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Abstract 

Time series can be found in various domains like medicine, engineering, and finance. 

Generally speaking, a time series is a sequence of data that represents recorded values of 

a phenomenon over time. This thesis studies time series mining, including transformation 

and distance measure, anomaly or anomalies detection, clustering and remaining useful 

life estimation.   

In the course of the first mining task (transformation and distance measure), in order 

to increase the accuracy of distance measure between transformed series (symbolic series), 

we introduce a novel calculation of distance between symbols. By integrating this newly 

defined method to symbolic aggregate approximation and its extensions, the experimental 

results show this proposed method is promising. 

During the process of the second mining task (anomaly or anomalies detection), for 

the purpose of improving the accuracy of anomaly or anomalies detection, we propose a 

distance measure method and an anomalies detection calculation. These proposed 

methods, together with previous published anomaly detection methods, are applied to real 

ECG data selected from MIT-BIH database. The experimental results show that our 

proposed outperforms other methods. 

During the course of the third mining task (clustering), we present an automatic 

clustering method, called AT-means, which can automatically carry out clustering for a 

given time series dataset: from the calculation of global average time series to the setting 

of initial centres and the determination of the number of clusters.  The performance of the 

proposed method was tested on 10 benchmark time series datasets obtained from UCR 

database. For comparison, the K-means method with three different conditions are also 

applied to the same datasets. The experimental results show the proposed method 

outperforms the compared K-means approaches. 

During the process of the fourth mining task (remaining useful life estimation), all 

the original data are transformed into low-dimensional space through principal 

components analysis. We then proposed a novel multidimensional time series distance 

measure method, called as multivariate time series warping distance (MTWD), for 

remaining useful life estimation. This whole process is tested on the CMAPSS 
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(Commercial Modular Aero Propulsion System Simulation) datasets and the performance 

is compared with two existing methods. The experimental results show that the estimated 

remaining useful life (RUL) values are closer to real RUL values when compared with 

the comparison methods. 

Our work contributes to the time series mining by introducing novel approaches to 

distance measure, anomalies detection, clustering and RUL estimation. We furthermore 

apply our proposed methods and related methods to benchmark datasets. The 

experimental results show that our methods are better than previously published methods 

in terms of accuracy and efficiency.  
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Chapter 1 

Introduction 

In this chapter, background and motivations of my research are first 

provided. Then methods previously investigated during my PhD are 

described. Finally, the outline of this thesis is presented. 

1.1 Background and Motivations 

“We are living in the information age” is a popular saying, but we are actually living 

in the data age. Over millions of gigabytes of data pour into our data storage devices every 

day from finance, science, engineering, medicine, and almost every other aspect of daily 

life (Han et al 2011). Time is a dimension and measure in which events can be ordered 

from the past through the present into the future, and also the measure of durations of 

events and the intervals between them. As time goes by and thanks to the development 

technologies (e.g. sensor techniques and massive storage techniques), almost all types of 

data can be stored as time series including a DNA sequence, a video and changes of stock 

prices. 

With this massive data explosion, we often try to make good use of them to discover 

the most important patterns. These can not only help us find the relationship between 

different things, but also offer us important evidence to make the right decision. Data 

mining is such a technique, which is an activity to extract some new information 

contained in large database. In general, the goal of data mining is to use a method or 

combination of data techniques to discover hidden patterns, unexpected trends, or other 

subtle relationships (Sumathi and Sivanandam 2006). Today, this new discipline is widely 

used in business, science and engineering. For example, personal and financial 

information can be recorded and minded to help bank to make right decision. Data mining 

can also help reveal potential locations of some resources, or help establish early warning 
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systems for disasters like oil spills etc. The applications of data mining are very wide and 

will grow rapidly in the next few years. 

The increasing use of data and the exponential growth of database size, especially the 

growth of time series, have aroused great interest in the field of data mining. In the e-

commerce domain alone, large amounts of time series data as diverse as browsing 

histories, shopping histories, transferring histories of customers are generated and 

analysed. Similar works are also applied to industry, education, healthcare, entertainment 

and virtually every other field of human endeavor. In recent decades, various researches 

have been attempted in time series data mining, such as similarity measure (Baydogan 

and Runger 2016, Agrawal et al 1993), anomaly detection (Fujimaki et al 2005, Kumar 

2005), clustering (Paparrizos and Gravano 2015, Paparrizos and Gravano 2017), 

prediction (Zhou et al 2016, Xiao et al 2017), and so on (Fu et al 2006, Zhang et al 2004). 

Although all of these techniques have long traditions, there still remain unsolved 

problems that spur further research. 

• Time series representation and distance measure: How can the fundamental 

shapes of a time series be represented? How can the distance between two time 

series be computed? The representation technique should acquire the characteristics 

of shape by decreasing the dimensionality and preserving the useful information of 

data. The similarity measure method should have the ability to distinguish any pair 

of different time series. 

• Anomaly detection of time series: How can the anomalous parts of a time series 

be defined? How can the anomalies in one time series be extracted? The anomaly 

detection algorithm should be able to tell the differences between normal time series 

and anomalous time series, thus quickly and accurately find the anomalous parts in 

a time series. 

• Clustering of time series: How can the number of clusters of a time series dataset 

be determined? How can the average time series of a set of time series be calculated? 

How can clusters of time series be generated? An automatic time series clustering 

algorithm should properly compute the number of clusters in a time series dataset, 

calculate the average time series of every cluster to represent the characteristics of 

corresponding cluster, and organize similar time series into related groups 

according to the distance between testing time series and centre time series. 



Chapter 1. Introduction 

- 3 - 

 

• Prognostics and health manage of time series: How can the health status of a 

degradation pattern be determined? How can the RUL of equipment be predicted? 

The health management and prognostic algorithm should find historical patterns 

that are similar to the testing pattern, and estimate remaining useful life of testing 

pattern by using real life of historical patterns. 

1.2 Methods Investigated in 4 Years 

Many approaches for time series data mining tasks depend on pairwise (dis)similarity 

comparisons of (sub)sequences by means of distance measure (Ding et al 2008, Esling 

and Agon 2012). Hence my PhD started with the research of time series distance measure. 

Then anomaly detection of time series was investigated. Afterwards, time series 

clustering was studied. In the last section of my research, RUL estimation of time series 

was considered. 

1.2.1 Time Series Distance Measure  

Given the fact that there is such a large number of complex data in time series, it will 

inevitably lead to large expenditure of time and funds if we want to directly analyze time 

series. It is probably worse that the final result may not be accurate or robust. In recent 

decades, in order to reduce the dimensionality of raw time series while retaining its 

essential characteristics, many time series representation methods have been proposed. 

Among these approaches, symbolic aggregate approximation is one of the famous 

methods with dimensionality reduction, symbolic representation, and distance measure. 

For distance measure between symbolic series, distances between symbols are defined 

according to Gaussian distribution and the distance between symbolic series is computed 

by summing the distances between paired symbols. Although the definition of distances 

between symbols is uncomplicated, the accuracy of distance measure between symbolic 

series is influenced if the distances between symbols is not accurate. In addition, due to 

the first step of symbolic aggregate approximation (time series normalization), different 

time series with same normalized shape are defined as same. During our research of 

distance measure between time series, we introduced a calculation of distances between 

symbols and a distance measure method. By integrating our proposed methods to 

symbolic aggregate approximation and its extended methods, the performance of distance 

measure between time series based on symbolic representation is improved. 
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1.2.2 Time Series Anomaly Detection 

Anomaly detection is an important issue in various fields and application domains. 

In recent decades, many anomaly detection techniques have been developed, some for 

specific domains while others are more generic (Chandola et al 2009). ECGs, as the most 

commonly used biological signals in medical field, are easy to collect and are typically 

used to determine the cardiac structure and function of patients. For cardiovascular 

diseases, such as myocardial and ischemia, they occur over a certain period with the heart 

of a patient does not work normally. Because of this, effective detection of anomalous 

segments in ECG data can make a significant contribution to heart diagnosis. Among the 

published anomaly detection techniques, brute force discord discovery and adaptive 

window discord discovery are used to detect anomalous segment in ECGs. For anomaly 

detection in ECGs, when there is only one disordered segment or several significantly 

different disordered segments, these two methods can correctly detect the anomalous 

segment(s) while adaptive window discord discovery outperforms brute force discord 

discovery in terms of computational efficiency. However, when there are two or more 

anomalous segments and the distance between anomalies lower than a small value, these 

two methods cannot correctly detect the anomalies. Furthermore, traditional dynamic 

time warping distance is used to calculate the distance between time series through 

directly adding up the distances between paired points. This influences the accuracy of 

distance measure. During the research of anomalies detection in time series, a modified 

dynamic time warping distance was proposed to improve the performance of time series 

distance measure, and anomalies detection method (non-self match average distance) was 

introduced to detect all anomalies. This proposed anomaly detection method (combined 

by the proposed distance measure method and the anomalies detection method), together 

with brute force discord discovery and adaptive window discord discovery, were applied 

to same ECG data. The experimental results show that the proposed method is promising 

in terms of calculation complexity and outperforms the two compared methods with 

regards to the accuracy of anomalies detection. 

1.2.3 Automatic Time Series Clustering 

The process of dividing a collection of objects into classes, in which objects are 

similar to each other, is called clustering. In data mining, clustering analysis has long 

played an important role in a wide range of fields, such as image processing 
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(Niennattrakul and Ratanamahatana 2007) and forecasting (Sfetsos and Siriopoulos 2004). 

A special type of clustering is time series clustering (Aghabozorgi et al. 2015). In recent 

decades, clustering of time series has received significant attention from different aspects, 

not only because time series clustering can discover valuable patterns from time series 

datasets, but also saves a lot of unnecessary work and time because the analysis of a large 

dataset can be achieved by analyzing a relatively smaller structured dataset with the 

facilitation of clustering techniques. During the research of time series clustering: 1) an 

initial centers sequence determination method was developed so that the initial centers 

are located in proper areas; 2) a modified global time series averaging method was 

introduced to calculate the average sequence of a cluster of time series; and 3) a novel 

elbow point extraction method was proposed to determine the number of clusters. The 

combination of these three ideas is used to automatically cluster a set of time series, called 

AT-means. This proposed automatic time series clustering method and three K-means 

approaches were applied to 10 real-life time series datasets. The comparison results 

showed that the proposed method outperforms the three compared K-means approaches 

in terms of accuracy. 

1.2.4 Remaining Useful Life Estimation  

Remaining useful life estimation of safety related critical components has embraced 

a vast number of techniques and algorithms in recent decades, not only because the health 

statuses of these critical components are closely linked to lives of related people, but also 

because the repair and maintenance of these components requires substantial resources 

and funding. Most existing RUL estimation methods build a physical prediction model 

according to the data. These physical models, which can describe the physical behaviors 

of a testing system, are effective when the system’s degradation process can be well 

described. However, for complex systems, it is easier to collect data than to build physical 

models, and hence, a lot of data-driven prognostics haven been published in the past 

decades. Among the data-driven prognostic approaches, similarity-based approaches, 

such as RUL estimation based on similar health indicator (Wang et al 2008) and RUL 

prediction based on degradation shapelets extraction (Malinowski et al 2015), are 

relatively new but have made promising performances. During my last research, we 

proposed a multivariate time series distance measure method, called multivariate time 

series warping distance (MTWD), to properly extract degradation fragments of training 



Chapter 1. Introduction 

 

- 6 - 

 

equipment that are similar to that of testing equipment, and estimate the RUL of testing 

equipment according to the real life of extracted training equipment. The proposed 

similarity measure method was applied to CMAPSS (Commercial Modular Aero 

Propulsion System Simulation) datasets and the performance is compared with two 

existing methods reported by Wang et al (2008) and Malinowski et al (2015). Results 

generated by the proposed method show that the estimated RUL values are closer to real 

RUL values when comparing the two methods. 

1.3 Outline of This Thesis 

This completed thesis includes seven chapters, are outlined as follows: 

Chapter 2: Literature Review 

In this chapter, some concepts and notions that will be relevant for my research are 

introduced. This literature review covers a brief introduction of time series representation 

and transformation, an overview of distance measure between time series, a short survey 

of time series anomaly detection, a summary of time series clustering, and a retrospect of 

time series RUL estimation. 

Chapter 3: Time Series Distance Measure 

In this chapter, a new definition of distances between symbols and a distance measure 

method are presented for distance measure between symbolic series. The maximum and 

minimum values in each symbolic area are used to calculate the distances between 

symbols. These calculated distances are used to generate a look-up table, which is then 

used to calculate the distance between original time series through inverse calculation of 

zero-normalization. The look-up table is integrated to SAX and SAX-TD. These two 

integrated methods and the proposed method are applied to 1000 pairs of benchmark time 

series. The results show that our proposed method improve the performance of previous 

published symbolic representation and distance measure methods. 

Chapter 4: Anomaly Detection of Time Series 

In this chapter, modified dynamic time warping (MDTW) and a new anomaly 

definition method are proposed for time series anomaly detection. The improved SAX (in 

Chapter 3) is used to represent a time series, the modified DTW is adapted to calculate 
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the distance between symbolic series, and the proposed anomaly definition method is 

used to detect anomalous systems from original time series. This anomaly detection 

method and another 2 additional famous anomaly detection methods are applied to 30 

real ECGs. Experimental results show that this proposed method is promising in terms of 

calculation complexity and accuracy. 

Chapter 5: Automatic Time Series Clustering 

In this chapter, an automatic clustering method, called AT-means, is presented. AT-

means can automatically carry out clustering for a given time series dataset: from the 

calculation of global average time series to setting of initial centers and the determination 

of the number of clusters. The performance of AT-means is tested on 10 benchmark time 

series datasets obtained from UCR (University of California Riverside) database. For 

comparison, K-means with three different conditions are also applied to the same datasets. 

The experimental results show that AT-means outperforms the compared K-means 

approaches. 

Chapter 6: Similarity-Based Remaining Useful Life Estimation 

In this chapter, a multidimensional time series similarity measure method is proposed 

for similarity-based RUL estimation. Principal components analysis (PCA) is applied to 

transform original multidimensional time series into low-dimensional time series. The 

proposed distance measure method is applied to extract meaningful degradation patterns 

from training library, and RUL of testing equipment is computed according to the real life 

of extracted training patterns. The proposed method is applied to aircraft engines data 

provided by NASA Prognostic Data Repository, and experimental results of two 

published similarity-based RUL estimation approaches are used for comparison. The 

comparison shows that the proposed method is very effective in RUL estimation. 

Chapter 7: Conclusion and Future Work 

In this chapter, conclusions regarding works presented in this thesis are provided, and 

an outlook of future work is provided. 

1.4 Publications in 4 Years 

The content of this thesis builds on the following publications by the author:  
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Published 

1. (Chapter 3)  

Xinxin Yao and Hua-Liang Wei. Walking gestures recognition based on a novel symbolic 

representation. 22nd International Conference on Automation and Computing (ICAC), 2016. 

2. (Chapter 3)  

Xinxin Yao and Hua-Liang Wei. Off-line signature verification based on a new symbolic 

representation and dynamic time warping. 22nd International Conference on Automation and 

Computing (ICAC), 2016. 

3. (Chapter 5)  

Xinxin Yao and Hua-Liang Wei. Improving K-means clustering performance using a new global 

time-series averaging method. 9th International Conference on Electronics, Computers and Artificial 

Intelligence (ECAI), 2017. 

4. (Chapter 6) 

Xinxin Yao and Hua-Liang Wei. Short-term stock price forecasting based on similar historical 

patterns extraction. 23nd International Conference on Automation and Computing (ICAC), 2017. 

Processing 

 

5. (Chapter 3) 

Xinxin Yao and Hua-Liang Wei. A New Metric for Computing the Distance between Time Series 

Based on Symbolic Aggregate Approximation. Submit to Pattern Recognition Letters. 

6. (Chapter 4) 

Anomaly detection of time series: an application to ECG data.  

7. (Chapter 5)  

AT-means: Automatic Time Series Clustering. 

8. (Chapter 6) 

A multidimensional time series similarity measure approach for similarity-based remaining useful 

life estimation. 
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Chapter 2 

Literature Review 

In this chapter, we present several reviews on time series mining that are 

related to my research. The chapter is divided into five major sections: in the 

first section, time series transformation and representation methods are 

reviewed; in the second section, popular used distance measure methods are 

described; in the third section, an overview of anomaly detection methods is 

provided; in the fourth section, time series clustering methods are reviewed; 

in the fifth section, a broad review of time series remaining useful life 

estimation is presented. 

2.1 Time Series Representation and Transformation 

Through applying a transformation or representation method to a time series, the 

obtained series has to satisfy following requirements: 1) features that contain useful 

information are extracted; 2) dimensionality of new series is lower than that of original 

series. In the last few decades, multiple approaches about time series transformation and 

representation have been proposed. In this section, we briefly review several approaches 

that relate to our research, they are piecewise aggregate approximation, symbolic 

aggregate approximation and principal components analysis. 

2.1.1 Piecewise Aggregate Approximation 

As early as 1974, Pavlidis and Horouitz proposed a method hereby the original time 

series can be represented by a series of segments. They also pointed out that the 

advantages of this method using segments to represent original signal can reduce the 

dimension of original signal, preserve powerful information and remove noises (Pavlidis 

and Horowitz 1974). Generally speaking, this kind of time series segmentation and 

approximation method can be called piecewise linear representation. The basic idea of 
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this method is using a series of head-tail segments to approximate the original database. 

In recent decades, with the development of computing technologies, piecewise linear 

representation has been employed in many applications (Jia et al 2008, Kimura et al 2008).  

Piecewise Aggregate Approximation (PAA) is one of the most commonly used 

piecewise linear representation methods used to separate the original data into several or 

many segments with equal length and represent all of them by the average values of 

segments. In this way, PAA improves the efficiency in case where the main objective is 

to find the matching patterns in a large database that contains a great number of data. A 

simple example of such a transformation is shown in Figure 2.1, where the upper curve 

is the original signal and the lower one is the transformed signal. It can be noticed that 

the transformed series can still describe majority of features of the original time series 

with a suitable choice of the length of every segment. There are two special areas of 

concern when applying PAA: 1) when the number of segment is 1, the new series is 

simply the mean of original time series 2) When the number of segments is equal to N, 

where N is the number of values in original series, the new series is identical to the 

original series. Detailed discussions of PAA are provided by (Keogh et al 2001). 

 

Figure 2.1 Original time series and piecewise aggregate approximation with the length of every segment 

is 9 

Given one time series 𝑇𝑒 = [𝑡𝑒1, 𝑡𝑒2, … , 𝑡𝑒𝑖, … , 𝑡𝑒𝑛𝑇𝑒] , through the processing of 
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PAA, 𝑇𝑒 is transformed into 𝑇𝑒̅̅ ̅̅ = [𝑡𝑒1̅̅ ̅̅ , 𝑡𝑒2̅̅ ̅̅ , … , 𝑡𝑒𝑖̅̅̅̅ , … , 𝑡𝑒𝑚𝑇𝑒
̅̅ ̅̅ ̅̅ ̅]. The calculation of PAA is 

completed by following equation:  

tei̅̅̅̅ =
mTe

nTe
∑ tej

nTe
mTe

∗i

j=
nTe
mTe

(i−1)+1
                                               (2.1) 

where i is the time point of  𝑡𝑒𝑖 in time series 𝑇𝑒, 𝑡𝑒𝑖̅̅̅̅  represents the average value of 

the 𝑖 th segment, 𝑛𝑇𝑒   means the number of values in time series 𝑇𝑒 , 𝑚𝑇𝑒   means the 

number of values in  𝑇𝑒̅̅ ̅̅ . 

PAA is efficient in dealing with time series data when the main objective is 

dimensionality reduction. For one time series, the transformation process of PAA is 

summarized by following pseudocode: 

Algorithm 2.1 Piecewise Aggregate Approximation 

Requirements: Input Time Series:    𝑇𝑒 

                           Length of Segment:  𝑙 
                          An Empty Matrix:    B 

𝑛  length of 𝑇𝑒 

for 𝑖 = 1 to 𝑛 with step 𝑙 do 

     𝑖𝑑 = 𝑖 ∶ 𝑖 + 𝑙 − 1; 

𝑡  average value of part of time series 𝑇𝑒: 𝑇𝑒(𝑖𝑑); 
𝐵(𝑖𝑑)  𝑡 is repeated 𝑙 times 

end for 

The input of Algorithm 2.1 is one time series. The output is a new series containing 

many segments with equal length and each is represented by the average value of the 

individual segment. But it should be noted that the length of each segment needs to be 

specified when applying this algorithm to different databases. 

In real life situations, such as in stock market, trades, prices change daily, even by 

minute, but investors normally are interested in weekly features or monthly patterns. 

Through the application of PAA in stock market, investors can easily find the information 

they need when the length of every segment is suitably set. As the stock prices of a 

company listing on Shanghai Stock Exchange as shown in Figure 2.2 (Shanghai Stock 

Exchange, 2016), the upper time series (containing the daily change of one stock in 240 

working days) can be easily transformed to weekly series (the middle curve) and monthly 

series (the lower curve). 
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Figure 2.2 Daily, weekly and monthly stock prices 

2.1.2 Symbolic Aggregate approximation 

Symbolic Aggregate approXimation (SAX) is one of the famous dimensionality 

reduction and symbolic representation approaches in time series domain (Wang and 

Megalooikonomou 2008, Sun et al 2014). The basic idea of this approach is to convert a 

time series of length 𝑛 to a symbolic series of length 𝑚 consisting of 𝑠 alphabets (𝑠 ≪ 𝑚 

and 𝑚 ≪ 𝑛). Given one time series 𝑇𝑒 of length 𝑛𝑇𝑒 , the operation of transforming 𝑇𝑒 

into SAX manner involves two main steps: i) dimensionality reduction, ii) discretization. 

In the first step, 𝑇𝑒 is normalized firstly, then the normalized time series is divided 

into 𝑚𝑇𝑒  equal-sized segments by PAA (described in subsection 2.1.1). In the second step, 

the transformed time series obtained through PAA is mapped into symbols using a look-

up table containing a number of breakpoints (Lin et al 2003, Lin et al 2007). Because 

normalized time series have a high Gaussian distribution, breakpoints are easy to be 

obtained and can be defined as a sorted list of numbers, 𝐵 = 𝛽1, … , 𝛽𝛼−1, such that the 

area under a 𝑁(0,1) Gaussian curve from 𝛽𝑖  to 𝛽𝑖+1  is 1/𝛼 . For example, when the 

original time series is divided into 4 different symbolic areas, there are 3 break points: 

𝛽1 = −0.67, 𝛽2 = 0, and 𝛽3 = 0.67; when the original time series is divided into 5 

different symbolic areas, there are 4 break points: 𝛽1 = −0.84, 𝛽2 = −0.25,  𝛽3 = 0.25, 

and 𝛽4 = 0.84. When the number of symbolic areas is different, some samples of these 

breakpoints are shown in Table 2.1. 
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Table 2.1 A Look-Up Table Containing Break Points 

 3 4 5 6 7 8 9 10 

𝛽1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

𝛽2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

𝛽3  0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

𝛽4   0.84 0.43 0.18 0 -0.14 -0.25 

𝛽5    0.97 0.57 0.32 0.14 0 

𝛽6     1.07 0.67 0.43 0.25 

𝛽7      1.15 0.76 0.52 

𝛽8       1.22 0.84 

𝛽9        1.28 

Using the defined breakpoints and taking the case with three breaking points as 

example, the corresponding conversion (from numerical series to symbolic series) is as 

follows: 

𝑡𝑒𝑖̃ = ′𝐴′                if                     𝑝 < −0.67                                                   

𝑡𝑒𝑖̃ = ′𝐵′                if                −0.67 ≤ 𝑝 < 0                                     (2.2) 

𝑡𝑒𝑖̃ = ′𝐶′                 if                   0 ≤ 𝑝 < 0.67                                                

𝑡𝑒𝑖̃ = ′𝐷′                if                        𝑝 ≥ 0.67                                                    

where 𝑡𝑒𝑖̃ represents the ith segment of0 the symbolic series, 𝐴, 𝐵, 𝐶 and 𝐷 are the 

defined symbols, and 𝑝 is the average value of the ith segment. Let alphai denote the ith 

element of alphabet, i.e. alpha1 = 𝐴 , alpha2 = 𝐵 , the mapping from a PAA 

approximation 𝑇𝑒 (original time series 𝑇𝑒 in PAA format )to 𝑇𝑒̃ (original time series in 

SAX format) is defined as: 

teĩ = alphai                  if                βj−1 ≤ tei̅̅̅̅ ≤ βj                            (2.3) 

The whole process of symbolic representation is summarized by following 

pseudocode:  

Algorithm 2.2 Symbolization 

Requirement: The length of the new time series after PAA: 𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒  
                         A same size symbolic series 𝐴𝑠𝑦𝑚𝑏𝑜𝑙 
                         Defined symbols 

for 𝑖1 = 1 𝑡𝑜 𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝐝𝐨 
if 𝑍1(𝑖1)  ≥ 0.67 𝐭𝐡𝐞𝐧 
   𝐴1𝑠𝑦𝑚𝑏𝑜𝑙(𝑖1) = 𝑠𝑦𝑚𝑏𝑜𝑙𝐴 
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else if 𝑍1(𝑖1) < 0.67 𝑎𝑛𝑑  𝑍1(𝑖1) ≥ 0 𝐭𝐡𝐞𝐧 
  𝐴1𝑠𝑦𝑚𝑏𝑜𝑙(𝑖1) = 𝑠𝑦𝑚𝑏𝑜𝑙𝐵 
else if 𝑍1(𝑖1) < 0 𝑎𝑛𝑑  𝑍1(𝑖1) ≥ −0.67 𝐭𝐡𝐞𝐧 
  𝐴1𝑠𝑦𝑚𝑏𝑜𝑙(𝑖1) = 𝑠𝑦𝑚𝑏𝑜𝑙𝐶 

else 
  𝐴1𝑠𝑦𝑚𝑏𝑜𝑙(𝑖1) = 𝑠𝑦𝑚𝑏𝑜𝑙𝐷 

end if 

end for 

To use SAX for time series similarity measure, we need to introduce a meaningful 

distance measure of time series of symbols. Mentioned by Lin et al (2003) and Lin et al 

(2007), prior to distance measure between symbols, the distances between symbols were 

defined based on Gaussian distribution, as distances between symbols shown in Table 2.2. 

