During this phase newly appearing taxa are typically larger within successive time 

bins (Fig. 5.4B). 

The second phase spans much of the Sinemurian Stage. This period saw 

a decline in maximum body size that began in the bucklandi Zone and continued 

into the semicostatum Zone (Fig. 5.4A). From the body size peak in the angulata 

Zone to the semicostatum Zone the maximum size of bivalves fell by 47% 

resulting in a return to body sizes seen in the Pre-planorbis Beds. Mean body 

size only decreases after the bucklandi Zone but still shows a Sinemurian trough. 

The few newly originating species in this interval are typically smaller than those 
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that originated during the Hettangian (Fig. 5.4B). The prolonged period of low 

body sizes is punctuated by a positive spike in both maximum and mean size 

centred on the obtusum Zone (Fig. 5.4A). This produces a mean body size 32% 

larger than the liasicus Zone and returns maximum body size to a par with those 

seen during the angulata Zone. 

The third phase corresponds broadly to the Pliensbachian Stage (but also 

includes the last ammonite zone of the Sinemurian) and saw body size increase 

again (Fig. 5.4A). Mean body size rises progressively from the oxynotum Zone to 

the ibex Zone, increasing by 234%. Maximum size also shows this increase into 

the ibex Zone increasing by 155%, however this is less gradual with a near 

doubling of size occurring between the oxynotum and raricostatum zones. There 

then follows a shallow depression of both mean and maximum size (however 

these remain higher than much of the Hettangian and Sinemurian) until the 

culmination of the Pliensbachian Stage size increase in the spinatum Zone, when 

maximum size attained 115.2 mm. 

During the entire study interval (Westbury Formation to spinatum Zone) 

maximum size of bivalves increases by 347% and mean size by 328%, with an 

overall average bivalve body size of 19.1 mm. The typical maximum size of the 

same interval is 57.6 mm. The angulata, obtusum and raricostatum-spinatum 

zones have a maximum size that is larger than the average for the Lias.  

Body size and bivalve diversity exhibit no significant correlation (mean size 

and diversity r = +0.23, p(a) = 0.35; maximum size and diversity r = +0.29, p(a) =  
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Fig. 5.4 Time-binned geometric mean size plots for all Rhaetian and Lower 

Jurassic bivalves, hollow circles depict maximum size (see methods), filled 

circles show mean bivalve size, error bars show 95% confidence interval 

representing range of sizes within a time bin. Dashed horizontal lines show 

Lias average for maximum and mean size. A, All bivalves measured per time 

bin, additionally bivalve species richness per time bin (grey triangles). B, 

size of newly arriving bivalve species per zone.  
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0.25; Fig. 5.4A). Diversity drops in the Cotham Member due to the end-Triassic 

mass extinction event and is followed by a diversity increase (albeit with a slight 

decline in the Pre-planorbis Beds), that continues to the semicostatum Zone, after 

which it declines to between 40-45 species. This stability continues to the davoei 

Zone and then begins to decline. 

 

5.5.2 Basin trends 

A Rhaetian to latest Hettangian size increase is seen within most of the 

basins studied, although the magnitude of the increase and precise timing of the 

peak varies slightly (Fig. 5.5A-D). The Dorset Basin and Mendip High (and 

surrounding areas) exhibit a peak size in the liasicus Zone, indeed bivalves from 

this latter region are the largest of the entire study. For the Bristol Channel Basin 

– Welsh Massif and Larne Basin the largest bivalves were encountered in the 

angulata Zone, whilst in the Hebrides Basin and EMS these occur in the bucklandi 

Zone. Large bivalves were not encountered in every basin, bivalves are 

consistently small in the Central Somerset and Cardigan Bay basins and do not 

show the Hettangian phase of size increase (Fig. 5.5D).  

Size troughs are seen in many of the basins following the Hettangian (or 

earliest Sinemurian) size maxima (Fig. 5.5A-D). There is a well-developed 

depression in the mean body size of bivalves from the Cleveland Basin from the 

semicostatum Zone to the raricostatum Zone although, in most basins, this 

decrease is poorly constrained because the sample size diminishes after the 

semicostatum Zone. Nonetheless the decline is seen in the Mendips, Bristol 

Channel Basin-Welsh Massif and the Dorset Basin when bivalve sizes returns to 

values similar to those of the Penarth Group. The size decrease is even noted on 



194 
 

the EMS, following a high in the bucklandi Zone (when bivalves are the largest of 

any of the British basins). It should also be noted that even with a size reduction 

the bivalves of the EMS from the semicostatum and obtusum zones remain the 

largest of any of the basins and were collected from the Frodingham Ironstone 

Member of the Scunthorpe Mudstone Formation.   

A phase of size increase during the Pliensbachian is clearly seen in the 

Cleveland Basin, starting from the jamesoni Zone and culminating with bivalves 

over 100 mm from the spinatum Zone (similar spinatum Zones sizes are recorded 

from the Hebrides Basin). Although sampling is sporadic during the 

Pliensbachian from many of the basins, when sampled, there is a fairly consistent 

occurrence of large bivalves from the ibex Zone (Dorset, Severn, and Cardigan 

Bay basins).  
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Fig. 5.5A-D Maximum GMBS of bivalves per time bin per basin/shelf. Time 

bin abbreviations: WFm – Westbury Formation; Cot Mbr – Cotham Member; 

Lngpt Mbr – Langport Member; Pre-plan. Beds – Pre-planorbis Beds; plan. 

Zn – planorbis Zone; lias. Zn – liasicus Zone; ang. Zn – angulata Zone; buck. 

Zn – bucklandi Zone; semi. Zn – semicostatum Zone; turn. Zn – turneri 

Zone; obt. Zn – obtusum Zone; oxy. Zn – oxynotum Zone; rari. Zn – 

raricostatum Zone; jam. Zn – jamesoni Zone; ibx. Zn – ibex Zone; dav. Zn – 

davoei Zone; marg. Zn – margaritatus Zone; spin. Zn – spinatum Zone. See 

individual legends for basin information.  

 

 

 

 



196 
 

5.5.3 Trends within ecological groups 

Within the majority of the ecological guilds employed by bivalves, the three 

main size phases can be readily noted. All recorded suspension feeding guilds, 

irrespective of attachment style or burrow depth show a size increase in both 

mean and maximum body size from the Rhaetian and across the Hettangian (Fig. 

5.6A). A suppressed body size during the Sinemurian is best expressed in endo- 

and epibyssate suspension feeding bivalves (Fig. 5.6A). This trend is weaker in 

shallow infaunal suspension feeders and cementing bivalves, and is however first 

expressed earlier during the angulata Zone. The brief obtusum Zone reversal of 

the size decline is exhibited only in shallow infaunal and epibyssate suspension 

feeders. The third phase, a Pliensbachian size increase is again seen in all 

suspension feeding guilds of bivalve (except cementing bivalves), however 

epibyssate bivalves show a maximum and mean peak size centred on the ibex 

Zone, with later Pliensbachian members of this ecology being progressively 

smaller.  

Shallow infaunal, deposit feeding bivalves show fundamentally different 

size trends to the suspension feeders (Fig. 5.6B). Thus, there does not appear to 

be a Hettangian size increase, instead mean size is similar between the planorbis 

and angulata zones (~10 mm) whilst maximum size decreases slightly (18%). 

Mean body size decreases from the angulata to the bucklandi Zone, while the 

maximum size remains the same. During the obtusum Zone mean and maximum 

sizes are comparable to the planorbis Zone and for the Pliensbachian mean body 

size remains around 10 mm and maximum, as seen within the planorbis and 

obtusum zones, remains around 20 mm, only seeming large due to a decline in 

both mean and maximum size in the jamesoni Zone. 
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Fig. 5.6 Maximum GMBS for bivalves per ecological guild. A, Suspension 

feeding bivalves. Ecological abbreviations as follows: EC – epifaunal 

cemented; EFm – epifaunal facultative motile; EpBy – epibyssate; EnBy – 

endobyssate; ShInf – shallow infaunal; ShInf(Chem) – shallow infaunal with 

chemosymbionts (primarily represented by Luciniola limbata Terquem & 

Piette); DInf – deep infaunal. B, Deposit feeding bivalves; see Fig. 5.4 

caption for details.   
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5.5.4 Within lineage trends  

A subset of the 145 bivalve species studied herein have sufficient 

occurrence data to examine both intraspecific and lineage size trends. For a full 

species-by-species account see supplementary appendix E.  

Pseudopecten equivalvis J. Sowerby remains small in both mean and 

maximum size throughout the Hettangian and Sinemurian, only to increase 

dramatically in size during the Pliensbachian (Fig. 5.7A). There are three pulses 

of drastic size increase: the first is between the raricostatum and jamesoni zones 

when there is a doubling in mean and 133% increase in maximum. The next is 

only reflected in the mean with a 90% increase from the jamesoni to ibex zones. 

And, lastly a 68% increase in mean size from the margaritatus to the spinatum 

Zone and 94% increase in the maximum. Overall from the semicostatum to 

spinatum zones there is an increase of 254% in mean and 476% increase in 

maximum. There are however also phases of size reduction, between the 

semicostatum and the raricostatum there is a decrease in mean by 37% although 

maximum stays around the same (2% decrease).  

The size trend in P. equivalvis predominantly reflects changes within the 

Cleveland Basin, although there is a similar but more subdued size change in the 

Hebrides Basin around the Sinemurian and Pliensbachian and in both basins the 

giants were found in the spinatum Zone. The size increase is independent of 

lithology: initially small individuals are from the semicostatum Zone oolitic 

ironstone facies – the Frodingham Ironstone Member – whilst the raricostatum 

and jamesoni size increase in the Cleveland Basin occurs within mudstones and 

the margaritatus to spinatum increase is within ironstones again. Museum and 
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field collections show the same trend for this species, although for the oxynotum 

and raricostatum zones the largest specimens are found in museum collections. 

 

Entolium lunare (Roemer) increases between the bucklandi and 

semicostatum-turneri zones by 46% in mean size, 51% in maximum (p(a) <0.001, 

Fig. 5.7B). This is however only temporary with mean size decreasing in the 

subsequent zone by 29%, thereby returning the mean size to approximately 19 

mm. The maximum size reflects the trends in the mean. Specimens are scarce 

thereafter until the jamesoni Zone, when the largest mean and maximum sizes 

were attained. The next time bin with >10 specimens is the margaritatus Zone. 

At this interval the maximum size is 50% larger than that during the early 

Sinemurian. Museum and field collections seldom have large numbers of E. 

lunare from the same time, but nonetheless the angulata and obtusum zone 

trends in each collection are the same. The semicostatum-turneri zone is the only 

zone that has a large sample size in both collections, the museum specimens are 

however 43% larger than the field collections.  
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Fig. 5.7 Time-binned GMBS plot for A, Pseudopecten equivalvis and B, 

Entolium lunare. See Fig. 5.4 caption for details and Fig. 5.5 for time bin 

abbreviations.  

 

Chlamys valoniensis (Defrance) is one of the few common species to 

survive the end-Triassic mass extinction in the study region. Initially very common 

in the Westbury Formation, and a basal shell bed of the Cotham Member, it is 

then absent from the remaining Cotham, before reoccurring in the Langport 

Member and is abundant again in the planorbis Zone. Specimens are plentiful 

from the Sutton Stone, a marginal/coastal facies. From the Westbury to Cotham 

mean body size declines by 10%. The communities of the planorbis Zone are 

16% smaller than the Westbury and 7% smaller than the Cotham (Fig. 5.8), but 

only the former is a significant change (p(a) < 0.05). The liasicus Zone 
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populations from marginal facies are significantly larger than those from the 

offshore Blue Lias planorbis Zone (75%, p(a) < 0.001). 

Due to the bountiful supply of specimens from the Westbury Formation 

variation between locations and collection styles can be tested for. The sizes are 

broadly consistent between locations, albeit with a slight northwards size 

increase: Somerset 26.1 mm, Glamorgan 27.2 mm, Aust 30.5 mm and Larne 34.0 

mm. Both field and museum collections show comparable sizes. 

 

Fig. 5.8 Time-binned GMBS plot for Chlamys valoniensis. See Fig. 5.4 

caption for details and Fig. 5.5 for time bin abbreviations. 

 

Camptonectes body size trends are here reported at the generic level as 

many specimens were not preserved with shell material, which contains the 

diagnostic ornament for species determination. This genus occurs commonly 

throughout the Lower Jurassic and its size trends are somewhat out of kilter with 

the overall Hettangian/earliest Sinemurian size patterns: maximum size 

progressively declining from the planorbis to angulata Zone by 19% before 

increasing into the semicostatum-turneri zone by 37% (Fig. 5.9A). Mean body 

size is broadly similar showing a dip in the angulata Zone. Use of K-S tests 

defines three intervals of significant size changes, the 20% (p(a) = 0.002) 

decrease between the semicostatum-turneri and obtusum zones. This initiates a 
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period of reduced body size within Camptonectes which is ended by a 38% (p(a) 

= 0.002) increase between the raricostatum and jamesoni zones. During the 

Pliensbachian there is again a period of reduced body size there being a 28% 

decline between the jamesoni and davoei zones.  

 

Two main species of Oxytoma occur: O. fallax (Pflücker) and O. 

inequivalvis (J. Sowerby). The former is present in Rhaetic-aged strata and 

measurements are based entirely on museum collections, in most instances 

these were shell covered slabs. There is an increase of 49% in the maximum size 

between the Cotham and the Langport members though only a slight but 

significant change in the mean (increase by 10%, p(a) <0.001). O. inequivalvis is 

typically larger than its predecessor, O. fallax, and is well-represented from the 

angulata Zone to semicostatum-turneri Zone. This species shows an increase in 

both the mean and maximum size, expressed best in the maximum size however 

(Fig. 5.9B). From the angulata Zone to the jamesoni Zone maximum size 

increases by 107%, slightly declining by 9% during the davoei Zone. 
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Fig. 5.9 Time-binned GMBS plot for A, species of Camptonectes and B, 

species of Oxytoma, see in-figure legend for induvial species present. See 

Fig. 5.4 caption for details and Fig. 5.5 for time bin abbreviations. 

 

Anningella cf. faberi (Oppel) first occurs within a 2 m thick blue-grey shale 

bed, associated with abundant Psiloceras ammonites, where specimens are 

common (n. 56) with the largest individual attaining a GMBS of 34.0 mm from this 

bed. During the liasicus Zone, specimens were found pyritised in a black shale 

associated with drift wood from St Audrie’s Bay. Both mean and maximum body 

size is reduced at this point by 36% and 27% respectively (p(a) < 0.05). The 

angulata Zone specimens were collected from a single shale bed in Pinhay Bay. 

Maximum size decreased while mean size increased slightly by 13%. Thereafter 

the species is too scarce to comment on body size changes. 
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Parainoceramus ventricosus (J. de C. Sowerby) is recorded from jamesoni 

to margaritatus zones with a single earlier occurrence in the semicostatum Zone. 

Greatest sizes occur in the ibex Zone when maximum size attains 109.0 mm. 

There does not appear be any directional trends within this species, merely 

appearing in the British Lias as an already large species.  

 

Analysis for Liostrea was conducted at the generic level because the two 

species (Liostrea hisingeri (Nilsson) and L. irregularis (Münster)) have 

considerable morphological overlap. L. hisingeri is the primary faunal component 

of the Ostrea Beds of the Pre-planorbis interval. The latter species is usually 

attached to other shelly faunas and has a variable outline. The genus is well 

represented having 379 specimens from the Westbury Formation to the jamesoni 

Zone. They first appear in any significant numbers in the Langport Member, 

becoming very abundant in the lower to middle Pre-planorbis Beds. Mean body 

size remains fairly constant for the Hettangian between 18.8- 20 mm (Fig. 5.10A). 

Maximum size increases almost smoothly from the Langport to the bucklandi 

Zone, with a total increase of 49% before dropping away in the semicostatum 

Zone.   

For the liasicus, angulata and bucklandi zones there is a good relationship 

between host lithology in the Blue Lias Formation and body size: the darker the 

lithology the smaller the bivalve. In the Pre-planorbis Beds specimens come from 

laminated limestones and share similar body sizes to those from shales. Museum 

and field collections show a good correspondence until the angulata and 

bucklandi zones when field collections show a declining mean size. 
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Atreta intusstriata (Emmrich) is common in the Langport Member (n. 57), 

and in the angulata Zone (n. 23). Between these two time bins there is a 26% 

decline in mean body size, mirrored by a 25% decline in the maximum (p(a) < 

0.001, Fig. 5.10B). Body size increases thereafter into the bucklandi Zone (mean 

by 21%, this time not a significant change p(a) = 0.38) and does not regain the 

shell sizes of the Langport community being still 10% smaller. The reduction in 

body size between the Rhaetian and Hettangian is accompanied by a change in 

attachment style. The Langport communities were by-and-large found as 

independent entities, cementing, presumably to a firm substrate, whereas 

specimens from the Blue Lias Formation were attached to larger shells, typically 

Plagiostoma giganteum or Gryphaea arcuate Lamarck.  

 

Fig. 5.10 Time-binned GMBS plot for A, undifferentiated of species of 

Liostrea and B, Atreta intusstriata. See Fig.5.4 caption for details and Fig. 

5.5 for time bin abbreviations. 
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Two species of Modiolus have sufficient sample sizes to report within-

species changes: - M. hillanus (J. Sowerby) and M. minimus (J. Sowerby). The 

former has a fairly constant maximum size, being around 30 mm in all time bins 

(Fig. 5.11A). The exception to this being for the Cotham Member, where both 

mean and maximum size decrease (59% and 67% respectively, p(a) <0.001). 

The Langport Member specimens increase in size, to an average size 33% larger 

than the Westbury Formation. Mean body size is reduced in the planorbis Zone, 

down by 22% from the Langport Member.  

M. minimus increases in abundance from the Langport Member to the 

planorbis Zone and decreases in size over this same interval (mean size by 54% 

and maximum by 56%, Fig. 5.11B), and remain small until the angulata Zone 

when their mean size increases insignificantly (11%, p(a) = 0.2). There is no 

relationship between the size of a specimen and its host lithology. Museum and 

field collections show the same temporal trend in body size. 
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Fig. 5.11 Time-binned GMBS plot for species of Modiolus. A, M. hillanus and 

B, M. minimus. See Fig. 5.4 caption for details and Fig. 5.5 for time bin 

abbreviations. 

