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Abstract

Collective decision-making can be investigated in a variety of different contexts, from

opinion dynamics to swarm robotics. In the context of honeybee swarms, the evolution-

ary dynamics corresponding to the honeybee consensus problem can be studied via game

theoretic tools. Evolutionary game theory provides the necessary tools to capture the

relevant aspects for the decision-making process, whereas mean-field game theory serves

well as a framework to analyse the optimal response of a large number of interacting play-

ers, even in the case of adversarial disturbance, where the aim is to ensure the robustness

of the system to worst-case deterministic perturbations. The interactions among players,

often originating in the corresponding real system from a social or physical structure,

e.g. humans or animals for social and nodes of a power network for physical, can be

captured by means of a network. In this thesis, the model originating in the context

of bio-inspired collective decision-making is formulated in a game theoretic framework.

The study of the corresponding consensus problem is carried out by analysing the sta-

bility property of the system and the corresponding optimal strategies in the presence

of an adversarial disturbance. A threshold is identified to prevent a situation of dead-

lock, which happens when the population is stuck in a scenario where no option has

predominantly taken over. The analysis is then extended to compartmental models,

which share similarities with the original system and gives insight on asymmetric evolu-

tions of the system. Through this link, other relevant applications are considered, such

as duopolistic competition in marketing and virus propagation in smart grids. Finally,

structured environments are explored as an extension to the original model, and the

structure is captured by means of undirected graphs or of the Barabási-Albert scale-free

(SF) complex network model.
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CHAPTER 1

Introduction

This thesis is the result of the work of research carried out by the PhD candidate at

the University of Sheffield, department of Automatic Control and Systems Engineering.

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor

of Philosophy. The dissertation consists of five chapters, namely the Introduction, three

chapters for the main body and the Conclusion. Chapter 2, Chapter 3 and Chapter 4

constitute the main body of this thesis.

1.1 Overview

Each chapter of the main body describes a collective decision-making problem in a differ-

ent framework, first evolutionary game theory, then mean-field game theory and finally

structured/stochastic interactions. The models corresponding to each framework are

formulated and studied in detail. Although the aforementioned models are investigated

separately in each chapter, they constitute a whole due to the fact that they share a

common ground and because they originate from the same source, at least in the gen-

eral formulation. Each model is then linked to a different discipline or context. This

multidisciplinary approach constitutes one original aspect of this work. The common

source of these models can be traced back to the problem of finding a new nest in the

context of swarms of honeybees, see [91], and, in general, in the study of social insects

such as wasps, ants, bees and termites, see [108]. The properties that motivate the

study of such bio-inspired collective decision-making problem can be linked to multi-

agent system properties such as: scalability, i.e. the number of agents can be increased

ad libitum, e.g. this is the case for swarm robotics; robustness, i.e. system performance
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Chapter 1 Introduction

is not compromised by perturbations or adversarial disturbances; and resilience, i.e. the

system is not disrupted even in case of small failures of a number of its parts.

To understand the problem, a general overview should be given: the ground in

which this research moves involves a swarm of bees that has to choose between two

options. The choice is crucial for the survival of the swarm and it depends on multiple

factors, e.g. size of the entrance or exposure of the nest to rain. Scout bees advertise

the position and quality of the possible nest options by means of the so-called waggle

dance. At the same time, competing scouts try to disrupt the other bees’ waggle dance

by sending a cross-inhibitory stop signal. In the rest of the thesis, many of the proposed

applications and examples cover this scenario in more detail by bridging the gap be-

tween the theoretical models and the honeybee swarm consensus problem. Additional

applications are also proposed.

The literature studies the model originating in the context of honeybee swarms in

the framework of swarm robotics and value-sensitive decision-making, see [19] and [80].

Especially in the latter, the authors concentrate mostly on the case where the two options

have equal value. In this scenario, they report results in terms of deadlock avoidance

and in terms of the analysis of the corresponding bifurcation diagrams which depend

on the value of the cross-inhibitory signal. The model proposed in this thesis aims to

extend the original system to the case where the options have different values and the

signal changes over time, stressing a different perspective based on the Lyapunov’s direct

method for stability analysis and control design. For a general overview of the honeybee

swarm model, the reader is referred to [81], [82], [101]. In recent times, the interest

for these bio-inspired problems has grown in the control community, as reported in [45]

and [94] in general terms, or in [90] and [113] for a perspective on consensus and swarm

dynamics, or in [84] for a focus on decision-making.

Game theory provides the framework that is used to investigate the above problem.

Technically, game theory studies the strategic interactions of rational individuals, in a

cooperative or competing context. To make a parallelism with multi-agent systems, a

game can be described as a multi-agent decision problem in a strategic setting. In this

setting, the players’ actions are interdependent, which makes this approach different

from decision theory. The formal establishment of game theory can be traced back to

1944 when von Neumann and Morgenstern published “Theory of games and economic

behaviour”, see [76]. Game theory has grown in popularity really fast since then, and
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Chapter 1 Introduction

has been applied to a variety of domains, spanning from social sciences to formal sci-

ences. Evolutionary game theory was developed in response to the interest in the natural

sciences to study natural systems. For a general overview on game theory, the reader is

referred to [52], [75], [79]. In the context of collective decision-making, a game perspec-

tive is provided in [88]. The problem of finding consensus and the corresponding game

are studied in [112]. In the following, a brief description of the content of each chapter

is provided.

1.2 Core Contributions

In order to highlight the importance of this work, a summary of core contributions is

given in this section. The relationship between the different contributions is indicated

explicitly to allow the reader to better follow the development of the work in the next

chapters. A list of core contributions follows:

1. Formulation of a model to explain the behavioural traits of honeybee

swarms in a game theoretic framework . For the first contribution, the

model originating in the context of honeybee swarms is reframed using evolution-

ary game theory. A new notion of game dynamics, i.e Expected Gain Comparison,

is formulated and then applied to the game, with the aim to match the transi-

tion rates of the initial model with the payoff matrix of the corresponding game

model. The strategic aspects of the game are investigated in the macroscopic and

microscopic dynamics, i.e. the study of the population as a whole and from the

perspective of a reference player.

2. Extension of the model to symmetric and asymmetric cases, includ-

ing conditions for local asymptotic stability of the equilibria . The second

contribution involves the extension of the game model to the case where parameters

are symmetric or asymmetric, namely the parameters are equal for both options,

e.g. γ := γ1 = γ2, or different, e.g. γ1 6= γ2, respectively. The case where also the

structure of the game is no longer symmetric is considered, namely the transitions

between states 1 and 3 are no longer possible, i.e. σ2 = 0, α2 = 0. A stability

analysis is carried out for each case where the equilibrium points of each system

3



Chapter 1 Introduction

are identified and studied in terms of local asymptotic stability.

3. Study of the individual and collective behaviour that leads to deadlock

or consensus based on a threshold on the cross-inhibitory signal via

Lyapunov stability analysis. The third contribution generalises the results

found in the literature for deadlock on the value of the cross-inhibitory signals.

The threshold is generalised in terms of the parameters of the model rather than

specific values coming from the honeybee swarm example. In order to formulate

this general threshold, a new perspective based on Lyapunov stability analysis is

given. This is then extended to the structured case in the last chapter.

4. Study of absolute stability and passivity for the collective system un-

der time-varying and uncertain cross-inhibitory parameter via the

Kalman-Yakubovich-Popov lemma . In the fourth contribution, the prob-

lem of uncertain time-varying cross-inhibitory parameter is tackled by isolating

the nonlinearities in a feedback loop. The only assumption is that the uncertain

parameter is bounded. When the system has symmetric structure, absolute stabil-

ity is preserved, whereas when the structure is asymmetric, passivity of the system

is proved.

5. Formulation of a mean-field game model and the corresponding sta-

tionary solutions in the robust case . The fifth contribution extends the

game model to a mean-field game framework, where the transition rates are de-

rived from the players’ controls and an adversarial disturbance. The mean-field

Nash equilibrium is found and stationary solutions are investigated with respect

to their stability properties. When the disturbance is the worst-case deterministic

signal, the robust mean-field game is studied and a basin of attraction is found

under certain conditions for the parameters.

6. Study of the impact on stability of different interaction topologies. The

last major contribution includes results on the impact of interaction topologies and

stochastic dynamics on transient response and steady-state. When the topology is

modelled through complex networks, it is proved that a higher connectivity would
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Chapter 1 Introduction

result in a faster transient response and higher values of uncommitted agents at

steady-state at equilibrium. When the topology is modelled through an undi-

rected graph with adjacency matrix A, similar results are established with a link

to compartmental models such as the susceptible-infected-recovered (SIR) model.

1.3 Applications

This section illustrates some possible applications for this research, in practical contexts

such as opinion dynamics or virus propagation. A more detailed discussion of each ap-

plication is given in Chapter 4, where the model is specialised and the meaning of the

parameters is explained for each application context.

Duopolistic Competition in Marketing. In this context, two manufacturers sell the

same product in a market and each manufacturer has a share of this market. The analogy

with the nest options is that the population has to choose one product, either from the

first manufacturer or from the second. Part of the population can also decide not to buy

any of the two products. The model proposed in this thesis can describe this scenario in

an appropriate way, including also an advertising effort to make the potential customers

buy one of the products or to prevent them to buy the opposing one by disrupting the

other manufacturer’s advertisement. In the structured case, the topology models the

interactions among customers and it is shown that by increasing the connectivity the

equilibrium shifts toward a higher number of undecided customers.

Opinion Dynamics. This application models the scenario where two political par-

ties compete for a voting campaign, e.g. an election or a referendum. The voters are

given two options, e.g. left and right, but they can also choose not to vote. The model

describes the persuaders’ effort to make people vote for their party and to prevent them

from voting for the opposing party. When the voters’ interactions are modelled via a

network topology, it can be seen that the more the connections, the more voters remain

undecided at steady state.

Virus Propagation in Smart Grids. Linking the original formulation of the model

to compartmental models such as the SIR (susceptible-infected-recovered) and the SIS
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Chapter 1 Introduction

(susceptible-infected-susceptible) models for the asymmetric case, it is easy to see an

analogy with virus propagation. The problem is tackled within the context of smart

grids, where the interaction topology plays a crucial role in the system evolution, whether

the system is compromised or not. Different kinds of cyber-attacks are considered,

e.g. continuous low-rate attacks and sequential attacks. By using a model for coupled

oscillator, it can be shown that the connectivity has a negative impact in that it makes

the node more prone to be infected. However, a higher connectivity mitigates the impact

of the infection through the coupling strength. A practical scenario on a real network is

discussed in a case study in Chapter 4.

1.4 Summary

Chapter 2 introduces the evolutionary game model which extends the evolution-

ary dynamics originating in the context of the collective decision-making problem for

a swarm of honeybees. First, the original model is reframed into the corresponding

evolutionary game dynamics. The evolutionary game model is then specialised to three

different cases and, in each of the these cases, the corresponding Markov chain has differ-

ent transition rates which depend on the different parameters involved in the decision-

making process. These cases include a more general model with asymmetric parameters,

a model with symmetric parameters and, finally, a model with asymmetric structure.

The dynamics with asymmetric structure share similarities with well-known compart-

mental models such as the Susceptible-Infected-Recovered (SIR) model. The players’

goal is to reach consensus on one option and this mimics the same behaviour that hon-

eybees exhibit when choosing a nest. In order to achieve this, players can send a signal

to other players with the aim of disrupting the advertisement of the opposing option.

Especially in the case of symmetric options, the value of this signal is crucial to avoid

deadlocks and preserve stability. Furthermore, the evolution of the system under a time

varying signal is investigated and results in terms of absolute stability and passiveness

are presented, both constituting novel aspects with respect to the literature.

Chapter 3 introduces a more general mean-field game model which extends the

evolutionary dynamics presented in the first chapter. The study of the macroscopic and

microscopic dynamics is carried out independently first, and then in a unified framework

where both dynamics characterise the initial-terminal value problem and therefore the
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Nash equilibrium. Given a large population of small decision makers, the macroscopic

dynamics describe the evolution of the population as a whole. On the other hand, the

microscopic dynamics show the evolution of a reference player’s response in terms of

his/her strategic approach. The stationary solutions are presented and studied in the

special case where the difference between the value function for the uncommitted state

and the value function for each option is considered. Within this context, the presence

of a basin of attraction is investigated and results in terms of periodic orbits are given.

Finally, the link to the initial model is provided, showing that the mean-field game is a

generalisation of the initial problem when parameters are set as in the honeybee swarm

scenario.

Chapter 4 extends the models proposed in the previous chapters to a structured

environment, under a multi-agent modelling framework. The study of the structure is

twofold: in the first case, the structure is captured by a complex network, while in

the second the interactions are modelled by means of an undirected graph. In both

cases, the impact of the connectivity is throughly analysed, providing results in terms of

stability for all the equilibrium points of the system. For the first case, the effects of a

higher connectivity are measured in terms of a faster transient response and of a larger

number of uncommitted agents at steady-state. The link for other applications, such

as opinion dynamics and duopolistic competition, is presented in a separate section. A

detailed analysis of a case study involving a real network is given in the context of virus

propagation in smart grids. The impact of the structured environment is measured in

terms of the resistance of the nodes to the infection. Furthermore, the original 2-option

model is extended to the n-option case under stochastic perturbations in the context

of nudge theory. Finally, an initial study on buffer networks is provided. This study is

carried out in the setting of a swarm of robots, where each node of the network models

the actual buffer of a robot and the corresponding routing problem is considered.
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CHAPTER 2

Evolutionary Game Theoretic Frame-

work for Consensus Problems

2.1 Introduction

The problem of finding consensus in a population of individuals is tackled in this chapter.

Inspired by the biological studies on honeybee swarms, the problem involves a large

number of players that have to choose one of two possible options in a collective way.

A key aspect for the evolutionary dynamics involves two behaviours that are significant

to achieve consensus: the waggle dance and the cross-inhibitory stop signal. The first

behaviour is used to attract undecided individual to one’s option, whereas the second

behaviour is used to force individuals committed to the opposite option to become

undecided again.

The original model is reframed in the context of evolutionary game theory. After

studying the system in more general terms, two variants are introduced. These variants,

which are denominated ‘symmetric parameters’ and ‘asymmetric structure’, are investi-

gated in detail and the stability analysis is carried out for each of them. In the case of

the asymmetric structure, the asymmetric system bridges the gap between the original

problem and compartmental models such as the Susceptible-Infected-Recovered (SIR)

model. Both variants, i.e. symmetric case and asymmetric case, are then extended to the

context of uncertain time varying parameters. In this context, the system is then proved

to be absolutely stable for symmetric parameters or passive for asymmetric structure.
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2.1.1 Literature Review

Evolutionary game theory was originally developed as a mathematical application to bi-

ological contexts, with the aim to study the dynamics of a given population of animals.

The main idea was that the number of offspring, referred to as fitness, was indeed linked

to a strategic aspect of evolution. In general terms, given a population of individuals,

whether they are animals or humans, all the individuals belonging to that population

behave in different ways, i.e. make different decisions. In the biological interpretation

of the evolution, the offspring genetically inherits these behavioural decisions from their

ancestors. This procedure is referred to as phenotypic gambit. Over time, the frequency

of each decision can change due to the response from the rest of the population. The fre-

quency of a given strategy evolves according to how successful the strategy is. Successful

strategies correspond to higher payoffs because they are linked to a greater number of

offspring. Therefore the individuals choosing a successful strategy will become dominant

in the considered population. For a general survey on the literature of evolutionary game

theory, see [52], [53], [71], [77], [78], [89], and plenty of references therein.

In more formal terms, an evolutionary game consists of a population of decision

makers under a game theoretic framework, where each individual adjusts his/her strate-

gies over time in response to the strategies played by the other participants in the game.

The term population profile refers to the vector that models the probability in which

each strategy is played in the population. In an evolutionary game, an evolutionarily

stable strategy (ESS) is the analogous concept of the Nash equilibrium in classical game

theory. Evolutionary games can be distinguished into two types, i.e. pairwise contests

and games against the field, albeit some evolutionary games can include interactions

between both. A pairwise contest consists of a scenario where a reference player plays

against an opponent chosen at random in the population. The payoff depends on the

strategies selected by both players. This kind of games is similar to games in classical

game theory. The other type, i.e. games against the field, does not involve a couple of

players directly, where one plays with another, but rather a reference player playing with

the rest of the population. Therefore, the payoff is not necessarily linear in the prob-

abilities since it depends on which strategies all the players in the population choose.

These latter games are often called “frequency-dependent selection”, see [105].

Evolutionary game theory was initially developed by R. A. Fisher, see [38], in 1930.

Fisher’s aim was to investigate the approximate equality of the sex ratio in mammals

9



Chapter 2 Evolutionary Game Theoretic Framework for Consensus Problems

and explain the evolution and stability of this ratio. Fisher’s findings showed that the

equality could be explained in terms of the individuals’ fitness: each individual would

benefit from an equal distribution of males and females in maximising the expected

number of grandchildren. However, since Fisher’s argument was not explicitly stated

in game theoretic terms, the first formal approach in the field, an application of game

theory to evolutionary biology, is attributable to in R.C. Lewontin in 1961, see [66].

Later, in 1972, the concept of ESS was introduced by J. M. Smith, see [92], who

investigated the stability and its link to the notion of evolution rather than to rationality

as in classical game theory. In the following year, the same concept became widespread,

when it was used by Smith and Price to describe the scenario in which two animals

of the same species fight for supremacy, dominance right and territory, see [93]. The

proposed analysis showed that an injury is unlikely or impossible in such conflicts due

to individual selection and for the fact that evolutionary stability involves diversity in

the population, i.e. individuals’ different approaches to each contest.

Evolutionary game theory has also been used to describe and explain the emergence

of multiple phenomena in nature. As an example, consider the fighting behaviours that

lead to supremacy and territoriality as in [93]. Another example is the so-called kin

selection, in the context of biological altruism. The idea involves an altruistic behaviour

of an organism that is willing to share food with others at its own cost. However, these

altruistic organisms discriminate in who they share food with; in fact they do not share

food with the all the other individuals in the population, but only with their relatives. In

terms of the evolution, this means that the relatives are likely to be genetically similar

and thus the altruistic gene would be favoured by natural selection under a certain

condition called Hamilton’s rule, from the name of W. D. Hamilton who published two

seminal papers on the topic, see [47], [48]. Real life examples of biological altruism

include worker bees that provide food for their queen and never mate, and vampire bats

that feed other individuals who failed to feed during the night’s hunt.

The model proposed in this chapter belongs to the class of nonlinear discrete-state

continuous-time systems. The model combines the evolutionary game approach and the

mathematical framework in epidemiology. A central role in the study of evolutionary

games is played by 6 families of game dynamics, see [52] and the references therein. Of

interest for the proposed model are the replicator dynamics and the dynamics based on

pairwise comparison. Replicator dynamics are the most common functional expression
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for the fitness in an evolutionary game. Replicator dynamics are non-innovative, i.e.

they cannot generate new strategies, while the dynamics based on pairwise comparison

are innovative dynamics.

The framework in epidemiology refers to the so-called compartmental models, stud-

ied by Kermack and McKendrick in 1927 in an early work, i.e. [60]. Compartmental

models provides a set of techniques which are widely used to model infectious diseases.

The key point involves a simplification of the model by dividing the population into

compartments or classes. The individuals in the same compartment is assumed to have

similar characteristics and thus behave in the same way. The SIS (Susceptible-Infected-

Susceptible) model refers to the family of diseases that can periodically infect an in-

dividual without granting them immunity. The most widely known model is the SIR

(Susceptible-Infected-Recovered) model, see [51]. In the SIR model, when an infected

individual recovers from the disease, he/she cannot be infected again from the same

virus. For the derivation of an exact analytical solution to the SIR model, see [49].

These models have been widely used to predict the outcome of the epidemic under

consideration, i.e. how the virus propagates in the population, the percentage of the

infected individuals at any given time and the speed of the virus spreading. More

recently, they have been used under a network topology to describe the internet and the

World-Wide Web (WWW), see [72] and the references therein. The model in structured

environment is the focus of Chapter 4.

2.1.2 Summary and Contributions

The focus of this chapter is to the study the evolutionary game dynamics inspired by

honeybees and to carry out the stability for each equilibrium point of the corresponding

system. The word consensus refers to the situation in which the population converges

to one of the options, possibly when the number of individuals committed to this option

goes above a certain threshold. A large population of indistinguishable players has to

reach consensus on one of three options. It is worth emphasising that the proposed

setting differ from the standard evolutionary dynamics where the original model was

proposed, because of the evolutionary game approach.

The main contributions presented in this chapter are highlighted in the following.

First, the original model is reframed in the framework of evolutionary game dynamics,

where the study of the Lyapunov stability is carried out. Additionally, the model is
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specialised in symmetric and asymmetric structure, and the dynamics are studied by

taking into account the compartmental models such as the SIR epidemic model. Finally,

the study of the cross-inhibitory coefficient is carried out under the assumption that this

coefficient is treated as a time varying disturbance, as opposed to a constant signal.

This approach yields novel results in terms of the absolute stability and passivity of the

corresponding system.

2.1.3 Structure

Chapter 2 is organised as follows. In Section 2.2, the general model is introduced and

parameters are asymmetric, i.e. the two options have different values and therefore the

transition rates are different. This means that the parameter for the waggle dance, for

instance, has a different value for each of the two options. In Section 2.3, the model

under symmetric parameters is introduced, which corresponds to the case where the

options have the same intrinsic value and so do the parameters. In Section 2.4, some

transitions between states are no longer allowed which leads to an asymmetric structure

which can be linked to the compartmental models in epidemiology. In each of the last

two sections, a formulation of the model is presented first; secondly, the stability analysis

is carried out; thirdly, the problem of uncertain cross-inhibitory coefficients is tackled;

and, finally, the numerical analysis is introduced to corroborate the theoretical results.

2.2 General Model

A nonlinear discrete-state continuous-time system is considered. A large population

of players has to reach consensus on one of two possible options in a distributed way.

While players can choose to commit to either option, they cannot change their decision

directly from one option to the other. A player committed to either option can abandon

their commitment to their option and move to the uncommitted state before choosing

to commit to the other one. Additionally, with the aim to achieve consensus, players

benefit from choosing the more popular option.

Figure 2.1 shows the Markov chain corresponding to each of the three models

described in the following. In the case of asymmetric parameters, namely r1 6= r2,

γ1 6= γ2, α1 6= α2 and σ1 6= σ2, the corresponding model is displayed in Fig. 2.1 (top-

left). The Markov chain in Fig. 2.1 (top-right) refers to the case of symmetric parameters,
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namely r := r1 = r2, γ := γ1 = γ2, α := α1 = α2 and σ := σ1 = σ2. The Markov chain

in Fig. 2.1 (bottom) refers to the asymmetric structure, which does not allow players

to move from state 1 to state 3. In general, these Markov chains describe each scenario

from the corresponding macroscopic perspective. This means that the population as a

whole is considered rather than individual players. This is why the number of players is

not important in this context, and instead the portion of the population of each state

is considered, namely x1 for the players choosing strategy 1, x2 for the players choosing

strategy 2 and and x3 for the players choosing strategy 3. When the number of players

is assumed to tend to infinity, this is similar to the mean-field case in Chapter 3. Due

to the way the model is defined in this context, concepts like proximity are not included

here but are taken into consideration for the structured case in Chapter 4.

3

1 2
γ1 + r1x1

α1 + σ2x2

γ2 + r2x2

α2 + σ1x1
3

1 2
γ + rx1

α + σx2

γ + rx2

α + σx1

3

1 2
γ + rx1 γ + rx2

α + σx1

Figure 2.1: Markov chain representations relating to the asymmetric parameters, namely

r1 6= r2, γ1 6= γ2 etc., in (2.6) (top-left), the symmetric parameters, i.e.

r := r1 = r2, etc., in (2.9) (top-right), and the asymmetric structure in (2.17)

(bottom), describing the transition rates between different states.

The most general model to be considered is when the structure is symmetric but

the parameters are not. The two options correspond to states 1 and 2, while state 3

represents the uncommitted part of the population. A player who is in state 1 can recruit

uncommitted players, by means of an effort, i.e. r1 ≥ 0, or r2 ≥ 0 if the player is in state

2. Moreover, committed players can send cross-inhibitory signals to players committed

to a different option, and the strength of this signal is modelled through σ1 ≥ 0 and

σ2 ≥ 0. The parameter σ1 models the signals sent from players who choose strategy

1 towards those who choose strategy 2. The other parameter σ2 models the opposite

scenario. It is worth clarifying that the three terms strategy, state and decision can be
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and are used interchangeably due to the structure of the game under consideration.

Each player chooses within a set of three pure strategies, i.e. committing to option

1, or to option 2 and being uncommitted. Table 2.1 illustrates the framework described

so far, where the reference player is the row player and the column player can be any

other player in the population.

Table 2.1: Normal-form table for the two-player game.

Option 1 Option 2 Uncommitted

Option 1 r1, r1 −σ2, −σ1 0

Option 2 −σ1, −σ2 r2, r2 0

Uncommitted 0 0 0

The non-zero entries of Table 2.1 simulate a coordination game, whereby the row

player benefits from matching the column player’s strategy. More formally, coordination

games are a class of games with multiple pure strategy Nash equilibria in which players

benefit from choosing the same strategies. When both players choose the same strategy,

they earn r1 and r2 for matching strategy 1 or 2, respectively. Otherwise the row player

looses σ1 or σ2 if playing strategy 2 or 1 while the column player plays the other strategy

and vice versa. Uncommitted players neither gain nor lose anything in random-matching

with opponents. The presented framework models a crowd-seeking scenario where the

benefit of choosing strategy 1 or 2 depends on the frequency of that strategy.

Before introducing the model, some preliminaries are due. Let the frequency of

strategy i, namely the portion of the population who has selected that strategy, be

defined by xi(t) ∈ R+
0 ,
∑3

i=1 xi = 1, for i = 1, 2, 3. For simplicity, the notation xi will be

used in place of xi(t). Let x = [x1, x2, x3]T be the vector of all strategies. Let A ∈ R3×3

be the payoff matrix defined according to the normal-form table above as:

A =


r1 −σ2 0

−σ1 r2 0

0 0 0

 , (2.1)

where r1, r2, σ1 and σ2 have the previously defined meaning.

The evolution of the frequencies of each strategy is in accordance with the following
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game dynamics which links to the notion of innovative dynamics as in [52]. Let ρij(x) ∈
R+

0 be the transition rate from i to j:

ẋi =
∑
j

xjρji − xi
∑
j

ρij. (2.2)

The following is the definition of expected gain comparison given x.

Definition 1. (Expected gain comparison) Given a payoff matrix A = (aij), by

changing from strategy j to i the expected gain pairwise payoff comparison is defined as

Eji(x) =
n∑
k=1

(aik − ajk)+xk + bji, (2.3)

where (aik − ajk)+ denotes the positive part of aik − ajk, and bji is an offset.

It is worth noting that equation (2.3) can be linked to Kahneman and Tversky’s

prospect theory through a weighting function which assigns zero weight to the probability

of unfavourable events in a risk-seeking scenario, see [57]. One major difference with

the work of Kahneman and Tversky is that the offset is not considered in their work,

whereas it is used in this model to capture individual decisions that are not influenced

by the players in the other states. The above definition models the expected revenue

obtained by considering the probability of a payoff increase only and ignoring payoff

decreases in correspondence to a unilateral change of strategy.

