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Abstract 

 

Structure based drug design (SBDD) programs have traditionally relied upon 

structural information derived from X-ray crystallography. However, despite the high-

resolution structures, the information obtained is a static snapshot of flexible 

biological systems. As the proteins are not constrained by a crystal lattice, EM can 

provide unique insights into the dynamics and conformational states of the system. 

Moreover, the structures of biological systems which were previously intractable to X-

ray crystallography projects, such as membrane proteins, have now been determined 

providing a wealth of structural information to be utilised in SBDD programs.  

 

This thesis presents two examples of cryo-EM being used to aid SBDD for 

different membrane proteins. One example is Cytochrome bc1, which is a validated 

anti-parasitic drug target. Cryo-EM has been used in a proof of principle approach to 

determine four structures of bovine bc1 in the absence and presence of four different 

inhibitors to ~3.3-4.6 Å resolution. The resolutions attained have enabled the 

inhibitors to be unambiguously positioned in the density, thereby Chapter 3 provides 

one of the first examples of inhibitor density being visualised using cryo-EM. 

 

The second system studied is the Vacuolar ATPase (V-ATPase) which is at 

an early-stage of the drug discovery pipeline. By using a virtual screening approach, 

several hit compounds have been identified to act upon V-ATPase. Derivatives of the 

hit compound have been synthesised, resulting in three compounds which have 

<100M IC50 values. Moreover, the cryo-EM structure of V-ATPase in the apo and 

inhibitor bound form were determined. Although resolutions were not sufficient to 

visualise inhibitor binding, a novel state of V-ATPase has been identified which shows 

the complex without the H-subunit present. Overall the work in this thesis shows that 

cryo-EM can play an important role in SBDD programs.   
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1  Introduction 

 

1.1 Drug discovery pipeline 

New therapeutic agents need to be continually developed to treat a wide range of 

disorders such as infectious diseases, multiple types of cancers and neurological 

conditions such as Alzheimer's and Parkinson’s disease. However, the process of 

drug discovery can be challenging, containing numerous hurdles and many 

unforeseen difficulties1. From the discovery of the initial ‘hit’ compound, it often takes 

large pharmaceutical companies ten to fifteen years for the compound to reach the 

clinic2. This emphasises the large amount of compound development and research 

hours needed to allow the initial hit compound to be transformed into a drug 

candidate, thus explaining why typical drug discovery programs cost billions of 

pounds. A general overview of the drug discovery pipeline is shown in Figure 1.1. 

 

 

 

 

Figure 1.1: An overview of the drug discovery pipeline. The keys steps in the process from target 

selection all the way through to medicine are highlighted within the arrow. The processes involved within 

each step are listed in the boxes below.  

 

The first step in drug discovery programs is to identify a suitable target for 

therapeutic agents to act upon. This step is called target selection and encompasses 

the identification and validation of the target which includes analysing the protein to 

identify a suitable ligand-binding site, whether it is druggable and if it can facilitate 

ligand binding3.  
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Once a new target has been identified, the next step is to identify a compound 

which produces a response and is therefore termed a ‘hit’3. Hit compounds can be 

identified through assays which either probe the protein directly or look for a cellular 

response. Alternatively, they are found through biophysical techniques such as 

surface plasmon resonance (SPR)4 and isothermal calibration assays (ITC)5. Enzyme 

assays are often high throughput, use small amounts of protein and can be performed 

in 96-well plates allowing the activity of many compounds to be tested in a short time 

frame6. The assays rely on using light (either absorbance, fluorescence or 

luminescence) to measure the activity of the protein in the absence and presence of 

the compounds which determines whether the compounds are having the desired 

biological response6. These enzyme assays often generate IC50 curves. In 

comparison, the biophysical techniques such as SPR and ITC measure the enthalpic 

cost of the ligands upon binding to the target and therefore can be used to generate 

the inhibitory (Ki) and dissociation constants (Kd)7. To perform these techniques, 

generally more protein is required than the enzyme assays and they are lower 

throughput. Other biophysical and structural techniques such X-ray crystallography 

and Nuclear Magnetic Resonance (NMR) can also be used to identify hit compounds 

and are described in more detail in Section 1.2.2.  

 

Once the initial hit compound has been identified, the next step is to turn this 

hit into a lead compound which is often termed ‘hit-to-lead optimisation’8. At this stage, 

medicinal chemists can synthesise hundreds to thousands of compounds to fine-tune 

the chemical properties of the molecules in order to improve their potency, selectivity 

and pharmacokinetic properties. Moreover, the biological properties and safety of the 

lead compounds are investigated to determine the adsorption, metabolic and toxicity 

(ADMET) profiles of the compound9. Before the compound can be administered to 

humans, it is also subjected to in vivo testing in animal models (typically in rodents) 

which checks the compound is having the desired therapeutic effect and also 

investigates the toxicity of the compound. During the pre-clinical stage, process 

chemists analyse the synthesis of the desired compound so kilograms of material can 

be generated. After all of the rigorous biological and safety tests have been 

completed, the lead compound can then move forward through the pre-clinical stage 

and into clinical trials10.  

 

The clinical trials are split up into three main stages; Phase I, Phase II and 

Phase III11. Phase I enables the toxicity of the compound to be tested in healthy 

human volunteers by looking for any adverse side effects. Phase II then determines 
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whether the drug has the desired effect by administering the treatment to patients 

with the disease. This phase also establishes the correct dose to be administered to 

patients. Phase III involves using a much larger group of patients to determine the 

efficacy of the compound and compares the drug to existing treatments in the clinic. 

If the drug candidate passes all of these stages then it can be taken forward to the 

market. Due to the numerous safety and efficacy tests, there are many hurdles which 

the drug has to overcome before it can reach the market thus leading to high attrition 

rates. For instance, the likelihood of a drug being improved after entering Phase I 

clinical trials is less than 10%12. 

 

Identifying a hit compound is an important step at the beginning of the process. 

Traditionally, drug discovery programs relied upon high throughput screening (HTS) 

to identify novel inhibitor molecules but now structure based drug design (SBDD) has 

become a powerful complementary tool in the design of new therapeutic agents. For 

instance, between 2010-2016, 210 new drugs were approved by the FDA and for 

88% of the protein targets, structures were published in the protein data bank (PDB)13. 

This exemplifies how useful the 3D structural information is when designing new 

therapeutic agents.   

 

1.1.1 High-throughput Screens 

High-throughput screening (HTS) is an automated process allowing for large 

compound libraries, consisting of millions of compounds, to be screened against a 

biological target. It has been the main technique for hit identification in the 

pharmaceutical industry for the past two decades14,15. Typically, 10,000 compounds 

are screened per day to identify hit compounds with those identified being taken 

forward into hit-to-lead development. A schematic of the process is shown in 

Figure 1.2.  
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Figure 1.2: An overview of the HTS process. A library of compounds is screened against the target 

of interest in order to identify a hit compound. 

 

As discussed above in Section 1.1, medicinal chemists can then improve the 

potency and selectivity of the compounds by conducting structure activity 

relationships (SAR) enabling a series of compounds to be designed which have a 

balanced profile of physicochemical properties. Despite the low probability of 

identifying a hit (~1%), this approach has been successful in numerous drug 

discovery programs15 including the antiretroviral inhibitor Maraviroc16, the protease 

inhibitor Tipranavir17 and the antihyperglycemic inhibitor Sitagliptin18 which are used 

to treat HIV infection and type II diabetes, respectively (Figure 1.3). 

 

 

 

Figure 1.3: Example compounds identified through HTS. The compounds include Maraviroc, 

Tipranavir and Sitagliptin. 

 

There are limitations to HTS which include the efficacy and effectiveness of 

the technique19,20. One of the main disadvantages is the large number of compounds 

(typically >1,000,000) which are screened in order to identify a hit compound. 

Accessing and maintaining these compound libraries are particularly challenging, 

especially to small pharmaceutical/biotech companies or academic groups. The 
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compounds within the libraries can also have poor physicochemical properties such 

as low solubility, or they could contain motifs which are associated with ‘frequent 

hitter’ behaviour, which results in a high percentage of false positive results21,22. 

Moreover, the large libraries only cover a small fraction of chemical space, which may 

hinder the discovery of inhibitors for targets with unusual binding sites such as 

allosteric sites or protein-protein interactions (PPIs). To reduce the cost of HTS, new 

strategies which involve using smaller numbers of more-diverse compounds are 

being developed23–25.  

 

1.1.2 Fragment-based drug design 

Another technique which can be used to identify hit compounds is fragment-based 

drug design (FBDD) which has become an important tool in both academia and 

industry within the past ~20 years26. Fragment compounds, typically with a molecular 

weight of <250 kDa, are screened against the target protein with hit compounds being 

identified through biophysical techniques such as NMR or X-ray crystallography27. 

The fragments normally form a strong, high-quality interaction to the protein because 

there is a significant entropic barrier which has to be overcome to facilitate binding, 

yet the binding affinities are often only in the millimolar range28. X-ray crystallography 

is the mainstay for identifying hit fragments as hundreds of compounds can be 

screened per day. This is exemplified at the Diamond light source where there is a 

high-throughput XChem fragment screening program which allows users to screen 

~500 crystals with different fragments bound per day29. The users can screen 

available fragment libraries or can alternatively use their own. The resulting data is 

automatically processed and algorithms such as panDAA have been developed to 

automatically detect density corresponding to the ligand30.  

 

The hit fragments identified in the screens are subsequently modified to improve 

the potency of the molecules31. This can be done by expanding the fragments or 

linking multiple hit fragments together which form interactions in different pockets 

within the binding site, subsequently improving the potency and binding affinity of the 

compound which in turn creates a lead molecule. An overview of this process is 

shown in Figure 1.4. The structural details of how the fragments bind to the protein, 

as identified by X-ray crystallography, can be utilised by the medicinal chemists in the 

hit-to-lead optimisation to create a high affinity compound which makes multiple 

interactions to the protein31.  
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Figure 1.4: A schematic of the FBDD process. A library consisting of low molecular weight compounds 

are screened for activity against the protein of interest. Compounds can bind in intricate pockets within 

the binding site and can then subsequently be expanded or joined together to form high affinity 

compounds. 

 

FBDD programs typically have a higher hit rate than HTS programs even though 

the library of compounds being screened is orders of magnitudes smaller than typical 

HTS compounds (thousands rather than millions)26. The higher hit rate is a result of 

the fragments sampling a wider range of chemical space than HTS compounds which 

means that fragments are more likely to bind to intricate pockets within the binding 

sites and the compounds are also tailored to interact optimally with multiple sites. 

There are four FDA approved drugs including the BRAF kinase inhibitor 

Vemurafenib32 and the BCL-2 inhibitor Venetoclax33, which are two examples of 

oncology drugs discovered using FBDD (Figure 1.5).  

 

 

Figure 1.5: Example compounds from FBDD programs. Vemurafenib and Venetoclax were designed 

from fragment screens. The initial fragments are highlighted in colour within the final drug molecules. 

 

1.1.3 Structure Based drug design 

Drug discovery campaigns can be significantly enhanced, through time and 

cost, when the 3D structural information of the protein target is known, especially if 



 7 

the protein is bound to an inhibitor allowing the mode of inhibitor binding to be 

established34. Structure-based drug design (SBDD) utilises prior structural knowledge 

of the target system to design new inhibitors and can be used to complement HTS 

methods35. This can be carried out via the structural development of a hit identified 

through HTS or FBDD, or via an independent approach where new hits are identified 

through docking approaches or by designing molecules from scratch (de novo 

design). Molecular docking, such as virtual high throughput screening (vHTS), can be 

used to virtually screen large libraries of compounds from databases, such as the 

commercial libraries ZINC1536, against the desired target and identifies compounds 

which are predicted to bind with high affinity37. Common programs which run vHTS 

screens are GLIDE38, GOLD39 and Autodock40 which use differing algorithms to 

position the molecules into the binding site and subsequently score those compounds 

based upon their predicted interactions. The hit compounds identified through vHTS 

can represent the starting point for drug discovery programs as they are developed 

into lead-like molecules. SBDD by vHTS has played a pivotal role in close to 20 drugs 

in clinical use41. Examples include the HIV protease inhibitors nelfinavir42, 

amprenavir43 and lopinavir44 (Figure 1.6). 

 

 

 

Figure 1.6: Example compounds identified through virtual screening approaches. Nelfinavir, 

Amprenavir and Lopinavir were developed to treat HIV after hit compounds were initially identified in 

vHTS screens. 

 

De novo design is an alternative approach which allows inhibitors to be 

designed from scratch, and is similar to the FBDD approach45. There are a number 

of programs which can be used to carry out de novo design such as SPROUT46 and 

LUDI47. The general principle behind the technique is that the inhibitor binding site on 
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the protein is analysed and regions which could form bonding interactions to the 

inhibitor molecule, such as H-bond acceptor/donor sites or hydrophobic side chains, 

are identified45. Fragments or molecular building blocks are then positioned at these 

sites to create favourable interactions between the ligand and receptor. These 

fragments can subsequently be linked together to form a larger, drug-like molecule 

which is predicted to bind to the protein. The fragments can be linked together one at 

a time or by positioning multiple fragments at the favourable sites and linking them 

together all at once45. A schematic of the de novo design process is shown in 

Figure 1.7. 

 

 

 

Figure 1.7: An overview of the de novo design process. Initially, potential sites of interaction such as 

H-bond acceptor or donor sites are identified and functional groups which could form interactions are 

positioned at these sites. Computationally the functional groups are linked together in a variety of 

possibilities. Additional binding sites can then be identified and the process can be repeated until all of 

the functional groups are linked together. The programs subsequently score the compounds based upon 

the predicted binding affinity. Compounds are then synthesised and biologically screened to determine 

their activity towards the protein of interest. 
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De novo design can sometimes result in large numbers of compounds being 

identified. One issue is that some of these compounds could also contain synthetically 

intractable functional groups, therefore programs have implemented scoring 

functions based upon the predicted binding affinities and ligand complexity. This 

allows the user to decide which compounds to take forward for chemical synthesis 

and subsequent biological evaluation. SPROUT, developed at the University of 

Leeds, has successfully identified compounds to bind to antibacterial drug targets 

such as the bacterial RNA polymerase, which has resulted in highly potent lead 

molecules to be produced48. 

 

1.2 Obtaining protein for structural studies  

SBDD techniques such as vHTS screens or de novo design are dependent upon 

reliable structural models of the biological target being obtained. A pre-requisite for 

structure determination is the ability to obtain sufficient quantities of pure protein. 

Sufficient protein quantities can be achieved in two ways; overexpressing the protein 

in suitable hosts such as E. coli and mammalian cells or by extracting the protein from 

the native source organism. Traditionally, obtaining large amounts of purified protein 

has relied upon the ability to overexpress proteins in more amenable hosts, such as 

bacteria or yeast which can be cultured into high volumes49. However, a disadvantage 

of this approach is in the study of large protein complexes which can be challenging 

due to the need for specific chaperones and/or complex formation pathways which 

are not always replicated in the host organisms. Therefore, for some systems the 

preferred route is to purify the proteins from the native source organism. 

 

Obtaining the protein from the native source organism is exemplified for members 

of the mitochondrial electron transport chain as the protein can be directly isolated 

from bovine heart tissue. For instance, the crystal structures of bovine complex I50, 

cytochrome bc1 (complex III)51 and the F-ATPase (complex V)52 were solved after the 

protein was extracted from heart muscle directly. This approach is reliant on a high 

natural abundance of the protein and an appropriate method of purification that does 

not rely on engineered tags, such as His or FLAG tags. However, for some species, 

this method of purification is very challenging. For instance, in parasitic organisms 

obtaining sufficient quantities of protein is challenging as the parasites are relatively 

small and are difficult to culture53,54. Therefore, obtaining large (litres) volumes of 

culture can become unfeasible or too costly for most projects. One way to overcome 

this is to use the CRISPR-CAS9 gene editing technology which allows tags to be 
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introduced into the genome of the protein of interest thus facilitating the purification 

of the desired protein55. This approach has recently been successful in determining 

the cryo-EM structure of the Plasmodium translocon of exported proteins (PTEX) 

where FLAG tags were engineered onto HSP101 allowing the purification from 

parasite culture56. 

 

SBDD programs rely upon the structure of the target protein being known. If 

purification of the desired protein cannot be obtained, then homology modelling can 

be used to generate a model of the protein of interest and the subsequent inhibitor-

binding site. This method generally relies upon having an accurate starting model to 

act as a template for the modelling and also having appropriate levels of sequence 

similarity which can improve the confidence in the resulting model57. 

 

1.2.2 Methods to determine structures for SBDD programs 

Previously X-ray crystallography and NMR were the principle techniques used to 

elucidate high resolution structural information and underpin SBDD. However, 

Electron Microscopy (EM) is now playing a pivotal role as more EM maps are being 

deposited into the Protein Data Bank (PDB) each year (Figure 1.8). Since 2012, the 

number of EM derived structures being deposited each year has been increasing 

dramatically; from 65 in 2012 to 846 in 2018. In comparison, the number of Nuclear 

Magnetic Resonance (NMR) structures being released has reduced from 537 to 395 

in the same time period which highlights how important cryo-EM has become as a 

tool for structural determination. 
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Figure 1.8: The number of structures deposited into the PDB each year by experimental method. 

A) The no. of X-ray (blue), NMR (green) and EM (gold) deposited each year. Since 2012, the number of 

EM depositions have been increasing each year. In 2017 the number of EM maps overtook the number 

of NMR-derived structures whilst X-ray crystallography has remained relatively constant. B) The no. of 

EM structures deposited which shows that there has been a dramatic rise in the past few years. Values 

accurate as of June 2019.  

 

X-ray crystallography is a powerful and predominant tool in structural biology with 

over ~128,000 protein structures listed in PDB that have been solved using this 

technique58. The proteins are often solved to near-atomic resolution permitting the 

amino acid side chains, metal ions and water molecules within the sample to be 

resolved. Furthermore, in many cases an inhibitor is present within the protein 

structure and the orientation of the inhibitor and how it interacts within the protein can 

be determined59.  
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One of the main limitations of X-ray crystallography is the requirement to form 

ordered crystals which for some proteins, such as large protein complexes or 

membrane proteins, can be particularly challenging60. For instance, membrane 

proteins exist in a lipid bilayer and are stabilised by these interactions. Once the 

membrane protein has been solubilised from the native environment, which is 

commonly achieved using detergents, these favourable interactions are typically lost 

resulting in the protein losing its structural integrity thus making it challenging to solve 

the structure. This is shown by there being only ~2,000 membrane protein structures 

solved using X-ray crystallography deposited in the PDB (<2%)60. Moreover, upon the 

formation of a crystal lattice, the protein adopts a fixed conformation which may be 

unnatural for the protein in its native solution61. Therefore, the resulting structure 

obtained is a static snapshot of the protein of interest which may not represent the 

natural conformation of the protein. Additionally, the formation of the crystal lattice 

could either prevent the ligand from binding or cause it to bind in an artificial position 

which would subsequently hinder SBDD programs59. 

  

NMR can not only be used to determine the structure of proteins but it can also 

play an important role in drug discovery62,63. One of the advantages of using NMR is 

that the protein remains in solution so the structure is determined in its native state 

and is therefore physiologically relevant. Additionally, NMR is a powerful tool at 

studying the dynamics of the protein and for looking at intermolecular interactions64. 

The protein does need to be pure, highly stable and is used at high concentrations so 

large amounts of the protein (often mg’s) are needed for structure determination. 

Moreover, the proteins need to be labelled which can be time consuming and 

expensive. Another limitation is that NMR cannot be used to study proteins which 

have a molecular weight greater than ~50 kDa due to spectral crowding and peak 

broadening making the spectra complicated to interpret64.  

 

Nevertheless, NMR is a powerful tool in drug discovery as it can detect fragments 

which bind weakly to the protein (eg Kd values in the millimolar range) or it can be 

used to complete SAR by characterising the binding affinities for a range of 

compounds65. The chances of obtaining false positives are also very low as NMR 

spectroscopy observes the ligand binding to the protein directly thus reducing the 

likelihood of artefacts from enzymatic assays used in HTS screening. Moreover, the 

ligand binding site is characterised which allows ‘hot-spots’ to be identified thus 

revealing novel binding pockets or allosteric sites for drug discovery programs to 

target65. Furthermore, there are different approaches which can be utilised in 
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screening ligands such as protein-observed or ligand-observed NMR66. Ligand 

observed NMR can be used to screen fragments on larger proteins, with molecular 

weights between 15-100 kDa typically used, and does not require the protein to be 

isotopically labelled. In comparison, for protein-observed NMR the binding affinity and 

binding pose of the ligand can be identified but it is only suitable for smaller proteins 

(<50 kDa). Therefore, ligand observed NMR is a useful screening tool and hits can 

subsequently be characterised using protein-based NMR66. 

  

Cryo-Electron Microscopy (cryo-EM) is starting to play a much bigger role in 

determining the structure of protein and macromolecular complexes67. Protein 

molecules are suspended in vitreous ice and imaged inside of the electron 

microscope, therefore removing the need to form protein crystals. Typically, less 

protein is needed for EM than for X-ray crystallography and NMR, and structures can 

be obtained for challenging proteins which have previously evaded structural 

characterisation68. However, cryo-EM currently cannot be used routinely as a 

screening method for the identification of hit fragments. This is because data 

collections typically last 48-72 hours and processing the resulting data adds additional 

time, therefore the throughput is much lower than for X-ray crystallography and 

NMR68. The resolutions attained using cryo-EM are now good enough to visualise 

inhibitor binding so it can play an important role in drug discovery programs. The 

following sections will discuss the developments in cryo-EM which has enabled the 

technique to become an important tool in drug discovery. 

 

 

1.3 Electron Microscopy: A tool in Structural Biology 

In 1995, Richard Henderson stated that the laws of physics would allow 

~100 kDa biological structures to be resolved to atomic level detail using cryo-EM69. 

Rapid advances in the cryo-EM field have now allowed this goal to become more 

feasible as there are examples of sub 100 kDa proteins achieving <4 Å resolution70,71.  

These rapid advances have been facilitated by developments in camera technology, 

microscope stability and to the data processing software available which has given 

rise to the ‘resolution revolution’72. The increase in the resolution of the structures 

being solved by EM has enabled this technique to be thought of as a powerful tool in 

drug discovery73. An overview of developments within the field and the number of 

maps deposited within the Electron Microscopy Data Bank (EMDB) each year is 

shown in Figure 1.9. 
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Figure 1.9: A timeline of the key developments within the EM field. Purple circles indicates 

developments in technology, green shows notable structures and pink shows the number of maps 

deposited into the EMDB each year with resolutions less than 4 Å. Yellow indicates when the potential 

for cryo-EM to be used as a powerful tool for structure determination was first stated and blue is when 

the Nobel prize was awarded. References are included in the text, adapted from74. 

 

For many years EM was unable to resolve protein structures to high resolution 

therefore the technique was often referred to as ‘blobology’. In the 1980’s, Dubochet 

and colleagues discovered that freezing the sample in a thin layer of vitreous ice 

allowed the protein to be imaged in the high vacuum of the electron microscope75,76. 

However, it wasn’t until the 1990’s that maps displaying secondary structure could be 

resolved using EM. At this time, due to the high level of symmetry, the highest 

resolution structures in the EM field were predominantly large virus particles77. In 

1997, α-helices were resolved for the first time in the Hepatitis B core virus particle 

and in 2008 the amino acid backbone could be traced in a number of viruses. By 2010 
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the density maps showed enough detail for de novo atomic model building which led 

to the publication of a 3.3 Å structure for a non-enveloped virus78. For non-symmetric 

systems, such as membrane proteins, the progress was much slower79. The main 

limitation for these smaller systems was the requirement to collect a much larger data 

set to overcome the lack of symmetry. In 2012, direct electron detectors were 

introduced which resulted in an avalanche of structures, of a much broader range of 

biological molecules, to be determined. Some examples include, an E. coli ribosome-

EF-TU complex solved to 2.9 Å80, the human γ-secretase membrane protein resolved 

to 3.4 Å81 and the TRPV1 ion channel resolved to 2.9 Å82.  

 

Further developments within the EM field included the introduction of new 

instruments to make cryo-EM grids which moved away from the traditional blotting 

approaches83. Furthermore, phase plates have allowed smaller proteins to be imaged 

to high resolution. Examples include haemoglobin (~60 kDa)70, streptavidin 

(~52 kDa)71 and therapeutically relevant GPCRs84,85. Recently, it has also been 

shown that high resolution structures of <100 kDa samples can be obtained by 

imaging at 200 kV, without the use of the phase plate, which further expands the 

scope of samples which cryo-EM can study86.  

 

Improvements in image-processing methodologies and particle polishing 

algorithms have not only improved the resolution of the maps but have also allowed 

the structures of proteins in multiple different conformations to be obtained. This is 

exemplified for the bacterial F-ATPase which was shown to exist in 13 different unique 

conformational states87. The improvements within the EM field mean that a wide 

range of different systems can now be studied using cryo-EM. This includes the 

‘traditional’ EM specimens such as viruses88–91 and ribosomes92,93, large protein 

complexes such as the phycobilisome (~16 MDa)94, and helical proteins such as 

tau95,96 and -synuclein97,98 which are implicated in Alzheimer’s disease. Moreover, 

the resolution is constantly improving and the highest resolution structure deposited 

into the EMDB is a 1.6 Å reconstruction of apoferritin (June 2019) where the quality 

of the map is high enough to visualise water molecules and clearly define side chain 

rotamers. The resolution of these structures and the wide range of structures which 

can be studied proves that EM has the capabilities to rival X-ray crystallography as a 

tool in drug discovery. In 2017, the developments and progress in the EM field led to 

the award of the Nobel prize in chemistry to Richard Henderson, Joachim Frank and 

Jacques Dubochet. Examples of some of the structures obtained using cryo-EM are 

shown in Figure 1.10. 
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Figure 1.10: Example cryo-EM structures of a wide range of protein systems. Examples of the 

‘traditional’ systems studied by cryo-EM include A) viruses (EMD0046)88 and B) ribosomes 

(EMD2847)80. Cryo-EM can also be used to study systems which had previously evaded structural 

characterisation which is shown for C) large protein complexes such as the phycobilisome (EMD6769)94 

and D) membrane proteins such as TRPV1 (EMD8117)82. E) The highest resolution map deposited into 

the EMDB is a 1.6 Å structure of apoferritin (EMD9599). F) Example of a helical reconstruction of the 

tau filament (EMD3742)95. G) The smallest protein determined by cryo-EM to high resolution is 

Streptavidin at 52 kDa (EMD0690)71. 

 



 17 

The renaissance in cryo-EM has particularly benefited the membrane protein 

field which make up ~60% of all drug targets99. Membrane proteins play key roles in 

cells as they are involved in processes such as synthesising ATP and the transport 

of ions and molecules across a cell membrane. Determining the structure of 

membrane proteins can be the bottleneck to many SBDD programs as they are 

notoriously difficult to crystallise100. Due to removing the need for crystallisation, cryo-

EM represents a viable alternative to structure determination which is demonstrated 

by ~175 membrane protein structures being deposited into the EMDB (single particle 

processed, protein, <12 Å resolution) thus giving structural insights into these 

important therapeutic targets79. These include ion channels101–104 and transport 

proteins105–107 which in some cases had not been structurally characterised before. A 

further advantage of using an EM approach is that membrane proteins can be imaged 

in not only a wide range of detergents but also more native systems such as 

nanodiscs108 or SMALPs109. A cryo-EM structure of TRPV1 in a nanodisc was 

determined to 2.9 Å resolution and showed a key interaction with native lipids82. The 

first cryo-EM structure of an SMA-solubilised protein was AcrB which was determined 

to ~9 Å110. Higher resolution structures have now been obtained such as the 

alternative bc1 complex111 and AcrB112 to resolutions of 3.4 Å and 3.2 Å, respectively, 

thus allowing the interactions to the native lipids to be probed.  

 

Cryo-EM can now play an important role in SBDD pipelines due to the 

improvements in the resolution of the maps which are routinely being 

determined73,113,114. The first example of inhibitor binding being visualised was in 2015 

when a 2.2 Å structure of -galactosidase was published115, which included inhibitor 

density for a PETG inhibitor molecule. Since then, there have been many examples 

of proteins in complex with small-molecule inhibitors, natural substrates or 

neutralizing antibodies. Two examples of inhibitor bound structures include a 3.2 Å 

structure of a plant histidine biosynthesis protein, IGPD116, and an A2A adenosine 

GPCR determined to 3.8 Å which was stabilised by the binding of a nanobody117. 

These two structures are shown in Figure 1.11 and emphasise how cryo-EM can 

visualise inhibitor density in therapeutically relevant proteins and thus can play a role 

in SBDD programs. 
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Figure 1.11: Examples of inhibitor-bound cryo-EM maps. A) The cryo-EM map of IGPD coloured 

green with inhibitor density coloured in purple (EMD4160)116. B) The A2A adenosine GPCR with a small 

molecule inhibitor (red) bound within the transmembrane region (green). The nanobody which acted to 

stabilise the structure and allow structure determination is shown in orange (EMD4390)117. 

  

Chapter 2 will subsequently discuss the underlying principles and theory 

behind cryo-EM, from sample preparation, imaging the specimen under the electron 

microscope and the resulting image processing steps needed to obtain a structure. 

 

1.4 Biological Targets 

The SBDD timeline often takes over ten years to complete from start to finish, 

therefore to experience different aspects of the drug discovery pipeline two systems 

were studied during this project; cytochrome bc1 and the Vacuolar ATPase (V-

ATPase). Cytochrome bc1, a validated anti-malarial target, is at an advanced stage 

of the drug discovery pipeline and there has been lots of research into the system, 

resulting in highly potent compounds being developed within the Fishwick group. 

There are existing crystal structures of bc1 from mammalian homologues, which show 

how inhibitors bind to the target. Moreover, an anti-malarial agent, atovaquone, acts 

upon this enzyme. In comparison, there has been very little inhibitor-design work into 

V-ATPase which is therefore at an earlier stage of the pipeline than bc1. There are 

existing cryo-EM structures of the protein which show the dynamic nature of the 

complex and there are also highly potent and selective inhibitors. However, there is 
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no structural information which details how the inhibitors bind to the protein so this 

information cannot be utilised in SBDD programs. The biological backgrounds to both 

cytochrome bc1 and V-ATPase will be described in Sections 1.5 and 1.6 and will form 

the main introductions of Chapter 3 and Chapter 4, respectively.  

 

 

1.5 Cytochrome bc1 

1.5.1 Electron transport chain 

The cytochrome bc1 complex (bc1) resides in the inner mitochondrial membrane 

and acts as Complex III in the mitochondrial electron transport chain (ETC)118. The 

ETC consists of four key components; NADH:ubiquinone oxidoreductase 

(Complex I), succinate dehydrogenase (Complex II), cytochrome bc1 (Complex III) 

and cytochrome c oxidase (Complex IV)119. These proteins are responsible for 

generating an electrochemical gradient across the mitochondrial membrane, via 

electron transfer and proton translocation. This facilitates the synthesis of ATP, via 

oxidative phosphorylation, by the F-ATPase synthase rotary enzyme (Complex V)120. 

The proton gradient established through the ETC is shown in Figure 1.12. 

 

 

 

Figure 1.12: The mitochondrial electron transport chain. The five complexes are shown in the 

membrane and are adapted from121. The flow of electrons is controlled by a series of redox reactions 

between Complexes I-III in the Q cycle. This involves multiple oxidation/reduction reactions of 

ubiquinone (Q) and ubiquinol (QH2) to generate a surplus of protons in the intermembrane space. This 

allows rotation of the c-ring in the F-ATPase which drives the synthesis of ATP. 

 

All of the individual components of the ETC have been structurally characterised 

using both X-ray crystallography and cryo-EM. There are existing crystal structures 

for each of the components of the ETC with the exception of Complex I. Instead, X-
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ray crystallography has been used to determine the structure of the individual 

domains within Complex I before cryo-EM was used to determine the structure of the 

full in-tact complex122,123,124. As the structures of the individual domains were known, 

they could be fitted into the cryo-EM map which exemplifies how the structural 

techniques are complementary and the insights gained can be integrated in order to 

determine the full structure of the complex. The structural details gleaned has enabled 

the mechanism of electron transfer from NADH to ubiquinone, via a chain of seven 

iron-sulphur clusters, to be established thus demonstrating how cryo-EM can be used 

to study large membrane protein complexes125. It has also been shown that the 

individual components of the ETC can arrange to form higher-ordered super 

complexes with defined stoichiometry126. The supercomplexes are important as they 

prevent the formation of reactive oxygen species (ROSs) and increase the stability of 

the ETC complexes.  

 

The recent renaissance in cryo-EM has led to the structure of different 

supercomplexes being obtained from a variety of different species including 

porcine127, ovine128 and human129. This has provided structural details of how 

cytochrome bc1 carries out its function. For instance, Guo et al identified two 

complexes from human mitochondria; the super-complex and the mega-complex129. 

Within the super-complex, the protein ratio was CI1CIII2CIV1 and it was resolved to 

3.9 Å129. By isolating different components of the complex through masking Complex I 

and Complex III, the resolution of the individual components were improved to 3.7 Å 

and 3.4 Å respectively, thus permitting side chains to be accurately modelled into the 

map. This level of structural detail is invaluable as it can reveal differences in amino 

acid side chain residues between the host and target species allowing SBDD 

programs to utilise this information to design compounds which are highly selective 

to the target species. The low resolution (17 Å) map of an additional mega-complex 

was obtained with protein architecture CI2CIII2CIV2
129. Despite the secondary 

structure of the complex not being known, the overall globular shape of the density 

allowed the individual components of the chain to be fitted into the map. The dimeric 

form of cytochrome bc1 was positioned in the centre of the mega-complex and 

interacted with two copies of Complex I and Complex IV with all of the enzymes 

sharing the same ubiquinone pool. Additional supercomplexes containing dimeric bc1 

and Complex IV have also been identified130.  
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During the course of the PhD project, cryo-EM structures of alternative 

Complex III (ACIII), which reside in the photosynthetic electron transport chains of 

bacteria, were determined. The protein is homologous to mitochondrial bc1 yet shows 

little similarity in structures despite catalysing the oxidation of ubiquinol. They also 

pass electrons directly to Complex IV without the need for an electron carrier such as 

cytochrome c in mammals. Examples include ACIII isolated from Flavobacterium 

johnsoniae, which was purified in the SMA co-polymer to 3.4 Å resolution111 and a 

3.9 Å structure of ACIII from Rhodothermus marinus131. In both structures, ACIII 

exists in a supercomplex with an alternative complex IV, highlighting the importance 

of the supercomplexes in facilitating electron transfer as they can utilise the same 

ubiquinol/ubiquinone pool. Example structures of the supercomplexes are shown in 

Figure 1.13. 
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Figure 1.13: Cryo-EM structures of ETC supercomplexes. A) The human super respirasome complex 

(CI1CIII2CIV1) with a global resolution of 3.9 Å (EMD-6775)129. Cytochrome bc1 is coloured in cyan and 

interacts with both Complex I (gold) and Complex IV (pink). B) A low-resolution map of the human mega-

complex at 17 Å resolution. Bc1 (cyan) is at the centre of the circular complex and interacts with two 

copies of Complex I (orange and red) and Complex IV (dark blue and purple) (EMD-6776)129. C) The 

structure of the alternative Complex III (teal) interacting with an alternative Complex IV (pink) from 

Flavobacterium johnsoniae. The supercomplexes highlight how central bc1 is for facilitating electron 

transfer (EMD-7286)111.  

 

1.5.2 Structure of cytochrome bc1 

Cytochrome bc1 has been extensively studied by X-ray crystallography. The first 

crystal structure of cytochrome bc1 from bovine mitochondria was solved in 1997 to 

3.0 Å resolution132. Since then there have been 265 X-ray crystallography entries into 

the PDB for the full complex and individual subunits from a wide variety of different 
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species. Examples include a 2.7 Å structure of chicken bc1
133, yeast bc1 solved to 

1.9 Å134, bovine bc1 to 2.1 Å135 and bc1 from rhodobacteria at 2.4 Å136. The structures 

have provided a detailed understanding of the function and mechanism of the 

complex. The overall architecture of the protein including the different subunits is 

shown in Figure 1.14. 

 

 

 

Figure 1.14: Crystal structure of dimeric cytochrome bc1. Example of an existing crystal structure 

coloured according to subunit. The complex resides in the inner mitochondrial membrane and the large 

cytochrome b subunit is embedded in the mitochondrial membrane. The catalytic Rieske domain (ISP) 

and cytochrome c1 are in the intermembrane space.  

 

Cytochrome bc1 subunit composition can vary between different species, with 

mammalian species having 11 subunits132, yeast 10 subunits137 and bacteria 3 

subunits138. Between all species there are three conserved catalytic subunits; 

cytochrome b, cytochrome c1 and the Reiske iron-sulphur protein139. In mammals, bc1 

exists as an 11-subunit heterodimer with a molecular weight of ~480 kDa140. The 

complex couples electron transfer from ubiquinol to Cytochrome C with the 

generation of a proton gradient across the mitochondrial membrane11. This occurs 
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through the Q cycle which involves a series of redox reactions to facilitate electron 

transfer. The Q cycle occurs at two distinct catalytic sites in cytochrome b, the Qi and 

Qo sites, with both sites containing a catalytic heme group. Ubiquinol (QH2) is oxidised 

to ubiquinone (Q) in the oxidative (Qo) site and releases two protons into the 

intermembrane space. Meanwhile, ubiquinone binds to the reductive (Qi) site where 

it is reduced to ubiquinol and takes two protons from the matrix142,143. The overall net 

reaction for the Q cycle is: 

 

QH2 + 2 ferricytochrome C  Q + 2 ferricytochrome C + 2H+ 

 

An overview of the Q cycle mechanism is shown in Figure 1.15. 

 

 

 

 

Figure 1.15: The structure and mechanism of cytochrome bc1. Adapted from70. A) A crystal structure 

of a monomer subunit of cytochrome bc1. The positions of the catalytic heme groups are shown as pink 

sticks and the Qi and Qo inhibitor binding sites are shown with purple spheres. B) The flow of electrons 

through bc1 with the structure of the natural substrates shown at their binding sites. 

 

1.5.3 Cytochrome bc1 as a therapeutic target 

As the ETC is involved in respiration and providing energy to cells, disrupting the 

chain in pathogens can be fatal to the organism, therefore the individual components 

represent attractive therapeutic targets. For instance, inhibitors against cytochrome 

bc1 have been developed to act as antimicrobial agents144. Examples of highly 

specific inhibitors of cytochrome bc1 are antimycin and stigmatellin which bind to the 
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cytochrome b Qi and Qo sites, respectively135. As these compounds are highly toxic 

they cannot be used as medicines. There are existing crystal structures showing how 

the drugs bind to the protein highlighting that the compounds occupy the ubiquinone 

or ubiquinol natural substrate binding site135. An example of how antimycin and 

stigmatellin bind to cytochrome bc1 is shown in Figure 1.16. 

 

 

 

Figure 1.16: Known inhibitors of cytochrome bc1. A) The cytochrome b portion of a crystal structure 

(pdb 1ppj)135 showing how Antimycin (teal) and Stigmatellin (purple) bind at the Qi and Qo sites, 

respectively. B) Antimycin (teal) bound to the protein where the compound forms H-bonds to His201 and 

Asp228. C) Stigmatellin (purple) bound at the Qo site where it can make two H-bonds to His161 and 

Glu271. 

 

The structure of the catalytic binding site is highly conserved between mammalian 

species. However, there are differences in pathogens which can be exploited144. This 

is exemplified by a number of different fungicides which target the Qo site in 

pathogenic bc1 such as azoxystrobin, famoxadone and fenamidone145. One problem 

is that resistance to treatments is now emerging which could be due to cytochrome b 

being encoded by the mitochondrial genome which means that mutations in the 

protein can arise quickly144.   
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Cytochrome bc1 is an established drug target against Apicomplexan parasites, 

such as P. falciparum (malaria)146,147 and T. gondii (toxoplasmosis)148,149. In 

Apicomplexan parasites, oxidised ubiquinone from cytochrome bc1 is used by 

dihydroorotate dehydrogenase (DHODH) to generate orotate, which is an essential 

intermediate for pyrimidine biosynthesis150. Therefore, the inhibition of cytochrome 

bc1 collapses pyrimidine production causing parasite death. The existing crystal 

structures from mammalian systems have been solved in the presence of both Qi and 

Qo site inhibitors132,151. One of these structures shows the anti-malarial drug, 

atovaquone, bound at the Qo site152. However, resistance is now emerging to this 

treatment and new drug molecules are urgently required for the treatment of 

malaria153. Using this crystal structure, a series of potent compounds were designed 

by GlaxoSmithKline (GSK) to target the Qo site of bc1. One compound was highly 

active against atovaquone-resistant P. falciparum but failed in a first time in human 

(FTIH) trial because of acute cardiotoxicity154.  A crystal structure of this compound 

(GSK932121) bound to bovine bc1 revealed that it actually occupied the Qi site rather 

than the Qo site151 and this has led to different series of compounds being developed 

against this site for both malaria and toxoplasmosis.  

