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Abstract

The vagaries of Indian monsoon rainfall have profound consequences, but improved fore-

casting, on all timescales, has proved elusive. Subseasonal variability significantly influences

interannual variability. However, a wide range poorly understood processes and feedbacks

control the variability. Systematic model biases persist, with moist convection a dominant

source of error. Cumulus scale biases can grow upscale to affect synoptic scales in two days,

and the largest scales in two weeks.

The onset of the monsoon rains progresses northwards over India over about 6 weeks, the

reasons for which are not well understood. This is shown, primarily using radiosonde data,

to be related to a mid-level dry layer, which retreats in response to closely related thermo-

dynamic and dynamic transitions. The dry mid-level layer does not, however, significantly

control the interannual variability of the onset.

Systematic rainfall biases in models with convective parametrisations typically include a

Western Equatorial Indian Ocean (WEIO) wet bias, an Indian dry bias, and too weak low-

level flow into India. Explicitly representing convection, in continental-scale simulations,

is shown to reduce the dry bias and alters circulation and fluxes to sustain more rainfall

over northern India. WEIO rainfall is too high in convection-permitting simulations with

grid-spacings above ∼2km, which also substantially alters the circulation.

Towards a better understanding of the high rainfall upstream of the coastal mountains on the

west coast of India, the role of offshore rainfall propagation is examined. Rainfall propagation

likely results through storm advection and gravity waves, and varies in response to the

passage of Boreal Summer Intraseasonal Oscillations. Contrary to satellite observations,

rainfall consistently propagates onshore in convection-permitting simulations.

The results demonstrate the importance of understanding scale interactions in the Indian

monsoon. Improved models must capture storm-to-mesoscale processes that affect the entire

monsoon.
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Chapter 1

Introduction

1.1 Motivation

The Indian Monsoon is the largest annual reversal in synoptic patterns of wind and rainfall

in the world. Its summer rains are critical, socially and economically, to the more than one

billion people of the Indian subcontinent.

Although the Indian monsoon has been studied for centuries, many of its key processes are

still not fully understood. Halley (1686) proposed that the monsoon is a planetary-scale

sea breeze circulation, generated as a result of differential heating between land and ocean.

Although this theory is still widely regarded as the basic mechanism for monsoons (e.g.

Webster et al., 1998), it cannot alone explain, for example, the rapid onset of the monsoon

in contrast to the steady increase in heating (e.g. Bordoni and Schneider, 2008; Boos and

Emanuel, 2009), nor that India is hotter in May before the monsoon onset than in July,

when the monsoon is at its strongest (Simpson, 1921).

In 1925, The Royal Commission On Agriculture In India described the Indian economy

as a gamble on the monsoon. While the contribution of agriculture to the total GDP of

India has fallen in modern times, to about 14%, about half of the Indian population work

as farmers, of whom just over two-thirds farm for subsistence (Agriculture Census Division,

2015). Variations in rainfall greatly affect agricultural output, which has a cascading effect

on the rest of the Indian people and economy, through unstable food prices. Even a bumper

crop from a good rainfall year can have adverse effects, if the wrong selection of crops are
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grown, by driving down the selling price of produce to a point where farmers cannot recover

their costs.

Most of India receives more than 80% of its annual rainfall during the summer monsoon

months of June through September (Venkateswarlu and Rao, 2013). The majority of agricul-

ture during the summer (the kharif growing season) is rain-fed, which produces about half

of India’s farm output. The summer rain also replenishes surface and ground water supplies,

which supply water for the largely irrigation-fed rabi growing season (October-February),

which have become increasingly depleted in recent years (Rodell et al., 2009), as a result of

rapid economic development and population growth.

There is a high degree of spatial and temporal variability in the rains. Floods and droughts

can occur contemporaneously in different regions. The Indian Space Research Organisation

say that 68% of the cultivable area in India is prone to drought in varying degrees, a third of

which is chronically-drought prone. Roughly one-eighth of the country is prone to flooding.

The timing of the first onset of the summer rains is important in relation to the timing of

crop plantation and the length of the growing season, as well as water resource management,

but cyclic periods of active and break rainfall during the summer can also have significant

impact.

Improving forecasting is a key factor in reducing the impact of monsoon rainfall variability.

Recent investments in India in high-performance computing facilities, forecast dissemination

services, and human resources have led to a service providing crop-specific advisories at

district level twice a week, through multimedia channels and SMS text messaging. Where

this service has been provided, farmers have been able to increase their profits by, for

example, using it to manage sowing if the onset of rainfall is delayed at the start of the

season, to switch to short-duration crops if a long-term delay in rainfall is forecast, to

defer spraying of pesticides if rainfall is predicted, and to reduce unnecessary water use for

irrigation if heavy rainfall is forecast. The Indian National Council of Applied Economic

Research (NCAER), in a 2015 study, found that 93% of surveyed farmers found the forecasts

to be reliable and the incremental profit associated with the service was assessed to be 25%

of their net income (Maini and Basu, 2016).

After severe flooding in Pakistan in 2010, Webster et al. (2011), showed that in a current

state-of the art medium range weather model, rainfall over Pakistan is generally highly
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predictable out to 6-8 days including rainfall in the summer of 2010. If the model had

been coupled to a hydrological model, they say the flooding could have been anticipated

and steps taken to reduce its impact. Similarly, the rainfall that led to flooding in the

north Indian state of Uttarakhand in 2013 has since then been shown to be predictable

10-12 days in advance (Joseph et al., 2015), but the model missed important extratropical

teleconnections that contributed to the high amounts of rainfall, which they say could be

due to an inherent cold bias in the model they used.

Improving prediction of the Indian monsoon on seasonal and longer timescales is a unique

challenge. In May 2002 there was no indication from any empirical or atmospheric general

circulation model that all-India rainfall in June and July would be 30% below normal (19%

deficit for June through September) with a similar failure in 2004, when there was a seasonal

(June through September) rainfall deficit of 13% (Gadgil et al., 2002, 2005). Many areas of the

tropics have exhibited a high degree of predictability on these timescales due to the dominant

influence of slow-varying boundary forcings, such as sea surface temperature, on variability.

However, in the Indian monsoon, a large part of the interannual variability is determined

by the intraseasonal variability (e.g. Palmer and Anderson, 1994), a substantial proportion

of which may be unrelated to slow-varying boundary forcings, and hence unpredictable (e.g.

Sperber et al., 2000). Systematic biases in the representation of the Indian monsoon system

remain in general-circulation model simulations, indicating that potential predictability is

being missed because physical processes are not being sufficiently well represented. There

is also still uncertainty over how much of the Indian monsoon variability on subseasonal

timescales is unpredictable, again because of a lack of physical understanding of a wide

range of processes, on a range of timescales. As convection is a fast physical process and is

commonly cited as a dominant source of error in models, improving forecasts for the Indian

summer monsoon, on all timescales, has been linked to a need for a better understanding

of the role of deep convection in the tropics.

1.2 Aims of the thesis

The aim of this thesis is to contribute to a better physical understanding of the Indian

summer monsoon, by studying some of the roles of moist convection within it.
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In the monsoon onset there is still debate over, for example, how the rapid transition to

the summer monsoon circulation is best explained, how the onset of the monsoon rains

progresses more slowly to the northwest, taking 6 weeks on average, and what the key

processes are in determining the spatial and temporal year-to-year variability of the onset.

The monsoon onset has been examined in this thesis with the aim of a better understanding

of the role of mid-level dry air in the progressive onset of the monsoon rains toward the

northwest. This includes examining its evolution in relation to other transitions in the

thermodynamics and in the large-scale circulation, and considering its role in the onset

interannual variability.

The thesis also aims to improve our understanding of how the representation of moist con-

vection can impact on the representation of the established monsoon. This is approached

through the comparison of simulations that explicitly represent convection, with simulations

that parametrise convection. In the first instance, how are Indian monsoon model biases

related to a parametrised representation of convection? The aim is not just to compare the

biases, but to use the relative biases to elicit a more complete picture of the cause and effect

relationships between the biases. As convection-permitting simulations are increasingly be-

ing used for a wider range of applications, the inter-comparison of the convection-permitting

simulations also aims to give some idea of how suitable certain convection-permitting model

configurations might be for future simulations.

Convection centres are commonly found upstream of coastal mountain ranges in the Asian

monsoon. The second highest rainfall accumulations in the Indian monsoon are upstream

of the Western Ghats mountain range on the west coast of the Indian peninsula, with the

highest upstream of the mountains of Myanmar, on the northeast coastline of the Bay of

Bengal. The work here aims to elicit a more complete understanding of what determines

the distribution of rainfall upstream of the Western Ghats by examining the role of rainfall

propagation. The climatological nature of the storm propagation is characterised, and is

related to local and large-scale intraseasonal variability. This provides a basis for some

proposed hypotheses on the probable mechanisms for storm propagation in the region.
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1.3 Thesis outline

The concepts discussed in this chapter, and other scientific background are presented in

more detail in Chapter 2.

The main datasets and methods used are described in Chapter 3.

The monsoon onset is examined using a climatology of radiosonde data in Chapter 4. Some

results, originally presented in Parker et al. (2016), that highlight the role mid-level dry air

plays in the onset, are reviewed. Further work then focuses on the progression of the onset

in terms of the changing circulation, and the interannual variability in the onset.

Chapter 5 presents a comparison of convection-permitting and parametrised convection

simulations and observations of the Indian monsoon. The results are used to make inferences

about how model biases in the representation of convection can affect the representation of

the Indian monsoon system. This work was originally published in Willetts et al. (2017a).

Chapter 6 focuses on rainfall over the eastern Arabian Sea and west coast of India. It first

compares rainfall propagation in convection-permitting simulations and satellite observa-

tions, before examining climatological patterns of rainfall propagation and their relationship

to other aspects of the monsoon.

The thesis conclusions and suggestions for future work are given in Chapter 7.





Chapter 2

Scientific background

For many, the Indian monsoon is synonymous with its rainfall, brought about by moist

convective processes, but to get an understanding of why the rainfall happens when and

where it does, a great body of work over the years shows that it is important to consider

a wide range of land, ocean and atmosphere processes and the couplings between them.

This chapter aims to give a sufficiently broad background that the work presented in later

chapters can be considered in this context, but without digressing too far from the main

topics of the thesis. §2.1 provides a background on the physical understanding of the Indian

SummerMonsoon, looking at the large-scale features of the Indian summer monsoon (§2.1.1),

the monsoon onset (§2.1.2), and the variability of the monsoon (§2.1.3). §2.2 looks at the

predictability of the Indian monsoon, in terms of the current state-of-the-art and some of

the key areas of research. §2.3 looks at moist convection and how it is represented in models,

and §2.4 concludes the chapter.

2.1 The Indian summer monsoon

The classic defining feature of monsoonal regions is the large-scale seasonal reversals in

wind direction, although to many the associated change in patterns of precipitation is the

more prevalent feature. The Inter-Tropical Convergence Zone (ITCZ) and its associated

rainfall migrates northwards and southwards from the equator with the seasons, following

the belt of maximum heating. When it is summer in the northern or southern hemisphere,

the ITCZ reaches its furthest limit in that hemisphere, thus producing the annual rainy
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season in monsoonal regions. Although it is termed the ITCZ here, when it is far from

the equator, such as when it is over northern India, it is more accurately described as the

tropical convergence zone.

The prevailing concept is that the large-scale wind reversal is a result of land-sea thermal

contrast (e.g. Halley, 1686; Holton, 1992; Webster et al., 1998). As a result of the lower heat

capacity of land compared to ocean, the land is warmer than the ocean in the summer, and

cooler than the ocean in winter. Originally formed from the study of regional monsoons

circulations in isolation, such as that over India, this concept has more recently been

considered in the context of a global monsoon. Rao (1966) and Sankar-Rao (1970) first

referred to a global monsoon, and investigated forcings on the tropical atmosphere, in this

context, in idealised models. An alternative hypothesis, originally proposed by Charney

(1969), is that the migration of the ITCZ is the main driver of the global monsoon. In this

theory, the monsoon is a result of an ITCZ more than 10° from the equator, which does

not rely on the land-sea thermal contrast. Sikka and Gadgil (1980), in the first study of

daily satellite imagery over the Indian monsoon region, showed that the cloud band in the

monsoon trough (a part of the convergence zone within a monsoonal region), during an

active period of the monsoon, has a similar appearance to those in other parts of the ITCZ,

and that the system has the same patterns of low-level convergence, intense cyclonic vorticity

above the boundary layer, and organized deep convection. Chao and Chen (2001) propose

that the existence of, for example, the monsoon trough over India, or other convergence

zones over land in monsoon regions, does not always require a land-sea thermal contrast.

They suggest the role of land-sea contrast is more or less equivalent to a Sea Surface

Temperature (SST) contrast, in determining the longitudinal location of the ITCZ, based

on general circulation models simulations with monsoon region landmasses removed, and

replaced with oceans that have a similar SST distribution to that which is observed in

the surrounding ocean. They also find that topography is more important than land-sea

thermal contrast, in replicating the Asian monsoon.

2.1.1 Large-scale features

In the boreal summer, the surface to mid-troposphere winds over India are from the south-

west, and in the winter they are from the northeast (Figure ). The southwesterly summer

winds are connected upstream, to the west, with a cross-equatorial low-level flow that is
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mostly concentrated close to the East African highlands, and is often called the Somali or

Findlater jet (Findlater, 1971; Krishnamurti and Bhalme, 1976). The Somali Jet winds pick

up moisture as they cross the Arabian Sea warm pool, and separate into two branches. One

crosses the Western Ghats (WG), on the west coast of peninsular India, precipitating heavily

as it does so, and the second branch enters the Bay of Bengal with a southerly component,

before making landfall in the northeast of India, and Myanmar. In northern India, there

is a low-pressure trough at sea-level, termed the monsoon trough, which forms as a result

of northward migrations of the ITCZ. The upper troposphere, in the northern summer, is

characterised by increasing temperature from the equator to the subtropics, with associated

easterlies induced by the thermal gradient between ∼10°N and ∼20°N (Raghavan, 1973).

There is a zonally-averaged cross-equatorial overturning circulation in the Indian monsoon

longitudes, with ascent in the summer hemisphere subtropics, and descent in the winter

hemisphere.

The highest rainfall accumulations in the Indian monsoon are over the sea, in the northern

Bay of Bengal upstream of the low coastal mountains of Myanmar (the Arakan Yoma and

Bilauktang mountain ranges, and in the eastern Arabian Sea upstream of the Western

Ghats, a mountain range running parallel to the western coast of the Indian peninsula

(Figure & ). Over the subcontinent, rainfall is concentrated over the Western Ghats, along

the foothills of the Himalayas and in the Ganges-Mahanadi Basin (GB) in north-east

India. In addition, transient low pressure systems which form in the Bay of Bengal or

northeast India, and propagate northwestward over India, which happens most often in the

monsoon trough region, generate a significant fraction of the total Indian summer monsoon

rainfall (e.g. Yoon and Chen, 2005). Where there are the highest rainfall accumulations

over the sea, upstream of the Western Ghats and Myanmar mountain ranges, the rainfall

is predominantly from large regions of precipitation, which are initiated by relatively weak

convection (Houze et al., 2015). Conversely, cumulonimbus systems with deep convective

cores only really form over land, and in the summer monsoon season they, along with

convective systems containing wide convective core structures, preferentially form in the

foothills of the Himalayas (Romatschke et al., 2010). Although the rainfall amounts along

the foothills of the Himalayas are lower than in the Arabian Sea and Bay of Bengal centres,

they are coincident with the maxima in upper tropospheric heating and pressure (Figure ).
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Figure : Schematic of boreal summer (June-September) and winter (December-
February) atmospheric conditions in the South Asian monsoon region. The summer and
winter panels depict the Asian and Australian monsoons, respectively. In each case, the
lower panels show: orography (>1,000 m, shaded grey); SSTs from the Hadley Centre Sea
Ice and Sea Surface Temperature data set for 1979-2010 (shaded yellow/orange); sea-level
pressure for 1979-2010 (blue contours, interval 2 hPa) and lower tropospheric (850 hPa)
winds from the European Centre for Medium Range Weather Forecasts Interim Reanalysis.
’H’ and ’L’ refer to the monsoon highs and lows, respectively, in the both summer and

winter. Reproduced from Turner and Annamalai (2012)



Scientific background 11

Figure : Asian tropical mountain ranges. Reproduced from Xie et al. (2006)

Figure : ERA-Interim June-August climatological mean (1979-2012) thermodynamic
structure of the South Asian monsoon. Shading shows moist static energy about 40 hPa
above the surface, represented in K by dividing by the specific heat of dry air at constant
pressure. Green contours show 200-400 hPa average temperature (the 245.5 and 246.5 K
isotherms). Dotted black line is the 300 m topographic contour and solid black lines are
topographic contours starting at 1.5 km with a 1.5 km interval. Reproduced from Boos

(2015).
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2.1.1.1 The role of the Tibetan Plateau

In the framework of land-sea thermal contrast as the main driver of monsoon circulation,

the Tibetan Plateau, as an elevated heating source, has commonly been thought of as

the main driver of the Indian summer monsoon (Flohn, 1968; Yanai and Wu, 2006). At

a mean height of greater than 5km above sea level, and a size of about one-quarter of

Chinese territories, the Tibetan Plateau acts as a massive, elevated source of ground surface

sensible heat in summer (Yeh et al., 1957). The plateau directly heats the middle and

upper troposphere, which has less than half the mass of the atmosphere at sea level, and

so more effectively heats the air above the plateau than at lower levels (Ye, 1981). Flohn

(1957, 1960) originally suggested that this elevated heating is responsible for the reversal of

the meridional temperature and pressure gradients in the middle and upper troposphere,

between the equator and the subtropics, which ultimately leads to the establishment of the

boreal summer monsoon circulation. As a result, the mid-troposphere westerly jet stream

shifts from the south side to the north side of the Plateau in early summer, and the upper

troposphere warm-core anticyclone moves north from its wintertime location over the Bay

of Bengal in spring/early Summer to a summertime position over the plateau (Figure ),

where it is called the Tibetan anticyclone (Raghavan, 1973).

On the discovery that latent heating from the condensation and precipitation of water south

of the plateau, over northern India and the Bay of Bengal, was the dominant diabatic heat

source of the South Asian monsoon, it was suggested that sensible heating over the Tibetan

plateau was causing the latent heat source to the south through a heat pump effect (Flohn,

1968). Warm ascending air over the Tibetan and, to a lesser extent, the Iranian plateau,

primarily due to surface sensible heating, leads to cyclonic circulation of lower tropospheric

air, which converges towards and rises over the plateaux, producing moist convection and

hence latent heating over northern India. The latent heating, as a result of convergence,

drives the large-scale atmospheric flow in the Indian monsoon.

Recent work has challenged the theory that the Tibetan plateau, as an elevated heat source,

is important in strengthening the Indian monsoon circulation, and that convergence in

the lower troposphere and the associated heating from moist convection is the mechanism

driving the large-scale circulation (e.g. Boos and Kuang, 2010; Molnar et al., 2010; Boos

and Hurley, 2013). The Tibetan plateau sensible heat pump theory, which still has its
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Figure : 1980-1997 July mean cross sections of geopotential height deviation from the
corresponding zonal mean (a) along 30°N and (b) along 90°E (in units of geopotential

meter(gpm)). From Yanai and Wu (2006)

proponents (e.g. Wu et al., 2007; Yanai and Wu, 2006; Wu et al., 2012) is described, by

some of its detractors (e.g. Boos, 2015), as relying on a positive feedback mechanism between

moisture convergence and precipitation, known as Conditional Instability of the Second

Kind (CISK). CISK was originally formulated in theories of tropical cyclones (e.g. Charney

and Eliassen, 1964; Kuo, 1965), and relies on an assumed relationship between heating

and the production of kinetic energy, but it apparently does not account for the necessary

positive correlation between heating and temperature fluctuations for disturbance energy

to be produced (Emanuel et al., 1994).

In the last couple of decades, convective quasi-equilibrium has come to dominate theories
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on the relationship of deep convection to the large-scale environment, while moisture-

convergence closures, based on CISK theories are now rarely used. Under a quasi radiative-

convective equilibrium model for monsoon dynamics (Emanuel, 1995), which has been

found to be consistent with observations of all monsoon regions except the North and

South American monsoons (Nie et al., 2010), the monsoon circulation is correlated with

and includes low-level moisture convergence, but deep precipitating convection becomes an

internal variable that keeps the free-tropospheric temperature maximum of the thermally

direct monsoon circulation in approximate equilibrium with the maximum in moist static

energy of air below cloud base (hb). In this framework, it is the sensible and latent surface

heat fluxes, in the region of the free-tropospheric heating maximum, which are important

in establishing the monsoon flow.

In the case of the Indian monsoon, Boos and Emanuel (2009) and Boos and Kuang (2010)

found that the free tropospheric temperature maximum lies just south of the Himalayas,

over northern India, and not over Tibet as was commonly assumed, and is approximately

collocated with the subcloud maximum in equivalent potential temperature, consistent with

a convective quasi-equilibrium framework. In addition, in modelling studies Chakraborty

et al. (2006) and Boos and Kuang (2010) show that the role the orography plays is in

insulating the maximum in hb from cold extratropical air, and that the Tibetan plateau as

an elevated heat source is not important to the Indian monsoon circulation. The findings

of Ma et al. (2014) confirmed this, and that the surface heat fluxes in the region of the

free-tropospheric temperature maximum exerted the most influence on monsoon strength.

However, they also found that removing orography increased the hb needed to maintain con-

vective quasi-equilibrium, apparently by allowing dry air into the monsoon free-troposphere,

which can then be entrained into convecting plumes. This effect of removing orography was

greater than that of removing surface heat fluxes and shows, similar to previous studies (e.g.

Derbyshire et al., 2004; Holloway and Neelin, 2009), how variations in free-tropospheric

humidity may lead to an environment where strict convective quasi-equilibrium (where

CAPE is only determined by hb and free tropospheric temperature) does not adequately

represent moist convection. Boos (2015) note that the minimum in hb in the Indian mon-

soon region is over the western deserts of Pakistan, Afghanistan and Iran, so it is hot, dry

air that the orography insulates the monsoon convection from, rather than cold, dry air

from extratropical oceans. The importance of dry desert air intrusions in determining the
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space-time evolution of the monsoon onset and the intraseasonal variability are discussed

in §2.1.2 and §2.1.3.1.

2.1.1.2 Zonal and meridional overturning circulation

Across the tropical and subtropical regions, there is a persistent overturning of the atmo-

sphere, which varies by season, in line with the annual cycle of solar heating. In the equinox

seasons, there is a zonally-averaged pattern of almost symmetric cells about the equator,

with ascent near the equator, and descent in the subtropics. In the solsticial seasons, rising

motion in the summer hemisphere is, to some extent, compensated by subsidence in the

winter hemisphere. There is also a significant zonal component to the tropical overturning

circulation, as a result of asymmetries in the location of heating (Gill, 1980). Coastlines

and orography localise heat sources so that most of the meridional circulation is within

the regional monsoon circulations, and precipitating ascent in one zonal region, such as

the Indian subcontinent, can lead to adiabatic subsidence in others (Krishnamurti, 1971;

Rodwell and Hoskins, 1996).

Two types of meridional overturning circulation have been identified. There is a deep, moist

baroclinic circulation, and a shallow dry circulation, which Trenberth et al. (2000) say

account for 60% and 20% of the annual cycle variance in the divergent mass circulation.

Gadgil (2003) note that the vertical structure of the deep moist circulation corresponds to

the deep convection associated with the ocean ITCZ or the north Indian monsoon trough,

and that of the shallow circulation corresponds to a heat low type structure, like the low in

the northwestern regions of the Indian monsoon, and the pre-onset heat low over northern

India.

Monsoon circulations are commonly thought of as being described by the deep first-

baroclinic mode, with convergence in the lower and middle troposphere, and divergence

in the upper troposphere. Shallow circulations have now been identified in the lower and

middle troposphere in nearly all monsoon regions. They can be hard to identify in the global

zonal mean, but as a localised phenomenon, their magnitude can be comparable to that

of the deep circulation (Zhang et al., 2008). The ascent in shallow meridional circulations

in monsoon regions has been found to typically occur over desert regions northward of the

region of deep, moist ascent (e.g. Nie et al., 2010), and to flow southward in the middle
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troposphere, between 800-500hPa (Zhang et al., 2008; Kawamura et al., 2002) Cool, moist

air is transported northward in the lower part of the circulation, across the precipitation

maximum of the deep ascent, which produces, by the horizontal advection, near-surface cool-

ing and moistening north of the precipitation maximum. There is an associated southward

transport of hot, dry air in the upper part of the circulation, which warms and drys the lower

to middle troposphere over the precipitation maximum. The near-surface moistening and

mid-level drying through advection in shallow meridional overturning circulations has been

argued to affect the onset and subseasonal variability of monsoons, and also the seasonal

mean precipitation (Zhai and Boos (2017), and references therein), which will be discussed

further in sections 2.1.2 and 2.1.3.1.

2.1.1.3 Low-level cross-equatorial flow

Of particular relevance to the Indian monsoon circulation is the low-level south to north

cross-equatorial jet flow that follows the east coast of Africa (Findlater, 1969). It accounts

for nearly 65% of the total mean low-level cross-equatorial transport, which balances the

north to south cross-equatorial transport in the upper troposphere, in 5% of the equatorial

circumference, or ∼85 X 109 kg s−1 within the jet according to one study (Rodwell and

Hoskins, 1995).

The low-level jet winds are deflected northwards and flow over the arid low lands on the

east coast of Africa; Then, at about 10°N, north-eastwards into the Arabian Sea (where it

may be called the Somali Jet, or East African Low Level Jet), as they are deflected by the

Somali highlands. The jet occurs at 1-1.5 km above the sea surface, with wind speeds of

25-50 ms-1. It has a core width of 200-400 km, a 1 km depth, and is located about 200km

east of the East African Highlands (Findlater, 1977). Several modelling studies (Anderson,

1976; Bannon, 1982) suggest that the winds are deflected by the Mascarene High, a belt of

low-level divergence (located above the small islands of Mauritius in the southern Indian

Ocean, east of Madagascar) towards the convergence of the monsoon trough in Northern

India. Rodwell and Hoskins (1995) show, with a primitive equation model, that land-sea

surface friction contrasts (particularly as it flows over East Africa), diabatic heating over the

southern Indian Ocean and Africa, and increased mixing over Africa, as modifiers of material

potential vorticity (PV), are important for the establishment of the jet. PV modification

is shown to be essential in establishing the irreversible cross-equatorial flow of the jet, by
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overcoming the effects of the Earth’s rotation. Particles that experience insufficient PV

modification recirculate back into the Southern Hemisphere. The strength of the jet is

particularly sensitive to changes in heating over the southern Indian ocean

2.1.1.4 The monsoon trough

The monsoon trough is a low pressure belt which begins in northwestern India and Pakistan,

and extends across the Gangetic plains of northern India into and to the east of the Bay of

Bengal (Ramage, 1971). The trough is made up of a well-marked low in the northwest of

the subcontinent and the boreal summer tropical convergence zone that extends southwest

into the Bay of Bengal. The low in the northwest is typically described as a heat low, and

is associated with dry shallow convection (2-3 km ascent), whereas the ascent further east

is throughout the lower troposphere, as a result of moist instability. In contrast to a heat

low, which would be mainly formed by sensible heating at the surface, Bollasina and Nigam

(2011) observe that the northwestern low is deepest in July rather than May, after the onset

of the monsoon and its rains have cooled the land-surface and sensible heating is reduced,

and also that the low is centred over the vegetated Indus river plain, and not desert. They

suggest that, regionally, the influence of the Hindu-Kush mountain range to the west is

more important than the land surface heating in establishing the presence of the low, and

that it is the onset of deep convection to the east that deepens the low from May through

to July.

The location and intensity of the monsoon trough exert a major influence on rainfall activity

in north-central India. A large fraction of the rainfall in the monsoon trough region comes

from transient low-pressure systems superposed on the mean flow, the most intense of which

are called monsoon depressions (e.g. Yoon and Chen, 2005), that generally form in the Bay

of Bengal and propagate northwestward, against the mean low-level flow. Keshavamurty

and Awade (1970) find that the kinetic energy of the mean monsoon trough is maintained by

the pressure gradient of the large-scale circulation, and is not a statistical result of transient

perturbations.
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2.1.2 Monsoon onset

As the sun’s midday zenith moves north in the boreal summer, the different heat capacities

of earth and water mean that land regions heat up more quickly than the surrounding

oceans. A surface heat low forms over northern India in late May, and as a result the

meridional temperature and pressure gradient reverses in the lower troposphere towards

the equator. The meridional temperature gradient in the middle and upper troposphere

reverses; The associated baroclinic wind is consistent with the upper-level tropical easterly

jet stream (Koteswaram, 1958) and the low-level westerly monsoon winds (Findlater, 1969;

Krishnamurti and Bhalme, 1976). The southerly low-level cross-equatorial flow begins to

develop in April over the ocean east of Africa, which focuses into the zonal cross-equatorial

jet near the East African Highlands (Krishnamurti and Bhalme, 1976) in May. Following the

meridional peak in insolation, the ITCZ moves north in April and May from its position just

south of the equator, to a mean Boreal summer position of 20°N on the Indian subcontinent

(where it is referred to as the monsoon trough).

