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SUMMARY 

Fallen leaves on the railway track in the autumn cause many safety and business 

issues, such as signals passed at danger (SPADs) and delays in a timetable, leading to 

a decrease in ticket sales and poor customer satisfaction. Low adhesion conditions 

due to leaf contamination cause these problems, which form a black and slippery leaf 

film. When the leaf film is present, a train wheel is likely to slip and slide, resulting 

in severe damages to the wheel and rail. Hence, proper adhesion management is 

necessary to offer safe and cost-effective train transportation. 

Railway industries currently conduct several countermeasures, and most of them 

attempt to remove leaf films. However, the removal is not straightforward as leaf 

films stick tightly to the rail. Accordingly, a different approach should be considered:  

prevention of the leaf film formation and mitigation of low adhesion. For the 

development of a new method of prevention and mitigation, it is important to 

understand the mechanisms of low adhesion and bonding of leaf contamination. 

Hence, the aims of this study were the clarification of the low adhesion mechanism 

and a better understanding of the bonding mechanism between leaf films and rails.  

Tribological tests using a ball-on-flat method were carried out to figure out which 

material in leaves plays an important role to lower the adhesion in wet conditions. A 

black material synthesised with leaf extracts and rail steels was identified to decrease 

the adhesion. Chemical and material analyses were performed, and it was found that 

the black material was a mixture of graphitised carbon, iron carboxylate or iron oxide 

and various ions, including metal phosphates. Therefore, the graphite-like carbon 

was concluded to be the primary cause of low adhesion due to leaf contamination.  

Chemical analyses of leaf extracts were conducted to elucidate the chemical reaction 

process. Organic acids in leaf extracts were likely to trigger the chemical reaction. 

Although the key organic acids are still unknown, a new direction of prevention and 

mitigation was proposed: heat application for the pyrolysis of the organic acids in 

leaf extracts. Following this idea, another tribological test using a twin disc machine 

was performed. It was found that the heat application was effective for mitigation of 

the adhesion and possibly prevention of the leaf film as well. Moreover, a scratch test 

found that the bonding energy of leaf films on the disc seemed to decrease as the 

creation temperature increased, suggesting that heat energy could help weaken the 

bond between leaf films and rails. 

Based on the observation in the field test and findings in the experiments, a 

continuous tread braking was proposed as a potential measure. It can prevent the leaf 

film formation by removing leaf residue on the wheel surface, mitigating the low 

adhesion and weakening the bond by raising the surface temperature of the wheel.  
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NOMENCLATURE 

µ Friction/Traction/Adhesion coefficient 

BBP Black precipitation powder formed in brown leaf extract 

BLE Brown leaf extract 

BLF Brown leaf film 

BLP Brown leaf powder 

BP Black precipitation powder 

DB Deutsche Bahn 

EDX Energy Dispersive X-ray 

ESCA Electron Spectroscopy for Chemical Analysis 

FT-IR Fourier-Transform Infrared spectroscopy 

GBP Black precipitation powder formed in green leaf extract 

GD-OES Glow Discharge Optical Emission Spectroscopy 

GLE  Green leaf extract 

GLF Green leaf film 

GLP Green leaf powder 

LE Leaf extract 

LF Leaf film 

LP Leaf powder 

MTM Mini Traction Machine 

N.N Normalised Number 

RAIB Rail Accident Investigation Branch 

RHTT Rail Head Treatment Train 

rpm rotations per minute 

RSSB Railway Safety and Standards Board 

RTRI Railway Technical Research Institute 

SPADs Signals Passed At Danger 

wt% Weight percent 

XPS X-ray Photoelectron Spectroscopy 

XRD X-Ray Diffraction 

XRF X-Ray Fluorescence 
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1 INTRODUCTION 

1.1 Statement of the problem 

A small piece of leaf has long been recognised as a problem for train operators and 

railway infrastructure companies in the autumn, as it causes many problems, e.g. 

platform overruns and signals passed at danger (SPADs) [1], [2]. In most cases, these 

problems are a result of low friction force between wheels and rails. Without 

sufficient friction level, a train vehicle could be out of control since traction and 

braking depend on this friction force in the case of an “adhesion” railway [3].  

The slippery rail is produced by fallen leaves on the line in the autumn, leading to 

actual accidents in the UK. For example, there was a station overrun accident at 

Stonegate in 2010 [4], followed by a collision with the buffer stop at Chester station 

in 2013, as shown in Figure 1.1 [5]. There are many other incidents and near misses 

which are not found in the official reports of Rail Accident Investigation Branch 

(RAIB). Furthermore, similar issues due to the leaf contamination have been reported 

by Deutsche Bahn (DB) in Germany [6] and Railway Technical Research Institute 

(RTRI) in Japan [7]. Hence, leaf contamination could occur and be a problem 

anywhere trains are operated.  

 

 

Figure 1.1 – A collision with the buffer stop at Chester station in 2013 [5] 
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The traction between wheels and rails, which is often expressed as “adhesion” in the 

railway industry, is one of the most important factors for train control, in particular, 

for acceleration and deceleration [3]. The adhesion coefficient is required to be at 

least 0.2 and 0.09 for traction and braking, respectively [1]. However, the rail surface 

is often contaminated by various sources due to its exposure to the environment, such 

as water, oil and dead leaves [8]. This contamination decreases the adhesion 

coefficient below that of dry levels, causing safety and operational issues. Therefore, 

the proper management of the adhesion level is significant for operational and 

infrastructure companies. 

Among various contamination which causes low adhesion, leaves falling on the line 

in the autumn have a significant impact on train operation [1]. The leaves form a film 

on the rail, as shown in Figure 1.2 [2]. This leaf film reduces adhesion levels when a 

small amount of water, such as light rain, frost and morning dew, is present [9]. It 

has been reported that the adhesion coefficient decreases to approximately 0.1 or less 

when leaf contamination is mixed with water [1], [9], which is lower than the 

required level for traction and braking.  Additionally, the leaf film tightly adheres to 

the rail surface so that the removal of leaf films is not straightforward [10].  

 

 

Figure 1.2 – Typical image of the leaf film on the railhead [2] 
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Various measures have been carried out, such as sanding and water-jet cleaning, to 

overcome this low adhesion condition due to leaves. These treatments are useful to 

some extent; however, the annual cost has been reported to be ₤50 million in the UK 

[11] and 100 million SEK in Sweden [12]. Additionally, a timetable is often 

subjected to changes to allow for longer braking and traction, and an operation of 

Rail Head Treatment Trains (RHTTs) with a water-jet cleaning and traction enhancer 

also needs modification of timetables since they are usually operated at a low speed 

in the early morning [2]. This amended timetable lowers customer satisfaction about 

the train transportation service. From the viewpoints of both cost and business, it is 

essential to develop cheaper and more effective methods to combat leaf 

contamination, making the train transportation more competitive than other 

transportation modes. 

To sum up, the problems that the railway industries are facing is that the current 

measures are intrinsically imperfect. Further maintenance cost is inevitable due to 

damages on both wheels and rails in traction enhancer, and amended timetables 

cannot be avoided in RHTT operation.  Therefore, a new approach to mitigating this 

leaf problem is necessary for pushing innovation in this field. 

1.2 Aims 

The aim of this research can be split into two topics: elucidating the manner in which 

the leaf film causes low adhesion and revealing the bonding mechanism between the 

leaf film and rail surface. Figure 1.3 shows a concept map of this aim. In this 

research, not only the fundamental tribology of leaves, but also the material of leaves 

was intensively studied to clarify the essential substances for the low adhesion and 

strong bonds. The final goal of this project is to suggest and develop better methods 

for prevention of leaf film formation or mitigation of low adhesion, using knowledge 

of the low adhesion and bonding mechanisms. 
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Figure 1.3 – Concept map of the aims 

1.3 Novel aspects and impacts of this project 

This research project involves various novel aspects and impacts which have not 

been considered before. They are shown in the following list: 

 

 Comprehensive analysis 

More than ten methods of chemical and material analysis were employed in this 

work to elucidate the chemical conditions of leaf and leaf-related material. The 

multiple analyses made it possible to overcome weak points in each method, leading 

to the correct understanding of the substance. 

 Identification of specific substance for low adhesion 

Through the chemical and material analysis, a key substance for low adhesion was 

identified by narrowing down the candidates.  

 Quantitative evaluation of bonding conditions 

Scratch tests of leaf films enabled evaluation of bonding strength in a quantitative 

way.  

 A new approach for the prevention and mitigation of low adhesion due to 

leaf films 

A new idea for the prevention and mitigation was attempted, i.e. heat application. 

Development of the prevention method is ideal for train operators and infrastructure 

companies if it does not involve any significant side effects, rather than just removal 

with mechanical methods. The method proposed in this study could prevent the leaf 

film formation as well as mitigate the low adhesion. If this method is proven to be 
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applicable to the actual railway operation, it should be an innovative technology for 

railway industries. 

1.4 Thesis layout 

Chapter 2 reviews general information related to leaf contamination problems, such 

as basic tribology, mitigation methods and leaf chemistry. Additionally, it also 

analyses the operational data and reviews the current models and theories of the low 

adhesion phenomenon. Finally, it identifies the research gap to be explored.  

Chapter 3 presents the hypotheses of the low adhesion mechanism and bonding 

mechanism due to leaf contamination, drawn out from the information in Chapter 2.  

Chapter 4 experimentally assesses the hypotheses of the low adhesion mechanism 

proposed in Chapter 3. A ball-on-flat method was used with four types of leaf 

samples: leaf powder, leaf film, leaf extract and black precipitation powder.  The 

experiment also aims to identify the key materials of low adhesion. 

Chapter 5 explores the chemistry of the black precipitation powder which was 

identified to cause low friction in Chapter 4, using five different methodologies: X-

ray fluorescence, X-ray diffraction, Laser Raman spectroscopy, X-ray photoelectron 

spectroscopy and Fourier transformed infrared spectroscopy. This work aims to bring 

deeper understandings regarding the leaf chemistry as well as the low adhesion and 

bonding mechanisms. 

Chapter 6 focuses on the leaf extract analysis to examine the suggestions of the 

chemical reaction between leaf extracts and rail steels developed in Chapter 5, using 

six techniques: viscosity measurement, pH value test, proton nuclear magnetic 

resonance, inductively coupled plasma-mass spectrometry, ion chromatography, high 

performance liquid chromatography and Benedict test. 

Chapter 7 attempts to understand the low adhesion phenomenon due to leaves in 

rolling-sliding conditions, using a twin disc machine. The work also includes the 

examination to prevent the chemical reaction developed in Chapter 5 and Chapter 6.  

Chapter 8 investigates the bonding mechanism between the leaf film and bulk rail, 

using a scratch test method. This chapter aims to examine the hypotheses of the 

bonding mechanism developed in Chapter 3. 

Chapter 9 summarises the observation in the field test and suggests a practical 

method of the measure against leaf contamination for prevention and mitigation with 

a description of advantages and drawbacks.  

Chapter 10 brings conclusions to this thesis, publications arisen from this work, and 

finally, further work recommended for the development of this research project.  
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2 REVIEW OF LEAF CONTAMINATION 

2.1 Introduction 

The leaf contamination problem has been studied by many researchers [1], [2], [19]–

[21], [11]–[18]. These studies mostly focus on the mitigation measures: removal of 

the leaf films and recovery of the adhesion level. For example, sanding from a 

locomotive has been studied to increase adhesion and remove the leaf residue [18].  

Recently, new research approaches for the leaf film issue have been attempted, by 

analysing the interface between the leaf film and the rail surface [2], [14], [22]–[24]. 

Several techniques for analysis, such as Fourier-Transform Infrared spectroscopy 

(FT-IR), Glow Discharge Optical Emission Spectroscopy (GD-OES) and Energy 

Dispersive X-ray (EDX), have been implemented for the leaf films obtained in both 

the laboratory and on the actual rail track. The results show that the leaf components 

react chemically with the active Fe ions originated from the rail steel. This chemical 

reaction seems to form a slippery organic layer strongly bonded to the rail surface.  

Despite these efforts, the mechanisms by which a piece of leaf causes low adhesion 

and tightly sticks to the rail are still uncertain. If these mechanisms are clarified, 

further developments of the existing methods or innovative methods could be 

possible. Thus, more detailed research in this field is required, including 

identification of the key materials and parameters which cause low adhesion and 

strong bonds. 

In this literature review, the current understanding of the low adhesion phenomenon 

due to leaves and the bonding mechanism between the leaf film and rail surface were 

studied. Then, research gaps were identified to make the research direction clear. 

2.2 Definition of traction, friction and adhesion 

The tribological conditions between the wheel and rail are commonly expressed 

using three words, namely, friction, traction and adhesion. Friction is the tangential 

force transmitted between two objects which slide against one another. On the other 

hand, traction is the force transmitted between a driven cylinder rolling along a flat 

plane [3]. The underlying friction level between two bodies of known materials will 

dictate the relationship between creep (the difference in relative surface speeds of the 

rolling/sliding body and the plane) and the traction force as shown in Figure 2.1 [13].  
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Figure 2.1 – Relationships between creep and friction/traction/adhesion: 

(a) Creep curves in a twin-disc apparatus [13] 

(b) Definitions of friction, traction and adhesion 

Friction and traction are different properties of a contact. The term used depends on 

the measurement technique. For example, if a sliding device such as the pendulum is 

used [25], then any result will be a measurement of friction because the contact 

reaches a full slip condition. However, if a rolling/sliding device is used such as the 

hand pushed tribometer [26], then any result will be a measurement of traction since 

the contact probably contains a partial stick region. It should be noted that any 

friction or traction coefficient measured by such devices will be the coefficient 

between the rail and that device. Measuring the actual traction coefficient between 
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the wheel and rail is very difficult/impractical. Thus, devices such as the pendulum 

and tribometer can give reliable estimations of what the traction coefficient between 

the wheel and rail is likely to be.  

Adhesion is a word which is commonly used in the railway community and can be 

used incorrectly when referring to the wheel/rail contact as discussed in [3]. However, 

adhesion seems to be a useful term which can be used to refer to the general state of 

friction on the rail head. For example, “low adhesion conditions” refers to a rail head 

which has low friction and thus will give low traction between the wheel/rail 

interface.  

The traction force is determined by the traction coefficient µ between the wheel and 

rail and the normal force. It transmits both the accelerating force and the braking 

force from the wheel to the rail. Hence, the friction level in the contact patch is an 

important factor to determine the kinematic performance of trains.  

In this study, the terminologies friction, traction and adhesion are used according to 

the definition above. Practically, “friction” is usually used in the ball-on-flat 

tribology tests, “traction” in the twin disc tests, and “adhesion” for the general terms.  

2.3 Incident analysis 

Analyses were carried out regarding data provided by Network Rail, which contains 

incident information for the autumn period, such as station overruns, track circuit 

failures and SPADs. These incidents are critical for train operators, and leaf 

contamination seems to be the main cause of these incidents.  

Figure 2.2 shows a relationship between the time of the day and the total number of 

incidents (station overruns and SPADs), accumulated between 2010 and 2014. From 

this figure, a relatively high frequency of incidents is observed between the hours of 

06:00 – 24:00, in which trains are frequently operated. In contrast, the incidents are 

dramatically decreased between 00:00 – 05:00 because of few train operations, and a 

medium number is observed between 05:00 – 06:00. 

Figure 2.3 shows a relationship between the time and the number of incidents 

between the hours of 05:00 – 24:00, normalised by the number of stopping attempts 

on average. The data between 05:00 – 24:00 is chosen because of the relatively larger 

number of incidents. The normalised number (N.N) is calculated by Equation 2.1. 

 

𝑵. 𝑵 =
𝒔𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒗𝒆𝒓𝒓𝒖𝒏𝒔 + 𝑺𝑷𝑨𝑫𝒔

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒐𝒑𝒑𝒊𝒏𝒈 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒉𝒐𝒖𝒓
 

Equation 2.1 
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Figure 2.2 – Relationship between the time of day and total number of incidents (station 

overruns and SPADs) during autumns 2010-2014 

 

 

Figure 2.3 – Relationship between the time of day and the normalised number of 

incidents 



10 

 

As can be seen, the high probability is confirmed between the hours of 05:00 – 10:00 

and between 20:00 – 24:00, and the average values are 3.3∙10-3 and 3.1∙10-3, 

respectively. Conversely, the relatively low possibility, 1.9∙10-3 on average, is 

confirmed between 10:00 – 20:00, although there are some fluctuations. This value is 

approximately 40 % lower than the values of 05:00 – 10:00 or 20:00 – 24:00. As a 

result, there is a distinctive relationship between the time and the incident 

probability.  

Figure 2.4 shows a relationship between the time of day and the normalised number 

of leaf-related incidents in the hours between 06:00 and 24:00, analysed from data 

recorded between 2010 and 2012. The data in 2013 and 2014 are excluded because 

of fewer data categorised as “leaf contamination”. As can be seen, a relatively high 

possibility is observed between the hours of 06:00 – 09:00; in contrast, a lower 

possibility is confirmed in the other hours. The average value between 06:00 – 09:00 

is 1.3∙10-3, which is twice as high as the average value between 09:00 – 24:00, i.e. 

5.9∙10-4. A slight increase can be seen between 20:00 – 24:00, however, the 

difference is not clear. From this analysis, it is shown that the probabilities of 

incidents related to leaf contamination depend on the time of a day, namely, early 

morning 06:00 – 09:00. 

 

 

Figure 2.4 – Relationship between the time of day and the normalised number of 

incidents related to leaf contamination causes 
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The high probabilities between 05:00 – 10:00 and 20:00 – 24:00 in Figure 2.3 and 

Figure 2.4 could be attributed to the dew on the track [27]. Generally, dew is formed 

if relative humidity reaches 100 % or temperature drops the dew point, and it is often 

seen in autumn as air temperature becomes lower than that of summer. Indeed, 

relative humidity tends to increase from night to morning; relative humidity in south-

east England between 22:00 and 10:00 is over 80 % [28]. Considering that the 

temperature close to the ground is lower than the air temperature, relative humidity 

around the rail is higher than 80 % due to low air temperature. Hence, dew is likely 

to be formed between 22:00 and 10:00, depending on other factors, including 

geographic features. 

This feature corresponds to the tendency in Figure 2.3, i.e. the relatively high 

probabilities between the hours of 05:00 – 10:00 and 20:00 – 24:00. Furthermore, the 

high possibilities between the hours of 06:00 – 09:00 in Figure 2.4 suggest that dew 

is continuously absorbed into leaves around the rail from night to morning and 

creates the low adhesion condition due to the high moisture level in the leaf films, 

which seems to reach maximum value in early morning. 

Overall, the incident data shows that dew formed during the night is likely to cause 

low adhesion conditions. 

2.4 Low adhesion due to leaf contamination 

The friction coefficient between wheels and rails strongly depends on the condition 

of the contact area. In reasonably dry conditions, friction coefficient in the contact 

area between wheel and rail is 0.3, and it needs to be 0.2 and 0.09 for traction and 

braking, respectively [1].  However, surface conditions of the rail are often changed 

due to environmental contaminations, and the friction coefficient decreases. Low 

adhesion levels are classified into three groups as shown below [15].  

 

 Medium-low: 0.1 < µ < 0.15 

 Low: 0.05 < µ < 0.1 

 Exceptionally low: 0.02 < µ 0.05 

 

Fallen leaves in autumn reduce the friction coefficient to approximately 0.1 or less 

[1], [9], and leaves on the line are one of the main causes of the low adhesion 

problems [1], [2], [9]. According to this categorisation, a friction level when leaves 

are on the track presumably belongs to the low group.  
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Friction/traction coefficient values acquired during previous research are summarised 

in Table 2.1. As can be seen, the friction/traction coefficients with leaf contamination 

are often below 0.1. It is also found that the leaf type (such as sycamore and elm) 

does not affect friction/traction values. 

 

Table 2.1 - Friction coefficient values acquired by the previous research 

Literature 
Test 

method 
Leaf type Test conditions Friction coefficient 

[11] Twin disc Cut sycamore 

Dry 

1 m/s with 0.5, 1, 2 % slip 

1.2 GPa 

< 0.05 

*Typical value 

[12] Pin-on-Disc Crushed elm 

R.H = 40±5 and 95±5 % 

0.1 m/s with 100 % slip 

0.8 and 1.1 GPa 

0.25 (average) 

R.H = 40 % 

0.15 (average) 

R.H = 95 % 

[13] Twin disc 
Mix 

Maple and Oak 

Dry/Wet 

1 m/s with 0.5, 1, 2, 3, 5 % slip 

1.5 GPa 

< 0.05 

Dry, for all slip values 

< 0.02 

Wet, for all slip values 

[14] 
Ball on disc 

MTM* 
Chopped sycamore 

Wet 

0.02-1 m/s with 1, 50 % slip 

1 GPa 

0.01-0.07 

Soaked brown leaf 

0.04-0.14 

Leaf extract 

[15] Twin disc Unknown 

Wet 

1 m/s with 1 % slip 

1.5 GPa 

< 0.06 

Leaf films 

[16] Twin disc Cut sycamore 

Dry 

1 m/s with 0.5 % slip 

1.2 GPa 

0.02 

*Minimum value 

[17] Twin disc 

Mix + extract 

Soaked maple, 

beech, oak, birch 

Wet 

0.8-3 m/s with 1-10 % slip 

1 GPa 

< 0.1 

Leaf mix 

≈0.1 

Leaf extract 

[18] 
Field 

Locomotive 
Unknown 

Dry/Wet 

Axle load 21.5 t 

0.06 

Dry, mean value in 1st run 

0.04 

Wet, mean value in 1st run 

[22] Twin disc Sycamore paste 

Wet 

1 m/s with 3 % slip 

1.5 GPa 

0.05-0.15 

[23] 
Field 

Tribometer 
Unknown Wet (Light rain) 

0.15 

*Minimum value 

[21] 
Field 

Tribometer 
Unknown 

Dry 

0.7 GPa 
0.3 

[29] 
Field 

Test bogie 
Pine needles 

Dry/Wet 

20 km/h at maximum 

0.05 

Dry, minimum value 

0.05 

Wet, minimum value 

*MTM means Mini-Traction-Machine 
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From Table 2.1, the testing methodology is found to influence the measured friction 

coefficient values. For example, values measured by a twin disc apparatus tend to be 

lower than the value obtained by pin-on-disc equipment. A pin-on-disc test does not 

replicate the rolling-sliding conditions between wheels and rails but does offer 

greater controllability over parameters such as sliding velocity and contact pressure. 

Rolling-sliding conditions can be replicated by either twin-disc or ball-on-disc 

machine. The main difference between a twin disc machine and a ball-on-disc 

machine is that the former produces a line contact and the latter produces a point 

contact. 

Figure 2.5 shows a typical traction result of a twin-disc test performed under varying 

contamination conditions [22]. A leaf layer was created on the rail disc and then run 

against wheel disc. In Figure 2.5, it is observed that wet leaves produce lower 

traction conditions than dry leaves and the lower traction tends to remain for a long 

time. 

Figure 2.1 (a) shows a general relationship between the slip and the traction 

coefficient, obtained in a twin disc apparatus [13]. In [13], leaves were continuously 

fed into the disc contact, keeping the friction level low, in contrast to the method 

used in [22]. As can be seen, both dry and wet leaves yielded low traction levels at 

slip ratios between 0.5 and 5 %. These results suggest that leaf films are not easily 

removed by the wheel rolling with slip once they have formed on the rail surface, 

confirming what has been seen in previous studies [1], [15]. 

 

 

Figure 2.5 – An example of relationship between the rotational number and traction 

coefficient in a twin disc apparatus, showing the long effect of wet leaves 
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2.5 Mitigation methods 

Several measures, which mitigate the low adhesion phenomenon due to autumn leaf 

films on the rail surface, have been carried out by train operating companies and 

infrastructure companies [1], [6], [9]. However, each mitigation method has a 

weakness in terms of practical applications, such as cost, time and labour. The 

specifications of representative methods are described below. 