Example 1. Let the general payoff matrix be the following:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Given the above payoff matrix, the game dynamics associated with the expected gain

comparison has the following transition rates:

ρ31 = x1(a11 − a31)+ + x2(a12 − a32)+ + x3(a13 − a33)+ + γ1,

ρ13 = x1(a31 − a11)+ + x2(a32 − a12)+ + x3(a33 − a13)+ + α1,

ρ32 = x1(a21 − a31)+ + x2(a22 − a32)+ + x3(a23 − a33)+ + γ2,

ρ23 = x1(a31 − a21)+ + x2(a32 − a22)+ + x3(a33 − a23)+ + α2.

In the above, the offset is taken as b31 = γ1, b13 = α1, b32 = γ2, and b23 = α2.
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By assuming ρij = Eij(x), each ρij in equation (2.2) can be replaced with the

expression of the right-hand side of (2.3). Therefore, the transition rates can be derived

by using the payoff matrix in (2.1) as:

ρ31 = x1(r1)+ + x2(−σ2)+ + γ1 = r1x1 + γ1,

ρ13 = x1(−r1)+ + x2(σ2)+ + α1 = σ2x2 + α1,

ρ32 = x1(−σ1)+ + x2(r2)+ + γ2 = r2x2 + γ2,

ρ23 = x1(σ1)+ + x2(−r2)+ + α2 = σ1x1 + α2,

(2.4)

where the offset bij is set to γ1, α1, γ2 and α2 for each transition rate, respectively. The

offset can be interpreted as the way in which players spontaneously choose to commit

or to abandon an option. That said, the general model is derived as in the following:
ẋ1 = x3(r1x1 + γ1)− x1(α1 + σ2x2),

ẋ2 = x3(r2x2 + γ2)− x2(α2 + σ1x1),

ẋ3 = x1(α1 + σ2x2) + x2(α2 + σ1x1)− x3(r1x1 + γ1)− x3(r2x2 + γ2).

(2.5)

The formulation of system (2.5) can be reduced to a two-dimensional system by

using the conservation of mass, i.e. ẋ3 = −ẋ1 − ẋ2, as:{
ẋ1 = (1− x1 − x2)(r1x1 + γ1)− x1(α1 + σ2x2),

ẋ2 = (1− x1 − x2)(r2x2 + γ2)− x2(α2 + σ1x1).
(2.6)

2.3 Symmetric Parameters

Different parameters, as discussed so far, are used to describe the fact that each option

has a different inner value, making one more appealing than the other or vice versa. The

problem where all options have the same value (or, in other words, when the options

are almost indistinguishable in terms of quality) is what motivates the following study.

In this case, the parameters become: r := r1 = r2, γ := γ1 = γ2, α := α1 = α2 and

σ := σ1 = σ2. Therefore, the payoff matrix As ∈ R3×3 for symmetric parameters is

defined as:

As =


r −σ 0

−σ r 0

0 0 0

 . (2.7)
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By following the same reasoning as for the asymmetric parameters, the transition

rates can be derived by using the payoff matrix in (2.7) as:

ρ31 = rx1 + γ, ρ13 = σx2 + α,

ρ32 = rx2 + γ, ρ23 = σx1 + α,
(2.8)

leading to the following model:

Symmetric parameters

{
ẋ1 = (1− x1 − x2)(rx1 + γ)− x1(α + σx2),

ẋ2 = (1− x1 − x2)(rx2 + γ)− x2(α + σx1).
(2.9)

2.3.1 Local Asymptotic Stability

In this section, the stability analysis of system (2.9) under symmetric parameters is car-

ried out. First, the equilibrium points of the system are found and then local asymptotic

stability is studied.

Theorem 1. Given an initial state x̂ = (x̂1, x̂2, x̂3), the equilibria x∗ = (x∗1, x
∗
2, x
∗
3) of

game dynamics (2.9) are:

• Case 1. When x1 = x2,

x∗ =
(

(r−2γ−α)+∆̂
2(2r+σ)

, (r−2γ−α)+∆̂
2(2r+σ)

, 1− (r−2γ−α)+∆̂
2r+σ

)
,

where ∆̂ =
√

(r − 2γ − α)2 + 4γ(2r + σ).

• Case 2. When x3 = α/r,

x∗ =
(

1−α
r

+
√

(1−α
r

)2+ 4αγ
σr

2
, 1− 1−α

r
+
√

(1−α
r

)2+ 4αγ
σr

2
− α

r
, α
r

)
.

• Case 3. When x1 = x2 and x3 = α/r,

x∗ =
(√

αγ
rσ
,
√

αγ
rσ
, α
r

)
=
(
r−α
2r
, r−α

2r
, α
r

)
.

Proof. See Section 2.6.

Corollary 1. Let α → 0, the equilibria converge to (1, 0, 0) in Case 2 and to (1
2
, 1

2
, 0)

in Case 3.

It is worth noting that the equilibrium point (1, 0, 0) corresponds to convergence

to option 1, whereas (1
2
, 1

2
, 0) means that the players are uniformly distributed between

the two options. Finally, an equilibrium point such (0, 1, 0) corresponds to consensus on
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option 2. Cases 1 and 3 refer to equilibrium points that are symmetric, i.e. the same

number of individuals are committed to option 1 and 2. The next result establishes local

asymptotic stability of the symmetric equilibrium described in Case 1.

Theorem 2. Given an initial state x̂ = (x̂1, x̂2, x̂3), the symmetric equilibrium point in

Case 1 is locally asymptotically stable if and only if

σ ≤ 4rαγ

(r − α)2
. (2.10)

Proof. See Section 2.6.

Remark 1. In the special case where α = 1
r

and γ = r, the above result is in accordance

with the threshold value reported in equation (4) in [80].

2.3.2 Uncertain Cross-Inhibitory Coefficient

In this section, the cross-inhibitory coefficient is no longer considered constant. Instead,

it is a time varying signal σ(t) with a pre-specified amplitude. By isolating the non-

linearity related to the uncertain cross-inhibitory coefficient in the feedback loop, the

stability of the whole system is proved not to be compromised. Specifically, absolute

stability is ensured by using the Kalman-Yakubovich-Popov lemma, see Chapter 10.1

in [58].

The following assumption introduces the sector nonlinerarities, by providing a

lower bound and an upper bound for the values taken by the time varying cross-inhibitory

coefficient. This fact is in accordance with the physical interpretation of the coefficient as

an effort to persuade players committed to the other option to abandon their strategy.

Assumption 1. Let the cross-inhibitory coefficient σ(t) be in [0, k̃], where k̃ > 0 is the

upper bound of the strength of the signal.

The focus of this work is not to investigate a specific value of k̃ but rather the

fact that the strength of the signal changes over time, similarly to the honeybee swarm

model. If given the need to specify a value, a good approximation for a value of k̃

would be the value in (2.10) or the ones later on used in the numerical analysis. To

depict a plausible scenario in the case of symmetric parameters, system (2.9) can be

rewritten by taking into account the assumption that x := x1 = x2. For analogy with

the previous models, both equations are written in terms of ẋ1 and ẋ2, despite being
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the same equation repeated twice, one for each state. Therefore, the following set of

equations describe the system dynamics when they evolve in the manifold defined by

x1 = x2:

ẋ1 = (1− 2x)(rx+ γ)− x(σx+ α),

ẋ2 = (1− 2x)(rx+ γ)− x(σx+ α).
(2.11)

The corresponding bidimensional first-order system of (2.11) can be calculated as

in the following:[
ẋ1

ẋ2

]
=

[
r − 2rx− γ − α −γ

−γ r − 2rx− γ − α

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
γ

γ

]
︸ ︷︷ ︸

k

−

[
σ

σ

]
︸ ︷︷ ︸

b

x2,

y =
[
1 1

]
︸ ︷︷ ︸

c

[
x

x

]
.

(2.12)

The matrix is denoted as matrix A, the constant vector [γ γ]T as k (external input),

the vector [σ σ]T as b and the vector [1 1] as cT . By isolating the nonlinearities in

ψ(t), the transfer function associated with the above system is the following:

G(s) = cT [sI2 − A]−1b = 1
a21−a22

[
a1 −a2

−a2 a1

]
, (2.13)

where a1 = s+ 2rx+ γ + α− r and a2 = γ.

Figure 2.2 depicts the feedback scheme associated with systems (2.12)-(2.13), where

the nonlinearity isolated in the feedback loop is represented by ψ(t) and k is the external

input vector.

Building on the Kalman-Yakubovich-Popov lemma, absolute stability is linked to

strictly positive realness of Z(s) = I2 + KG(s) where K ∈ R2×2 is the matrix whose

entries are k ∈ [0, k̃], and G(s) is the transfer function of system (2.12). It is useful to

note that the above calculation for Z(s) can be done in the scalar version due to the

assumption x1 = x2. However, to preserve the analogy with the general formulation of

the bidimensional model, it is proved as in the following. In order to ensure absolute

stability, matrix A in (2.12) must be Hurwitz, i.e. the trace of the matrix must be

negative and the determinant must be positive. Both conditions must be investigated

to prove that matrix A is Hurwitz. The first condition (negative trace), i.e.

Tr(A) = r − 2rx− γ − α < 0,

19



Chapter 2 Evolutionary Game Theoretic Framework for Consensus Problems

G(s)

ψ(t)
f(y)

−

+
x(t) e(t)

k

y(t)

Figure 2.2: Feedback scheme used to isolate the nonlinearity related to the uncertain

cross-inhibitory coefficient.

holds true in both cases that derive from the above assumption x1 = x2. The assumption

implies, in turn, that 0 ≤ x ≤ 0.5. Specifically, the trace is negative for x = 0 when

r < γ + α, and for x = 0.5, it is always negative. Furthermore, the second condition

(positive determinant), i.e.

∆(A) = 2rx+ γ + α− r + γ = 2rx+ 2γ + α− r > 0,

is satisfied when x = 0.5, and holds true for 2γ + α > r in the worst case.

Finally, matrix Z(s) can be obtained as follows:

Z(s) = I2 +KG(s) =

[
1 0

0 1

]
+

 a1k−a2k
a21−a22

−a2k+a1k
a21−a22

−a2k+a1k
a21−a22

a1k−a2k
a21−a22



=

[
1 + k

a1+a2
k

a1+a2
k

a1+a2
1 + k

a1+a2

]
= 1

s+ζ

[
s+ ζ + k k

k s+ ζ + k

]
,

(2.14)

where ζ = 2rx + 2γ + α − r. Absolute stability of system (2.12) is established in the

following result.

Theorem 3. Let system (2.12) be given and assume that matrix A is Hurwitz. Further-

more, consider the sector nonlinearity as in Assumption 1. Then, when k < k̃, Z(s) is

strictly positive real and the system (2.12) is absolutely stable.

Proof. See Section 2.6.
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Remark 2. Theorem 3 proves absolute stability for symmetric parameters under a time

varying signal. Recall that a system is said to be absolutely stable if the system is globally

stable for any σ(t) within the conic sector. It is worth noting that the same result would

apply to a structured system, in which the parameter describing the interactions among

the individuals in the population, denoted by ψk in Chapter 4, is approximated by 1.

2.3.3 Numerical Analysis

In this section, a set of simulations is presented to show the stability properties of

system (2.9). Let the time horizon be T = 500. The cross-inhibitory signal is set to

σ = 3, r = γ = v, where v is defined as the intrinsic value of both options and it

is set to v = 1. These parameters are chosen to be consistent with the ones in the

literature. Additionally, some parameters are set in. such a way to corroborate the

theoretical results in the different scenarios, e.g. parameter α. The initial condition on

the population distribution is x̂ = (0.8, 0.2, 0).

Dynamics for Symmetric Parameters
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Figure 2.3: Plot in barycentric coordinates, showing the behaviour of system (2.9).

Two different scenarios can be identified. In the first one, let α = 3. In accordance

with Theorem 2, the equilibrium point in Case 1 is locally is asymptotically stable, since

the condition in (2.10), i.e. 3 ≤ (4 ∗ 3)/(1− 3)2 = 3, holds true. The equilibrium point

can be computed explicitly by substituting the values of all parameters in the equation
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of Case 1 as:

x∗ =
((1− 2− 3) + 6

2(2 + 3)
,
(1− 2− 3) + 6

2(2 + 3)
, 1− 2

(1− 2− 3) + 6

2(2 + 3)

)
= (0.2, 0.2, 0.6).

This scenario is depicted in Fig. 2.3 (blue line) in barycentric coordinates, where it

can be seen that the dynamics converge to the equilibrium point calculated above. The

time evolution is shown in Fig. 2.4 (top).
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Figure 2.4: Time plot of system (2.9), for α = 3 (top) and α = 0 (bottom).

In the second scenario, the equilibrium point of Case 1 is no longer stable. In

this scenario, let α = 0. The equilibrium point is therefore x∗ = (0.358, 0.358, 0.284).

According to Theorem 2, the equilibrium is unstable, since the condition in (2.10) does

not hold, i.e. 3 ≤ 0. Fig. 2.3 (red line) shows, in barycentric coordinates, that the

dynamics diverge from the calculated equilibrium and converge to another point, i.e.

(1,0,0). The same can be seen in the time plot of Fig. 2.4 (bottom).

2.4 Asymmetric Structure

In this section, the main difference with the previous models is that the structure is

asymmetric, and therefore the cross-inhibitory signal is sent only by players in state 1

to players in state 2. Additionally, players choosing strategy 1 cannot spontaneously
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abandon their commitment, so α influences only state 2. Parameters γ and r have the

usual meaning. The payoff matrix Aas ∈ R3×3 simplifies as:

Aas =


r −σ 0

0 r 0

0 0 0

 . (2.15)

In the case of asymmetric structure, by using the payoff matrix in (2.15), the

transition rates can be derived as:

ρ31 = rx1 + γ, ρ32 = rx2 + γ, ρ23 = σx1 + α. (2.16)

The above transition rates lead to the following model:

Asymmetric structure


ẋ1 = (γ + rx1)x3,

ẋ2 = (γ + rx2)x3 − (σx1 + α)x2,

ẋ3 = (σx1 + α)x2 − (γ + rx1)x3 − (γ + rx2)x3.

(2.17)

The above system is not given in a two-dimensional form in order to highlight the sim-

ilarities with the Susceptible-Infected-Recovered (SIR) model. In particular, each state

can be linked to one of the states in the SIR model. States x1 and x2 represent the per-

centage of recovered (R) and susceptible (S) players, respectively, while x3 can be viewed

as the percentage of infected players (X). Parameter γ is the rate at which individuals

recover from the infection completely or partially. In other words, such γ involves tran-

sitions to the recovered and the susceptible states. In the original formulation of the SIR

model, players cannot become susceptible again after being infected. However, system

(2.17) can be obtained by combining the SIR dynamics with the Susceptible-Infected-

Susceptible (SIS) model. Parameter σ is the rate at which the infection is spread by the

autoimmune individuals among the population. In the general formulation of the SIR

model, the dynamics evolve according to the following:
Ṙ = µX,

Ṡ = −λk̄XS,
Ẋ = −µX + λk̄XS,

(2.18)

where µ is the rate at which individuals decay into the recovered class, λ is the rate at

which the infection spreads among the population, and k̄ is the number of contacts of

the individuals.
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2.4.1 Local Asymptotic Stability

In this section, the stability analysis is carried out on two equilibrium points, i.e. (1, 0, 0)

and (0, 0, 1), due to the structure of system (2.17). The first equilibrium point represents

consensus on option 1 and can be linked to the case where the epidemic is removed from

the population, i.e. all individuals recover from the virus. The second equilibrium point

involves the largest percentage of undecided players, which can be translated in the

consensus problem as a higher risk of no consensus in the population. The link to the

SIR model can be established to the spread of the epidemic in the population, with the

meaning that the individuals do not recover from the infection. The following result

states the stability properties of both equilibrium points.

Theorem 4. Given an initial state x̂ = (x̂1, x̂2, x̂3), the asymmetric structure defined

by the equations in (2.17) have the following stability properties:

• (i) The following vector x∗ = (x∗1, x
∗
2, x
∗
3) = (1, 0, 0) is an asymptotically stable

equilibrium point.

• (ii) If γ = 0, the following vector x∗ = (x∗1, x
∗
2, x
∗
3) = (0, 0, 1) is another equilibrium

point for the system. It is unstable for r > α and a saddle point for r < α.

Proof. See Section 2.6.

Remark 3. The physical interpretation of Theorem 4 can be given by linking it to

compartmental models. The equilibrium point in (i) is the only one which is locally

asymptotically stable, meaning that, at steady-state, the dynamics converge towards the

recovered state for small perturbations. Additionally, the equilibrium point in (ii) shows

that dynamics diverge for any values of r and α. This means that the population always

recovers from the epidemic.

2.4.2 Uncertain Cross-Inhibitory Coefficient

In this section, the system in the case of asymmetric structure is analysed in the presence

of uncertain cross-inhibitory coefficient. It can be shown that stability properties are

not compromised even if the cross-inhibitory coefficient σ(t) is uncertain and changes

over time, taking values within a pre-specified set. The feedback scheme used in this

section is the same as in the case of symmetric parameters and is shown in Fig. 2.2.
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System (2.17) is now generalised to include asymmetric parameters. Additionally,

r and α are assumed to be negligible. The robustness analysis is given for the model

described by the following set of equations:

ẋ1 = γ1(1− x1 − x2),

ẋ2 = −σ1x1x2 + γ2(1− x1 − x2).
(2.19)

As in the previous sections, the equilibrium points are studied in the case of con-

stant cross-inhibitory signal, first. The following result shows the stability properties of

each equilibrium point.

Theorem 5. Given an initial state x̂ = (x̂1, x̂2, x̂3), the following points x∗ = (1, 0, 0)

and x∗ = (0, 1, 0) are equilibrium points for system (2.19). The equilibrium point (1, 0, 0)

is asymptotically stable, while the equilibrium point (0, 1, 0) is a saddle point.

Proof. See Section 2.6.

In the rest of this section, the sector nonlinearity is assumed to be as in Assump-

tion 1. The corresponding bidimensional first-order system of (2.19) is given in the

following: [
ẋ1

ẋ2

]
=

[
−γ1 −γ1

−γ2 −γ2

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
γ1

γ2

]
︸ ︷︷ ︸

k

−

[
0

σ1

]
︸ ︷︷ ︸

b

x1x2,

y =
[
0 1

]
︸ ︷︷ ︸

c

[
x1

x2

]
.

(2.20)

The matrix is denoted as matrix A, the constant vector [γ1 γ2]T as k, the vector

[0 σ1]T as b and the vector [0 1] as cT . The transfer function for the above system is

the following:

G(s) = cT [sI2 − A]−1b = (s+γ1)σ1
s(s+γ1+γ2)

. (2.21)

Theorem 6. Let system (2.20) be given. Furthermore, let the sector nonlinearity be

given as in Assumption 1. Then, G(s) is positive real and system (2.20) is passive.

Moreover, if a positive definite storage function V (x) is given, then, by linearising around

(1, 0, 0) and shifting the origin of the system to that point, the origin is stable.
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Proof. See Section 2.6.

Remark 4. The above result shows that by isolating the nonlinearities, even in the case

of time varying signals, the stability of the origin can be preserved. This is achieved by

showing that the system is passive. Note that the term passive means that the system does

not produce energy. Then, stability can be proved by finding a positive definite storage

function, which is a real-valued function with explicit upper bounds on the increment of

the state of the system.

2.4.3 Numerical Analysis

This section includes three sets of simulations to corroborate the theoretical results on

the role of the cross-inhibitory stop signal σ. The first two sets illustrate the properties

of system (2.17), and the third one show the behaviour of system (2.19) under uncertain

cross-inhibitory coeffecient. In all the three sets, let the time horizon be T = 500.

To better visualise the impact of the coefficient, in the last set only the first 100 time

instants are shown.

Dynamics for Asymmetric Structure
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Figure 2.5: Plot in barycentric coordinates, showing the behaviour of system (2.17).

In the first set of simulations, the cross-inhibitory signal is set to σ = 3 and σ = 15,

while r = γ = 1/α = v, and v = 1 is defined as the intrinsic value of both options, as

before. The initial condition on the distributions is x̂ = (0.2, 0.8, 0). The plot of the
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population distribution in barycentric coordinates is displayed in Fig. 2.5, where the

blue line refers to the case with σ = 3 and the red line to the case in which σ = 15.

Figure 2.6 shows the time evolution of the system for σ = 3 (top) and σ = 15 (bottom).

The plots show that a higher value of σ leads to a faster response of the first two state

components. Moreover, the system converges to the equilibrium point (1, 0, 0), which is

asymptotically stable in accordance with Theorem 4.
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Figure 2.6: Time plot of system (2.17), for σ = 3 (top) and σ = 15 (bottom).

In the second set of simulations, the cross-inhibitory signal is set to σ = 3. Let

γ = 0, r = 1 and α ∈ {0.5, 3}. The dynamics are depicted in Figure 2.7 for α = 0.5 (top)

and α = 3 (bottom). To show that the equilibrium point (0, 0, 1) is unstable or a saddle,

the initial condition is set around the equilibrium point (0, 0, 1) as x̂ = (0, 0.15, 0.85). In

accordance with Theorem 4, the plot shows that the dynamics diverge from this equi-

librium point and converge to the only stable equilibrium, i.e. (1, 0, 0).

The last set of simulations shows the case where the cross-inhibitory signal is

no longer a constant value, as in (2.19). Let γ = 0, r = 1 and α ∈ {0.5, 3}. The

system behaviour is shown in Fig. 2.8 for σ̂ = 0.5 (blue line) and σ̂ = 15 (red line).

The coefficient evolves as σ(t) = σ̂ + (σ̂k)sin(tσ̂), where k = 0.4. In accordance with

Theorem 6, the plot shows that the dynamics are not affected by the uncertain signal

and the stability of the system is ensured.
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Figure 2.7: Behaviour around the equilibrium point x∗ = (0, 0, 1) for α = 0.5 (top) and

α = 3 (bottom) for system (2.17).
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Figure 2.8: Plot in barycentric coordinates, showing the behaviour of system (2.19) under

uncertain cross-inhibitory coefficient.

2.5 Summary and Discussion

In this chapter, the model originating in the context of honeybees was reframed in

the form of a game. Instead of modelling the microscopic dynamics by looking at the
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choices of individual players, the macroscopic dynamics are considered in the form of

the population distribution across three states, namely x1, x2 and x3. The first two

states represent the options available to the players, whereas x3 represents the portion

of the population that didn’t choose either option/strategy 1 nor option/strategy 2.

When the model is specialised in the symmetric and asymmetric cases, it can be linked

to compartmental models such as the susceptible-infected-recovered (SIR) model. For

the asymmetric structure, the transition from state 1 to state 3 is no longer permitted,

namely parameters α1 and σ2 are set to zero.

Although the parameters were assigned specific values in the simulations (coming

mostly from the literature), the theoretical formulation of the model shows how they

influence the final values of equilibrium points of the system as explicitly stated in The-

orem 1 and Theorem 4. Furthermore, the parameters influence the stability properties

of these equilibria, as proved in Theorem 2 and Theorem 5. The simulations corroborate

the theoretical results by showing that the dynamics converge to the equilibrium point

(the ones that are asymptotically stable) for both the symmetric and the asymmetric

case. When showing that an equilibrium point is no longer stable, parameters are chosen

in such a way to be consistent with the threshold in (2.10).

The scenario where the number of players tends to infinity is investigated in the

next chapter, namely Chapter 3. In the mean-field game, the perspective of a reference

player is taken into account and the problem where the player has to control his/her

state in the presence of an adversarial disturbance is tackled. The scenario where the

players’ position is taken into account in terms of the interactions with other players

is studied in Chapter 4 via a network topology. Furthermore, the formulation of a

model where the number of players is fixed is given. In the structured case, results

include different dynamics for different connectivity values, to assess the impact of the

connectivity. This means faster transient response and higher number of uncommitted

players at steady-state.

2.6 Proofs

The main tool used in this section is Lyapunov’s linearisation method, see [58]. For

hyperbolic equilibrium points, the Hartman-Grobman theorem was used. The Hartman-

Grobman theorem states that the behaviour of a dynamical system near a hyperbolic
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equilibrium point is topologically equivalent to the behaviour of its linearisation in the

neighbourhood of the equilibrium point, see [96]. In simple words, the stability properties

hold true when going from the linear to the nonlinear system. Hyperbolicity is the

property for which no eigenvalue of the linearisation evaluated at the equilibrium point

has real part equal to zero. It is worth recalling that, for a second order system, an

equilibrium point (or fixed point) is asymptotically stable if and only if all eigenvalues

have strictly negative real part, a saddle point when one eigenvalue has positive real part

and the other one has negative real part, or an unstable node when both eigenvalues

have positive real part. Lastly, for the study of stability under uncertain coefficients, the

Kalman-Yakubovich-Popov lemma was used, which establishes an equivalence between

the conditions in the frequency domain, an input-output relationship in the time domain,

and conditions on the state-space representation, see [20], [58].

Proof of Theorem 1

The equilibrium points of system (2.9) are studied by imposing ẋ1 = ẋ2 = 0 to obtain

the following equation:

(x3r − α)(x1 − x2) = 0,

which leads to two solutions: x1 = x2 and x3 = α/r. The first solution is studied in Case

1 and the second solution in Case 2. Case 3 analyses the scenario in which both hold true.

[Case 1] When x1 = x2 = x, the equilibrium point is the root of a second degree

polynomial, which is derived as

ẋ = (1− 2x)(rx+ γ)− x(α + σx)

= rx+ γ − 2rx2 − 2γx− αx− σx2

= (2r + σ)x2 − (r − 2γ − α)x− γ = 0,

under the conditions ẋ1 = 0 and x∗1 + x∗2 + x∗3 = 1. By excluding the one with the minus

sign, the roots of the above polynomial, and therefore the equations characterising the

equilibrium point, are given by:

x∗1 =
(r−2γ−α)+

√
(r−2γ−α)2+4γ(2r+σ)

2(2r+σ)
= x∗2,

x∗3 = 1− (r−2γ−α)+
√

(r−2γ−α)2+4γ(2r+σ)

2r+σ
.

[Case 2] When x3 = α/r, the following equation follows from setting ẋ1 = 0:

ẋ1 = αx1 +
α

r
γ − αx1 + σx1 − σx2

1 −
α

r
σx1 = 0,
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which can be rearranged in the form of a second-order polynomial as:

x2
1 − (1− α

r
)x1 −

αγ

rσ
= 0.

From the roots of the above polynomial, the equilibrium point when x3 = α/r can

be obtained as:

x∗1 =
1−α

r
+
√

(1−α
r

)2+ 4αγ
σr

2
,

x∗2 = 1− 1−α
r

+
√

(1−α
r

)2+ 4αγ
σr

2
− α

r
, x∗3 = α

r
.

[Case 3] A special case is when both conditions, i.e. x3 = α/r and x1 = x2, hold. Then,

it follows:
ẋ = α

r
(rx+ γ)− x(α + σx)

= αx+ γα
r
− αx− σx2 = σx2 − γα

r
= 0.