2.1.2.1 Large-scale onset

In relation to the seasonal cycle of insolation, the fundamental forcing of the monsoon, the

onset involves rapid dynamic and thermodynamic changes. Just prior to the onset of the

monsoon rains over India, there is a rapid intensification of the southwesterly low-level jet

winds that cross the Arabian Sea (Boos and Emanuel, 2009), and are the major moisture

source of the Indian monsoon, as well as a rapid intensification of the upper-level easterly

jet (Raju et al., 2005). Yanai et al. (1992) describe an ’explosive’ expansion of warm air

over the Tibetan Plateau in the late spring and early summer of 1979. There is a similarly

rapid change in the large-scale meridional overturning circulation from the zonally-averaged

equinox pattern of two cells almost symmetric about the equator, to a single cross-equatorial

cell (Bordoni and Schneider, 2008) which rises in the summer hemisphere, and descends

in the winter hemisphere (Figure ). At the same time as the abrupt onset of the summer

monsoon circulation, there is a marked increase in heat and moisture flux convergence, and

deep convection over the off-equatorial Arabian Sea, Indian peninsula, and Bay of Bengal,

with further intensification as the onset progresses (Raju et al., 2005).
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Figure : Zonal and temporal-mean circulation in the Asian monsoon sector at two
20-day periods before (left panels, Julian Day 81-100) and after (right panels, Julian Day
161-180) monsoon onset. (a),(b), Streamfunction of meridional overturning circulation
(black contours, contour interval 50x109 kg s−1, with solid contours for anticlockwise
rotation and dashed contours for clockwise rotation), angular momentum per unit mass
(grey contours, contour interval Ω a2/15 with Earth’s rotation rate Ω and radius a) and
transient eddy momentum flux divergence div([u′v′])cosφ, with horizontal velocity vector
v = (u, v) (colour contours, contour interval 0.6x10−5 m s−2 in (a) and 1.2x10−5 m s−2

in (b), with red tones for positive and blue tones for negative values). Here, (·) denotes a
temporal mean over the 20-day period and over all years of data, primes denote deviations
from this mean and [·] denotes a zonal mean over the monsoon sector. (c),(d), Zonal
wind (black contours, contour interval 6 m s−1) and eddy momentum flux divergence
(colour contours) as in (a),(b). (e),(f), Precipitation P (blue) and near-surface (850 hPa)
Moist Static Energy h (red). Except for precipitation, all quantities are obtained from the
ERA-40 reanalysis and are averaged over the years 1981-2000. In the latitude zones of the
tropical overturning circulation, the horizontal eddy momentum flux divergence shown in
the figure is the dominant term balancing the Coriolis force on the mean meridional flow
and the mean meridional momentum advection in the zonal momentum budget; other
terms, such as the stationary eddy momentum flux divergence and the zonal geopotential
gradient across the monsoon sector, are smaller. Reproduced from Bordoni and Schneider

(2008).
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The traditional theory to explain the rapid onset of the southeast Asian monsoon in May,

and the Indian monsoon in June are respectively related to a rapid increase in heating over

the eastern and western parts of the Plateau, and associated reversals of the meridional

temperature gradient in the mid and upper troposphere (He et al., 1987; Yanai et al.,

1992). Other theories which attempt to explain the abrupt monsoon onset de-emphasise

the importance of land-surface heating, particularly over the Tibetan Plateau, Boos and

Emanuel (2009), considering the rapid onset in a convective quasi-equilibrium framework,

favour a wind-evaporation feedback (Numaguti, 1995; Boos and Emanuel, 2008) in the

oceanic regions where there are simultaneous large increases in low-level wind, surface

enthalpy fluxes and deep ascent as the main mechanism by which the southwesterly monsoon

winds rapidly increase over the Arabian Sea.

Bordoni and Schneider (2008); Schneider and Bordoni (2008) demonstrate, using an aqua-

planet general circulation model, how the effect of large-scale extratropical eddies in the

upper troposphere affect the strength of the vertical overturning circulation, and may pro-

duce an abrupt monsoon onset in the absence of land-surface forcings. It is the transition

from a non-angular momentum conserving circulation to a momentum conserving that they

say determines the rapid onset, which happens when the absolute vorticity in the upper

troposphere becomes close to zero. Upper troposphere large-scale extratropical eddies can

easily penetrate into the subtropics when there are upper-level westerlies, which keeps the

absolute vorticity relatively high. The upper-level easterlies that develop in spring and

summer over India, shield the subtropics from the eddies, and so the absolute vorticity

reduce.

The most prevalent method of defining the onset date requires a sustained period of heavy

rainfall over Kerala (Ananthakrishnan et al., 1967), which is also used by the Indian Me-

teorological Department, but with a subjective analysis of the evolution of the large-scale

circulation. Other onset indices are based on circulation changes over the Arabian Sea

(Moron and Robertson (2014) provide a brief review). As defined by these methods, the

mean onset date, for the start of the onset in southern Indian, is between 29 May and June

5.

After the first onset of rain on the southernmost west coast of India, which is associated with

the abrupt transition to the summer monsoon circulation, the northwestward progression of

the rains takes 6 weeks on average to reach the Pakistan border. The Indian Meteorological
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Department climatological mean onset isochrones (Figure ), which are an effective measure

of the progression of the northern limit of monsoon rains (Parker et al., 2016), show the

onset beginning on 1 June in Kerala. Two weeks later, by 15 June, the monsoon rains have

begun over the entire extent of the western peninsula coast of India, and have progressed

northwestward from the Bay of Bengal over the southeastern part of the monsoon trough

region. It is another month (15 July) until the onset occurs over the northwestern desert and

semi-arid regions of India and Pakistan. The curvature of the IMD onset isochrones (Figure ),

which becomes sharper from 31 May to 15 June follows the pattern of strengthening low-

level monsoon circulation, as the ITCZ shifts northward, and the monsoon trough becomes

established over India (Sikka and Gadgil, 1980).

The northwestward progression of the monsoon onset happens against the time-mean low-

level monsoon flow (westerly) and mid-level (northwesterly) flow and moisture advection

(Figure ). Mid-level dry air, that is advected over India by the northwesterly winds, forms

a wedge that deepens toward the northwest. Parker et al. (2016) propose that, as a result,

the conditions for the onset of deep convection are more favourable to the south. Following

the abrupt transition to the summertime monsoon circulation, moisture advection from

the Arabian Sea increases, and the mid-level dry air is eroded by moistening from below,

progressively allowing the onset of deep convection towards the northwest. Some of the

work originally presented in Parker et al. (2016) is presented in Chapter 4

2.1.2.2 Local onsets

Regional-scale measures of onset, may not give an effective measure of the onset on smaller

scales. This is true both for the climatological local onset dates, and the interannual vari-

ability of the local onset dates. The local onset of rainfall can be of great importance in, for

example, the sowing of crops. If the local onset can be related to larger-scale predictable

drivers, it may be predictable. A level of spatial coherence in the local onset indicates

regions where the local onset is significantly determined by larger-scale variability. The

level of spatial coherence in the local onset will depend on the definition of the onset, and

the definition of spatial coherence.

The onset at local scales is less well documented than the first onset of the monsoon and

its mean progression. Two recent studies assess the spatial coherence of local onsets in the
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(a)

Figure : Statistics of rainfall over India during the monsoon onset from the
APHRODITE 0.5° gridded gauge-based dataset, averaged over 1951-2007, with each panel
labelled with the middle day of its 5-day period. Climatological isochrones of monsoon
progression as defined by the Indian Meteorological Department (IMD) are also shown by
the thick black lines; the closest in time in each panel (the five chosen isochrones being 25
May, 1 June, 15 June, 1 July and 15 July). (a) Mean rainfall (mm day−1) and (b) mean
frequency of rainfall occurrence, expressed as a percentage. The IMD standard rainy day
threshold of 2.5 mm is used to define rainfall occurrence. The state of Kerala is indicated

in (a) with a letter ’K’. Reproduced from Parker et al. (2016).

Indian monsoon (Moron and Robertson, 2014; Fitzpatrick et al., 2016). Both use ’agronomic’

definitions of local onset (see Marteau et al. (2009) for a review), where the local onset date

is determined by four criteria:

1. the amount of rainfall received during an initial wet spell

2. the amount of rainfall received during any dry spell following the initial wet spell

3. the duration of the initial wet spell

4. the length of any dry spell following the wet spell

These criteria are designed to ensure sufficient soil moisture for planting and growing periods,

to avoid crop failure. The dry spell criteria are designed to ensure against taking short

pre-onset rainfall spells as the onset. In Fitzpatrick et al. (2016), the local onset date is

taken as the first rainy day (with at least 1 mm of precipitation) of two consecutive rainy

days (with total precipitation greater than 20 mm) and no 7 day dry spell with less than

5 mm of rainfall in the next 20 days. The definition in Moron and Robertson (2014) is very

slightly different, with an initial wet spell defined as 1 or 2 consecutive days where the total
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rainfall is at least 20 mm, and all other criteria the same. These criteria are not designed

to capture the onset in drier regions, such as in the northwest semi-arid and desert regions

of the Indian subcontinent.

The mean local onset over the Western Ghats and monsoon trough region is found to be

robust, and therefore potentially predictable (Moron and Robertson, 2014). The two studies

come to different conclusions, however, about the spatial coherence of the onset interannual

variability(Moron and Robertson, 2014; Fitzpatrick et al., 2016). Moron and Robertson

(2014) find at best moderate spatial coherence over India. The Localised Onset Region

method of Fitzpatrick et al. (2016) finds large regions with significant spatial coherence

over the Western Ghats region, the Bay of Bengal, and the monsoon trough region. The

studies use different rainfall datasets and different measures of spatial coherence. Moron

and Robertson (2014) use a 1° gridded rainfall dataset (Rajeevan et al., 2006) based on rain

gauge measurements (1901-2004), and Fitzpatrick et al. (2016) use the 0.25 TRMM 3B42

satellite rainfall retrieval product (1998-2014). Clearly the satellite product covers a much

shorter time period, but how well the different products capture local rainfall variability is

unclear.

The estimate of local onset spatial coherence in Moron and Robertson (2014) is a conditional

probability, based on counting the number of times the local onset dates at each gridpoint

co-occur within 5 days of the date at the surrounding eight gridpoints. The level of spatial

coherence in Fitzpatrick et al. (2016) is assessed based on the size of areas with a certain level

of homogeneity in the local onset dates. LORs are found where the percentage of gridpoints

with suitably similar onset dates exceeds a threshold. The onset dates are suitably similar if

their correlation with the LOR median onset dates exceeds a certain confidence level. The

disagreement between the two studies may perhaps, therefore, be explained by the LOR

method being less sensitive to the correlation of onset dates between adjacent gridpoints.

The LORs are used in Chapter 4 (where their calculation is described in further detail), in

the work that examines the interannual variability of the onset.

2.1.3 Variability of the monsoon

The spatial and temporal variability of Indian monsoon rainfall is much more complex

than can be explained by theories for the establishment of the cross-equatorial monsoon
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circulation, which rely on slow varying forcings such as the land-sea temperature gradient,

or the influence of the Himalayas. Rainfall variability on a wide range of timescales, as a

result of processes both internal and external to the Indian monsoon system, is significant

in determining the long-term interannual variability.

2.1.3.1 Intraseasonal variability

The most commonly discussed aspects of the intraseasonal variability in the Indian summer

monsoon, with their important socio-economic effects in terms of timings and amount of

rainfall, are the monsoon onset and active/break cycles of convection. There are predominant

modes of intraseasonal variability on timescales of 10-20 and 30-60 days. The 30-60 day

mode is strong during the onset phase of the monsoon, in June, and less coherent in the

established phase in July and August, while the 10-20 days mode is strong during the

established phase (Annamalai and Slingo, 2001).

Climatologically, the Indian Meteorological Department have determined the monsoon

onset to occur over Kerala (the most southern state in India), on 1 June, and by 15 July

in northwestern India, but the relative and absolute onset timings, as well as the strength

are highly variable from year-to-year. From mid-May to mid-June, the phase of the 30-60

day mode of variability, which manifests as northward and eastward propagating convective

anomalies from the equatorial Indian Ocean, modulates the effect of the growing insolation

over the northern hemisphere, and determines the timing of the onset (Flatau et al., 2001).

By mid-June the large-scale pressure gradient is sufficiently large that onset will occur

regardless of the phase of the intraseasonal oscillation. Fieux and Stommel (1977) identified,

from shipping reports of wind strength in the Arabian Sea, single, multiple and gradual

onsets. The single onsets manifest as a rapid onset in the low-level monsoon winds, while

the gradual onsets are when westerly winds begin to develop earlier than usual, in early

May, when the large-scale cross-equatorial pressure gradient is still relatively weak. Multiple

onsets are when westerly winds begin to develop, followed by a wind reversal, before another

onset of westerly winds. In the case of multiple onsets, convection and circulation patterns

develop in the Indian monsoon region in early May, in relation to an intraseasonal oscillation,

when the pressure gradient is too weak to support the full onset of the summer monsoon

system. These so-called ’bogus’ onsets have been associated with subsequent heat-wave
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conditions over India, and a delayed onset of the monsoon, which happened, for example,

in 1995, 2002, and 2003 (Flatau et al., 2001, 2003)

There are typically three to four active periods during the May to September season

(Webster et al., 1998), when there is a peak in rainfall over the continent. During these

periods, it is typical for the monsoon westerly winds, which vary significantly in strength

during the season, to have speeds of >10 m s−1 and to extend across to the northwestern

Pacific Ocean. During the break parts of the active break cycle, rainfall is at a minimum

over much of India, but is enhanced over the far north and south. The cycle is non-periodic,

and the active and break parts can be several day or weeks long.

About four weeks is the longest the tropical convergence zone over India can survive without

interaction with or reestablishement by an oceanic tropical convergence zone (Sikka and

Gadgil, 1980). These continental and oceanic convergence zones, over northern India and

the equatorial Indian Ocean, are the two preferred locations of convection within the Indian

summer monsoon. The establishment and maintenance of the monsoon trough over India

has been described as being a result of successive northward propagations of the tropical

convergence zone from the Indian Ocean at intervals of 2-6 weeks (Gadgil, 2003). These

northward propagating events form the dominant 30-60 day mode of variability (Yasunari,

1980) in the Asian summer monsoon which essentially captures the active/break cycles of

convection and circulation in the Indian monsoon (Annamalai et al., 1999). Annamalai

and Slingo (2001) estimate that the 30-60 day mode of variability accounts for about

2/3 of the total subseasonal variability, while the 10-20 day mode (Krishnamurti and

Bhalme, 1976; Krishnamurti and Ardanuy, 1980) accounts for about 1/4, and is comprised

of westward propagating events (Figure ). In active periods, associated with the 30-60 day

northward propagating events, convection is significantly enhanced in a band across the

Indian subcontinent, Bay of Bengal, and equatorial west Pacific, and suppressed significantly

over the equatorial Indian Ocean and north-west Pacific (Annamalai and Slingo, 2001). The

large-scale cross-equatorial Hadley and east-west circulations are also greatly affected. The

10-20 day mode exhibits a more regional effect; It simultaneously modulates convection

in the continental and oceanic tropical convergence zones, with enhancement in one and

suppression in the other. Krishnamurti and Bhalme (1976) also describe a dominant mode

on a time scale of 2-6 days, associated with local instabilities and local transient disturbances.
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Figure : Composites of active minus break days of OLR for the dominant (a) 40-day
(30-60 days), and (b) 15-day (10-20 day) modes of intraseasonal variability in filtered daily
All-India rainfall. The contour interval for (a) is 4 W m−2 and (b) is 2 W m−2. Shaded
area indicates regions significant at 5% level. Reproduced from (Annamalai and Slingo,

2001).

The 30-60 day timescale of the northward propagating events is similar to the timescale of

eastward propagating Madden-Julian Oscillations (MJO). The MJO is most often associated

with eastward propagation of envelopes of large-scale convective systems, which is the

predominant pattern in the boreal winter and spring, when the strongest MJO events

occur. During the boreal summer monsoon season, when convection over landmasses in the

Indian monsoon longitudes places the convective heating far from the equator, the MJO

is typically weaker and has a more complex character (Madden, 1986). This includes a

northward movement of convection, which begins in the central equatorial Indian Ocean
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and ends in northern India, which is found, most of the time, to be related to a concurrent

eastward movement of convection into the western Pacific Ocean (Lawrence and Webster,

2001), resulting in an apparent northeastward propagation of convective anomalies. The

northeastward propagation is due, at least in part, to favourable vertical easterly wind shear

and the shedding of Rossby waves over this domain during boreal summer (Lau and Peng,

1990; Wang and Xie, 1997; Annamalai and Sperber, 2005).

2.1.3.2 Synoptic-scale activity: Monsoon depressions and other low-pressure

systems

Monsoon depressions are broad cyclonic circulations that generate over the warm waters of

the Bay of Bengal and normally propagate northwestward along the monsoon trough/ITCZ

region (Figure ). 6 form every year, on average, and they typically last for 4-5 days. The

Indian Meteorological Department define monsoon depressions as having surface winds

between 8.5-16.5 m s−1. Systems with lower wind speeds may be termed a low-pressure

system, or a well-marked low, and those with higher wind speeds a cyclonic storm. Yoon and

Chen (2005) estimate that 45-55% of Indian Summer rainfall is from monsoon depressions.

During an active phase of the active-weak monsoon cycle (Annamalai and Slingo, 2001),

which is associated with a strengthening of the ITCZ, the frequency of monsoon depression

formation increases as a function of the speed with which convective instability grows in

the Bay of Bengal. There is often a partial overlapping of these systems in an active period,

whereas none form during a break period (Yasunari, 1979). Monsoon depressions propagate

westward against the synoptic flow, and underneath the Tibetan high at about 300 hPa

(Chen and Yoon, 2000).

Synoptic variability in the Bay of Bengal can also affect the onset space-time variation. For

example, in 2014 the strengthening of the Arabian Sea monsoon winds was aided by the

formation of cyclonic storm Nanauk. In addition, MJO activity over the maritime continent

led to the development of deep convection in the northern Bay of Bengal, and a low-pressure

area which formed as a result over coastal Bangladesh aided the advance of the monsoon

onset in the northeast of India (Pai and Bhan, 2015).
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Figure : Paths of low pressure systems during the summer monsoon season of 1999.
Reproduced from Gadgil (2003)

2.1.3.3 Interannual variability

In terms of the potential for improved prediction on seasonal and longer timescales, Palmer

(1994) raised the question of whether the seasonal variability in the Indian monsoon was

dominated by essentially chaotic processes, with the interannual variability determined by

the number of active and break periods in a season, or whether the statistics of active/break

cycles were more controlled by slow-varying (and hence, predictable) external forcings. The

Palmer (1994) study, and subsequent work such as Webster et al. (1998) and Sperber et al.

(2000) suggest that boundary forcings such as SST do bias the system towards more active

or break periods, although part of the internal variability is still chaotic.

On timescales greater than a year, SST anomalies related to the El Niño Southern Oscillation
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(ENSO) are the dominant external forcing of monsoon variability (Turner and Annamalai,

2012). Interannual variability of the monsoon has been found to occur on three major

timescales. These are quasi-biennial, multi-year (3-7 years), and interdecadal.

The quasi-biennial oscillation, where there is a tendency for a relatively strong Indian

monsoon to be followed by a relatively weak one, or vice versa, is strongly related to a 2-3

year oscillation in SST anomalies in the Pacific (Yasunari, 1990) and Indian (e.g. Loschnigg

et al., 2003) Oceans. As such, biennial variations in the Indian monsoon system are related

to similar oscillations in ENSO, but questions remain over whether biennial oscillations in

the Indian Ocean (the Indian Ocean dipole) that are independent of ENSO (Saji et al.,

1999) may also play a role.

Oscillations on timescales of 3-7 years also exhibit a clear relationship to ENSO (Webster

et al., 1998). In the year following anomalously warm Pacific Ocean SSTs (El Niño), all-

India rainfall is often below average, and following anomalously cool Pacific Ocean SSTs

(La Niña), all-India rainfall is often above average (Figure ). There are, however, many

years where this pattern does not prevail.

Figure : Time series evolution of yearly all-India summer monsoon rainfall anomalies,
expressed as percent departures from its long-term mean (1871-2016). Reproduced from

Indian Institute of Tropical Meteorology, Pune, India.
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Interdecadal variability, where rainfall is above or below average for periods of about 3

decades (Figure ) in the monsoon, has been shown to be related to interdecadal climate

variability in the Pacific Ocean (e.g. Joshi and Kucharski, 2017) and the Atlantic Ocean

(e.g. Ghosh et al., 2012) Observations suggest that, in recent decades, there may also have

been a change in the nature of the relationship to El Niño (e.g. Kumar et al., 1999).

2.1.3.4 Spatial variability

There is considerable spatial structure to rainfall variablity in the Indian monsoon (Parth-

asarathy, 1995), on intraseasonal timescales, and also interannual, decadal and longer (e.g.

Goswami et al., 2006).

The two highest regions of rainfall in the Indian monsoon are upstream of relatively low

coastal mountain ranges (Figure ) on the west coast of the Indian peninsula (the Western

Ghats), and on the Myanmar coast in the north Bay of Bengal (Xie et al., 2006); A phe-

nomenon which has not yet been fully explained (e.g. Grossman and Durran, 1984; Smith,

1985), and will be discussed further in Chapter 6. Hoyos and Webster (2007) find that the

Figure : Time series evolution of 31-year rolling mean of all-India summer monsoon
rainfall mean and standard deviation anomalies, expressed as percent departures from its
long-term mean (1871-2016). Reproduced from Indian Institute of Tropical Meteorology,

Pune, India.
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interaction of northward propagating intraseasonal oscillations with these coastal mountains

is important in explaining the rainfall maxima upstream of these coastal mountains. There

is also a narrow rainband that follows the south side of the steep orography of the Himalayas.

Global climate models, typically do not capture the effects of these mountain ranges (Chris-

tensen et al., 2007; Kripalani et al., 2007), most likely due to their coarse resolution, which

cannot properly represent regional forcings such as steep orography (Rupa Kumar et al.,

2006).

There is a significant effect of narrow mountain ranges on the distribution of rainfall across

the tropics. As well as the Western Ghats and the Myanmar coastal mountain ranges (Araka

Yoma in the northern bay and Daiwna-Bilauktaung in the southern bay), there are the

mountains of the Philippines, which anchor the convection in the South China Sea, there

is a convection centre on the coast of Cambodia at the foothills of the Cardamom Hills,

and also one on the west slope of the Annam Cordillera range on the border between Laos

and Vietnam (Figure ). In one experiment where, in a regional atmospheric model (Wang

et al., 2003), diabatic heating is imposed in narrow bands where convection is anchored by

the northern Myanmar coastal mountains, the Annam Cordillera, and the mountains of the

Philippines, there is a non-local effect with enhance precipitation over the eastern Arabian

Sea, and over the entire Bay of Bengal, and a relative cyclonic circulation is induced over

the Indian longitudes (Xie et al., 2006).

Over land, the two highest regions of Indian summer monsoon rainfall are the Western Ghats,

and the Ganges-Mahanadi Basin (GB) in north-east India (Figure ). They both have strong

mean and variance, and account for 90% of the interannual variance in all-India rainfall,

but their variances are uncorrelated (Vecchi and Harrison, 2004). The rainfall variability

in the monsoon trough, where much of the rainfall comes from transient disturbances, is

highly correlated with all-India summer monsoon rainfall (Gadgil et al., 2003), and as such,

an improved prediction of variability in this region should also project onto the larger-scale

predictability.

2.2 Predicting the Indian monsoon

The first attempts to predict interannual variations of the summer monsoon were based on

relatively slow-varying pre-season indicators such as snowfall in the Himalayas (Blanford,
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1884) and the pressure gradient between the Indian and Pacific Oceans (Walker, 1924).

Much later, it was proposed (Charney and Shukla, 1981; Palmer and Anderson, 1994), and

then shown, (Shukla, 1998) that in certain parts of the tropics, the atmosphere is strongly

dependent on slow-varying boundary forcings, such as SST. This was in contrast to the

view of the atmosphere, that emerged following the advent of numerical weather simulation,

as a chaotic system (Lorenz, 1963) where skill in predicting the weather is limited to only

a few days, as a result of non-linear sensitivity to errors in the initial conditions and in

model formulations. In practice, the level of predictability in the tropics, on timescales

longer than a few days, is higher than in the extratropics, but in certain regions potentially

chaotic processes also play a significant role, Indian monsoon rainfall being ’a prime example’

(Branković and Palmer, 2000).

Empirical/statistical models, beginning with Walker (1924) have had a certain degree of

success in seasonal and long-range prediction of, for example, all-India summer monsoon

rainfall (e.g. Chaudhuri et al., 2016), and references therein), particularly when the boundary

forcings are strong (such as during intense El Niño and La Niǹa periods). However, Gadgil

et al. (2005) found that the forecast skill based on statistical methods had not improved

since the 1930s. Successfully simulating seasonal and climate variability using dynamical

models has proved more elusive. While there are observed relationships between slow-varying

boundary forcings (the strongest of which is SST) and the tropical atmosphere, physically

representing the necessary range of local, regional and global teleconnections remains a

significant challenge. To develop a model that can successfully represent the monsoon to

the level required by its intended application, these interactions need to be sufficiently well

understood, observations used in determining initial conditions for simulations must give a

sufficiently accurate representation of the earth system, and models must give a sufficient

representation of the necessary physical processes.

Models with prescribed SSTs have shown little improvement in representing interannual

variations of Asian-Australian monsoon rainfall over land (e.g. Zhou et al., 2009), while

models with ocean-atmosphere coupling exhibit large systematic biases, many of which are

common among among the models (e.g. Bollasina and Nigam, 2009). Key areas of research

include improving model representations of convection, improving understanding of air-sea

interactions and land surface processes, as well as the effect of orography on dynamical and

thermodynamical processes.
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Atmosphere-only and coupled general-circulation models (GCMs) typically exhibit a sys-

tematic wet bias over the equatorial Indian Ocean, and a dry bias over central India, which

has not changed significantly as a result of model development between the Coupled Model

Intercomparison Project CMIP3 assessment (Meehl et al., 2007) and CMIP5 assessment

(Sperber et al., 2013). Indian monsoon rainfall onset is systematically late, by about 10 days,

in most CMIP5 climate models (Sperber et al., 2013), which would not be remedied by just

reducing the continental dry bias (Sperber and Annamalai, 2014). Higher resolution regional

climate models (RCMs), which are able to represent regional forcings, feedbacks, and pro-

cesses, improve the representation of rainfall in the Indian summer monsoon, particularly

over regions of steep orography such as the Himalayas and Western Ghats (Rupa Kumar

et al., 2006), and have been found to give a realistic timing of the monsoon onset, although

the withdrawal is less well simulated (Lucas-Picher et al., 2011). However, Lucas-Picher

et al. (2011) show significant differences in the representation of the Indian Monsoon by

a number of RCMs forced with lateral boundary conditions from the 45-year European

Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) for the

period 1981-2000, highlighting that they fail to properly represent important feedbacks and

processes, even when biases introduced by the driving model are reduced.

Boreal Summer Intraseasonal Variability (BSISV), predominantly in the form of the 30-60

day intraseasonal oscillations which exhibit northward as well as eastward propagation in

the Asian tropics (as described in §2.1.3.1), projects strongly onto the interannual variability

of the Indian monsoon (e.g. Goswami and Ajaya Mohan, 2001). On weather timescales,

it also modulates the frequency of occurrence of synoptic systems events such as low-

pressure systems, monsoon depressions and tropical cyclones (Maloney and Hartmann, 2001;

Goswami et al., 2003; Bessafi and Wheeler, 2006). As a result of the BSISV, it is still unclear

how predictable the Indian monsoon may be on seasonal and longer timescales (Turner

and Slingo, 2011). An important question for the prospect of improved prediction of the

Indian monsoon, on seasonal and longer timescales, is whether this intraseasonal variability

is essentially chaotic, or whether the slow-varying forcings dominate in determining the

statistics of the intraseasonal variability. Sperber et al. (2000) find that the statistics of

intraseasonal variability is more determined by slow-varying forcings, and thus predictable,

although a significant subset of subseasonal variability is determined by the internal chaotic

variability, which would limit predictability. Sperber and Annamalai (2008) propose, on the

assumption that the mean-state determines the occurrence of the transient activity that
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some of the processes a model must capture to give a physically correct representation of

the boreal summer intraseasonal oscillations are the eastward propagation of equatorial

intraseasonal convective anomalies, capturing the three main centres of precipitation over

the central-equatorial Indian Ocean near India, the Bay of Bengal and the tropical west

Pacific, and climatological easterly wind shear over the region to capture the effect of Rossby

waves. In an assessment of the CMIP5 model historical simulations, more models simulate

the northward propagating component of the BSISV than the CMIP3 models, and the

models that give a reasonable representation of the intraseasonal oscillations are those with

better representations of the intraseasonal SST and its coupling to convection over the

equatorial Indian Ocean and eastward propagating equatorial convective anomalies east of

100°E (Sabeerali et al., 2013).

The most significant source of seasonal predictability for the Indian summer monsoon is

ENSO (e.g. Shukla and Paolino, 1983), but also known to be important is the effect of

seesawing SSTs in the Indian Ocean, which is called the Indian Ocean Dipole (e.g. Johnson

et al., 2016). While there is useful skill in predicting regionally averaged ENSO SST indices at

lead times of 6-12 months, models struggle to represent the spatial pattern of SST anomalies,

which has a major impact on their ability to represent teleconnections to the monsoon (e.g.

Turner et al., 2005). In the case of Indian Ocean SST teleconnections to the monsoon,

Bollasina and Nigam (2009) find a wide range of misrepresentation of local and non-local

air-sea interactions in the Indian Ocean in coupled general circulation model simulations

performed for the Intergovernmental Panel on Climate Change Fourth Assessment Report.

The effect of snow cover in the Himalayas (from the original hypothesis of Blanford, 1884)

and north/west Eurasia have been investigated in a number of observational and modelling

studies, with inconclusive findings (Fasullo, 2004) for a review), in terms of the physical

processes by which the monsoon summer is influenced, and the region from where snow

cover has the most impact. The suggestion from relatively recent studies is that snow cover

over the Himalayan and Tibetan Plateau region can influence the monsoon through a

so-called Blanford-type mechanism involving reduced surface sensible heat and longwave

fluxes, which reduces heating of the troposphere over the Tibetan Plateau and consequently

a reduced meridional tropospheric temperature gradient (Senan et al., 2016; Turner and

Slingo, 2011).
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The representation of the land-surface in models has received less attention than SST.

Soil moisture and vegetation reduce the Bowen ratio, and surface roughness and albedo

influence the boundary layer state. Such surface heterogeneities can influence precipitation

and circulation on a range of time and space scales (e.g. Goessling and Reick, 2011). Webster

(1983) show how representing soil moisture could be important in recreating the northward

propagation of convection, such as that seen in the BSISV. In atmospheric general circulation

model simulations with ’perpetual’ May insolation and SST (held fixed at their respective

monthly mean values), precipitation and circulation evolve considerably, as a result of soil

moisture interacting with circulation(Bollasina and Ming, 2013). The model produces a

slow northwestward migration of the monsoon, which is comprised of large-scale 35-50

day coupled oscillations of soil moisture, precipitation and circulation, consistent with the

observations of Krishnamurti et al. (2012) and the conceptual model of Parker et al. (2016).