Table 2.2 Look-Up Table of Distances between Symbols based on Gaussian Distribution 

 A B C D E F G H I J 

A 0 0 0.44 0.75 1.03 1.28 1.53 1.80 2.12 2.56 

B 0 0 0 0.32 0.59 0.84 1.09 1.36 1.68 2.12 

C 0.44 0 0 0 0.27 0.52 0.77 1.04 1.36 1.80 

D 0.75 0.32 0 0 0 0.25 0.55 0.77 1.09 1.53 

E 1.03 0.59 0.27 0 0 0 0.25 0.52 0.84 1.28 

F 1.28 0.84 0.52 0.25 0 0 0 0.27 0.59 1.03 

G 1.53 1.09 0.77 0.50 0.25 0 0 0 0.32 0.75 

H 1.80 1.36 1.04 0.77 0.52 0.27 0 0 0 0.44 

I 2.12 1.68 1.39 1.09 0.84 0.59 0.32 0 0 0 

J 2.56 2.12 1.80 1.53 1.28 1.03 0.75 0.44 0 0 

Given two time series 𝑇𝑟 = [𝑡𝑟1, 𝑡𝑟2, … , 𝑡𝑟𝑛] and 𝑇𝑒 = [𝑡𝑒1, 𝑡𝑒2, … , 𝑡𝑒𝑛], based on 

SAX the distance between 𝑇𝑟 and 𝑇𝑒 is computed as follow: 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑇𝑟̃, 𝑇𝑒̃) = √
𝑛

𝑤
∗ √∑ (𝑑𝑖𝑠(𝑇𝑟𝑖̃ , 𝑇𝑒𝑖̃))

2𝑤
𝑖=1                         (2.4) 

where 𝑇𝑟̃ and 𝑇𝑒̃ are the symbolic series corresponding to 𝑇𝑟 and 𝑇𝑒 respectively, 𝑛 

is the length of original time series (𝑇𝑟 and 𝑇𝑒), 𝑤 is the length of equal-sized segments 

(𝑇𝑟̃  and 𝑇𝑒̃ ). The 𝑑𝑖𝑠(… )  function is implemented using the predefined distances 

between symbols in Table 2.2 and this function can be expressed by following equation: 
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𝑑𝑖𝑠(𝑇𝑟𝑖̃ , 𝑇𝑒𝑖̃) = {
0 |𝑇𝑟𝑖̃ − 𝑇𝑒𝑖̃| ≤ 1

𝛽max(𝑇𝑟𝑖̃ ,𝑇𝑒𝑖̃)−1 − 𝛽min(𝑇𝑟𝑖̃ ,𝑇𝑒𝑖̃) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (2.5)    

In above equation, 𝛽… is computed according to Table 2.1. For example, the original 

time series is represented by 4 different symbols, 𝑇𝑟𝑖̃ is represented by symbol A, 𝑇𝑒𝑖̃ is 

represented by symbol C, as 3-1 not equal or less than 1, the distance between them is 

calculated as follows: 𝑑𝑖𝑠(𝐴 , 𝐶) = 𝛽max(3,1)−1 − 𝛽min(3,1). As there are 3 break points, 

𝛽max(3,1)−1 = 0 and 𝛽min(3,1) = −0.67, 𝑑𝑖𝑠(𝐴 , 𝐶) is equal to 0.67. 

From the publication of SAX, this method has been widely used in many time series 

data mining applications, such as human action recognition (Junejo and Al Aghbari 2012), 

financial investment and mobile data management (Hung and Anh 2007). 

2.1.3 Principal Component Analysis  

Principal component analysis (PCA) is probably the most widely used multivariate 

time series analysis. (Abdi and Williams 2010). PCA is used to analyzes dataset that is 

described by several inter-correlated variables, and its goal is to compress the size of 

dataset and keep the useful information. 

The basic idea of PCA is shown in Figure 2.3. The original signal in plane built by 𝐴 

and 𝐵 can be represented in a new plane built by 𝐶 and 𝐷, where 𝐶 and 𝐷 are the linear 

combination of 𝐴 and 𝐵. It can be found that points in original database project values on 

𝐶 axis and 𝐷 axis, while the projected values on 𝐶 axis are almost 0. This means we can 

ignore the influence of 𝐶 when we are analyzing the data in the plane built by 𝐶 and 𝐷. 

In this way, the analyzing process is transformed from 2-dimension to 1-dimension 

without much information loss. 

 

Figure 2.3 Basic idea of principal component analysis 
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Given one n-dimension time series 𝐷 = (𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝑛) , where 𝑋𝑖  is a 1-

dimensional time series with length equal to 𝑚 and set as 𝑋𝑖 = (𝑋𝑖
1, 𝑋𝑖

2, … , 𝑋𝑖
𝑗
, … , 𝑋𝑖

𝑚). 

The entire procedure of PCA contains 5 steps: 

• Step1: Centre the values in 𝑋𝑖 as below: 

𝑋𝑖
𝑗
= 𝑋𝑖

𝑗
−

1

𝑚
∑ 𝑋𝑖

𝑗𝑚
𝑗=1                                                 (2.6) 

• Step 2: Calculate the covariance matrix of the original time series 

𝐶 = (

𝑐𝑜𝑣(𝑋1, 𝑋1)
𝑐𝑜𝑣(𝑋2, 𝑋1)

𝑐𝑜𝑣(𝑋1, 𝑋2)
𝑐𝑜𝑣(𝑋2, 𝑋2)

⋯
𝑐𝑜𝑣(𝑋1, 𝑋𝑛)
𝑐𝑜𝑣(𝑋2, 𝑋𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑋𝑛 , 𝑋1) 𝑐𝑜𝑣(𝑋𝑛 , 𝑋2) ⋯ 𝑐𝑜𝑣(𝑋𝑛 , 𝑋𝑛)

)                     (2.7) 

where 𝑐𝑜𝑣 means the covariance between two candidates.  

• Step 3: Compute the eigenvectors and eigenvalues of the covariance matrix 

𝐶 − 𝜆𝐼 = 0                                                         (2.8) 

(𝐶 − 𝜆𝐼)𝑋 = 0                                                       (2.9) 

where 𝐶 is the covariance matrix, 𝐼 is the 𝑛 by 𝑛 identity matrix, 𝜆 is eigenvalues 

and 𝑋 is eigenvectors. 

• Step 4: Choose components and form a feature vector. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑠 = (𝑒𝑖𝑔1, 𝑒𝑖𝑔2, … , 𝑒𝑖𝑔𝑖, … , 𝑒𝑖𝑔𝑘)                (2.10) 

eigenvectors that are obtained in step 3 are ordered by eigenvalues, from highest to 

lowest. In 2.10, 𝑒𝑖𝑔𝑖 means that its corresponding eigenvalues is the 𝑖th value in the 

ordered eigenvalues vector. In general, the first 𝑘  eigenvectors are utilized to 

construct the feature vector, and the value of 𝑘 is different when applying PCA to 

different areas. 

• Step 5: Derive the new dataset. 

𝐷𝑎𝑡𝑎𝑁𝑒𝑤 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 × 𝐷𝑎𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑                   (2.11) 

where 𝐷𝑎𝑡𝑎𝑁𝑒𝑤  is the transformed matrix containing principal components, 

𝐷𝑎𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is the mean adjusted data obtained in step 1. 
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The input of PCA is one n-dimensional time series or multivariate time series, the outputs 

include the mean adjusted matrix, covariance matrix, eigenvalues, eigenvectors, 

transformation matrix and principal components matrix. In conclusion, there are 4 

advantages when applying PCA to similarity measure in multivariate time series database. 

• Equal the Size of Different Multidimensional Time Series. Broadly speaking, the 

number of variables in multidimensional time series is always the same for a given 

application, but the number of observations is different because of the length of 

collecting time. Therefore, the traditional data mining method will face big 

challenges when comparing two multidimensional time series. For PCA, the first 𝑘 

highest eigenvalues and their corresponding eigenvectors are extracted and used to 

construct new matrix, the dimension of transformed matrix will be the same and the 

challenge of different size is resolved. 

• Dimension Reduction. Because the length of observation is collecting time, the 

number of observations is far greater than the number of variables. If PCA is used 

to transform the original database, only a small number of components are used to 

represent original database, and therefore the dimension is effectively reduced.  

• Improve the Accuracy of Data Mining. In general, the data in multidimensional 

time series is collected from different sources and the database is contaminated by 

noise because of various reasons, such as outdated equipment. After applying PCA 

to multidimensional time series, features with the most information are extracted 

and noise is ignored.  

• Analysis as a whole. Variables in one dataset may be dependent with each other. 

During the process of analyzing multidimensional time series, the whole database 

has to be treated as a whole because the correlation between variables may be lost 

if we separate multidimensional time series into multiple 1-dimensional time series. 

For the application of PCA in multidimensional time series, the complete database 

is treated as a whole and the correlations between variables are saved. 

Benefit by the advantages. In recent years, PCA-based data mining techniques have 

been used in various applications, such as iris recognition (Huang et al 2002), face 

recognition (Perlibakas 2004) and jaundice detection (Mansor et al 2011).  
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2.2 Distance Measure 

It is not possible to find two identical time series in any areas. However, different 

time series does not mean there is no relationship between each other. In recent decades, 

many researchers have focused their attention to finding the similarity and dissimilarity 

between different time series. For example, in the research of handwritten signature 

verification, conducted by Yao and Wei (2016), similarity measure method is used to 

identify whether the writer of the testing signature is the same writer of the template 

signature. In this part, some popular distance measure methods are reviewed. 

2.2.1 Euclidean Distances 

Euclidean distance, as a tool to take distance measure between time series, was firstly 

proposed in 1993 (Agrawal et al 1993). In the following decades, as an easy to understand 

and implement distance measure method, it has been widely used numerous fields, such 

as detection of outliers (Knorr et al 2000). 

Given two vectors 𝑋 = [𝑥1, 𝑦1]  and 𝑌 = [𝑥2, 𝑦2] , assume the distance between 

them is 𝑑𝑥,𝑦, the square of 𝑑𝑥,𝑦 is written as:  

𝑑𝑥,𝑦
2 = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2                                 (2.12) 

Similarly, for two time series 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛]  and 𝑌 =  [𝑦1,𝑦2, … , 𝑦𝑛] , the 

Euclidean distance between them is written as equation 2.13, in which 𝑥𝑖 and 𝑦𝑖 are the 

𝑖𝑡ℎ instances in 𝑋 and 𝑌. 

𝑑𝑥,𝑦 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                          (2.13) 

Minkowski distance, which is also called 𝑙𝑝_𝑛𝑜𝑟𝑚, is an extension of Euclidean 

distance (Han et al 2011, Cha 2007). It is defined as:  

𝐿𝑝(𝑋, 𝑌) = (∑ (𝑥𝑖 − 𝑦𝑖)𝑝𝑛
𝑖=1 )1/𝑝                                  (2.14) 

where p is called the order of Minkowski distance. In fact, for p=2, Minkowski distance 

is Euclidean distance. 

when p=1, Minkowski distance is Manhattan distance and it is defined as: 

𝐿1(𝑋, 𝑌) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1                                     (2.15) 
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Minkowski distance is easy to be implemented and understood, and can be well 

applied to other data mining problems, such as clustering (De Amorim and Mirkin 2012), 

but note that Minkowski distance is not applicable to distance measure between time 

series, this is because similar time series may be presented in different forms.  

Vertical shift is one of the reasons that cause similar time series in different forms. 

As shown in Figure 2.4, the structures of time series A and B are the same with each other, 

but the amplitude values of them are different. Hence Euclidean distance and its 

extensions cannot be used to represent the similarity between them.          

 

     Figure 2.4 Vertical shift of time series 

In order to reduce the influence of vertical shift on time series distance measure, a 

weighted time series similarity measure method, called v-shift, was proposed (Chan and 

Fu 1999). The definition of this method is: for time series 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] and time 

series 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑛] , they are defined as similar if they satisfy the following 

function: 

𝑑𝑥,𝑦 = √∑ ((𝑥𝑖 − 𝑦𝑖) − (𝑋̅ − 𝑌̅))
2𝑛

𝑖=1 ≤ 𝜏                          (2.17) 

where 𝜏 is a predefined threshold, 𝑋̅ and 𝑌̅ are the mean values of time series X and Y. 

Time warping is another reason that causes similar time series in different forms. As 

shown in Figure 2.5, time series A and B are similar with each other, but the peaks of 

these two time series are not at the same time. Under this condition, Euclidean distance 

and its extensions still cannot be used to define the similarity between them. 
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Figure 2.5 Time line warping of time series 

2.2.2 Dynamic Time Warping 

Due to the existence of timeline warping in time series computation, the final result 

of similarity computation may be distorted if we directly sum all the distances between 

corresponding points in a traditional manner. Dynamic time warping is such a method 

where two time series are warped in a nonlinear fashion and the similarity between the 

two time series is then measured in some way using the warped version of the time series 

(Muller 2007), as shown in Figure 2.6. Owing to this, the alignment between two time 

series will not be influenced by timeline drift, which can often cause error if Euclidean 

distance is directly used to measure the similarity. 

 

Figure 2.6. Alignment according to dynamic time warping 

Dynamic time warping (DTW) was initially proposed for spoken word recognition 

in 1978 (Sakoe and Chiba 1978). It was used to measure similarity between testing voice 

and template speech signals, where the time line of voice has to be warped so that the 
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most similar characteristics can match each other. In the following decades, DTW had 

been widely used in pattern recognition (Berndt and Cliford 1994), fast similarity measure 

(Sakurai et al 2005) and genetic research (Aach and Church 2001). Different from 

traditional distance measure methods (Euclidean distances that are reviewed in subsection 

2.2.1), DTW can recover optimal alignments between points in a template and the testing 

time series. For example, given two time series sequences, {𝑎𝑖}  and {𝑏𝑗}  (𝑖 =

1, 2, … , 𝑛;  𝑗 = 1, 2, … ,𝑚, 𝑛 and 𝑚 are the number of values in {𝑎𝑖} and {𝑏𝑗} respectively)  

the optimal path between the two sequences, from the position (1,1)  to (n,m) , is 

illustrated in Figure 2.7 (Yao and Wei 2016). 

 

 

Figure 2.7 Optimal path between two sequence 

We know that the time series sequences are: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒1    𝑎1, 𝑎2, … , 𝑎𝑖, … , 𝑎𝑛 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒2    𝑏1, 𝑏2, … , 𝑏𝑗 , … , 𝑏𝑚 

We can build a distance matrix C to store the distance between two aligning points 

in the two sequences as below: 

𝐶 = [

𝑐1,1 𝑐1,2 … 𝑐1,𝑚
𝑐2,1
…

𝑐2,2 …
… 𝑐𝑖,𝑗

𝑐2,𝑚
…

𝑐𝑛,1 𝑐𝑛,2 … 𝑐𝑛,𝑚

]                                             (2.18) 
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where 𝑐𝑖,𝑗  represents the distance between 𝑎𝑖  and 𝑏𝑗 . Then we can get the cumulative 

distance matrix D: 

𝐷 =

[
 
 
 
 
𝑑1,1 𝑑1,2
𝑑2,1 𝑑2,2

… 𝑑1,𝑚
… 𝑑2,𝑚

… …
𝑑𝑛,1 𝑑𝑛,2

𝑑𝑖,𝑗 …

… 𝑑𝑛,𝑚]
 
 
 
 

                                            (2.19) 

where the elements 𝑑𝑖,𝑗 is defined as 

𝑑𝑖,𝑗 = 𝑐𝑖,𝑗 +𝑚𝑖𝑛 [𝑑𝑖−1,𝑗−1, 𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1]                                 (2.20) 

here 𝑑𝑖,𝑗  represents the minimum cumulative distance between two sequences from the 

beginning of Sequence1 to ai and from the beginning of Sequence2 to bj. Algorithm 2.3 

below briefs the calculation procedure of distance between the two sequences and 

Algorithm 2.4 describes the computation of the optimal align path. 

Algorithm 2.3 Distance Calculation  

𝑁 ← length of 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒1 

𝑀 ← length of 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒2 

for 𝑖 = 1 to 𝑁 do 

      for 𝑗 = 1 to 𝑀 do 

           𝐶(𝑖, 𝑗) ← 𝑠𝑞𝑟𝑡((𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒1(𝑖) − 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒2(𝑗))
2
) 

      end for 

end for 

for 𝑖 = 2 to 𝑁 do 

     for 𝑗 = 2 to 𝑀 do 

          𝐷(𝑖, 𝑗) = 𝐶(𝑖, 𝑗) + min [𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1),𝐷(𝑖, 𝑗 − 1)]  
     end for 

end for 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐷(𝑁,𝑀)  

The input of Algorithm 2.3 contains two time series sequences and the output is the 

dynamic time warping distance between these two sequences.  

Algorithm 2.4 Optimal Path Finding 

Requirement: The distance matrix 𝑫 obtained in Algorithm 1 

                         length of 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝟏: 𝑵 

                         length of 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝟐: 𝑴 

while 𝑁 +𝑀 equal to 2 do 

          if 𝑁 − 1 equal to 0 do 

     𝑀 ← 𝑀 − 1   
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     if 𝑀 − 1 equal to 0 do 

        𝑁 ← 𝑁 − 1 

else [𝑣𝑎𝑙𝑢𝑒𝑠, 𝑛𝑢𝑚𝑏𝑒𝑟]  ← 𝑚𝑖𝑛 ([𝐷 (𝑁 − 1,𝑀), 𝐷 (𝑁,𝑀 − 1),𝐷 (𝑁－1,𝑀 − 1)]) 
            switch 𝑛𝑢𝑚𝑏𝑒𝑟 

                        case 1 do 𝑁 ← 𝑁 − 1 

                        case 2 do 𝑀 ← 𝑀 − 1 

                        case 3 do 𝑁 ← 𝑁 − 1,𝑀 = 𝑀 − 1 

           end switch 

  end if 

𝑘 ← 𝑘 + 1  

𝑤 ← 𝑐𝑎𝑡(1,2, [𝑁,𝑀])  
end while 

The input of Algorithm 2.4 is dynamic time warping distance matrix and the output is 

optimal align path.  

There are four requirements for DTW: 

• Monotonicity. All the data in time series are obtained and stored in sequence. 

Although DTW has the ability to repeat the points with optimal alignments, the 

matching between points must abide by the time order. 

• Continuity. Assuming that the neighbour points in warping path are 𝑑𝑘 = (𝑖, 𝑗) and 

𝑑𝑘−1 = (𝑖
′, 𝑗′) respectively, then the position information of 𝑖 and 𝑗, 𝑖′and 𝑗′ must 

obey the following rules: 

𝑖 − 𝑖′ = 0 and 𝑗 − 𝑗′ = 1 
or 

𝑖 − 𝑖′ = 1 and 𝑗 − 𝑗′ = 0                                             (2.21) 
or 

𝑖 − 𝑖′ = 1 and 𝑗 − 𝑗′ = 1 

The requirement of continuity can ensure that there are no missing points during 

the calculation. 

• Slope constraints. Every point in one time-series sequence cannot be aligned too 

many times in the other time series, therefore, slope constraints are needed to avoid 

large movements in a single direction. 

• Boundary conditions. The first points and the end points of two time-series must be 

aligned to each other (Berndt and Cliford 1994). 
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2.3 Anomaly Detection 

Anomaly detection is a hot topic that has been discussed in various areas and domains. 

Most of the proposed methods are specifically proposed and improved for certain 

applications, while others are more generic. In this section, we try to provide a review of 

the researches on anomaly detection in recent decades. 

2.3.1 classification-based anomaly detection 

Classification is a data mining function that assigns items in a collection to target 

categories or classes (Krishnaiah et al 2014). Similar to the fashion of classification, the 

training step of classification-based anomaly detection is to create a model using the 

available data, the testing step of classification is to declare whether the testing instance 

is anomalous, using the model (generated in training step) (Steinwart et al 2005). 

According to the number of classes in dataset, classification-based anomaly detection 

can be broadly divided into two groups, they are: one-class anomaly detection and multi-

class anomaly detection. 

• One-class anomaly detection techniques assume that there is only one class in the 

dataset, any test instance that does not match the model (generated in training step) 

is identified as anomalous. Such techniques constructed a classification model 

using a one-class algorithm, such as one-class SVMs (Scholkopf et al 2001).  

• Multi-class anomaly detection techniques assume that there are two or more classes 

in the dataset (De Stefano et al 2000), a test instance that do not classified into any 

class is considered anomalous.  

Broadly speaking, there are 2 advantages and 1 disadvantage of classification-based 

anomaly detection techniques: 

• Advantage 1:  Powerful algorithms can be used to distinguish which class the 

testing instance belongs to.  

• Advantage 2: The testing step of classification-based techniques is fast, because 

each test instance is compared against the pre-obtained model. 

• Disadvantage 1: Such techniques rely on the availability of accurate labels for 

various normal classes, this is usually impossible.  
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2.3.2 Clustering-based anomaly detection 

Clustering is used to group similar data instances into clusters (Shirkhorshidi et al 

2014). Although anomaly detection and clustering seem to be fundamentally different, 

several clustering-based anomaly detection approaches have been proposed. In general, 

clustering-based anomaly detection techniques are separated into three groups: 

• Normal instance belongs to any one of the clusters, while outliers do not belong to 

any of them. According to this assumption, a known clustering method can be used 

to the dataset to define whether the testing instance is anomalous or not. Such as 

DBSCAN (Ester et al 1996), and ROCK (Guha et al 2000). 

• Normal instances close to their corresponding nearest cluster centres, while outliers 

are far away from their nearest centres. According to this assumption, a clustering 

method is used to separate all the instances, and the distances between instances 

and their corresponding nearest cluster centres are used as anomaly detection score. 

Such as Self-Organising Maps (Smith et al 2002), k-means is used to train data and 

the generated clusters are used to classify testing data. 

• Normal instances belong to large and dense clusters, while outliers belong to small 

or sparse clusters. According to this assumption, methods declare instances 

belonging to clusters whose size or density is below a threshold, as anomalous. 

Such as FindCBLOF (He et al 2003), assigns an anomaly score, which captures the 

size of the cluster to which the instance belongs.  

Broadly speaking, there are three advantages and two disadvantages of clustering-based 

methods, shown as follows: 

• Advantage 1: Clustering-based techniques can be operated in an unsupervised mode. 

• advantage 2: Clustering-based techniques can be used to detect anomaly or 

anomalies from complex datasets through plugging in a clustering algorithm that 

can deal with the particular data type.  

• advantage 3: The testing step for clustering-based techniques is not time-consuming 

because the number of clusters is a small constant. 

• disadvantage 1:  The effectiveness of clustering algorithm determines the 

performance of clustering-based anomaly. 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• disadvantage 2: For outliers that far away to cluster centres, most clustering 

methods always force them into clusters. This may cause outliers to be allocated to 

a large cluster, and thus treated as normal. 

2.3.3 Statistical anomaly detection 

Normal instances occur in high probability regions, while anomalous instances occur 

in low probability regions. Under this assumption, statistical techniques fit a statistical 

model to the dataset and apply statistical techniques to determine whether a testing 

instance is anomalous. Both parametric and nonparametric techniques have been applied 

to fit a statistical model (Eskin 2000, Desforges et al 1998).  

• As for parametric techniques, such as Gaussian Model-based anomaly detection, 

the distance between testing instance and estimated mean is defined as anomaly 

score, a threshold is then used to determine whether the testing instance is 

anomalous. 

• As for non-parametric statistical models, such as histogram-based anomaly 

detection, for univariate data, a histogram is constructed in the train step, then a 

testing instance is checked whether it is falls in any one of the bins of the histogram. 

In general, there are one advantage and two disadvantages of statistical techniques. 

They are shown as follows:  

• Advantage 1: Statistical techniques can operate in an unsupervised setting without 

any need for labelled data.   

• Disadvantage 1: Such techniques can only work effectively when the data is 

generated from a particular distribution. 

• Disadvantage 2: For multidimensional data, histogram-based techniques cannot be 

used to capture the interactions between different attributes.  

2.3.4 Spectral anomaly detection 

Data can be projected into a lower dimensional space where normal instances and 

anomalous instances are different. Under this assumption, spectral techniques are used to 

transform the original data and detect the anomalous instances. 
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As principal components analysis (PCA) is widely used to project data into a low 

dimensional space, in 1996, (Parra et al.) proposed a such technique, which analyses the 

projection of each data instance along the principal components. 

The advantages and disadvantages of spectral anomaly detection techniques are as 

follows:  

• Advantage 1: Dimensionality reduction is automatically performed by spectral 

anomaly detection techniques. 

• Advantage 2:  Spectral anomaly detection techniques can work well in 

unsupervised settings.   

• Disadvantage 1: Only if the normal and anomalous instances can be accurately 

separated in the lower dimensional space, spectral anomaly detection techniques 

are applicable. 

• Disadvantage 2: It is high computational complexity for most spectral anomaly 

techniques.  

2.3.5 Nearest-neighbour based anomaly detection 

Normal instances close to their neighbourhoods, while anomalies are far from their 

neighbours. According to this assumption, nearest neighbour analysis has been used in 

several anomaly detection techniques. This technique requires a distance measure method 

to define the similarity between two instances. For nearest-neighbour based anomaly 

detection techniques, Euclidean distance is a popular choice, but more complex distance 

measures can also be used (Boriah et al. 2008; Chandola et al. 2008).  

The advantages and disadvantages of nearest neighbour-based techniques are as 

follows:  

• Advantage 1: These techniques can work well in unsupervised settings.   

• Advantage 2: Such techniques can be directly applied to most kinds of data as long 

as a suitable distance measurement method is selected for given data. 

• Disadvantage 1: If normal instances do not have enough close neighbours, or if 

anomalous instances have several close neighbours, the technique is not applicable.  



Chapter 2. Literature Review 

 

 

• Disadvantage 2: Because the distance of each instance and all the other instances 

has to be computed, such techniques are always time-consuming.   

• Disadvantage 3: Distance between instances is difficult to be computed when the 

data is complex.. 

2.4 Clustering 

Clustering is used to identify structures in an unlabelled dataset by separate original 

data into different groups, where the within-group distance is minimized and between-

group distance is maximized. Clustering is necessary when there is no labelled data in the 

original dataset regardless of what types the data is. Static data, as its name implies, means 

that the feature values do not change with time. Clustering methods for handing various 

static data are separated into five major types (Ham et al 2001): partitioning methods, 

hierarchical methods, density-based methods, grid-based methods, and model-based 

methods. Two of these five methods: specifically partitioning methods and hierarchical 

methods, have been utilized directly for time series clustering, are reviewed in this section. 

2.4.1 Partitioning methods 

Given a time series database that contains 𝑛  unlabelled sequences, partitioning 

methods can divide the database into 𝑘 different groups, where each group represents a 

cluster and all these groups have to meet the following requirements: 1) there is at least 

one sequence in each group; 2) each sequence can only belong to one exactly cluster. 

There are two famous partitioning methods, for k-means, each cluster is represented by 

the average sequence of the group, for k-mediods, each cluster is represented by the 

sequence whose within-group-distance is the minimum one in the group. 

K-means was first proposed almost three decades ago (Jain et al 1999) and has been 

widely applied in a variety range of domains, such as gene expression and prediction of 

student performance (Lu et al 2004, Oyelade et al 2010). The basic idea behind the 

method is to randomly choose k data as the initial cluster centre, using distance measure 

method to calculate the distances between all the rest data and the randomly selected 

cluster centres, and classify these data to their nearest cluster. Once all the data have been 

labelled, calculate the average data of every group so that it can be used as the 

representation of each cluster. The final result of k-means relies on iterative operation, 
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which will stop if the new average data is equal or approximate to the previous average 

data of the cluster.  

The whole process of k-means based clustering is described as following 3 steps: 

• Distances calculation: Assuming there are 𝑛 patterns in original database, k-means 

starts with randomly selected 𝑘 patterns as initial cluster centre, then calculate the 

distances between the rest data and these randomly chosen centres. The main part 

of this step is distance calculation because accuracy level of distance calculation 

determines the classification accuracy of unlabelled patterns. For most k-means 

based clustering calculation, Euclidean distance is used to calculate the distance 

between patterns. 

• Average data calculation: Once all the data in 𝑘 groups have been obtained, the 

arithmetic mean value of each group is calculated and used to replace the previous 

cluster centre because it meets the requirement that the within-group-distance of 

cluster centre is minimum when compare with other patterns in the same group.  

• Comparison and decision making: Usually k-means based clustering takes several 

iterations, and it will stop if the distance between the new cluster centre and the 

previous cluster centre is less than a predefined small value (the amount of this 

value is defined according to the requirement of the clustering calculation). On the 

other hand, if the distance between the new cluster centre and previous centre is 

greater than the predefined value, clustering calculation should repeat previous 

steps. 