Due to condition x1 = x2, the above leads to x∗1 = x∗2 =
√

αγ
rσ

. By also considering

the other condition x3 = α/r, the value of x1 (or x2) is equivalent to the whole population

minus the value of x3 and then divided by 2, i.e. x1 = 1−α/r
2

= r−α
2r

. From the previous

equations, the following value for σ can be obtained as:

(r − α)2

4r2
=
αγ

rσ
⇒ σ =

4rαγ

(r − α)2
. (2.22)

Proof of Theorem 2

To study the stability of the equilibrium point in Case 1, the Jacobian matrix around

an equilibrium point, i.e. x∗ = (x, x, 1− 2x) where x := x1 = x2, is calculated as:

J =

[
r − 3rx− γ − α− σx x(−r − σ)− γ

x(−r − σ)− γ r − 3rx− γ − α− σx

]∣∣∣∣∣
x∗

. (2.23)

The equilibrium point is a saddle node, when the following condition for the de-

terminant ∆ of the Jacobian holds: ∆ := J11J22−J12J21 = J2
11−J2

12 < 0, . The latter is

true when x(r+σ) +γ > 3rx+γ+α+σx− r, which in turn implies −2rx > α− r. The

latter yields x < r−α
2r

. From Case 3, under the same conditions, the equation x =
√

αγ
rσ

holds true. By taking a similar argument, the equilibrium point is asymptotically stable

when the following holds:

σ ≤ 4rαγ

(r − α)2
. (2.24)
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Proof of Theorem 3

In order to prove that Z(s) is strictly positive real, the following conditions must

hold true:

• Z(s) is Hurwitz, i.e poles of all elements of Z(s) have negative real parts;

• Z(jω) + Z(−jω) > 0, ∀ω ∈ R;

• Z(∞) + ZT (∞) > 0.

For the first condition to be true, all the poles must be negative, i.e. r−2rx−2γ−
α < 0. This condition holds true, due to the conditions on the trace and determinant

of matrix A. For the second condition, the following must hold:

Z(jω) + Z(−jω) = 1
jω+ζ

[
jω + ζ + k k

k jω + ζ + k

]

+ 1
−jω+ζ

[
−jω + ζ + k k

k −jω + ζ + k

]
,

(2.25)

where, again, ζ = 2rx+ 2γ + α− r. It follows:

Z(jω) + Z(−jω) =

[
jω+ζ+k
jω+ζ

k
jω+ζ

k
jω+ζ

jω+ζ+k
jω+ζ

]
+

[
−jω+ζ+k
−jω+ζ

k
−jω+ζ

k
−jω+ζ

−jω+ζ+k
−jω+ζ

]

=

[
z11 z12

z21 z22

]
,

(2.26)

where
z11 = z22 = ω2−jωζ−jωk+jωζ+ζ2+ζk+ω2+jωζ+jωk−jωζ+ζ2+ζk

ζ2+ω2 ,

z12 = z21 = −jωk+ζ+k+jωk+ζk
ζ2+ω2 .

Thus, the second condition can be rewritten as:

Z(jω) + Z(−jω) =

[
2ω2+2ζ2+2ζk

ζ2+ω2
2ζ+k
ζ2+ω2

2ζ+k
ζ2+ω2

2ω2+2ζ2+2ζk
ζ2+ω2

]
> 0, (2.27)

which is verified for all ω. Lastly, due to the symmetry of Z(s), the third condition

implies that 2Z(∞) > 0. Note that the off-diagonal entries converge to zero in the

limit, whereas the entries on the main diagonal converge to 1 in the limit. Therefore,

in the limit, matrix Z(s) converges to an identity matrix, and, therefore, the third

condition holds true. Absolute stability can now be proved by showing that there exists

a Lyapunov function such as V (x) = xTPx. The expression of V̇ (t, x) can be derived as
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in the following:

V̇ (t, x) = ẋTPx+ xTPx

= xTATPx+ xTPAx− ψTBTPx− xTPBψ,
(2.28)

where ψ is equivalent of writing ψ(t, y). For the condition on the sector nonlinearity,

it follows that −2ψT (ψ − Ky) ≥ 0. Since matrices P and K are symmetric, equation

(2.28) can now be specialised to the case where A is symmetric and B = C = I2 as:

V̇ (t, x) ≤ xT (ATP + PA)x− 2xTPBψ − 2ψT (ψ −Ky)

= 2xTAPx− 2xTPψ + 2ψTKx− 2ψTψ

= 2xTAPx+ 2xT (K − P )ψ − 2ψTψ.

(2.29)

To show that the right-hand side of (2.29) is negative, a square term is constructed by

imposing the following:

2AP = −LTL− εP, K − P =
√

2LT , (2.30)

where ε > 0 is a constant and matrix P = P T > 0. Now, (2.29) can be rewritten as:

V̇ (t, x) ≤ −εxTPx− xTLTLx+ 2
√

2xTLTψ − 2ψTψ

= −εxTPx− [Lx−
√

2ψ]T [Lx−
√

2ψ]

≤ −εxTPx.
(2.31)

From Kalman-Yakubovich-Popov lemma, P , L and ε can be obtained solving (2.30), as

Z(s) is positive real. This concludes the proof.

Proof of Theorem 4

The equilibrium points of system (2.17) are studied by imposing ẋ1 = ẋ2 = 0. The two

equilibria are found by setting x3 = x2 = 0 in (i) and x1 = x2 = 0 in (ii). In the first

case, it follows that x∗ = (1, 0, 0), whereas in the second case, x∗ = (0, 0, 1) follows. The

Jacobian matrices are now calculated to check the stability of each equilibrium point:

J1 =

[
−γ − r −γ − r
−γ −γ − σ − α

]∣∣∣∣∣
x∗

, J2 =

[
r 0

0 r − α

]∣∣∣∣∣
x∗

, (2.32)

where J1 and J2 are calculated in (1, 0, 0) and (0, 0, 1), respectively. For J1, the trace T1

and determinant ∆1 are calculated as:

T1 = −2γ − r − σ − α, ∆1 = (γ + r)(γ + σ + α), (2.33)
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where T1 is always negative and ∆1 is always positive. This implies that x∗ = (1, 0, 0) is

an asymptotically stable point. For J2, the corresponding equilibrium point is unstable

or a saddle point, which follows from the following:

T2 = 2r − α, ∆2 = r2 − rα, (2.34)

which states that the equilibrium point is unstable when r > α, since the trace and

the determinant are positive; on the contrary, when α/2 < r < α or r < α/2, the

determinant is negative and the trace is positive or negative, respectively. Thus, it is a

saddle point.

Proof of Theorem 5

System (2.19) admits two equilibrium points, i.e. x∗ = (1, 0, 0) or x∗ = (0, 1, 0). As

before, by applying the Lyapunov linearisation method, the stability of these equilib-

rium points is studied in the following. First, the Jacobian matrices are given by the

following:

J3 =

[
−γ1 −γ1

−γ2 −γ2 − σ1

]∣∣∣∣∣
x∗

, J4 =

[
−γ1 −γ1

−γ2 − σ1 −γ2

]∣∣∣∣∣
x∗

, (2.35)

where J3 is calculated in (1, 0, 0) and J4 in (0, 1, 0). For J3 the trace and determinant

are:

T3 = −γ1 − γ2 − σ1, ∆3 = −γ1(−γ2 − σ1)− γ1γ2 = γ1σ1, (2.36)

where T3 is always negative and ∆3 is always positive. Thus the equilibrium point

x∗ = (1, 0, 0) is asymptotically stable. Analogously, for J4, the trace and determinant

are given by:

T4 = −γ1 − γ2, ∆4 = γ1γ2 − γ1(γ2 + σ1) = −γ1σ1, (2.37)

where both T4 and ∆4 are negative. Therefore the equilibrium point x∗ = (0, 1, 0) is a

saddle point.

Proof of Theorem 6

The idea is to check whether the transfer function is positive real, to ensure stability of

system (2.19). To be positive real, the following conditions must hold true:
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(1) G(s) is stable, i.e. no poles Re{s} > 0.

(2) Re{G(jω)} ≥ 0, i.e. −π/2 ≤ G(jω) ≤ π/2.

Condition (1) can be easily verified, since the real part of both poles of the transfer

function in (2.21), i.e. s = 0 and s = −γ1−γ2, is equal to or less than zero. Condition (2)

can be verified by inspection. A graphical representation is available in Fig. 2.9.

Re{G(jω)}

Im{G(jω)}

γ1 γ1 + γ2α β

ω

Figure 2.9: Graphical representation for condition (2), i.e. −π/2 ≤ G(jω) ≤ π/2.

From the figure, it can be seen that, for a fixed ω > 0, the condition translates

into α− β − π/2 ≥ −π/2, which is always verified. Similarly, for a fixed ω < 0, we have

−α + β + π/2 ≤ π/2, which is always verified as well. Thus, G(s) is positive real and

system (2.19) is passive.

Now, in order to prove stability of the origin of system (2.19), e.g. ẋ = f(x, 0), a

positive definite storage function V (x) must be found. The storage function candidate

is the following:

V (x) =
1

2
xTPx, (2.38)

where P = P T > 0. From the passivity of the system, it follows:

uTx ≥ ∂V

∂x
f(x, u). (2.39)

Finally, by shifting the origin of the system to the equilibrium point and substi-

tuting in the above equation, it follows:

∂V

∂x
f(x, 0) ≤ 0. (2.40)

Thus, the origin of the system is stable. This concludes the proof.
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CHAPTER 3

Mean-Field Games and Stationary So-

lutions for Collective Decision-Making

3.1 Introduction

In Chaper 2, the formulation of the game was given in the symmetric case and asymmet-

ric case, and the stability of both systems was investigated. Furthermore, the scenario

where the cross-inhibitory signal is no longer a constant signal was studied and absolute

stability and passivity was proved to be preserved for the symmetric and asymmetric

case, respectively. When the population tend to an infinite number of players, the ini-

tial model can be reframed within mean-field game theory, which is the focus of this

chapter.

In this chapter, the collective decision-making problem originating in the context

of honeybees is investigated in the framework of mean-field game theory. The motivation

for this study comes from the fast-growing interest in mean-field games. The original

problem is also suitable to be generalised in a mean-field game framework. The mean-

field game component is defined by the optimisation that the players do by taking into

account the behaviour of the whole population. In other words, while in the evolutionary

game setting players compare the payoffs to establish which strategy is more successful,

in the mean-field game framework players perform a ‘global’ optimisation through the

knowledge of how the entire population behave.
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3.1.1 Literature Review

Mean-field game theory was originally developed by Lasry and Lions, see [63], [64], [65],

and independently by Huang, Caines and Malhamé, see [54], [55], [56]. Lasry and Lions

introduced mean-field game theory as an extension to mean-field theory in physics and

statistical mechanics where the complexity of the behaviour in high-dimensional models

is approximated by an average over all the components in the system. At the same time,

Huang, Caines and Malhamé developed this theory by extending stochastic dynamic

games to a large number of players and approximating their behaviour by averaging

across all the players’ strategies.

Further developments of the theory includes the concept of oblivious equilibrium,

see [106], an approximation of the mean-field equilibrium for stochastic dynamic games

with the aim to reduce the computational complexity of solving such games. The authors

in [106] provide also an error bound to compare the oblivious equilibrium in the case of

a growing number of players. For a survey on mean-field games, the reader is referred

to [41]. Mean-field games can be also seen as the successors of anonymous games and

aggregative games, where the notion of mass interaction was already a main feature,

see [44].

Mean-field games theory applies to a variety of domains, spanning from economics

to engineering, from physics to biology; for examples in each of these domains, the reader

is referred to [3], [9], [12], [46]. When the problem has a linear quadratic structure, the

author in [5] provides explicit solutions in terms of mean-field equilibria. Otherwise,

numerical approximations and discretisation methods can be used as one of several

solution schemes proposed in recent times, see [1]. Other approximation techniques

come from the results for long-time convergence in [42], due to a variational formulation

of the current models. In recent times, there have been multiple developments in the

numerical analysis of finite state mean-field games, e.g. see [43].

When the optimisation problem takes into consideration the adversarial distur-

bance in the worst-case scenario, robustness is investigated in the corresponding mean-

field game. An introduction on robust mean-field games can be found in [11] and for

a further study, the reader is referred to [8], [10]. Robustness is also discussed in [98]

and [7], in the case of risk-sensitive games and in the case of the consensus problem,

respectively.

Finite state mean-field games were first introduced in [39] for discrete time, where
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the authors consider the study by Lasry and Lions and extend their work to the exponen-

tial convergence of the initial-terminal value problem to equilibrium. The corresponding

finite state mean-field games in continuous time were later introduced in [40], where con-

vergence to stationary solutions in the case of d-state model is proved. Additionally, the

authors study the (N + 1)-player problem and the convergence of the model as N →∞
under the assumption of concave costs.

Convergence to the stationary solutions was studied in [27] for state-dependent

Markov chains in problems of distributed optimal resource allocation, where the aim

is to design optimal sharing algorithms for different contexts. Similarly to [27], the

Markov chain taken into account is place-dependent, in the sense that the transition

probabilities are function of the states. Additionally, the probability vector sums to

one, due to the conservation of mass, and satisfy the Kolmogorov equations. Differently,

the methodology used in this chapter treats the study of the stationary solutions when

the population distribution is at equilibrium, from the Kolmogorov equations studied

in Chapter 2. And then, it investigates the behaviour of the value function when the

equilibrium point in the population distribution is locally asymptotically stable. In its

simplicity, this approach is an element of novelty compared to the literature.

An extensive literature explores biochemical reactions and the corresponding Markov

processes, see [34], [35] for an overview on the topic. The model presented here can be

linked to such a biochemical process when the reaction has three possible states and the

number of molecules that react are large in number (if one wants to see the similarities

with the mean-field game). In the Markov process, when the probability depends on the

population distribution, the system can be reduced to a nonlinear model, bilinear to be

more precise. This is the case treated in Chapter 2, and also the case investigated in this

chapter, but here the number of players tends to infinity. A similar case but with more

than three states is studied in [31], where the master model is obtained for a generic

n-state bio-chemical reaction.

Additional contributions on robustness and structural properties are presented in

[14], and further in [15]. The authors in [14] tackle the problem of local stability for sys-

tems that admit a BCD-decomposition under different value of the positive parameters

di, namely the diagonal entries of a matrix D containing the partial derivatives for the

system. Whilst the authors provide a sufficient condition to check the co-positivity of a

sum of squares (SOS) polynomial, they also provide a necessary and sufficient condition
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for finding quadratic Lyapunov functions by means of a LMI-based convex optimisation.

The authors in [15] propose an efficient algorithm to compute the signed steady-state

input-output influences for biomolecular systems. They also check the outcome for a

structurally zero influence, showing that this scenario boils down to perfect adapta-

tion or zero influence. Finally, when uncertain parameters are subject to given interval

bounds, quantitative results on the maximum and minimum output variations are pro-

vided. This literature could provide interesting insights in the case of robustness for the

bio-inspired model of honeybees in presence of uncertain parameters (as in the uncertain

signal in Chapter 3) and non-deterministic adversarial disturbance (as it is treated in

this research).

3.1.2 Summary and Contributions

This chapter focuses on the study of the robust mean-field game. The collective decision-

making problem investigated in Chapter 2 is extended to the mean-field game framework.

The resulting mean-field game is a generalisation of the original problem, which can be

obtained from the studied mean-field game when the players’ control and adversarial

disturbance are assumed to be of a certain kind. Specifically, this means that the control

and disturbance are linked to the parameters of the consensus problem, such as the cross-

inhibitory stop signal. The macroscopic dynamics are introduced and then the problem

of a reference player is tackled, which corresponds to the microscopic dynamics. The

initial-terminal value problem (ITVP) is introduced by combining the macroscopic and

microscopic dynamics. Then, the corresponding stationary solutions are studied with

emphasis on the stability property of the system. Finally, a basin of attraction for the

stationary solutions is found.

The main contributions of this chapter can be summarised in the following. First,

the existence of a mean-field Nash equilibrium is given. The proposed model is a partic-

ular case of the framework developed in [40], but it has been extended to the robust case,

where the adversarial disturbance is assumed to be a form of the worst-case determin-

istic signal. To prove stability of the robust mean-field game, the main argument is to

derive stability properties for the stationary solutions when the Kolmogorov equations

in the population distribution is already at an equilibrium point. The stability of the

corresponding Kolmogorov equations are the focus of Chapter 2. Finally, the stability

properties are extended to periodic solutions and a region of convergence for the system
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is found.

3.1.3 Structure

Chapter 3 is organised as follows. In Section 3.2, the macroscopic dynamics in the form of

Kolmogorov backward equations are introduced first. Then the microscopic dynamics in

the form of Hamilton-Jacobi-Bellman forward equations are presented. Both equations

together constitute the initial-terminal value problem (ITVP) and are investigated in two

cases, namely when the optimisation depend on the reference player’s control or when it

depends on the control of any other player. In Section 3.3 the ITVP is studied and the

corresponding stationary solutions are analysed. Specifically, the stationary solutions

are studied under the hypothesis that the population distribution is at an equilibrium

and thus stability properties are derived for the value function. Periodic solutions are

investigated and a basin of attraction is given. Two applications are proposed, namely

honeybee swarms and virus propagation in smart grids. Finally, two sets of simulations

are provided to corroborate the theoretical results.

3.2 Terminal Value Problem

This section includes the formulation of the mean-field game model for a three-choice

decision-making problem where a large population of players has to find consensus on

one of two options across three possible states. The problem is formulated first in its

macroscopic dynamics and then the perspective of a reference player is tackled. Finally,

after studying the optimal control problem, the mean-field response for the reference

player is given.

3.2.1 Dependance on the Reference Player’s Control

Given a continuous time dynamic game framework and a large population of players,

the problem of finding consensus on one of two options is considered. In the same way

as the rest of this research, state 3 represents the uncommitted players, while the two

options correspond to states 1 and 2, respectively. All players are homogeneous, i.e.

they behave in the same way in the same circumstances. The game is symmetric with

respect to any permutation of players, which means that each player’s decisions do not
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take into account individual players but rather the distribution of players in each state.

Each player controls his/her states according to some optimality criteria. In detail, the

controls of each player depend on the state in which he/she is and on the distribution

of the population across the three states.

In the following, the problem from the perspective of a player, hereafter referred to

as the reference player, is tackled. Let the probability vector modelling the distribution

of the population across the three states be x(t) = [x1, x2, x3]T ∈ S3, where S3 is the

probability simplex in R3 and t ≥ 0 is the time index. Players change state according

to a continuous time Markov process with transition rate matrix β(t) ∈ R3×3. Matrix

β depends on the state, and therefore the system that is presented later in this chapter

is nonlinear. This is the analogous model of the system of equations in (2.5), where the

number of players tend to infinity, in the mean-field case. Each element of matrix β, i.e.

βij, denotes the transition rate from state i to state j and consists of two components

ρij and wij. Analogously, the same holds for each column, namely βi = ρi + wi. The

component ρi ∈ (R+
0 )3 is the player’s control, whereas wi ∈ (R+

0 )3 is controlled by an

adversarial disturbance.

In the mean-field limit when the number of players tends to infinity, the model is

described by the following Kolmogorov equations:

ẋ1 = x3β31 − x1β13,

ẋ2 = x3β32 − x2β23,

ẋ3 = x1β13 + x2β23 − x3β31 − x3β32,

(3.1)

which, as in the previous chapter, are equivalent to the following nonlinear bidimensional

system by considering the conservation of mass ẋ3 = −ẋ1 − ẋ2, which implies x3 =

1− x1 − x2, as in the following:

ẋ1 = (1− x1 − x2)β31 − x1β13,

ẋ2 = (1− x1 − x2)β32 − x2β23.
(3.2)

The above set of nonlinear ODEs in the bidimensional state space x1-x2 represents

the macroscopic dynamics with initial condition on the distribution x̂ := x(0), i.e.

x̂ = (x̂1, x̂2). The initial condition corresponding to the 3-dimensional model in (3.1)

can be derived from the conservation of mass.

To develop the microscopic dynamics, consider a reference player, given that the

distribution of the rest of the population is fixed over the time horizon. The reference
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player can either be committed to option 1, option 2 or be uncommitted, thus his/her

state takes value in a finite discrete set with cardinality 3. Let the state of the player be

denoted by i ∈ I3, where I3 is the set of the three possible states. The evolution of the

state is described by a continuous time Markov chain, whose transition rates are chosen

to minimise a total cost which consists of a running cost and a terminal cost.

The running cost accounts for a penalty incurred by the player during the time

horizon and it depends on the player’s state, on the population distribution and on the

transition rates. Therefore, the running cost g(i, xi, ρi) : I3×S3× (R+
0 )3 → R is defined

as in the following:

g(i, xi, ρi) =
1

2
‖ρi‖2

Ri
+ fi(xi(t)), (3.3)

where ρi = [ρi1, ρi2, ρi3]T ∈ (R+
0 )3 is the transition rate for the reference player, the

term ‖ρi‖2
Ri

indicates the 2-norm weighted on matrix Ri, and Ri ∈ R3×3 is a 3 × 3

positive-definite diagonal matrix, defined as:

Ri =


Ri1

Ri2

Ri3

 . (3.4)

In equation (3.3), the function fi(xi(t)) : S3 → R depends on the state of the

reference player and represents an additional cost or a discount. Both scenarios can be

modelled depending on the aim. The two main scenarios are crowd-seeking or crowd-

averse dynamics.

Assumption 2. We suppose that the following holds for g(·), see [40]:

(i) g(·) is Lipschitz continuous in xi, with the Lipschitz constant w.r.t. xi bounded

independently of ρi;

(ii) g(·) is differentiable w.r.t. ρi and the derivative of g(·) w.r.t. ρi is Lipschitz w.r.t.

xi, ∀i ∈ I3, uniformly in ρi;

(iii) and g(·) does not depend on ρii, is uniformly convex on the remaining coordinates

and is superlinear on ρij, j 6= i.

Remark 5. The above assumption is in accordance with the definition of the running

cost, given the following considerations. The Lipschitz continuity as in point (i) is

preserved by the boundedness of fi(xi(t)). To ensure that the running cost does not

depend on ρii, one could set ρii = 0, but this is in contrast with the definition of transition

rates for discrete state Markov processes. Then, ρii 6= 0 due to the exponential waiting
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time. Therefore, in order to prove that the running cost does not depend on ρii, the

values Rii must be equal to zero.

Assume that the game has a finite horizon formulation and let [0, T ] indicate

the horizon window. As anticipated before, the reference player incurs in a terminal

cost which depends on the objective that he/she seeks to minimise. The terminal cost

ψ(i, xi) : I3 × S3 → R is defined as:

ψ(i, xi) = fi(xi(T )). (3.5)

Assumption 3. We suppose that ψ(·) is Lipschitz continuous in xi.

Remark 6. As for the running cost, the above assumption is in accordance with the

definition of the terminal cost due to the boundedness of fi(xi(t)). This in turn implies

that the value fi(xi(T )) at the end of the time horizon is also bounded.

Each player minimises the following cost functional:

J ixi(ρi, wi, t) = Eρi,wiit=i

[ ∫ T
t

[
g(iτ , xiτ (τ), ρiτ (τ))− 1

2
‖wiτ‖2

Γiτ

]
dτ + ψ(iT , xiT )

]
, (3.6)

where Γi ∈ R3×3 is a 3× 3 positive-definite diagonal matrix defined as:

Γi =


Γi1

Γi2

Γi3

 , (3.7)

and Eρi,wiit=i
is the expectation for the event it = i.

The term in wi = [wi1, wi2, wi3]T ∈ (R+
0 )3 represents a penalty on the energy of the

disturbance signal. The cost functional in equation (3.6) has the structure of a robust

mean-field game in spirit with H∞-optimal control, see [11]. To provide a physical

understanding, when the elements of matrix Γi increase, the values of the disturbance

vector in the second norm become smaller.

Problem 1. Let x(t) : [0, T ] → S3 be given. Find the optimal control of the reference

player which minimises the cost functional as in the following:

vi(xi, t) = inf
ρi(·)

sup
wi(·)

J ixi(ρi, wi, t), (3.8)
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where vi(xi, t) is the value function. The minimisation is performed over the Markovian

controls for the reference player control problem, i.e. βijτ (τ) = ρijτ (τ) + wijτ (τ). For

each time instant t, the measurable functions ρij(·) and wij(·) yield a transition rate and

a penalty for the disturbance, respectively.

In the following, the value function can also be denoted as vi(t) or vi for simplicity.

The Markov chain for a single player is defined as:

P[iτ+h = j|iτ = i] = [ρij(τ) + wij(τ)]h+ o(h). (3.9)

The generalised Legendre transform of the cost function is defined as:

h(xi,∆iv, i) = min
ρi(·)

g(i, xi, ρi) + ρTi ·∆iv, (3.10)

where ∆i : R3 → R3 is the difference operator on i given by

∆iv = (v1 − vi, v2 − vi, v3 − vi)T . (3.11)

The Hamiltonian function H(·) is obtained when in the above equation v is exactly

the value function. The Hamiltonian is therefore:

H(xi,∆iv, i) = inf
ρi(·)

sup
wi(·)

g(·)− 1

2
‖wi‖2

Γi
+ (ρi + wi)

T∆iv. (3.12)

The optimal transition rates are given by the following equation:

ρ∗i (xi,∆iv, i) = argmin
ρi(·)

sup
wi(·)

[
g(·)− 1

2
‖wi‖2

Γi
+ (ρi + wi)

T∆iv
]
. (3.13)

Because of the superlinearity and uniform convexity of the cost function g, the above

function is well defined except for its ith coordinate, namely ρii, for which the following

assumption holds:

ρ∗ii(x,∆iv, i) = −
∑
j 6=i

ρ∗Tij (xj,∆jv, j). (3.14)

The microscopic dynamics are described by the following Hamilton-Jacobi-Bellman

set of ODEs: {
−v̇i = H(xi,∆iv, t),

vi(T ) = ψ(i, xi).
(3.15)

The above system is referred to as terminal value problem due to the presence of the

terminal condition on the value function. Before introducing the next result, it is worth
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noting the nature of the adversarial disturbance w∗i . The nature of the adversarial

disturbance is not arbitrary: it is the worst-case deterministic time varying signal which

depends on the aggregate behaviour of players choosing symmetrically opposite options,

namely those committed to state 1 versus those committed to state 2. The next result

establishes that the solution of (3.15) is the value function itself, which is in accordance

with [40]. The major novelty about this result consists in the fact that the dynamics

studied here include an adversarial disturbance, which is deterministic. Finally, assume

that the running cost is concave in the disturbance w, which is in accordance with the

coercivity condition, see [11].

Theorem 7. Let x(t) : [0, T ] → S3 be given over the time horizon. Assume that

v : S3× [0, T ]→ R is a solution of the terminal value problem in (3.15). Further assume

w∗i is the worst-case deterministic time varying signal depending on the players having

made a choice distinct from that of the reference player. Then v is the value function

associated with the distribution x, and the optimal Markovian control is β∗i = ρ∗i +w∗i as

in the following:

ρ∗i = −R−1
i

[
∆iv

]−
= −


R−1
i1 (v1 − vi)−

R−1
i2 (v2 − vi)−

R−1
i3 (v3 − vi)−

 , (3.16)

w∗i = Γ−1
i

[
∆iv

]+

=


Γ−1
i1 (v1 − vi)+

Γ−1
i2 (v2 − vi)+

Γ−1
i3 (v3 − vi)+

 . (3.17)

Proof. See Section 3.5.