As described in §2.1.3.4, the low coastal mountains of the Western Ghats and the Myanmar

coast serve as anchor points, where rainfall is concentrated upstream of them over the sea.

Rainfall also tends to be concentrated along the foothills of the Himalayas. The east African

highlands play an important role in determining the location and intensity of the cross-

equatorial flow (Hoskins and Rodwell, 1995; Slingo et al., 2005). Improved representation of

the effects of orography has come about as a result of increasing spatial resolution in models,

with steep orography becoming better resolved. The CMIP5 historical simulations have a

better multi-model mean than those of CMIP3, in terms of the spatial pattern correlation

with observations, with more realistic rainfall amounts adjacent to the Western Ghats,

and the foothills of the Himalayas, which may be due to their higher horizontal resolution

(Sperber et al., 2013). Lucas-Picher et al. (2011) note that the pattern of precipitation

upstream of the Western Ghats is closer to that of the observational datasets in the 4

regional climate models studied than in the ERA-40 reanalysis, and that they also capture

well the relatively high amount of precipitation in central India, and on the Myanmar coast.

2.3 Moist convection, and its representation in models

Moist convection occurs in narrow, saturated updrafts, with associated narrow, nearly

saturated downdrafts driven by precipitation and a wider area of unsaturated subsidence

surrounding the clouds. It is the result of conditional instability, where the atmosphere is
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unstable with respect to moist adiabatic parcel displacements, but stable with respect to

dry adiabatic displacements. Moist convection can organise into convective systems on a

range of scales, which include thunderstorms, squall lines and mesoscale convective systems.

The horizontal and vertical scales of moist convective updrafts are comparable and range

in scale from several hundred metres for shallow convection to several kilometres for deep

convection. Moist convection is a crucial element of weather and climate around the globe.

It contributes to the transport of heat, moisture, aerosols and trace gases, and in the tropics

is the primary source of precipitation. Deep convection can lead to extreme rainfall events,

and dangerous weather such as flash flooding and high winds. By perturbation of the upper

troposphere and the vertical transport of heat, deep convection can generate planetary

(Rossby) waves, which have an affect on the global weather and climate.

While a typical thunderstorm cell is on the order of 10 km in all three directions, and

individual cumulonimbus clouds can be explicitly resolved at grid-spacings of about 1 km,

it is widely held that a minimum resolution of 100 m is needed to properly resolve deep

moist convection (Bryan et al., 2003a; Petch et al., 2002). As a comparison, the Met Office

Unified Model (MetUM) runs at grid-spacings of ∼17-33km for global weather modelling,

and ∼140-280 km for global climate.

The representation of convection is a dominant source of error in global models (Jung et al.,

2010; Sherwood et al., 2014), and there is evidence that the errors are primarily due to

physical processes that occur on a short enough timescale (within the first few days, often

the first 24 hours) to affect both weather and climate models (Murphy et al., 2004; Rodwell

and Palmer, 2007). Improvements to convective parametrisation schemes, based on weather

models, should also lead to improvements in climate models. It is expected that in the next

10 years, accounting for increases in computing power, global models of weather and climate

will run at grid-spacings ranging from several kilometres, to about 100 km (Holloway et al.,

2012b). As such, it is expected that convective parametrisation will be a necessity for the

foreseeable future, when the combination of complexity, timescale, domain size and model

ensemble size require it.

It can be difficult to identify the source of errors in climate models, due to feedbacks and

compensating errors. The MetUM has been designed to be “seamless”, and as such, can be

configured for use across a range of timescales. Weather models allow the model output to be
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compared with observations to identify short-timescale sources of error in parametrisations

that, when corrected, lead to improvements on all timescales (Martin et al., 2010).

2.3.1 Convective parametrisation

When a process is too small-scale, or complex, to be explicitly represented in a model, it

is parametrised. Assumptions are made about these processes, by setting parameters, to

simplify their representation in numerical models. Parameters are tuned, often unrealistically,

to provide estimates of specific important processes.

Almost all convection parametrisations are based on the assumption of convective quasi-

equilibrium, introduced by Arakawa and Schubert (1974). The thermodynamic adjustment

of the atmosphere by convection is assumed to be almost in equilibrium with the large-scale

non-convective elements of the circulation. The time adjustment of the thermodynamic pro-

file to other forcings is assumed to be nearly instantaneous compared with the slowly varying

large-scale circulation. As in Arakawa and Schubert (1974), most convection parametrisa-

tions represent an ensemble of non-interacting convective plumes in terms of mass flux. The

mass flux for an individual plume is given by

Mi = ρσiwi

where ρ is density, σi is fractional area covered by plume, and wi is the vertical updraft

velocity of the plume

The plume ensemble can be represented spectrally (e.g. Arakawa and Schubert, 1974) or,

more commonly, as a single entraining-detraining ’bulk’ plume (e.g. Yanai et al., 1973).

With increasing spatial and temporal resolution, where the assumptions made in determining

the vertical mass flux (w << wi and σi << 1) become invalid, or the forcing varies rapidly

enough (Davies et al., 2013), the equilibrium assumption begins to break down. In certain

areas, such as the tropical ocean, equilibrium convection is commonly a good approximation,

where the generation of CAPE by large-scale processes is balanced by convection. However,

in continental areas where convection can more often be inhibited by the presence of a

capping inversion, and precipitation does not peak until late afternoon (Yang and Slingo,

2001), models with parametrised convection tend to peak too early, following the diurnal

cycle of insolation (Guichard et al., 2004).
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2.3.2 Errors in parametrised models

Convective parametrisation schemes typically produce too many light rain events, too

few heavy rain events, and have a diurnal cycle of continental precipitation that peaks

too early in the day (Betts and Jakob, 2002; Randall et al., 2003; Guichard et al., 2004;

Stephens et al., 2010; Dirmeyer et al., 2012). The intensity and frequency of precipitation

influences cloud formation and associated radiative effects, aerosol effects on the radiation

balance, latent heating in the atmosphere, and surface hydrological processes (Stephens

et al., 2010). Ground heating of the lower atmosphere due to insolation, which increases the

lower-tropospheric instability, is an important control on the diurnal cycle of summertime

convection and precipitation. The diurnal cycle associated with this large and well-defined

solar forcing is a fundamental mode of variability in the atmosphere, and as such has been

suggested to be an important test for the correctness of any model (Yang and Slingo, 2001).

In addition, mesoscale circulations such as land-sea breezes, katabatic-anabatic winds, or

mountain valley winds can modulate the precipitation regime and produce a diurnal cycle

with distinct regional variations.

2.3.3 Convection-permitting models

In the convection-permitting simulations used here, where convection is entirely explicitly

resolved, the highest resolution simulations have a grid-spacing of 2.2 km, which would

generally be considered suitable for operational purposes, but not high enough to properly

resolve deep convection. Model configurations with small enough grid-spacings to allow

convection to be explicitly resolved are known to give, compared to simulations with con-

vective parametrisations, a more realistic diurnal cycle of precipitation in the tropics, with

rainfall typically peaking over land in the late afternoon (Guichard et al., 2004; Dirmeyer

et al., 2012), and give a better rainfall intensity distribution, but overestimate the amount

(Weisman et al., 1997; Holloway et al., 2012b). For the West African monsoon, when run

over large domains for many days, convection permitting simulations have been shown to

be much better on the continental scale, due largely to their improved representations of

triggering, organisation and the diurnal cycle of precipitation (Marsham et al., 2013; Birch

et al., 2014).
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While convection-permitting models with grid spacings of 1-4 km have been found to

more realistically simulate the physics of larger convective systems, such as thunderstorms,

mesoscale convective systems, and squall lines (Weisman et al., 1997; Romero et al., 2001;

Speer and Leslie, 2002), that does not necessarily lead to a significant improvement in point-

specific forecasting (Done et al., 2004). As resolution increases, errors from initial conditions

and model processes, although smaller, grow more rapidly (Lorenz, 1969). During convective

events small-scale predictability limitations, comparable to observational uncertainties, may

be critical even at scales over 100 km (e.g. Romero et al., 2001). Zhang et al. (2003), using

3.3 km simulations of a 2 day snowstorm, showed that errors are initially in the timing and

position of individual convective cells, and subsequently have an effect on larger-scale aspects

such as the the position of the surface low and the distribution of precipitation. Nonetheless,

Roberts and Lean (2008), in a comparison of 12, 4, and 1 km MetUM simulations of 10

days when convection occurred, find that the 1 km simulation provides a better forecast

of rainfall distribution and high accumulations on scales of >15 km, although the forecast

skill at grid-scale is low.

2.4 Conclusions

The aims of the thesis, were outlined in §1.2. The main topics of the thesis are the monsoon

onset, the relationship of moist convection with the large-scale monsoon circulation, and

rainfall propagation over the Arabian Sea, upstream of the Western Ghats.

In the monsoon onset, the reversal of the meridional temperature gradient, associated with

seasonal changes in heating, establishes the monsoon low-level southwesterlies and upper-

level easterlies, as a result of the thermal wind relationship. There are also more rapid

changes that happen around the time of onset, typically in late May or early June, for

which a number of theories exist, such as rapid changes in heating over the Tibetan plateau,

wind-induced surface heat exchange, and the effect of large-scale extratropical eddies in the

upper troposphere on the overturning circulation. After the first rapid transition, the onset

of the monsoon rains takes a further 6 weeks on average to reach the northwestern parts of

the region, which happens against the mean low-level monsoon circulation, and has recently

been proposed to be a result of the interaction of moist convection with mid-level dry air

(Parker et al., 2016). Chapter 4 presents some of the results from Parker et al. (2016) and
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also looks further at the dynamical changes that take place during the onset, and also the

interannual variability of the onset.

In simulations with parametrised convection schemes, the typical biases in the Indian

summer monsoon are dry bias over India, a wet bias over the equatorial Indian Ocean.

Models with parametrised convection schemes, such as the one used here typically produce

too much light rain, too little heavy rain, and have a diurnal cycle of rainfall over land

that peaks too early, in the early afternoon, following the diurnal cycle of solar heating.

An explicit representation of rainfall generally gives a much better representation of the

diurnal cycle of rainfall over land in the tropics, peaking in the late afternoon, and a

more realistic distribution of rainfall intensities, but tends to overestimate rainfall amounts.

Chapter 5 uses model simulations with and without parametrised convection schemes to

assess how systematic model biases are related to the representation of convection. Given

these differences in the representation of moist convection and rainfall, the work examines

how the large-scale monsoon could be altered. Of particular relevance is how this alters the

representation of the monsoon trough, which forms part of the monsoon circulation, and

where convergence and relatively heavy rainfall are collocated, how this alters the land-sea

temperature contrast and so the circulation, and how different rainfall over the equatorial

Indian Ocean could also alter the circulation.

The rainfall amounts upstream of the Western Ghats, on the west coast of India, are the

second highest within the Indian summer monsoon, after the rainfall amounts over the

Bay of Bengal, upstream of the coastal mountains of Myanmar. The coastal mountain

ranges interact with northward propagating monsoon intraseasonal oscillations, providing

an important control on the temporal and spatial variability of rainfall. Chapter 6 looks at

rainfall propagation upstream of the Western Ghats.

Collectively, these studies shed light on the role of deep convection in the large-scale onset

and circulation, and the role of circulation in the variability of convection.



Chapter 3

Data

This chapter describes the Met Office Unified Model (MetUM) simulations, ERA-Interim

reanalysis (Dee et al., 2011), satellite rainfall retrievals, and radiosonde data that are used

across the thesis. Further details of data and methodology are given as appropriate in later

chapters.
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3.1 Met Office Unified Model simulations

All simulations use the UK Met Office Unified Model (MetUM). The fully compressible

non-hydrostatic deep-atmosphere equations of motion are solved using a semi-implicit,

semi-Lagrangian scheme (Davies et al., 2005). It uses a staggered Arakawa C-grid in the

horizontal and a terrain-following hybrid-height Charney-Phillips vertical grid. There are

a comprehensive set of parametrisations for processes too complex or small-scale to be

physically represented, such as surface exchange (Essery et al., 2001), boundary layer mixing

(Lock et al., 2000), mixed-phase cloud microphysics (Wilson and Ballard, 1999), and an

optional mass flux convective parametrisation scheme (Gregory and Rowntree, 1990).

The MetUM simulations used here come from 2 separate modelling experiments, both of

which include regional domain high-resolution convection-permitting simulations, and also

parametrised convection simulations (at a range of grid-spacings) over the Indian monsoon

region. There are simulations for 18 August to 9 September 2011 (21-days), and for 15

May to 15 July 2012. The domain size is bigger for the 2011 period (Figure ) and, as

the western boundaries are the same and there is a small difference in the location of the

northern boundary, the smaller 2012 simulation does not have the same extent to the south

over the equatorial Indian Ocean and to the east over southeast Asia. In order to reduce

data volume, both the 2011 and 2012 simulations are nested directly within a limited area

simulation (’Driving’, domains in Figure ), which has the same horizontal unrotated grid

as the operational MetUM global model (∼24 km grid-spacing), and is reinitialised every

6 hours with Met Office operational analyses for the 2011 simulations and with ECMWF

analysis for the 2012 simulations The simulations are free-running, and receive hourly local

boundary conditions, which are provided by Driving, and Sea Surface Temperatures (SSTs)

are prescribed and are updated daily from OSTIA analyses (Donlon et al., 2012).

The 2011 simulations (Table a) are a suite of regional MetUM simulations of a 21 day

period starting 18 August 2011 00:00 UTC, which was the most anomalously wet period

(giving the best signal-to-noise ratio) of the 2011 Indian summer monsoon. They were

run as part of the Earth system Model Bias Reduction and assessing Abrupt Climate

project (EMBRACE; a collaboration between nineteen European partners, with the goal of

improving Earth System Models). There are 2.2, 4, 8, and 12 km grid spacing simulations

that treat convection explicitly, with no convective parametrisation and a 3D Smagorinsky
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Table a: 2011 model run configurations. Domains are Free-Running (FR), and Driving
as shown in Figure . LAM stands for Limited Area Model, SMAG is Smagorinsky scheme,

1DBL is 1-D Boundary Layer, and conv param is Convection Parametrised.

Grid-
spacing

Domain Timestep Vertical
Levels and
Lid

Conv.
Scheme

Referred to
as

2.2 km FR 10s 118, 78 km Explicit 3D
SMAG

2.2E

4 km FR 10s 118, 78 km Explicit 3D
SMAG

4E

8 km FR 10s 118 78 km Explicit 3D
SMAG

8E

8 km FR 300s 70, 80 km 1DBL +
CP

8P

12 km FR 10s 118, 78 km Explicit 3D
SMAG

12E

12 km FR 300s 70, 80 km 1DBL +
CP

12P

24 km FR 600s 70, 80 km 1DBL +
CP

24P

120 km FR 1200s 70, 80 km 1DBL +
CP

120P

24 km D 600s 70, 80 km 1DBL +
CP

Driving

Table b: 2012 model run configurations. Domains are free-running (FR), and Driving
as shown in Figure . LAM stands for Limited Area Model, SMAG is Smagorinsky scheme,

1DBL is 1-D Boundary Layer, and conv param is Convection Parametrised.

Grid-
spacing

Domain Timestep Vertical lev-
els

Conv.
scheme

Referred to
as

2.2 km FR 300s 118, 78 km Explicit 3D
SMAG

2.2E

10 km FR 300s 70, 80 km 1DBL +
conv param

10P

scheme for sub-grid mixing. The simulations were originally run at the Met Office to examine

the stratospheric gravity wave field above deep tropical convection (Bushell et al., 2015).

While grid-spacings of 8 and 12 km would normally be considered too coarse to model

without a convective parametrisation, the overlap in grid-spacings allows the effects of the

representation of convection to be isolated from those due to grid-spacing (as in Marsham

et al. (2013) for the West African monsoon). Simulations with parametrised convection

at grid-spacings of 8, 12, 24 (comparable with many global numerical weather prediction

models), and 120 km (comparable with many climate models) use the MetUM Global
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Atmosphere 4.0 (Walters et al., 2014) configuration, with a 1-D boundary layer scheme

for the sub-grid mixing. All of these simulations have a rotated-pole horizontal grid. The

convection-permitting simulations are configured as per the operational MetUM variable

grid-spacing NWP model configuration (UKV) (Cullen, 1993), but with the differences

listed in Table c. The simulations are nested directly within the MetUM N512L70 (∼24 km

horizontal grid-spacing) global model, which is reinitialised every 6 hours with Met Office

operational analyses, and provides hourly local boundary conditions for the free-running

simulations. SSTs are prescribed and are updated daily from OSTIA analyses (Donlon et al.,

2012).

The 2012 simulations (Table b) again form part of a suite of MetUM (version 8.5, with

the newer ENDGame Dynamical core) simulations, and a 2.2 km convection-permitting

simulation and a 10 km parametrised convection simulation are used here. The simulations,

which run from 15 May to 15 July 2012, were designed, in part, to assess model biases

in the Indian monsoon onset, and 2012 was selected as it is considered to be close to an

average monsoon onset, based on climatology. In contrast to the 2011 simulations, these are

performed on an unrotated grid. In standard model configurations, soil moisture properties

vary spatially and, as they are poorly constrained by observations, can produce unrealistic

gradients in soil moisture and evaporative fraction, which influences storm initiation. So,

Table c: Model configuration differences between models that handle convection explic-
itly (2.2E, 4E, 8E, 12E), and the Met Office variable grid-spacing NWP model (UKV). α’s
are scaling factor for reduced off-centering of semi-lagrangian advection (see Webster et al.
(2008)) for further details. θ is potential temperature, LBC is local boundary condition.

2.2E, 4E, 8E, 12E UKV

Timestep (s) 10 50
Dynamics α’s=4*0.6+ fully 3D θ advec-

tion
α’s=0.7, 1, 0.7, 1, non-interp
θ advection

Sub-grid mixing 3D Smagorinsky 2D Smagorinsky + 1D
boundary layer

Vertical Levels 118, 78 km lid L70, 40 km lid
Sponge (on W) yes (from 40 km and in-

creases upwards in strength)
no

RHcrit (%) 99 at all levels 91 to 80
Radiation calls Every 5 mins Every 15 mins
Frictional heating yes no
Qtidy moisture conservation yes no
Smagorinsky diffusion of Qcl,
Qcf

yes no

LBC rim width 12 and 24 points 8 points
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for the 2012 simulations, the standard global configuration MetUM model is initialised with

homogeneous soil property values and run for 10 years to obtain soil moisture values for

May 2012, which are used to initialise the 2012 ’onset’ simulations.

3.2 Reanalysis

Reanalysis, as opposed to analyses from operational forecasting systems, is entirely produced

with the same data assimilation system and so is not affected by changes in method. The

coverage of the global atmospheric circulation that reanalysis data provide is multivariate,

spatially complete, and coherent. Reanalysis must be consistent with observations and also

consistent with the laws of physics, and as such it is widely considered to be representative

of the available observations and also to provide a best estimate of unobserved parameters.

The reanalysis used here is the ECMWF ERA-Interim dataset (Dee et al., 2011). ERA-

Interim comprises global atmospheric reanalysis for the data-rich period from 1979 to

present, with four analyses per day, at 00, 06, 12 and 18 UTC and two 10-day forecasts

per day, initialized from analyses at 00 and 12 UTC. The data assimilation system used

to produce ERA-Interim is based on a 2006 version of the Integrated Forecast System

(Cy31r2). The system includes a 4-dimensional variational analysis (4D-Var) with a 12-hour

analysis window. The atmospheric model uses a T255 spherical-harmonic representation

for the basic dynamical fields, and is coupled to an ocean-wave model. Surface and other

grid-point fields are on a reduced gaussian grid which is approximately uniform at 79 km

on 60 vertical levels from the surface up to 0.1 hPa.

3.3 Satellite rainfall retrievals

Three main satellite rainfall retrieval products are used for comparison with the model

simulations, and to provide some estimate of bias among them The Tropical Rainfall

Measuring Mission (TRMM) 3B42 (version 7) rainfall product (Huffman et al., 2007)

combines precipitation estimates from multiple satellites, and is bias-corrected with rain-

gauge data. It has a 0.25° by 0.25° spatial grid, and is 3 hourly. It combines precipitation

estimates from existing low orbiter microwave rainfall retrieval algorithms with spatial

propagation information from infrared satellite data,
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CMORPH (CPC MORPHING technique), is a satellite rainfall retrieval product which uses

existing rainfall retrieval algorithms for passive microwave sensors on low orbit satellites

to obtain precipitation estimates, and geostationary infrared satellite data to propagate

the precipitation features between microwave estimates, which are then adjusted with daily

rain-gauge analysis (Joyce et al., 2004; Xie et al., 2013). The data are made available on an

8 km horizontal grid and at 30-minute intervals. However, the 8 km grid is obtained from

interpolation from the grid-spacing of the microwave rainfall retrieval algorithms, which is

more on the order of 12 x 15 km. The rainfall estimates between microwave scans come

from time-weighted interpolation of microwave-derived features that have been propagated

from the previous and post microwave scans. Over land, the passive microwave algorithms

are not sensitive to liquid water and precipitation where they rely on ice crystal scattering

extinction at the higher frequencies to derive surface rainrates ((McCollum and Ferraro,

2003; Huffman et al., 2007)).

The Global Satellite Mapping of Precipitation (GSMaP) product (Mega et al., 2014), has

a grid-spacing of 0.1 degree and 1 hour, and uses an algorithm to combine microwave

radiometer and infrared data from multiple satellites, which is then adjusted with daily

rain-gauge analysis. One notable difference between these products is the use of global

analysis (Japan Meteorological Agency) data, which includes precipitation profiles, in the

GSMAP algorithm, while TRMM and CMORPH do not use general circulation model data

in their algorithms.

Assessing the performance of TRMM 3B42 and GSMAP satellite rainfall products over

India, Prakash et al. (2015b) find that while they are capable of representing large-scale

spatial features and capture interannual variability, there are region-specific biases, and

significant biases in rainfall amount over India ( +
−20%). Xin-Xin et al. (2015) find good

agreement in the diurnal cycle of rainfall in TRMM and CMORPH products over most of the

study domain except, notably, the Tibetan Plateau. In a comparison of a number of satellite

rainfall retrievals products, including CMORPH and TMPA 3B42, with a quality-controlled

gridded rain-gauge dataset over India developed by the India Meteorological Department,

Prakash et al. (2014) find that all the satellite rainfall products give a significantly lower

estimate of the all-India seasonal (June to September) rainfall, but that all have a high

probability of detection and low false-alarm ratio. Comparing biases in TRMM 3B42 versions

6 and 7, Prakash et al. (2015a) find an overall improvement of 5-10% in V7 over high rainfall
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regions on the west coast of India and in the northeast and central regions of the country,

but there are still large biases in central India regions where monsoon low pressure systems

are common.

3.4 Radiosonde data

The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA, Durre

et al. (2006)). IGRA provides quality controlled soundings from 1500 globally distributed

stations. The quality control procedures check for proper station identification, eliminate

duplicate levels within soundings, and select one sounding for every station, date, and time.

Algorithms check for format problems, physically implausible values, internal inconsistencies

among variables, runs of values across soundings and levels, climatological outliers, and

temporal and vertical inconsistencies in temperature. Measurements identified as erroneous

are set to missing, avoiding potential complications associated with interpreting flag data.

Observations include pressure, temperature, geopotential height, dewpoint depression, wind

direction, and wind speed at standard, surface, tropopause, and significant levels.

IGRA was used here because of the project’s particular attention to record integrity. While

IGRA incorporates fewer stations and has less spatial coverage prior to 1970 than other

global-scale datasets, it tends to exhibit a higher level of completeness and integrity. Further-

more, its procedures avoid certain inconsistencies and deficiencies found in other datasets

by focusing on being able to identify reliable data records, to detect the most significant

and most common types of errors, and to preserve local phenomena.





Chapter 4

A radiosonde climatology of the

Indian monsoon onset

4.1 Introduction

The onset of the Indian monsoon is a greatly anticipated event, and year-to-year variations

in its timings and intensity have profound consequences, through their impacts to agricul-

ture and water resource replenishment, for the people of the Indian subcontinent. There

is, however, no universally accepted physical explanation for the first rapid onset, which

typically happens in May, and also for the subsequent progression of the onset of the rains

towards the northwest of India and Pakistan, which typically takes 6 weeks and happens

against the mean low-level flow and advection of moisture (§ 2.1.2).

This chapter explores a new conceptual model of the progressive onset of the monsoon

rains, originally published in Parker et al. (2016), which emphasises the role of mid-level dry

air. The author conducted the original radiosonde data analysis published in Parker et al.

(2016): This analysis is here extended to inspect the dynamical fields and their interannual

variability in much more detail. In particular, the chapter has two objectives;

• In the climatological mean onset, the work examines in further detail the dynamical

changes that accompany the thermodynamic changes examined in Parker et al. (2016).

The dynamical changes include the weakening of the dry mid-level northwesterly winds,

the developing low-level southwesterly flow and associated change from upper-level

49
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westerly to easterly flow, and the development of the monsoon trough circulation. An

outstanding question is whether the mid-level northwesterly flow weakens as a result

of processes internal to the Indian monsoon, like the onset of deep convection, or as

a result of larger-scale external changes.

• In the interannual variability of the onset, the work examines whether there is more

pre-onset mid-level drying by the northwesterly winds in years with a later onset,

consistent with the hypothesis of Parker et al. (2016).

The next section briefly reviews the hypothesis of Parker et al. (2016) and is followed by

more background for the two further objectives.

4.1.1 The role of mid-level dry air in the climatological mean onset, and

some open questions

Parker et al. (2016) emphasises the role of mid-level dry air in controlling the progression of

the onset of deep convection towards the northwest. The hypothesis presented in Parker et al.

(2016) is as follows. Prior to, and during the onset, a layer of dry air over-runs the monsoon

flow and inhibits rainfall. The midlevel dry intrusion is deeper towards the northwest and

shallower towards the southeast because, as the dry air is advected towards the southeast

from the northwest, shallow cumulus and congestus clouds moisten the dry layer from below.

The onset of deep convection happens first in the south because the dry layer is shallowest

there. Increasing moisture advection by the strengthening monsoon circulation allows the

progressive erosion of the dry layer towards the northwest by shallow-cumulus moistening,

and the northwesterly flow weakens to the south of the northern limit of the rains due to

momentum mixing by deep convection and the intensification of the monsoon trough.

In Parker et al. (2016), the analysis of the changing dynamics that accompany the monsoon

onset is focused on establishing that the onset proceeds from the south to the north primarily

as a result of the influence of mid-level dry air on moist convection, and not as a result of

the progression of a frontal air-mass boundary, as proposed in Sawyer (1947). It is argued,

in Parker et al. (2016), that the temporal mean winds and back-trajectories show that

mid-level northwesterlies are always moving relatively rapidly through the transition zone

around the northern limit of the rains, compared to the speed that the northern limit moves



Monsoon onset 51

towards the northwest. If the northern limit of the rains was instead associated with the

progression of an air-mass front, then the winds would be expected to indicate a boundary,

with winds flowing along the front, and not perpendicular to it.

Parker et al. (2016) noted that from the thermodynamic observations alone it is not easy

to establish the extent to which the erosion of the dry intrusion during the onset period

is caused by strengthening soil moisture and moist convection internal to the monsoon, or

by weakening dry advection in the mid-level dry intrusion driven by circulation changes

external to the monsoon. Therefore, as an extension to the work in Parker et al. (2016), the

work here further examines how the kinematics and dynamics of the onset could interact

with the thermodynamic changes that allow the onset to progress to the northwest. In

Parker et al. (2016), the winds were examined around 3 dates in the climatological mean

onset (31 May, 15 June and 15 July), so there is scope for further insight based on an

analysis of the wind fields at higher temporal resolutions, which is presented here.

A question outlined for further analysis in Parker et al. (2016), is how the mid-level north-

westerlies weaken; How much the weakening is a result of forcing by cloud thermodynamics

or larger-scale circulation changes. If cloud thermodynamics play an important role in the

weakening of the northwesterlies, then the development of the monsoon trough circulation

and the associated moist convection might be expected to exert significant control on the

weakening of the northwesterlies. In terms of large-scale interactions, the weakening of the

mid-level northwesterlies as the onset progresses is known, at least in part, to be related to

the development of the Tibetan anticyclone and the transition from upper-level westerly to

easterly thermal winds over the monsoon region. Here, in addressing Objective I, the work

here will analyse these circulation changes in greater detail.

4.1.2 Interannual variability

Parker et al. (2016) argued that if mid-level dry air slows the onset of the summer rains,

it might be intuitive to expect drier mid-levels in years with a more inhibited onset. The

results showed how years with an earlier onset at one location in central India (Nagpur), the

mid-level air over India before the onset is more likely to have passed over oceanic regions

and from lower altitudes, while in later onset years, the air is more likely to have descended

from the dry desert regions in the northwest. This suggests that the moisture content of the
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mid-level air over India should be lower in years with a later onset because of the path it

has taken. However, this analysis in Parker et al. (2016) was relatively superficial. Here, in

addressing Objective II, the aim is to examine, using different measures of onset, whether

the interannual variability of mid-level dry air in the pre-onset period is related to the

timing of onset, as proposed in Parker et al. (2016).

4.2 Methods

As in Parker et al. (2016), observations are prioritised in the analysis. This is because

the hypotheses and aims addressed here concern fine balances between convection and its

drivers, and these processes are poorly handled in models.

4.2.1 Radiosonde data

The radiosonde data used here comes from the Integrated Global Radiosonde Archive

(IGRA, Durre et al. (2006)), which is described in § 3.4. Mean profiles at Visakhapatnam,

Nagpur, Aurangabad, Jodhpur, Lucknow, and Kandahar (Figure ) are computed for the

years 1971-2014 at all stations except Aurangabad, where it is for 1979-2014 and Kanadahar,

where regular soundings only become available from 2007 onwards. The measured variables

of pressure, temperature, dewpoint temperature, wind direction, wind speed and geopotential

height are interpolated onto 200 vertical levels (between 1080 and 50 hPa) using simple

linear interpolation, before any calculation of other parameters and averaging. Launches at

all times are included in the averaging.