For some isolated data in original database, they are always far away from clustering 

centre. Even so, k-means based clustering method still forces these data into clusters. 

Because of this, the average value of the group cannot correctly describe the features of 

the group and therefore influence future clustering calculation. K-medoids clustering 

method was proposed to reduce the effect of outliers in clustering procedure (Kaufman 

and Rousseeuw 2009). Because the advantage of k-medoids clustering method that real 

data points (medoids) is used as clustering centre and avoids the effect of outlier (Xu and 

Wunsch 2005), a lot of k-medoids based clustering methods were extended from K-

medoids and applied in various domains in recent decades (Zhang and Couloigner 2005, 

Park and Jun 2009). 
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Similar with k-means based clustering method, the whole clustering process of k-

medoids based clustering methods are also separated into three steps. 

• Distance matrix building: Given a set of data, k-medoids based clustering method 

starts with randomly selected 𝑘 different initial data, then build a distance matrix 

that contains the distances between the 𝑘  pre-selected data and all the data in 

database. Euclidean distance is always used in this step to calculate the distances 

between different data. This is the first step of k-medoids based clustering method 

and this part is same with the first step of k-means based clustering method. 

• Data classification and mediods chosen: For the first part of this step, all the 

undefined data is organized to their nearest cluster according to the distances matrix 

that is obtained in previous step. After that, as the basic idea of k-medoids based is 

to use a real data to represent the features of the group, within-group-distances of 

every data in the group are computed and the corresponding data with the minimum 

distance sum is defined as the medoid of the cluster. As introduced in k-means 

based clustering, the new cluster centre is the average value of the group, here, the 

new representative of the group is a real instance in the group. 

• Comparison and decision: The whole clustering procedure always takes several 

iterations and it will stop if the new medoids of every cluster are equal to the 

previous one. Different with k-means based clustering method, for k-medoids, the 

new medoid must be the same with previous one, if not, the calculation has to keep 

running. 

2.4.2 Hierarchical methods 

Hierarchical clustering methods offer a way to build a hierarchical structure tree 

according to the similarity between different data. The root of the tree represents all the 

data in database and the top-level of the tree usually expressed by one cluster contains all 

the data. According to different requirements, the growth directions of hierarchical tree 

are different and generally can be classified as agglomerative methods and divisive 

methods. For agglomerative methods, the starting position is that each data in the database 

represents a cluster and every cluster only contains exactly one object. According to 

similarity measure between every two objects in database, the nearest two objects can 

align with each other and construct a new cluster. This alignment process has to repeat 
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several times and will stop until all the objects are classified to a same group. For divisive 

clustering methods, the beginning status is that all the data in database belongs to one 

cluster, then splits the data into two parts and goes on by dividing them further into 

smaller parts until each cluster only contains one object (Kaufman and Rousseeuw 2009, 

Xu and Wunsch 2005). Figure 2.8 illustrates the basic structures of agglomerative 

clustering methods and divisive cluster methods. It can also clearly describe the 

difference between these two methods. 

 

Figure 2.8 Description of agglomerative and divisive clustering methods 

The purpose of most clustering calculation is organising a set of unlabelled data into 

a certain number of groups where the within-group-object distance is minimized and 

between-group-object distance is maximized. Therefore, agglomerative clustering 

methods are usually used in practice. Generally, the whole process of agglomerative 

clustering can be divided into 4 steps. 

• Distance matrix: Given a database contains 𝑁 patterns and using a suitable distance 

calculation method to calculate the distances between every pattern, the distance 

values are stored in a distance matrix.  

• Match: Find the most nearest two patterns according to the distance matrix that is 

obtained in step 1, and then combine them to form a new cluster. There may be 

several pairs of data combined together at this step, and therefore, the result of this 

step may has several new clusters. 

• Update: Once we get a new cluster in step 2, the previous data used to form the new 

cluster should be replaced by the new data. 

• Repeat: Step 2 and step 3 have to keep repeating until all the patterns are classified 

in one cluster. 
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2.5 Remaining Useful Life Estimation 

Remaining useful life (RUL) estimation of safety related critical components has 

received increasing attention in recent decades, not only because the health status of these 

critical components are closely linked to life of related people, but also because the repair 

and maintenance of these components requires expenditure of additional money and 

resources. Remaining useful life estimation can be completed by using two main 

approaches, namely physics-based and data-driven approaches (Medjaher et al 2012). 

2.5.1 Physics based methods 

Physics-based methods are suitable for situations where precise theoretical models 

can be accurately constructed (Baraldi et al 2013). To create a physical model, we must 

start with the physical equation, the key parameters are then selected according to the 

target of the model (Bagul et al 2008).  

In recent decades, several physical based RUL estimation models are proposed. For 

example, a physical model, proposed by Oppenheimer and Loparo (2002), is used to 

predict machine condition, based on crack growth law, this model could be applied to 

determine RUL of testing machine; developed by Li and Lee (2005), a gear meshing 

stiffness identification model is used to predict the RUL of a fatigue tooth crack; 

presented by Waston et al (2005), physics based simulation model and wear prediction 

model are combined to estimate the RUL of a highly dynamic high-power dry clutch 

system.  

Physics-based models can be constructed according to first principles and physical 

mechanisms. When physical information is significantly complete, physics-based model 

will significantly outperform other types of prediction model in terms of RUL estimation. 

However, due to the lack of understanding of all failure modes, physics-based model can 

not be used to estimate the RUL of a complex system. Additionally, a physical model is 

usually created individually. Hence, a physics-based RUL estimation model is not 

applicable to a different system. 

2.5.2 Data Driven Based Methods 

Data-driven methods mainly predict RUL based on the equipment status monitoring 

data and the measurements of similar equipment or systems from health to failure 

degradation process (Tsui et al 2015, Zhang et al 2015, Heng et al 2009). These methods 
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only rely on previously observed data and do not need to require complex physical failure 

mechanism. In recent decades, data-driven based RUL estimation methods have been 

widely studied.  

A neural network provides a means to analysing a complex system without any 

knowledge about the internal structure, hence these methods are suitable for predicting 

the RUL of complex equipment. For example, a neural network was developed by 

Byington et al (2004) to predict the RUL of aircraft components; a neural network model 

was proposed by Yu et al (2006) to predict the condition of a boring process during its 

full life cycle; Huang et al (2007) provided an approach to predict the RUL of a ball 

bearing based on neural network methods; and Guo et al (2017) proposed a health 

indicator based on recurrent neural network to predict RUL of bearings. 

Similarity-based RUL estimation approaches are relatively new but have made 

promising performance. The basic idea behind these approaches is to extract historical 

degradation trajectories that are similar or same with that of testing equipment, and 

calculate RUL of the testing equipment according to RUL of the extracted historical 

trajectories. For example, a similarity-based RUL estimation approach was proposed by 

Wang et al (2008) to estimate RUL of aircraft engines; a similarity-based approach was 

provided by Zio and Maio (2010) for RUL estimation of nuclear system; Zhang et al 

(2015) proposed a similarity-based RUL estimation method to predict the RUL of high-

pressure water pumps. 

Data-driven models are implemented only from historical data, and are applicable 

when historical data is sufficiently abundant. Similar models can also be applied to other 

systems without understanding the complex physics. However, most results of data-

driven models are not easy to explain or to be related to any physical meaning. 

2.6 Summary 

The reduction of original time series’ dimensionality is crucial because most time 

series mining methods only work well when the number of dimensions is low (Wang and 

Megalooihonomou 2008). In the first section of this Chapter, we briefly review some time 

series transformation and representation methods, they are piecewise aggregate 

approximation, symbolic aggregate approximation and principal components analysis. 
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The problem of similarity measure in time series database has attracted a lot of 

attention recently. This is because similarity measure is the most essential role in time 

series mining process. In the second section of this chapter, we provide a review of time 

series distance measure methods, includes Euclidean distance and dynamic time warping. 

Anomalies are patterns in data that do not conform a well-defined notion. In some 

cases, anomalies translate significant and actionable information. In the third section of 

this chapter, we review some time series anomaly detection methods, including 

classification-based anomaly detection, clustering based anomaly detection, statistical 

based anomaly detection, spectral anomaly detection and nearest neighbour based 

anomaly detection. 

Clustering time series data has applied in a wide range of applications and has 

attracted researches from a wide range of areas. This is because clustering analysis can 

be used as a pre-processing step for most data mining techniques, such as prediction and 

anomaly detection. In the fourth section of this chapter, we provide a review of two 

popular clustering techniques, they are partitioning clustering technique and hierarchical 

clustering technique. 

Remaining useful life prediction has been applied to many applications, such as 

military, power systems, aerospace systems and manufacturing equipment. This is 

because accurate RUL estimation methods can increase availability, reliability and safety; 

and reduce maintenance and logistics cost. In the fifth section of this chapter, we review 

physical-based RUL estimation model and data-driven RUL estimation model. 

In the following chapters, we will introduce the works I have completed during my 

PhD, effort including a novel calculation of distances between symbols and a distance 

measure method for similarity measure between symbolic series; a novel anomalies 

detection method for anomalies detection and extraction from ECG data; an automatic 

time series clustering (AT-means), from setting the initial centres to determination of 

number of clusters and generation of clusters; and a new multidimensional time series 

similarity measure method for similarity-based remaining useful life estimation method. 
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Chapter 3 

Time Series Distance Measure 

Due to the fact that there is a large number of complex data in time series, 

it will inevitably lead to significant expenditure of money and time if we want 

to directly measure the similarity between time series, and possibly worse, is 

that the final result may not be accurate or robust. In the past few decades, 

symbolic representations of time series have been considered in numerous 

works because such representations help researchers to avail of the wealth of 

data and improve the performance of distance measure between time series. 

In this chapter, a novel definition of distances between symbols and a distance 

measure method are proposed for time series similarity measure. In order to 

validate the performance of the proposed methods, we integrate the proposed 

distance table calculation method to symbolic aggregate approximation and 

its extension methods, and apply both the proposed methods and integrated 

methods to 1000 pairs of benchmark time series. The experimental results 

show the performance of time series distance measure is improved by 

applying our proposed methods. 

3.1 Introduction 

With the development of high-techniques in the past decades, a significant amount of 

data is generated and recorded every day from many application domains, such as finance, 

industry, agriculture, scientific experiments, medical observations, etc. According to an 

IBM (IBM 2017) report, 2.5 billion gigabytes of data were generated every day in 2012 

and were estimated to 2.5 quintillion bytes every day in 2017. As a consequence, many 

time series representation methods have been proposed with two objectives: i) reducing 

the dimension of raw data so that the efficiency of data mining can be improved; ii) 

removing the noise from original data and remaining the main features of the raw data. 
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With the propositions of time series representation methods, because similarity measure 

between time series plays an important role in time series mining, many time series 

distance measure methods were proposed at the same time. 

Decades ago, time series representation and dimensionality reduction method based 

on discrete Fourier transform (DFT) was firstly performed to measure similarity between 

time series (Agrawal et al 1993). But later, due to the fact that DFT can only preserve the 

information of the raw data in frequency domain whereas discrete wavelet transform 

(DWT) has the ability to keep the information of raw data in both frequency and time 

domain, DWT was introduced as a more powerful alternative for time series distance 

measure (Chan and Fu 1999, Wu et al 2000). Both of DFT and DWT are used to transform 

original data from time domain to frequency domain, and the similarity between original 

data is expressed by the distance between transformed series in frequency domain. So far, 

most time series representation and similarity measure methods are implemented in the 

time domain directly. One of the time domain transformation methods is piecewise 

aggregate approximation (PAA), which uses the segmented means to represent the 

original time series and such an approximation can be used to improve the efficiency of 

distance measure between time series (Keogh et al 2001a). Later, in order to adapt to the 

shape of the time series and make the distance between transformed series tightly close 

to the Euclidean distance of original data, PAA was extended to an adaptive piecewise 

constant approximation (APCA), which is used to transform one time series by a set of 

constant value segments of varying lengths (Keogh at al 2001b). Principal component 

analysis is another popular transformation method, which constructs a linear combination 

of the original data so as to represent the original time series in low dimensional space, 

and the distance between the transformed time series in the projected domain is used to 

represent the distance between original data (Yang and Shahabi 2004, Karamitopoulos at 

al 2010). Different from the above traditional time series representation and distance 

measure methods that use real-valued numbers, another commonly used method for time 

series representation is symbolic representation, which converts the numeric time series 

to some symbolic form and uses the distance between symbolic series to represent the 

similarity between the original data. One of the most popular symbolic representations 

and distance measure methods is symbolic aggregate approximation (SAX) (Lin et al 

2003).  (explanation: This part has been partly minimized. This part briefly introduces the 
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development of time series representation. For part 2 in Chapter 2, that is review of time 

series representation) 

Compared with real-valued time series, symbolic series is more powerful to tackle 

some specific tasks, such as anomaly detection and motif discovery (Wang et al 2013, Fu 

2011). Since the publication of SAX, it has been widely used in many time series data 

mining applications, such as similarity search on financial time series (Canelas et al 2012), 

human action recognition (Junejo and Aghbari 2012), mobile data management (Tayebi 

et al 2011), etc. Note that the original SAX has a number of limitations. For example, the 

extreme points of every segment during distance calculation are neglected and the trends 

of raw data are not taken into account. Therefore, modifications and extensions to the 

original SAX have been proposed to improve the performance for time series mining. In 

Lkhagva et al’s (2006a) and Lkhagva et al’s (2006b) researches, in order to keep the 

information of extreme points in financial time series data, an extended SAX (ESAX) 

was proposed by adding two new points in equal sized segments. It was shown that the 

representation and similarity measure defined in ESAX are more precise than SAX in 

term of high frequency dataset. In the research conduct by Sun et al (2014), in order to 

improve the SAX representation precision in distinguishing different time series with 

similar average values while with different trends, a SAX trend distance (SAX-TD) 

approach was proposed by defining trend distance quantitatively with starting and ending 

points and replacing the original SAX distance measure with the weighted trend distance. 

It was demonstrated that SAX-TD can significantly decrease the classification error rate 

(Sun et al 2014). 

It is noteworthy that due to the distances between symbols are defined according to 

the Gaussian distribution, distance measure between symbolic series calculated using the 

above mentioned symbolic representations are not accuracy enough. In this work, in order 

to improve the performance of distance measure between symbolic series, we propose a 

novel method to define the look-up table and a new method to measure distance between 

symbolic time series. The two proposed methods are integrated to SAX and SAX-TD, 

which are referred to as ‘improved SAX’ and ‘improved SAX-TD’, respectively, in 

subsequent sections for convenience of description. In order to validate the performance 

of the proposed method, we apply the modified methods to 1000 pairs of benchmark time 

series obtained from UCR time series collection (Chen et al 2015). For comparison 
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purpose, the original SAX, ESAX and SAX-TD are also applied to the same time series 

datasets. 

The remainder of this chapter is organized as follows. Section 3.2 briefly reviews 

ESAX and SAX-TD. Section 3.3 illustrates the new definition of look-up table and the 

new distance measure method, and Section 3.4 reports the experimental results. Finally, 

Section 5 briefly summarizes this chapter. 

3.2 Related Works 

In recent decades, SAX representation was applied to many time series data mining 

problems, and improvements from different aspects were proposed at the same time. In 

this section, we review two popular extended works (ESAX and SAX-TD). 

3.2.1 Extended Symbolic Aggregate Approximation 

Financial time series is typically characterized by a few critical points, such as 

maximum point and minimum point. However, SAX is based on PAA representation for 

dimensionality reduction and mean value based representation causes a highly possibility 

to miss some important information. In Lkhagva et al’s (2006a) studies, in order to reduce 

the loss of important information during the representation procedure, Extended SAX 

(ESAX) was proposed for symbolic representation of financial time series.  

 

Figure 3.1 SAX representation of financial time series (Lkhagva et al 2006a) 

The improvement of ESAX starts at the step of dimensionality reduction. As the SAX 

representation of one typical financial time series shown in Figure 3.1, the segment from 

time 20 to time 30 are labelled as symbol 𝐶 whereas the maximum and minimum point, 

shown in the small red cycles, located in the area of 𝐴 and 𝐹. For the representation of 
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one time series, when the segments of financial time series are only represented by their 

corresponding average values, important points of some segments may be missed. In 

(Lkhagva et al 2006a), aimed to fully represent time series data, maximum and minimum 

points are added for the representation of every segment. Take the segment from time 20 

to time 30 in Figure 3.1 as an example. Because the maximum point locates in the area 

of symbol A and the minimum point locate in the area of symbol F, this segment is going 

to be represented by the combination of symbol 𝐴, 𝐵 and 𝐹. 

Given two symbolic series, 𝑆1 = [𝐴,𝐵, 𝐶] and 𝑆2 = [𝐶, 𝐴, 𝐵], although both 𝑆1 and 

𝑆2 contain the same symbols, we cannot define them as similar because the position of 

symbols in 𝑆1 and 𝑆2 are different. In Lkhagva et al’s (2006a) research, because three 

values are used to represent one segment, their positions have to be defined prior to 

similarity measure.  

                   
                               a) condition 1                                                      b) condition 2 

                                
                               c) condition 3                                                      d) condition 4 

                           
                               e) condition 5                                                      f) condition 6 

Figure 3.2 Orders of extreme points 
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For one time series segment, the location of the average value is the middle position 

of the segment and set as 𝑃𝑚𝑖𝑑 , the position of the maximum point is set as 𝑃𝑚𝑎𝑥, the 

position of minimum point is set as 𝑃𝑚𝑖𝑛. Depending on the order in which these three 

values appear, there are 6 different conditions: 1) 𝑃𝑚𝑖𝑛 > 𝑃𝑚𝑎𝑥 > 𝑃𝑚𝑖𝑑 , 2)  𝑃𝑚𝑎𝑥 >

𝑃𝑚𝑖𝑛 > 𝑃𝑚𝑖𝑑, 3) 𝑃𝑚𝑖𝑛 > 𝑃𝑚𝑖𝑑 > 𝑃𝑚𝑎𝑥, 4) 𝑃𝑚𝑖𝑑 > 𝑃𝑚𝑎𝑥 > 𝑃𝑚𝑖𝑛, 5) 𝑃𝑚𝑖𝑑 > 𝑃𝑚𝑖𝑛 > 𝑃𝑚𝑎𝑥 , 

6) 𝑃𝑚𝑎𝑥 > 𝑃𝑚𝑖𝑑 > 𝑃𝑚𝑖𝑛, as shown in Figure 3.2. 

According to the 6 different conditions, the ordering calculation can be expressed by 

following equation (Lkhagva et al 2006a): 

[𝑆1 𝑆2 𝑆3] =

{
  
 

  
 
[Smin Smax Smid] if     Pmid < Pmax < Pmin
[Smax Smin Smid] if     Pmid < Pmin < Pmax
[Smin Smid Smax] if     Pmax < Pmid < Pmin
[Smid Smax Smin] if     Pmin < Pmax < Pmid
[Smid Smin Smax] if     Pmax < Pmin < Pmid
[Smax Smid Smin] if     Pmin < Pmid < Pmax

             (3.1) 

The whole process of ESAX representation is also summarized in Algorithm 3.1. 

Algorithm 3.1 Extended Symbolic Aggregate Approximation 

Requirements: One time series: 𝑇 

                           Length of segment: 𝑚, length of 𝑇: 𝑛 

for 𝑖 = 1 ∶ 𝑛 step by 𝑚 do 

      𝑗 ← 𝑖 ∶ 𝑖 + 𝑚 − 1  

      𝑡𝑚𝑖𝑑   ←  𝑚𝑒𝑎𝑛( 𝑇 ( 𝑗 ) ) 
      𝑡𝑚𝑎𝑥  ←  𝑚𝑎𝑥( 𝑇 ( 𝑗 ) )  
      𝑡𝑚𝑖𝑛   ←  𝑚𝑖𝑛( 𝑇 ( 𝑗 ) )  
      𝑃𝑚𝑖𝑑  ←  𝑠𝑢𝑚 ( 𝑗 )/𝑚 

      𝑃𝑚𝑎𝑥  ←  𝑓𝑖𝑛𝑑( 𝑇( 𝑗 ) == 𝑡𝑚𝑎𝑥)  
      𝑃𝑚𝑖𝑛  ←  𝑓𝑖𝑛𝑑( 𝑇( 𝑗 ) == 𝑡𝑚𝑖𝑛)  
      if 𝑃𝑚𝑖𝑛 < 𝑃𝑚𝑖𝑑 < 𝑃𝑚𝑎𝑥  do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑑, 𝑡𝑚𝑖𝑛];  
      if 𝑃𝑚𝑎𝑥 < 𝑃𝑚𝑖𝑑 < 𝑃𝑚𝑖𝑛 do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖,𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑖𝑑, 𝑡𝑚𝑎𝑥];  
      if 𝑃𝑚𝑖𝑑 < 𝑃𝑚𝑎𝑥 < 𝑃𝑚𝑖𝑛 do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑑];  
      if  𝑃𝑚𝑖𝑑 < 𝑃𝑚𝑖𝑛 < 𝑃𝑚𝑎𝑥  do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑖𝑑];  
      if 𝑃𝑚𝑖𝑛 < 𝑃𝑚𝑎𝑥 < 𝑃𝑚𝑖𝑑  do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑖𝑑, 𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛];  
      if  𝑃𝑚𝑎𝑥 < 𝑃𝑚𝑖𝑛 < 𝑃𝑚𝑖𝑑  do 

         𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑚𝑖𝑑, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥];  
      end if 

end for 
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The input of Algorithm 3.1 is one time series and the output is represented by ordered 

maximum, minimum and mean values.  

The ordered important values are then symbolized according to the predefined 

requirements, such as the number of symbols. Once the ESAX representation of time 

series is obtained, because the distances between symbols have been defined according 

to Gaussian distribution, as shown in Table 2.2 (page 13), the distance between time series 

can be calculated. 

Given two time series 𝐴 and 𝐵, their corresponding ESAX representation are 𝐴̃ =

[𝑎1 ,̃ 𝑎2̃, … , 𝑎𝑛̃] and 𝐵̃ = [𝑏1̃, 𝑏2̃, … , 𝑏𝑛̃], the distance between 𝐴 and 𝐵 is calculated as 

following equation. 

𝐷 = √
𝑛

𝑘
∗ √∑ (𝑑𝑖𝑠𝑡(𝑎𝑖̃, 𝑏𝑖̃ ))

𝑘
𝑖=1                                           (3.2) 

where 𝑛 is the length of 𝐴 and 𝐵, 𝑘 is the length of 𝐴̃ and 𝐵̃, the 𝑑𝑖𝑠𝑡(… ) function is 

implemented using the predefined distances between symbols in Table 2.2 (page 13). 

3.2.2 Symbolic Aggregate Approximation – Trend Distance 

During the step of dimensionality reduction in SAX representation, because each 

segment is represented by its average value, some important points are missed and hence 

ESAX was proposed by tripling the dimensions of original SAX. Due to the same reason 

that average values are used to represent segments, the directions of segments are ignored, 

which results in that the SAX representation cannot distinguish different time series with 

similar average values. Mentioned by Sun et al (2014), in order to improve the distance 

calculation of SAX, a modified distance measure by integrating the SAX distance with a 

weighted trend distance was proposed. 

Several typical segments with same average value are shown in Figure 3.3 (the curves 

represent original time series and the lines are their corresponding average values), with 

the application of SAX, all of the segments are represented by one symbol. This means 

these segments are going to be defined as same with each other after the process of 

similarity measure although that is not true. Because of this, trend plays an important role 

in the analysis of similarity between time series. 
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                                     a                                                                             b 

                                          
                                      c                                                                            d 

                   
                                     e                                                                             f 

Figure 3.3 Six typical segments with same average value but different trends (Sun et al 2014). a) level and 

slight up, b) obvious up, c) down, up and down, d) level and slight down, e) obvious down, f) up, down 

and up. 

Given one time series T, its corresponding SAX representation is 𝑇𝑠 =

[𝑡𝑠1, 𝑡𝑠2, … , 𝑡𝑠𝑚]. Mentioned by Sun et al (2014), trend variation of each segment of 𝑇 is 

incorporated into 𝑇𝑠, as the representation manner shown below: 

𝑇𝑆𝐴𝑋−𝑇𝐷 = [∆𝑇(1), 𝑡𝑠1, … , ∆𝑇(𝑖), 𝑡𝑠𝑖 , ∆𝑇(𝑖 + 1),… , 𝑡𝑠𝑚 , ∆𝑇(𝑚 + 1)]          (3.3) 

where 𝑡𝑠𝑖 is the 𝑖th symbols in the SAX representation of 𝑇, ∆𝑇(𝑖) is trend variation, 

which is used not only to represent the distance between ending value and average value 

of the 𝑖th segment, but also to represent the distance between staring value and average 

value of the (𝑖 + 1) th segment. The whole transformation process of SAX-TD is 

described by Algorithm 3.2. 
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Algorithm 3.2 Symbolic Aggregate Approximation Trend Distance 

Requirements: One time series: 𝑇 

                           Length of segment: 𝑚 

𝑛 ← length of 𝑇 

for 𝑖 = 1:𝑚: 𝑛 do 

       𝑖𝑑 = 𝑖: 𝑖 + 𝑚 − 1  

       𝑡𝑚𝑖𝑑 = 𝑚𝑒𝑎𝑛(𝐴(𝑖𝑑))  

       𝐴𝑡 = 𝐴(𝑖𝑑);  
       𝑡𝑠 = 𝐴𝑡(1);  
       𝑏((𝑖 − 𝑚𝑜𝑑(𝑖, 𝑚))/𝑚 + 1, : ) = [𝑡𝑠, 𝑡𝑚𝑖𝑑];  
end 

𝑛𝑒𝑤𝑠𝑒𝑟𝑖𝑒𝑠 = [𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑏′, [1, 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 2]),𝐴(𝑛)];  

Given two segment of time series, 𝑃 and 𝑄, their SAX-TD representation are 𝑃𝑠𝑡 =

[∆𝑃(𝑡𝑠), 𝑃̃, ∆𝑃(𝑡𝑒)]  and 𝑄𝑠𝑡 = [∆𝑄(𝑡𝑠), 𝑄̃, ∆𝑄(𝑡𝑒)] , the trend distance 𝑡𝑑(𝑃, 𝑄)  is 

defined as follows: 

𝑡𝑑(𝑃, 𝑄) = √(∆𝑃(𝑡𝑠) − ∆𝑄(𝑡𝑠))
2
+ (∆𝑃(𝑡𝑒) − ∆𝑄(𝑡𝑒))

2
                 (3.4) 

For the distance measure of two time series (𝐴 and 𝐵) with same length of 𝑛, the 

SAX-TD based distance calculation is as follows: 

𝑇𝐷𝐼𝑆𝑇(𝐴̃, 𝐵̃) = √
𝑛

𝑚
∗ √∑ ((𝑑𝑖𝑠𝑡(𝑎𝑖̃, 𝑏𝑖̃))

2

+
𝑚

𝑛
∗ (𝑡𝑑(𝑎𝑖, 𝑏𝑖))

2
)𝑚

𝑖=1          (3.5) 

where 𝐴̃ and 𝐵̃ are the SAX-TD representation of 𝐴 and 𝐵, 𝑚 is the number of elements 

in  𝐴̃  and 𝐵̃ , 𝑎𝑖  and 𝑏𝑖  are the 𝑖 th segment of 𝐴  and 𝐵 , 𝑎𝑖̃  and 𝑏𝑖̃  are the SAX 

representation of 𝑎𝑖 and 𝑏𝑖. For the distance calculation function 𝑑𝑖𝑠𝑡(… ), it is the same 

with the distance measure between symbols in SAX and ESAX, which is implemented 

using the predefined distances between symbols in Table 2.2 (page 13) (Lin et al 2003). 