Remark 7. The above result states that the optimal Markovian control for the robust

mean-field game can be achieved in the specific case where the adversarial disturbance

is the worst-case deterministic time varying signal that depends on the players choosing

the option different from the one chosen by the reference player.

3.2.2 Dependance on other Players’ Controls

As before, given a large population of players which can be in any of three possible states

in a continuous time dynamic game framework, the problem tackled in the previous

subsection is extended to the case where the strategy played by the reference player

takes into account other players’ controls. Again, assume that players are homogeneous
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and that each player does not affect the evolution of the game, but his/her choice is

added to the dynamics of the mass.

In order to study this scenario, the definition of the difference operator is given

first, i.e. ∆i : R3 → R3:

∆iz = (z1 − zi, z2 − zi, z3 − zi)T , (3.18)

where zi(xi, t) : S3 × R+
0 → R is a generic function. The difference of function zi(xi, t)

at two nodes can be interpreted as the resistance of transitioning from one node to the

other. To see this, recall that players change their state according to a continuous time

Markov chain in order to minimise a running cost and a terminal cost. As before, the

running cost is determined by the distribution x and the transition rates ρi ∈ (R+
0 )3,

i.e. g(i, xi, ρi) : I3 × S3 × (R+
0 )3× → R. The running cost is defined by the following

equation:

g(i, xi, ρi, t) =
1

2
‖ρi‖2

Ri(∆iz)
+ fi(xi(t)), (3.19)

where ‖ρi‖2
Ri(∆iz)

is the second maximum norm weighted on matrix Ri(∆iz) ∈ R3×3

which is a 3× 3 diagonal matrix, defined as

Ri(∆iz) =


Ri1(∆iz)

Ri2(∆iz)

Ri3(∆iz)

 . (3.20)

The resistance to transitions is captured by the dependance of the penalty matrix

Ri(∆iz) on ∆iz. Note that, as before, g(·) is Lipschitz continuous in xi, with the

Lipschitz constant w.r.t. xi bounded independently of ρi and it is differentiable w.r.t.

ρi, and the derivative w.r.t. ρi is Lipschitz continuous w.r.t xi, ∀i ∈ I3. Moreover, g(·)
is uniformly convex and is superlinear on ρj, j 6= i and independent of ρi. The terminal

cost is defined as in equation (3.5).

The cost functional is defined over the finite horizon [0, T ] as

J ixi(ρi, wi, t,∆iz) = Eρi,wiit=i

[ ∫ T
t

[
g(iτ , xiτ (τ), ρiτ (τ))− 1

2
‖wiτ‖2

Γiτ (∆iz)

]
dτ + ψ(iT , xiT )

]
,

(3.21)

where Eρi,wiit=i
is the expectation for the event it = i, wiτ models the energy of the adver-

sarial disturbance in terms of penalty and ‖wiτ‖2
Γiτ (∆iz)

is the second maximum norm
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weighted on matrix Γi(∆iz) ∈ R3×3, which is a 3× 3 diagonal matrix defined as:

Γi(∆iz) =


Γi1(∆iz)

Γi2(∆iz)

Γi3(∆iz)

 . (3.22)

Problem 2. Let x(t) : [0, T ] → S3 be given over the time horizon. Let ∆iz be the

difference operator on function zi(xi, i) that captures the resistance to transition from a

state to another. Find the optimal control for the reference player which minimises the

cost functional that depends on the distribution and on the control of the other players:

vi(xi, t) = inf
ρi(·)

sup
wi(·)

J ixi(ρi, wi, t,∆iz), (3.23)

where vi(xi, t) is the value function and the minimisation is performed over the Marko-

vian controls for the single player control problem, i.e. βijτ (τ) = ρijτ (τ) + wijτ (τ).

The corresponding Hamiltonian function H(·) for the above problem can be ob-

tained as:

H∆iz(xi,∆iv, i) = infρi(·) supwi(·)[g(·)− 1
2
||wi||2Γi(∆iz)

+ (ρi + wi)
T∆iv]. (3.24)

Finally, the corresponding Hamilton-Jacobi-Bellman ODEs are the following:{
−v̇i = H∆iz(xi,∆iv, t),

vi(T ) = ψ(i, xi),
(3.25)

where the robust Hamiltonian is described by equation (3.24), for which the weight

matrices depend on the difference operator ∆iz. The solution of the above equations is

the value function derived under the optimal Markovian Control β∗i = ρ∗i +w∗i as stated

in the following theorem.

Theorem 8. Let x(t) : [0, T ] → S3 be given over the time horizon. Assume that

v : S3× [0, T ]→ R is a solution of the terminal value problem in (3.25). Further assume

that w∗i is the worst-case deterministic time varying signal depending on the players’

opposite strategies between the two options. Then v is the value function associated with

the distribution x, and the optimal Markovian control is β∗i = ρ∗i +w∗i as in the following:

ρ∗i = −R−1
i (∆iz)

[
∆iv

]−
= −


R−1
i1 (∆iz)(v1 − vi)−

R−1
i2 (∆iz)(v2 − vi)−

R−1
i3 (∆iz)(v3 − vi)−

 , (3.26)
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w∗i = Γ−1
i (∆iz)

[
∆iv

]+

=


Γ−1
i1 (∆iz)(v1 − vi)+

Γ−1
i2 (∆iz)(v2 − vi)+

Γ−1
i3 (∆iz)(v3 − vi)+

 . (3.27)

Proof. It follows from the proof of Theorem 7, see Section 3.5.

Remark 8. The main difference between Theorem 7 and Theorem 8 is that the latter

is a more general result: in fact in Theorem 8 the strategy of the reference player takes

into account the other players’ controls through the difference operator. The adversarial

disturbance is treated again as the worst-case deterministic time varying signal. The

choice of modelling the signal in this way is motivated by the context in which the problem

originates, i.e. collective decision-making in honeybee swarms.

3.3 Stationary Solutions

In this section, firstly the mean-field Nash equilibrium is presented in the form of initial-

terminal value problem (ITVP), see [40]. The corresponding value function is calculated

and the stationary solutions are given as the difference in value function between the

uncommitted state and committed states. When an equilibrium point in the population

distribution is fixed, the existence of the corresponding stationary solution is proved and

the stability of this solution depends on the stability of the fixed equilibrium point. For

certain conditions, a basin of attraction can be found and its stability can be proved.

Finally, applications in the specific contexts of honeybee swarms and virus propagation

are presented as a link to the general model. A numerical analysis is given to corroborate

the theoretical results.

3.3.1 Existence and Stability

In the situation where the reference player uses strategy ρ in response to the rest of the

population playing strategy ρ as well, the current solution is therefore called a mean-field

Nash equilibrium. Such a solution brings together the Kolmogorov equations and the
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Hamilton-Jacobi-Bellman equations as in the following:
ẋi(t) = (1− x1 − x2)β3i − xiβi3, i = 1, 2

−v̇i(t) = H(xi,∆iv, t), ∀i ∈ I3

x(0) = x̂,

viT (T ) = ψ(iT , xiT ).

(3.28)

The set of equations (3.2) and equation (3.13) are combined to form the above

system. Both equations (3.2) and (3.13) describe one aspect of the game. The first

equations describe the macroscopic interactions among players, thus showing how the

population evolves as a whole when assuming that all players follow (3.13). The second

equation models the microscopic dynamics for individual players, and it characterises

their behaviour in response to the macroscopic behaviour described by (3.2). Due to

the presence of an initial condition for the population distribution in the Kolmogorov

equations, and because of the presence of a terminal condition for the value function

in the Hamilton-Jacobi-Bellman equations, this system is referred to as initial-terminal

value problem (ITVP) for the mean-field game.

The value function can be calculated by expanding the Hamiltonian according

to (3.12). As for the control and disturbance, the optimal control and disturbance

from (3.16) and (3.17) are used. The calculation is as in the following:

−v̇i = 1
2
‖ρ∗i ‖2

Ri
− 1

2
‖w∗i ‖2

Γi
+ (ρ∗i + w∗i )

T∆iv + fi(xi)

= −1
2

[
R−1
ij [(vj − vi)−]2 +R−1

ik [(vk − vi)−]2
]

+1
2

[
Γ−1
ij [(vj − vi)−]2 + Γ−1

ik [(vk − vi)−]2
]

+ fi(xi)

= −1
2
(∆iv)−

T
R−1
i (∆iv)− + 1

2
(∆iv)+TΓ−1

i (∆iv)+ + fi(xi).

(3.29)

Due to the original formulation of the model, the following assumptions hold: let

R12, R21,Γ12,Γ21 > 0 be sufficiently large, such that the cost to transition from state 1 to

state 2 and vice versa is large enough. This can be explained from the fact that players

cannot move directly between the committed states but have to move in the uncommitted

state first. Further, assume that v1, v2 < v3. The value function is specialised for each

state i as in the following:
−v̇1 = 1

2
Γ−1

13 (v3 − v1)2 + f1(x1),

−v̇2 = 1
2
Γ−1

23 (v3 − v2)2 + f2(x2),

−v̇3 = −1
2
[R−1

31 (v1 − v3)2 +R−1
32 (v2 − v3)2] + f3(x3).

(3.30)
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In order to investigate the transitions from the two committed states to the un-

committed state and vice versa, in the following the first and the second equations are

subtracted to the third equation in the above system. This yields: v̇3 − v̇1 = 1
2

[
Γ−1

13 (v3 − v1)2 +R−1
31 (v1 − v3)2 +R−1

32 (v2 − v3)2
]

+ f1(x1)− f3(x3),

v̇3 − v̇2 = 1
2

[
Γ−1

23 (v3 − v2)2 +R−1
31 (v1 − v3)2 +R−1

32 (v2 − v3)2
]

+ f2(x2)− f3(x3).

(3.31)

To simplify the notation, let y1 := v3 − v1 and y2 := v3 − v2. In light of this

notation, the above system can be rewritten as:{
ẏ1 = 1

2
(Γ−1

13 +R−1
31 )y2

1 + 1
2
R−1

32 y
2
2 + f1(x1)− f3(x3),

ẏ2 = 1
2
R−1

31 y
2
1 + 1

2
(Γ−1

23 +R−1
32 )y2

2 + f2(x2)− f3(x3).
(3.32)

The above system is used to establish existence of a stationary solution. For

the game under consideration, stationary solutions, also called stationary mean-field

equilibrium points, are defined as:{ ∑
k xkβ

∗
ki −

∑
j xiβ

∗
ij = 0, ∀i ∈ I3,

H(x,∆iv, t) = κ,
(3.33)

where κ is a constant. It is worth noting that in a stationary mean-field equilibrium

functions fi(xi) are fixed and constant. This is due to the fact that the population

distribution x is at an equilibrium of (3.2) and thus constant. The existence and stability

property of the first equation of (3.33), namely stationary distributions x(t), are studied

in Chapter 2. The aim of the rest of this section is to investigate the solutions of the

second equation of (3.33). The next result establishes the existence of stationary value

functions, namely value functions that satisfy the second equation of (3.33).

Theorem 9. Let a stationary distribution be given t 7→ x(t) := x̂ ∈ S3. Then a

stationary value function exists and is given by the mean-field game described by equa-

tions (3.32) for the stationary problem (3.33):

y∗1 = −
√

Γ−1
23 Γ13y∗

2

2 + 2Γ13(f2(x2)− f1(x1)). (3.34)

Proof. See Section 3.5.

Remark 9. The system of equations in (3.32) shares similarities to the equation of

the ellipse, provided that the difference in fi(xi) is negative in both equations, namely
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fi(xi)− f3(x3) < 0, for i = 1, 2. The equilibrium points can be found at the intersection

of the two ellipses centred at the origin corresponding to the equations in (3.32). Among

the four intersections, the equilibrium point in the third quadrant is the one of interest

and this explains the negative sign in equation (3.34). The latter equation provides

the conditions of existence for a stationary solution in terms of the difference in value

functions. The difference in value functions can also be seen as the potential energy

required to move from the uncommitted state to the committed states or vice versa.

Equilibria for Difference in Value Functions

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.1: Graphical representation of the system of equations (3.32) as ellipses. The

intersections between the ellipses represent the equilibrium points of the

difference in value functions for the stationary solution in (3.33).

The ellipses corresponding to the equations in (3.32) are depicted in Fig. 3.1.

Different values of Γ−1
13 and Γ−1

23 change the shape of the ellipses. In other terms, when one

term decreases, the corresponding distance between the focal points of the corresponding

ellipse becomes larger along its major axis, namely y and x axes for increasing Γ−1
13 and

Γ−1
23 , respectively. When the cost of the disturbance is lower, the equilibrium point shifts

towards the axes, y2 and y1, respectively. As anticipated in the above remark, if the

difference in value functions between two nodes is seen as a difference of potentials, the

latter can be considered constant, i.e. the potential at the nodes is the same. Therefore,

it can also be seen that the disturbance can easily make the players go back to the node

where their gain is lower. In this scenario, the difference in fi(xi) affects the distance of

the ellipses from the centre of the axes, which can be thought of as the equivalent of the
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radius in a circle.

The next result establishes that, for a fixed x̃, a stationary solution exists and this

solution is robust to variations in the value function.

Theorem 10. Given T > 0, an initial condition in the distribution, namely x(0) = x̂,

and a terminal condition in the value function, namely viT (T ) = ψ(iT , xiT ), let (x, v)

be the solution of (3.28) with initial-terminal conditions x(−T ) = x̂ and viT (T ) =

ψ(iT , xiT ). There exists a solution (x̄, v̄) of the stationary problem (3.33), and this

solution is robust to variations of v̄. Furthermore, being x̃ a stable equilibrium point,

then the stationary solution in v is also stable.

Proof. See Section 3.5.

Remark 10. The above theorem investigates the conditions for asymptotic stability of

the system of stationary solutions under a deterministic adversarial disturbance. Thanks

to the study of the equilibrium points in the population distribution for system (3.28),

the evolution of the difference in value functions can be studied under the following

condition: by fixing the equilibrium points for the population distribution and by checking

the stability on the value functions.

3.3.2 Limit Cycles and Basin of Attraction

The problem of oscillations and periodic solutions is investigated in the following. The

ITVP corresponding to the robust Hamiltonian in (3.24) is the following:
ẋi(t) = (1− x1 − x2)β3i − xiβi3, i = 1, 2

−v̇i(t) = H∆iz(xi,∆iv, t), ∀i ∈ I3

x(0) = x̂,

viT (T ) = ψ(iT , xiT ).

(3.35)

By expanding the Hamiltonian function in (3.24), the value function can be calcu-

lated from the optimal control and disturbance in (3.26)-(3.27) as:

−v̇i = 1
2
||ρ∗i ||2Ri(∆iz)

− 1
2
||w∗i ||2Γi(∆iz)

+ (ρ∗i + w∗i )
T∆iv + fi(xi)

= −1
2

[
R−1
ij (∆iz)(vj − vi)2 +R−1

ik (∆iz)(vk − vi)2
]

+1
2

[
Γ−1
ij (∆iz)(vj − vi)2 + Γ−1

ik (∆iz)(vk − vi)2
]

+ fi(xi)

= −1
2
(∆iv)−

T
R−1
i (∆iz)(∆iv)− + 1

2
(∆iv)+TΓ−1

i (∆iz)(∆iv)+ + fi(xi).

(3.36)
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The same assumption as in the previous subsection holds, namely the cost of

transition rates from state 1 to state 2 and vice versa is large enough. Formally, assume

that the penalty coefficients R12(∆iz), R21(∆iz),Γ12(∆iz),Γ21(∆iz) are sufficiently large.

Consider the y1-y2 plane, similarly as in the previous subsection. Due to the different

evolution in each quadrant of the y1-y2 plane, the system is investigated in each quad-

rant. Symmetric arguments apply to the first and third quadrants, and to the second

and fourth quadrants, and therefore they are presented in this order. In order to sim-

plify the notation, the compact notation R−1
ij and Γ−1

ij is used in state of R−1
ij (∆iz) and

Γ−1
ij (∆iz), respectively.

[Quadrant I]. In this quadrant the value function in the uncommitted state is greater

than in committed states, namely v3 > v1, v2. The corresponding value function for each

i ∈ I3 can be calculated from (3.36) as:
−v̇1 = 1

2
Γ−1

13 (v3 − v1)2 + f1(x1),

−v̇2 = 1
2
Γ−1

23 (v3 − v2)2 + f2(x2),

−v̇3 = −1
2
[R−1

31 (v1 − v3)2 +R−1
32 (v2 − v3)2] + f3(x3).

(3.37)

It is worth noting that in the first quadrant players control the transitions from the

uncommitted state 3 to states 1 and 2. The adversarial disturbance forces the players

to move back to the uncommitted state 3, instead. In the y1-y2 plane, the above system

can be rewritten in terms of y1 and y2 as:

Quadrant I

{
ẏ1 = 1

2
[(Γ−1

13 +R−1
31 )y2

1 +R−1
32 y

2
2] + f1(x1)− f3(x3),

ẏ2 = 1
2
[R−1

31 y
2
1 + (Γ−1

23 +R−1
32 )y2

2] + f2(x2)− f3(x3).
(3.38)

[Quadrant III]. In the third quadrant, the situation is symmetric to the first quadrant.

Therefore, the condition v3 < v1, v2 holds. From (3.36), the calculation for the value

function is the following:
−v̇1 = −1

2
R−1

13 (v3 − v1)2 + f1(x1),

−v̇2 = −1
2
R−1

23 (v3 − v2)2 + f2(x2),

−v̇3 = 1
2
[Γ−1

31 (v1 − v3)2 + Γ−1
32 (v2 − v3)2] + f3(x3).

(3.39)

In the third quadrant, players control transitions from the committed states 1 and

2 to the uncommitted state 3. Analogously to the first quadrant, the disturbance forces
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players back to the original states, therefore it pushes players from state 3 to states 1

and 2. The system in the y1-y2 plane is the following:

Quadrant III

{
ẏ1 = −1

2
[(R−1

13 + Γ−1
31 )y2

1 + Γ−1
32 y

2
2] + f1(x1)− f3(x3),

ẏ2 = −1
2
[Γ−1

31 y
2
1 + (R−1

23 + Γ−1
32 )y2

2] + f2(x2)− f3(x3).
(3.40)

[Quadrant II]. In the second quadrant, the value function satisfies the following in-

equalities: v1 > v3 > v2. Therefore, the calculation is obtained from (3.36) as:
−v̇1 = −1

2
R−1

13 (v3 − v1)2 + f1(x1),

−v̇2 = −1
2
R−1

23 (v3 − v2)2 + f2(x2),

−v̇3 = 1
2
[Γ−1

31 (v1 − v3)2 + Γ−1
32 (v2 − v3)2] + f3(x3).

(3.41)

As for the second quadrant, players control the transitions from state 1 to state 3

and from state 3 to state 2. On the other hand, the adversarial disturbance controls the

transitions from state 2 to state 3 and from state 3 to state 1. The above system can be

rewritten in terms of y1 and y2 as in the following:

Quadrant II

{
ẏ1 = −1

2
[(R−1

13 + Γ−1
31 )y2

1 + Γ−1
32 y

2
2] + f1(x1)− f3(x3),

ẏ2 = 1
2
[Γ−1

31 y
2
1 + (R−1

23 + Γ−1
32 )y2

2] + f2(x2)− f3(x3).
(3.42)

[Quadrant IV]. In the last quadrant to be considered, the condition v2 > v3 > v1 holds.

Thus, equation (3.36) yields the following value function:
−v̇1 = 1

2
Γ−1

13 (v3 − v1)2 + f1(x1),

−v̇2 = −1
2
R−1

23 (v3 − v2)2 + f2(x2),

−v̇3 = −1
2
R−1

31 (v1 − v3)2 + 1
2
Γ−1

32 (v2 − v3)2 + f3(x3).

(3.43)

In this last case, players control transitions from state 2 to state 3 and from state

3 to state 1. The disturbance, instead, forces players back from state 1 to state 3 and

from state 3 to state 2. System (3.43) can be rewritten in the form of difference in value

function as:

Quadrant IV

{
ẏ1 = 1

2
[(R−1

13 + Γ−1
31 )y2

1 − Γ−1
32 y

2
2] + f1(x1)− f3(x3),

ẏ2 = −1
2
[−R−1

31 y
2
1 + (R−1

23 + Γ−1
32 )y2

2] + f2(x2)− f3(x3).
(3.44)

54



Chapter 3 Mean-Field Games and Stationary Solutions for Collective Decision-Making

The corresponding Markov chain for all the systems investigated in each specific

quadrant is depicted in Fig. 3.2. The control actions for the players and for the adver-

sarial disturbances as given in the former analysis are represented by the direction of

the arrows. So, for instance, in the first quadrant, players control the transition rates

from the uncommitted state 3 to the commited states 1 and 2. This is represented by

the arrows in the top half of the Markov chain in Fig. 3.2 (top-left). In the following,

the analogies between the system for each region of the y1-y2 plane are explored in order

to find the conditions for existence of limit cycles.

3

1 2

Quadrant I

3

1 2

Quadrant III

3

1 2

Quadrant II

3

1 2

Quadrant IV

Figure 3.2: Markov chain representations corresponding to system (3.38) in the top-left corner,

system (3.40) in the top-right, system (3.42) in the bottom-left and system (3.44)

in the bottom-right. The arrow directions in the top half of each Markov chain

describe the control of the players, while the directions in the bottom half describe

the effect of the adversarial disturbance.

In order to show the main result of this part, which involves the nonexistence of

stationary solutions for the mean-field equilibrium under certain boundary conditions,

the corresponding stationary solutions must be given first. Similarly to the stationary

solutions in the case of the dependance on the reference player’s control, they are defined

as: { ∑
k xkβ

∗
ki −

∑
j xiβ

∗
ij = 0, ∀i ∈ I3

H∆iz(x,∆iv, t) = κ,
(3.45)

where κ is, again, a constant. The following result proves that there exists a basin of

attraction under certain conditions.
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Theorem 11. Given T > 0, an initial condition in the distribution, namely x(0) = x̂,

and a terminal condition in the value function, namely viT (T ) = ψ(iT , xiT ), let µ < 0 and

|µ| < 1. Let (x, v) be the solution of (3.35) with initial-terminal conditions x(−T ) = x̂

and viT (T ) = ψ(iT , xiT ). Moreover, let f1(x1)− f3(x3) = µy1 + y2 and f2(x2)− f3(x3) =

−y1 + µy2. Then, the following statements hold true:

• Case 1. If x̂ ∈ B := {r̄ ∈ R2 : ‖r̄‖2 <
√
−2µ}, then the orbit intersects the

y1-axis in points internal to B. Therefore B is a basin of attraction for the origin

of the space defined by y1 and y2.

• Case 2. If x̂ 6∈ B := {r̄ ∈ R2 : ‖r̄‖2 <
√
−2µ}, then no stationary solutions exist.

Proof. See Section 3.5.

Remark 11. It is worth noting that simulations provide useful information on the bor-

derline conditions in the proximity of the closed orbit, specifically in the proximity of

quadrants II and IV. In fact, as it can be seen from the simulations, the region of con-

vergence is larger, accounting for the absence of the limit cycle in quadrants II and IV.

3.3.3 Applications

In the following, two models are introduced to link the general mean-field game to real

applications, namely honeybee swarms and virus propagation in smart grids. The first

application describes the context of honeybee swarms and the corresponding consensus

problem. The second application extends the mean-field model to the smart grid sce-

nario where a virus is propagating in the network. For the analysis of the structured

counterpart of both applications, the reader is referred to Chapter 4.

Swarm of Honeybees. The model originated from this application, which motivates this

study. The original scenario involves the biological study of the collective decision-

making problem that a swarm of honeybee faces when selecting a nest for the next

season. In short, the swarm has to find consensus on one of two possible nest places (or

next boxes, as these were used for the experiments in [91]), while sharing information

about the quality and position of the found nests. During the collective decision-making

process, they use two main behaviours: the so-called waggle dance, in order to convey

information about the nests, and the cross-inhibitory stop signals, in order to disrupt the

dance of scout bees committed to the other option. Additionally to being recruited by
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the scouts (through the waggle dance) and becoming uncommitted through the signals,

bees can spontaneously choose to commit or to abandon any of the options.

The above behaviours are captured by four parameters: r and σ for the waggle

dance and the cross-inhibitory signal, respectively; γ and α for the actions of sponta-

neously committing to an option and of rejecting the option they are committed to,

respectively. Given the equilibrium point calculated in (3.34), when the equilibrium

point involves the transition rates from the uncommitted state 3 to state 1 and state 2,

it follows:

y∗ =

[
y∗1

y∗2

]
=

[
v1 − v3

v2 − v3

]
=

[
−γ1 − rx1

−γ2 − rx2

]
. (3.46)

The above equation links the difference in value functions between state 3 and

states 1 and 2 to the transition rates presented in Chapter 2, bridging the gap between

the general mean-field game model and the evolutionary game model. As an example,

consider the case where R31, R32 = 1; from Theorem 7, it follows:

ρ∗3 = −


v1 − v3

v2 − v3

0

 =


γ1 + rx1

γ2 + rx2

0

 . (3.47)

Likewise, for the disturbance:

w∗1 =


0

0

Γ−1
13 (v3 − v1)+

 =


0

0
α+σx2
γ1+rx1

(γ1 + rx1)

 =


0

0

α + σx2

 , (3.48)

where the second equality is obtained by setting

Γ13 = (γ1 + rx1)/(α + σx2).

Thus, when the values are set as the parameters of the honeybee swarm consensus

problem, the mean-field game model introduced in the above sections yields the evolu-

tionary game model for the collective decision-making problem of honeybee swarms. The

cross-inhibitory signal in the evolutionary game model takes the form of a disturbance

in the general formulation of the robust mean-field game model.

Virus Propagation. When the parameter defining the behaviour of the cross-inhibitory

signal is negligible, the corresponding system can be used to model a virus propagation

57



Chapter 3 Mean-Field Games and Stationary Solutions for Collective Decision-Making

scenario. As introduced in the previous chapter, the compartmental SIS and SIR models

captures the dynamics used to describe the context of a virus propagating, see [21]. In

the SIS model, individuals can either be susceptible, or infected. After being infected

by the virus, a portion of infected individuals can heal from the virus and move back

to the susceptible state. The SIR model describes the case where the individuals who

recover from the virus cannot be infected again.

Assume that the equilibrium point calculated in (3.34) is given by:

y∗ =

[
y∗1

y∗2

]
=

[
v1 − v3

v2 − v3

]
=

[
−β31

−β32

]
. (3.49)

Assuming that R31, R32 = 1, from Theorem 7, it can be seen that:

ρ∗3 = −


v1 − v3

v2 − v3

0

 =


β31

β32

0

 . (3.50)

Likewise, as for the disturbance, the following holds true:

w∗1 =


0

0

Γ−1
13 (v3 − v1)+

 :=


0

0
β13x3
β31

β31

 =

=


0

0

β13x3

 .
(3.51)

In the above, the value of Γ13 is set as:

Γ13 =
β13x3

β31

.

The mean-field game studied in its general form reduces to a virus propagation

model, when the cross-inhibitory coefficient are assumed negligible. In this context,

the infection rate can thus be linked to the matrix Γ which is the cost matrix for the

adversarial disturbance.