 

Pteromya crowcombeia Moore is one of the few species to remain 

reasonably common across the end-Triassic crisis, it ranges from the Penarth 

Group and the planorbis Zone. Mean body size decreases in the Cotham Member 

by 28% accompanied by a 24% decline in maximum size (p(a) = 0.02; Fig. 5.12A). 

This is a brief decrease in size with an immediate, large increase of 53% in mean 

and 111% in maximum size during the Langport Member. The trend continues in 

the Pre-planorbis interval, with mean body size rising by a further 43%.  

 

Isocyprina ewaldi (Bornemann) is abundant in the Westbury Formation, 

forming shell pavements. From sections in Northern Ireland, bed-by-bed 

sampling shows this species increases in size through the Westbury Formation. 
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This trend is sustained into the Cotham Member, when using the time-binned 

approach, with mean size increasing by 24% (Fig. 5.12B). There is however a 

marked reduction in sample size at this time because it was a victim of the end-

Triassic mass extinction. 

 

Neocrassina gueuxii (d’Orbigny) undergoes an extraordinary increase in 

body size between the planorbis and liasicus zones of 215% (Fig. 5.12C). This is 

followed by a slight decline into the angulata Zone, but maximum size continues 

to increase resulting in an overall 283% increase in maximum size from the 

planorbis to the angulata Zone. The mean and maximum size then decrease in 

the semicostatum-turneri Zone by 24% and 12% (p(a) < 0.05) respectively.  
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Fig. 5.12 Time-binned GMBS plot for A, Pteromya crowcombeia, B, 

Isocyprina ewaldi, C, Neocrassina gueuxii. See Fig. 5.4 caption for details 

and Fig. 5.5 for time bin abbreviations.  

 

Cardinia ovalis (Stutchbury) survived the end-Triassic mass extinction 

event. Size plot shows two distinct size classes, smaller individuals from the 

Penarth Group and consistently larger ones from the Hettangian (Fig. 5.13A). 

Each population shows little in the way of size variation but a single stepped 

increase in size between the two with mean and maximum increasing by 75% 

and 67% respectively, between the Cotham Member and planorbis Zone. Growth 

line analyses show the Cotham specimens have fewer and more closely spaced 

primary growth lines than those of the Blue Lias and Waterloo Mudstone 

formations (Fig. 5.13B).  
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C. ovalis is common in the planorbis Zone of Northern Ireland, and the 

liasicus Zone elsewhere in Britain. In the latter zone, samples from Glamorgan 

have the largest average, followed by those from Mochras and smallest being of 

the Somerset coast indicating a likely offshore decreasing size trend. In all the 

time bins with sufficient material, museum and field collections have a 

comparable mean size.  

Cardinia ovalis is replaced by Cardinia listeri (J. Sowerby) in the 

Sinemurian, with a bucklandi Zone maximum size 47% larger than its 

predecessor.  

 

Fig. 5.13 A, Time-binned GMBS plot for Cardinia ovalis, see Fig. 5.4 caption 

for details and Fig. 5.5 for time bin abbreviations. B, Primary growth line 

plot for C. ovalis specimens from the Penarth Group and Blue Lias/Waterloo 

Mudstone formations.    
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Mactromya cardioideum (Phillips) shows mean and maximum body size 

fluctuations in the Hettangian and early Sinemurian but without any long term 

trends over that time. Subsequently, there is a 54% (p(a) <0.001) increase in 

mean size from the semicostatum Zone to the ibex Zone (Fig. 5.14A). The larger 

specimens, from the Blockley Quarry site in the Severn Basin, have more growth 

lines than their Blue Lias predecessor (Fig. 5.14B) indicating they achieved their 

greater size due to increased longevity.  

 

Fig. 5.14 A, Time-binned GMBS plot for Mactromya cardioideum, see Fig. 

5.4 caption for details and Fig. 5.5 for time bin abbreviations. B, Growth line 

plot also for M. cardioideum specimens from the Blue Lias Formation and 

from Blockley Quarry, Severn Basin (Charmouth Mudstone Formation).    
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Four species of Protocardia are recognised within the study interval, 

distinguished by strength of carina, position and number of radial ribs (see 

Appendix F) and show minimal range overlap (Fig. 5.15). P. rhaetica (Merian) is 

abundantly recorded in the Westbury Formation before going extinct in the lower 

Cotham Member. There is no change in the mean nor the range of sizes. P. 

philippianum (Dunker) appears in the aftermath of the end-Triassic mass 

extinction and is plentiful in the Langport Member and Pre-planorbis Beds but 

dwindles in abundance rapidly thereafter, finally disappearing in the angulata 

Zone. Between the Langport Member and Pre-planorbis Beds there is no 

significant size change (p(a) > 0.05) but the rarely occurring, geologically 

youngest individuals are far smaller, being around one third the size of those from 

the Pre-planorbis Beds. The next Protocardia species – P. oxynoti (Quenstedt) is 

also the smallest species, and ranges from the bucklandi to raricostatum zones. 

It is common in the Mochras core from the semicostatum to turneri zones and at 

Robin Hood’s Bay for the turneri to raricostatum Zone but there is little change in 

size except in the oxynotum Zone where specimens are slightly smaller. P. 

truncata (J. de C. Sowerby) is the youngest stratigraphically and largest species 

encountered in this study, and is common only in the margaritatus and spinatum 

zones, especially in the Staithes Sandstone and the Marlstone Rock formations. 

These were measured from museum collections with few from direct field 

observations. Between the margaritatus Zone and the spinatum Zone there is a 

20% (p(a) <0.001) decrease in the mean whilst maximum is broadly similar.  
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Fig. 5.15 Time-binned GMBS plot for species of Protocardia, see figure 

legend for species details, and also see figure captions for Figs. 5.4 and 5.5 

for details of error bars and abbreviations.  

 

Gresslya galathea (Agassiz) occurs during the Hettangian and early 

Sinemurian but samples are almost entirely restricted to Glamorgan. This species 

shows a single stepped increase in size between the liasicus and angulata zones 

(30% mean, 58% max, Fig. 5.16A). Thereafter, mean body size is fairly 

consistent. G. galathea is followed by the far larger G. intermedius (Simpson), 

which has an average size of 40 mm compared to 20 mm of its predecessor, this 

species is primarily seen in the margaritatus and spinatum zones.  

 

Pleuromya liasina Agassiz first occurs (rarely) in the Pre-planorbis Bed 

and becomes more abundant in the angulata and bucklandi zones, with an 

insignificant (p(a) > 0.05) increase in mean and maximum size of around 10%. P. 

liasina is succeeded by P. costata (Young & Bird), which is recognised by its 

stronger concentric ornament and more truncated anterior (Appendix F). This 
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species has a first questionable appearance in the semicostatum Zone (n. 3). 

There are however only two times when the species is sufficiently abundant to 

make comment on any size trends: ibex and spinatum zones when mean sizes 

are 32.5 mm and 33.6 mm respectively. There is however quite a marked 

increase (43%) in the maximum size 38.3 mm to 54.6 mm (Fig. 5.16B).  

 

Two main species of Pholadomya were recorded in this study, P. glabra 

Agassiz and P. ambigua J. Sowerby (a single specimen of P. “ovalis” was also 

measured from the ibex Zone). P. glabra is chiefly recorded from Glamorgan and 

has a mean body size around 30 mm which increases from the liasicus Zone to 

the bucklandi Zone by 62%, accompanied by a 41% increase in the maximum 

size (Fig. 5.16C). Between the angulata and bucklandi zones there is a 36% 

increase in size which may be attributable to an increase in growth rate and 

longevity. This is suggested by several of the bucklandi specimens which attain 

a larger size for the same number of growth lines, and continue to grow thereafter, 

thereby also show a greater number of growth lines (Fig. 5.16D). P. glabra is 

replaced by P. ambigua during the late Sinemurian, with the geologically younger 

species featuring stronger and fewer radial ribs and more inflated valves (see 

Appendix F). This later species shows little in the way of a within-species size 

change with an 8% increase in the mean and a 15% in the maximum size 

between the ibex and spinatum zones (p(a) > 0.05). P. ambigua does however 

form part of a long-term generic body size increase. Between the mean size of P. 

glabra in the liasicus Zone and the mean size of P. ambigua during the spinatum 

Zone there is a doubling of size.  
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Fig. 5.16 Time-binned GMBS plot for A, species of Gresslya, B, species of 

Pleuromya, and C, species of Pholadomya, see subfigure legends for 

individual species featured. See Fig. 5.4 caption for details and Fig. 5.5 for 

time bin abbreviations. D, Growth line plot for Pholadomya glabra from the 

Blue Lias Formation comparing specimens of the angulata and bucklandi 

zones.   
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5.6 Discussion 

5.6.1 Body size trends 

5.6.1.1 Lilliputians 

Of the 25 species discussed in detail there are only six species that 

survived the mass extinction and have sufficient data to assess size trends. Of 

these, two species could be considered as exhibiting the Lilliput Effect: Modiolus 

hillanus and Pteromya crowcombeia, and possibly two others: Chlamys 

valoniensis and Cardinia ovalis. In M. hillanus and P. crowcombeia pre-extinction 

body sizes were restored by the Langport Member, less than 0.15 Myr following 

the event. It is questionable if C. valoniensis is an example of the Lilliput Effect 

because it is very rare post extinction, making it difficult to judge its size. It was 

not common again until 2.3 Myr after the extinction, in the liasicus Zone, when it 

had re-attained its pre-extinction size. Cardinia ovalis also cannot unequivocally 

be shown to have a Lilliput trend, because the species is poorly known/very rare 

prior to the extinction interval. During the Cotham Member (the extinction interval) 

C. ovalis is small with specimens having few, closely spaced growth lines when 

compared to the Hettangian when this species is bigger and has more growth 

lines that are typically spaced at wider intervals. In summary, despite claims that 

the Lilliput Effect was common during the end-Triassic mass extinction (Barras & 

Twitchett 2007; Mander et al. 2008; Clémence & Hart 2013), it can only be clearly 

demonstrated to have occurred for two species.  
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5.6.1.2 Brobdingnagians 

 Alongside Plagiostoma giganteum, Atkinson et al. (2019) reported the 

Brobdingnag Effect in two other species of limid bivalves, here a further five 

species of bivalve exhibit a clear Brobdingnag trend in the aftermath of the mass 

extinction: Luciniola limbata, Neocrassina gueuxii, Oxytoma inequivalvis, 

Gresslya galathea and Pholadomya glabra. These all exhibit a size increase over 

a similar interval of time to that of P. giganteum. From growth lines analysis of P. 

giganteum it was found that the size increase reflected increased growth rates 

and, to some extent, a greater longevity (Atkinson et al. 2019). A similar case in 

point is seen with Ph. glabra although there is a greater overlap in growth rates 

between specimens measured from the angulata and bucklandi zones. The 

bucklandi Zone specimens often have a greater number of growth lines, here 

likely indicating an increased life span. Species of Liostrea may also show a 

Brobdingnag trend as the genus exhibits increasing maximum size following the 

mass extinction.  

A further three species show a size increase over the span of the study 

interval, Entolium lunare, Pseudopecten equivalvis and Mactromya cardioideum. 

These three differ in having a delayed size increase that does not begin until the 

Sinemurian or Pliensbachian, some 9 Myr after the end-Triassic mass extinction. 

The size increase of M. cardioideum was driven solely by greater longevity as the 

larger Pliensbachian specimens have similar growth line spacing but more growth 

lines than those in the Hettangian/earliest Sinemurian.  

The Brobdingnag Effect was a significant feature of the aftermath of the 

end-Triassic mass extinction and was still important 17 Myr later, at the end of 

the Pliensbachian Stage. The generally large size of bivalves in the spinatum 

Zone was caused by the culmination of long-term size increase trends amongst 
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species that appeared earlier. The average size of newly arriving bivalves, does 

not feature a size increase for this time (Fig. 5.4B).  

 

5.6.1.3 Cope’s Rule 

It is hard to assess the role of Cope’s Rule during the Hettangian and 

Pliensbachian phases of size increase as the ancestry of the new species is not 

always clear. If assumptions are made that a geologically younger species is the 

descendant of a geologically older species of the same genus (in cases where 

there are multiple potential ancestors the most morphologically similar is chosen) 

then size changes between these can be assessed. As demonstrated above, the 

Hettangian size increase is facilitated by both the appearance of increasingly 

large new taxa and also larger new species of pre-existing genera. However, 

when broken down further there are as many instances of new species of a 

lineage being smaller than their potential ancestor as there are those that display 

a Cope’s Rule pattern. The succession of species within the genera: Gresslya, 

Pholadomya, Oxytoma and also Cardinia show perhaps the best candidates for 

Cope’s Rule. Although insufficient material was measured during this study, 

Hodges (2000) also found an increase in size between Dacryomya heberti 

(Martin) and D. gaveyi Cox between the Sinemurian and Pliensbachian, a size 

trajectory that appears to have been sustained in to the Toarcian with D. ovum 

(J. de C. Sowerby) (Caswell & Dawn 2019).  

This therefore suggests that Cope’s Rule did play a role in the size 

increase in the Lower Jurassic, but the Brobdingnag Effect is more crucial to 

explain the large bivalves found during the spinatum Zone.  
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5.6.1.4 No trends 

Not all bivalves show a size trend in the Lower Jurassic. Some simply do 

not alter their size (either significantly or with any distinct direction) across the 

duration of the study. Examples of this include most species of protobranchs and 

Parainoceramus ventricosus. Camptonectes size fluctuates during the Lower 

Jurassic, but only shows a distinct pattern during the Sinemurian, when they show 

a size reduction.  

 

5.6.1.5 Those that get smaller 

 Alongside the previously reported Plagiostoma punctatum J. Sowerby 

(Atkinson et al. 2019), there are three cases of bivalves reducing in size over the 

same interval that others show a Brobdingnag trend. These are Anningella cf. 

faberi, Atreta intusstriata and Modiolus minimus. These inverse-Brobdingnags 

are not Lilliputians because they exhibit a progressive reduction in body size 

during the recovery.  

The Sinemurian is marked by a general suppression of body size in the 

bivalves (excluding the obtusum Zone; Fig. 5.4A); a phase herein referred to as 

the Sinemurian Small Episode (SSE). The lowest point of the SSE is in the 

oxynotum Zone when the data are all from the Cleveland Basin. Although this 

particular basin hosts bivalves that are usually smaller than most other basins 

until the Pliensbachian, the SSE is not merely an artefact of the relative 

contribution of material measured from each basin because the SSE in the 

Cleveland Basin is bracketed by comparably larger bivalves in the bucklandi and 

jamesoni zones. The Mendips, East Midlands Shelf, Dorset and Bristol Channel 

Basin all show the SSE where it is primarily expressed as an initial size reduction 
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following the angulata Zone size peak. Plagiostoma giganteum also shows a 

decrease in body size at this time (Atkinson et al. 2019). 

Other taxa that show concurrent size reductions are: Cardinia listeri, 

Neocrassina gueuxii, Camptonectes and Liostrea. The SSE is expressed not only 

as intraspecific size reduction but also, those species that originate during this 

interval, are smaller compared to the angulata Zone. Thus, Entolium lunare and 

Pseudopecten equivalvis both originate at small body sizes during this interval 

and increase in size during the Pliensbachian. Additionally, new species of 

Protocardia and Modiolus are smaller than their Hettangian predecessors. 

 

5.6.1.6 Gryphaea 

The evolutionary lineage of the oyster Gryphaea (Gryphaea arcuata - G. 

mccullochi J. de C. Sowerby – G. gigantea J. de C. Sowerby) has been widely 

reported (Hallam 1968, 1975; Johnson 1994; Jones & Gould 1999; Nori & 

Lathuiliére 2003). Gryphaea arcuata first appeared in the angulata Zone and 

increases in size into the bucklandi Zone before decreasing in the semicostatum 

Zone (Johnson 1994). It is then replaced by the G. mccullochi which is larger than 

the youngest G. arcuata specimens but does not exceed the sizes of Gryphaea 

in the bucklandi Zone. Ironically, G. gigantea first appears at a smaller size than 

its predecessor G. mccullochi before increasing in size from the upper jamesoni 

Zone onwards (Johnson 1994). The angulata – bucklandi Zone size increase and 

subsequent reduction during the semicostatum Zone seen within G. arcuata 

matches that seen in other bivalve species featured in this study. There is a 

paucity of measured Gryphaea samples from the interval of the SSE with the only 

sample in the obtusum Zone.  
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5.6.1.7 Bivalve size changes across Europe and beyond 

No other studies have systematically documented body size changes 

during the Lower Jurassic, but the available information suggest that the trends 

seen in British bivalves are repeated elsewhere. Johnson (1984) reported size 

changes within the Pectinidae and Propeamussidae and showed a size increase 

in Entolium lunare and Psuedopecten equivalvis in Germany, also Camptonectes 

and Chlamys textoria (Schlotheim) show a size increase from the Sinemurian to 

upper Pliensbachian of Germany. Data for the Hettangian are very limited, only 

Hallam (1975) covers this interval albeit in scant detail: only the initial and final 

maximum size of a species is documented. Hallam measured bivalves from the 

collections of the British Museum (Natural History) that includes collections from 

Germany and France, and found a Hettangian to Pliensbachian size increase 

indicating the trends occurred across the European shelf sea. Unfortunately there 

are no other size data available from other regions such as the Tethyan realm, 

although it is potentially noteworthy that sizes of Pliensbachian bivalves from 

Serbia are comparable to those reported here (Radulović 2013). 