2.5.1 Sanding 

Sanding is one of the traditional ways to increase adhesion, which has been used 

since the beginning of railways [18]. The sanding effect on leaf-contaminated rails 

has been investigated by laboratory-based tests with various parameters, such as sand 

grain size and slip ratio [13], [16], [17]. According to these studies, sanding recovers 

the adhesion to near dry contact levels with optimised parameters, and it also 

contributes to the removal of leaf films. Furthermore, these recovering and removing 

effects are confirmed in field investigations [18]. In this investigation, the adhesion 

improvement was achieved even at the non-sanding axles due to the leaf film 

removal. Accordingly, sanding seems to have a lot of positive effects on adhesion 

improvements. 

However, there are some drawbacks to sanding, namely, the damage to the wheel 

and the rail surfaces [13], [16], [17], [30]–[32] and the electrical isolation of the 

wheel/rail contact area [33], [34]. Generally, train detection for a signal system is 

based on a track circuit system, which needs good conductivity between the wheel 

and the rail. The applied sand increases the electrical resistance of the contact area 

[33], [34], and causes the failure of track circuits. Track circuit failures cause 

unnecessary closure of the railway on safety grounds, leading to severe disruption 

and delays. Moreover, it is demonstrated that the applied sand damages the wheel 

and the rail, producing cracks and large deformation layers in the surface [13], [17], 

[31], [32]. The wear of these components in sanding conditions can be 10 ~ 100 

times greater than in normal conditions [30], and this material damage decreases the 

life span of the components. 

Therefore, sanding is effective for improvement in terms of adhesion and removal of 

the leaf residue. However, additional costs might be incurred, associated with 

operational issues and damage to track infrastructure. 

2.5.2 Traction enhancer 

Recently, a new type of product has been developed and tested, which is called 

traction enhancer (Adhesion enhancer) [11], [22], [35]. Traction enhancers aim to 

overcome low adhesion problems, in particular, leaf contamination. They mainly 
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consist of sand particles, steel particles, water or water-based gel, and they are 

usually applied to the top of the rail in liquid form. This liquid could improve the 

particle adherence in the contact patch, and boost friction/traction coefficients.  

It is confirmed that traction enhancers can mitigate the low adhesion condition due to 

leaf contamination, recovering friction/traction levels close to dry conditions [11], 

[22]. For instance, the time to recover the friction/traction level can be shortened up 

to 70 % and 93 % in braking and traction, respectively [11]. Moreover, a wear rate of 

rail material is lower than that of dry conditions, indicating less damage compared to 

the sand application [22].  

However, traction enhancers cannot remove leaf films completely [11]. Additionally, 

some type of traction enhancer still damages both the rail and wheel surface, such as 

indentation due to sand particles [11], [35]. This damage might lead to an increase in 

maintenance cost. Moreover, they are reported to show a high impedance in the 

contact area immediately after their application [22]. Although the impedance 

becomes stable after a few seconds, this high impedance could cause a signalling 

problem.   

Therefore, a traction enhancer is one solution for the leaf contamination problem; 

however, they still have several drawbacks, such as surface damage and contact 

resistance. 

2.5.3 High-pressure water 

High-pressure water is often used to remove leaf films on the rail surface [1], [9], 

[15], and it is usually combined with sanding measures [1], [9]. A special train 

equipped with a sander and high-pressure washers (RHTT) is operated, focusing on 

the area where low adhesion conditions due to leaves are common. Although there is 

little work on the performance of high-pressure water when used for the removal of 

leaf films, it is confirmed to be effective to some extent, as reported in a previous 

study [6]. However, the leaf films on the rail cannot be removed completely by this 

method, showing that there is a 10 – 15 micron thick leaf film after cleaning [1]. This 

residual film could still produce low adhesion phenomena. In addition, the 

operational cost of cleaning trains is relatively high, estimated at ₤25 million per year 

[15].  

2.5.4 Prevention of leaf film formation 

Some methods used to prevent the formation of leaf films include patrolling around 

hot spots and vegetation management; however, a promising measure is the 

application of a controlled pH solution to the rail head [2], [20]. An alkaline 

environment (pH 9) has been reported to prevent the leaf film formation, resulting in 
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the improvements in leaf film properties, such as a reduced thickness, less coverage 

and increased skid resistance [20]. However, an acidic environment (pH 3) shows 

less effect on prevention than an alkali one [20]. These effects are closely related to 

the activation of ions, for example, FeOH2
+ or FeO− ions, which are from the Fe-

oxides and believed to be key factors for the chemical reaction between leaf 

components and rail steel [2], [36]. The different results in varied pH values indicate 

that less H+ ions deactivate the chemical reaction and prevent the formation of leaf 

films.  

However, leaf film formations are not completely prevented by this method. For 

instance, there is only a 17% reduction in the film thickness when using a pH 

treatment compared to no treatment [20]. As well as the thickness evaluation, only 20 

% reduction in coverage and 17 % increase in skid resistance under dry conditions 

are observed, indicating imperfections of the pH treatment. Moreover, pH solutions 

need to be continuously dispersed around the low adhesion area, incurring additional 

costs with regard to chemicals, equipment and labour.  

Overall, the pH control method prevents leaf film formation and also has some effect 

on removal; however, the prevention effect is limited and as such may not provide 

the most cost-effective solution. 

2.5.5 Findings 

From the practical point of view, requirements for the measure are firstly 

effectiveness, followed by cost, and then other factors, i.e. environmental influence. 

To be critical, none of the reviewed methods is perfectly effective; there is still room 

to be developed, improved and amended. Thereby, it is worth trying to raise the 

quality of the existing method or develop a new method.  

2.6 Chemical analysis of leaf contamination 

As described in 2.1, a new attempt has been made to find out the chemistry of leaf 

films. In this section, recent achievements related to leaf chemistry were reviewed 

and summarised.  

2.6.1 Fourier-Transform Infrared spectroscopy (FT-IR) 

An FT-IR analysis is a method to detect molecular bonds in samples, mainly organic 

bonds such as C-O. This method was applied to laboratory-developed samples [14]. 

The black samples were made during friction measurements by MTM, with both 

actual leaves and leaf extract (water-soluble contents of leaves). Several organic 

bonds were detected in the black samples, e.g. O-H, C=O, C-O-C, C-C. These 

organic bonds were thought to be derived from pectin and cellulose in leaves. In 
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particular, pectin was expected to play an important role to form black colour as it 

was detected in the black material made with the leaf extract. 

One problem of this analysis is that it had a bit biased interpretation of acquired 

spectra. For example, the absorption around 1420 and 1630 cm-1 was assigned to 

asymmetric and symmetric vibration of carboxylate, RCOO, where R stands for 

organic groups.  This assignment itself seems reasonable; however, it does not need 

to belong to pectin salts, and other forms of salts or esters are also possible. To 

determine that this absorption derived from pectin salts, additional evidence is 

required, e.g. detection of pectin molecules in the leaf extract.  

This work made significant progress and brought new knowledge with respect to leaf 

chemistry. However, the interpretation should be considered more carefully to grasp 

the chemical conditions of leaf contamination. 

2.6.2 X-ray Photoelectron Spectroscopy (XPS) 

A leaf-contaminated sample taken from an actual rail in Sweden was examined by 

XPS (Or ESCA: Electron Spectroscopy for Chemical Analysis) [23]. Many elements 

were detected: C, O, Fe, N, Si, F, S, Ca, Al and Mn, where C, O and Fe made up for 

48, 29.3 and 13.2 weight %.  These contents, except for Fe and Mn, did not 

originally derive from the rail bulk material; hence, there should be a chemical 

reaction between leaves and rails at the surface. 

XPS has an advantage that chemical shifts could show the status of each element. 

However, the sample was charged up due to the release of photoelectrons, and 

therefore the chemical shifts were not correctly analysed. If this charge-up problem is 

resolved, XPS could give much information. 

2.6.3 Glow Discharge Optical Emission Spectroscopy (GD-OES) 

A depth profile was measured by GD-OES for the field sample [23]. It was revealed 

that the leaf-contaminated sample had a thick layer which contains organic elements, 

such as Ca and P, indicating that a layer reacted with leaf organics covers the sample 

surface approximately up to 500 nm in depth. 

Figure 2.6 shows the profile of O and Fe of the field sample. As can be seen, the 

sample with leaf contamination is covered with a thick oxide layer where the 

crossing point is around 300 nm, which is not a natural oxidised layer. This result 

suggests that the thick oxide layer could lower the adhesion due to its mixed 

structure: leaf organics, rail steel and oxide. 
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Figure 2.6 – Iron and oxygen depth profile from the leaf-contaminated sample [23] 

2.6.4 EDX (Energy Dispersive X-ray spectroscopy) 

Several organic elements were detected with EDX in the laboratory-developed 

sample: C, O, Ca and Fe. They showed a good agreement with other analyses, such 

as XPS and GD-OES. However, this method is unable to identify the chemical 

conditions of each element. Hence, further information cannot be expected. 

2.7 Models of low adhesion and bonding mechanisms 

Several models of leaf contamination were proposed based on the chemical analyses 

and biochemistry of leaves, explaining the principle of low friction and chemical 

bonds of leaf films.  

2.7.1 A laboratory-based model 

Figure 2.7 shows a schematic view of the laboratory-based model presented in [24]. 

This model consists of the three layers, which are a coated slippery layer at the top, 

an easily sheared chemically-reacted layer in the middle and a rail bulk at the bottom. 

In the case of the leaf contamination, the coated slippery layer is a leaf film, and the 

easily sheared chemically reacted layer corresponds to a bonding layer between leaf 

films and rails. GD-OES analysis shows relatively high levels of calcium and 

phosphorus in rail samples which had been prepared in the laboratory by rolling with 
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a leaf. These samples did not have a visible leaf layer, and these substances (Ca, P) 

are likely to have been deposited on the rail by the leaf, suggesting the existence of a 

chemically-reacted layer. 

However, it has not yet been clarified which leaf constituents makes up the coated 

slippery layer and easily sheared chemically-reacted layer. Furthermore, a detailed 

chemical reaction process for the formation of these layers is still unclear. This lack 

of understanding limits the further development of measures based on this model. It 

is, therefore, necessary to analyse the interface between the leaf film and bulk rail 

chemically, leading to a better understanding of the low adhesion mechanism as well 

as the strong bond mechanism. 

 

 

Figure 2.7 - A laboratory-based model with a three-layer structure [24] 

2.7.2 A field-based model 

Figure 2.8 shows a schematic view of the field-based model, explained in [23]. This 

model has been developed through analyses of XPS and GD-OES, and it has a three 

layer structure as well, i.e. a tarnished layer at the top, a friction-reducing layer in the 

middle, and a rail bulk material at the bottom. In this model, the bonding mechanism 

can be explained in two steps: firstly, a leaf is deposited on the rail surface, providing 

carbon, nitrogen, calcium and other elements. Secondly, these elements and iron 

oxides chemically react and form the chemically reacted layer with strong bonds to 

the rail bulk. 

The tarnished layer mainly consists of organic components from leaves, and the 

friction-reducing layer contains a high amount of iron oxides. The thickness of a 

friction-reducing layer is approximately 300 nm, which corresponds to D0 in Figure 

2.6 and is four times thicker than the other samples. This thick oxide layer seems to 

decrease the friction/traction coefficient [37]–[39] and to be a result of more 

complete chemical reactions between leaf debris and rails. Therefore, the chemical 

reaction probably produces strong bonds between leaf film and rail. 



20 

 

However, chemical conditions in the tarnished layer have not yet been clarified, 

because of the charge-up problems in XPS analysis. Furthermore, the accelerator of a 

chemical reaction has not yet been revealed, which is the most important parameter 

to prevent leaf film formation. Therefore, this model explains the low adhesion and 

strong bond mechanisms to some extent, and more detailed analyses toward the 

clarifications of chemical and bonding conditions seem to be necessary to make this 

theory stronger. 

 

 

Figure 2.8 - A field-based model with a three-layer structure [23] 

2.7.3 Other hypotheses 

There are some other hypotheses for the leaf layer chemistry and the bonding 

mechanism. For example, pyrite (FeS2) is expected to be one of the bonding 

materials, which is produced by active Fe ions (Fe2+ and Fe3+) and sulphur included 

in the leaf [36]. Other components possibly react chemically and form the strong 

bond, namely, fatty acids from cutin and carbohydrates from pectin, cellulose and 

lignin [36]. All these hypotheses are based on the chemical reaction with radical Fe 

ions emitted from the steel surface iron oxides, and the high contact pressure seems 

to enhance or trigger the reaction. However, the proposed reaction processes have 

not yet been examined experimentally. The chemical analyses carried out in previous 

studies support these ideas [14], [23], [24]; thus, more detailed research is required to 

demonstrate them.  

2.8 Expected key parameters 

Chemical analyses and models in 2.6 suggest that there is a chemically reacted layer 

between the leaf film and rail, providing low adhesion and strong bonds. In general, 

the chemical reaction needs two things: reaction energy and materials, which are 

referred to as “parameter” in this thesis. Possible parameters for the chemical 

reaction between leaves and rails were reviewed and summarised in this section.  
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2.8.1 Pressure 

The contact pressure between wheels and rails ranges from 0.6 to 2.7 GPa [40], and 

this high pressure seems to crush leaves and accelerate the chemical reaction. The 

black leaf films have been formed both in laboratory-based tests and field tests, 

where high pressure is applied in the contact area [2], [11], [13], [15], [16], [18]–

[20], [22]. Although there are many parameters other than pressure, this fact suggests 

the significance of high pressure for leaf film formation on the rail surface. 

Another effect of high pressure is the refinement of material microstructure [41]. 

This phenomenon is confirmed in a third body layer, where the structure of a third 

body is very fine or sometimes nano-crystalline with long sliding distance [42]. 

Although such a refinement seems to depend on the material combinations, a rolling-

sliding contact between the wheel and rail might induce similar phenomenon, leading 

to a reduction in grain size at the surface, 20 nm on average [43]. Accordingly, these 

investigations show that high contact pressures affect the formation of leaf layers 

with severe deformation of the rail surface [41], [42]. Furthermore, they might assist 

in the strong bond formation between leaf films and rails, providing the mechanically 

mixed layer. 

2.8.2 Temperature 

A high slip ratio between the wheel and the rail causes a rise in temperature in the 

contact patch due to frictional work in the contact [44]–[46]. Examples of contact 

temperature are shown in Table 2.2. As can be seen, the maximum temperature is 

estimated to be over 727 °C in real tracks, forming a white etching layer with 

martensite transformation [46]. Temperature is an essential parameter in chemical 

reactions, which activates ions and accelerates the reaction process. From this 

viewpoint, the thermal energy must be considered for the chemical reaction between 

the leaf residue and the rail. 

 

Table 2.2 – Achievable contact temperature 

Literature Temperature Features 

[44] 100 °C Twin disc with 5 % slip 

[45] 200 °C Pin-on-disc with 100 % slip 

[46] Over 727 °C Field, Martensite transformation observed 
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2.8.3 Iron oxide 

Generally, iron oxides are easily formed by oxygen in the air, and the types of oxides 

strongly depend on environmental parameters, such as temperature, pH and oxygen 

level [36]. Fe2O3 (red oxide) is the most common oxide in nature [36], [47]; Fe2O3 

exists in the form of iron oxyhydroxides as a result of hydration, such as α-FeOOH, 

β-FeOOH and γ-FeOOH [36], [48]. Another iron oxide, Fe3O4 (black oxide) can 

generally act as a passivation film to protect from further corrosion [49].  

The existence of Fe-based oxide on the rail surface has been recognised, particularly, 

in areas near to the sea, where the rail can be easily covered with rust [39], [48]. 

Haematite (Fe2O3) and magnetite (Fe3O4) are well-known to be formed on the rail 

surface [38], [39], [48]. These oxides are deemed to form a mechanically mixing 

layer, presumably leading to the formation of third body layers [50]. As a result, iron 

oxides are thought to be an important material to determine the tribological 

behaviour of the contact area [37]–[39], [51], [52]. 

The decrease of friction/traction coefficient due to iron oxides on the rail surface has 

been reported by many researchers [38], [39], [51], [52]. Iron oxide films are 

considered to be the mixture of Fe2O3 and Fe3O4, and the relatively soft Fe3O4 

reduces the friction although hard Fe2O3 increases or maintains the friction level 

[38]. However, Fe2O3 is also reported to have a tendency to decrease the friction 

coefficient compared to clean samples, depending on relative humidity [52]. 

Consequently, iron oxides produce low adhesion conditions, although the magnitude 

depends on the oxide types and other factors. 

Both Fe3O4 and Fe2O3 (transformed into Fe3O4 during the reaction [53]) are 

discovered to act as a catalyst in the decomposition of biomass materials, which 

contain a high amount of cellulose [53], [54]. Although relatively high temperatures 

and pressures are required (e.g. 300 to 400 °C and 3.5 MPa) [54], these iron oxides 

enhance the chemical reaction, and also the production of gasification or dissolution 

into an organic solvent [53], [54]. Furthermore, Fe3O4 seems to act as a catalyst more 

than Fe2O3, because the transformation from Fe2O3 to Fe3O4 is observed after the 

reaction [53]. However, the detailed process of the chemical reaction related to the 

catalyst has not been clarified.  

Overall, both Fe2O3 and Fe3O4 can be produced on the rail surface, and they seem to 

have a significant effect on tribological characteristics in the contact area as well as 

the chemical reaction between leaves and rail steels. 
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2.8.4 Cellulose 

Cellulose is a glucose polymer and a predominant material in plant cells [36], [55], 

and it is one of the main components in biomass, which is recently re-evaluated as a 

green energy source [54], [56]. Cellulose is also contained in both leaves and leaf 

films, and it is expected to be one of the key materials which form a strong bond to 

the rail [2], [36]. Usually, cellulose is dissolved into water; however, it maintains a 

crystal structure and is not decomposed under normal circumstances [55], [56]. This 

suggests that special circumstances, such as high temperature and high pressure, are 

required to form a cellulose complex with other materials.  

The usages of cellulose are varied, with cellulose being found in the manufacture of 

paper, foods, chemicals [56]. One interesting way to use cellulose is a source of 

adhesives [57]. This usage suggests that cellulose can be transformed into adhesive 

between the leaf residue and rail under certain conditions. 

2.8.5 Lignin 

Lignin is a polymer that forms plant cell walls [36], [58], and it accounts for 15-25 

wt% of plant biomass material [59]. FT-IR analysis reveals that lignin is contained in 

leaf residue produced by laboratory experiments and thought to be the main 

component of leaf film [11], [16]. However, lignin is regarded as a structural 

material rather than a water-soluble material, and it seems to have nothing to do with 

the black coloured material formed with leaf extracts and steels [14]. Thus, lignin has 

not been the main focus of previous low adhesion research.  

Recent studies in chemistry show that the long chain polymer structure of lignin can 

be broken down under high temperature and high pressure, which is sometimes a 

sub- or supercritical environment [58]–[63]. According to these studies, lignin is 

transformed into gas and dissoluble fragments in a relatively short time [58], 

depending on the experimental conditions. This result suggests that decomposition of 

leaf lignin might be possible under the wheel/rail contact, due to the high pressure 

and the high temperature.  

Another aspect of lignin is that it can act as an adhesive, forming a polymer through 

crosslinking with other components, such as furfural and phenol [64], [65]. The 

properties as an adhesive of lignin are extremely strong, meeting 90% tensile 

strength of phenol-formaldehyde resin, which is commercially used in the wood 

industry [64]. In contrast to the advantages as an adhesive, this crosslinking reaction 

is a problem in the decomposition process [58]–[63]. The sub- or supercritical 

conditions degrade lignin into small fragments; however, they are concurrently re-

polymerised through crosslinking effects [60]–[63]. As a result of re-polymerisation, 

these fragments sometimes produce solid residues, in particular, when the solvent is 
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only water [61]. These results indicate the possibility that the lignin-based adhesive 

could be formed with wet leaves on the rail, due to the high temperature and high 

pressure produced by the wheel/rail contact.  

A hypothesis has been proposed, in which lignin has an important role in forming a 

strong bond between leaves and rails [36]. In this hypothesis, an iron carbohydrate 

complex is formed as an interfacial layer, and this carbohydrate is from lignin of the 

cell wall. Although there is no reported experimental research, lignin might be one of 

the key bonding materials. 

2.8.6 Pectin 

Pectin is a soluble chemical compound, which can exist in one of three forms, 

namely, protopectin, pectin and pectic acid [66]. One of the main features of pectin is 

that it is easily transformed into a gel. Divalent metal cations, such as Ca2+ and Cu2+, 

change the pectin into gel with crosslinking effects [67], [68]. Studies of the leaf 

residue show that it is likely to contain pectate esterified to some extent and a 

relatively small amount of cellulose [14]. Due to the high solubility of pectin in 

water, pectin gel, which is probably crosslinked by Fe ions, is thought to produce low 

adhesion conditions [14]. The black colour of leaf films may be attributed to the 

chemical reaction between pectin and iron, and clusters agglomerated with cellulose 

fibres might form a bond [14]. This suggests that pectin is one of the key materials in 

the black layer for the strong bonds.  

However, the effect of pectin has not yet been clarified. In particular, the mechanism 

by which pectin chemically reacts with other components is still unclear. For 

example, the detailed reaction process is not determined for the black colour 

formation, and the bonding strength of pectin gel has not yet been evaluated. Thus, 

further experimental work is required.  

2.9 Research gaps 

Research gaps were identified by a knowledge map generated by grading the cited 

academic papers. 

2.9.1 Drawbacks of current studies and the derived models 

Despite the significant progress in chemical conditions of leaf films, essential 

parameters, which control conditions of the chemical reaction in the leaf film growth, 

have not yet been determined. For example, few experiments have been carried out 

focusing on parameters, such as temperature, pressure and material. More studies 

need to be implemented with various parameters to specify the key factors, which 

produce low adhesion and strongly bonded leaf layers. 
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The models based on the previous studies have some drawbacks; the detailed process 

of the chemical reactions has not been demonstrated. For instance, the elements of 

the friction-reducing layer are clarified in the field-based model; however, it is not 

confirmed to what extent the detected elements contribute to the low adhesion and 

bonding mechanism. Moreover, few experimental works have been implemented to 

verify the other hypotheses of bonding mechanism. As a result, the bonding 

mechanism cannot be fully explained by these models or hypotheses. Hence, there is 

a need to perform more detailed chemical analyses, clarifying the low adhesion and 

strong bonds.  

2.9.2 Paper grading 

The citations used for this review have been graded to visualise the research area and 

determine what research has been carried out and where published research is 

lacking, using the same evaluation method as used in [69].  

The citations are divided into four categories, namely, “General adhesion”, 

“Prevention”, “Fundamental research” and “Mitigation”. Each category has several 

groups, for example, the “General adhesion” category has groups such as academic 

research, laboratory testing and field testing. Some citations have several aspects, 

and as such belong to several groups. This is shown in combination forms with 

numbers and letters, such as 1A and 1B, which means paper 1 and aspect A or B. 

After grouping, the paper is evaluated in seven areas as described below. 

 

 Is the citation peer reviewed? 

 Does the paper contain theory supported by testing? 

 Is the test small scale? 

 Is the test full scale? 

 Does the citation contain real world measurements? 

 Are the conclusions in the citation evidenced within the data? 

 Are the conclusions validated by operational experience? 

 

All the questions are “yes or no” interrogatory sentences, and “yes” obtains one 

point. Then, the citations are ranked into 3 categories by the accumulated points, 

namely, C (0-2), B (3-4) and A (5-7). For example, the citation obtains 3 yes scores, 

then the citation will get 3 points. In this case, the paper is ranked as “B”. The 

summary of this evaluation is shown in Appendix A. The score is not a reflection of 
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research quality, but more up score is associated with the full-scale tests than 

laboratory scale tests alone. Finally, the ranking results are shown as a knowledge 

map, which visualises the research area and scores. In this map, research gaps are 

shown as the areas marked with less density of circles, which means that there is no 

work or little work in this area.  