3.3.4 Numerical Analysis

In this section, two sets of simulations are provided to corroborate the theoretical results

presented in this chapter. The first set involves the study of the intersection of the
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difference in value functions in the form of y1 and y2. The equilibrium point at the

intersection of the two ellipses in the third quadrant is the one of interest. In the

second set of simulations, the limit cycles and the corresponding basin of attraction are

simulated to show how trajectories evolve in the cases reported in Theorem 11.

In the first set of simulations, the mean-field response is investigated. Two cases

are proposed. The first case involves the scenario where the equilibrium point at the

intersection is asymptotically stable and parameters are symmetric, similarly to previous

symmetric models in Chapter 2. In practice, this means that the components of the

matrix for the adversarial disturbance are identical, namely Γ−1
13 = Γ−1

23 , which leads

to Γ13 = Γ23. In this symmetric scenario, the functions present in the running and

terminal costs on the distribution x are identical, too, namely f1(x1) = f2(x2). The

second and last case simulate the scenario where parameters are no longer symmetric,

namely Γ−1
13 > Γ−1

23 and f1(x1) > f2(x2). In addition, parameters are chosen in such a

way that the two ellipses do not intersect, thus the previous asymptotically stable node

is no longer present. In this set, N = 20 trajectories are simulated in each case and

R−1
31 = R−1

32 = 1. Parameter ci denotes the difference as in the following: fi(xi)− f3(x3).

The varying parameters are shown in Table 3.1 and the algorithm is shown below.

Table 3.1: Varying parameters for the two sets of simulations.

Parameter

Case
I II

c1 −1 −0.65

c2 −1 −1.4

Γ−1
13 1 1.2

Γ−1
23 1 1

In the first case, i.e. the scenario with a stable equilibrium and symmetric param-

eters, trajectories converge when in a neighbourhood of the equilibrium point, which led

to the hypothesis of a basin of attraction as in Theorem 11. All trajectories starting

within the region of convergence, which is simulated in the second set of simulations,

are drawn in green and converge to the equilibrium point, while the other trajectories

simply diverge, and are depicted in red. Finally, the second case deals with the scenario
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Algorithm

Input: Parameters set as in Table 3.1, and R−1
31 = R−1

32 = 1

Output: Difference in value function in terms of ẏ1, ẏ2

1 : Initialize: Set initial values as in Input

2 : for time t = T − 1, T − 2, . . . , 0 do

3 : for n = 1, 2, . . . , N do

4 : compute the dynamics as in (3.32):

ẏi = 1
2
ai1y

2
1 + 1

2
ai2y

2
2 + ci, for i = 1, 2

5 : end for

6 : end for

7 : STOP

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Mean-field Response, Case 1

converging

diverging

ellipses

eq. point

(a) In the case of symmetric parameters and

stable equilibrium point: trajectories in

green converge.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Mean-field Response, Case 2

diverging

ellipses

(b) For asymmetric parameters (no intersec-

tions between ellipses) and no stable equi-

libria: all trajectories diverge.

Figure 3.3: Behaviour of the system in the presence of a stable equilibrium (left) or no

stable equilibria (right). The presence of a basin of attraction can be seen

from trajectories diverging even in the presence of a stable node.

without an asymptotically stable node, since there are no intersections between the el-

lipses. In this case, all trajectories diverge. Figure 3.3 shows the case of asymptotically

stable equilibrium on the left and no equilibria on the right.
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The second set of simulations investigates the results coming from Theorem 11.

The evolution of system (3.64) is presented, in the cases of µ ∈ {−0.5,−0.3}. Both

cases are depicted in Fig. 3.4. In general, trajectories starting outside the closed orbit of

radius r =
√
−2µ diverge, while those starting inside converge. So, the system presents

an unstable limit cycle, with asymptotically stable spirals within and unstable spirals

outside, in accordance with Theorem 11. When µ is sufficiently small, two phenomena

can be observed: the speed of convergence decreases and the trajectories within a neigh-

bourhood of the limit cycle becomes stable, due to the fact that in quadrants II and IV

there are no closed orbits and the speed of convergence is quadratic. So, if a trajectory

enters this region very close to it, it converges to the origin. This can be seen from

Fig. 3.4 (right).

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Periodic Orbits for Stationary Solutions

converging

diverging

limit cycle

eq. point

(a) Evolution for µ = −0.5.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Periodic Orbits for Stationary Solutions

converging

diverging

limit cycle

eq. point

(b) Evolution for µ = −0.3.

Figure 3.4: Behaviour of system (3.64), for µ = −0.5 (left) and µ = −0.3 (right). Sim-

ulations suggest that due to the different behaviours in each quadrant, and

given different values of µ, the region of convergence can be slightly larger.

3.4 Summary and Discussion

This chapter extends the evolutionary game model presented in Chapter 2 to a mean-

field game formulation. In the mean-field game, the perspective of a reference player

is taken into account. The reference player can control his/her state in presence of an

adversarial disturbance. When the controls βij take the same values as the parameters in
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the honeybee swarm model, the proposed mean-field game is a more general formulation

of the honeybee swarm consensus problem. When βij take the other values, the game

model can be reframed in the context of virus propagation. Both are a result of Theorem

7. After formulating the corresponding initial-terminal value problem, the stationary

solutions are studied in terms of the difference in value function between the committed

states, namely 1 and 2 and the uncommitted state 3. These results are reported in

Theorem 9 and Theorem 10.

An additional generalisation is given, in which the reference player’s controls do

not depend only on the controls of the reference player himself/herself, but also on the

controls of other players. This is achieved by generalising the difference operator with

a function z which represents the resistance to transitions between two states. When

this scenario is explored in terms of the stationary solutions, the optimal controls for

the reference player and adversarial disturbance can be found, analogously to the former

case. Furthermore, the stationary solutions are studied for periodic solutions at each

quadrant of the y1-y2 plane, and the corresponding basin of attraction is found. These

results are reported in Theorem 11.

In both Chapter 2 and this chapter, the game models under analysis do not include

any interaction topology nor any consideration on how players come in contact. The

assumption is that the population is fully connected, and the results depend on this

assumption. In a more realistic scenario, each player would interact with a portion of

the population. This situation is captured by an interaction topology, where the players’

connectivity is taken into account in terms of the interactions with other players. This

is the goal of Chapter 4, where a different network topology is used to model different

scenarios.

3.5 Proofs

The tools used in this section include the ones presented in Chapter 2. Additionally,

Lypunov stability theory limit cycles and periodic orbits is used. Moreover, the Dynkin’s

formula is used to find the optimal control and disturbance for the mean-field response.

The Dynkin’s formula is used to obtain the expected value of a stochastic process at a

given stopping time, see [40].

The existence of limit cycles and periodic orbits in a nonlinear system is of signifi-
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cance for their impact on the behaviour of the system itself. A system is said to have a

periodic solution when, for some T > 0, ẋ(t + T ) = x(t),∀t ≥ 0. The closed trajectory

in the phase portrait is called periodic orbit or closed orbit. For a small perturbation of

the system, a limit cycle can either be stable, if the behaviour of the system approaches

the limit cycle, or unstable, when the trajectories diverge. The Pointcaré-Bendixson

criterion is a corollary of the Pointcaré-Bendixon theorem and is a powerful tool as a

condition for the existence of periodic orbits. For a second-order autonomous system,

the Pointcaré-Bendixson criterion states the following: given a closed bounded subset of

the plane M , if M contains either no equilibrium points or only one whose eigenvalues

have positive real part and every trajectory that starts in M stays in M for all time,

then M contains a periodic orbit, see [58]. Likewise, the Bendixson criterion is a tool to

rule out the existence of periodic orbits: it states that, given a simply connected region

D, if the sum of partial derivatives ∂f1/∂x1 + ∂f2/∂x2 is non-zero and does not change

sign, then D does not contain periodic orbits.

When studying the structural stability properties of a system, small perturbations

can change equilibrium points or periodic orbits. The change in the qualitative be-

haviour, as a parameter is varied, of a system is called bifurcation. Depending on the

bifurcation parameter, the system can exhibit several behaviours. As an example, a

saddle-node bifurcation is the result of the presence of a saddle and a stable node when

the bifurcation parameter is varied. In the case of subcritical and supercritical Hopf

bifurcations, the corresponding limit cycle is stable and unstable, respectively, and is

often represented in elliptical form. Since all these bifurcations occur in the proximity of

an equilibrium point, they are called local bifurcation. When they involve larger regions

of the state plane, they are called global bifurcations.

Proof of Theorem 7

Let ρi be any control and let also w∗i be the optimal disturbance obtained from the

robust hamiltonian in (3.12), for given ρi. Due to the nature of w∗i , the disturbance can
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be considered as a constant value. Therefore, the following can be established:

J ixi(ρi, wi, t) = Eρi,w
∗
i

it=i

[
ψ(iT , xiT ) +

∫ T
t
g(·)− 1

2
‖w∗iτ‖

2
Γiτ

]
dτ

]

= vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt

(τ) + (Aρv)iτ (τ) + g(iτ , xiτ (τ), ρiτ (τ))− 1
2
‖w∗iτ‖

2
Γiτ

]
dτ

]
.

(3.52)

In the above, the second equality is obtained from the Dynkin’s formula as:

Eρi,w
∗
i

it=i

[
viT (T )− vi(t)

]
= Eρi,w

∗
i

it=i

[ ∫ T
t

[
dviτ
dt

(τ) + (Aρv)iτ (τ)
]
dτ

]
, (3.53)

where the terminal condition is viT (T ) = ψ(iT , xiT ) and (Aρv)iτ (τ) =
∑

j ρij(τ)[vj(τ)−
viτ (τ)] is the infinitesimal generator of process iτ . It follows:

J ixi(ρi, wi, t) ≥ vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt

(τ) + minµ(·)
∑

j µj

[
vj(τ)− viτ (τ)

]
+g(iτ , xiτ (τ), ρiτ (τ))− 1

2
‖w∗iτ‖

2
Γiτ

]
dτ

]
.

(3.54)

The above inequality follows from the fact that the minimisation is performed over

any control µ(·) ∈ (R+
0 )3. Given that the running cost is concave in the disturbance

and given the boundedness of the coefficients, the RHS of the previous equation can be

written as:

J ixi(ρi, wi, t) ≥ vi(t) + Eρi,wiit=i

[ ∫ T
t

[
dviτ
dt

(τ) + minµ(·) maxw(·)
∑

j µj

[
vj(τ)− viτ (τ)

]
+g(iτ , xiτ (τ), ρiτ (τ))− 1

2
‖wiτ‖2

Γiτ

]
dτ

]
.

(3.55)

The above equation is obtained from the definition of w∗i , by maximising over any

possible disturbance. The next step involves replacing the minimax term by the robust

Hamiltonian in (3.12) as:

J ixi(ρi, wi, t) = vi(t) + Eρi,w
∗
i

it=i

[ ∫ T
t

[
dviτ
dt

(τ) +H(xiτ (τ),∆iτv(τ), iτ )
]
dτ

]
= vi(t).

(3.56)

The last part of the proof deals with the existence of a solution to the mean-field

response as in (3.15). The solution is indeed the value function of the optimal control
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problem. This can be seen by differentiating (3.12) with respect to ρi and taking the

gradient equal to zero, as in the following:

Riρi + ∆iv = 0,

from which the optimal control in (3.16) is obtained, in the general case for any Rij.

For consistency with the assumptions on the initial and terminal cost functions and the

way Rii are defined, the controls corresponding to R−1
ii are set to zero, since they are

not used in the control problem. Similarly, by differentiating (3.12) with respect to wi

and taking the gradient equal to zero, it follows:

− Γiwi + ∆iv = 0,

which yields the optimal adversarial disturbance in (3.17), in the general case for Γij.

Analogously to R−1
ii , Γ−1

ii are set to zero, for the same reasons as before. This concludes

the proof.

Proof of Theorem 9

First, by equating ẏ1 and ẏ2, the following is obtained:

1
2
(Γ−1

13 +R−1
31 )y2

1 + 1
2
R−1

32 y
2
2 + c1 = 1

2
R−1

31 y
2
1 + 1

2
(Γ−1

23 +R−1
32 )y2

2 + c2, (3.57)

where c1 = f1(x1)− f3(x3) and c2 = f2(x2)− f3(x3). The above can be simplified as in

the following:
1

2
Γ−1

13 y
2
1 + c1 =

1

2
Γ−1

23 y
2
2 + c2. (3.58)

By substituting c1 and c2 back in the above equation and after rearranging the

equation, the equilibrium point as in (3.34) is obtained by taking the square root of the

following:

y2
1 = Γ−1

23 Γ13y
2
2 + 2Γ13(f2(x2)− f1(x1)). (3.59)

Due to need for the negative values for stability, only the negative value of the

square root is taken into consideration, which yields the equilibrium point as in (3.34).

This concludes the proof.

Proof of Theorem 10

The distribution is given and is constant over the horizon, namely x(t) = x̂ : [0, T ]→ S3.

To study the system around an equilibrium point, the Jacobian for system (3.32) is
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calculated as:

J =

[
(Γ−1

13 +R−1
31 )y1 R−1

32 y2

R−1
31 y1 (Γ−1

23 +R−1
32 )y2

]
. (3.60)

System (3.32) admits four equilibrium points, which can be found at the intersec-

tions between the ellipses in the y1-y2 plane. Recall that y1 = v3 − v1 and y2 = v3 − v2.

The equilibrium point at the intersection in the third quadrant is the only asymptotically

stable equilibrium point. This can be seen by calculating the determinant and trace of

the above Jacobian matrix point as:

T = (Γ−1
13 +R−1

31 )y1 + (Γ−1
23 +R−1

32 )y2,

∆ = (Γ−1
13 +R−1

31 )(Γ−1
23 +R−1

32 )y1y2 −R−1
31 R

−1
32 y1y2,

(3.61)

where the determinant ∆ is expanded as in the following:

∆ = (Γ−1
13 Γ−1

23 + Γ−1
13 R

−1
23 R

−1
32 +R−1

31 Γ−1
23 )y1y2 > 0, (3.62)

and analogously the square of the trace as:

T 2 = (Γ−1
13 +R−1

31 )2y2
1 + (Γ−1

23 +R−1
32 )2y2

2 + 2(Γ−1
13 +R−1

31 )(Γ−1
23 +R−1

32 )2y1y2. (3.63)

By comparing the square of the trace and the determinant from the above equa-

tions, it is easy to see that T 2 > 4∆ holds for the third quadrant. Therefore, a solution

in the value function exists and this solution is asymptotically stable when the equilib-

rium point in the distribution is stable as well. Thus the distribution is constant over

the time horizon due to the fact that it is at an equilibrium. This concludes the proof.

Proof of Theorem 11

Each of the four regions at the intersection of two quadrants of the y1-y2 plane is con-

sidered, since the system behaves differently in each quadrant. Recall that y1 = v3 − v1

and y2 = v3 − v1. Assume that function z is the value function v, so the notation R−1
ij

and Γ−1
ij has the following meaning: R−1

ij (∆iv) and Γ−1
ij (∆iv), respectively.

[Quadrants I-III]. In quadrant I and III, the system can be written as:{
ẏ1 = 1

2
y1(y2

1 + y2
2) + µy1 + y2,

ẏ2 = 1
2
y2(y2

1 + y2
2)− y1 + µy2.

(3.64)
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For quadrant I the following hypotheses are made: Γ−1
13 +R−1

31 = R−1
32 = y1, R−1

31 =

Γ−1
23 + R−1

32 = y2, which are true when Γ−1
13 ,Γ

−1
23 ≈ 0. Analogously, for quadrant III the

following assumptions are made: Γ−1
31 +R−1

13 = Γ−1
32 = y1, Γ−1

31 = Γ−1
32 +R−1

23 = y2, implying

that R−1
13 , R

−1
23 ≈ 0.

By turning into polar coordinates, i.e. r and θ, recall that x = rcosθ and y = rsinθ,

r2 = x2 + y2 and θ = tan−1(y/x). System (3.64) can be rewritten as:{
ṙ = 1

2
r(r2 + 2µ),

θ̇ = −1,
(3.65)

whose expression for ṙ is derived from:

rṙ = xẋ+ yẏ = µr2 +
1

2
r4 =

1

2
r2(2µ+ r2).

Similarly, by differentiation, the expression for θ, which follows from θ = tan−1(y/x),

is derived as:

θ̇ =
1

1 + ( y
2

x2
)

( ẏ
x
− yẋ

x2

)
=
xẏ − yẋ
x2 + y2

= −1.

For µ < 0, the above system has an asymptotically stable spiral in (0, 0) and

an unstable limit cycle for r =
√
−2µ. Thus, trajectories starting inside the limit cy-

cle converge to the equilibrium point, while those starting outside the limit cycle diverge.

[Quadrant II-IV]. For quadrant II and IV, the system can be written in the form:{
ẏ1 = 1

2
(y3

1 + y3
2) + µy1 + y2,

ẏ2 = 1
2
(y3

1 + y3
2)− y1 + µy2.

(3.66)

The following hypotheses are made for quadrant II: Γ−1
31 +R−1

13 = Γ−1
31 = y1, R−1

32 =

Γ−1
23 + R−1

32 = y2, which are true when R−1
13 ,Γ

−1
23 ≈ 0. Similarly, for quadrant IV, let

R−1
31 + Γ−1

13 = R−1
31 = y1, Γ−1

32 = Γ−1
32 + R−1

23 = y2, which comes from the condition

Γ−1
13 , R

−1
23 ≈ 0.

When system (3.66) is studied in the neighbourhood of the bisector, the system

can be rewritten in polar coordinates as in the following:{
ṙ = rµ,

θ̇ = −1.
(3.67)

The above expressions for ṙ and θ̇ can be derived as in the following:

rṙ = xẋ+ yẏ = r2µ ⇒ ṙ = rµ,

θ̇ = 1

1+( y
2

x2
)

(
ẏ
x
− yẋ

x2

)
= xẏ−yẋ

x2+y2
= −1.
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For system (3.67), nothing can be said about the limit cycle, but for µ < 0, it

is straightforward to see that trajectories converge to the equilibrium point (clockwise

rotation), thus the origin is an asymptotically stable spiral. For µ > 0, instead, the

trajectories diverge, and therefore an unstable spiral with clockwise rotation is present

at the origin.

[Quadrant I-IV]. This case investigates the behaviour of the trajectories not in the

neighbourhood of the bisector. In this case, the intersection between quadrant I and IV

is considered, thus the space in the neighbourhood of the y1 axis. From the study in the

first quadrant, the system can be written in polar coordinates as:{
ṙ = 1

2
r(r + 2µ),

θ̇ = −1,
(3.68)

whereas in quadrant IV the following holds true:{
ṙ = 1

2
r(r + 2µ),

θ̇ = −µ− 1,
(3.69)

which holds true when trajectories are close to the limit cycle, otherwise the derivative

of θ is θ̇ = 1/2y2
1−1. When trajectories approximate the limit cycle and µ is sufficiently

small, the direction of rotation does not change, namely for −1 < µ < 0. When the

latter condition is met, there is no discontinuity between the two systems.

Finally, the two cases can be proved. As for Case 1, from systems (3.65)-(3.67),

all trajectories starting within the limit cycle converge to (0, 0). This is due to the

radius of the systems in polar coordinates being strictly negative in both regions. More

specifically, in the region of quadrants I-III, µ dominates the quadratic term in r. This

comes from the premises of the theorem, since |µ| < 1. Similarly, for the quadrants

II-IV, the same behaviour can be seen. Therefore, B is a basin of attraction for the

origin of the y1-y2 plane. For µ > 0, the system is unstable.

As for Case 2, systems (3.65)-(3.67) provide the conditions to prove that all tra-

jectories starting outside the closed orbit of radius
√
−2µ + ε diverge. This happens

regardless of the starting region and for a given ε > 0. This behaviour can be explained

by the fact that, for the region of quadrants I-III, the quadratic term in r dominates µ.

Therefore the trajectories will move further away from the cycle, which is unstable. In
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the borders of quadrants II and IV, the behaviour is analogous. It is worth noting that,

when trajectories approximate the bisector, they exhibit a convergence behaviour. This

can be the subject of future study. This concludes the proof.
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CHAPTER 4

Evolutionary Dynamics via Structured

and Stochastic Interactions

4.1 Introduction

In Chaper 2, the problem originating in the context of swarm of honeybees was reframed

in the context of evolutionary game theory. The evolutionary game dynamics were

generalised in the form of a mean-field game, when the population is composed by an

infinite number of players. In both cases, however, the results are general and difficult to

apply in realistic contexts due to the assumption that the population is fully connected.

Despite being a common assumption for these kinds of models, the need to explore the

connectivity in terms of the agents’ interactions is crucial and it is the main aim of this

chapter. This leads to results in terms of speed of convergence towards the equilibrium

point and higher number of uncommitted agents.

Another important aspect is to explore the situation where the states are no longer

3. Instead, later in this chapter, each agent can choose among n different options. The

structure of the model remains unaltered, namely the transition rates are such that no

transitions are allowed between states i and i + 1 where i 6= n, and the uncommitted

state is labelled state n + 1. Also, a form of noise is considered, and when this noise is

assumed to be of a certain kind, the corresponding model can be reframed in the context

of nudge theory.

Two variations of the model discussed so far are presented in this chapter. The first

variation deals with a structured environment, where a network topology is introduced

in the model in order to capture the agents’ interactions. The term agent or player can
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be used interchangeably in this context due to the fact that the proposed model can be

interpreted in a game setting or in a multi-agent modelling context. As far as it concerns

the structure, the network topology can provide information about the connectivity of

the population and the impact on the decision-making problem. Different thresholds

for consensus can therefore be analysed. In terms of the actual design, the structure

can be modelled in a variety of ways: complex networks and undirected graph are both

studied with the aim to consider two scenarios, i.e. an infinite number of agents and a

finite number of agents. In the scenario of an infinite, or very large, population, complex

networks capture the interactions through a probability distribution of the node degrees.

Applications include honeybee swarms, duopolistic competition and opinion dynamics.

In the other scenario, a fixed number of nodes form an undirected network, and each

node can be in one of three possible states in probability. This means that every agent

has an infinite number of possible combinations in terms of the distributions among the

three states. In this second scenario, two applications are given, one tackling a different

perspective for honeybee swarms and another on smart grids.

The second variation includes the extension of the original model to the case of

n possible choices, whereby the uncommitted players are considered to be in the n + 1

state. Additionally, this n-option model aims at capturing the stochastic interactions

that arise due to noise, e.g. imperfect information, noisy channel of communication, etc.

This leads to the investigation of the stability properties in the context of Lyapunov

stochastic analysis. When the noise is assumed to be of a certain kind, the model can

be linked to nudge theory and buffer networks. In the first case, the noise can model a

set of phenomena, such as personal preference or the learning process, which are crucial

in the case of a nudge theoretic approach. In the second case, the noise can represent

the noisy channel in the communication network between two robots or servers. Finally,

an initial study on a robot network is given, and each agent in the network represents

the memory buffer a robot. The problem to find consensus on n different options is

investigated via a probabilistic graphical model and a message passing approach.

4.1.1 Literature Review

When dealing with real systems, a crucial aspect to be taken into account is the consider-

ation that many interconnected elements constitute the elementary parts that compose

these systems, see [97]. To model these complex interactions, complex networks have
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recently developed, specifically since 2000, in the field of graph networks, with the differ-

ence that a complex network includes non-trivial topological features such as lattices or

random graphs. Complex networks find inspiring examples in real systems such as the

Internet, social communities, power grids, social animals, e.g. see [16]. The last category

includes bird flocks, fish schoolings, and can also be applied in the case of social insects,

namely the discussed honeybee swarms, but also ant or termite colonies. Moreover, this

framework can be used to study consensus in the case of multi-agent systems, see [68].

Depending on the connectivity distribution, complex networks can be divided into

two main classes: scale-free (SF) networks and small-world networks. SF networks are

characterised by a power-law degree distribution, where the vast majority of nodes have

low connectivity and only few nodes have a large number of connections, see [4]. Ad-

ditionally, SF networks are inhomogeneous networks, whose most notable examples can

be found in the World-Wide Web (WWW) and the Internet. Small-world networks are

characterised by a degree distribution with a peak at the average value and exponential

decay, see [104]. Moreover, small-world networks are homogeneous and have a diameter

which is usually smaller than SF networks, therefore showing a higher level of cluster-

ing, e.g. social networks. The diameter d of a complex network is the average distance

between any two given nodes in the network.

The authors in [97] provide a comprehensive study on the evolutionary dynamics

over complex networks. The authors motivate the use of complex networks by outlining

the importance of the underlying structure for the evolutionary dynamics, in order to

investigate collective behaviours in a realistic context. One of the most important con-

cept is the fitness, i.e. a function f(s), which assigns a fitness value to each state of the

network. This function can be of different kinds, e.g. random drift, when all states in

the evolution are equally likely in probability, constant selection, when the function is

constant during the entire process but not equal at all states, or networked game, when

the states can be associated to strategies in a game theoretic framework and the fitness

is the result of this game played among neighbours. Finally, the fixation probability is

the probability of convergence when all states are mutated. However, the binary-state

evolutionary dynamics analysed in [97] define a finite state discrete time Markov chain,

whereas the system studied in the present work is in continuous time.

A continuous time system where the interactions are modelled via complex net-

works can be found in [72]. The main focus of this article is to investigate SF networks in
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the context of compartmental models. The authors motivate this study by stressing the

fact that SF networks are extremely prone to infections, much more than small-world

networks, and no threshold can be found to contain the disease due to the nature of

this kind of networks. The study of an epidemic model is carried out in the case of a

Watts-Strogatz model (small-world) and Barabási-Albert model (SF) in the context of

the SIR model. Recall that the SIR acronym stands for Susceptible-Infected-Recovered.

The results provide confirmation on the critical importance of the topology studied, in

which higher connectivity enhances the epidemic spreading. The work presented here

follows this path to stress how susceptibility to infections is linked to the heterogeneity

of the network, especially in the case of SF networks. For a study of the error and attack

tolerance of SF networks, see [2].

Each node of the network acts as an agent in the context of multi-agent systems.

Each agent can be seen as an autonomous entity, whose role is twofold: it can act as

part of the network of the interconnected nodes or as a whole. This duality can also

be linked to the framework of complex networks. As for the first aspect, the agent

is part of a bigger system and is able to communicate with other agents and interact

with the environment. As for the second aspect, the agent is able to tackle a problem

autonomously without the need to depend on the bigger system. To convey both aspects

in a single word, the word holon was coined by Koestler in 1967, see [61]. The term holon

(from ílos, holos, which means whole, in Greek) takes inspiration from the principle

stated by Aristotle in the Metaphysics, Book 8, “The whole is greater than the sum of its

parts”. A similar concept is the monad by philosopher Leibniz, but with the difference

that the whole described in the latter term is intended as the most elementary part of

a system.