 Panthalassic records of bivalves from the South America have received 

considerable attention (e.g. Damborenea 1987a, b; Aberhan 1994; Damborenea 

et al. 2017), although temporal size data is mostly absent. Nonetheless, 

Damborenea’s monographs (Damborenea 1987a, b, 2002) present some 240 

measured specimens from Argentina at stage resolution but with a dearth of 

Hettangian specimens. These indicate there is a size increase between the 

Sinemurian and the Pliensbachian at the community level. 
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5.6.1.8 Size trends in other groups 

Body size trend studies of other marine invertebrates are restricted to the 

well-known Liassic ammonites. Dommergues et al. (2002) provide a compendium 

of ammonite shell volumes per zone that can be compared to our bivalve 

maximum body sizes (Fig. 5.17). For the Hettangian and Sinemurian, the two 

datasets are remarkably consistent, both bivalves and ammonites show 

increasing maximum sizes through the Hettangian. Peak ammonite size is 

attained in the bucklandi Zone, slightly later than the bivalves (although if 

Plagiostoma giganteum data of Atkinson et al. (2019) are included with our data 

herein the two maxima coincide). Ammonites also show a size trough (the SSE) 

for much of the Sinemurian and both feature a brief renewal of size increase in 

the obtusum Zone, just as bivalves do. The SSE is ended in both datasets by an 

increase in size from the oxynotum to the raricostatum Zone. The remarkable 

congruence of bivalve and ammonite data disappears in the Pliensbachian when 

ammonite shell volume decreased whilst the bivalves showed two further 

increases in size during the ibex and spinatum zones.  
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Fig. 5.17 Temperature and sea level changes in relation to maximum GMBS 

of all bivalves and maximum log volume of ammonites. δ18O isotope curve 

compiled from Korte et al. (2009); van de Schootbrugge et al. (2007); 

Weedon (1987); Korte and Hesselbo (2011); hollow stars depict time bin 

average δ18O values. Sea level curve derived from Hesselbo (2008); 

Hesselbo and Jenkyns (1998) and Wignall and Bond (2008). Maximum 

GMBS of bivalves from this study and maximum log volume of ammonites 

per ammonite zone from Dommergues et al. (2002).  
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5.6.2 Possible causes of size change 

5.6.2.1 Sea level, sediments and size  

Three phases of size change occur amongst Rhaetian and Lower Jurassic 

bivalves whereas there are four distinct phases of sedimentation in the British 

Isles. The faunas of the Penarth Group (Westbury and Lilstock formations) lack 

any large bivalves, never exceeding 60 mm. This has been attributed to abnormal 

salinities (Hallam & El Shaarawy 1982; Márquez-aliaga et al. 2010), and large 

bivalves are found elsewhere in normal marine settings at this time (Hallam 

2002). The reduced body size seen in three species during the extinction interval 

recorded in the Cotham Member could be linked to a salinity control because this 

unit likely accumulated in hypersaline, brackish or even freshwater conditions 

(Wignall & Bond 2008), but other causes are considered below.  

Maximum size increases markedly from the Penarth Group to the Blue 

Lias Formation and coincides with the development of normal marine conditions 

(Hallam & El Shaarawy 1982; Hesselbo et al. 2004). This change may have 

played a role in bivalve size increase as demonstrated by Cardinia ovalis, which 

exhibited stunting of growth and size during deposition of the Penarth Group but 

both improved during the onset of fully marine conditions with no subsequent size 

change thereafter. The change from the Lilstock to the Blue Lias Formation is 

also a change in substrate consistency and this may explain the size reduction 

seen in Atreta intusstriata because, during periods of firm substrate, this species 

is found attached to the seabed, something unachievable on soupy substrates 

when A. intusstriata could attach only to other shells. This change is accompanied 

by a size reduction, perhaps owing to limitations of space thus imposed.  
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For the remainder of the Hettangian, size increase occurs within the same 

formation (the Blue Lias) whilst sea levels were fluctuating (Fig. 5.17). In itself 

these sea level changes seem unlikely to have been responsible for the increased 

size although bivalves generally decrease in size in deeper waters as shown by 

the smaller average size of bivalves in deeper water setting of the Central 

Somerset Basin. Oxygen deficiency was more prevalent in deeper waters, which 

may account for the undersized nature of the bivalves there (Atkinson & Wignall 

2019). The temporal size increase of bivalves in the Hettangian is superimposed 

on this proximal-distal size trend and is not related to relative water depth 

changes. 

The initiation of the SSE is largely coincident with deepening (Hesselbo 

2008), and so could represent a depth control on size. This is supported during 

the turneri Zone when a brief shallowing is coincident with a temporary size 

increase seen in both the Dorset and Cleveland basins. The total bivalve 

database (Fig. 5.17) shows this size increase continues into the obtusum Zone 

but this is only seen on the EMS and is likely an effect of the Frodingham 

Ironstone, discussed below. The end of the SSE coincides with a lowering of sea 

levels. But this tenuous link to sea level falls apart in the jamesoni Zone when 

there is a significant deepening and no consequent size reduction.  

It seems apt to here summarize the relationship between large body sizes 

and ironstones. For the obtusum Zone the largest bivalves occur in the 

Frodingham Ironstone Member and likewise the largest bivalves from the 

spinatum Zone are mostly from ironstone facies. Such sediments are thought to 

have accumulated slowly on seafloor highs or shoals (Hallam & Bradshaw 1979). 

The well-aerated, clear waters together with increased nutrient supply likely 

favoured bivalve growth in such settings (Nicol 1967; Johnson 1984). However, 
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there remains a question over the size increase seen in Pseudopecten equivalvis 

and Entolium lunare between the obtusum and spinatum zones, which occurred 

within similar ironstone facies, suggesting some other influence at play.  

 

5.6.2.2 Redox 

The degree of oxygenation within the Hettangian and earliest Sinemurian 

of the British Isles has been assessed using pyrite framboid populations (Atkinson 

& Wignall 2019). This study recorded high abundances of framboidal pyrite 

throughout the study interval. The size distribution of the framboids suggest 

oxic/dysoxic bottom waters with no significant changes in framboid size 

distributions between the planorbis and bucklandi zones. Bivalve sizes increased 

at this time (Fig. 5.18), indicating there was little or no overall long-term redox 

control. The deeper waters of the Central Somerset Basin do however show more 

intervals of intense water column anoxia than seen in the shallower Glamorgan 

sections, which may account for the smaller size of bivalves measured in the 

former location.  
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Fig. 5.18 Maximum GMBS trends for the Bristol Channel Basin-Welsh 

Massif, Dorset and Central Somerset basins and oxygenation states for 

each of the three basins from Atkinson & Wignall (2019). Hollow circles 

show maximum GMBS, from this study. Redox states are depicted as 

alternating grey and black bars, the former indicate periods with 

oxic/dysoxic framboid size distributions, black bars anoxic distributions, 

regions crossed out lack data. Time bin abbreviations same as Fig. 5.5. 

Time scaled to Weedon et al. (2019). 

 

5.6.2.3 Temperature 

The relationship between temperature and size is difficult to evaluate 

because of a paucity of Lower Jurassic proxy data. The release of large volumes 

of greenhouse gases during emplacement of the Central Atlantic Magmatic 

Province is suggested to have caused intense global warming during the end-

Triassic mass extinction (Beerling & Berner 2002). Evidence from decreasing leaf 

stomatal density at the time suggests 3-4°C of atmospheric temperature increase 

across the extinction interval (McElwain et al. 1999). Subsequent temperature 

fluctuations in the Lower Jurassic are ill constrained, but the available data 

indicate no major changes (Fig. 5.17). Korte et al. (2009) suggest sea-floor 

temperatures of between 7 and 14°C for the upper Langport Member (and 
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ostensibly a dramatic cooling from the preceding hot conditions of the extinction 

event during Cotham deposition, presuming salinity has not affected these 

results), rising to 12-22°C for the planorbis and lowermost liasicus zones based 

on oxygen isotope ratios from oyster calcite. Oxygen isotope data from the 

angulata and bucklandi zones indicate temperatures still within this range 

(Weedon 1987; Weedon et al. 2018), suggesting temperatures did not drive the 

contemporaneous size increases. 

The later Sinemurian to Pliensbachian has a more continuous oxygen 

isotope record that indicates potentially warmer conditions (Korte & Hesselbo 

2011). Temperature estimates for the semicostatum and turner zones are 19-

25°C, however these progressively cool to values again similar to the Hettangian 

(13-21°C, Korte & Hesselbo, 2011), again suggesting that temperature was not 

the cause of the SSE.  

The patterns of size changes seen in the Pliensbachian are also unlikely 

to be related to temperatures as no covariation is seen. Sizes increase in both 

mean and maximum towards the ibex Zone, but temperature is poorly 

constrained at this time (Fig. 5.17). The succeeding davoei Zone is considered a 

period of brief warming (Dera et al. 2009; Gómez et al. 2016), prior to cooling in 

the latest Pliensbachian (Bailey et al. 2003; Rosales et al. 2004; Suan et al. 2010; 

Korte & Hesselbo 2011) but bivalves show no significant body size change over 

this interval.  

 

5.6.2.4 Food availability 

Food supply is a major factor affecting body size in modern marine 

molluscs (Olabarria & Thurston 2003; Linse et al. 2006; Smith et al. 2008; Berke 
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et al. 2013; Munroe et al. 2013) and some authors use the size of bivalves as a 

proxy for primary productivity (e.g. Vermeij 2011). To simply use a “size = 

productivity” approach in this study would clearly be a case of circular reasoning. 

However, there are other patterns that suggest improved food supply may have 

been a factor for the size increase amongst Lower Jurassic bivalves. It is 

noteworthy that the deposit feeding bivalve species, whose nutrition comes from 

within-sediment organic detritus, do not show the increasing sizes seen amongst 

suspension feeding bivalves. A Brobdingnag trend was also seen within Luciniola 

limbata, which is considered to have hosted sulphur-oxidising bacteria within the 

gills, thereby supplying the mollusc with an alternative energy source 

independent of water column productivity (Distel & Felbeck 1987). For modern 

lucinid bivalves a large proportion of their energy demands are supplied by their 

symbionts, although, these bivalves are still capable of suspension feeding and 

so may have been susceptible to the same productivity controls as regular 

suspension feeding bivalves discussed herein (Distel & Felbeck 1987; Cary et al. 

1989). A Brobdingnag trend amongst suspension feeding molluscs could reflect 

an increased total abundance of suspended organic matter at the seafloor or a 

change in the quality of the organic matter to larger planktonic forms such as 

dinoflagellates. The works of van de Schootbrugge and colleagues (van de 

Schootbrugge et al. 2007; van de Schootbrugge & Gollner 2013) suggest major 

changes amongst algal communities during the early Hettangian when green 

algae dominated. The latter provide poor-quality food for bivalves because of their 

small size and lack of essential nutrients and can result in poor growth of bivalves 

(Brown et al. 1997; von Elert et al. 2003; Weiss et al. 2007). The intervals of green 

algal dominance also coincided with periods of more frequent black shale 

deposition (van de Schootbrugge et al. 2007, 2013; Xu et al. 2017). As many of 
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the black shales in the Blue Lias were shown to have a framboid population 

suggesting deposition under euxinic (or euxinic punctuated by dysoxic) bottom 

waters implying also a possible influence of redox conditions (Atkinson & Wignall 

2019). Although for the pre-planorbis Beds and planorbis Zone algal communities 

were depleted in dinoflagellates apparently independent of redox (van de 

Schootbrugge et al. 2007; Atkinson & Wignall 2019), during this time bivalves 

remained small suggesting that improved food supply/quality may be a key 

control on size. This hypothesis requires testing with further studies of algal 

composition in the Lower Jurassic from understudied, younger intervals.  

 

5.6.3 Body size and biotic recovery 

The importance of the Lilliput Effect in producing small bodied 

assemblages in the aftermath of a mass extinction was recently questioned 

(Atkinson et al. 2019), owing to its requirement for a species to survive the 

extinction to be considered a true Lilliput (Urbanek 1993). Instead the 

Brobdingnag Effect was proposed, whereby new species originate during 

recovery at small size and subsequently increase in size, thereby producing not 

only the small faunas in the immediate aftermath but also the increasing size 

suggested as a feature of biotic recovery (Atkinson et al. 2019). Following the 

end-Triassic mass extinction the Brobdingnag Effect has been shown for 11 

(possibly 12) bivalve species whilst the Lilliput Effect only occurred in two 

(possibly three). The Brobdingnag Effect therefore dominated in the aftermath of 

the end-Triassic mass extinction and, in conjunction with Cope’s Rule, produced 

bivalve communities of increasingly large sizes.  
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Size increase provides an indicator of marine recovery that is unconnected 

from other factors that have been used to monitor post-extinction progress. Thus, 

ecological tiering recovers rapidly, in the early Hettangian, whilst bivalve diversity 

increase continued into the Pliensbachian (Hallam 1996; Atkinson & Wignall 

2019). Body size increase follows neither of these trends and is clearly monitoring 

a different and under-explored aspect of environmental recovery or change. As 

discussed above, temperature may exert some control on body size although 

food supply is potentially more important. The role of such factors and their 

significance during the recovery from other extinction crises remains to be 

explored. 

 

5.7 Conclusions 

The recovery of bivalve communities following the end-Triassic mass 

extinction saw substantial, intraspecific size increase amongst many bivalves that 

persisted for 17 million years and saw some bivalves increase their size by up to 

476%. Such trends have been traditionally attributed to the Lilliput Effect: – the 

stunting of species in the harsh environmental conditions of the extinction interval 

and their subsequent size increase during recovery. However, this effect was 

minor, only 2-3 Lilliput species are found, instead the size trend is caused by the 

Brobdingnag Effect: – a within-species size increase of newly originated taxa. 

The Brobdingnag Effect has been demonstrated for 11 filter-feeding species 

displaying diverse lifestyles but is not manifest amongst the deposit-feeding 

bivalves. In conjunction with this, newly appearing species are also progressively 

larger, with some aspect of this relating to Cope’s Rule evolution (seen also in 

ammonite lineages). The mollusc populations of the Hettangian show an increase 

in average and maximum body size that was followed by a phase of reduced 
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body size, here referred to as the Sinemurian Small Episode, before renewed 

size increase during the Pliensbachian. The geographic distribution of theses size 

trends remains uncertain although the evidence available suggests that it 

occurred across much of the European shelf seas and possibly in the Tethys and 

Panthalassa oceans. 

Local environmental factors can be attributed to size changes (small bivalves 

in the deeper, less well-ventilated waters, large bivalves in the ironstones) but 

they cannot explain secular trends in body size of both benthos and nekton. The 

size trends appear unrelated to temperature and redox trends but may link to 

improvements in food supply (both abundance and quality) available to filter-

feeding bivalves. Body size trends in the aftermath of the end-Triassic mass 

extinction occurred over longer time scales compared to other recovery metrics 

such as diversity and ecological complexity which indicate recovery was achieved 

in less than a million years (Atkinson & Wignall 2019). Future investigations of 

long-term body size trends following other crises may reveal the legacy of such 

crises is considerably longer than appreciated.  
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Chapter 6: Discussion 

 

6.1 Recovery from the end-Triassic extinction: bivalve diversity 

A primary aim of this work was to document the tempo and style of 

recovery amongst marine communities following the end-Triassic mass extinction 

within the British shelf seas. This has been monitored primarily through studying 

bivalve assemblages. Bivalve stratigraphic ranges shows that pre-extinction 

diversity is rapidly re-attained by the Langport Member, only 0.15 Myr later (Fig. 

5.4A.), although diversity declined in the subsequent Pre-planorbis Beds after a 

minor extinction coincident with the base of the Blue Lias Formation. Bivalve 

diversity rose in a series of sharp steps thereafter. The sharpest rise in diversity 

occurs between the Pre-planorbis Beds and the planorbis Zone, and diversity 

peaks during the semicostatum Zone. This latter zone contains a silicified fossil 

assemblage that may have inflated diversity owing to its exquisite preservation 

(Chapter 3; Wright et al. 2003). Exclusion of these silicified specimens did not, 

however, remove the trend suggesting that preservation is not responsible. A 

sharp diversity loss occurs between the semicostatum and turneri zones after 

which a broadly stable diversity is attained 6 Myr after the extinction, although 

this gradually declines from the jamesoni Zone onwards. These values of 

diversity are similar to those recorded from the planorbis and liasicus zones.  

The pattern of bivalve diversity recorded here (Fig. 5.4A), departs from 

that presented by Hallam (1987, 1996), who showed that bivalve diversity rose 

through the Hettangian to reach a stable value in the Sinemurian, and then rose 

once more in the Pliensbachian, again to a stable level. Here it is shown that 

Pliensbachian diversity was lower than in the late Hettangian-early Sinemurian.  
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6.2 Lilliput versus Brobdingnag effects 

The widely cited Lilliput Effect has often been misapplied to taxa in the 

aftermath of the ETE. A frequent issue is the vague and variable use of the term. 

The Lilliput Effect sensu Urbanek (1993) is the temporary reduction in size of 

species that survive an extinction crisis and their subsequent size increase in the 

recovery interval (Fig. 6.1A). Of the 28 bivalve species present in the Westbury 

Formation (pre-extinction), only 15 pass into the basal Cotham Member and a 

further four disappear above a basal shell bed in South Glamorgan. This leaves 

11 species eligible to exhibit a Lilliput trend but, of these, only six species are 

common enough for size trends to be assessed. Of these, only two (possibly a 

third) exhibit the Lilliput Effect despite claims that it is frequently seen after the 

ETE (Barras & Twitchett 2007; Mander et al. 2008; Clémence & Hart 2013).  

The Lilliput Effect is also uncommon after other crises. Song et al. (2007; 

2011) reported the sizes of foraminifera across the Permo-Triassic mass 

extinction at Meishan, South China and found of the 36 latest Permian species, 

14 survived into the Triassic, and of these only four were shown to have a reduced 

body size after the extinction but these are exceptionally rare making meaningful 

size analysis impossible. Subsequently, an early Triassic extinction pulse wipes 

all of these species out, and so they do not record the subsequent size increase. 

These “survivors” can be regarded as holdover taxa and demonstrate the issue 

in identifying true Lilliputians. Nonetheless, the Lilliput Effect is considered to be 

significant although many authors choose a sensu lato version of the effect by 

applying it at a supra-species levels (e.g. Borths & Ausich 2011; Chen et al. 2013; 

Chu et al. 2015; Łaska et al. 2017).  
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At the species level this study of post-extinction body size trends suggests 

that the Brobdingnag Effect is more likely to be encountered (defined in Chapter 

2). This is defined as an intraspecific size increase in newly originating species 

following a mass extinction (Fig, 6.1B). This has been demonstrated for 11 or 

possibly 12, species of Early Jurassic bivalve and is also seen within three 

species of Gryphaea (Johnson 1994). The degree of size increase is variable. 