Northwest to southeast sections (using station data from all the stations except Lucknow,

and so approximately along the dashed line in Figure ) are shown for key dates around

the time of the monsoon onset (31 May, 15 June, 15 July), which are 5-day averages.

The orientation of the section was selected to be approximately perpendicular to the

climatological monsoon onset isochrones. For the Indian stations, the numbers of soundings

used at each station in the pentads is a minimum of 225 and a maximum of 406, and at

Kandahar, the 1 June pentad is the minimum with 72 soundings.
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Topographic height / m

Figure : Map of the study region, with topographic height contoured in metres. Loca-
tions of radiosonde stations used in the analysis are labelled, and the line (dashed) show
the axis for the creation of vertical cross-sections from the radiosonde data. Climatological
monsoon progression isochrones (day/month) are also shown. Reproduced from Parker

et al. (2016).

Mean time-pressure vertical sections at Nagpur and Lucknow are composited relative to

the yearly onset date declared by the Indian Meteorological Department (IMD) at those

locations. The dates available are from 1991-2015 at Nagpur, and 1996-2015 at Lucknow.

As a measure of the evolution of the buoyancy at Nagpur and Lucknow, throughout the

profile the virtual potential temperature of a lifted parcel (θv(par)) is compared to that of

the environment (θv(env)). The parcel properties are calculated from the composite daily

mean, relative to the yearly IMD onset dates, of the thermodynamic properties of the

50-500 m layer above the surface, from which the parcel ascent profile is calculated using

dry-adiabatic (below the LCL) and pseudo-adiabatic (above the LCL) lapse rates. The

lifted parcel and environment profiles of virtual potential temperature are calculated using
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the formula:

Θv = Θ
w + ε

ε (1 + w)
(4.1)

where w is the water vapour mixing ratio and ε is the ratio of dry air constant and vapour

constant and as given in Markowski and Richardson (2011, p. 13).

4.2.2 Measures of onset

Different measures of onset are used here and in Parker et al. (2016), in order to composite

radiosonde data relative to onset at Nagpur and Lucknow, and to examine the interannual

variability of the onset.

The onset can, over different parts of India in any year, be early or late, fast or slow, and

exhibit multiple transitions. The spatial and temporal complexity of the onset complicates

efforts to determine a measure of the onset interannual variability that is suitable for a

particular purpose. All the measures of onset interannual variability used here and in Parker

et al. (2016) give a measure of the onset for regions of central and northern India. From

the IMD defined climatological onset isochrones (Figure ), the onset moves through this

region between 10 and 15 June, after the onset has moved north along the west coast of

the Indian peninsula and in the Bay of Bengal, and when the onset progresses inland and

towards the northwest from the northern Bay of Bengal.

To define early and late years Parker et al. (2016) use yearly IMD onset dates at Nagpur,

in central India. The IMD pick their onset dates based on an analysis of regional rainfall

amounts and the state of the large-scale circulation. As such, the IMD method is partly

subjective and, further to that, the circumstances in each year that led the IMD to declare

the onset date at Nagpur are not known.

With regard to the interannual variability of the onset, during the preparation of Parker et al.

(2016), a number of methods of categorising the yearly onset characteristics were considered,

including how early or late the IMD onsets dates were at Kerala, Nagpur and Lucknow,

and the amount of time between them for fast and slow onsets, as well as an examination of

the yearly spatial pattern of the IMD onset isochrones. It was decided, for the publication,

based on northwest to southeast radiosonde composite sections of different years, that these

methods of categorising the onset variability did not give a clear indication of a sufficient
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method of defining the interannual variability, in the context of further understanding the

role of the dry intrusions in the timing of the onset.

The work here uses two methods to characterise the onset interannual variability, which

are objective and are based solely on rainfall estimates over large areas determined to

exhibit homogeneous onsets of rainfall. The IMD do not only use rainfall estimates to

determine onset because in certain regions, most notably in Kerala where onset is first

declared, such methods can fail due to, for example, the spatial and temporal complexity

of local rainfall patterns and the occurrence of bogus onsets (e.g. Flatau et al., 2001). The

methods used here use rainfall estimates from regions in central and northern India (which

Nagpur lies within) objectively identified as having spatially and temporally homogeneous

rainfall patterns over a large enough area (Parthasarathy, 1995; Fitzpatrick et al., 2016)

that issues like these do not unduly influence the characterisation of onset from rainfall

estimates alone.

Fitzpatrick et al. (2016) identifies, using the TRMM 3B42 rainfall retrievals (1 April to

31 July 1998-2104), regions in the Indian monsoon where the interannual variability of

the local rainfall onset exhibits a certain degree of homogeneity (see § 2.1.2.2 for some

background information). An interannual Localised Onset Region (LOR) is a region where

at least ncrit% of grid cells share similar interannual variability in the rainfall onset above

a certain confidence level (x). The local onset date at every grid cell is defined based on

an agronomic definition of onset (Marteau et al., 2009). The local onset date is taken as

the first of two consecutive rainy days with at least 1 mm of precipitation, where the total

precipitation is greater than 20 mm, and which is not followed by a 7-day dry period (less

than 5 mm rainfall) in the next 20-days. The LORS used here come from taking ncrit% as

80% and x as the 95% confidence interval.

The LOR method used in Fitzpatrick et al. (2016) is restricted to either square or rectangular

LORs, but this method can be extended to allow for nonregular-shaped LORs. The reasoning

behind this is to keep the alogrithm relatively simple so that it is repeatable and practical

for dependent stakeholders. For each grid cell, the algorithm assesses the largest possible

spatial scale (with a minimum accepted size of a 3-by-3 grid box) where at least ncrit%

of all grid cells show, at the x confidence level, correlation between their onset date time

series and the median onset date time series of the LOR.
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In the Indian monsoon, the 3 regions with LORs are over the Arabian Sea and Western

Ghats, over the Bay of Bengal and further east, and over north central India (Figure ).

In order to consider the interannual variability in the monsoon onset from the northwest

Bay of Bengal towards the northwest, a subset of the LORs is taken from over northern

central India, from within the bounding box in Figure . Over north central India, there

are 2 distinct areas with different size and variance of the largest LORs, with a region of

larger size/smaller variance to the northeast, and a region of smaller size/larger variance

to the southwest (the outlined region of relatively smaller size/larger variance in Figure ).

Inspection of the onset dates for the LORs covering this outlined region indicates that the

large variance in this region comes mostly from years where any rainfall onset is too weak

to pass the threshold test.

The average onset dates of LORs larger than 160,000 km 2, within the bounding box in

Figure give the interannual variability of the onset date. Years of early and late onset are

taken as years outside the lower and upper 25th percentiles of these onset dates respectively.

The second way of defining the onset interannual variability uses mean June rainfall in a

large region covering northwestern and central parts of India (Figure ). The region has been
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Figure : Size and variance, at each grid-point, of the largest bounding Localised Onset
Region (LOR), where the LORs are where 80% (ncrit%) of grid-points exhibit homogeneity
in rainfall onset date above the 95% confidence interval. The dot-dashed box shows the
region where the LOR onset dates are averaged from, to obtain yearly onset dates, from
which early and late onset years (Table a) The dotted line indicates a region described
in the text. The LORs are calculated using TRMM 3B42 rainfall retrievals for the years

1998-2014.
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chosen based on the coherence of its rainfall variability and the association of the rainfall

variability with regional/global circulation parameters (Parthasarathy et al., 1993). The

June rainfall estimates for this ‘Homogeneous Indian Monsoon’ (HIM) region come from a

monthly rainfall time series, provided by the Indian Institute of Tropical Meteorology, that

is based on rain gauges measurements. Years outside the upper and lower 25th percentiles

of June rainfall define years with high or low June rainfall.

Table a shows the years of early and late onset selected using the LORs and years with high

or low June rainfall selected using the HIM June rainfall estimates. The LORs are calculated

using TRMM satellite rainfall retrievals from 1998 to 2014, and the years 1979 to 2014

(because of ERA-Interim data availability) from the HIM series are used in determining

years to composite. Comparing the early LOR onset years with high June rainfall years and

Figure : The ’homogeneous Indian monsoon rainfall region’ as defined by the Indian
Institute of Tropical Meteorology (shortened to IITMHomInd here), is shown in green. The
region exhibits coherence in its rainfall variability, which is associated with regional/global
circulation parameters (Parthasarathy et al., 1993). Reproduced from Indian Institute of

Tropical Meteorology.
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the late LOR onset years with low June rainfall years, in both 3 out of 4 of the LOR onset

years are also included in the corresponding June rainfall years, which shows a correlation

between the date of onset and the amount of rainfall in the region.

Early minus late onset northwest to southeast sections are shown using both radiosonde data

and ERA-Interim reanalysis because of the degree of variability in the number of radiosonde

soundings going in to each pentad-mean (Table b), where the potential effect of quality issues

with the data from individual radiosonde soundings increases as the number of soundings

decreases. The ERA-Interim datasets provides higher frequency, more consistent sampling

than the radiosonde data, but with the caveat that it is an analysis not direct observations.

The numbers of soundings in Table b show, for the Indian stations (i.e excluding Kandahar),

a higher number of soundings in general in early LOR onset compared to late LOR onset

years, and also in high June HIM rainfall years compared to low years, which may reflect a

greater need on the part of the IMD, for more soundings in years where the onset is more

vigorous. Radiosonde soundings from Indian stations are not assimilated into ERA-Interim,

and while it is not clear how this will affect biases in ERA-Interim, it does mean that the 2

datasets are independent of each other. Comparing the similarities or differences between

them therefore adds robustness to analysis of whether features identified are climatologically

important in the interseasonal variability of onset.

Method Early or high rainfall years Late or low rainfall years

LORs 2001, 2003, 2011, 2013 1999, 2009, 2012, 2014

June rainfall in homo-
geneous Indian monsoon
rainfall region

1980, 1986, 1990, 1994,
2001, 2002, 2008, 2011,
2013

1982, 1984, 1987, 1992,
1995, 2009, 2010, 2012,
2014

Table a: Years outside the upper and lower quartiles of mean LOR onset date for
LORs within the bounding box in Figure (late/early onset years respectively) and of June
rainfall in the homogeneous Indian monsoon region in Figure (high/low rainfall years
respectively). Bold years are in both high rainfall and early onset years, or in both low
rainfall and late onset years. LOR years are selected from the years 1998-2014, and June

rainfall years are selected from 1979-2014.



Monsoon onset 59

Station Early LOR Late LOR High June Low June

Kandahar 10/19/20 21/14/13 13/24/25 29/33/18
Jodhpur 29/29/22 16/19/12 56/53/46 37/40/44
Aurangabad 19/14/20 14/9/8 38/32/31 25/25/21
Nagpur 35/31/37 17/12/19 61/60/59 37/34/50
Visakhapatnam 30/40/39 18/16/14 50/64/60 43/33/28

Table b: Number of radiosonde soundings in pre/mid/post onset pentad periods (be-
ginning 31 May/15 June/15 July) at stations in northwest to southeast sections (Figure )
for early/late LOR onset years and high/low June rainfall years. Soundings come from

the onset years given in Table a.

4.3 Results

4.3.1 Thermodynamic perspective on the onset

Originally presented in Parker et al. (2016), Figure b shows northwest to southeast sections

of some thermodynamic properties, derived from radiosonde soundings, for dates around

the onset.

There is a general increase in the low-level Water Vapour Mixing Ratio (WVMR) towards

the northwest as the onset progresses (Figure b(a),(b),(c)). The wedge of low-level high

water vapour-mixing ratio (WVMR) that extends inland from the southeast around 31 May

(Figure b(a)) deepens by 15 June (Figure b(b)). By 15 July (Figure b(c)), the high WVMR

monsoon layer has become much less wedge-like, and the column moisture is much more

similar at all the stations from Jodhpur to the coast.

The onset of deep convection towards the northwest is closely related to the relative humidity

(RH) along the section (Figure b(d),(e),(c)); when the RH is low, cumulus convection is

suppressed through the entrainment of dry air. Around 31 May, the contours of RH near

the coast show higher RH at the surface confined close to the coast, and a mid-level (700-

500 hPa, around the freezing level) extension inland of the moister air from the coast, which

is partly from the detrainment of moisture from cumulus clouds, but also possibly from

the partial detrainment of remote cumulonimbus storms. By 15 June (Figure b(e)), from

Jodhpur to the coast the contours of RH up to the freezing level are close to vertical and

near the surface there is a wedge of high RH with a similar gradient to that of the WVMR.

After onset, around 15 July (Figure b(f)), there is an RH maximum over central India

(>80% at Aurangabad, and Nagpur) between 900 and 650 hPa, and also in the wedge of
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Figure b: Northwest to southeast sections of mean atmospheric thermodynamics
and winds from radiosonde data in the period 1971-2014, for 5-day periods centred on
(a),(d),(g),(j) 1 June, (b),(e),(h),(k) 15 June and (c),(f),(i),(l) 15 July. Vertical lines show
the locations of the radiosonde stations, labelled as ’V’=Visakhapatnam, ’N’=Nagpur,
’A’=Aurangabad, ’J’=Jodhpur and ’K’=Kandahar (station locations are marked on Fig-
ure ). The panels show (a)-(c) water vapour mixing ratio (g kg−1), (d)-(f) relative humidity
(%), (g)-(i) θe (K), and (j)-(l) θes (K). On each panel the winds are shown in two forms:
wind vanes and feathers indicate the horizontal winds relative to geographical coordinates,
while the vectors show the horizontal winds relative to the section orientation shown on
Figure , with a horizontal vector representing flow parallel to the section. The solid line

marks the LCL and the dotted line marks the T=0°C level.
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low-level RH. At Aurangabad and Nagpur, the low-level pattern of low RH prior to onset,

and high mid-level RH after onset are closely related to the winds, with the layer of dry

pre-onset air linked to the dry northwesterly winds, and the post-onset RH maximum linked

to the moist southwesterly monsoon flow.

The mid-level dry air, which is advected from the northwest, forms a wedge of low entropy

(θe) air, which extends down to the coast prior to onset and retreats as the monsoon onset

progresses (Figure b(g),(h),(i)). There is a mid-level minimum in θe at around 600-500 hPa,

which is slightly above the freezing level prior to onset (Figure b(g)), and below during and

after onset (Figure b(h),(i)). The RH is slightly higher around the freezing level, indicating

it is the temperature profile that determines the height of the θe minimum. There is a layer

of high low-level θe, which is highest to the southeast and deepens and flattens through

the onset, but its slope is different to that of the WVMR. The general pattern is one of

increasing θe at all stations through the onset.

The saturated equivalent potential temperature (θes) is a function of temperature and

pressure only, and is homeomorphic with temperature at a given pressure level. A θes

decrease with height indicates a lapse rate between the moist and dry adiabatic lapse rates,

and so conditional instability. A shallower gradient of θes decreasing upward indicates a

profile closer to pseudoadiabatic. Prior to onset, the highest low-level temperatures (and

so highest θes; Figure b(j)) are over central India (Jodhpur, Aurangabad, and Nagpur),

and are nearly constant in the lowest ∼50 hPa. Above this low-level near-pseudoadiabatic

layer at these stations, there is a strong negative θes gradient up to ∼600 hPa (below the

freezing level), where there is low dry static stability (dθ/dz) associated with the well-

mixed air in the dry intrusion and, above the freezing level up to ∼200 hPa, θes is again

nearly constant and so close to pseudoadiabatic. As the onset progresses, low-level cooling

(below ∼800 hPa) begins at the central Indian stations and progresses to the southeast

(Figure b(k),(l)), bringing the profile below the freezing level closer to pseudoadiabatic. The

cooling will likely be due to a combination of strengthening cool advection from the west,

convective downdraughts, increased cloud cover, and increasing soil moisture and vegetation

cover which will reduce the surface sensible heat flux (Parker et al., 2016). At the same

time as the low-levels cool, the low-level RH and θe increases. In the mid-levels, there is

large-scale warming along the section through the onset.
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The low-level cooling and mid-level warming bring the profile closer to pseudoadiabatic as

the onset progresses. In the mid-levels, warming acts to reduce CAPE, while the low-level

cooling reduces CIN. The increasing low-level θe reduces CIN, and increases CAPE. As

such, there is a combined effect of the low-level cooling and moistening that reduces CIN,

but the mid-level warming and low-level increase in θe give opposite effects in terms of

CAPE. In addition, the general RH increase with time reduces the tendency for drier air

to inhibit the development of convective clouds.

The role of dry and moist advection is clearly one important factor in the thermodynamic

balance (along with surface and convective fluxes). Addressing Objective I, the wind fields

are examined in more detail in the next section.

4.3.2 Analysis of the thermodynamic onset at high temporal resolution

The northwest to southeast sections in Figures b give snapshots of the evolving spatial

structure of thermodynamic fields as the onset of the monsoon progresses. In Parker et al.

(2016), the onset is also examined through the evolution of thermodynamic fields at one

station (Nagpur), which are composited relative to the yearly IMD onset date (panels from

Figure 8 in Parker et al. (2016) are reproduced in Figure b(a),(c),(e),(g)). The analysis

is extended here, by also considering the evolution of the same thermodynamic fields at

Lucknow (Figure b(b),(d),(f),(h)). Lucknow (26.9°N, 81°E) is north-northeast of Nagpur

(21.2°N, 79.8°E) so, for example, after the monsoon trough is established, it is climatologically

in the returning southeasterly flow, whereas Nagpur is in the westerly part of the flow

(Figure b).

The mean IMD onset date at Lucknow is one week later than at Nagpur (23 June compared

to 16 June). How this might relate to differences in the evolution of the thermodynamic

profile, in particular with regard to the erosion of the mid-level dry layer, is a pertinent

question. No further hypothesis are proposed in this respect. However, the differences in

the thermodynamics of the onset between Nagpur and Lucknow may give some indica-

tion of whether differences in the evolution of the mid-level dry layer, or the low-level

thermodynamics characteristics might play a significant role.
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(a) (b)

(c) (d)
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T=0◦C LCL

Figure b: Time-pressure sections for Nagpur (a),(c),(e),(g) and Lucknow (b),(d),(f),(h)
showing (a),(b) relative humidity, (c),(d) θe, (e),(f) θes with virtual potential temperature
θv over plotted (contours) and (g),(h) buoyancy of lifted boundary-layer parcels (θv(par)−
θv(env)). All panels show LCL (solid line) and level of T=0°C (dotted line). The profiles
are composite means for days relative to the Indian Meteorological Department onset date
(day 0 in the time axis) in each year for the years 1991-2015 at Nagpur, and 1996-2015 at
Lucknow. Over these periods, the mean arrival of the northern limit at Nagpur is 16 June,

and at Lucknow is 23 June.
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Figure b: Mean relative humidity (shading, %) and horizontal winds (vectors, m s−1)
from ERA-Interim reanalysis averaged over 5-day periods centred on (a), (d), (g), (j), (m)
31 May (around first onset; left), (b), (e), (h), (k), (n) 15 June (mid-onset; centre) and (c),
(f), (i), (l), (o) 15 July (full monsoon; right column), over the years 1979–2014. The fields
are shown on levels (a), (b), (c) 600 hPa (top row), (d), (e), (f) 750 hPa, (g), (h), (i) 850 hPa
and (j), (k), (l) 925 hPa. The lower row (m), (n), (o) shows vertically-integrated moisture
flux (VMF) vectors (kg m−1 s−1; integration is performed from the surface to 100 hPa)
and moisture flux convergence, scaled to represent mm day−1 of equivalent rainfall. The
state of Kerala is indicated with a letter ’K’. The star indicates a location referred to in
Parker et al. (2016). Regions in which the orographic height exceeds 1000 m are shaded

in grey. Reproduced from Parker et al. (2016).
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4.3.2.1 Relative humidity analysis and the cloud fields

The RH at Nagpur prior to onset (Figure b(a)) shows a mid-level cloud maximum close

to the freezing level (550 hPa), which is gradually replaced by a deepening layer of higher

relative humidity from about 10 days prior to onset. The top of the high RH layer, from

about 8 days prior to onset ascends from the freezing level to ∼350 hPa around onset, and

there is also moistening down to the surface, implying a growth of deep convective rainfall

prior to the onset. At the same time the LCL drops from ∼700 hPa in the pre-onset, to

∼900 hPa around onset. There is a burst of higher RH (80- 90%) from onset or 1 or 2 days

before, to about 7 days after onset, with an RH maximum between 800 and 700 hPa, after

which it reduces (to 60-70% below the LCL, 70-80% above the LCL up to about 700 hPa,

and 60-70% from 700 to 400 hPa).

At Lucknow, the mid and low-level RH (Figure b(b)) profile prior to onset is more constant

below the freezing level than at Nagpur, because the RH is higher below the LCL, and lower

above. At Lucknow there is also no cloud maximum around the freezing level prior to onset,

although there may be some evidence of one at ∼700 hPa. The differences between the RH

prior to onset at Nagpur and Lucknow are consistent with the north-south differences in

wind and RH shown in Figure b, where at 600 hPa, the northwesterly wind and lowest RH

are concentrated to the north, just south of the Himalayas, and at lower levels, the lowest

RH is further south, closer to Nagpur.

The RH at Lucknow increases markedly around 8 days prior to onset, like at Nagpur.

However, in-line with the higher low-level RH at Lucknow (there is also some evidence of a

moister surface), the LCL is lower prior to onset, at ∼800 hPa, and dropping to ∼900 hPa

around onset (similar to Nagpur).

4.3.2.2 Evolution of the dry intrusion

At Nagpur, as well as the increase in the RH of the dry layer above the LCL (45-60%),

which will tend to suppress early cumulus development, to higher RH from about 5 days

prior to onset, there is an increase from the low θe (Figure b(c)) values of the mid-level dry

intrusion from 20 days prior to onset. On the same timescale, the low-level θe also increases,

and from about 10 days prior to onset there is a relatively abrupt increase in the depth of
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high low-level θe, to just above the LCL, at the same time as the RH increases above the

freezing level (Figure b(a)), which suggests a significant deepening of convection. Similar

to the burst of higher RH around onset, there is a mid-level maximum in θe close to onset

(700 to 300 hPa).

The pattern of increasing mid-level and low-level θe in the 20 to 30 days prior to onset

at Nagpur is similar at Lucknow (Figure b(d)). However, pre-onset the mid-level (800 to

300 hPa) values around the θe minimum are, as with the RH, lower, and the low-level (below

800 hPa) values are higher (also as with the RH).

4.3.2.3 Evolution of the conditional instability field

At Nagpur and Lucknow θes (Figure b(e)(f)) reduces below the LCL, from about 5 days prior

to onset, and at the same time increases in the mid-levels (600 to 400 hPa). Consequently,

close to onset the gradient becomes much closer to constant throughout the profile, which

indicates a profile closer to pseudoadiabatic throughout the column that is more conducive

to moist convection (as also seen in Figure b tephigrams). Pre-onset θes below the LCL is

lower at Lucknow than at Nagpur, consistent with Nagpur being closer to the pre-onset

heat low temperature maximum. This indicates that that the higher subcloud θe values at

Lucknow are due to higher moisture content.

The contours in Figure b(e),(f) show the virtual potential temperature θv at Nagpur and

Lucknow. At Nagpur, there is a relatively shallow gradient below 600 hPa prior to onset,

where the air is dry and well-mixed, and from about 10 days prior to onset θv below

∼700 hPa reduces markedly, and there is a more gradual increase in θv, above ∼700 hPa in

the 30 days prior to onset. Both these contribute to increasing dθ/dz, but it is the low-level

cooling which dominates. At Lucknow, the profile below ∼700 hPa prior to onset is more

statically stable, indicating a less deep well-mixed layer.

As the temperature below 700 hPa decreases prior to onset (Figure b(e),(f)), θe is increasing

and the LCL descends (Figure b(c),(d)), due to moistening in the boundary layer (Fig-

ure b(a),(b)). The effect of the combination of these changes with the pre-onset mid-level

warming (Figure b(e),(f)(e),(f)) are reflected in the parcel buoyancy (Figure b(g),(h)). As

the LCL descends prior to onset, the depth and total magnitude of the CIN layer below it

reduces, and from about 8 days prior to onset, there is a clear increase in the buoyancy, in
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Figure b: Climatological mean radiosonde profiles from (top row; (a)-(c) Jodhpur,
(d)-(f) Nagpur and (g)-(i) Visakhapatnam, representing a transect from the northwest
to southeast of India. Temperature (red) and dew point (blue) profiles are plotted as
tephigrams, for 31 May (around first onset in the far south of India); panels (a), (d), (g),
15 June (transition period); (b), (e), (h) and 15 July (around the end of onset); (c,f,i).

Station locations are shown in Figure . Reproduced from Parker et al. (2016).
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the mid and upper-levels (above 700 hPa), in line with an increase in the parcel θe, which

has a much larger effect than that of the mid-level warming around onset, which will reduce

the buoyancy there.

In conclusion, the thermodynamic data from Lucknow broadly support the conclusions of

Parker et al. (2016) regarding the detailed thermodynamic changes associated with the

onset. However, the differing locations of the 2 stations result in some notable differences.

These are interpreted in relation to the the large-scale circulation, which affects the low

and mid-level moisture content and the temperature below the LCL. Pre-onset at Lucknow,

as a result of these differences, the LCL is lower and there are lower mid-level values of θe.

The next subsection explores the changes in the wind fields at high temporal resolution at

the two stations, providing details which were not considered by Parker et al. (2016).

4.3.3 Wind fields around onset

4.3.3.1 Spatial and temporal variations in the winds

When relating the changing dynamics during the onset to the thermodynamic changes

described in the previous section and in Parker et al. (2016), the weakening of the mid-level

northwesterlies that advect dry air over India is particularly pertinent. This change happens

within and as part of large-scale circulation changes from the winter to summer monsoon

circulation, the best known of which is probably the establishment and strengthening of the

low-level summer monsoon circulation pattern over India, with westerly-southwesterly winds

that cross the subcontinent from the Arabian Sea, and a returning southeasterly flow into

northern India, around the monsoon trough. At the same time, upper-level westerlies over

the region are gradually replaced by easterlies, as the baroclinic winds adjust to the seasonal

reversal of the meridional temperature gradient in the lower and mid troposphere. There is

also the reversal of the deep meridional overturning circulation (§ 2.1.1.2), which is much

more abrupt. The evolution of the zonal and meridional winds along the same northwest to

southeast section as shown for the thermodynamics (Figure b) and also at Nagpur (Figure b)

are useful in examining the relationship between these large-scale dynamical changes and

the changes that are most directly relevant to the hypothesis of mid-level dry air as a control

on the progression of the onset from the north to the south.
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The contours of zonal wind along the northwest to southeast section, for the pentads around

onset (Figure b(a),(b),(c)), are instructive in relating the changing upper-level baroclinic jet

winds to the changing winds beneath, in the mid and low levels of the troposphere. As the

onset progresses, the upper-level westerly jet winds are gradually replaced by upper-level

easterlies. Through the onset, as seen in these sections, the upper-level westerlies weaken

and become less deep towards the northwest and the upper-level easterlies strengthen and

deepen from the southeast.

Associated with the upper-level transitioning from westerly to easterly winds over India

are similarly timed changes in the winds below. Between the LCL and the freezing level,
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Monsoon onset 70

more or less in line with the limit of the easterly winds above the freezing level, is a region

of easterly winds which are weakly discernable at Aurangabad and Nagpur on 15 June and

have moved to Jodhpur by 15 July. In the 15 July pentad, when these easterly winds below

the freezing level have reached Jodhpur, westerly winds have developed to the southeast

(with the strongest westerlies below 800 hPa at Aurangabad and Nagpur) which are the

established low-level monsoon flow. This matches with the reanalysis winds at 600 hPa,

which show, in the 31 May and 15 June pentads (Figure b(a), (b)), a change from winds

with a westerly component to winds with an easterly component close to the climatological

onset isochrones. As described in Parker et al. (2016) further to the south of the northern

limit, the 600 hPa winds back again to a westerly direction, associated with the monsoon

trough lying just to the south of the northern limit at this level.

In the zonal winds at Kandahar and Jodhpur, the pre-onset westerlies between ∼550 and

400 hPa are much weaker than the >15 m s−1 westerlies above and markedly stronger

than the westerlies below the freezing level (Figure b(a)). Because this makes the westerly

(Figure b(a)) and northerly (Figure b(d)) wind components more similar at these levels

than at other levels, the wind direction at these levels is close to northwesterly and the

wind direction turns towards westerly above and below.

The sections of wind direction (Figure b(g),(h),(i)) again show the large-scale change above

the freezing level from westerlies to easterlies, and again highlight how this relates to the

changing winds below. As the boundary between the winds with a westerly component to

the northwest, and the wind with an easterly component to the southeast moves to the

northwest during the onset, it is accompanied by mid-level (∼800-500 hPa) southeasterlies,

which move to the northwest with the boundary above.

The time-pressure sections of zonal and meridional winds at Nagpur (Figure b) are shown

on a longer timescale than the thermodynamic time-pressure sections (Figure b) to show

some of the slower changes related to the onset. The change in the westerly wind component

at Nagpur, composited relative to the yearly local IMD onset dates (Figure b(a)), shows

quite clearly the changing upper-level baroclinic winds and, because of the higher tempo-

ral resolution it affords compared to the pentad mean sections, provides some additional

information on the relative timings of the zonal wind changes.
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(a)

(b)

T=0◦C LCL

Figure b: As Nagpur time-pressure sections, relative to onset, of thermodynamics in
Figure b (although on a longer timescale), for (a) westerly wind speed (m s−1) and (b)

southerly wind speed (m s−1) at Nagpur.
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Firstly, the longer time series of the wind time-pressure sections shows that the transition

from upper-level westerly to easterly winds shown in the pentad means in Figure b(a),(b),(c)

is part of a pattern of longer-term change (Figure b(a)). The depth of westerly winds

>15 m s−1 decreases from about 120 days prior to onset (where they extend down to

600 hPa), to about 10 days prior to onset. At this time, the winds above ∼600 hPa become

the summer monsoon upper-level easterlies, which strengthen and deepen above ∼300 hPa

(to >15 m s−1), in the 10 days before and after onset.