 

The sequence identity of cytochrome bc1 is highly conserved across bovine, 

human and P. falciparum. However, the N-terminus of parasitic cytochrome b is 

shorter than in mammalian species leading to differences in the Qi binding site 

(Figure 1.17)151. There is no structural information available for parasite-derived bc1, 

which has hindered the design of new therapeutics targeting these species. Obtaining 

sufficient quantities of parasite protein for crystallography has proven to be a 

significant challenge because the protein cannot be over-expressed in traditional 

expression systems such as E. coli53. Therefore, it has to be obtained from the native 

parasite organism which will provide significantly less protein than the mammalian 

species. As cryo-EM uses less protein than X-ray crystallography, this technique 

could present an alternative method in elucidating how the inhibitor interacts with the 

target organism. 
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Figure 1.17: Sequence alignment at the Qi inhibitor binding site. Residues fully conserved between 

human and parasite are illustrated in deep blue, partially conserved in light blue, and non-conserved in 

white. 

 

Chapter 3 will focus on determining whether cryo-EM can be used to study 

inhibitor binding to bc1 which is a therapeutically relevant target. To this end, bovine 

bc1 will be studied in a proof-of-principle approach to see whether the resolution 

attained by cryo-EM is high enough to visualise small molecules bound to the protein. 

After this has been achieved, work can then begin to obtain the parasite protein to 

allow inhibitor binding to the target species to be visualised. The novel structural 

insights gained can then be utilised in the design of new inhibitor molecules to make 

them more selective to the target parasite organism, thus reducing the toxic off-target 

effects. 

 

 

1.6 Vacuolar ATPase 

1.6.1 V-ATPase as a drug target 

The Vacuolar ATPase (V-ATPase) is a 1 MDa protein complex formed from 

14 subunits, which uses ATP hydrolysis to drive proton transport across the cell 

membrane, maintaining the pH of intracellular and extracellular compartments155. It is 

a member of the rotary family of enzymes which also include the F-ATPase and A-

ATPase enzymes. V-ATPase is found in all eukaryotic cells and its major function is 

to maintain and regulate the pH within cells including within the cytoplasm and 

different organelles such as endosomes, lysosomes, vesicles and central vacuoles of 

fungi and plants156. It therefore plays a key role in cellular processes such as receptor 

mediated endocytosis, protein processing and degradation and the transport of small 
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molecules and ions. Moreover, V-ATPase which are found in plasma membranes, 

are important in facilitating bone resorption by osteoclasts and acid secretion in the 

kidneys therefore the complex has been implicated in a vast number of diseases such 

as osteopetrosis, renal tubular acidosis, male infertility, diabetes and cancer157.  

 

V-ATPase also exists in different isoforms within the body. For instance, in 

human V-ATPase, there are four subunit a isoforms which have 40-60% amino acid 

similarity158. The different isoforms are also localized to different organelles and can 

therefore be implicated in different diseases. This is exemplified by isoform a3 being 

found in osteoclasts and if mutated is implicated in osteoporosis. In comparison, 

isoform a4 is found exclusively in renal cells and is linked to renal diseases158. 

Therefore, V-ATPase is a complex drug target because it not only exists in different 

isoforms within the body but it also carries out a wide range of functions. Without 

having any structural information of the different isoforms, it is challenging to design 

a selective inhibitor to target one particular isoform and complete inhibition of the 

enzyme could be fatal.  

 

1.6.2 Current V-ATPase structural information 

The structure of the V-ATPase complex has been studied using both X-ray 

crystallography and cryo-EM. It is composed of two domains; the soluble V1 domain 

and the membrane embedded V0 domain, as shown in Figure 1.18. The V1 domain, 

is responsible for the hydrolysis of ATP and consists of eight different subunits (A-H). 

The AB subunits exist as a circular hexameric ring, with three catalytic sites at the AB 

interface156. The V1 and V0 domains are joined together through central (subunits D 

and F) and peripheral (subunits E and G) stalks159. The central D subunit acts as a 

rotor and uses energy generated from ATP hydrolysis to drive rotation of the V0 c-

ring. Subunits E and G prevent rotation of the AB hexameric ring as ATP is 

hydrolyzed, therefore they act as stators. The subunits which make up the V0 domain 

are: a, c, d and e. The c-subunits form a membrane embedded ring which rotates to 

transport protons across the membrane. Proton translocation occurs at the c-ring-

subunit a interface and the number of c-subunits within the ring can vary between 

species156. 
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Figure 1.18:  The structure of the V-ATPase complex. ATP hydrolysis occurs at the interface of the 

A and B subunits which resides as a hexameric ring (AB)3. The membrane embedded c-ring is 

responsible for pumping protons across the membrane which occurs at the c-ring subunit a interface. 

  

There are high-resolution crystal structures of the individual subunits of the 

complex and moderate resolution cryo-EM structures of the full complex showing how 

these individual subunits assemble to form the complex. One such example is from 

Zhao et al (2015) who determined the structure of yeast V-ATPase using cryo-EM160. 

Three different conformational states of the complex were identified which achieved 

resolutions of 6.9 Å, 7.6 Å and 8.3 Å (Figure 1.19).  
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Figure 1.19: Three catalytic states of the V-ATPase identified by cryo-EM. The AB subunits in each 

state are shown in colour and represent how this domain changes conformation between all three states. 

In state one the AB domain above the C-subunit is in the open state, in state two it is in the tight state 

and finally in state three it is in the loose conformation. 

 

The number of particles which went into each state was calculated, showing state 

one had the highest percentage of particles and could therefore represent the most 

physiologically prevalent conformation which inhibitors should be designed 

against160. Designing inhibitors against particular states could be a strength of an EM 

approach. Because the protein molecules are trapped within a thin layer of ice and 

not locked into any particular conformation, the natural abundance of the different 

conformations can be determined. Furthermore, the presence of an inhibitor could 

reduce the dynamic nature of the complex, subsequently locking it into one 

conformational state which could enable the resolution of the full complex to be 

improved. If resolutions are good enough to visualise inhibitor binding then these will 

prove extremely beneficial to SBDD programs. 

 

Within each state of the V-ATPase, the AB domain resides in three different 

catalytic conformations, open, loose and tight, which all contain one nucleotide 

binding site160. It is proposed that ATP binding results in conformational changes 

between the A3B3 hexamer creating 120° anti-clockwise rotations as the ATP binds, 
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is hydrolysed and subsequently released161. A schematic describing the process is 

shown in Figure 1.20. Briefly, ATP becomes tightly bound within the AB interface 

where it is subsequently hydrolysed. The ADP nucleotide product is then more loosely 

bound before it leaves which enables another ATP molecule to bind161. 

 

 

 

Figure 1.20: The mechanism of ATP hydrolysis. The alternating AB subunits are coloured in green 

and blue, respectively. ATP binds into an empty AB interface where it becomes tightly bound allowing 

hydrolysis to occur. This rotates the hexameric ring by 120°. ADP is subsequently bound less tightly 

before leaving and allowing another ATP nucleotide to bind. Adapted from161. 

 

The energy produced from the hydrolysis of ATP is then transferred along the 

central DF rotor and through to the V0 subunit d. This subsequently drives rotation of 

the c-ring past the membrane-embedded subunit a which facilitates proton transfer 

across the membrane161. At the c-ring subunit a interface there are two half channels 

(cytoplasmic and luminal) which allow protons to be transferred across the 
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membrane. The protons enter from the cytoplasmic half channel, where they pass 

along charged residues on subunit a before reaching the essential glutamate residue. 

The deprotonated glutamate is stabilised via the formation of a salt bridge with a 

highly conserved Arginine residue from subunit a. After the glutamate has picked up 

the proton, rotation occurs which allows the proton to enter the hydrophobic lipid 

bilayer where it is transported round a full 360°. The proton is then transported across 

the membrane through the luminal half channel where it can cross the membrane and 

enter the cell plasma or organelle depending on where the V-ATPase is located161. 

An overview of this process is shown in Figure 1.21. This mechanism is supported by 

recent high-resolution structures of the V0 domain which were obtained using cryo-

EM162–164. 

 

 

 

Figure 1.21: An overview of the proton pumping mechanism. The c-subunits are shown in green 

and subunit-a coloured yellow. Protons (blue circles) enter via the cytoplasmic half channel and 

protonate a key glutamate residue. When protonated the c-ring rotates and completes a full 360° turn 

where the proton is deposited into the luminal half channel. Adapted from161. 

 



 33 

1.6.3 Current V-ATPase inhibitors 

The first inhibitors of V-ATPase were the plecomacrolides bafilomycin and 

concanamycin, which were discovered in the 1990’s165. The compounds have binding 

affinities in the low nanomolar range and are selective V-ATPase inhibitors. Although 

the exact binding poses of how the ligands interact with the protein have not been 

structurally characterised, mutagenesis studies have shown that the compounds bind 

to the V0 c-ring thereby disrupting proton translocation across the membrane166. 

Another V-ATPase specific, low-nanomolar inhibitor is the macrolactone archazolid A 

which was first isolated in 2003 from myxobacteria Archangium gephyra and 

Cystobacter violaceus167. Further mutagenesis studies have revealed that the 

inhibitor again interacts with the V0 c-ring but at a different binding site to the 

plecomacrolides as only one of the residues involved in binding bafilomycin affected 

the sensitivity to archazolid168. The archazolid binding site involves the essential 

glutamate residue which is involved in transporting protons across the membrane. 

There are another family of V-ATPase inhibitors, the benzolactone enamides, which 

encompass salicyilhalamides, lobatamides, oximidines and apicularen169. The 

compounds all inhibit V-ATPase with nanomolar levels of activity and are predicted 

to bind to the V0 c-ring at a different site to the plecomacrolides. Interestingly, the 

benzolactone enamides are highly selective for mammalian V-ATPases and do not 

inhibit fungi V-ATPase therefore they are thought to be attractive therapeutic 

agents165. A further class of inhibitors were developed after studying the SAR of 

bafilomycin. The most potent of the compounds was Indol0 which binds at the same 

site as bafilomycin against subunit c170. A final inhibitor of V-ATPase is 

dicyclohexylcarbodiimide (DCCD) which forms a covalent bond to the essential 

glutamine residue in the c-ring171. A problem with DCCD is that it is unselective as it 

also inhibits the F-ATPase. The structures of the inhibitors and the corresponding IC50 

values are shown in Figure 1.22. 
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Figure 1.22: The structures of the current V-ATPase inhibitors and the corresponding IC50 values. 

All of the current inhibitors have binding affinities in the low nanomolar range and all of the compounds 

except for DCCD and Indol0 contain large macrocycle rings which are difficult to synthesise and 

expensive to buy. References for IC50 values: bafilomycin172, concanamycin173, archazolid168, 

apicularen174, lobatamide169, indol0170 and DCCD175. 

 

With the exception of DCCD and Indol0 all of the current V-ATPase inhibitors 

are large macrocycles which are difficult to make and expensive to buy. Furthermore, 

the compounds are all unstable and degrade over time making them difficult to use 

when studying the system. Therefore, there is a need to develop new inhibitors which 

could be used as chemical probes when investigating the system or could be used in 

the treatment of diseases such as cancer and osteoporosis. One challenge in the 

design of new V-ATPase inhibitors is that despite the existence of highly selective V-

ATPase inhibitors, the exact binding pose is not known which is hindering SBDD 

programs. 

 

The work in Chapter 4 will focus on the identification of hit compounds to act 

upon V-ATPase and Chapter 5 will describe the design and synthesis of novel V-

ATPase inhibitors with the goal of improving the chemical properties of the 

compounds, compared to the current macrocyclic-based inhibitors. The inhibitors 

have been designed to target yeast V-ATPase and have not been designed to act 

upon a specific isoform or disease therefore the inhibitors could act as chemical tools 

rather than a therapeutic agent to treat a particular disease.  Moreover, Chapter 6 will 
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discuss the purification of V-ATPase and attempts to determine the cryo-EM structure 

of the complex in the presence of an inhibitor. The aim is then to determine whether 

the presence of the inhibitor has disrupted the dynamic nature of the complex by 

locking the protein into one conformation. This could improve the stability of the 

complex and thereby improve the resolution which will aid future SBDD programs. 
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2 Materials and methods 

 

The Materials and Methods have been broken down into three distinct sections. 

The first is Electron Microscopy which provides background into the theory and 

principles of EM (Section 2.1). The methods used for Chapter 3, detailing the 

cytochrome bc1 work, have been described in Section 2.2 and the V-ATPase work in 

Section 2.3; underpinning the work in Chapters 4-6. All of the chemistry experimental, 

describing how compounds were synthesised, is provided in Chapter 8.  

 

2.1. Electron Microscopy 

The pipeline for structure determination using cryo-EM can be broken down into 

three key stages; sample preparation, data collection and image processing. A 

general schematic of the steps involved is shown in Figure 2.1. The tasks which are 

performed at each of the three stages will be discussed in Sections 2.1.1, 2.1.2 and 

2.1.3, respectively. 

 

 

 

 

Figure 2.1: The pipeline from collecting sample to structural determination. Initially the sample is 

analysed by negative stain EM before being taken to cryo-EM where the first stage is to optimise the 

cryo-grid conditions. After data collection, the individual movie frames are first motion-corrected and CTF 

estimation is performed. 2D classification of the particle stack results in numerous 2D projections of the 

sample which are recombined to produce a 3D map. The model is subsequently fit into the density, either 

by flexibly fitting an existing structure or if the resolution allows, by de novo building it into the density to 

generate the structure of the protein. In the schematic, the protein exists as a pink cylinder. 
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2.1.1. Sample preparation 

To facilitate visualisation of the specimen under the electron microscope, the 

sample is applied to grids which are 3 mm in size, contain a metal mesh (gold or 

copper) and are overlaid with a thin layer of amorphous carbon (or sometimes 

gold)176. This means that the surface of the grid is hydrophobic. Before the sample is 

applied to the gird, it is glow-discharged which results in ionised gas molecules being 

deposited onto the surface of the grid rendering it hydrophilic thus preventing the 

sample droplet from being repelled from the surface of the grid177. The protein of 

interest is made from low molecular weight atoms such as hydrogen, oxygen, carbon 

and nitrogen and is therefore a weak phase object178. One method of visualising the 

protein molecules under the electron microscope is by negative staining.  

 

Negative staining involves coating the biological specimen with a thin layer of 

heavy metal atoms, such as uranium, molybdenum or tungsten177. The heavy metal 

atoms can absorb the electrons more readily than protein molecules which enables 

the protein to become visible against the background. The protein molecules appear 

white compared to the darker background hence why the protein has been negatively 

stained179. These heavy atoms are less prone to radiation damage which helps to 

preserve the protein from radiation damage caused by the electron beam. Moreover, 

small amounts of sample are used to prepare the negative stain grids with 

concentrations in the 10-100 g/mL range commonly being used.  However, artefacts 

such as flattening can occur which is a disadvantage of using this method. Through 

the stain grain size and limitations of the technique, the typical resolutions achieved 

are ~20-40 Å179. Yet, analysing the protein via negative stain can provide useful 

insights into the purity and heterogeneity of the sample before it is taken forward to 

cryo-EM. Moreover, analysis of negative stain data can provide unique biological 

insights into the mechanism of the protein as there are examples of inhibitor and 

antibody binding sites on therapeutic targets being revealed. This is exemplified by 

visualisation of PA1b binding to V-ATPase155 and a neutralising antibody bound to 

the HCMV gH/gL/gO glycoprotein complex180.  

 

To facilitate high-resolution structure determination, cryo-electron microscopy, 

(cryo-EM) is used. This involves rapidly freezing the sample using a cryogen, 

normally liquid ethane, propane or a mixture of both, which freezes the sample in a 

thin layer of vitreous ice permitting its visualization in the high vacuum of the 

microscope and partly protecting the sample from radiation damage181. For cryo-EM 
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grids, the support film is usually made from copper or gold and contains holes which 

can either be regular in size and distribution (quantifoil grids) or contain an irregular 

arrangement of holes which vary in shape and size (lacey grids). Examples of the grid 

types are shown in Figure 2.2. 

 

 

 

Figure 2.2: The types of cryo-grids used. A) A lacey carbon grid which contains an irregular array of 

holes. B) A quantifoil R1.2/1.3 grid which contains a regular distribution of evenly sized holes. Scale bars 

are 2 m. Adapted from182. 

 

Preparing cryo-EM grids  

Compared to the other areas of EM which have recently undergone rapid 

developments, such as image processing and camera advances, grid preparation 

remains largely under-developed. Grids are commonly prepared using the same 

approaches which were first developed in the 1980’s by Jacque Dubochet75,76. These 

grids can be prepared manually or by using so-called ‘first generation devices’, such 

as the Leica or Vitrobot. The basic principle is that ~3L of sample is applied to a 

cryo-EM grid in a humidity-controlled chamber. The grid is subsequently blotted with 

filter paper, to remove excess liquid, before being plunge frozen into a cryogen thus 

suspending the protein in the thin layer of vitreous ice. The process has been 

summarised in Figure 2.3. By using these devices, the blotting force and blotting time 

can be controlled which in turn adjusts the thickness of the ice183.  
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Figure 2.3: A schematic of how cryo-EM grids are made. Initially the grid is held in a humidity-

controlled chamber by a pair of tweezers above the liquid ethane. 1.The protein sample (3L) is applied 

to the cryo-EM grid. 2. The grid is blotted using filter paper to create a thin layer of the sample (3). 4. 

The grid is plunge frozen into the liquid ethane to vitrify the sample. The grid can now be loaded into the 

microscope or stored at liquid nitrogen temperatures. Adapted from184. 

 

A disadvantage of the blotting approach is that because excess liquid is being 

blotted away, more than 99% of the sample is being wasted and not applied to the 

grids which represents a large waste for precious protein samples. Typically, blotting 

times are on the second timescale which can cause problems with the sample 

interacting at the air water interface. For an ideal cryo-EM grid; the protein would be 

evenly distributed, would reside in the holes in a wide range of orientations, have an 

even ice thickness and the protein molecules would occupy the centre of the ice layer 

without any interactions at the air-water interface (Figure 2.4A)182,185. However, this is 

not always the case. Common problems with grids include the particles adopting a 

preferred orientation within the ice (Figure 2.4B), the protein interacting favourably 

with the carbon support resulting in few particles within the holes (Figure 2.4C) or the 

protein being unevenly distributed within the holes (Figure 2.4D). The latter is 

common for membrane protein samples where a ‘halo effect’ is sometimes 

observed182. This is often caused by the centre of the ice being too thin to 

accommodate the protein causing them to be clumped towards the outside of the 

holes thus resulting in protein molecules overlapping with one another within the ice 

layer which is unsuitable for data processing. This can be overcome by using a 
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smaller hole size or by imaging in areas of thicker ice, although this can be detrimental 

to the contrast of the images obtained.  

 

 

 

Figure 2.4: Particle distribution across the hole. A) An ideal distribution of particles (blue cylinders) 

across the holes where the protein is evenly spread across the hole and adopts different orientations. 

Non-ideal distributions: B) Protein adopts a preferred orientation within the ice. In this case the top view 

of the cylinder is missing. C) Protein has a high affinity for the carbon support layer and does not enter 

the hole. D) Example of the ‘halo effect’ where the protein is pushed towards the outside of the hole and 

the centre of the ice is very thin or not present. E) Protein is unfavourably interacting at the air water 

interface causing the protein to denature (non-uniform cloud shapes). Adapted from182. 

 

 Moreover, another common problem which occurs is that the protein can interact 

with the air-water interface resulting in preferred orientation or protein degradation 

(Figure 2.4E)186. It has been shown that the protein can diffuse and interact with the 

air-water interface on a millisecond timescale187. Preventing the particles from 

interacting with and subsequently denaturing at the air water interface is the subject 

of many on-going studies187.  

 

After the EM grids have been prepared, either by negative staining or by plunge-

freezing, the grid can subsequently be loaded into the electron microscope to allow 

visualisation of the specimen of interest. This will be described in Section 2.1.2.  
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2.1.2. The microscope 

After the EM grids have been prepared they are inserted into an electron 

microscope to enable visualisation of the protein of interest. The microscope contains 

an electron source which emits electrons. The emitted electrons are subsequently 

directed through the column by a series of electromagnetic lenses until they ultimately 

reach an image detection system, which could be a screen or camera188. The column 

is held at high vacuum to prevent the electrons from interacting with any air inside of 

the column which would provide noise in the resulting images. A basic schematic of 

the microscope is shown in Figure 2.5.  

 

 

 

Figure 2.5: A schematic of the electron microscope. The dotted grey line represents the central axis 

along the column. The electron beam is directed through a series of electromagnetic lenses and 

apertures to create a magnified image of the sample. Adapted from188. 
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Imaging the specimen 

For high-resolution structure determination, field emission guns (FEGs) are 

used as the electron source and the electrons are accelerated through the column at 

a voltage of 300 kV. Although, high resolution structures have also been obtained 

from 200 kV microscopes86. Imaging with electrons allows high resolution structures 

to be determined as the short wavelengths do not impose a limit on the resolution 

which can be achieved (0.02 Å at 300 kV)189. After the electrons have been omitted 

from the gun, they pass through the condenser lens and reach the sample which is 

situated in the objective lens system. An objective aperture is placed after the sample 

which filters out all of the high scattering electrons which helps to reduce the noise in 

the images. The electrons then pass through the projector lens system before arriving 

at the detector.  

 

Electrons interact with the sample in two main ways; they can be elastically 

scattered (without energy loss) or inelastically scattered (where some energy is 

transferred to the specimen)190. Electrons which have been elastically scattered are 

useful for the image formation whereas inelastically scattered electrons can have 

detrimental effects on the sample. For instance, when the electrons interact with the 

protein they can cause chemical bonds to break, atoms to become ionised or result 

in secondary electron scattering events. All of these effects can cause damage to the 

sample which is known as radiation damage190. Therefore, imaging the specimen with 

the correct electron dose becomes a balance. The dose needs to be high enough to 

produce contrast and see the protein but having too much dose would cause the 

sample to become irradiated and subsequently destroy the structure of the protein. 

Therefore, low total doses are typically used (~20 e-/Å2)191. It has been estimated that 

3-4 of these inelastic scattering events occur for every elastically scattered event69. 

This radiation damage is one of the main limiting factors when imaging biological 

molecules using cryo-EM.  

 

Another consideration which needs to be considered for cryo-EM is contrast. 

Contrast can be split up into amplitude and phase contrast188. For negative stain EM, 

suspending the proteins within a thin layer of heavy metals introduces contrast into 

the images as the electrons are scattered by the heavy metal atoms which allows the 

protein to be seen (as discussed in Section 2.1.1). This has introduced amplitude 

contrast into the images. However, for cryo-EM the buffers in which the protein is 

stable usually consist of the same low molecular weight atoms as the protein (C, H, 

N and O). This means that there is very little amplitude contrast within the images. 
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Furthermore, as biological samples are weak phase objects, very small amounts of 

phase contrast are introduced into the image178. Therefore, if images were taken at 

focus in the electron microscope, the protein would not be visible. This results in the 

ideal optics of the electron microscope being compromised as images are recorded 

with small amounts of defocus which introduces a phase shift and subsequently 

contrast into the images. In practical terms, adding defocus means focusing the 

objective lens to a few microns beyond the specimen192. Moreover, imaging 

specimens with defocus also becomes a balance because images taken closer to 

focus (low defocus) retain more of the high-resolution information. However, the 

particles are much harder to see than images taken with a higher defocus. Defocus 

ranges within data sets are typically between -1 and -3 m. Figure 2.6 shows changes 

in contrast at different defocus values. Phase plates, such as the Volta Phase Plate 

(VPP), can also be used to introduce contrast into images and allows images to be 

recorded closer to focus193–195. 

 

 

 

Figure 2.6: Micrographs with varying defocus. Examples micrographs of a 95 kDa membrane protein 

taken at two different defocus values; A) 1.1 m, B) 4.3 m. The higher defocus micrograph in B), the 

higher the contrast in the image allowing the particles to be easily visualised. Scale bars are 36 nm. 

 

Direct electron detectors 

Once the electrons have passed through the column, they reach the detection 

system. One of the major reasons behind the ‘resolution revolution’ in cryo-EM is the 

introduction of direct electron detectors which records individual electron events thus 

enabling the signal-to-noise ratio of the data to be improved resulting in higher 
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contrast within the images196,197. Moreover, instead of taking single images, due to 

their high frame rates, the detectors now record movies broken down into a number 

of individual frames which have only been exposed to a small proportion of the total 

dose in a single exposure. This is advantageous because during a typical exposure, 

radiation damage to the sample and/or mechanical drift in the microscope can cause 

blurring of the image. This has allowed the frames to be dose-weighted upon 

completion of the data set198. Therefore, the first and final few frames of the data set 

can be down-weighted as they have suffered from the largest amount of beam-

induced motion and radiation damage, respectively. As the images are recorded as 

movies, a higher total dose (40-80 e-/Å2) can be used. This will be discussed in more 

detail in the image processing Section 2.1.3. 

 

An ideal detector would not add any noise to the cryo-EM images and would 

have a detective quantum efficiency (DQE) of 1. The DQE is measured by the square 

ratio of the output signal-to-noise ratio (SNRo) over the input signal-to-noise ratio 

(SNRi) at a given spatial frequency199,200:  

 

DQE = SNRo2/SNRi2 

 

The detectors contain monolithic active pixel sensors (MAPs) which record 

individual electrons as they deposit energy whilst passing through a semiconductor 

membrane201. The membrane is typically ~10m in depth and the electrons can be 

back scattered meaning that they can pass through the detector multiple times, 

adding noise into the image. Therefore, detectors have been back-thinned which 

means that the depth of the membrane has been reduced as much as possible to 

reduce these interactions201. There are three main direct electrons detectors which 

are routinely used; Gatan K2 or K3, Falcon III and the Direct electron202. Detectors 

such as the Falcon III can be operated in two different modes; integrating and 

counting. Integrating mode integrates the signal of all of the electrons hitting the 

detector and has short exposure times of 1-2 seconds. Whereas, for counting mode, 

the individual electrons which are hitting the detector are recorded which means that 

the location of the incoming electron hitting the detector can be determined. As this 

is more sensitive than integrating mode the DQE is higher and more higher resolution 

information can be obtained202. However, counting mode detectors are dependent on 

having low dose rates which increases the exposure times of the images; typically, 

~60 seconds for the Falcon III and ~8-10 seconds for the Gatan K2.  
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2.1.3. Data collection and image processing  

After the microscope has recorded the images and the data set has been 

collected, the data needs to be processed in order to obtain a structure. This is usually 

carried out using the technique called single particle averaging (SPA)183. The principle 

behind the technique is that the protein is frozen in its native state in as many different 

orientations as possible. Individual protein particles are then picked, either by hand 

or using automated software, to generate a typical stack containing hundreds of 

thousands to millions of particles181. These particles are classified based upon their 

different orientations which means that the signal within the individual particles is 

averaged together to increase the signal-to-noise ratio. The classes are 2D 

projections of the sample which can be combined together to generate a 3D 

reconstruction of the protein. Postprocessing and polishing steps are subsequently 

completed in order to improve the quality of the map before a model is built into the 

density. The steps will be described below and an overall schematic of the process is 

shown in Figure 2.7 although the order of the steps and the number of times they are 

performed can vary.  
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Figure 2.7: An overview of the cryo-EM processing pipeline. Processing schematic exemplified for 

a 95 kDa membrane protein. Data were initially collected on a high-end microscope with images 

collected as movies. After the frames were aligned, the CTF estimation was performed subsequently 

enabling particles to be picked. The particles were classified based upon their orientation and were used 

to generate an initial model. 3D classification was performed to remove junk particles with the best class 

being refined. The map was post-processed to restore the high-resolution information before a model 

was built into the map.  

 

Data collection and motion correction 

For most high-resolution data collections, typically 1,000-10,000’s of images are 

recorded. The individual images are recorded as movies composed of individual 

frames and are termed micrographs. There are a variety of different software 

programs available which enable the micrographs to be collected automatically such 

as SerialEM203, Leginon204 and EPU (ThermoFisher). The user simply needs to select 

the areas of the grid where they would like to image and set the dose rates/defocus 

parameters for the data collection. After performing the direct alignments, the 
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microscope can then run unattended for the duration of the data collection (typically 

48-72 hours).  

 

Once the data collection has started, the micrographs can be processed in what 

is known as ‘on-the-fly’ processing205. On-the-fly processing has not only greatly 

enhanced the speed with which structures are determined but it also allows the quality 

of the data coming off the microscope to be monitored. Moreover, if there are any 

problems with the microscope then these can be quickly identified and solved to 

enable the user to collect the best possible data. The first step which is generally 

performed is the alignment of the individual movie frames which corrects for the 

beam-induced movement in the sample206 by for example MotionCorr/MotionCor2207. 

To improve the accuracy of the motion correction the individual micrograph is 

generally split up into a 5x5 grid consisting of 25 squares. This gives more accurate 

results because the motion is not consistent across the whole micrograph 

(Figure 2.8). For instance, when the ice is thinner such as towards the centre of the 

hole, more beam-induced motion occurs than at the thicker edges of the holes which 

is exemplified in Figure 2.8B. 

 

 

 

Figure 2.8: Whole-frame motion-correction. An output from the MotionCor2 software packaged in 

RELION. The trajectory of the motion within the individual squares is shown by the grey lines. A) The 

motion is generally consistent across all of the micrograph compared to in B) where there is greater 

motion in the bottom-left corner. This could be due to a micrograph showing the ‘halo-effect’ where the 

ice is thin towards the centre of the hole. 

 



 49 

 The general principle behind the motion correction is that the frames are 

aligned to one another to produce an image which is the overall sum of all of the 

frames208. This is completed by looking at the cross correlation between the frames 

and subsequently moving the frames so they become aligned. This can be done by 

using one frame as a reference or it can be an iterative process. This whole-frame 

approach can correct for large motions across an image but it does not consider the 

motion of the individual particles. This can be corrected for by particle polishing.  

 

CTF estimation  

In order to introduce contrast into the images, they are recorded with small 

amounts of defocus which introduce imperfections into the microscope. This 

information, and the amount of defocus applied, is held within the Contrast Transfer 

Function (CTF) of the microscope188. The information gleaned from the CTF 

estimation can subsequently be used to monitor the quality of the data collection205. 

Therefore, the CTF estimation is typically performed after the motion-correction stage 

of the processing and is often incorporated into many on-the-fly processing pipelines. 

Programs such as CTFFIND4209, Gctf210 and XMIPP211 are commonly used to 

estimate the defocus in the micrographs and this is corrected for in subsequent 

processing steps.   

 

The CTF is an oscillating function which measures the amplitude of an 

electron wave at a given resolution (spatial frequency). The 2D Fourier transform of 

the image allows the CTF to be observed as a sine wave which can be plotted through 

the different Thon rings in the power spectrum188. This is used to estimate the defocus 

in the micrograph. At higher defocus values, the frequency of the wave is increased 

which results in more information being lost due to the wave passing through zero 

more often. Applying defocus to the microscope shifts the position of these zero points 

therefore data is collected at a variety of defocus values212. This ensures that no 

information is lost after the data has been averaged together. As the curve is an 

oscillating function, the amplitude at some frequencies will be negative therefore the 

phases are flipped. This allows all of the sine waves to be summed together. A 

summary of the CTF estimation process is shown in Figure 2.9. The CTF is then 

corrected for in the classification/refinement steps of the processing192. 
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Figure 2.9:  Estimating the CTF in micrographs. The 2D power spectrum of micrographs with A) 

0.5 m defocus and B) 1 m defocus applied. The sine wave can be fitted through the different Thon 

rings. C) An example CTF curve which shows that the amplitude has been plotted against the resolution. 

D) Two different CTF curves at two different defocuses which show that the curve is shifted. The pink 

curve is at a higher defocus than the red curve as the wave has a higher frequency. E) Example curves 

at a wide range of defocus values. This ensures that there are no resolutions with zero information when 

all of the data has been averaged. F) An example curve after the phases have been flipped and the sine 

waves have been summed together. Adapted from188. 
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Particle picking 

 After motion correction and CTF estimation has been performed, individual 

particles need be picked and extracted from the micrographs192. This can be 

completed in a manual, semi-automatic or automated way. For manual picking the 

user goes through each micrograph and picks all of the particles by hand. Despite 

this being an accurate way of ensuring all of the particles are picked, it can be a very 

slow process, especially when the data set consists of greater than 1,000 images. 

One semi-automated approach which is commonly used is template matching. This 

involves the user manually picking ~2,000 particles by hand and classifying the 

resultant particles to generate 2D templates which can subsequently be used to pick 

the data after being low-pass filtered to ~30 Å. However, one problem with this 

approach is that the user may not select uncommon or difficult to see views which 

means that this view will be missed when all of the data is autopicked. Moreover, bias 

can also be introduced into the data if 2D projections of high-resolution structures are 

used to pick the data. This is commonly known as the ‘Einstein from noise’ problem213 

which is exemplified in Figure 2.10.  

 

 

 

Figure 2.10: Einstein from noise. An example of introducing bias into the particle picking. A) The 

references which were used to pick the B) noisy images. C) The classes obtained from the data. Adapted 

from213.  

 

There are fully automated programs which can be used to pick the micrographs 

such as RELION3.0 Laplacian of gaussian filter214 and the swarm picking tool used 

in EMAN2215. Moreover, machine learning algorithms have been developed and 

implemented in programs such as crYOLO216. Having been trained on a range of 

different data sets, the user just needs to tell the program the particle diameter and 
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the general model is able to pick all of the particles within the micrograph without the 

user having to generate any 2D classes. Although, if the algorithm fails to pick 

particles the user would need to train the model so it acts specifically on the data set 

by manually picking ~20 micrographs.  

 

Classification and alignment of particles  

The picked particles are extracted from the micrographs into boxes which are 

~1.5-2.0x the size of the longest diameter of the particle. Individual micrographs and 

particles have different signal-to-noise ratios and are therefore normalised which 

allows dark or light pixels, which would dominate the alignment of the particles, to be 

removed217. Individual micrographs can contain protein aggregates, carbon from the 

edges of the holes or ice contamination. During autopicking, ‘particles’ from these 

areas can be picked which do not represent any view of the protein of interest. These 

particles are subsequently removed during 2D classification which groups together 

particles of the same view thus increasing the signal-to-noise ratio.  

 

Approaches to 2D classification are varied between different programs. They can 

use either references picked by the user, or a reference-free approach to align the 

particles188. One of the most commonly used programs to process cryo-EM data is 

RELION. RELION uses a reference-free maximum likelihood approach for aligning 

and classifying the particles218. Initially, the references used are random and the user 

only has to specify the number of classes. All of the particles are then aligned to all 

of the references in all possible orientations. Probabilities are then assigned based 

upon how likely it is that the particles contribute to each class which are based upon 

the translation, rotation and degree of matching to each reference219. The 

translated/rotated particles are then averaged together in order to form classes which 

act as references in the next iteration. This results in every particle contributing 

somewhat to every class. However, particles usually contribute strongly to one or two 

classes and negligibly to the others219. Particles which contribute equally to a large 

number of classes can also be identified and this is indicative of the particles not 

representing any view of the protein allowing the ‘junk’ particles to be removed from 

the data set.  

 

Many data sets contain heterogeneous populations, with the protein occupying 

different conformational states. Therefore, it is often useful to perform 3D 

classifications to separate out the different states. The same maximum likelihood 

approach can be utilised for unsupervised 3D classifications220. An initial model of the 
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protein, filtered to low resolution (~30-60 Å) is provided and the user only needs to 

specify the number of classes to split the data into, which should represent the 

number of conformational states the protein resides in. Similar to 2D classification, 

the probabilities of the particles contributing to the different 3D models can be 

calculated and the models generated can be used as references for the next iteration. 

The classification would finish after the number of particles which change class 

stabilises220. The particles which make up each class is usually unambiguous and 

these particle subsets can subsequently be refined separately to obtain structures of 

the different conformational states. Moreover, the 3D classification could be 

performed around a certain domain or area of the protein and a focussed 

classification of this region could be performed220.  

 

Reconstructing a 3D map 

 After 2D classes of the protein have been obtained the next stage is 

to generate a 3D map. The 2D classes are a 2D projection of the 3D object. Therefore, 

the ‘projection-slice theorem’ can be used to obtain a 3D map of the protein221. The 

theorem states that the Fourier Transform (FT) of the 2D image represents a central 

slice-through of the 3D object. A schematic of the theorem is shown in Figure 2.11. 

 

 

 

Figure 2.11: A schematic of the Fourier transform theorem. A 3D object can be back projected to 

give a 2D central slice of the 3D object. The Fourier transform of this central slice can then be combined 

in Fourier space. The inverse of this will give a 3D map. Adapted from221 
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By having 2D classes of the protein in a variety of different orientations, the 

3D structure can subsequently be calculated221. This underlies the projection-

matching approach which is utilised in a number of programs. For this approach, the 

individual particle images are compared to back-projections of a user-provided 3D 

model in lots of different directions. The angular assignment for the back projections 

can then be used to calculate the 3D map of the protein188. This is done by placing 

the 2D Fourier transforms of the slices into the 3D transform and subsequently 

determining the 3D map by calculating the inverse transform. This process is 

performed iteratively because the 3D map will diverge from the initial model and more 

accurately resemble the 3D structure of the protein221. As there are large amounts of 

uncertainty in the angular assignment, a maximum likelihood approach can again be 

taken, as implemented in RELION. This allows a probability to be estimated for each 

of the angular assignments which in turn produces more reliable models219.  

 

 

 

Figure 2.12:  Schematic of the projection-matching theorem. A) 2D back projections of the initial 

model are calculated in all directions. B) The particles/classes are compared to the back-projection to 

see which view gives the best match. C) All experimental images are then orientated relative to the 3D 

model. The projection-matching theory can then be applied to combine all of the projections in Fourier 

space which can then be inverse-transformed to give a 3D map. Adapted from221 
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One limitation of the projection matching algorithm is that the user needs to 

provide an initial model which could again introduce model bias into the data192. 

Therefore, high resolution structures should not be used and any existing structures 

should be low-passed filtered to ~30-60 Å so only the vague globular shape of the 

protein is used. To prevent biasing the data, an ab initio initial model could be 

computationally calculated from the experimental data. This could be done by using 

a common-line method, random conical tilt or by using tomography67. In programs 

such as RELION and cryoSPARC222, this is generally completed by using a stochastic 

gradient descent algorithm which allows accurate initial models to be obtained. 

 

 Another limitation of the projection-matching approach is that the refinement 

can get stuck in a local minimum and converge on the incorrect structure221. 

Therefore, it is important to ensure that the initial model does resemble the structure 

of the protein, despite being filtered to low resolution. After the refinements have 

finished, the maps can be analysed. For maps where the resolution is sufficient to 

visualise secondary structure (<9 Å for-helices and <4 Å for -sheets), crystal 

structures or homology models can be docked into the density. However, assessing 

whether the obtained map is correct can be difficult at low resolutions (~ >10 Å), 

especially if there is no existing structural information of the protein. Tilt-pairs can be 

collected and used to validate low resolution maps223,224. 

 

During the 3D refinements, the data is generally split into two independent 

subsets and the particles in each subset are refined separately. This allows the 

Fourier shell correlation (FSC) to be calculated between the two maps225. The FSC 

gives information on the resolution of the map and provides information on the signal-

to-noise ratio at a given spatial frequency (resolution). Therefore, the resolution of 

cryo-EM maps is calculated by how well the two half maps correlate to one another 

at a given resolution, as shown in the FSC curve. This cut-off level has been intensely 

debated within the field. However, resolutions are generally reported using the 0.143 

cut-off level; which is often termed the FSC gold-standard226,227. The problem with this 

approach though is that if the map is incorrect and is mostly made up of noise, so 

long as this noise is consistent between the two half maps, a high-resolution map 

could be reported. Therefore, it is often wise to analyse the maps and assess whether 

the quality of the map represents the reported resolution. For instance, if the reported 

resolution is less than 3.5 Å, then all secondary structure should be resolved and 

individual side chains should be visible for at least the bulky residues.  
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 After the 3D map has been obtained, inspection of the map shows that it often 

does not contain the features which are expected at the reported resolution. This is 

due to the high-resolution features being lost as a result of radiation damage, imaging 

imperfections or errors introduced in the refinement process (eg in angular 

assignments)228. This loss of information can be modelled by a Gaussian amplitude 

decay of structure factors which is known as a B-factor. In order to restore the high-

resolution features of the map, it needs to be ‘sharpened’. One way to do this is to 

estimate the decay by comparison to a known theoretical scattering curve and to 

apply a weighting function which is used to avoid the amplification of noise and to 

prevent over-fitting226. The B-factor can then be implemented which enables the high-

resolution features to be up-weighted so they can be visualised within the map. 

Automatic calculation of the B-factor has been included in programs such as EM-

BFACTOR228, which has subsequently been incorporated into the RELION pipeline. 

Other ways to improve the quality of the map are to perform per-particle CTF 

estimation and individual particle motion-correction (polishing). Both steps are 

implemented into the RELION3.0 pipeline and have improved the resolution and 

quality of maps214. The output from both jobs are shown in Figure 2.13 which shows 

that the CTF and motion of individual particles is not consistent within a micrograph. 

 

 

 

Figure 2.13: Per-particle CTF estimation and polishing. A) Particles within a micrograph are 

represented as circles. The colours represent different defocus values which show that the CTF of the 

individual particles is not consistent across a micrograph. B) Individual particle motions within a 

micrograph which show that the particles move randomly within the micrograph.  
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Model building 

After the final map has been obtained, the model can be fit into the map or 

built from scratch depending on the resolution and whether there are any existing 

structures available. For high resolutions where side chains are visible, the model can 

be built and refined into the density using programs which have traditionally been 

used by X-ray crystallographers. These include COOT229, Phenix230 and Refmac231. 