Thus, Pholadomya glabra increases by 62% over 2 Myr (liasicus to bucklandi); 

Plagiostoma giganteum increases by 142% in 3.6 Myr (planorbis to bucklandi); 

Neocrassina gueuxii undergoes a 283% size increase over 2.3 Myr (planorbis to 

angulata); and the most dramatic being an increase of 476% in Pseudopecten 

equivalvis over a much longer 11 Myr (semicostatum to spinatum).  

 

 

Fig. 6.1 Schematic diagrams of body size changes across extinction events 

(red line). Horizontal lines represent theoretical species ranges. A. The 

Lilliput Effect, sensu Urbanek; B. The Brobdingnag Effect. C. Cope’s Rule, 

dotted vertical lines depict speciation events; D. Brobdingnag Effect in 

concert with Cope’s Rule, as with C dotted line represents speciation.  
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The Brobdingnag Effect is, therefore, a more significant contributor than 

the Lilliput Effect to the trend of size increase during recovery from mass 

extinction. The size increase was shown to be a consequence of improved 

growth, seen as a greater spacing between growth lines, and increased longevity 

seen in instances where larger individuals had more growth lines. This makes the 

assumption that each growth increment within a single species denotes the same 

interval of time. In studies where fossil material preserves original shell calcite 

such assumptions can be tested, using oxygen isotope ratios to detect seasonal 

temperature oscillations allowing lifespan and growth rates to be accurately 

gauged and so too can growth rates (cf. Jones & Quitmyer 1996). This style of 

analysis was not possible with most of the species used herein as shells were 

usually recrystallized.  

Seven Liostrea from the Pre-planorbis Beds and one from the Langport 

Member of Lavernock Point were used to assess growth rates through oxygen 

isotope compositions (Korte et al. 2009). Their results seem to suggest that these 

oysters were recording half to one annual cycle suggesting these were short lived 

individuals. Regrettably however, Korte et al. (2009) did not sample from higher 

in the section from some of the larger individuals to test for changes in longevity 

or growth rate which may have confirmed suspicions that a greater lifespan 

assisted in producing a Brobdingnag trend. 

The extinct Cenozoic scallop Carolinapecten eboreus (Conrad) appears 

to have grown to great sizes (up to 165 mm) in less than two years (Johnson et 

al. 2019). Growth rates estimated to be as great as 145.7 mm per year, achieved 

through increased number of small growth increments opposed to secretion of 

more material per growth interval (Johnson et al. 2019). In Chapter 2 it was 

suggested that Plagiostoma giganteum achieved a greater size through a 
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combination of increased growth rates and greater longevity, however as some 

specimens have in excess of 1000 growth increments but few repeated cycles of 

high and low density growth lines, which may be interpreted as annual cycles, 

Plagiostoma giganteum may have had a similar growth strategy to C. eboreus.  

The size increase in Plagiostoma giganteum might have been further 

facilitated by retention of the juvenile growth rates, these bivalves exhibit 

isometric growth, with few showing the expected condensation of growth lines 

towards the shell margin with increasing age (i.e. decreasing growth rate with 

increasing body size of the individual). Perhaps this allowed for continued growth 

and attainment of greater sizes in P. giganteum, whereas other species such as 

Mactromya cardioideum and Cardinia ovalis show a progressively declining 

growth rate with age, and so do not attain a vast relative size increase. This is 

especially so in M. cardioideum which appears to increase in size by increased 

longevity and so only shows a comparably small size increase through time 

(54%). 

The Brobdingnag Effect can be seen as distinct from Cope’s Rule, with 

stratigraphically younger individuals discernible from those of older intervals only 

by their larger size, being in all other respects identical. Cope’s Rule is a size 

increase of successive species seen in phylogenetic lineages (Fig. 6.1C).  

The Brobdingnag Effect and Cope’s Rule were not mutually exclusive 

amongst Early Jurassic bivalves and several examples occur where those 

showing intraspecific size increase are succeeded by new species that are also 

successively larger. If it is assumed that a stratigraphically younger species of a 

particular genus is the descendant of an older species then examples of the 

Brobdingnag leading to Cope’s Rule include species in the genera Gresslya and 

Pholadomya, and potentially Oxytoma and Protocardia. In each of these cases 
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the individual species increased in body size whilst maintaining the same 

morphology (as per Brobdingnag Effect), this then follows a change in 

morphology so as to produce a larger, new species (as per Cope’s Rule; Fig. 

6.1D). Such trends are seen in the succession of Early Jurassic Gryphaea 

species (Hallam 1978; Johnson 1994).  

 

6.3 Sinemurian Small Episode 

The Sinemurian sees a reversal of increasing size. Maximum body size 

decreases after the angulata Zone and (with the exception of a spike during the 

obtusum Zone, discussed below) remains low until an increase in the 

raricostatum Zone (Fig. 5.4A). This trend is herein referred to as the Sinemurian 

Small Episode (SSE). The cause of the SSE is perhaps manifold. During the 

bucklandi and semicostatum zones newly-appearing species are progressively 

smaller. In addition, several taxa that have an average size above the Lias mean 

(19.1 mm) die out in this interval. Ghost taxa are not likely to have been a major 

contributor. Although the turneri to oxynotum zones are characterised by the 

highest percentage of ghost ranges (55-70%) those species that are ghosting 

through are mostly below the Lias average mean size with only four larger taxa 

(mean size >19.1 mm) ranging through.  

The obtusum Zone size spike is caused by Cardinia concinna. This bivalve 

is extremely common in the Frodingham Ironstone Member where it attains large 

size. There are 50 specimens from this time bin (which is 43% of the sample) the 

removal of this species from the obutsum Zone severely dampens the large sizes 

during that interval and highlights the SSE with greater clarity.  
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The Lilliput Effect may have played only a minor role in the ETE, but is it 

represented during the SSE? Regrettably this is not, at the current time, 

demonstrable for the usual reason that the true Lilliput effect is hard to find, the 

species that show a size reduction leading into the SSE die out during it and those 

species that appear afterwards show a size increase as per the Brobdingnag 

Effect. During the SSE there is a marked decline in bivalve species richness 

between the semicostatum and turneri zones. The Sinemurian is also associated 

with a transient loss in functional richness in the Boreal Oceans (Dunhill et al. 

2018). These two factors combined with the reduction in body size, reported here, 

suggest this time may represent a local/regional biotic crisis hitherto unreported.  

 

6.4 Size and recovery 

 Body size as an indicator of recovery has been tested here in conjunction 

with other recovery metrices. It was found that body size trends are independent 

of tiering re-occupancy and diversity. Increasingly complex tiering levels, with 

both deep infauna and erect epifauna, have been proposed as a measure of full 

recovery (Twitchett 2006). Such benthic structuring was attained very quickly 

after the ETE as seen in (almost) all studied sections by the planorbis Zone, whilst 

size increase is a much longer term change. This parameter was still increasing 

some 17 Myr after the extinction, producing an overall increase of 374% across 

the study interval.  

Body size recovers over a much longer timescale than other metrices, and 

had yet to reach some form of an equilibrium among bivalves before many of 

them disappeared during the early Toarcian mass extinction event (Morten & 

Twitchett 2009). This is similar to changes seen in the ecological structure of 
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marine communities following the PTME (Song et al. 2018). This became 

uncoupled from taxonomic richness taking some 50 Myr for a Late Permian 

structure to be regained although not before it was disrupted by subsequent 

events. Recovery from mass extinction monitored by distinct ecological metrics 

thus operates over a broad range of scales. 

The causes behind the observed size changes in bivalves were discussed 

at length in chapters 2 & 5 and despite detailed reconstruction of marine 

oxygenation (Chapter 3), no clear relationship is seen. Other workers, attempting 

to find a cause for an overarching size change in communities, have also not 

succeeded (e.g. Twitchett 2007; Martínez-Díaz et al. 2016). Any conclusion 

would require the explanation of why both Brobdingnag and inverse-Brobdingnag 

trends co-occur sometimes even within the same family.  

 

6.5 Early Jurassic oxygenation 

Results presented herein show that pyrite framboids occur in plentiful 

supply at locations in southwestern England, south Wales and North Yorkshire. 

The size distribution of framboids was considered by lithology, location and time 

bin revealing each basin to have its own redox history. In Chapter 3 it was 

proposed that the recovery from the ETE occurred against a background of 

dysoxia. This was proposed based on the assumption that under a fully 

oxygenated water column framboids would not grow within the sediment but a 

degree of oxygen restriction was required in order to preserve sufficient organic 

material for burial required for the for generation of H2S (via sulphate reduction) 

necessary for pyrite formation (Raiswell & Bernrer 1985). Wilkin et al. (1996) 

suggested that it was not possible to distinguish framboids that formed under a 
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dysoxic water column from those that formed under a fully oxygenated water 

column, and reflected this by labelling the right hand side of their diagrams “oxic-

dysoxic”. Replacement of Wilkin et al.’s “oxic-dysoxic” field with solely “dysoxic” 

was adopted by many following Wignall & Newton (1998) because framboid 

populations measured from oxygen restricted biofacies 4-5 (upper dysoxic; cf. 

Wignall & Hallam 1991) plot on or above dividing line on the Wilkin Diagram. 

These upper dysoxic samples occupy the same region as Wilkin’s oxic samples 

and has been implied that Wilkin et al’s oxic settings were not fully aerated, and 

it is often assumed that under a fully oxygenated water column no framboids will 

grow in the sediment (Bond 2004; Bond & Wignall 2010). Regardless of how well-

aerated the water column is within the sediment at some depth there will be a 

redox boundary, at which, provided the elemental components are present, 

framboids will grow (Raiswell & Berner 1985; Tyson & Pearson 1991). 

As question remains as to whether framboid size distributions can 

distinguish between those that grew within the sediment but under a dysoxic 

water column from those that grew under an oxygenated water column it is 

perhaps better for the time being to say that recovery occurred against a 

background of oxic-dysoxic conditions, in keeping with Wilkin et al. (1996).  

Regardless of how one interprets the mere presence of framboids the Blue 

Lias has cycles of black shale deposition, many of which show a framboid 

population suggestive of water column euxinia and the greater majority of these 

beds lack benthos entirely. The only bivalve that was found in profusion was 

Anningella which, from association with fossil wood and ammonites, likely had a 

pseudoplanktonic existence. Black shales occur widely in the Pre-planorbis Beds 

and it is possible that oxygen restriction stalled the recovery at this time, indicated 

by the loss of bivalve diversity between the Langport (oxic-upper dysoxic) and the 



252 
 

Pre-planorbis Beds (anoxic-euxinic to low-mid dysoxic/oxic). Such a delay would 

however have been short (<0.5 Myr) because the upper beds of this interval 

feature signs of advancing recovery. In younger ammonite zones black shale 

deposition recurs, but tends not to be present across all basins at the same time, 

and recovery appears unaffected at the resolution of ammonite zone. For 

example, around the Hettangian-Sinemurian boundary Somerset experienced 

euxinic conditions and no benthos was found, whereas nearby Glamorgan 

exhibited framboid populations suggestive of oxic-dyoxic conditions and had 

plentiful benthos. Once conditions had improved in Somerset, these organisms 

were able to migrate from the shallower Glamorgan sections where diversity was 

high and stable from the upper Pre-planorbis Beds onwards. 

 

6.6 Comparisons with other recovery intervals 

The idea that the shallower, better-oxygenated Glamorgan region might 

provide a root stock of benthic animals to resupply deeper-water settings can be 

likened to the ‘Habitable Zone’ or Refuge Zone, proposed by Beatty et al. (2008) 

and Song et al. (2014) respectively, for the Early Triassic recovery. This describes 

inner shelf settings, with abnormally diverse fossil assemblages, that were deep 

enough to provide respite from the extreme heat of the Early Triassic whilst being 

shallow enough to avoid oxygen depletion. High temperature may also have been 

a factor in the ETE, with temperatures having risen by 2.5 - 5 °C (McElwain et al. 

1999; Steinthorsdottir et al. 2011). The pace of cooling in the Early Jurassic is a 

little unclear, with oxygen isotopes suggesting that there was significant cooling 

in the Langport Member and the Pre-planorbis Beds but this was followed by a 

gradual warming (Korte et al. 2009). However, stomatal indices suggest a gradual 
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return to pre-extinction Rhaetian atmospheric CO2 concentrations during the 

Hettangian, which implies cooling (Steinthorsdottir et al. 2011).  

For the PTME benthic foraminifera provide good subjects for testing 

changing body size, and have been especially well-studied from the Permo-

Triassic record of South China. Size increase during the recovery appears to 

have been driven largely by loss of small opportunist and disaster forms which 

dominated in the earliest Triassic (Payne et al. 2011; Song et al. 2011, 2016; 

Rego et al. 2012). Average body size of communities was therefore related to 

measures for evenness with both attaining stable, pre-extinction stable values 

during the middle Anisian, some 7 Myr after the extinction event. However, there 

are at least eight examples of a Brobdingnag trend over this interval (Payne et al. 

2011). 

Body size data for bivalves is poorly documented for the recovery from the 

PTME, although it is well established that they are small and thin shelled in the 

earliest Triassic, perhaps in response to low oxygen availability (Hautmann & 

Nützel 2005; Gao et al. 2009; Posenato 2009). Claraia and Unionites are 

amongst the most common earliest Triassic taxa and show an increasing size 

trend (Metcalfe 2011) which may reflect the Brobdingnag Effect, but only generic-

level data is available.  

Brachiopod body sizes have received detailed attention but, although 

intraspecific body size decrease was detected prior to the PTME these species 

ultimately died out at the extinction or shortly after (He et al. 2007, 2010; Chen et 

al. 2019). Therefore finding true Lilliputians is not feasible. Brachiopods do, 

however, show clearer evidence of the Brobdingnag Effect in the Early Triassic 

(Chen et al. 2019). Recovery begun around 1 Myr after the PTME and continued 

for ~10 Myr (Foster & Sebe 2017; Wang et al. 2017). The size increase recorded 
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in brachiopods is similar to that seen for bivalves in the Hettangian, because 

newly appearing taxa are progressively larger; a likely manifestation of Cope’s 

Rule. Lingulid brachiopods within the Early Triassic are small (5-8 mm) and 

increase to 18-28 mm in the Late Triassic (Zonneveld et al. 2007). The older, 

smaller species have closer growth-line spacing than the younger species 

(Metcalfe et al. 2011), a trend that recalls Plagiostoma giganteum in the Early 

Jurassic.  

 The KPg event saw a reduction in size among many of the surviving marine 

invertebrates, which has often been referred to as the Lilliput Effect (Keller & 

Abramovich 2009; Martínez-Díaz et al. 2016; Patacci 2016; Łaska et al. 2017; 

Wiest et al. 2018). However, the manner by which these size reductions occurred 

and any subsequent size increase has not received much attention with few 

species-level studies. A study of veneroid bivalve body size during the KPg and 

Paleogene provides a rare example (Lockwood 2005). This revealed that 

diversity recovered in the early Eocene (around 10 Myr after the extinction), whilst 

average body size remained suppressed until the late Eocene, after which they 

show a slight increase at the Eocene-Oligocene boundary – but Maastrichtian 

sizes were not reattained (Lockwood 2005).  As with the recovery from the ETE, 

body size appears to have been affected over much longer time scales than 

diversity suggesting the potential role of the Brobdingnag Effect amongst 

veneroids.  

 

Comparison of recovery from the ETE and Permo-Triassic mass extinction 

suggest that the Lilliput Effect is a minor contributor to the small size of fossil 

assemblages following mass extinction. Instead the preferential origination of 

small species is more important. These may be of new or pre-existing genera 
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and, during recovery, many exhibit a Brobdingnag trend. Cope’s Rule was likely 

a significant contributor also, although phylogenetic relationships are seldom well 

enough resolved. In both cases community level body size restoration was 

protracted (millions of years) and highly variable between groups.    
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Chapter 7: Conclusions and future work 

 

7.1 Conclusions 

 

 Post extinction reduction of body size has been documented following 

the ETE in Britain. Although the Lilliput Effect is often reported following 

extinction events it was only a minor component here, being only demonstrated 

unequivocally for two species. The suppression of body size following extinction 

seems to have resulted more commonly from preferential origination of small 

species. The subsequent increase of the average body size of a species and 

communities is caused by a variety of factors. In the Early Jurassic, size 

increase was caused by within-species size increase among species that 

originated at small body sizes during the aftermath. This size increase within 

newly originating species is referred to here as the Brobdingnag Effect, named 

in honour of a race of giant humans encountered by Gulliver in his second 

misfortune and a reference to the large size species attain relative to their first 

appearance. A detailed case study on limid bivalves shows Plagiostoma 

giganteum as the archetypal Brobdingnagian which increased in size by 179% 

from the earliest Hettangian to the first ammonite zone of the Sinemurian. 

Expanding the study to include all bivalves up to the latest Pliensbachian 

showed there were 14 confirmed Brobdingnagians amongst 30 species with 

statistically useful sample sizes. From growth line analyses these species were 

shown to be increasing in size due to improved growth rates, increased 

longevity or a combination of both.   

Another major factor in producing a size increase in bivalve assemblages 

of the Lower Jurassic is the appearance of progressively larger species, some 
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of which probably represent Cope’s Rule. This rule has also shown to be 

manifest amongst the contemporary ammonite lineages (Hallam 1975; 

Dommergues et al. 2002). 

The trend of increasing size is not, however, in-step with other recovery 

metrics. Ecological tiering is restructured by the upper Pre-planorbis Beds 

(within 0.7 Myr of the extinction) and all sections studied show a marked rise in 

diversity around the same time, which continues at a lessened rate into the 

Sinemurian, broadly stabilising from the turneri Zone onwards, 6 Myr after the 

ETE. Within the Sinemurian average body size decreased temporarily, entering 

a period here referred to as the Sinemurian Small Episode (SSE). The SSE is 

facilitated by a reduction in size of pre-SSE species and origination of 

progressively smaller species often in pre-existing genera. Many species ghost 

range through this interval with only four of them larger than the total Lias 

average, so this was unlikely to be a significant contributor. The Lilliput Effect is 

again not significant in this time interval, as those species that exhibit a size 

decrease into the SSE die out soon after. Body size increase resumed during 

the Pliensbachian, notably increasing to the ibex Zone, and further again at the 

end of the Stage resulting in an overall increase of 476% relative to those 

bivalve populations measured in the Westbury Formation. 