A particularly notable feature in the zonal winds at Nagpur is a short-lived period of

easterly winds above the LCL in the ∼8 days prior to onset (<5 m s−1). Given the

direction and transient nature of this shift in wind direction, it appears that this is the weak

south-southeasterly winds below the freezing level (∼700-600 hPa) which pass towards

the northwest in the pentad mean sections along with the overlying boundary between

winds with a westerly component and winds with an easterly component. Over Nagpur it

is concurrent with the final transition from upper-level westerly to easterly winds.

The meridional winds along the section and at Nagpur allow us to consider how the deep

meridional overturning circulation over India, and the manner in which it transitions dur-

ing the onset, relates to the dynamics and thermodynamics of the mid-level dry layer. In

the pentad mean northwest to southeast sections, the pre-onset meridional winds (Fig-

ure b(d),(e),(f)) show a wedge of winds with a northerly component above the freezing level

(above ∼500 hPa) that becomes shallower towards the southeast, beneath southerlies that

deepen towards the southeast. The time-pressure section of meridional winds at Nagpur

(Figure b(b)) indicate that the overlying wedge of southerlies is the upper poleward flowing

limb of the wintertime Hadley cell, most clearly evidenced by the abrupt switch around

onset from southerly to northerly winds above ∼300 hPa around the time of onset.

It is well known that the deep (or first baroclinic) meridional overturning circulation tran-

sitions rapidly in monsoon regions around the time of onset (e.g. Bordoni and Schneider,

2008). The change comes about as a result of the onset of direct thermal circulation, and so

indicates a thermodynamic profile conducive to deep convection. The time-pressure section

of meridional winds relative to onset at Nagpur (Figure b(b)) show the timing of this change

as a rapid change that takes place around the time of onset. The change is thus closely

related in time to the ∼5-7 day period of winds with an easterly component above the LCL

at Nagpur (Figure b(a)).
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Parker et al. (2016) describes how the retreat of the mid-level northwesterlies, as seen in

the change in wind direction at 600 hPa (Figure b(a), (b), (c)), relates to the development

of the monsoon trough to the south of the northern limit and also the development of the

upper-level anticyclone over Tibet and the upper-level easterly thermal winds. The analysis

here further emphasises, in particular, how closely related these changes are both in time

and space to each other and to the onset of deep convection. At Nagpur, the rapid reversal

in the meridional overturning circulation, itself a result of the onset of deep convection, is

related on the timescale of a few days, to the dying off of the mid-level northwesterlies and

to the passage of the 800-600hPa winds with an easterly component that are associated

with the passage of the northern limit and which precede the strengthening westerlies

associated with the development of the monsoon trough. The results also highlight how

the northwestward progression of the onset includes a change from upper-level westerlies

to easterlies.

4.3.4 Examining the role of mid-level dry air in onset interannual vari-

ability

A logical extension to the hypothesis that mid-level dry air controls the progress of the

monsoon onset towards the northwest is the hypothesis that, in the interannual variability,

drier mid-level air will lead to a later onset. Parker et al. (2016) showed systematic differences

between the origins of mid-level air at Nagpur in early and late onset years (Figure b). In

early onset years the air around the time of the climatological monsoon onset was more

likely to have been advected from over the Arabian Sea, while in late onset years the air

was more likely to have been advected from the desert regions in the northwest. For Parker

et al. (2016), however, the early and late onset years were picked using onset dates decided

by the IMD, which are not an entirely objective measure of the onset. Here, early and late

onset years have been picked using 2 objective methods, both of which are based solely on

rainfall (§ 4.2.2). The differences in WVMR and relative humidity, between these early and

late onset years, are examined along the northwest to southeast transect.

Prior to onset, in both the WVMR and relative humidity differences, the 4 different com-

binations that comes from using the LOR or HIM June rainfall method of determining

onset with either radiosonde or ERA-Interim data, all show some statistically significant

pattern of higher humidity in the low-levels overtopped by drier mid-levels over central
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Figure b: Six-day back-trajectories, for the period 1981-2013, from the ECMWF op-
erational model and ERA-15, for years of (a), (c) late onset and (b), (d) early onset at
Nagpur. For each year, five back-trajectories have been launched, initialised with 0.5° spac-
ing centred on the point marked with a square. Grey shading indicates the density of 6
hourly back-trajectory points per one-degree square, normalised by the total number of
trajectories (165). The central trajectory is also plotted for each year of the sample, and
coloured according to its pressure. Termination points are at 0000 UTC on (a), (b) 31

May, (c), (d) 5 June at a level of 600 hPa. Reproduced from Parker et al. (2016).

India (Figure b(a),(c),(e),(g)) and Figure b(a),(c),(e),(g)). By the time of onset (Fig-

ure b(b),(d),(f),(h)) and Figure b(b),(d),(f),(h)), there is a deeper layer of moister air

from the surface to ∼400 hPa in the early onset years.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure b: Northwest to southeast composite sections of the difference in water vapour
mixing ratio (g kg−1) between early/late LOR onset years, and between high/low IITMHo-
mInd June rainfall years for pre and midonset pentads (left panels are pentads centred on
31 May, right 15 June). The panels are greyed out where the differences are not statistically
significant at the 95% confidence level (using the Mann-Whitney U test) (a), (b) are early
minus late LOR onset years using radiosonde data. (c), (d) are early minus late LOR onset
years using ERA-Interim data. (e), (f) are high minus low IITMHomInd June rainfall
years using radiosonde data. (g), (h) are high minus low IITMHomInd June rainfall years
using ERA-Interim data. The method for selecting years is described in § 4.2.2. Verti-
cal lines show the locations of the radiosonde stations, labelled as ’V’=Visakhapatnam,
’N’=Nagpur, ’A’=Aurangabad, ’J’=Jodhpur and ’K’=Kandahar (station locations are

marked on Figure ).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure b: As Figure b, but for relative humidity.

The onset (15 June) pentad pattern of higher WVMR and relative humidity is consistent

with what would be expected from an earlier onset. However, the pre-onset differences do

not support the hypothesis that mid-level dry air has a significant influence on the onset

interannual variability of the onset. The pre-onset humidity differences suggest it is more

likely that greater low-level moistening will lead to an earlier onset. Why the low-levels are

moister in early onset years could be related to differences in, for example, the circulation

and the land surface.
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4.4 Conclusions

This chapter reviews and extends the analysis of Parker et al. (2016), which looked at the

role of mid-level dry air in the monsoon onset. The further work here looks in more detail

at the relationship of the dynamics of the onset to the thermodynamics, and the possible

role of mid-level dry air in the interannual variability.

Parker et al. (2016) presented a conceptual model for how pre-onset mid-level dry air over

India might be important in determining the northwestward progression of the onset of the

monsoon rains over a period of about 6 weeks, which happens against the low and mid-level

flow and does not follow the pattern of moisture advection. Prior to the monsoon onset,

northwesterly winds form a wedge of dry air over India, above the monsoon flow, which

is deepest in the northwest (Figure b(g). As the onset progresses, moistening by shallow

cumulus and congestus clouds erodes the dry layer from below, bringing the atmosphere

closer to pseudoadiabatic, which favours the onset of deep convection. Deep convection

begins in the south because the dry layer is less deep there. As the onset of the rains

progresses northwestward across India, the monsoon circulation strengthens, and so the

advection of moisture from the Arabian Sea increases. This supports increasing moistening

of the mid-level dry air from below, making it shallower everywhere, which progressively

allows the onset of moist convection towards the northwest.

Further to Parker et al. (2016), the thermodynamics of the onset at Nagpur and Lucknow

are compared. Parker et al. (2016) showed the evolution of the profile at Nagpur through

the onset, and while the data from Lucknow support the the original conclusions there

are some distinct differences, which are interpreted as being primarily due to Lucknow

being further north than Nagpur. Before onset, because Lucknow is closer to the maximum

in mid-level northwesterly flow, the pre-onset mid-level RH is lower than at Nagpur, and

because of some combination of Nagpur being closer to both maximum in the low-level

northwesterly flow and the low-level heat low, at Lucknow the low-level RH is higher and

CIN is lower.

Parker et al. (2016) described how, at the same time as the northwestward march of the

onset of the monsoon rains, the mid- level northwesterly winds and associated advection of

dry air weaken. Further inspection of the dynamical changes shows how this weakening of

the mid-level northwesterlies relates to changes in the large-scale circulation. On seasonal
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timescales the wintertime upper-level westerlies weaken and, around the time of onset at

Nagpur, are replaced by the the summertime upper-level easterlies, which develop and

strengthen (Figure b(a)). At Nagpur there is a burst of easterly wind between the LCL and

the upper-level easterlies for ∼8 days prior to onset, and at the same time a seasonal shift

from northerly to southerly mid-level winds, indicating a rapid end to the northwesterly

pre-onset mid-level winds. At the same time, a shift from northerly to southerly upper-level

winds indicates a rapid change in the meridional overturning circulation (Figure b(b)).

With regard to the relative roles of cloud forcing and the large-scale circulation in the

weakening of the northwesterlies, the strengthening of the monsoon trough circulation

comes after the circulation changes that take place about 8-10 days before the onset at

Nagpur. In the mid-levels, between 700 and 550 hPa (near the freezing level), there are

weak south-southeasterly winds at Nagpur on 15 June (Figure b(h)), which shift to Jodhpur

on 15 July (Figure b(i)). In the time-pressure sections of wind at Nagpur, this is seen as a

burst of easterly winds between the LCL and the upper-level easterlies for ∼8 days prior

to onset. It appears that it is only after the weak mid-level south-southeasterly winds have

progressed far enough to the northwest that the monsoon trough circulation can develop.

The hypothesis that, in a certain year, drier mid-level air will delay the progression of the

onset is tested. Early and late onset years are selected by 2 objective methods that use

rainfall amounts in areas with spatially homogeneous variations in rainfall. Prior to onset,

the differences in water vapour mixing ratio and relative humidity along the northwest

to southeast section, between early and late onset years (Figures b and b), show moister

low-levels (below ∼700 hPa) and drier mid-levels, in years with an earlier onset. The results

shown here, therefore, do not support the hypothesis that mid-level dry air plays a role in

the interannual variablity of the onset. They suggest, instead, that low-level humidity over

India prior to onset plays a role in determining the year-to-year timing of the onset.

The effect that dry mid-level air can have on precipitation, particularly in the tropics,

has received growing attention in recent years (e.g. Zhai and Boos, 2017). In the context

of model biases, convective parametrisations typically struggle to represent the effect a

mid-level dry layer can have on precipitation because they are based on the assumption

that the entire troposphere should remain near to radiative-convective equilibrium. The

analysis presented here shows that not only does the onset include a change from a profile

that includes a mid-level dry layer to one that is close to pseudoadiabatic, but that the
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the timing of this change closely relates to major dynamical changes in the large-scale

circulation. Detailed analysis, using observations and high resolution model simulations,

will be needed to understand the relationships between these transitions.





Chapter 5

Moist convection and its upscale

effects in simulations of the Indian

monsoon with explicit and

parametrised convection

5.1 Introduction

While global climate models perform reasonably well on the global scale, they fail to

resolve important local to regional scale processes (Karmacharya et al., 2015). In the Indian

monsoon, most exhibit systematic biases of too much rainfall over the equatorial Indian

Ocean, too little rainfall over central India and, in the 850 hPa winds, too little cross-

equatorial flow over the Western Arabian and Sea and too little flow over India and the Bay

of Bengal (Sperber et al., 2013). Higher resolution Regional Climate Models (RCMs), which

are able to represent regional forcings, feedbacks, and processes, improve the representation

of rainfall in the Indian summer monsoon, particularly over regions of steep orography such

as the Himalayas and Western Ghats (Rupa Kumar et al., 2006). However, Lucas-Picher

et al. (2011) show significant differences in the representation of the Indian Monsoon by

a number of RCMs forced with lateral boundary conditions from the 45-year European

Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) for the

81
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period 1981-2000, highlighting that they fail to properly represent important feedbacks and

processes, even when biases introduced by the driving model are reduced.

The representation of convection, through convective parametrisation schemes, is a dominant

source of error in global models (Jung et al., 2010; Sherwood et al., 2014). Convective

parametrisation schemes typically produce too many light rain events, too few heavy rain

events, and a diurnal cycle of continental precipitation that peaks too early in the day

(Betts and Jakob, 2002; Randall et al., 2003; Guichard et al., 2004; Stephens et al., 2010;

Dirmeyer et al., 2012). Errors develop on a short enough timescale (on the order of 1-2

days) to affect both weather and climate models (Murphy et al., 2004; Rodwell and Palmer,

2007), and can have an effect on much larger scales than the convection itself. For example,

cloud formation, which varies with the intensity and frequency of moist convection, affects

diabatic heating, radiation fluxes, and convective transport, and near-surface rainfall and

water vapour affect surface fluxes and the biosphere.

Model configurations with a high enough horizontal resolution to resolve individual clouds

or cloud systems perform better in some respects, such as the diurnal cycle of precipitation

in the tropics (Guichard et al., 2004; Dirmeyer et al., 2012), and the rainfall intensity

distribution (Weisman et al., 1997; Holloway et al., 2012b). While increases in computing

power now allow these convection-permitting model configurations to be run on continental

scales and weekly timespans, it is expected that it will still be necessary to parametrise

convection for the foreseeable future (Holloway et al., 2012b), when the combination of

complexity, timescale, domain size and model ensemble size require it.

The latest convection-permitting simulations can be used to understand the large-scale ef-

fects of biases arising from the parametrisation of convection. In a comparison of simulations

of the West African monsoon with explicit and parametrised convection, improved explicit

representations of convective triggering, organisation and the diurnal cycle of precipitation

(Marsham et al., 2013; Birch et al., 2014) caused the Sahel-Sahara pressure gradient and

monsoon flow to be weaker. The work here uses a suite of Met Office Unified Model (Me-

tUM) simulations of a 3-week period of the 2011 Indian Summer Monsoon, over a domain

size large enough to capture the monsoon system. Model configurations with sufficiently

high horizontal resolution to permit the explicit resolution of cloud systems and temporal

and spatial domain sizes large enough to allow the representation of convection to affect
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the continental-scale circulation, are compared with observational data and parametrised

convection model simulations of the same period.

In state-of-the-art climate models, the systematic biases of Indian monsoon rainfall and

850 hPa wind are broadly consistent with each other (Sperber et al., 2013), but how they are

related remains unclear. It is expected that the convection-permitting simulations will give a

better representation of rainfall intensities and the diurnal cycle of rainfall compared to the

parametrised convection simulations. Biases are also expected in the convection-permitting

simulations, particularly as grid-spacing increases. By comparing the properties of storms

within the monsoon and the monsoon circulation not only between simulations with explicit

and parametrised convection, but also among the convection-permitting simulations, the aim

here is to understand in detail how moist convection model biases affect the representation

of the large-scale monsoon. In particular, the work examines the possible roles of latent

heating, radiation and heat fluxes and land surface processes.

5.2 Data

In this chapter, the 2011 MetUM simulations, TRMM 3B42, CMORPH and GSMAP

satellite rainfall retrieval datasets, and radiosonde data described in Chapter 3 are used,

along with sea level pressures measured at three surface stations (Patna, Port Blair and

Minicoy in Figure ), as well as radiosonde sounding data from Minicoy (UK Meteorological

Office, 2015; Durre et al., 2006).

5.3 Results

5.3.1 Inter-comparison of modelled and observed rainfall

5.3.1.1 Mean pattern of rainfall

Figure shows the mean spatial patterns of rainfall for selected simulations and TRMM.

TRMM (Figure (a)) shows regions of higher rainfall over the Himalayas, the Myanmar

coast, the Bay of Bengal, the monsoon trough and the Western Ghats; all the simulations

produce excessive rain over the orography of the Himalayas and the mountainous west coast
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Figure : Simulation domains, orography (shading), ground station locations (Patna,
Port Blair and Minicoy), and regions referred to in text (Arabian Sea, Western Ghats,
Monsoon Trough (MT), Bay of Bengal (BoB),Ganges-Mahanadi basin (GB), andMyanmar,
and part of the Western Equatorial Indian Ocean (WEIO)). The ’subcontinent’ is defined
here as land west of 90°E under 1500 m, and BoB as ocean east of 80°E and north of 10°N.

of Myanmar, and are too dry over the Bay of Bengal and the Western Ghats. More coarsely

resolved explicit convection (Figure (c)) produces excessive rain over the equatorial Indian

ocean, which is consistent with past studies (Holloway et al., 2012a,b). Model performance

in the monsoon trough region is discussed below.

The band of monsoon trough rainfall is further north in all the convection-permitting

simulations, compared to TRMM (Figure (a)-(c)), such that there is a positive/negative

dipole in the differences (Figure (e), (f)). In the parametrised simulations, the band of

maximum rainfall over central India is further south (Figure (d)), in better agreement with

TRMM, but there is deficient rainfall there and excess rainfall extending northwards to

the Himalayas (Figure (d)), so that the dipole of rainfall difference is due to a relatively

consistent spread of rainfall over central India north of 20°N, rather than a difference in

the location of the rainfall maximum. Mean total rainfall amounts in the monsoon trough

from 22 August to 6 September are between 242 and 250 mm for the three satellite rainfall
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Figure : Mean rainfall rate and modelled rainfall rate minus TRMM (mm h-1) over the
21-day period starting 18 August 2011 00:00 UTC for (a) TRMM, (b) 2.2E, (c) 8E, (d) 8P,
(e) 2.2E minus TRMM, (f) 8E minus TRMM, (g) 8P minus TRMM, and (g) Driving minus
TRMM. The black polygon shows the area defined as the monsoon trough. Simulations

are coarse-gridded onto the TRMM grid before averaging.
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retrieval products, which is relatively well captured by 2.2E, 4E, and 8E (242, 239, 237

mm respectively), although 12E produces significantly less (212 mm). The parametrised

simulations produce much less in the monsoon trough, with 8P and 12P total rainfall at

175 and 174 mm respectively. A large proportion of the rainfall in the monsoon trough

comes from the propagation of a Low Pressure System (LPS) northwest across India from

the Bay of Bengal (discussed further in § 5.3.2), and differences in the position of the band

of monsoon trough rainfall in the free-running simulations are mostly due to the path it

takes.

It is not clear from these mean spatial fields of rainfall alone that, for example, 2.2E gives

a better representation than 8P of this 21-day period. However, similar patterns of bias in

both the convection-permitting and parametrised simulations, of deficient rainfall over the

Bay of Bengal, excess rainfall over Myanmar, and deficient rainfall over the Western Ghats

suggest these biases are not primarily due to a different grid spacing or representation

of convection. 2 areas where the biases appear to be systematically different are in the

monsoon trough region, and over the equatorial Indian Ocean. This motivates, in the next

section, an analysis of some of the mean rainfall properties over land, ocean, and in the

monsoon trough region.

5.3.1.2 Variability in daily rainfall, diurnal rainfall and rainfall intensity

The total rainfall, the diurnal cycle of rainfall and rainfall intensities are all much more

strongly dependent on the representation of convection than on model grid spacing (Figures

3-5). Figure (a) shows that, over the subcontinent as a whole, the convection-permitting

simulations consistently rain more than the satellite retrievals and the parametrised simula-

tions, with the exception of the rainfall minimum centred around 25 August. There is a clear

initial 4-day spin-up for the convection-permitting simulations over land; this presumably

results from the time required for convective-scale circulations to develop and the adjust-

ment of the large-scale state of the convection-permitting simulations to their preferred

atmospheric state, from that of the MetUM operational global model, which parametrises

convection. Even after this spin-up, the convection-permitting simulations tend to rain

more than observed over the subcontinent (Figure (a)). Over the ocean (Figure (c), it is

not clear if there is a spin-up, which may be shorter (1–2 days).
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Figure : Daily mean rainfall rates for the 21-day simulated period over (a) the subcon-
tinent, (b) monsoon trough, and (c) ocean, for simulations and satellite rainfall retrievals.
The regions are described or shown in Figure and its caption. Vertical dashed line marks

end of model ’spin-up’ period.
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There is a large spread in the mean satellite estimates of rainfall over the subcontinent for

the period after the convection-permitting simulations spin-up period, with CMORPH closer

to the parametrised free-running simulations and driving (both ∼0.3 mm h−1), and TRMM

closer to the convection-permitting simulations (∼0.37 and ∼0.39 mm h) respectively.

Among the free-running simulations, 2.2E, 4E and 8E capture the day-to-day variability

over the subcontinent in TRMM the best, between 22 August and 7 September (after the

spin-up period) with the highest Pearson Correlation Coefficients (PCC) of 0.5, 0.57, 0.46

respectively, although the PCC between TRMM and 12E is very low (0.1). Among the

parametrised simulations, there is an increase of PCC with grid spacing in 8P, 12P, and 24P,

which is similar to 120P (0.35, 0.36, 0.45, 0.46 respectively). This increase in correlation

as grid spacing increases is an interesting result, but further investigation is beyond the

scope of this article. The driving simulation, compared to TRMM, captures the day-to-day

variability over the subcontinent better than the free-running simulations, with a PCC of

0.68. This is within the spread of the PCCs among the satellite rainfall retrievals (0.6–0.88),

which are higher than the PCCs between all of the free-running simulations and TRMM.

In the monsoon trough, while the daily mean rainfall variability is much greater than

for the whole domain (Figure (b)), the day-to-day variability in rainfall in each of the

convection-permitting simulations is similar, and is distinct from the variability in the

parametrised models, which are also all similar to each other. This is particularly true after

∼31 August, when the convection-permitting simulations capture the day-to-day variability

in the satellite retrievals to some degree, but the rainfall drops off in the parametrised

simulations and there is very little variability. Much of the variability after 31 August is

associated with the propagation of a LPS northwest along the monsoon trough from the

Bay of Bengal, and is discussed further in § 5.3.2

There is good correlation in the modelled daily variability of rainfall in the monsoon

trough in the higher-resolution convection-permitting modes (PCC for 2.2E and 4E are 0.5

and 0.52 respectively), but lower correlation for the lower-resolution convection-permitting

simulations (for 8E and 12E, PCCs are 0.05 and 0.11 respectively). This is in spite of

the PCCs between 8E and 2.2E/4E being fairly high (both 0.69). The correlation with

observations is negative for parametrised simulations, with PCCs between -0.2 and -0.27,

while the driving simulation, as expected, has a much higher PCC at 0.83. These negative
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PCCs in the parametrised simulations are, to some degree, also attributed to the propagation

of the LPS northwest along the monsoon trough.

Figure shows the cumulative sum of the fractional contribution of rainfall rates to the total

rain for the simulations and satellite retrievals.

A greater fraction of the total rainfall in the convection-permitting simulations and satellite

observations comes from more intense rainfall, compared to the parametrised simulations,

and as grid spacing decreases, the convection-permitting distribution moves closer to that

of TRMM and CMORPH. The distribution is similar among the parametrised simulations,

which includes the driving simulation, with the vast majority of rain coming from light
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Figure : Cumulative sum of rainfall intensity probability distribution over the subcon-
tinent (Figure , between 22-30 August (Figure )), for simulations and satellite rainfall
retrievals. The simulations and CMORPH and GSMAP retrievals were coarse-grained
to the TRMM 0.25x0.25 degree horizontal grid, and output at the three hourly TRMM
time resolution, from the original hourly data for the simulations, and 30 minute data for

CMORPH and GSMAP.
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rain. There is a pronounced grid-spacing effect on the distribution among the convection-

permitting simulations, with an increase in more intense rain as the grid spacing increases,

although their total rainfall amounts are similar (Figure ). About 80% of the rainfall in the

parametrised (free-running and driving) simulations comes from rain rates of <3 mm h−1

and 95% comes from rain rates of <5 mm h−1, while 70–90% (2.2E–12E) of the rainfall

in the convection-permitting simulations comes from rain rates of >3 mm h−1 and 75 to

35% (12E–2.2E) comes from rain rates of >10 mm h−1. The 2.2E distribution of rainfall

intensities is a close match to CMORPH while the TRMM product has a lower proportion

of the rainfall coming from rain rates between 5 mm h−1 and 35 mm h−1. The GSMAP

distribution is a close match to the parametrised simulations, and this is expected to be

due to the use of model reanalysis products in its algorithm.

Consistent with past studies in other regions (Sato et al., 2009; Marsham et al., 2013),

the phase of the diurnal cycle of rainfall over the subcontinent (Figure (a)) is much im-

proved in the convection-permitting simulations, compared to the parametrised, although

the convection-permitting simulations rain excessively during the afternoon and evening,

compared to the satellite rainfall retrievals. In the convection-permitting simulations, rain-

fall peaks at 1500–1700 local time (India Standard Time (IST) = UTC + 5.5 h) and is at

a minimum in the early morning, from 0800 to 1000 IST, in agreement with the satellite

products, whereas rainfall in the parametrised convection simulations peaks too early in

the morning between 0900 and 1200 IST, and is at a minimum at ∼1800 IST. There is a

shift among the convection-permitting simulations to a later peak in rainfall as the grid

spacing increases, consistent with many but not all past studies (Petch et al., 2002; Bryan

et al., 2003b; Marsham et al., 2013).

The mean diurnal cycles in Figure are not able to show the variety in the diurnal cycle

across the land and ocean regions; this is shown in Figure , which shows the timing of the

diurnal peak in rainfall across the domain. The convection-permitting simulations capture

the high degree of variability seen in TRMM, whilst the parametrised show far too little

variability. TRMM and 2.2E peak rainfall timings are very similar over the oceans, with a

high degree of variability which is generally not captured by the parametrised simulations.

Despite this, the diurnal cycle over the Bay of Bengal, with a change in peak timing here

from morning to night-time from northwest to southeast as in TRMM, is still captured to

some extent in the parametrised simulations.
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Figure : Mean diurnal cycle of rainfall over (a) subcontinent, (b) monsoon trough, (c)
Bay of Bengal, and (d) Western Equatorial Indian Ocean (WEIO), for entire modelled
period. Times are local times, which is UTC+5.5 hours, over central India (IST). See

Figure for regions.

5.3.2 Interactions between convection and the monsoon

Having examined the characteristics of the modelled rainfall, this section now examines the

interactions between moist convection and the monsoon flow in the simulations.
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Figure : Mean hour of day of peak rainfall in local time (which varies with longitude, but
is UTC+5.5 hours, over central India, which is IST), for EMBRACE period. Simulations

coarse-grained to 24 km.

5.3.2.1 Monsoon trough

Figure shows how a change in the representation of convection produces a characteristically

different monsoon trough, with a deeper trough in the convection-permitting simulations.

During the first few days of spin-up, the monsoon trough is too deep in the convection-

permitting simulations, but after this period they are in better agreement with driving

(i.eȧnalyses) than the parametrised simulations. After 31 August the parametrised and

convection-permitting simulations diverge significantly. After this date, the variability in
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the convection-permitting simulations continues to correlate well with driving, but there

is a sharp increase in pressure in the parametrised simulations. This divergence is due to

the propagation of a documented LPS (Khole and Devi, 2012), northwest from the Bay

of Bengal towards Pakistan, which takes less time to move through the monsoon trough

in the parametrised simulations, and accounts for the lower 925 hPa geopotential heights

in the parametrised simulations during 29–31 August, as well as rainfall differences in the

monsoon trough (Figure (b)). Therefore the remainder of our analysis focuses on 22–30

August before the simulations diverge, due to differences in synoptic-scale weather, but

after the spin-up of the convection-permitting simulations.
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Figure : Daily minimum 925 hPa monsoon trough (Figure ) geopotential height (m) for
simulations. The vertical dashed line on 22 August shows the end of the ’spin-up period’,
when the convection-permitting simulations rain far too excessively over land (Figure ).
Around 30 August, the simulations diverge significantly in their representation of a low-
pressure system (LPS) that propagates northwest along the monsoon trough, from the

Bay of Bengal.
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5.3.2.2 Land-sea temperature gradient

Contours in Figure show the location of the monsoon trough as a closed low in 925 hPa

height over northern India in 8E, with a gradient of increasing height to the southwest

over India, and marked gradients over the Arabian Sea and Bay of Bengal, which drive

the onshore circulation of moist air into India. As well as deepening the monsoon trough,

an explicit representation of convection also increases the land-sea temperature gradient.

Colours in Figure show that 8E 925 hPa potential temperatures are, for the most part,

1–2 K higher over land and 1–2 K lower in the Bay of Bengal and Arabian Sea, compared

to 8P, which will encourage ventilation of the continent by enhancing the monsoon flow.

The exception to higher 8E temperatures over land is in the northwest of the domain

(25°N, 70°E), which is consistent with advection of cooler oceanic air driven by changes in

synoptic-scale flow between the simulations (discussed below), accelerated by the boundary

effect of the adjacent highlands of Pakistan, into a region with no orography to impede the

flow or cause the condensation of water vapour.

The higher 925 hPa temperatures over land are largely explained by the effect of the

change in surface fluxes resulting from explicit convection shown in Figure . During the

daytime, the land surface in the convection-permitting simulation receives more short-wave

radiation (+20 W m−2 mean daily total), as a result of a later peak in clouds and convection

(Figure (a), (b)). Changes in net long-wave radiation are smaller (-10 W m−2), and so there

is greater net surface heating in the convection-permitting simulation (+10 W m−2). This

actually gives increased sensible and reduced latent fluxes in 8E than in 8P (+15 and -7 W

m−2 respectively), with a Bowen ratio greater than 1 from ∼1200 to 1500 IST in 8E, and

∼0.5 throughout the day in 8P, indicating a moister surface in 8P. This can be explained

by the rainfall in the convection-permitting simulations being both more intense (Figure ),

and later in the day (Figure (a), (b)), resulting in decreased interception of rainfall by the

vegetation canopy, greater run-off, and greater penetration into the soil (Best et al., 2011),

and since the rain falls after peak insolation, reduced rapid re-evaporation (Birch et al.,

2015). 15 W m−2 extra sensible heating in 8E, would correspond to ∼0.5 K extra heating

for a 2 km boundary layer over 1 day, which is broadly consistent with the magnitude of

the differences in 925 hPa potential temperatures in Figure .
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Figure : 8E 925 hPa geopotential height (contours) and wind vectors, and 8E minus
8P 925 hPa potential temperature (colours) between 22-30 August (Figure ). Diagnostics

coarse-grained to 120km grid-spacing.