2.9.3 Research gaps 

Figure 2.9 shows the generated knowledge map with the score calculated in 2.9.2. As 

can be seen, “General adhesion” and “Mitigation” have many previous studies on 

their sub-categories. In contrast, there has not been much-published work in 

“Prevention” or “Principle research”. Furthermore, “Chemical” in the Mitigation has 

no previous work. Possibly, a lack of understanding of principles about leaf 

chemistry prevents developments of prevention methods or mitigations by chemicals, 

and these three areas or groups are still vacant. Consequently, exploring these fields 

should be worth trying to develop an innovative measure against leaf contamination. 

Research gaps and details are summarised in the following lists: 

 

 Parameter specifications (Principle) 

Parameters which affect low adhesion conditions and strong bonds between the leaf 

film and rail should be identified by experiments and analyses. Namely, each 

material is separately tested, and then it is evaluated by mechanical and chemical 

analysis. This process could involve friction measurement, evaluation of bonding 

energy and chemical analysis with different materials and various conditions. 

 Reaction process presumptions (Principle) 

Based on the results of parameter specifications, the chemical reaction should be 

assumed and hypothesised. Further analysis or test might be needed to examine the 

ideas. 

 Development of prevention or mitigation methods 

Several methods for prevention and mitigation should be considered and tested. Field 

tests are ideal for the examination; however, a small-scale rig can be alternatively 

used to examine the idea. 
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Figure 2.9 – A knowledge map of previous studies regarding leaf films on the rail 

2.10 Conclusions 

The main objective of this literature was to understand the phenomenon of low 

adhesion due to the leaf contamination on the railway track. In this literature review, 

firstly the operational data was analysed, and then the information related to the low 

adhesion due to leaf contamination was summarised. After that, the current 

mitigation method was reviewed, followed by a summary of the chemical analysis of 

leaf contamination. Furthermore, the suggested models of low adhesion and bonding 

mechanisms were studied, and then the expected parameters were considered 

focusing on pressure, temperature and materials. Finally, the research gaps were 

identified using the knowledge map. The main findings were listed below: 
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 Incident analysis with the operational data found the relatively high possibility 

of station overruns and SPADs between the hours of 05:00 to 10:00 and 20:00 to 

24:00, which could be attributed to wet leaf films moistened by dew due to the 

high relative humidity in the morning and night.  

 The friction/traction coefficient where leaf films are on the rail was identified as 

below 0.1 in both laboratory and field studies, which is categorised as a low 

adhesion level. Wet leaves tend to produce low friction/traction coefficients of 

around 0.05. 

 Mitigation methods, such as sanding, traction enhancer and high-pressure water, 

were found to be effective to some extent; however, there are still some issues in 

terms of performance and cost.  

 Chemical analysis of leaf contamination recently showed significant progress in 

the understanding of the interface between the leaf film and bulk rail; the mixed 

layer is likely to be formed, containing the leaf-derived organics and iron oxides.  

 Several hypotheses were proposed based on the findings of the chemical 

analysis; however, they have not yet been experimentally examined and more 

detailed investigation is necessary for the better understanding.  

 Key parameters for the chemical reaction were identified as follows: high 

pressure, high temperature, iron oxides, cellulose, lignin and pectin, which 

should be considered to be an important factor for the experiments performed in 

this study. 

 The research gaps were identified as specifications of parameters for the low 

adhesion and bonding mechanisms, elucidation of the chemical reaction process 

and development of prevention or mitigation methods.  

 

 

 

 

 

 

 

 

 



29 

 

3 HYPOTHESES 

Several hypotheses were developed from the literature review, to explain the 

mechanisms of low adhesion and strong bonds between leaf films and rails. 

3.1 Introduction 

As discussed in 2.7, the existing two models cannot fully explain the reasons why 

leaf films cause low adhesion and tightly adhere to the rail. To be exact, the detailed 

process of chemical reaction is not proposed, and thereby these mechanisms are 

unclear. Moreover, other hypotheses lack experimental evidences. Hence, more 

consideration should be taken: important factors for chemical reaction, key materials 

and theories of low friction and strong bonds. 

In this chapter, factors to trigger the chemical reaction are firstly discussed, followed 

by proposal of a leaf contamination model, and finally developments of hypotheses. 

3.2 Proposed factors for the chemical reaction 

Figure 3.1 depicts a process of heat generation and following chemical reaction. As 

reviewed in 2.8, high pressure and high temperature can occur in the wheel/rail 

contact. In the case that wheels pass fallen leaves on the track, wheels are likely to 

slip on them. This slip could involve a large slip distance under high contact 

pressure, followed by friction heat generation. The high temperature due to the 

friction heat could enhance the chemical reaction between leaves and rail steels, 

discharging organic components from leaves as well as iron ions from the rail. After 

the fleet passes by, the rail is gradually cooled down, and the bonding layer between 

the top leaf layer and the bulk rail could be formed. 
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Figure 3.1 – Generation and reaction process with high pressure and temperature 

Figure 3.2 illustrates a schematic figure of model proposed in this study. After the 

heat and pressure application by wheels, three-layer structure is supposed to be 

formed: a leaf layer on the top, a bonding layer in the middle and a bulk rail steel at 

the bottom. In another way, the leaf layer is bonded to the rail via the bonding layer. 

The bonding layer could have an intermediate property between leaf organics and 

rail steels, acting as a buffer layer which is a common technique to relax a lattice 

mismatch between films and substrates and to improve the film quality. The bonding 

layer could work analogously to the buffer layer, forming a strong bond.  

 

 

Figure 3.2 – Schematic figure of proposed model 
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3.3 Hypotheses for low adhesion 

There are several arguments regarding the reason why the leaf residue causes low 

adhesion. However, the main cause has not yet been determined because of the many 

parameters, such as relative humidity, third bodies and temperature. Therefore, some 

hypotheses were proposed to consider the main cause of low adhesion, focusing on 

how leaves work as a lubricant. 

3.3.1 Bulk leaf 

This hypothesis assumes that there are many fallen leaves on the line because of 

strong winds, as shown in Figure 3.3. If wheels pass over the leaves, they are 

compacted and adhered to the rail. During the wheel passages, leaves might act as a 

solid lubricant because the thickness will be large enough to prevent metal-to-metal 

contact. Consequently, the friction coefficient on the contact area is lowered. After 

the wheel passages, natural third body layers, namely, leaf films, are presumably 

formed, and the low adhesion problem continues for a long time. 

Both laboratory experiments and experiences in train operation support this 

hypothesis. It is demonstrated that continuous applications of leaves into the contact 

area of a twin disc machine produce a low friction/traction coefficient (<0.05) in both 

dry and wet conditions [13].  Furthermore, train operation is often suspended or 

delayed because of sudden and heavy leaf falls, which is caused by strong winds.  

 

 

Figure 3.3 – Low adhesion due to bulk leaves fallen on the line 



32 

 

3.3.2 Adhered leaf film in dry and wet conditions 

In this hypothesis, the leaf film is assumed to work as a lubricant in both dry and wet 

conditions. The terminology “leaf film” is different from a bulk leaf; it means an 

adhered and black leaf residue in the running band, which is composed of both the 

leaf layer and bonding layer in Figure 3.2. As the leaf film should contain a lot of 

iron oxides and leaf-related organics, it can possibly cause low friction conditions. 

Figure 3.4 shows a schematic view of the low adhesion mechanism of leaf films in 

dry conditions. In dry conditions, a friction reducing layer works as a third body 

layer and lowers friction levels, because of its rich amount of iron oxides and leaf-

related organics. Iron oxides can decrease the friction coefficient, and the residual 

leaf organics might cause low adhesion. As a result, lower adhesion can be expected 

when they are mixed as a leaf film. 

 

 

Figure 3.4 – Low adhesion due to adhered leaf films in dry conditions 

Figure 3.5 shows the low adhesion mechanism in wet conditions. In this hypothesis, 

leaf films are supposed to absorb water, such as dew formed on the rail surface, and 

then they are deteriorated or softened, making a gel-like substance of leaf film. This 

soft material made of iron oxides and leaf-related organics could cause poor friction 

level.  

Leaf films created on test specimens were confirmed to lower friction coefficients 

[11], [15], [16], [22]. Furthermore, the statistical data of train operation in 2.3 

suggests that morning dew affects adhesion condition and increases the number of 

accidents. All the information above supports this hypothesis.  
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Figure 3.5 – Low adhesion due to adhered leaf films in wet conditions 

3.3.3 Pectin gel 

This hypothesis is based on the suggestion that the pectin gel forms a slippery film 

on the surface, which is discharged from the leaf residue [14]. Figure 3.6 shows the 

low adhesion mechanism when pectin gel is formed with water and leaf film. FT-IR 

analysis demonstrated that pectin and cellulose are likely to be a water-soluble 

component, and pectin transforms into the pectin gel by reacting with Fe ions [14]. 

Therefore, this pectin gel on the leaf film is thought to form lubrication films, leading 

to low friction conditions. Furthermore, it is suggested that EHL films 

(elastohydrodynamic lubrication) might be formed due to the gel’s high viscosity, 

although it depends on the speed range [14].  

 

 

Figure 3.6 – Low adhesion due to pectin gel formed with water and leaf film 
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To sum up, four hypotheses were proposed in this study: bulk leaf, adhered leaf film 

in dry and wet condition, and pectin gel. These theories will be examined by 

experiments in this study. 

3.4 Hypotheses for strong bonds 

Based on the model, three hypotheses for the bonding mechanism have been 

developed. 

3.4.1 Sub- or supercritical water 

Generally, leaf components, including lignin, are stable material, and they are not 

easily decomposed into fragments. However, they can be decomposed under sub- or 

supercritical conditions where temperature is greater than 374.2 °C and pressure 

greater than 22.1 MPa (Critical point). The schematic figure of this idea is shown in 

Figure 3.7. As described in section 2.8.1 and 2.8.2, high temperature (ex. over 727 ˚C 

[49]) and high pressure (ex. 0.6 – 2.7 GPa [50]) are achievable in the contact area.  

 

 

Figure 3.7 – A dissolution process of leaf components and Fe ions 

(a): Small cavities filled with water between the leaf and rail under high pressure 

(b): Zoomed in, leaf components and Fe ions dissolved into water under sub or 

supercritical conditions (Pressure>22.1 MPa and temperature >374 °C) 

The reaction process is divided into four steps. As a first step, the high pressure is 

applied to wet leaf films on the rail surface as shown in Figure 3.7 (a). Then, the 

contact temperature increases due to thermal energy induced by sliding in the 

contact, and the water in the leaf film becomes sub- or super critical. During the 

sliding, leaf components and Fe ions are discharged from leaves and rail surface, and 

they are dissolved into the sub/super critical water as shown in Figure 3.7 (b). 
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Subsequently, the dissolved leaf components react with Fe ions, and a mixture of this 

material is formed. Finally, a bonding layer is formed after cooling. 

3.4.2 Catalyst function of iron oxides 

Figure 3.8 shows a decomposition process of leaf components due to iron oxide 

catalyst. Iron oxides have a catalyst function, which enhances the decomposition of 

cellulose or lignin with high temperature and high pressure. Although the magnitude 

of the catalyst function is not significant [53], [54], the active surface of iron oxides 

accelerates decomposition of leaf components more than under normal conditions. 

 

 

Figure 3.8 – A decomposition process of leaf components with the iron oxide catalyst 

(a): A contact condition with the surface iron oxides such as Fe2O3 and Fe3O4 

(b): Zoomed in, degradation process of leaf components into small fragments with the 

assistance of iron oxide catalysts 

There are three steps in the degradation process due to an iron oxide catalyst. First of 

all, high temperature and high pressure are applied to wet leaf films on the iron oxide 

film formed on the rail surface. After that, leaf components, such as cellulose and 

lignin, are dissolved into the water, subjecting any water in the contact to 

sub/supercritical conditions. Immediately, dissolved components are decomposed 

into small fragments on the surface of iron oxides, such as Fe2O3 and Fe3O4. In this 

step, iron oxides work as a catalyst. Finally, these fragments react together, or react 

with Fe ions discharged from the surface, and a bonding layer (mixing layer) is 

formed. 

It is noteworthy that this hypothesis has a close relationship to the sub/supercritical 

hypothesis; both of them need high temperature and high pressure for chemical 
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reaction. Therefore, chemical reactions based on these two hypotheses could occur 

concurrently.  

3.4.3 Cellulose or lignin adhesives 

Figure 3.9 depicts a schematic figure of mechanical interlocking principle of leaf 

adhesives. In this hypothesis, dissolved leaf components and Fe ions are assumed to 

form an adhesive layer after chemical reaction because cellulose and lignin have 

properties as an adhesive, as described in 2.8.4 and 2.8.5. Although there are many 

mechanisms regarding adhesives, one of the main theories is mechanical interlock 

theory, which explains that adhesive material fills surface asperities and anchor the 

two materials [70]. 

 

 

Figure 3.9 – A schematic figure of adhesive layer formation 

(a) Re-polymerisation process through crosslinking by Fe ions 

(b) Mechanical interlocking by adhesive layers produced by re-polymerisation 

The process of adhesive formation can be divided into three steps. First, leaf 

components and Fe ions are dissolved into water, and leaf components are 

decomposed into small fragments. Following the decomposition, the small fragments 

are cross-linked by other elements, such as Fe ions. Through this crosslinking, 

decomposed fragments are re-polymerised in the water. As a result, an adhesive layer 

is formed by the re-polymerisation process, filling the asperities on the rail surface. 

Since the water easily penetrates the surface roughness, the adhesive effect might be 

strong due to mechanical interlocking. 
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3.5 Conclusions 

Several hypotheses were proposed to explain the low adhesion mechanism as well as 

the bonding mechanism, based on the information attained in the literature review. 

Four hypotheses were proposed for the explanation of the low adhesion mechanism: 

bulk leaf, adhered leaf film in dry conditions, adhered leaf film in wet conditions and 

pectin gel. Three hypotheses of the bonding mechanism were also proposed as 

follows: sub- or supercritical water, catalyst function of iron oxides and adhesives of 

cellulose or lignin. These hypotheses need to be demonstrated by experiments. 
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4 BASIC TRIBOLOGY OF LEAVES: A BALL-ON-

FLAT TEST 

4.1 Introduction 

This chapter investigates basic tribological properties of leaves, which were 

measured with leaf and leaf-related samples. The aim of these tests is to identify the 

key leaf materials for the low adhesion and examine the hypotheses in 3.3. 

4.2 Samples 

Figure 4.1 illustrates typical images of green and brown leaf samples. Sycamore 

leaves were chosen as they are recognised as one of the problematic leaves [1], [2], 

[71], and they have been found to cause low adhesion conditions in previous work 

[11], [14], [22], [35]. Both green and brown leaves were collected in the garden of 

St. George’s lecture theatre in Sheffield, S1 4DP. The green leaves were taken from 

the branches between October and November 2016 and kept in a freezer to minimise 

decay. The brown leaves were picked up at the same location between November 

and December 2015 and kept at room temperature. 

 

 

Figure 4.1 Typical images of leaf samples 

4.2.1 Leaf powder 

Figure 4.2 illustrates the preparation process of the leaf powder (LP). Firstly, the 

bulk leaves were put in the general food processor and chopped into small pieces. 

After that, the leaf pieces were filtered using a general tea strainer, removing the big 

pieces (leaf mulch). The typical size of the brown powder is between 15μm and 

300μm; the green powder is between 100μm and 800μm, measured with an optical 
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microscope. This difference in the size could be attributed to the brittleness of leaf, 

which means that green leaves are more ductile than brown leaves. After the filtering 

process, the brown leaf powder (BLP) was stored at room temperature, and the green 

leaf powder (GLP) was tested immediately after the screening process.  

It should be noted that leaf mulch was not used for the ball-on-flat test due to less 

fluidity of leaf mulch and water mixture. As described later in 4.3.1, the ball-on-flat 

method measures a friction force between the ball and rail plate, and it needs the 

constant presence of sample in the contact area. As a result of trial tests, it was 

confirmed that the wet leaf mulch (five wt%) was likely to be removed from the 

contact area after a few cycles of reciprocating. From the viewpoint of repeatability, 

this behaviour was undesirable; therefore, leaf mulch was excluded as a testing 

sample.  

 

 

Figure 4.2 Preparation process of leaf powder 

4.2.2 Leaf extract 

Figure 4.3 shows the preparation process of the leaf extract (LE). The leaf mulch was 

used for leaf extract preparation. The ratio was typically 1g (leaf mulch):50 ml 

(distilled water), according to the previous study [14]. After the immersion of leaf 

mulch, the mixture was typically left for one day to eight days, depending on the 

purpose of the experiment. Before the friction test, the leaf extract was filtered with 

filter-paper, removing small particles. 
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Figure 4.3 Preparation process of leaf extract 

4.2.3 Leaf film 

Figure 4.4 depicts set-up of the PLINT TE77 which was used to form leaf films 

(LFs) on the rail steel plates. The PLINT TE77 can apply a compressive force up to 

250 N, to a moving head which is placed on a plate. The plate is fixed in the oil bath, 

and there is a heater and force sensor under the oil bath. The heater can raise 

temperature up to 600 ºC. The head is reciprocated with a stroke of 15 mm, by a 

rotating motion converter and motor. Figure 4.5 shows the head with two track 

rollers, which was originally developed for this study. The lower roller presses leaf 

materials in pure rolling conditions, forming a leaf film on the rail plate. 

 

 

Figure 4.4 PLINT TE77 for leaf film creation 
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Figure 4.5 Original head with two track rollers 

(a) Head, (b) Head movement 

Table 4.1 shows a summary of parameters in the leaf film formation. The whole 

creation process is described below. Step 4 to 6 are illustrated in Figure 4.6. 

  

1. The temperature is increased to 200 ºC. 

2. The head is operated at 200 N for 120 seconds as a pre-treatment. 

3. The head operation is stopped. 

4. The leaf powder suspension (5 wt%) is applied to the contact area by a spatula. 

5. The head is operated at 60 rpm (1 Hz) for 15 s. 

6. The head operation is stopped. 

7. Repeat steps 4 to 6 several times, consuming 6 – 7 ml/film on average. 

8. The experiment is ended after 150 seconds, approximately 90 – 120 rolling times 

on average. 
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Table 4.1 Summary of parameters in leaf film formation 

Parameter Value 

Applied force (N) 200 

Hertzian pressure (MPa) 285 

Temperature (°C) 200 

Frequency (Hz) 1 

Rolling (cycles) Typically 90 – 120 

Material 
5 wt% green/brown leaf powder suspension 

Typically 6 – 7 ml/film 

 

 

Figure 4.6 Standard process of leaf film creation 

The temperature was fixed at 200 ºC since the created LF seemed to adhere to the rail 

plate most strongly in comparison with the LFs at room temperature, 50, 100, 150 

and 250 ºC. This temperature is achievable in the wheel/rail contact when the wheel 

slips on the rail. The compressive force 200 N was applied, producing 285 MPa on 

average. The actual pressure between the wheel and rail is from 600MPa upwards 

[40]; however, 285 MPa is the maximum value due to the strength of axle which 

supports the track roller. The amount of suspension was typically 6 – 7 ml per film, 

although the amount was not precisely controlled. 
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4.2.4 Black precipitation powder 

The black colour has been reported as one of the characteristics of leaf films [1], [2], 

and leaf extract has been known to form a black material after the friction test [14]. 

Pectin in leaf extracts seemed to cause the chemical reaction with the rail steels, and 

this black material could be one of the candidates of low adhesion material. 

Therefore, the friction features of the black material were individually tested to find 

out the cause of low adhesion. The black precipitation was successfully synthesised 

with leaf extracts and rail steels after several trials. 

Figure 4.7 illustrates the preparation process of black precipitation powder (BP). 

Firstly, 200 to 250 ml leaf extract was prepared in the way described in 4.2.2. After 

that, the flat specimen made of rail steel (R260) was immersed in the LE from one 

day to three days. Usually, the colour of the green leaf extract started changing to 

black after the immersion in minutes, suggesting that the chemical reaction had 

occurred. In contrast, the brown leaf extract needed more time than green leaf extract 

for the colour change to occur, which usually happened in an hour. After the black 

precipitation had been formed, the leaf extract was boiled on a hot plate until the 

water was completely evaporated. Finally, the dried precipitation at the bottom of the 

beaker was collected and ground in a stone mortar. Typically, the size of the black 

precipitation powder was between 10 μm and 100 μm, measured with an optical 

microscope. The amount of black precipitation was always larger in green leaf 

extracts and smaller in brown leaf extracts. 

It is noteworthy that the artificial pectin solution (0.1 wt%) did not form the black 

material at all, suggesting that the other material is necessary for the formation of 

BP.  

 

Figure 4.7 Preparation process of black precipitation powder 
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4.3 Methodology 

4.3.1 Machine set-up 

Figure 4.8 shows a schematic view of the test set-up. A Bruker UMT was used for 

the ball-on-flat tests. A 5 mm stainless steel ball was pressed on a rail plate at 10 N 

which corresponds to the maximum Hertzian contact pressure of 1.6 GPa. After the 

force had reached 10 N, the ball holder reciprocated for 6 minutes with a 10 mm 

stroke at 10 mm/s as a set value.  

The calculated contact area was 9.3·103 µm2, and the size of leaf powder distributed 

between 0.7·103 and 2.0·106 µm2.This distribution is one of the scale effects of this 

method; the actual leaf contamination always happens where the leaf is larger than 

the wheel/rail contact patch. 

 

 

Figure 4.8 Schematic view of the test set-up 

Table 4.2 summarises the experimental parameters used in the friction tests. The tests 

were conducted with 0.2 ml solution or suspension, and the LF with 0.2 ml of 

distilled water. The liquid sample was directly applied on the plate by a syringe. In 

the case of leaf films, 0.2 ml of distilled water was applied to the surface. 

Additionally, pure distilled water, engine oil (Servol 15W-40, Morris lubricant) and 

pectin 0.1 wt% solution (Pectin from citrus peel, P9135, Sigma-Aldrich, CAS 

number: 9000-69-5) were measured as a baseline to compare the results. 
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Table 4.2 Experimental conditions 

Parameter Value 

Applied force [N] 10 

Maximum Hertzian pressure [GPa] 1.6 

Time [seconds] 360 

Stroke [mm] 10 

Frequency [Hz] 0.4 

Sampling frequency [Hz] 100 

Top stainless-steel ball diameter [mm] 5 

Sample amount [ml] 0.2 

Concentration (LP and BP) [wt%] 5 

 

4.3.2 Analysis of the data 

Figure 4.9 shows an example of raw data, both overview and zoomed-in. As the head 

moved forward and backwards, the friction force was recorded both positively and 

negatively. The ball was reciprocated at 0.4 Hz, and the actual interval was around 

2.57 seconds.  

Friction coefficient µ was obtained by dividing the friction force by the normal force, 

10 N. Then, the average value of friction coefficient was calculated for every 20 

seconds. The friction tests were repeated at least three times. Finally, the average 

friction coefficient was calculated; each mean value at every 20 seconds was totalled, 

and the sum was divided by repeating times. The standard deviation was calculated 

as an error at this stage. 
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Figure 4.9 Example of raw data (Engine oil 0.2 ml) 

(a) Overview of raw data, (b) Zoomed-in between 0 and 10 seconds 
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4.4 Results 

Friction properties of both green and brown leaves are presented below along with 

discussion of the possibility of each hypothesis for low adhesion. 

4.4.1 Leaf powder 

Figure 4.10 and Figure 4.11 illustrate the change in the friction coefficient of green 

leaf powder (GLP) and brown leaf powder (BLP), respectively. The error bar 

(standard deviation) was shown only for the baselines to simplify the graphs. As can 

be seen, both GLP and BLP suspensions showed lower friction levels than the 

distilled water and pectin solution. In particular, they demonstrated lower friction 

than the engine oil until 60 seconds, and then they reached the same level at 80 

seconds. After 80 seconds, GLP and BLP suspensions exhibited an increase in 

friction coefficient, resulting in the friction coefficient around 0.2. The initial low 

friction should be brought by the LP in the contact between the ball and rail plate; it 

seemed to prevent the metal-to-metal contact, lowering the friction coefficient than 

the engine oil. It should be noted that the leaf powder in suspension was gradually 

removed from the contact area as the experiment proceeded, and this removal could 

be the reason of the gradual increase in friction coefficients after 80 seconds. 