For more moderate resolution structures, where only secondary structure is visible, 

programs such as MDFF232 and ISOLDE233 can be used to flexibly fit a model into the 

density. Although care needs to be taken not to overfit or overinterpret the structure 

when the map is at these lower resolutions. For instance, commenting on side chain 

positions when there is no side chain density present in the map would be an example 

of over-interpreting the data. Moreover, for low resolution maps, large protein 

domains or existing crystal structures could be rigidly positioned into the cryo-EM 

density to determine the approximate location within a complex. Model fitting or 

building is the final step in the structure determination pipeline and allows the intricate 

structural details of the protein to be obtained. 
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2.2. Cytochrome bc1 

2.2.1. Preparation of negative stain grids 

Carbon-coated copper grids were glow discharged for approximately 30 seconds 

prior to sample application using a Pelco glow discharge unit. 3.0 L of 10.0 g/mL 

protein was added, followed by 2 × 3.0 L of 1% uranyl acetate solution which were 

blotted away after 60 seconds using filter paper. Images were taken on an FEI T12 

microscope at 50,000x magnification. 

 

2.2.2. Preparation of cryo-grids 

Purified cytochrome bc1 was buffer-exchanged in 25 mM Tris pH 7.5, 100 mM 

NaCl, 0.5 mM EDTA, 0.015% DDM or 0.01% LMNG by several dilutions in a 

centrifugal ultrafilter and adjusted to a concentration of 5 mg/mL. 3 L aliquots of the 

sample were applied to Quantifoil Cu R1.2/1.3, 300 mesh holey carbon grids, which 

had been glow discharged for 30 seconds using a Pelco glow discharge unit. An FEI 

Vitribot Mark IV was used to blot the grids for 6 seconds (blot force 6) at 100% 

humidity and 4°C before plunging into liquid ethane. The grids were loaded into an 

FEI Titan Krios transmission electron microscope (University of Leeds Astbury 

Biostructure Laboratory) operating at 300 kV.  

 

2.2.3. Cryo-EM data collection and image processing 

For all inhibitor-bound bc1 data sets, data were collected on a Titan Krios 

microscope (300 kV) fitted with a Falcon III direct electron detector which was 

operated in integrating mode. Automated data collection was carried out using EPU 

software, with a defocus range of -1 to -4 m, and a magnification of 75,000 x which 

yielded a pixel size of 1.065 Å. Five data sets with four different inhibitors (MJM, GSK, 

SCR and JAG) bound have been collected. The total dose, exposure times and dose 

per frames varied slightly for each data set and is summarised in Table 2.1. The apo-

bc1 data set was collected on Krios 2 at the Astbury Biostructure Laboratory which 

was fitted with a Gatan K2 direct electron detector operating in counting mode. Data 

were automatically with a pixel size of 1.047 Å and a defocus range of -1 to -4 m. 

The total dose was 44 e-/Å2 over a 12 second exposure which was split into 20 

frames. The apo, MJM, GSK, SCR and JAG bound bc1 data sets were collected over 

three days resulting in 3,256, 5,903, 8,840, 7,893 and 5,356 micrographs 

respectively. For the JAG-bc1 data-set, 5,356 micrographs were collected but a large 

proportion contained crystalline ice so these were manually removed leaving 2,960 

micrographs. 
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Table 2.1: An overview of the cytochrome bc1 cryo-EM data collection parameters. 

 

 bc1-apo bc1-MJM bc1-GSK bc1-SCR bc1-JAG 

Detector K2  Falcon III Falcon III Falcon III Falcon III 

Detector mode Counting Integrating Integrating Integrating Integrating 

Voltage (kV) 300 300 300 300 300 

Pixel size (Å) 1.047 1.065 1.065 1.065 1.065 

Defocus (m) -1 to -4 -1 to -4 -1 to -4 -1 to -4 -1 to -3.5 

Total dose (e-/Å) 44 110 75 85 66 

No. of frames 20 39 50 40 59 

Exposure time (s) 12 2.0 1.5 2.0 1.5 

Dose per frame 2.20 2.82 1.50 2.125 1.12 

No. of micrographs 3,256 5,902 8,840 7,893 5,356 

Total particle No. 260,201 78,306 466,865 629,258 439,009 

Final particle No. 57,571 41,223 232,910 114,130 211,916 

Resolution  4.4 Å 4.6 Å 4.1 Å 4.1 Å 3.3 Å 

 

All of the processing was performed in RELION2.1 or RELION3.0234 unless 

otherwise stated. For all data sets the initial drift and CTF correction was carried out 

using MotionCor2235 and Gctf210 respectively. All of the other processing steps will be 

described within the relevant sections in Chapter 3. Existing crystal structures were 

rigidly fit into all of the maps using UCSF Chimera236, before MDFF232 was used to 

flexibly fit the model into the map. Rosetta was subsequently used to perform model 

relaxation before finally being refined using PHENIX230. The maps were then 

inspected manually in COOT229 and the model corrected for any errors in refinement 

and the placement of residues. 

 

 

2.3. Vacuolar-ATPase 

2.3.1. Virtual screening of chemical compounds 

Virtual screening was performed using the chembridge library which contained 

100,000 compounds. All docking was performed using GLIDE38 in the Schrodinger 

software Maestro (version 10.3 or 11.3.016). Initially the compounds were screened 
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in HTVS mode, ranked according to their predicted binding affinities and the top 

scoring 10,000 compounds were docked in the higher precision XP mode. The top 

scoring ~100-200 compounds were visually inspected using Pymol to identify the 

binding interactions to the protein and to rule out compounds with steric clashes to 

the protein. The structure of the compound was analysed to determine its ‘drug-like’ 

properties, ie whether they adhere to the Lipinski rule of five and do not contain any 

frequent hitter motifs. The top scoring compounds which fit the criteria were then 

ordered from Chembridge (Hit2Lead) and were shipped as dry stocks in 1.0 mg or 

5.0 mg quantities. The compounds were dissolved in DMSO at 200 mM concentration 

and stored at -20 °C. 

 

2.3.2. Yeast growth conditions 

The strain of Saccharomyces cerevisiae, W303-1B was used throughout this 

study. Initially the Saccharomyces was grown on YEPD agar plates at pH 5.5 

supplemented with adenine (10 g/mL). Throughout the project the yeast were grown 

aerobically in YEPD media (1% yeast extract, 2% special peptone, 1% MOPS, 1% 

MES, 2% glucose) at pH 7.5.  

 

2.3.3. Preparation of yeast vacuolar membranes 

Vacuolar membranes were isolated from Saccharomyces by a modification of 

the method by Uchida et al 198829. Routinely, 10 x 1 L cultures were grown to late log 

phase (OD600 ~ 5) in a shaking incubator (200 rpm) at 30 °C and harvested by 

centrifugation at 4,500g for 10 minutes (JLA8.100 rotor). The cells were washed with 

water, followed by 1.1 M sorbitol with 1% glucose (pH 7.5) and recovered by 

centrifugation (3,000g, 4 °C, JLA10.5 rotor). The cell pellet was resuspended in 

100 mL of 1.1 M sorbitol/litre of culture (buffered with 5 mM MOPS/MES, pH 7.0). 2-

mercaptoethanol (0.5 mL) was added to increase efficiency of spheroplast formation. 

Yeast lytic enzyme (Zymolase 100T, amsbio) was added to a final concentration of 

0.1 mg/mL and incubated at 30 °C for ~90 min with gentle shaking (30 rpm with 

manual swirling every 15-20 mins). The spheroplasts were recovered by 

centrifugation (3,000g, 5 mins, JLA10.5 rotor), washed with 1.1 M sorbitol/1% glucose 

and recovered by centrifugation (3,000g, 5 mins, JLA10.5 rotor). The pellet was 

resuspended in 80 mL Buffer A, containing 10 mM Mes/Tris, pH 6.9, 0.1 mM MgCl2, 

12% (w/v) Ficoll-400 with, 100 L (Sigma) Protease inhibitor cocktail and 

homogenised using a loose-fitting Dounce homogeniser (8 strokes). The 

homogenate was centrifuged at 10,000g for 10 minutes at 4 °C using the JLA10.5 
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rotor to remove cell debris. The supernatant was transferred to Beckmann SW32Ti 

centrifuge tubes and overlaid with Buffer A. The tubes were centrifuged using the 

SW32Ti rotor at 52,000g (17,400 rpm, 55 mins, 4 °C). This produced a white float of 

crude vacuoles which were carefully removed using a spatula and re-suspended in 

25 mL Buffer A, supplemented with 50 L protease inhibitor cocktail. This suspension 

was further homogenised using the Dounce homogeniser (5 strokes) and transferred 

to fresh Beckmann SW32Ti tubes and overlaid with Buffer B (10 mM Mes/Tris, 

pH 6.9, 0.5 mM MgCl2, 8% (w/v) Ficoll 400). These tubes were again centrifuged 

using the SW32Ti rotor at 52,000g (17,400 rpm) for 55 minutes at 4 °C. The white 

float of purified vacuoles was carefully removed using a spatula and resuspended in 

16 mL of Buffer C (10 mM Mes/Tris, pH 6.9, 0.5 mM MgCl2 and 25 mM KCl) which 

enabled the hypertonic lysis of vacuoles, leading to the formation of vacuolar 

membrane vesicles. The vesicles were recovered by centrifugation (100000g, 

30 mins, 4 °C, Beckmann TLA110 rotor). The pellet was resuspended in 20 mM 

Tris/HCl (pH 7.5), 20 L of protease inhibitor cocktail, 1 mM EDTA and 15% glycerol 

and flash frozen in liquid nitrogen. The membranes were stored at -80 °C. 

 

2.3.4. Protein purification from the vacuolar membranes 

The vacuolar membranes were washed with EDTA to remove contaminating 

proteins. All subsequent steps were carried out at 4 °C. The membranes were 

suspended in a solution of 10 mM Tris/HCl, 1 mM EDTA (pH 7.5) at a protein 

concentration of ~1 mg/mL and homogenised three times in a loose fitting Dounce 

homogeniser. The membranes were recovered by centrifugation at 100,000g (4 °C, 

30 minutes, TLA110 rotor). This EDTA wash was performed three times in total. The 

EDTA-washed membranes were resuspended at ~5 mg/mL in solubilising buffer 

(10 mM Tris-HCl, 1 mM EDTA, 2 mM DTT, 0.5 mM PMSF, 10% glycerol, pH 7.5) 

supplemented with protease inhibitor cocktail (Sigma). To this suspension, 25% DDM 

(w/v) was added dropwise to a final weight ratio of detergent to protein at 10:1. The 

suspension was stirred at 4 °C for 30 minutes and then centrifuged at 100,000g for 

30 minutes (4 °C, TLA110 rotor). The supernatant was collected as the solubilised 

fraction.  

 

For glycerol gradients, aliquots (500 L) of the supernatant were then layered 

on top of a 14 mL 20-50% glycerol gradient in a solution of 10 mM Tris/HCl (pH 7.5), 

1 mM EDTA, 2 mM DTT, 0.5 mM PMSF, and 0.01% (w/v) DDM, and centrifuged at 

180,000g (8 h, 4 °C, SW40Ti rotor). After centrifugation, fractions (500 L) were 
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carefully taken. For size exclusion chromatography, the supernatant (500 L aliquots) 

was loaded onto a Superose 6 10/300 column which was pre-equilibrated in eluting 

buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 2 mM DTT, 0.5 mM PMSF and 0.01% 

DDM). The flow rate of the column was 0.1 mL/min and the purification was carried 

out at 4 °C. 400 L fractions were collected in 96 deep-well pates. Fractions from both 

purification methods were tested for activity using the ammonium molybdate assay. 

The concentration of protein in the fractions was determined using the nanodrop 

(DeNovix DS-11T) and/or BCA assay and if appropriate the fractions were 

concentrated by centrifugation using Generon X-Spinner 2.5 Pack (100 kDa cut-off) 

columns. The purity of the protein within the fractions was analysed by SDS-PAGE 

gels and negative stain EM. The fractions containing purified in-tact complex were 

used in inhibitor enzyme assays.  

 

2.3.5. Determination of yeast vacuolar membrane activity 

The V-ATPase activity was measured using an ammonium molybdate 

absorbance assay which measured the release of inorganic phosphate as ATP is 

hydrolysed. The phosphate is detected by the formation of a phosphomolybdate 

complex which is formed between phosphate and molybdate at low pH. It is 

subsequently reduced to molybdenum blue in the presence of ascorbic acid. The 

resulting absorbance can then be measured using the spectrophotometer. The 

assays were carried out in a final volume of 40 L and were based on the procedure 

described in Chifflet et al.,198830. The membranes/protein (~10-20 g per well) were 

suspended in assay Buffer A (50 mM Mes, 50 mM Tris, 5 mM MgSO4) and added to 

a 96-well microtiter plate. To start the reaction, 5 mM of Mg-ATP was added and the 

plate was incubated at 30 °C. At various time intervals (0, 10, 20 or 30 mins) the 

reaction was stopped by the addition of 12% SDS solution. The colour development 

reagent was prepared by mixing 6% ascorbate (w/v) in 1 M HCl with 1% ammonium 

molybdate (w/v) in equal volumes. This was added to each well and the colour was 

allowed to develop for 5 minutes at room temperature. A solution containing 2% 

sodium citrate (w/v), 2% sodium meta-arsenite (w/v) and 2% acetic acid (v/v) was 

added and the plate was incubated at 37 °C for 15 minutes. Once cool the 

absorbance at 600 nm was read on a spectrophotometer (FluoroStar Optima). The 

amount of phosphate released was determined via comparison to a standard curve 

of potassium dihydrogen orthophosphate. 
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2.3.6. Testing the compounds for activity against the vacuolar 

membranes or purified protein 

The compound activity was determined using the ammonium molybdate assay 

as described above, with a few minor changes. The vacuolar membranes or purified 

protein were suspended in assay Buffer A with ~10-20 g of protein used for each 

well within the 96-well plate. The inhibitors were added at the desired concentration 

to each well and the plate was incubated at 30 °C for 5 minutes. ATP (5 mM) was 

added to initiate the reaction to give a final volume of 40 L. The plate was incubated 

at 30 °C for 30 minutes before the 12% SDS stop solution was added to all wells. The 

same procedure as described above was then carried out. For all inhibitor assays, 

there were controls of no inhibitor and no membranes which measured the ATP 

background in the assay. The activity of the compounds was determined by 

calculating the amount of phosphate released in the presence of a compound as the 

percentage of the amount of phosphate released when there was no compound 

present. 

 

2.3.7. Determining the toxicity of compounds against HEK cells 

HEK-293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% foetal bovine serum and 1% penicillin/streptomycin mix at 

37 °C, 5% CO2. The cells were seeded in 12-well plates and once the cells were 

~50% confluent, the compounds were added at the desired concentrations. After 

48 hours the cells were visually inspected and the observations were recorded. 

 

2.3.8. Determining protein concentration using a BCA assay 

The protein concentration in the vacuolar membranes was determined using a 

bicinchoninic acid (BCA) method which was carried out in 96-well microtiter plates. 

The protein was precipitated from the vacuolar membranes by adding 9 volumes of a 

1:1 mixture of acetone and ethanol and incubating the solution at -20 °C for 

30 minutes. The precipitate was collected by centrifugation (13,000 rpm, 5 minutes, 

Hettich M-24 microcentrifuge) before the acetone/ethanol mixture was removed. The 

protein was resuspended and solubilised in 2% SDS (w/v) solution. Bovine serum 

albumin (1 mg/mL) was used to generate a standard curve. 

 

2.3.9. Preparation of V-ATPase negative stain grids 

Carbon-coated copper grids were glow discharged for approximately 30 seconds 

prior to sample application using a Pelco glow discharge unit. 3.0 L of ~50.0 g/mL 
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protein was added, followed by 2 × 3.0 L of 1% uranyl acetate solution which were 

blotted away after 60 seconds using filter paper. Images were taken on an FEI F20 

microscope fitted with a Ceta camera and was operated at 50,000x magnification. 

 

2.3.10. Preparation of V-ATPase cryo-EM grids 

3.0L aliquots of purified V-ATPase at a concentration of 2.5-3.5 mg/mL were 

applied to Quantifoil Cu R1.2/1.3, 300 mesh holey carbon grids, which had been glow 

discharged for 30 seconds using a Pelco glow discharge unit. An FEI Vitribot Mark IV 

was used to blot the grids for 6 seconds (blot force 6) at 100% humidity and 4°C 

before plunging into liquid ethane. The grids were loaded into an FEI Titan Krios 

transmission electron microscope (University of Leeds Astbury Biostructure 

Laboratory) operating at 300 kV.  

 

2.3.11. V-ATPase cryo-data collections 

There have been four cryo-EM data collections of V-ATPase. All data sets were 

recorded at the Astbury Biostructure Laboratory on Titan Krios microscopes operating 

at 300 kV. A summary of the data collection parameters for each data set is shown in 

Table 2.2. 
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Table 2.2: A summary of the V-ATPase cryo-EM data collections. 

 16-hour data collections 72-hour data collections 

 
Apo 

V-ATPase 

LDC-2 bound 

V-ATPase 

Apo 

V-ATPase 

LDC-2 bound 

V-ATPase 

Detector K2 Falcon III K2 Falcon III 

Detector mode Counting Integrating Counting Integrating 

Voltage (kV) 300 300 300 300 

Pixel size (Å) 1.07 1.065 1.07 1.065 

Defocus (m) -1 to -4 -1 to -3 -1 to -3 -1 to -3 

Total dose (e-/Å) 65 80 75 74.7 

No. of frames 40 59 50 59 

Exposure 

time (s) 
10 1.5 10 1.5 

Dose per frame 1.63 1.36 1.5 1.27 

No. of 

micrographs 
698 1,088 2,944 6,919 

Total particle 

No. 
20,847 9,205 77,867 133,059 

Final particle 

No. 

(Resolution) 

1,359 (8.7 Å) 

2,098 (8.1 Å) 
2,857 (9.1 Å) 

3,362 (9.5 Å) 

2,827 (10.2 Å) 

3,762 (10.2 Å) 

6,833 (10.4 Å) 

4,738 (11.2 Å) 

6,169 (10.4 Å) 

7,243 (9.5 Å) 

 

 

For all data sets, the motion-correction and CTF estimation were carried out 

on-the-fly using MotionCor2207 and Gctf210, respectively. Unless otherwise stated, all 

processing was carried out using RELION3.0214. For the 16-hour data collections, the 

micrographs were manually picked whereas crYOLO216 was used to pick particles 

from the 72-hour data collections. The particles from each data set underwent 

iterative rounds of 2D and 3D classification. An initial model was built from the best 

2D classes in each data set. Models were fit into the maps using MDFF232 and UCSF 

chimera236 was used to analyse the resulting structures. All other processing steps 

will be described in the text in Chapter 6. 



 66 

  



 67 

 

3 The use of cryo-EM to study inhibitor binding to 

cytochrome bc1 

 

3.1 Introduction 

Parasitic diseases, such as malaria and toxoplasmosis, are devastating to the 

developing world, with 435,000 deaths in 2017 caused by malaria alone239. There are 

a number of small molecule treatment options for malaria but resistance is emerging 

to all current treatments therefore there is an urgent need to develop new medicines. 

Cytochrome bc1 is a validated anti-malarial drug target with the current treatment 

atovaquone acting upon this protein240. Despite being the subject of extensive X-ray 

crystallography programs, there is no structural information derived from the parasite 

protein. Therefore, the interactions between current inhibitors and the parasite protein 

remain unknown. Moreover, homology modelling of the Plasmodium falciparum (P. 

falciparum) enzyme has failed to predict the structure of a key loop in cytochrome b 

which encompasses the inhibitor binding site. This has resulted in SBDD programs 

being hindered by a lack of reliable parasitic models, resulting in compounds such as 

GSK932121 being developed which are toxic to the host, as discussed in Section 

1.5.3151. The parasite protein cannot be over-expressed in traditional hosts so an 

alternative method of obtaining purified protein is needed which consists of extracting 

bc1 from the native source organism. This will result in much smaller quantities of 

protein being obtained than the mammalian homologue proteins thus an alternative 

method for structural determination is needed. As cryo-EM typically uses less protein 

than X-ray crystallography, the technique could play an important role in determining 

the structure of parasite-derived bc1. For this part of the project, the aim was to 

determine whether cryo-EM is an amenable technique to study inhibitor-binding to 

the bovine bc1 enzyme.  

 

3.2 Results 

3.2.1 Sample preparation and negative stain analysis  

Cytochrome bc1 was purified from bovine heart tissue by Kangsa Amporndanai 

in the Antonyuk and Hasnain groups at the University of Liverpool. Briefly, the protein 

was purified from bovine heart mitochondria, solubilised in DDM or LMNG detergents 

and purified via an anion exchange column followed by size exclusion 

chromatography. The protein was subsequently concentrated to ~40 mg/mL and was 
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buffer exchanged before being used for EM. All of the protein samples discussed in 

this chapter, with the different inhibitors bound, were purified using this approach, 

kindly delivered to Leeds and used fresh without freezing the purified protein at any 

stage.  

 

Bovine bc1 was initially analysed by negative stain EM (as described in 

Section 2.1.1) to determine the sample purity and heterogeneity (Figure 3.1A). The 

resulting micrographs showed monodispersed particles with very little contamination 

in the sample. Subsequently, 101 micrographs were collected on an FEI T12 

microscope at a magnification of 50,000x. The micrographs were initially picked in 

EMAN2215 and were subsequently processed using Imagic-5241 with the resulting 2D 

classes showing the expected shape of protein with the detergent micelle and 

intracellular regions of the protein clearly visible (Figure 3.1B). However, the classes 

showed that the protein adopted a strong preferred orientation on the carbon as only 

side views were seen therefore no 3D reconstructions were attempted. The negative 

stain results showed that the purity of the sample was very high and could be taken 

forward to cryo-EM.  

 

 

 

Figure 3.1: Negative stain analysis of bc1. A) A micrograph of bc1 showing a high purity of the sample. 

B) 2D classes showing the globular shape of bc1 but only side views of the protein. 
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3.2.2 Initial cryo-EM data sets  

To get an initial idea of the behaviour of bovine bc1 on cryo-EM grids, the first 

attempt used lacey grids which contained an irregular distribution of holes. Grids were 

prepared at a concentration of ~1 mg/mL. The grids were screened on the Titan Krios 

microscope showing the majority of the particles were bound to the carbon layer 

therefore there were very few particles suspended in the ice. Furthermore, there 

appeared to be no preference between the different sizes and shapes of the holes on 

the lacey grid. To overcome this problem and to achieve a good particle distribution 

in ice, lacey grids which contained a thin layer of carbon support over the grid were 

prepared. However, this resulted in the presence of a predominant side view of the 

protein, even when a proportion of the micrographs were tilted at 20°. The rationale 

behind the tilted data set was to try and fill in some of the missing components in 

Fourier space which would improve the quality of the resulting 3D structure. A data 

set of 2,887 micrographs were collected resulting in a particle stack containing 

~500,000 particles. After processing the data, both the 2D classes and the 3D 

reconstruction indicated that, despite tilting the specimen, there were still problems 

with preferential views (Figure 3.2A,B). This was highlighted by an angular distribution 

plot which shows the number of particles going into one particular view of the protein 

(Figure 3.2C). The resulting 3D reconstruction had a different overall architecture to 

existing crystal structures showing the map was incorrect. The presence of the radial 

spikes in the 2D classes also showed that the particles were being over-fit, indicating 

problems with the quality of the data. Therefore, it was clear that the cryo-grids 

needed to be optimised to result in grids which did not only contain the additional 

carbon layer but also had a good distribution of protein particles in a wide range of 

orientations within the ice. 
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Figure 3.2: Analysis of the initial cryo-EM data set. A) 2D classes which contain side views which 

show the correct shape of bc1 and include the detergent micelle. The classes also potentially show other 

views but these show features consistent with over-fitting. B) An 18 Å 3D reconstruction and C) the 

angular distribution which suggests there is one predominant view. 

 

3.2.3 Cryo-grid optimisation  

Due to the problems described in Section 3.2.2, the cryo-grid preparation of bc1 

required optimisation which aimed to remove the need for using carbon-backed grids 

thereby preventing the particle from adopting a favourable orientation on the grid. 

Initially, bovine bc1 was applied to quantifoil R2.2 grids which have an even 

distribution of equally sized holes (2 m) spaced at equal distance (2 m) across the 

grid. It was found that high concentrations of sample (5 mg/mL) were needed to 

saturate the carbon enabling the protein molecules to become suspended in ice. 

However, the protein molecules were not evenly distributed throughout the ice but 

were instead aggregated around the edges of the holes. An example representative 
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micrograph is shown in Figure 3.3A. Towards the centre of the hole, the protein 

molecules became more distinguished and could be manually picked and used in 2D 

classification. As the protein was not distributed evenly within the ice, the data could 

not be auto-picked due to the neighbouring particle interactions and subsequent 

crowding. Therefore, the grids required further optimisation. It was also noticed that 

in the centre of the holes, the ice layer was either extremely thin or not present at all 

giving rise to a ‘halo effect’ of particle distribution which could be due to the 

interactions of the protein or buffer at the air-water interface182. This effect could also 

have played a part in pushing the protein towards the edges of the holes resulting in 

a poor distribution of protein within the ice. 

 

Despite the non-ideal distribution of protein on the grid, data were collected on a 

Titan Krios microscope fitted with a Falcon III detector operating in integrating mode 

resulting in 5,902 micrographs being collected. A summary of the data collection 

parameters is shown in Methods Section 2.2, Table 2.1. The sample contained bovine 

bc1 with an inhibitor, MJM170, bound which was designed to treat toxoplasmosis. The 

structure and binding affinities of MJM170 is shown in Table 3.1. The binding affinity 

data was provided by collaborators at the University of Liverpool. 

 

Table 3.1: The structure and binding affinity for the inhibitor MJM170. 

 

 

 

After initial motion correction using MotionCorr2207 and CTF estimation (GCtf)210 

were performed, the data were subsequently processed using RELION2.0234. Due to 

the poor distribution of protein within the ice, autopicking the data was unsuccessful 

which resulted in 78,306 particles being manually picked. After 2D and 3D 

classification, 41,223 particles remained which resulted in a map with a global 

resolution of 4.6 Å after post processing. Local resolution estimations showed the 

core of the complex, including the Qi inhibitor binding site, was at a higher resolution 

(4.4 Å) than the global average. Examination of the Qi inhibitor binding site showed 

 Compound structure 
Plasmodium 

bc1 (IC50) 

Bovine bc1  
(% inhibition) 

0.1 µM 1 µM 

MJM170 

 
 

10 nM 31.3 ± 7.0 49.7 ± 3.1 
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that there was density which could be attributed to the inhibitor, which is shown in 

Figure 3.3D.  There is strong density for the pyridone head of the molecule and weak 

density for the second aromatic ring (Figure 3.3D). This could be due to rotation 

around the linking carbon-oxygen bond which causes the inhibitor to adopt different 

poses within the binding site. The side chains around the molecule are not well 

resolved at 4.4 Å so the resolution of the map would need to be improved to elucidate 

details on the side chain interactions with the inhibitor. As the particle distribution on 

the grid was not optimised, resulting in the particles being manually picked, there was 

a low number of particles going into the classification steps. The resolution of the map 

could be particle limited therefore the cryo-grids need further optimisation to allow a 

data set to be collected which contains a large number of particles (100,000’s). A 

summary of the structural details for this data set is shown in Figure 3.3. 
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Figure 3.3: Overview of MJM-bc1 data. A) A representative micrograph which shows a poor particle 

distribution as they are clumped towards the edge of the holes. The green circles represent particles 

which were manually picked. B) A local resolution map of MJM-bc1 showing the core of the complex is 

at ~4.2 Å. The black square indicates the position of the Qi inhibitor binding site. C) The Qi inhibitor 

binding site. MJM170 and the corresponding inhibitor density is shown in orange and the protein in 

purple. There is density for the head of the MJM compound but it is weaker at the tail of the molecule.  

 

The particle distribution was improved by using a different grid type which 

contained smaller sized holes; quantifoil R1.2/1.3. The smaller hole, (1.2 µm diameter 

rather than 2 µm) significantly reduced the amount of protein molecules clumped 

towards the edges of the holes thus improving the protein distribution (Figure 3.4). It 

was also noted that in the smaller hole, the ‘halo effect’ which resulted in the centre 
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of the hole being very thin or not present at all, was not as prevalent as in the R2.2 

grids. Moreover, it was found that micrographs taken in areas of the grid with thicker 

ice had the better distribution of particles. The improved protein distribution enabled 

the micrographs to be auto-picked which, for large data sets, would significantly 

reduce the amount of time spent picking the micrographs whilst also increasing the 

total particle number. Notably, it was also found that high concentrations of protein 

(~5 mg/mL) were needed in order to achieve a good distribution of particles within the 

ice. The quantity of protein used and how it compares to X-ray crystallography is 

discussed in more detail in the discussion (Section 3.3). 

 

Three more data sets were subsequently collected using these optimised 

cryo-grid conditions. Firstly, bc1 with no inhibitor bound (apo) was collected, followed 

by two inhibitor-bound bc1 data sets. Figure 3.4 shows a representative micrograph 

from all three data sets which show a monodisperse distribution of protein molecules 

within the ice thus allowing autopicking parameters to be established. The quality of 

the grids was reproducible between all of the data sets which allowed multiple 

inhibitors to be screened. The two inhibitors were chosen as they contained two 

different cores (pyridone and quinolone) which would determine whether the different 

cores influenced the binding pose. 
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Figure 3.4: Representative cryo-EM micrographs. The particles within the micrographs for the A) 

Apo, B) GSK and C) SCR data sets show a monodisperse distribution of particles within the micrographs 

for each sample. The scale bar is 18 nm.  

 

As the cryo-grids were optimised to achieve to a good particle distribution in 

the ice, it allowed a wider study to be conducted. This consisted of collecting data on 

bovine bc1 bound to three different small molecule inhibitors (GSK932121, SCR0911 

and later JAG021) which contained either a pyridone or quinolone core. By having a 

reliable and reproducible way of making the grids, it allowed the structures to be 

determined relatively quickly thus enabling the differences in small molecule binding 

to be probed. For example, after the grids were made and loaded into the microscope 

a structure was typically obtained within a week of data collection, with additional time 

being spent on further rounds of classification and polishing steps. The speed of 
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obtaining the structures is very important for SBDD programs as X-ray 

crystallography has allowed multiple inhibitors, or even fragments, to be screened per 

day. Even with the developments to the on-the-fly data processing, the cryo-EM time-

frame does not yet rival X-ray crystallography. Therefore, being able to make 

consistent and reliable cryo-EM grids, which has been achieved for bovine bc1, is one 

hurdle to overcome to enable multiple inhibitor-bound structures to be determined in 

a short timeframe.  

 

3.2.4 Cryo-EM Data collection 

Cryo-EM has been used to study the structure of bovine cytochrome bc1 in 

complex with two different families of inhibitors which have a pyridone (MJM170 and 

GSK932121151) or quinolone (SCR0911242) core, along with the un-liganded apo form. 

The GSK932121 (GSK) and SCR0911 (SCR) inhibitors were designed to treat 

malaria and the structure of the compounds and activity against malarial and bovine 

bc1 are shown in Table 3.2. Both inhibitors are highly potent against their target 

plasmodium bc1 with IC50 values of 7 nM and 14 nM, respectively. Experiments and 

data were performed in the Hasnain and Antonyuk groups at the University of 

Liverpool. 

 

Table 3.2: The structure and activity of the anti-malarial inhibitors. 

 

 

Initially data were collected on purified bc1 with no inhibitor bound (apo), on 

an FEI Titan Krios microscope fitted with a Gatan K2 direct electron detector. The 

rationale behind collecting the apo data set was to determine that there was no natural 

substrate bound in the active site which would make it difficult to distinguish between 

substrate or inhibitor molecules. In total, 3,256 micrographs were collected and 

corrected for drift and beam-induced movement using MotionCor2235 before CTF 

estimation was performed using Gctf210. After auto-picking in RELION234, ~260,000 

 Compound structure 
Plasmodium 

bc1 (IC50) 

Bovine bc1  
(% inhibition) 

0.1 µM 1 µM 

GSK932121 

 

7 nM 64.7 ± 3.8 81.7 ± 4.6 

SCR0911 

 

14 nM 9.2 ± 2.3 72.1 ± 4.9 
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particles underwent iterative rounds of 2D and 3D classification which removed any 

poorly aligned particles and clear heterogeneity, thus generating a particle set 

consisting of ~57,000 particles which was refined and post-processed to a global 

resolution of 4.4 Å. The local resolution calculated in RELION234 showed the core of 

the complex, including cytochrome b, was at a higher resolution (4.2 Å) than the 

global average. However, the Rieske domain, which contains the iron-sulphur cluster, 

was resolved to ~5.8 Å.  

 

Purified bovine bc1 complexed with two inhibitors (GSK and SCR), were 

imaged on a FEI Titan Krios microscope at 300 kV fitted with a Falcon III direct 

electron detector. For both data sets 8,840 (GSK) and 7,893 (SCR) micrographs were 

collected and processed as described above resulting in both maps having a global 

resolution of 4.1 Å as calculated by the gold standard Fourier shell correlation (FSC) 

= 0.143243. The data sets have been summarised in Table 3.3 and Figure 3.5 and the 

full data collection parameters are shown in Methods Table 2.1. 

 

Table 3.3: An overview of the particle number and resolution achieved for the three data sets. 

 

 

For the GSK-bc1 data set, ~466,000 particles were auto-picked and after 2D 

and 3D classification ~232,000 particles made up the final reconstruction. The 3D 

map for SCR-bc1 consisted of ~114,000 particles which had been selected by 2D and 

3D classification from a total of ~630,000 particles. The resulting 2D classes showed 

a good distribution of views and structural detail, consistent with a high-quality data 

set. Further rounds of 2D and 3D classification were attempted but the map was not 

improved. Moreover, attempts were made to improve the resolution further using the 

Apo-bc1 GSK-bc1 SCR-bc1

Detector Gatan K2 Falcon III Falcon III

No. of micrographs 3,256 8,840 7,903

Total particles 260,201 466,865 629,258

Particles in final 

reconstruction
57,571 232,910 114,130

Global resolution 4.4 Å 4.1 Å 4.1 Å



 78 

particle polishing algorithms implemented in RELION2.1. However, these were 

unsuccessful and both the resulting map and resolution were identical. The previously 

solved crystal structure for bc1
151 (pdb 4D6U) was rigidly fit within the cryo-EM maps 

using Chimera236 before dynamic flexible fitting in MDFF232 to account for significant 

changes in secondary structure position between the EM and crystallography derived 

model. The models then underwent relaxation using Rosetta244 before being refined 

using PHENIX230. Finally, the models were examined using COOT to manually 

inspect the residues and how they fit into the density, with incorrect rotamers being 

corrected for. 

 

 

 

Figure 3.5: Summary of the cryo-EM data collections. A) The cryo-EM maps for each of the data sets 

showing the overall structure of the protein is consistent in each map. B) Example 2D classes for each 

data set as generated by RELION which shows a wide range of orientations within the ice. C) The FSC 

curves for each data set to which were generated using the 0.143 gold-standard. 
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3.2.5 Cryo-EM structure analysis 

Cryo-EM data sets of cytochrome bc1 bound without any inhibitor (apo) and 

with two inhibitors (GSK and SCR) were collected which achieved resolutions of 4.4 Å 

and 4.1 Å, respectively. After the maps were generated as described above, an 

existing crystal structure (pdb 4D6U) was rigidly fit into the density maps so the cryo-

EM structure could be analysed. For all three cryo-EM maps of bovine bc1, the overall 

architecture of the fitted structures was, as expected, consistent to published crystal 

structures. In the apo-bc1 map the resolution of 4.6 Å, only allowed for the -helices 

within the complex to be modelled into the density as the resolution was not sufficient 

to allow accurate side chain placement. In the GSK-bc1 and SCR-bc1 maps, the 

increased resolution allowed both the -helices and -sheets to be modelled into the 

density. Furthermore, in the best resolved regions in the map, the density allowed the 

larger, aliphatic/aromatic side chains to be fitted. This is exemplified in Figure 3.6 

where the side chain density in the apo (grey) structure is not as strong in the -

helices as it is for the GSK and SCR inhibitor bound maps (gold and cyan, 

respectively) at a consistent sigma level (4). 
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Figure 3.6: Representative cryo-EM density. A comparison of the quality of each map (coloured grey, 

gold and cyan for the apo, GSK bound and SCR bound structures, respectively) with two representative 

transmembrane helices (A, B) and a β-strand within the soluble domain (C). The density was contoured 

at 4with the side chains better resolved in the two inhibitor bound structures. 

 

Within cryo-EM maps, a range of resolutions can be obtained within one 

structure. For instance, the core of proteins can be determined to a higher resolution 

than regions which are inherently flexible. Therefore, local resolution maps for all 

three data sets were calculated using RELION which are shown in Figure 3.7. In all 

three maps, the poorest resolved region occurred at the Rieske domain. For instance, 

in the GSK and SCR bound maps this domain was resolved to 5.1 Å and 5.3 Å 

respectively compared to the global resolution of 4.1 Å. The iron-sulphur cluster within 

this region is responsible for transferring electrons to cytochrome c in the electron 

transport chain. Previously it had been reported that this domain is mobile and can 

exist in different conformations245,246. The other heme groups (bH at the Qi site and bL 

at the Qo site) are the strongest features within the cryo-EM maps in all three 
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structures. However, the inability to resolve the iron–sulfur cluster, which should also 

be a strong feature, suggests that it is mobile and can adopt different positions, 

thereby lowering the resolution. 

 

 

 

Figure 3.7: The local resolution for the three maps. Local resolution maps coloured to the same scale 

apo-bc1, GSK-bc1 and SCR-bc1 which show the core of the complex is at the highest resolution and the 

Rieske protein is the poorest resolved feature in the map. 

 

Attempts were made to trap the iron-sulphur cluster into different 

conformations using soft masks around this region however, these classifications and 

subsequent refinements were unsuccessful in trapping the complex into distinct 

states. These classifications were performed using RELION2.1 which did not contain 

the multibody refinement features implemented in the latest version of the software 

(RELION3.0). For a different cytochrome bc1 data set, the multibody refinement was 

carried out and is discussed in more detail later in Section 3.2.8. The 3D 

classifications were conducted using both C1 and C2 symmetry to determine whether 

the two Rieske domains move independently during the catalytic cycle. Analysis of 

the maps showed that there was no evidence for this and the overall resolution of the 

map did not improve. This could suggest that rather than being in distinct 

conformations the Rieske protein is instead mobile. The flexibility of the Rieske 

domain is discussed in more detail in Section 3.2.7. 

 

It was interesting to note that the final resolution of both inhibitor-bound structures 

was 4.1 Å. To assess whether this was a feature of particle number, the inhibitor data 
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sets were combined and selective masking of the individual monomer subunits was 

carried out. The total number of particles which went into the final 3D reconstructions 

for the three inhibitor data sets, including the particles from MJM-bc1, were pooled 

resulting in ~388,000 particles being refined to 4.6 Å. After numerous 3D 

classifications to reduce the heterogeneity of the particle stack, the highest resolution 

map obtained after post-processing was 4.4 Å which consisted of 68,584 particles. 

Moreover, a soft mask which encompassed the cytochrome b subunit, and tightly 

covered the inhibitor binding site, was created and 3D classifications were conducted 

at this region. Examination of the resulting 3D maps showed that the classification 

was unsuccessful in separating out the different inhibitor bound complexes. The 

resolution did not improve with the increased particle number, suggesting that the 

final resolution may not be particle number limited but instead the isolated bc1 

complex may be flexible and contain low levels of heterogeneity which is not 

permitting the resolution to go below 4.0 Å. Additionally, it is worth noting that the 

GSK and SCR inhibitor-bound structures were solubilised in different detergents 

(DDM and LMNG respectively) which could be another reason as to why the 

resolution did not improve when all the particles were combined.  

 

To determine whether the imposed two-fold symmetry was having an effect, the 

particle stack for the SCR-bc1 was re-refined with no symmetry imposed to a 

resolution of 4.3 Å. Analysis of the map showed that there were no differences 

between the monomers in the map and that there were inhibitors bound at both Qi 

sites. Moreover, a 3D mask of a monomer subunit was created and the results from 

the 3D classifications and refinements also highlighted that there were no differences 

detected at this resolution in the structures of the two monomers in the bc1 complex 

suggesting that this is not affecting the resolution of the complex. 

 

3.2.6 Qi site analysis 

After the cryo-EM maps had been generated and the models had been fit into 

the density, the Qi site could be analysed to determine whether any density for the 

inhibitors was present. Analysis of the local resolution of the GSK and SCR inhibitor-

bound maps showed the majority of the bc1 core, was resolved to a higher resolution 

than the global average of 4.1 Å for both maps. There were slight differences in the 

local resolution of the catalytic cytochrome b protein in the two models. For instance, 

in the SCR-bc1 map the core of the complex, containing the Qi binding site, was 

resolved to ~3.8 Å whereas in the GSK bound map the Qi site was at ~4.0 Å. The 
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differences in the resolution could be due to different detergents, DDM for GSK and 

LMNG for SCR, being used to solubilise the complex which could have an effect on 

the stability of the transmembrane domain. The Qi site in all three maps was analysed 

to determine whether inhibitor density could be visualised (Figure 3.8).  