Over the ocean, differences in 925 hPa air temperatures are smaller than over the land,

since the SSTs are identical between the simulations, whereas land surface temperatures

are free to evolve. Heavier rainfall in 8E over much of the Western Equatorial Indian Ocean

(WEIO) (Figure (f), (g)), with its greater latent heat release, is spatially correlated with

the 925 hPa differences in height and potential temperature.
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Figure : Diurnal cycle of 8E minus 8P surface fluxes over the subcontinent (Figure ).

5.3.2.3 Effect of rainfall on circulation

Rainfall differences between the free-running simulations, over both the ocean and the

subcontinent, significantly alter the mean low-level pressure distribution and flow into the

subcontinent (Figure ). As will be discussed, this can be seen most clearly in the region of

the black box in Figure , which covers part of the Arabian Sea and the west coast of India.

There is a deeper monsoon trough in 2.2E and 8E than in 8P, consistent with the greater

precipitation in the convection-permitting runs (Figure (b), (c), Figure ). Over northern

India, differences between 2.2E, 8E and 8P (Figure (a), (b), (c)), all have positive/negative

dipoles in northern India, which are related to differences in the position of the monsoon

trough and rainfall within it, but these are quite localized, with the positive and negative

anomalies cancelling each other in the far-field. For this reason, these differences due to the

shift in location of precipitation features do not influence the differences in continental-scale

gradients. Where 8E rains more than 8P at ∼24°N, 80°E, there is a relative 8E low of 16

m, whereas the relative 8P rainfall maximum at ∼20°N, 89°E corresponds to an 8P low of

2 m. In short, areas of higher rainfall in the convection-permitting simulations correspond

to much larger height differences. As a result, there is a deeper monsoon trough in 2.2E
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and 8E than in 8P (Figure ).

Over the WEIO, 2.2E rainfall is the most realistic, compared to the observations, while 4E,

8E and 8P rain excessively (Figure (d)). Less latent heating through rainfall over the ocean

in 2.2E, compared to 8E and 8P (Figure (a), (b)) corresponds to a relative high, which

acts to increase the pressure gradient towards the north and onshore, leading to greater

southerly flow in the Arabian Sea and onto the west coast of India. 8P rains less than 8E

over the WEIO (Figure (c)) which will act to increase the land–sea pressure gradient in 8P,

and favour an increase in the onshore flow, but 8E has a larger land–sea pressure gradient,

as it is the pressure differences over the continent which are dominant in this case.

The differences in the modelled 925 hPa winds are largely consistent with a geostrophic

response to these differences in geopotential over land and ocean, with an enhanced southerly

cross-equatorial flow, in the WEIO and Arabian Sea in 2.2E, compared to 8E and 8P, and

greater onshore flow in 8E than in 8P. Figure (a), (b) shows simulated and observed

(radiosonde) vertical profiles of wind at Minicoy (Figure )), which is in the Indian Ocean, in

the region of the largest wind differences. 2.2E is the only simulation with southerly winds

below 925 hPa, and has the weakest northerlies at the jet maximum at 850 hPa. All the

free-running simulations have too weak westerlies up to ∼400 hPa. It is not clear, from

these simulations, what effect the domain has on the wind in the Arabian Sea. Although

the enhanced southerly flow in 2.2E is actually further from the observations and analysis

than 8P, the direction of the flow suggests it may be restricted by the lateral boundary

conditions, and in a larger-domain simulation might give an enhanced southwesterly flow,

in better agreement with analyses. The increased ageostrophic wind seen on the west

coast of the Indian peninsula in Figure (c) (over land ∼18°N, 75°E) is consistent with a

response to the increased land–sea contrast discussed above. However, differences in latent

heating from continental rainfall are larger than the effect on surface fluxes, and are likely

the dominant mechanism behind the changes in the circulation. To quantify this, in the

period 22–30 August, when the convection-permitting simulations have ‘spun up’, and the

models do not diverge due to synoptic events (Figure ), 8E rains 16 mm more than 8P

over the subcontinent, which corresponds to ∼47 W m−2 atmospheric heating from rainfall,

compared to ∼16 W m−2 sensible heating from the surface.

Figure (a), (b), (c) shows differences between free-running simulations, while Figure (d),

(e) shows differences between free-running simulations and the analysis. The differences
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Figure : Simulation mean differences of 925 hPa geopotential height (contours, blue/pur-
ple contour labels for negative/positive differences), rainfall (colours), and 925 hPa wind
vectors, between 22-30 August (Figure ), for (a) 2.2E minus 8E, (b) 2.2E minus 8P, (c) 8E
minus 8P, (d) 8P minus Driving, and (e) 2.2E minus Driving. The black box denotes an area
with significant flow differences, which is discussed in the text. Diagnostics coarse-grained

to 120km grid-spacing.
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Figure : Mean simulated and observed vertical profiles of westerly wind, southerly wind,
and specific humidity at Minicoy (Figure ), between 22-30 August (Figure ). Simulated
means from times of actual soundings which at Minicoy is 9 soundings at 0100 UTC (0630
IST). The blue dotted line is 925 hPa, which is the pressure level of the differences in

Figures and
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in 925 hPa winds between 2.2E/8P and driving are relatively large, compared to the

differences between, for example, 8E and 8P: Compared with driving, 8E and 8P show

too strong southerlies coming onshore in from the northwest of the domain, and too weak

westerlies and southwesterlies into the southern Indian peninsula and the Bay of Bengal

respectively. The free-running simulations also have a northeast to southwest dipole of

excess to deficient rainfall in the monsoon trough, which match with the wind differences.

Although the differences between the free-running simulations and the analysis are large,

they are similarly large in 2.2E and 8P, compared to the differences between them.

5.3.2.4 Effect of rainfall on moisture transport

The enhanced low-level monsoon circulation in 2.2E and 8E brings more moisture into

the sub-continent, which supports the increased rainfall. Figure (c) shows simulated and

observed vertical profiles of specific humidity at Minicoy. While there are large differences

in the low-level flow over Minicoy (Figure ), the profiles of specific humidity are very similar.

As such, differences in the representation of convection and grid spacing do not, in these

simulations, have a large impact on the moisture content of air advected over the Arabian

Sea, and the change in the transport of moisture into the subcontinent is determined by

changes in the flow, not by moisture content.

In previous work using numerical models, excess rainfall over the WEIO has been found

to contribute to a dry bias over India, but the mechanisms by which the rainfall biases

are reduced are different to those presented here. Bush et al. (2015) found that increasing

the entrainment factor by 1.5 in the WEIO suppresses precipitation there which, unlike in

these simulations, increases moisture in the Somali jet, and increases precipitation over the

Arabian Sea and Bay of Bengal, just outside the area of increased entrainment, and over

central India by a small fraction of the MetUM bias. One theory is that the meridional SST

gradient in the WEIO has a large effect on the distribution of precipitation in simulations of

the ISM (Bollasina and Ming, 2013). The SST gradient induces low-level wind convergence,

and it is the interaction of the model parametrisation schemes with this large-scale forcing

that leads to excess rainfall over the WEIO. In addition to weakening the low-level monsoon

flow, Bollasina and Ming (2013) find that excess rainfall over the WEIO induces a Hadley-

type circulation which has a descending branch over northeast India/Indochina which, for

example, leads to a more gradual onset over India.
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5.3.2.5 Effect of rainfall on diurnal cycle of surface pressure

The representation of convection not only affects the mean synoptic pattern of surface

pressure (Figure ), but also its diurnal cycle (Figure ). The simulations are compared here

to surface station data, as opposed to model analyses, which are significantly affected by

their representation of convection. The diurnal cycle of MSLP at any point depends on

atmospheric tides, which are global-scale periodic oscillations of the atmosphere (Woolnough

et al., 2004), and have a large amplitude in the Tropics (Basu, 2007). However, the effect of

tides is fairly consistent across the model domain and so differences in the diurnal cycle in

SLP between two points, especially those on a similar longitude, are dominated by other

processes.

Figure shows the simulated and observed diurnal cycle of SLP difference between the

monsoon trough and Port Blair (Bay of Bengal) and Minicoy (Arabian Sea). As the SLP

for stations above sea level is derived from the measured surface pressure, differences in

the magnitude of the pressure gradient are here considered less important than the relative

magnitude and timings of the diurnal variation. In both Figure (a) and (b), the most

negative land–sea pressure gradient is between 1500 and 1800 IST, at the time of peak

rainfall over the continent, which matches well with the convection-permitting simulations,

as does the least negative pressure gradient in the morning (1100 IST Port Blair gradient,

0700 IST Minicoy). The parametrised simulations differ much more from the observations:

Between the monsoon trough and Port Blair, the largest pressure gradient is around 2100

IST, and between Patna and Minicoy it is around 1200 IST; these are too late and too early

respectively. In the parametrised simulations, Minicoy (8.3°N, 73°E) is in a broad region

where the diurnal peak in rainfall (Figure (d) is at night, whereas at Port Blair (11.6°N,

92.7°E), the peak is between 0900 and 1200, with the spatial pattern of the diurnal peak

timing around Port Blair appearing to be related to the Andaman and Nicobar island chain.

The daytime peak in rainfall in the parametrised simulations at Port Blair means that the

diurnal cycle of rainfall there is more similar to the diurnal cycle of rainfall at Patna, giving

the flatter diurnal cycle in Figure (a) compared to Figure (b).

The results are consistent with the late afternoon heating from moist convection in the

monsoon trough region driving a decrease in the pressure over land in the convection-

permitting simulations, and increasing the pressure gradient. The land–sea pressure gradient
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is then greatest at night, in agreement with the observations, when the drag effect of

continental boundary-layer convection is at a minimum. It shows that the ability of the

simulations to capture the diurnal cycle of convection is not only important for radiation

and surface fluxes (Figure ), but also for the dynamical couplings between convection and

the larger-scale flows.

5.4 Conclusions

Most global climate models have a systematic dry bias over India during the Indian summer

monsoon, a wet bias over the equatorial Indian Ocean and too weak monsoon flow. To

investigate the role convective parametrisation plays in the development of these systematic

model biases, convection-permitting simulations with grid spacings of 2.2, 4, 8 and 12

km, and convection-parametrised simulations with grid spacings of 8, 12, 24, and 120 km,

are compared with model analyses and satellite and ground station observations. The

combination of temporal and spatial scales large enough to capture interactions between

convection and the large-scale monsoon, and the range of simulation grid-spacings and their

treatment of convection allows a novel analysis of the effect of convective biases on the

large-scale monsoon. The simulations are of a 3-week period during August and September

2011, with a domain that covers the subcontinent and its surrounding oceans, and captures

the monsoon circulation over the subcontinent.

There is more rainfall over the subcontinent in the convection-permitting simulations, which

is more intense and peaks later in the day. The 2.2E convection-permitting simulation gives

the best representation of the diurnal cycle, and intensity of continental rainfall, compared

to the observations. In general, the convection-permitting simulations also capture the

day-to-day variability in the amount of rainfall over the continent better.

The convection-permitting simulations rain more, over the subcontinent, than the satellite

rainfall retrievals and the parametrised simulations. In the monsoon trough, the convection-

permitting simulations rain a similar amount to the satellite rainfall retrievals (which have a

much lower spread among them than over the whole subcontinent), while the parametrised

simulations rain much less. While the convection-permitting simulations rainfall may be

excessive over land, the difference between them and the parametrised simulations has been

used here to examine the effects of parametrised convection on the dry bias over India.
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The effect of land and ocean rainfall differences between the simulations on the monsoon

circulation is shown schematically in Figure . The circulation differences are attributed to

differences in both latent heating and sensible heating of the atmosphere, and in the diurnal

cycle Higher rainfall over the subcontinent, from more intense convection, increases the

land-sea pressure gradient in the convection-permitting simulations and, consequently, the

onshore advection of moisture. Higher 925 hPa temperatures over land in the convection-

permitting simulations, which contribute to a larger low-level temperature gradient between

land and sea, and hence enhanced onshore flow, are consistent with the higher net sensible

heating at the surface. The surface heat and radiation fluxes indicate that this is due to

greater surface insolation and a drier land surface. There is greater surface solar shortwave

heating over land in the 8km convection-permitting simulation compared to the 8km param-

etrised convection simulation which, because of the later diurnal peak in rainfall, is thought

to be due to reduced cloud cover during the middle of the day. Higher sensible and lower

latent land surface heat fluxes in 8E compared to 8P indicate a drier surface. That it rains

more and more intensely in 8E, but over the land surface the latent heat flux is lower and

the sensible heat flux is higher, can be explained by the higher intensity of rainfall, because

more rainfall will reach the surface, where it can be lost through run-off and penetration

into the soil, rather than being intercepted by the vegetation, where it can be evaporated.

As well as a larger land-sea pressure gradient in the convection-permitting simulation the

diurnal cycle of the land-sea pressure gradient is also improved, as a result of the improved

diurnal cycle of rainfall over land. As a result, the land-sea pressure gradient is enhanced

in the late afternoon and at night, when the drag effect of boundary layer convection on

the synoptic flow is reduced or nonexistent.

Rainfall over the equatorial Indian Ocean, through its effect on the onshore pressure gra-

dient, is found to contribute to reducing low-level flow and moisture transport into the

subcontinent. The 2.2 km convection-permitting simulation rains less than 8P in the West-

ern Equatorial Indian Ocean (WEIO) and, between the convection-permitting simulations,

decreasing the grid-spacing from 8 km to 2.2 km substantially reduces the rainfall over

the WEIO, in better agreement with the observations. Reduced rainfall there leads to an

increase in the onshore pressure gradient, and as a result there is more southerly geostrophic

flow onto the Indian peninsula, from the WEIO (Figure ). The observed and simulated

vertical profiles of specific humidity within these large flow differences do not differ greatly,

compared to the wind differences, such that it is the strength of the monsoon circulation and
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Figure : Schematic illustrating relative differences in rainfall (over India and the western
equatorial Indian ocean) and 925 hPa height (contours), wind (arrow) and temperature,
between 8P, 8E and 2.2E. The left panel shows the 8P 925 hPa mean height structure,
while the middle and right panels show the respective height anomaly from 8P. Wind and
rainfall are similarly relative to 8P. Darker rain represents more rainfall, with more rainfall
coming from more intense events. The colour of the land and ocean in the relative panels

represents the relative difference in the 925 hPa potential temperature.

not the moisture content of the flow that is important in reducing biases in the transport

of moisture into the Indian subcontinent. However, it is difficult to say how the western

boundary of the model domain affects these flow differences. It is possible that in a larger

domain simulation, which includes the cross-equatorial Somali jet circulation, reduced rain-

fall over the WEIO would enhance that flow (which may also become moister) rather than

the southerly flow shown here.

The monsoon trough, as seen in the 925 hPa height, is deeper in the convection-permitting

simulations, in part because of their different representation of convection, but also because

of how they represent the propagation of a Low Pressure System (LPS). In the first 4 days

of the simulated period, when the convection-permitting simulations have very excessive

rainfall as they spin-up, they have a monsoon trough which is too deep. After this, when the

convection-permitting simulations are adjusted to their preferred atmospheric state, they

capture the time evolution of the monsoon trough depth for the remainder of the simulated

period (22 August to 7 September), whereas the monsoon trough in the parametrised

simulations is generally not deep enough. The propagation of a LPS from the Bay of

Bengal northwest along the monsoon trough, in the second half of the simulated period (30

August to 7 September), causes significant divergence between the convection-permitting

and parametrised simulations, where the convection-permitting simulations capture the

daily variability in the analysis, but the height increases significantly in the parametrised
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simulations. The divergence appears to be related to differences in the speed of propagation

of the LPS in the free-running simulations, with it taking less time to propagate towards

the northwest in the parametrised simulations. If models that parametrise convection

consistently exhibit a similar bias in the propagation of LPSs, this could contribute to

a systematic dry bias in parametrised convection simulations over the subcontinent, and

would also have an effect on the onshore moisture transport through a weaker land-sea

pressure gradient. Further work is needed to determine if there is a systematic bias in

the propagation speed of LPSs in the Indian monsoon trough, as a result of a convective

parametrisation.

There are some significant biases in both the convection-permitting and parametrised

convection simulations that have not been investigated here. All the simulations overestimate

rainfall over the Himalayas and the orography of the Myanmar coastline, and underestimate

rainfall over the WG. They also fail to capture the broad spread of rainfall over the Bay

of Bengal. In some respects, the convection-permitting simulations perform worse than the

parametrised simulations, particularly at coarser grid-spacings. For example, 2.2E rainfall

over the Indian Ocean is comparable to TRMM, but as grid-spacing increases, rainfall in

the convection-permitting simulations becomes increasingly excessive, while there is little

effect due to grid-spacing in the parametrised simulations, which have rainfall amounts

comparable to 4E.

The MetUM, in common with many models has had a long-standing dry bias over India

during the monsoon. The results show that an explicit representation of convection affects

the entire monsoon circulation, increasing rainfall in the monsoon trough region, and im-

proving key aspects of the circulation such as the magnitude and diurnal cycle of pressure

gradient from the oceans to the continent.

In conclusion, it is important for any parametrisation of convection to capture its diurnal

cycle, and give an improved representation of rainfall intensities over the Indian subcontinent

and the western equatorial Indian Ocean, if they are to give a realistic coupling between

convection and the monsoon.



Chapter 6

Propagation of rainfall upstream of

the Western Ghats

6.1 Introduction

The Western Ghats mountain range on the west coast of India acts as a barrier to the

south-westerly summer monsoon winds that cross the Arabian Sea. Rainfall is concentrated

upstream of the mountains and within the Indian monsoon the amount of rainfall here

is the second-highest, after the rainfall in the north Bay of Bengal, which is concentrated

upstream of the orography of the Myanmar coast (Figure and Xie et al. (2006)). Theories

exist to explain the in situ enhancement of rainfall offshore, upstream of the Western Ghats

(e.g. Grossman and Durran, 1984; Smith, 1985; Zhang and Smith, 2018), but none include

offshore rainfall propagation. In other tropical regions, the diurnal cycle causes rainfall to

propagate offshore from near the coast. Therefore, in this chapter observations and models

are used to explore, for the first time, the role of offshore propagation in the observed

offshore rainfall distribution.

In the Asian monsoon, latent heat release through the formation of rain interacts in sig-

nificant ways with the basic monsoon flow (e.g. Webster and Chou, 1980; Willetts et al.,

2017a). Coastal mesoscale orography is highly effective in organising convection throughout

the tropics, and understanding how it does so has important implications for improving

the representation of convection-circulation interactions within the monsoon. For example,

107
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Figure : Climatological mean TRMM 3B42 rainfall and ERA-Interim 850 hPa wind
(June-September 1998-2015)

Xie et al. (2006) showed how imposing narrow bands of diabatic heating upstream of the

Myanmar coast and other mesoscale mountain ranges in the tropics improved the represen-

tation of monsoon rainfall by intensifying the hydrological cycle which in turn induced a

lower tropospheric cyclonic circulation around India.

A climatology of retrievals from the precipitation radar on the TRMM satellite shows a

rainfall maximum on the windward slopes of the Western Ghats, around 500m above sea

level (Shrestha et al., 2015). There is also a secondary peak over the sea, a few kilometres

from the coast. The majority of rain is convective. This is in contrast to the tendency,

in the tropics, for precipitation maxima to be in large regions of stratiform rainfall that

develop as a result of extreme convective events (Romatschke and Houze Jr, 2011; Shrestha

et al., 2015). The rainfall on the windward slopes results primarily from a high frequency

of weak convective events, which do not develop large stratiform regions. The most intense

rainfall (>4 mm h−1) is primarily observed offshore, where the precipitation columns are

also deeper than over the mountain slopes.

Prevailing theories to explain offshore rainfall upstream of the Western Ghats do not

include the offshore propagation of rainfall. This is perhaps understandable given the

mean environment of strong monsoon westerlies over the Arabian Sea and that, to the

author’s knowledge, observational experiments over the eastern Arabian Sea have only
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documented quasi-stationary or east to south-eastward moving storms (Roadcap and Rao,

1993). Grossman and Durran (1984) hypothesised that deceleration of the monsoon flow due

to the blocking effects of the mountains could provide enough gentle lifting of potentially

unstable air for deep convection to initiate over the sea. Smith (1985) argues, partly based

on previous work (Smith and Lin, 1982, 1983) that Grossman and Durran (1984) chose to

ignore the effects of background wind shear, the boundary layer, the Coriolis force, and

latent heating in their theoretical model, all of which could be more important in bringing

about deep convection over the sea. Using a two-dimensional, compressible moist cloud

model, Ogura and Yoshizaki (1988) bypass some of the limitations in these previous studies

and find that including the effects of vertical shear gives a more accurate representation of

the estimated rainfall amounts, and including the sensible and latent heat fluxes from the

ocean correctly places the deep convection over the sea, and not over the coast during times

of offshore convection. More recently, another modelling study (Zhang and Smith, 2018)

finds that the occurrence of offshore rainfall is controlled by incoming Convective Available

Potential Energy (CAPE), the entrainment of mid-tropospheric dry air in the monsoon

westerlies over the Arabian Sea, and the latent heat flux and Sea Surface Temperatures

(SSTs) of the Arabian Sea. They say offshore convection is not triggered by the Western

Ghats. Based on observations from the INCOMPASS field campaign, Fletcher et al. (2018)

also find that offshore convection is only weakly associated with orographic blocking by

the Western Ghats, secondarily associated with SSTs, and primarily with mid-tropospheric

humidity.

To fully explain the rainfall upstream of the Western Ghats will require considering temporal

and spatial variability on a range of scales. Non-periodic Monsoon IntraSeasonal Oscilla-

tions (MISOs), which take 30-60 days to propagate north-eastward from the Indian Ocean,

dominate intraseasonal variability in the Indian monsoon, so much so that the number that

occur each year can influence the interannual variability (e.g. Annamalai and Sperber, 2005).

Hoyos and Webster (2007) show that the northward propagating cyclonic circulations of

MISOs drive moist air towards the Western Ghats, which considerably enhances the up-

stream rainfall. The location of the rainfall maximum varies between the windward slopes

and offshore, on timescales upwards of a few days. Whether convection occurs primarily

over land or offshore at a certain time could be influenced by a number of factors, including

mid-level dry intrusions, Arabian sea surface temperatures and sensible and latent heat

fluxes, and circulation factors such as the strength and depth of the monsoon westerlies and
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wind shear (Grossman and Durran, 1984; Smith, 1985; Ogura and Yoshizaki, 1988; Fletcher

et al., 2018; Zhang and Smith, 2018).

In the tropics, diurnal rainfall often moves offshore from coastlines (e.g. Yang and Slingo,

2001). This can result from a number of different mechanisms, such as land-sea breezes

(Houze et al., 1981), gravity waves generated by convection (e.g. Yang and Slingo, 2001;

Mapes et al., 2003; Love et al., 2011), cold gravity currents that form under developed

convection, and advection by the background wind flow. In the modelling studies of Smith

and Lin (1983); Grossman and Durran (1984); Ogura and Yoshizaki (1988); Zhang and

Smith (2018) diurnal effects were not considered, in part because the diurnal cycle has been

found to be small compared to other high rainfall regions in the tropics (e.g. Romatschke

et al., 2010).

This chapter examines rainfall propagation upstream of the Western Ghats. This begins with

a comparison of the propagation in model simulations and satellite rainfall retrievals. The

main aim of the work, though, is to understand the role of rainfall propagation in determining

the distribution of rainfall upstream of the Western Ghats. This involves characterising,

to some extent, the nature of the rainfall propagation and its relationship to local and

large-scale intraseasonal variability and to the diurnal cycle. From this some hypotheses

to explain the climatology and intraseasonal variability in the rainfall propagation are

proposed.

§ 6.2 describes the model simulations, observational data sets, and methodologies. In the

Results section (§ 6.3), § 6.3.1 compares, in 2 case-study periods, convection-permitting

and parametrised simulation representations of rainfall in the Western Ghats region with

observations, § 6.3.2 uses climatological data sets to characterise rainfall propagation, and

the environment in which it does so, upstream of the Western Ghats, and § 6.3.3 then

looks at how variability in the direction of rainfall propagation is linked to large-scale

intraseasonal variability. Finally, § 6.4 provides a summary of the results.

6.2 Methods

In this chapter, the MetUM 2011 2.2E and 8P and 2012 2.2E and 10P simulations, ERA-

Interim reanalysis, CMORPH satellite rainfall retrievals, and radiosonde datasets are used
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here (Chapter 3). In addition, the TRMM 3B40RT satellite rainfall retrieval product (Huff-

man et al., 2007), which uses only merged (i.e multi-satellite) microwave estimates, has

been used to compare diurnal cycles of rainfall, as there is potential for a systematic bias

in rainfall propagation in CMORPH as result of the use of infrared data in its retrieval

algorithm, which could conceivably overestimate precipitation from cold anvil clouds.

CMORPH was chosen as the primary observational dataset for estimates of rainfall estimate

in this study because of its relatively high spatial and temporal grid-spacing (8 km and

0.5 hourly). Another commonly used product is The Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA)-3B42 (version 7) rainfall product

(Huffman et al., 2007), which also includes, in addition to multi-satellite microwave and

infrared rainfall retrievals, rainfall estimates from the precipitation radar on the TRMM

satellite, but the 3-hourly 0.25x0.25 km grid spacings were thought to be unfavourably

coarse in the context of this study.

6.2.1 Space-time spectral analysis

The method used here decomposes CMORPH rainfall data into wavenumber and frequency

components for eastward and westward propagation (Hayashi, 1982), in a 5° wide region

west of and running perpendicular to the Western Ghats (’FFT region’ in Figure ). Before

further processing, the data are lowpass filtered in time and space, close to the respective

spatial and temporal Nyquist frequencies to avoid aliasing. For each latitude within the

5° wide domain, following the method of Wheeler and Kiladis (1999), the data are split

into 96 (48 hours) or 480 timestep (10 days) overlapping segments, which each have 68

longitudinal points. For each segment the mean and linear trend are removed in time using

a linear least-squares fit and a Blackman filter applied to taper the edges to zero. The

complex Fast Fourier Transforms (FFTs) are then taken in longitude and then time, to

obtain the space-time frequency spectrum of that segment. The CMORPH data have an

8km and 30 minute resolution, and with the chosen 68 and 96 spatial and temporal sample

lengths, the frequency domain resolution (Fs/N where Fs is the sampling rate, and N is the

sample length) is ∼0.19/100km (19km wavelength) and 0.5/day (12 hour period). For the

480 segment lengths, the frequency domain resolution is 0.1/day (2.4 hour period). The

96 length segment FFTs have been used where assessments of the time domain variability

are important, and the 480 segment length FFTs have been used where higher frequency
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domain resolution is more important. To composite a subset of the segments, the time

means of the segment’s spectral power are taken for each latitude, which are then summed.

6.2.2 Defining periods with the most offshore or onshore storm propa-

gation

In order to define periods with the most offshore or onshore propagation, a time-series of the

fraction of offshore propagation to all propagation is constructed from 2-day or 7-day means

of the CMORPH frequency-wavenumber spectrum in the 5° wide FFT region (dashed box in

Figure ), for the years 1998-2015. The power of negative wavenumbers (offshore propagation)

over the total power gives the fraction of offshore propagation. Periods outside the upper

and lower 25th percentile of the fraction are defined as ’offshore’ and ’onshore’ periods.

Composites of 2-day ’offshore’ and ’onshore’ periods are used everywhere other than § 6.3.3

which looks at large-scale intraseasonal variability and uses 7-day period composites, to

give a clear display of the relationship of ’offshore’ and ’onshore’ periods to variability on
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those timescales. As will be explained in more detail in § 6.3.3, only the years 2001-2014 are

used in that section, to exclude years with strong El Niño (1998, 2015) or La Niña (1999,

2000) effects.

6.2.3 Storm tracking

Storm tracks were obtained from the CMORPH and MetUM model output rainfall (after

coarse-graining to the CMORPH grid) using the alogrithm developed by Thorwald Stein

(University of Reading) and described in Stein et al. (2014). Storm clusters are identified

at each timestep as contiguous grid cells passing a certain threshold requirement. A pre-

cipitation threshold of 1 mm h−1 was used here, as in Stein et al. (2014). To track the

propagation of storms, a velocity field is calculated by cross correlation of images at times

ti−1 and ti. The velocity field is used to advect the storms at time ti−1, before calculating

their areal overlap with storms at time ti The amount of areal overlap is used to determine

if they are the same storm, if a storm has newly initiated, if a storm has dissipated or if

there are split initiations from a parent storm or storms have merged. Storm speeds are

calculated from the between timestep difference in the storm centre point.

6.2.4 Tropical modes

The relationship of rainfall propagation to tropical wave modes is examined using the

algorithm of Roundy (2012), which projects interpolated NOAA Earth Systems Research

Laboratory OLR retrievals (Liebmann and Smith, 1996) onto equatorial wave patterns. The

algorithm produces a gridded time series of coherent structures that are within the zonal

wavenumber-frequency domains of major tropical wave modes, such as the Madden-Julian

Oscillation (MJO).



Western Ghats storms 114

6.3 Results

6.3.1 2011 and 2012 case-study periods: Bias in convection-permitting

and parametrised convection simulations

In the two case-study periods, there is significant disparity between modelled and observed

rainfall propagation, both upstream of the Western Ghats and over the Indian monsoon

region in general. This is first examined for rainfall upstream of the Western Ghats, in

longitude-time sections of rainfall and wind profiles where the section crosses the coast.

Storm tracking results are then used to examine the spatial patterns of propagation over

the Indian monsoon region in general.

6.3.1.1 Rainfall hovmöllers and wind profiles

Figures and show, for 18 August to 7 September 2011, and 25 June to 15 July 2012

respectively, rainfall Hovmöllers along a meridional transect at 19°N which crosses the

Western Ghats and the concurrent time evolution of westerly wind profiles (ERA-Interim)

at a similar latitude near the coast (Figure ). In CMORPH, much of the time the rainfall

propagates westward or offshore (Figure (a), Figure (a)). In the ’2.2E’ 2.2km convection-

permitting simulations, there is a consistent pattern of rainfall moving eastward (or onshore)

with speeds of ∼10 m s−1 (Figure (b), (b)). In the simulations with parametrised convection

the ’8P’ 8km 2011 simulation exhibits mostly no propagation and some onshore propagation

(Figure (c)), while the ’10P’ 10km 2012 simulation does show one instance of rainfall

propagating offshore, in better agreement with CMORPH (Figure (c)).