3.3 Distance Measure between Symbolic Series 

In this section, distance measure between symbolic series is introduced as follows: i) 

definition of distances between symbols, ii) time series distance measure based on the 

proposed method, iii) proof of lower bound. 
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3.3.1 Definition of Distances between Symbols 

The symbols in symbolic series, transformed from real-valued time series, can only 

characterize the changes of amplitude, but cannot indicate the real values of their 

corresponding segments. To calculate the distance between symbolic series, it is 

necessary to define the distances between symbols. Based on the definition of the concept 

of distance tables (Lin et al 2003, Lkhagva et al 2006a, Sun et al 2014), Gaussian 

distribution can be used to define the distances between symbols, as shown in Table 2.2 

(page 13) It should be noticed that the distance between two neighbour symbols is defined 

as 0 although they are not the same. More than that, once two segments are labelled as a 

same or neighbour symbol, the distances between them are set to 0 although they might 

not be the same. Such a definition of distances between symbols is easy to understand 

and implement, but will influence the accuracy of further calculation.  

In this subsection, given the number of break points, in order to improve the accuracy 

of the look-up table and satisfy the requirement of symbolic representation that the 

distance between two symbolic series is lower than the Euclidean distance of the original 

two time series, the distances between different symbols are computed based on the 

maximum and minimum values of PAA representation in each area. For example, SAX 

representation of one time series is defined in Figure 3.4, the distance between symbol A 

and symbol B is defined as the distance between the minimum mean value of symbol A 

(the mean value of the segment in area A) and the maximum mean value of symbol B 

(mean value of the 3rd segment in area B). 

 

Figure 3.4 The SAX representation of one time series 

Defining the number of break points is 3, the pseud-code of the proposed calculation 

of distances between symbols is given in Algorithm 3.3 below: 
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Algorithm 3.3 Definition of Distances between Symbols 

Requirements: Candidate time series 𝐴  

                          Candidate time series 𝐵 

                          Length of segment 𝑚 

𝑛 ← length of candidate time series 

𝐶𝑠𝑒𝑟𝑖𝑒𝑠 ← [𝐴,𝐵]  
𝐶𝑠𝑒𝑟𝑖𝑒𝑠_𝑃𝐴𝐴 ← 𝑃𝐴𝐴(𝐶𝑠𝑒𝑟𝑖𝑒𝑠)  
𝐶𝑠𝑒𝑟𝑖𝑒𝑠_𝑠𝑦𝑚𝑏𝑜𝑙 ← 𝑆𝐴𝑋(𝐶𝑠𝑒𝑟𝑖𝑒𝑠)  

for 𝑖 =
𝑛

𝑚
∗ 2 do 

     𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛{𝑠𝑦𝑚𝑏𝑜𝑙} ← 𝑓𝑖𝑛𝑑(𝐶𝑠𝑒𝑟𝑖𝑒𝑠_𝑠𝑦𝑚𝑏𝑜𝑙(𝑖) == 𝑠𝑦𝑚𝑏𝑜𝑙)  
     max(𝑠𝑦𝑚𝑏𝑜𝑙) ← max (𝐶𝑠𝑒𝑟𝑖𝑒𝑠_𝑃𝐴𝐴(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛{𝑠𝑦𝑚𝑏𝑜𝑙}))  
     min(𝑠𝑦𝑚𝑏𝑜𝑙) ← min (𝐶𝑠𝑒𝑟𝑖𝑒𝑠_𝑃𝐴𝐴(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛{𝑠𝑦𝑚𝑏𝑜𝑙}))  
     for 𝑖 = 1: 4 do 

          for 𝑗 = 1: 4 do 

                if 𝑖 = 𝑗 
                   𝑡𝑎𝑏𝑙𝑒(𝑖, 𝑗) ← 0  

                else 

                   𝑥1 ← 𝑎𝑏𝑠(max(𝑖) − min (𝑗))  
                   𝑥2 ← 𝑎𝑏𝑠(min(𝑖) − max (𝑗))  
                   𝑡𝑎𝑏𝑙𝑒(𝑖, 𝑗) ← min (𝑥1, 𝑥2)  
                 end if 

           end for 

     end for 

end for 

The input of Algorithm 3.3 are two real-valued time series and the length (number of 

points) of every segment. The output is the distance table that contains the distances 

between symbols, and this table can only be used as the look-up table for the distance 

calculation of the input time series. This work proposes a new definition of a look-up 

table that is different from the traditional one as shown in Table 2.2 (page 13) (Lin et al 

2003). For example, given two time series A and B (which are the 1st and 12nd time series 

in CBF (Cylinder Bell and Funnel) dataset (Chen et al 2015), when the number of break 

points is 8 and the length of segment is 6, the corresponding distance table is shown as 

Table 3.1. 

Compare Table 3.1 and Table 2.2 (page 13), we can find that the distances between 

symbols in Table 2.2 is not accurate enough. For example, the distance between symbols 

B and D is 0.36 in Table 3.1 while in Table 2.2 the distance is 0.33. It can also be noticed 

that the distances between neighbour symbols are not equal to 0 in Table 3.1. For example, 

the distance between symbols C and D is 0 in Table 2.2 while in Table 3.1 the distance is 
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0.04. As a consequence, using maximum and minimum values of each area to define the 

distances between symbols is more reasonable.  

Table 3.1 Lookup Table Defined by the Proposed Method 

 A B C D E F G H I 

A 0 0.32 0.59 0.89 1.25 1.60 1.95 2.46 2.54 

B 0.32 0 0.06 0.36 0.72 1.07 1.41 1.93 2.01 

C 0.59 0.06 0 0.04 0.40 0.75 1.10 1.61 1.69 

D 0.89 0.36 0.04 0 0.15 0.50 0.84 1.35 1.44 

E 1.25 0.72 0.40 0.15 0 0.18 0.52 1.03 1.12 

F 1.60 1.07 0.75 0.50 0.18 0 0.34 0.85 0.94 

G 1.95 1.41 1.10 0.84 0.52 0.34 0 0.51 0.60 

H 2.46 1.93 1.61 1.35 1.03 0.85 0.51 0 0.07 

I 2.54 2.01 1.69 1.44 1.16 0.94 0.60 0.07 0 

It should be noted that distances between symbols in Table 2.2 can be treated as a 

special case of the newly defined distance table here, that is, there is at least one segment 

in every edge area and there are at least 2 segments in every middle area. In details, the 

minimum value and maximum value of segments in upper edge area and lower edge area 

are equal to the maximum break point and minimum break points, respectively, and the 

maximum and minimum values of segments in every middle area are equal to their 

corresponding upper and lower break points. Taking the SAX representation in Figure 

3.4 as an example, there are 1, 4, 4 and 3 segments in different areas represented by 

symbols A, B, C and D, respectively. The average value of the segment in area A (the 

upper edge area) should be equal to upper break point, which is 0.67. The average value 

of the 3rd segment in area B, which is the segment with largest value among the 4 

segments in area B, should be equal to 0.67. The average value of the 4th segment in area 

B, which is the segment with minimum average value among the 4 segments in area B, 

should be equal to 0. The average value of the 3rd segment in area C, whose average 

value is the largest one among 4 segments in area C, should be equal to 0. The 2nd 

segment in area C, whose average value is the smallest one among the 4 segments in area 

C, should be equal to -0.67. The 2nd segment in area D, whose average value is the 

maximum one among the average values of the 3 segments in area D, should also be equal 

to -0.67. 
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In order to validate the performance of the proposed method for distance measure, 

two time series (the 1st and 12nd sequences of ECG dataset provided by Chen et al (2015) 

are extracted, and both the proposed method and the previously published symbolic 

representation method are also applied to these two time series to calculate the distance 

between them. The length of both time series is 960 and the Euclidean distance between 

them is 10.9904. With a choice of 8 break points for symbolization, the distances 

calculated by different methods are shown in Table 3.2. 

Table 3.2 Distances between Two Time Series based on SAX, ESAX, SAX-TD and The Proposed 

Method with Different Segment Length (The Euclidean distance is 10.9904). 

Length of segment 3 6 12 24 48 

SAX (Lin et al 2003) 6.6111 6.8039 5.7081 4.5204 0 

Improved SAX  7.3456 7.8207 8.1173 7.2524 3.2199 

SAX-TD (Sun et al 2014) 7.9677 8.1300 6.0896 4.9174 0.5799 

Improved SAX-TD 8.5870 8.9982 8.3899 7.5063 3.2717 

ESAX (Lkhagva et al 2006a) 6.4581 6.2862 6.5940 5.0276 12.5179 

The first column illustrates the names of symbolic series distance measure methods, 

in which “improved SAX” and “improved SAX-TD” mean that the look-up table used in 

distance calculation step of SAX and SAX-TD is replaced by the proposed look-up table. 

The values in the first row of the remaining columns indicate the length of segments. The 

other columns from left to right show the calculated distances based on different methods 

when the length of every segment changes from 3 to 48. It can be noticed that with the 

replacement of the proposed method, the calculated distance is robust and comparable to 

the Euclidean distance. For the ESAX, it can be seen that its results float significantly and 

do not always follow the lower bound Euclidean distance. This may be because ESAX is 

primarily designed for high-frequency time series with extreme points but not generic for 

most time series. 

3.3.2 Distance Calculation 

The first step of SAX is to normalize input series to have mean of zero and a standard 

deviation of one (Lin et al 2003). This is because that the conversion from PAA 

representation to symbolic series is based on Gaussian distribution. Following the 

normalization step, the similarity between input series will be described by distance 

between normalized series. However, for time series with the same normalized shape but 
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different amplitudes, such as the time series 𝑋 and 𝑌 defined in Figure 3.5a and 3.5b, we 

cannot define them as same although the distance between them based on SAX is 0. 

  
                       a) time series 𝑋                                                            b) time series 𝑌 

Figure 3.5 Two time series with same normalized series but different amplitude 

Given one sequence 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑛] , with the application of the 

normalization step in SAX, 𝐴 is transformed by the equation: 

𝑎𝑛𝑒𝑤𝑖 =
𝑎𝑖−𝜇

𝜎
                                                              (3.6) 

where ai is the ith value in A, 𝜇 is the average value of A, σ is the standard deviation 

of A , anewi  is the i th value in the normalized series. Given two time series X =

[x1, x2, … , xi, … , xn]  and Y = [y1, y2, … , yi, … , yn] , after the normalization, the 

corresponding series of X  and Y  become Xnew = [xnew1, xnew2, … , xnewm]  and 

Ynew = [ynew1, ynew2, … , ynewm]. Based on SAX, symbolic representation of X and 

Y are Xs = [xs1, xs2, … , xsi, … , xsp]and Ys = [ys1, ys2, … , ysi , … , ysp]. Let the distance 

between two symbols in Xs and Ys be: 

𝑑𝑖𝑠𝑡1(𝑥𝑠𝑖, 𝑦𝑠𝑖) = 𝑑                                                     (3.7) 

where 𝑑𝑖𝑠𝑡1(…) is implemented via indexing the look-up table. 

As mentioned in SAX, because the distance between two symbols is used to express 

the similarity between their corresponding original values, we have: 

𝐸𝑑(𝑥𝑛𝑒𝑤𝑖, 𝑦𝑛𝑒𝑤𝑖) = 𝑑𝑖𝑠𝑡1(𝑥𝑠𝑖, 𝑦𝑠𝑖) = 𝑑                          (3.8) 

where Ed(…) is Euclidean distance defined below: 
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√(𝑥𝑛𝑒𝑤𝑖 − 𝑦𝑛𝑒𝑤𝑖)2 = 𝑑                                               (3.9) 

Inserting (3.6) to (3.8) and (3.9), we get: 

√(
𝑥𝑖−𝜇𝑥

𝜎𝑥
−

𝑦𝑖−𝜇𝑦

𝜎𝑦
)
2

= 𝑑                                                (3.10) 

where xi and yi are the ith values in X and Y, μx and μy are the average values of X and Y, 

σx and σy are standard deviation of X and Y. 

Distance measure between X and Y based on SAX can be represented by: 

𝑑𝑆𝐴𝑋(𝑋, 𝑌) = √∑ (
𝑥𝑖−𝜇𝑥

𝜎𝑥
−

𝑦𝑖−𝜇𝑦

𝜎𝑦
)
2

𝑛
𝑖=1                                  (3.11) 

where 𝑑𝑆𝐴𝑋(… ) means distance calculation between input time series based on SAX. For 

the distance measure between X and Y based on Euclidean distance, it is calculated as 

follows: 

𝐸𝑑(𝑋, 𝑌) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1                                         (3.12) 

Note that SAX-based distance measure method is a special case of Euclidean distance 

with two requirements: i) standard deviations of X and Y have to be equal to 1; ii) the 

mean values of X and Y have to be equal to each other. In this work, the SAX-based 

distance measure is extended. Based on the proposed method, there is only one 

requirement, that is, the standard deviations of input series have to equal each other.  

For the distance between xi  and yi , as the distance between xsi  and ysi  is d, the 

distance between original points can be calculated using the following equation: 

𝐸𝑑1(𝑥𝑖, 𝑦𝑖) =

{
 

 √(𝜇𝑥 − 𝜇𝑦 + 𝜎𝑑)
2
               𝑖𝑓      𝑥𝑠𝑖 ≥ 𝑦𝑠𝑖

 √(𝜇𝑦 − 𝜇𝑥 + 𝜎𝑑)
2
                𝑖𝑓      𝑥𝑠𝑖 < 𝑦𝑠𝑖  

              (3.13) 

where function Ed1(…) means calculate the distance between original points. 

The distance between X and Y is defined as: 
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𝐸𝑑(𝑋, 𝑌) = √∑ (𝐸𝑑1(𝑥𝑖, 𝑦𝑖))
2𝑛

𝑖=1                                          (3.14) 

To show that this proposed method is more generic for distance measure between 

time series, we apply our distance measure method, along with the look-up Table 2.2 

(page 13), to calculate the distance between time series in Figure 3.5a and 3.5b. The 

Euclidean distance between these two time series is 92.1727, when the length of each 

segment is 12. Based on the proposed method, the distance is 69.4890, while the distance 

is 0 based on SAX.  

3.3.3 Proof of Lower Bounding 

Thanks to the aforementioned advantages (dimensionality reduction and lower bound 

of Euclidean distance), SAX is the most famous one among many time series symbolic 

representation and distance measure methods. In this subsection, we show that with the 

integration of our proposed look-up table and the new distance measure method, the 

distance between transformed series is also lower bound the Euclidean distance of the 

original series. 

Given two time series 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑖, … , 𝑎𝑛]  and 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑖 , … , 𝑏𝑛] , it 

was proved by Lin et al (2003) that PAA distance lower bounds the Euclidean distance 

as: 

√
𝑛

𝑚
∗ √∑ (𝑎𝑖̅ − 𝑏𝑖̅)

2𝑚
𝑖=1 ≤ √∑ (𝑎𝑖 − 𝑏𝑖)2

𝑛
𝑖=1                          (3.15) 

where 𝑛  is the number of elements in time series 𝐴 and 𝐵 , 𝑚  is the length of every 

segment, 𝑎𝑖̅ and 𝑏𝑖̅ are mean values of the segments where 𝑎𝑖 and 𝑏𝑖  belong. 

In order to prove that the proposed method proves a lower bound to Euclidean 

distance, we have to prove  

𝑇𝑆𝑑𝑖𝑠𝑡(𝐴, 𝐵) ≤ 𝐷𝑝𝑎𝑎(𝐴, 𝐵)                                          (3.16) 

where 𝑇𝑆𝑑𝑖𝑠𝑡(…) means the proposed distance measure method, 𝐷𝑝𝑎𝑎(… ) represents 

PAA distance function. Note that (3.16) can be rewritten as  

√
𝑛

𝑚
∗ √∑ (𝐸𝑑1(𝑎𝑖, 𝑏𝑖))

2𝑚
𝑖=1 ≤ √

𝑛

𝑚
∗ √∑ (𝑎𝑖̅ − 𝑏𝑖̅)

2𝑚
𝑖=1                    (3.17) 

or equivalently, (3.17) and (3.18) can be rewritten as: 
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(𝑎𝑖̅ − 𝑏𝑖̅)
2
≥ (𝐸𝑑1(𝑎𝑖, 𝑏𝑖))

2
                                            (3.18) 

where 𝑎𝑖̅ and b𝑖̅ are the average values of corresponding segments in the original time 

series. Hence we have:  

𝑎𝑖̅̅ ̅−𝜇a

𝜎
= 𝑎new𝑖̅̅ ̅̅ ̅̅ ̅̅                                                      (3.19) 

b𝑖̅̅ ̅−𝜇b

𝜎
= bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅                                                     (3.20) 

Both of these equations can also be written as follows: 

𝑎𝑖̅ = 𝜎 ∗ 𝑎new𝑖̅̅ ̅̅ ̅̅ ̅̅ + 𝜇a                                               (3.21) 

b𝑖̅ = 𝜎 ∗ bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅ + 𝜇b                                               (3.22) 

When a𝑖 ≥ b𝑖,  (3.18) can be written as: 

𝜎 ∗ (𝑎new𝑖̅̅ ̅̅ ̅̅ ̅̅ − bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅ ) ≥  𝜎 ∗ 𝑑                                             (3.23) 

When a𝑖 ≤ b𝑖, (3.18) can be written as: 

𝜎 ∗ (bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅ − anew𝑖̅̅ ̅̅ ̅̅ ̅̅ ) ≥  𝜎 ∗ 𝑑                                               (3.24) 

where d is the distance between symbols (correspond to 𝑎𝑖̅ and 𝑏𝑖̅). As the definition of 

the proposed look-up table, the distance between two symbols is the minimum one of 

following distances: 

𝑑1 = 𝑎𝑏𝑠 (
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 𝐴
−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 𝐵

)           (3.25) 

𝑑2 = 𝑎𝑏𝑠 (
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 𝐴
−𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 𝐵

)           (3.26) 

Obviously, the value of d in our defined look-up table is smaller than the absolute 

value of (𝑎new𝑖̅̅ ̅̅ ̅̅ ̅̅ − bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅ )  when a𝑖 ≥ b𝑖  and is smaller than the absolute value of 

(bnew𝑖
̅̅ ̅̅ ̅̅ ̅̅ − anew𝑖̅̅ ̅̅ ̅̅ ̅̅ ) when a𝑖 ≤ b𝑖. Hence, our proposed symbolic series distance measure 

method provides a compact lower bound for Euclidean distance. 

3.4 Experiments and Comparisons  

In order to demonstrate the performance of the proposed method for time series 

distance measure, we integrate the proposed method to SAX and SAX-TD, and apply 

these integrated symbolic representation and similarity measure methods to 10 
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benchmark datasets provided by Chen et al (2015). For comparison purpose, we also 

apply SAX, ESAX and SAX-TD to the same datasets. In this section, basic information 

of the benchmark datasets is described firstly, and then comparison of results is proposed. 

3.4.1 Dataset Description 

UCR time series database, as the largest public collection of class-labelled time series 

datasets, contains 48 datasets (Chen et al 2015), each of which contains from 36 to 9236 

time series sequences. The sequences in each dataset have an equal length, but from one 

dataset to another the length of sequences varies from 24 to 1882 (Paparrizos and Gravano 

2015). In this chapter, 1000 pairs of time series sequences are selected from 10 different 

datasets to evaluate the performance of our proposed method (100 pairs of time series are 

selected from each dataset). The basic information of these 10 datasets is listed in Table 

3.3. 

Table 3.3 Basic Information of the Selected Time Series 

No. Dataset Length of Selected Time series Number of Time Series 

1 Synthetic Control 60 600 

2 CBF 128 930 

3 ECG 96 200 

4 Yoga 426 3300 

5 Fish 463 350 

6 Beef 470 60 

7 Coffee 286 56 

8 Olive Oil 570 60 

9 Trace 275 200 

10 50 Words 270 955 

3.4.2 Comparison of Efficiency 

As mentioned by Lin et al (2003), there are two important characteristics of SAX: i) 

dimensionality reduction; ii) distance measure between symbolic series lower bounds 

Euclidean distance. An evaluation method, which is commonly used to validate the 

performance of symbolic representation and distance measure methods, called as 

tightness of lower bound (Wang et al 2013). 

Tightness of Lower Bound (TLB), as its name implies, is the level of how close the 

calculated distance between symbolic series and the Euclidean distance between original 

time series. This measure is roughly defined as below: 
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𝑇𝑖𝑔ℎ𝑡𝑛𝑒𝑠 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑(𝑇𝐿𝐵) =
𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐷𝑖𝑠𝑡(𝑇,𝑆)

𝑇𝑟𝑢𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡(𝑇,𝑆)
                (3.27) 

The value of TLB should be in the range of 0 to 1. When the value of TLB is equal 

to one, it means that a representation and distance measure method can completely replace 

Euclidean distance-based distance measure. On the other hand, when the value of TLB is 

close to 0, it means that the symbolic representation and distance measure method used 

is not ideal as an alternative to Euclidean distance. In general, the higher the value of TLB 

is, the better the performance of the corresponding representation method. 

We integrate the adapted look-up table approach to SAX and SAX-TD, and apply 

these improved methods to 1000 pairs of time series. For comparison purpose, we also 

apply the original SAX, SAX-TD and ESAX to the same datasets. The results are shown 

in Figure 3.6, where z-axis is tightness of lower bound, y-axis describes the length of 

segments, and x-axis indicates the methods used, with ‘1’ for SAX, ‘2’ for the improved 

SAX, ‘3’ for SAX-TD, ‘4’ for the improved SAX-TD, and ‘5’ for ESAX. 

Based on the results of the 5 different methods for the 10 different datasets, with the 

length of segments equal to each other, the TLB values of the improved methods are 

higher than that of the corresponding original methods. As mentioned earlier, ESAX is 

more suitable for time series with high frequency and its performance floats significantly 

among these 10 datasets. Furthermore, because the distance measure based on ESAX 

cannot guarantee lower bounds Euclidean distance of the original time series, ESAX for 

time series representation and similarity measure is not widely acceptable. In summary, 

our proposed method improves the performance of distance measure between symbolic 

series and preserve the advantages of time series symbolic representation. 

             

                      

1) Performance of time series 

representations and distance measure 

methods on Synthetic Control 

 

2) Performance of time series 

representations and distance measure 

methods on CBF 
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3) Performance of time series 

representations and distance measure 

methods on ECG 

 

4) Performance of time series 

representations and distance measure 

methods on Yoga 

 

5) Performance of time series 

representations and distance measure 

methods on Fish 

 

6) Performance of time series 

representations and distance measure 

methods on Beef 

 

7) Performance of time series 
representations and distance measure 

methods on Coffee 

 

8) Performance of time series 

representations and distance measure 

methods on Olive Oil 
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Figure 3.6 Performance (tightness lower bound) comparison 

3.5 Summary 

An efficient representation of the original high-dimensional time series can help save 

a lot of time during the analysis of time series, and correct calculation of the distance 

between time series can improve the accuracy of similarity measure and provide strong 

support for further time series mining. In this chapter, in order to improve the performance 

of distance measure between symbolic series, we proposed a novel definition of distances 

between symbols and an improved distance measure method. The basic idea of the 

proposed look-up table is to use the maximum and minimum mean values of all segments 

in individual areas to calculate the distances between symbols, and calculate the distance 

between original time series based on the distance between symbolic series. By 

integrating the new proposed methods to SAX and SAX-TD, the performance of the 

corresponding original algorithms can be significantly improved, as shown through the 

case studies on the 1000 pairs of benchmark time series.

9) Performance of time series 

representations and distance measure 

methods on Trace 

 

10) Performance of time series 

representations and distance measure 

methods on 50 Words 
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Chapter 4 

Anomaly Detection of Time Series: 

an application to ECG data 

 

 
In this chapter, because timeline warping may exist in the process of time 

series similarity measure, dynamic time warping is modified by considering 

the optimal align path in distance calculation. In order to reduce the 

complexity of similarity measure, the modified dynamic time warping is 

integrated to the proposed method in chapter 3 to calculate the distance 

between segments. In addition, because previous proposed anomalies 

detection methods can only work well when all the anomalies in one time 

series are significantly different from each other, average non-self match 

distance is proposed to detect anomalies. To validate the performance of the 

proposed distance measure and anomalies detection methods, these proposed 

methods, together with brute force discord discovery and adaptive window 

discord discovery, are applied to real ECG data selected from MIT-BIH 

database. The experimental results show that our proposed method 

outperforms the other methods. 

4.1 Introduction 

Anomalies are patterns in data that do not conform to a well-defined notion of normal 

behaviour (Chandola et al 2009). In real life, anomalous information appears in various 

fields because of different reasons, such as pathological changes in human organs, 

network intrusion, malfunction of machine, etc. Figure 4.1 gives a visual intuition of an 

anomalous segment which is highlighted by a ellipse. Such an anomalous segment may 

not easily be noticed although it may contain critical information, such as it deliverss a 

message that a person is having a heart attack. In recent decades, researchers in data 
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mining domains realize that anomalies in some typical fields contain very important 

information, and hence anomaly detection received extensive attention and became a very 

hot researching area. 

 

Figure 4.1 Anomaly detection and label in an ECG data (Collected from MIT-BIH Database) 

In the past few decades, various kinds of data mining approaches were proposed in 

order to detect anomalous information from un-investigated data, they are: i ) 

classification-based anomaly detection; ii ) clustering-based anomaly detection; iii ) 

statistical anomaly detection; iv) spectral anomaly detection; and v) nearest neighbour-

based anomaly detection. In terms of classification-based anomaly detection (Scholkopf 

et al 2001, De Stefano et al 2000), a classifier is constructed by training the available 

dataset, then the testing instance is classified as normal or anomalous by using the 

classifier. For clustering-based anomaly detection (Ester et 1996, Guha et al 2000), based 

on distance measure methods, instances that are closed to centroid are defined as normal, 

while that are far away from centroid are set as anomalies. With regard to statistical 

anomaly detection (Saligrama and Chen 2012), instances that occur in high probability 

areas are defined as normal, while instances that occur in low probability regions are 

defined as anomalous. For spectral anomaly detection (Agovic et al 2007), the original 

data is projected to a lower dimensional space in which normal and anomalous instances 

can be easily identified. Regarding nearest neighbour-based anomaly detection (Boriah 

et al 2008, Chandola et al 2008), instances are defined as normal when they are close to 

their non-self matches. On the contrary, instances are labelled as anomalies when the 
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distances between them and their nearest non-self matches are greater than a pre-obtained 

threshold. 

Since traditional anomaly detection methods primarily focus on detecting anomalous 

points while most data that are obtained from real life is recorded in time series, some 

methods, whose basic ideas are traditional anomaly detection methods, were proposed to 

focus on anomaly detection of time series. Among these time series anomaly detection 

methods, brute force discord discovery (BFDD), which belongs nearest neighbour based 

anomaly detection, is the easiest method to be understood and implemented (Keogh et al 

2005). Based on BFDD, the whole process of anomaly detection is achieved with nest 

iterations, where the outer iteration considers every possible candidate sub-sequence and 

the inner iteration is a linear scan to identify the candidate’s nearest non-self match (Lin 

et al 2005). This method is not only easy to be understood and implemented, but also has 

another advantage in that the length of subsequence is the only required input. However, 

a significant flaw of this method is that this method is time-consuming, which means it is 

not suitable for even moderately large datasets. In order to improve the efficiency of 

BFDD, heuristic discord discovery (HDD) was also proposed by Keogh et al (2005). 