 

 

 

Figure 3.8: Analysis of the Qi site in the three different cryo-EM maps. A) The Qi site in the apo-bc1 

cryo-EM map shows minimal density (purple mesh) which does not correspond to any side chains or the 

heme BL group suggesting noise within the map or that natural substrate ubiquinone is bound. B) The 

Qi site in the cryo-EM map of GSK-bc1. The inhibitor density (coloured green) suggests there are two 

modes of inhibitor binding, accommodated by rotation around the oxygen bond. The binding pose shown 

in green agrees with the crystal structure with the trifluoromethoxy group pointing towards Met194. There 

is additional density which suggests the trifluoromethoxy phenyl group could be rotated and point toward 

Asp228 revealing an additional mode of binding (shown in blue). C) The Q i site in the cryo-EM map of 

SCR-bc1, with the inhibitor shown in pink, being located in strong density. The inhibitor is expected to 

make a H-bond contact to His201 and strongly fits the density. For all maps the density is contoured at 

3. 
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In the apo structure there is weak density at the Qi site which could be a result 

of the natural substrate, ubiquinone, being bound as the complex was purified or just 

due to noise in the map in this region (Figure 3.8A). Due to the lower resolution of the 

structure, the side chains for the neighbouring amino acid residues could not be 

unambiguously modelled into the density. For the GSK and SCR inhibitor-bound 

structures, there was clear inhibitor density at the Qi site which does not appear at 

the Qo site indicating that these are selective Qi site inhibitors. The GSK Qi site is 

shown in Figure 3.8B and the SCR Qi site is shown in Figure 3.8C. At 3 contour 

level, the strongest inhibitor density occurred in the SCR-bc1 map where the density 

for the compound was equivalent to the neighbouring side chains. The density 

suggests the ligand can adopt an unambiguous conformation which points out 

towards the surface of the protein with a potential H-bond to Ser35. The quinolone 

head of SCR was placed between residues His201 and Phe220, and the biaryl tail 

further extends into the hydrophobic region of Ile39 and Ala232.  

 

The density in the Qi site for the GSK-bc1 map was strong for the pyridone 

head group of the inhibitor at 3 contour level but was weaker at the tail of the 

molecule. The density also suggested that there could be two different binding poses 

of the compound caused by rotation around the oxygen–carbon bond (Figure 3.8B). 

The different binding poses are discussed in more detail in Section 3.2.7. The Qi sites 

of the two inhibitor-bound cryo-EM structures have been compared, showing a strong 

agreement in the secondary structure of the protein. At 4.1 Å resolution it is difficult 

to detect subtle changes in the positions of the amino-acid side chains which would 

result from inhibitor binding. However, gross changes in the side-chain position can 

be detected; for example, His201 shifts in position between the two maps 

(Figure 3.9). For SCR0911, His201 is well defined and is in a position consistent with 

hydrogen-bond formation with the inhibitor, whereas the density for GSK932121 

suggests that there is no hydrogen-bond interaction with His201 and the density is 

more poorly defined. Comparisons of the Qi site of apo bc1 and inhibitor bound bovine 

bc1 in the cryo-EM structures show that there is no difference in the position of the -

helices which surround the active site, consistent with the observations from crystal 

studies that show no gross structural changes accompany inhibitor binding. 
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Figure 3.9: Comparing the Qi site in the inhibitor-bound cryo-EM maps. The EM structures of SCR-

bc1 (cyan) and GSK-bc1 (gold) overlaid. The SCR inhibitor is coloured in green and the GSK inhibitor in 

magenta. Overlay of the two structures show there is no difference in the secondary structure positions 

in the two maps and only minor differences in the positions of the amino acid residues. The biggest 

difference occurs in His201 and that could form a H-bond to the SCR inhibitor but not the GSK 

compound. 

 

3.2.7 Crystal structure comparisons 

In parallel to the cryo-EM work being carried out, Kangsa Amporndanai in the 

Antonyuk and Hasnain groups at the University of Liverpool also solved the structure 

of SCR0911-bc1 to 3.0 Å by X-ray crystallography. There is also an existing crystal 

structure of cytochrome bc1 with the GSK compound bound which was resolved to 

4.1 Å151. Cytochrome bc1 has not previously been studied using cryo-EM. Therefore, 

to determine whether the absence of the crystal lattice has had an influence on the 

structure of the protein, the cryo-EM and X-ray derived models have been compared. 

In both the X-ray crystallography and cryo-EM structures compared here, Subunit 11 

was not resolved within the maps. It is thought that the subunit was lost during protein 

purification. In existing crystal structures which contain the subunit, the purification 

protocols involved using an ammonium sulphate precipitation compared to the ion 

exchange and gel filtration approach used in this study. Unsurprisingly, the EM 

structures display a high agreement in the overall architecture of the protein in 

comparison to the X-ray structures. This is exemplified when comparing the two SCR 

bound structures which have similar C r.m.s.d. values (Figure 3.10A). There is very 

high agreement between the core proteins and transmembrane domains. However, 
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there are differences in the mobile Rieske protein in the soluble region, where the C 

r.m.s.d. value is greater than 2 Å (Figure 3.10B,C).  

 

 

 

 

Figure 3.10: Global comparison between EM and X-ray derived SCR-bound structures. A) The EM 

and X-ray SCR-bc1 structures have been overlaid and the crystal structure was coloured according to 

the calculated C r.m.s.d. value (low coloured cyan and high maroon). The main difference (r.m.s.d. 

>2 Å) occurs at the Rieske domain (black square) which is known to be mobile during the catalytic cycle. 

B) An overlay of the Rieske domains in the EM (cyan) and X-ray (grey) derived SCR-bc1 structures. C) 

The EM derived map for the SCR-bc1 structure with the Rieske domain fitted shown in the same 

orientation as in (A) and (B).  

 

The lower resolution of the Rieske domain is consistent to the literature where 

there are crystal structures which show the Rieske protein is captured in different 

states in the apo, natural substrate bound and Qo-inhibitor bound forms145,245–247. This 

is due to the Rieske domain being involved in the transfer of electrons from the Qo 

site heme group in cytochrome b to the cytochrome c1 heme. One reason for the 

difference in positions of the Reiske domain between the EM and crystal structures 

might be due to the formation of crystal contacts which are made as the protein 

crystallises. In the cryo-EM structures, the crystal lattice has been removed so there 

is no influence on the position of this domain from the formation of protein crystals. 
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Therefore, the low resolution of this region in the EM structures indicate that the 

domain is flexible and does not adopt a defined state(s). The ability to better resolve 

this domain by crystallographic, means could therefore be explained by the crystal 

packing. Examination of the crystal contacts in COOT show that there are many 

neighbouring protein molecules surrounding the Rieske protein, which lock the 

domain into a particular conformation, thus improving the crystallographic density in 

this region (Figure 3.11). Whereas, in the EM structure, in the absence of a crystal 

lattice, the Rieske protein is not locked into a particular conformation and can reside 

in a more native conformation, resulting in the differences between the two models. 

 

 

 

 

Figure 3.11: Examination of the crystal contacts. The monomer of the crystal structure containing 

the SCR compound is shown in orange. The monomers coloured in blue, yellow and green represent 

the crystal contacts formed in the lattice. The Rieske domain is coloured in pink and shows that it is 

surrounded by crystal contacts thus explaining the differences between the EM and X-ray structures. 
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Analysis of the Qi site in the GSK-bc1 cryo-EM map suggests that the inhibitor 

can bind in two different conformations (Figure 3.12A). Both binding modes have the 

pyridone head placed between heme bH and His201 and have the diaryl tail group 

extending out of the hydrophobic channel away from the heme group. The difference 

in the binding conformations occurs at the ‘tail’ 4-trifluoromethoxyphenyl ring of the 

molecule, as there is rotation around the C-O bond which results in two different 

binding poses. Pyridone binding pose one has the trifluoromethoxy group from the 

second aromatic ring pointing towards Met194. The cryo-EM structure has also 

identified a second pyridone binding pose, which shows the aromatic ring faces the 

opposite direction with the trifluoromethoxy group pointing towards Asp228. In 

comparison, in the X-ray crystal structure only one ligand binding pose is identified. 

An overlay of the EM and X-ray Qi sites for the GSK-bc1 structure is shown in 

Figure 3.12B. The weak density for residue His201 at 3 contour level in the map 

could be accounted for by the residue changing position depending on the binding 

pose of the inhibitor. Classifications around the inhibitor binding site using soft masks 

to distinguish the occupancy and binding pose of the ligands were attempted but were 

ultimately unsuccessful. This could be due to the size of the region which was being 

classified being too small to pull out different inhibitor binding conformations.  

 

Analysis of the Qi site for SCR-bc1 shows that the ligand adopts a very similar 

position in the cryo-EM and X-ray derived models (Figure 3.12B). In both structures, 

it is proposed that the ligand can form hydrogen bonds to His201 and Ser35 on the 

neighbouring helix. The Qi site amino acids adopt similar positions in both structures, 

with an average C r.m.s.d. value of 1.5 Å where there is a clear overlap of the -

helices. There are minor differences in the positions of the amino-acid side chains, 

such as Phe220; however, this could be owing to the difference in the resolutions of 

the two maps (4.1 Å for the EM map and 3.0 Å for the X-ray structure). 

 



 89 

 

 

Figure 3.12: The inhibitor-bound Qi sites derived from X-ray and EM structures. A) An overlay of 

the GSK Qi site in the EM (gold) and X-ray (purple) models. The density in gold corresponds to the EM 

map that shows a difference in the position of His201 compared to the X-ray structure. B) An overlay of 

the SCR EM (cyan) and X-ray (grey) Qi sites. There are no significant differences between the two 

models in either side chain or secondary structure position. 

 

Overall, the direct comparisons between the EM and X-ray derived models for 

GSK and SCR-bound bc1 have highlighted that there are few differences in the 

structures obtained using the two different techniques. This is particularly important 

when analysing the Qi inhibitor-binding site which shows how the compound is 

interacting with the protein as this is the information which is utilised in SBDD 

programs.  

 

 

3.2.8 Determining the structure of bc1 bound to JAG021 

A final bovine bc1 data set was collected as a separate study to SCR and 

GSK-bound bc1 which have been discussed previously. For SCR and GSK-bound 

bc1, the inhibitors were designed to treat malaria. For this new study, an anti-

toxoplasmosis inhibitor, JAG021, which was synthesised by James Gordon in the 

Fishwick group at the University of Leeds, was bound. The compound and binding 

affinities to P. falciparum and bovine bc1 are given in Table 3.4. 
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Table 3.4: The structure and binding affinities of JAG021. 

 

 

 

Grids were prepared using the same conditions (5 mg/mL concentration 

applied to Quantifoil R1.2/1.3 grids) as described in Section 3.2.3, which once again 

gave a monodisperse distribution of particles within the ice (Figure 3.13A). Similar to 

the previous structures, the data were collected on a Titan Krios microscope fitted 

with a Falcon III direct electron detector operating in integrating mode. A total of 5,356 

micrographs were collected during the 72-hour data collection. Full details of the 

microscope parameters are shown in Table 2.1. However, the grid used for data 

collection contained large amounts of crystalline ice so the Fourier transforms for 

each micrograph were examined and the ones which contained a large feature 

corresponding to crystalline ice were manually removed (Figure 3.13B). 

 

 Compound structure 
Plasmodium 

bc1 (IC50) 

Bovine bc1  
(% inhibition) 

0.1 µM 1 µM 

JAG021 

 

40 nM 36.0 ± 4.6 62.8 ± 4.8 

 



 91 

 

 

Figure 3.13: Quality of JAG-bc1 micrographs. A) Example micrographs showing vitreous ice with a 

good particle distribution and a micrograph which contains crystalline ice. The particles are still visible 

yet the ice quality is poor. Scale bars are 20 nm. B) The corresponding Fourier Transforms with and 

without the crystalline ice feature. All of the Fourier transforms were inspected and those which contained 

this feature were removed.  

 

The remaining 2,960 micrographs were processed in RELION2.1 using the 

same approach as described for the other data sets in Section 3.2.4. In total, 439,009 

particles were autopicked and after classification 211,916 particles remained which 

were refined to a global resolution of 3.8 Å. By implementing the particle polishing 

approaches in RELION2.1 the resolution of the map was improved to 3.7 Å. 

RELION3.0 was subsequently released which introduced new per-particle CTF-

refinement and polishing algorithms214. The particle stack which resulted in the 

highest resolution map was re-processed in RELION3.0 to take advantage of these 

features. By conducting three iterative rounds of per-particle CTF refinement and 

particle polishing, including per-particle astigmatism and beam tilt estimation, the 

global resolution of the map was improved to 3.3 Å after postprocessing.  
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Unsurprisingly, the overall architecture of the protein was consistent to what 

has been described previously. The density is consistent with the improved resolution 

of the map. As expected, the -helices and -sheets were well resolved and there 

was clear side chain density. A summary of the data set is shown in Figure 3.14. 

 

 

Figure 3.14: An overview of the JAG-bc1 data set. A) The cryo-EM map of JAG-bc1 which was 

resolved to 3.3 Å and clearly showed all of the secondary structure. B) The FSC curve for the data which 

was calculated using the 0.143 gold standard. C) 2D classes showing a wide variety of orientations 

within the ice. D-F) Example density for the structure showing E) -sheets strands are separated and F) 

side chains are well resolved in the -helices. 
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Analysis of the local resolution maps from both versions of RELION showed 

that the core of the complex was improved from 3.5 Å to 3.1 Å in RELION3.0 which 

highlights the improved quality of map (Figure 3.15). The Rieske domain was once 

again the most poorly resolved region of the map at ~ 5 Å. 

 

 

 

Figure 3.15: JAG-bc1 local resolution comparison. The local resolution maps have been calculated 

in RELION 2.1 and RELION 3.0. The core of the complex was improved to 3.1 Å from 3.5 Å using 

RELION 2.1.  

 

Collaborators at the University of Liverpool in the Antonyuk and Hasnain 

groups, also obtained a crystal structure of bovine bc1 with JAG021 bound to 3.5 Å 

resolution. For the first time, the global average of the cryo-EM structure was higher 

than what has been achieved by using the traditional X-ray crystallography 

approaches. Overlaying the cryo-EM and X-ray models, showed that there were few 

differences in the C position in the majority of the structures with a C r.m.s.d. <2 Å. 

(Figure 3.16). Like before, the only significant changes appeared in the Rieske 

domain which is known to be flexible, whereas the core of the complex showed little 

variation.  
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Figure 3.16: Cryo-EM and X-ray structures for JAG-bc1. A) An overlay of the EM (green) and X-ray 

(gold) structures showing a strong overlay in the overall structure of the protein. B) The EM structure 

coloured by C r.m.s.d. with the Rieske domain in Maroon representing the only large differences.  

 

 Due to the multi-body refinement feature being implemented in RELION3.0, a 

mask was created around both Rieske domains in order to determine whether the 

domain could be trapped into different conformations248. The motion of the Rieske 

domain relative to the main body of bc1 was probed. The results confirmed that the 

Rieske domain is mobile and the two domains appeared to move asymmetrically to 

one another. An overview of this motion is shown in Figure 3.17 and shows that the 

domain can move from side-to-side. However, when the maps obtained were used 

as references for 3D classification with C1 symmetry imposed, the particles could not 

be separated into the different states. This could be due to the size of the Rieske 

domain (34 kDa) and the resulting movement not being large enough for the 

classification to align the particles into the different states.  
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Figure 3.17: Probing the movement of the Rieske domain. An example of one of the components 

produced from multi-body refinement. The first and last component is shown in grey and green 

respectively with the movement highlighted by the red arrow. 

 

The Qi inhibitor binding site has also been analysed showing clear density for 

JAG021 (Figure 3.18A). At the same contour level (3), there is strong density for the 

neighbouring side chain atoms. Similar to the GSK-bc1 map, the density for JAG021 

suggests that the molecule could potentially adopt a second binding conformation 

with rotation around the C-O bond. Although this feature is not as prevalent as in the 

GSK-bc1 structure, the density is strongest for the trifluoromethoxy group to be 

orientated towards Met194. As the extra density is not as strong as in the GSK-bc1 

map, it could be a result of noise being present in the inhibitor binding site and not 

due to a second conformation of the inhibitor. The inhibitor position within the density 

suggests that it could form H-bond contacts from the quinolone head group to His201, 

Asp228 and Ser35. The density for His201 is not as strong as neighbouring amino 

acids which suggests that this residue could change position depending on which 

binding conformation the inhibitor adopts. At the equivalent sigma levels (3), the 

density for the pyridone head group in the JAG-bc1 map was not as strong as in the 

GSK-bc1 map. This could be due to the compound showing higher selectivity to the 

parasite protein and subsequently binding more-weakly to the bovine protein. This is 

exemplified by JAG021 being less active than GSK932121 at both 0.1 M and 1 M 

concentrations when the compounds were tested for activity against the bovine 
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enzyme. This activity data was provided again by Kangsa Amporndanai in the 

Antonyuk and Hasnain groups at the University of Liverpool. For instance, at 0.1 M, 

JAG021 inhibits the activity of the enzyme by 36% compared to 64% for the GSK 

compound (Table 3.2 and 3.4). As the GSK compound shows higher levels of activity 

against the bovine enzyme, it suggests that it binds to the protein with higher affinity 

therefore the occupancy of the ligand could be higher than the JAG compound. This 

could explain why the density for the JAG compound is not as strong as the GSK 

compound when the maps are contoured to the same sigma level, despite the map 

being at a greater resolution. 

 

The Qi site of the JAG021-bound bc1 crystal structure shows that the inhibitor 

only adopts one binding pose, with the trifluoromethoxy group pointing towards 

Met194 (Figure 3.18B). Comparing the cryo-EM and X-ray derived models highlight 

that there are no changes in the secondary structure between the two models, 

although there are minor differences in the side chain positions for a few residues 

such as Met194 and Phe187.  

 

 

 

Figure 3.18: The JAG-bc1 Qi inhibitor binding site. A) The protein is shown in green and the inhibitor 

in purple. The cryo-EM density is shown as a mesh and highlights that the inhibitor density is as strong 

as the neighbouring amino acid residues. B) An overlay of the EM (green) and X-ray (orange) Qi sites. 

There are no differences in the secondary structure of the protein but slight differences in some amino 

acid positions such as Phe187 and Met194. 

 

The structure of bovine bc1 bound to JAG021 was completed as a separate 

study to the GSK and SCR inhibitor bound structures. The resolution attained for JAG-
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bc1 was 3.3 Å which is higher than the 4.1 Å achieved for the previous inhibitor bound 

structures. It is thought that the increase in resolution is due to the developments in 

the image processing software and has not been influenced by the JAG021 

compound. Notably, the introduction of RELION3.0, in particular the per-particle CTF 

refinement and polishing steps, made a big impact on the resolution. The previous 

data sets have not been reprocessed in RELION3.0 due to the raw frames being 

removed after the study was published and other work taking priority but it is expected 

that if the frames were available the resolutions could be improved to sub 4 Å. 

Consistently in all data sets, the EM and X-ray derived models have shown no 

significant differences in the important Qi site and have only differed at the Rieske 

domain which is accounted for by the formation of crystal contacts. In all three cases, 

the inhibitor density was visualised which proves that cryo-EM can be used to probe 

inhibitor binding to bc1. 

 

3.3 Discussion 

Diseases caused by parasite infections represent a great concern to global 

health and new therapeutics are urgently required. Cytochrome bc1 is a validated anti-

parasitic drug target and is at an advanced stage of the drug discovery pipeline. One 

inhibitor, atovaquone, was successfully developed as a medicine to treat malaria 

which binds to the protein at the Qo site. However, as resistance is emerging to this 

treatment new medicines are urgently needed. Current structure-based drug design 

programs are being hindered by a lack of structural information from the parasite 

organism with existing X-ray crystal structures being solved from mammalian 

homologues. Although this provides sufficient levels of structural details and in many 

cases shows how the inhibitor binds to the homologue protein, it does not show how 

the molecule interacts with the target parasite protein. Compounds have been 

developed which bind with high affinity to the parasite protein. However, the 

compounds also show high levels of toxicity to the host organism resulting in them 

not being taken forward to the clinic. Being able to obtain a structure of the parasite 

organism would not only show inhibitor binding to the target protein but it would also 

elucidate structural differences between the host and target species which could be 

utilised in the design of new therapeutics. 

 

Cytochrome bc1 has been extracted from the source organism for many of the 

existing crystal structures. For instance, bc1 can be isolated from bovine hearts 

producing large quantities of material at high concentration (40 mg/mL) which 
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facilitates protein crystallisation. Obtaining equivalent amounts of parasite protein, by 

extracting from the native organism, would be extremely challenging and would 

require significant time and expense due to the size of the parasite organism. 

Therefore, an alternative method of structural determination is needed which will 

enable the resolution to be high enough to see inhibitor binding yet use less protein. 

One approach is to use cryo-EM as it requires micrograms of protein rather than the 

milligrams needed for X-ray crystallography. For this study, after optimisation of the 

cryo-EM grids, inhibitor-bound bc1 grids were prepared at a concentration of 5 mg/mL 

which gave reproducibly consistent ice with a good distribution of protein within the 

holes. For each inhibitor, four cryo-EM grids were made resulting in 12L of sample 

being used, equating to 60 g of protein. After the crystallisation conditions had also 

been optimised, one 24-well plate containing three 2 L droplets in each well was 

prepared for each inhibitor sample. This required 144 L of 40 mg/mL sample, 

resulting in 5.7 mg of protein being used.  Cryo-EM therefore used ~100 times less 

protein than X-ray crystallography for each inhibitor which was studied.  

 

By using bovine bc1, work in this chapter has shown that cryo-EM is an 

amenable technique to determine high resolution structures of the system thereby 

representing a viable alternative to X-ray crystallography. This is exemplified by four 

structures of bovine bc1 being determined to similar resolutions attained using X-ray 

crystallography. The overall architecture of the protein is similar to crystal structures 

of the complex as there is density for all but one of the different subunits (which was 

lost during the purification step). The only differences between the X-ray and EM 

derived structures occurs at the Rieske domain which is known to be mobile during 

the catalytic cycle and is locked into one particular conformation upon formation of 

the crystal lattice. An advantage of using cryo-EM to determine the structure is that 

the need for crystallisation is removed therefore the protein is not locked into any 

particular conformation due to crystal packing thus the structure can be determined 

in a more-native state. The poor resolution also suggests the domain is continuously 

moving and does not adopt particular conformations as these could not be trapped 

during 3D classification attempts.  

 

Furthermore, the resolution achieved using cryo-EM has enabled inhibitor 

density at the Qi site to be visualised in all three of the inhibitor-bound maps. 

Interestingly, in GSK-bc1 the inhibitor density revealed two different binding poses 

which had previously not been identified by X-ray crystallography. The alternative 
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binding pose was not an artefact of the imposed C2 symmetry as the inhibitor does 

not sit on the symmetry axis and the density is the same in the C1 map. As the 

additional binding pose was not initially identified using crystallography, cryo-EM 

could provide unique insights into alternative modes of binding and the occupancy of 

inhibitors. Moreover, the resolution obtained for JAG-bc1 achieved a resolution of 

3.3 Å which was higher than the X-ray crystallography structure at 3.5 Å. At the 

inhibitor binding site, the local resolution was 3.1 Å. The density for the JAG021 

compound was the weakest in all three of the maps as this compound is more potent 

against the parasite enzyme and therefore does not bind to the bovine model system 

as strongly. This is highlighted by JAG021 inhibiting the bovine enzyme less than 

GSK932121 when tested at the same concentrations (at 0.1 M, JAG021 inhibits the 

activity by 36% compared to 64% for the GSK compound). JAG021 and GSK932121 

both contain the same pyridone core and the EM density suggests that they could 

adopt two different binding conformations at the Qi site. Therefore, obtaining structural 

details showing how these compounds interact with the parasite protein are vital to 

future SBDD programs.  

 

The structural information gleaned from cryo-EM is equivalent to that provided 

from the X-ray crystal structures for the bovine enzyme. Therefore, if purified parasite 

bc1 from either P. falciparum or T. gondii can be obtained, cryo-EM is an amenable 

technique to study the system. Whether the parasite protein behaves in the same 

way as the bovine test sample, not only on an EM grid but also during the image 

processing steps is yet to be determined. However, the work in this Chapter has 

shown that cryo-EM provides a viable alternative to X-ray crystallography to study the 

system and provide the essential information on how the compounds bind to the 

target protein. Future inhibitor bound studies of bc1 will subsequently be driven using 

an EM approach rather than X-ray crystallography which will be underpinned by the 

work described here. This structural information will ultimately be utilised in future 

SBDD programs leading to the design of a new generation of inhibitors which could 

be used to treat the devastating parasitic diseases.  
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4 The use of virtual screening to identify V-ATPase 

inhibitors 

 

4.1 Introduction 

V-ATPase is a member of the rotary family of enzymes and has been implicated 

in a number of diseases such as cancer and osteoporosis. At present, there are no 

clinically relevant therapeutic agents which target V-ATPase. This could be due to the 

enzyme having many roles within the cell which include maintaining the pH in cellular 

organelles, protein processing and degradation, and the transport of small molecules 

and ions (see Section 1.6.1). This means that designing a therapeutic to knock-out 

just one of these functions is extremely challenging. However, the protein does exist 

in different isoforms within the body; with the several isoforms being specific to certain 

tissue types. The paucity of structural information on the different isoforms has 

hindered the design of specific isoform inhibitors. There are compounds which are 

highly potent and selective inhibitors to V-ATPase but none of these compounds are 

used in the clinic. Moreover, many of the inhibitors are macrocyclic rings which means 

that they are expensive to buy and difficult to synthesise which makes it challenging 

to study the system in more detail.  

 

Therefore, the aim of this part of the project was to design and synthesise novel 

inhibitors against yeast V-ATPase using a structure-based drug design approach. 

The inhibitors would act as chemical tools to probe the system in more detail and 

would not be used to treat any disease at this stage. The initial ‘hit’ compounds could 

then be modified, synthesised and tested for biological activity with the aim of making 

a potent inhibitor which was not only more synthetically tractable but also easier to 

handle than the current macrocyclic V-ATPase inhibitors.  

 

4.2 Results  

4.2.1 Sequence similarity between different species 

Compounds were initially designed against the yeast V-ATPase, which acts a 

model system. Selectivity for certain species can be engineered into the inhibitor 

scaffold based on sequence differences within the binding pocket. The sequence 

conservation was analysed for the full complex using consurf249 (Figure 4.1A). Highly 

conserved residues are often important for function or maintaining protein stability 

and can present a lower mutagenesis propensity, therefore designing selective 
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compounds can be challenging. Analysis of the V-ATPase conservation revealed that 

the stators (subunits E and G), have the highest sequence variation and 

unsurprisingly, the ATP binding and catalytic site within the AB domain were highly 

conserved. Closer examination of the AB domain revealed there are three potential 

inhibitor binding sites (Figure 4.1B). The first site was the ATP binding site, whereby 

a compound would act as a competitive inhibitor to ATP. Designing selective 

inhibitors at this site would present a significant challenge but if successful locking 

the V-ATPase into one state could reduce the inherent flexibility of the complex thus 

enabling the resolution of the structure to improve. The other two sites (‘top’ and 

‘bottom’) could act as allosteric binding sites and are positioned at the top and bottom 

of the channel between subunits A and B of the V1 domain (Figure 4.1B). If inhibitors 

bind at these sites, it would theoretically prevent the subunits from closing thereby 

disrupting the catalytic cycle of the complex. 

 

 

 

Figure 4.1: A consurf model of the V-ATPase. A) Residues which are coloured in blue are highly 

conserved whereas residues in red indicate variation between species. B) A consurf model of the AB 

open subunit. The ATP binding site is circled in red and is highly conserved. The green circle indicates 

the ‘top’ allosteric binding site and the black circle shows the ‘bottom’ allosteric inhibitor binding site. 
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4.2.2 Identification of inhibitor binding sites 

In October 2016, Rubinstein et al published a cryo-EM structure of the yeast 

V0 domain to 3.9 Å resolution162. Analysis of the structure revealed how the c-ring 

interacts with subunit a, and suggested a mechanism for proton translocation across 

the membrane. They were able to show that at the c-ring subunit-a interface, there is 

a cytoplasmic half channel which enables entry of the protons to the c-ring thus 

allowing them to be pumped across the membrane (Figure 4.2). This half channel 

exists as a cavity which is 15 Å by 20 Å in length and is expected to be filled with 

water molecules162. This site could represent a potential inhibitor binding site as 

inhibitor binding would not only prevent rotation of the c-ring but would also block 

protons from entering the half channel and being pumped across the membrane. 

Therefore, a vHTS screen was performed at this site (discussed in Section 4.2.3.). 

 

 

 

Figure 4.2: The 3.9 Å structure of the membrane embedded V0 domain. The alternating subunits of 

the c-ring are shown in different shades of grey. The a-subunit is shown in purple, the e subunit is shown 

in dark blue and the d subunit is shown in cyan. The box highlights the cytoplasmic half channel which 

could represent an inhibitor binding site. 

 

There are eight known inhibitors of the V-ATPase complex which are thought 

to bind to the c-ring and through mutagenesis the residues involved in binding 

bafilomycin, concanamycin and archazolid have been identified168. Bafilomycin 

inhibits S. cerevisiae, N. crassa and M. sexta V-ATPase168. The 3.9 Å map of V0, 
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Phyre2250 was used to thread the N. crassa and M. sexta sequences onto S. 

cerevisiae. The amino acid residues identified in bafilomycin binding are conserved 

between all three species, with the main variations at the top and bottom loop regions 

of the c-ring implying that these residues are not integral to the function of the 

complex. Utilising this information, bafilomycin was docked to S. cerevisiae to predict 

its mode of binding. AutoDock40 produced the most viable docking pose which 

resulted in bafilomycin making three H-bonds to the receptor. The chembridge 

diversity library, consisting of 100,000 compounds, were overlaid using rapid overlay 

of chemical screening (ROCs) software251 which resulted in five compounds being 

selected for testing which were predicted to mimic the proposed bafilomycin binding 

pose.  

 

4.2.3 Virtual screens against the AB interface and V0 site 

In order to identify novel V-ATPase modulators, a virtual screen approach was 

performed on the identified potential binding pockets. These binding sites consisted 

of the ATP binding site, the allosteric ‘top’ and ‘bottom’ sites and the V0 cytoplasmic 

half channels which were described in Sections 4.2.1 and 4.2.2, respectively. The 

cryo-EM structure of the yeast V-ATPase in state one was used to dock the 

compounds against the AB subunit whereas the cryo-EM structure of the V0 domain 

was used to perform the c-ring docking. State one was chosen because this contained 

the highest proportion of particles in the cryo-EM data set so was assumed to be the 

most physiologically prevalent (see Section 1.6.2). vHTS screens at the three AB 

binding sites and the c-ring-subunit a interface were carried out.  

 

All screens were conducted using the Maestro GLIDE docking software38 with 

the Chembridge diversity library. Initially, all 100,000 compounds were docked in a 

high-throughput (HTVS) mode. The top scoring 10,000 compounds were 

subsequently re-screened using the higher precision (GLIDE XP) mode and the top 

100 compounds were manually inspected to look for specific interactions to the target 

protein. In total, 15 compounds which targeted the AB domain and 10 compounds 

which targeted the V0 domain were selected for testing. Example compounds and the 

predicted interactions to the binding site are displayed in Table 4.1. The compounds 

selected from the ATP binding site had the highest average docking score (~ -8.5), 

whereas the compounds predicted to bind to the allosteric ‘top’ and ‘bottom’ sites had 

scores of approximately -7 which suggests that the compounds are more likely to bind 
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at the ATP binding site than the allosteric inhibitor binding sites. Docking scores which 

are approximately -9 and -6 correspond to predicted binding affinities in the 

nanomolar and micromolar range, respectively. Therefore, scores in the range of -7 

to -8.5 are likely to be hit compounds although due to inaccuracies with the docking 

this rarely correlates to actual binding affinities. 

 

Table 4.1: Example compounds and the predicted interactions to the three sites which target 

the AB subunits. 

 

Structure 
Binding 

site 

Docking 

Score 
Interactions 

 

ATP -8.198 

 

 

‘Top’ -7.416 

 

 

‘Bottom’ -7.746 
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Initially the compounds were tested in a yeast cell-based assay (assays 

performed by an MBiol student, Jade Fowler). Yeast growth was measured in the 

absence and presence of inhibitors at 250 M and 500 M concentrations every hour 

to monitor ‘hit’ molecules by reducing or stagnating growth. The assay was performed 

at pH 7.5 and 5.5 as yeast are less sensitive at pH 7.5 to V-ATPase inhibitors which 

provided a control against general cell toxicity. All 25 compounds identified using 

vHTS screens and the five compounds predicted to mimic the bafilomycin binding 

pose were assayed. One ‘hit’ compound was identified which was predicted to bind 

to the V0 c-ring-subunit a interface. The structure of the hit, and its predicted 

interaction to the protein are shown in Figure 4.3. The molecule has a carboxyl group 

which is predicted to form a salt bridge to Arg153. The hydrophobic ‘tail’ of the 

molecule fills a hydrophobic pocket within the complex and could form -stacking 

interactions to Trp737 and Phe583. Closer examination of the binding site revealed 

that the compound could be modified to improve the binding affinity of the compound. 

For instance, small hydrophobic groups such as halogens or methyls could be 

inserted onto the aromatic rings in order to extend the molecule further into the 

hydrophobic cavity. Also, there are two residues, Ile116 and Ser122, which could be 

utilised to form extra H-bond interactions. 

 

 

 

Figure 4.3: The structure and interactions of the hit compound. A) How the compound binds at the 

c-ring (grey) – subunit a (purple) interface. B) A schematic of the interactions the compound makes to 

the complex. It is predicted to form an ion-ion interaction to Arg153 and to form hydrophobic interactions 

to Phe583 and Trp737. The backbone carbonyl groups from residues shown in blue (Ile116 and Ser122) 

could indicate potential H-bond contacts. 
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However, the compound was shown to be highly toxic against HEK cells in a 

toxicity assay, therefore, it was not taken forward for further development. The 

structure of the compound resembles that of a typical detergent as it has the polar 

‘head’ group and hydrophobic ‘tail’ so it could act by disrupting the cell membrane.  

 

The low success rate of the virtual screens could be due to the modest resolution 

EM structures which were used to design the compounds. At 6.8 Å, the secondary 

structure information for the protein can clearly be seen however, there is little 

accurate side chain density. Therefore, the shape of the inhibitor binding sites may 

be different to what was used for the docking. Furthermore, vHTS screens 

traditionally have a low hit rate. Only 25 compounds identified through the vHTS 

screens were tested for activity, therefore there was a low probability of finding a hit. 

Furthermore, the five compounds which were predicted to mimic the bafilomycin 

binding pose had no effect upon the rate of yeast growth which suggested that they 

did not have an inhibitory effect on V-ATPase.  Moreover, the activity of the compound 

was determined using a yeast cell-based assay therefore it was difficult to tell whether 

the compounds were having the desired effect against the target protein. These 

problems could be overcome by using a higher resolution structure for docking (ie a 

crystal structure), selecting a larger number of compounds for testing and testing 

specifically against the V-ATPase enzyme rather than using a cell-based assay. 

 

4.2.4 Virtual screens using V1 crystal site 

As described in Section 4.2.3, the initial vHTS screens did not identify any hit 

compounds therefore a new approach was needed. To increase the chances of 

finding a hit compound, additional vHTS screens were conducted using a 3.4 Å 

resolution crystal structure of the E. hirae V1 domain252.  This crystal structure shows 

the three different catalytic states of the AB domain (empty, loose and tight), two of 

which have ATP bound allowing the mode of ATP binding to be identified. The vHTS 

screens focused on finding an inhibitor which would act as a competitive inhibitor to 

ATP. vHTS was conducted on all three sites to identify compounds which would bind 

to either one or multiple ATP binding sites. The activity of the compounds were tested 

against yeast therefore the sequence similarity between E. hirae and S. cerevisiae 

was analysed. There was a 75% sequence identity around the ATP binding site with 

key residues involved in binding ATP, including Lys238, Arg262 and Phe425, 

conserved in both species (Figure 4.4). 



 108 

 

 

Figure 4.4: The sequence conservation of the ATP binding site between E. hirae and S. cerevisiae. 

ATP is shown in yellow. Those residues coloured in blue are conserved whereas those coloured in pink 

are not conserved. The black lines indicate H-bonds which the ATP makes to the enzyme.  

 

The AB domains at all three catalytic sites were overlaid in UCSF Chimera236 

and coloured by C r.m.s.d. values to look for differences in the ATP binding sites. 

For the tight and loose ATP binding sites, there is very little variation in the position 

of the amino acid resides. The only significant difference occurs at the two outer 

helices in chain A (Figure 4.5A,B). However, when the tight and empty site are 

compared, there are significant changes around the ATP binding site suggesting ATP 

no longer fits inside the cavity (Figure 4.5C,D).  
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Figure 4.5: A comparison of the ATP binding site in the empty, loose and tight conformations. A) 

The ATP binding site (black circle) in the tight and loose conformations have been overlaid and coloured 

according to C r.m.s.d. value. The only difference occurs in the outer helix which changes position in 

the tight and loose conformations. B) An overlay of the ATP binding site between the tight (cyan) and 

loose (orange) states. There is little change in the positions of the amino acid residues which surround 

the ATP molecule (yellow). C) A comparison of the tight and empty ATP binding sites. There are large 

differences in subunit a as the domain adopts the two different conformations. D) An overlay of the tight 

(cyan) and empty (pink) ATP binding sites highlighting that there is little overlap in the amino acid 

residues and ATP (yellow) no longer fits into the binding site. 

 

Virtual screening at all three sites was conducted in GLIDE using the 

Chembridge diversity library. Using the same approach described above 

(Section 4.2.3), 44 of the highest scoring compounds were chosen for testing. The 

docking scores of the compounds at the ATP binding site were high (~ -14) and 

comparable to that of ATP docked into the loose and tight sites resulting in scores of 
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-13.658 and -13.807, respectively. Interestingly, despite the high similarity in the 

position of the amino acids within the two ATP binding sites, only seven out of the top 

50 compounds were predicted to bind to both sites. Figure 4.6 exemplifies the 

interactions which the compounds are predicted to form at all three of the inhibitor 

binding sites. 

 

 

Figure 4.6: Example compounds selected from the vHTS screens against the crystal structure. 

A) A compound predicted to bind to both the loose and tight ATP binding sites with scores of -13.542 

and -14.164, respectively. The compound could make an ion-ion interaction to Lys238 and a π-stack 

with Phe425. B) A compound docked into the loose ATP binding site (docking score -13.236) forming 

an ion-ion interaction with lys 238. C) A compound docked into the tight ATP binding site (docking score 

-15.168) which forms hydrophobic interactions to Phe506 and Phe425. D) A compound docked into the 

empty site with a score of -9.662. It can form ion-ion interactions to Asp329, Glu261 and Glu265. 

 

The 44 compounds identified were tested against yeast vacuolar membranes in 

an ammonium molybdate assay which measures the amount of phosphate released 

as ATP is hydrolysed. The results from the assay will be discussed in Section 4.2.5. 
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4.2.5 Screening vHTS compounds using membrane assays 

The 44 compounds identified as described above, as well as the initial 22 

compounds identified through vHTS screens were tested for activity. The compounds 

were predicted to bind to seven sites; the AB open interface from the EM map 

encompassing the ATP-binding, ‘top’ and ‘bottom’ allosteric sites (Section 4.2.1), the 

V0 subunit a/c-ring interface (Section 4.2.3) and the X-ray derived V1 structure 

showing the ATP-binding site in the empty, loose and tight conformations (Section 

4.2.4). The compounds were tested against the vacuolar membranes which were 

obtained as described in Methods Section 2.3.3. The compound activity at 1 mM and 

0.5 mM was measured to see if the compound had any effect on ATP turnover and if 

so whether there was a dose-dependent response. The activity of the compound was 

calculated as a percentage of the activity of the protein when there was no inhibitor 

present. Therefore, a high level of inhibition would correlate to the protein having a 

low percentage activity. The results from the initial assays are shown in Figure 4.7 

and are coloured by predicted binding site.  

 

 

 

Figure 4.7: The activity of the vHTS compounds. The results of the membrane assays from the 66 

compounds identified through virtual screening. The activity of the compound at 1 mM is plotted against 

the activity of the compound at 0.5 mM. The colours indicate the binding site which they were designed 

against. The box highlights the 17 hit compounds which were predominantly designed from virtual 

screens using the ATP binding site in the crystal structure. 
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It was decided that for the assaying, a ‘hit’ compound would be one that 

reduced the activity of the protein to <70% at 1 mM and <80% at 0.5 mM. Out of the 

66 compounds tested, 17 compounds (25%) were hits. Unsurprisingly, the majority of 

the hit compounds (76%) were designed against the V1 crystal structure where the 

higher resolution allowed for more accurate side chain placement. There were more 

compounds predicted to bind in the loose (4) and tight (6) sites than those predicted 

to bind at the empty site where only one compound was classified as a hit. This could 

be due to the empty site having a more open conformation to facilitate ATP binding 

therefore making it more difficult for small molecules to bind. Moreover, three of the 

hit compounds (18%) targeted the V0 subunit a/c-ring interface which could again be 

influenced by the high-resolution structure (3.9 Å) used to perform the docking. There 

was only one hit compound found which was designed using the full complex EM 

map. Moreover, another reason for not identifying any hit compounds at the ‘top’ and 

‘bottom’ allosteric sites is that they could be unsuitable for accommodating ligands or 

if the compounds do bind, they might not interfere with the function of the complex. 

The percentage inhibition of the protein in the presence of the hit compounds was 

calculated and the results are summarised in Figure 4.8.  