The underlying causes of the size changes remain elusive, it has been 

shown that the recovery interval occurred against a background predominantly 

of oxic-dysoxic conditions but punctuated by periods of anoxia, in shelf locations 

and yet, unlike the PTME aftermath (Hallam 1991; Dai et al. 2018), these 

conditions did not appear to significantly inhibit recovery. Only during the Pre-

planorbis interval, when black shales are exceptionally extensive, did diversity 

decrease, although it promptly rebounded in the subsequent ammonite zone. 
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Beyond that there is no suggestion that oxygen restriction affected the recovery. 

The impact of extensive oxygen deficiency on long-term body size trends was 

minimal. The Blue Lias Formation shows no upward improvement in 

oxygenation and yet the bivalves in this unit show a long term body size 

increase. Nonetheless, bivalves from more dysoxic intervals are smaller but 

there remains a within-lithology and possibly within oxygen regime size 

increase.  

Although the observed size changes most likely reflect improving 

environments, as suggested by changes in growth lines, no satisfying 

conclusion could be found. There is no correspondence between size and 

reconstructed temperatures although data for the latter are often questionable 

or poorly constrained. As the size patterns are expressed in suspension feeding 

organisms it is possible that these changes reflect a prolonged interval of 

improving primary productivity. This is also supported by the lack of size trends 

seen among deposit feeding bivalves, which are not reliant on suspended food 

particles.  

Recovery from other intervals of extinction (KPg and PTME) require 

more species level – long-term studies. However those that currently exist 

suggest that the Brobdingnag Effect is not restricted to the ETE. Other factors, 

such as decreased prevalence of small disaster forms, may have been more 

significant in the production of increased average size of communities during 

recovery. 

 

 

 



264 
 

7.2 Future work 

How widespread are the size increases following the ETE?  

There is a dearth of stratigraphically well-constrained bivalve measurements 

from the Lower Jurassic. The limited data available suggest that Lower Jurassic 

size increase observed here may also have occurred in Germany and France 

and there is a suggestion that bivalve size increases between the Sinemurian 

and the Pliensbachian of Argentina (cf. Johnson 1984; Damborenea 1987a; b; 

2002). A thorough examination, at the resolution of ammonite zone or finer is 

required to assess if these putative size trends are global.  

 

Is the Brobdingnag Effect seen in other groups after the ETE? 

Gastropods are frequently cited as showing reduced body sizes after mass 

extinctions. Is this also the case with the ETE? Although no rigorous 

measurements were taken in this study, the largest gastropods seen during field 

collections were from bucklandi-aged sediments and occurred with the largest 

Plagiostoma giganteum specimens. Other groups that warrant investigation are 

foraminifera and ostracods. Their high abundances allow for fine resolution and 

robust size trends to be detected. None of these groups are dependent on 

suspension feeding and so the apparent absence of any size changes in these 

groups, alongside the lack of trends seen here in deposit feeding bivalves, would 

lend support for a primary productivity control on the body size of the bivalves 

during the Early Jurassic.  
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How common is the Brobdingnag Effect through geologic time? 

Numerous cases are presented here for Brobdingnag size trends during 

the Early Jurassic, alongside similar reported size changes during the recovery 

from the PTME. There are of course more extinction events, and many have been 

associated with the Lilliput Effect. The pace of body size and taxonomic recovery 

should be investigated for more recovery intervals. 

 

Further growth line analyses  

 Further analyses of growth line data shown in Chapters 2 and 5 could be 

undertaken. Data was presented showing how cycles in the spacing of growth 

increments were recorded in Plagiostoma giganteum, however no thorough 

interpretation of these cycles was given. These data are suitable for Fourier 

Transform analyses which may allow for detection of lunar or/and annual cycles 

or growth.  

 

What is the geographic prevalence of the SSE?  

The detection of suppressed size during much of the Sinemurian (SSE) 

requires further investigation, primarily in order to confirm its presence across a 

wider geographic area and confirm loss of bivalve diversity. Increased sampling 

from the Dorset, Severn and Hebrides basins across this interval is 

recommended as well as away from NW Europe.  
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Constraining Early Jurassic temperature trends 

 Despite published oxygen isotope curves for much of the British Lias being 

available, substantial gaps still remain across the extinction interval and records 

are patchy between the liasicus Zone and semicostatum Zone. Temperature 

reconstruction encompassing the Westbury and Lilstock formations is required 

but, because this interval was deposited in non-marine conditions, oxygen 

isotopes are an inappropriate proxy, and so an alternative method is required to 

document this interval, such as Mg/Ca proxies.  
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Appendix A 

Figures from Chapter 2 rescaled to most recent Hettangian 

timescale. 

 

 

Fig. 2.4 Time-binned variation in the size of Plagiostoma giganteum (top) 

and Antiquilima succincta (bottom). Lines connect successive time bins 

with >10 specimens. Error bars depict 95% confidence intervals. Sample 

size quoted per time bin. 
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Fig. 2.6 Time-binned variation in the size of Plagiostoma giganteum per 

locality, (top). Variation in size between specimens measured from different 

oxygenation regimes inferred from host lithology, see methods for details. 

Lines connect successive time bins with >10 specimens. Sample size 

quoted per time bin. 
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Fig. 2.7. Time-binned variation in the size of Ctenostreon philocles (top), 

Pseudolimea pectinoides (middle) and Plagiostoma punctatum (bottom). 

Lines connect successive time bins with >10 specimens. Error bars depict 

95% confidence intervals. Sample size quoted per time bin. 
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Fig. 2.10. Time-binned variation in the size of Pseudolimea pectinoides per 

locality, (top). Variation in size between specimens from different 

oxygenation regimes inferred from host lithology, see methods for details. 

Lines connect successive time bins with >10 specimens. Sample size 

quoted per time bin.  
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Appendix B 

Bivalve life modes  

 

 
Species Ecology Reference 

Entolium lunare 
surficial, facultative motile, 
suspension feeder Johnson 1984 

Pseudopecten equivalvis 
surficial, facultative motile, 
suspension feeder Ros-Franch et al 2014 

Oxytoma (Palmoxytoma) 
cygnipes epibyssate, suspension feeder Ros-Franch et al 2014 

'Mytilus'' cloacinus epibyssate, suspension feeder Ros-Franch et al 2014 

Anningella cf. faberi epibyssate, suspension feeder Ros-Franch et al 2014 

Antiquilima antiquata epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Antiquilima nodulosa epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Antiquilima hermanni epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Antiquilima succincta epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Camptonectes auritus epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Camptonectes punctatissimus epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Camptonectes subulatus epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Chlamys textoria epibyssate, suspension feeder 
Ros-Franch et al 2014, 
Johnson 1984 

Chlamys valoniensis epibyssate, suspension feeder 
Ros-Franch et al 2014, 
Johnson 1984 

Chlamys lavernockensis epibyssate, suspension feeder 
Ros-Franch et al 2014, 
Johnson 1984 

Chlamys pollux epibyssate, suspension feeder 
Ros-Franch et al 2014, 
Johnson 1984 

Ctenostreon philocles epibyssate, suspension feeder Ros-Franch et al 2014 

Eopecten angularis epibyssate, suspension feeder 

Ros-Franch et al 2014, 
also capable of 
cementation see Hodges 
1987 

Eopecten velatus epibyssate, suspension feeder 

Ros-Franch et al 2014, 
also capable of 
cementation see Hodges 
1987 

Parainoceramus ventricosus epibyssate, suspension feeder Ros-Franch et al 2014 

Plagiostoma giganteum epibyssate, suspension feeder Ros-Franch et al 2014 

Plagiostoma punctatum epibyssate, suspension feeder Ros-Franch et al 2014 

Pseudolimea acuticostata epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Pseudolimea dentata epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Pseudolimea pectinoides epibyssate, suspension feeder 
Damborenea and 
Mancenido, 2005 

Pteria carixensis epibyssate, suspension feeder Ros-Franch et al 2014 

Rhaetavicula contorta epibyssate, suspension feeder Ros-Franch et al 2014 

Semuridia dorsetensis epibyssate, suspension feeder Ros-Franch et al 2014 
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Oxytoma fallax epibyssate, suspension feeder Ros-Franch et al 2014 

Oxytoma inequivalvis epibyssate, suspension feeder Ros-Franch et al 2014 

Meleagrinella sp. epibyssate, suspension feeder Ros-Franch et al 2014 

Oxytoma sinemuriensis epibyssate, suspension feeder Ros-Franch et al 2014 

Grammatodon sp. epibyssate, suspension feeder Ros-Franch et al 2014 

Grammatodon (Cosemetodon) 
hettangiensis epibyssate, suspension feeder Ros-Franch et al 2014 

Grammatodon (Cosmetodon) 
buckmani epibyssate, suspension feeder Ros-Franch et al 2014 

Grammatodon 
(Grammatodon) intermedius epibyssate, suspension feeder Ros-Franch et al 2014 

Grammatodon 
(Grammatodon) pullus epibyssate, suspension feeder Ros-Franch et al 2014 

Parallelodon sp. epibyssate, suspension feeder Ros-Franch et al 2014 

Catella trapezium 
  epibyssate, suspension feeder Ros-Franch et al 2014 

Liostrea hisingeri 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Liostrea irregularis 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Actinostreon haidingeriana 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Nanogyra imbricatoradiata 
surficial, cemented, suspension 
feeder Wignall 1990 

Atreta intusstriata 
surficial, cemented, suspension 
feeder Hodges 1991 

Harpax spinosa 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Placunopsis alpina 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Placunopsis sp. 
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Plicatula hettangiensis 
surficial, cemented, suspension 
feeder 

Damborenea and 
Mancenido, 2005 

Terquemia difformis  
surficial, cemented, suspension 
feeder Ros-Franch et al 2014 

Hippopodium ponderosum endobyssate, suspension feeder Ros-Franch et al 2014 

Hippopodium tuffleyensis endobyssate, suspension feeder Ros-Franch et al 2014 

Hippopodium ovale endobyssate, suspension feeder Ros-Franch et al 2014 

Myoconcha (Modiolina) 
decorata endobyssate, suspension feeder Ros-Franch et al 2014 

Myoconcha (Myoconcha) 
psilonoti endobyssate, suspension feeder Ros-Franch et al 2014 

‘Permophorus’ elongatus endobyssate, suspension feeder Ros-Franch et al 2014 

Cuneigervillia infraliasina endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillia aerosa endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillia laevis endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillia rheinhardti endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillia hagenowi endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillella ornata endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillella praecursor endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillella sp. endobyssate, suspension feeder Ros-Franch et al 2014 

Gervillia (Cultriopsis) 
acuminata endobyssate, suspension feeder Ros-Franch et al 2014 

Inoperna lilliputensis endobyssate, suspension feeder Ros-Franch et al 2014 

Inoperna sp. endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolius hillanus endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus bipartus endobyssate, suspension feeder Ros-Franch et al 2014 
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Modiolus cuncata endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus minimus endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus ornata endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus pumila endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus scalprum endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus sp. endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus ventricosus endobyssate, suspension feeder Ros-Franch et al 2014 

'Modiolus' sodburiensis endobyssate, suspension feeder Ros-Franch et al 2014 

Modiolus subcancellata endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna folium endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna hartmanni endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna semistriata endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna similis endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna sp. endobyssate, suspension feeder Ros-Franch et al 2014 

Pinna trigonata endobyssate, suspension feeder Ros-Franch et al 2014 

Isocyprina ewaldi 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Isocyprina (Eotrapezium) 
concentricum 

shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Isocyprina (Eotrapezium) 
depressus 

shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Isocyprina (Eotrapezium) 
germari 

shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Isocyprina (Eotrapezium) 
cucculatum 

shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Lyriomyophoria postera 
shallow infaunal, suspension 
feeder 

Ros-Franch et al., 2014, 
see autoecology for 
Elegantinia 

Cardinia ovalis 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Cardinia concinna 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Cardinia listeri 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Cardinia nilssoni 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Cardinia regularis 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Cardinia sp.(SC2) 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Ceratomya petricosa 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Idonearca sp. 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Mactromya cardioideum 
shallow infaunal, suspension 
feeder Delvene 2000 

Neocrassina gueuxii 
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

'Astarte' platymorpha  
shallow infaunal, suspension 
feeder 

Ros-Franch et al 2014, 
Hodges 2018 

Palaeocardita cf. austriaca 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Palaeocardita imbricatoradiata 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Pteromya crowcombeia 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Pteromya langportensis 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 
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Pteromya tatei 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Tutcheria heberti 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Tutcheria cloacina 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Protocardia oxynoti 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Protocardia philippianum 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Protocardia rhaetica 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Protocardia truncata 
shallow infaunal, suspension 
feeder Ros-Franch et al 2014 

Luciniola limbata 
shallow infaunal, suspension 
feeder with chemosymbionts Ros-Franch et al 2014 

Sphaeriola subglobosa 
shallow infaunal, suspension 
feeder with chemosymbionts Ros-Franch et al 2014 

Dacryomya gaveyi shallow infaunal, deposit feeder Wignall 1990 

Dacryomya heberti shallow infaunal, deposit feeder Wignall 1990 

Palaeoneilo elliptica shallow infaunal, deposit feeder Ros-Franch et al 2014 

Palaeoneilo galatea shallow infaunal, deposit feeder Ros-Franch et al 2014 

Palaeonucula navis shallow infaunal, deposit feeder Ros-Franch et al 2014 

Rollieria bronni shallow infaunal, deposit feeder Ros-Franch et al 2014 

Ryderia doris shallow infaunal, deposit feeder Ros-Franch et al 2014 

Ryderia texturata shallow infaunal, deposit feeder Ros-Franch et al 2014 

Ryderia titei shallow infaunal, deposit feeder Ros-Franch et al 2014 

Arcomya arcacea 
deep infaunal, suspension 
feeder No ref.  

Arcomya concinna 
deep infaunal, suspension 
feeder No ref.  

Arcomya sp. 
deep infaunal, suspension 
feeder No ref.  

‘Arcomya’ vetusta 
deep infaunal, suspension 
feeder No ref.  

Cercomya praecursor 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Goniomya hybrida 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Goniomya rhombifera 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Gresslya galathea 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Gresslya intermedia 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Gresslya sp. 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Homomya ventricosa 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Pholadomya ‘ovalis’ 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Pholadomya ambigua 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Pholadomya glabra 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Platymyoidea morrisi 
deep infaunal, suspension 
feeder Hodges 1987 

Pleuromya ?striato-granulata 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 
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Pleuromya costata 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Pleuromya crassa 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 

Pleuromya liasina 
deep infaunal, suspension 
feeder Ros-Franch et al 2014 
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Appendix C 

Species abundance counts and summary of framboid analysis per sample horizon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PINHAY BAY (DEVON)                       

  Langport Pre-planorbis Beds planorbis Zone 

Species LR1 
PH15 
(H1) 

PH1a-
b PH4 PH16 LR2 PH2 LR3 PH17SB PH18 PH3 

Modiolus minimus 2       5             

Liostrea spp.   5 29 20         2 3 3 

Pinna hartmanni             12       5 

Chlamys textoria               4   2   

Plagiostoma giganteum             2 1 1 18 2 

Chlamys valoniensis                 1     

Pseudolimea pectinoides                   3   

Cardinia ovalis                   1   

Plagiostoma punctatum                       

Camptonectes subulatus                       

Anningella cf. faberi                       

Gryphaea arcuata                       

Pseudolimea dentata                       

Gresslya sp.                       

Indeterminate (shallow infaunal) bivalve                       

                        

Species richness (n.) 1 1 1 1 1 0 2 2 3 5 3 

Mean framboid diameter (μm)   4.52   8.19   4.94 10.45 7.38     12.55 

Standard deviation of framboid diameter 
(μm)   1.54   2.48   1.54 4.13 3.56     5.70 

Fossil abundance (shale/mudstones/marls) 2 5     5 0   5 4 27   

Fossil abundance (limestone)     43 20     14       10 
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PINHAY BAY (DEVON)          
  liasicus Zone 

Species PH19 PH6 PH20 PH5 PH21 LR4 PH7 PH8 PH9 

Modiolus minimus         2         

Liostrea spp.     4 4 2   14 16   

Pinna hartmanni                   

Chlamys textoria                   

Plagiostoma giganteum 1 7 1 25     9 5 1 

Chlamys valoniensis                   

Pseudolimea pectinoides     2         1   

Cardinia ovalis                   

Plagiostoma punctatum     2             

Camptonectes subulatus                   

Anningella cf. faberi                   

Gryphaea arcuata                   

Pseudolimea dentata                   

Gresslya sp.                   

Indeterminate (shallow infaunal) bivalve                   

                    

Species richness (n.) 1 1 4 2 2 0 2 3 1 

Mean framboid diameter (μm)       9.09     10.13 10.78 9.26 

Standard deviation of framboid diameter 
(μm)       3.38     5.90 3.31 3.25 

Fossil abundance (shale/mudstones/marls) 1   9   4 0       

Fossil abundance (limestone)   7   29     23 22 1 
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PINHAY BAY (DEVON)             
  angulata Zone bucklandi Zone 

Species PH22 PH10 PH23 PH11 PH12 PH24 LR5 PH14 LR6 PH25 PH13 LR7 

Modiolus minimus                         

Liostrea spp. 11         7             

Pinna hartmanni                         

Chlamys textoria                         

Plagiostoma giganteum   6   4 4   1 6     2   

Chlamys valoniensis 1                       

Pseudolimea pectinoides                         

Cardinia ovalis                         

Plagiostoma punctatum 1                       

Camptonectes subulatus 3         3             

Anningella cf. faberi     44                   

Gryphaea arcuata               4         

Pseudolimea dentata           1             

Gresslya sp.                     1   

Indeterminate (shallow infaunal) bivalve                     4   

                          

Species richness (n.) 4 1 1 1 1 3 1 2 0 0 3 0 

Mean framboid diameter (μm)       9.54       5.73 5.54   10.97 4.29 

Standard deviation of framboid diameter 
(μm)       2.95       2.01 1.92   5.70 1.29 

Fossil abundance (shale/mudstones/marls) 16   44     11 1 10 0 0   0 

Fossil abundance (limestone)   6   4 4           7   
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ST AUDRIE'S BAY (SOMERSET)          
  Langport Pre-planorbis Beds 

Species SAB34 SAB1/33 SAB35 SAB58 SAB36 SAB2 SAB3 SAB4 SAB57 

Modiolus minimus         1 1       

Liostrea spp.   3     6 4 10     

Protocardia philippianum         2         

Anningella cf. faberi                   

Plagiostoma giganteum                   

Chlamys textoria                   

Pseudolimea pectinoides                   

Rollieria bronni                   

Palaeonucula navis                   

Cardinia ovalis                   

Camptonectes subulatus                   

Indeterminate bivalve sp. A       1           

                    

                    

Species richness (n.) 0 1 0 1 3 2 1 0 0 

Mean framboid diameter (μm)   6 4.94 7.06 7.06 6.22   5.9 7.62 

Standard deviation of framboid diameter 
(μm)   2.71 2.19 3.55 3.92 3.01   2.73 2.74 

Fossil abundance (shale/mudstones/marls)   3 0   9 5 10 0   

Fossil abundance (limestone)       1         0 
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ST AUDRIE'S BAY (SOMERSET)              
  planorbis Zone 

Species 
SAB5/3
7 

SAB5
6 

SAB1
9 

SAB
7 

SAB1
2 

SAB5
5 

SAB
8 

SAB5
4 

SAB5
3 

SAB13/
38 

SAB
9 

SAB14/
43 

SAB5
2 

Modiolus minimus                           

Liostrea spp.                           