Based on HDD, the first step is to construct the heuristic order of outer iteration, and the 

second step is to extract each candidate subsequence in heuristic order and find its 

corresponding nearest non-self subsequence in the inner iteration. The third step is to 

detect anomalies according to the distances between candidates and their corresponding 

nearest non-self match subsequences (Keogh et al 2006). Through the construction of 

heuristic order, HDD can improve the efficiency of BFDD-based anomaly detection. 

However, it should be noted that the calculation of heuristic order is not uniform, which 

means there is no guarantee that it is efficient for all kinds of time series data. A special 

type of time series is ECG, which is the collection of electrical changes of the heart beat 

over time by external electrodes attached to human body. In the clinical study, 

cardiovascular diseases (e.g. arrhythmia, myocardial ischemia, etc.) occur when the heart 

of a cardiac patient does not work normally over a certain period. The corresponding ECG 

will become different from other normal signals, or in other words, ECG becomes an 

anomalous segment of the heart beat process. Because of this, effective detection of 

anomalous segments in ECG data can make a significant contribution to heart diagnosis. 

In the research conducted by Chuah et al (2007), in order to improve the performance of 

BFDD-based ECG anomaly detection, adaptive window-based discord discovery 
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(AWDD) was proposed for detecting anomalous heartbeats, and the experimental results 

showed that AWDD outperforms BFDD in terms of efficiency of ECG anomaly detection. 

(explanation: This part has been partly minimized. This part briefly introduces the 

development of time series anomaly detection based on nearest-neighbour based anomaly 

detection. For part 3 in Chapter 2, that is review of several types of anomaly detection, 

such as clustering based anomaly detection, nearest-neighbour based anomaly detection .) 

However, both BFDD and AWDD have a common drawback that they cannot 

directly detect all the anomalies when there are two or more similar anomalies. For 

example, the anomalies of ECG signals of one patient are always caused by one reason 

and the caused anomalies are always similar with each other. Another drawback is that 

Euclidean distance is set as the distance measure method in both BFDD and AWDD. It 

should be noted, however, that the existence of timeline drift in time series distance 

measure may distort the accuracy of similarity measure if Euclidean distance is directly 

used to calculate the distance. In this paper, in order to correctly detect all the anomalous 

segments, a new calculation, called as average non-self match distance (ANMD), is used 

to detect anomalous segments from raw data; and a modified dynamic time warping 

(MDTW) is used to calculate the distance between candidates. To demonstrate the 

performance of the proposed methods for ECG anomaly detection, a case study on ECGs 

from MIT-BIH arrhythmia database (Goldberger et al 2000) is carried out. To provide a 

reference for comparison, BFDD and AWDD are also applied to the same data. 

The remainder of this chapter is organized as follows. In the second section, BFDD 

and AWDD are briefly reviewed. The third section presents the proposed anomaly 

detection method. In the fourth section, the newly defined anomalies detection method 

and existing approaches are applied to a series of ECGs, and some comparative analysis 

results are reported. Finally, this chapter is briefly summarized in the fifth section. 

4.2 Basic Notion and Related Works 

BFDD and AWDD for anomaly detection, as the least and most successful nearest-

neighbour based time series anomaly detection methods,  have been shown to achieve 

correct results. In this section, because the basic idea behind our proposed method is also 

nearest-neighbour based anomaly detection, basic notion (non-self match) is described 

firstly in this part, and then BFDD and AWDD are reviewed. 
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4.2.1 Non-Self Match 

Given one time series 𝐴 and one of its subsequent 𝐵  beginning at position 𝑃 , in 

general, the beginning points of the best matches to 𝐵 (apart from itself) should be 𝑃 ± 1 

or 𝑃 ± 2 . Therefore, excluding unnecessary matches is an important step prior to 

detecting anomalies. Otherwise, distance between candidate subsequence and its 

corresponding best match will lower than a pre-obtained threshold and it is impossible to 

find anomalies. In  the research constructed by Keogh et al (2005), one matching 

definition, called as Non-Self Match, was introduced to remove trivial matches in the 

process of anomaly detection. 

Given one time series 𝑇 and its two sub-sequences 𝑇1 and 𝑇2, the beginning points 

of  𝑇1 and 𝑇2 are 𝑃 and 𝑄, and the length of both 𝑇1 and 𝑇2 are set as 𝑛, 𝑇2 can be 

defined as a non-self match to 𝑇1 if the position distance greater or equal to 𝑛 (|𝑃 − 𝑄| ≥

𝑛). As an example shown in below: 

 

Figure 4.2 One time series contains two non-self match sub-sequences 

where 𝑇1 and 𝑇2 are labelled by red box and blue box respectively, the length values of 

them are set as 3, the beginning point of 𝑇1 is 1 and the beginning point of 𝑇2 is 19. In 

this case, 𝑇2 can be defined as a non-self match to 𝑇1 because |19 − 1| ≥ 3. On the 

contrary, another example shown in below describes that 𝑇2 cannot be defined as a non-

self match to 𝑇1. 

 

Figure 4.3 One time series contains two subsequences that cannot be defined as non-self match 

All the settings in Figure 4.3 are the same as those in Figure 4.2. The only difference 

is that the beginning points of 𝑇1 and 𝑇2 are 17 and 19 respectively. It can be noticed 

that 𝑇1 and 𝑇2 are partly folded together. For the position distance, it is |19 − 17| = 2 

and hence lower than the length of sliding window. 

Non-self match sub-sequences of one segment cannot be directly used to define 

whether the corresponding candidate is anomalous or not. For BFDD and AWDD, the 
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distances between the candidate and each of its non-self matches are calculated firstly, 

and then the minimum distance is recorded and the corresponding subsequence is defined 

as the nearest non-self match of the candidate. Given one time series 𝑇 and one candidate 

𝐴, the distances between 𝐴 and all its non-self matches are calculated and recorded as 

𝐷 = [𝑑1, 𝑑2,… , 𝑑𝑛]. The nearest non-self match distance is the minimum value in 𝐷 and 

the corresponding segment is the nearest non-self match of 𝐴. Once the nearest non-self 

match distance of one candidate is computed, it will be compared with a pre-obtained 

threshold to identify whether the candidate is anomalous or not. 

4.2.2 Brute Force Discord Discovery 

Brute force discord discovery (BFDD) algorithm was initially proposed by Keogh et 

al (2005) and Lin et al (2005), and the advantage of this algorithm is that it is easy to be 

understood and implemented. Based on BFDD, the implemented procedure of time series 

anomaly detection is as follows: 1) the first segment to be tested is the subsequence whose 

length is equal to that of a sliding window and its first point is the same with that of time 

series, as shown in Figure 4.4a and Figure 4.4b. 2) After defining testing subsequence, 

the next process is: sliding down the defined window on sample at a time and calculating 

the distance between the testing subsequence and the subsequence in the sliding window. 

This process can help us to find the nearest non-self match of the testing subsequence, as 

shown in Figure 2c. 3) Once the first nearest non-self match distance and it corresponding 

subsequence are recorded, the first point of the testing subsequence will move from the 

first point of the time series to the second point. Meanwhile, the length of testing 

subsequence is still equal to that of sliding window, as shown in Figure 2d. 4) For every 

testing subsequence with length m, and an original time series with length n, in order to 

find the nearest non-self match, it needs to calculate at least (n − 3m + 1) times, and 

sometimes (n − 2m+ 1) times, as shown in Figure 2e. 5) According to the obtained 

nearest non-self match distance values, the anomalous segment can be detected via the 

comparison between the recorded values and a pre-obtained threshold, which is 

calculated by applying BFDD to the training time series. The mechanism of BFDD-based 

anomaly detection is illustrated by Figure 4.4. 
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Figure 4.4 Mechanism of BFDD-based anomaly detection. a) defining the first testing subsequence and 

sliding window; b) sliding down the window on sample at a time; c) every testing subsequence has at 

least 𝑛 − 3𝑚 + 1 non-self match distances; d) moving 1 unit backward of the testing subsequence; e) the 

testing subsequence keeps moving to the end of the time series. 

The pseudo-code and procedure of BFDD-based anomaly detection is also described 

by Algorithm 4.1.  

Algorithm 4.1 Brute Force Discord Discovery 

Requirements: A time series: T 

                          The length of sliding window: m 

 𝑛 ← length of input time series 
 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓𝑎𝑟_𝑑𝑖𝑠𝑡 ← 0 
for i = 1 to n − m+ 1 𝐝𝐨  
      nearest_neighbour_dist = infinity 
     for j = 1 to n − m+ 1 𝐝𝐨 
           𝐢𝐟 |i − j| ≥ n 𝐝𝐨 

               if Dist ((Ti,… , T(i + m − 1)), (Tj,… , T(j + m − 1))) < 

                  nearest_neighbour_dist do 

                  nearestneighbourdist(i) = 

Dist((Ti,… , T(i + m − 1)), (Tj,… , T(j + m − 1))) 
                   end if 

      end for 
      if nearest_neighbour_dist (i) > threshold 𝐝𝐨 
          best_so_far_loc = i 
       𝐞𝐧𝐝 𝐢𝐟  
𝐞𝐧𝐝 𝐟𝐨𝐫  

The inputs of Algorithm 4.1 include one time series and the length of sliding window. 

The output of this algorithm is the location of the anomaly. 

For example, BFDD is applied to the ECG signal shown in Figure 4.1. The length of 

sliding window is 300, the corresponding nearest non-self matches distances are shown 

in Figure 4.5.  
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Figure 4.5 Nearest non-self match distances 

Once the nearest non-self match distances are computed, all these distances will be 

compared with a pre-obtained threshold (obtained through applying BFDD to training 

dataset) and the corresponding segments are going to be identified. It is worth to mention 

the low computational efficiency of BFDD-based anomaly detection. It can be observed 

that there is a nested iteration in the calculation process. Every iteration has to calculate 

the distances between testing subsequence and its non-self sub-sequences at least (n −

3m+ 1) times (n is the length of time series and m is the length of sliding window). This 

will need a huge amount of time for even moderately large datasets. Assuming the length 

values of sliding window and testing subsequence are set as 300, the ECG signal shown 

in Figure 4.1 is a 15 seconds record and contains 5400 data points. The whole calculation 

process must be completed more than 20 million times (which is (5400 − 300) ×

(5400 − 300) > 20million). A normal computer requires at least 50 seconds to finish 

the calculation.  

Although BFDD-based time series anomaly detection is time consuming, there is one 

advantage need to be mentioned, that is universality, which means this method can be 

used to detect anomalies for various kinds of time series. 

4.2.3 Adaptive Window Discord Discovery 

For some special types of time series, the application of general anomaly methods 

may complicate the operation process and distort the calculation accuracy. In terms of 

ECG data, in order to overcome the heavy computational load involved in BFDD-based 

anomaly detection, adaptive window discord discovery (AWDD) was proposed by Chuah 

et al (2007). AWDD separates ECG into a number of segments based on the peak points, 
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then measures the distances between each segment and determines which subsequence 

can be treated as anomaly. It should be noted that the segments separated by peak points 

do not have the same length while the distance measure in AWDD is Euclidean distance. 

To solve this problem, if the length values of two candidates are different, the longer one 

should be compressed firstly so that its length is equal to that of the shorter one. In 

comparison with BFDD, the calculation time is significantly reduced through the 

application of AWDD without losing detection accuracy. The whole process of AWDD-

based anomaly detection is described by Algorithm 4.2.  

Algorithm 4.2 Adaptive Window Discord Discovery 

Requirements: A time series: T 

                            Location of peak points: P 

                          n ← length of input time series 

                          m ←  number of peak points 
 𝐟𝐨𝐫 i = 1: n − 1 𝐝𝐨; 

                outlength = P(i + 1) − P(i); 
                𝐟𝐨𝐫 j = 1: n − 1 𝐝𝐨; 
                           innerlength = P(j + 1) − P(j); 
                𝐢𝐟 outlength > innerlength 𝐝𝐨; 

                  B = imresize(A(P(i): P(i + 1)), [1, innerlength]); 
                  C = A(P(j): P(j + 1) − 1); 

              𝐞𝐥𝐬𝐞 
                  B = imresize(A(P(j): P(j + 1)), [1, outlength]); 
                  C = A(P(i): P(i + 1) − 1); 
             𝐞𝐧𝐝 𝐢𝐟 
             ddd(j) = dist(B, C) 
       𝐞𝐧𝐝 𝐟𝐨𝐫 
               nearest_neighbour_dist(i) = min(ddd); 

      if nearest_neighbour_dist (i) > threshold 𝐝𝐨 
              best_so_far_loc = i 

      𝐞𝐧𝐝 𝐢𝐟  
𝐞𝐧𝐝 𝐟𝐨𝐫   

The inputs of Algorithm 4.2 include one ECG series and the locations of peak points. 

The output of this Algorithm is the location of anomaly. 

AWDD compresses the longer subsequence so that its length is equal to that of the 

shorter one. This enables the use of Euclidean distance to measure the distance between 

two candidate sub-sequences. As an illustration, Figure 4.6a provides a simple example 

of two time series with different length values. In Figure 4.6b, the longer time series is 

compressed. 
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Figure 4.6 Two time series. a: before compression, b: after compression 

AWDD is also applied to the ECG data in Figure 4.1. As there are 21 normal peak 

points, prior to distance measure, the ECG was separated into 20 segments. Then every 

segment is regarded as one testing subsequence and the corresponding nearest non-self 

match distances of these 20 segments are recorded, as shown in Figure 4.7.  

 

Figure 4.7 Nearest neighbour distance based on AWDD 

As the result of BFDD-based anomaly detection shown in Figure 4.5 that the nearest 

non-self match distances are anomalous between 2500 to 3000, the location of abnormal 

point of nearest non-self match distances in Figure 4.7 is 11 and the interval between two 

normal points is almost 260. It is obvious that AWDD-based nearest non-self match 

distances reserve most information of BFDD-based nearest non-self match distances (can 
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correctly detect the anomalous segment). For AWDD improvement, the distances are 

calculated between every segment instead of sliding down the testing subsequence on one 

sample time. The completed procedure of AWDD-based anomaly detection is only 

(20 − 1)2 times and for a normal computer only takes about 0.36 seconds. 

4.3 Anomaly Detection of ECG Data 

If there is only one disorder segment or several significantly different discorded 

segments in an ECG signal, both BFDD and AWDD can correctly detect the anomalous 

segment(s) while AWDD outperforms BFDD in term of computational efficiency, but 

both methods have two common drawbacks: i) Euclidean distance measure method may 

influence the accuracy of anomaly detection if timeline drift exits during the process of 

calculating the non-self match distances; ii) they cannot correctly detect the anomalies 

when there are two or more anomalous segments that are similar to each other. In this 

section, in order to improve the accuracy ECG anomaly detection, one modified distance 

measure method (MDTW) and one new anomalies detection method (ANMD) are 

proposed for ECG anomaly detection. They are as follows: 1) Modified dynamic time 

warping, called as MDTW, is presented to improve the accuracy of time series distance 

measure. 2) Average non-self match distance (ANMD) is proposed to replace nearest 

non-self match distance. 3) The analysis procedure using the proposed method for ECG 

anomaly detection is described. 

4.3.1 Distance Measure  

Traditional DTW-based distance measure (described in subsection 2.2.2) is used to 

directly calculate the distances between corresponding points, and the sum of them is 

used as final distance. In this chapter, the distance between two candidates is defined 

according to the DTW distance and the optimal align path (which is achieved by 

Algorithm 2.3 and Algorithm 2.4 (page 21)). Given two time series A and B, the distance 

between them is defined as follows: 

Dist(A, B) = d + (
l−la

la
) ∗ (sum(Anew) − sun(A)) + (

l−lb

lb
) ∗ (sum(Bnew)− sum(B)) 

(4.1) 

where Dist(A, B)  represents the distance between A  and B , d  is the DTW distance 

between A and B, l is the length of the optimal align path; Anew and Bnew are two new 



                                                                                  Chapter 4: Anomaly Detection 

- 69 - 

 

time series segments which are constructed according to A,  B and the optimal align path; 

la and lb are the length values of Anew and Bnew; the function sum(…) returns the sum 

of elements of the input segment. The whole process of this distance measure method is 

summarized by Algorithm 4.3. 

Algorithm 4.3 Distance Calculation 

Requirements: Two time series A and B 

                          la  length of A 
                          lb  length of B 
                          distance  DTWdistance (A, B) 
                          optimal path  DTWdrift (A, B) 
                          wa  first column of optimal path 
                          wb  second column of optimal path 
                          l  length of optimal path 
 𝐟𝐨𝐫 i =  1 to l 𝐝𝐨 

                Anew(i)  =  A(wa(i)) 
                Bnew(i)  =  B(wb(i)) 

 𝐞𝐧𝐝 𝐟𝐨𝐫 
final distance =  distance + ((l − la)/la) ∗ (sum(Anew) − sum(A)) + ((l −

lb)/lb) ∗ (sum(Bnew) − sun(B))  

The inputs of this algorithm are two time series and the output is the distance between 

them. 

To demonstrate the performance of the proposed method for time series similarity 

measure, two time series A and B are defined in Figure 4.8, and the proposed method, 

together with traditional dynamic time warping and Euclidean distance are applied to 

calculate the distance between A and B. 

 

Figure 4.8 Template time series 

The calculation matching image of Euclidean distance is shown in Figure 4.9 and the 

distance between A and B is 7. However, we can find that the subsequence from the 7th 

point to the 10th point in time series A is similar to the subsequence from the 6th point to 

the 9th point in time series B, but Euclidean distance directly calculates the distances 

between elements at same time point and sums them up as the distance between these two 

time series. 
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Figure 4.9 Matching image of distance calculation based on Euclidean distance 

The matching image of using traditional DTW to measure the distance between A 

and B is shown in Figure 4.10. It can be noticed that the timeline has been warped and 

the most similar elements have aligned with each other. However, the final distance 

between these two time series is 0 although they are not identical. 

 

Figure 4.10 Matching image of distance calculation based on DTW 

Traditional distance measures such as Euclidean distance and DTW do not work well 

for the above time series A and B. That is the motivation to propose the new method 

(Algorithm 4.3) to overcome the disadvantage of traditional distance measures. In 

Algorithm 4.3, in order to eliminate the impact of the neglect of timeline drift, the distance 

between two candidates is defined according to three variables: DTW distance, optimal 

align path between two time series, and the sum of distances between the extended new 

points and base point (these new points exist when there is timeline drift between two 

candidates, and vice versa).  Compared with the results obtained based on Euclidean 

distance and traditional DTW, the distance between A  and B  computed based on 

Algorithm 4.3 is 4.9333. 

4.3.2 Non-self Match Average Distance 

To overcome the drawback of BFDD and AWDD whereby they can only work well 

for anomaly detection when all the anomalies in time series of interest are significantly 

different from each other, this subsection proposes a new calculation, namely, average 

non-self match distance (ANMD). 

Given one time series 𝑇, one of its segment is 𝐴, non-self matches of 𝐴 in 𝑇 are 

stored in 𝐴𝑚 = [𝐴1, 𝐴2, … , 𝐴𝑛], and the distances between 𝐴 and all its non-self matches 

are obtained through the application of the proposed distance measure method and 

recorded in 𝐷 = [𝑑1, 𝑑2, … , 𝑑𝑛]. In terms of anomaly detection based on BFDD and 

AWDD, the minimum value in 𝐷 is recorded as nearest non-self match distance and used 
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to identify whether 𝐴 is anomaly or not. Different from nearest non-self match, average 

value of 𝐷 is recorded and used in ANMD to identify whether 𝐴 is anomaly or not. 

In order to clearly state the advantage of the proposed method in anomalies detection 

of multi-anomalous time series, a time series contains two same anomalies is defined in 

Figure 4.11, which is constructed through repeat the time series in Figure 4.1. 

 

Figure 4.11 Two-anomaly time series 

Two normal segments and two anomalous segments (highlighted by green and red in 

Figure 4.11) are extracted as testing segments, both nearest non-self match and average 

non-self match distance are applied to these four segments. Table 4.1 illustrates the values 

that are used to identify whether the input segments are anomalous or not. 

Table 4.1 Values Used for Anomalies Identification 

 Normal 1 Normal 2 Anomaly 1 Anomaly 2 

Nearest Non-self Match Distance 0 0 0 0 

Average Non-self Match 

Distance 

1.9730
× 105 

1.8508
× 105 

6.6383
× 105 

6.6383
× 105 

In Table 4.1, the second row states the distances between the extracted segments and 

their corresponding nearest non-self match segments. The third row illustrates the average 

values of distances between extracted segments and all their corresponding non-self 

match segments. The values in Table 4.1 show that anomaly detection methods based on 

nearest non-self match cannot correctly detect anomalies in some special conditions, 

while our proposed notion is helpful to correctly detect all the anomalous segments. 

4.3.3 Anomaly Detection of ECG Data 

The analysis procedure using the proposed methods for ECG anomalies detection is 

as follows: 1) separate the input ECG into several segments based on peak points; 2) 

transform every segment to a symbolic series; 3) define the anomalies using ANMD. 
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4.3.3.1 Peak Points Collection 

It is known that ECG can be defined as periodical time series because ECG derives 

from regular heart muscle beat. Because of this, peak points based ECG segmentation is 

applied prior to distance measure. Algorithm 4.4 briefly describes the procedure of peak 

points collection. 

Algorithm 4.4 Peak Points Collection 

Requirements: An ECG signal: T 

                           A defined value: h 

                           n ← length of input ECG signal  
                           m ← 1  

 𝐟𝐨𝐫 i = 1 to n 𝐝𝐨 
         𝐢𝐟 T(i) ≥ h 𝐝𝐨 
              location(m) = i 

            m ← m+ 1  

         𝐞𝐧𝐝 𝐢𝐟 
𝐞𝐧𝐝 𝐟𝐨𝐫  

The inputs of Algorithm 4.4 include one ECG signal and one threshold. This 

threshold is obtained through training the available ECG data. The output is a vector 

containing locations of peak points. 

As an example, Algorithm 4.4 is applied to the ECG signal shown in Figure 4.1, and 

the detected peak points are highlighted by red dots and shown in Figure 4.12. 

 

 Figure 4.12 Peak points collection 

4.3.3.2 Transformation 

For a cardiac patient, it is necessary to go to hospital to periodically for examinations, 

and sometimes the examination may take a long time. Mathematically speaking, an ECG 

carries out over many hours contains a huge amount of data. The improved symbolic 

representation and distance measure method, which was introduced in chapter 3, has 
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proved that it can not only reserve important original data information, but also reduce 

the dimension of original data. In this part, prior to the analysis of original ECG data, the 

original data is processed based on symbolic representation. 

The application of normal time series representation method is to represent the whole 

input time series by a low-dimensional time series. In this work, because the ECG is 

periodical time series, the segment between two peak points is treated as one subsequence 

and every subsequence is processed based on symbolic representation. Take the first 

subsequence in the ECG signal in Figure 4.1 as example. The length of each segment is 

10 and the number of break points is 9. The representation is shown in Figure 4.13, the 

ECG time series is transformed into PAA format (the red line), and then represented by 

symbolic series, which is ‘AHJIHHIHHGFEEEEEEEFGGFFFEAA’. 

 

Figure 4.13 Symbolic representation of one ECG subsequence 

Through the application of symbolic representation, the length of the new series is 

27, while the length of original subsequence is 262. It is obvious that the pre-processing 

of input ECG data makes great contribution in reducing further analysis workload. 

4.3.3.3 Anomaly Detection 

As mentioned in the introduction, anomalies are patterns in data that do not conform 

to a well-defined notion of normal behaviour. At the beginning of anomaly detection, a 

criteria has to be defined and it can be obtained through applying the proposed anomaly 

detection method to available training data. For example, ANMDs of all normal segments 

are stored in 𝐷𝑛, ANMDs of all anomalous segments are stored in 𝐷𝑎. The threshold is 

always defined as the average value of the minimum value in 𝐷𝑎 and the maximum value 

in 𝐷𝑛.  

Once the threshold is obtained, the ANMDs of all the segments in testing signal have 

to be computed and compared with the threshold. If the value greater than the threshold, 
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the corresponding segment is defined as anomalous. On the contrary, if the value is lower 

than the threshold, the corresponding segment is defined as normal. Figure 4.14 shows 

the average non-self distances of all the segments in ECG signal in Figure 4.1, as the 

threshold is 1.8 × 104 (which is obtained through applying the proposed method to 10 

training ECG signals). The ANMD of the 11st segment is greater than the threshold. 

Hence the 11st segment is an anomaly and the others are normal segments. 

It can be noticed that the average non-self match value of the anomalous segment in 

Figure 4.14 is significantly greater than the values of normal segments, and the 

corresponding segment can be defined as anomalous directly without the comparison with 

the threshold. It should also be noted this is a special condition. In some common cases, 

comparing with threshold is the best way to correctly detect the anomalous segments. 

 

Figure 4.14 Average non-self match distances of time series in Figure 4.1 

4.4 Experimental Comparison 

In order to validate the performance of the proposed approach, it is applied to ECG 

signals obtained from public database (MIT-BIH arrhythmia database) (Goldberger et al 

2000). The procedure of using the proposed method for anomaly detection from ECG can 

be separated into 3 steps: 1) compute a threshold by applying the anomaly detection 

algorithm to the training ECG database, 2) calculate the ANMD of every segment in 

testing ECG, 3) test whether the ECGs contains anomalous segments. For a comparison, 

BFDD and AWDD are also applied to the same ECG data. 

4.4.1 ECG Database 

The resource of ECGs (30 ECGs in total) included in the MIT-BIH database is a set 

of over 4000 long-term Holter recordings that were obtained by Beth Israel Hospital 
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Arrhythmia Laboratory from 1975 to 1979. Approximately 60% of the recordings were 

obtained from inpatients (Goldberger et al 2000). As a result, testing performance of ECG 

anomaly detection algorithms based on this database has strong conviction. The 

experimental database used in this study contains 30 ECGs. 10 of them are used as 

training database to obtain the threshold and the remaining 20 ECGs are used as testing 

database.  

The 30 ECGs used in the study are listed in Table 4.2, where the 1st column is an 

index of the 10 training ECGs and 20 testing ECGs. The 2nd column illustrates the 

starting and ending time of corresponding ECG signal. The 3rd column is a location index 

to show where the anomaly occurs, and the 4th column is an indication of whether there 

is an anomaly or anomalies in the corresponding ECG or not. The first 5 training ECGs 

contain no anomalous segment whereas each of the last 5 training ECGs contains one 

anomalous segment. In testing dataset, in order to demonstrate the ability of the proposed 

method for detecting multiple anomalous ECGs, the 20 test ECGs were chosen as follows: 

No. 11-15 contain no anomaly, No. 16-20 contain one anomaly each, No. 21-35 contain 

2 significantly different anomalies, and No. 26-30 are constructed through repeating one-

anomalous segment and each of them contains 2 same anomalies. 