 

 

 

Figure 4.8: The assay results for the hit compounds. The percentage inhibition of the 17 hit 

compounds at 1 mM (dark blue) and 0.5 mM (light blue) concentrations. The circles indicate the binding 

site which the compounds were docked against. 12 out of the 17 compounds show higher levels of 

inhibition at 1 mM compared to 0.5 mM indicating a dose-dependent response. 
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The positive control in all assays was 100 M DCCD (IC50: 32 M) as this 

inhibits V-ATPase and is cheaper and easier to handle than other V-ATPase 

inhibitors, such as bafilomycin and concanamycin where the IC50 values are both 

~10 nM. However, a disadvantage of using DCCD is that it does not fully inhibit the 

complex so there will always be background levels of activity. The results indicate 

that V-50 and V-18 were strong inhibitors at both concentrations however both 

compounds were highly coloured and interfered with the absorbance readout in the 

assay and were subsequently not taken forward. The structures of all of the hit 

compounds are shown in Figure 4.10. 

 

The majority of the remaining compounds indicated a dose response where 

the amount of phosphate released over the 30-minute timescale was reduced when 

the compound was at 1 mM concentration compared to 0.5 mM. Therefore, the dose 

dependent response was probed further by testing the compounds for activity at 

seven different concentrations, varying between 20 mM and 250 M. It is worth 

noting, that this assay was performed with only two technical repeats due to there 

being insufficient amounts of compound available so the error bars represent the 

standard deviation between two technical repeats. Due to the limited amounts of 

compound available the assay could not be repeated so it was an N=1 experiment. 

Therefore, accurate IC50 values were not calculated and only the general trend was 

observed. The results from the assay are showed in Figure 4.9. 
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Figure 4.9: Determining a dose dependent response for the hit compounds. The 15 hits were tested 

for activity at 7 different concentrations to establish whether the inhibitor reduced phosphate release in 

a dose dependent manner. The majority of the compounds show a strong dose dependent response 

with some of the compounds inhibiting V-ATPase at a higher level than the DCCD control at high 

concentrations. 

 

The results indicated some levels of a dose dependent-response for 9 out of 

the 15 compounds (60%). With V-5, V-11, V-23, V-26, V-28 and V-34 not showing a 

clear dose dependent relationship. For V-5, the compound precipitated out of the 

assay buffer at the high concentrations (>5 mM). V-23 and V-28 showed high levels 

of inhibition at almost all of the concentrations tested and V-24, V-25, V-35, V-38, V-

49 and V-60 all showed a strong dose dependent relationship. However, V-25 was 

the ‘hit’ compound which was previously identified as an inhibitor at the V0 subunit 

a/c-ring interface. As described earlier in Section 4.2.3, this compound was shown to 

be highly toxic against HEK cells and was not taken any further.  The structures of all 

of the hit compounds were analysed to see if there were any similarities in the 

structures of the hits at the site at which they were predicted to bind. The structures 

of the hit compounds are shown in Figure 4.10. 
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Figure 4.10: The chemical structure of the hit compounds. The structures of the hits, grouped by 

predicted binding site, are shown. Structures which contain PAIN-like motifs are highlighted in red. All 

compounds predicted to bind at the ATP binding site which were docked using the crystal structure 

contain a carboxylic acid implying that this is key to binding. 

 

The structures were first analysed to identify any pan assay interference 

(PAIN) motifs which could have affected the assay results if the compounds were 

frequent hitters253. In Figure 4.10, the PAIN motifs are coloured in red in the affected 

compounds. V-23 which showed the highest activity in the assays so far contains one 

such motif which could be influencing the assay results. The compound contains a 

hydroxyl group which is in the para position to a sulphonamide and can therefore act 

as a Michael acceptor resulting in promiscuous binding to other targets. Moreover, V-

24 and V-16 also contained some PAIN motifs which could have affected the results 

from the assay. To determine whether the compounds were acting upon the V-
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ATPase and were not general ‘frequent hitters’ the compounds were also tested 

against the purified V-ATPase enzyme (Section 4.2.7). Moreover, the compounds 

could be screened against other proteins, in the same assay setup, which the 

compounds are not predicted to bind to. If the compounds show signs of activity then 

it would be likely that they are PAINs and are promiscuous compounds.  

 

It was noticed that all compounds predicted to bind to the ATP binding site in 

either the loose or tight conformations contained a carboxylic acid ‘head’ group at one 

end of the molecule which is unsurprising as this carboxylate is predicted to mimic 

the phosphate group in ATP. Moreover, the opposite ‘tail’ end of the molecules are 

generally hydrophobic and contain aromatic rings which could potentially mimic the 

-stacking interactions which ATP forms with the protein. Due to these structural 

features being shared between hit compounds predicted to bind at an ATP binding 

site, a general common pharmacophore has been established. Interestingly, V-11 

was predicted to bind to the empty site and did not have this carboxylate group.  

 

To further investigate and develop the hit compounds, an ‘SAR-by-inventory’ 

approach was taken to allow for structurally similar commercially available 

compounds to be purchased for testing. This approach allowed for derivatives of all 

of the hit compounds to be quickly screened thus identifying the best scaffold to be 

taken forward. This approach involved searching the Chembridge commercial 

database to find analogue compounds to the current hits which had a 2D and 3D 

similarity score greater than 80% to the original hit compound. There were variable 

numbers of analogues available for the hit compounds. For instance, V-38 had ~90 

analogue compounds but V-11, V-23, V-49 and V-60 had no analogues available. 

The analogue compounds were subsequently docked to the appropriate binding site 

using GLIDE and the docking score was used to select the analogue compounds for 

testing. Both compounds which were predicted to bind and compounds which should 

not bind were selected for testing. This enabled a crude SAR of the hits to be 

conducted. This is exemplified for V-38 where eleven analogue compounds were 

selected for testing; the structures of which are shown in Figure 4.12B. Three of these 

compounds did not contain the carboxyl group so if the carboxyl group was essential 

for binding as the docking predicted, then the activity of these compounds should be 

reduced relative to V-38. For the other eight analogues, compounds were selected 

based upon the predicted binding score and they generally had different substituents 

on the aromatic and the cyclohexyl ring. The same approach was taken for V-13, V-

16, V-24 and V-35 resulting in 22 compounds being purchased for testing. 
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4.2.6 Determining the activity of the analogue compounds  

Following the ‘SAR-by-inventory’ approach, 35 compounds including the 12 

original hits and the 22 analogue compounds, were re-purchased and tested for 

activity against the vacuolar membranes. The activity was determined at the high 

concentrations of 1 mM and 0.5 mM to determine whether there was any effect of the 

compound on the activity of the complex and the results from the assays are 

displayed in Figure 4.11. The results are shown as a scatter graph with the 

percentage activity of the protein at 1 mM plotted against the percentage activity at 

0.5 mM relative to when there was no inhibitor present. The compounds have been 

coloured according to the structure of the compound with the original hit compound 

shown as a diamond and the analogues for that compound displayed in the same 

colour as circles. 

 

 

 

Figure 4.11: The activities of the analogue compounds at 1 mM and 0.5 mM. The compounds are 

coloured based upon the scaffold of the compound. The original hits are shown as diamonds and any 

analogues for that compound are shown in the same colour as circles. The results show that V-38 and 

the analogues (pale blue) are very effective at reducing phosphate release.  

 

The results suggest that V-38 and the associated analogues are highly active 

against the vacuolar membranes with eight analogues reducing the activity of the 

protein to <50% at 1 mM. Moreover, V-23 still has the highest activity at both 

concentrations. The activity of some of the original hit compounds was reduced 

compared to when they were first tested. For instance, if the same criteria of defining 
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a hit compound is used (<70% protein activity at 1 mM and <80% at 0.5 mM 

concentrations) then only four of the twelve compounds would be classified as being 

hits. This could be due to the compounds degrading over time and subsequently 

losing affinity or due to different batches of membranes being used which could have 

different levels of background ATP-hydrolysing activity subsequently affecting the 

results. Due to the PAIN motifs present in V-23 and V-16, and the fact that all of the 

analogue compounds had high levels of activity, the V-38 scaffold was probed in more 

detail. Eleven analogue compounds based upon the V-38 scaffold were purchased 

and tested for activity against the membrane. The assay results against the vacuolar 

membranes and the structures of all analogue compounds are shown in Figure 4.12. 
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Figure 4.12: The activity and structures of V-38 analogues. A) The activity of the analogue 

compounds. The dark blue bars indicate the percentage inhibition at 1 mM concentrations whereas the 

light blue bars show the percentage inhibition at 0.5 mM. For some of the compounds the percentage 

inhibition was higher than the DCCD control suggesting the compounds are more effective than DCCD. 

B) The structures of the analogue compounds. All of the compounds contain the same 

tetrahydrobenzothiophene core with three of the compounds (V-38A1, V-38A6 and V-38A11) not 

containing the carboxyl group which is expected to be important for binding. These compounds have a 

weaker effect on membrane activity suggesting that those without the carboxyl group are not as effective. 
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Three of the compounds, V-38A1, V-38A6 and V-38A11 do not contain the 

carboxyl group and were therefore not predicted to bind to the complex. The assay 

results confirm that these compounds do not inhibit the complex as much as the 

compounds containing the carboxyl group. Therefore, they have a lower percentage 

inhibition in comparison to the original V-38 hit compound. This suggests the 

carboxylate group is important for binding which would indicate that the compound is 

binding at an ATP binding site where it could mimic the phosphate group in ATP which 

in turn has helped to validate the predicted binding pose, generated using GLIDE.  

 

The other eight analogue compounds which do contain the carboxyl group 

were still able to inhibit V-ATPase with similar or higher percentage inhibitions than 

the original V-38 hit compound. Furthermore, for five of the compounds the inhibitory 

effect was greater than the 100 M DCCD control. The results also show that a range 

of hydrophobic substituents can be tolerated on the phenyl group in all of the ortho, 

meta and para positions around the ring. The eight analogues which had an effect on 

membrane activity were tested at six concentrations ranging between 2 mM and 

0.1 mM to establish whether there was a dose response. The assay was performed 

as an N=1 experiment due to there being insufficient amounts of compounds to repeat 

the assay. Therefore, the general trend of how the percentage inhibition varied at the 

different concentrations was observed and IC50 values were not calculated. The 

results from the assay are shown in Figure 4.13. 

 

 

 

Figure 4.13: The dose-dependent response for V-38 and the analogue compounds. For all of the 

compounds, as the concentration of inhibitor was increased, the percentage inhibition was also 

increased. This highlights the compounds are effective in a dose dependent manner. 
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The results show that all of the analogues display a strong dose response with 

V-38A5 having the highest percentage inhibition at 500M, 250 M and 100 M 

concentrations. Moreover, the approximate IC50’s of the compounds could be 

estimated to be in the mid-micromolar range. However, for more accurate 

measurements, the IC50 values should be calculated against the purified enzyme 

where the background activity in the assay would be reduced. Also, the compounds 

would need to be tested in triplicate to allow accurate and reliable readings to be 

obtained.  

 

V-38 and the analogue compounds contain a tetrahydrobenzothiophene core 

and are predicted to bind at an ATP binding site. Literature searches suggest that 

compounds containing the benzothiophene core can act as kinase inhibitors therefore 

there could be problems with toxicity if the compounds do not show high levels of 

selectivity toward V-ATPase254,255. To determine whether the hit compounds could 

have problems with off-target binding the compounds were tested for activity against 

the Aurora A kinase which catalyses the hydrolysis of ATP and was readily available 

in the department. Moreover, all of the hit compounds have also been added to HEK 

cells to determine whether they are toxic.  

 

4.2.7 Testing the compounds for activity against purified V-ATPase 

To overcome potential problems with screening against the vacuolar 

membranes such as the compounds showing off-target effects, the hit compounds 

and a selected number of analogue compounds were tested for activity against the 

purified protein. The purification of the protein is described in Chapter 6. The 

compounds were again tested at 1 mM and 0.5 mM concentrations and ~10 g of 

protein was used per well. The results from the assay are shown in Figure 4.14. 
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Figure 4.14: The percentage inhibition of the hit compounds against purified V-ATPase. The hit 

compounds were tested at 1 mM (dark blue) and 0.5 mM (light blue) concentrations and the percentage 

inhibition of the protein compared to when there was no inhibitor present was calculated. The results 

show that V-38 and the analogues have the biggest effect on inhibiting the protein. Error bars represent 

standard deviation. 

 

The results show that V-38 and the analogue compounds have the biggest 

effect on the amount of phosphate released by the enzyme; percentage inhibition 

~70% at 1 mM concentration. Moreover, V-38A6, which lacks the carboxyl group, did 

not have a large inhibitory effect on the activity of the protein compared to the other 

V-38 analogues. This again re-enforces how important the carboxyl group might be 

for binding and inhibiting the complex. In this assay both DCCD and concanamycin 

were used as positive controls at 100 M and 200 nM, respectively. Whilst they do 

reduce the activity of the protein it is not as high as expected. For instance, 

concanamycin has an IC50 of ~10 nM so at 200 nM concentration it would be 

expected to completely reduce the activity of V-ATPase. One reason for this not being 

the case is that it could have degraded during storage as the compound is unstable. 

However, it could also indicate that the quality of the protein preparation needs to be 

improved if there are still background levels of ATP hydrolysis. The assay suggests 

that the compounds are acting upon the V-ATPase complex which means that the 

assays which used the vacuolar membranes provided a good indication on the 

compound’s activity against the V-ATPase. IC50 values were not obtained for the 
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analogue compounds due to there being insufficient quantities of both protein and 

compound.  

 

4.2.8 Determining the off-target effects against Aurora A kinase 

As the majority of the hit compounds were designed against the ATP-binding 

site, there was a risk that the compounds would display high levels of off-target 

activity. To test whether the hit compounds are general ATP-binders, they have been 

tested in the ammonium molybdate assay against the Aurora A kinase which was 

kindly supplied by the Bayliss group at the University of Leeds.  The results from the 

assay are shown in Figure 4.15. 

 

 

 

Figure 4.15: Determining whether the compounds have any effect on Aurora A kinase activity. 

The hit and analogue compounds were tested against Aurora A kinase at 1 mM concentration. The 

results show that only V-38A2 and V-38A4 reduce activity to <80%. 

  

For the assays, 10 g of Aurora A kinase was used and the compounds were 

tested at 1 mM concentration to determine whether there was any effect on the activity 

of the protein. The results show that the majority of compounds do not inhibit Aurora 

A kinase suggesting the compounds could show some levels of selectivity towards 

the ATP binding site of the V-ATPase. However, there are two compounds (V-38A2 

and V-38A4) which do reduce the activity of the protein to ~50%. These two 
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compounds are two of the V-38 analogues which could indicate problems with the 

selectivity of the scaffold. V-38A2 was shown to be active against Aurora A with the 

activity of the kinase reduced to ~50%. Therefore, the compound was docked into the 

ATP binding site of Aurora A using GLIDE in standard precision (SP) mode which 

produced a docking score of ~-5. ATP binds to the protein by forming five H-bonds to 

the protein and two of the carbonyls in the phosphate group are coordinated to the 

magnesium ion. The predicted binding pose of V-38A2 suggests only one H-bond is 

formed between the compound and the protein to Lys162, which also interacts with 

the phosphate group in ATP. Moreover, there is a good overlap between the benzyl 

ring in V-38A2 and the adenine ring in ATP showing that the two compounds can 

both form the same hydrophobic interactions. As V-38A2 appears to mimic the 

binding pose of ATP, the inhibitory effect could be caused by the compound acting 

as a competitive inhibitor to ATP. A summary of the docking result is shown in 

Figure 4.16. 

 

 

 

Figure 4.16: Docking V-38A2 into Aurora A kinase. A) The position of the ATP binding site within the 

kinase (pdb 5dy4)26. ATP is coloured by element and shown in cyan whereas V-38A2 is coloured in 

purple. The docking shows a good overlap in the benzyl rings of the molecules but the tri-phosphate 

group in ATP extends further into the cavity than V-38A2. B) The H-bonds which ATP (cyan) forms with 

the kinase are shown in black with the magnesium ion represented as a green sphere. V-38A2 only 

maintains one H-bond which ATP forms to the kinase to residue Lys162.  

 

The binding of V-38 and the analogues has been probed to determine whether 

the compounds could be modified to increase the selectivity of the compounds to V-

ATPase and reduce the off-target effects. This is described in Chapter 5. As only one 

kinase has been tested, this is not representative of all ATP binding proteins. To 

determine whether the compounds are selective to V-ATPase a much wider panel of 
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kinases and ATP hydrolysing enzymes would need to be screened. Furthermore, the 

compounds should be tested against other members of the rotary ATPase family 

including the F-ATPase to determine if there is any selectivity towards V-ATPase.  

 

4.2.9 Examining the toxicity of the compounds using HEK cells 

The ‘hit’ compounds were shown to be active against purified V-ATPase 

(Section 4.2.7). In order to test the cytotoxicity of the compounds, the hits were added 

to adherent HEK-293 cells (~50% confluency) at 20 M and 100 M concentrations. 

The cells were left to grow for 48 hours and then observed to see whether the 

compounds had inhibited cell growth and/or changed morphology. This was 

determined by estimating how confluent the cells were and by monitoring any 

changes in the appearance. Characteristically, if a toxic compound results in cell 

death, the cells no longer adhere to the bottom of the plate but instead float in the 

media. Healthy cells are usually 100% confluent after 48 of hours of growing and still 

adhere to the surface of the plate. It should be noted that this is a crude assay to 

measure whether the compounds induce sudden cell death which would indicate that 

the compounds are highly toxic and having off-target effects. The cell observations 

after 48 hours are recorded in Table 4.2. 
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Table 4.2: The HEK cell assay observations. The observations of the confluency and appearance of 

the cells 48 hours after 20 M and 100 M of compound are added. 

 Appearance of cells 

Compound 

ID 
20 M 100 M 

V-5 100% confluent. Healthy cells 90% confluent. Healthy cells 

V-11 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-13 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-16 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-16A1 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-16A2 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-19 100% confluent. Healthy cells 70% confluent. Healthy cells 

V-23 
~70% confluency. Some cells 

floating on surface. 

Compound showed moderate levels 

of toxicity. Cells were floating on 

surface, no longer adherent. 

V-24 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-26 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-34 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-35 100% confluent. Healthy cells 
85% confluent. Small amount of 

inhibited growth but healthy cells 

V-35A1 100% confluent. Healthy cells 
Cells ~50-60% confluent. Cells 

appear unhealthy 

V-38 100% confluent. Healthy cells 

Compound showed some levels of 

toxicity. ~20% of cells were floating 

on surface, no longer adherent. 

V-38A2 100% confluent. Healthy cells 

Compound showed some levels of 

toxicity. ~20% of cells were floating 

on surface, no longer adherent. 

V-38A5 
~80% confluency. No floating 

or clumped dead cells 

Decreased growth, ~50% confluent. 

Cells appear unhealthy 

V-49 100% confluent. Healthy cells 100% confluent. Healthy cells 

V-60 100% confluent. Healthy cells 
Cells ~50-60% confluent. Cells 

appear unhealthy 

 

At 20 M concentration there was little effect on cell growth for the majority of 

the compounds. Only V-23 and V-38A5 reduced the cell growth to approximately 70% 

and 80%, respectively. There was a bigger effect on cell growth at 100 M 
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concentration as only ten of the compounds had no inhibitory effect on the cell growth. 

Moreover, for six of the compounds tested, including V-23, V-38 and the analogues, 

there was a clear toxic effect as some of the cells were floating in the media and were 

no longer attached to the surface of the plate. By looking at the cells ~5 minutes after 

adding the compounds it was clear that this toxic effect built up over time and did not 

occur immediately. In all cases, after the compound had just been added to the cells, 

they all appeared to be healthy. The toxicity build-up could be caused by the 

compounds binding to other ATP hydrolysing proteins within the cell and preventing 

them from carrying out the function rather than killing the cells on contact. Moreover, 

another reason for the long-term cell death is that the compounds are acting upon 

human V-ATPase thereby causing toxicity to the cells. 

 

A problem with these observations is that the results are qualitative, therefore 

to determine a more quantitative cell viability of the compounds an MTT assay could 

be carried out.  The principle behind this assay is that MTT is a yellow water-soluble 

dye which is reduced to an insoluble purple formazan salt by NADPH-dependent 

oxidoreductase enzymes. The purple crystals can then be solubilised and the 

absorbance of the resulting purple colour can be measured spectrophotometrically at 

570 nm. This would provide a quantitative analysis of whether the cells were affecting 

cell growth. If the compounds are toxic to the cells, then cell growth will be reduced 

which will lower the amount of the formazan salt produced thus reducing the 

absorbance.  

 

4.2.10 Producing a hit compound  

After conducting a virtual screening approach, and determining the toxicity 

and selectivity of the hit compounds, V-38 was chosen to be the hit compound which 

would be taken forward to hit-to-lead optimisation. The compound contained a 

tetrahydrobenzothiophene core and showed the highest levels of inhibition when the 

hits were tested against the purified protein. Other hit compounds included V-23 and 

V-16 which had similar affinities to V-38. However, analysis of the chemical structure 

indicated that these compounds contain PAIN motifs and could therefore have 

promiscuous activities. Moreover, as these compounds would be difficult to 

synthesise, it was decided that V-38 would be the hit compound taken forward for 

synthesis. Due to two of the V-38 compounds showing some levels of inhibition 

against the Aurora A kinase enzyme, derivatives of the compound need to be 

designed to act upon V-ATPase which will improve the selectivity of the compounds 
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towards the V-ATPase enzyme. For this to occur, the compounds need to be 

synthesised. The design, synthesis and biological evaluation of analogue compounds 

will be described in Chapter 5.  

 

 

4.3 Discussion 

V-ATPase is large membrane protein complex which is implicated in a number 

of diseases. There are current inhibitors which act upon V-ATPase but they are toxic 

to the cell and therefore cannot be used to treat any diseases. Moreover, there is 

currently no structural information which shows how the inhibitors bind to the protein. 

Therefore, due to the lack of the structural information, SBDD programs have been 

hindered for the design of new therapeutic treatments.  

 

In this study, a virtual screen (vHTS) approach was conducted at different 

potential inhibitor-binding sites on V-ATPase. Yeast V-ATPase was chosen as a 

model system because there was existing cryo-EM structural information from this 

species and there were purification protocols already in place within the group. As the 

vHTS approach had not been carried out on this enzyme before, the aim was to see 

if it was successful in identifying a hit compound against V-ATPase. Therefore, the 

compounds were not designed to treat a specific disease. Any hit compounds 

identified could be used as a chemical tool to probe the system and future work could 

involve modifying the compounds to treat a particular disease.  

 

The vHTS approach involved screening a library of 100,000 compounds at seven 

potential inhibitor binding sites and then selecting the top scoring compounds for 

testing in an enzyme-based assay. In total, 66 compounds were initially purchased 

for testing. Due to the large number of compounds, they were initially screened 

against the vacuolar membranes and not purified protein. This was because the 

membranes were easier to obtain than the purified protein and as the membranes 

contain a naturally high abundance of V-ATPase, it would give a good indication that 

the compounds were interacting with the target protein.  

 

The compounds were initially tested for activity at the high concentrations of 1 mM 
and 0.5 mM. The high concentrations were used to determine whether there was 
any inhibitory effect upon the enzyme. Hit compounds could then be taken forward 
to enable the dose responses to be obtained. The site which yielded the most hit 
compounds was the ATP binding site in the ‘loose’ or ‘tight’ conformations which 
meant that the compounds would act as competitive inhibitors to ATP. After 
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screening for toxicity against HEK cells and against a kinase to determine whether 
there was any selectivity, it was found that V-38 was the hit compound to take 
forward. Initially, an SAR by inventory approach was taken, resulting in eleven 
compounds which had the same scaffold as V-38 being purchased and tested for 
activity. This confirmed that the scaffold was active against V-ATPase and that the 
compounds did show some level of selectivity towards V-ATPase over the Aurora A 
kinase. The ‘SAR-by-inventory’ approach also implied that the predicted binding 
poses generated from the docking as compounds missing a key interaction to the 
protein did not inhibit the enzyme which suggests that the compounds are 
interacting at the ATP binding site. The next steps were to determine whether the 
compounds could be modified to improve the potency of the compounds and to 
obtain structural information showing how the compounds bind to the protein. This 
will be discussed further in Chapters 5 and 6, respectively.
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5 Synthesis and biological evaluation of V-ATPase 

inhibitors 

 

5.1 Introduction 

Virtual screens were used to identify ‘hit’ compounds which were predicted to 

act upon the ATP binding site of V-ATPase. This work was described in detail in 

Chapter 4. After testing the hits for activity against the yeast vacuolar membranes, 

the compounds were tested for toxicity against HEK cells and selectivity using Aurora 

A kinase. Initially an ‘SAR-by-inventory’ approach was performed to test analogues 

of the hit compounds and establish whether certain functional groups within the 

molecule were important for binding. The most promising compound was V-38. V-38 

not only showed the highest levels of activity against the purified enzyme but the 

predicted binding site was also validated by testing compounds for activity which 

lacked a key carboxylate group. The compounds which did not contain this group, did 

not inhibit the protein, thus indicating the compound was interacting with the target. 

Therefore, the aim of the work described in this Chapter was to improve the potency 

and selectivity of V-38, which contained a tetrahydrobenzothiophene scaffold. This 

would be completed by analysing how the compound was predicted to interact with 

the target before utilising this structural information in the design, and subsequent 

synthesis, of novel compounds.  

 

5.2 Results 

5.2.1 Exploring V-38 binding to V-ATPase 

Before analogues of V-38 were synthesised, the predicted docking pose of 

the compound within the binding site was examined. V-38, and the analogue 

compounds, were predicted to bind to the loose ATP binding site of the V1 domain. 

V-38A9 had the highest docking score (-13.425) and a clear dose response in the 

membrane assay. The docking pose obtained using GLIDE (XP mode) was analysed 

and it suggested that the compound could bind to the protein by forming H-bonds to 

Thr239 and an ionic interaction to Arg262, mimicking the interactions made by ATP 

(Figure 5.1). There was also a -stacking interaction to Phe425 which also mimics 

the ATP binding pose. Moreover, it was noted that there were amino acid residues in 

the binding site which were not being utilised for inhibitor binding such as Glu272 and 

Gln503. Therefore, a series of systematic modifications were made to the compound 

using Maestro with the aim of forming H-bond interactions to these residues. These 
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modified compounds were subsequently docked into the protein to determine whether 

the predicted binding affinity was improved. One of these modifications involved 

introducing two hydroxyl groups at the R1 and R2 positions (Figure 5.1B). The docking 

score was improved from -13.425 to -16.509. If the modified compounds could be 

synthesised and the binding affinity improved, then this could represent a way of 

making the compounds more selective towards V-ATPase thus overcoming the 

potential toxicity problems.  

 

 

 

Figure 5.1: Modifications of V-38 based on the predicted binding pose. A) The structure of V-38A9 

which had the highest docking score of all the analogue compounds. B) The R1 and R2 positions which 

were modified to determine whether the predicted binding affinity could be improved. C) The modified 

compound with the highest predicted binding affinity. D) An overlay of V-38A9 (blue) and the modified 

compound (coral) in the ATP binding loose site. The modified compound is now able to form H-bonds 

with Glu272 and GLN503 which may improve selectivity of the compound towards V-ATPase. 

 

In order to see whether the modifications improved the potency of the 

compounds, they would need to be synthesised before being tested for their biological 

activity.  
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5.2.2 Determining the synthetic tractability of V-38 

A synthetic route to the hit compound (V-38) was established to allow a series 

of derivatives to be made. Initially a retrosynthetic analysis was performed which 

showed that the compound contains a tetrahydrobenzothiophene core (2) 

(Figure 5.2). This core can be synthesised through a Gewald reaction257,258 which 

would allow a range of functional groups to be introduced instead of the tert-butyl 

group. The analysis also showed that V-38 could be further broken down into 2-

trifluormethylaniline (1) and butanedioic acid (3) building blocks. 

 

 

 

Figure 5.2: A retrosynthetic analysis of V-38. The tetrahydrobenzothiophene core is shown in orange 

and the bonds to disconnect are shown in purple. V-38 can be broken down into three main building 

blocks, (1), (2) and (3), with the core (2) of the molecule broken down into a further two building blocks 

(4) and (5).  

 

There is literature precedent for the synthesis of similar compounds which 

contain the tetrahydrobenzothiophene core which is shown in Scheme 5.1259. The 

route consists of six key steps; synthesis of the core via the Gewald reaction, boc 

protection, ester hydrolysis, amide coupling, boc de-protection and a final amide 

coupling reaction to generate the final compound. In order to make derivative 

compounds, different functional groups can be introduced in the first step, during the 

Gewald reaction, during the amide coupling step by changing the aniline used and in 

the final amide coupling step which would determine whether changing the acid has 

any effect on the activity of the molecules. This route represented the starting point 

in the synthesis of the analogue compounds.  
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Scheme 5.1: A proposed route to the synthesis of the tetrahydrobenzothiophene core. The 

synthesis consists of six different reactions. The types of reaction are named in blue font and some of 

the reaction conditions are also stated. 

 

5.2.3 Synthesising analogues of V-38 

Five commercially available compounds were found that had different 

substituents at the 6-position on the tetrahydrobenzothiophene core. This would 

enable the effects of the different substituents on the binding affinity to be probed, 

whilst minimising the number of steps in the synthesis. Therefore, the first step 

(Gewald reaction) was removed from the synthesis. The commercially available 

compounds are shown in Figure 5.3.  

 

 

 

Figure 5.3: Commercially available tetrahydrothiophene cores: The five compounds which were 

purchased which have different functional groups at the 6-position on the ring. These include (10) tert-

butyl group, (11) H-atom, (12) methyl group, (13) N-benzyl group and finally (14) N-Me group. 
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For two of the commercially available compounds, the 6-position substituents 

were a tert-butyl (10) or methyl (12) group. The stereochemistry of the tert-butyl or 

methyl substituents within these commercially available compounds was not specified 

by the vendors, therefore the compounds could exist as two enantiomers. The two 

enantiomers would be difficult to separate which could create problems for testing the 

final compounds. Ways to separate out these enantiomers could involve using chiral 

HPLC or introducing chiral auxiliary groups later in the synthesis. The other three 

compounds did not contain any chiral centres thereby removing this problem. For two 

of the compounds (13 and 14), the 6-position carbon was replaced by a nitrogen 

atom. The rationale behind this was that if the activity was maintained, then the amine 

could be exploited to add a wider range of functional groups at this 6-position thus 

enabling more compounds to be synthesised and a larger SAR to be established. The 

docking scores suggested that the protonated nitrogen would not have a detrimental 

effect on the activity of the compounds. This could be tested by directly comparing 

final compounds containing core 12 and core 14 where the only difference would be 

the atom at the 6-position. Moreover, the introduction of the benzyl moiety in core 13 

would enable some of the docking modifications to be tested as this would add a 

bulkier group in this region which was predicted to improve the binding affinity, even 

without any substituents around the ring.  

 

For all of the commercially available compounds, the initial boc-protection step 

of the synthesis was successfully performed with the products obtained in high yields 

(85-92%). The boc-protected material was purified using column chromatography 

before being taken forward in the synthesis. The second step was the ester hydrolysis 

which was also successful but gave more moderate yields (51-91%) of product. The 

lower yields could be due to the product not precipitating out of the reaction when the 

pH was adjusted to pH 5 in the reaction work-up. The optical rotation of compounds 

15, 16, 19 and 20 were obtained to determine the enantiomeric ratio. For all four 

compounds the [a]D was ~0 thus suggesting a racemic mixture. However, it is 

assumed that the tert-butyl and methyl groups would reside in the equatorial position 

as this is the most energetically favourable conformation. A summary of the 

conditions used in the first two steps of the synthesis is shown in Scheme 5.2.  
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Scheme 5.2: A summary of the first two steps of the synthesis. The first step was the boc protection 

which was completed in high yields and the second step was the ester hydrolysis reaction. 

 

 The next step of the synthesis was the first amide coupling reaction. The acid 

which was used in the initial optimisation steps contained a tert-butyl group at the 6-

position of the tetrahydrobenzothiophene core (R1 group). Initially the amide coupling 

reagent used was EDC.HCl with DMF as the solvent. However, no product was 

isolated and it is thought that the material was lost during the work-up which involved 

extracting the product from the reaction mixture using ethyl acetate. The next 

conditions which were trialled used EDC.HCl as the coupling reagent, DCM as the 

solvent and the crude material was loaded directly onto the column for purification. 

This resulted in ~15 mg (~6% yield) of product being isolated and therefore needed 

further optimisation. The amide coupling reagent was subsequently changed to 

HCTU with EtOAc used as the solvent. Following purification using column 

chromatography, the yield of the reaction was improved (~120 mg, 52%) therefore 

there was enough material to be taken forward to the next steps. An overview of the 

different conditions trialled is shown in Scheme 5.3. 

 

 

 

Scheme 5.3: An overview of the amide coupling conditions which were trialled. The successful 

conditions used HCTU as the coupling reagent and ethyl acetate as the solvent.  
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The successful amide coupling conditions were subsequently used for the 

different cores containing the different substituents at the R1 position. Four amines 

were used; aniline, 4-methoxybenzylamine, m-toluidine and 4-chloroaniline, enabling 

the activity of the compounds with different R2 substituents to be probed. The three 

anilines were chosen because the analogue compounds of V-38 which were active 

also contained these groups. 4-Methoxybenzylamine was used to validate the 

docking which suggested that adding in an extra CH2 group and a methoxy 

substituent on the ring would improve the potency of the compounds. In total, eight 

compounds were made which contained different combinations of the R1 and R2 

positions achieving yields between 31-52% (Scheme 5.4). For the purification, the 

crude material was directly loaded onto the column without any washes or extractions 

as this was previously found to improve the yield of compound obtained.  

 

 

 

Scheme 5.4: An overview of the amide coupling reaction.  

 

The next step in the synthesis was to remove the boc-protecting group in order 

to allow the amine to be involved in the final amide coupling step. The boc de-

protection was carried out using HCl in dioxane. Initially, the product was neutralised, 

extracted into DCM and purified using column chromatography. However, material 

was lost during the purification step resulting in yields of ~50%. Therefore, it was 

decided that the product would be isolated as the chloride salt which subsequently 

gave quantitative amounts of product to be used in the final step of the reaction. The 

reaction was monitored via LCMS and once complete, the solvent was removed to 

give an oil. DDM was added to the oil and subsequently removed in vacuo in order to 

remove any traces of 1,4-dioxane which was present. This caused the oil to solidify 
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and this crude material was used in the final amide coupling step without the need for 

any further purification. 

 

For the final step, succinic anhydride was used to avoid introducing further 

protection/deprotection steps to the synthesis as ultimately the final compounds need 

to contain the carboxylic acid group. At this stage, only succinic anhydride was used 

and the length or variety of the acid was not altered. This would determine whether 

the compounds retain their activity after synthesis rather than being purchased from 

commercial sources. The final step of the synthesis was initially performed using the 

neutralised boc-deprotected amine, succinic anhydride and DCM as the solvent. The 

reaction was heated at 40 °C and was monitored by LCMS. However, this resulted in 

very small amounts of protein being isolated (<5 mg, <2%) and needed further 

optimisation. After the boc-deprotection step was changed, the chloride salt was 

isolated instead of the neutralised material. Therefore, in the final amide coupling 

step, one equivalent of triethylamine was added to the reaction in order to allow the 

amine to react with the succinic anhydride. However, after heating the reaction at 

40 °C for over 72 hours the reaction was still not complete by LCMS which showed 

starting material was still present even after adding in extra equivalents of the succinic 

anhydride. The solvent was removed and the product was purified via reverse phase 

chromatography but the yield was extremely poor (<2%) with only ~2 mg of product 

obtained.  

 

It was suggested that the reaction is acid catalysed and the triethylamine was 

affecting the rate of reaction so the amide coupling was again trialled without the 

triethylamine added. The solvent was also changed to THF to allow the reaction to 

be heated to higher temperatures (65 °C rather than 40 °C), increasing the reaction 

rate and leading to more product being isolated (~20 %). A summary of the conditions 

trialled is shown in Scheme 5.5.  
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Scheme 5.5: An overview of the final steps of the synthesis. The first step shows the condition used 

for the boc de-protection whereas the second step shows the conditions for the final amide coupling 

reaction.  

 

One of the reasons behind the low yield in the final step of the synthesis could 

be that the amine is a weak nucleophile as the electrons can be delocalised around 

the five-membered ring into the amide bond. Therefore, a method to improve the 

efficiency of the reaction would be to increase the reactivity of the electrophile. One 

way to do this would be to replace the succinic anhydride with the acid chloride. 

However, the acid chloride would need to be protected to prevent one molecule from 

reacting with two amines. Therefore, an additional deprotection step would have to 

be added to the synthetic route. This is shown in Scheme 5.6.  

 

 

 

Scheme 5.6: An alternative route to the final compounds. This would involve using an acid chloride 

as the electrophile rather than the succinic anhydride. Although, this would need to be hydrolysed in the 

final step of the synthesis. 

 

Despite the low yields (3-25%) of the final step, eight final compounds were 

made using succinic anhydride which were purified using reverse phase 

chromatography. Therefore, the new method of obtaining the final compound using 

the acid chloride was not attempted. All of the compounds contained the 
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tetrahydrobenzothiophene core but contained different R1 and R2 substituents which 

were based on the hit compounds identified in vHTS screens or docking different 

compounds into the binding site. The structure of the compounds and the rationale 

for their synthesis is shown in Table 5.1. 
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Table 5.1: Structure of the synthesised compounds, docking scores and the rationale for their 

synthesis. 

 

Compound Rationale Compound Rationale 

 

Docking score: -9.540 

Closest 

compound to 

initial hit (V-38) 

 

Docking score: -7.899 

To determine 

whether 

substituent at 

R1 position is 

important for 

binding 

 

Docking score: -7.663 

To determine 

whether 

substituent at 

R1 position is 

important for 

binding 
 

Docking score: -8.757 

Re-make of  

V-38A5 to 

determine 

accurate IC50 

 

Docking score: -8.279 

To determine 

whether the 4-

methoxybenzyl 

amine 

improved the 

binding affinity 
 

Docking score: -8.672 

To determine 

the effects of 

the methyl 

groups at the 

R1 and R2 

position 

 

Docking score: -9.019 

To determine 

whether bulky 

substituents at 

6-position were 

tolerated  

Docking score: -9.921 

Closest 

compound to 

the docking 

modifications 

 

 The synthesis of compounds containing core 14 (Figure 5.3), where the 6-

position carbon was replaced with an N-Me group, was unsuccessful in yielding any 

final compounds. Problems were encountered at the final stage of the synthesis. Even 



 142 

though the correct mass was determined by LCMS, the final product could not be 

isolated from the reverse-phase chromatography column. Material which was isolated 

did have the correct mass and was not the correct product by NMR as there was no 

signal for any aromatic hydrogens. Therefore, the direct comparison of final 

compounds which contained core 12 and 14 could not be tested.  

 

 The eight final compounds would need to be tested for their biological activity. 

This would determine whether the modifications, as suggested by the docking, had 

any effect on the potency of the compounds. The following section will discuss how 

the compounds were tested for activity and whether any SAR had been established.  

 

5.2.4 Biological evaluation of the synthesised compounds 

The eight compounds which were synthesised were tested against the purified 

V-ATPase enzyme in an ammonium molybdate ATPase assay. The IC50 values were 

calculated after determining the activity of the compounds at twelve concentrations 

between 200 nM and 1 mM. Table 5.2 shows the IC50 values for the synthesised 

compounds and the IC50 curves are shown in Appendix A.  
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Table 5.2: IC50 values of the synthesised compounds. *Compounds were coloured therefore assay 

readout may have been affected. 

ID Structure IC50 (M) ID Structure IC50 (M) 

31 

 

41 32 

 

72 

33 

 

180 34 

 

112 

35 

 

441 36 

 

78 

37 

 

411* 38 

 

72* 

 

 

All of the eight compounds had IC50 values in the micromolar range with four of 

the compounds having IC50 values of less than 100M.  Compound 31 showed the 

highest levels of activity with an IC50 value of 41 M. Compounds 32, 36 and 38 all 

showed similar levels of activity at 72, 78 and 72 M, respectively. Compounds 35 

and 37 were the least potent compounds with IC50 values greater than 400 M and 

compounds 33 and 34 showed moderate levels of activity (IC50 values of 180 and 

112 M, respectively). The IC50 values of compounds 37 and 38 should be taken with 

caution due to the bright yellow appearance of the compounds which could have 

affected the absorbance readings of the assay. Despite the colour possibly affecting 

the assay readout, it was interesting to note that 38 was one of the top scoring 

compounds in the assay. Although missing a hydroxyl group on the benzyl ring, 38 

was the compound which most closely resembled the compound with one of the 

highest predicted docking scores after a series of modifications were made to the 

original hit compound (V-38). The IC50 value, of 72 M, was the second highest 

scoring compound in the assay which suggests that inserting the N-benzyl group at 
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the 6-position did not prevent binding to the protein and thus was tolerated at the 

binding site. The presence of this 6-position nitrogen atom would allow a larger 

number of substituents to be added at this position which would enable a larger SAR 

study to be completed. The docking of this modified compound which predicts how 

the compound will bind to the protein is shown in Figure 5.4. 

 

 

 

Figure 5.4: The predicted docking pose of the modified compound. A) The predicted binding pose 

of the modified compound which is shown in green. The compound makes H-bonds to Arg262, Arg350, 

Thr239 and Asp353. B) The structure of the modified compound and C) compound 38. 