The CMORPH rainfall Hovmöller for the 2011 period (Figure (a)) shows variability in

the location and propagation speed and direction of rainfall. In the first half of the 2011

period, from 18-26 August 2011 (lighter shaded period), rainfall propagates westward at

speeds of ∼10 m s−1, and begins and is mostly over land. After 26 August, there is an

apparent mix of onshore and offshore propagation. Around 27-28 August 2011 there are

features propagating offshore from a rainfall maximum close to the coast, with a range

of possible speeds (∼5-15 m s−1). Later, from ∼1 September 2011 (in the darker shaded

period), offshore rainfall at ∼100km along transect moves slowly eastward towards the coast

(to ∼400km along transect on 3 September, with a speed of <5 m s−1), and then there is a
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Figure : Observed and modelled time-longitude rainfall sections along 19°N transect
(1° meridional width) and westerly wind time-pressure sections at nearest model grid
point to Bombay/Santa Cruz radiosonde station, for 18 August to 7 September 2011. (a)
shows CMORPH rainfall and the ERA-Interim westerly wind section. (b) is from the 2.2E
simulation and (c) is from the 8P simulation. In each panel, the filled contours in the top
right subfigure show the rainfall Hovmöller and to their left is the westerly wind section.
Lines on the rainfall Hovmöllers show some propagation speeds. The bottom 2 line plots in
each panel show the topography and mean rainfall for the period along the transect. Light
shading in the rainfall transects indicates periods with clear offshore propagation, and
dark shading indicate periods with less clear offshore propagation (where there may also
be onshore propagation). Figure shows the location of the transect and Bombay/Santa

Cruz radiosonde station.
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Figure : As Figure , but for 25 June to 15 July 2012. (a) shows CMORPH rainfall
and ERA-Interim westerly winds. (b) is from the 2.2E simulation and (c) is from the 10P

simulation.
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rainfall maximum close to the coast on 3 September. This pattern, after 1 September, is

formed from smaller-scale events which show offshore rainfall propagation with speeds of

5-15 m s−1.

The biases in rainfall propagation in the convection-permitting simulations, from these

rainfall Hovmöller are clearest for rainfall propagation at speeds of 10-15 m s−1. When

rainfall propagates offshore at these speeds in CMORPH, rainfall propagates onshore at

similar speeds in the simulations. For slower rainfall propagation, there is some agreement

between CMORPH and the 2011 2.2E simulation for the <5 m s−1 onshore propagation of

rainfall in the later, dark shaded period (Figure (a),(b)).

In the observations, there is a relationship between the temporal variations in the westerly

wind profile near the coast and in the rainfall propagation along this transect. The CMORPH

rainfall transects and ERA-Interim winds (Figure (a) and Figure (a)) indicate that, in this

region, weaker and/or shallower low-level westerly monsoon flow and deeper easterlies above

are related to offshore rainfall propagation and stronger and/or deeper westerlies are related

to onshore propagation. In the 2011 period, deeper easterlies and weaker and shallower

westerlies (18-27 August and 30 August to 1 September 2011), correspond to periods of

clearer offshore propagation. Conversely, when the monsoon westerlies are strongest and

deepest, from 27-30 August and from 1-5 September 2011, there is an apparent mixture of

offshore and onshore propagation. In the 2012 period, the westerly monsoon winds weaken

and substantially shallow in height from 29 June-04 July, which is also when, perhaps

lagged by 1-2 days, the rainfall markedly increases and shows clear offshore propagation.

This relationship is examined in a climatological sense in § 6.3.2.

The differences in rainfall propagation between the observations and the simulations could

be due to a bias in the representation of the strength and depth of the monsoon westerlies

and of the easterlies above. The mean wind profile at Bombay/Santa Cruz for the 2011

period (Figure (a)), shows that the the 2.2E convection-permitting simulation does have

stronger westerlies from near the surface to ∼425 hPa, compared to radiosonde soundings,

MetUM analysis, ERA-Interim and the 8P parametrised simulation. In the 2012 period

(Figure (b)), unlike in the 2011 period, the radiosonde profile shows substantially weaker

westerlies than the MetUM analysis and ERA-Interim. There are also some quite large

differences between the radiosonde and analysis/reanalysis southerly wind profiles, between

∼600-300 hPa in the 2011 period (Figure (a)) and between ∼850-625 hPa in the 2012
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period (Figure (b)). The differences makes it difficult to make any firm conclusion about a

systematic bias in the 2012 2.2E westerly profile because it is comparable to, or weaker than

ERA-Interim above ∼825 hPa. From the surface to ∼825 hPa, there is a similar bias in

both the 2011 and 2012 periods, however, where the 2.2E westerlies are ∼3 m s−1 stronger

than the radiosondes and analysis/reanalysis. Whether such a wind bias could be a major

factor in the differences in rainfall propagation is unclear.

6.3.1.2 Storm Tracking

The pattern, in the Hovmöller rainfall transects (Figure & ), of mostly offshore (or west-

ward) rainfall propagation in CMORPH, and onshore propagation in the 2.2E convection-

permitting simulations is widespread, as illustrated by Figure , which shows the number of

times that tracked storms move eastward and westward in the 2011 and 2012 2.2E simu-

lations and in the matching periods in CMORPH. In both the 2011 and 2012 convection-

permitting simulations, there is a pattern of predominantly eastward moving storms in

the eastern Arabian Sea, in the equatorial Indian Ocean, and over much of India (Fig-

ure (b) &(f)), with a peak close to or over the Western Ghats. Much fewer storms move

westward (Figure (a) &(e)). In CMORPH, by contrast, there are relatively very few storms

moving eastward over the domain (Figure (d),(h)), compared to the number of storms

moving westward (Figure (c) &(g)).

6.3.2 Climatology

In the 2011 and 2012 case-study periods in § 6.3.1, there is a discrepancy between CMORPH

and the convection-permitting simulations for rainfall propagating at speeds of∼10-15 m s−1.

This motivates the rest of the work presented in this chapter, which characterises the

climatological nature of the rainfall propagation in CMORPH, using storm tracking and

wavenumber-frequency spectral analysis, and an examination of the diurnal cycle. It is also

possible that the discrepancy between the simulations and observations is due to a bias in

CMORPH, and this is addressed this by use of the TRMM microwave only product in the

diurnal cycle section § 6.3.2.3. Throughout this section some hypotheses are also outlined,

based on the climatological observations, to explain the rainfall propagation.
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Figure : Mean model, analysis, reanalysis and radiosonde westerly and southerly wind
profiles at Bombay/Santa Cruz (or the nearest model grid-point to it) for (a) the 2011
simulated period and (b) for June 18 to July 15 in the 2012 simulated period. The wind
profiles obtained from model output are averaged from the wind profiles at timesteps
nearest to the radiosonde sounding times. ’n’ is the number of radiosonde soundings.

Figure shows the location of Bombay / Santa Cruz.
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Figure : The average number of storms in the 2.2E MetUM simulations and CMORPH,
in ∼24km grid boxes, which propagate westward or eastward. (a) and (b) are for west-
ward and eastward propagation respectively, from the 2.2E simulation for 18 August to 7
September 2011. (c) and (d) show westward and eastward propagation respectively, from
the same 2011 period in CMORPH. Likewise, (e) and (f) are for westward and eastward
propagation respectively from the 2.2E simulation, for 18 June to 14 July 2012, and (g)
and (h) are for westward and eastward propagation for the same 2012 period in CMORPH.
The zonal storm propagation directions are determined by storm tracking, which is de-
scribed in § 6.2.3). The 2.2km model and 8km CMORPH storm tracking counts have
been coarse-grained, by area-weighted averaging, to the Driving simulation grid-spacing

of ∼24km.
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6.3.2.1 Mean storm propagation characteristics

It is useful to first consider the contribution of propagating rainfall to the total rainfall

upstream of the Western Ghats. Figure shows, from storm tracking applied to the CMORPH

climatology, the relative amounts of rainfall that come from storms moving at certain

velocities, in a 5° wide polygon upstream of the Western Ghats (Figure ). Rainfall upstream

of the Western Ghats comes mostly from stationary storms, or storms that move offshore

at speeds of up to 15 m s−1. The major axis of the distribution is aligned towards WSW,

which is consistent with storms moving offshore approximately perpendicular to the coast.

Contributions to rainfall upstream of the Western Ghats come almost equally from storms

that are close to stationary (1.0 on normalised scale), storms that move westward at 2-

6 m s−1 (1.0), storms moving southward or SSW at speeds of 2-6 m s−1 (∼0.5 southward +

∼0.5 SSW), and storms moving westward at speeds >6 m s−1 (∼0.7 at 6-11 m s−1 + ∼0.3
at 11-15 m s−1).

A pertinent question is how much the histogram of offshore propagating storm speeds is

composed of storms that initiate near the coast as opposed to storms that initiate away

from the coast. Figure shows a large majority of offshore storms that rain heavily away

from the coast initiate in situ. This is true both for storms (Figure ) above the 90th and 50th

percentiles of storm rainfall amounts between 500 and 750 km along transect (Figure (a) &

(b), respectively) It also shows that, where the storm tracking finds a chain of parent and

child storms (where a storm splits from another), a large majority of the first parent storms

also initiate well offshore, but the peak is closer to shore. There is a local minimum between

the offshore peaks, and a much smaller peak over the coast. It may be that, through other

processes such as gravity waves, convection that initiates near the coast causes parcels of

convection to propagate offshore, but the tracked storms in CMORPH do not show a large

number of storms propagating offshore for long distances from near the coast. In conclusion,

offshore propagation of rainfall does not appear to be significantly caused by the movement

of individual storms from land to sea. Instead, it is influenced by the offshore movement of

storms which have initiated over the sea.

The speeds of tracked storms in Figure show a near east-west orientation to the propaga-

tion, which motivates an analysis of the zonal wavenumber-frequency spectrum of rainfall

upstream of the Western Ghats. Figure shows the zonal frequency-wavenumber log(power)
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Figure : Normalised histogram of climatological mean storm rainfall amounts from
tracked storm areas in CMORPH moving at certain velocities. The mean rainfall amounts
in the histogram are normalised to a fraction of the highest mean rainfall amount in
the histogram. The tracked storms are from June through September 2000-2015 and the

’tracking’ domain in Figure .

spectrum of CMORPH rainfall within a 5° wide domain running perpendicular to the

Western Ghats, over the sea (Figure ). The power spectrum peaks for both offshore and

onshore propagation are centred on zero wavenumber and frequency. There is more power

in the negative, offshore wavenumbers than onshore power at these lower wavenumbers

and frequencies (consistent with the case study patterns of rainfall propagation CMORPH

shows in Figure (a) & (a)). At frequencies < ∼2/day, the peak in the power spectrum

for negative wavenumbers (offshore propagation) is at 0.11/100km (the lowest resolved

wavenumber), at a range of speeds from <5 m s−1 to ∼15 m s−1. At frequencies >∼2/day
(period <∼12 hours), there is a peak in the negative wavenumber propagation at speeds of
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Figure : Distance along 19°N transect (Figure ) where high offshore rainfall storms, or
their first ’parent’ storm, are first identified in CMORPH by storm tracking. The storms,
when they are between 500 and 750 km along transect (the shaded region) have rainfall
amounts, higher than the local (a) 90th and (b) 50th percentiles. Where the high rainfall
storm is the ’child’ of a previously formed storm or storms the initiation point of the first
’parent’ is taken to be the initiation point. The storm tracking identifies a storm as a child
storm (a storm which form from a split initiation) where it is not the largest of multiple
storms at time ti which overlap with one storm advected from time ti−1 (§ 6.2.3). ’1 back’
refers to where the first parent storm is the previous storm and ’2 back’ refer to where
the first parent storm is the parent of the previous storm. The tracked storms are from

June through September 2000-2015 and the ’tracking’ domain in Figure .
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10-15 m s−1 for all higher frequencies. The linear relationship of frequency to wavenumber

for these peak values would be consistent with hydrostatic long gravity waves modes where

the speed is non-dispersive and given by c = N/m or ω = Nk/m.

6.3.2.2 The climatological co-variability of wind and rainfall propagation

In the case-study periods the westerly winds and storm propagation characteristics show co-

variability. To examine the relationship of winds and rainfall in the climatology, periods with

relatively high amounts of offshore or onshore propagation upstream of the Western Ghats

are defined (the way these periods are selected is described in § 6.2.2). The relationship
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power spectrum (base-10 logarithm) of CMORPH rainfall in the eastern Arabian Sea FFT
domain in Figure for June through September in the years 1998-2015. The solid black

lines show 2, 5, 10 and 15 m s−1 onshore and offshore propagation speeds.
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of wind profile to rainfall propagation speeds for these periods (Figure ) suggests that the

winds play a significant role in the rainfall propagation. The peak propagation velocity

in the offshore periods is westward at 2-6 m s−1 (Figure (a)) and in the onshore periods

is close to stationary (Figure (b)). The higher number of onshore moving storms in the

onshore periods is largest between 2-11 m s−1 eastward propagation (Figure (c)).

Comparing the mean radiosonde wind profiles at Bombay/Santa Cruz for the offshore and

onshore periods (Figure (e)), in the onshore periods there is a stronger westward component

to the wind at all heights. As a result, the height at which the low-level westerlies transition

to easterlies above is lower in the offshore periods, at around 600 hPa compared to 400 hPa

for the onshore periods. The boxes in the westerly wind profile plot show the pressures

where the wind speed is the same as the peak in zonal storm propagation speed, which is 2 to

6 m s−1 in offshore periods, and close to 0 m s−1 in onshore periods. In both sets of periods,

the lowest possible steering height for these peak propagation speeds, from these profiles is

∼500 hPa, while the upper limit is higher in the offshore periods at ∼350 hPa, compared to

∼375 hPa in the onshore periods. Comparing the wind profiles with offshore and onshore

period storm propagation speeds, the differences in the peak propagation velocity, and the

differences in onshore propagation that appear likely to be a result of variability in the

winds affecting the distribution of storm propagation speeds.

The histogram for all storm propagation upstream of the Western Ghats in Figure shows

that there is a lot more offshore propagation than onshore propagation. The offshore and

onshore periods (Figure (a),(b)) both also have more offshore than onshore propagation.

The overall amount of storm activity is lower in the onshore periods, but in both cases about

half the number of storms that move westward at 2-6 m s−1 move westward at 11-15 m s−1

(Figure (c)). That the relative distributions of offshore storm propagation speeds in the

offshore and onshore periods are similar, but the overall amount of storm activity in the

offshore periods is higher, suggests that variability in the distribution of offshore propagation

speeds is determined primarily by the same factors that control whether convection across

the region upstream of the Western Ghats is generally enhanced or suppressed.
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Figure : ’Offshore’ and ’onshore’ period mean CMORPH tracked storm speeds (in the
storm tracking domain in Figure ) and mean radiosonde wind profiles at Bombay / Santa
Cruz. (a) and (b) show the number of storms moving at different velocities in, respectively,
the offshore and onshore periods. (c) and (d) show the number of offshore and onshore
period storms moving, respectively at different zonal and meridional speeds. (e) and (f)
show, respectively, the mean zonal and meridional wind components at Bombay / Santa
Cruz for the offshore and onshore periods. ’Offshore’ and ’onshore’ periods have relatively
high amounts of westward or eastward rainfall propagation, respectively (§ 6.2.2). The
boxes in (e) show where the westerly wind speed matches the peak in (c), the zonal storm

propagation speed distribution.
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6.3.2.3 Diurnal cycle of rainfall

For the offshore and onshore periods, Figure shows the mean diurnal cycle of CMORPH

rainfall along the 19°N Western Ghats transect (Figure ). The CMORPH rainfall retrievals

are only able to provide rainfall estimates at 30 minute intervals by using infrared geosta-

tionary satellite information to propagate rainfall patterns between less-frequent microwave

rainfall estimates from polar orbiting satellites. Although infrared data are only used to

propagate patterns between microwave rainfall estimates, it is possible that they are too

sensitive to anvil clouds in the upper troposphere which here may be propagating in the

upper-level easterly winds, potentially in a significantly different direction to the rain pro-

ducing part of the storm. To address this, the mean diurnal cycles for the offshore and

onshore periods are also shown as estimated from the multi-satellite TRMM microwave-only

product (Figure (c),(d)).

The mean offshore and onshore period diurnal cycles, from both the CMORPH and TRMM-

microwave rainfall retrievals, show a general similarity, over land, coast and sea, to diurnal

cycles in other tropical coastal regions (e.g. Kikuchi and Wang, 2008).

• Over the continent, there is a rainfall minimum in the morning and early afternoon

and a maximum in the late afternoon and night-time.

• Over the sea, the pattern is the opposite to that over the continent, with a rainfall

maximum in the morning and afternoon and a minimum in the night-time.

• Near the coast, there are late night/morning and afternoon peaks, with the morning

peak situated more over the sea, and the afternoon peak more over land. As also

commonly observed in other tropical coastal regions (e.g. Kikuchi and Wang, 2008),

rainfall propagates offshore from the seaward morning peak, and inland from the

landward afternoon/evening peak.

The mean rainfall along the transect shows that the near-coastal rainfall peaks result in

the highest rainfall upstream of the Western Ghats being near the coast. In the TRMM-

microwave diurnal cycles the peak is further offshore than in CMORPH. Previous studies

have differed in finding that the rainfall peak near the coast is either over the sea or over the

slopes, so it is noted that the actual location of the peak near the coast may differ somewhat
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Figure : Mean diurnal cycle composites of CMORPH rainfall along 19°N transect (1°
meridional width) for (a) offshore and (b) onshore periods, and of TRMM-microwave
rainfall (c) offshore and (d) onshore periods. The line plots in each panel show the topog-
raphy and mean rainfall along the transect. Lines on the rainfall Hovmöllers show some
propagation speeds. The way offshore and onshore periods are selected is described in

§ 6.2.2. Figure shows the location of the transect.



Western Ghats storms 129

from what is shown here. As expected from the storm speed histograms in Figure , there is

more rainfall overall in the offshore periods, and this is the case along the entire transect.

Relatively, however, in the onshore periods the mean coastal rainfall peak is about the same

magnitude as the peak in the continental rainfall, whereas in the offshore periods the coastal

rainfall peak is higher than the continental rainfall peak (∼1 mm h−1 to ∼0.6 mm h−1).

The mean rainfall amount over the sea generally decreases with distance from the coast,

but there are local peaks. In both sets of periods, there is a local rainfall peak, over the

sea, at ∼300km along transect, which could be a result of an SST gradient. In the onshore

periods, there is also a local peak over the sea at ∼600km along transect. This onshore

period peak potentially relates to the concept of gentle lifting as a mechanism for the

initiation of deep offshore convection originally proposed by Grossman and Durran (1984),

which would require sufficiently strong monsoon westerlies and would also coincide with

suppressed convection near the coast, an environment which is consistent with that of the

onshore periods in relation to the offshore periods.

Both the offshore and onshore period diurnal cycles indicate offshore propagation at a

range of possible speeds, from 5-15 m s−1, from near the coast. There is some difference

in the pattern of morning and night-time rainfall though. In both the offshore and the

onshore periods, rainfall is seen to propagate offshore from the near-coastal morning peak.

The pattern differs in that, while there is also offshore propagation of similar rainfall

magnitudes during the night in the offshore periods, the night-time rainfall over the sea is

markedly lower than the morning rainfall in the onshore periods. Offshore propagation at

speeds of 10-15 m s−1, from night-time and morning near-coastal convection in the tropics

has been shown to be consistent with a destabilising effect of convectively generated gravity

waves (e.g. Love et al., 2011). Offshore propagation at speeds of ∼5 m s−1 could also result

from gravity waves, but is more consistent with a shallower wave generated by land breezes

converging with the mean flow (Yang and Slingo, 2001). The monsoon westerlies are weaker

in the offshore periods, making it more likely that land breezes will develop during the

night, which could help to explain the differing patterns of night-time and morning offshore

rainfall propagation.

Over land, there is possible propagation both eastward inland from the late afternoon/evening

coastal rainfall peak and also westward towards the coast from the night-time continental

rainfall. The contours in between the continental afternoon peak, and the near-coastal
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morning peak, in both the offshore and onshore periods, indicate westward propagation

towards the coast at speeds of 10-15 m s−1 between them. In the opposite direction, there is

a propagation inland from the landside coastal peak in the latter part of the day at similar

speeds.

Gravity waves may also act to suppress rainfall in the evening over the sea. First internal

mode gravity waves, which can be generated by a deep convective heating profile, and travel

at speeds of ∼50-60 m s−1, can suppress convection (Marsham and Parker, 2006; Love et al.,

2011), where the passage of their downwelling wavefront has a stabilising effect. While the

rainfall over the sea is at a minimum in both the offshore and onshore periods, the timings

differ. In the offshore periods, a ∼60 m s−1 propagation speed joins the afternoon and early

evening part of the landside coastal peak (∼1500-2000LST) and rainfall minima over the sea

(∼1900-2200LST and at ∼400km and ∼750km along transect). The rainfall minima over

the sea in the offshore periods are, however, earlier than the continental rainfall maximum.

In the onshore periods, the rainfall minima at about the same locations persist for much

longer (until ∼0600LST), which could perhaps be due to differences in the characteristics of

gravity waves generated by the near-coastal and continental convection and/or differences

in the onshore period environment over the sea.

This sections has examined climatological wind and rainfall differences between periods

with relatively high amounts of offshore rainfall propagation and relatively high amounts of

onshore rainfall propagation. These offshore and onshore periods correspond to 2 distinct

regimes. In periods with the most offshore propagation there are more storms and rainfall

upstream of the Western Ghats and the monsoon westerlies are weaker and transition to

easterlies at a lower level (Figure ). The different wind profiles correspond to a different

distribution of storm propagation speeds, with the peak at 2-6 m s−1 westward in the

offshore periods, and at -2 to 2 m s−1 westward in the onshore periods. In both the offshore

and onshore period regimes, there is offshore phase propagation of both rainfall enhancement

and suppression in the diurnal cycle, consistent with the effects of gravity waves. In the next

section, the relationships between wind and rainfall identified in the offshore and onshore

period regimes are examined in the context of larger-scale intraseasonal variability.
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6.3.3 Links between Western Ghats rainfall propagation and larger-scale

variability

A large part of the intraseasonal variability in the Indian summer monsoon comes in the form

of Boreal Summer Intraseasonal Oscillations (BSISOs). The majority of the time, BSISO

interrelated convection and circulation anomalies propagate northward over India and, at

the same time, eastward near the equator and over India (Lawrence and Webster, 2001).

This gives a characteristic WNW-ESE slopes to the anomalies. Modelling studies have

found that intraseasonal oscillations are better represented in coupled ocean-atmosphere

models compared to atmosphere-only models because of a better representation of feedbacks

between SST and convection (e.g. Ratnam et al., 2009; Sharmila et al., 2013).

Figures & show the spatial patterns of onshore minus offshore period 850 hPa wind,

precipitation and Sea Surface Temperature (SST), at a range of lagged periods from the

onshore and offshore periods, for 2001 to 2014. The years 2001 to 2014 were used, instead of

1998 to 2014, because when data from 1998 (a ’very strong’ El Niño year), was included, any

pattern of intraseasonal variability in the SST was dominated, over the equatorial central

and west Pacific, by the related seasonal pattern in the SST differences. Consequently, all

years with ’very strong’ El Niño (1998, 2015) or La Niña (1999, 2000) have been excluded.

7-day periods outside the upper and lower 25th percentile of the ratio of offshore to onshore

propagation power in the wavenumber-frequency domain form the 0-day offshore and

onshore periods respectively and the positive and negative lag composites are composed of

the subsequent 7-day periods each side of the upper and lower percentile periods.

There is a north-south dipole in the rainfall differences between the onshore and offshore

periods (0-days lag in Figure ), with more rainfall to the north in the onshore periods (in

a band from the north Bay of Bengal to the west Pacific), and more rainfall to the south

in the offshore periods (in a band from the Arabian Sea across southeast Asia and the

maritime continent into the equatorial west Pacific). The 0-days lag wind differences at

850 hPa — stronger westerlies in the onshore periods — are greatest where they bisect the

dipole in the rainfall differences, and are collocated, between ∼90-130°E, with a band of

cooler SSTs (Figure ).

The changing rainfall differences with lag (Figure ) show a reversing dipole on a ∼7-14-day
time period. In the ∼14-days lag periods there is, opposite to the 0-days lag periods, more
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Figure : Lagged composites of onshore minus offshore period ERA-Interim rain rate
and 850 hPa wind (arrows show difference), for 2001 to 2014. Only statistically significant
differences are shown, where significance is above the 99% confidence interval, as deter-
mined by the Mann-Whitney U test. The time-lagged composites either side of 0 days
lag are composites of 7-day periods lagged by increments of 7 days from the onshore and
offshore periods. The rain rate is converted from 3-hourly accumulated precipitation. The

way offshore and onshore periods are selected is described in § 6.2.2.
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Figure : As Figure but for sea surface temperature and 850 hPa wind (arrows show
difference).
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onshore period rainfall to the south (over south India and the equatorial Indian Ocean),

and less to the north (over the south China Sea). At -7-days lag, the dipole in the rainfall

differences has reversed. From 0 to 14 days lag, the dipole again reverses. Between all of

the lag periods, both positive and negative rainfall differences move northward with time.

There is a band of cooler SSTs in onshore periods over south Asia (Figure ), at 0 and 7-days

lag, which extends eastward from the western Arabian Sea, across the Bay of Bengal, South

China Sea, and extends into the west Pacific. The largest 850 hPa onshore minus offshore

period wind differences, which are in a band between ∼90-130°E, are spatially correlated

with this band of cooler SSTs. In the east equatorial Pacific, there are warmer onshore

period SSTs at negative and 0-day lag periods, and in the central equatorial Pacific there

are warmers SSTs at positive lags. At -14 and -7 days lag the warmer east Pacific SSTs are

spatially correlated with stronger 850 hPa easterlies there, and at +7 and +14 days the

warmer central Pacific SSTs are spatially correlated with weaker easterlies.

If the offshore and onshore period differences in convection, circulation, and SST (Fig-

ure & ) are related to BSISOs, then it is reasonable to expect that the periods are related

to the propagation of equatorial waves (Wang and Xie, 1997; Lawrence and Webster, 2001).

Figure shows offshore and onshore period lagged mean OLR anomalies, in a box covering

Indian monsoon longitudes and south Indian latitudes, for the wavenumber-frequency do-

mains of major tropical modes. The MJO anomalies relative to the offshore periods are the

largest with a negative peak at +1 day (consistent with the 0-day lag rainfall differences

in Figure ) and a positive peak +21 days lag. There is also a smaller positive peak at -19

days giving the offshore period MJO anomalies a period of 20 days throughout the range of

lags. In the 10 days before and after the offshore period 0 lag, the oscillations in the Kelvin

and Rossby wave anomalies are both at close to double the frequency of the MJO anomaly

oscillation and are near zero at +1 day lag. The smallest anomalies, but still apparently with

some relationship to the offshore periods, are in the mixed Rossby-gravity wave anomalies,

which oscillate throughout the lag range with a variable frequency.

Relative to the onshore periods, the MJO OLR anomalies, offset by 3-4 days show a reversed

pattern compared to the onshore periods. There is a positive MJO OLR anomaly peak at +4

days lag, and a negative peak at -17 days lag, giving a similar period to the MJO anomalies

in the offshore periods. Any coherent signal in the mixed Rossby-gravity anomalies is

difficult to discern, as in the offshore periods. However, the relationships of the negative
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Figure : Projected mean OLR anomalies for 5-17.5N, 60-100E (Figure ), at lagged days
around the (a) offshore and (b) onshore periods, for the zonal wave-number frequency
bands of major tropical modes. MRG stands for Mixed Rossby-Gravity. The algorithm
used to calculate the OLR anomalies is described in § 6.2.4. The way offshore and onshore

periods are selected is described in § 6.2.2.
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MJO anomaly peaks in the onshore (-17 days lag) and offshore (+1 days lag) periods to the

respective equatorial Rossby and Kelvin wave oscillations is very similar. Considering that

there is a high correlation between the number of offshore and onshore periods in each year

(ρ=0.96), this relationship between the offshore and onshore period wave OLR anomalies

is consistent with the onshore periods relating to a later phase of the BSISO.

Taken together, the panels of Figure indicate that the onshore and offshore periods are

strongly related to the prevailing MJO state, and much less strongly related to other

equatorial modes, with Kelvin and Equatorial Rossby wave modes perhaps playing secondary

roles to the MJO. This observation confirms that the onshore and offshore modes identified

in this chapter are coherent modes of activity related to larger-scale dynamics.

6.4 Conclusions

This chapter presents novel findings on the nature of rainfall propagation upstream of the

Western Ghats. Previous works have considered how rainfall can form at different times

over both the coastal seas and windward slopes of the Western Ghats (Smith and Lin, 1982,

1983; Smith, 1985; Grossman and Durran, 1984; Ogura and Yoshizaki, 1988; Zhang and

Smith, 2018; Fletcher et al., 2018), but have not considered the role of propagating rainfall

in the high rainfall region upstream of the Western Ghats.

Tracked storms in a climatology of CMORPH satellite rainfall retrievals show that more

rainfall comes from storms that propagate offshore than from near stationary storms. Storms

propagating offshore at speeds between 6 and 15 m s−1 contribute as much rainfall as

storms propagating offshore at speeds of 2-6 m s−1 The wavenumber-frequency spectrum

and diurnal cycle of rainfall also show significant offshore propagation of rainfall and provide

evidence of the influence of gravity waves propagating from land to sea. The behaviour is

significantly modulated by large-scale intraseasonal oscillations.