Table 4.2 ECG Excerpts from MIT-BIH Record 109 

Training  Start-end points Anomaly Location Anomaly Identification 

1 140s-180s NA NO 

2 440s-480s NA NO 

3 560s-600s NA NO 

4 700s-740s NA NO 

5 740s-780s NA NO 

6 20s-60s 6758 YES 

7 80s-120s 4474 YES 

8 200s-240s 12890 YES 

9 260s-300s 5690 YES 

10 520s-560s 3205 YES 

Testing  Start-end points Anomaly Location Anomaly 

11 860s-900s NA NO 

12 940s-980s NA NO 

13 980s-1020s NA NO 
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14 1180s-1220s NA NO 

15 1220s-1260s NA NO 

16 620s-660s 11630 YES 

17 660s-700s 7928 YES 

18 820s-860s 9410 YES 

19 1300s-1340s 6100 YES 

20 1400s-1440s 7170 YES 

21 900s-940s 6270,11590 YES 

22 1060s-1100s 10320,12920 YES 

23 1100s-1140s 2412,11970 YES 

24 1140s-1180s 966,9957 YES 

25 500s-540s 3655,10410 YES 

26  11630, 26030 YES 

27  7928, 22328 YES 

28  9410, 23810 YES 

29  6100, 20500 YES 

30  7170, 21570 YES 

4.4.2 BFDD Based Anomaly Detection 

BFDD is applied to training ECGs (No. 1-10 in Table 4.2) to calculate the threshold. 

The nearest non-self match distances of normal segments and anomalous segments are 

shown in Table 4.3 

Table 4.3 Threshold Calculation based on BFDD 

ECG Nearest Non-self Match Distances Anomaly 

1 5102 NO 

2 4886 NO 

3 9206 NO 

4 5582 NO 

5 6056 NO 

6 21171 YES 

7 22469 YES 

8 16947 YES 

9 9996 YES 

10 22162 YES 
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As mentioned in related works in Section 4.2, nearest neighbour distance of candidate 

is used to define whether the corresponding segment is anomalous. On the basis of the 

obtained values, the threshold has to clearly state whether the segment is an anomaly. 

Table 4.3 shows that the maximum value in the second column in relation to the normal 

segments is 9206, and the minimum value in the second column in relation to the 

anomalous segments is 9996. As a consequence, the threshold is defined as the average 

value of 9996 and 9206, which is 9601. 

With the threshold, BFDD-based anomaly detection is applied to the testing ECGs. 

The first step is to calculate and record the nearest non-self match distance of every 

sliding window, and then compare the recorded values with the threshold to identify the 

corresponding segment. Table 4.4 shows the anomaly detection results of the 20 testing 

ECGs.  

In table 4.4, the 2nd column shows the location or locations of the detected anomaly 

or anomalies, and the 3rd column illustrates the nearest non-self match distance or 

distances that greater than the threshold. The 4th column describes the results of anomaly 

detection and the last column lists the calculation time used by BFDD. It can be seen that 

BFDD can correctly define that the ECG is normal or anomalous when there is no 

anomaly or only one anomaly in one ECG. When there are two significantly different 

anomalous segments in testing ECG, BFDD can also detect the presences of anomalies, 

but the accuracy is only 40%. What is worse is when there are two same or similar 

anomalies, BFDD cannot detect any of them. In terms of computation complexity, 

BFDD-based anomaly detection is not acceptable, as the length of testing ECG only 

contains the records in 40 seconds, and the calculation time is over 450 seconds. 

Table 4.4 Anomaly Detection based on BFDD 

ECG 
Detected 

Location 

Nearest Non-self Match 

Distance 

Anomaly 

Identification 

Operation 

Time 

11 NA 6093 NO 461.8 

12 NA 7299 NO 458.6 

13 NA 5351 NO 461.9 

14 NA 5634 NO 459.2 

15 NA 3831 NO 456.3 

16 11673 24023 YES 458.8 

17 7942 22513 YES 461.8 

18 9421 17365 YES 455.1 
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19 6106 23793 YES 459.6 

20 7178 20911 YES 460.7 

21 6286, 11611 21261, 19876 YES 459.1 

22 6750, 7659 8201, 6239 YES 457.8 

23 4679, 7730 7299, 9206 YES 461.9 

24 971, 9960 18481, 17365 YES 457.8 

25 6089, 9409 6285, 6250 YES 460.7 

26 NA 0 NO 1719.8 

27 NA 0 NO 1843.5 

28 NA 0 NO 1843.8 

29 NA 0 NO 1855.1 

30 NA 0 NO 1863.9 

4.4.3 AWDD Based Anomaly Detection 

AWDD-based anomaly detection is applied to the same ECG data. Based on 

Algorithm 4.2, the first step is the same with that of BFDD-based anomaly detection, 

which is to define the threshold through applying AWDD to training dataset. In this part, 

the threshold for ECG anomaly detection is 8325. The results of applying AWDD to 

training ECGs are shown in Table 4.5. 

Table 4.5 Threshold Calculation based on AWDD 

ECG Maximum Nearest Non-self Match Distances Anomaly 

1 2326 NO 

2 1960 NO 

3 2636 NO 

4 2133 NO 

5 3068 NO 

6 1433 YES 

7 15990 YES 

8 13583 YES 

9 13830 YES 

10 15164 YES 

Once the threshold is known, AWDD is then applied to the 20 testing ECGs. Table 

4.6 shows the results of the AWDD-based anomaly detection. 

Table 4.6 Anomaly Detection based on AWDD 

ECG Detected 

Location 

Maximum Nearest Non-

self Match Distance 

Anomaly 

Identification 

Operation  

Time 

11 NA 2224 NO 1.9752 
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12 NA 2006 NO 1.8634 

13 NA 3670 NO 1.7463 

14 NA 1873 NO 1.8055 

15 NA 1630 NO 1.9323 

16 11440 15650 YES 2.1261 

17 7800 15346 YES 1.9347 

18 9360 13206 YES 1.9914 

19 5880 15263 YES 1.7558 

20 7020 14696 YES 1.9283 

21 6240, 11440 13008, 12578 YES 1.9469 

22 10140, 12740 15788, 15678 YES 1.9222 

23 2340, 11960 11520, 13250 YES 2.2854 

24 780, 9800 14967, 12191 YES 1.8531 

25 3640, 10400 8542, 10254 YES 1.8206 

26 NA 0 NO 6.9522 

27 NA 0 NO 7.0700 

28 NA 0 NO 7.3153 

29 NA 0 NO 7.8347 

30 NA 0 NO 7.3965 

Table 4.6 shows that AWDD can correctly tell the normal ECGs (No. 11-15). For 

testing ECGs (No. 16-20), AWDD can also correctly detect anomalous segments and 

identify their corresponding location. When there are two different anomalies in testing 

ECGs (No. 21-25), AWDD can detect the existences of all the anomalies, which 

outperforms the results of BFDD-based anomaly detection, while for the remaining 5 

testing ECGs (No. 26-30), the results are same with BFDD-based anomaly detection and 

no anomaly is detected. One improvement needing to be mentioned is that the whole 

process of anomaly detection for every ECGs only takes about1.5 seconds. To summarise, 

AWDD is more trustworthy and efficient when compared with BFDD in terms of ECG 

anomaly detection. 

4.4.4 Proposed Method Based Anomaly Detection 

The whole process of the proposed method based ECG anomaly detection is similar 

with that of BFDD and AWDD. Specifically, the first step is to compute a threshold 

through training the available ECGs. The second step is to calculate ANMDs of testing 

ECGs and identify the testing ECGs through comparing the distances with the threshold. 

The results generated by applying the proposed method to training ECGs are shown in 

Table 4.7. 
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 Table 4.7 Threshold Calculation based on Proposed Method 

         

 

 

 

 

 

As shown in Table 4.7, a threshold can be computed to allow us to define whether 

the testing segment is an anomaly. For example, the threshold, defined as the mean value 

between maximum ANMD of non-anomalous ECGs and minimum ANMD of the 

anomalous ECGs, is 18055. With the threshold, the new method is applied to testing 

ECGs. The results are shown in Table 4.8. 

Table 4.8 Anomaly Detection based on Proposed Method 

ECG Detected 

Location 

Average Non-self Match 

Distance 

Anomaly 

Identification 

Operation  

Time 

11 NA 4143 NO 3.6727 

12 NA 7199 NO 3.3580 

13 NA 4865 NO 3.1531 

14 NA 4040 NO 3.3303 

15 NA 5149 NO 3.1878 

16 11440 34477 YES 3.3558 

17 7800 33981 YES 3.1755 

18 9360 32119 YES 3.3403 

19 5880 36618 YES 3.4315 

20 7020 41718 YES 3.3230 

21 6240, 11440 27768, 26318 YES 3.3121 

22 10140, 12740 32760, 31071 YES 3.2435 

23 2340, 11960 38546, 34453 YES 3.3711 

24 780, 9800 35035, 28146 YES 3.1587 

25 3640, 10400 37826, 36183 YES 3.2899 

26 10400, 26000 34527, 34527 YES 12.5846 

27 7800, 22100 33916, 33916 YES 12.3937 

28 9360, 23660 31946, 31946 YES 12.8550 

ECG Average Non-self Match Distances Anomaly 

1 5308 NO 

2 5531 NO 

3 5832 NO 

4 7012 NO 

5 5246 NO 

6 32031 YES 

7 30694 YES 

8 30120 YES 

9 35691 YES 

10 29098 YES 
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29 5880, 20280 36730, 36730 YES 12.5591 

30 7020, 21580 41759, 41759 YES 12.8025 

From Table 4.8, it is clear that the new method has the ability to detect all the 

anomalies when there are more than 1 similar or same anomalies in an ECG. For the 5 

ECGs that contain 2 different anomalies and the 5 ECGs contain 1 anomalous segment, 

this new method can correctly detect the existence or existences of anomaly or anomalies. 

For the remaninig non-anomalous ECGs, this new method can also correctly identify that 

they are normal. 

As shown in Table 4.4, Table 4.6 and Table 4.8, BFDD and AWDD cannot detect 

anomalies when there are two or more similar or same anomalies in one ECG, while the 

proposed method can correctly detect all the anomalies. For ECG containing two or more 

significantly different anomalies, BFDD-based anomaly detection has the accuracy of 

40%, while the proposed method and AWDD has the accuracy of 100%. For ECG only 

containing one anomalous segment and non-anomalous ECG, these three methods work 

well, with an accuracy rate of 100% for all of them. In terms of computation complexity, 

BFDD anomaly takes over 460 seconds while AWDD and the proposed method only take 

1.5 seconds and 2.8 seconds respectively. In summary, the proposed methods provide a 

promising improvement in terms of the accuracy of anomalies from ECG signals. The 

overall performances of the three methods are briefly summarized in Table 4.9. 

Table 4.9 Anomaly Detection Accuracy Comparison 

 

2 or more anomalies 

similar or same with 

each other 

2 or more anomalies 

significantly different 

from each other 

1 anomaly 

ECG 

Non-anomalous 

ECG 

New Method 100% 100% 100% 100% 

BFDD (Keogh 

et al  2005) 
0 40% 100% 100% 

AWDD (Chuah 

and Fu 2007) 
0 100% 100% 100% 

 

4.5 Summary 

Given the fact that cardiovascular disease has been a focus in society and clinical 

fields for ages, we believe that the application of data mining method to ECG anomaly 

detection will make a great contribution to the heart disease detection. With the nature of 
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fast calculation and high accuracy, data mining methods are helpful for patients to get 

fast and accurate treatment.  

In this chapter, we proposed an ECG anomaly detection method based on a new 

distance measure method (MDTW) and a new anomaly detection calculation (ANMD). 

For the proposed distance measure method (MDTW), with the purpose of eliminating the 

error caused by existence of timeline drift and removing the error caused by neglect of 

timeline drift, the distance between two candidates is calculated according to their DTW 

distance and the optimal align path between them. For the new anomaly detection 

calculation (ANMD), in order to correctly detect all the anomalies in one time series, the 

average value of non-self match distance is used to replace the minimum value of non-

self match distances. Through applying the new method and the other two famous 

anomaly detection methods to 30 actual ECGs, experimental results show that the 

proposed method is promising in terms of calculation complexity and outperforms the 

two compared methods regarding the accuracy of anomalies detection.
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Chapter 5 

Automatic Time Series Clustering 

In this chapter, we present an automatic time series clustering method, 

called AT-means. AT-means can automatically carry out clustering for a 

given time series dataset, from setting the initial centers to the determination 

of number of clusters and generation of clusters. The performance of AT-

means is tested on 10 benchmark time series datasets obtained from the UCR 

database. For comparison, the K-means method with 3 different conditions 

are also applied to the same datasets. The experimental results show that the 

proposed method significantly outperforms the compared K-means 

approaches. 

5.1 Introduction 

Clustering is a data mining technique where similar data are placed into related or 

homogeneous groups without having prior knowledge of groups’ definition (Aghabozorgi 

et al. 2015; Rai and Singh 2010). In detail, the purpose of clustering is to identify the 

structure of an unlabelled database by objectively organizing data into different groups, 

where the within-group-object similarity is minimized and meanwhile the between-

group-object dissimilarity is maximized (Liao 2005). Through the application of 

clustering, some hidden features in the original dataset can be found, which is helpful for 

future analysis. For example, clustering approach plays an important role in image 

segmentation (Zheng et al. 2015; Choy et al. 2017), feature selection (Song et al. 2013; 

Sotoca and Pla 2010), outlier detection (Duan et al. 2009; Pamula et al. 2011). To date, 

clustering techniques have been extensively studied and applied in a wide range of fields, 

ranging from information processing, medical sciences, to earth sciences (Xu and 

Wunsch 2005; Hansen and Jaumard 1997). 
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A special type of clustering is time series clustering (Aghabozorgi et al. 2015). In the 

last few decades, clustering of time series has received significant attention from different 

aspects. Example include rule discovery (Fu et al. 2001; Harms et al. 2002), 

summarization (Appice et al. 2015; Mampaey and Vreeken 2013) and prediction 

(Chaouch 2014; Chen and Tanuwijaya 2011), not only because time series clustering can 

discover valuable patterns from time series datasets, but also save a lot of unnecessary 

work and time because the analysis of a large dataset can be achieved by analysing a 

relatively smaller structured dataset with the facilitation of clustering techniques. In the 

reviews of time series clustering in the last few decades (Aghabozorgi et al. 2015; Liao 

2005), it was introduced that time series clustering methods can be classified into six 

groups: partitioning, hierarchical, grid-based, model-based, density-based and multi-step 

clustering. Among these groups, the most commonly used and easily understood 

algorithms are partitioning clustering and hierarchical clustering. For partitioning 

clustering, such as K-means (MacQueen 1967), K-medoids (Kaufman et al. 2009) and 

Fuzzy c-means (Bezdek 1981), it makes k groups from n unlabelled objects in the way 

that each group contains at least one object. For hierarchical clustering, for example 

Chameleon (Karypis 1999), CURE (Guha 1998) and BRIRCH (Zhang et al. 1996), it 

offers a way to build a hierarchically structured tree according to the similarity between 

different time series. More detailed description of time series clustering algorithms can 

be found in a review of time series clustering (Aghabozorgi et al. 2015). 

Partitioning-based clustering algorithms may have been the most widely used time 

series clustering algorithms during most recent few decades, meanwhile, partitioning-

based clustering algorithms have been extended in many different ways (Bezdek 2013; 

Eschrich et al. 2003; Kaufman and Rousseeuw 2009). However, partitioning-based time 

series clustering methods, for example the traditional K-means, have three major 

shortcomings: 1) a gradient descent algorithm is often incorporated into the partitioning 

procedure. This can make the clustering highly sensitive to the initial placement of the 

cluster centres (Celebi et al. 2013). 2) Most partitioning clustering methods are also 

sensitive to the value of “means” and there is currently not a best method to calculate the 

average sequence of a set of time series sequences (Wu et al. 2008). 3) The number of 

clusters, k, has to be pre-assigned, this is not applicable or feasible for many applications 

(Aghabozorgi et al. 2015; Antunes 2001; Wang et al. 2006). In order to overcome these 

shortcomings, some solutions have been proposed in the last few decades. For the first 
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drawback, numerous initialization methods have been proposed to address this problem 

(Celebi et al. 2013), such as K-means++ (Arthurand and Vassilvitskii 2007), ROBust 

INitiallization (Al Hasan et al. 2009) and global K-means method (Likas et al. 2003). 

Nevertheless, these methods still randomly select the initial points from the dataset by 

imposing some constraints. The second disadvantage is that some time series averaging 

methods have been proposed, such as nonlinear alignment and averaging filters (Gupta et 

al. 1996), prioritized shape averaging (Niennattrakul and Ratanamahatana 2009) and 

dynamic time warping barycentre averaging (Petijean et al. 2011). Although these 

methods can improve the accuracy of time series average calculation, they are still not 

effective enough because they are sensitive to the paring orders or presences of outliers. 

For the third weakness, several methods were developed to optimally find the number of 

clusters (Hancer and Karaboga 2017), such as gap statistics (Tibshirani et al. 2001), 

weighted gap statistics (Yan and Ye 2007), X-means (Pelleg and Moore 2000) and 

MACE-means (Shahbaba and Beheshti 2014). However, all of these methods cannot be 

directly applied to time series because the values of time series change as a function of 

time.   

 In this chapter, we propose an automatic time series clustering method, called AT-

means, aiming at overcoming the disadvantages of the aforementioned methods and 

improving the performance of time series clustering. The main contributions of this work 

are threefold. First, a modified global time series averaging method, called as initialised 

weighted global time series averaging (IWGTA), is proposed to correctly calculate the 

average sequence of a set of time series. Second, we develop an initial centre sequence 

determination method, called average initial centre determination (AID), depending on 

which initial centres will be located in proper areas. Third, a novel elbow point extraction 

method, called dual weight average distance (DWAD), is introduced and used to 

determine the number of clusters. To demonstrate the performance of the proposed 

method for time series clustering, AT-means is applied to 10 benchmark time series 

datasets obtained from UCR time series collection (Chen et al. 2015). To provide a 

reference comparison, the performance of AT-means is compared with K-means under 3 

different conditions, they are: i) number of clusters is known; ii) number of clusters is 

known and initial centre setting method is applied; iii) number of clusters is known and 

the proposed global averaging method is applied. Comparison results show that AT-

means outperforms the other three methods in terms of time series clustering. 
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This Chapter is structured as follows: in Section 2, previously published methods for 

clustering number determination and global time series average calculation are reviewed; 

Section 3 illustrates time series sequences clustering based on the proposed method; and 

Section 4 reports the experimental results; finally, Section 5 concludes this Chapter. 

5.2 Related Works 

In order to extend K-means to a totally unsupervised time-series clustering technique, 

one important task is to estimate the proper number of clusters. The other one is to 

calculate the average time series of a cluster of the time series. In the last few decades, 

many methods have been proposed to solve these two problems. This section briefly 

reviews two groups of most commonly used methods: cluster number determination and 

global time series averaging. 

5.2.1 Determination of Cluster Number 

In recent years, many methods have been proposed for determining the number of 

clusters, among which gap statistics (Tibshirani et al 2001) and X-Means (Pelleg and 

Moore 2000) are two popular and representative methods, which are summarized below. 

5.2.1.1 Gap Statistics 

Gap statistics is a useful method for determining the proper number of clusters for a 

time series by comparing the observed weight curve with a reference weight curve 

(Tibshirani et al 2001). It generates a sample of data representing the observed data, and 

then calculate the gap between the labelled cluster and reference distribution. The 

implementation of gap statistics based cluster number estimation is divided into three 

steps: 

• Set a range of 𝑘, such as 𝑘𝑚𝑖𝑛 = 1 and 𝑘𝑚𝑎𝑥 = 𝐾, and then calculate the within-

dispersion measures 𝑊𝑘 , where 𝑘 = 1, 2, … ,𝐾. 

• Generate a reference dataset and calculate the gap. The gap is defined using the 

following equation: 

𝐺𝑎𝑝(𝑘) = 𝐸𝑛
∗{𝑙𝑜𝑔(𝑊𝑘𝑏)} − 𝑙𝑜𝑔(𝑊𝑘)                              (5.1) 

where 𝑊𝑘  denotes the sum of the pairwise distances of all the points in a cluster in 

the original dataset, 𝑊𝑘𝑏  states the sum of the pairwise distances of all the points in 
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a cluster in reference dataset, 𝐸𝑛
∗ means the expectation under a sample of size 𝑛 

from the reference distribution. 

• Choose the number of clusters according to following equation: 

𝑘̂ = smallest 𝑘 such that 𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑆𝑘+1                   (5.2) 

where 𝑆𝑘+1  means the standard deviation of within-dispersion measures of the 

reference dataset. 

Note that the gap statistics method has two drawbacks that need to be taken into 

consideration: (i) computationally expensive and (ii) not easy to implement for time 

series clustering. For the first shortcoming, the upper bound of 𝑘 has to be big enough in 

order to guarantee that the actual cluster number is smaller than the pre-specified upper 

bound, and therefore the whole process is time-consuming if the upper bound is specified 

too large. For the second shortcoming, the reference time series dataset is not easy to be 

generated due to the characteristics of time series, such as frequency, amplitude, period 

and length. 

During the last 10 years, some methods have been proposed to overcome the 

shortcomings and improve the performance of traditional gap statistics. For example, 

weighted values are used to reduce the influence of points that are far away from the 

cluster centre (Yan and Ye 2007). However, the problems mentioned above 

(computational load and unsuitability for time series) are still unsolved. 

5.2.1.2 X-means 

As a straightforward extension of the K-means algorithm, X-means applies the 

Bayesian Information Criterion (BIC) to the splitting process (Pelleg and Moore 2000; 

Hancer and karaboga 2017). In essence, the algorithm starts with a small 𝑘 (equal to the 

lower bound of the given range) and continues adding centroids until the value of 𝑘 

reached the upper bound or the BIC value of children clusters is smaller than that of the 

parent clusters. The procedure of using X-means to determine the number of cluster can 

be divided into three steps: 

• Randomly locate two points as initial centres and separate the remaining points into 

two clusters according to the distances between points to centres, then replace 
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previous centres by mean value of each cluster and stop the calculation when the 

centroid stays fixed. 

• Set 𝑘 = 2 (or another small number) and apply k-means to the groups that are 

obtained from the previous step. 

• Compare the BIC value of children clusters and parent cluster. If 𝐵𝐼𝐶(𝑘 + 1)  <

𝐵𝐼𝐶(𝑘), stop the calculation; if 𝐵𝐼𝐶(𝑘 + 1) > 𝐵𝐼𝐶(𝑘), continue the calculation. In 

case, there is no 𝑘 that satisfies the stop requirement (𝐵𝐼𝐶(𝑘 + 1 < 𝐵𝐼𝐶(𝑘)) for 

any 𝑘 in the range, the calculation has to stop when 𝑘 reaches the upper bound. 

It is noteworthy that X-Means works well only for cases where there is plenty of data 

and well separable spherical clusters. In most recent years, G-means (Hamerly and Elkan 

2004), PG-means (Feng and Hamerly 2007) and GX-means (Vatsavai et al. 2011) were 

proposed to improve the performance of X-means, but each of them cannot work properly 

if the cluster does not obey the Gaussian distribution or is uniformly distributed (Hancer 

and Karaboga 2017). 

5.2.2 Global Time Series Averaging 

It is known that many distance-based clustering methods, such as partitioning 

clustering and hierarchical clustering, require an averaging scheme and the performance 

of these methods highly depends on the quality of the averaging scheme adopted (Petijean 

et al. 2011). This subsection briefly reviews three time series averaging methods proposed 

in the last two decades, namely, nonlinear alignment and averaging filters (NLAAF) 

(Gupta et al. 1996), prioritized shape averaging (PSA) (Niennattrakul and 

Ratanamahatana 2009) and dynamic time warping barycentre averaging (DBA) (Petijean 

et al. 2011). 

5.2.2.1 Nonlinear Alignment and Averaging Filters 

The basic principle of nonlinear alignment and averaging filters (NLAAF) is to apply 

dynamic time warping to calculate the distance between sequences and use an optimal 

path to calculate the average sequence (Gupta et al. 1996). Given two time series 

sequences 𝑋 and 𝑌, where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑗, … , 𝑦𝑛}, the 

first step of NLAAF based average sequence calculation is to extract the optimal warping 

path between 𝑋  and 𝑌 . In this step, the align path is represented by 𝑤 =
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{𝑤1, 𝑤2, … , 𝑤𝑘, … , 𝑤𝐾}, where 𝑤𝑘  stores a pair of indices 𝑖 and 𝑗 of data 𝑥𝑖 and 𝑦𝑗 in the 

sequences 𝑋  and 𝑌 . The second step is to calculate the average sequence 𝑍 =

{𝑧1, 𝑧2, … , 𝑧𝑘, … , 𝑧𝐾} according to the following equation: 

𝑧𝑘 =
1

2
(𝑥𝑖 + 𝑦𝑗)                                                         (5.3) 

The whole process of NLAAF based average sequence calculation is depicted in 

Figure 4.1. The first step is to pair the first and second sequences in the cluster and 

calculate their average sequence, and then sequentially pair the previous average 

sequence and next sequence to calculate their average sequence. 

 

Figure 5.1. Nonlinear alignment and averaging filters 

As the average sequence is calculated sequentially from the first sequence to the last 

sequence, the result depends on the order of the considered sequences. For the final step 

of average sequence calculation, the weight value of the last sequence is 0.5, which is 

equal to the sum of weight values of all the previous sequences. That is why the result of 

NLAAF is not a satisfactory approximation. 

5.2.2.2 Prioritized Shape Averaging 

The NLAAF based average calculation pairs sequences in order and sets the final 

result as the average sequence of the cluster, but there is no guarantee that a different 

order can get the same results. Prioritized shape averaging (PSA) was proposed to resolve 

the shortcomings of NLAAF (Gupta et al. 1996). In PSA based time series average 

calculation, a hierarchical structure tree is used to set the pairing order and weight values 

are calculated according to the number of sequences involved in the averaging. Therefore, 

this overcomes the influence of pairing order. The process is graphically illustrated in 

Figure 5.2. 
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Figure 5.2. Prioritized shape averaging based average sequence calculation 

At the beginning of the calculation process, the root nodes of the tree are the 

sequences in the initial time series database. In the following calculation process, the 

nearest two sequences (𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛}, 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑗, … , 𝑦𝑛}) are aligned 

together and each new value 𝑧𝑘 on the average sequence (𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑘, … , 𝑧𝐾}) is 

calculated using the arithmetic mean of 𝑥𝑖 and 𝑦𝑗: 

𝑧𝑘 =
𝜆𝑥∗𝑥𝑖+𝜆𝑦∗𝑦𝑗

𝜆𝑥+𝜆𝑦
                                                              (5.4) 

where λx and λy are the weight values of sequence 𝑋 and 𝑌. These weight values are 

calculated from the number of sequences used to generate the averaged sequence 

(Niennattrakul and Ratanamahatana 2009).  

Compare with NLAAF, PSA based average calculation does not only use DTW to 

reduce the influence of timeline drift, but also solve the problem of pairing orders. 

However, according to (5.4), the length of the new sequence is 𝐾, which is equal to the 

length of the optimal path, and according to Algorithm 2.4 (page 21), the length of the 

new sequence is greater than the length of 𝑋 and 𝑌. This means that the length of the 

average sequence is greater than that of paired sequences after each iteration of average 

sequence calculation, and the length of the final average sequence will be several times 

of that of the initial sequences. As a consequence, the final average sequence cannot 

correctly characterize the features of the cluster. 

5.2.2.3 Dynamic Time Warping Barycentre Averaging 

The influence of pairing order is solved through the application of a hierarchical 

structure tree. However, there is still another issue: the length of the averaged sequences 

is greater than that of pairing sequences after each iteration, and in some late stages the 

length of averaged sequence exceeds the length of the original time series sequences. To 
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solve this issue, an effective global time series averaging method was proposed and it is 

labelled as dynamic time warping barycentre averaging (DBA) (Petijean et al. 2011). 