Protocardia philippianum                           

Anningella cf. faberi 6   9 13                   

Plagiostoma giganteum             1             

Chlamys textoria                   1       

Pseudolimea pectinoides                       1   

Rollieria bronni                           

Palaeonucula navis                           

Cardinia ovalis                           

Camptonectes subulatus                           

Indeterminate bivalve sp. A                           

                            

                            

Species richness (n.) 1 0 1 1 0 0 1 0 0 1 0 1 0 

Mean framboid diameter (μm) 4.58 9.96 4.27   6.08 6.99 6.77 10.79 6.12 4.61     5.38 

Standard deviation of framboid 
diameter (μm) 1.59 6.05 1.44   2.09 3.12 4.37 4.95 1.83 1.24     1.67 

Fossil abundance 
(shale/mudstones/marls) 6   9 13 0   1     1 0 1   

Fossil abundance (limestone)   0       0   0 0       0 
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ST AUDRIE'S BAY (SOMERSET)             
  liasicus Zone 

Species SAB15/39 SAB40/10 SAB11 SAB16/41 SAB6/42 SAB17 SAB18 SAB20 SAB21 SAB22 SAB49 SAB23 

Modiolus minimus                         

Liostrea spp.                         

Protocardia philippianum 1                       

Anningella cf. faberi     1                 8 

Plagiostoma giganteum       1                 

Chlamys textoria                         

Pseudolimea pectinoides                         

Rollieria bronni   5                     

Palaeonucula navis   1                     

Cardinia ovalis       1 5               

Camptonectes subulatus                         

Indeterminate bivalve sp. A                         

                          

                          

Species richness (n.) 1 2 1 2 1 0 0 0 0 0 0 1 

Mean framboid diameter (μm) 8.79 5.93   6.64   4.72   9.86 4.19   4.56 4.13 

Standard deviation of framboid 
diameter (μm) 6.27 2.86   3.23   2.18   7.66 1.49   1.48 1.37 

Fossil abundance 
(shale/mudstones/marls) 1 6 1 2 5 0 0 0 0 0 0 8 

Fossil abundance (limestone)                         
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ST AUDRIE'S BAY (SOMERSET)          
  liasicus Zone 

Species SAB27/48 SAB25 SAB26 SAB24/47 SAB46 SAB51 SAB44 SAB45 SAB50 

Modiolus minimus                   

Liostrea spp.                   

Protocardia philippianum                   

Anningella cf. faberi                   

Plagiostoma giganteum                   

Chlamys textoria                   

Pseudolimea pectinoides   1   4           

Rollieria bronni       2           

Palaeonucula navis                   

Cardinia ovalis             1     

Camptonectes subulatus             1     

Indeterminate bivalve sp. A                   

                    

                    

Species richness (n.) 0 1 0 2 0 0 2 0 0 

Mean framboid diameter (μm) 4.63   4.72 6.62 5.94 7.09 8.18   10.88 

Standard deviation of framboid diameter 
(μm) 2.06   1.48 4.37 3.17 2.52 2.49   3.57 

Fossil abundance (shale/mudstones/marls) 0 1 0 6 0   2 0   

Fossil abundance (limestone)           0     0 
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EAST QUANTOXHEAD 
(SOMERSET)                    
  angulata Zone 

Species Q45 Q75 Q76 Q43 Q44 Q41 Q42 Q77 Q14 Q15 Q16 Q17/57 Q78 Q50 Q18 Q13 Q12 Q11 

Oxytoma inequivalvis                                     

Liostrea spp.         1       1                   

Plagiostoma giganteum       3 2       8                   

Palaeonucula navis                                     

Anningella cf. faberi                                     

Antiquilima succincta         1                           

Cardinia ovalis         2                           

Entolium lunare         1                           

Cardinia sp.                                     

Modiolus minimus 13                                   

Pinna similis                                     

Gryphaea arcuata                                     

Mactromya cardioideum                                     

Neocrassina gueuxii                                     

Indeterminate bivalve sp. B                                     

Juvenile bivalve form C         1                           

Juvenile bivalve form A                                     

Juvenile bivalve form B                                     

                                      

Species richness (n.) 1 0 0 1 6 0 0 0 2 0 0 0 0 0 0 0 0 0 

Mean framboid diameter (μm) 7.19 12.65 6.08   8.51 4.68 7.51 6.53   5.01 7.5 9.18 8.44 5.26 6.39 13.23     

Standard deviation of framboid 
diameter (μm) 4.34 5.03 1.97   4.69 1.48 3.03 2.77   2.49 3.36 3.32 3.40 1.85 2.51 14.19     

Fossil abundance 
(shale/mudstones/marls) 13       8 0 0   9 0 0 0   0 0 0     

Fossil abundance (limestone)   0 0 3       0         0       0 0 
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EAST QUANTOXHEAD (SOMERSET)              
  angulata Zone 

Species Q49 Q10 Q79/9 Q7 Q8 Q6/47 Q3 Q4/46 Q5 Q2 Q1/Q80 Q53 Q39 

Oxytoma inequivalvis                     10     

Liostrea spp.   1                       

Plagiostoma giganteum                           

Palaeonucula navis                           

Anningella cf. faberi                           

Antiquilima succincta                           

Cardinia ovalis                           

Entolium lunare                           

Cardinia sp.                           

Modiolus minimus                           

Pinna similis                           

Gryphaea arcuata     3                     

Mactromya cardioideum                           

Neocrassina gueuxii                           

Indeterminate bivalve sp. B           2               

Juvenile bivalve form C                           

Juvenile bivalve form A                           

Juvenile bivalve form B                           

                            

Species richness (n.) 0 1 1 0 0 1 0 0 0 0 1 0 0 

Mean framboid diameter (μm)   3.82 10.1 5.18 5.53     4.67 7   8.76   4.71 

Standard deviation of framboid diameter 
(μm)   1.13 3.63 1.87 2.78     1.61 2.87   3.07   1.57 

Fossil abundance (shale/mudstones/marls) 0 1   0 0 2   0 0     0 0 

Fossil abundance (limestone)     3       0     0 10     
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EAST QUANTOXHEAD (SOMERSET)                
  bucklandi Zone 

Species Q40 Q81 Q20 Q38 Q19 Q52 Q37 Q36 Q34 Q54 Q35 Q82 Q55 Q33 Q29 

Oxytoma inequivalvis                               

Liostrea spp.                               

Plagiostoma giganteum                               

Palaeonucula navis                           1   

Anningella cf. faberi       3                       

Antiquilima succincta                               

Cardinia ovalis                               

Entolium lunare                               

Cardinia sp.                               

Modiolus minimus                               

Pinna similis   1                           

Gryphaea arcuata                               

Mactromya cardioideum                               

Neocrassina gueuxii                               

Indeterminate bivalve sp. B                   3           

Juvenile bivalve form C                               

Juvenile bivalve form A                   1     1     

Juvenile bivalve form B                   1           

                                

Species richness (n.) 0 1 0 1 0 0 0 0 0 3 0 0 1 1 0 

Mean framboid diameter (μm)   8.99   3.95       5.59     5.76 8.54       

Standard deviation of framboid diameter 
(μm)   3.97   1.49       2.97     2.04 3.03       

Fossil abundance (shale/mudstones/marls) 0   0 3   0 0 0 0 5 0   1 1 0 

Fossil abundance (limestone)   1     0             0       
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EAST QUANTOXHEAD (SOMERSET)                
  bucklandi Zone 

Species Q28 Q30 Q31 Q32 Q83 Q56 Q27 Q21 Q24 Q25 Q23 Q57 Q58 Q59 Q84 

Oxytoma inequivalvis                               

Liostrea spp.           1             1     

Plagiostoma giganteum                               

Palaeonucula navis                               

Anningella cf. faberi   1       1                   

Antiquilima succincta                               

Cardinia ovalis                               

Entolium lunare                               

Cardinia sp.                         2     

Modiolus minimus                               

Pinna similis                               

Gryphaea arcuata           1             1     

Mactromya cardioideum                         1     

Neocrassina gueuxii                               

Indeterminate bivalve sp. B                         1     

Juvenile bivalve form C           4                   

Juvenile bivalve form A           5                   

Juvenile bivalve form B           5                   

                                

Species richness (n.) 0 1 0 0 0 6 0 0 0 0 0 0 5 0 0 

Mean framboid diameter (μm)     6.23   8.48           5.62   7.52 4.17 9.6 

Standard deviation of framboid diameter 
(μm)     3.00   3.31           1.57   3.93 1.52 5.15 

Fossil abundance (shale/mudstones/marls) 0 1 0 0   17 0   0 0 0   6 0   

Fossil abundance (limestone)         0     0       0     0 
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EAST QUANTOXHEAD (SOMERSET) 

  
Species Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 Q61 Q60 Q72 Q73 Q74 

Oxytoma inequivalvis                               

Liostrea spp.                               

Plagiostoma giganteum                 1             

Palaeonucula navis                               

Anningella cf. faberi                             1 

Antiquilima succincta 1                             

Cardinia ovalis                               

Entolium lunare                             1 

Cardinia sp.                               

Modiolus minimus                               

Pinna similis                               

Gryphaea arcuata                               

Mactromya cardioideum       3                       

Neocrassina gueuxii       2                       

Indeterminate bivalve sp. B           1   1     1         

Juvenile bivalve form C                               

Juvenile bivalve form A 2       3                     

Juvenile bivalve form B                               

                                

Species richness (n.) 2 0 0 2 1 1 0 1 1 0 1 0 0 0 2 

Mean framboid diameter (μm) 5.83 5.26 4.49       4.44 5.78 9.61 6.01     10.4 5.25   

Standard deviation of framboid diameter 
(μm) 3.27 2.89 1.96       1.67 2.81 5.07 2.16     4.79 2.48   

Fossil abundance (shale/mudstones/marls) 3 0 0 5 3 1 0 1 1 0 1 0 0 0 2 

Fossil abundance (limestone)                               
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LAVERNOCK POINT 
(GLAMORGAN)         
  Langport Mbr Pre-planorbis Beds 

Species LP21 LP9 LP8 
LP1
0 

LP20
b 

LP20
a 

LP1
1 LP7 

Anningella cf. faberi                 

Camptonectes subulatus                  

Atreta intusstriata 7 6             

Modiolus sp. (juvenile)   4             

Cardinia ovalis   1             

Chlamys valoniensis                 

Chlamys textoria                 

Grammatodon hettangiensis   1             

Liostrea spp.   3 3 1   31     

Modiolus minimus     1           

Modiolus hillanus   11   1         

Modiolus ventricosus                 

Plagiostoma giganteum               1 

Plagiostoma punctatum                 

Myoconcha psilonoti   2             

'Plicatula' hettangiensis   1             

Protocardia philippianum   1             

Indeterminate bivalve sp. A             2   

Pinna similis                 

Indeterminate bivalve sp. B                 

                  

Species richness (n.) 1 9 2 2 0 1 1 1 

Mean framboid diameter (μm) 10.39 11.01 
6.6

8 4.39 8.97 9.18 6.65 
7.1

3 

Standard deviation of framboid 
diameter (μm) 3.83 11.18 

3.7
2 1.34 7.4 4.89 3.86 

3.8
9 

Fossil abundance 
(shale/mudstones/marls)   30 4 2 0   2 1 

Fossil abundance (limestone) 7         31     
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LAVERNOCK POINT 
(GLAMORGAN)                
  planorbis Zone 

Species LP12 
LP1
9 

LP1
3 

LP18
b 

LP18
a LP6 LP17 LP5 LP16 

LP15
b 

LP15
a LP4 

LP14
c 

LP14
b 

LP14
a 

Anningella cf. faberi 1   1                         

Camptonectes subulatus  3                           6 

Atreta intusstriata                               

Modiolus sp. (juvenile) 4   3   17         2           

Cardinia ovalis                               

Chlamys valoniensis               2               

Chlamys textoria 1             2               

Grammatodon hettangiensis                               

Liostrea spp.         1                     

Modiolus minimus 4   4 2   1                   

Modiolus hillanus                       1       

Modiolus ventricosus                       1       

Plagiostoma giganteum               1     2         

Plagiostoma punctatum                               

Myoconcha psilonoti                               

'Plicatula' hettangiensis                               

Protocardia philippianum                               

Indeterminate bivalve sp. A 6                             

Pinna similis                               

Indeterminate bivalve sp. B                       1       

                                

Species richness (n.) 6 0 3 1 2 1 0 3 0 1 1 3 0 0 1 

Mean framboid diameter (μm) 5.47 9.13 6.61 8.19 7.67 
6.4

6 
12.3

1 
5.9

9 
10.8

7 6.18 6.89 
6.6

6 8.61 8.32 9.31 

Standard deviation of framboid 
diameter (μm) 2.2 4.42 2.97 2.87 3.39 2.8 6.52 

2.3
6 

10.2
1 2.39 2.44 

4.8
3 3.35 3.29 4.06 

Fossil abundance 
(shale/mudstones/marls) 19   8 2 18 1   5   2   3   0   

Fossil abundance (limestone)   0         0   0   2   0   6 
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LAVERNOCK POINT (GLAMORGAN)    
  liasicus Zone 

Species LP3 LP2 LP1 

Anningella cf. faberi       

Camptonectes subulatus        

Atreta intusstriata       

Modiolus sp. (juvenile)       

Cardinia ovalis       

Chlamys valoniensis       

Chlamys textoria   1   

Grammatodon hettangiensis       

Liostrea spp.   2   

Modiolus minimus       

Modiolus hillanus       

Modiolus ventricosus   3   

Plagiostoma giganteum 4 3   

Plagiostoma punctatum   2   

Myoconcha psilonoti       

'Plicatula' hettangiensis       

Protocardia philippianum       

Indeterminate bivalve sp. A       

Pinna similis 1     

Indeterminate bivalve sp. B       

        

Species richness (n.) 2 5 0 

Mean framboid diameter (μm) 8.86 8.06 6.64 

Standard deviation of framboid diameter 
(μm) 10.57 5.04 4.52 

Fossil abundance (shale/mudstones/marls) 5 11 0 

Fossil abundance (limestone)       
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NASH POINT (GLAMORGAN)                
  angulata Zone 

Species 
NP
9 

NP1
0 

NP1
1 

NP
7 

NP1
2 

NP1
3 

NP1
4 

NP1
5 

NP1
6 

NP1
7 

NP
8 

NP1
8 

NP1
9 

NP2
0 

NP21
b 

Gresslya galathea 1   2 1       3       1       

Plagiostoma giganteum   1       4   4 1 30 1 1 28   1 

Liostrea spp.     1       1 2   3         3 

Camptonectes subulatus      1   1   1   1     2     5 

'Plicatula' hettangiensis       1           1           

Pleuromya liasina           1                   

Placunopsis sp.             1       1       1 

Pseudolimea pectinoides                 2       2   1 

Entolium lunare                 1             

Antiquilima succincta                   2   1 1     

Ctenostreon philocles                         5     

Pinna similis                         3     

Modiolus ventricosus                               

Mactromya cardioideum                               

Neocrassina gueuxii                               

Gryphaea arcuata                               

Atreta intusstriata                               

Chlamys textoria                               

Cardinia ovalis                               

                                

Species richness (n.) 1 1 3 2 1 2 3 3 4 4 2 4 5 0 5 

Mean framboid diameter (μm) 
8.8

9 
10.2

0 9.02   7.98 7.48 7.73 
10.3

7 6.22 8.70   
14.6

6 6.34 7.98 5.38 

Standard deviation of framboid diameter 
(μm) 

2.7
6 

10.0
1 4.45   3.84 2.12 2.37 7.69 1.61 5.71   5.38 3.85 2.98 1.66 

Fossil abundance 
(shale/mudstones/marls) 1 1 4   1   3 9 5     5 39 0 11 

Fossil abundance (limestone)       2   5       36 2         
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NASH POINT (GLAMORGAN)               
  angulata Zone 

Species 
NP21
a 

NP21
d 

NP21
c 

NP2
2 

NP2
3 

NP2
4 

NP2
5 

NP2
6 

NP4
0 

NP4
1 

NP4
2 

NP4
3 

NP4
4 

NP4
5 

Gresslya galathea 1             1             

Plagiostoma giganteum   2   29     26         4 8 15 

Liostrea spp. 6       2           1   2   

Camptonectes subulatus          2 3                 

'Plicatula' hettangiensis                             

Pleuromya liasina                             

Placunopsis sp.                             