Examples of holonic systems can be found in a variety of disciplines. For instance,

fractals in mathematics and tree structures in informatics are examples of holons. Frac-

tals can be seen as a whole in the bigger picture, but each part of the whole is a stable

sub-structure of the whole. The same applies to trees in informatics, where a tree is

a collection of nodes that can be considered as sub-trees of the original tree. Hierar-

chical structures can be found in holons as well, and it is called holarchy. An example

of holarchy is the one that exists between atoms and molecules in biology. In short,

a holon is seen as a single entity from the outside but it consists of simpler sub-parts

with a coherent structure on their own. For further reading, see [22], [38], and plenty of

references therein.
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Holons, holarchy and the relative terminology are useful to introduce the extension

to smart grids and virus propagation that is proposed later in the present chapter.

A smart grid differs from a traditional energy network in that it integrates smarter

technologies for increased observability, communication and distributed control across

all users, be they producers, consumers or both, for which the term prosumers is used,

see [73], [74]. A major drawback connected to the deployment of more advanced smart

grids is found in the vulnerability of the interconnected parts of the network. This

vulnerability can be exploited through several kinds of cyber-attacks. The impact of

such attacks can be evaluated by assessing the vulnerabilities first and then the strength

of the attacks, see [69]. Another perspective on an integrated cyber-physical framework

can be found in [100].

The motivations that justify the inclusion of smart grids and their cyber-related

vulnerabilities in this research can be found in the direct extension of compartmental

models in the case of cyber-attacks. Additionally, the popularity of smart grids and the

corresponding multi-agent representation is well suited for a game theoretic approach

of the topic, see [59], [87], [103], and plenty of references therein. The authors in [102]

propose a game model with the aim to calculate and prevent system total losses, by

regulating the distribution generation at each generator. Reducing the system losses

is modelled as a reward in this framework, thus providing benefits to achieve a more

effective power system. For the formulation of the corresponding robust mean-field

game model in the context of cyber-physical systems, see [10]. To mitigate the impact

of different cyber-attacks that belong to the family of Denial-of-Service (DoS) attacks,

an integrated control approach through interdependency can be used, see [24]. The

notorious Kuramoto model of coupled oscillators, see [21] for a general survey, was used

to analyse power grids, [36]. The model proposed in this chapter extends the Kuramoto

oscillators to study cyber-attacks in the context of smart grids.

In order to capture aspects of the decision-making process such as personal tastes

or biased/misleading information, a concept that is worth considering is the concept of

nudge. A nudge is a small incentive, often in the form of a slight change in the envi-

ronment, that does not involve coercion or other ways to achieve compliance. The term

was coined for the first time by James Wilk, see [107], in the context of cybernetics and

used sometimes in the form of “micronudge”. It was only later that it was applied to

behavioural sciences. Recently, the term gained popularity thanks to Richard Thaler,

who was awarded the Nobel Memorial Prize in Economic Sciences in 2017 for his con-
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tributions to the field of behavioural economics. In [99], Thaler and Sunstein describe

the crucial aspects of nudges in real life scenarios. When dealing with real problems,

individuals’ choices are modelled without taking into account biased information, incom-

plete or misleading knowledge and personal taste. In reality, however, decision makers

take into account one or a combination of the mentioned aspects. Due to the strong

link between game theory and economics, it is worth mentioning the terms econ and

human. The first is used to describe the individuals (or players) whose behaviour takes

into account all the above and the second those who don’t.

Nudges are sometimes paired with the concept of default option. The default

option is the one taken when an individual does nothing, i.e. does not actively choose.

For instance, customers are more willing to choose the renewable energy when it is given

as the default option, see [83]. However, the solution provided by the default option has

found opposition due to the fact that those who should choose which one has to be the

default option do not necessarily promote the more ethical or better option. Putting

a product at eye level to attract customers is another example of nudge, see [99]. A

quantitative analysis on the impact of nudges in various cases and when they can be

determinant in changing the behaviour of decision-makers, see [26].

The concept of nudge was also applied to standard game theory with the aim of

taking into account the information received as part of learning, the limits in strategic

reasoning and the impact on specific contexts, see [23]. A work that combines prospect

theory and nudge in mean-field game can be found in [67]. Prospect theory characterises

more accurately decision making problems under risk and uncertainty, see [57]. The main

characteristics include the following observations about real decision makers, see [67]:

they are willing to avoiding losses more than having a certain gain, i.e. concave value

function for gains and convex for losses; they are more concerned with scenarios that

would unlikely happen and less with frequently happening scenarios, i.e. nonlinear

transformation of probability scale; they consider their gains and loss in a way relative

to a reference point instead of a final or terminal condition, namely the framing effect.

When number of states is no longer 3, but the agents can choose among many

different options, the need of a master model is due. In [17], the master model is studied

within the framework of opinion dynamics. In this framework, the decision-making

process of an agent that wants to change opinion i in favour of opinion j includes

a parameter λj. This parameter represents the attractive force of the neighbouring
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agents which have already chosen opinion j. In order to derive the master model,

the assumption is that the parameter λj does not depend on the opinion anymore,

and therefore the equations can be marginalised. The model exhibits a crowd-seeking

mechanism, or an emulative interaction mechanism to use other words present in the

literature. The main difference with the model presented in this thesis is the fact that

the authors study the Markov chain for each individual agent first, and then marginalise

to obtain the master model. Analogously in this dissertation, except for Chapter 3 where

the system can as well be used to model crowd-seeking and crowd-averse dynamics, the

systems show a crowd-seeking mechanism. The waggle dance, where the main system in

this work takes inspiration from, corresponds to the attraction force for a given option i.

When this force does not depend on the agents that have already chosen that option,

the master model can be marginalised and the system can be studied in the form of a

linearised uncertain second order system. The formulation of the corresponding master

model is not the focus of this work, but it is already been taken into account as a possible

future direction of research.

4.1.2 Summary and Contributions

This chapter extends the original model in order to study the impact of the structure

to the system equilibria and how noise influences the corresponding dynamics. The

structure can be modelled in a variety of ways: in the following, complex networks

and undirected graphs are investigated. In the case of complex networks, an infinite

population of players is considered, where each player belongs to a class of a specified

connectivity. However, this does not restrict the interactions only for players belonging

to the same class. When a network topology is considered, a finite set of players is

taken into account, but each player can be in one of the three states in probability.

Therefore, this scenario models a finite number of infinite populations, where each player

represents one of those populations. Furthermore, a case study on smart grids and virus

propagation is proposed in the context of a UK energy grid. Another extension is to the

n-state model via noisy dynamics, where the value n represents the number of options

and thus does not include the uncommitted state. Finally, a probabilistic approach is

taken to study the consensus problem in the context of robot networks where each agent

represents a robot buffer.

The main results are summarised in the following. The first contribution involves
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the presence of an interaction topology in the form of a complex network and the corre-

sponding study of its impact. The second contribution includes the extension to a finite

network graph. Also in this case, the importance of the topology is investigated and the

analysis is specialised in two separate models. The third contribution takes into account

the effects of a noisy environment when the number of possible choices increases to n. In

this context, the noise can be considered as a nudge, capturing the uncertainty coming

from, for instance, biased information or personal taste. Finally, an initial study on

buffer networks is carried out, where the stochastic dynamics are investigated through

a probabilistic graphical model.

4.1.3 Structure

Chapter 4 is organised as follows. In Section 4.2, the scenario where the structure

is modelled by means of a complex network is presented. The corresponding general

interaction model is studied in both symmetric and asymmetric cases. Some applications

are also provided to link the above system to three different contexts: honeybee swarms,

where the model originates, duopolistic competition and opinion dynamics. Then, the

stability analysis is carried out and results in terms of the impact of the topology are

given, corroborated by several numerical studies. In Section 4.3, the interactions are

captured by an indirected network graph where the each node represents a player and the

edges are modelled through an adjacency matrix. Two scenarios are presented: the first

involving the honeybee swarm problem and the second describing a virus propagation

scenario in the context of smart grids. In Section 4.4, the original 2-state model is

extended to the case of n possible choices in a noisy environment. The noise is modelled

as a Weiner process with weight given by matrix G. When further assumptions are given

for this matrix, a nudge model is proposed. Finally, a probabilistic graphical model is

used to study the consensus problem on a robot network.

4.2 Complex Networks

This section includes an extension to structured environment for the system in Chapter 2,

where players can interact by means of a network topology. The structure is captured

by a complex network, with given degree distribution. Fig. 4.1 shows a graphical repre-

sentation of the Barabási-Albert complex network used for the numerical analysis. The
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different link colours have the sole purpose of better visualising them, whereas the size

of the nodes, represented by red circles, depends on the number of connections of each

node, i.e. it represents the node degree.

Figure 4.1: Graphical representation of the Barabási-Albert complex network used in

this section.

Formally, a large population of players is considered. Let a complex network be

given, where P (k) is the probability distribution of the node degrees. The degree of

a node is defined as the number of connections of that node. Due to the structured

environment, the population of players is no longer homogeneous. Heterogeneity in the

population is described by a set of classes which represent the different connectivity of

the players in the population. Let xki be the portion of the population with k connections

(class k in short) using strategy i. For instance, x1
1 and x2

1 represent the portion of players

choosing strategy 1 for classes k = 1 and k = 2, respectively.

The following parameters are used to describe the interactions among players. Let

ψk = k
kmax

be the parameter capturing the connections of the players in the network,

where kmax is the value corresponding to a fully connected network. When k = kmax for

all classes, the structured case is described by the same equations of the unstructured

case. Furthermore, let 〈k〉 be the mean value of all parameters k in the network. Let
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θi := 1
〈k〉
∑

k kP (k)xki be the probability that a link, chosen at random, will point to

an agent using strategy i. Therefore, the model considered is a general interaction

model where any player of class k interacts with players of other classes through θi.

The proposed model is not state dependent, e.g. as in [50], but, through θi, it does

not include selective interaction, whereby each player can interact only with the other

players in the same class.

In the following, two cases are taken into account. The first case deals with same-

valued options, thus it can be linked to the symmetric parameters in Chapter 2. The

second case is the one arising from the link to epidemiology and compartmental models,

i.e. the SIS and SIR as discussed in Chapter 2. In the latter case, the system of equation

can be associated with the asymmetric structure studied in Chapter 2 for uncertain

cross-inhibitory coefficient.

4.2.1 Symmetric and Asymmetric Models

The corresponding structured model of (2.9) in the symmetric case is the following:{
ẋk1 = (1− xk1 − xk2)(ψkrθ1 + γ)− xk1(α + ψkσθ2),

ẋk2 = (1− xk1 − xk2)(ψkrθ2 + γ)− xk2(α + ψkσθ1),
(4.1)

where parameters γ, α and σ describe, as before, the act of spontaneously commit

to an option, the act of spontaneously abandon the commitment and cross-inhibitory

signal sent to players who chose the other option, respectively. System (4.1) models the

dynamics of the players for every class k ∈ Z+ and can be viewed as a microscopic model

of the players in class k parametrised by the macroscopic parameters θ1 and θ2.

The corresponding structured model of (2.19) in the asymmetric case, i.e. both for

structure and parameters, is the following:
ẋk1 = γ1x

k
3,

ẋk2 = −ψkσxk2Θ1 + γ2x
k
3,

ẋk3 = −γ1x
k
3 − γ2x

k
3 + ψkσx

k
2Θ1,

(4.2)

where the parameters used, i.e. γi and σ, have the usual meaning. To stress that the

interaction between classes are limited to the players in state 1 and that they are related

to the cross-inhibitory signal, Θ1 is used in this form in place of θ1, but the meaning is

unchanged. Therefore, Θ1 is defined as:

Θ1 :=

∑
k kP (k)xk1∑
j jP (j)

=

∑
k kP (k)xk1
〈k〉

, (4.3)
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and its first derivative Ψ is defined as:

Ψ := Θ̇1 =

∑
k kP (k)ẋk1
〈k〉

=

∑
k kP (k)γ1x

k
3

〈k〉
. (4.4)

Example 2. Consider the second derivative of xk2:

ẍk2 = −ψkσẋk2Θ1 − ψkσxk2Θ̇1 + γ2ẋ
k
3.

The above second-order differential equation corresponds to the following bidimensional

first-order system:[
ẋk2

ẍk2

]
=

[
0 1

−σΨ k
kmax

−σΘ1
k

kmax

][
xk2

ẋk2

]
+

[
0

γ2ẋ
k
3

]
.

The above system presents analogies with a mass-spring-damper, where Θ1 plays the role

of a viscous term, while the eigenvalues determine the amplitude of the oscillations.

The above models, in the symmetric case presented at the beginning and in the

asymmetric case which follows, admit the Markov chain representations displayed in

Fig. 4.2 (left) and in Fig. 4.2 (right), respectively. The structured system presented

here shares similarities with the 3-valued logical network in [25], but differs in that two

aspects: the 3-valued logical network does not include a complex network to model the

interaction topology and its analysis is carried out in discrete time.

3

1 2
γ + ψkrθ1

α + ψkσθ2

γ + ψkrθ2

α + ψkσθ1
3

1 2
γ1 γ2

ψkσΘ1

Figure 4.2: Markov chain representations of the structured environment which corre-

spond to the set of equations in (4.1) (left) for the symmetric case, and to

the set of equations in (4.2) (right) for the asymmetric case.

4.2.2 Applications

In this section, three applications of the game models discussed so far are presented. A

different interpretation of the parameters and impact of the network topology is pro-

vided in each case. The first application, where this model originates from, describes
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the decision-making problem that honeybees face when choosing a nest. The second one

involves duopolistic competition in marketing, where two manufacturers produce the

same product. The last one relates to opinion dynamics in a voting campaign, where

two political parties aim at winning the elections.

Swarm of honeybees. The original formulation of the model comes from the biological

studies of honeybee swarms. The problem under analysis involves the collective decision-

making process to choose the future nest for the swarm, see [81], [82], [101]. Consider

the situation in which the swarm has two possible choices, nest-box 1 and nest-box 2.

In the examples conducted to study this problem, the nest-boxes can either be identical,

namely the two options have the same value, which would link this case to the symmetric

scenario, or they can be different, i.e. the first is better than the second or vice versa,

which links to the asymmetric case. The undecided portion of the swarm is called

uncommitted, as in the models discussed so far.

The swarm has two main behaviours to convey information and make a decision:

the so-called waggle dance and the cross-inhibitory stop signal. The waggle dance, de-

scribed by parameters r1 and r2 (or r when the options have the same value), is performed

by scout bees who had previously discovered one of the nests. Scouts dance in front of

the swarm to convey information about the direction and distance (location in short),

and most importantly the quality of the nest. The cross-inhibitory stop signal, denoted

by σ in its forms (constant and time varying), is a way in which bees stop the waggle

dance of scouts committed to the other option. Parameters γ and α represents the

spontaneous commitment to the nest just discovered and spontaneous rejection of their

commitment, respectively.

In technical terms, variables x1, x2 and x3 can be interpreted as the portion of the

swarm selecting option 1, 2 or 3, respectively. In the transition from option 3 to 1, γ1

weighs those bees that spontaneously choose to commit to option 1 and r1x1 accounts

for the bees attracted by those already in 1 through the waggle dance. Similarly, in the

case where bees move from strategy 1 to 3, α1 is the quantity of bees that spontaneously

abandon their commitment and σ2x2 is the amount of bees influenced by the cross-

inhibitory signal sent by bees committed to option 2. Note that in the unstructured

case, the players are not clustered in groups with same connectivity and therefore the

index k used in the structured scenario is dropped. Analogously, ψk, which represents
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the portion of population that a player in each class interact with, can be dropped in

the unstructured scenario due to ψk = 1.

It is worth explaining the sophistication of the waggle dance, which is noteworthy

for such small social insects. A scout bee, after finding a nest and returning to the

swarm, inform the other bees about the position and quality of the findings. Two main

parts can be distinguished: the waggle run and the return run. The waggle run is an

oscillatory dance behaviour around the main axis, while the return run is a semicircular

flight from the ending position to the starting position of the waggle run. One second

of the dance corresponds roughly to 1000 meters in terms of distance from the swarm

position to the found nest box. When dancing, the orientation of the waggle run is such

that the angle of the nest relative to the sun in the outbound flight corresponds to the

same angle relative to the straight up in the comb. Finally, the quality of the findings

depends on the number of circuits, i.e. the product between the return runs and the

duration of the dance.

Duopolistic competition in marketing. Another application of the model in unstructured

and structured forms can be found in the context of duopolistic competition in marketing,

for instance see Example 9, p. 27 in [18]. The classical scenario is captured by the

notorious Lanchester model: two manufacturers produce the same good and thus have a

share of the same market, namely x1 and x2. The variable x3 represent the share of the

market of potential customers. Parameters r and σ represent different advertising efforts,

which enter the problem as either fixed parameters or controlled inputs in the analysis or

design of the advertising campaign. In particular, r portrays the advertisements aimed

at convincing the potential customers which are still undecided to choose one product.

The other parameter, i.e. σ, models the effort of disrupting the campaign of the other

manufacturer. The rest of the population plays an active role when contributing to the

advertising effort, e.g. word of mouth to advice others which product to buy or not to

buy. Finally, γ and α describe the situation in which players willingly get convinced to

buy one of the two products or change their minds, respectively.

As underlined before, the proposed framework builds on concepts similar to the

Lanchester model. However, the major difference is that the effort is not necessarily

constant in the general formulation of the Lanchester model, while this is the case for

the problem studied here, and this is captured by the offset. It is no longer the case when
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parameter σ is used as an uncertain time varying coefficient, which therefore captures

the advertising effort over time. A novel aspect of this research is attributable to the

interaction topology, which models the social influence of the advertisement campaigns

of both manufacturers. A stronger cross-inhibitory signal can be used to model the

capability of reaching out to a larger number of potential clients.

Opinion dynamics. In this last example, a link to opinion dynamics is given, see [50].

The voting campaign of two political parties is modelled through the portion of the

population choosing each party, namely states 1 and 2, which represent the left and

right wing parties, respectively. People can also be undecided and do not vote for either

party, which is described by state 3. Individuals can choose to vote for one party after

being persuaded by politicians belonging to that party or by other people already voting

for it, which is captured by r. At the same time, through parameter σ, voters for

one party can change their mind due to the influence of people voting for the other

party, or due to their propaganda. Lastly, people can be persuaded to vote or to stop

voting for either party for their own personal beliefs, which is represented by γ and α,

respectively.

Therefore, the above parameters describe the ways in which political parties invest

in campaigning efforts and the impact on the voters’ choices. The political influence

on society is even stronger when modelled through an interaction topology, so that a

higher social influence corresponds to a more effective persuasive strength to attract more

people away from the competing party. At the same time, undecided individuals select

one of the two parties proportionally to the level of popularity of that party. Finally,

it is worth mentioning that the above example can be linked to case where people cast

their vote for the party that is already winning, instead of their current opinion. This

behaviour is referred to as bandwagon effect, see [109].

4.2.3 Stability Analysis

Likewise in the unstructured scenario, the analysis of the stability properties is now

carried out. The mean-field response is investigated first, and the impact of the connec-

tivity is analysed with regards to each of the previous applications. When the output

of the macroscopic dynamics constitute the input to the microscopic dynamics and vice

versa, a micro-macro model is obtained. The study of such model provides a threshold
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for consensus in the structured case, similarly to what was done in Chapter 2 for the

unstructured case.

Mean-field Response. Given the game dynamics in (4.1), the mean-field response is

obtained for a given class of players by assuming that the distribution of the rest of the

population is fixed. Due to the symmetry of the options, let the assumption θ := θ1 = θ2

be given. System (4.1) can be written in matrix form as:

[
ẋk1

ẋk2

]
=

Ak(θ)︷ ︸︸ ︷[
−(r + σ)ψkθ − α− γ −ψkrθ − γ

−ψkrθ − γ −(r + σ)ψkθ − α− γ

][
xk1

xk2

]
+

ck(θ)︷ ︸︸ ︷[
ψkrθ + γ

ψkrθ + γ

]
,

(4.5)

which can be rewritten in compact form as[
ẋk1

ẋk2

]
= Ak(θ)

[
xk1

xk2

]
+ ck(θ). (4.6)

It is worth noting that if r = σ = 0 the equilibrium does not depend on k.

Theorem 12. Given an initial state x̂k = (x̂k1, x̂
k
2, x̂

k
3), for each class k, system (4.6)

is locally asymptotically stable and convergence is faster with increasing connectivity ψk.

Furthermore, in the cases of no connectivity ψk = 0 and full connectivity ψk = 1, system

(4.6) has eigenvalues

λ1,2 =

{
(−α− 2γ,−α), if ψk = 0,

(−(2r + σ)θ − α− 2γ,−σθ − α), if ψk = 1.

Proof. See Section 4.6.

Remark 12. In light of the above result, a higher connectivity can be linked in terms

of the discussed applications as: i) speeds up convergence to one of the nest-boxes in the

case of the bees, ii) accelerates the clients’ choices to one of the products, which then

become dominant in the market in the case of duopolistic competition in marketing, iii)

facilitates a quicker convergence to one of the two political parties in the case of opinion

dynamics in a voting campaign. As it can be seen in Fig. 4.3, the connectivity shifts the

eigenvalues further away from the origin (the ones for the case of no connectivity are

labelled above the x-axis, while the ones for the case of full connectivity are below).
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Re{λ}

Im{λ}

−α− 2γ −α
−α− 2γ − (2r + σ)θ −α− σθ

Figure 4.3: Diagram showing the change of the eigenvalues for system (4.6), where the

ones above the x-axis refer to the case with no connectivity and the ones

below to the case with full connectivity.

Theorem 13. Given an initial state x̂k = (x̂k1, x̂
k
2, x̂

k
3), for each class k, the equilibrium

points are [x̃k1, x̃
k
2]T = −A−1

k (θ)ck(θ). Furthermore, at the equilibrium, the distribution

of uncommitted players increases with connectivity ψk.

Proof. See Section 4.6.

Remark 13. The above results states that, an increase in connectivity would correspond

a proportional increase in the steady-state percentage of uncommitted bees, undecided

clients in duopolistic competition or undecided voters in opinion dynamics.

Micro-macro model. The macroscopic dynamics, which refers to the evolution of the

whole population over time, and the microscopic dynamics, namely the evolution of the

single classes of players when the strategies of the rest of the population are given as a

parameter, can be combined in the following model: θ̇1 = rθ1
kmax

(
V (k)
〈k〉 −Ψ1 −Ψ2

)
− σθ2

kmax
Ψ1 − θ1α + γ − θ1γ − θ2γ,

θ̇2 = rθ2
kmax

(
V (k)
〈k〉 −Ψ1 −Ψ2

)
− σθ1

kmax
Ψ2 − θ2α + γ − θ1γ − θ2γ,

(4.7)

where V (k) =
∑

k k
2P (k)xk and Ψi = 1

〈k〉
∑

k k
2P (k)xki . The above system is obtained

from the equations in (4.5), by averaging on both sides using 1
〈k〉
∑

k kP (k) and can be

represented as a block system as in Fig. 4.4.

System (4.7) can be written in matrix form as:[
θ̇1

θ̇2

]
=

[
r

kmax

(
V (k)
〈k〉 −Ψ1 −Ψ2

)
− α− γ − σ

kmax
Ψ1 − γ

− σ
kmax

Ψ2 − γ r
kmax

(
V (k)
〈k〉 −Ψ1 −Ψ2

)
− α− γ

] [
θ1

θ2

]
+

[
γ

γ

]
.

(4.8)
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ẋk = f (θ)

θ̇ = g((xk)∀k)

(xk)∀kθ

Figure 4.4: Scheme of micro-macro model, where ẋk = f(θ) and θ̇ = g((xk)∀k) represent

the evolution of systems (4.6) and (4.7), respectively.

Theorem 14. Given an initial state x̂ = (x̂1, x̂2, x̂3) on the population distribution, the

symmetric equilibrium point in the case of structured environment is locally asymptoti-

cally stable if and only if

σ ≤ 2r − rV (k)

〈k〉Ψ
+
αkmax

Ψ
. (4.9)

Proof. See Section 4.6.

Remark 14. The above threshold for the cross-inhibitory signal generalises the results

in the case of unstructured environment, namely equation (2.10). When k = kmax, i.e.

in the case of full connectivity, the threshold in (4.9) coincides with the one found for

the unstructured environment, see (2.10). In each of the examples provided, this result

can be interpreted as a threshold on the strength of σ, which would prevent deadlocks

in the case of honeybees when the nest-boxes are perceived as equal in value; in case of

duopolistic competition when the products are of the same quality; and, finally, in case

of opinion dynamics when similar political programs (in terms of political proposals) are

given to voters.

4.2.4 Numerical Analysis

In this section, the numerical analysis is carried out in the case of structured environ-

ment. The structure is modelled though the Barabási-Albert complex network, which

can be physically interpreted as consisting of a few players only having high connectiv-

ity, whereas the majority of the population has very low connectivity. For the purpose

of the simulations, a discretised version of the following power-law distribution is used,

see [72]:

P (k) =
2m2

k3
for k ≥ m, m = 〈k〉/2. (4.10)
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To model the different classes of agents, the notation ki = N% means that players

in class k = i are connected to N% of the population. The sum of all agents of all classes

is in accordance with (4.10), i.e.
∑

i ki = 1, for all i.

Three sets of simulations are presented. In the first one, the analogy of the asym-

metric model with a mass-spring-damper model is shown. In the second set, the simu-

lations corroborate the theoretical results in terms of faster steady-state response and

distribution of population at steady-state in favour of the uncommitted state with in-

creasing connectivity. Finally, the last set of simulations illustrates the link between the

cross-inhibitory coefficient and the stability of the system.

Asymmetric Case. The system in the asymmetric case shares similarities with a mass-

spring-damper model, as introduced in Example 2. Figure 4.5 shows the time evolution

of the asymmetric system in the case of σ = 3 (top) and σ = 10 (bottom). The role of

the cross-inhibitory parameter σ is investigated in a scenario where the population class

into consideration is class k = 8, i.e. those players who are connected to only 5% of

the population. The population represented by this class amounts to 30% of the total,

thus it is highlighted with a dotted magenta line in the plots. The initial condition

on the distributions for the class under consideration is x̂8 = (0.03, 0.27, 0). It can be

seen from the plots that a higher value of σ leads to a faster response of the first two

state components, as expected. The system converge towards the only possible stable

equilibrium, which is consensus on option 1.

Mean-field Response. The second set of simulations involves the mean-field response

system in (4.6), given θ1 = θ2 = 0.4. In this scenario, two classes are considered, i.e.

class k = 1 and k = 9. The first class has a connectivity k1 = 22%, while class k9 = 85%.

The initial condition for each class is x̂1 = (0.3, 0.7, 0) and x̂9 = (0.3, 0.7, 0). The above

initial conditions are normalised to ease readability. The case σ = 3 and σ = 10 are

plotted in Figures 4.6-4.7, respectively. Two aspects can be observed from the plots.

First, the class with higher connectivity, namely k = 9, has a faster transient response,

which is in accordance with Theorem 12. The second aspect involves the number of

uncommitted players at steady-state: the class with more connections reaches a higher

value of the uncommitted players at steady-state, as stated in Theorem 13. Both aspects

have a higher impact on the dynamics when the value of the cross-inhibitory parameter

increases, as it can be seen by comparing Figures 4.6 and 4.7.
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Figure 4.5: Behaviour of the structured asymmetric model for σ = 3 (top) and σ = 10

(bottom). The class k = 8 accounts for 30% of the total, shown in magenta.
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Figure 4.6: Time evolution of system (4.6) for k1 = 22% (top) and k9 = 85% (bottom).

The cross-inhibitory signal is set to σ = 3.