 

 

Figure 4.10 Friction properties of green leaf powder 
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Figure 4.11 Friction properties of brown leaf powder 

In contrast to the suspension, both dry GLP and BLP showed relatively high friction 

coefficient. The dry GLP showed around 0.2 for the first 20 seconds and increased 

the friction coefficient with some fluctuation, ending around 0.35 after 6 minutes. 

The dry BLP exhibited a relatively mild increase, starting from the friction 

coefficient around 0.25 and reaching slightly over 0.3 after the continuous increment 

for 6 minutes. These friction levels are lower than the wet baseline, however, it is not 

significantly low compared to the engine oil. It should be noted that the dry samples 

were removed from the contact area, quicker than the suspension samples. 

As a result, it was found that the leaf powder suspension caused low adhesion, but 

the dry leaf powder did not. This difference indicates two possibilities; some 

materials dissolved into the water lowered the friction level; the water helped the leaf 

powder being caught in the contact area. Since the dry powder showed the medium 

level of friction from the beginning, it is expected that leaf powder is not a 

significant cause of low friction. The combination effect of the dissolved material 

and solid leaf should cause the low friction.  

One of the interesting findings in the test was that the colour of BLP suspension was 

turned to black. This change could be the same phenomenon which is often seen in 

the field.  

4.4.2 Leaf extract 

Figure 4.12 illustrates friction characteristics of green leaf extracts (GLE). All the 

GLEs, except for GLE for one day, showed a medium level of friction between 0.2 

and 0.3 for 360 seconds. This friction level was lower than distilled water and pectin 
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solution, taking into account the error bars which were typically 0.01 – 0.02 or lower. 

Furthermore, the immersion time of GLEs did not affect the friction level. For 

example, GLE three days exhibited lower friction coefficient than GLE five days. 

 

 

Figure 4.12 Friction properties of green leaf extracts 

Figure 4.13 depicts friction characteristics of brown leaf extracts (BLEs). All the 

BLEs exhibited medium-low friction levels; it is lower than the distilled water and 

pectin solution but higher than the engine oil. Like GLEs, there was no clear 

relationship between the friction coefficient and immersion time; all GLEs showed 

around 0.15 for the first 60 seconds and increased the friction level around 0.25. 

 

Figure 4.13 Friction properties of brown leaf extracts 
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These two results indicate that the both green and brown leaf extract had some 

unique material dissolved into the leaf extracts. It could cause the medium-low 

friction conditions and maintain the friction level, as seen in Figure 4.12 and Figure 

4.13. Considering the results described in 4.4.1, LE might combine with LP and 

cause lower friction than the single leaf extract. Furthermore, that material can be 

extracted with relatively short immersion time, because the sample extracted for six 

hours showed the same level of friction as the samples for 5 or 8 days.  

It should be noted that the black deposits were observed after some friction tests of 

GLEs, like the previous study [14]. These black deposits are likely to be the same 

material as the black precipitation in 4.2.4. However, no black deposits were seen 

after the experiment using the pectin solution, reflecting the notes in 4.2.4. Moreover, 

the friction level of the pectin solution was not dramatically low, showing that the 

pectin does not seem to be the main material for the low adhesion mechanism in this 

test conditions.  

4.4.3 Leaf film 

Figure 4.14 and Figure 4.15 depict the friction characteristics of green leaf film 

(GLF) and brown leaf film (BLF), respectively. Both dry and wet GLFs showed a 

relatively high friction coefficient, 0.3-0.35 for the first 20 seconds and 0.35-0.4 for 

the last 20 seconds. In contrast, wet BLF exhibited low friction for the first 20 

seconds, roughly the same level as the engine oil. However, the friction coefficient 

continuously increased and reached around 0.35 after 6 minutes. The dry BLF 

exhibited a medium level of friction, between 0.25 and 0.35. Overall, both GLF and 

BLF showed a medium level of friction, and BLF tends to exhibit lower friction than 

GLF. This low friction could have happened with the same mechanism as the LP 

suspension; the BLF prevented the metal-to-metal contact with the help of water, but 

the long-term low friction was not seen.  

This medium friction level could be attributed to the quick removal of leaf films 

from the contact area; the contact between the ball and plate became a similar 

condition of wet baseline immediately after the ball started sliding. The quick 

removal reflects that the leaf film did not adhere to the plate as tightly as expected. 

This weak bonding might be because of lower pressure (285 MPa) than the actual 

wheel/rail contact (at least 600 MPa) in the creation process, considering the poorer 

bonding energy of the LFs created at different temperatures. 
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Figure 4.14 Friction properties of green leaf films 

 

 

Figure 4.15 Friction properties of brown leaf films 

4.4.4 Black precipitation powder 

Figure 4.16 illustrates the friction characteristics of black precipitation powder made 

from green leaf extracts (GBP) and brown leaf extracts (BBP), which was applied as 

a five wt% suspension. BBP suspension significantly lowered the friction level 

below the level of the engine oil for approximately 120 seconds and maintained the 

same level for 360 seconds. In contrast, GBP suspension showed the medium-low 
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level of friction around 0.2, although it exhibited a lower value than the engine oil at 

the first 20 seconds. This result demonstrates that the BP should be the responsible 

material for the low adhesion mechanism; especially, BBP should contain a specific 

or unique substance which can causes low adhesion.  

 

 

Figure 4.16 Friction properties of GBP and BBP 

To sum up, the results of friction tests demonstrated the following five points: 

 

 Leaf powder suspension can cause low friction conditions, corresponding to 

the indication of operational data. 

 Dry leaf powder and leaf extract did not show extremely low friction when 

they were separately applied; however, they could lower the friction level if 

combined. 

 Wet brown leaf film exhibited low friction for the first 20 seconds; however, 

the friction level increased afterwards due to the quick removal of leaf film. 

 Black precipitation powder formed in brown leaf extracts was identified to 

cause low friction conditions, which was lower than the engine oil or the 

same level as the engine oil. 

 The black precipitation could contain some materials which cause low 

adhesion.  
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4.5 Discussion 

4.5.1 Hypothesis examination 

The first hypothesis in 3.3, “Bulk leaf”, assumes that the bulk leaf prevents the 

metal-metal contact between the wheel and rail, leading to the low adhesion 

condition. This hypothesis is partially true in wet conditions since the lower friction 

coefficient than the engine oil was seen in the experiments using the GLP and BLP 

suspension. Taking into account the gradual removal of the LP at the later stage of 

the experiment, the low friction should happen as long as the LP exists in the contact. 

However, the water was necessary to trigger the low friction, as the dry LP was 

shown to have fewer effects on the friction level than the LP suspension. This result 

corresponds to the finding in the incident analysis; the dew is likely to cause low 

adhesion in the morning and night. Therefore, “Bulk leaf” should be able to lower 

the friction with the combination of a small amount of water. 

The second hypothesis “Adhered leaf film in dry conditions” should be untrue, as 

presented in 4.4.3. The third hypothesis “Adhered leaf film in wet conditions” could 

be partially true, since the wet BLF exhibited the low friction, which was roughly at 

the same level as the engine oil. The mechanical property of the LFs seemed to 

change due to the absorbance of water; however, the water also helped remove the 

LFs, resulting in the short-term low friction. Furthermore, the results shown in 4.4.2 

also suggest that the coated-slippery layer and friction-reducing layer in the models 

described in 2.7 are unlikely to have significant effects on the friction level. If they 

are present, the lower friction coefficient should have been observed in wet 

conditions. Although there could be better methods to develop the LF as well as 

these layers, potentially deteriorated and softened bulk leaf films seem to have a 

more significant impact on the friction conditions.  

The fourth hypothesis "Pectin gel" could be unlikely to cause low friction in the ball-

on-flat test conditions, according to the following facts:  

 

 Artificial pectin solution, 0.1 wt%, showed the medium level of friction between 

0.2 and 0.3.  

 No black material was formed after the experiment of the artificial pectin 

solution. 

 No black substance precipitated with the artificial pectin solution and rail plate, 

unlike the leaf extracts. 
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On the other hand, there could be another material which triggers the chemical 

reaction and forms the black precipitation, using pectin in leaf extracts. Hence, a 

more detailed analysis is necessary to examine this hypothesis, although the 

possibility seems to be very low.  

Overall, the hypothesis “Bulk leaf” is likely to be true, but only in wet conditions, 

and the other hypotheses are seemingly untrue. Other than these initially-developed 

hypotheses, the black precipitation synthesised with leaf extracts and rail steels is 

deemed to be a promising material to explain the low adhesion mechanism. 

4.5.2 Low adhesion material 

As shown in 4.4.4, the five wt% suspension of black precipitation powder formed in 

brown leaf extract was found to cause extremely low friction, which was lower or as 

the same level as the engine oil. This finding clarifies that BBP should be the 

primary cause of low friction due to leaf contamination. Another finding was that the 

black precipitation powder formed in green leaf extract had a stable but slightly 

higher friction coefficient than the engine oil, around 0.2. This result shows that there 

could be a difference in terms of material, although both BBP and GBP seem to be a 

compound of leaf organics and rail steels. Therefore, chemical and material analysis 

of BP is necessary to understand the low adhesion mechanism properly.  

Another material which contributes to the low adhesion was identified as both green 

and brown leaf powder in wet conditions, possibly preventing the metal-to-metal 

contact between the steel ball and rail plate. Considering that the colour of the LP 

suspension turned into black after the experiment, the similar chemical reaction to 

the black material synthesis should have taken place on the surface of the LP with the 

help of water. Hence, the low friction in the case of the LP suspension could be the 

mixed effects of the black material as well as the mechanical separation by LP.  

The friction tests with the BP are not the perfect replication of the leaf film seen in 

the field; no leaf film on the line seems to have such a pure black material. However, 

it is still likely to represent the surface of leaf films as they usually exhibit the black 

colour [2]. Moreover, the concentration of the BP suspension was relatively low (five 

wt%), and this fact suggests that a tiny amount of BP could induce low adhesion 

when mixed with water. Considering that the surface can be lubricated by the film 

with the thickness of a few molecules [72], the superficial formation of the black 

material on leaf films could be enough to cause low adhesion. 

Figure 4.17 illustrates the formation of a blackened layer on the leaf surface. 

Assuming that this change in colour is a result of chemical reaction, the water which 

covers the surface of leaf or leaf residue should have a high concentration of 

dissoluble constituents. Hence, only surface and subsurface are changed into the 



55 

 

black layer, which might contain the same substances as the black precipitation. To 

determine which material is the key to the low adhesion phenomenon, chemical and 

material analyses are needed. 

 

 

Figure 4.17 Formation of blackened layer 

4.6 Conclusions 

A ball-on-flat test showed that the black precipitation powder synthesised with leaf 

extracts and rail steels caused low friction with a combination of water. Furthermore, 

the leaf powder between 15μm and 300 μm was found to lower the friction level in 

wet conditions. Based on the results, four hypotheses, “Bulk leaf”, “Leaf film in dry 

conditions”, “Leaf film in wet conditions” and “Pectin gel” were examined. “Bulk 

leaf” was concluded to be likely since the black material was formed on the leaf 

powder during the experiment, and the other three hypotheses seemed to be unlikely. 

To understand what kind of material in the black precipitation causes low friction 

conditions, chemical and material analyses should be performed.  

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

5 MATERIAL ANALYSIS 

As discussed in 4.5, the black precipitation synthesised with leaf extracts and rail 

steel was chemically analysed for the clarification of the low adhesion and bonding 

mechanisms. 

5.1 Introduction 

The bonding and low adhesion mechanisms of the leaf film have not yet been 

clarified. To reveal these mechanisms, chemical analyses of leaves and leaf films 

may be effective as a first step. Especially, the black precipitation which was created 

and tested in Chapter 4 needs to be investigated since it was confirmed to cause low 

friction and believed to be the same substance as the black material seen on the 

actual railway track. 

The aim of this material analysis is to identify the key materials for the bonding and 

low adhesion mechanisms, using many techniques of chemical analysis. In this 

chapter, the results and findings are shown, excluding the detailed information, e.g. 

fundamentals and principles. 

5.2 Analysis methodology 

Generally, each method of chemical analysis has a limitation; there is always some 

undetectable substance in principle. Accordingly, it is important to combine several 

methods to understand the key materials in the sample correctly. In this study, the 

black precipitation powder was intensively investigated, using five analysis methods. 

5.2.1 Sample preparation 

Black precipitation powder (BP) was intensively analysed. A BP thin film was also 

prepared on a small piece of rail steel, approximately 10×10×4 mm, for some 

chemical analysis. Figure 5.1 shows the preparation method of the BP thin films. 

They were formed following the procedure of BP formation; however, no heat was 

applied to the steel piece unlike in the BP formation. This method allows replication 

of the black material on railway tracks as naturally as possible. BP thick films were 

formed on the small steel piece, fully following the procedure of BP formation 

described in 4.2.4 
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Figure 5.1 Preparation of BP thin films 

5.2.2 X-Ray Fluorescence (XRF) 

A Fisherscope XAN 250 was used for XRF analysis of BP and LP. The main 

limitation of this method was incompleteness in detection. In this machine set-up, the 

elements between aluminium (Al, 13) and uranium (U, 92) are measurable; the light 

elements between hydrogen (H, 1) and magnesium (Mg, 12) cannot be detected. 

5.2.3 X-Ray Diffraction (XRD) 

A PANalytical X'Pert3 Powder was used to obtain XRD data. The data was taken at 

an angle between 10° and 80°, with a scanning step of 0.01313° and Cu-Kα x-ray 

source. It should be noted that XRD can only detect material which has a crystal 

structure. Therefore, no peaks in the acquired data could mean an amorphous 

structure. 

5.2.4 Laser Raman Spectroscopy (RS) 

A Renishaw inVia Raman Microscope was used for RS analysis, with BP and BP 

thin films. The wavelength of the laser was 514.5 nm (green), and the original laser 

power was set as 20 mW. In all experiments, the objective lens x50 was used, and the 

spot size was approximately five µm in diameter. Typically, the spectrum was 

acquired between 50 and 4000 cm-1 with the exposure time of 10 or 20 seconds and 

five-time accumulation, reducing the laser power to 5 or 10 % (approximately one or 

two mW). A baseline of the acquired spectrum was subtracted, and the noise on the 

spectrum was removed with WiRE software, making the spectrum flat and smooth. 

For some spectra, peak fittings were also conducted. As a reference, activated 

charcoal was also analysed, which was purchased from Sigma-Aldrich (product 

number: C9157, CAS number: 7440-44-0). 
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5.2.5 X-Ray Photoelectron Spectroscopy (XPS) 

XPS analysis was performed for BP thin and thick films with a Kratos Analytical 

Axis Supra. The sample piece with BP films was fixed to the stage by a double-sided 

sticky tape to achieve the electrical isolation. A piece of paper was used to guarantee 

the insulation between the sample and stage: stage-double sided tape-paper-double 

sided tape-sample. Due to this structure, the whole sample surface would be 

uniformly charged-up, and the neutraliser could keep the electrical level constant 

with low energy electrons. Before a measurement, Ar ion sputtering was conducted 

to remove thin contamination layer on the top, i.e., a natural oxide layer, with Ar 

2000+ clusters at 5 kV for 20 seconds, targeting an area 5×5 mm. Then, X-rays were 

irradiated at 1486.6 eV with an Al source, spotting the area of 300×700 μm.  

Spectra between 0 and 1200 eV were measured at 160 eV pass energy, 1 eV 

intervals, and with five minutes of acquisition time. After that, the high-resolution 

spectrum of each element was collected at 20 eV pass energy and 0.1 eV intervals for 

5 to 15 minutes. These acquired spectra were analysed with CasaXPS processing 

software (Version 2.3.19). Firstly, they were calibrated with carbon 1s peak at 285 

eV to cancel a shift due to charging-up. Then, each peak was fitted with appropriate 

Gaussian-Lorentzian (GL) ratio and full width at half maximum (FWHM) to acquire 

an accurate value of chemical shift in each peak. Finally, the chemical shift values 

were compared to data in the references. The measurement was repeated three times 

or more at different spots. 

It should be noted that this series of tests was kindly conducted by Dr. Deborah 

Hammond at Sheffield Surface Analysis Centre, the University of Sheffield, and the 

obtained result was analysed by the author. 

5.2.6 Fourier Transform Infrared Spectroscopy (FT-IR) 

A Bruker ALPHA Platinum-ATR was used, and FT-IR spectra were taken for BP 

and LP, between 400 and 4000 cm-1, scanning 16 times with the resolution of 4 cm-1. 

The region between 4000 and 1500 cm-1 was mainly analysed, as the fingerprint 

region between 1500 and 600 cm-1 usually shows complex absorption patterns and 

they are relatively difficult to analyse. Additionally, the spectra had a noise between 

1900 and 2200 cm-1, which is attributed to the diamond stage of the machine. Hence, 

assignments to specific molecular bonds in these regions could be inaccurate. 

Similarly, there is no special equipment to remove water in the sample, and OH bond 

might appear around 3200 cm-1.  

In general, a FT-IR spectrum can be divided into three regions: 4000-2000 cm-1, 

2000-1500 cm-1 and 1500-600 cm-1 (fingerprint region) [73]. The former two regions 

contain important data for interpretation of chemical bonds. However, the latter 
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fingerprint region usually shows a complex spectrum, and it cannot be used for 

precise determination. Therefore, the peak assignments in the fingerprint region 

should be taken for a reference. 

5.3 Results 

5.3.1 XRF 

Figure 5.2 depicts the XRF results of GLP, GBP, BLP and BBP. Both GLP and BLP 

contained a relatively large amount of Calcium (Ca) and Potassium (K), as well as a 

small amount of Chlorine (Cl), Manganese (Mn) and Iron (Fe). In contrast, GBP and 

BBP were found to contain mainly Fe, followed by K, Ca, Cl and Mn. This result 

shows that Fe ion dissolves into LEs from rail plates, and it causes the chemical 

reaction with leaf organics in LEs. The dissolved Fe ion presumably reacts with 

various ions and molecules in LEs, including K, Ca and Cl ions. It should be noted 

that the number of counts cannot be directly compared to each other, because the 

amount of sample powder was not accurately controlled. Thereby, the counts ought 

to be taken as reference only.  

 

 

Figure 5.2 XRF results: (a) GLP, (b) GBP, (c) BLP, (d) BBP 
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5.3.2 XRD 

Figure 5.3 illustrates the XRD data of GBP and BBP. BBP exhibited several sharp 

peaks, indicating that some crystal materials were present. In contrast, GBP did not 

show any peaks, suggesting no crystal structure was in the sample. Table 5.1 shows 

the assignments of the peaks in BBP. The assignments were conducted by searching 

in the database (Powder Diffraction File provided by the International Centre for 

Diffraction Data: PDF-4). It was found that these XRD patterns of BBP derived from 

potassium chloride (KCl: strong peaks) and calcium sulphate (CaSO4: relatively 

weak peaks), although the small two peaks at 20.7 and 31.05 were not identified. 

Unexpectedly, iron oxides were not detected, suggesting that the iron detected in 

XRF analysis has an amorphous structure. It should be noted that amorphous KCl 

and CaSO4 could be present in GBP, as Cl, K and Ca were detected in GBP by XRF 

analysis. 

 

 

Figure 5.3 XRD results: (a) GBP, (b) BBP 
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Table 5.1 Assignments of XRD peaks measured in BBP 

Measured 2θ 2θ in reference Assignment 

14.7 14.6208 CaSO4 

20.7 - - 

25.51 25.4645 CaSO4 

28.31 28.3453 KCl 

29.09 29.1521 CaSO4 

29.51 29.4867 CaSO4 

31.05 - - 

31.69 31.8395 CaSO4 

40.48 40.5074 KCl 

49.02 49.0628 CaSO4 

50.15 50.1688 KCl 

53.8 53.8096 CaSO4 

58.58 58.6402 KCl 

66.35 66.3809 KCl 

73.67 73.7331 KCl 

KCl: PDF number 00-041-1476 

CaSO4: PDF number 04-016-3271 

5.3.3 RS 

Figure 5.4 exhibits the acquired Raman spectra of GBP, BBP and activated charcoal, 

and their peak fittings are shown in Figure 5.5. Both GBP and BBP showed similar 

peaks, which are around 1350 cm-1 (shoulder, small) and 1570 cm-1 (strong), 

respectively. They are typical features of amorphous carbon [74], called disordered 

band (D) and graphitic band (G), respectively [75], [76].  The broad peak around 

2850 cm-1 was assigned to amorphous carbon as well [75], although these peaks in 

GBP and BBP were not as clear as the activated charcoal.  The small and broad peak 

around 600 cm-1 in BBP could be a mixture of magnetite (Fe3O4) and hematite (α-

Fe2O3), which has a shift of 533.6 cm-1 and 611.9 cm-1, respectively [77]. The 

overlapping band around 1430 cm-1 was difficult to be assigned; it could be 

carboxylate ions (COO-) in carboxylic acid salts [78], taking into account the result 

of FT-IR analysis described later in 5.3.5.  

In general, an intensity ratio of D and G band (ID/IG) can be used to evaluate the 

degree of graphitisation [75], [76], [79], [80]; the ratios were around 0.77, 0.83 and 
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1.09 for the GBP, BBP and activated charcoal, respectively. These relatively low 

ratios in GBP and BBP suggest that their carbon materials have a less disordered 

structure, possibly forming a mixed structure of sp2 and sp3 carbon according to the 

definition in [81]. Hence, both GBP and BBP are likely to have partially graphitised 

carbon in them. It should be noted that similar spectra were obtained with a real leaf 

film acquired in the field test, which is described in Chapter 9.  

 

 

Figure 5.4 Raman spectra: (a) GBP, (b) BBP, (c) Activated charcoal 
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Figure 5.5 Peak fittings of the acquired Raman spectra 

(a) GBP, (b) BBP, (c) Activated charcoal 

This graphite-like carbon could be one of the reasons why low friction happened 

during the friction test. Furthermore, a sugar-derived carbon, which is often studied 

as a material of electrodes, has been reported to have a more graphitic structure than 

amorphous carbon, e.g. carbon black [76], [79]. Hence, the Raman spectra also 

indicate that GBP and BBP might derive from dissolved sugars in LEs, which are 

highly likely in water-extract of plants, such as green tea [82]. 

Figure 5.6 depicts the Raman spectra of GBP and BBP thin films formed on a small 

piece of rail steel without boiling. For these samples, two different levels of laser 

power were tested: 1 and 2 mW. Both GBP and BBP samples showed sharp peaks 

with the 2 mW laser. In contrast, these clear peaks were not seen in the spectra 

measured with the 1 mW laser power except D and G bands of carbon. Table 5.2 
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summarises the observed Raman shifts and their assignments. The relatively sharp 

peaks around 220, 290, 400, 600 and 1310 cm-1 were assigned to α-Fe2O3. The broad 

and small peak around 650 cm-1 could belong to a mixture of Fe3O4 and FeO 

(Wüstite), and the broad but the high peak around 1560 cm-1 was assigned to 

amorphous carbon. The difference between the measured and reference values could 

be attributed to the different laser power since the Raman shifts of peaks move to 

lower wavenumbers when higher laser power is used in the case of iron oxides [77]. 

The broad peak at 650 cm-1 in the spectra measured with 1 mW laser indicates that 

Fe3O4 initially exists in the samples; FeO is often seen in the transformation process 

from Fe3O4 to other types of iron oxides, which could be α-Fe2O3 in this case [77]. 

This transition happens if the laser power is intense enough to cause decomposition 

of Fe3O4. Therefore, these peaks seem to originate from Fe3O4. 