Pseudolimea pectinoides   45                         

Entolium lunare 1                           

Antiquilima succincta       13                     

Ctenostreon philocles         2                   

Pinna similis   2                         

Modiolus ventricosus   5           1             

Mactromya cardioideum             2 1             

Neocrassina gueuxii                     1       

Gryphaea arcuata                       5 7   

Atreta intusstriata                             

Chlamys textoria                             

Cardinia ovalis                             

                              

Species richness (n.) 3 4 0 2 3 1 2 3 0 0 2 2 3 1 

Mean framboid diameter (μm) 7.03 7.28 7.94 7.55 8.76 
10.9

9 8.03 9.63 8.00 9.51 7.59 9.34 7.80   

Standard deviation of framboid diameter 
(μm) 3.5 4.44 4.94 2.13 2.62 5.12 2.2 7.08 3.01 5.63 3.36 3 3.99   

Fossil abundance 
(shale/mudstones/marls)   54     6 3   3 0 0 2       

Fossil abundance (limestone) 8   0 42     28         9 17 15 
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NASH POINT 
(GLAMORGAN)       

 

          
   bucklandi Zone 

Species 
NP4
6 

NP4
7 

NP3
9 

NP3
8 

NP3
7 

NP3
6 

 NP3
4 

NP3
5 

NP3
2 

NP3
3 

NP3
1 

NP3
0 

NP2
9 

NP28
b 

NP28
a 

NP2
7 

Gresslya galathea                                  

Plagiostoma giganteum 1   27     26    3 6   28         4 

Liostrea spp. 2   5     14        1         1   

Camptonectes subulatus                     1             

'Plicatula' hettangiensis                                  

Pleuromya liasina                                  

Placunopsis sp.                                  

Pseudolimea pectinoides     1                            

Entolium lunare     1     1              1       

Antiquilima succincta           1                      

Ctenostreon philocles           1                      

Pinna similis                9 4   33   30     30 

Modiolus ventricosus                                  

Mactromya cardioideum       1                          

Neocrassina gueuxii                                  

Gryphaea arcuata     10                    4       

Atreta intusstriata 1         1                      

Chlamys textoria                      1           

Cardinia ovalis                          1       

                                   

Species richness (n.) 3 0 5 1 0 6  0 2 2 2 3 0 4 0 1 2 

Mean framboid diameter 
(μm) 7.87 7.65 8.20 8.16 

10.9
8 7.63 

 
9.90     8.42 8.50 7.78 6.31 8.16 7.97 7.46 

Standard deviation of 
framboid diameter (μm) 3.61 3.28 3.48 3.24 7.06 3.68 

 
5.63     3.11 4.23 4.27 3.02 4.61 3.35 8.58 

Fossil abundance 
(shale/mudstones/marls)   0     0   

 
0     2   0   0 1   

Fossil abundance 
(limestone) 4   44 1   44 

 
  12 10   62   36     34 
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Appendix D 

NMW collection list 

Available at: https://doi.org/10.1016/j.palaeo.2019.05.011. 

 

Appendix E 

Compendium of bivalve body size data spanning the 

uppermost Triassic through the Lower Jurassic 

Available at: https://data.mendeley.com/datasets/pnfsxzfsb4/draft?a=3aa8cbd1-

ca98-4beeb03c-cddd31828b90 
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Appendix F 

Diagnostic features to differentiate species of Lower Jurassic 

bivalves 

 

A concise series of taxonomic notes in tabulated form are here provided. These 

describe key morphological features used to distinguish between two or more 

species belonging to the same genus. In some instances only brief notes are 

provided for congeneric species to validate the choices made within this work to 

either synonymise or split taxa. The rest follow widely accepted definitions of the 

species. 

 

Entolium  

E. liasianum (Nyst)  

E. lunare (Roemer)    

 

E.  liasianum  E. lunare 

Equivalved 
As in E. liasianum 

Inequilateral (weakly) Equilateral  

suborbicular subovate 

H ~L H > L juvenile 

L > H adult 

Anterior auricle slightly larger than 

posterior. 

 

UA obtuse UA obtuse, increasing at a decreasing rate.  

RV auricles extend dorsally of umbo. RV auricles extend dorsally of umbo. 

LV auricles flush with hinge.  LV auricles meet hinge at obtuse angle, disc at 

acute. 

Anterior margin of anterior auricle slightly 

convex. 

 

Posterior margin of posterior auricle 

straight, meeting hinge at obtuse angle. 

RV; posterior meets disc at acute angle, 

anterior meets disc c. 90°. 

Concaved antero-dorsal margin, straight 

postero-dorsal margin. 

Dorsal margins weakly concaved. 

Small byssal notch in RV sometimes 

present. 

Small byssal notch in juvenile form. 
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Hodges (1987) reports E. liasianum to occur in the Hettangian and Sinemurian 

of Britain (Pre-planorbis-semicostatum, ?jamesoni), with specimens from the 

upper Pliensbachian being regarded as a belonging to a different species owing 

to a larger umbonal angle (UA) and overall larger size compared to those 

encountered in the Lower Lias. These are typically assigned to E. lunare (see 

Johnson 1984; Little 1996), this being because Roemer’s type specimen has an 

UA of 150°, far exceeding that expected for E. liasianum. Johnson (1984, 1985) 

shows that the UA increases with increasing size of the shell, a condition found 

also during this study. As Pliensbachian specimens of Entolium attain a greater 

shell size than those of the Hettangian and Sinemurian, a wider UA is to be 

expected. Further to this all complete specimens measured of Entolium occupy 

the same morphospace on UA:H/L plot (Fig. AF.1). Regarding the species 

name to assign, E. lunare (Roemer 1839) takes precedence over E. liasianum 

(Nyst 1843).  

 

 

Fig. AF.1 Umbonal angle (UA) in degrees against shell height (H) to length 

(L) ratios. Hettangian/Sinemurian specimens originally attributed to 

Entolium liasianum and Pliensbachian specimens to Entolium lunare 

showing complete overlap in morphospace.  
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Camptonectes  

C. subulatus (Münster)    

C. auritus (Schlotheim)     

C. punctatissimus (Quenstedt)    

C. jamoignensis (Terquem & Piette)  

 

 

Camptonectes jamoignensis (not shown in table) was considered by Hodges 

(1987) to occur in the British Lias, this species was regarded a synonym of C. 

subulatus by Johnson (1984). Johnson’s classification is here supported as 

specimens identified in museum collections as C. jamoignensis differ from C. 

subulatus by being larger and exhibiting a greater UA. As UA increases with 

size it is likely that the C. jamoignensis are just individuals of C. subulatus that 

survived to a greater age. This is demonstrated by the fact that specimens of C. 

jamoignensis housed within the National Museum of Wales plot as a continuum 

of GMBS:UA with C. subulatus (Fig. AF.2). 

C. punctatissimus may also be, as Johnson (1984) suggests, a synonym of C. 

subulatus. The figured type material in Quenstedt (1858) clearly shows ribs with 

co-marginal punctae occupying the interspaces, this feature is also well shown 

in Hodges (1987). But Johnson regards this as a mere artefact of preservation. 

On a similar note, the distinguishing features of C. auritus and C. subulatus 

C. subulatus 
C. auritus  

        C. punctatissimus  

H > L (slightly). 
H > L in juveniles, becoming H 

<L in adults.  

H > L (slightly).  

 

Auricles show divaricating 

and co-marginal striae. 

Posterior auricle – divaricating 

striae 

Anterior auricle – co-marginal 

striae. 

Radial ribs on anterior 

auricle of LV. 

Anterior auricles meet hinge 

at c. 90°.  Anterior auricle of 

LV meets disc at acute 

angles, on RV meets disc at 

90° or more.  

Anterior auricle of RV meets 

hinge and disc at c. 90°. 

Anterior auricle of LV meets 

disc at acute angle, hinge at 

obtuse angle.  

Anterior auricle RV straight 

anterior margin, meets 

hinge at 90°.  

Ornament of fine divaricate 

ribs (c. 40) punctate by 

intersection of co-marginal 

striae.  Central region of 

shell smooth. 

Ornamented by a variable 

number of fine divaricate 

striae, increasing by 

intercalation and punctate at 

intersection of co-marginal 

striae.  Across all of valve.  

c. 55 slightly irregularly 

spaced radial ribs, co-

marginal punctae 

occupying interspaces only.  
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refer to the restriction of the ornament to the shell margins in the latter species. 

This was not alluded to in Münster’s original description and the type specimen 

has not been located. It is possible that this feature is also an artefact of 

preservation. As so few specimens of Camptonectes retain their full ornament it 

is perhaps best to regard assign species with caution, and instead look to 

generic body size trends.  

 

 

 

Fig. AF. 2 Changes in umbonal angles (UA) in degrees with body size for 

Camptonectes subulatus and C. jamoignensis. 
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Chlamys 

C. valoniensis (Defrance)  

C. pollux (d’Orbigny)    

C. textoria (Schlotheim)   

C. lavernockensis Hodges   

 C. milvus (Cox)    

 

C. valoniensis C. pollux  C. textoria C. lavernockensis C. milvus 

RV flattened. As in C. valoniensis. As in C. valoniensis. Valves of approx. equal inflation. RV unknown. 

H > L (juvenile), L > H (adult). H ~ L H > L  H > L (slightly).  

Posterior auricle meets hinge 

at obtuse, disc at acute. 

As in C. valoniensis. As in C. valoniensis. As in C. valoniensis. Posterior margin of posterior 

auricle concave, producing 

pointed auricle.  

Anterior margin of anterior 

auricle convex (RV).  

As in C. valoniensis. Anterior auricle anterior margin 

truncated (RV). 

As in C. textoria. Anterior margin of anterior 

auricle concave, producing 

pointed sharp auricle. 

36-45 radial ribs (for L=20) 

broadly of two sizes, ribs can 

also increase via bifurcation. 

Lower rib count than C. 

valoniensis, primary ribs 

develop spines, 

secondary ribs lack 

spines (~7 primary, 

larger ribs). 

17-98 radial plicae. 

Reticulate, ribs can also increase 

via bifurcation, ribs of variable 

size (generally 2 orders) crossed 

by regular sharp commarginal 

threads. 

Each valve bears approx. 70 radial 

ribs, slightly sinuous, interspaces of 

variable width, only develop in the 

lower half of valve. Ribs crossed by 

regular commarginal threads.   

Narrow, widely spaced ribs, 

lacks concentric threads 

(except near umbo).  
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The distinct ornament in C.  lavernockensis may be the result of preferential 

abrasion on the oldest region of the shell in C. textoria, however the smooth 

region is equally developed on both valves.  

 

Eopecten  

E. velatus (Goldfuss)    

E. angularis (Tate)  

   

 

 

 

 

 

 

 

 

 

 

E. velatus  E. angularis 

Typically, L>H H>L 

UA variable  UA < 90° 

Equilateral-inequilateral  Inequilateral  

Very large notch with ctenolium RV similar to Chlamys but with elongated 

anterior auricle with large byssal notch  

All auricles meet hinge at c. 90° All auricles meet hinge at c. 90°or obtuse  

Ornament on LV differentiated into costae 

and striae in all but the largest specimens  

LV bears 100+ sinuous radial ribs increasing 

by implantation of ribs in the interspaces 

(rib count includes 1st and 2nd order of 

ribbing). RV ornament less pronounced  

 Auricles bear radial ribs 

 Ribs bear small spines (diagnostic) 
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Plagiostoma 

P. giganteum Sowerby    

P. punctatum Sowerby   

 

Antiquilima 

A. antiquata (J. Sowerby)       

A. succincta (Schlotheim)    

A.  hermanni (Voltz)      

A. nodulosa (Terquem)     

P. giganteum       P. punctatum             

Posterior auricle more pronounced with 

depressed lunule 

Auricle lengths are equal but anterior 

slightly smaller, posterior auricle bears 

radial ribs 

Slightly sinuous radial ribs less well developed in 

centre of shell 

c. 100 radial ribs on whole of shell 

surface and commarginal striae, 

weathering to form rows of punctae 

increasing in density towards umbo 

Fine fibrous divaricating striae  

Cardinal area subtriangular Cardinal area curved parallel to dorsal 

margin 

A. antiquata A. succincta A. hermanni A. nodulosa 

Anterior auricle 

smaller than 

posterior 

Pronounced 

anterior auricle. 

Pronounced anterior 

auricle.  

Anterior auricle 

smaller than 

posterior 

c. 100 radial ribs. 

Rounded cross 

section.  

> 65 primary ribs, 

numerous 

interspace ribs of 

various widths.  

Juvenile smooth with 

deeply incised grooves, 

developing into broad, flat 

ribs in adults, c. 50 ribs, no 

interspace ribs 

> 70 radial ribs 
and secondary 
ribs.  Nodes on 
ribs.  
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Pseudolimea  

P. eryx (d’Orbigny)    

P. pectinoides (Sowerby)   

P. dentata (Terquem)   

P. hettangiensis (Terquem)  

P. acuticostata (Münster)    

 

Distinction between P. pectinoides, P. eryx 

and P. hettangiensis is quite impractical, 

Cox (1944) synonymised P. hettangiensis 

into P. eryx and remarked how is was often 

confused with P. pectinoides. All three of 

these species of Psuedolimea should be 

regarded as P. pectinoides, with P. dentata 

being distinct owing to the lack of 

interspaced ribs. P. acuticostata may also 

be a synonym of P. pectinoides, however 

further work is required to test this. 

P. eryx       P. pectinoides     P. dentata  P. acuticostata P. hettangiensis 

Rounded umbones 

salient above 

hinge 

Flattened umbones  Median 

umbones, 

salient above 

hinge 

As in P. dentata  As in P. eryx 

20 primary ribs, 

obtuse, sharp 

crests in cross 

section  

15-20 radial ribs, 

obtuse, sharp crests in 

cross section, may 

appear rounded if 

specimen is abraded.    

20 radial ribs, 

rounded cross 

section.  

14-15 sharp triangular 

ribs  

16 sharp 

crested ribs. 

Interspaces 

variable width on 

individual 

specimens. 

Interspaces variable 

width with thread like 

ribs in interspaces. 

Evenly spaced 

interspaces 

lacking 

interspace 

ribs. 

Interspaces flat to 

slightly concave Several 

fine interspace threads, 

these thinner ribs cover 

the anterior and 

posterior and ears. 

Thin, narrow 

secondary ribs 

in interspaces.  
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Oxytoma 

O. (O.) inequivalvis (J. Sowerby)   

O. (O.) sinemuriensis (d’Orbigny)    

O. (O.) fallax (Pflücker)    

O. (Palmoxytoma) cygnipes (Young & Bird)    

 

 

O. (O.) inequivalvis O. (O.) sinemuriensis O. (O.) fallax O. (P.) cygnipes 

Posterior auricle flattened, 

elongate and pointed. 

Posterior auricle 

flattened obtusely angled 

at hinge line, not pointed. 

Posterior auricle flattened. Same as in O. inequivalvis. 

Posterior auricle bears pronounced 

auricle sinus. 

Lacks pronounced auricle 

sinus.  

Posterior auricle not 

separated by sinus. 

Posterior auricle bears pronounced sinus.  

c. 12 primary ribs, curving away 

from umbo. 

c. 24 primary ribs, less 

pronounced than in O. 

inequivalvis. 

24-26 radial riblets.  4-8 primary radial ribs extent beyond margin of shell, 

divaricate slightly, ribs bear 2-3 commarginal rows of 

spines, primary rib count increases with size.  

Secondary ribs originate some way 

from umbo 

Numerous fine interspace 

striae. 

Appears to lack secondary 

ribs. 

Fine radial thread in interspaces. 

RV smaller, flattened, suborbicular, 

umbones small, not salient above 

hinge. 

RV unknown.  RV Less convex than LV. RV condition same as for O. inequivalvis.  
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Grammatodon (Grammatodon) 

G. (G.) insons Melville   

G. (G.) intermedius (Simpson)  

G. (G.) pullus (Terquem)   

 

 

Melville (1956) distinguished his species of Grammatodon from G. intermedius 

on the basis of the latter being smaller, shorter and more quadrate in outline, as 

well as bearing stronger and more regular growth lines, and radial ribs of a 

more consistent strength. Additionally Melville remarked that G. intermedius has 

shorter and more oblique anterior hinge teeth than seen in G. insons. These 

distinctions are minimal and separation of the two species in juveniles may be 

difficult.  

 

 

 

 

 

 

G. (G.) insons G. (G.) intermedius  G. (G.) pullus  

Sub-quadrate - ovoid 
Same as for G. insons Trapezoidal, oblique, H = 60% 

L  

Moderately inflated  Same as for G. insons Well inflated  

Faint radial ribs, most 

pronounced on anterior 

margin, concentric growth 

lines 

Same as for G. insons >30 radial fine ribs and co-

marginal striae.  

Posterior margin rounded and 

extends ventrally beyond 

hinge plate 

Same as for G. insons Posterior margin straight, 

meets dorsal margin at 

oblique angle, anterior margin 

rounded meeting dorsal at c. 

90°, ventral straight-weakly 

curved  

No sulcus Same as for G. insons Median sulcus running from 

centre of umbo to ventral 

margin in each valve.  
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Grammatodon (Cosmetodon) 

G. (C.) hettangiensis (Terquem) 

G. (C.) buckmanni (Richardson) 

 

 

 

 

 

 

 

 

Terquem’s type is identical to G. (C.) buckmanni with the exception of those 

points outlined above.   

 

Liostrea 

L. hisingeri (Nilsson) 

L. irregularis (Münster) 

 

 

 

 

 

 

 

Considerable morphological overlap between the two species. L. hisingeri is the 

primary faunal component of the Ostrea Beds of the Pre-planorbis beds.  

 

 

 

 

G. (C.) hettangiensis G. (C.) buckmanni 

Posterior margin rounded. Posterior margin pointed. 

Posterior meets hinge at 
110°. 

 

Posterior meets hinge at 
130°. 

 

Ornament or radial ribs 
appears more pronounced 
than in G. (C.) buckmanni. 

Numerous faint radial 
ribs. 

L. hisingeri L. irregularis 

Both valves flat. LV greater inflation than 

RV.  

Often comma-shaped 
outline.  

Irregular outline. 

Often free-lying/cemented 
to substrate. 

Usually attached to other 
shells.  
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Plicatula  

P. spinosa (J. Sowerby)    

P. hettangiensis (Terquem)     

 

 

 

 

 

 

 

 

 

 

 

 

 

Damborenea (2002) provides argument for placement of P. spinosa into the 

genus Harpax based on details in the hinge and convexity of the right valve 

(attached valve), which in Harpax the RV is less convex than the LV, a condition 

reversed in Plicatula.  Terquem (1885) described P. hettangiensis as “la valve 

supérieure est plane” the upper valve is flat, this suggests this may remain in 

Plicatula.  