Micro-macro Model. The last set of simulations includes the analysis of the micro-macro

model which combines the evolution of the mean-field response with the evolution of the

population as a whole. The classes used are the same as in the last set of simulations,

namely k1 = 22% and k9 = 85%. The starting condition is the same as well, i.e.
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Figure 4.7: Time evolution of system (4.6) for k1 = 22% (top) and k9 = 85% (bottom).

The cross-inhibitory signal is set to σ = 10.

x̂1 = (0.3, 0.7, 0) and x̂9 = (0.3, 0.7, 0). Figure 4.8 shows the dynamics in barycentric

coordinates. As it can be seen from the plots, in the case of the population evolution as

a whole, captured by θ, the connectivity affects the speed of convergence and the value

of x3 at the equilibrium, namely there are more uncommitted players at steady-state.

4.3 Network Topology

In this section, a network model is derived for two scenarios, namely the collective prob-

lem of choosing a nest for the swarm of honeybees and the security issues that a smart

grid faces in presence of a virus. To study both scenarios, a finite number of players

is considered. The mean-field game model in Chapter 3 can be seen as the asymptotic

approximation when the number of players goes to infinity. Then, contrary to the mean-

field game, where the population is infinite, the number of players is finite in this context.

A clarification is due: in the two cases considered here, the number of agents is finite,

but the state vector of each agent represents the probability of the agent to be in each

of those states. Therefore, each agent represents an infinite population, modelled as the

probability across the three states. In simple terms, it is more like a multi-population

scenario, where each player represents a population itself and this population is infinite.
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Barabási-Albert Micro-Macro Model
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Figure 4.8: Behaviour of the micro-macro model in barycentric coordinates for k1 = 22%

(red) and k9 = 85% (blue). The cross-inhibitory signal is set to σ = 10.

4.3.1 Network Topology in Honeybee Swarms

In this section, the model originating in the context of honeybee swarms is reframed

to the case where two elemets coexist: a finite number of agents and an interaction

topology. Agent i is represented by the probability across the three states ri, si and xi.

To avoid confusion with the way number of each state and the number which refers to

an agent, the variables r, s and x are used in place of x1, x2 and x3 to indicate the

states, while the subscript i, for example in ri, represents the probability that agent i is

in state ri. Therefore, the microscopic dynamics for each agent i are the focus of this

section.

The interaction network is described by a fully connected undirected graph G with

adjacency matrix A. Let the network graph G = (V,E), where V and E represent the set

of vertices and the set of edges, respectively. The nodes of the network has cardinality

|V | = n, and each node corresponds to an agent. Each edge in E has a corresponding

weight in A, and the weights define the level of interactions between any pair of agents.

The transitions rates to the committed states r and s and uncommitted state x are

modelled by parameter βij, with the usual meaning from state i to state j. To keep the
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same consistency with the previous chapter, numbers are used for the transition rates,

i.e. β13 means from state r to state x. Additionally, in order to separate the linear and

nonlinear terms, the linear ones are weighted by βij, while the nonlinear terms by β′ij.

To highlight the link with the SIR model, the word infection is used in the rest of this

section, and the states in the model are presented in this order: s, x, r.

The model describing the time evolution of the infection probability for each agent

is given by the following system of equations:
ṡi(t) = −β′23si(t)

∑n
j=1 aijrj(t) + β′32xi(t)

∑n
j=1 aijsj(t)− β23si(t) + β32xi(t),

ẋi(t) = β′23si(t)
∑n

j=1 aijrj(t)− β′32xi(t)
∑n

j=1 aijsj(t) + β′13ri(t)
∑n

j=1 aijsj(t)

−β′31xi(t)
∑n

j=1 aijrj(t) + β23si(t)− β32xi(t) + β13ri(t)− β31xi(t),

ṙi(t) = −β′13ri(t)
∑n

j=1 aijsj(t) + β′31xi(t)
∑n

j=1 aijrj(t)− β13ri(t) + β31xi(t).

(4.11)

To link the above equations to the model for honeybees, in the equation for ṡi, the

first term accounts for the cross-inhibitory signal, the second term describes the waggle

dance and the last two terms accounts for the spontaneous rejection of the commitment

and the spontaneous commitment itself, respectively. Similar comments apply to the

equation for ṙi and żi. The above system can be rewritten in vector form as
ṡ(t) = −β′23s(t)InAr(t) + β′32x(t)InAs(t)− β23s(t) + β32x(t),

ẋi(t) = +β′23s(t)InAr(t)− β′32x(t)InAs(t) + β′13r(t)InAs(t)− β′31x(t)InAr(t)
+β23s(t)− β32x(t) + β13r(t)− β31x(t),

ṙ(t) = −β′13r(t)InAs(t) + β′31x(t)InAr(t)− β13r(t) + β31x(t),

(4.12)

where In indicates the n× n identity matrix, as before.

The results concerning the impact of the interaction topology to the collective

decision-making process are presented next.

Theorem 15. Given β′ij > 0 for all i, j, β23 → 0 and β13 → 0, consider the network

model in (4.12) in its bidimensional formulation over s and r, over a strongly connected

graph with adjacency matrix A. The following statements hold:

1. If s(0), r(0) ∈ [0, 1]n, then s(t), r(t) ∈ [0, 1]n for all t > 0.

2. The set of equilibrium points is the set of pairs (1̄n, 0̄n), (0̄n, 1̄n). The equilibrium

points are asymptotically stable.

3. Let β′23 = kβ′32 and β23 = kβ32, where k is a parameter that corresponds to a

measure of the connectivity. The set of equilibrium points includes the set of pairs
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((1/(2 + k))n, (1/(2 + k))n). These equilibrium points are asymptotically stable.

Proof. See Section 4.6.

Remark 15. It is worth pointing out the similarities between the microscopic dynamics

presented here and the study carried out under a complex network topology. In fact,

in the case of complex networks, where the connectivity is parametrised by ψk, as the

connectivity increases, so does the number of uncommitted players. The above result

implies that, even in this case, the connectivity, which is defined by the adjacency matrix

A and by parameter k, alters the value of infection at steady state. In other words, as

the connectivity increases, the probability for an agent to be infected (or uncommitted)

is higher.

4.3.2 Network Topology in Smart Grids

The classical SIR model describes the common scenario of a virus infection in many

possible contexts. In this section, the context of cyber-security is studied, with a par-

ticular emphasis on virus propagation in smart grids. In this scenario, a hacker tries to

disrupt two holons. Recall that a holon is an intelligent entity which can be seen as a

unit component of a larger system or as a whole. The latter happens when the holon

autonomously makes a decision on its own after processing the gathered information.

In this context, a holon is part of a power grid or information system, e.g. a bus or a

database.

As in the case of honeybees, the microscopic dynamics of individual agents are

studied. Let the number of agents be n, i.e. |V | = n, where V is the set of vertices

in network. Each agent represents a component of the system and is connected to the

other agents through a network topology. As anticipated before, the word agent is

used in place of player but they are interchangeable. Variables r, s and x represent

the probability of an individual of being in state 1, 2 and 3, respectively. Parameters

β31, β32 models the capability of the holons to recover from the infection or to mitigate

the cyber-attacks. The model involves a cyber-attack at two kinds of holons, with the

aim of disrupting the services or the data stored. The final values of s and r determine

how far the corruption has propagated throughout the network. Three types of attacks

are considered and can be modelled by different values of βij, see [24]:

• sequential attack : the hacker sends continuous burst attacks, disrupting the cus-
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tomer layer and the information of control signals. In the simulations, the nodes

under attack are characterised by high values of β13, β23 for short periods of time;

• continuous low rate attack : usually aimed at disrupting voltage control at the

holons; here smaller values of β13, β23 endures for longer time in the simulations;

• adaptive attack : the hacker listens for any changes in the communication route and

redirects the attack from one holon to the other. In the simulations this means

that small and large values for β13 and β23 alternates in subsequent time instants.

The main difference with the honeybee model is the considerations about the cross-

inhibitory coefficient, which is crucial in the case of honeybees, but it is marginal in the

present case. Therefore, the focus is on the role of the connectivity at the equilibrium

and on the stability properties of the system. Variables r and s represent the two kinds

of holons, e.g. two different defence approaches, while x describes the infected state.

Under no cross-inhibitory signal, the model reduces to the following system of ODEs:
ṡi(t) = −β′23si(t)

∑n
j=1 aijxj(t) + β32xi(t),

ẋi(t) = β′23si(t)
∑n

j=1 aijxj(t) + β′13ri(t)
∑N

j=1 aijxj(t)− β32xi(t)− β31xi(t),

ṙi(t) = −β′13ri(t)
∑n

j=1 aijxj(t) + β31xi(t),

(4.13)

where the nonlinear rates (indicated as β′ij) involves the interactions between a holon

and a corrupted node, while the linear rates (in the form βij) can be seen as a curing rate

from the remaining nodes that are still not infected. Given the conservation of mass,

the above system can be rewritten in vector form as{
ṡ(t) = −β′23s(t)InAx(t) + β32x(t),

ṙ(t) = −β′13r(t)InAx(t) + β31x(t),
(4.14)

where x(t) = 1− s(t)− r(t). It is now time to establish the next result.

Theorem 16. Consider the virus propagation network model (4.14), and let β′ij and

βij > 0 for all i and j, over a strongly connected graph with adjacency matrix A. The

following statements hold:

1. If s(0), r(0) ∈ [0, 1]n, then s(t), r(t) ∈ [0, 1]n for all t > 0.

2. The set of equilibrium points is the set of pairs (s∗, 1̄n − s∗), for any s∗ ∈ [0, 1]n,

and the linearisation of (4.14) about (s∗, 1̄n − s∗) is{
ṡ(t) = −β′23s

∗InAx(t) + β32x(t),

ṙ(t) = −β′13(In − s∗)Ax(t) + β31x(t).
(4.15)
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For the three-state system in (4.13), the set of equilibrium points is the set of tuples

(s∗, 0̄n, 1̄n−s∗). Furthermore, the above equilibrium points are asymptotically stable

if the following condition holds:

β′23s
∗InA1̄n + β′13(In − s∗)A1̄n < (β32 + β31)1̄n. (4.16)

3. If limβ32,β′13→0, then system (4.13) can be approximated by the standard SIR model.

Proof. See Section 4.6.

Remark 16. A physical understanding of the previous theorem can be given by consid-

ering inequality (4.16). For increasing connectivity, which in turn implies higher values

of the entries of the adjacency matrix A, the left-hand side of the inequality increases,

eventually becoming greater than the right-hand side. In the end, it means that the sys-

tem turns unstable, due to the fact that a higher connectivity implies a higher chance of

a virus spreading in the network and a cyber-attack infecting a holon. The last point of

the above result links the model to the SIR model when two transition rates are set to

zero, see [21]. Specifically, the two transition rates are the one between the infected state

and the susceptible state and the one between the recovered state and the infected state,

in this order.

4.3.3 Case Study: Walpole GSP - Peterborough (EPN)

In this section, the virus propagation scenario is studied in the case of a real grid, namely

the Walpole GSP - Peterborough (EPN), taken from the Regional Development Plan

in [86, p. 18]. The line diagram is depicted in Fig. 4.9 (left) and the corresponding

graph representation can be seen in Fig. 4.9 (right). For the purpose of the simulations,

the cyber attack is assumed to happen at node 11. The attack is aimed at disrupting

the frequency of the buses in the network, propagating according to one of the three

mentioned kinds of attacks: continuous low-rate, sequential and adaptive. For each of the

three attacks, a set of simulations is given. Each set is composed of three simulations.

The first one describes the impact of the virus on the network topology, the second

one presents the data corresponding to the probability of infection at each node in a

histogram and the third one involves the frequency analysis of each node. Table 4.1

shows the infection rates in each set, while the curing rates are fixed for all simulations

and set to β31 = β32 = 0.1.
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Figure 4.9: Line diagram representation (left) and graph representation (right) of the

Walpole GSP - Peterborough (EPN), from the Regional Development Plan

in [86, p. 18]. The infection starts spreading from bus 11, as depicted in the

line diagram.

.

Table 4.1: Infection rates for each set of simulations.

Parameter Set I Set II Set III

β13 0.13 {0.13, 0.65} {0.39, 0.13}
β23 0.13 {0.13, 0.65} {0.13, 0.39}

To show the impact of the infection on the network, the first simulation in each

set describes the infection probability at each node. The nodes are coloured in greyscale

to denote the difference in probability. In particular, a black node means that the

probability of infection is high, namely it has a value greater than 0.75. When a node is

depicted in dark grey, it indicates that the infection probability is moderate (or medium),

i.e. between 0.5 and 0.75. If a node is grey, this denotes a low (or small) probability

of being infected, with a value between 0.25 and 0.5. Finally, a node with a value less

than 0.25 is coloured in white. The grid with the initial infection and the corresponding

infection probability for each node are shown in Fig. 4.10. As previously stated, the

infection starts at node 11, whose probability for each state is equal to (0, 1, 0). The
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rest of the nodes in the network are split in two subsets, each representing one holon.

Therefore, the first five have an initial probability described by (0, 0, 1), whereas the

remaining five have an initial state vector as (1, 0, 0).
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11

(Legend) Infection Probability:

None Low Medium High

Network Topology under Initial Infection

Figure 4.10: Initial configuration of the network for all sets of simulations. The infection

spreads from node 11.

Each set of simulation comprises also a histogram, showing the number of nodes

grouped by infection probability at two time instants, after few iterations from the

beginning of the simulation and at the end. In more detail, the blue bars in every

histogram represent the probabilities after a time interval 1/10 of the total time T has

elapsed. The red bars designate the probabilities at the end of the simulation, namely

when t = T . It is worth noting that the histograms show an aggregate result across

all nodes in the network, thus nodes are not distinguishable. But by cross-referencing

the network topology plot and the histogram it is easy to see which nodes belong to

which group. The histograms serve the purpose of showing the reader an immediate

graphical representation of the evolution of the system for what it concerns the infection

propagation.

The last simulation in each set includes the frequency analysis carried out at each

node. The frequency is measured at each bus in the network while the attacks take

place. To study the change in frequency, each bus is modelled as a coupled oscillator

using the notorious Kuramoto coupled oscillator model, see [62], [95]. According to usual
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Infection for Continuous Low-Rate Attacks

(a) Continuous low-rate attacks: after T/10 time instants (left) and at the end

of the time horizon T (right).
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(b) Histogram showing the number of nodes

and the corresponding infection probabil-

ity for continuous low-rate attacks.
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Frequency Analysis for Continuous Low-Rate Attacks

(c) Frequency analysis showing the impact of

the attack, measured by the amplitude of

the frequency of oscillations.

Figure 4.11: Behaviour of the system when the attacks are of the type continuous low-

rate, in the order: network, histogram and frequency analysis.

frequency of a bus, as it is also reported in the Regional Development Plan, i.e. [86], the

frequency is set at 50 hertz (Hz), with a given a tolerance of ±0.5 Hz. The considered

interval is therefore [49.5, 50.5] Hz. Going above or lower these values can compromise

the stability of the network, causing high damage to the provider and customers. In the

original model, see [21], the frequency of each bus θ̇i evolves as in the following ODE:

θ̈i = ωi
Mi
− K

nMi

∑n
j=1 sin(θi − θj)− Di

Mi
θ̇i, (4.17)

where ωi is the natural frequency, K parametrises the stiffness of the coupling strength, n
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is the number of nodes in the network, Mi andDi are the inertia and damping coefficients,

respectively. The quotient K/n represents the coupling strength of the interconnected

buses and it is equal for all the nodes.
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Infection for Sequential Attacks

(a) Sequential attacks: as before, sampled after T/10 time instants (left) and at

the end of the time horizon T (right).
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(b) Histogram showing the number of nodes

and the corresponding infection probabil-

ity for sequential attacks.
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(c) Frequency analysis showing the impact of

the sequential attacks. The amplitude is

larger for lower connectivity (blue).

Figure 4.12: Behaviour of the system when the attacks are of the type sequential, in the

order: network, histogram and frequency analysis.

The contribution to this model includes the extension to the case where an adver-

sarial disturbance caused by the cyber-attacks is included. For simplicity, it is assumed

that all buses have the same natural frequency. The extended model is therefore:

θ̈i = ω
M
− K

nM

∑n
j=1 sin(θi − θj)− D

M
θ̇i + ζi, (4.18)
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where ζi is the added disturbance. The disturbance describes the probability that a

node is being threatened by a cyber-attack at given time instant. The probabilities of

such an event are obtained from the equations in 4.14 at steady-state, which constitutes

the input to the extended coupled oscillator model. The attack is modelled through a

disturbance of the type

ζi = ±k̂ω̂, (4.19)

where ω̂ represents the frequency of the disturbance and k̂ is a parameter that depends

on the infection rates of system 4.14. The added disturbance can be tuned to model the

strength of the attack. To see how the connectivity impacts on the virus propagation

in the network, two nodes are highlighted in the simulations, namely node 1 and node

7. The first one is connected to only one node and it is denoted by the thick blue line.

The other one is the node with the highest connectivity and is represented by the thick

green line. The rest are indicated by thin dashed lines. Finally, the probability of an

attack is sampled every 150 iterations for the first and last type of attacks, while every

100 for the sequential attacks.

Continuous Low-Rate Attacks. In the first set of simulations, small values of the infec-

tion rates β13 and β23 endure for the entire duration, and so are the values for the curing

rates β31 and β32, such that the probability of infection at nodes remains under control.

In detail, the infection rates are set to β13 = β23 = 0.13 while the curing rates are set

to β31 = β32 = 0.1. In accordance with Theorem 16, a higher connectivity increases the

probability that a node can be infected. Figure 4.11 shows the network topology (a),

the corresponding histogram (b) and the frequency analysis (c). As is can be seen from

the histogram, the infection is higher at the end of the time horizon, which is confirmed

by the network topology as well. It turns out that 5 nodes have a moderate probability

of being infected, while the other 6 have a low infection probability. As is can be seen

from the network graph, the nodes with higher connectivity, or those linked to them, are

the ones with a higher probability of infection. For the frequency analysis, it is true the

opposite. Thanks to the coupling strength, nodes with higher connectivity, e.g. node

7 (green line), have smaller oscillations than nodes with low connectivity, e.g. node 1

(blue line).

Sequential Attacks. This set of simulations describes the context of a virus which is
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modelled as sequential burst attacks. To simulate the behaviour of these attacks, the

infection rates β13 and β23 are set to a value which is five times greater than the normal

value every five iterations while the attacks are happening. Figure 4.12 illustrates the

outcome of this scenario. Due to the burst nature of the attacks, the higher values of

the infection rates make the network more unstable compared to the continuous low-rate

counterpart. This can be seen from a microscopic perspective or a macroscopic perspec-

tive: from the network topology, one can see how each node is impacted (microscopic

view). From the histogram, the focus is on the total number of nodes for each probability

of infection (macroscopic view). From the frequency analysis, the role of the connectivity

can be explored. Recall that the attacks happen every 100 iterations in this context, as it

can be seen from the plot. By comparing the peak of the green (high connectivity, node

7) and blue (low connectivity, node 1) lines, it can be concluded that a high connectivity

attenuates the amplitude of the oscillations. A final consideration can be made about the

similarities of this scenario with the common denial of service (DOS) attacks. DOS at-

tacks aim at disrupting the customer layer or the information of control signals, in order

to make a service unavailable, e.g. a server that does not respond to requests from users.

Adaptive Attacks. In the last set of simulations, the impact of adaptive attacks is ex-

amined. The hacker’s purpose is to attack the more vulnerable nodes, so the hacker

redirects the attacks to the most convenient holon, which is represented by the proba-

bility of states s and r. As an example, the two holons might correspond to different

defence strategies against the attacks. At the start of the simulations, the infection rates

are set such that the value of β13 is three times larger than the one for β23. By evalu-

ating the speed of the propagation, the hacker swaps the values of the infection rates.

Figure 4.13 presents the network topology, the histogram and the frequency analysis for

this scenario. As it can be seen from the network, the first five nodes have a higher

probability after few iterations, while the second five are impacted more at the end.

This is due to the different values of the infection rates and the initial state vector for

each node. Finally, the frequency analysis shows that highly connected nodes are more

likely to be attacked. Therefore, even though attacking these nodes is more advanta-

geous to compromise the whole network, the coupling strength reduces the amplitude of

oscillations, as before. This can be seen from a larger displacement of ω for nodes with

low connectivity. For instance, node 1 (blue line, low connectivity) is attacked less often

than the other nodes but has larger displacements.
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Infection for Adaptive Attacks

(a) Adaptive attacks: again, the network is shown after T/10 time instants (left)

and at the end of the time horizon T (right).
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(b) Histogram showing the number of nodes

and the corresponding infection probabil-

ity for adaptive attacks.
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(c) Frequency analysis showing the impact of

the adaptive attacks. Highly connected

nodes are attacked more often by the virus.

Figure 4.13: Behaviour of the system when the attacks are of the type adaptive, in the

order: network, histogram and frequency analysis.

4.4 Stochastic n-State Model

In this section, the 2-option case is extended to the n-state problem, i.e. the decision-

making process where the players can choose to commit to one of n possible options

or stay uncommitted. The term n-state model refers to the n possible options that the

players can choose to commit to, while one additional state represents the uncommitted,

i.e. n+1. Additionally, the model presented here is stochastic, and the noise is modelled
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as a Weiner process. Due to the stochastic nature of the resulting system, the stability

analysis is carried out within the framework of Lyapunov stochastic stability theory,

see [70]. To depict the scenario where the options have equal value, it is assumed that

the parameters are symmetric and the cross-inhibitory signals sent from all states have

equal strength towards every other state. The corresponding stochastic n-state model

is the following:{
ẋi = [xn+1(γ + rxi)− xi(α + σ

∑n
j 6=i xj)]dt+

∑n
k=1 gkdBk,

xn+1 = 1−
∑n

i=1 xi,
(4.20)

where gk is a weighting coefficient and Bk(t) is a Weiner process. In the above, the vector

x(t) = [x1(t), x2(t), ..., xn+1(t)]T ∈ Sn+1, where Sn+1 is the n+ 1 simplex and
∑n

j 6=i xj is

the sum of the population distribution at nodes 1, ..., n except j. In order to simplify the

system, the effort of the players when sending the cross-inhibitory signal is assumed to

be an average across the population distribution, which is motivated by the symmetry

of all options.

Assumption 4. Let the constant value x̄ denote the average across the population dis-

tribution vector x = [x1(t), x2(t), ..., xn(t)]T , for all states except the uncommitted state.

The cross-inhibitory signal is directed at the average population x̄ and its strength is

weighted by the parameter σ̄ := nσ, whose value is appropriately tuned to reflect the n

states involved.

In light of Assumption 4, system (4.20) can be rewritten in vector form as:

ẋ = [A(x)x+ c]dt+GdB, (4.21)

where A(x) ∈ Rn×n is defined as

A(x) =


−γ − r − rx1 − α− σ̄x̄ −γ − rx1 · · · −γ − rx1

−γ − rx2
. . .

...

−γ − rxn · · · −γ − r − rxn − α− σ̄x̄

 ,
(4.22)

and c = [γ, γ, · · · , γ]T is an n-dimensional transposed vector. The noise B(t) is a vector of

Weiner processes andG(t) ∈ Rn×n is a n×nmatrix, whose coefficients define the strength

of the noise. Figure 4.14 shows the Markov chain representation of system (4.21).

In the following proposition, the stability analysis of the stochastic n-state model

described by system (4.21) is carried out.
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α + σ̄x̄

α + σ̄x̄

α + σ̄x̄

Figure 4.14: Markov chain representation of the n-state system (4.21). The transition

rate from a committed state to the uncommitted state is weighted on the

average across the population distribution, as in Assumption 4.

Proposition 1. Given a positive-definite Lyapunov function V (x) > 0, if LV (x) ≤ 0,

for x ∈ Qm \ {0}, then the origin is stable “with probability one”.

Proof. Consider system (4.21). The corresponding stochastic processes can be studied

in the framework of stochastic stability theory, see [70]. The Taylor expansion in

ḟ(t, x) = ∂f
∂t

+ (∇xf)T ẋ+ 1
2
(ẋ)T (Hxf)ẋ+ . . . , (4.23)

follows from Itô’s lemma in higher dimensions. The notation∇xf represents the gradient

of f(·) w.r.t. x and Hxf is the Hessian matrix of f(·) w.r.t. x. The corresponding

infinitesimal generator can be computed as:

L =
[
∂f
∂t

+ (∇xf)T (Ax+ c) + 1
2
Tr[GT (Hxf)G]

]
dt+ (∇xf)TGdB,

= 1
2
Tr[GT (Hxf)G] + (∇xf)T (Ax+ c),

(4.24)

where Tr denotes the trace operator. The above is obtained in the limit for dt → 0,

for which the terms dt2 and dtdB tend to zero faster than dB2 and thus are set to

zero. Moreover, dt is replaced by dB2 since it is O(dt) (due to the variance of a Wiener

process). The terms ∂f/∂t and dB cancel out because f(·) does not depend on t and

E[dB] = 0, respectively.

Consider the following positive-definite Lyapunov function: V (x) =
∑

i xi = x1 +
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x2 + · · ·+ xn. The defined Lyapunov function V (x) can be substituted in (4.24) as:

LV (x) = 1
2
Tr[GT (HxV (x))G] + (∇xV (x))T (Ax+ c)

= 1
2
Tr

[
GT


2 2x1 + 2x2 · · · 2x1 + 2xn
...

2x1 + 2xn · · · 2

 G

]

+(2x1 + 2x2 + · · ·+ 2xn)T (Ax+ c).

(4.25)

The components of the cross-state noise are assumed to be negligible and therefore

G = ξIn, where ξ ∈ R. Thus, the system above simplifies as:

LV (x) = 1
2
Tr[2ξIn] + (2x1 + 2x2 + · · ·+ 2xn)T (Ax+ c)

= nξ + [2x1∂̄x1 + 2x2∂̄x2 + · · ·+ 2xn∂̄xn],
(4.26)

where ∂̄xi = xn+1(γ+rxi)−xi(α+nσ̄x̄) and xn+1 is defined as in (4.20). By specialising

the above equation at the origin, the condition xi = 0 holds true. Therefore, the following

can be derived:

LV (x) = nξ. (4.27)

To ensure stability, the condition LV (x) < 0 must hold true. Thus, ξ < 0. If

LV (x) < 0, given Qm = {x : xT Inx < m2}, then the equilibrium point at the origin is

stable “with probability one”. This concludes the proof.

To generalise the result of the above proposition, the stability of the n-dimensional

space where the dynamics evolve according to (4.21) is now studied. To ensure stability

of all equilibria residing in the convex hull Co{A(x)x + c}, the result is established in

the following proposition.

Proposition 2. Consider system (4.21) and let G = ξIn. The equilibrium points residing

in the convex hull Co{A(x)x+ c} are stable “with probability one” if ξ < −2.

Proof. From Theorem ??, the condition on the infinitesimal generator for the positive-

definite Lyapunov function V (x) =
∑

i xi = x1 + x2 + · · ·+ xn is given by:

LV (x) = nξ + [2x1∂̄x1 + 2x2∂̄x2 + · · ·+ 2xn∂̄xn]. (4.28)

Due to 0 ≤ ∂̄xi ≤ 1 and 0 ≤ xi ≤ 1, at most the above equation yields [2x1∂̄x1 +

2x2∂̄x2 + · · ·+ 2xn∂̄xn] ≤ 2n. By substituting it in the above, the following holds:

LV (x) = nξ + 2n. (4.29)

Thus, the condition ξ < −2 follows. This concludes the proof.
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In the next subsections, two extensions are considered in their initial formulation.

