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Abstract—Photoacoustic imaging is used to differentiate be-
tween tissue types based on light absorption. Different structures,
such as vascular density of capillaries in human tissue, can
be analysed and provide diagnostic information to detect early
stage breast cancer. Delay and sum (DAS) beamforming is the
traditional method to reconstruct photoacoustic images. However,
for structures located deep in the tissue (>10 mm), signal to
noise (SNR) of the photoacoustic signal drops significantly. This
study proposes using filter delay multiply and sum (FDMAS)
beamforming technique to increase the SNR and enhance the
image quality. Experimental results showed that FDMAS beam-
former improved the SNR by 6.9 dB and the lateral resolution
by 48% compared to the DAS beamformer. Moreover, the effect
of aperture size on the proposed method is presented as the
sub-group FDMAS, which further increased the improvement in
image quality.

I. INTRODUCTION

Photoacoustic imaging is a type of medical imaging that
combines ultrasound resolution and optical contrast. This
type of imaging is created by applying short laser pulse
on biological tissues [1]. Endogenous chromophores such
as oxy-haemoglobin and deoxy-haemoglobin will absorb a
certain wavelength laser pulse [1].This leads to an increase
in temperature at the region of interest and generation of
ultrasound waves [1]. These ultrasound waves are generated
due to thermoelastic expansion of the absorbent, which will
be detected by using a medical ultrasound transducer. The
acquired information will be used to reconstruction photoa-
coustic images by using one of photoacoustic beamforming
technique such as time reversal, Fourier transform and delay
and sum (DAS) beamforming techniques [1]–[4].

Photoacoustic imaging is used to differentiate between
tissue types based on light absorption. Different structures,
such as vascular density of capillaries in human tissue, can be
analysed and provide diagnostic information to detect early
stage breast cancer. However, signal to noise ratio (SNR) of
photoacoustic image will drop when the penetration depth of
the target object is increased or the optical energy of laser
pulse is reduced. This is due to absorption and scattering
of laser light in the biological tissue before reaching the
target object. In addition, the generated acoustic signals due
to photoacoustic effect will be attenuated before received by

an ultrasound transducer. Moreover, speed of ultrasound is
assumed to be constant inside the biological tissue during the
beamforming operation. As a result, quality of photoacoustic
image will be degraded due to phase aberrations. Park et al.
tried to deal with this issue by using adaptive beamforming
technique, such as implementation of the coherence factor [5],
[6].

In this study, filter delay multiply and sum (FDMAS)
beamforming technique is proposed to improve SNR and res-
olution of a photoacoustic image. The FDMAS beamforming
technique depends on autocorrelation between the RF data
received by individual elements of the ultrasound probe [7].
The idea of this beamforming technique is taken from Delay
multiply and sum (DMAS) beamforming technique that is
applied on radar microwave to detect early stage of breast
cancer [8]. In addition, this technique shows improvement in
image resolution when it is applied on ultrasound imaging [7].

The proposed method used to construct photoacoustic im-
ages for 3 static scatterers embedded in an ultrasound phantom
with ultrasound system and a pulse laser diode (PLD). These
photoacoustic images will be constructed by using FDMAS
and DAS beamforming techniques. These images will be
compared in terms of SNR and spatial resolution.

II. THEORETICAL ANALYSIS FOR FDMAS BEAMFORMING

FDMAS beamforming technique depends on autocorrela-
tion between delayed RF data. This autocorrelation operation
will improve SNR by reducing the uncorrelated signal (Noise)
as shown in Eq.(1) [7]:

yFDMAS = {
N−1∑
i=1

N∑
j=i+1

sign(Si(t)Sj(t)).
√
|Si(t)Sj(t)|} ∗ f

(1)
where yFDMAS is the output of FDMAS beamforming

technique, N is the number of transducer elements and
Si(t)Sj(t) are the delayed RF data signal for i element and
j element respectively. In FDMAS equation, Sign operation
is used to maintain a sign of the delayed RF data after the
multiplication operation [7]. In addition, square root operation
is applied on the multiplied delayed RF data to remove
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the effect of multiplication operation on unit of delayed RF
data [7]. Furthermore, bandpass filter (f ) is applied before
generating the output of FDMAS beamforming technique [7].
This is because the multiplication operation between signals
in FDMAS beamforming technique generates two frequencies
bands. One of them is the result of summing frequency bands
of multiplied signals while the other is the result of subtracting
frequency bands of multiplied signals. Therefore, the bandpass
filter is used to extract the high frequency band of generated
signal.

In the FDMAS beamforming technique, all delayed RF data
will be correlated with each other and summed. This could
be drawback, if the generating photoacoustic signal is not
received by all elements of the linear ultrasound transducer.
For instance, if the place of the absorbent is in the corner of the
linear transducer. This is because the generated photoacoustic
signals will be correlated with noise signal that results in
reducing the SNR of photoacoustic image. To deal with
this problem, sub-group of delayed RF data signals will be
correlated with each other rather than correlated all of them
as shown in Eq.(2):

yFDMAS = {
N∑
i=1

m∑
j=i+1

sign(Si(t)Sj(t)).
√
|Si(t)Sj(t)|} ∗ f

(2)
where:

m = {i+s,s<N−i
N,else

s is a group size of delayed RF data. This size will be
selected based on the position of the light absorbent from
the linear transducer. For example, when the light absorbent
is closed to the linear transducer, the group size of the
correlation operation will be small. This is because the number
of transducer elements that receive the photoacoustic signal
will be reduced when a target become close to the transducer.
Whereas, the group size will be increased when the distances
between the light absorbent and transducer is increased.