 

 

 

 

 

 

 

 

 

P. spinosa       P. hettangiensis             

Sub-elliptical, slightly 

elongated, H > L 

Irregularly triangular 

Medium attachment area 

relative to shell size 

Small attachment area relative to 

shell size 

Both valves bear 

irregular, partly 

interrupted radial ribs. 

Commarginal ornament 

at irregular intervals, 

scale-like.  

Small spines at intersection of 

roughly commarginal growth halts 

and radial rugosities  

 Spines increase in size towards 

margin becoming tabular  

 Secondary rugosities may be present 

between primary ones 
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Hippopodium  

H. tuffleyensis Palmer   

H. ovale Moore   

H. ponderosum J. Sowerby  

 

Myoconcha  

M. (Myoconcha) psilonoti Quenstedt  

M. (Modiolina) decorata (Münster) 

 

 

 

  

 

 

 

 

 

 

 

 

M. (Modiolina) decorata is differentiated from M. (Myoconcha) psilonoti by the 

lower rib count, greater inflation, and straighter valves. Ribs are also developed 

over a narrower region. Appears similar to Inoperna but has more ribs and lacks 

commarginal folds.  

 

 

H. tuffleyensis H. ovale H. ponderosum 

H/L = c. 0.65 H/L = c. 50 H/L = c. 0.70 

Antero-dorsal margin slopes 

steeply down from umbo.   

Dorsal margin seems 

more-or-less flat. 

Similar to H. ovale.  

Antero-ventral lobe extends 

anteriorly of beaks. 

As in H. tuffleyensis Antero-ventral lobe does not 

project beyond beaks, 

producing a fairly straight 

antero-dorsal margin  

M. (Myoconcha) psilonoti  M. (Modiolina) decorate 

Posterior-ventral margin 

gently convex 

Dorsal and ventral margins 

parallel  

Small terminal beaks, 

slightly incurved 

Small beaks, not terminal  

12 weak radial ribs cover 

much of shell (bar the 

antero-ventral region) and 

commarginal growth halts 

8 radial ribs in dorsal region only. 

Internally LV short but 

curved tooth below beaks 

Thin curved tooth near anterior 

margin  

Anterior adductor scar 

subtrigonal behind 

myomorphic buttress  

Suboval adductor, pronounced 

myomorphic buttress  
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Modiolus  

M. minimus (J. Sowerby)  

M. hillanus (J. Sowerby)    

M. ventricosus (Roemer)  

M. scalprum (J. Sowerby)     

 

Main distinction between the four key species of Modiolus encountered is 

decreasing curvature of shell from M. minimus to M. scalprum, as measured by 

an increasing L to oblique length (l) and decreased H/L (Fig. AF 3). This 

evolutionary trend is perhaps an example of neotony, as shell curvature 

increases during growth of the individual. Additional species encountered are:  

M. bipartitus, M. cuncata, M. ornata, M. pumila, and M. subcancellata however 

in most instances insufficient material was examined to permit a detailed 

assessment of their taxonomy.  

M. minimus M. hillanus M. ventricosus M. scalprum 

Inequilateral, 

oblique. 

As in M. minimus. Extremely 

inequilateral. 

As in M. ventricosus. 

Sharpest curvature 

for length of shell. 

Lower curvature 

for length. 

Still lower curvature 

for length. 

Almost straight, 

lowest curvature of 

the four species. 

Pronounced growth 

halts. 

Pronounced 

growth halts. 

Numerous fine 

concentric ridges, no 

pronounced growth 

halts. 

Numerous fine 

concentric ridges, 

some specimens 

feature pronounced 

growth halts. 

  Anterior well rounded, 

umbones nearly 

terminal, not distinct.  

Anterior less 

rounded antero-

dorsal margin 

concaved umbones 

more distinct.  
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Fig. AF.3 Morphospace plot for species of Modiolus, showing variation in 

curvature of shell as measured by H/L and L/l (oblique length, see inset).  

 

Gervillia 

G. hagenowi (Dunker) 

G. laevis Buckman 

G. aerosa (Simpson) 

G. rheinhardti (Terquem & Piette) 

 

These four species were recorded erroneously in Appendix E as belonging to 

the genus Cunigervillia. Only C. infraliasina (Quenstedt) of the bakevelliidae 

specimens herein measured can be assigned to that genus.  

Distinction between these is not clear and further work is required to refine their 

taxonomy, as such no table of distinguishing features is herein presented. In the 

current standing G. hagenowi is the most reclined, more elongate with greater 

obliquity. G. aerosa and G. rheinhardti are similar in that they are less reclined, 

having a greater H:L ratio. Distinction of G. rheinhardti from G. aerosa appears 

difficult although a slight anterior rounded projection (not a wing) may prove 

useful for discrimination. G. laevis appears as an intermediate form between the 

very elongate G. hagenowi and the shorter G. aerosa. 
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Gervillella  

G. praecursor (Quenstedt) 

G. ornata (Moore) 

 

 

 

 

The genus of species praecursor seems in question, Marquez-Aliaga et al. 

(2010) placed this into the sub-genus bakevelloides of the genus Bakevillia. 

Equally generic assignment for G. ornata is questionable (Ivimey-Cook et al. 

1999). 

 

‘Permophorus’  

P. elongatus (Moore)   

P. angulatus (Moore)   

 

 

 

 

 

 

Pinna  

P. hartmanni Zeiten  

P. similis Chapuis & Dewalque    

P. trigonata Martin    

P. folium Young & Bird  

P. semistriata Terquem 

 

 

G. praecursor  G. ornata 

Ornamented by 

commarginal growth lines 

and undulations. 

c. 7 prominent radial ribs crossed 

by commarginal growth lines and 

undulations. 

P. elongatus  P. angulatus 

Two poorly to moderately well-

developed lines extending from 

umbones to posterior-ventral 

margin, may divide shell into 3 

elongate triangular sections.  

Three acute, slightly curved 

ribs extending from umbo 

to posterior margin 
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P. similis       P. trigonata                 P. folium   P. hartmanni P. semistriata 

UA 34-40° UA 60-70° UA 20-30°  UA c. 30° 

Ventral: 7 or more 

weak radial ribs, 

strong commarginal 

folds sweeping 

towards anterior. 

Ventral: Irregularly 

spaced commarginal 

folds sweep towards 

ventral margin. 

Ventral: Half of ventral surface 

covered by fine straight to slightly 

sinuous ribs, ventral-most half 

only bears commarginal 

undulations, more pronounced 

than commarginal ribs on dorsal 

surface.  

Ventral: Symmetrical 

arrangement of 

commarginal folds and 

radial ribs. 

Appears to lack radial 

ornament, bearing only 

concentric folds.  

Dorsal: 10 or more 

strong radial ribs, 

weaker commarginal 

ornament. 

Dorsal: Faint radial 

ribs near dorsal 

sometimes visible. 

Dorsal: Fine, straight to slightly 

sinuous radial ribs across dorsal, 

rib count increases with size, 

commarginal ribs across whole of 

shell. 

Dorsal: See above.   

Cross-section 

diamond shaped 

As in P. similis? As in P. similis. Cross-section, two 

convex valves, not 

diamond. 

As in P. similis. 
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Isocyprina (Eotrapezium) 

I. (E.) cucullatum (Goldfuss)   

I. (E.) concentricum (Moore)  

I. (E.) ewaldi (Bornemann)    

 I. (E.) depressum (Moore)  

 I. (E.) germari (Dunker)    
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I. (E.) concentricum, I. (E.) ewaldi, I. (E.) depressum, I. (E.) germari are mostly specimens from Westbury Formation with no internal 

features known, all of these species are dubious but as no new information is gained no change is supposed. 

I. (E.) cucullatum I. (E.) concentricum I. (E.) ewaldi I. (E.) depressum I. (E.) germari 

L>H 
As in I. (E.) cucullatum. Higher H/L ratio than I. 

(E.) concentricum. 

L>H As in I. (E.) depressum. 

Posterior truncated, 

Posterior margin more-

or-less straight. 

Posterior appears truncated.  As in I. (E.) 

concentricum.  

Posterior sloped but not as 

truncated in appearance.  

Posterior rounded, not truncated. 

Strong carina. Moderately developed 

carina.  

Strong carina. Carina weakly developed. No distinct carina.  

Umbo 1/3 shell length 

from anterior.  

Variable positioning of the 

umbo, typically around 1/3 

from anterior. 

As in I. (E.) 

concentricum. 

Umbones slightly anterior 

of mid-length of valve. 

Beaks placed near anterior.  

Antero-dorsal and 

postero-dorsal margins 

concaved.  

Antero-dorsal region 

concaved.  

As in I. (E.) 

concentricum. 

Antero-dorsal region 

concaved, postero-dorsal 

convex. 

Sloped postero-dorsal margin, anterior well 

rounded, antero-dorsal concaved sharply.  

Smooth or concentric 

striations. 

Strong concentric ornament, 

meets posterior margin at c. 

90°. 

Smooth with only fine 

commarginal striae, 

growth lines curve back 

towards umbo.  

Concentric ornamentation. Concentric ornamentation. 

Triangular. Triangular to elongate. Triangular.  Elongate-ovoid.  Elongate, almost triangular. 
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Cardinia  

C. listeri (J. Sowerby)    

C. ovalis (Stutchbury)   

C. nilssoni (Koch & Dunker)  

C. regularis (Terquem)    

C. concinna (J. Sowerby) 
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C. regularis may be a juvenile synonym for C. ovalis, these two being inseparable in appearance, differing only in the former being 

typically smaller in size. The morphology of C. ovalis is highly variable however grades into C. listeri, with various transitionary forms from 

the upper angulata Zone (Hodges 2018). 

C. listeri 
C. ovalis 

 C. nilssoni C. regularis C. concinna 

Deltoid. 
Sub-circular to sub 

ovate. 

Cuneiform to elongate oval.  Ovoid. Oblong-ovate. 

H < L H < L  2H ~ L H < L 3H ~ L 

Posterior margin 

wedge-shaped. 

Posterior margin 

rounded.  

Posterior margin tending 

towards wedge-shape. 

Posterior rounded. Posterior margin tending 

towards wedge-shape. 

Postero-dorsal margin 

gently arched. 

 Postero-dorsal area often 

slightly flattened. 

 Postero-dorsal gently 

curved. 

Umbones at ~1/4 L 

anteriorly.  

Umbones in anterior 

1/3. 

Small umbones, placed ~1/5 L 

from anterior. 

Umbones in anterior 

1/3. 

Umbones in anterior 1/6. 

Strong commarginal 

imbrications appearing 

as growth halts.  

Commarginal 

imbrications with finer 

commarginal striae in 

interspaces. 

Well defined commarginal 

imbrications, less well-defined 

commarginal striae in 

interspaces. 

Strong commarginal 

imbrications appearing 

as growth halts. 

Commarginal imbrications 

less well developed.  

 Cardinal area much 

narrower than in C. 

listeri. 
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Tutcheria  

T. cloacina (Quenstedt)   

T. heberti (Terquem) 

 

 

 

 

 

 

It is somewhat unclear on how to distinguish between these two species. 

Specimens of Tutcheria from the Westbury Formation are typically assigned to 

T. cloacina, whereas those from the Sinemurian to T. heberti.  Brauns (1871) 

considered them to be the same species, however insufficient well-preserved 

material was here examined to determine if this is so.  

 

Pteromya  

P. langportensis (Richardson & Tutcher) 

P. tatei (Richardson & Tutcher) 

P. crowcombeia Moore 

 

 

 

 

T. cloacina  T. heberti 

Sub-orbicular, inflated Sub-ovate, inflated 

c. 30 broad rounded or flat-

topped radial ribs, reduced 

interspaces. 

35 radial ribs with rounded 

cross section, no 

interspaces. 

P. crowcombeia P. tatei P. langportensis  

Elongate, oval. As in P. crowcombeia. Not very elongate, greater 
relative height of the three 
species. 

Posterior ridge present 

in LV, not present in RV.  

Wide umbonal carina. No posterior ridge on internal 

mould nor distinct postero-

dorsal angle. 

Area posterior to ridge 

is flattened appearing 

as an obtuse wedge on 

posterior of shell. 

Postero-dorsal region lacks 

commarginal ribs.  

 

Variable strength of 

commarginal ribs.  

Commarginal ribs fade in 

strength towards ventral 

margin.  

Internal moulds suggest 

commarginal ornament.  
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Protocardia 

P. rhaetica (Merian)   

P. truncata (J. de C. Sowerby)   

P. philippanum (Dunker)  

P. oxynoti (Quenstedt)  

 

Ryderia 

R. doris (d’Orbigny)    

R. texturata (Terqeum & Piette)  

R. titei (Moore) 

 

 

 

 

 

R. titei, ornament consists of commarginal striae, suggesting this is a synonym 

of R. doris (see Ivimey-Cool et al. 1999). 

 

 

P. truncata P. philippianum  P. rhaetica  P. oxynoti 

Radial ribs extend 

anteriorly of carina, 4-6 

of the ribs are anterior of 

the ridge, about half of 

the total. Radial ribs 

become weaker towards 

posterior, narrow 

interspaces. 

Radial ribs confined 

to region posterior 

to carina, 5-7 ribs.  

10-15 ribs on 

posterior. 

2-3 ribs situated 

anterior of the ridge. 

Moderately inflated Moderately  inflated Less inflated  Moderately inflated 

Umbonal ridge extends 

from umbo to postero-

ventral corner. 

Weak umbonal 

ridge 

Lacks carina Weaker umbonal 

ridge than in P. 

truncata. 

Posterior margin straight 

to weakly convex. 

Posterior weakly 

convex, not as 

truncate as in P. 

truncata. 

Posterior and 

anterior 

rounded. 

Posterior margin 

straight to weakly 

convex. 

R. doris       R. texturata 

Fine commarginal striae only.  Commarginal ornament on anterior part 

of shell disappears posteriorly giving way 

to an undulose vertical ornament 

extending along the rostrum. 
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Palaeoneilo  

P. elliptica (Goldfuss) 

P. galatea (d’Orbigny) 

 

 

 

 

 

 

Dacryomya  

D. heberti (Martin) 

D. gaveyi (Cox)     

 

 

 

 

 

D. heberti grades into the larger D. gaveyi with a transition in the position of the 

beaks. Hodges (2000), remarks on a 60% size increase above the oxynotum 

zone.  

 

 

 

 

 

 

 

 

 

 

 

P. elliptica       P. galatea 

Pointed posterior margin. Blunt rounded posterior margin.  

Postero-dorsal margin sloped. Postero-dorsal margin almost straight, 

weakly concaved.  

Ventral margin convex.  Ventral margin weakly convex.  

D. heberti D. gaveyi 

Anterior teeth larger than 

posterior teeth 

Posterior teeth larger 

than anterior teeth 

Beaks placed posteriorly  Beaks placed anteriorly  
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Arcomya 

A. arcacea Seebach 

A. concinna Tate & Blake 

A. vetusta (Phillips) 

 

 

 

 

 

 

 

 

Distinction of the three species herein measured is tenuous, Tate & Blake 1875 

distinguish A. acracea from A. concinna by less inflated umbones, and a lack of 

posterior keel. However, the type material and description could not be located 

for A. arcacea.  

 

Goniomya  

G. hybrida (Münster) 

G. rhombifera (Goldfuss) 

 

 

 

 

 

 

 

 

 

 

 

 

A. concinna A. vetusta 

Elongate ovoid.  Sub-rectangular to elongate 

trapezoidal. 

Ventral margin convex. Ventral margin straight to weakly 

convex. 

Rounded posterior margin.  Posterior margin appears truncated. 

  

G. hybrida G. rhombifera 

V-shaped ornament on valves. Base of V-shaped ornament is truncated.  
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Gresslya  

G. galathea (Agassiz) 

G. intermedia (Simpson)  

 

 

 

 

 

 

 

 

 

 

 

Pholadomya    

P. ambigua J. Sowerby   

P. glabra Agassiz    

 

 

 

 

 

 

 

 

 

 

An additional comment regarding the distinction of the two species (P. glabra 

and P. ambigua) is that P. ambigua has a more spherical form overall, both H/L 

and length/inflation (L/I) are closer to 1 than seen in most specimens of P. 

glabra (Fig. AF.4). A single specimen assigned to P. “ovalis” was measured 

from WARMS collections, this is distinct from P. ambigua by the weak radial 

ornament and from P. glabra by the short rounded anterior and extremely 

inflated valves.  

G. galathea G. intermedia  

Equivalved to sub-equivalved. 
Inequivalved. 

Elongate ovate – cuneiform.  Elongate sub-trapezoid.  

Umbones placed 1/4 L from 

anterior.  

Umbones placed 1/3 L from anterior. 

Anterior projects forwards of 

umbones. Narrower than 

posterior. 

Anterior projects forwards of 

umbones. Approximately equal 

height to posterior.  

Ventral margin straight to weakly 

convex. 

Ventral margin convex. 

P. glabra                    P. ambigua 

Sub-elliptical Sub-rectangular  

Up to 12 radial ribs, sometimes 

faint. 

5-9 ribs, typically 7 strongly 

developed. 

Strong commarginal folds. Strong commarginal folds. 

Posterio-dorsal margin weakly 

concave. 

Posterio-dorsal margin 

strongly concaved. 

Anterior pronounced and 

posterior rounded, not truncated 

Short rounded anterior, less 

pronounced.  
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Fig. AF.4 Morphospace plot for species of Pholadomya.  

 

Pleuromya  

P. crassa Agassiz                                             

P. liasina (Zeiten)                                                   

P. costata (Young & Bird)                                    

 

 

 

 

 

 

 

 

P. liasina has subsequently been reassigned to P. striatula Agassiz by Hodges 

(2019). A single specimen housed in BRLSI was assigned to P. striato-

granulata (Moore) this bears find rows of pustules most notable towards the 

ventral margins.  

 

 

 

 

P. crassa       P. liasina             P. costata 

Suboval  Sub-elliptical  Sub-trigonal, elongate 

(truncated anterior relative to P. 

liasina) 

Orthogyrate beaks not 

prominent  

As in P. crassa. prosogyrate 

Commarginal growth 

halts. 

As in P. crassa. Regular rounded commarginal 

ribs, approx. same width as 

interspaces, well developed 
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