 

The addition of the hydroxyl group on the benzyl ring, as suggested by the 

docking, could improve the potency of the molecule even further by forming an extra 

H-bond to Asp353. 38 also had a 4-methoxybenzyl group at the R2 position. Within 

the docking, the addition of the extra CH2 group enabled a-stacking interaction to 

be made with residue Phe425 which could have also improved the binding affinity of 

the compound. However, compound 35 which also contains the 4-methoxybenzyl 

group had the lowest IC50 therefore further compounds would need to be made to 

validate whether the presence of this group was important for binding.   
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Of the other three top scoring compounds (31, 32 and 36) there were three 

different substituents at the R1 position and different groups around the R2 benzyl ring. 

At the R1 position the functional groups were a tert-butyl group (31), H-atom (32) and 

a methyl group (36) suggesting that a range of groups can be tolerated at this 6-

position with the compounds able to maintain activity against the enzyme by reducing 

ATP hydrolysis. Compound 31 had the highest IC50 at 41 M which could indicate 

that the larger tert-butyl group is favoured at this R1 position. The original hit 

compound V-38 also contained the tert-butyl group at the 6-position and the docking 

pose for V-38 is shown in Figure 5.5. 

 

 

 

Figure 5.5: The docking pose of V-38. A) V-38 is shown in pink and the H-bond interactions it forms 

to the protein are shown as the black likes. The dashed green line represents extra space around the 

tert-butyl group which could indicate larger functional groups in this region would be tolerated at the 

binding site. The structures of B) V-38 and C) compound 31 are shown showing the only difference is 

the trifluoromethyl group which is present in V-38. This aromatic ring is predicted to form a-stacking 

interaction with Phe425 but there is extra space in this region for more substituents to be added around 

the ring. 

 

Analysis of the docking for V-38 in the binding site showed that there was lots 

of space around the tert-butyl group. This could be why the larger tert-butyl group had 

a slightly higher IC50 than compounds 32 and 36 as these would not fill the space as 
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well as compound 31. The only difference between V-38 and 31 is the presence of 

the trifluoromethoxy group on the R2 phenyl ring so it was assumed that the binding 

poses of both compounds would be similar. Of the synthesised compounds, 31 was 

the only one which contained this tert-butyl group so more compounds would need to 

be made to allow a wider SAR study to be completed.  

 

 At the R2 position for compounds 31, 32 and 36, there are differences in the 

substituents around the ring. For 31, the phenyl ring does not contain any functional 

groups whereas for compound 32 there is a -chloro group at the 4-position and in 36 

a -methyl group at the 3-position. Within the docking, the phenyl ring appears to be 

important for binding as it makes a -stacking interaction to Phe425 which possibly 

mimics the -stacking interaction which ATP makes with the protein.  

 

Only eight compounds were synthesised which had varying groups at the R1 and 

R2 positions. This meant that only a small SAR study could be carried out. Due to the 

limited number of compounds, and the compounds containing similar functional 

groups, there are no clear SAR conclusions. A much bigger library of compounds, 

with a wider range of substituents, would need to be tested to enable this study to be 

completed. However, the compounds tested had IC50 values in the low micromolar 

range which represents a good starting point for future SBDD programs against V-

ATPase.  

 

5.2.5 Lead discovery centre V-ATPase inhibitors 

During the optimisation of the synthesised compounds, three further V-ATPase 

inhibitors were provided by the Lead Discovery Centre (LDC) in Germany. Other than 

the compounds being highly potent, very little was known about the compounds 

including their structure and where they bound to V-ATPase. Therefore, if the protein 

could be purified, then the aim was to determine the cryo-EM structure of V-ATPase 

in the presence of the compounds to see whether there was any inhibitor density 

present. This would act as a double-blind study because without knowing either 

where the compound bound or the expected shape of the inhibitor density, there 

would be no bias when searching for the inhibitor density. For instance, if the 

compound was known to bind at a particular site then any additional density in this 

region would be attributed to the inhibitor and extra density present at other binding 

sites could be overlooked. By not knowing the location of the binding site, extra 
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density across all of the protein could be probed equally before determining whether 

this was due to the inhibitor. 

 

Before the structure of the V-ATPase in the presence of the inhibitor could be 

determined, the compounds were tested for activity in the same ammonium 

molybdate assay which was used to calculate the IC50 values of the synthesised 

compounds. The compounds were tested at twelve different concentrations ranging 

between 50 pM and 1M. The molecular weight of all three compounds was 

estimated to be 300 kDa. Figure 5.6 shows the IC50 curves for the three compounds.  

 

 

 

Figure 5.6: IC50 curves of the LDC compounds. The IC50 curves of the three compounds provided by 

the LDC are shown. The compounds are highly potent as the IC50 values are in the low nanomolar range.  

 

 All three of the LDC compounds had IC50 values in the nanomolar range with 

LDC-2 and LDC-3 being highly potent with IC50’s of 4.5 and 5.4 nM, respectively. As 

the structures of the compounds were unknown the SAR of the three compounds 

could not be established. It is also worth noting that the IC50 values are approximate 

as the molecular weight of all three compounds was estimated to be 300 kDa. The 

true IC50 values can be calculated when the actual molecular weight of the 

compounds is known. Nevertheless, all three compounds showed activity and were 

highly potent against V-ATPase so could therefore be taken forward to structural 

studies. The structural work will be discussed in detail in Chapter 6.  
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5.3 Discussion 

Obtaining hit compounds to target V-ATPase using a structure-based drug design 

approach had not previously been reported in the literature. Chapter 4 described how 

virtual screening had been used to identify hit compounds which were predicted to 

interact at the ATP binding site within the V1 domain. Hit compound V-38 was shown 

to be the most promising, after determining the activity against purified protein and 

the toxicity using HEK cells. The next step was to try and improve the potency of the 

hit compounds which involved examining the predicted binding poses of V-38 and the 

analogue compounds and designing new molecules which could make extra 

interactions with the protein, thus improving the binding affinity. This resulted in a 

further eight compounds, containing the same scaffold which consisted of the 

tetrahydrobenzothiophene core, being synthesised.  

 

All of the eight compounds had IC50 values in the micromolar range with four 

compounds having IC50 values <100 M. The most active compound had an IC50 of 

41 M (compound 31). This is the first example of compounds which contain the 

tetrahydrobenzothiophene core having any inhibitory effect on V-ATPase and is one 

of the first vHTS drug discovery programs to be performed against this target. After 

one round of chemical synthesis, the IC50’s of the compounds were in the mid 

micromolar range which is extremely promising and represents a good starting point 

for future drug discovery programs.  

 

During the project, three compounds were also obtained from collaborators at 

the Lead Discovery Centre (LDC). They had previously designed potent compounds 

to act upon V-ATPase but did not have any structural information which showed how 

they bound. The activity of all three of the LDC compounds was much higher than the 

synthesised compounds. This is exemplified by the IC50 values. For instance, the 

most potent synthesised compound, 31, had an IC50 of 40 M compared to 4.5 nM 

for LDC-2 which is therefore 10,000 times more potent. Improving the potency of the 

synthesised compounds to similar levels to those of the LDC compounds would likely 

take many more rounds of chemical synthesis and biological evaluation. This could 

be aided by obtaining structural information which showed how the compounds bound 

to V-ATPase rather than relying upon the in silico predicted binding pose. Visualising 

the inhibitor within the binding site would enable the interactions it made to the protein 

to be elucidated. Moreover, examining this structural information would allow any 

amino acids which were not involved in binding to be determined and the compounds 
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could subsequently be modified to utilise these extra interactions and improve the 

binding affinity of the compounds. Therefore, it was decided that obtaining this 

structural information would become the focus of the project rather than conducting 

further rounds of chemical synthesis at this stage. If the high-resolution structural 

information could not be obtained then a moderate resolution structure of V-ATPase 

in the presence of an inhibitor could still be useful for the design of new therapeutic 

agents.  

 

V-ATPase is highly dynamic and can exist in three major catalytic conformations. 

One of the major aims of the project was to determine whether the presence of the 

inhibitor would have any effect on the overall structure of V-ATPase. The rationale 

was that an inhibitor could lock the protein into one particular conformational state, 

reduce the dynamic nature of the complex, thereby improving the stability of the 

complex and ultimately improving the resolution. If the resolution of the complex was 

still not good enough to visualise the inhibitor binding, then it would be interesting to 

see whether the compound was able to lock the complex into one particular catalytic 

conformation. If this was the case, then future SBDD programs could use this 

structural information to design compounds which would target this physiologically 

relevant conformation. 

 

As the LDC compounds were much more potent than the synthesised 

compounds, the LDC compounds would initially be used in the structural studies of 

the full intact complex. This is because the higher potency means that less compound 

would need to be added to the protein to facilitate binding which would not hinder the 

contrast in the cryo-EM micrographs. Furthermore, due to the higher potency of the 

compounds it would be more likely that any effect of the compound could be 

determined within the structure. Chapter 6 will discuss how the protein was purified 

and the work which has been completed on obtaining the cryo-EM structure of 

inhibitor bound V-ATPase to elucidate whether inhibitor binding has had any effect 

on the structure of the complex.  
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6 Purification and structural studies of V-ATPase using 

cryo-EM 

 

6.1 Introduction 

The rotary family of ATPases, encompassing both V-ATPase and the F-ATP 

synthase, have been studied using cryo-EM. For F-ATP Synthase, one of the most 

recent cryo-EM structures (published in 2019) has shown that the complex exists as 

a dimer and occupies 13 different rotary states87. All of the states were resolved to 

resolutions of ~3.0 Å. In comparison, the highest resolution structure of the full V-

ATPase complex is 6.9 Å which was published in 2015160. Therefore, with the recent 

improvements in detectors and image processing algorithms, the resolution of the full 

complex could not only be improved but more catalytic states could also be identified. 

 

The work presented in Chapters 4 and 5 describe the design and synthesis of 

novel V-ATPase inhibitors. In order to improve the potency and selectivity of the 

compounds, and to continue the SBDD pipeline, structural information which shows 

how the compounds bind to the target site was sought. Furthermore, three 

compounds (LDC-1, LDC-2 and LDC-3) which showed very high levels of potency, 

were also provided by the Lead Discovery Centre. Due to the high binding affinities 

of these compounds, it was decided that these compounds would first be used in the 

cryo-EM structural studies of V-ATPase, as it is more likely that the compound density 

can be visualised due to the high potency (Chapter 5). Once the pipelines and 

protocols for high resolution structure determination have been established, the 

structure of V-ATPase in complex with the synthesised compounds can subsequently 

be obtained. Therefore, the aim of the work presented in Chapter 6 is to firstly obtain 

purified V-ATPase and then to use cryo-EM to determine the structure of the complex 

with an inhibitor bound. The structural information gleaned could subsequently be 

analysed to determine whether the inhibitor has improved the resolution of the 

complex or locked it into a particular conformational state, thus guiding the design of 

new inhibitors to act upon V-ATPase. 

 

6.2 Results 

6.2.1 Optimising the purification of V-ATPase 

Previous work within the Muench laboratory has purified V-ATPase from yeast 

without the need for introducing any affinity tags. This purification is based on a 
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protocol published in 1988 by Uchida et al237 which uses glycerol gradients to isolate 

the purified protein. Full details of the purification are described in Chapter 2 

(Section 2.3.4). The purification relies upon V-ATPase being the only ~1 MDa sized 

protein in the vacuolar membranes and having a high natural abundance (~25-50% 

of total vacuolar membrane protein). Due to the protein being successfully purified 

using this method by previous members of the group, this purification protocol was 

used. The purification was initially attempted using glycerol gradients to isolate the 

protein. The solubilised fraction was layered upon a 20-50% glycerol gradient which 

was centrifuged at 100,000g for 8 hours overnight. 750L fractions were collected 

and an SDS-PAGE gel was used to determine which fractions contained protein. 

Fractions with protein were then examined using negative stain EM to assess the 

quality of the protein obtained. Figure 6.1 shows an SDS-page gel and a 

representative negative stain image for two separate purifications attempts. 
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Figure 6.1: Purification using glycerol gradients. A and B) show an SDS page gel and a micrograph 

from two separate purifications which used the glycerol gradient to isolate the protein. The amount of 

protein obtained was low and the negative stain showed that there were smaller proteins present 

showing that optimisation was needed. The red boxes in the micrograph show the locations of particles. 

Scale bars 50 nm.  

 

For the first purification, the SDS-PAGE gel showed protein was present in 

Fractions 3 and 4 (Figure 6.1A). When V-ATPase runs on a gel it breaks down into 

the individual subunits so multiple bands corresponding to the different subunits are 

expected. However, the gel shows extra bands which could be due to the protein 

degrading or due to the glycerol gradient not separating the solubilised fraction 

efficiently. The negative stain of Fraction 4 shows some particles which resemble V-

ATPase but also smaller proteins indicating the sample is impure or degraded.  

 

For the second purification attempt, Fractions 4-6 contained protein as the 

correct sized bands were present on the SDS-PAGE gel (Figure 6.1B). For this 
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purification, the centrifugation time for the glycerol gradient was increased to 12 hours 

from 8 hours thus allowing a better separation of V-ATPase from other proteins. The 

negative stain of Fraction 5 also indicates a cleaner sample. However, the amount of 

protein obtained was very low, with concentrations of ~0.1 mg/ml after concentrating 

the protein which equates to ~20 g of total protein thus explaining why there were 

very few particles per micrograph. Therefore, the purification needed to be optimised 

in order to obtain enough protein to facilitate cryo-EM structure determination.  

  

During the purification optimisation process, it was found that purifying the 

protein without freezing the cell pellet or vacuolar membranes at any stage of the 

protocol resulted in a higher yield of protein being obtained. This meant that the 

protein was purified within ~12 hours of the yeast cells being harvested which reduced 

the chances of the protein degrading. Moreover, the homogenisation step to break 

open the spheroplasts was also optimised. It was found that using a loose-fitting 

Dounce homogeniser instead of a tight-fitting homogeniser and changing the force 

and number of strokes were all important factors in governing the amount of vacuolar 

membranes isolated. After several rounds of optimisation, it was found that ~8 strokes 

with the loose-fitting homogeniser gave the optimum protein sample.  

 

 Purifying V-ATPase using glycerol gradients was not only unsuccessful in 

yielding enough protein for structural studies but the high glycerol concentrations 

within the sample would hinder later cryo-EM studies due to the large amount of 

background noise which would affect the contrast in the images. Therefore, size 

exclusion chromatography presented an alternative method of isolating V-ATPase 

and was subsequently attempted. The solubilised fraction was loaded onto a 

Superose 6 10/300 column which had been equilibrated using the same buffer which 

was used for the glycerol gradient, except it only contained 5% glycerol (10 mM Tris, 

1 mM EDTA, 2 mM DTT, 0.5 mM PMSF, 5% glycerol and 0.01% DDM). The flow rate 

of the column was also optimised. Flow rates of 0.4 mL/min, which were initially 

trialled, did not effectively separate out the complex (Figure 6.2A). Under these 

conditions the ‘cleanest’ fraction resulted in ~110g of protein being obtained. 

Reducing the flow rate to 0.1 mL/min resulted in a cleaner sample and more of the 

in-tact complex being obtained, ~170 g in the purest fraction (Figure 6.2B). This is 

highlighted in the gel filtration trace with the peaks being more clearly resolved than 

in the 0.1 mL/min trace. Figure 6.2 shows both the gel filtration trace, a negative stain 

micrograph and example 2D classes for the two purifications.  
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Figure 6.2: Purifications using size exclusion chromatography. A size exclusion trace, example 

micrograph and 2D classes from two purifications using size exclusion chromatography. The arrows on 

the size exclusion trace indicate where V-ATPase is eluted which corresponds to the fractions which 

were used to make the negative stain grids. For A) the flow rate of the column was 0.4 mL/min. The 

negative stain micrograph and trace show that V-ATPase has not been separated efficiently. For B) the 

flow rate was reduced to 0.1 mL/min. The peaks on the size exclusion trace are now more defined and 

the micrographs show clear particles, albeit being slightly aggregated. The 2D classes for both 

purifications do not clearly show V-ATPase particles. The scale bar for the micrographs is 50 nm. 

 

For both purifications, negative stain images were collected and processed 

using RELION. Some of the resulting 2D classes, particularly for the 0.1 mL/min 

purification, vaguely resembled V-ATPase with the V1 and V0 domains visible. 

However, the quality of the classes was not sufficient to visualise any detail of the 
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individual subunits. Moreover, the negative stain at the lower flow rate showed that 

the protein was aggregated and therefore, the purification required further 

optimisation. The eluting buffer was subsequently optimised in order to obtain a 

higher quality protein. The buffers which were trialled are shown in Table 6.1.  

 

 

Table 6.1: The different eluting buffers which were trialled during the purification optimisation.  

 

 

 

The first buffer trialled (1) was the original buffer used in the protocol and 

contained 5% glycerol. The presence of the glycerol reduced the contrast in the cryo-

EM micrographs which will be discussed in Section 6.2.2 so would need to be 

removed from the buffer. Buffer 2 removed the glycerol but kept all of the other 

components the same but the protein was still aggregated. Therefore, literature 

searches were conducted to see what buffer was used in published V-ATPase 

structures. Buffer 3 was the same as the one which was used in the paper which 

showed that V-ATPase existed in three rotational states160. However, the protein 

looked partially degraded when it was examined by negative stain EM. The optimal 

eluting buffer was buffer 4 which was composed of 50 mM Tris, 150 mM NaCl, 1 mM 

EDTA, 2 mM DTT, 0.5 mM PMSF and 0.01% DDM. This buffer contained no glycerol 

so would not hinder the later cryo-EM studies. Moreover, the buffer contained 

150 mM NaCl, which was used in published V-ATPase structures, and the negative 

stain showed that the aggregation was reduced. This buffer composition also resulted 

in the highest yields of protein obtained, which was ~1 mg after the best fractions had 

been pooled and concentrated. Example negative stain micrographs from this eluting 

buffer are shown in Figure 6.3 and are consistent between different purification 

attempts.   

 Eluting buffer composition Comments 

1 
10 mM Tris, 1 mM EDTA, 2 mM DTT, 0.5 mM 

PMSF, 5% glycerol and 0.01% DDM 
Buffer from original protocol 

2 
10 mM Tris, 1 mM EDTA, 2 mM DTT, 0.5 mM 

PMSF, and 0.01% DDM 
Glycerol removed to improve contrast in 

cryo-EM 

3 50 mM Tris, 150 mM NaCl and 0.01% DDM 

Buffer from literature where size 

exclusion chromatography was used to 
purify V-ATPase 

4 
50 mM Tris, 150 mM NaCl, 1 mM EDTA, 2 mM 

DTT, 0.5 mM PMSF and 0.01% DDM 

Optimised buffer composition to improve 

contrast and reduce aggregation 
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Figure 6.3: Negative stain micrographs of V-ATPase isolated from size exclusion 

chromatography. A) Two example micrographs of V-ATPase isolated using eluting buffer 4 from two 

separate purification attempts. The micrographs show a good distribution of intact protein particles 

indicating a high quality sample. B) Example 2D classes from one of the data sets. The classes clearly 

resemble V-ATPase and show in detail the two separate V1 and V0 domains. Scale bars 50 nm. 

 

The negative stain micrographs showed a monodisperse distribution of mostly 

in-tact V-ATPase with no aggregation, thus indicating a high-quality sample. 

Therefore, a small data set of 120 micrographs were collected on a F20 microscope 

fitted with a FEI Ceta CCD camera. The micrographs were auto-picked using the 

Laplacian-of-Gaussian feature implemented in RELION3.0 resulting in ~60,000 

particles being picked. After two rounds of classification, the resulting 2D classes from 

~30,000 particles showed the in-tact V-ATPase complex with the V1 and V0 domains 

clearly defined. There were also two classes which showed the V1 domain on its own 

indicating that some of the complex could have degraded. Moreover, the C, H and a 

subunits which reside between the two domains were also visible highlighting that the 

sample could be taken forward to cryo-EM.  
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6.2.2 V-ATPase cryo-grid optimisation 

To continue with the structural studies, and allow a high-resolution structure to 

be determined, the protein was taken forward to cryo-EM. The first step was to 

optimise the cryo-grids which occurred in parallel to the purification optimisation. 

Ideally the protein would have a good distribution within the ice and reside in a variety 

of different orientations enabling the 3D reconstruction to be determined. Before 

making cryo-grids fractions from the size exclusion column, which contained the best 

protein, were pooled and concentrated. The concentration of protein obtained varied 

depending on the purification but was typically between ~1-3.5 mg/mL. 

 

Cryo-grids were prepared using the Vitrobot Mark IV device (Section 2.3.10) 

with a range of different grid types and protein concentrations (Figure 6.4). The grids 

were subsequently screened using the Titan Krios microscopes. Previous work in the 

Muench group had involved determining the structure of Manducca sexta V-ATPase 

using cryo-EM260. Within this study, data were collected on carbon-coated lacey grids 

with a protein concentration of ~1 mg/mL. Grids were firstly prepared using carbon-

coated lacey grids. However, the protein had poor good distribution within the holes 

and was clumped towards the carbon edges which was unsuitable for data collection 

(Figure 6.4A). Quantifoil 1.2/1.3 grids were subsequently prepared with a protein 

concentration of ~1 mg/mL with the buffer either containing 5% glycerol or no glycerol 

at all. The contrast within the micrograph in the presence of 5% glycerol was very 

poor as it was very difficult to distinguish any particles within the ice (Figure 6.4B). In 

the absence of glycerol, protein molecules were visible but were again clumped 

towards the edges of the holes (Figure 6.4C). This suggested the concentration 

needed to be increased to improve the distribution of protein in the ice.  

 

 In subsequent purifications, the amount of protein obtained was improved 

which resulting in the concentration increasing to 2.0-2.5 mg/mL, as measured by a 

nanodrop. As the protein had displayed a high affinity for the carbon support layer, 

which is common for many membrane proteins, gold ultrafoil 1.2/1.3 grids were 

tested. The theory was that the protein would have a lower affinity to the gold support 

than the carbon support so more protein molecules would reside within the ice. As 

shown in Figure 6.4D, there were more protein molecules within the ice but they were 

still clumped towards the edges of the holes and were unsuitable for data collection. 

Quantifoil 1.2/1.3 grids were prepared with protein concentration of 2.5 mg/mL. The 

increased concentration enabled the protein to saturate the carbon support layer, 

allowing more protein molecules to reside within the holes. Interestingly, within the 
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same grid there was a varying distribution of protein in holes with different ice 

thicknesses. In thin ice, the protein was pushed out from the centre and was close to 

the carbon, somewhat resembling the ‘halo-effect’ (Figure 6.4E). Although some 

protein molecules could be picked. In comparison, within the thicker ice there was a 

much better distribution of protein molecules which would enable more particles to be 

picked per micrograph in subsequent data collections (Figure 6.4F). 
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Figure 6.4: V-ATPase cryo-grid optimisation. A-F) A range of different grid types, protein 

concentrations and ice thicknesses were screened. F) shows the best distribution of protein molecules 

within the ice. The purple circles show the position of protein molecules within the micrograph. 
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After optimisation of the cryo-grids, it was found that applying high 

concentrations of protein (~2.5 mg/mL) to quantifoil 1.2/1.3 grids resulted in the best 

distribution of protein within the ice. These grid conditions were suitable for data 

collection especially within the thicker areas of the grid. V-ATPase protein molecules 

can be seen which indicates that the protein remains intact during the grid preparation 

and is not interacting unfavourably at the air-water interface. Two preliminary data 

sets were collected in the absence and presence of a small-molecule inhibitor.  

 

6.2.3 Preliminary cryo-EM data sets 

After optimisation of the cryo-grids, two preliminary overnight (~15 hour) data 

sets of apo and inhibitor-bound V-ATPase were collected resulting in 698 and 1,088 

micrographs being collected, respectively. Images of apo V-ATPase were recorded 

on a K2 detector whereas inhibitor-bound V-ATPase was collected on the Falcon III, 

operated in integrating mode. The concentration of the protein applied to both grids 

was 2.5 mg/mL and there was a good distribution of protein molecules within areas 

containing the thick ice on the grid. For the inhibitor bound, LDC-2 was used at a final 

concentration of ~200 nM which was ~40 times the IC50 of the compound. The 

micrographs were subsequently motion-corrected using MotionCor2207 and the CTF 

was estimated using Gctf210. All subsequent processing was performed in 

RELION3.0214. The resulting micrographs were manually picked as RELION’s 

autopicking algorithm failed to pick all of the particles or picked too much noise. The 

subsequent particle stacks, 20,847 particles for apo V-ATPase and 9,205 particles 

for LDC-2 bound V-ATPase, underwent rounds of 2D classification and the resulting 

2D classes showed that the protein adopted a wide range of orientations within the 

ice. The classes clearly showed the intact complex and also contained some 

secondary structure details. Example micrographs and 2D classes are shown in 

Figure 6.5. 
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Figure 6.5: Preliminary cryo-EM data sets of V-ATPase. An example micrograph and 2D classes of 

A) apo V-ATPase and B) LDC-2 inhibitor-bound V-ATPase. There is a good distribution of particles within 

the apo-V-ATPase data set but much fewer particles within the inhibitor-bound V-ATPase micrograph. 

This could be due to the protein being diluted upon the addition of the compound. For both data sets the 

classes show that the protein adopts a range of orientations within the ice and there is no problem with 

preferred orientation. 

 

 The particles resulting in the best 2D classes were then subjected to 3D 

classification using an initial model which was generated for both data sets. For the 

apo data set, two different conformational states of V-ATPase were identified with 

resolutions of 8.7 Å and 8.1 Å from 1,359 and 2,098 particles, respectively. The local 

resolution was higher for both states (~6 Å). For LDC-2 bound V-ATPase only one 

state was identified and this achieved a resolution of 9.1 Å from 2,857 particles. For 

all of the maps obtained, the resolution of the V1 domain was higher than the global 

average. For the two different states in the apo V-ATPase structure, the resolution 

within this region was sufficient to visualise the secondary structure of the V1 domain. 

The different maps showed the AB domain in the different catalytic states. This is 

exemplified by the AB dimer located above the H-subunit which was in the tight and 

open conformations in State 1 and 2, respectively. In comparison, the V0 domain was 
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always poorly resolved and the resolution was not good enough to visualise 

secondary structure in this region. The local resolution maps are shown in Figure 6.6. 

  

 

 

Figure 6.6: Local resolution maps of the preliminary data collections. A) The local resolution of 

both state 1 and state 2 from apo V-ATPase which was coloured on the same resolution scale. The V1 

domain is at a higher resolution than the global average and was good enough to see the secondary 

information of the protein. B) The local resolution of LDC-2 bound V-ATPase in the one state which was 

identified. The highest local resolution was again in the V1 domain. 

 

It was interesting to note that for the inhibitor-bound data set, only one class was 

identified whilst for the apo data set, two classes were identified through 3D 

classification. This could be due to the smaller number of particles which went into 

the 3D classification for the inhibitor bound data set which was 2,857 particles 

compared to 3,457 particles for the apo data set. Whilst the low number of particles 

makes it difficult to draw clear conclusions, the reduced number of states identified 

could be indicative of the inhibitor trapping the complex into one particular state 

thereby limiting the number of states the complex resides in. A much larger data set 

would need to be collected to confirm this with many more particles (10,000’s-

100,000’s) needed in the classification steps.  

 

The initial preliminary data sets were promising as sub-nm resolution was 

unexpectedly obtained from very low numbers of particles (~2,000). Therefore, larger 

data sets would need to be collected in order to, not only improve the resolution, but 
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also to gain insights into whether the compound is having an effect on the 

conformational states of the complex. 

 

6.2.4 Cryo-EM of inhibitor-bound V-ATPase 

A 72-hour cryo-EM data set of LDC-2 inhibitor-bound V-ATPase was collected 

with the aim being to increase the number of particles, thereby improving the 

resolution of the complex. Cryo-grids were prepared using the Vitrobot as described 

in the Methods Section 2.3.10. Prior to making the grids, the sample was incubated 

with 200 nM LDC-2 compound for ~1 hour prior to freezing. Data were recorded on 

an FEI Titan Krios microscope equipped with a Falcon III direct electron detector 

(integrating mode) operating at 300 kV. From the 72-hour data collection, 6,916 

micrographs were collected and the motion correction and CTF estimation was 

performed on-the-fly using MotionCor2207 and Gctf210, respectively. The preliminary 

data sets had both been manually picked due to the autopicking algorithm within 

RELION3.0214 failing to adequately pick all of the particles. Due to the large number 

of micrographs in this data set, manually picking was not considered to be a viable 

option. Therefore, crYOLO was used to pick the data.  

 

crYOLO (You Only Look Once) is a deep learning object detection system which 

relies upon machine learning to accurately pick particles from micrographs216. A 

general model is available which has been trained on many data sets. The general 

model was used on a smaller subset of 576 inhibitor-bound V-ATPase micrographs 

where the particle diameter was specified as 250 Å. This resulted in ~21,000 particles 

being picked which were 2D classified in RELION3.0. The classes showed that many 

of the ‘particles’ picked were in fact junk which did not represent V-ATPase 

(Figure 6.7A). Moreover, the expected side views were not centred around the full 

complex but were instead centred over the V1 or V0 domains which would 

subsequently hinder the data processing. Therefore, the particle picking model was 

trained on the V-ATPase data set. By manually picking 22 micrographs, the general 

model was updated. After using the trained picking model, ~10,000 particles from the 

576-micrograph subset were auto-picked. The 2D classes showed that the particles 

were centred around the full complex and less ‘junk’ particles were picked 

(Figure 6.7B).  
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Figure 6.7: Optimising the picking of particles using crYOLO. A) The 2D classes from the general 

model which had not been trained on the V-ATPase data set. The blue boxes highlight the side views 

which were not centred on the full complex. B) The 2D classes after the model had been trained. The 

green boxes show the side views which are now centred around the full V-ATPase complex.   

 

All 6,916 micrographs were picked using the trained model to give a particle 

stack containing ~133,000 particles which were extracted into a 400-pixel box and 

down-sampled to 200 pixels. After 2D classification, ~43,000 particles remained 

which allowed an initial model to be generated. The 3D refinement achieved a 

resolution of 8.9 Å after sharpening. Moreover, continuing the refinement from the 

last iteration, using a soft mask and solvent flattened FSCs, also helped to improve 

the resolution to 8.7 Å after post-processing (Figure 6.8).  
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Figure 6.8: Cryo-EM map of LDC-2 bound V-ATPase. The map is shown in three different orientations 

which have been rotated through 120° along the central axis of the protein. The density for the V1 domain 

is strong with the -helical secondary structure becoming visible. The density for the H subunit is weaker 

and the V0 c-ring density does not show any secondary structure information. 

 

As shown in Figure 6.8, the density within the V1 domain is sufficient to 

visualise the-helices in the secondary structure of the protein particularly within the 

AB hexameric ring, C and a subunits, and the stators. In comparison, the density for 

the V0 domain, which includes the c-ring, is not as well resolved and it is challenging 

to place the individual helices inside of the map. What was interesting to note was 

that the density for the H-subunit was weak compared to the C and a-subunits which 

help to link the V1 and V0 domains together. Moreover, it appeared that the open 

catalytic AB interface resided above the H and a-subunits but it was challenging to 

identify the loose and tight catalytic states. This is because the density for the different 

states would have been averaged together during the 3D refinement as the data had 

not yet been classified. In order to identify further states, the particles underwent two 

rounds of 3D classification, resulting in six classes (Figure 6.9).  
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Figure 6.9: The processing pipeline for LDC-2 bound V-ATPase. Two rounds of 3D classification 

were performed. The two ‘good’ classes from the first round underwent a second round of classification 

where the data was split into 6 classes. The individual slice-throughs for each class are shown. The 

arrows point to the density for the H-subunit which was missing in Class 2. 

 

Following 3D classification, the particles which made up each class were 

refined. Two of the classes (Class 3 and Class 6) were poorly resolved which could 

be due to them having degraded or poorly aligned particles. Classes 1, 4 and 5 all 

contained greater than 6,000 particles and achieved resolutions of 10.4 Å, 10.4 Å and 

9.5 Å, respectively. It was interesting to note that Class 2, which contained 4,738 

particles and was resolved to 11.2 Å, was missing the H-subunit. No V-ATPase 

structures have been reported with the H-subunit missing in the literature or EMDB 

which is surprising given that this class represented ~19% of the particles (of the four 

‘good’ classes). 2D classes of Classes 1 and 2 were generated which showed that 

the particles adopted a wide range of orientations within the ice (Figure 6.10).  
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Figure 6.10: 2D classification of two of the different states. The 2D classes for A) State 1 and B) 

State 2 are shown. The orange arrows indicate point to visible density for the H-subunit which is only 

present in Class 1. Class 2 has no visible density for the H subunit within the 2D classes which is 

consistent with the 3D map.  

 

Density for the H-subunit was visible in the 2D classes from Class 1 but was 

missing from the 2D classes generated from Class 2. The reason for the H-subunit 

not being present could be due to the complex degrading/breaking apart. However, 

another reason could be due to the small molecule, LDC-2, interacting with the protein 

and causing it to dissociate (see discussion 6.3). Similar to the preliminary data sets, 

it was noted that the resolution of the V1 domain appeared to be higher than the global 

average for all of the classes identified. Therefore, attempts were made to improve 

the resolution of this region by creating a soft mask around the V1 domain and then 

continuing the refinement using this mask to undergo a focussed refinement. In all 

cases, the resolution of the maps was slightly improved with some secondary 

structure visible. An overview of the maps before and after focussed refinement 

around the V1 domain are shown in Figure 6.11. 
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Figure 6.11: Focussed refinement of the V1 domain. The maps and resolution for the four classes are 

shown before and after the focussed refinement. The pink map next to the focussed refinement arrow is 

surrounded by the transparent mask which was used to improve the resolution. In all cases the resolution 

of the V1 domain was improved after the focussed refinement.  

 

For Classes 1, 4 and 5, the resolution permitted some of the-helices to be 

resolved within the map. However, the resolution was not sufficient to resolve -

sheets or contain any side chain density. The maps could subsequently be compared 

to the published cryo-EM structures which showed that the complex resides in three 

catalytic conformational states160. The catalytic states show that the AB subunits can 

reside in the open, loose and tight states at different positions within the hexameric 

ring in each conformation160. This is summarised in Figure 6.12. 
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Figure 6.12: Conformational states of V-ATPase. The different states of V-ATPase which were 

published in 2016. The slice throughs of each state highlight the position of the AB domains. The number 

of particles and resolution obtained is also stated. Adapted from160. 

 

After processing the data, the result is an EM density map. The map can then 

be used to fit in models which shows the positions of the -helices, amino acids etc. 

To compare the EM maps with the published structures, the models (pdb files) were 

fit into the map and inspected to see which of the published states they best 

represented. For clarity, ‘State’ describes the published models which show the three 

different conformational states of the protein. Whereas, ‘Class’ describes the classes 

obtained from the experimental data within this study, summarised in Table 6.2.  

 

 

Table 6.2: Conformational state analysis of LDC-2 bound V-ATPase. 

 

 
Above H-

subunit 

Above C-

subunit 
Above c-ring 

Comparison to 

published state 

Class 1 Loose Open Tight State 1 

Class 2 Open Tight Loose State 2 

Class 4 Open Tight Loose State 2 

Class 5 Open Tight Loose State 2 
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It was found that Class 1 was similar to the published State 1 whereas Classes 

2, 4 and 5 were most similar to the published State 2. In State 1, the open 

conformation of the AB domains resides above the C-subunit, the loose conformation 

above the H/a-subunits and the tight conformation above the c-ring. In the published 

structure, this was the most populated state which contained 47% of the particles 

(49,925). In comparison, Class 1 contained only 27% of the particles (6,833) which 

make up the four classes. The other classes (Class 2, 4 and 5) were most similar to 

the published State 2, where the open site of the AB domain was directly above the 

H/a subunits. As mentioned previously, Class 2 did not contain any density for the H-

subunit which represented a novel conformation of V-ATPase. The conformations 

and position of the AB domains within Class 2 are consistent with the published 

State 2. Interestingly, the distribution of the conformational states was shifted 

compared to the published study and none of the classes resembled State 3. For all 

classes, the published model for the V1 domain was flexibly fit into the map using 

MDFF232. To enable accurate comparisons between the published and experimental 

structures, the models were overlaid and coloured byC r.m.s.d. (Figure 6.13). 
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Figure 6.13: Comparison of the classes to published models. The C r.m.s.d. colourings for the AB 

domains in A) Class1, B) Class 4 and C) Class 5. The C-subunit, H-subunit and c-ring indicate the 

subunits which the AB domains are located directly above. Generally, there is a good overlap between 

the two models (<3 Å). In the Class 1 loose state and Class 4 tight state there are differences in the 

positions of the outer helices on the B-subunit. However, this could be due to resolution differences 

between the maps. 

 

There was generally a good overlap of the C atoms (<3 Å) between the fitted 

and published models within the AB subunits. However, for the Class 1 loose and 
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Class 4 tight AB conformation, there were differences in the positions of the outer 

helices on subunit B. This is exemplified by the C r.m.s.d. being ~5 Å in both cases. 

The reason behind this could be due to the resolution of the published structures 

being higher. This lower resolution of all of the classes experimentally obtained could 

hinder the flexible fitting, thus suggesting that there are differences in the position of 

the helices. Another reason could be that LDC-2 could be having an effect on the 

conformation/position of the AB domains which has caused there to be a movement 

in the helices. However, due to the particle number and subsequent resolution being 

low, this conclusion cannot accurately be drawn without more data being collected. 

Class 2 also resembled the published State 2 and the model was flexibly fit into the 

map using MDFF and the resulting model was coloured by C r.m.s.d. (Figure 6.14). 
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Figure 6.14: Comparison of Class 2 with the published State 2. The published State 2 model was 

flexibly fit into the Class 2 map using MDFF. A-C) The two models were then overlaid and coloured by 

C r.m.s.d. The red indicates that there is a greater than 3 Å difference in the position of the C atoms. 

This is particularly prevalent in the C-subunit, a-subunit and stator domains. D) The model shown within 

the map (yellow). The density for the stators has clearly changed relative to the published structures 

which suggest that these undergo a significant conformational change upon H-subunit dissociation.  
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For Class 2, there is once again a good agreement in the overlap of the C 

atoms within the AB domains. However, there are larger differences in the more 

peripheral subunits such as the C-subunit, a-subunit and the stators which have C 

r.m.s.d. values greater than 5 Å. However, it is worth noting that due to the resolution 

of this map, it is difficult to visualise the density for -helices which would have 

affected the flexible fitting. The stator subunits which connect the V1 domain with 

subunit a (and usually subunit H) have undergone a large change in position from the 

published models. Moreover, the extent of this movement was too large to be 

accounted for in the flexible fitting using MDFF. This large movement is unsurprising 

as the absence of the H-subunit has clearly resulted in the stators and a-subunits 

undergoing a conformational change. Unfortunately, the resolution in this region was 

not high enough to visualise the secondary structure information so how the stator 

now interacts with the a-subunit cannot be determined. There were also large 

differences in the C-subunit and stator interactions which could suggest that all of 

these subunits undergo a conformational change upon the dissociation of the H-

subunit. The resolution of the map was not sufficient to determine whether the 

presence of the inhibitor caused the H-subunit to dissociate so further investigation 

was needed. Initially, this was probed by analysing negative stain grids of apo and 

LDC-2 bound V-ATPase which will be described in Section 6.2.5.  

 

6.2.5 Negative stain analysis of inhibitor-bound V-ATPase 

To assess whether the missing H-subunit in the inhibitor-bound cryo-EM data 

set was a feature of inhibitor binding, negative stain grids of the complex in the apo 

and LDC-2 bound form were examined. The rationale behind this was to determine 

whether incubation of the compound with the protein for ~90 minutes prior to making 

the negative stain grids resulted in dissociation of the H-subunit or whether the 

complex was degrading over time. Thereby, 50 micrographs of both apo and LDC-2 

bound V-ATPase were collected on the F20 microscope fitted with a FEI Ceta CCD 

camera at a magnification of 50,000x. The micrographs were manually picked 

resulting in 6,819 and 7,254 particles for the apo and LDC-2 bound data sets, 

respectively. The particle stacks subsequently underwent iterative rounds of 2D 

classification to leave 4,255 apo particles and 4,640 inhibitor-bound particles. 

Example micrographs and 2D classes of the side views for both data sets are shown 

in Figure 6.15. 
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Figure 6.15: Negative stain of apo and inhibitor-bound V-ATPase. Example micrographs of V-

ATPase after the protein was concentrated in A) the absence of inhibitor and B) after incubation of 

inhibitor for ~90 minutes prior to making negative stain grids. The micrographs clearly show V-ATPase 

and there is no obvious difference in the amount of protein degradation. C) 2D classes for apo V-ATPase. 

The pink arrow points to the stator and the orange arrow point to the H-subunit which is seen in two of 

the classes. D) 2D classes for LDC-2 bound V-ATPase. The classes are detailed enough to see the 

stators (purple arrows) and the orange arrow points to the H-subunit which is visible in one class. 
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The micrographs clearly showed intact V-ATPase particles within both data sets 

(Figure 6.15A,B). However, under both conditions there were smaller particles 

present which could represent the complex dissociated into the V1 and V0 domains. 

It appeared that there were no significant visible changes between the amount of 

dissociation in the absence and presence of inhibitor just by looking at the raw 

micrographs alone. The resulting 2D classes also showed high levels of details for 

the side views within both data sets. This is exemplified by the stators being visible in 

some of the classes in both of the data sets as shown in Figure 6.15C,D. The stator 

was more prevalent in the inhibitor-bound classes due to the lighter stain which 

enabled more structural information to be gleaned.  