They are presented as possible developments of the current models.

4.4.1 Nudge

In this section, the concept of nudge is used to model how this form of incentives can

impact the decision-making problem. Recall that a nudge is a predictable aspect of

the players’ decision-making process but not a mere incentive that changes the players’

gain, see [99]. Therefore, enforcement or other means to achieve compliance are not to

be considered nudges. A nudge, to be considered as such, must be easy to avoid. For

instance, ordering the products in a supermarket such that a specific item is at eye level

is a nudge, while removing all the competitor of a given product is not.

In light of the above clarifications, a nudge should not significantly change the

values in the game, but rather slightly influence the players’ behaviours. In order to do

this, the role of the weight matrix G can be explored to achieve a nudge formulation of

system (4.21). In particular, the initial study considering the nudge model starts from

the following system:

ẋ = [A(x)x+ c]dt+ ĜdB, (4.30)

where A(x) is defined as in (4.22). The real question here is how to model Ĝ such that

some of the values act as a nudge towards one specific option. This would solve the

n-option consensus problem by shifting the agents’ choices towards that specific option.

This part is left as a possible extension of the n-state stochastic model.

4.4.2 Graphical Models for Buffer Networks

In this subsection, an initial study of a robot network is carried out with the final aim

to achieve consensus in the corresponding multi-robot system. To model the data limit

of each robot, buffer networks in the context of positive systems are used, see [85].

Buffer networks can be associated to positive systems where the actual values cannot be

negative, but at most equal to zero. Then, a probabilistic approach is presented, where

the network is captured by a probabilistic graphical model. An initial formulation of a

message passing algorithm for this problem is proposed.

Positive systems are investigated to describe the evolution of a swarm of robots

that need to share information via dynamical networks. The presented model is within
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the context of buffer networks, where each node is represented by a buffer and each

edge corresponds to the transmission link between any two given robots. This system

aims at capturing real issues such as buffer limit, congestion, message propagation and

flooding. While the structure models the connections among robots, the added noise

captures the probability of error free transmission and the probability of message loss

due to transmission or congestion.

Formally, given a graph network G = (V , E), where V denotes the vertices and

E the edges, let x = (x1, ..., xn)T ∈ Rn
0 represent the content of all the buffers. The

corresponding continuous time model is given by the following:

ẋi = aixi +
∑

(i,j)∈E

(uji − uij) + wi, i ∈ V , (4.31)

where xi is the buffer content, uji is the flow from buffer j to buffer i, aixi is the natural

decay (or growth) and wi is the local production or consumption. System (4.31) models

the evolution of the buffer for robot i in terms of content. To model the propagation

of a message in the robot network, an instance of the message passing algorithm on a

probabilistic graphical model is investigated, see [110], [111].

Given an Erdós-Rényi graph G of N vertices, M edges and q options, consider

a set of discrete variables, x = {x1, x2, ..., xN}, each corresponding to one node in the

graph. Each node represents one robot. The state of each variable is represented by

the discrete value associated to the option chosen by the robot in {0, 1, ..., q}, where

q ∈ Z+ and 0 represents the uncommitted state. Given the assumption that the given

graph has sparse connectivity, this in turn implies that the graph acts as a tree locally.

The first step is to convert the graph into a factor graph Ĝ. The assumption on sparse

connectivity makes sure that the factor graph has a tree structure locally.

Before introducing the message passing algorithm for the graph consensus problem,

a few definitions are due. The following is the definition of the factor fa(xi, xj) relating

to the edge between nodes i and j, which assigns the joint probability for the two states

for any arbitrary dummy index a:

fa(xi, xj) =

{
1, xi = xj,

0, xi 6= xj.
(4.32)

The message passing algorithm for the graph consensus problem can be split in

two parts: first, the messages are propagated forward from the leaf nodes to the root
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node, and then propagated backward from the root node to the leaf nodes. The first

part, namely leaves to root, can be expressed by the following set of equations:
µxi→fa(xi) = 1, ∀xi ∈ L(Ĝ),

µfa→xj(xj) = 1
|ne(fa)|−1

∑
xi
fa(xi, xj), ∀xj ∈ ne(xi),

µxk→fr(xk) =
∏

l∈ne(xk)\fr(1− µfl→xk(xk)), ∀xk /∈ L(Ĝ),

µfr→xr(xr) = 1
|ne(fr)|−1

∑
xk
fr(xk, xr)µxk→fr(xk), ∀xr ∈ ne(xk),

(4.33)

where L(Ĝ) denotes the set of leaf nodes in the factor graph Ĝ, ne(x) denotes the

neighbour nodes of node x, and 1 denotes the q-sized vector of ones. In the above, the

first two equations account for the propagation from the leaves to the corresponding

factor nodes and from these factor nodes to the neighbouring nodes in the graph. The

other two equations account for all the other nodes in the graph. To propagate the

message back from the root node to the leaf nodes, the corresponding equations take

the form:
µxr→fr(xr) = 1, ∀xr ∈ R(Ĝ),

µfr→xk(xk) = 1
|ne(fr)|−1

∑
xr
fr(xk, xr), ∀xk ∈ ne(xr),

µxj→fa(xj) =
∏

l∈ne(xj)\fa(1− µfl→xj(xj)), ∀xk /∈ R(Ĝ),

µfa→xi(xi) = 1
|ne(fa)|−1

∑
xj
fa(xi, xj)µxj→fa(xj), ∀xr ∈ ne(xk),

(4.34)

where R(Ĝ) denotes the root node of graph Ĝ. For a sufficiently small ratio M/N , the

algorithm will converge to a solution where any two adjacent nodes have chosen the

same option. The entire network will therefore converge to the same option.

By running the algorithm from the node to the root and vice versa, we have now

all the values to calculate the approximate marginal for each node. This process would

allow convergence in O(2M), where M is the number of links in the graph. The marginal

can be calculated as:

p(x) = p̃(x)/Z, (4.35)

where 1/Z is the unknown normalisation coefficient and p̃(x) is defined as:

p̃(x) =
∏

fa∈ne(x) µfa→x(x). (4.36)

A possible future extension of this model would include the consideration of a

dynamical network structure which changes over time, namely G(t). An initial frame-

work has been given here to investigate the consensus problem in the context of swarm

robotics, which can be linked to the initial consensus problem for honeybees.
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4.5 Summary and Discussion

In this chapter, two main elements of novelty are considered with respect to the previous

chapters. The first element is to introduce an interaction topology in the system. Two

main cases are analysed, one where the topology is modelled via scale-free complex

networks, and another where the connections are determined by an adjacency matrix.

The second element is to consider stochastic dynamics, and a large number of options,

namely n.

As for the structured cases, in the former case, the population is large and it is

discretised in many different sub-populations, each with a given connectivity distribution

that follows a discretised version of the Barabási-Albert complex network. Results are

given in terms of the equilibrium points, their stability properties and a threshold for

the cross-inhibitory signal similarly to the unstructured case. These results are given in

Theorem 12, Theorem 13 and Theorem 14, respectively. In the latter case, the number

of agents is finite, but each agent is in probability in one of the three possible states.

Therefore, this case can be seen as a finite number of infinite sub-populations. The

impact of the connectivity in the form of an adjacency matrix is investigated in this case

and results are given for two models, one for honeybees in Theorem 15 and another for

virus propagation in Theorem 16. An additional contribution is the proposed case study

on virus propagation in smart grids.

As for the stochastic dynamics, the number of options is increased to n, and the

uncommitted state is labelled state n + 1. When the noise is in a general form, a

polytope is found to assess convergence. Additional assumptions can be made to link

this stochastic model to nudge theory, where an option is favoured by the nudge, without

changing the general dynamics for the system.

4.6 Proofs

As for the other chapters, Lyapunov’s stability theory is used in most of the proofs that

follow, see [58]. For the part dealing with complex networks, some assumptions on the

parameters describing the network are taken into account in order to derive asymptotic

stability. When the network topology is characterised by an undirected graph, further

conditions on the adjacency matrix must be considered, see [21]. Moreover, one crucial
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aspect is to prove that the set considered is an invariance set, see [13]. In the case of

necessary and sufficient conditions, Nagumo’s Theorem states that a set is invariant if

and only if the inner product of any point in the set with any normal vector exterior

to the set is nonpositive. Namely, at the boundaries of the manifold, the products

of each point with a vector pointing outside the manifold remains inside the manifold

itself. Lastly, the proofs relating to the stochastic system are not included here since

they have not been previously peer-reviewed. Therefore, they are left in the body of the

chapter and are to be found in the corresponding section below the result in the form of

a proposition.

Proof of Theorem 12

The determinant ∆ of matrix Ak(θ) is always positive. This follows from

(r + σ)ψkθ + α + γ ≥ ψkrθ + γ. (4.37)

Also, the trace T of the same matrix is negative, as it can be seen from

T = −2(r + σ)ψkθ − 2α− 2γ < 0, (4.38)

given that the parameters are nonnegative. Therefore the system is asymptotically

stable. Additionally, the equilibrium point given by the set of equations in (4.6) is

locally asymptotically stable as

T 2 − 4∆ = T 2 − 4[(T/2)2 − (ψkrθ + γ)2] = 4(ψkrθ + γ)2 > 0. (4.39)

As for the speed of convergence, the eigenvalues of the Jacobian matrix can be

found from the previous calculations as λ1,2 = −(σ+ r)ψkθ−α− γ± (ψkrθ+ γ). In the

two extreme cases of no connectivity ψk = 0 and full connectivity ψk = 1:

λ1,2 =

{
(−α− 2γ,−α), ψk = 0,

(−(2r + σ)θ − α− 2γ,−σθ − α), ψk = 1.
(4.40)

Proof of Theorem 13

To compute the equilibrium points, the following holds true:

x∗k = A−1
k (θ)ck(θ)

= 1
−(2r+σ)ψkθ−α−2γ

[−ψkrθ − γ, −ψkrθ − γ]T

= 1
(2r+σ)ψkθ+α+2γ

[ψkrθ + γ, ψkrθ + γ]T .

(4.41)
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In order to evaluate the impact of the connectivity, the cases of zero connectivity

and full connectivity, namely ψk = 0 and ψk = 1, are considered. The equilibrium points

in each case are:

x∗k = 1
α+2γ

[γ γ]T , ψk = 0,

x∗k = 1
(2r+σ)θ+α+2γ

[rθ + γ rθ + γ]T , ψk = 1.
(4.42)

Due to the smaller values of the equilibrium point for full connectivity, from the

conservation of mass, the number of players in the uncommitted state is higher than in

the case for zero connectivity. Therefore, a higher connectivity increases the number of

uncommitted players at steady-state.

Proof of Theorem 14

In order to find a value for the threshold, the equilibrium points of micro-macro model

are studied. To compute the equilibria, let θ̇1 = θ̇2:

(θ1 − θ2)(r/kmaxΨ3 − α) +
σθ1

kmax
Ψ2 −

σθ2

kmax
Ψ1 = 0. (4.43)

Note that in a symmetric equilibrium where θ1 = θ2, the last two terms can be

neglected. Saddle points are obtained when the determinant of the Jacobian is less

than 0. Due to the symmetry of the equilibrium, let Ψ1 = Ψ2. By imposing that the

right-hand side is greater than the left-hand side, it follows:(
− σ

kmax
Ψ− γ

)2

>
( r

kmax
(V (k)/〈k〉 − 2Ψ)− α− γ

)2

. (4.44)

By taking the square root on both sides, because of the fact that the left-hand side is

strictly negative, the following holds:

− σ

kmax
Ψ < −2

r

kmax
Ψ +

rV (k)

kmax〈k〉
− α, (4.45)

from which the threshold in (4.9) is obtained after some basic algebra. The obtained

threshold for the cross-inhibitory signal constitutes the counterpart of (2.10) in the case

of structured environment.

Proof of Theorem 15

To prove the theorem, each statement must be proved individually. Therefore, the proof

for each statement follows:
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1. To prove that by assuming s(0), r(0) ∈ [0, 1]n, the condition s(t), r(t) ∈ [0, 1]n

holds for all t > 0, it means that [0, 1]n must be an invariant set for the differential

equation (4.12). To see that, the right-hand side of the equations in (4.12) can be

specialised in 0 and 1 for the corresponding bidimensional system as:{
ṡ(t) = −β′230̄nInAr(t) + β′32x(t)InA0̄n − β230̄n + β32x(t) = β32x(t),

ṙ(t) = −β′130̄nInAs(t) + β′31x(t)InA0̄n − β130̄n + β31x(t) = β31x(t),
(4.46)

where both equation are positive definite. Analogously, in 1:{
ṡ(t) = −β′23InA0̄n + β′320̄nInA1̄n − β231̄n + β320̄n = −β231̄n,

ṙ(t) = −β′13InA0̄n + β′310̄nInA1̄n − β131̄n + β310̄n = −β131̄n,
(4.47)

which are both negative definite. By checking the above conditions, for the prop-

erty of continuity of the equations, the set [0, 1]n is therefore an invariant set for

the differential equations in (4.12).

2. Given the notation where the dependence on time is not explicit, system (4.12)

can be rewritten as a bidimensional system as:{
ṡ = −β′23sInAr + β′32(1̄n − s− r)InAs− β23s+ β32(1̄n − s− r),
ṙ = −β′13rInAs+ β′31(1̄n − s− r)InAr − β13r + β31(1̄n − s− r),

(4.48)

where, for the usual condition on the conservation of mass, x = 1̄n − s − r. By

inspection, it is straightforward to prove that the pairs (1̄n, 0̄n) and (0̄n, 1̄n) are

equilibrium points of the above system. As regards stability, the Jacobian matrices

for the above system linearised about each equilibrium point are:

J =

[
−β231̄n − β321̄n −β′23A1̄n − β′32A1̄n − β321̄n

−β311̄n −β′13A1̄n − β131̄n − β311̄n

]
, (4.49)

for the equilibrium point (1̄n, 0̄n), while for the other one, i.e. (0̄n, 1̄n), it follows:

J =

[
−β′23A1̄n − β231̄n − β321̄n −β321̄n

−β′13A1̄n − β′31A1̄nβ311̄n −β131̄n − β311̄n

]
. (4.50)

For both matrices, the trace is negative. Asymptotic stability can be ensured when

the coefficients of the main diagonal of the Jacobian matrix are, in absolute value,

greater than those in the off-diagonal. When the opposite is true, the equilibria

are saddle points.
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3. To prove that the pair ((1/(2 + k))n, (1/(2 + k))n) for the bidimensional system

presented above is a set of equilibrium points, the symmetry condition is explored,

i.e. s = r. The first equation can be rewritten as:

ṡ = −(β′23 + 2β′32)sInAs+ β′32As− β23s+ β32(1̄n − 2s). (4.51)

The above equation is linearised about ((1/(2+k))n, (1/(2+k))n), and, by inspec-

tion, the following holds:

ṡ = −(kβ′32 + 2β′32)((1/(2 + k))n)InA(1/(2 + k))n

+β′32A(1/(2 + k))n + β32(1̄n − (2 + k)(1/(2 + k))n),
(4.52)

where the first two terms and the last one cancel out. Thus, ((1/(2 + k))n, (1/(2 +

k))n) is an equilibrium point of the system. The corresponding set of equilibrium

point for the 3-dimensional system (4.12) is ((1/(2+k))n, 1̄n−(2/(2+k))n, (1/(2+

k))n). As for the stability property of this equilibrium point, the corresponding

Jacobian matrix is

J =

[
−β′32A1̄n − β321̄n −β′32A1̄n − β321̄n

−β′31A1̄n − β311̄n −β′31A1̄n − β311̄n

]
. (4.53)

The determinant of the above Jacobian is ∆ = 0, while the trace is T = −β′32A1̄n−
β321̄n−β′31A1̄n−β311̄n. It follows that the equilibrium point is asymptotically stable

due to T < 0, since all the coefficients of the Jacobian matrix are negative. This

conclude the proof.

Proof of Theorem 16

The proof of each statement is listed in the following:

1. As for the case of honeybees, the condition for this statement means that [0, 1]n

must be an invariant set for the differential equations in (4.14). Again, this can

be checked by setting the right-hand side of the equations in (4.14) to 0 and to 1

and examine whether whether the derivatives are positive and negative definite,

respectively. {
ṡ(t) = −β230̄nInAx(t) + β32x(t) = β32x(t),

ṙ(t) = −β130̄nInAx(t) + β31x(t) = β31x(t),
(4.54)

which are positive definite. Similarly, in 1:{
ṡ(t) = −β23InA0̄n + β320̄n = 0,

ṙ(t) = −β13InA0̄n + β310̄n = 0,
(4.55)
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which are nonpositive definite. By using Nagumo’s Theorem, see, e.g., [13], which

gives necessary and sufficient conditions for invariance of a closed subset of a

manifold, namely the inner product of each point with any exterior normal vector

to the set must be nonpositive. In the present case, for any x belonging on the

boundary of the set [0, 1]n, the corresponding vector xInAx is either tangent or

point inside the set [0, 1]n. Therefore [0, 1]n is an invariant set for the set of

differential equations (4.14).

2. System (4.14) can be rewritten by removing the explicit dependence on time as:{
ṡ = −β23s

∗InA(1̄n − s− r) + β32(1̄n − s− r),
ṙ = −β13(1̄n − s∗)InA(1̄n − s− r) + β31(1̄n − s− r).

(4.56)

The corresponding Jacobian matrix can be calculated as:

J =

[
β23s

∗InA1̄n − β321̄n β23s
∗InA1̄n − β321̄n

β13(1̄n − s∗)InA1̄n − β311̄n β13(1̄n − s∗)InA1̄n − β311̄n

]
. (4.57)

The determinant of the above Jacobian is ∆ = 0, while the trace is T = β23s
∗InA1̄n−

β321̄n + β13(1̄n− s∗)InA1̄n− β311̄n. The equilibrium point is asymptotically stable

if Tr(J) < 0, which holds true when the condition in (4.16) holds.

3. When limβ32,β13→0, system (4.14) can be rewritten in vector form as
ṡ(t) = −β23s(t)InAx(t),

ẋ(t) = β23s(t)InAx(t)− β31x(t),

ṙ(t) = β31x(t),

(4.58)

which corresponds to the standard SIR network model. This conclude the proof.
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Conclusion

In this thesis, the study of the collective decision-making problem originating in the

context of honeybee swarms is carried out.

In Chapter 2, the original problem is extended to a game theoretic framework,

which highlights the strategic evolution of the population distribution across three pos-

sible states. Two of these states represent the possible alternatives (nest boxes in the

original formulation of the model) while the last state is expression of the percentage of

players not committed to either alternative. Three game settings are examined. First,

a more general setting is considered, in which the payoffs are asymmetric and so are

the corresponding transition rates. The second setting involves the study where the

two options have equal intrinsic value, and thus all strategies are awarded symmetric

payoffs. In the last setting, the case of certain strategies having payoff equal to zero

is investigated, which corresponds to a different structure for the Markov chain. The

latter case is also linked to compartmental models: the population is partitioned in com-

partments, where individuals share similar characteristics with other people of the same

compartment. The model is also analysed in the case where one coefficient of the payoff

matrix is treated as a time varying parameter.

As regards the analysis, the evolutionary dynamics is reframed in an evolutionary

game theoretic setting first, and then the corresponding ODEs for the collective decision-

making problem are derived. The fixed points are explicitly calculated in each context,

i.e. symmetric and asymmetric cases, and the study of the stability properties is carried

out for each scenario. Furthermore, the role of the cross-inhibitory signal is investigated

and a more general formulation of the threshold present in the literature is found via a

different perspective, namely Lyapunov stability theory. Although both scenarios could
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be treated as separate systems, it is shown that they share a common ground and, as a

result, that the conclusions can be linked from one context to the other. To this extent,

the study of an uncertain cross-inhibitory coefficient is derived in both symmetric and

asymmetric cases, and it is shown that absolute stability is achieved in the former,

whereas the passivity of the system is ensured in the latter.

In terms of future directions, one can consider to extend the model to inhomo-

geneous players or in the presence of stubborn agents. In a similar game setting, the

impact of stubborn agents or bandwagon effects has been studied, for instance see [30].

The role of the dynamics that attract players towards one option, such as the equivalent

of the waggle dance, could constitute another direction of research, in which committed

players can adjust their effort in order to collaboratively attract uncommitted players.

Although changing this parameter to a time varying coefficient would make the system

much more complex, it would also make it more realistic in many of the applications

proposed throughout this thesis, such as opinion dynamics. The case of collaborating

agents in a cooperative setting can also be a possible extension to the model.

Chapter 3 includes the formulation of the mean-field game model corresponding to

the original collective decision-making problem, where the interactions of a large popu-

lation of small players are considered. The macroscopic dynamics, that regulate how the

population distribution evolves across the three states, and the microscopic dynamics,

which instead define the strategic response of a reference player, constitute together the

mean-field game model. The corresponding stationary solutions are derived and then

studied by considering the difference between the uncommitted state and the committed

states in terms of the value function calculated at each state. This is motivated by the

fact that the problem of reaching consensus depends in fact on the dynamics involving

the players that have no commitment. When a large number of players remains uncom-

mitted, this situation can be interpreted as a deadlock, in which the population remains

undecided between the two proposed alternatives.

The analysis of the mean-field game is achieved by bringing together the macro-

scopic and microscopic dynamics in the form of the Kolmogorov and Hamilton-Jacobi-

Bellman equations, respectively. The resulting mean-field Nash equilibrium is studied in

the form of initial-terminal value problem. Under the assumption that the adversarial

disturbance is the worst-case deterministic time varying signal sent by the players who

chose the option opposite to the one chosen by the reference player, the corresponding
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optimal Markovian control is obtained. The asymptotic stability analysis is carried out

for the derived stationary solutions, but not in terms of the three initial states, rather

as the difference between the uncommitted state and each of the committed states. Due

to the extensive analysis of the Kolmogorov equations in the corresponding macroscopic

model from the previous chapter, the stability properties of the equilibrium points are

derived for the value functions, thanks to the connection to the stability properties in the

population distribution. Furthermore, the stability of periodic solutions is investigated

and a basin of attraction for the stationary mean-field equilibrium points is found.

An important contribution to the field could come from a possible extension to

the study of monotone and contractive MFGs under the scope of robustness. In short,

this would implies to prove that the stationary solutions can be approximated to the

nonstationary solutions in the presence of an adversarial disturbance. The monotone

and contractive MFGs has been studied in [40], and under certain assumptions on the

adversarial disturbance, such as the ones proposed in this chapter, this could lead to the

extension in the case of robust MFGs.

In Chapter 4, an instance of the original problem is investigated as a multi-agent

system, in the case of structured environment. First, the structure is modelled as a scale-

free complex network, which captures the agents’ interactions in the system. Within this

context, both the symmetric and asymmetric cases are studied. Then, the agents are

connected by means of an undirected graph. The corresponding model can take the form

of a system in which the agents can either represent the bees and their communications

or physical buses in a smart grid for a virus propagation scenario. Later, the case in

which the agents can choose one of two options is extended to the n-option setting, under

some stochastic disturbance. This disturbance can take the form of a nudge to push the

agents towards consensus. Another proposed extension involves a swarm of robots and

buffer networks, where a set of agents need to broadcast a piece of information in a

stochastic dynamical network with limitations on the buffer size.

As for the analysis in this chapter, the structure is first modelled as a SF complex

network, namely Barabási-Albert, for the symmetric and asymmetric cases. The impact

of the connectivity on the equilibrium points is investigated from two points of view:

a perspective on how fast the dynamics converge, namely the speed of the transient

response; and a perspective on how many agents remain uncommitted at steady-state,

causing a potential deadlock and no consensus. Additionally, a link to the unstructured
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case is provided from each perspective and also in terms of the threshold on the cross-

inhibitory coefficient. When the structure is modelled as an undirected graph through

an adjacency matrix, a small number of agents is considered. However, each agent

represent an infinite number of populations, because his/her distribution (the vector of

the three states) denotes the probability of being in any of the three possible states. A

case study is proposed for the Walpole GSP - Peterborough network. Furthermore, the

2-option case is extended to the stochastic n-option case and the link with nudge theory

is provided through the stochastic disturbance. Finally, the interaction dynamics are

linked to the context of swarm robotics through buffer networks and the corresponding

problem of exchanging information among the agents in the network.

Future directions of research include the extension of the results to stochastic

dynamics in the structured case, with births and deaths in the population. Additionally,

the impact of curing rates for the virus propagation scenario can be investigated. Last

but not least, a possible path could involve the study of similar models in chemistry and

how the structure influences the reaction process. For an overview on this topic, the

reader is referred to [32], [33]. For more recent developments, see [28], [29].
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[44] D. González-Sánchez and O. Hernández-Lerma, ”A survey of static and dynamic

potential games”, Science China Mathematics, vol. 59, no. 11, pp. 2075-2102, 2016.

Available: 10.1007/s11425-016-0264-6.

[45] R. Gray, A. Franci, V. Srivastava and N. E. Leonard, “Multiagent Decision-Making

Dynamics Inspired by Honeybees”, IEEE Transactions on Control of Network Sys-

tems, vol. 5, no. 2, pp. 793-806, 2018. Available: 10.1109/tcns.2018.2796301.

[46] O. Gueant, J. M. Lasry and P. L. Lions, “Mean-Field Games and Applications”,

Paris-Princeton Lectures, Springer, pp. 1-66, 2010.

[47] W. D. Hamilton, “The genetical evolution of social behaviour. I”, Journal of Theo-

retical Biology, vol. 7, no. 1, pp. 1-16, 1964. Available:10.1016/0022-5193(64)90038-

4.

[48] W. D. Hamilton, “The genetical evolution of social behaviour. II”, Journal of

Theoretical Biology, vol. 7, no. 1, pp. 17-52, 1964. Available: 10.1016/0022-

5193(64)90039-6.

[49] T. Harko, F. Lobo and M. Mak, “Exact analytical solutions of the Susceptible-

Infected-Recovered (SIR) epidemic model and of the SIR model with equal death

and birth rates”, Applied Mathematics and Computation, vol. 236, pp. 184-194,

2014. Available: 10.1016/j.amc.2014.03.030.

[50] R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence models,

analysis, and simulation”, Journal of Artificial Societies and Social Simulation, vol.

5, no. 3, 2002.

[51] H. Hethcote, “The Mathematics of Infectious Diseases”, SIAM Review, vol. 42, no.

4, pp. 599-653, 2000. Available: 10.1137/s0036144500371907.

[52] J. Hofbauer, “Deterministic Evolutionary game dynamics”, in Proceedings of Sym-

posia in Applied Mathematics, Karl S. editor, 2011.

[53] J. Hofbauer and K. Sigmund, “Evolutionary game dynamics”, Bulletin of the

American Mathematical Society, vol. 40, no. 4, pp. 479-520, 2003. Available:

10.1090/s0273-0979-03-00988-1.

[54] M. Y. Huang, P. E. Caines and R. P. Malhamé, “Individual and Mass Behaviour
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