 

Figure 5.6 Raman spectra of GBP and BBP thin films with different laser power: 

(a) GBP 2 mW, (b) GBP 1 mW, (c) BBP 2 mW, (d) BBP 1 mW 
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Table 5.2 Raman shifts and assignments of GBP and BBP thin films 

GBP 2 mW 

Raman shift cm-1 

BBP 2 mW 

Raman shift cm-1 
Assignment Reference 

220 222 α-Fe2O3 226.7 [77] 

286 290 α-Fe2O3 
292.5 

299.3 
[77] 

398 406 α-Fe2O3 410.9 [38], [77] 

602 606 α-Fe2O3 611.9 [77] 

642 
651 

662 

FeO 

Fe3O4 

652 

662.7 

[77] 

[38] 

1305 1317 α-Fe2O3 1320 [38], [77] 

1556 1567 
Amorphous carbon 

Sugar-derived carbon 

1575 

1580 

[74] 

[83] 

 

In RS, the sample surface may be degraded if the laser power is too high [84], and 

heat induced by the laser affects measurements [85]. In fact, the laser with high 

power, such as 10 mW, burned the surface of BP during trials. In Figure 5.6, it seems 

that the 1 mW laser gives no damage, but the 2 mW laser does, and it possibly burns 

the surface carbon layer and exposes the iron oxides underneath the surface layer. 

The detected peaks of iron oxides do not derive from the rail plate since the depth 

penetration of graphite is approximately 50 nm [74]. Thus, the Raman spectra in 

Figure 5.4 and Figure 5.6 predict a structure of GBP and BBP; Fe3O4 or a mixture of 

α-Fe2O3, Fe3O4 and FeO becomes a core, and a thin amorphous carbon layer grows 

on the surface of the iron oxide, which is partially graphitised carbon.  

5.3.4 XPS 

Figure 5.7 shows the XPS spectra of GBP thick film and GBP thin film, which were 

formed with and without heat treatment, respectively. In the same manner, Figure 5.8 

depicts the XPS spectra of BBP thick film and BBP thin film. Both GBP and BBP 

films were found to contain various elements, such as carbon, oxygen and iron, 

showing a good agreement with the previous study [23] and the results of XRF and 

XRD. Some elements, e.g. calcium and potassium, were only seen in thick film 

samples, indicating that the heat treatment affects the chemical reaction for the 

formation of compounds which contain calcium, sulphur, potassium, magnesium, 

chlorine and silicon. 
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Figure 5.7 XPS results of GBP: (a) Thick GBP film, (b) Thin GBP film 

 

Figure 5.8 XPS results of BBP: (a) Thick BBP film, (b) Thin BBP film 
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Table 5.3 summarises the chemical composition of each element shown in average 

atomic percent (at%) with the standard deviation. It was revealed that carbon and 

oxygen accounted for approximately 90 at% in both thick and thin films, possibly 

forming an organic layer on the surface. Iron was also present in GBP and BBP thin 

films, accounting for 3-7 at%. However, less or no iron was observed in GBP and 

BBP thick films, showing that the heat treatment enhanced the chemical reaction 

which formed the organic layer. This change in the iron composition supports the 

prediction of a structure: organic layer (carbon layer) on an iron oxide core described 

in 5.3.3. It should be noted that the concentration of sodium was not taken into 

account due to the lack of the detection in the primary region: Na 1s at 1071.8 eV. 

 

Table 5.3 The average chemical compositions of GBP and BBP films in atomic percent 

Atomic % C O Fe N Mg P Mn Ca S K Cl Si 

Thick GBP 
59.3 

±1.3 

35.3 

±0.9 

0.8 

±0.1 

0.7 

±0.1 
- 

0.2 

±0.1 
- 

1.4 

±0.1 

0.6 

±0.1 

1.0 

±0.3 

0.4 

±0.1 

0.4 

±0.1 

Thin GBP  
55.1 

±2.0 

35.0 

±0.8 

7.2 

±0.8 

1.8 

±0.3 
- 

0.5 

±0.2 

0.5 

±0.2 
- - - - - 

Thick BBP 
55.2 

±1.1 

31.7 

±2.2 
- 

1.4 

±0.1 

1.5 

±0.2 

1.2 

±0.1 
- 

1.8 

±0.1 

1.0 

±0.3 

2.2 

±1.2 

4.0 

±1.4 
- 

Thin BBP 
63.3 

±0.3 

28.8 

±0.7 

3.4 

±0.4 

2.8 

±0.3 
- 

0.8 

±0.3 

0.2 

±0.1 

0.7 

±0.1 
- - - - 

 

Figure 5.9 illustrates C 1s high-resolution spectra and curve fittings of thin and thick 

films of GBP and BBP. In the same manner, O 1s and Fe 2p high-resolution spectra 

and curve fitting are shown in Figure 5.10 and Figure 5.11, respectively. Chemical 

shifts of each element were obtained with these zoomed-in spectra. Table 5.4 

summarises the chemical shifts in binding energies (B.E) and the assignments of 

GBP samples, and Table 5.5 does the same for BBP samples. It should be noted that 

high-resolution spectra of potassium (K 2p) were not acquired since K 2p has a 

narrow range of chemical shifts, and they are difficult to interpret accurately [86], 

[87]. Besides, chlorine (Cl 2p) was measured only one time because XRD analysis 

revealed that KCl was present in BBP. 
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Figure 5.9 C 1s curve fittings 

(a) GBP thin film, (b) GBP thick film, (c) BBP thin film, (d) BBP thick film 

 

Figure 5.10 O 1 s curve fittings 

(a) GBP thin film, (b) GBP thick film, (c) BBP thin film, (d) BBP thick film 
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Figure 5.11 Fe 2p curve fittings 

(a) GBP thin film, (b) GBP thick film, (c) BBP thin film, (d) BBP thick film 
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Table 5.4 Binding energy (B.E) and assignments of GBP films 

Element 
Thick GBP 

B.E 

Chemical bonds 

Expected material 

Thin GBP 

B.E 

Chemical bonds 

Expected material 
Reference 

P 2p3/2 - - 134.1 ±0.1 Metal phosphate [87], [88] 

S 2p3/2 168.7 ±0.1 
Metal sulphate 

CaSO4 
- - [86], [87] 

(Cl 2p3/2) 198.2 ±0.0 
Metal chloride 

KCl 
- - [86] 

C 1s 

285.0 ±0.1 C-C 285.0 ±0.1 C-C 
[86], [87], 

[89] 

286.5 ±0.1 
C-OH 

C-O-C 
286.6 ±0.1 

C-OH 

C-O-C 

[87], [89], 

[90] 

288.3 ±0.0 C=O 288.2 ±0.2 C=O [87], [89] 

289.1 ±0.1 O=C-O 289.3 ±0.4 O=C-O 
[86], [87], 

[89] 

Ca 2p3/2 347.6 ±0.1 CaSO4 - - [87] 

N 1s 400.1 ±0.0 
Organic matrix 

C-NH2 
400.4 ±0.0 

Organic matrix 

C-NH2 
[86], [87] 

O 1s 

- - 530.1 ±0.1 
Metal oxides 

Fe2O3 
[86], [87] 

531.5 ±0.1 Organic C-O 531.5 ±0.1 Organic C-O [86] 

532.9 ±0.1 Organic C=O 532.5 ±0.0 
Organic C=O 

O=C-O 
[86], [90] 

- - 533.4 ±0.0 O=C-O [90] 

534.4 ±0.2 
Water 

Oxidised graphene 
534.5 ±0.0 

Water 

Oxidised graphene 
[91]–[93] 

Mn 2p3/2 - - 641.8 ±0.2 Mn with O [87] 

Fe 2p3/2 710.2 ±0.3 
Iron oxides 

Fe2+ and Fe3+ 
711.2 ±0.1 

Iron oxides 

Fe3+ 

[86], [87], 

[94], [95] 

(Fe 2p1/2) 723.6 ±0.2  724.8 ±0.2   

* Bracket means a reference value: measured only one time or not useful for the 

determination 
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Table 5.5 Binding energy (B.E) and assignments of BBP films 

Element 
Thick BBP 

B.E 

Chemical bonds 

Expected material 

Thin BBP 

B.E 

Chemical bonds 

Expected material 
Reference 

Mg 2s 89.3 ±0.1 MgSO4·MgO - - [96] 

P 2p3/2 133.2 ±0.1 
Metal phosphate 

ex. CaHPO4  
133.7 ±0.2 

Metal phosphate 

ex. FePO4 

[86], [88], 

[97] 

S 2p3/2 169.0 ±0.2 
Metal sulphate 

CaSO4·MgSO4 
- - [86], [87] 

(Cl 2p3/2) 198.4 
Metal chloride 

KCl 
- - [86] 

C 1s 

284.9 ±0.0 C-C 284.9 ±0.1 C-C 
[86], [87], 

[89] 

286.5 ±0.0 
C-OH 

C-O-C 
286.5 ±0.1 

C-OH 

C-O-C 

[87], [89], 

[90] 

288.0 ±0.0 C=O 288.3 ±0.3 C=O [87], [89] 

289.1 ±0.1 O=C-O 289.8 ±0.5 O=C-O 
[86], [87], 

[89] 

Ca 2p3/2 347.6 ±0.1 CaSO4 347.7 ±0.1 CaSO4 [87] 

N 1s 400.1 ±0.0 
Organic matrix 

C-NH2 
400.3 ±0.1 

Organic matrix 

C-NH2 
[86], [87] 

O 1s 

- - 530.6 ±0.3 
Metal oxides 

Fe2O3 
[86], [87] 

531.5 ±0.1 Organic C-O (531.7) Organic C-O [86] 

532.8 ±0.0 Organic C=O 532.9 ±0.1 Organic C=O [86] 

534.4 ±0.3 
Water 

Oxidised graphene 
(534.1) 

Water 

Oxidised graphene 
[91]–[93] 

- - 535.1 ±0.2 
Water 

Na KLL 
[86], [96] 

Mn 2p3/2 - - 641.8 ±0.1 Mn with O [87] 

Fe 2p3/2 - - 711.2 ±0.1 
Iron oxides 

Fe3+ 

[86], [87], 

[94], [95] 

(Fe 2p1/2) - - 724.8 ±0.2   

* Bracket means a reference value: measured only one time or not useful for the 

determination 
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C 1s was found to contain four components, and their chemical shifts were not 

dramatically changed after the heat treatment for both GBP and BBP as shown in 

Table 5.4 and Table 5.5. Carbon in GBP and BBP seems to be pure carbon 

(approximately 50 at%), and oxygen-bonded carbon (C-O, C=O and COO). This 

complex structure is often seen in graphene oxide; it is generally obtained by 

oxidising graphite particles [92], [98], although observed C 1s did not contain clear 

sp2 at 284 eV [86]. 

O 1s showed a complex structure as well; GBP thin film contained five components, 

and BBP thin film had three components. It should be noted that the five components 

in O 1s were also seen in BBP thin film; however, they were observed only one time 

and thus classified as a reference value. As shown in Figure 5.10, the heating process 

affected the chemical conditions in O 1s; the component at 530.1-530.6 eV vanished 

in GBP and BBP thick films. This disappearance means that metal oxides, which are 

highly likely to be iron oxides, are buried in the organic layer due to the accelerated 

chemical reaction by the heat treatment. This result also supports the idea of the 

structure described above.   

Another suggestion from the chemical shifts around 534.5 eV is that there could be 

oxidised graphene (GO). This large chemical shift (+3.5 eV) is unusual for O 1s, and 

thereby, the assignment is difficult [86], [87], [90]. However, GO has been reported 

to exhibit a large chemical shift around 534-534.5 eV, and this chemical shift is 

attributed to water contamination [91], [92] or oligomer of vinylene carbonate on a 

graphene surface [93]. Considering that the surface carbon seems to be partially 

graphitic, the small component peaked around 534.5 eV might come from the 

oxidised or water-contaminated graphene. 

As shown in Figure 5.11, both GBP and BBP thin films contained subtle satellite 

peaks of Fe 2p3/2 and Fe 2p1/2, and thus Fe3+ (α-Fe2O3) is likely to be present [94]. In 

contrast, the satellite peak in GBP thick film was relatively intense and overlapped 

with Fe 2p3/2 and 2p1/2. The chemical shifts were around 710.2 eV (Fe 2p3/2) and 714 

eV (Fe 2p3/2 satellite), and this satellite peak should come from Fe2+ high spin 

compound [86], [94], [95]. In terms of the chemical shifts in Fe 2p3/2, Fe3+ is highly 

likely, possibly forming magnetite [94]. On the other hand, the intense satellite peak 

is often seen in FeO [86], [94] and iron-ligands [95]. As RS suggests the presence of 

FeO, there could be a mixture of Fe3O4 and FeO on the surface of the thick GBP 

film. Thick BBP film exhibited no iron on its surface, suggesting that the iron is 

covered with organic layers. This is a clear difference between the GBP and BBP 

thick films.  

The chemical shift of N 1s shows that organic matrix (C-NH2) is likely in both GBP 

and BBP rather than nitrites or nitrates [86], [87]. Phosphorus is likely to exist as a 
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metal phosphate, possibly bonding to calcium or iron. The concentration of 

phosphorus is relatively higher in thick BBP film than the other film, and it could be 

the reason why only BBP showed lower friction than GBP. Calcium, sulfur, 

potassium and chloride were mainly assigned to CaSO4 and KCl respectively, as they 

were detected in the XRD analysis of BBP. Magnesium, silicon and manganese do 

not seem to play an important role in the chemical reaction since they were 

occasionally detected, and their concentrations were small. 

5.3.5 FT-IR 

Figure 5.12 shows the FT-IR spectra of GBP and BBP with the original GLP and 

BLP spectra for comparison. Both GBP and BBP exhibited a similar absorbance: 

around 3250, 2930, 1600, 1400, and 1100 cm-1. In contrast, the GLP and BLP 

showed more complex absorption with peaks around 3260, 2920, 2850, 1610, and 

1030 cm-1. These absorption bands were assigned as follows: OH stretching at 3260 

cm-1, CH stretching at 2920 and 2850 cm-1, C=O double bonds around 1610 cm-1, 

and C-O stretching around 1030 cm-1, although some small peaks were unable to be 

assigned. The comparison between BP and LP shows that the BP is different from 

raw leaves, e.g. less clear CH stretching or another peak of C=O. 

 

Figure 5.12 FT-IR spectra: (a) GBP, (b) BBP, (c) GLP, (d) BLP 
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The assignment of each absorbance in GBP and BBP is shown in Table 5.6, referring 

to the literature [14], [78], [99]–[101]. The absorption around 3250 cm-1 is attributed 

to OH, which could form both types of hydrogen bonds: inter- or intra-molecular 

hydrogen bonds. The weak peak at 2930 cm-1 presumably comes from saturated CH 

bonds because unsaturated and aromatic CH frequencies usually are slightly over 

3000 cm-1 and two sharp peaks should be observed in the case of methyl or 

methylene groups. In the same manner, NH stretching mode is unlikely because it 

shows relatively sharp peaks around 3500-3300 cm-1. 

 

Table 5.6 Assignment of each infrared band in GBP and BBP 

Assignment Possible conditions 
GBP 

absorption cm-1 

BBP 

absorption cm-1 
Reference 

OH stretch 
Inter- or Intra- 

molecular H bonds 
3280 3232 [99] 

CH stretch Saturated CH 2934 2938 [99] 

COO- ion 

Asymmetric 

Symmetric 

C=O stretch 

Chelate structure 

with metal ions 

1570 

1379 

1593 

1398 

[14], [78], 

[99]–[101] 

CO stretch Any organics 1046 1071 [14], [99] 

 

Due to the unlikely presence of aromatic CH bonds, two absorbances around 1600 

and 1400 cm-1 were assigned to carboxylate ions (COO-), which usually show a 

doublet at 1610-1550 (asymmetric) and 1420-1300 cm-1 (symmetric) [14], [78], [99]. 

C=O double bonds in esters or ketones could be possible in this region, which should 

appear around 1740 and 1710 cm-1, respectively [99]. However, the significant shifts 

of the observed absorptions to lower wavenumbers show that they derived from 

carboxylate ions rather than esters and ketones. N=O double bonds are possible in 

this region; however, they are unlikely due to the small atomic concentration of 

nitrogen and the chemical shift found in the XPS analysis. 

The band around 1030 cm-1 should be CO stretching mode which comes from 

various organics in GBP and BBP. Further analysis and assignment were not 

conducted for this CO bond since the region below 1500 cm-1 is not diagnostically 

useful [99].  
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As XPS analysis confirmed the presence of iron, iron-carboxylic salts might be 

formed in GBP and BBP. Fe ions can form a chelate (ligand) structure with some 

carboxylates, such as oxalate (ferric oxalate) and acetate (ferric acetate) [102], [103]. 

Synthesised metal carboxylates exhibit COO- absorption around 1510-1590 cm-1 for 

asymmetric mode and 1400-1430 cm-1 for symmetric mode [101], which roughly 

corresponds to the observed values in GBP and BBP. Hence, the observed COO- in 

the FT-IR analysis possibly derive from iron carboxylates in BP.  

RS and XPS analyses suggest that iron oxides are likely rather than iron carboxylate. 

However, the thermal energy by laser irradiation in RS could induce the transition of 

iron carboxylate to iron oxides in this study. Moreover, XPS reflects only properties 

of the surface up to 10 nm, and the chemical shifts of ferric oxalates in XPS show 

approximately the same values as iron oxides [104]. In addition, the intense Fe2+ 

satellite might derive from ligand structures, and XRD analysis did not detect crystal 

iron oxides. Considering all the information from RS, XPS and FT-IR analyses, it 

can be concluded that the GBP and BBP contain both iron carboxylates and iron 

oxides; iron carboxylates are predominant in the bulk black material and iron oxides 

are on the surface. The iron carboxylates are likely to be formed with dissolved Fe 

ions and carboxylic acids in LEs, then some of them transform to iron oxides due to 

further oxidisation, especially on the surface. 

5.4 Discussion 

Material analyses of the black precipitation was carried out, and it was revealed that 

it consisted of iron-ligand structure covered with graphite-like carbon as well as 

other ions, including phosphates. Considering all the results, the low adhesion 

mechanism should be discussed in this section, as well as the chemical reaction 

process for the formation of black precipitation. 

5.4.1 Low adhesion mechanism 

As described in 4.4, BP was identified as the main leaf-lubricant for low friction, 

followed by solid leaf powder, although solid leaves seem to have a limited effect. 

Table 5.7 summarises the main findings in the material analyses. In terms of 

tribology, three of them are very important: graphitic carbon, iron oxides and 

phosphate compounds. 
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Table 5.7 Main findings in the material analyses 

Analysis Main findings 

XRF  Fe ions are dissolved into LEs and cause the chemical reaction 

RS 

 Graphitic carbon covers the surface of BP 

 This structure is often seen in RS spectra of a sugar-derived carbon 

 Iron oxides are underneath the carbon surface 

XPS 

 BP mainly consists of carbon, oxygen, iron and nitrogen 

 Oxidised graphite might exist according to the chemical shifts of C 1s and O 1s 

 The thick organic layer is formed on the surface of BBP, covering iron oxides 

 The relatively high concentration of phosphate is detected only in heated BBP  

FT-IR  Chelate structure of iron-carboxylate seems to be formed 

 

Figure 5.13 shows a schematic diagram of the low adhesion mechanism due to leaves 

on the line. Low adhesion conditions seem to be caused by four factors: graphitic 

carbon, solid leaf, iron oxide and possibly phosphate compound. Graphite has been 

recognised as a solid lubricant and widely used [72]. Although the BP does not have 

a perfect graphite structure, it is partially graphitised, contributing to low adhesion 

conditions. Solid leaves can reduce the friction level when they are present in the 

contact area, preventing contact between wheels and rails. Iron oxides are also well-

known for their lubricity in the wheel/rail contact [10], [38], although the mixture of 

iron oxides and iron carboxylates could be present in the BP.  

Phosphate compounds are one of the typical anti-wear additives for lubricating oils, 

such as Zinc dialkyl-dithiophosphate (ZDDP) [72], [105]. Iron phosphate films 

formed on steels have been reported to protect the iron surface and reduce wear 

[106], and phospholipid can decreases the friction levels in wet conditions [107]. The 

formation of iron-phosphate containing film usually requires worn steel surface 

under certain pressure and relatively high temperature [72], [105], so that metal 

phosphates are unlikely to be the main reason for low friction. On the other hand, 

metal phosphate is one of the differences between GBP and BBP, and it might have a 

small effect on friction conditions. Overall, the graphite-like carbon should be the 

primary cause, followed by bulk leaves and iron oxides, and the phosphate 

compounds might have a very limited effect on low friction. 
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Figure 5.13 Schematic figure of low adhesion mechanism due to leaves 

The synthesised black material was found to contain potassium chloride (KCl) and 

calcium sulphate (CaSO4), and they might be lubricants as well. However, the 

reported COF of KCl thin films is not significantly low, around 0.27 [108]. 

Additionally, CaSO4 has a low COF between 0.15 and 0.2 at high temperature (500 

or 600 °C), but it is generally brittle at room temperature and does not work as a 

lubricant [109], [110]. Thereby, KCl and CaSO4 in the synthesised black powder are 

unlikely to be a lubricant. They might have been formed in BBP for a number of 

reasons, e.g. a higher concentration of K+, Cl-, Ca2+ and SO4
2- ions in BLEs than 

GLEs. Chemical analysis should be carried out for leaf extracts, i.e. ion 

chromatography and inductivity coupled plasma mass spectrometry. 

As discussed in  4.5, the hypothesis “Bulk leaf” is the most likely theory for the low 

adhesion mechanism among the hypotheses developed in this study. The results of 

the chemical and material analysis support this theory. Leaves on the railway track 

could form the black material, and the graphite-like carbon in that black material 

seems to be responsible for the low adhesion.   

5.4.2 Literature review of a chemical reaction 

In this study, organics in leaf extracts were found to involve the chemical reaction 

with dissolved iron ions, and they might be sugars or acids which can form a chelate 

structure with Fe ions as summarised in Table 5.7. Hence, literature was reviewed to 

find a possible theory of a chemical reaction process between organics and iron. 

RS revealed that sugar in LEs is one of the factors which induce the chemical 

reaction. Based on this information, the Maillard reaction could be the most realistic 

candidate for the black material formation. The Maillard reaction is caused by 

reducing sugars and amino acids, and odorous brown pigments, called melanoidin, 
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are generally produced after the reaction [111], [112]. Both GBP and BBP have a 

strong and honey-like smell, especially after the boiling process. Furthermore, 

nitrogen was detected in XPS analysis with the chemical shift of organic matrix 

containing nitrogen, which might come from amino acids dissolved into LEs.  

Reducing sugars, such as glucose and fructose, have been detected in tea, as well as 

amino acids, such as glutamine and threonine [82], [113], [114]. LEs used in this 

study are practically a cup of sycamore tea; therefore, the Maillard reaction could 

happen in terms of materials. Furthermore, iron and iron oxide have been reported to 

promote the Maillard reaction [115], [116]. Additionally, melanoidin is known to 

have antioxidant activity [111]; melanoidin can catch metal ions, possibly forming a 

chelate structure with them [117]–[119]. It is also noteworthy that charred meats 

made by barbecue, which are typical melanoidin, have been reported to contain 

graphene oxide and nanocarbon particles [120]. These facts seem to have a close 

linkage to the findings in this study: sugar-derived carbon in RS, a chelate structure 

of iron carboxylate in FT-IR and a graphene oxide in XPS. In fact, the FT-IR 

spectrum of Maillard reaction products presented in [111] has a very similar 

absorption band: 3411, 1635, 1404 and 1076 cm-1. 

Another possibility to produce a black pigment with organics and irons is iron-based 

ink, such as iron-gall ink [121]–[124]. Although the chemical reaction process has 

not yet been elucidated, black pigments can be made with irons and tannin-derived 

polyphenolic materials, such as gallic acids, ellagic acids and catechin derivatives. 

They have been detected in tea as a water-soluble material [82], [114], [125], and 

also they can form a chelate structure with iron oxides [126]–[128], which shows a 

good agreement with the results in this study. Moreover, the FT-IR spectrum of the 

laboratory-made iron gall ink shows similar absorption patterns (1640, 1424 and 

1083 cm-1) [122]. Furthermore, the RS spectra of iron gall ink and historical ink 

sample also exhibit similar Raman shifts: 1475, 1310 and broad 640-490 cm-1 in 

[124] and 1590, 1315 and 1006 cm-1 (CaSO4, detected in XRD and XPS analysis)  in 

[121]. 