 

Further examination of the classes showed that in the apo data set two of the 

classes had visible detail for the H-subunit compared to only one class in the LDC-2 

bound data set. This could suggest that the H-subunit had dissociated more in the 

presence of the inhibitor. However, 3D reconstructions did not show any density for 

the H-subunit for either data set so the negative stain data was inconclusive in 

determining whether the inhibitor was interacting with the H-subunit and causing it to 

dissociate. Comparing the apo and inhibitor-bound data sets does indicate that the 

dissociation of the H-subunit does not result in V-ATPase dissociating any further. 

This is exemplified by there being no visibly different levels of dissociation in the two 

data sets although this would need to be quantified further.  

 

It is also worth noting that these negative stain grids were prepared using a 

different protein sample to the one which was used to collect the cryo-EM LDC-2 data 

set which was discussed in Section 6.2.4. However, if the compound was having an 

effect on the dissociation of the H-subunit then this should be consistent between 

protein purifications. As the negative stain data was inconclusive, a large data set of 

apo V-ATPase was collected, which will be described in Section 6.2.6.  

 

6.2.6 Cryo-EM of apo V-ATPase 

A 72-hour data collection of apo V-ATPase was collected to determine whether 

there was any evidence of V-ATPase undergoing any conformational changes in the 

presence of the inhibitor, including the dissociation of the H-subunit. The apo V-

ATPase grids were prepared at the same time as the LDC-2 grids thus allowing a 

direct comparison on the effect of the inhibitor to be made. Data were collected on a 

Titan Krios fitted with a K2 summit direct electron detector and energy filter operating 



 178 

at 300 kV. 2,944 micrographs were recorded. After the initial motion-correction and 

CTF estimation were performed, crYOLO was used to pick the micrographs using the 

model which had been trained on the inhibitor bound data set (Section 6.2.4). This 

resulted in a particle stack containing 77,867 particles which were subjected to 2D 

classification. The best classes underwent iterative rounds of 2D and 3D classification 

resulting in three classes which contained 3,362, 2,827 and 3,762 particles, 

respectively. The resolutions obtained were 9.5 Å for Class 1 and 10.2 Å for Classes 

2 and 4. An overview of the processing and maps obtained is summarised in 

Figure 6.16. 

 

 

 

Figure 6.16: Processing pipeline of apo V-ATPase. The particles within the apo data set underwent 

two rounds of 3D classification. The slice-throughs for each of the classes are shown. The orange arrows 

indicate that there is density for the H-subunit in all of the classes, although this does appear to be 

weaker in Class 2. The maps, particle numbers and subsequent resolution of each class are also 

highlighted.  
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After classifying the data, three classes were obtained; Class 1, 2 and 4. Classes 

3 and 5 represented junk particles which were not taken forward. In all three maps 

the V1 domain was resolved to higher resolution than the V0 domain which is 

consistent to the LDC-2 inhibitor-bound data set. Within the V1 domain, the resolution 

was once again sufficient to visualise the secondary structure which allowed 

comparisons to be made to the published structures. The positions of the AB domains 

relative to the other V1 subunits, and therefore which of the published states the 

classes are most similar to, is summarised in Table 6.3.  

 

Table 6.3: Conformational state analysis of apo V-ATPase. 

 

 

 

Above H-

subunit 

Above C-

subunit 
Above c-ring 

Comparison to 

published state 

Class 1 Loose Open Tight State 1 

Class 2 Open Tight Loose State 2 

Class 4 Open Tight Loose State 2 

 

 

For the apo-data set Class 1 resembled published State 1 which contained 34% 

of the particles (3,362). In comparison, Classes 2 and 4 were most similar to State 2, 

consisting of 28% and 38% of the data, respectively. Interestingly there were no 

classes which represented the published State 3 which is likely due to the low particle 

number in the data set. As there was no inhibitor present within the data set, full 

comparisons to the published models were not conducted because the protein is not 

expected to undergo any conformational changes to what is known in the literature. 

 

One of the main reasons for collecting the apo data set was to determine 

whether there were any classes which did not contain the H-subunit. The maps, which 

are shown in Figure 6.16, all contain density for the H-subunit. However, close 

examination of the slice-throughs for Class 2 show that the density for the H-subunit 

is weaker in comparison to Class 1 and 4 (indicated with the orange arrows in 

Figure 6.16). This could represent a partially dissociated class, where the H-subunit 

is becoming dissociated from the complex. However, only ~9,900 particles went into 

the 3D classification. If the complex which does not contain the H-subunit represents 

only a very small proportion of the data, then the very low particle number might mean 

that the class could not be identified through 3D classification. Another possibility 
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could be that the presence of the inhibitor is causing the H-subunit to dissociate or to 

dissociate at a faster rate than in the absence of the compound. This would result in 

there being no classes in the apo structure which do not contain the H-subunit. In 

order to have a definitive answer on why the H-subunit is missing, a much larger data 

set would need to be collected, with ~100,000 particles going into the 3D 

classification. This would also hopefully improve the resolution of the complex so 

more detailed structural insights could be gained. A much larger data set, would also 

theoretically allow the resolution of the complex to be improved. This would allow any 

differences between the apo and inhibitor-bound maps to be elucidated as the 

resolution is currently not sufficient to determine whether there has been any 

conformational change upon inhibitor binding.  

 

6.3 Discussion 

Within this chapter, V-ATPase was purified from the native source organism 

(yeast, saccharomyces cerevisiae) without introducing any affinity tags onto the 

protein. The original protocol was published in the 1980’s and although it has 

previously been successful in isolating V-ATPase, it required optimisation for single 

particle cryo-EM. The original protocol used glycerol gradients to separate out the 

complex following detergent solubilisation. However, this not only yielded very low 

quantities of protein but also would have been unsuitable for cryo-EM due to the large 

amounts of glycerol hindering the contrast within the micrographs, subsequently 

making it difficult to distinguish particles. It was found that using size exclusion 

chromatography to separate out the complex, along with changing the buffer 

composition to remove the glycerol in the eluting buffer, enabled high-quality purified 

protein to be isolated.  

 

The optimisation of the protocol was not trivial and represented a major 

challenge during the PhD project, taking several months to achieve. Changing small 

things within the purification often had a big impact on the quality and/or amount of 

protein obtained. This was exemplified in the homogenisation step. A delicate balance 

between needing to use enough force to break open the spheroplasts, combined with 

not using excessive force resulting in premature lysis of the vacuoles, needed to be 

achieved. Moreover, in many purifications of other proteins, the cell pellet can be 

frozen after harvesting the cells or isolating the membranes (for membrane proteins). 

However, it was found that freezing the material at any stage of the V-ATPase 

protocol would hinder the amount/quality of protein obtained. Therefore, the full 
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protein purification needed to be performed on the same day that the cells were 

harvested. The rate of yeast growth, so the cells could be harvested early in the 

morning on the protein purification day, also required optimisation. However, after 

multiple rounds of optimisation pure V-ATPase was successfully purified and used to 

conduct inhibitor binding assays and for structural determination (including grid 

optimisation). 

 

Previous work in the Muench group had used carbon-coated quantifoil grids for 

determining the structure of Manducca Sexta V-ATPase260. One of the limitations of 

using carbon-coated cryo-EM grids is that it can hinder the contrast within the images 

and can sometimes induce a preferred orientation of the protein. Within this study, a 

range of grid types were used, including carbon/gold films, and it was found that 

quantifoil R1.2/1.3 grids gave the best distribution of protein within the ice. By using 

a high concentration of protein (~2.5-3.5 mg/mL), the carbon support film was 

saturated with protein which allowed the protein to become suspended in the ice 

within the holes; thereby removing the need for carbon-coated grids. The preliminary 

overnight data sets of LDC-2 and apo V-ATPase showed that the protein adopted a 

range of orientations within the ice and achieved sub-nm resolution from low particle 

numbers. Due to the promising resolution from the small data sets, larger (72 hour) 

data sets were collected for both inhibitor-bound and apo V-ATPase which would 

allow the particle number to be increased.  

 

There are existing structures of V-ATPase which have been obtained using cryo-

EM showing that the protein resides in three catalytic conformations160. For this study, 

~100,000 particles were used to generate the three different states; each containing 

~49,000, ~38,000 and ~18,000 particles, and achieving a resolution of 6.9 Å, 7.6 Å 

and 8.3 Å, respectively. Within this Chapter, two 72-hour data sets were collected of 

LDC-2 bound and apo V-ATPase. However, only ~29,000 and ~10,000 particles went 

into the 3D classifications, respectively, which is less than a third of the total particle 

number used in the published study. For the inhibitor-bound data set four different 

classes were obtained which achieved resolutions in the range of 9.5-11.2 Å. The 

most populated class contained 7,243 particles (9.5 Å). For the apo data set three 

different classes were obtained, containing ~3,000 particles each. The highest 

resolved class was also 9.5 Å. The particle numbers within the 72-hour data sets were 

still low in comparison to the published study. For instance, the published State 1 only 

achieved a resolution of 6.9 Å, yet contained ~50,000 particles suggesting that the 

resolution of the complex is ultimately limited by the inherent flexibility of the complex.  
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It was interesting to note, that despite having approximately three times as many 

particles as the preliminary overnight data sets, the resolution did not improve with 

the higher particle number, resulting from the 72-hour data collections. This could be 

due to the quality of the protein sample. For instance, in the preliminary data sets the 

protein could have been more stable than the protein used to make the grids for the 

larger data sets. Unfortunately, for the preliminary data sets, the cryo-grids did contain 

enough areas of the grid with a good particle distribution, thus preventing a large data 

set to be collected. One of the limitations of working with V-ATPase is that the protein 

cannot be frozen as it easily degrades and loses activity upon freezing. Therefore, 

fresh protein was prepared each time new cryo-grids were prepared, resulting in 

possible discrepancies between batches of protein obtained.  

 

The resolutions of both the inhibitor-bound and apo V-ATPase maps were 

similar (~9.5 Å) and the resolution was not sufficient to determine whether there were 

any conformational changes resulting from inhibitor binding. Moreover, for both data 

sets only classes which corresponded to the published State 1 and State 2 were 

identified. The published State 3 represents only 18% of the total particle number and 

is therefore the least populated class. Due to the small number of particles within the 

two data sets, State 3 might represent only a very small number of particles so this 

state was not obtained during 3D classification. One interesting observation in the 

inhibitor bound data set was the identification of a unique class which has never 

previously been reported. This class contained ~20% of the particles and did not 

contain any density for the H-subunit. Due to the low resolution (11.2 Å), it is not 

known whether this class is a direct result of an interaction with the LDC-2 compound 

or due to the V-ATPase degrading over time and losing this subunit. Although, the 

equivalent class was not identified in the apo data set. This would require further 

investigation, and a much larger data set (>100,000 particles) to be collected which 

would enable the density for the small molecule inhibitor to be visualised. The high-

resolution structures of the F-ATP synthase highlight that it is possible to obtain high 

resolution structures of these large rotary machines. Therefore, with the 

improvements in image processing and microscope technology it should be possible 

to achieve these high-resolutions for V-ATPase.  

 

The synthesised compounds, which were discussed in Chapter 5, were 

designed to act upon the ATP binding site which resides in the V1 domain of V-

ATPase. The highest resolution structure of the full V-ATPase complex is ~6 Å which 

would not be high enough to visualise inhibitor binding. Moreover, it was found that 
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greater than 100,000 particles would likely be required to obtain a high-resolution 

structure of the full complex. One way to get around this would be to dissociate V-

ATPase into the V1 and V0 domains. The structure of one of the compounds bound to 

the V1 domain could then be obtained using cryo-EM which would represent the first 

cryo-EM structure of the V1 domain to be published.  

 

Within this study, obtaining purified V1 protein was attempted but was ultimately 

unsuccessful. Purified V-ATPase was incubated with 5 mM ATP in the presence of 

MgCl2, firstly at 30 °C (10 minutes) and then at 4 °C (1 hour). The mixture was then 

loaded onto a Superose 6 15/30 GL column to attempt to separate out the V1 and V0 

domains. Unfortunately, attempts at carrying out this protocol were unsuccessful and 

no V1 protein was obtained. Problems could have arisen due to the length of time 

which the protein was incubated with ATP for, the concentration of ATP/MgCl2 used 

or due to inefficient separation or low quantities of protein used in the gel filtration. 

Therefore, obtaining a structure of inhibitor-bound V1 was ultimately not successful 

and due to time restrictions (and wanting to focus on obtaining the structure of the full 

complex), the protocol was not optimised further but it could form the basis of future 

structural studies. If the resolution of a cryo-EM V1 structure was not sufficient to 

visualise inhibitor density, then the V1 domain could be crystallised in the presence of 

the inhibitor. There are existing crystal structures of this domain at ~3 Å resolution 

which should allow inhibitor density to be visualised. This high-resolution structural 

information would then aid the design of further compounds to create a highly potent 

V-ATPase inhibitor. 

 

A high-resolution structure of V-ATPase which allowed inhibitor-binding to be 

visualised was ultimately not achieved within the course of the project. However, the 

purification of V-ATPase was optimised to result in a high-quality protein being 

obtained. Cryo-EM data sets were also collected which enabled sub-nm resolution 

structures of apo and inhibitor bound maps to be obtained which were of sufficient 

quality to visualise secondary structure information. Moreover, a unique class was 

identified in the inhibitor bound data set which has never previously been reported 

which consisted of V-ATPase missing the H-subunit. Furthermore, the distribution of 

the states which were obtained were different to the published study which could also 

be a feature of the interaction with the inhibitor. Although the exact biological 

relevance of this has not yet been determined, it represents an exciting prospect for 

future work. The protein purification and grid optimisation protocols represent a 

starting point for this work to be continued in the future. 
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7 Concluding statement and outlook 

 

7.1 Discussion 

The overall aim of the PhD project was to determine the role which cryo-EM can 

play in drug discovery. In 2016, when the PhD project was started, cryo-EM was only 

beginning to be thought of as a tool to be utilised in drug discovery programs. At the 

time, pharmaceutical companies were only starting to think about whether the 

technology should be invested in. Therefore, none of the major UK pharmaceutical 

companies had any of their own infrastructure required to use cryo-EM in their drug 

discovery programs. However, in 2016 the Cambridge cryo-EM consortium which 

allows five pharma companies (Astex, AstraZeneca, GSK, Heptares and UCB) 

access to high end Titan Krios microscopes, was formed. Over the past three years, 

due to improvements in the resolution, technology and image processing pipelines 

available, all of the major pharmaceutical companies have now invested in cryo-EM. 

This is exemplified by the majority of the consortium members having cryo-grid 

preparation devices and screening microscopes in-house, which highlights the 

significant investment made by the pharmaceutical industry and also highlights the 

rapid advances in the field within the past three years.  

 

Before commencing the project, there were few examples of cryo-EM structures 

with small molecule inhibitors bound, with the most well-known example being the 

2.2 Å structure of -galactosidase115. One of the aims within the PhD project was to 

determine whether it was possible to obtain high-resolution structures of 

therapeutically relevant membrane proteins with inhibitors bound. To this end, two 

systems were studied which were at different stages of the drug discovery process; 

cytochrome bc1 and V-ATPase. Although cytochrome bc1 had previously been 

crystallised, there were no cryo-EM structures of the system. Therefore, bovine bc1, 

with inhibitors bound, was studied using cryo-EM, with the aim of seeing whether the 

resolutions attained allowed inhibitor density to be visualised. This work resulted in 

five bc1 structures being determined, four of which had small-molecule inhibitors 

bound, with resolutions ranging from 3.3-4.6 Å. For three of the inhibitor-bound 

structures, the resolution was sufficient to visualise density at the inhibitor-binding site 

thus allowing the inhibitor to be modelled into the map. For one of the structures, 

GSK-bc1, the density showed that the compound could adopt two different positions 

within the binding site which had not previously been seen by X-ray crystallography, 

suggesting that cryo-EM could reveal novel insights into the occupancy of ligand 
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binding. Moreover, comparisons between existing crystal structures and the new 

cryo-EM structures, showed that the models obtained were consistent between the 

two techniques, which validates using an EM approach to obtain the structural 

information. This work was published in IUCrJ in 2018, with one of the structures 

forming part of a larger study into the development of a novel scaffold to treat 

Toxoplasmosis which it is hoped will be published in 2020. 

 

Cytochrome bc1 is a validated anti-malarial drug target, yet there is no structural 

information of the parasite protein thus hindering the design of new therapeutic 

agents. One of the problems preventing the structural determination of the parasite 

protein is the need to use milligrams of protein to facilitate protein crystallisation. As 

cryo-EM uses significantly less protein than X-ray crystallography, cryo-EM can be 

used as an alternative structural determination tool. The work described in Chapter 3 

showed that it is possible to obtain high resolution structures of bc1, so the protocols 

and pipelines developed for the bovine enzyme can be applied to the parasite protein 

in the future. Work is ongoing at the University of Liverpool, in the Hasnain and 

Antonyuk groups, to extract the parasite protein from malarial parasites or by using 

the CRISPR-CAS9 system to engineer tags onto the parasite protein to aid the 

purification. If this can be achieved then the work presented in this thesis, can provide 

the foundations for the structure determination of the parasite enzyme. Subsequently, 

if high resolution structures can be obtained, with inhibitors bound, this structural 

information can be utilised in the design of new therapeutic agents allowing highly 

potent and selective compounds to be made.   

 

The second system studied was the V-ATPase. To date there are no examples 

of small molecules designed against V-ATPase which used a SBDD approach. The 

current V-ATPase inhibitors are macrocyclic rings which makes them difficult to 

handle and expensive to buy. Therefore, the aim was to initially use virtual screening 

to design inhibitors for yeast V-ATPase which could then be used as a chemical tool 

to study the system. Moreover, the original aim was to use cryo-EM structures to help 

design the compounds so the role of cryo-EM in drug discovery programs could be 

further enhanced. However, it was soon apparent that the resolution of the cryo-EM 

structures was not sufficient to aid the design of novel compounds. Therefore, the 

vHTS was repeated using higher resolution crystal structures. After one round of 

vHTS and an ‘SAR-by-inventory’ approach, hit compounds were identified. The hit 

compounds also showed some basic SAR, as it was found that the carboxyl group 

was important for binding, as compounds without this group did not inhibit V-ATPase. 
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This suggested that the compounds were in-fact binding at the target ATP-binding 

site suggesting that the docking poses generated are reliable. The most promising hit 

compound (V-38) was modified resulting in a small library of compounds being 

synthesised; four of these compounds had <100M IC50 values (Compounds 31, 32, 

36 and 38). This represents the first example of potent inhibitors being designed 

through a SBDD approach to act upon V-ATPase. A manuscript of this work is 

currently being prepared and will form a strong basis for future medicinal chemistry 

programs.  

 

V-ATPase was also successfully purified from the native yeast organism during 

the PhD project and cryo grids were subsequently optimised resulting in apo and 

inhibitor-bound data sets being collected. Resolutions below 10 Å were achieved from 

low number of particles, which allowed the secondary structure of the protein to be 

visualised and compared to published structures. Interestingly, one novel state of the 

complex was found, which had not previously been reported, showing V-ATPase 

without the H-subunit in the inhibitor-bound data set. However, the resolution and 

number of particles obtained, were not sufficient to determine whether the 

dissociation of the H-subunit was a direct result of inhibitor binding or due to the 

protein degrading. The reasons behind the H-subunit dissociating could also have 

important implications to the regulation of the complex which should be investigated 

further. Moreover, the distribution of particles which make up each of the three 

classes of V-ATPase was shifted compared to the literature. Again, it is unclear 

whether this was due to the presence of the inhibitor. The work outlined in Chapter 6, 

including the optimisation of the protein purification and cryo-grid conditions, would 

form the basis of future structural studies which would allow the effect of the inhibitor 

to be probed in more detail. Furthermore, if a high-resolution structure can be 

obtained then this can aid the design of new inhibitors. These compounds could 

subsequently be modified to act as a pharmaceutical agent in the treatment of certain 

diseases such as toxoplasmosis or osteopetrosis. Currently, without high resolution 

structural information of the full complex, the design of new inhibitors is challenging. 

Therefore, obtaining this structural information is vital for the design of new 

compounds which could act as therapeutic agents in the future. 

 

Drugs can bind to a range of different proteins, of all shapes and sizes. Therefore, 

to be a useful tool in SBDD, cryo-EM needs to be able to determine high resolution 

structures of a variety of proteins. Membrane proteins make up ~60% of all drug 

targets yet make up only ~3% of structures deposited into the protein data bank261. 
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This is due to membrane proteins being notoriously difficult to crystallise. Cryo-EM 

removes the need for protein crystallisation so can play an important role in the 

structural characterisation of challenging drug targets. Outside of the work described 

in this thesis, a number of side projects were undertaken with internal and external 

collaborators. This has enabled multiple membrane proteins to be studied using cryo-

EM. These side projects have resulted in two publications which are detailed in 

Appendix B. The work was not included within the thesis because the cryo-grid 

optimisation, data collection and image processing were carried out in Leeds by 

myself but the protein purification and most of the subsequent structure interpretation 

was completed by collaborators. 

 

Cryo-EM structures were determined for three unique systems; AcrB, human 

TRPC5 and quinol-dependent Nitric Oxide Reductase (qNOR). In collaboration with 

the Postis group at Leeds Beckett University, Salmonella AcrB was solubilised using 

styrene maleic acid (SMA), which directly removed the protein from the membrane. 

This is advantageous as the native lipid interactions are maintained. The resolution 

achieved was ~4.5 Å which allowed the bulky side chains to become visible. This 

exemplifies how powerful cryo-EM can be when studying membrane proteins, not 

only in their native lipid environments but also without the restrictions of the crystal 

lattice, as Salmonella AcrB had previously evaded structural characterisation. 

Another collaboration with the Bon group at the University of Leeds enabled the high-

resolution structure of human TRPC5 to be determined to 3.0 Å. The protein had a 

small molecule bound, which emphasises the ability to achieve high-resolution 

structures of therapeutically relevant proteins. This exemplifies how cryo-EM can aid 

SBDD programs which target membrane proteins allowing high-quality and reliable 

models to be obtained which can guide the design of new molecules. 

 

At the start of the PhD project, the size limit for cryo-EM studies was ~200 kDa 

which would hinder SBDD programs as lots of drug targets have lower molecular 

weights. For instance, GPCRs are typically <150 kDa. In collaboration with the 

Hasnain and Antonyuk groups at the University of Liverpool, the cryo-EM structure of 

qNOR was determined in a dimeric and monomeric state which had molecular 

weights of 190 and 95 kDa, respectively. The resolutions attained were 3.3 Å for the 

dimer and 5.0 Å for the monomer, thus allowing side chains to be built into the map 

and visualisation of the secondary structure, respectively. Moreover, the dimeric state 

of qNOR had never previously been reported, despite numerous crystal structures 

being solved. This exemplifies how useful it can be to determine the structure of 
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proteins in their native state, away from the restrictions of the crystal lattice. The study 

also shows that the size of proteins which can be studied using cryo-EM is constantly 

reducing, thus allowing the structures of a broad range of important drug targets to 

be elucidated.  

 

Over the course of the three-year PhD project, cryo-EM structures of five unique 

membrane proteins were determined, which had a size range of 95 kDa to 1 MDa. 

The resolutions attained in all maps allowed the secondary structure to be visualised 

and for cytochrome bc1 and TRPC5 the resolution not only allowed for side chains to 

be fitted into the density, but it also enabled visualisation of how small molecules bind 

to the target. SBDD programs rely on using models of the protein which accurately 

model the position of side chains within the structure, thus guiding the design of new 

compounds. As shown in the examples described above, cryo-EM is now capable of 

producing maps of sufficient quality to obtain this vital structural information and can 

therefore be thought of as a powerful tool in SBDD programs, particularly for 

membrane proteins which have traditionally been difficult to crystallise. An overview 

of the maps obtained and resolutions achieved is shown in Figure 7.1. 

 

 

 

Figure 7.1: An overview of all of the systems studied during the PhD project. The structure of five 

unique membrane proteins have been determined to resolutions high enough to visualise secondary 

structural information. For bc1. TRPC5 and qNOR, resolutions below 3.5 Å were obtained which allowed 

the side chains to be accurately modelled into the map. These structural details can be utilised in the 

design of new therapeutic agents thus proving that cryo-EM can play a role in drug discovery programs. 

 



 190 

7.2 Outlook 

At present, X-ray crystallography still remains the gold-standard for SBDD 

programs due to the high-resolution of the structures obtained, throughput of ligands 

which can be screened and speed of structure determination. The resolution attained 

(often below ~2 Å) allows the inhibitor to be accurately modelled into the density and 

enables interactions with water or metal ions to be visualised. However, cryo-EM is 

becoming a powerful tool in structure determination, as shown by the recent 

‘resolution revolution’ which has resulted in a huge rise of EM maps being deposited 

into the EMDB. Moreover, the structure of important therapeutic targets such as 

GPCRs, ABC-transporters, LAT1 and HERG have now been determined to high-

resolution, some with small molecule inhibitors bound. These structural insights can 

be utilised in the design of new therapeutics thus benefiting drug discovery programs. 

The cryo-EM field is rapidly evolving, with developments in hardware (detectors), 

processing algorithms and grid preparation constantly being made. If the 

improvements continue at such a rapid pace, then cryo-EM will play an even bigger 

role in drug discovery programs thus allowing a broad range of new medicines to be 

developed. 
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8 Experimental 

 

General Information and Instrumentation 

All reagents were obtained from commercial suppliers and were used without 

purification. Reactions were carried out under nitrogen with solvents which were 

obtained dry from commercial suppliers. Analytical TLC was carried out using silica 

coated aluminium plates and spots were visualised using UV radiation unless 

otherwise stated. Silica gel (230-400 mesh, Merck) was used during flash 

chromatography and solvents were removed under vacuum using a Buchi rotatory 

evaporator at diaphragm pump pressure. Reverse phase chromatography (Biotage) 

was performed using an Isolera Four EXP with Spektra. 

 

1H and 13C NMR was carried out on a Bruker DPX300 Fourier transform 

spectrometer or a Bruker Avance 500 using an internal deuterium lock. The chemical 

shifts were reported in parts per million (ppm) and were reported downfield from a 

TMS reference peak at 0 ppm. Abbreviations have been used when reporting the 

NMR data, ie s = singlet, d = doublet, t = triplet, m = multiplet etc. Proton and carbon 

assignments have been carried out using COSY and HSQC spectra analysis. 

Assignments for the tetrahydrobenzothiophene cores are based on the numbering 

shown in Figure 8.1. 

 

Figure 8.1: The numbering for the NMR assignments for the tetrahydrobenzothiophene core.  

 

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum One FT-IR 

spectrophotometer using OPUS software and the vibrational frequencies were 

recorded in wavenumbers (cm-1). High Resolution Mass Spectra (HRMS) was 

performed using a Bruker MaXis Impact Time of Flight spectrometer which uses 

electrospray ionization. HPLC analysis was carried out on a Dionex HPLC system 

using a Thermo Electron Corporation Hyperprep HS C18 column (8 µm, 250 × 

4.6 mm) and diode array as a detector. Unless otherwise stated a water and 

acetonitrile (5-95%) gradient was used as the solvent. Liquid Chromatography Mass 

Spectrometry (LCMS) was performed on a Bruker Daltronics or Bruker HCT-Ultra 

running a gradient of increasing acetonitrile in water. Compounds were detected on 
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a Bruker mass spectrum analyser. Specific rotation measurements were recorded 

using a Schmidt and Haensch Polartronic H532 polarimeter, using a 50 mm cell and 

the Sodium D line (589 nm). [α]D are reported in units of 10-1 deg dm2 g-1. 

 

methyl 2-{[(tert-butoxy)carbonyl]amino}-6-tert-butyl-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxylate (15) 

2-amino-6-tertbutyl-4,5,6,7-tetrahydrobenzothiophene-

3-carboxylic acid methyl ester (500 mg, 1.87 mmol) 

was added to 1,4-dioxane (20 mL), DMAP 

(23 mg, 0.187 mmol) and di-tertbutyl decarbonate 

(860 mg, 3.93 mmol). The reaction mixture was heated 

at 80 °C overnight before hydrazine hydrate (0.17 mL, 5.6 mmol) was added. The 

reaction was stirred at 40 °C for 1.5 hours. Once cool, the solvent was removed in 

vacuo and the crude material was purified using column chromatography 

(19:1 petrol/EtOAc) to yield the title compound as a white solid (586 mg, 86%); Rf: 

0.91 (EtOAc); δH (CDCl3): 10.18 (s, 1H, N-H), 3.76 (s, 3H, O-CH3), 2.91 (dd, 1H, J = 

17, 6.5  Hz, 4-H), 2.57 (dd 1H, J = 15.5, 5 Hz, 7-H), 2.50-2.42 (m, 1H, 4-H), 2.32-2.26 

(m, 1H, 7-H), 1.94-1.92 (m, 1H, 5-H), 1.45 (s, 9H, O-C(CH3)3), 1.42-1.35 (m, 1H, 6-

H), 1.20 (qd, 1H, J = 12.5, 5 Hz, 5-H), 0.86 (s, 9H, C(CH3)3); δC (CDCl3): 166.76 (CO-

OMe), 152.19 (C2), 150.16 (NH-CO), 130.98 (C7a), 125.75 (C3a), 109.56 (C3), 81.80 

(O-C(CH3)3), 51.21 (O-CH3), 45.01 (C6), 32.43 (C(CH3)3), 28.24 (O-C(CH3)3), 27.52 

(C7), 27.30 (C(CH3)3), 25.73 (C4), 24.41 (C5); IR (vmax/cm-1); 3352, 2981, 2945, 

2851, 2802, 1711 and 1681; HPLC (MeCN): 100%; HRMS (ES): Found [M+H]+ 

368.1885, requires [MH] 368.1817; [a]D 0.00 (0.33, MeOH). 

 

ethyl 2-{[(tert-butoxy)carbonyl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-

carboxylate (16) 

Ethyl-2-amino-4,5,6,7-tetrahydrobenzothiophene-3-

carboxylate (1.0 g, 4.44 mmol) was added to 1,4-dioxane 

(30 mL), DMAP (54 mg, 0.44 mmol) and di-tertbutyl 

decarbonate (2.03 g, 9.32 mmol). The reaction mixture was 

heated at 80 °C overnight before hydrazine hydrate 

(0.41 mL, 13.3 mmol) was added. The reaction was stirred at 40 °C for 1.5 hours. 

Once cool, the solvent was removed in vacuo and the crude material was purified 

using column chromatography (19:1 petrol/EtOAc) to yield the title compound as a 

white solid (1.33 g, 92%); Rf: 0.56 (19:1 Petrol-EtOAc); δH (CDCl3): 10.25 (s, 1H, N-

H), 4.23 (q, 2H, J = 7.1 Hz, CH2CH3), 2.67 (td, 2H, J = 6.0, 1.9 Hz, 4-H), 2.54 (td, 2H, 
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J = 5.7, 5.0, 2.7 Hz, 7-H), 1.74-1.67 (m, 4H, 7-H, 5-H), 1.45 (s, 9H, (CH3)3), 1.29 (t, 

3H, J = 7.1 Hz, CH2CH3); δC (CDCl3): 166.39 (CO-OEt), 152.21 (NH-CO), 149.88 

(C2), 131.04 (C7a), 125.11 (C3a), 110.07 (C3), 81.76 (C-(CH3)3) 60.22 (CH2CH3), 

28.20 (C-(CH3)3), 26.46 (C7), 24.32 (C4), 23.02 (C6), 22.87 (C5), 14.34 (CH2-CH3); 

IR (vmax/cm-1); 3275, 2979, 2941, 2860, 1716 and 1655; HPLC (acetonitrile): 100%; 

HRMS (ES): Found [M+Na]+ 348.1238, requires [MNa] 348.1245. 

 

ethyl 2-{[(tert-butoxy)carbonyl]amino}-6-methyl-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxylate (17) 

Ethyl-2-amino-6-methyl-4,5,6,7-

tetrahydrobenzothiophene-3-carboxylate 

(1.0 g, 4.18 mmol) was added to 1,4-dioxane (30 mL), 

DMAP (51 mg, 0.418 mmol) and di-tertbutyl decarbonate 

(1.90 g, 8.77 mmol). The reaction mixture was heated at 

80 °C overnight before hydrazine hydrate (0.39 mL, 12.5 mmol) was added. The 

reaction was stirred at 40 °C for 1.5 hours. Once cool, the solvent was removed in 

vacuo and the crude material was purified using column chromatography 

(19:1 petrol/EtOAc) to yield the title compound as a yellow solid (1.21 g, 87%); Rf: 

0.31 (19:1 Petrol-EtOAc); δH (CDCl3): 10.33 (s, 1H, N-H), 4.32, (q, 2H, J = 7 Hz, CH2-

CH3), 2.93 (dt, 1H, J = 17, 2 Hz, 4-H), 2.71-2.62 (m, 2H, 4-H, 7-H), 2.28-2.22 (m, 1H, 

7-H), 1.91-1.86 (m, 2H, 6-H, 5-H), 1.54 (s, 9H, (CH3)3), 1.42-1.34 (m, 1H, 5-H), 1.39 

(t, 3H, J = 7 Hz, CH2-CH3), 1.07 (d, 3H, J = 6.5 Hz, C-CH3); δC (CDCl3): 166.38 (CO-

OEt), 152.21 (NH-CO), 149.98 (C2), 130.72 (C7a), 124.77 (C3a), 109.94 (C3), 81.77 

(C-(CH3)3), 60.22 (CH2-CH3), 32.40 (C7), 31.16 (C5), 29.27 (C6), 28.24 (O-C(CH3)3), 

26.27 (C4), 21.43 (C-CH3), 14.34 (CH2-CH3); IR (vmax/cm-1); 3247, 2977, 2953, 2921, 

2871, 1715 and 1659; HPLC (DMSO): 100%; HRMS (ES): Found [M+Na]+ 362.1396, 

requires [MNa] 362.1402; [a]D 0.01 (0.32, MeOH). 

 

ethyl 6-benzyl-2-{[(tert-butoxy)carbonyl]amino}-4H,5H,6H,7H-thieno[2,3-

c]pyridine-3-carboxylate (18) 

Ethyl-2-amino-6-benzyl-4,5,6,7-

tetrahydrothiopheno[2,3-c]-pyridine-3-carboxylate 

(1.0 g, 3.16 mmol) was added to 1,4-dioxane 

(30 mL), DMAP (51 mg, 0.418 mmol) and di-

tertbutyl decarbonate (1.44 g, 6.63 mmol). The 

reaction mixture was heated at 80 °C overnight before hydrazine hydrate 

(0.24 mL, 9.48 mmol) was added. The reaction was stirred at 40 °C for 1.5 hours. 
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Once cool, the solvent was removed in vacuo and the crude material was purified 

using column chromatography (1:1 petrol/EtOAc) to yield the title compound as a 

yellow solid (659 mg, 51%); Rf: 0.61 (1:1 Petrol-EtOAc); δH (CDCl3): 10.30 (s, 1H, N-

H), 7.39 (dd, 2H, J = 7, 1.5 Hz, 3’-H), 7.36 (dt, 2H, J = 7.5, 1.5 Hz, 2’-H), 7.31 (dt, 1H, 

J = 7, 1.5 Hz, 4’-H), 4.31 (q, 2H, J = 7 Hz, CH2-CH3), 3.71 (s, 2H, N-CH2), 3.57 (s, 2H, 

7-H), 2.87 (t, 2H, J = 7 Hz, 4-H), 2.77 (t, 2H, J = 6 Hz, 5-H), 1.54 (s, 9H, C-(CH3)3), 

1.37 (t, 3H, J = 7 Hz, CH2-CH3); δC (CDCl3): 166.16 (CO-OEt), 152.12 (C2), 150.39 

(NH-CO), 138.22 (C1’), 129.71 (C7a), 129.13 (C3’), 128.36 (C2’), 127.23 (C4’), 

122.71 (C3a), 109.66 (C3), 81.95 (C-(CH3)3), 61.93 (N-CH2), 60.31 (CH2-CH3), 51.36 

(C7), 50.02 (C5), 28.23 (C-(CH3)3), 26.86 (C4), 14.30 (CH2-CH3); IR (vmax/cm-1); 

3253, 3071, 2977, 2949, 2932, 2901, 1722 and 1663; HRMS (ES): Found [M+H]+ 

417.1861, requires [MH] 417.1770. HPLC could not be obtained due to machine fault. 

 

2-{[(tert-butoxy)carbonyl]amino}-6-tert-butyl-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxylic acid (19) 

15 (500 mg, 1.36 mmol) was hydrolysed using NaOH 

(270 mg, 6.75 mmol) dissolved in solvent mixture 

containing MeOH/H2O/THF in a 2:2:1 ratio (20 mL) by 

heating at 80 °C for 3 hours. Once cool, the mixture was 

neutralised using 2M HCl. The resulting precipitate was 

filtered and dried overnight to yield the title compound as a yellow powder 

(440 mg, 91%); Rf: 0.91 (EtOAc); δH (DMSO): 13.10 (s, 1H, O-H), 10.48 (s, 1H, N-H), 

3.03 (dd, 1H, J = 17.5, 4.5 Hz, 4-H), 2.68 (dd, 1H, J = 16, 4 Hz, 7-H), 2.52-2.48 (m, 

1H, 4-H), 2.39 (t, 1H, J = 16, 7-H), 2.00 (dd, 1H, J = 13, 4 Hz, 5-H), 1.55 (s, 9H, O-

C(CH3)3), 1.51-1.42 (m, 1H, 6-H), 1.25 (qd, 1H, J = 12.5, 5 Hz, 5-H), 0.97 (s, 9H, 

C(CH3)3); δC (DMSO): 167.65 (COOH), 151.66 (NH-CO), 148.93 (C2), 131.67 (C7a), 

125.51 (C3a), 110.69 (C3), 82.16 (O-C(CH3)3), 44.88 (C6), 32.64 (C(CH3)3), 28.26 

(O-C(CH3)3), 27.59 (C(CH3)3), 27.45 (C7), 25.71 (C4), 24.37 (C5); IR (vmax/cm-1); 

3292, 2948, 1725 and 1647; HPLC (DMSO): 100%; HRMS (ES): Found [M-H]- 

352.1578, requires [M-H] 352.1572; [a]D -0.01 (0.33, MeOH). 
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2-{[(tert-butoxy)carbonyl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-

carboxylic acid (20) 

16 (1.30 g, 4.0 mmol) was hydrolysed using NaOH 

(720 mg, 10.0 mmol) dissolved in solvent mixture containing 

MeOH/H2O/THF in a 2:2:1 ratio (40 mL) by heating at 80 °C 

for 3 hours. Once cool, the mixture was neutralised using 

2M HCl. The resulting precipitate was filtered and dried 

overnight to yield the title compound as a white solid (907 mg, 77%). Rf: 0.18 (6:1 

Petrol-EtOAc); δH (DMSO): 13.05 (s, 1H, O-H), 10.43 (s, 1H, N-H), 2.68 (t, 2H, J = 

5.7, 4-H), 2.57 (t, 2H, J = 5.7 Hz, 7-H), 1.75-1.67 (m, 4H, 6-H, 5-H), 1.49 (s, 9H, 

(CH3)3); δC (DMSO): 167.67 (COOH), 151.68 (NH-CO), 148.75 (C2), 131.68 (C7a), 

124.93 (C3a), 111.03 (C3), 82.16 (C-(CH3)3), 28.25 ((CH3)3), 26.38 (C4), 24.18 (C7), 

23.03 (C6), 22.71 (C5); IR (vmax/cm-1); 3280, 2980, 2927, 2848, 1722 and 1642; 

HPLC (acetonitrile): 100%; HRMS (ES): Found [M-H]- 296.0963, requires [M-H] 

296.1035. 