Comparing periods with relatively high and low amounts of offshore propagation (deter-

mined from Fourier analysis) shows 2 distinct regimes, called “offshore” and “onshore” periods

here. The onshore and offshore periods are seen to be part of a larger-scale variability, lasting

on timescales of at least 4 weeks. The variability, in wind, rainfall and SST, is distinctly sim-

ilar to the variability associated with Boreal Summer IntraSeasonal Oscillations (BSISOs)
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which are significantly determined by large-scale circulation anomalies associated with in-

traseasonal waves (Figure & & ). The storm tracking results indicate that in both the

offshore and the onshore periods, there is a fairly broad distribution of storm propagation

speeds of +/- 10-15 m s−1 about the mean. In periods with the most offshore propagation

the peak in propagation speed is 2-6 m s−1 westward. In periods with the most onshore

propagation, the peak in propagation speed is between 2 m s−1 westward and 2 m s−1

eastward. Storms move onshore at speeds up to 10 m s−1 in these onshore periods, but

there is still more offshore than onshore propagation. In both the offshore and the onshore

periods storms propagate offshore at speeds of up to 15 m s−1.

The wind profile, as measure by radiosonde soundings at Bombay/Santa Cruz varies coher-

ently between the offshore and onshore regimes. The monsoon westerlies, are stronger and

deeper in the onshore periods compared to the offshore periods This means that the modal

value of tracked storm speeds in each regime is similar to the regime mean wind speed at

500-400 hPa.

Rainfall over both the windward slopes of the Western Ghats and over the sea are signifi-

cantly modulated by the diurnal cycle. There are distinct diurnal cycles of rainfall near the

coast, over the coastal sea, and over the continent, which are similar to those found in other

tropical coastal regions (e.g. Kikuchi and Wang, 2008). Inland, away from the coast, rainfall

peaks at 1800 LST and is at a minimum at 0900 LST. There is a significant minimum in

rainfall in the lee of the Ghats (extending over 200 km). Near the coast there is a night-time

and morning rainfall peak (0000-0900 LST in the offshore periods and 0600-0900LST in

the onshore periods) and an afternoon/early evening peak (1200-2000LST). The earlier

peak is close to or just over the sea, and the later peak is further inland, on the windward

slopes of the Western Ghats. The locations and times of the near-coastal diurnal peaks

are consistent with the effects of thermally driven orographic flows on moist convection

(Kirshbaum et al., 2018). There appears to be a fast deep wave of suppression emanating

from the early afternoon Ghats/continental convection which suppresses convection over

the sea. This moves at a speed consistent with the deepest tropospheric gravity wave mode

(60 m s−1), and is too fast to be explained by the propagation of individual storms (e.g.

Love et al., 2011). There are offshore phase propagations from the near-coastal night-time

and morning rainfall peak, with speeds of 2 to 15 m s−1 in both regimes, consistent with

shallower slower gravity waves, and the tracked storm speeds.
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What causes the offshore propagation of rainfall patterns? There is evidence both of propa-

gating storms and of gravity waves modulating the envelope of convection. Offshore propa-

gation is related to the offshore movement of individual, tracked storms (Figure . However,

the initiation of these storms is mostly over the sea, and so is not directly controlled by the

diurnal cycle of heating over land. Instead, the diurnal cycle of heating over land causes

various gravity wave response to propagate over the sea and modulate the occurrence of

rainfall there.

This work was originally motivated by an apparent systematic discrepancy in storm propa-

gation between model simulations and CMORPH. The convection-permitting simulations

have storms consistently propagating to the east or onshore. Storm tracking shows this

bias pattern is widespread, both upstream of the Western Ghats, and over much of India.

The cause of the model bias in the rainfall propagation is not yet clear, nor are the impli-

cations of this for modelling the Indian monsoon. The work here shows evidence that the

observed rainfall propagation is due to storm advection and convectively-generated gravity

waves, and also perhaps land breezes when the monsoon westerlies are not too strong. It

seems unlikely that the propagation bias results from errors in representing the effect of

land breezes because the propagation bias is widespread over much of India. It also seems

unlikely that the consistent pattern of onshore propagation at 10-15 m s −1 is due to storm

advection because the model wind speeds simply are not fast enough (Figure & & ). The

model bias in storm propagation could also result from errors in where deep convection

develops and/or the depth to which it develops, and also potentially from errors in the

representation of gravity waves and their effects on convection.

It is possible that the rainfall propagation bias could impact on larger-scales. Two key

questions are:

• How might the rainfall propagation bias affect the mean rainfall upstream of the

Western Ghats?

• How might the rainfall propagation bias affect the interaction of the rainfall upstream

of the Western Ghats with intraseasonal oscillations? The offshore and onshore regimes

identified here are distinctly similar to, respectively, active and break phases of BSISO

events. Given the interaction of the propagating anomalies in circulation and con-

vection that make up these events, it may be that improving the model response of
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rainfall propagation characteristics during a BSISO event could improve the repre-

sentation of the propagating anomalies. Intraseasonal oscillations have a large effect

on the interannual variability of the Indian monsoon, so improved representation of

BSISO events is an important goal for improved modelling of the Indian monsoon on

a wide range of timescales.

The work here has focused on the role of rainfall propagation in determining the spatial and

temporal distribution of rainfall upstream of the Western Ghats. An important question

not addressed here is why rainfall at different times forms preferentially offshore or over

the Western Ghats. Recent modelling (Zhang and Smith, 2018) and observational studies

(Fletcher et al., 2018), both find that Arabian Sea SSTs and mid tropospheric humidity play

a significant role in determining the type and location of convection. The finding that warm

Arabian Sea SSTs encourage rainfall to form offshore is consistent with the climatological

analysis here (Figure ). With regard to midtropospheric humidity, in the Fletcher et al.

(2018) study, a midtropospheric dry intrusion over the Arabian Sea is found to greatly

influence the offshore rainfall and the thermodynamics of the monsoon flow.

Both Zhang and Smith (2018) and Fletcher et al. (2018) look at case study periods, which

raises the question of how consistent these results are with the climatology. In the particular

case examined in Fletcher et al. (2018) the switch from offshore rainfall to coastal rainfall

was governed by the passage of an active phase of a BSISO. When the rainfall is focused

offshore, the monsoon westerlies are relatively weak, and when the rainfall is focused over the

coast, the westerlies are relatively strong. Furthermore, there is evidence, in their offshore

phase, of offshore propagation, and in their coastal phase, of eastward propagation in the

Bay of Bengal (Figure ). Clearly, there is some consistency between the regimes identified

here and the regimes identified in Fletcher et al. (2018). A complete understanding of the

processes that govern these rainfall regimes will need to consider the roles of local SST

anomalies and dry intrusions, the influence of the diurnal cycle on offshore convection

through gravity wave effects, the influence of the wind profile on storm propagation, and

the role of BSISOs.
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Figure : Top: mean rainfall from 12-13°N from TRMM 3B42 over the time periods in
2016 indicated in the legend. Centre: Time-longitude section of IMERG rainfall (mm h−1)
averaged over 12-14°N during the 2016 INCOMPASS campaign intense observation period.
Flight paths are overlaid in black. Note the non-linear colourbar. Bottom: elevation profile
at 13°N. Solid black vertical lines on the top two panels indicate the coasts; dashed line
indicates the peak of the Western Ghats. Reproduced from Fletcher et al. (2018), which

also has further information on the INCOMPASS field campaign.



Chapter 7

Conclusions

The aim of this thesis is to better understand some of the various roles and interactions of

moist convection within the highly complex Indian summer monsoon system. Key issues

addressed here are an incomplete knowledge of processes that determine the spatial and

temporal evolution and variability of the monsoon onset (Chapter 4), systematic model

biases in the representation of the mean large-scale monsoon (Chapter 5), and the role

of rainfall propagation in one of the highest regions of monsoon rainfall, upstream of the

Western Ghats mountain range on the west coast of India (Chapter 6).

In this chapter, following a review of the main results of the thesis in §7.1, §7.2 will consider

possible further work that could build on the work presented in this thesis.

7.1 Review of results

The work looking at the monsoon onset in a climatology of radiosonde data (Chapter 4)

presented work originally published in Parker et al. (2016), and extended the analysis.

Parker et al. (2016) studied the role of mid-level dry air in determining the 6 week long

northwestward progression of the onset of the rainy season, proposing that the onset of deep

convection happens from the south because that is where a wedge of pre-onset mid-level

dry air is thinnest. The dry layer is eroded from the south, as moisture advection into the

subcontinent increases as the monsoon circulation strengthens, and it is moistened from

141
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below by cumulus and congestus clouds, allowing the limit of deep convection to move to

the north.

There are two main objectives of the work further to the analysis originally presented in

Parker et al. (2016):

• Document in more detail the relationship of the dynamics of the onset to the ther-

modynamic changes central to the hypothesis of mid-level dry air as a control on the

progression of the onset.

• Test the hypothesis that in years where the onset is considered late, there is a drier

mid-level layer.

The dynamical fields show that the progress of the northern limit of the onset towards the

northwest is closely accompanied by large-scale changes in the circulation. Moving towards

the northwest with the northern limit as the onset progresses, is the boundary between

upper-level and mid-level baroclinic westerlies to the north and easterlies to the south,

and the boundary between low-level and mid-level northwesterlies to the north and the

monsoon trough circulation to the south. At Nagpur, in central India, these circulation

changes are closely related in time. For about a week before the onset, mid-level winds with

an easterly component indicate the passage of the boundary between the northwesterly

flow and the monsoon trough circulation. This is closely related, on the timescale of a few

days, to a transition away from the persistent mid-level northwesterlies, and also the final

seasonal transition from upper-level westerlies to easterlies. A few days later, the upper-level

winds transition from southerly to northerly indicating the rapid seasonal change to the

summertime deep meridional overturning circulation.

In Parker et al. (2016), it is proposed that the onset occurs at a certain location once the

mid-level dry layer has been sufficiently eroded, which is suggested to come about through

convective moistening. The circulation changes at Nagpur that take place about a week

before the onset are also closely related in time to a marked increase in the subcloud θe,

due to an in crease in moisture content, and an increase in mid-level relative humidity. The

dynamical changes mean that the northwesterly flow of mid-level dry air becomes much less

prominent while, at the same time, the subcloud and mid-level thermodynamical changes

indicate a transition to a profile consistent with adjustment by convective moistening.
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The similarities among the timings of the dynamic and thermodynamic changes certainly

highlight how the onset involves interactions between moist convection and major transitions

in the circulation on timescales ranging from a few days to weeks and months. At the same

time, this makes it difficult to establish to what extent the weakening of the mid-level

northwesterlies and convective moistening might control the onset.

The work that examines the interannual variability of the onset also shows there is further

scope to understand the roles of moist convection, the large-scale circulation, and mid-level

dry air in the onset. Years with an early onset, compared to years with a late onset, show

a pattern of drier mid-levels and moister low-levels. As such, the results point towards

pre-onset low-level moisture content being a significant factor in the interannual variability,

and also that the low-level moisture content is negatively correlated with mid-level moisture.

Although dry mid-level air apparently does not control the interannual variability, it may

still play a significant role in inhibiting the onset. The erosion of the mid-levels, by some

combination of circulation changes and convective moistening may still be a significant driver

of the onset. A thorough examination of what causes this pattern may reveal dominant

processes that modulate the onset, and also how these processes relate to the erosion of the

mid-level dry air. Interannual variability in the pre-onset shallow meridional circulation is

one possible factor.

In Chapter 5, the role of convective parametrisation in generating typical systematic model

biases in the Indian monsoon, is examined using convection-permitting simulations which

capture the large-scale Indian monsoon circulation, and run for 3 weeks. The large domain,

duration and resolution allows a novel insight into how the effects of small-scale, short-

timescale processes can influence biases in larger-scale processes, such as the mean monsoon

circulation. The suite of simulations is comprised of convection-permitting and parametrised

simulations at a range of grid-spacings, which allows for a number of comparisons to be

made. Overall, Chapter 5 shows how the continental dry bias, equatorial Indian Ocean

wet bias and too weak low-level monsoon circulation in the MetUM, which is similar to

many other models (Sperber et al., 2013) are related to each other and result from biases

in convective parametrisation.

In general, the convection-permitting simulations rain more over the subcontinent, which

comes from more intense convection, and give a better diurnal cycle, with rainfall over land

peaking in the late afternoon. The increased diabatic heating from higher rainfall increases
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the temperature gradient between land and sea, which in turn increases the circulation and

advection of moisture into the subcontinent. The later diurnal peak in rainfall reduces cloud

cover earlier in the day, when insolation peaks, leads to greater surface solar shortwave

heating. In the convection-permitting simulations, higher sensible and lower latent surface

heat fluxes indicate a drier surface, which is due to the more intense rainfall, which results

in more rainfall penetrating the vegetation and reaching the surface where it can be lost

through run-off and penetration into the soil, rather than being re-evaporated from the

vegetation.

The higher sensible heat fluxes at the surface also enhance the land-sea temperature gradient,

which again enhances the onshore flow. However, the latent heating is an order of magnitude

larger than the sensible heating, and so is likely the dominant process in determining the

circulation differences between the convection-permitting and parametrised simulations.

The improved diurnal cycle in the convection-permitting simulations is also found to improve

the diurnal cycle of the land-sea pressure gradient, consistent with Marsham et al. (2013),

which found that later latent heating over land in the convection-permitting simulations

caused the subsequent increase in the land-sea pressure gradient to be greater. This is

because, the land-sea pressure gradient grows in the late afternoon and night-time when

the low-level monsoon flow becomes decoupled from the boundary layer as the drag effect

of boundary layer convection is at a minimum.

Rainfall over the Western Equatorial Indian Ocean (WEIO) is also found to be important

in determining the land-sea pressure gradient. The 2.2km convection-permitting simulation

has higher inflow into the subcontinent than both the 8km convection-permitting and 8km

parametrised simulations. Coarser grid-spacings in the convection-permitting simulations

increase the rainfall amount in the WEIO, with the 2.2km simulation giving the mean

closest to the satellite observations, while the parametrised simulations give a similar

rainfall magnitude to the 4E simulation over the WEIO. Small differences in the profiles of

specific humidity within the flow differences over the Arabian Sea show that the increased

circulation does not hold more moisture. However, the limited domain of the simulations

does not fully contain the main part of the cross-equatorial and Somali jet flow, which may

impede a correct representation of the changes to the circulation, and hence its moisture

content.
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The convection-permitting simulations give a good representation of the speed of propa-

gation of a low-pressure system from the Bay of Bengal to the northwest, whereas in the

parametrised simulations, it moves too fast. This results in a bias in the depth of the mon-

soon trough low over northern India. Further simulations would be required to determine

if this bias in the parametrised simulations might be systematic, which could alter the

representation of the large-scale circulation.

Previous work looking at how an altered representation of convection affects other aspects of

the monsoon, such as the circulation, have primarily tested sensitivity to differences in the

convective parametrisation scheme (e.g. Bush et al., 2015). While the convection-permitting

simulations have their own, sometimes substantial biases, they give a fundamentally dif-

ferent representation of convection to models with convective parametrisation. Previous

studies have shown, using continental-scale simulations run over many days, how an explicit

representation of convection can improve the large-scale representation of the West African

monsoon (Marsham et al., 2013; Birch et al., 2014). The work here has followed on from

this, and applied a similar framework to the study of the Indian monsoon. Simulations

with small enough grid-spacings to sensibly allow the convective parametrisation scheme

to be switched off are, compared to models with parametrised convection, well known to

produce more rainfall (which is too intense compared to the observations), which is also

more intense, and to have an improved diurnal cycle of continental rainfall (Weisman et al.,

1997; Guichard et al., 2004; Dirmeyer et al., 2012; Holloway et al., 2012b). These rainfall dif-

ferences, in the case of the Indian monsoon, are shown here to alter the low-level circulation

and associated moisture transport into India, and to alter the land surface characteristics.

Systematic model biases inhibit our ability to assess the response of the Indian monsoon to

predictable slow-varying boundary forcings, such as SST (Shukla, 1998). In turn, efforts to

understand how unpredictable the Indian monsoon is, because of internal chaotic processes,

are hampered by the lack of ability to represent the response to the predictable forcings

(e.g. Palmer, 1994; Sperber et al., 2000). While this work has shown a number of ways in

which typical convective parametrisation biases alter other aspects of the modelled Indian

monsoon, biases in parametrisations of convection have not, to date, been easily reduced.

The results suggest, however, that convective parametrisations which better represent the

diurnal cycle of moist convection and the amount and intensity distribution of rainfall, will
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be necessary to improved our ability to predict, and also to better understand the Indian

monsoon and its interactions within the global Earth system.

Chapter 6 examines rainfall propagation over the Western Ghats and eastern Arabian Sea.

The thin band of rainfall over the windward slopes of the mountains and over the coastal

sea are, after the rainfall upstream of the mountains of Myanmar over the Bay of Bengal,

the second highest within the Indian Summer monsoon. The existing literature concerning

deep convection over the eastern Arabian Sea (Smith and Lin, 1982, 1983; Smith, 1985;

Grossman and Durran, 1984; Ogura and Yoshizaki, 1988; Roadcap and Rao, 1993; Zhang

and Smith, 2018; Fletcher et al., 2018), does not consider offshore propagation of rainfall

over the eastern Arabian Sea.

This study has shown evidence that there is a dominant pattern of offshore rainfall propa-

gation upstream of the Western Ghats, and that a number of mechanisms are responsible,

namely storm advection by the mean winds, and the destabilising effects of gravity waves

resulting from convection. Two regimes are identified, based on variability in the rainfall

propagation, which have distinct large-scale circulation, rainfall and SST patterns that relate

to different phases of Boreal Summer IntraSeasonal Oscillations (BSISOs). Furthermore, in

an assessment of the performance of convection-permitting and convection simulations in

two case-study periods, the simulations and satellite rainfall retrievals show quite different

patterns of rainfall propagation, with a consistent pattern of rainfall propagating onshore, or

eastward in the model simulations, when rainfall is propagating offshore in the observations.

Storm tracking of rainfall, in a climatology of satellite rainfall, shows that most offshore

rainfall events are stationary, or move offshore at speeds of 2-6 m s−1 and that there

is always a relatively significant amount of offshore storm propagation up to speeds of

15 m s−1, even in periods with more onshore rainfall propagation. The distribution of

zonal storm propagation speeds varies, between periods with more offshore and onshore

propagation, with the zonal wind profile, indicating a role for storm advection The storm

tracking also shows that the rainfall over the sea comes predominantly from storms that

initiate over the sea away from the coast, indicating the importance of offshore waves in

the propagation. Reanalysis and radiosonde wind profiles show that, in periods identified

as having more offshore propagation, the monsoon westerlies at the coast are weaker and

transition to upper-level easterlies at a lower height. Weaker, shallower westerlies mean

that more storms can be advected offshore, at speeds of less than 6 m s−1. Conversely,
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in onshore periods, stronger and deeper westerlies, advect more storms onshore than in

the offshore periods, although the maximum in the distribution of storm speeds is close

to 0 m s−1, and there is still more offshore propagation than onshore propagation. The

destabilising effect of offshore propagating gravity waves resulting from the diurnal cycle of

convection (e.g. Yang and Slingo, 2001; Love et al., 2011) is proposed as a key mechanism

for offshore propagation. The diurnal cycles of rainfall in the offshore and onshore periods

show westward phase propagations, at speeds of 10-15 m s−1, from the late afternoon and

evening inland continental rainfall peak towards the night-time and morning rainfall peak

over the sea, close to the coast, and also offshore from this morning peak, consistent with

the characteristic speeds of rainfall propagation resulting from the effects of gravity waves

generated by convection.

While the climatological mean nature of the work here that characterises the environment

in which rainfall propagation occurs, based on the selection of offshore and onshore periods,

establishes that offshore propagation of rainfall should be considered important to the

distribution of rainfall upstream of the Western Ghats and shows some evidence for the

importance of certain processes, it cannot examine the detailed mechanics of the processes

that determine the rainfall characteristics of individual events. Given the compositing of a

large number of time periods, it cannot establish the relative importance of certain factors,

such as mid-level dry air, Arabian Sea sea surface temperatures, and the circulation.

The Indian monsoon remains one of the major biases in global models (e.g. Sperber et al.,

2013). The representation of convection is a dominant source of error in global models (Jung

et al., 2010; Sherwood et al., 2014), primarily as a result of errors in the representation of

fast convective processes (Murphy et al., 2004; Rodwell and Palmer, 2007). This motivates

the work presented in this thesis, which aims to better understand the relationships between

the fast, small-scale process of moist convection and the large-scale monsoon system. The

work here has addressed this on different scales, in the climatology of the onset, in the

upscale effects of the representation of convection on the larger-scale monsoon, and in the

mesoscale, the climatological characteristics of storms in the Western Ghats region and

their relationship to the large-scale intraseasonal variability. The work has shown how well

both convection-permitting and parametrised convection simulations relate to observations

on both the large-scale and mesoscale, and highlighted some ways in which models likely

need to improve, if they are to improve their representation of the Indian monsoon.
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Together the chapters demonstrate a range of mechanisms for coupling between the convective-

scale storms and their rainfall to the large-scale monsoon, both atmospheric and via the land

surface. Capturing these mechanism is shown to be a challenge, even where convection is

treated explicitly in 2.2 km simulations. The work shows the importance of capturing cloud

entrainment and detrainment, the diurnal cycle of convection, the amount and intensity

of rainfall, the Bowen ratio and surface fluxes, and convective couplings with mesoscale

features such as gravity waves. The work raises a number of new avenues for further research,

which are now outlined in §7.2.

7.2 Further work

For much of the further work considered here, the INCOMPASS project is particularly

relevant (Willetts et al., 2017b). It incorporates a programme of high-resolution convection-

permitting simulations, detailed land surface modelling, investment in eddy covariance

flux towers in India and in May to mid-July 2016, there was an intensive ground-based

observation campaign, which included an increased frequency of radiosonde launches at a

number of stations in India, a period of 3-hourly radiosonde launches at a station close to

Lucknow and an aircraft campaign, which included a number of flights during the onset of

the monsoon along similar northwest to southeast lines as the radiosonde sections shown

here, and also a number of flights traversing the Indian peninsula, crossing the Western

Ghats into the Arabian Sea.

7.2.1 Onset

Proposed ideas for further work are based around two main uncertainties the work here

has raised:

• The roles of the changing circulation and convective moistening in the erosion of the

mid-level dry layer

• The causes of the pattern of moister low-levels above drier mid-levels over India in

years with an earlier onset
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Separating the influence of the changing circulation and convective moistening on the ero-

sion of the dry layer is very difficult using observations alone. Work is already underway in

developing a highly idealised theoretical model of the dynamics of the onset, which incor-

porates the large-scale dynamics, land-surface forcing, convective moistening, and elements

of the unique Indian orography (Recchia, PhD, Leeds, expected 2020). Any further work

would greatly benefit from modelling studies, in particular where certain processes can be

modified. The assessment of Menon et al. (2018), that the Met Office GloSea5 seasonal

forecast model effectively captures the mid-level dry layer and the northwestward progress

of the onset, suggests that this is feasible with state-of-the-art models which parametrise

convection. Model simulations that, for example, trace detrained air from the evaporation

of cloud could be used to investigate the hypothesised roles of mid-level dry air and low-

level moistening related to SMCs. Testing model sensitivities to the effects of moistening

the dry layer by convection could be undertaken by, for example, reducing how much de-

trained moisture in the convection scheme is allowed to affect water values, or relaxing

the free-troposphere moisture back to drier values. There are also some high-resolution

convection-permitting simulation data that could be of benefit. The 2012 simulations used

in Chapter 6 include convection-permitting and parametrised convection simulations, and

model the onset from 15 May to 15 July, so intercomparison between the observations and

the different simulations could be made to, like in Chapter 5, assess any biases in both

the convection-permitting and parametrised simulations, and use the differences between

them to understand how the difference in their representation of convection alters their

representation of the progression of the onset. Simulations performed as part of the INCOM-

PASS project also provide a suite of convection-permitting and parametrised convection

simulations that simulate the onset of 2016.

The evolution of the onset could provide a useful test case to aid in the development of

convective parametrisation and land surface schemes. Dry air suppresses convection via

entrainment, and detrainment from clouds moistens the atmosphere. In representing the

full range of development of moist convective clouds, parametrised convection schemes need

to adequately represent the effects of entrainment and detrainment. Cloud characteristics,

such as their size (e.g. Stirling and Stratton, 2012), affect the entrainment and detrainment.

Cloud size, in turn, has been found to be controlled by the variability of moist static energy

in the boundary layer (Grabowski et al., 2006; Khairoutdinov and Randall, 2006). Parker

et al. (2016) say that increasing soil moisture, which happens ahead of and behind the
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onset of deep convection, feeds moisture to the boundary layer; Because the Bowen ratio is

reduced, dry entrainment in the boundary layer reduces, and the boundary layer θe increases

(Betts and Ball, 1995). The ability of models to represent the progression of the onset of deep

convection therefore likely depends on their ability to represent the effects of entrainment,

detrainment and soil moisture variability. The interactions between the evolving convection

and mid-level dry air that take place as the onset progresses thus provide a good test for

convective parametrisation and land surface schemes, and may provide new information

on how entrainment and detrainment rates vary depending on the environment and cloud

characteristics.

In the interannual variability of the onset, an understanding of the pre-onset pattern, when

years with an earlier onset are compared to years with a later onset, of drier mid-level above

moister low-levels, again would benefit from future work towards separating the influence of

the circulation and convective moistening on the progress of the onset. This is complicated

by the spatial and temporal complexity of the onset, where many factors may lead to an

early or late onset at a certain location in a certain year. The effect of the shallow meridional

circulation on interannual variations in moisture patterns over India is an obvious first step.

Further to that, how might this affect the erosion of the mid-level dry layer during the

onset? In this regard, other pertinent methods for defining the interannual variability of

the onset and the shallow meridional circulation could be explored.

7.2.2 Convection-permitting compared to parametrised simulations

How does the limited domain affect the circulation differences? This is most prominently

highlighted by the difference in the flow from the equatorial Indian Ocean north towards

India, between the 2.2km convection-permitting simulation and the higher grid-spacing

convection-permitting and parametrised simulations. In larger-domain simulations which

extend far enough to the west to capture the full cross-equatorial and Arabian Sea flow, it

is conceivable that instead of enhanced northward flow in the 2.2E simulation, there would

be a strengthening of the main monsoon circulation concentrated in the jet winds close to

east Africa and the westerly winds over the Arabian Sea, which may also be moister.

How does the representation of convection affect the water budget in the simulation? The

convection-permitting simulations rain more than the parametrised convection simulations.
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However, any work looking at this with the simulations used here is complicated by the

version of the MetUM that was used not conserving water for simulations with smaller grid-

spacings. What differences result from the convection-permitting simulations having, for

example, a deeper monsoon trough enhancing moisture flux convergence, or a wetter inflow

profile as a result of lighter oceanic rainfall to the west. There is very excessive rainfall

in the first 3 days of the convection-permitting simulations, when the rainfall amounts

spin down as the atmosphere adjusts from that of the parametrised convection analysis.

Further model tests could reinitialise free-running convection-permitting and parametrised

convection simulation wit h the evolved state of the simulations with the other treatment

of convection, to test whether the spin-down reoccurs.

Is there a systematic bias in the propagation of low-pressure systems in parametrised simula-

tions? The low-pressure system in the 2011 simulations propagates too fast to the northwest

in the parametrised simulations, but is better captured by the convection-permitting simu-

lations. It is not clear, from this one set of simulations, whether there might be a similar

systematic bias, which could be addressed through a more thorough assessment of the repre-

sentation of low-pressure systems in simulations with parametrised convection. This could

use already available model output, such as from the operational MetUM global model and

reanalysis, which could be compared with an automated feature tracking algorithm (e.g.

Hunt and Parker, 2016).

Fletcher et al. (2017) find that monsoon depressions interact with mid-level dry intrusions

30-40% of the time, which affects their rainfall characteristics and inhibits their northwest-

ward progression. Sensitivity tests, where parameters such as free-troposphere moisture are

artificially perturbed, could be done with convection-permitting and parametrised simula-

tions, on a number of identified or idealised low-pressure system events, to compare the

effects of a drier free troposphere when convection is resolved or parametrised.

The work did not compare the surface fluxes from the simulations with observations. As well

as reanalysis, the INCOMPASS campaign is providing new measurements from installed

and upgraded eddy covariance flux towers, from which heat fluxes can be estimated, which

would provide a useful inter-comparison between the free-running simulations, analysis and

observations.
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7.2.3 Western Ghats and eastern Arabian Sea rainfall

The discrepancy in rainfall propagation between the 2.2 km convection-permitting simula-

tions and the satellite rainfall retrievals would benefit from further validation. One concern

is that the method used in CMORPH, where rainfall estimates from microwave retrievals

are propagated using infrared estimates, could be falsely showing westward rainfall propa-

gation where the infrared estimates pick up upper troposphere clouds moving in the mean

easterly flow that are not part of the main precipitating storm, which could be moving

westward. Although there is similar offshore propagation of rainfall in the diurnal cycles of

the CMORPH and the TRMM microwave product, which has a good physical connection

to the rain-rate, the work did not examine the non-diurnal propagation of rainfall. As part

of the INCOMPASS project, data from the IMD radar network will become available to

the participating institutions. A similar analysis of the statistics of storm propagation as

the one presented here could be done using radar data, as well as work looking at the 3-d

structure of storms.

Do the model biases in rainfall over the eastern Arabian Sea and Western Ghats have an

affect on larger-scales, such as in the circulation? Xie et al. (2006) showed how imposing

narrow bands of diabatic heating just upstream of the Myanmar mountain ranges, and

other similar “mesoscale” mountain ranges in the tropics induced a cyclonic circulation over

India, but they did not describe any experiments where they performed a similar test for the

Western Ghats heating. Simulations could be run with imposed diabatic heating patterns

created from those of the simulations and observations, where there is more rainfall well

upstream of the Ghats in the simulations.

In considering the relationship of the intraseasonal variability to the ratio of offshore to

onshore propagation, the work shows evidence that it relates to 30-60 day intraseasonal

variability, which has been identified as the dominant mode of intraseasonal variability (e.g.

Annamalai et al., 1999). In further work, considering the rainfall variability in the Western

Ghats coastal region to its environment, an Empirical Orthogonal Analysis may uncover

other statistically significant relationships which may assist in understanding what influence

certain factors, such as the winds or mid-level dry air for example, have on the rainfall

characteristics.
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7.2.3.1 Final remarks

This thesis has shed some new light on this critically important meteorological system.

Datasets and models already available should enable further progress in the years to come.
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