It could be possible to suppose that organic acids simply form a chelate structure 

with dissolved iron ions, and then a further chemical reaction occurs on its surface. 

For example, oxalate or malate can be found in plant leaf extracts [113], [129], and 

ferric oxalate or iron malate could be formed in LEs. Alternatively, iron ions might 

be able to react with gluconic acids [100] or form an iron-sugar complex [130], 

[131]. 

To sum up, three candidates that can explain the chemical reaction process are 

proposed through the literature review: Maillard reaction, iron-based ink and other 

organic acid. 
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5.4.3 Possible chemical reaction process 

Figure 5.14 shows the supposed chemical reaction process. As revealed in XRF 

analysis, Fe ions are dissolved into LEs, possibly with the help of organic acids. 

Then, the dissolved Fe ions form a chelate structure with the acids, e.g. carboxylic 

acids, tannic acids and other organic acids in LEs, as suggested in FT-IR analysis. 

Subsequently, Fe ions are wrapped with organic molecules such as reducing sugars 

and amino acids. At step four, a chemical reaction occurs with organics on the 

surface of Fe ions, forming a carbon layer on the surface; it could be the Maillard 

reaction or formation of iron-gall ink. The process stages one to five can be applied 

to other dissolved Fe ions, and finally, black precipitation is formed with a three-

layer structure: carbon layer on the surface, chelate layer in the middle and Fe ion as 

a core. 

 

 

Figure 5.14 Supposed chemical reaction process 
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It should be noted that this process is a suggestion based on the information from the 

material analysis of the black materials synthesised in this study. In the actual 

wheel/rail contact, high pressure applied to leaves could affect the chemical reaction 

process, as well as high temperature induced by sliding in the wheel/rail contact [10]. 

To examine the proposed chemical reaction process, further experiments and 

analyses are necessary: identification of key organics in leaf extracts and comparison 

between a laboratory-developed black material and a blackened leaf film seen on the 

actual railway tracks. 

5.5 Conclusions 

In this chapter, the black material synthesised with sycamore leaf extracts and rail 

steels was chemically and materially analysed, using five techniques: X-Ray 

Fluorescence, X-Ray Diffraction, Laser Raman Spectroscopy, X-Ray Photoelectron 

Spectroscopy and Fourier Transform Infrared Spectroscopy. These analyses revealed 

that dissolved iron ions in leaf extracts react with organics, such as reducing sugars, 

amino acids and tannic acids, possibly forming a chelate structure. Then, the 

graphitic carbon layer is formed on the formed iron carboxylates or iron oxides with 

a small amount of KCl, CaSO4 and phosphate compounds. This carbon material is 

seemingly a result of the Maillard reaction or iron-gall ink formation. Taking into 

account the results of the analyses, low adhesion was highly likely to have been 

brought by four factors: firstly graphitic carbon, secondly bulk leaves, thirdly iron 

oxides, and finally phosphate compounds in the black material. The chemical 

reaction process of the black material synthesis was proposed; however, further 

experiments and analyses are necessary to examine this proposal by analysing 

sycamore leaf extracts. 
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6 LEAF EXTRACT ANALYSIS 

As discussed in 5.4, leaf extract analyses were performed to examine the potential 

theories of the chemical reaction process.  

6.1 Introduction 

The chemical reaction process has been suggested in 5.4.3; organic acids and iron 

ions dissolve in leaf extracts, and then they seem to precipitate the black material 

after the formation of an iron-ligand structure. Following this theory, the chemical 

reaction could be stopped if the organic acids are decomposed by some measures, 

such as pH value control, chemical substance and heat application. If this prevention 

of the chemical reaction is achievable, no black material should be formed when 

leaves are crushed by wheels, and low adhesion ideally never happens.  

Hence, the aim of this leaf extract analysis is to identify the key organic acids which 

trigger the chemical reaction, using several methods of chemical analysis. This 

identification was attempted by comparing the results before and after the black leaf 

precipitate formation, as shown in Figure 6.1. Three hypotheses of the black 

substance formation developed in 5.4.2 were examined: Maillard reaction, iron-based 

pigment and organic acid.  

 

 

Figure 6.1 Concept figure of the leaf extract analysis 

6.2 Methodology 

Seven techniques of chemical analysis were used to investigate the key substance of 

the chemical reaction between leaf extracts and rail steel. It is noteworthy that only 

brown leaf extract (BLE) was examined in this series of analysis since very low 

friction was confirmed only in the black material formed in BLEs. Moreover, brown 

leaves were a more realistic material in the autumn, and thus, BLEs had to be given a 

priority in terms of research.  
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6.2.1 Viscosity measurement 

Viscosity measurements were performed with a Brookfield DV1 Viscometer. A 

viscosity value was measured at 100 rpm and 30 °C, with a SC4-18 spindle. The 

purpose of this measurement is to gain an idea whether a leaf component with a high 

molecular weight dissolves into BLEs as suggested in [14]. 

6.2.2 pH value measurement 

pH value was measured with a pHep pocket-sized pH meter. The meter was 

calibrated with a standard solution which has pH 4.0 and 7.0 before the 

measurement.  

6.2.3 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

A Perkin Elmer ICP-MS equipment (model: Elan DRC Ⅱ) was used to analyse 

BLEs, which estimates a concentration of each ion by comparing with the standard 

solution. The main purpose of this analysis is to confirm the dissolution of iron from 

rail steels as well as other minor ions are present in BLEs, such as aluminium and 

manganese. This analysis was kindly conducted by Mr. Andrew Fairburn, the 

laboratory manager of Groundwater Protection and Restoration Group at the 

University of Sheffield. 

6.2.4 Ion Chromatography for general ions (IC) 

Leaf extracts were investigated by an IC equipment, detecting nine typical elements 

in natural water. Although the name of the equipment is unknown, this analysis was 

kindly carried out by Mr. Andrew Fairburn, the laboratory manager of Groundwater 

Protection and Restoration Group at the University of Sheffield. 

6.2.5 Benedict reaction test 

Benedict’s reagent was purchased from Scientific Laboratory Supplies (Product 

number CHE1280, CAS number 63126-89-6). The test procedure is described as 

follows: 

1. Leaf extract is made for the extraction time one day. 

2. The leaf extract is then filtered in the same way described in 4.2.2.  

3. 2 ml of leaf extract is mixed with 2 ml of Benedict’s reagent.  

4. The mixture is then warmed up to 80 °C and kept for ten minutes. 

5. The colour change is observed.  

The main aim of the Benedict test is a detection of any reducing sugars in leaf 

extracts, which are necessary to make the Maillard reaction happen.  
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6.2.6 High Performance Liquid Chromatography (HPLC) 

The machine information is not available as this analysis was performed by a private 

company. The main aim of this analysis is to examine the possibility of the Maillard 

reaction theory by detecting the specific types of sugars which are typical in foods 

and plants: fructose, glucose, lactose, maltose and sucrose. It should be noted that all 

sugars mentioned here are a reducing sugar except for sucrose. Moreover, 

Hydroxymethylfurfural (HMF) analysis was also attempted for some samples 

prepared after the chemical reaction. This HMF analysis aims to find a trace of the 

Maillard reaction; an increase in HMF concentration can indicate that the Maillard 

reaction is likely to have occurred [111].  

This work was kindly carried out by Mr. Howard Davies, Senior analyst at Campden 

BRI Group in the UK.  

6.2.7 Proton Nuclear Magnetic Resonance (H-NMR) 

Bruker AVIIIHD 500MHz was used in this H-NMR analysis. The aim of this 

analysis is to examine the possibility of the iron-based pigment theory suggested in 

5.4.2 by detecting phenolic compounds, such as gallic acids, catechin and tannic 

acids.  

This analysis work was kindly performed by Dr. Sandra van Meurs at the 

Department of Chemistry, the University of Sheffield.  

6.2.8 Ion Chromatography for oxalate ion (IC) 

IC analysis was performed with Dionex IC S5000 Dual Channel Ion 

Chromatography using the standard oxalate solution for IC purchased from Fisher 

Scientific (Alfa Aesar Oxalate, MDL number MFCD00012465). The iron-

carboxylate theory was examined by detecting oxalate ions in BLEs before and after 

the chemical reaction. This analysis was kindly conducted by Mr. Alastair D. 

Bewsher, Senior analytical technician at the School of Earth and Environmental 

Sciences, the University of Manchester.  
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6.3 Results 

6.3.1 Viscosity measurement 

Table 6.1 summarises viscosity values of brown leaf extract (BLE), distilled water 

and pectin 0.1 wt% solution. The viscosity values of GLE and BLE were found to be 

at the same level as distilled water. In contrast, the artificial pectin 0.1 wt% solution 

exhibited a higher value than the LEs. This result indicates that leaf components with 

high molecular weight are unlikely to dissolve into LEs in terms of viscosity values. 

If pectin dissolves in LEs as suggested in [14], a concentration of pectin in LEs could 

be very low, under 0.1 wt% at least. Or pectin is decomposed from polysaccharide to 

monomer (a structural unit), such as a galacturonic acid [132], and it does not affect 

viscosity values. 

 

Table 6.1 Viscosity measurements 

Extraction time 
Viscosity [mPa·s] 

BLE Reference 

1 day 1.08 Distilled water 1.08 

2 days 1.05 Pectin 0.1 wt% 1.62 

 

6.3.2 pH value measurement 

The pH value of the BLE sample before and after the chemical reaction was 4.6 to 

4.7 and 5.9 to 6.1, respectively. The BLE sample after the chemical reaction was 

found to be neutralised compared to the weak acidity of the BLE sample before the 

chemical reaction. This result shows that some acidic substances, possibly organic 

acids in BLEs, were consumed during the chemical reaction, supporting the proposed 

chemical reaction process in 5.4.3.  

6.3.3 ICP-MS 

Table 6.2 shows the detected metals in the ICP-MS analysis with the data of distilled 

water used in the extraction process. Note that the only top four metals were shown 

here, and the whole list can be found in Appendix B. The concentration of iron 

dramatically increased to around 31000 μg/L from 308 μg/L, and this result clarifies 

that iron dissolved into the leaf extract, inducing the chemical reaction.  
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Table 6.2 ICP-MS result of BLE samples 

Element 
BLE before 

[μg/L] 

BLE after 

[μg/L] 

Distilled water 

[μg/L] 

Fe 308 31040 1.9 

Mn 1703 2262 0.0 

Al 27 1254 0.7 

B 552.6 588.6 34.9 

 

6.3.4 IC for general ions 

Table 6.3 shows the result of IC analysis for the general ions. No significant 

difference in the concentration of each ion was observed; this result suggests that 

these ions are unlikely to trigger or cause the chemical reaction. Thereby, there could 

be other ions which show a dramatical change in the concentration before and after 

the chemical reaction.  

 

Table 6.3 IC result for the general ions 

Element 
BLE before 

[mg/L] 

BLE after 

[mg/L] 

Distilled water 

[mg/L] 

SO4
3- 66.98 79.10 0.40 

PO4
3- 47.09 50.71 < 0.30 

NO3
- 0.25 0.68 0.12 

NH4
+ 2.46 3.57 < 0.20 

Na+ 11.29 7.91 1.61 

Mg2+ 34.03 33.51 < 0.10 

K+ 103.38 101.59 0.44 

Cl- 45.95 44.26 0.17 

Ca2+ 112.54 107.28 < 0.30 
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6.3.5 Benedict reaction test 

Figure 6.2 illustrates the result of the Benedict reaction test. Both BLE samples, 

before and after the chemical reaction, obtained orange precipitates after heating at 

80 °C, showing that both samples contained reducing sugars in them. However, the 

amount of precipitation seemed to be smaller in the BLE after the chemical reaction. 

This observation suggests that the reducing sugars have been consumed in the 

chemical reaction, although the precise weight or amount of the precipitate was not 

measured.  

 

 

Figure 6.2 Results of the Benedict reaction test 

6.3.6 HPLC 

Table 6.4 shows the change in the amount of several types of sugars, detected by 

HPLC. In contrast to the result of the Benedict reaction test, the amount of typical 

reducing sugars, such as fructose and glucose, were found to be very small in both 

BLEs. The values lowered the detection limit of the equipment (0.01 g/100 g); 

therefore, it was not possible to evaluate the change in the amount.  
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Table 6.4 HPLC results (Sugars) 

Type of sugars 
BLE before 

[g/100 g] 

BLE after (1) 

[g/100 g] 

BLE after (2) 

[g/100 g] 

Fructose 0.02 0.02 0.02 

Glucose < 0.01 < 0.01 < 0.01 

Lactose < 0.01 < 0.01 < 0.01 

Maltose < 0.01 < 0.01 < 0.01 

Sucrose < 0.01 < 0.01 < 0.01 

 

Table 6.5 presents the amount of HMF detected in the BLEs prepared after the 

chemical reaction. The amount of HMF was very little, reaching the lower detection 

limit. This result shows that the Maillard reaction is unlikely to happen in terms of 

the HMF indicator and reducing sugars. On the other hand, the Benedict reaction test 

showed the difference between the BLEs before and after the chemical reaction. 

Therefore, these results indicate that the chemical reaction process could be very 

complex and not straightforward to clarify. More detailed work is necessary to 

understand the phenomenon correctly.   

 

Table 6.5 HPLC results (HMF) 

Component 
BLE after (1) 

[mg/ kg] 

BLE after (2) 

[mg/ kg] 

HMF < 25 < 25 

 

6.3.7 H-NMR 

Figure 6.3 illustrates the overview of the acquired H-NMR spectra of the BLEs 

before and after the chemical reaction. Both spectra were found to contain a lot of 

organics, particularly, in the region of the chemical shifts between 0.5 and 4.0. These 

peaks can derive from various organics, including methyl, methylene and methine 

protons in various conditions [99]. The assignment to each peak has not been 

considered here, since leaf extracts were expected to contain a lot of organics, and it 

is unrealistic to determine the organic material without other supporting information, 

e.g. expected molecular structure.  
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Figure 6.3 Overview H-NMR spectra: (a) BLE before, (b) BLE after 

Figure 6.4 depicts the zoomed-in view of the spectra in the high field. Some changes 

in the spectra can be seen, e.g. a sharper peak around 0.6 ppm. Despite these 

changes, no dramatic change was seen in the spectra. Thus, the components 

generating these peaks seem to be still in the BLEs, although the concentration could 

be different.  

 

Figure 6.4 Zoomed-in H-NMR spectra between 0 and 5 ppm:  

(a) BLE before, (b) BLE after 
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Figure 6.5 illustrates the zoomed-in view of the spectra between 5 and 8.5 ppm. In 

general, protons bonded to aromatic groups have the chemical shifts in the low field, 

e.g. 6.5 to 8.5 ppm [99]. However, only weak and small peaks were seen in this 

region, suggesting that a lot of organic substances with aromatic rings are unlikely to 

be present in both BLEs. Therefore, the “iron-based pigment” theory is unlikely, 

since the tannin-derived polyphenolic material must have protons which show the 

chemical shift in the lower region.   

 

Figure 6.5 Zoomed-in H-NMR spectra between 5 and 8.5 ppm:  

(a) BLE before, (b) BLE after 

6.3.8 IC for oxalate ion 

Figure 6.6 shows the IC result, which specifically detects oxalate ions in the BLEs. 

Oxalate ions were present in both BLE samples (five times diluted), and the 

concentration was estimated to be 5.33 mg/L and 6.21 mg/L for the sample before 

and after the chemical reaction, respectively. This result shows that the oxalate ions 

in BLEs are unlikely to contribute to either the chemical reaction or formation of 

iron-ligand structure. Hence, other carboxylate ions or different organic acids should 

be responsible for the chemical reaction.  
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Figure 6.6 IC results for oxalate ion:  

(a) Before chemical reaction, (b) After chemical reaction 
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6.4 Discussion 

6.4.1 Examination of the chemical reaction process and hypotheses 

The result of the viscosity measurement supports the idea that pectin is not likely to 

be dissolved in BLEs, suggested in 4.5.1. Moreover, the change in the pH values of 

the BLEs before and after the chemical reaction strongly supports the chemical 

reaction process proposed in 5.4.3, in which organic acids from leaves play an 

important role to trigger the reaction. The ICP-MS analysis showed the dramatical 

increase in the iron concentration after the chemical reaction; hence, the main idea in 

the proposed chemical reaction process seems reasonable.  

The proposed three hypotheses for the chemical reaction between leaf extracts and 

rail steels were examined in this chapter:  Maillard reaction, iron-based pigment and 

organic acid.  

The “Maillard reaction” hypothesis could be incorrect because the HMF level in the 

BLE sample after the chemical reaction was under the lower limit of the detection, 

which is a by-product of the Maillard reaction and also an indicator of that reaction 

[111]. Moreover, reducing sugars, including fructose and glucose, were not 

successfully detected in the BLEs, indicating that the Maillard reaction is also 

unlikely.  

However, Benedict’s test clarified that reducing sugars were present in the BLEs, 

and the amount of the orange precipitate seemed to be smaller in the BLE sample 

after the chemical reaction to the naked eye. This result could suggest that other 

molecules with a free aldehyde group might make the precipitate instead of reducing 

sugars. Therefore, the molecular which causes the precipitate should be determined 

as the first step. For example, the change in concentration could be investigated using 

a colourimetric method of the Benedict reagent, and then the molecular weight 

determination could be carried out using a Liquid Chromatography-Mass 

Spectrometry (LC-MS) with the possible candidate having a free aldehyde in its 

structure.  

The “Iron-based pigment” hypothesis is unlikely in the case of sycamore leaves, 

since the H-NMR analysis showed small peaks in the lower region, indicating less 

presence of tannin-based acids, such as gallic acids and catechin derivatives. There 

could be tannin-based acids in LEs of other type of leaves which might be 

responsible for the chemical reaction, further analysis should be necessary to 

investigate this theory.  

The “Organic acid” hypothesis should be incorrect in the case of oxalate ions, as the 

IC analysis showed. There are several candidates which could form an iron-ligand 

structure or complex, including malic acids and acetic acids. Hence, these candidates 
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should be investigated with an appropriate method; possibly, IC analysis could be the 

first choice for the detection of each ion or component.  

6.4.2 A potential prevention method of the leaf film formation 

One of the aims of this research is to develop better methods for the prevention of 

leaf films on the railway track, as well as mitigation of low adhesion. These 

prevention and mitigation can be achieved if the key organic acids in leaf extracts are 

removed in some way, although the specific organic acids have not yet been 

determined. The removal method could be either evaporation or thermal 

decomposition of that organic acids. For example, acetic acids are reported to boil at 

118 °C [133], and malic acids can decompose over 225 °C [134]. Hence, the heat 

application at stage 2 in Figure 5.14 could prevent the production of black material, 

decomposing the organic acids in leaf extracts.  

Figure 6.7 illustrates the potential prevention method due to heat application. The 

heat can be applied to the leaf extract, and it helps prevent the chemical reaction by 

degrading the organic acids which form a ligand structure with the iron ion. The heat 

possibly enhances the water evaporation as well, removing the leaf extract itself from 

the rail surface. As a result, the black material should not be formed, and thus, low 

adhesion is unlikely to happen, leading to both the prevention and mitigation. 

 

 

Figure 6.7 Potential prevention method due to heat application 
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One of the drawbacks of this prevention method is that the appropriate temperature 

to degrade the key organic acids has not yet been studied. In other words, some work 

is necessary to determine the target temperature to prevent the leaf film formation. 

Another disadvantage is that leaf films might stick to the rail surface tightly, as 

hypothesised in 3.4. If this tight bonding happens, the heat application might make 

the situation worse. Therefore, the work regarding these research topics must be 

carried out.  

6.5 Conclusions 

The proposed chemical reaction process in 5.4.3 was found to be reasonable; iron 

dissolves into the leaf extract and reacts with organic acids, as the pH value and ICP-

MS analysis showed. However, the suggested three hypotheses in 5.4.2 were found 

to be unlikely or have a room for further discussion, showing that this series of leaf 

extract analysis could not find the key organic acid which triggers the chemical 

reaction. Further investigation is necessary to identify this acid; it could be begun 

from Benedict’s test with a colourimetric method, and then some analysis, such as IC 

and LC-MS, can be carried out to narrow down the candidates.  

Based on the results of the leaf extract analysis, the heat application to the leaf 

extract has been suggested as a potential prevention and mitigation method. The heat 

might be able to decompose the key organic acids, leading to the prevention of the 

leaf film formation. It is also able to cause boiling, removing the leaf extract itself 

from the wheel/rail contact. These research ideas will be examined in Chapter 7 and 

8.  
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7 INFLUENCE OF TEMPERATURE: A TWIN DISC 

STUDY 

7.1 Introduction 

As discussed in 6.4, the heat application is a potential method to prevent the leaf film 

formation as well as mitigate the low adhesion due to leaves. However, no research 

has been conducted, which investigates to what extent the temperature is effective on 

the prevention and mitigation, to the best of the author’s knowledge. If the most 

appropriate temperature is found, it will be possible to judge whether the heat 

application can be a realistic measure or not.  

In general, temperature has a significant effect on a lubricant viscosity, and thus, the 

lubrication regime can be affected by the temperature [105].  In the case of wheel/rail 

contact, high temperature in the contact is recognised to lower a friction coefficient 

[135]. As the temperature increases, this negative impact must appear in the adhesion 

behaviour. Thereby, the effects of temperature on the adhesion behaviour should be 

investigated. 

The basic characteristics of sycamore leaves were investigated, showing that they 

have lower friction coefficient (Chapter 4). However, the test method used (a ball-

on-flat test) does not reflect the rolling-sliding contact between the wheel and rail. 

This rolling-sliding condition can be replicated by a twin disc machine, and the leaf 

contamination has been tested by the twin disc machine developed at the University 

of Sheffield, called SUROS [22].  

Hence, the aim of this twin disc study is to investigate the temperature influence on 

the adhesion level of sycamore leaves in a rolling-sliding conditions, examining the 

possibility of the heat application method as a countermeasure against leaf 

contamination.  

7.2 Methodology 

7.2.1 Sample preparation 

Figure 7.1 shows the fine leaf powder used in this study. Brown sycamore leaves 

were collected in Sheffield between October and December in 2017. They were 

chopped in a food blender, followed by grinding procedure with a manual coffee 

grinder, making fine leaf powder. The leaf powder was then filtered using a 160 µm 

sieve (purchased from Fisher Scientific) to obtain the finest leaf powder. In addition 

to this fine leaf powder, the black precipitation powder formed in brown leaf extracts 

was also tested, which was prepared by following the method described in 4.2. It 

should be noted that green sycamore leaves and their derivatives were excluded in 
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this study, as they were found to show a relatively high friction coefficient (COF) 

compared to brown sycamore leaf derivatives. 

In addition to the leaf-related samples, some standard materials were also examined: 

distilled water, engine oil (Servol 15W-40, Morris lubricant) and activated charcoal 

(AC), which was purchased from Sigma-Aldrich (product number: C9157, CAS 

number: 7440-44-0). 

 

 

Figure 7.1 Preparation of the fine leaf powder 

7.2.2 Test equipment and specimens 

The Sheffield University ROlling Sliding (SUROS) machine was used to replicate a 

rolling-sliding contact between train wheels and rails and investigate tribological 

properties of the samples under such conditions. Figure 7.2 illustrates the schematic 

diagrams of the SUROS machine and 47 mm diameter disc specimens cut from rail 

steel (R260) and wheel steel (R8). These two discs were loaded against each other by 

a hydraulic pump, and they were individually driven by a Colchester Mascot lathe 

and an AC motor. The wheel disc was driven faster than the rail disc, replicating 

traction conditions between wheels and rails. The tangential contact force between 

the two discs was measured by a torque transducer on the shaft of the rail disc side, 

and traction coefficient was calculated with the tangential contact force and disc 

diameter. More detailed information about the test set-up of the SUROS can be 

found in previous studies [11], [16], [22], [35]. 
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Figure 7.2 Schematic figures of test equipment [16] 

(a) SUROS machine, (b) Disc specimens 

7.2.3 Friction test procedure without pre-heating 

Figure 7.3 shows a schematic figure of the traction curves in the SUROS tests at 

different slip ratio. The traction coefficient data can be divided into three phases: 

running-in, sample application and recovery. The traction coefficient usually showed 

a stabilised value during the running-in period, and then it plunged when the sample 

suspension was applied. The traction maintained low level during the sample 

application (approximately 20 seconds), and then it showed the recovery, back to the 

dry level.  