 

2-{[(tert-butoxy)carbonyl]amino}-6-methyl-4,5,6,7-tetrahydro-1-

benzothiophene-3-carboxylic acid (21) 

17 (1.20 g, 3.53 mmol) was hydrolysed using NaOH 

(630 mg, 15.9 mmol) dissolved in solvent mixture 

containing MeOH/H2O/THF in a 2:2:1 ratio (40 mL) by 

heating at 80 °C for 3 hours. Once cool, the mixture was 

neutralised using 2M HCl. The resulting precipitate was 

filtered and dried overnight to yield the title compound as a white solid (567 mg, 51%); 

δH (DMSO): 10.49 (s, 1H, N-H), 2.86 (d, 1H, J = 16.5 Hz, 4-H), 2.66 (dd, 1H, J = 16, 

4.5 Hz, 7-H), 2.60-2.56 (m, 1H, 4-H), 2.17 (dd, 1H, J = 15.5, 9.5 Hz, 7-H), 1.81-1.80 

(m, 2H, 6-H, 5-H), 1.48 (s, 9H, (CH3)3), 1.33-1.25 (m, 1H, 5-H), 1.01 (d, 3H, J = 6.5 

Hz, CH3); δC (DMSO): 167.70 (COOH), 151.69 (NH-CO), 148.68 (C2), 131.40 (C7a), 

124.47 (C3a), 111.13 (C3), 82.09 (O-C(CH3)3), 32.25 (C7), 31.00 (C5), 29.26 (C6), 

28.25 (C-(CH3)3), 26.20 (C4), 21.70 (C-CH3); IR (vmax/cm-1); 3277, 2981, 2949, 2911, 

2866, 2815, 1721 and 1644; HPLC (DMSO): 100%; HRMS (ES): Found [M-H]- 

310.1119, requires [M-H] 310.1191; [a]D 0.00 (0.92, MeOH). 
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6-benzyl-2-{[(tert-butoxy)carbonyl]amino}-4H,5H,6H,7H-thieno[2,3-c]pyridine-

3-carboxylic acid (22) 

18 (600 mg, 1.44 mmol) was hydrolysed using 

NaOH (260 mg, 6.48 mmol) dissolved in solvent 

mixture containing MeOH/H2O/THF in a 2:2:1 ratio 

(20 mL) by heating at 80 °C for 3 hours. The 

organic solvent was removed in vacuo and the 

resulting precipitate was filtered and dried overnight to yield the title compound as a 

yellow solid (378 mg, 68%). Rf: 0.22 (EtOAc); δH (DMSO): 13.27, (1H, s, N-H), 7.34, 

(s, 2H, 3’-H), 7.33 (d, 2H, J = 1 Hz, 2’-H), 7.28-7.25 (m, 1H, 4’-H), 3.62 (s, 2H, N-

CH2), 3.40 (s, 2H, 7-H), 2.83 (t, 2H, J = 5.5 Hz, 4-H), 2.61 (t, 2H, J = 5.5 Hz, 5-H), 

1.45 (s, 9H, C-(CH3)3); δC (DMSO): 169.03 (COOH), 143.31 (NH-CO), 139.07 (C1’), 

132.34 (C2), 129.21 (C3’), 128.68 (C2’), 127.41 (C4’), 119.97 (C7a), 119.07 (C3a), 

119.17 (C3), 79.86 (C-(CH3)3), 61.80 (N-CH2), 51.61 (C7), 50.63 (C5), 28.53 (C-

(CH3)3), 27.35 (C4); IR (vmax/cm-1); 3489, 3355, 2980, 2943, 2801, 1710 and 1685; 

HPLC (DMSO): 100%; HRMS (ES): [M-H]- Found 387.1375, requires [M-H] 387.1457. 

 

tert-butyl N-[6-tert-butyl-3-(phenylcarbamoyl)-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl]carbamate (23) 

To a solution of 19 (200 mg, 0.56 mmol) and 

triethylamine (0.15 mL, 1.13 mmol) in EtOAc (20 mL) 

was added HCTU (234 mg, 0.56 mmol) and the mixture 

was stirred at RT for 10 minutes. Aniline hydrochloride 

(147 mg, 1.13 mmol) was added and the reaction was 

stirred at RT for a further 5 hours. The mixture was 

washed with water (10 mL) and extracted with EtOAc (3 x 10 mL). The organic layers 

were combined, dried (MgSO4) and solvent removed in vacuo. The crude material 

was purified by column chromatography using petrol/EtOAc (8:1) to yield the title 

compound as a glassy yellow solid (125 mg, 52%). Rf: 0.91 (EtOAc); δH (CDCl3): 

10.74 (s, 1H, NH), 7.46 (d, 2H, J = 7.5 Hz, 2’-H), 7.30 (t, 2H, J = 7.5 Hz, 3’-H), 7.08 

(t, 1H, J = 7.5 Hz, 4’-H), 2.93 (dd, 1H, J = 14.5, 5 Hz, 7-H), 2.71-2.68 (m, 1H, 7-H), 

2.64 (dd, 1H, J = 16, 5 Hz, 4-H), 2.38 (t, 1H, J = 13 Hz, 4-H), 2.06 (dq, 1H, J = 11, 2 

Hz, 5-H),1.51-1.47 (m, 1H, 6-H), 1.44 (s, 9H, O-C(CH3)3), 1.38-1.24 (m, 1H, 5-H), 

0.90 (s, 9H, C(CH3)3); δC (CDCl3): 164.43 (CO-NH-Ar), 152.46 (NH-CO), 148.61 (C2), 

137.42 (C1’), 129.13 (C2’), 127.37 (C7a), 126.69 (C3a), 124.68 (C4’), 120.77 (C3’), 

112.44 (C3), 81.30 (O-C(CH3)3) 44.81 (C6), 28.27 (O-C(CH3)3), 28.07 (C7), 27.26 (C-
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(CH3)3), 25.87 (C4), 24.71 (C5); HPLC (DMSO): 75%; HRMS (ES): Found [M+Na]+ 

451.2028, requires [MNa] 451.2124. Product was used before IR could be obtained. 

 

tert-butyl N-{3-[(4-chlorophenyl)carbamoyl]-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl}carbamate (24) 

To a solution of 20 (200 mg, 0.67 mmol) and triethylamine 

(0.19 mL, 1.35 mmol) in DCM (20 mL) was added HCTU 

(278 mg, 0.67 mmol) and the mixture was stirred at RT for 

10 minutes. To this was added 4-chloroaniline (171 mg, 

1.35 mmol) and the reaction was stirred at RT overnight. The 

solvent was removed in vacuo and the crude material was 

purified by column chromatography using petrol/EtOAc (3:1) 

to yield the title compound as a white solid (110 mg, 40%); Rf: 0.49 (3:1 petrol/EtOAc); 

δH (CDCl3): 10.76, (s, 1H, N-H), 7.56 (s, 1H, N-H), 7.51 (dt, 2H, J = 6.5, 2 Hz, 2’-H), 

7.34 (dt, 2H, J = 6.5, 2 Hz, 3’-H), 2.84 (t, 2H, J = 4 Hz, 4-H), 2.71 (t, 2H, J = 4 Hz, 7-

H), 1.92-1.87 (m, 4H, 6-H, 5-H), 1.53 (s, 9H, (CH3)3); δC (CDCl3): 164.36 (CO-NH-Ar), 

152.45 (NH-CO), 148.71 (C2), 136.04 (C1’), 129.65 (C4’), 129.13 (C3’), 126.81 (C7a), 

126.52 (C3a), 121.89 (C2’), 112.59 (C3), 81.74 (C-(CH3)3), 28.25 ((CH3)3), 26.92 (C4), 

24.30 (C7), 23.02 (C6), 22.65 (C5); IR (vmax/cm-1): 3458, 3199, 2972, 2931, 2840, 

1707 and 1632; HPLC (DMSO): 97%; HRMS (ES): Found [M+H]+ 407.1188, requires 

[MH] 407.1118. 

 

tert-butyl N-{3-[(3-methylphenyl)carbamoyl]-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl}carbamate (25) 

To a solution of 20 (250 mg, 0.84 mmol) and triethylamine 

(0.23 mL, 1.68 mmol) in DCM (20 mL) was added HCTU 

(348 mg, 0.84 mmol) and the mixture was stirred at RT for 

10 minutes. To this was added m-toluidine (0.14 mL, 

1.26 mmol) and the reaction was stirred at RT overnight. The 

solvent was removed in vacuo and the crude material was 

purified by column chromatography using petrol/EtOAc (3:1) to yield the title 

compound as a white solid (123 mg, 38%); Rf: 0.35 (3:1 petrol/EtOAc); δH (CDCl3): 

10.81 (s, 1H, N-H), 7.52 (s, 1H, N-H), 7.38 (s, 1H, 2’-H), 7.33 (d, 1H, J = 8 Hz, 6’-H), 

7.26 (d, 1H, J = 8 Hz, 5’-H), 6.99 (d, 1H, J = 7.5 Hz, 4’-H), 2.84 (t, 2H, J = 4 Hz, 4-H), 

2.71 (t, 2H, J = 4 Hz, 7-H), 2.40 (s, 3H, Ar-CH3), 1.92-1.88 (m, 4H, 6-H, 5-H), 1.53 (s, 

9H, (CH3)3); δC (CDCl3): 164.42 (CO-NHAr), 152.49 (NH-CO), 148.25 (C2), 139.10 

(C1’), 137.31 (C3’), 128.95 (C5’), 126.73 (C7a), 126.62 (C3a), 125.52 (C4’), 121.38 
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(C2’), 117.87 (C6’), 112.94 (C3), 81.58 (C-(CH3)3), 28.26 (C-(CH3)3), 26.91 (C4), 

24.32 (C7), 23.05 (C6), 22.70 (C5), 21.52 (Ar-CH3); IR (vmax/cm-1): 3435, 3243, 2974, 

2937, 2865, 1714 and 1621; HRMS (ES): Found [M+Na]+ 409.1558, requires [MNa] 

409.1562. HPLC could not obtained due to machine fault. 

 

tert-butyl N-[6-methyl-3-(phenylcarbamoyl)-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl]carbamate (26) 

To a solution of 21 (210 mg, 0.67 mmol) and triethylamine 

(0.19 mL, 1.34 mmol) in DCM (20 mL) was added HCTU 

(280 mg, 0.67 mmol) and the mixture was stirred at RT for 

10 minutes. Aniline hydrochloride (175 mg, 1.34 mmol) 

was added and the reaction was stirred at RT overnight. 

The solvent was removed in vacuo and the crude material 

was purified by column chromatography (1:1 petrol/EtOAc) to yield the title compound 

as a glassy yellow solid (123 mg, 47%); Rf: 0.55 (1:1 Petrol-EtOAc); δH (CDCl3): 9.66 

(s, 1H, N-H), 7.95 (d, 1H, J = 9 Hz, N-H), 7.45 (dd, 2H, J = 8.2, 6 Hz, 2’-H), 7.36 (dd, 

2H, J = 8.9, 2 Hz, 3’-H), 7.08 (t, 1H, J = 7.6 Hz, 4’-H), 3.07 (dt, 1H, J = 17, 2.35 Hz, 

4-H), 2.87-2.80 (m, 2H, 7-H, 4-H), 2.68 (dt, 2H, J = 16.7, 5.2 Hz, 7-H, 6-H), 2.26-2.20 

(m, 2H, 5-H), 1.50 (s, 9H, C-(CH3)3), 1.43 (d, 3H, J = 7.8 Hz, C-CH3); δC (CDCl3): 

162.1 (CO-NH-Ar), 156.2 (NH-CO), 151.6 (C2), 137.4 (C7a), 135.5 (C1’), 129.6 

(C3a), 129.1 (C3’), 126.4 (C3), 126.3 (C2’), 124.7 (C4’), 81.6 (O-C(CH3)3), 32.4 (C7), 

31.1 (C5), 29.1 (C6), 28.2 (C-(CH3)), 26.7 (C4), 21.3 (CH3); IR (vmax/cm-1); 3090, 

2952, 2925, 2161, 2099, 1736 and 1717; HRMS (ES): Found [M+Na]+ 409.1553, 

requires [MNa] 409.1562. HPLC could not obtained due to machine fault. 

 

tert-butyl N-(3-{[(4-methoxyphenyl)methyl]carbamoyl}-6-methyl-4,5,6,7-

tetrahydro-1-benzothiophen-2-yl)carbamate (27) 

To a solution of 21 (210 mg, 0.67 mmol) and 

triethylamine (0.19 mL, 1.34 mmol) in DCM (20 mL) 

was added HCTU (280 mg, 0.67 mmol) and the 

mixture was stirred at RT for 10 minutes. 4-

methoxybenzylamine (0.17 mL, 1.34 mmol) was 

added and the reaction was stirred at RT overnight. 

The solvent was removed in vacuo and the crude material was purified by column 

chromatography using petrol/EtOAc (1:1) to yield the title compound as a white solid 

(100 mg, 31%); Rf: 0.58 (1:1 Petrol-EtOAc); δH (CDCl3): 11.06 (s, 1H, N-H), 7.26 (dd, 

2H, J = 7, 3 Hz, 2’H), 6.91 (dd, 2H, J = 6.5, 2 Hz, 3’-H), 6.12 (s, 1H, N-H), 4.55 (t, 2H, 
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J = 6 Hz, NH-CH2), 3.83 (s, 3H, O-CH3), 2.75-2.71 (m, 2H, 4-H, 7-H), 2.62-2.60 (m, 

1H, 4-H), 2.28 (dq, 1H, J = 6.5, 2Hz, 7-H), 1.92-1.88 (m, 2H, 5-H, 6-H), 1.53 (s, 9H, 

C-(CH3)3), 1.45-1.41 (m, 1H, 5-H); δC (CDCl3): 166.12 (CO-NH-CH2), 159.08 (C4’), 

152.49 (NH-CO), 147.75 (C2), 130.18 (C7a), 128.90 (C2’), 126.71 (C1’), 125.88 

(C3a), 114.24 (C3’), 112.11 (C3), 81.36 (C-(CH3)3), 55.33 (O-CH3), 43.00 (NH-CH2), 

32.42 (C7), 31.09 (C5), 28.97 (C6), 28.28 (C-(CH3)3), 26.60 (C4), 21.26 (C-CH3); IR 

(vmax/cm-1); 3481, 3167, 2976, 2959, 2931, 2873, 2833, 1700 and 1614; HPLC 

(DMSO): 100%; HRMS (ES): Found [M-H]- 429.1848, requires [M-H] 429.1926. 

 

tert-butyl N-{6-methyl-3-[(3-methylphenyl)carbamoyl]-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl}carbamate (28) 

To a solution of 21 (250 mg, 0.80 mmol) and triethylamine 

(0.22 mL, 1.60 mmol) in DCM (20 mL) was added HCTU 

(332 mg, 0.80 mmol) and the mixture was stirred at RT for 

10 minutes. To this was added m-toluidine (0.18 mL, 

1.20 mmol) and the reaction was stirred at RT overnight. 

The solvent was removed in vacuo and the crude material 

was purified by column chromatography using petrol/EtOAc (3:1) to yield the title 

compound as a white solid (112 mg, 35%); Rf: 0.37 (3:1 petrol/EtOAc); δH (CDCl3): 

10.83 (s, 1H, N-H), 7.53 (s, 1H, N-H), 7.39 (s, 1H, 2’-H), 7.33 (d, 1H, J = 8 Hz, 6’-H), 

7.26 (d, 1H, J = 8 Hz, 5’-H), 6.99 (d, 1H, J = 7.5 Hz, 4’-H), 2.94 (dt, 1H, J = 14, 3 Hz, 

4-H), 2.84-2.81 (m, 2H, 4-H, 7-H), 2.40 (s, 3H, Ar-CH3), 2.35-2.30 (m, 1H, 7-H), 2.03-

1.96 (m, 2H, 6-H, 5-H), 1.53 (s, 9H, (CH3)3), 1.51-1.49 (m, 1H, 5-H), 1.12 (d, 3H, J = 

6.5 Hz, C-CH3); δC (CDCl3): 164.44 (CO-NH-Ar), 148.41 (C2), 139.10 (C1’), 137.31 

(C3’), 128.95 (C5’), 126.36 (C7a), 125.52 (C4’), 125.26 (C3a), 121.40 (C2’), 117.88 

(C6’), 112.74 (C3), 81.58 (C-(CH3)3), 32.45 (C7), 31.16 (C5), 29.05 (C6), 28.26 (C-

(CH3)3), 26.71 (C4), 21.52 (Ar-CH3), 21.29 (C-CH3), CO-NH was unresolved; IR 

(vmax/cm-1): 3446, 3207, 2973, 2949, 2922, 2869, 2841, 1709 and 1627; HPLC 

(DMSO): 100%; HRMS (ES): Found [M+H]+ 401.1892, requires [MH] 401.1821. 
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tert-butyl N-[6-benzyl-3-(phenylcarbamoyl)-4H,5H,6H,7H-thieno[2,3-c]pyridin-2-

yl]carbamate (29) 

To a solution of 22 (200 mg, 0.51 mmol) and 

triethylamine (0.14 mL, 1.03 mmol) in DCM 

(20 mL) was added HCTU (214 mg, 0.51 mmol) 

and the mixture was stirred at RT for 30 minutes. 

Aniline hydrochloride (133 mg, 1.03 mmol) was 

added and the reaction was stirred at RT 

overnight. The solvent was removed in vacuo and the crude material was purified by 

column chromatography (2:1 Petrol-EtOAc) to yield the title compound as a glassy 

yellow solid (90 mg, 37%); Rf: 0.84 (EtOAc); δH (CDCl3): 10.79 (s, 1H, N-H), 7.51 (dd, 

2H, J = 1.5, 9 Hz, 2’’-H), 7.43-7.37 (m, 2H, 2’-H,), 7.32 (dt, 1H, J = 7, 1.5 Hz, 4’-H)  

7.20-7.16 (m, 4H, 3’’-H, 3’-H), 6.78 (t, 1H, J = 7.5 Hz, 4’’-H), 3.75 (s, 2H, N-CH2), 3.65 

(s, 2H, 7-H), 2.96 (t, 2H, J = 5 Hz, 4-H), 2.87 (t, 2H, J = 5 Hz, 5-H), 1.53 (s, 9H, O-

C(CH3)3); δC (CDCl3): 164.20 (CO-NH-Ar), 148.97 (NH-CO), 146.35 (C2), 137.78 

(C1’), 137.29 (C1’’), 129.15 (C3’), 128.48 (C2’), 127.46 (C4’), 125.45 (C7a), 124.77 

(C3’’), 124.28 (C3a), 120.74 (C2’’), 115.12 (C4’’), 112.33 (C3), 81.79 (O-C(CH3)3), 

61.97 (N-CH2), 51.64 (C7), 49.72 (C5), 28.25 (C-(CH3)3), 27.25 (C4); IR (vmax/cm-1); 

3271, 2975, 2929, 2806, 1712 and 1634; HPLC (DMSO): 74%; HRMS (ES): Found 

[M+Na]+ 486.1816, requires [MNa] 486.1827. 

 

tert-butyl N-(6-benzyl-3-{[(4-methoxyphenyl)methyl]carbamoyl}-4H,5H,6H,7H-

thieno[2,3-c]pyridin-2-yl)carbamate (30) 

To a solution of 22 (200 mg, 0.51 mmol) and 

triethylamine (0.14 mL, 1.03 mmol) in DCM 

(20 mL) was added HCTU (214 mg, 

0.51 mmol) and the mixture was stirred at RT 

for 30 minutes. 4-methoxybenzylamine 

(0.19 mL, 1.03 mmol) was added and the 

reaction was stirred at RT overnight. The solvent was removed in vacuo and the crude 

material was purified by column chromatography (1:1 Petrol-EtOAc) to yield the title 

compound as a yellow solid (80 mg, 31%); Rf: 0.21 (EtOAc); δH (CDCl3): 11.00 (s, 

1H, N-H), 7.33 (q, 4H, J = 8 Hz, 2’-H, 3’-H), 7.28 (t, 1H, J = 5 Hz, 4’-H), 7.21 (d, 2H, 

J = 8.5, 3 Hz, 2’’-H), 6.87 (dt, 2H, J = 8.5, 3 Hz, 3’’-H), 5.99 (s, 1H, N-H), 4.50 (d, 2H, 

J = 5.5 Hz, NH-CH2), 3.80 (s, 3H, O-CH3), 3.67 (s, 2H, N-CH2), 3.56 (s, 2H, 7-H), 2.74 

(t, 2H, J = 5 Hz, 4-H), 2.70 (t, 2H, J = 5 Hz, 5-H); δC (CDCl3): 165.83 (CO-NH-CH2Ar), 

159.11 (C4’’), 152.44 (NH-CO), 148.23 (C2), 137.88 (C1’’), 130.00 (C1’), 129.10 
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(C3’’), 128.89 (C2’), 128.42 (C3’), 127.37 (C4’), 125.79 (C7a), 123.79 (C3a), 114.27 

(C2’’), 111.79 (C3), 81.55 (C-(CH3)3), 61.89 (N-CH2), 55.32 (O-CH3), 51.63 (C7), 

49.63 (C5), 43.02 (NH-CH2), 28.27 (C-(CH3)3), 27.11 (C4); IR (vmax/cm-1): 3218, 2976, 

2930, 2835, 1710 and 1613; HRMS (ES): Found [M+H]+ 508.2246, requires [MH] 

508.2192. HPLC could not be obtained due to machine fault.  

 

3-{[6-tert-butyl-3-(phenylcarbamoyl)-4,5,6,7-tetrahydro-1-benzothiophen-2-

yl]carbamoyl}propanoic acid (31) 

The boc-protected material 23 (110mg, 0.26 mmol) 

was stirred in a 1:1 ratio of HCl in dioxane (1 mL) 

and DCM (1 mL) for 8 hours. The deprotected 

material was isolated by removing the solvent in 

vacuo which was used crude without further 

purification. The material (40 mg, 0.12 mmol) and 

succinic anhydride (15 mg, 0.15 mmol) were 

dissolved in anhydrous DCM (5 mL) and the reaction mixture was heated at reflux for 

3 hours. The solvent was removed in vacuo and the crude material was purified via 

column chromatography (EtOAc) to yield the title compound as a brown solid (8.7 mg, 

16%). Rf: 0.25 (EtOAc); δH (CDCl3): 11.86 (s, 1H, N-H), 7.56 (s, 1H, N-H), 7.45 (d, 2H 

J = 8 Hz, 2’-H), 7.31 (t, 2H, J = 8 Hz, 3’-H) 7.10 (t, 1H, J = 8 Hz, 4’-H), 2.94 (dd, 1H, 

J = 15, 5 Hz, 7-H), 2.71-2.69 (m, 3H, 7-H, CH2-COOH), 2.65 (d, 1H, J = 5.5 Hz, 4-H), 

2.38 (t, 1H, J = 13 Hz, 4-H), 2.07 (dd, 1H, J = 13, 5 Hz, 5-H), 1.50-1.43 (m, 1H, 6-H), 

1.38-1.32 (m, 1H, 5-H), 1.18 (s, 2H, CO-CH2), 0.89 (9H, s, (CH3)3); δC (CDCl3): 176.38 

(COOH), 168.55 (CO-CH2), 164.54 (NH-CO), 146.10 (C1’), 137.12 (C7a), 129.21 

(C2’), 126.42 (C3a), 125.00 (C4’), 120.96 (C3’), 113.90 (C3), 32.47 (C(CH3)3), 31.01 

(CH2COOH), 30.2 (C6), 28.86 (CO-CH2), 27.94 (C7), 27.25 (C(CH3)3), 25.93 (C4), 

24.68 (C5); IR (vmax/cm-1); 3282, 3043, 2958, 2925, 2853, 1713 and 1664; HPLC 

(DMSO): 82%; HRMS (ES): Found [M-H]- 427.1689, requires [M-H] 427.1770. 
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3-({3-[(4-chlorophenyl)carbamoyl]-4,5,6,7-tetrahydro-1-benzothiophen-2-

yl}carbamoyl)propanoic acid (32) 

The boc-protected material 24 (100 mg, 0.26 mmol) was 

stirred in a 1:1 ratio of HCl in dioxane (1.5 mL) and DCM 

(1.5 mL) for 8 hours. The deprotected material was 

isolated by removing the solvent in vacuo which was 

used crude without further purification. The material 

(80 mg, 0.26 mmol) and succinic anhydride (52 mg, 

0.52 mmol) were stirred in anhydrous THF (5 mL) 

overnight at 65 °C. The solvent was removed in vacuo 

and the crude material was purified via reverse phase chromatography (H2O-MeCN 

gradient) to yield the title compound as a yellow solid (24.7 mg, 23%). Rf: 0.54 

(EtOAc); δH (MeOD): 7.55 (dd, 2H, J = 7, 2 Hz, 2’-H), 7.23 (dd, 2H, J = 7, 2 Hz, 3’-H), 

2.84 (s, 2H, 4-H), 2.65-2.55 (m, 6H, 7-H, CO-CH2, CH2-COOH), 1.80-1.70 (m, 4H, 6-

H, 5-H); δC (MeOD): 174.71 (COOH), 172.41 (NH-CO-CH2), 164.58 (CO-NH), 149.16 

(C2), 137.09 (C1’), 129.23 (C4’), 128.87 (C7a), 128.36 (C3’), 128.10 (C3a), 121.72 

(C2’), 119.28 (C3), 30.34 (CH2-COOH), 28.41 (CO-CH2), 24.87 (C4), 23.81 (C7), 

22.78 (C6), 22.56 (C5); IR (vmax/cm-1): 3328, 3009, 2927, 2655, 1721, 1687 and 1618; 

HPLC (DMSO): 97%; HRMS (ES): Found [M-H]- 405.0676, requires [M-H] 405.0754. 

 

3-({3-[(3-methylphenyl)carbamoyl]-4,5,6,7-tetrahydro-1-benzothiophen-2-

yl}carbamoyl)propanoic acid (33) 

The boc-protected material 25 (110 mg, 0.28 mmol) was 

stirred in a 1:1 ratio of HCl in dioxane (1.5 mL) and DCM 

(1.5 mL) for 14 hours. The deprotected material was 

isolated by removing the solvent in vacuo which was 

used crude without further purification. The material 

(90 mg, 0.31 mmol) and succinic anhydride (63 mg, 

0.63 mmol) were stirred in anhydrous THF (4 mL) 

overnight at 65 °C. The solvent was removed in vacuo and the crude material was 

purified via reverse phase chromatography (H2O-MeCN gradient) to yield the title 

compound as a yellow solid (6 mg, 3%). Rf: 0.46 (EtOAc); δH (DMSO): 12.16 (s, 1H, 

N-H), 10.63 (s, 1H, N-H), 9.72 (s, 1H, O-H), 7.58 (s, 1H, 2’-H), 7.48 (d, 1H, J = 7.5 

Hz, 6’-H), 7.20 (t, 1H, J = 7.5 Hz, 5’-H), 6.90 (d, 1H, J = 7.5 Hz, 4’-H), 2.63-2.62 (m, 

6H, 7-H, 4-H, CH2-COOH), 2.5 (s, 2H, CO-CH2), 2.30 (s, 3H, Ar-CH3), 1.77 (d, 2H, J 

= 4 Hz, 6-H), 1.71 (d, 2H, J = 4 Hz, 5-H); δC (DMSO): 174.06 (COOH), 169.50 (CO-

NHAr), 163.55 (NH-CO), 139.51 (C2), 138.49 (C1’), 138.14 (C3’), 130.01 (C7a), 
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128.84 (C5’), 126.72 (C3a), 124.59 (C4’), 120.91 (C2’), 120.41 (C2), 117.59 (C6’), 

30.69 (CH2-COOH), 29.26 (CO-CH2), 24.98 (C4), 24.18 (C7), 23.21 (C6), 22.78 (C5), 

21.69 (Ar-CH3); IR (vmax/cm-1): 3321, 3284, 3041, 2921, 2846, 1704, 1687 and 1613; 

HPLC (DMSO): 93%; HRMS (ES): Found [M-H]- 385.1222, requires [M-H] 385.1300. 

 

3-{[6-methyl-3-(phenylcarbamoyl)-4,5,6,7-tetrahydro-1-benzothiophen-2-

yl]carbamoyl}propanoic acid (34) 

The boc-protected material 26 (120 mg, 0.31 mmol) 

was stirred in a 1:1 ratio of HCl in dioxane (1.5 mL) 

and DCM (1.5 mL) for 8 hours. The deprotected 

material was isolated by removing the solvent in vacuo 

which was used crude without further purification. The 

material (80 mg, 0.28 mmol) and succinic anhydride 

(34 mg, 0.36 mmol) were stirred in anhydrous THF (4 

mL) overnight at 65 °C. The solvent was removed in vacuo and the crude material 

was purified via reverse phase chromatography (H2O-MeCN gradient) to yield the title 

compound as a white solid (12.3 mg, 10%). Rf: 0.51 (EtOAc); δH (DMSO): 12.16 (s, 

1H, O-H), 10.64 (s, 1H, N-H), 9.81 (s, 1H, N-H), 7.70 (dd, 2H, J = 9, 1 Hz, 2’-H), 7.32 

(t, 2H, J = 7.5 Hz, 3’-H), 7.08 (dt, 1H, J = 7.5, 1 Hz, 4’-H), 2.73 (dd, 1H, J = 16, 5 Hz, 

7-H), 2.65-2.64 (m, 2H, 4-H), 2.63 (t, 2H, J = 7, CH2-COOH), 2.53 (t, 2H, J = 2, CO-

CH2), 2.23 (dq, 1H, J = 10, 2 Hz, 7-H), 1.88-1.80 (m, 2H, 6-H, 5-H), 1.37-1.28 (m, 1H, 

5-H), 1.05 (d, 3H, J = 2.5 Hz, C-CH3); δC (DMSO): 174.05 (COOH), 169.49 (CO-NH-

Ar), 163.61 (NH-CO), 139.61 (C1’), 138.55 (C2), 129.71 (C7a), 128.99 (C3’), 126.44 

(C3a), 123.90 (C4’), 120.42 (C2’), 120.22 (C3), 32.31 (C7), 31.02 (C5), 30.67 (CH2-

COOH), 29.49 (C6), 29.24 (CO-CH2), 24.72 (C4), 21.77 (C-CH3); IR (vmax/cm-1); 

3307, 2923, 2840, 1706, 1687 and 1613; HPLC (DMSO): 93%; HRMS (ES): Found 

[M-H]- 385.1222, requires [M-H] 385.1300. 

 

3-[(3-{[(4-methoxyphenyl)methyl]carbamoyl}-6-methyl-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl)carbamoyl]propanoic acid (35) 

The boc-protected material 27 (80 mg, 0.19 mmol) 

was stirred in a 1:1 ratio of HCl in dioxane (1.5 mL) 

and DCM (1.5 mL) for 8 hours. The deprotected 

material was isolated by removing the solvent in 

vacuo which was used crude without further 

purification. The material (95 mg, 0.29 mmol) and 

succinic anhydride (35 mg, 0.35 mmol) were stirred in anhydrous THF (3 mL) 
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overnight at 65 °C. The solvent was removed in vacuo and the crude material was 

purified via reverse phase chromatography (H2O-MeCN gradient) to yield the title 

compound as a white solid (5 mg, 25%). Rf: 0.54 (EtOAc); δH (DMSO): 11.12 (s, 1H, 

O-H), 8.14 (s, 1H, N-H), 7.96 (s, 1H, N-H), 7.26 (d, 2H, J = 8.5 Hz, 2’-H), 6.89 (d, 2H, 

J = 8.5 H, 3’-H), 4.38 (dd, 2H, J = 15, 6 Hz, NH-CH2), 2.70 (d, 1H, J = 5 Hz, 7-H), 

2.68-2.66 (m, 2H, 4-H), 2.62 (t, 2H, J = 7 Hz, CH2-COOH), 2.53 (s, 2H, CO-CH2), 2.21 

(dq, 1H, J = 9.5, 1.5 Hz, 7-H), 1.83-1.79 (m, 2H, 6-H, 5-H), 1.37–1.27 (m, 1H, 5-H), 

1.02 (d, 3H, J = 6.5 Hz, C-CH3); δC (DMSO): 174.02 (COOH), 169.20 (CO-NH-CH2), 

165.35 (NH-CO), 163.59 (C4’), 158.62 (C2), 140.77 (C1’), 131.79 (C7a), 129.05 (C2’), 

128.98 (C3a), 117.68 (C3), 114.15 (C3’), 55.50 (O-CH3), 42.22 (CH2-NH), 32.31 (C7), 

30.96 (C5), 30.94 (CH2-COOH), 29.20 (C6), 29.17 (CO-CH2), 25.14 (C4), 21.62 (C-

CH3); IR (vmax/cm-1); 3308, 3009, 2924, 2924, 2837, 1723, 1683 and 1612;  HPLC 

(DMSO): 96%; HRMS (ES): Found [M-H]- 429.1488, requires [M-H] 429.1562. 

 

3-({6-methyl-3-[(3-methylphenyl)carbamoyl]-4,5,6,7-tetrahydro-1-

benzothiophen-2-yl}carbamoyl)propanoic acid (36) 

The boc-protected material 28 (100 mg, 0.25 mmol) 

was stirred in a 1:1 ratio of HCl in dioxane (1.5 mL) 

and DCM (1.5 mL) for 14 hours. The deprotected 

material was isolated by removing the solvent in vacuo 

which was used crude without further purification. The 

material (70 mg, 0.23 mmol) and succinic anhydride 

(47 mg, 0.47 mmol) were stirred in anhydrous THF 

(4 mL) overnight at 65 °C. The solvent was removed in vacuo and the crude material 

was purified via reverse phase chromatography (H2O-MeCN gradient) to yield the title 

compound as a white solid (5 mg, 6%). Rf: 0.43 (EtOAc); δH (DMSO): 12.22 (s, 1H, 

O-H), 10.69 (s, 1H, N-H), 9.78 (s, 1H, N-H), 7.63 (s, 1H, 2’-H), 7.54 (d, 1H, J = 7.5 

Hz, 6’-H), 7.26 (t, 1H, J = 8 Hz, 5’-H), 6.96 (d, 1H, J = 7.5 Hz, 4’-H), 2.78 (dd, 1H, J = 

16, 5 Hz, 7-H), 2.64-2.62 (m, 4H, 4-H, CH2-COOH), 2.50 (s, 2H, CO-CH2), 2.36 (s, 

3H, Ar-CH3), 2.33-2.26 (m, 1H, 7-H), 1.93-1.85 (m, 2H, 6-H, 5-H), 1.42-1.33 (m, 1H, 

5-H), 2.97 (d, 3H, J = 6.5 Hz, C-CH3); δC (DMSO): 174.05 (COOH), 169.49 (NH-CO-

CH2), 163.59 (CO-NH-Ar), 139.51 (C2), 138.66 (C1’), 138.14 (C3’), 129.68 (C7a), 

128.84 (C5’), 126.42 (C3a), 124.59 (C4’), 120.92 (C2’), 120.20 (C3), 117.60 (C6’), 

32.31 (C7), 31.02 (C5), 30.68 (CH2-COOH), 29.47 (C6), 29.26 (CO-CH2), 24.73 (C4), 

21.77 (Ar-CH3), 21.70 (C-CH3); IR (vmax/cm-1): 3273, 2956, 2920, 2842, 1706, 1687 

and 1611; HPLC (DMSO): 93%; HRMS (ES): Found [M-H]- 399.1380, requires [M-H] 

399.4930. 
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3-{[6-benzyl-3-(phenylcarbamoyl)-4H,5H,6H,7H-thieno[2,3-c]pyridin-2-

yl]carbamoyl}propanoic acid (37) 

The boc-protected material 29 (85 mg, 

0.18 mmol) was stirred in a 1:1 ratio of HCl in 

dioxane (1.5 mL) and DCM (1.5 mL) for 8 

hours. The deprotected material was isolated 

by removing the solvent in vacuo which was 

used crude without further purification. The 

material (65 mg, 0.18 mmol) and triethylamine 

(0.08 mL, 0.54 mmol) were stirred in anhydrous THF (4 mL) at RT for 10 minutes. To 

this was added succinic anhydride (54 mg, 0.54 mmol) and the reaction was stirred 

at RT overnight. The solvent was removed in vacuo and the crude material was 

purified via reverse phase chromatography (H2O-MeCN gradient) to yield the title 

compound as a yellow solid (12 mg, 14%). Rf: 0.41 (EtOAc); δH (DMSO): 12.17 (s, 

1H, O-H), 10.73 (s, 1H, N-H), 9.78 (s, 1H, N-H), 7.70 (d, 2H, J = 4.5 Hz, 2’’-H), 7.38-

7.27 (m, 7H, 2’-H, 3’-H, 4’-H, 3’’-H), 7.08 (t, 1H, J = 4.5 Hz, 4’’-H), 3.69 (s, 2H, N-

CH2), 3.53 (s, 2H, 7-H), 2.76 (t, 2H, J = 6 Hz, 4-H), 2.70 (t, 2H, J = 6 Hz, 5-H), 2.65 

(2H, s, CH2-COOH), 2.51 (2H, s, CO-CH2); δC (DMSO): 174.04 (COOH), 169.56 (CO-

NH-Ar), 163.43 (NH-CO), 139.78 (C1’), 139.49 (C1’’), 138.83 (C2), 129.25 (C3’’), 

129.00 (C2’), 128.76 (C3’), 128.66 (C7a), 127.54 (C4’), 124.64 (C3a), 123.98 (C4’’), 

120.52 (C2’’), 119.32 (C3), 61.43 (N-CH2), 51.30 (C7), 49.99 (C5), 30.71 (CH2-

COOH), 29.21 (CO-CH2), 25.43 (C4); IR (vmax/cm-1): 3405, 3258, 3119, 2914, 1718, 

1584 and 1638; HPLC (DMSO): 97%; HRMS (ES): Found [M-H]- 462.1487, requires 

[M-H] 462.1566. 

 

3-[(6-benzyl-3-{[(4-methoxyphenyl)methyl]carbamoyl}-4H,5H,6H,7H-thieno[2,3-

c]pyridin-2-yl)carbamoyl]propanoic acid (38) 

The boc-protected material 30 (80 mg, 

0.16 mmol) was stirred in a 1:1 ratio of HCl in 

dioxane (1.5 mL) and DCM (1.5 mL) for 

8 hours. The deprotected material was 

isolated by removing the solvent in vacuo 

which was used crude without further 

purification. The material (70 mg, 0.17 mmol) and succinic anhydride (34 mg, 

0.34 mmol) were stirred in anhydrous THF (3 mL) overnight at 65 °C. The solvent 

was removed in vacuo and the crude material was purified via reverse phase 

chromatography (H2O-MeCN gradient) to yield the title compound as a yellow solid 
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(19.8 mg, 23%). Rf: 0.57 (EtOAc); δH (DMSO): 8.16 (s, 1H, N-H), 7.34 (d, 4H, J = 4 

Hz, 2’-H, 3’-H), 7.27 (t, 1H, J = 4 Hz, 4’-H), 7.21 (d, 2H, J = 8.5 Hz, 2’’-H), 6.86 (d, 2H, 

J = 8.5 Hz, 3’’-H), 6.79 (s, 1H, N-H), 4.31 (d, 2H, J = 6 Hz, NH-CH2), 3.72 (s, 3H, O-

CH3), 3.63 (s, 2H, N-CH2), 3.34 (s, 2H, 7-H), 2.71 (t, 2H, J = 6 Hz, 4-H), 2.68 (t, 2H, 

J = 5 Hz, 5-H), 2.66-2.63 (m, 2H, CH2-COOH), 2.42 (s, 2H, CO-CH2); δC (DMSO): 

174.06 (COOH), 173.97 (CO-NH-CH2Ar), 165.15 (NH-CO), 158.62 (C4’’), 143.73 

(C1’’), 141.66 (C1’), 131.75 (C2), 129.25 (C2’’), 129.03 (C2’), 128.74 (C3’), 127.96 

(C7a), 127.55 (C4’), 124.46 (C3a), 116.91 (C3), 114.15 (C3’’), 61.20 (N-CH2), 55.50 

(O-CH3), 51.35 (C7), 49.74 (C5), 42.45 (NH-CH2), 31.17 (CH2-COOH), 29.27 (CO-

CH2), 25.81 (C4); HPLC (DMSO): 95%; HRMS (ES): Found [M-H]- 506.1763, requires 

[M-H] 506.1828. Compound degraded before IR was obtained.  
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9 Appendix 

9.1 Appendix A 

IC50 curves for the synthesised compounds described in Section 5.2.4. 

 

Figure 9.1: The curves used to calculate IC50 values for the synthesised compounds. 
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9.2 Appendix B 

The papers which directly contributed to the thesis are: 

Chapter 1: 

 Johnson, R. M., Gordon, J. A., Rawson, S., McPhillie, M. J., Fishwick, C. W. 

G., Muench, S. P. The growing role of electron microscopy in anti-parasitic 

drug discovery. Current medicinal chemistry. 25 (39), 5279-5290 (2018). 

 Rawson, S., McPhillie, M. J., Johnson, R. M., Fishwick, C. W. G. & Muench, 

S. P. The potential use of single-particle electron microscopy as a tool for 

structure-based inhibitor design research papers. Acta Crystallogr. Sect. D, 

D73, 1–7 (2017). 

 Johnson, R. M., Higgins, A. J., and Muench, S. P. Emerging role of electron 

microscopy in drug discovery. Trends in Biochemical Sciences, August 2019. 

In press. 

Chapter 2: 

 Drulyte, I., Johnson, R. M., Hesketh, E. L., Hurdiss, D. L., Scarff, C. A., Porav, 

S. A., Ranson, N. A., Muench, S. P. & Thompson, R. F. Approaches to altering 

particle distributions in cryo-electron microscopy sample preparation. Acta 

Crystallogr. Sect. D Struct. Biol. 74, 1–12 (2018). 

Chapter 3: 

 Amporndanai, K*., Johnson, R. M*., O’Neill, P. M., Fishwick, C. W. G., 

Jamson, A. H., Rawson, S., Muench, S. P., Samar Hasnain, S. & Antonyuk, 

S. V. X-ray and cryo-EM structures of inhibitor-bound cytochrome bc1 

complexes for structure-based drug discovery. IUCrJ. 5, 200–210 (2018) 

Discussion: 

 Gopalasingam, C. C., Johnson, R. M., Chiduza, G. N., Tosha T., Yamamoto 

M., Shiro, Y., Antonyuk, S. V., Muench, S. P., and Hasnain, S.S. Dimeric 

structures of quinol-dependent Nitric Oxide Reductases (qNOR) revealed by 

cryo-Electron Microscopy. Science Advances, 5 (8), eaax1803 (2019). 

Publication which did not contribute to work in the thesis: 

 Chiduza, G. N., Johnson, R. M., Wright, G. S. A., Antonyuk, S. V., Muench, 

S. P., and Hasnain, S.S. LAT1 (SLC7A5) and CD98hc (SLC3A2) complex 

dynamics revealed by single-particle cryo-EM. Acta Crystallogr. Sect. D 

Struct. Biol. 75 (7), 660-669 (2019). 
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