Given a time series dataset containing 𝑛 sequences, the process of DBA can be divided 

into four steps. 

• Initial sequence finding: randomly select one sequence as the original centre of 

average sequence calculation. 

• Optimal path calculation: based on DTW, calculate the distance between every 

sequence and the initial sequence. In this step, the associations between centre 

sequence and all the sequences in the dataset can be found (Petijean et al. 2011). 

• Average sequence calculation: assuming there are m  sequences with different 

lengths in the dataset, the centre sequence is XA = {XA1, XA2, … , XAn} , the 

remaining sequences in the database are X1 = {X11, X12, … , X1n1} , X2 =

{X21, X22, … , X2n2} ,…,  Xm = {Xm1, Xm2, … , Xmnm} . According to the optimal 

paths that are extracted in step 2, the values in the average sequence can be 

calculated as: 

𝑙𝑖 =
𝑠𝑢𝑚(𝑎𝑙𝑖𝑔𝑛(𝑋𝐴𝑖))

𝑐𝑜𝑢𝑛𝑡(𝑎𝑙𝑖𝑔𝑛(𝑋𝐴𝑖))
                                               (5.5) 

where 𝑎𝑙𝑖𝑔𝑛(𝑋𝐴𝑖) means the elements that are aligned with 𝑋𝐴𝑖  in the rest of 

sequences in the dataset, 𝑠𝑢𝑚(𝑎𝑙𝑖𝑔𝑛(𝑋𝐴𝑖)) means the sum of all the elements 

values that are align with 𝑋𝐴𝑖, 𝑐𝑜𝑢𝑛𝑡(𝑎𝑙𝑖𝑔𝑛(𝑋𝐴𝑖)) means the number of elements 

that are aligned with 𝑋𝐴𝑖 in the remaining sequences. 

• Repeat: When comparing the distance between output sequence and the pre-centre, 

if the distance between them equals 0 then stop the calculation. If the distance 

between the output sequence and the initial sequence greater than 0, step 2 and 3 

have to be repeated. 

The average sequence obtained by DBA can represent the features of the original 

sequences more accurately when compared with the other two methods (NLAAF and 

PSA). However, since the initial sequence is selected randomly, the whole calculation 

needs to be repeated several times until the distance between the new average sequence 

and previous average sequences become zero (or less than a specified small threshold), 

this is time-consuming. In addition, because the weight values of all the sequences are 
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the same in the calculation, the result may not correctly represent the features of the 

cluster if there are some outliers. 

5.3 AT-means: Automatic Time Series Clustering 

Time series clustering has been ubiquitously used in diverse areas and many 

clustering methods are available in the literature, among which K-means is most 

commonly used algorithm. K-means clustering algorithm and its variants, however, have 

several shortcomings for many real applications (Jain 2010; Oyelade et al. 2010). To 

overcome these shortcomings, we propose an average sequence based totally automatic 

time series clustering method, called AT-means.  

5.3.1 Initialized Weighted Global Time Series Averaging 

For traditional non-time series K-means clustering methods, the distances between 

data are calculated according to Euclidean distance, and because the mean value of every 

cluster can represent meaningful information of the cluster, the arithmetic mean value of 

every cluster is used as the centre of the cluster. However, for time series clustering, 

because a time series represents a collection of values over time, and the length of 

different time series are usually different from each other, the average time series of every 

cluster cannot be simply obtained through computing the arithmetic mean value of every 

time point.  

So far, dynamic time warping barycentre averaging (DBA) is the first and only global 

approach to averaging a set of sequences (Petijean et al. 2011). However, due to the fact 

that the initial centre sequences are randomly selected and the weight values of all the 

sequences are the same during average sequence calculation, the calculation is time 

demanding and the results of the average sequences are not satisfactory.  

In this part, in order to overcome the drawbacks of DBA, a modified global time 

series averaging method is introduced, called initialized weighted global time series 

averaging (IWGTA). We propose a novel scheme that can be used to determine the initial 

centre sequences: this proposed method has an obvious advantage in that it avoids the 

randomness in the determination of the initial centre sequences. The rationale behind the 

scheme is that the initial centre should be chosen as the sequence located in the centre 

area of the cluster. Specifically, it first calculates the distance matrix containing all the 

distances between every two sequences in the cluster, and then finds the sequence such 
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that the sum of the distance between the target sequence and all the other sequences is 

minimized. The pseud-code is given in Algorithm 5.1 below. 

Algorithm 5.1 Initial Sequence Setting 

Requirement: A cluster of sequences 

[𝑚, 𝑛] ← 𝑠𝑖𝑧𝑒(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠)  
for 𝑖 ← 1: 𝑚 do 

      for 𝑗 ← 1: 𝑚 do 

   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)  ← 𝐷𝑇𝑊𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑖, : ), 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑗, : )); 
end for 

end for 

for 𝑖 ← 1: 𝑚 do 

      𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) ← 𝑠𝑢𝑚(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, : ))  
end for 

𝑠𝑜𝑟𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑠𝑜𝑟𝑡(𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒);  
𝑐𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑓𝑖𝑛𝑑(𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑜𝑟𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1)); 
𝑐𝑒𝑛𝑡𝑟𝑒_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑐𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, : )  

The input of this algorithm is a cluster of sequences and the output is the chosen 

center sequence. 

An anomalous time series is usually far away from the others in a group. Although 

most of sequences in one cluster have similar patterns and features, there is no guarantee 

that there is no outlier in the cluster. For a cluster of time series with some anomalous 

sequences, if the influence of the outliers is at a high level, the quality of the output 

average sequence will be affected by the existence of the anomalous sequences.  

In order to reduce the impacts of outliers, weight values are calculated according to 

the distances between the centre sequence and the remaining sequences. The pseud-code 

of the method is given in Algorithm 5.2. 

Algorithm 5.2 Weight values calculation 

Requirements: A cluster of sequences: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 

                     Initial sequence: 𝑝𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

for 𝑖 ← 1: 𝑚 do 
       𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) ← 𝐷𝑇𝑊𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑖, : ));  
end for 
𝑑𝑒𝑙𝑒𝑡𝑒 ← 𝑓𝑖𝑛𝑑(𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 == 0);  
𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑒𝑙𝑒𝑡𝑒) ← 𝑖𝑛𝑓;  
for 𝑖 ← 1: 𝑚 do 
      𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑒𝑐(𝑖) ← 1/𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖);   
end for 
𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑠𝑢𝑚(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑒𝑐);  
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for 𝑖 ← 1: 𝑚 do  
      𝑙𝑎𝑚𝑑𝑎(𝑖) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑒𝑐(𝑖)/𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒;  
end for 

The input of this algorithm is a set of sequences and their corresponding predefined 

centre sequence, the output is a vector containing the weight value of each sequence. 

The amplitudes of elements in time series do not represent the whole information of 

the sequence because there remain some features that are not revealed by the amplitudes 

but can be effectively characterized by timeline. For initialized weighted global time 

series averaging (IWGTA), in order to reduce the influence of timeline drift when 

aligning two sequences, the associations between centre sequences and other sequences 

are obtained according to dynamic time warping. After that, the elements in the average 

sequence are computed according to the initial centre sequence (obtained by Algorithm 

5.1), associations (obtained by Algorithm 2.4 (page 21)) and weight values (obtained by 

Algorithm 5.2). The pseud-code for average sequence calculation is given in Algorithm 

5.3 below. 

Algorithm 5.3 Average sequence calculation 

Requirements: A group of time series: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠  
                Predefined centre: 𝑝𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

                A vector contains weight values: 𝑙𝑎𝑚𝑑𝑎 

                The number of time series in the group: 𝑚              

for 𝑖 = 1: 𝑚 do 

      𝑤{𝑖}  ← 𝐷𝑇𝑊𝑑𝑟𝑖𝑓𝑡(𝑝𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑖, : ));  
      𝑠𝑒𝑟𝑖𝑒𝑠 ← 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑖, : );  
      𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴 ← 𝑤{𝑖}(: ,2);  
      𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵 ← 𝑤{𝑖}(: ,1);  
      for 𝑗 = 1: 𝑛 do 
𝑎𝑙𝑖𝑔𝑛(𝑖, 𝑗)  ← 𝑠𝑢𝑚(𝑠𝑒𝑟𝑖𝑒𝑠(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴(𝑓𝑖𝑛𝑑(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵 == 𝑗))))  
      end for 

end for 

for 𝑖 = 1: 𝑛 do 

 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠𝑢𝑚(𝑖)  ← 𝑠𝑢𝑚(𝑎𝑙𝑖𝑔𝑛(: , 𝑖))  
end for 

for 𝑖 = 1: 𝑛 do 

      𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑖)  ← 𝑙𝑎𝑚𝑑𝑎(𝑖) ∗ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠𝑢𝑚(𝑖);  
end for 

The input of this algorithm is a cluster of sequences and the output is the average 

sequence of this cluster. 
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In order to demonstrate the performance of this new time series averaging method 

and its superiority to other methods, a set of artificial time series, containing 25 similar 

sequences and 3 white noise sequences, is considered. The sequences are shown in Figure 

5.3. 

 

Figure 5.3. Artificial time series 

The proposed time series averaging method is applied to the set of time series, and 

the output sequence is illustrated by Figure 5.4d. For comparison, the additional three 

methods, namely, nonlinear alignment and averaging filters (NLAAF), prioritized shape 

averaging (PSA) and dynamic time warping barycentre averaging (DBA) are also applied 

to the same dataset, and the outputs are shown in Figures 5.4a, 5.4b and 5.4c, respectively.  

Figure 5.4a shows the result of the nonlinear alignment and averaging filters approach. 

Clearly, the output sequence cannot represent the features of the time series in the group 

because the order of sequences pairing. In addition, due to the length of the average 

sequence is greater than paired sequences, the result cannot describe even a small fraction 

of the property of the dataset. For the given dataset in Figure 5.3, the length of the output 

sequence shown in Figure 5.4a is almost 280, which is about 3.5 times of the initial 

sequences.  

Figure 5.4b illustrates the output sequence of PSA. Because the average sequence 

calculation process uses weight values, the impact of the order of averaged sequence is 

reduced, so the final sequence can roughly represent the common structure of the 

sequences in the dataset. However, this method has a same issue as for NLAAF, that is, 

the length of final sequence is greater than that of original sequences, and as a 

consequence the average sequence may not correctly represent the features of the time 

series in the group. In addition, because the weight values depend on the number of 

sequences used to generate the averaged sequence, the whole calculation process usually 
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requires a heavy computational load for large datasets. The number of iterations for the 

artificial data is 29. In practice, however, the numbers of iterations could be very large, 

making the calculating process of Algorithm 5.3 time demanding if the sizes of datasets 

are large.  

Figure 5.4c shows the result by DBA: compared with the outputs of NLAAF and 

PSA, DBA provides a much better representation of the features of the initial time series 

sequences. Note, however, the initial centre is randomly selected, and the calculation 

process may need to take many iterations to find the average sequence. So, for large size 

datasets, it is time demanding if the initial sequences are distributed in a wide range or 

many of anomalous sequences are far away from the actual centre. Furthermore, there is 

a scope of delay in the timeline of the result sequence, which can result in error in 

subsequent calculations. 

  
                               a                                                                                      b 

 
                               c                                                                                      d 

Figure 5.4. Performance comparison of the proposed method and three other methods on the artificial 

dataset of time series sequences (the amplitude values of figures in Figure 5.4 are average values of time 

series in Figure 5.3). a) NLAAF based time-series average calculation, b) Prioritized shape averaging 

based time series averaging calculation, c) DBA based time series average calculation, d) the proposed 

method based time series average calculation. 

The result of the proposed method is shown in Figure 5.4d, from which it is clear that 

the new method can correctly characterise the structure of the initial sequences and the 
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timeline is also correctly located at the centre of the dataset. With the application of 

weight values that are computed according to the distance between initial centre and the 

remaining sequences, the impact of outliers is reduced or avoided. Specifically, with the 

application of both DBA and the proposed algorithm to the dataset, the sums of within-

group distance are 137.6896 and 128.2563 respectively. By comparing the sum of within-

group distance obtained by DBA and the proposed method, the average sequence 

obtained by the proposed method is closer to the centre of the dataset. 

5.3.2 Initial Centre Determination  

The traditional K-means algorithm starts with k arbitrary centres, typically chosen 

uniformly at random from the data points. However, due to the centre of each cluster is 

calculated as the mean of all the points assigned to it, this algorithm is highly sensitive to 

the selection of initial centres (Celebi et al. 2013; Fahim et al. 2009). In order to overcome 

the disadvantage, in the proposed AT-means, two sequences are extracted from the 

unorganized dataset and ensure that these two sequences are not outliers and not close to 

each other. For easy understanding, Figure 5.5 provides an illustration (in 2 dimension) 

of how the proposed method works on find two initial centres, where the blue dotted-

points represent sequences and the distance between points represent the DTW distance 

between the corresponding sequences. According to the location of two initial points (in 

red colour) shown in Figure 5.5, it can determine that initial centres should be located in 

the two crowed areas and not close to each other.  

 

Figure 5.5 Finding initial sequences 

The procedure of determining the initial sequences is divided into 6 steps: 1) calculate 

the average sequence of the unorganized dataset using Algorithm 5.3, 2) calculate the 

matrix containing the distances between all the sequences in the dataset and the average 

sequence, 3) set the mean value of distance matrix (obtained in step 2) as radius and the 
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average sequence as the centre of a circle, 4) find the first sequence that the distance 

between this sequence and the centre is closest to radius among all the distances in 

distance matrix, 5) calculate the distances between all the remaining sequences and the 

first sequence, 6) find the second sequence that the distance between it and the centre is 

close to the radius and the distance between it and the first sequence is close to twice of 

radius. The method proposed here is referred as average distance initial centre 

determination. 

Assume there are two clusters in the time series dataset, the procedure of finding 

initial centres is depicted in Algorithm 5.4 below. 

Algorithm 5.4 Finding Initial Sequences 

Requirements: A set of sequences: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 
[𝑛𝑢𝑚𝑏𝑒𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ] ← 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

for 𝑖 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 do 

     𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) ← 𝐷𝑇𝑊𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑖, : ), 𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 
end for 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1 ← 

        𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑖𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒   
𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛2 ←  

        𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑖𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  
𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,  
 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑖𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

         𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑡𝑤𝑜 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒.  
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒1 ← 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1, : )  
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒2 ← 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛2, : )  

The input of this algorithm is a set of sequences; the outputs are two sequences, which 

can be used as the initial center sequences. 

To demonstrate the performance of the proposed method for determining initial 

sequences, a dataset containing two clusters (each contains 100 time series, with a length 

of 500) and four anomalous sequences are artificially generated, and both the proposed 

method and the random selection method are applied to the dataset to extract the initial 

centre sequences. Similar to the description of the sequences in Figure 5.5, all the 

sequences in the dataset are represented by points and the distance between points is 

defined as the DTW distance between corresponding sequences; the visual illustrations 

are shown in Figure 5.6a. 
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The extracted sequences by the proposed method are shown in Figure 5.6b 

(represented by red points). It can be noticed that both of the extracted centre sequences 

are close to the centres of the two clusters although there may exist a very small distance 

between the extracted centres and the actual centres. Random selection method is also 

applied to the same dataset to extract initial centres. The method was performed twice, 

and the corresponding numerical experiments results are shown in Figure 5.6c and Figure 

5.6d, respectively. As shown in Figure 5.6c, one centre is an outlier and the other centre 

locates at the edge of one cluster. In Figure 5.6d, the two centres are close to each other. 

In fact, these are the two typical and commonly encountered issues when the random 

selection method is applied to real world problem solving – in many cases it could fail to 

find the correct or appropriate centres. Our proposed method, however, can overcome 

these issues. 

                                                                      
                           a                                                                                   b 

              
                          c                                                                                    d 

Figure 5.6 Distribution of sequences in dataset and initial sequences. a) a dataset contains two clusters of 

sequences and four outliers, b) initial centre sequences extraction based on the proposed method, c) first 

time randomly initialization, d) second time randomly initialization 

5.3.3 Elbow Point 

The idea of the traditional elbow method (Tibshirani et al 2001) starts with 𝑘 = 2 

(the number of clusters).It  keeps increasing the number of clusters in each step by 1 and 

calculating the cost function of each cluster, and stops when the cost function drops 

dramatically at a value of the number of clusters. In this paper, a modified version of the 
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elbow method is proposed and used to determine the number of clusters. The proposed 

version has the following two improved properties: 1) the parent cluster is only separated 

into two children clusters in each step and only both of the children groups are analysed 

in next step, 2) the elbow point is the maximum point of the relevant cost function  rather 

than the point where the cost function drops dramatically. 

For a time series dataset that contains several classes of sequences, at the beginning 

of clustering, some sequences are inevitably forced into some groups where they do not 

belong. Traditional average distance, which is defined as the arithmetic mean of distances 

between all the sequences in one group and their corresponding average sequence, is 

always used as the cost function for cluster number determination (for K-means 

clustering), but it cannot detect whether or not outliers exist when there are a large number 

of sequences in the group. In this section, in order to underline the impact of outliers via 

the analysis of average distances, weight values are used to calculate the average distance. 

The weight values are defined as: 

wi =
di
3

∑ di
3n

i=1

                                                                   (5.6) 

where 𝑑𝑖, with 𝑖 = 1, 2,… , 𝑛, is the distance between the 𝑖th sequence and the average 

sequence, 𝑤𝑖 is the weight value of the distance between the 𝑖th sequence and the average 

sequence. The reason the third power of the distance is used is to enhance the impact of 

outliers during average distance calculation. The weighted average distance is computed 

as: 

wadis = ∑ wi ∗ di
n
i                                                             (5.7) 

In addition, in order to reveal the sparseness of the group through the analysis of 

average distance, weighted average distance is multiplied by the distance between the 

average sequences of two children clusters. In this paper, this average distance calculation 

method is referred to as the dual weight average distance calculation (DWAD). 

Consider a dataset containing 22 points: 20 of them are close to each other and 2 are 

outliers (see Figure 5.7). By applying the standard elbow method, the average distance of 

these 22 points is 2.3175, but using the dual weight average distance (DWAD) is 24.5207. 

Furthermore, if the number of clusters is set to be 2, the overall average distance of the 

two clusters is 0.0917 (standard elbow method) and 0.1535 (DWAD), respectively. 
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Clearly, there is a dramatic reduction in the average distance after the dataset is separated 

into two clusters with the standard elbow method, but comparing the result of DWAD, 

the reduction rate of traditional elbow method is not significant. Therefore, in order to 

weight the influence of outliers and increase the changing rate of average distance, 

DWAD is recommended. 

 

Figure 5.7 20 normal points with 2 outliers 

It should be stressed that there could be several elbow points, which cannot always 

be unambiguously identified by means of the standard elbow method (Kodinariya and 

Makwana 2013). For example, consider a dataset containing 5 different classes of 

sequences, as shown in Figure 5.8a. The average distance changing calculated by using 

the standard elbow method is shown in Figure 5.8b. 

  
              a. time-series dataset                                             b. average distance variation curve 

Figure 5.8. Time series dataset and its corresponding average distance variation curve 

It is well known that the first derivative of a curve at a point means the slope of the 

curve at that point, and the second derivative at a point represents the change rate of the 

first derivative series. For the standard elbow method, the point at which the distance 
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variation curve dramatically drops is considered to be a minimum point of the associated 

cost function and thus that point is chosen as the cluster number (Bholowalia abd Kumar 

2014). This is not a good cluster number determination mechanism due to its lack of 

robustness (e.g. the determined cluster number could be much smaller or much larger 

than the true value). Different from standard elbow method, in this chapter, the parent 

cluster is separated into two children clusters, and the dual weight average distances of 

parent cluster and children clusters are used to generate the distance variation curve. The 

splitting process from dataset to children clusters is briefly described in Figure 5.9. 

 

Figure 5.9 Splitting process 

Once we get the distance variation curve, the specific values between the dual weight 

average distances of children clusters and their corresponding parent clusters are set as 

“first derivatives”; the “second derivatives” can then be obtained through calculating the 

specific values of the “first derivatives” of children clusters and the parent clusters. 

Taking the first branch (from database to cluster1111) as an example, the calculation 

procedure of “second derivative” of this branch is depicted by Figure 5.10. 

 

Figure 5.10 Calculation procedure of “second derivative” of first branch  
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Because the minimum value of cluster number is greater than or equal to 2, the initial 

value of “second derivative” is set to 0. The “second derivative” variation curve of the 

first branch is shown in Figure 5.11. Different from normal cluster number determination 

methods (Tibshirani et al. 2001; Pelleg and Moore 2000) that there is a cost function to 

define the elbow points, in this work the elbow points are defined as the points where the 

“second derivative” series drop. For the curve shown in Figure 5.11, it means the splitting 

should stop at cluster 1. 

 

            Figure 5.11 “second derivative” of first branch 

 

Figure 5.12. “second derivative” series (The vertical coordinates of all above figures are second 

derivative of corresponding clusters, such as the first one (upper left one), is second derivative series of 

cluster- 1111, the last one (bottom right one), is second derivative series of cluster-22222. The X-axis of 

all above figures is location of corresponding cluster in its branch) 

We applied the “second derivative” method to the dataset in Figure 5.8a to search 

and test each of the candidate cluster number. According to the definition of elbow points 
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in this chapter, and the “second derivative” variation curves of all branches (from 

database to the bottom clusters) in Figure 5.12, the splitting should stop at cluster 1, 

cluster 211, cluster 212, cluster 221 and cluster 222 in Figure 5.9.  

5.4 Results and Comparison 

In order to validate the performance of the proposed AT-means for time series 

clustering, we applied AT-means to 10 benchmark datasets available in the research 

conducted by Chen et al. (2015). For comparison purposes, we also applied the following 

three K-means algorithms to the same datasets: a) k is predefined; b) initial centres and k 

are predefined; c) global sequences averaging method is applied and k are predefined. 

5.4.1 Adjusted Rand Index 

The Adjusted Rand Index (ARI) (Hubert and Arabie 1985), as an extension of the 

Rand index (Rand 1971), is one of the most commonly used cluster validation indexes 

and it was recommended as an index for measuring agreement between two partitions in 

clustering analysis with different numbers of clusters (Santos and Embrechets 2009; 

Milligan and Copper 1986). Detailed description of the adjusted Rand index can be found 

in the paper proposed by Yeung and Ruzzo (2001).  

Suppose that O and U represent two different partitions of the objects under 

consideration, O is the true partition and U is K-means result, the notions are illustrated 

in Table 5.1. 

Table 5.1 Notations for Comparing Two Partitions 

Group 𝑈1 𝑈2 … 𝑈𝑘 Total 

𝑂1  𝐴1,1 𝐴1,2 … 𝐴1,𝑘 𝐴1, 

𝑂2  𝐴2,1 𝐴2,2 … 𝐴2,𝑘 𝐴2, 

⋮ ⋮ ⋮ 𝐴𝑖,𝑗  ⋮ ⋮ 

𝑂𝑚 𝐴𝑚,1 𝐴𝑚,2 … 𝐴𝑚,𝑘 𝐴𝑚, 

Total 𝐴,1 𝐴,2 … 𝐴,𝑘  

where symbols 𝐴𝑖,𝑗  (i =1, 2, …, m; j =1, 2, …, k) present the number of sequences that 

are both in class 𝑂𝑖 and cluster 𝑈𝑗. The adjusted Rand index is defined as: 

ARI =
(
n
2
)(a+d)−((a+b)(a+c)+(c+d)(b+d))

(
n
2
)
2
−((a+b)(a+c)+(c+d)(b+d))

                                     (5.8) 
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In (5.8), 𝑎 is the number of pairs in the same class in 𝑂 and same cluster in 𝑈; b is 

the number of pairs of objects in the same class in 𝑂 but not in the same cluster in 𝑈; 𝑐 is 

the number of pairs of objects in different class in 𝑂 but in same cluster in 𝑈; and 𝑑 is the 

number of pairs of objects in different class in 𝑂 and in different cluster in 𝑈. These four 

numbers are calculated as follows (Santos and Embrechets 2009):  

a = ∑ ∑ (
Ai,j
2
)k

j=1
m
i=1                                                          (5.9) 

 b = ∑ (
Ai.
2
)m

i=1 − a                                                         (5.10) 

c = ∑ (
A.j
2
)k

j=1 − a                                                         (5.11) 

d = (
n
2
) − a − b − c                                                       (5.12) 

The adjusted Rand index (ARI) is equal to 1 if all the sequences in one dataset are 

correctly categorized into their own corresponding clusters, and it will be zero if no 

sequence is correctly classified. Theoretically, the larger the number of correctly 

categorized sequences, the larger the adjusted Rand index is. In other works, the smaller 

the number of correctly classified sequences, the smaller the adjusted Rand index is. 

5.4.2 Results and Analysis  

The experiments considered in this study are based upon the following approaches: 

(a) K-means 1: the actual number of clusters is known. 

(b) K-means 2: the proposed initial centre setting method is applied, and the actual 

number is known. 

(c) K-means 3: the modified global averaging method is applied, and the actual number 

of clusters is known 

(d) AT-means: Automatic time series clustering. 

The experimental results by the AT-means and K-means methods for the 10 datasets 

are tabulated in Table 5.2, in which the first column gives the names of the 10 benchmark 

datasets considered in this study and the additional four columns present the 

corresponding ARI values of the four clustering approaches. 
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Table 5.2. The Results of K-means with 3 Conditions and AT-means to Time Series Datasets 

 Adjusted           Rand              Index 

Name K-means 1 K-means 2 K-means 3 AT-means 

CBF 0.3149 0.3780 0.4574 0.6821 

ECG 200 0.0965 0.1314 0.4452 0.6596 

Face All 0.0107 0.3652 0.4263 0.6358 

Medical Images 0.0168 0.1052 0.3078 0.4162 

Trace 0.1240 0.2334 0.3730 0.5539 

ECG Five Days 0.0307 0.1626 0.3014 0.6394 

Synthetic Control 0.1187 0.4453 0.4057 0.6858 

Proximal Phalanx TW 0.0937 0.1357 0.2968 0.5978 

Two Lead ECG 0.1256 0.1351 0.4037 0.5985 

Electric Devices 0.5172 0.5183 0.5213 0.6762 

From Table 5.2, it can be noticed that the clustering performance is improved by 

using both the proposed initial centres setting method and the global averaging method. 

Firstly, the ARI values listed in column 2 represent the performance of the standard 

K-means clustering method where the actual number of clusters is assumed to be known. 

The values given in column 3 show the performance of the standard K-means, where the 

actual clusters number is known, and the proposed initialization method is applied. It can 

be noticed that all the values in column 3 are greater than their corresponding values in 

column 2, meaning that the performance of K-means is improved by applying the 

proposed initial centres setting approach. 

Secondly, the ARI values listed in columns 4 is for K-means 3. It can be seen that 

all the ARI values in column 4 are greater than their corresponding values in column 2, 

meaning that the performance of the K-means with the proposed global averaging 

methods is much better than K-means only with actual number of clusters. 

It is interesting to compare column 4 with column 3 and note that values in column 4 

are not always greater than their corresponding values in column 3. For example, for the 

Synthetic Control dataset, the index in column 4 is 0.4057 which is smaller than that 

(0.4453) in column 3, means that k-means with global averaging may not always 

outperform that with centre initialization method. 
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Thirdly, the last column (column 5) presents the ARI values of the proposed AT-

means. It is obvious that AT-means achieves outstanding performance for all datasets 

when compared with the three compared K-means approaches. 