Figure 7.4 illustrates the application process of the sample suspension to the rail disc. 

Friction tests were carried out as follows.  
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1. Two discs were cleaned with acetone in an ultrasonic bath and then mounted in the 

machine.  

2. The discs were allowed to run under dry conditions for four to five minutes until 

the traction coefficient stabilised.  

3. The sample suspension was then applied to the upper rail disc while measuring the 

traction coefficient. 

4. The test was then stopped after the traction coefficient had roughly recovered to 

the dry condition level. 

5. The test was repeated three times at each slip value. 

 

 

Figure 7.3 Schematic figure of traction curves at different slips 

 

Figure 7.4 Schematic diagram of friction test procedure with liquid samples 
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Table 7.1 summarises the experimental conditions. The rail disc was driven at 400 

rpm, which is approximately 1 m/s, but the wheel disc was driven at more than 400 

rpm, depending on the slip values. Slip values were calculated following the 

definition shown in Equation 7.1[11], and 0.5, 1 and 2 % were chosen since the 

contact at small slip values, which has both stick and slip region, is important in 

terms of vehicle dynamics [135].  

 

𝒘𝒘𝒉𝒆𝒆𝒍 ∙ 𝒓𝒘𝒉𝒆𝒆𝒍 − 𝒘𝒓𝒂𝒊𝒍 ∙ 𝒓𝒓𝒂𝒊𝒍

𝒘𝒘𝒉𝒆𝒆𝒍 ∙ 𝒓𝒘𝒉𝒆𝒆𝒍 + 𝒘𝒓𝒂𝒊𝒍 ∙ 𝒓𝒓𝒂𝒊𝒍

∙ 𝟐𝟎𝟎% 

Equation 7.1 

Where w stands for the disc speed, and r does for the radius of the disc, respectively. 

In the wheel/rail contact, the traction coefficient is likely to saturate at around 1-2 % 

slip and the whole contact patch becomes pure-sliding in dry conditions [3], [40]. 

Hence, the friction behaviour at these small values was explored in this study. 

The concentration of sample suspension (LP, BBP and AC) was fixed at five weight 

percent (wt%), and 0.4 to 0.6 ml of sample suspension was applied to the rail disc at 

approximately 1 drop/2 seconds (around 20 seconds for 10 drops). It should be noted 

that only 1 drop of the engine oil was applied as it showed such low friction with 

three drops that the comparison between the other samples was difficult.  

 

Table 7.1 Experimental conditions of SUROS friction tests 

Parameter Value 

Disc diameter [mm] 47 

Average Hertzian pressure [GPa] 1.2 

Speed (Rail disc) [rpm] 400 

Slip value [%] 0.5, 1, 2 

Sampling frequency [Hz] 1 

Concentration of sample suspension [wt%] 5 

Application rate [drop(s)/second] 0.5 

Sample amount in total [ml] 
0.4-0.6 (10 drops) 

*1 drop for engine oil 

Repetition [times] 
3 

*Only for the test without pre-heating 
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7.2.4 Friction test procedure with pre-heating 

Figure 7.5 exhibits the pre-heating procedure, conducted only with 5 wt% LP 

suspension. In this test, both rail and wheel discs were heated up before the actual 

friction tests. The procedure of friction tests with pre-heating is described below. 

 

1. Two discs were cleaned with acetone in an ultrasonic bath and then mounted in the 

machine.  

2. The discs were tested for five to seven minutes at one of these slip values: 4, 7, 10, 

15 or 20 %, depending on the target temperature. 

3. The test was stopped, and the surface temperature of the rail disc was measured 

with a k-type thermocouple. 

4. The machine was restarted and operated for one to two minutes at 0.5 or 1 % slip 

to stabilise the traction coefficient. 

5. LP suspension was then applied to the upper rail disc. 

6. The test was then stopped after the traction coefficient had roughly recovered to 

the dry condition level. 

 

Figure 7.5 Friction test procedure with pre-heating process 

(a) Running-in dry conditions at higher slips, (b) Surface temperature measurement,  

(c) friction test 

The measured temperature was defined as the surface temperature, although the 

actual temperature during the test seems to be slightly lower than that because of the 

time lag between the measured point and experiment. A few trial tests showed that 

this pre-heating process uniformly heated up the whole disc: not only the surface. 
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Hence, the temperature drop in the stabilisation process was believed to be small, e.g. 

up to 10 °C, and the surface temperature mentioned in this chapter is an estimation 

based on the measurement before the stabilisation process.  

The slip value in the pre-heating process was determined considering the 

proportional relationship between surface temperature and slip values in [44]. The 

pre-heating test at 4, 7, 10, 15 and 20 % increased the surface temperature 

approximately to 80, 100, 140, 180 and 200 °C, respectively. A trial experiment 

estimated these temperature values. It should be noted that the test was conducted 

only once, not three times like the friction test without pre-heating.  

7.2.5 Evaluation of the data 

Figure 7.6 shows the evaluation method of the acquired traction data. Three figures 

were calculated from the curve: average traction coefficient of the running-in (μD), 

sample suspension (μL) and average recovery time (TR). μD is the average value for 

30 sec before the sample application commences, and μL is the average traction 

coefficient for 15 sec after the sample suspension is applied. TR is the time when the 

traction coefficient reaches 0.2 after the sample suspension is applied, which is the 

minimum requirement for traction [1]. Based on this TR, the sliding distance SDR 

was calculated following Equation 7.2.  

𝑺𝑫𝑹 = 𝜶𝑽𝑻𝑹 

Equation 7.2 

Where α stands for the slip ratio, and V does for velocity (m/s). In this test, V is 

approximately 1 m/s, and α is either 0.5, 1 or 2.  

 

Figure 7.6 Definition of terms for evaluation 

 



101 

 

7.3 Results 

7.3.1 Friction test without pre-heating 

Figure 7.7 exhibits an example of the friction test result, which was taken with the 

LP suspension at 2 % slip without the pre-heating process. The friction behaviour 

showed the pattern described in 7.2; constant traction coefficient in dry conditions, 

followed by the sudden decrease due to the sample application, and then the 

recovery. As can be seen, μD represents the baseline traction coefficient in dry 

conditions, and μL shows the traction coefficient due to the sample suspension.  

 

Figure 7.7 Example of the friction test: 5 wt% LP suspension at 2 % slip without pre-

heating 

Figure 7.8 (a) shows an example of raw traction data at 0.5, 1 and 2 % taken with the 

distilled water. At all the slips values, the traction coefficient dropped after the water 

application, and then the recovery was seen. The recovery behaviour depends on the 

slip value; the gradual recovery was seen at 0.5 %, but there was a relatively quick 

recovery at 2 %. Figure 7.8 (b) shows the creep curves of the average traction 

coefficient: μD and μL. μL was around 0.2 at all slip values, showing a good 

agreement with the previous study apart from 0.5 % slip [13]. 
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Figure 7.8 Traction behaviour of distilled water 

(a) Comparison of typical traction data at 0.5, 1 and 2 % slip, (b) Creep curves 

Figure 7.9 (a) shows an example of the frictional behaviour of the engine oil, and 

Figure 7.9 (b) exhibits the creep curves of μD and μL. There was no clear recovery 

region, and μL was around 0.1 at all the slip values. As expected, the engine oil 

exhibited a very stable and low traction coefficient, and the higher slip did not seem 

to affect its performance. 
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Figure 7.9 Traction behaviour of engine oil 

(a) Comparison of typical traction data at 0.5, 1 and 2 % slip, (b) Creep curves 

Figure 7.10 illustrates the frictional behaviour and creep curves of the LP suspension. 

LP suspension was found to show the low traction coefficient at all slip values. In 

particular, μL reached almost the detection limit at 0.5 %, and it still kept the low 

level at 1 and 2 % slip. As shown in Figure 7.10 (b), μL at 0.5 and 1 % slip met 

neither the traction requirement 0.2 nor braking requirement 0.1 [1], and μL at 2 % 

slip did not reach 0.2. Moreover, μL at all slip values was lower or at the same level 

as the engine oil, showing a good agreement with the result in [136]. On the other 
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hand, the recovery after the sample application became more distinct as the slip 

increased. It should be noted that the LP suspension became black immediately after 

it was applied to the disc surface, indicating that the chemical reaction between leaf 

organics and iron had happened. 

 

 

 

Figure 7.10 Traction behaviour of LP suspension 

(a) Comparison of typical traction data at 0.5, 1 and 2 % slip, (b) Creep curves 
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Figure 7.11 depicts the frictional behaviour and creep curves of BBP suspension. The 

frictional behaviour was analogous to the LP suspension; low traction coefficient and 

more noticeable recovery as the slip value increased. μL was lower than 0.1 at 0.5 

and 1 % slip, and it met the braking requirement but failed to reach 0.2 at 2 % slip, as 

shown in Figure 7.11 (b).  

 

 

 

Figure 7.11 Traction behaviour of BBP suspension 

(a) Comparison of typical traction data at 0.5, 1 and 2 % slip, (b) Creep curves 
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Figure 7.12 illustrates the comparison of traction data and creep curves of AC 

suspension. Unlike the LP and BBP suspension, the AC suspension showed a low 

and constant traction coefficient between 0.1 and 0.2, and there was no distinct initial 

recovery region. This consistently low traction shows that the black material formed 

in the LP and BBP tests had different tribological property from the AC. 

 

 

 

Figure 7.12 traction behaviour of AC suspension 

(a) Comparison of traction data at 0.5, 1 and 2 % slip, (b) Creep curves 
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Figure 7.13 shows the SDR of AC, engine oil, BBP and LP. In comparison with the 

AC and engine oil, BBP and LP were found to have less SDR. BBP had the same 

SDR at all slips around 0.4 m like the engine oil; however, LP had less SDR at 2 % 

slip, around 0.4 m, than the SDR at 0.5 and 1 % slips. This different trend in the SDR 

means that other factors might be able to contribute to the recovery in the case of LP 

suspension, not simply depending on the sliding distance. 

 

 

Figure 7.13 Comparison of the SDR for each sample 

(a) AC and engine oil, (b) LP and BBP 



108 

 

Potential differences related to a higher slip value could be an increase in surface 

temperature during the running-in period. The surface temperature was measured by 

the method presented in 7.2.4 after five minutes operation at 0.5, 1 and 2 % slip in 

dry conditions. The result was summarised in Table 7.2. The surface temperature was 

confirmed to increase as the slip value increased, and the difference between 0.5 and 

2 % slip was around 20 °C. Since the change in the surface temperature was found, 

the effect of surface temperature on traction coefficient was investigated. 

 

Table 7.2 Surface temperature after the operation at 0.5, 1 and 2 % slip 

Slip value [%] Surface temperature [°C] 

0.5 44.3 ±2.8  

1 51.8 ±1.5 

2 63.7 ±0.6 

 

7.3.2 Friction test with pre-heating 

Figure 7.14 depicts the traction behaviour of LP suspension at 0.5% slip, which was 

taken at various temperatures with pre-heating process. Figure 7.14 (a) is the 

comparison of the acquired traction data at 42, 106, 180 and 211 °C (zoomed-in 

view). As the temperature increased, the traction coefficient μL in the sample 

application region increased, and only a subtle drop was observed at 211 °C. 

Moreover, the recovery region started much earlier at 106 °C than 42 °C, and no 

significant drop was observed at 180 and 211 °C 

Figure 7.14 (b) shows the relationship between the surface temperature and traction 

coefficient μL, with μD as a reference value. The proportional relationship was 

observed, and the traction requirement 0.2 would be achievable at around 240 °C if 

this linear trend continues. In contrast, μD showed a slight increase as the temperature 

increased, meaning that the temperature had fewer effects on traction in dry 

conditions. 



109 

 

 

 

Figure 7.14 Traction behaviour of LP suspension with pre-heating process at 0.5 % slip  

(a) Comparison of traction data, (b) Relationship between temperature and traction 

coefficient 

Figure 7.15 exhibits the traction behaviour of LP suspension at 1 % slip and various 

temperatures. In the same manner as the data at 0.5 % slip, μL became larger as the 

temperature increased. Due to this larger μL, the recovery region was hardly seen at 

159 and 196 °C. These changes in μL and μD led to the larger traction coefficient at 

the higher temperature, which probably reaches 0.2 at around 240 °C. In contrast, μD 

decreased as the temperature increased, reflecting the negative effect of friction heat 

on the friction coefficient [135]. 



110 

 

 

 

Figure 7.15 Traction behaviour of LP suspension with pre-heating process at 1 % slip 

(a) Comparison of traction data, (b) Relationship between temperature and traction 

coefficient 
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7.4 Discussion 

The series of test with pre-heating process using LP suspension found that the 

surface temperature has an influence on the improvement of traction coefficients, 

showing the proportional relationship between the surface temperature and traction 

coefficient μL. The traction coefficient requirement, 0.2, would be achievable at 

approximately 240 °C, given that the linear relationship between the temperature and 

μL continues. This improvement at small slip values, 0.5 and 1 %, is very important 

for the actual train operation since it would be able to prevent the low adhesion, not 

relying on mechanical methods, such as sand particles and wheel slipping, which 

lead to damage of wheels and rails. 

The pre-heating method used in this study must have involved in changes of the 

surface condition as well; an increase in the surface roughness is likely after the pre-

heating process. This change could contribute to the traction improvement. However, 

the surface roughness was not assessed in this study since it has a limited effect on 

the adhesion level. The adhesion coefficient has been reported to saturate with the 

combined surface roughness 1-3 μm in wet conditions, and the surface temperature 

seems to have a greater effect on adhesion [137]. In the case of the SUROS machine, 

the surface roughness was reported to be 7 ± 3 μm for the wheel disc after 12,000 

cycles (approximately 30 minutes) at different slip value up to 3 % [35]. This level of 

surface roughness seems to have less effect on the adhesion improvement according 

to the criteria in [137]. Furthermore, a surface roughness around 15 μm has been 

reported to lower the friction level of graphite [138], and the rougher surface does 

not dramatically increase the traction coefficient of grease for 15 seconds after the 

grease was applied [139]. Hence, it can be concluded that traction improvement seen 

in this study seems to be brought about by the high surface temperature rather than 

the change in the surface roughness.  

Three potential reasons for this traction improvement were listed as follows: thinner 

water film due to lower viscosity of higher temperature water, decomposition of key 

organic acids and mechanical deterioration of leaves as shown in Figure 7.16. In this 

test, the sample suspension was dropped onto the upper rail disc running at 400 rpm.  

Until the applied sample suspension on the disc reaches the contact point, the water 

temperature should be raised to some extent, and the water viscosity could become 

lower. The high-temperature water has been reported to form a thinner water film 

due to this lower viscosity [140], [141].  However, this hypothesis is unlikely to be 

valid since the lubrication regime seems to be either boundary or mixed lubrication, 

taking into account the low testing speed (1 m/s) and small viscosity of water.  

Additionally, the key organic acids of leaves, which are solved into the water, could 

be degraded by the heat energy. Moreover, the high temperature might change the 
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mechanical properties of the leaf; the heat can make the leaf powder more fragile. 

The brittle leaf powder could be unable to support the load, and the leaf powder is 

likely to fail to prevent the metal-metal contact between two discs, being expelled 

from the contact area.  

 

 

Figure 7.16 Three potential mechanisms of the traction improvement 

One of the concerns of this heat application method is a high bonding strength of the 

leaf film. As suggested in 3.4, high temperature could enhance the chemical reaction 

and strengthen the bonding between leaf films and rails. Therefore, the effect of high 

temperature on the bonding should be conducted to assess the possibility of the heat 

application method.  

To sum up, it was found that high temperature has a positive effect on traction 

improvement, showing that the heat application can be used as a mitigation method.  
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7.5 Conclusions 

In this study, the temperature effect on the traction coefficient of leaf powder 

suspension was mainly investigated using a twin disc machine to simulate the 

rolling-sliding contact between the wheel and rail. The series of test elucidated that 

the leaf powder suspension had the low traction coefficient μL at 0.5 and 1 % slip 

during the sample application period, which is lower than the engine oil. The sliding 

distance SDR was found to decrease at a higher slip, indicating that high surface 

temperature could affect the recovery. Influence of surface temperature was 

investigated by the traction test with high-temperature discs, which were pre-heated 

by operating the test for five to seven minutes at high slip ratio up to 20 %. It was 

found that μL proportionally increased as the surface temperature increased at 0.5 and 

1 % slip, possibly meeting the traction requirement 0.2 at around 240 °C. This 

improvement in traction coefficients shows that the heat application can mitigate the 

low adhesion due to leaf contamination. Although the pre-heating method used in 

this study should have increased the surface roughness as well, the rougher surface 

seems to have less influence on the traction level. Hence, this traction improvement 

could have been brought by high surface temperature, which is possibly a mixed 

effect of the degradation of key organic acids discharged from leaves, thinner water 

film and mechanical deterioration of leaves.  

One concern suggested in 6.4.2 is an effect of the high temperature on the bonding 

condition of leaf films. In other words, an increase in the bonding strength could 

occur when the surface is heated up according to the hypotheses presented in 3.4. 

Therefore, the temperature effect on the bonding should be investigated to examine 

the heat application method for prevention.  
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8 INVESTIGATION OF THE BONDING MECHANISM 

8.1 Introduction 

High temperature was found to mitigate the low adhesion conditions due to leaves; 

the traction requirement could be achieved at around 240 °C, showing that the heat 

application can be used as a new prevention and mitigation method. On the other 

hand, high temperature is expected to make a strong bond between leaf films and 

rails by enhancing the chemical reaction. If the leaf film adheres to the rail more 

tightly due to the heat application, this method is unacceptable since the adhered leaf 

film must contribute to a longer life expectancy of the leaf contamination problem.  

Hence, the effect of high temperature on the bonding strength needs to be 

investigated. For this purpose, the bonding energy of the leaf film was quantitatively 

evaluated by a scratch test, examining the effect of temperature as well as the 

hypotheses for the bonding mechanism proposed in 3.4. Additionally, the low 

adhesion described in Chapter 7 is also discussed considering the result of chemical 

analysis.  

8.2 Methodology 

A black leaf layer was created on a disc specimen by using the SUROS machine. It 

was then analysed mechanically and chemically: Scratch Test, Laser Raman 

spectroscopy and Fourier transform infrared spectroscopy.  

8.2.1 Leaf film creation 

Leaf films were created by using a twin disc machine (SUROS). The basic procedure 

is similar to the friction test with pre-heating (7.2.4). The surface temperature was 

raised before the leaf film creation by the application of high slip up to 20 %, 

followed by a measurement of the surface temperature by a K type thermocouple. 

Then, 1 ml of 10 wt% LP suspension was applied onto the upper disc. Immediately 

after the application, the operation was stopped, and the disc was taken out. Figure 

8.1 shows the procedure to create leaf layers on the disc. The more detailed 

procedure was as follows. 
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1. Two discs were cleaned with acetone in an ultrasonic bath and then mounted in the 

machine.  

2. The discs were tested for five to seven minutes at one of these slip values: 7, 12 or 

20 %. 

3. The test was stopped, and the surface temperature of the rail disc was measured 

with a k-type thermocouple. 

4. The machine was restarted and operated for one to two minutes at 1 % slip to 

stabilise the traction coefficient. 

5. 1 ml of 10 wt% LP suspension was applied to the rail disc for approximately 30 to 

40 seconds. 

6. The operation was stopped as soon as the application finished, which usually takes 

under seven seconds.  

For the information of the SUROS machine, see 7.2.2 and 7.2.3. 

 

 

Figure 8.1 Leaf film creation on the disc 

(a) Running in dry conditions at high slip, (b) Surface temperature measurement, (c) Leaf 

film creation 

8.2.2 Scratch test 

Scratch testing is a common technique used to mechanically estimate the bonding 

energy (adhesion energy) between substrates and films or coatings on them, e.g. 

resistant coatings [142]. Figure 8.2 illustrates the schematic figures of the conducted 

scratch tests. In this study, a simple scratch test was conducted at a constant load 

with a micro Rockwell stylus which has a 200 µm diameter diamond ball. Before 
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scratching, half of the leaf film on the disc was removed by sandpaper, exposing a 

bare steel surface as shown in Figure 8.2 (a). A Rockwell indenter was then pressed 

with 20 N, and it pulled across the surface at 0.05 mm/s, ploughing the disc surface 

and breaking the leaf film as shown in Figure 8.2 (b). After scratching, the width of 

the scratch traces was measured by an optical microscope (Figure 8.2 (c)). The 

bonding energy can be estimated by calculating the area while the leaf film was 

being destroyed by the indenter, as shown in Figure 8.2 (d). Finally, the bonding 

energy per unit area (Jm-2) was calculated with the estimated scratch length in Figure 

8.2 (d), following Equation 8.1 [143]–[145]. 

 

 

Figure 8.2 Schematic figures of scratch test 

(a) Removal of leaf film, (b) Scratch test procedure, (c) Valuables, (d) Bonding energy 

calculation 

 

𝑬𝑨

𝑨
=

𝑬𝑨

𝑾 ∙ 𝑳
 

Equation 8.1 
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The main aim of the scratch tests was to estimate the approximate bonding energy of 

leaf films and compare the estimated bond strength of the films created at different 

temperature. Since the created leaf films were non-uniform and unsmooth, 

measurements of a critical load were not attempted, although that is more common in 

scratch tests [146]. 

8.2.3 Laser Raman Spectroscopy (RS) 

A Renishaw inVia Raman Microscope was used for RS analysis with the black leaf 

film formed on the disc. The spectrum was acquired between 50 and 4000 cm-1 with 

the exposure time of 20 seconds and five-time accumulation, reducing the laser 

power to 10 % (approximately two mW). More detailed information was described in 

5.2.4. The main aims of the RS analysis are to confirm the formation of graphite-like 

carbon in the leaf film and to study the effects of experimental conditions on the 

property of the leaf film. 

8.2.4 Fourier Transform Infrared Spectroscopy (FT-IR) 

A Bruker ALPHA Platinum-ATR was used, and the leaf films created at RT, 106, 

140 and 227 °C were analysed. Other experimental conditions were the same as the 

description in 5.2.6. The objective of this FT-IR analysis is to study the effects of 

experimental conditions on the chemical bonds in the leaf film by comparing the 

spectrums. 

8.3 Results 

8.3.1 Visual inspection 

Figure 8.3 depicts photographs of the created leaf layers at various temperatures: 

room temperature, 106 °C, 140 °C and 227 °C. The black material was formed on 

both the wheel and rail discs at room temperature. However, the black leaf film was 

created only on the wheel disc at 106, 140 and 227 °C, and the leaf film at 227 °C 

was patchy. This partially formed film at high temperature shows that thermal energy 

does not seem to enhance the chemical reaction and help the formation of leaf films. 

Note that the leaf film at room temperature was pretty powder-like, while the other 

black films seemed to be similar to the actual leaf films on a rail. 
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Figure 8.3 Created leaf films on SUROS discs at various temperature 

Created at: (a) Room temperature, (b) 106 °C, (c) 140 °C, (d) 227 °C 

8.3.2 Scratch tests 

Figure 8.4 exhibits an example of the scratch test result conducted for the leaf film 

created at 106 °C. The mean value of the lateral force was calculated by averaging 

the lateral force in the exposed surface region, and the bonding energy was then 

estimated. It was found that the baseline showed a less constant level than expected, 

and this relatively large error, around 10 %, could be caused by the rougher surface 

due to the prior removal of leaf films by sandpaper. 