III. EXPERIMENT SETUP

In this experiment, measurements were performed on a
polyacrylamide hydrogel phantom with carbon fibre rods as
shown in Fig.1. The recipe of this phantom is taken from this
reference [9]. However, no scattering material is used in this
phantom due to weakness of optical energy of a laser source
that is used in this experiment. The setup of this experiment
is shown in Fig.2. The photoacoustic signals were generated
from the phantom by using 905nm PLD (905D3s3J09S). The
pulse width and the output optical energy from this PLD is 100
ns and 10 µJ/pulse respectively. These generated photoacoustic
signals were acquired by the Leeds Ultrasound Array Research
Platform II (UARP II) with a 128 element linear 3-8 MHz
transducer. When the photoacoustic signals received by UARP
II, these photoacoustic signals were amplified 24 dB by using a
low noise amplifier (LAN). Then these signals were amplified
30 dB by using Programmable Gain Amplifier (PGA). These
received photoacoustic signals were averaged 100 times. After

Fig. 1. The polyacrylamide hydrogel phantom with carbon fibre rods.

Fig. 2. The experiment setup for generating photoacoustic signals from
carbon fibre rods by using PLD.

that, these received data were processed by using DAS and
FDMAS beamforming techniques.

IV. RESULT AND DISCUSSION

Fig.3 shows photoacoustic images for object 2 by using
DAS and FDMAS beamforming techniques. From this figure
it can be noticed that FDMAS achieved improvement over
DAS in terms of SNR by 6.9 dB. This is because the effect of
phase aberrations and noise signals were reduced due to the
correlation operation that FDMAS used. This improvement in
SNR will be almost 12 dB, if a photoacoustic signal that travels
to laser source is used in image reconstruction. This is because
object part that near to laser source will absorbed more optical
energy. The point spread function of a single scatterer located
at 15 mm depth allowed the axial and lateral resolutions to
be compared as shown in Fig.4 (A) and (B) respectively.
The full width at half maximum (FWHM) axial resolution
was comparable in both cases, where FDMAS performing



5% better than DAS. However the FWHM resolution in the
lateral direction were improved by 48%. Furthermore, by using
FDMAS the side lobes were reduced especially in lateral
direction.

Fig. 3. (A) Photoacoustic image by using DAS and (B) Photoacoustic image
by using FDMAS (30 dB dynamic range).

However, the improvement in image equality that FDMAS
achieved is effected by the group size of correlated delayed
RF data as shown in Fig.5. From this figure, it can be seen
that the highest gain for object 3 when the group size of
correlated delayed RF data is 16. This is because that the
place of the absorbent object is in the corner of the linear
transducer and close to it. As a result, not all the transducer
elements will receive photoacoustic signals. Therefore, the
image equality will be better when the group size becomes
close to a number of elements that received acoustic signals
to reduce the effect of unwanted signals. In addition, the
largest gain for object 1 and object 2 when the group size
of correlated delayed RF data is 32. This is because that the
linear transducer has large field of view for object 1 and
object 2. This is unlike the object 3. Furthermore, the optical
energy that reach the object 3 is lower than the optical energy
that reach object 1 and object 2. This is because the place of
the laser source and ultrasound transducer in this experiment

Fig. 4. (A) Axial resolution by using DAS (Blue line) and FDMAS (Red
line) (B) Lateral resolution by using DAS (Blue line) and FDMAS (Red line).

which are opposite each other. Therefore, the object that
close to the transducer received optical energy less compare
with the object that far from transducer.

Fig. 5. The SNR gain achieved by the FDMAS for three different objects
is plotted against group size.

Three sub-wavelength objects at different depths were im-
aged by using UARPII and processed with DAS, FDMAS
and 32-FDMAS methods as shown in Fig.6. From this figure,
it can be noticed that the improvement in the SNR of the
photoacoustic image by using 32-FDMAS is higher than the
improvement in the SNR of the photoacoustic image by using
FDMAS. In addition, the processing time for 32-FDMAS is
less than the processing time for FDMAS. This is because that
the number of correlation operation of 32-FDMAS is less than
the number of correlation operation of FDMAS.

V. CONCLUSION

In this study, the time delay estimation of image reconstruc-
tion is improved by using FDMAS beamforming technique.
In addition, FDMAS shows improvement in SNR by 6.9 dB
over DAS. From point spread function of single scattering
point, the FWHM axial and lateral resolution is better by 5%
and 48% respectively when FDMAS is used. In this paper,



Fig. 6. (A) Photoacoustic image by using DAS, (B) Photoacoustic image
by using FDMAS and (c) Photoacoustic image by using 32-FDMAS (30 dB
dynamic range).

sub-group FDMAS is explained. This sub-group FDMAS
shows improvement in image equality over FDAMS and DAS.
However, this improvement in image quality depends on the
group size of correlation points. This group size should be
reduced when target object become close to linear transducer.
In future work, to get the highest gain, the group size of
correlation points will be dynamically changed based on image
parts.
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