 



119 

 

 

Figure 8.4 Example of scratch test result: leaf film created at 106 ℃ 

Figure 8.5 shows the comparison of the bonding energy of the created leaf films at 

different temperatures. Note that the leaf film created at 227 °C could not be 

evaluated since there was not enough leaf film left. No clear difference in the 

bonding energy was found due to the large error, but the decreasing trend still can be 

seen between 106 and 140 °C. Since the leaf film became patchy at 227 °C, the high 

temperature is likely to weaken the bonding strength of leaf films as well as prevent 

the leaf film formation. 

Furthermore, all the leaf films were easily removed by nail-scratching, showing that 

they did not tightly adhere to the rail substrate. This small energy indicates that the 

high temperature is unlikely to increase the bonding strength. Although there could 

be a better methodology to generate well-adhered leaf films, the application of heat 

energy was shown to be a potential prevention method without the significant 

negative impact on leaf film bonding. 

 



120 

 

 

Figure 8.5 Comparison of bonding energy of leaf films generated at different 

temperatures 

8.3.3 RS 

Figure 8.6 shows the comparison between the acquired Raman spectra of the leaf 

films created at different temperatures, and Table 8.1 contains the detected Raman 

shifts and their assignments.  The created leaf films were found to contain 

amorphous carbon, which shows peaks around 1330 cm-1 (D band: shoulder) and 

1575 cm-1 (G band). The intensity ratio of the D band and G band (ID/IG) was 

calculated, and it was 0.57, 0.59 and 0.65 for the leaf films at RT, 106 and 140 °C, 

respectively. These low ratios show that the leaf films have partially-graphitised 

carbon on their surfaces [81], and it should be the main cause of low adhesion in 

friction tests in Chapter 7. Similar Raman spectra have been detected in black 

precipitate synthesised with leaf extracts and rail steel in 5.3.3. Hence, this black 

material on the leaf films seems to be the same as the artificial black precipitate. 

It was also found that the peaks of iron oxides became sharper as the temperature 

increased. In particular, sharp peaks can be seen in the leaf film created at 227 °C. 

This result might indicate that high temperature prevents leaf powder from reacting 

with rail steel due to the quick evaporation and decomposition of organic acids. On 

the other hand, the black material was still formed at high temperature. Hence, 

further work needs to be done to clarify the relationship between temperature and 

chemical reaction.  
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Figure 8.6 Raman spectra of the created leaf films at different temperatures 
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Table 8.1 Raman shifts and assignments of the created leaf films 

RT 
[cm-1] 

106 °C 
[cm-1] 

140 °C 
[cm-1] 

227 °C 
[cm-1] 

Assignment Reference 

222 m 220 m 218 m 222 α-Fe2O3 226.7 [77] 

287 m 288 m 284 m 292 α-Fe2O3 
292.5 
299.3 

[77] 

- (403) (399) 407 α-Fe2O3 410.9 [38], [77] 

- - - 606 α-Fe2O3 611.9 [77] 

- - - 661 
FeO 

Fe3O4 
652 

662.7 
[77] 
[38] 

1330 1330 1330 1316 s 
Amorphous carbon 

α-Fe2O3 
1355 
1320 

[38], 
[74], [77] 

1571 s 1575 s 1572 s 1576 s 
Amorphous carbon 

Sugar-derived 
carbon 

1575 
1580 

[74] 
[83] 

* m and s means medium and strong, respectively 

8.3.4 FT-IR 

Figure 8.7 illustrates the comparison of the acquired FT-IR spectra. As a reference, 

raw brown leaf powder was also analysed. Four samples showed the very similar 

absorption pattern to brown leaf powder, exhibiting that the created leaf films mainly 

consisted of bulk leaves. The double absorptions around 1400 and 1600 cm-1, which 

are seen in the black precipitate as a characteristic feature (See 5.3.5), cannot be seen 

in the acquired spectra. This result suggests that the chemical reaction occurs only on 

the surface, forming a graphite-like carbon layer on top of the leaf film. 
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Figure 8.7 Comparison of FT-IR spectra 

Table 8.2 shows the assignments of the absorption bands. All the acquired bands 

belonged to typical organic bonds, such as C-H and C-O, and no significant 

difference was seen in the peak positions. Therefore, the heat energy was found to 

have less effect on the chemical composition of leaf films. 

 

Table 8.2 Assignment of the detected infrared bands 

Assignment 
Brown leaf powder 

[cm-1] 
RT 

[cm-1] 
106 °C 
[cm-1] 

140 °C 
[cm-1] 

227 °C 
[cm-1] 

Reference 

OH stretch 3263 3290 3269 3244 - [99] 

CH stretch 
2916 
2849 

2917 
2851 

2916 
2851 

2917 
2851 

2919 
2849 

[99] 

C=C 
(Aromatic rings) 

1606 1612 1605 1604 1600 [14], [99] 

CO stretch 1032 1035 1021 1016 1022 [14], [99] 
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8.4 Discussion 

8.4.1 Temperature effect 

The scratch test revealed that the high surface temperature is likely to weaken the 

bonding of the leaf film rather than strengthening. In contrast, RS and FT-IR analysis 

showed that the heat did not significantly affect the chemistry of the created leaf 

films. It suggests that the key organic acids for the chemical reaction are not easily 

decomposed by high temperature. However, some difference in the spectra of RS and 

FT-IR was seen between the samples at 227 °C and the other temperature, and the 

leaf film became patchy at 227 °C (Figure 8.3). Hence, there could be some 

prevention effect of high temperature on the chemical reaction, but further work 

needs to be carried out for the proper assessment.  

Overall, the heat application seems to be appropriate as a prevention method against 

the leaf contamination without significant side effects in terms of the bonding 

strength, although the prevention mechanism has not yet been clarified.  

8.4.2 Bonding mechanism of leaf layers 

Three hypotheses of the bonding mechanism were developed in 3.4. All of them 

were based on the idea that high temperature helps the formation of strong bonds by 

enhancing the chemical reaction. These hypotheses were found to be incorrect 

according to the result of the scratch test. 

However, the scratch test was conducted for the laboratory-developed leaf films, not 

for leaf films on railway tracks. The actual leaf film was reported to stick to the rail 

surface [1], but the created leaf film in this study had small bonding energy; the leaf 

film could be easily removed by nail-scratching. Another laboratory-generated leaf 

film has been reported to be soft [2], supporting the finding in this study. 

Considering that the surface of the leaf film is covered with graphite-like carbon, the 

leaf film could be soft and easily shorn, rather than sticking to the rail. 

Figure 8.8 depicts a schematic figure of the leaf film adhesion. Graphite has a low 

shear strength due to its layered-structure [105], and the graphite-like carbon layer on 

the leaf can be easily torn off by the shear stress. When some mechanical tool, such 

as a grinder and a scraper, attempts to remove the leaf film, only the upper layer is 

likely to be removed. This superficial removal might mislead to the understanding 

that the leaf film tightly adheres to the rail.  Especially, the removal of the leaf film is 

likely to take a long time if the thickness is large. Further research should be 

necessary to find out the bonding mechanism using another or improved 

methodology, e.g. larger leaf powder instead of fine leaf powder. 
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Figure 8.8 Mechanism of the leaf film bonding 

To sum up, the proposed hypotheses are unlikely to be true, and the bonding 

mechanism has not yet been clarified.  

8.4.3 Low adhesion mechanism in rolling-sliding contact 

In the SUROS tests, the five wt% leaf powder suspension exhibited very low traction 

coefficients, becoming black immediately after the application. RS analysis of the 

created leaf film found that graphite-like carbon was formed on the created leaf film, 

which seems to be the same material as the artificial black precipitation powder 

tested and analysed in Chapter 4 and Chapter 5, respectively. Therefore, the graphite-

like carbon is likely to be the primary cause of low adhesion in rolling-sliding 

conditions as well.  

Another characteristic of the leaf film is that bulk leaves are likely under the surface 

carbon layer, supporting the hypothesis “Bulk leaf”. Although the superficial 

graphite-like carbon is mainly responsible for low adhesion phenomenon, the leaf 

should be a source of graphite-like carbon, continuously reacting with iron from the 

rail steel. Furthermore, lignin, which is a common organic component in leaves, has 

been studied as a functional additive of lubricants [147], [148]. Since the lignin was 

reported to improve anti-wear properties, the leaf powder itself could be the second 

factor of the long-term low adhesion. 

To summarise all information acquired in this study, the low adhesion mechanism in 

the actual train operation was proposed as shown in Figure 8.9. Figure 8.9 (a) shows 

the first step of the mechanism; key organic acids are discharged into the water 

around the leaves by the passing-wheels, as suggested and examined in 5.4.3 and 

6.4.1, respectively. A soft graphite-like carbon layer is then formed on top of the 

pieces of leaf thanks to the chemical reaction (Figure 8.9 (b)). When the following 

wheel rolls over the blackened leaves, the wheel is likely to slip due to the reduced 
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friction level. The slipping wheel helps pick up the soft graphite-like carbon layer, 

spreading the low adhesion according to the result in 8.3 (Figure 8.9 (c)). After 

passing wheels remove the superficial black layer, the chemical reaction might re-

occur due to the freshly exposed leaf surface, re-forming the graphite-like carbon 

layer. 

 

 

Figure 8.9 Mechanism of low adhesion in the train operation 

(a) Crushed leaves, (b) Formation of graphite-like carbon, (c) Low adhesion and wheel-

picking up 
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8.5 Conclusions 

Leaf films were created using a twin disc machine, SUROS, at different 

temperatures. The visual inspection found that the leaf film at 227 °C was patchy 

compared to the other leaf films. The scratch test clarified that the bonding energy of 

the leaf film slightly decreased as the temperature increased; the heat application 

seems to weaken the bonding energy rather than strengthening. The RS analysis 

detected a graphite-like carbon layer on the surface of the leaf films, but bulk leaves 

were likely to be present underneath the surface layer according to the FT-IR 

analysis.  

The heat application seems to be appropriate as a prevention method since no 

significant effect on the bonding energy has been confirmed. This fact shows that the 

hypotheses proposed in 3.4 are unlikely to be correct. The detected graphite-like 

carbon on the leaf film should be the main cause of low adhesion phenomenon due to 

leaf contamination, taking into account the results presented in Chapter 4 and 

Chapter 7. 
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9 FIELD INVESTIGATION AND PRACTICAL 

MEASURE 

9.1 Introduction 

A field test was conducted at the Quinton Rail Technology Centre in Long Marston, 

the UK, using a Class 117 DMU. Approximately 300 m straight track is available at 

this site, which is a part of 2.4 km loop. Using this straight track, a leaf layer was 

created on the rail; DMU passed five times on the sycamore-rich leaves laid on the 

track, which were fixed by adhesive tape and wetted by tap water before the DMU 

passes. This field test was carried out to assess mitigation methods for the low 

adhesion. However, a process of the leaf film creation has been observed, followed 

by a sample collection of the black leaf film for Raman spectroscopy analysis. Based 

on these results, a potential prevention and mitigation method is proposed. Further 

information regarding the field test can be found in [149].  

9.2 Results 

9.2.1 Observation in the field test 

Figure 9.1 shows the observation during the process of the leaf film creation. The 

leaves laid down on the original application site (3 m) were gradually removed by 

passing wheels, and the black leaf film was formed outside the application site. The 

black leaf film was formed as far as 10 m, and it looked thicker than the leaf layer on 

the original application site, which was sometimes invisible [149]. This observation 

shows that the passing wheels must have picked up some softened leaves from the 

original site, and then they printed the leaf residue on the rail surface, spreading the 

leaf contamination.  

 

Figure 9.1 Behaviour of leaves on the rail track 
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9.2.2 RS analysis of black leaf films 

Figure 9.2 illustrates the comparison of Raman spectra of the field samples, and 

Table 9.1 shows an assignment of the detected RS peaks in the field samples. The 

peak fittings are shown in Appendix C. The RS measurement was conducted in the 

same conditions described in 8.2.3. Both samples were found to have graphite-like 

carbon on their surface. Although some difference in the intensity of iron oxides can 

be seen, there was no apparent difference between these field samples and the leaf 

film on a SUROS disc. This RS result shows that the leaf film developed in a 

laboratory seems to be the same as the actual black leaf film. Therefore, the heat 

application method could be effective in the actual train operation as a prevention 

and mitigation method. 

 

Figure 9.2 Comparison of Raman spectra 

Table 9.1 Assignment of the detected peaks in RS analysis 

Field sample 1 [cm-1] Field sample 2 [cm-1] Assignment Reference 

218 m 217 m α-Fe2O3 226.7 [77] 

285 m 287 m α-Fe2O3 
292.5 
299.3 

[77] 

1370 1361 
Amorphous carbon 

α-Fe2O3 
1355 
1320 

[38], [74], [77] 

1587 s 1582 s Amorphous carbon 
1575 
1580 

[74] 
[83] 
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9.3 Practical measure 

9.3.1 Drag-braking 

The field test found that passing wheels can spread the leaf contamination. In other 

words, the leaf contamination could be minimised if the black leaf residue is 

removed from the wheel surface. Considering this observation, continuous tread 

braking during the autumn is proposed as a countermeasure in this study, which is 

very similar to drag braking for low adhesion due to snow [150]. 

Figure 9.3 illustrates the proposed method for prevention and mitigation. This 

method has two points to minimise the leaf contamination and improve adhesion 

levels: mechanical removal of leaf residue and heat application by braking 

temperature. Tread braking has been known to remove debris from a wheel surface 

and maintain surface roughness at a certain level. For instance, tread braking with a 

small braking force is used to remove snow on wheels in the winter, preventing the 

presence of snow between pads and wheels [150]. Similar mechanical removal could 

happen in the case of leaf residue, which is possibly effective to stop the 

contamination from being spread, as shown in Figure 9.3 (a). 

Another advantage of this method is the heat application by tread braking as shown 

in Figure 9.3 (b); tread braking has been recognised to raise the surface temperature 

of the wheel [151]. This fact indicates that tread braking could apply enough thermal 

energy to mitigate the low adhesion in the same way described in Chapter 7, possibly 

preventing the chemical reaction between leaves and rail/wheel steels. If the surface 

temperature is controlled around 240 °C by adjusting a braking force/pressure, it can 

maintain enough adhesion levels even if the leaf contamination is present.  
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Figure 9.3 Proposed method for prevention and mitigation 

(a) Prevention by mechanical removal, (b) Mitigation of the low adhesion 

Negative aspects of this method are potential growth of thermal cracks on the wheel 

surface. When thermal cracks are present on the wheel surface, the wheel needs to be 

reprofiled at the maintenance centre, leading to an increase in maintenance costs. 

However, thermal cracks are generally grown above 400 °C, and no significant 

influence has been reported for thermal crack growth at around 240 °C [152]. 

Thereby, heat application by continuous tread braking could be a practical answer for 

leaf contamination, pushing all the risk to wheel-side and cutting the other costs. Of 

course, further laboratory-based tests and field tests are necessary to examine to what 

extent this method is effective. 
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9.3.2 Further research 

To examine the possibility of this method, the following work should be done before 

applying this method to the field.  

 

 Determination of the wheel surface temperature for mitigation 

In the SUROS test, both wheel and rail discs were heated up. However, high 

temperature should be given to only wheels by drag-braking in the train 

operation. Therefore, the mitigation effect should be assessed in the case of a hot 

wheel disc and cool rail disc. This research project could be carried out by a twin 

disc machine with braking equipment.  

 Assessment of braking performance when leaves/blackened leaves are 

present between wheels and braking blocks 

Leaf residue on a wheel should remain at the edge of a brake block if this 

method is used. In that case, one of the concerns is a malfunction of braking 

equipment; the accumulated leaf residue can be transferred to the interface 

between the wheel tread and braking block, possibly lowering the friction level. 

Hence, braking performance should be examined with the artificially-

contaminated braking blocks, which could be raw leaves, blackened leaves and 

black precipitation powder. This work should be conducted using a standard 

testing facility of braking.  

 Evaluation of the prevention effects on leaf film formation using a test track 

Leaves can be spread on a railway track over a long distance by passing-wheels. 

However, no research has been conducted to understand how long a piece of leaf 

can be transferred from the original point. Accordingly, the degree of spreading 

should be studied, possibly using a test track. For example, the leaf film can be 

created following the methodology in [149], and then the rail surface is captured 

by a high-speed camera for a long distance, e.g. 200 m. Using an image 

processing technique, the degree of spreading can be quantitatively evaluated, 

and an effect of the drag-braking method should be assessed by comparing the 

results with/without the drag braking. 

 

Overall, the drag-braking method can be attempted in the actual train operation once 

these three research questions are addressed for safety.  
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9.4 Conclusions 

A field test found that the passing wheel picked up some leaves on the line and 

transferred them on another part of the line, helping spread the leaf contamination.  

RS analysis clarified that the black leaf film created in the field test contained 

amorphous carbon as well as iron oxides. These similarities to the leaf film and black 

material created in the laboratory indicate that the heat application method could be 

effective as a prevention and mitigation method, since they are likely to be created 

with the same chemical reaction process. Drag braking was proposed as a potential 

countermeasure; it can prevent leaves from being spread, and it also applies friction 

heat to the wheel to mitigate the low adhesion. Although some further research must 

be conducted to guarantee safety, this continuous tread braking is a new approach to 

the low adhesion problem due to leaves, and it could be an innovative method to be 

easily installed for train operating companies all over the world.  
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10 CONCLUSIONS 

10.1 Project conclusions 

The aims of this research project were the clarification of the low adhesion 

mechanism due to leaf contamination in the autumn and the elucidation of the 

bonding mechanism between leaf films and rails, which lead to the development of a 

practical countermeasure against leaf contamination. For these purposes, tribological 

tests using a ball-on-flat and twin disc method were carried out, as well as chemical 

and material analyses. Conclusions in each aim are shown below. 

10.1.1 Low adhesion mechanism 

The ball-on-flat test showed that the black precipitation powder, which was 

synthesised with water-soluble leaf organics and rail steels, surprisingly reduced a 

friction level in wet conditions, lower than a commercial engine oil and significantly 

lower than distilled water. The twin disc machine study also found that the 

suspension of black precipitation powder produced low adhesion in rolling-sliding 

conditions, as well as fine leaf powder suspension. Graphite-like carbon was present 

on the surface of the black precipitation, black leaf film generated on the disc 

specimen and the leaf film created in the field test. Hence, it was concluded that 

graphite-like carbon could be the primary cause of low adhesion.  

Sycamore leaf powder was also identified to lower the friction by the tribological 

tests. Furthermore, the chemical and material analysis found that iron carboxylate 

and various ions in the black precipitation, including phosphate ion. They should also 

contribute to the low adhesion conditions, although the degree of contribution was 

not clarified.  

To summarise, the low adhesion seems to be brought by four factors: graphite-like 

carbon, bulk leaf, iron carboxylate and various ions.  

10.1.2 Bonding mechanism 

The leaf film generated on disc specimen showed low bonding energy. Nail-

scratching was enough to remove the leaf film, and the tight bond between the leaf 

film and rail was not reproduced in this study. Therefore, the bonding mechanism has 

not yet been elucidated. 

However, it was confirmed that the bonding energy seemed to decrease as the 

surface temperature of the disc increased. In particular, the leaf film was not 

uniformly created over 200 °C, becoming patchy. Accordingly, it can be concluded 

that the high temperature did not affect the bonding strength between the leaf film 

and rail, rather making the bond stronger as suggested in the developed hypotheses.  
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Better understanding of the chemical reaction process between leaf organics and rail 

steels is necessary to clarify the bonding mechanism. The leaf extract analysis found 

that some organic acids were likely to involve in the reaction process, dissolving iron 

from the rail steels. However, the specific organic acids have not yet been identified. 

If they were discovered, the bonding mechanism should be more clearly explained.  

To sum up, the bonding mechanism was not fully explained in this study due to the 

poor understanding of the chemical reaction, although surface temperature was found 

to have few effects on the bonding energy at least.  

10.1.3 Potential countermeasure 

The twin disc test with the pre-heating process found that high temperature was 

effective to mitigate low adhesion due to leaves. It also seemed to prevent the 

chemical reaction, forming a patchy leaf film. Furthermore, the field test showed that 

wheels picked up leaves on tracks and transferred them on another part of tracks. 

Taking into account the results shown above, a new direction of the potential 

countermeasure against leaf contamination was suggested: continuous drag braking.  

Drag braking can prevent the spread of leaf contamination, stopping stuck leaves on 

a wheel surface at the edge of a brake block. Moreover, continuous braking can raise 

surface temperature of a wheel. This high temperature can mitigate low adhesion 

even if leaves are present in the contact between wheels and rails. Although there are 

some safety issues to be addressed, the drag braking method could be an innovative 

measure.  

10.2 Publications and presentations 

Publications: 

 K. Ishizaka, S. R. Lewis, and R. Lewis, “The low adhesion problem due to leaf 

contamination in the wheel/rail contact: Bonding and low adhesion 

mechanisms,” Wear, vol. 378–379, pp. 183–197, 2017. 

 K. Ishizaka, S. R. Lewis, D. Hammond, and R. Lewis, “Investigation of leaf 

chemistry and leaf layer: low adhesion mechanism,” Proceedings of the 11th 

International Conference on Contact Mechanics and Wear of Rail/Wheel 

Systems, Delft, The Netherland, 2018. 

 K. Ishizaka, S. R. Lewis, D. Hammond, and R. Lewis, “Chemistry of black leaf 

films synthesised using rail steels and their influence on the low friction 

mechanism,” RSC Adv., vol. 8, no. 57, pp. 32506–32521, 2018. 

 K. Ishizaka, S. R. Lewis, and R. Lewis, “Influence of temperature on adhesion 

coefficient and bonding strength of leaf films: a twin disc study,” Under review 

for Wear, 2019. 
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Presentations: 

 Presentation in the Mission of Tribology, hosted by the Institution of Mechanical 

Engineers (IMechE) in London, 2016, First prize. 

 Presentation at the Future of Railway Event, hosted by IMechE and RSSB in 

Derby, 2017, Second place 

 Presentation at TriboUK 2018 in Sheffield, 2018, First prize 

 Presentation in the 11th International Conference on Contact Mechanics and 

Wear of Rail/Wheel Systems, Delft, The Netherland, 2018. 

10.3 Further work 

Further work regarding the leaf extract analysis and the use of drag braking could be 

conducted for the development of this study.  

Leaf extract analysis: 

 Identification of key organic acids which cause the chemical reaction with rail 

steels, possibly using a colourimetric method of Benedict’s test, Ion 

Chromatography and Liquid Chromatography-Mass Spectrometry. 

 Synthesis of a black material with artificial chemicals, followed by some 

chemical analysis such as FT-IR, RS and XPS. 

 

Drag braking: 

 Determination of the wheel surface temperature, which is the most appropriate 

and balanced temperature to mitigate low adhesion, using a twin disc machine 

with a braking facility. 

 Assessment of braking performance when leaves/blackened leaves are present 

between wheels and braking blocks to ensure safety, using a standard brake test 

facility. 

 Evaluation of the prevention effects on leaf film formation using a test track, 

capturing an image of the rail surface with a high speed camera.  
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APPENDIX B 

 

Table A2 All metal ions detected in the ICP-MS analysis 

Element BLE before [μg/L] BLE after [μg/L] Distilled water [μg/L] 

Fe 307.5 31040.1 1.9 

Mn 1702.5 2262.0 0.0 

Al 27.4 1253.8 0.7 

B 552.6 588.6 34.9 

Sr 239.2 230.2 0.3 

Zn 54.9 62.9 1.6 

Ba 72.5 56.4 0.1 

Ni 33.7 36.5 0.0 

Cr 75.9 35.2 0.0 

Rb 26.8 25.5 0.0 

Cu 20.3 9.1 0.7 

Li 4.6 5.0 0.0 

Co 0.2 1.6 0.0 

Mo 1.7 1.4 0.0 

Ga 1.5 1.4 0.0 

Se 1.5 1.2 0.2 

As 0.4 0.7 0.0 

V 0.2 0.3 0.0 

Pb 0.8 0.3 0.1 

Ce 0.0 0.1 0.0 

Bi 0.0 0.0 0.2 
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APPENDIX C 

 

 

Figure A1 Peak fittings of Raman spectra of the leaf films in the field test 

 

 

  

 

 