These experimental results confirm that AT-means can produce much better 

clustering performance for time series sequences by adopting and incorporating the 

following three methods: average distance initial centre determination (AID), initialized 

weighted global time series averaging (IWGTA) and dual weight average distance 

(DWAD) calculation. It is worth noting that none of the three compared K-means 

methods can be treated as an automatic unsupervised clustering approach because all of 

them require a predefined number of clusters. For AT-means, however, there is no need 

to pre-specify the number of clusters as the clustering process will automatically 

terminate when the “second derivative” series begins to decrease, and the turning point is 

treated to be the number of clusters. 

5.5 Summary 

In this chapter, we proposed an automatic time series clustering method, called AT-

means, which can automatically complete the clustering process for a set of time series. 

The main contributions of this chapter include three aspects: i) by effectively choosing 

the initial sequences of the clusters and applying weight values to average sequence 

calculation, the influence of outliers is reduced or removed and the average time series 

can more properly represent the information of a set of time series; ii) through setting the 

average within-group distance as the radius of a cycle, the initial two sequences can be 

properly extracted from the dataset, iii) by using the dual weight average distance 

calculation and “second derivative”, the number of clusters can be correctly or properly 

determined without manual pre-specification and intervention. 

This new proposed method, along with three K-means approaches (with 3 different 

conditions), were applied to 10 real-life time series datasets. In terms of accuracy, 

measured by the adjusted Rand index, the proposed AT-means obviously outperforms the 

three compared K-means.
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Chapter 6 

Remaining Useful Life Estimation 

In this chapter, a novel similarity-based remaining useful life estimation 

method is proposed. This method firstly uses low-dimensional time series to 

replace original multidimensional time series, then both testing and training 

data are used to build testing folder and training folder. The next is using the 

proposed multidimensional time series similarity measure method to extract 

historical fragments when their degradation behaviors are similar with that of 

testing unit, and finally estimate the remaining useful life of testing units 

according to the remaining useful life of extracted fragments. To evaluate the 

performance of the proposed method, it is applied to aircraft engines data 

provided by NASA Prognostic Data Repository. For comparison, 2 published 

similarity-based remaining useful life estimation approaches are applied to 

the same datasets. The experimental results show that the proposed method is 

very effective in RUL estimation. 

6.1 Introduction 

In past decades, over thousands of billions of dollars were spent around the world for 

the maintenance of safety related critical components, such as aircraft engines, nuclear 

equipment and large industrial machines (Kan et al 2015). Prognostic and health 

management (PHM), which is used to access the health status of equipment, has received 

increasing attention. As the main task of PHM, remaining useful life (RUL) estimation is 

used to provide accurate prediction of the time after which equipment will not be able to 

meet its operating conditions (Malinowski et al 2015). Through this estimation-based 

maintenance policy, PHM is not only able to protect the system from faulty causally loss, 

but also avoid unnecessary maintenance activities and resource wasting (Zhao et al 2017). 

In general, approaches dealing with RUL prediction problem are mainly separated 

into 2 categories: physics-based model and data-driven model (Zhao et al 2017). A 
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physics-based prognostics model typically involves building a mathematical model to 

describe the physical behaviours of the system (Heng et al 2009). For example, the crack 

growth process of gear was simulated and an estimation of the remaining useful life was 

provided (Zhao et al. 2013); a Kalman filter method was proposed to model the crack 

growth in a tensioned steel band and predict the health state of the system (Swanson et al. 

2000); a damage accumulation model of aircraft engine is implemented to provide the 

remaining useful assessment (Orsagh et al. 2004). These types of approaches are 

particularly important if accuracy is a critical factor and testing is restricted, but physics-

based models are not easy to construct because it is challenging to obtain the physical 

degradation of a system. Moreover, because this kind of approach is system specific, they 

do not have generality. A data-driven approach attempts to derive useful information from 

past observed run-to-failure data and produces the prediction outputs according to the 

relationship between collected condition monitoring data and the degradation level of 

same type equipment (Heng et al 2009). Classical data-driven approaches include neural 

networks (Heimes 2008, Liu et al 2010), hidden Markov models (Baruah and Chinnam 

2005, Camci and Chinnam 2010), Gaussian process regression (Liu et al 2013, Hong and 

Zhou 2012), support vector machine (Patil et al 2015, Chen et al 2013). This kind of 

approach is usually easier to obtain and mainly used when a physical model cannot be 

derived. Data-driven approaches have a wide range of applications where run-to-failure 

data are available, such as RUL prediction of aircraft engines based on similarity measure 

(Wang et al 2008).  

In many practical cases, it is easier to gather data than to build accurate physical 

models and hence a lot of data-driven prognostics have been published in the past decades. 

Among the data-driven prognostic approaches, similarity-based approaches are relatively 

new but have made promising performances. For example, RUL estimation based on 

linear regression and Euclidean distance (Wang et al. 2008), RUL prediction based on 

fuzzy instance (Xue et al. 2008), RUL estimation based on a fuzzy pointwise similarity 

concept (Zio and Maio. 2010), RUL prediction based on instance-based-learning (Khelif 

et al. 2014), RUL estimation based on degradation shapelets extraction (Malinowski et al. 

2015), and RUL estimation based on similarity of phase space trajectory (Zhang et al 

2015). However, for above mentioned similarity-based RUL estimation approaches, the 

observed data is transformed into 1-dimension space (time series). Some degradation 

patterns may be lost although most useful information are kept. Moreover, because a same 
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operation setting cannot guarantee that the working environments are exactly the same, 

timeline warping may exist in both training and testing datasets. Hence Euclidean 

distance based similarity measure in both methods are not suitable. 

In this chapter, we propose a new similarity-based RUL estimation method, aimed at 

overcoming the disadvantages of the aforementioned methods and improving the 

performance of RUL estimation. The basic idea behind the newly proposed method is as 

follows: First, in order to reduce the dimensionality of the original data space and keep 

most useful information during the transformation, all the raw data is transformed into 

same low-dimensional space (through principal components analysis (PCA)) rather than 

into 1-dimension space (1-D time series). Second, a multidimensional time series distance 

measure method, called multivariate time series warping distance (MTWD), is proposed 

to properly extract training fragments that are similar to that of the testing units. The 

proposed similarity-based RUL estimation method is applied to the CMAPSS datasets 

(Saxena and Goebel 2008) and the performance is compared with two existing methods 

reported by (Malinowski et al 2015) and (Wang et al 2008). Results generated by the 

proposed method show that the estimated RUL values are closer to real RUL values when 

compared with the two methods. 

This chapter is structured as follows. In Section 2, related works are briefly reviewed. 

Section 3 introduces the process of RUL estimation based on the proposed method and 

Section 4 reports the experimental results. Finally, Section 5 summaries this chapter. 

6.2 Related Works 

In recent decades, sensors and storage technologies enable researchers to 

continuously monitor and record the health statues of operating components. Hence 

similarity-based RUL estimation generates very accurate results and a lot of similarity-

based RUL estimation approaches were proposed. In this section, similarity-based 

approaches for RUL prediction are briefly reviewed. 

Similarity-based RUL estimation approach is to match testing pattern to historical 

patterns and compute the RUL of testing unit. Given one training dataset and the sensors’ 

readings of one testing unit, the whole process of similarity-based RUL estimation 

includes two stages: offline stage and online stage. For offline stage, multidimensional 

monitoring data that are collected from different sensors are first processed. It should be 
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noted that different types of data correspond to different kinds of processing, such as 

noise filtering, data fusion, feature extraction, and so on. After data processing step, the 

obtained data is converted into a one-dimensional time series and this time series 

represent the fault evolution of the equipment. After the conversion step, data is 

formalized into instances. For different methods, there are two kinds of instances: 1) 

instances represent the whole trajectory; 2) instances represent part of the whole trajectory. 

Hence, during the offline stage, a library of instances is constructed from available 

historical data. In terms of online stage, the first step is to apply the same processing 

operations to the sensors’ readings of the testing unit. Then the similarity between the 

testing instance and instances in training library are computed to determine which training 

instance has best matching score, and the instance with the highest similarity is used to 

predict the RUL of the testing unit. Figure 6.1 depicts the general framework of similarity-

based RUL estimation. 

 

Figure 6.1 General framework of similarity-based RUL estimation (Malinowski et al. 2015) 

The similarity-based prognostics approach proposed by (Wang et al. 2008) was used 

to tackle the problem defined by the 2008 PHM Data Challenge Competition, and the 

competition result showed that this method was among the top three approaches in the 

competition. The basic idea of this method is to match degradation pattern, which was 

represented by modelled health indicator, to the historical run-to-failure dataset, and the 

final RUL of the testing degradation pattern is computed through weighted sum of the 

RULs of matched historical patterns. Another similarity-based aircraft engine RUL 

estimation method was proposed by Xue et al. (2008). Given a testing unit, a local fuzzy 

model, which is related to kernel regression and locally weighted learning, was used to 

define a cluster of peers in which each of these peers is a similar instance to this given 

testing unit with comparable operational characteristics. For the prediction of RUL of the 

testing unit, it is computed by computing the weighted average of the peers’ individual 
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predictions. A similarity-based approach was proposed by Zio and Maio. (2010) for RUL 

estimation of nuclear system. During the training step, historical run-to-failure data of the 

system is used to construct a library of reference trajectory patterns. During the testing 

step, the pointwise difference between testing and reference patterns is firstly computed. 

Then the pointwise difference is mapped into values of membership. The next step is to 

define the weight values of the individual RUL estimates, and finally calculate RUL of 

the testing system through weighting the RUL of extracted reference patterns. A new 

similarity measure method was proposed for similarity-based RUL estimation (Khelif et 

al. 2014). Because late working cycles of a unit at late age are more likely to observe 

failure patterns, late cycles will be given more weight while the whole testing trajectory 

is considered. Different from aforementioned similarity-based RUL estimation 

approaches that the whole testing trajectory is used to match patterns in reference library, 

discriminative shapelets are used by Malinowski et al. (2015) to predict the RUL of 

testing units. In the offline stage, discriminative shapelets are collected from reference 

run-to-failure dataset. In the online stage, shapelets of one testing unit are compared to 

all the shapelets in reference dataset, and RUL of the testing unit is computed based on 

RUL of all matched reference shapelets. Proposed by Zhang at al. (2015), similarity of 

phase space trajectory is used to estimate the RUL of high-pressure water pump. The 

phase space reconstruction is adopted to build reference degradation patterns dataset from 

historical run-to-failure data, and the similarities between trajectory of testing unit and 

trajectories in reference dataset are measure and used to estimate RUL of testing unit.  

6.3 Proposed Method for Remaining Useful Life Estimation 

In order to efficiently utilize the run-to-failure dataset for estimating the RUL of 

testing unit, a multidimensional time series similarity measure method is proposed for 

extracting useful historical sub-sequences. The framework of the proposed similarity-

based RUL estimation method is depicted in Figure 6.2 and the analysis procedure 

contains the following 4 steps: 1) data pre-processing. Both training and testing datasets 

are transformed by PCA, and a third-order polynomial is used to smooth the sensor values. 

2) library construction. The length values (number of points of a time series) of testing 

and training sub-sequences are flexibly allowed in a suitable range, and these testing and 

training sub-sequences are stored in testing and training library (this step is detailed in 

the 4th part of this section although it is the 2nd step during the entire RUL estimation 
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operation. This is because that a description of the proposed similarity measure method 

before library construction is helpful to understand why we build the libraries and how to 

build the libraries). 3) build a library construction model. 50 sub-sequences are randomly 

selected from training library firstly. Then RUL of each selected subsequence is 

calculated according to their corresponding testing library and training library, and finally 

determine the parameters of the model according to the information (starting points, RUL, 

number of points in the subsequence) of the 50 sub-sequences and their corresponding 

historical sub-sequences that are acceptable for RUL estimation. 4) similarity measure 

and RUL estimation. Calculate the RUL of the RUL of testing subsequence (testing 

subsequence is a part of the whole degradation trajectory of the testing equipment), and 

the RUL of the testing equipment is the mathematic average of the RUL values of all its 

corresponding testing sub-sequences. 

 

                           Figure 6.2 Flow chart of RUL estimation 
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6.3.1 Data Description 

The data provided by NASA is generated by using C-MAPSS that can be utilized to 

simulate the realistic work conditions of the commercial turbofan engine. Under different 

working conditions, multiple simulations of the same type engines are carried out and the 

data from a fleet of engines is constructed. For each such simulation, one engine will go 

through the process from healthy status to failure and all the working cycles in the entire 

process are used to represent the working life. Because 3 working conditions (altitude, 

speed and throttle resolver angle) and measurement values from 21 sensors are recorded 

in every working cycle, the whole process of one engine is represented by a 24-

dimensional time series. According to 4 different experiment setups, there are 4 

independent datasets provided by NASA and the basic information of these datasets are 

listed in Table 6.1. 

Table 6.1: Basic Information of Datasets 

No. of Dataset 1 2 3 4 

Number of Fault Modes 1 1 2 2 

Number of Operation Conditions 1 6 6 6 

Number of Training Units 100 260 100 249 

Number of Testing Units 100 259 100 248 

As shown in Table 6.1, depending on the number of fault modes, dataset 1 and 2 

contain only 1 fault mode while dataset 3 and 4 include 2 different fault modes, depending 

on the number of operation conditions, dataset 1 and 3 contain 1 operation condition while 

dataset 2 and 4 include 6 different conditions. These datasets are divided into training and 

testing subsets. Training subsets include instance with complete run-to-failure data, 

which is used to construct the matching and estimating model. Testing subsets include 

instances with data up to a certain cycle prior to failure, which is used to calculate RUL. 

In this chapter, the 1st and the 4th dataset are used to evaluate the performance of the 

proposed method. 

The first dataset is constructed under one fault mode and one operation condition. 

The entire working procedure of one unit has a number of working cycles and each 

working cycle includes unit ID, cycle index operation conditions and measurement values 

from 21 sensors. Table 6.2 briefly describe the entire life of one unit in dataset 1. 
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Table 6.2 Run-to-Failure of One Engine in FD01 Training Dataset 

Cycle 
Operation 
Setting 1 

Operation 
Setting 2 

Operation 
Setting 3 

Sensor1 Sensor2 … Sensor 21 

1 -0.0007 -0.0004 100 518.6700 641.8200 … 23.4190 

2 0.0019 -0.0003 100 518.6700 642.1500 … 23.4236 

… … … … … … … … 

192 0.0009 0 100 518.6700 643.5400 … 22.9649 

The 4th dataset is the most complicated one, which includes 2 kinds of fault modes 

and 6 different operation modes. The variables of each cycle in this dataset include the 

same information in the first dataset, but the difference is that the working conditions 

keep changing during the entire working life while the working conditions in the first 

dataset stay the same. Table 6.3 gives an example of the entire life of one unit in dataset 

4. 

Table 6.3 Run-to-Failure from One Engine in FD04 Training Dataset 

Cycle 
Operation 

Setting 1 

Operation 

Setting 2 

Operation 

Setting 3 
Sensor1 Sensor2 … Sensor 21 

1 42.0049 0.8400 100 445.0000 549.6800 … 6.3670 

2 20.0020 0.7002 100 491.1900 606.0700 … 14.6552 

… … … … … … … … 

5 25.0063 0.6207 60 462.5400 536.1000 … 8.6754 

6 34.9996 0.8400 100 449.4400 554.7700 … 8.9057 

7 0.0019 0.0001 100 518.6700 641.8300 … 23.4578 

… … … … … … … … 

17 9.9989 0.2506 100 489.0500 603.8000 …. 17.1975 

… … … … … … … … 

321 42.0058 0.8400 100 445.0000 549.7100 … 6.4590 

 

6.3.2 Data Pre-Processing 

The measurements of training data start with different levels of degradation but all of 

the beginning points are considered as healthy (the equipment or unit works well). The 

measuring process stops when the equipment reaches a level where its condition is 

considered not sufficient to meet the associated operating requirement. In order to make 
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the information of the degradation trend easy to understand, the abscissa of the last cycle 

of every equipment or unit is set as 0 whereas all the healthy cycles have positive indices. 

In this way, take measurements of sensor 2 in the first training dataset (Saxena and Goebel 

2008) as example, the degradation behaviours of all the 100 equipment are shown in 

Figure 6.3, where x-axis states RUL and y-axis represents the measurement values of 

sensors. For example, a point with coordinate (100, 643) in Figure 6.3, the value of x-

coordinate means there are 100 working cycles remained before failure and the value of 

y-coordinate is the measured value of sensor 2. 

 

Figure 6.3 Degradation patterns of 100 units collected from sensor 2 in FD01 training dataset 

The degradation trend of every unit is described by measurements from 21 sensors, 

but only few of them exhibit signs of degradation with decreasing of RUL. In this chapter, 

in order to avoid wasting of time and computing resource, PCA is used to reduce the 

dimension of original dataset and keep the most useful information. But note here, take 

the first training dataset as example, because the degradation patterns collected from 21 

sensors but only express 4 different change trends, PCA should be separately used to 

process degradation patterns in 4 different trends. These 21 measurements are organized 

into 4 groups firstly: a) increasing (sensor 7, 18, 20, 21), b) decreasing (sensor 2, 3, 4, 8, 

11, 13, 15, 19), c) hybrid (sensor 9, 12), d) stable (sensor 1, 5, 6, 10, 14, 16, 17). Those 

measurements that do not change with the decreasing of RUL are ignored in further 

analysis because these measurements do not show any features of degradation of these 

units. In addition, PCA is applied to extract principal components from every useful 

groups. In Figure 6.4, image 6.4a and 6.4b express the degradation trends of 20 units 

(randomly selected from the first training dataset) on the 2 different principal components. 
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a) principal degradation trend of increasing group 

                               
b) principal degradation tend of decreasing group 

Figure 6.4 Principal degradation patterns extracted from 2 groups 

Following the dimension reduction step (through PCA), the degradation behaviours 

of each unit, represented by a 22-dimensional time series (one is timeline and the others 

are the sensor measurements), is replaced by a 3-dimensional time series (one is timeline 

and the others are principal components of the 2 groups). However, given that these 

sensor data are corrupted by noise, a third-order polynomial is used to smooth the sensor 

values and the resulting curves are used to represent the trends of the time series. Figure 

6.5a and 6.5b show the fitted curves of increasing group and decreasing group, and Figure 

6.5c (of 3 dimensional), presents the fitted principal degradation trend of the first unit in 

the first training dataset. 

 

a) fitted curve of increasing group     
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b) fitted curve of deceasing group      

 
c) degradation trend of unit 1 

Figure 6.5 Fitted principal degradation patterns  

6.3.3 Multivariate Time Series Similarity measure  

Euclidean distance has been widely used in many similarity-based prognostic 

approaches for RUL estimation (Wang et al 2008, Malinowski et al. 2015). However, as 

the working environments are not always the same and the total operation cycles of 

similar degradation behaviours may be different, a direct use of Euclidean distance may 

distort the true similarity. Dynamic time warping (DTW) is such a method where two 

time series are warped in a nonlinear fashion and the similarity between them is then 

measured using the warped version of the time series. However, it should be noted that 

the conventional dynamic time warping approach directly calculates the distances 

between aligning points and sum all the distances as final result. This usually results in 

error of distance measure because the drift between aligning points is ignored. In this case, 

modified dynamic time warping (MDTW), which was proposed in Chapter 4, is used to 

calculate the distance between time series in this chapter. 

However, it is known that traditional dynamic time warping is usually applied to 2-

dimensional time series (a timeline and a target signal). As an extension of traditional 

dynamic time warping, MDTW cannot be directly applied to measure similarity among 

multidimensional time series (more than one target signals). To solve this issue, MDTW 
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is extended the case of multidimensional time series. The first step is to construct a 

distance matrix between two multidimensional time series; the second step is to find the 

optimal alignment path; the third step is to calculate the distance between two candidates 

according to the proposed method. The pseud-code of step 1, step 2 and step 3 are given 

in Algorithm 6.1, Algorithm 6.2 and Algorithm 6.3 respectively. 

Algorithm 6.1 Construction of Distance Matrix 

Requirements: multidimensional time series 𝐴 

                          multidimensional time series 𝐵 

[𝑚𝐴, 𝑛𝐴]  size of 𝐴 

[𝑚𝐵, 𝑛𝐵]  size of 𝐵 

for 𝑖 = 1: 𝑛𝐴 do 

      for 𝑗 = 1: 𝑛𝐵 do 

         𝐶(𝑖, 𝑗) ← Euclidean distance between the 𝑖𝑡ℎ point in 𝐴 and the 𝑗𝑡ℎ point in 𝐵 

      end for 

end for 

The inputs of Algorithm 6.1 are two multidimensional time series and the output is a 

distance matrix containing the Euclidean distance between points in two candidates. 

Algorithm 6.2 Extraction of Optimal Alignment Path 

Requirements: distance matrix 𝐶 

                          size of time series 𝐴 

                          size of time series 𝐵 
for 𝑖 = 2 to 𝑛𝐴 do 

     for 𝑗 = 2 to 𝑛𝐵 do 

          𝐷(𝑖, 𝑗) = 𝐶(𝑖, 𝑗) + min [𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1),𝐷(𝑖, 𝑗 − 1)]  
     end for 

end for 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝐷(𝑛𝐴, 𝑛𝐵)  
𝑘 ← 1  

while 𝑛𝐴 + 𝑛𝐵 not equal to 2 do 

          if 𝑛𝐴 − 1 equal to 0 do 

             𝑛𝐵 ← 𝑛𝐵 − 1   

          elseif 𝑛𝐵 − 1 equal to 0 do 

             𝑛𝐴 ← 𝑛𝐴 − 1 

          else  

[𝑣𝑎𝑙𝑢𝑒𝑠, 𝑛𝑢𝑚𝑏𝑒𝑟]  ← 𝑚𝑖𝑛 ([𝐷 (𝑛𝐴 − 1, 𝑛𝐵), 𝐷(𝑛𝐴, 𝑛𝐵 − 1),𝐷 (𝑛𝐴－1, 𝑛𝐵 − 1)]) 
          switch 𝑛𝑢𝑚𝑏𝑒𝑟 

                   case 1 do 𝑛𝐴 ← 𝑛𝐴 − 1 

                   case 2 do 𝑛𝐵 ← 𝑛𝐵 − 1 

                   case 3 do 𝑛𝐴 ← 𝑛𝐴 − 1, 𝑛𝐵 = 𝑛𝐵 − 1 

          end switch 

          end if 
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𝑘 ← 𝑘 + 1  

𝑤 ← 𝑐𝑎𝑡(1,2, [𝑛𝐴, 𝑛𝐵])  
end while 

The input of Algorithm 6.2 is a distance matrix, the outputs are dynamic time warping 

distance and the optimal alignment path. 

Algorithm 6.3 Final Distance Calculation 

Requirements: size of time series 𝐴 

                        size of time series 𝐵 

                        dynamic time warping distance between 𝐴 and 𝐵: 𝑑 

                        optimal alignment path: 𝑤 

𝑙 ← length of 𝑤 

𝑤𝑎  first column of 𝑤 
𝑤𝑏  second column 𝑤 
for 𝑖 =  1 𝑡𝑜 𝑙 do 

      𝐴𝑛𝑒𝑤(𝑖, : )  =  𝐴(𝑤𝑎(𝑖), : ) 
      𝐵𝑛𝑒𝑤(𝑖, : )  =  𝐵(𝑤𝑏(𝑖), : ) 

end for 
for 𝑖 =  1 𝑡𝑜 𝑛𝐴 𝐝𝐨 
     𝑆𝐴(𝑖)  =  𝑛𝑜𝑟𝑚(𝐴(𝑖, : )) 
end for 
for 𝑖 =  1 𝑡𝑜 𝑛𝐵 𝐝𝐨 
     𝑆𝐵(𝑖)  =  𝑛𝑜𝑟𝑚(𝐵(𝑖, : )) 
end for 
for 𝑖 =  1 𝑡𝑜 𝑙 𝐝𝐨 
     𝑆𝐴𝑛𝑒𝑤(𝑖)  =  𝑛𝑜𝑟𝑚(𝐴𝑛𝑒𝑤(𝑖, : )) 
     𝑆𝐵𝑛𝑒𝑤(𝑖)  =  𝑛𝑜𝑟𝑚(𝐵𝑛𝑒𝑤(𝑖, : ))  
end for 
𝑓𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑑 +  ((𝑙 − 𝑛𝐴)/𝑛𝐴) ∗ (𝑠𝑢𝑚(𝑆𝐴𝑛𝑒𝑤) − 𝑠𝑢𝑚(𝑆𝐴)) + ((𝑙 −

𝑛𝐵)/𝑛𝐵) ∗ (𝑠𝑢𝑚(𝑆𝐵𝑛𝑒𝑤) − 𝑠𝑢𝑛(𝑆𝐵)) 

The calculation procedure of Algorithm 6.3 is similar to that of Algorithm 2.3 (page 

21) and the output of Algorithm 6.3 is also the distance between two candidates. The only 

difference is that Algorithm 6.3 can not only be used to calculate the distance between 2-

dimensional time series, but can also be used to calculate the distance between 

multidimensional time series. 

As a simple example, consider the two 3-dimensional time series below: 

𝐴 = [
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 6 7 8  9   10 11 12 13 13
1 2 3 4 5 6 6 7 8  9   10 11 12 13 13

] 
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𝐵 = [
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8  9   9   9  10 11 12 13
1 2 3 4 5 6 7 8  9   9   9  10 11 12 13

] 

Points between these two time series are depicted in Figure 6.6. Note that A partly 

overlaps B. In order to state the alignment between similar points in two time series, 𝐴 

shifts 6 units along the positive direction of y-axis as shown in Figure 6.6a and 6.6b. For 

the values in 𝐴 and 𝐵, the first row means timeline and its corresponding axis is 𝑋. The 

values in second and third row represent the values on 𝑌 axis and 𝑍 axis. 

 
 a) 2 Multidimensional Time Series                               

      
b) Alignment between Multidimensional Time Series 

Figure 6.6 Points alignment in 2 multidimensional time series. a) 2 Multidimensional Time Series, b) 

Alignment between Multidimensional Time Series              

As the matching image shows in Figure 6.6b, similar sub-sequences in two candidates 

are aligned together and the final distance between these two multidimensional time series 

is 6.9768. 

6.3.4 Folder Construction Model 

From the discussion on the mechanism of dynamic time warping, if the length of the 

testing sequence is equal to that of the training sequence, the advantage of the proposed 

method cannot be utilized because the length of the resulting similar training sequence 
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may not be equal to that of the testing sequence. In this chapter, the length values of 

testing and training sequences are flexibly allowed to be in a suitable range rather than a 

fixed value.  

A folder construction model is designed in order to build acceptable folder. This 

model is defined by a tuple 𝐹 = (𝑇, [𝑝𝑡𝑒1, 𝑝𝑡𝑒2], [𝑝𝑡𝑟1, 𝑝𝑡𝑟2]), where 𝑇 represents the 

original testing sequence, 𝑝𝑡𝑒1, 𝑝𝑡𝑒2, 𝑝𝑡𝑟1 and 𝑝𝑡𝑟2 mean that when the specific value 

between the length values of testing sub-sequences and the length value of the original 

testing sequence is greater than 𝑝𝑡𝑒1 and less than 𝑝𝑡𝑒2, and the specific value between 

the length of training subsequence and that of its corresponding testing subsequence 

bigger than 𝑝𝑡𝑟1 and smaller than 𝑝𝑡𝑟2, and the average value of gaps between the 

estimated RUL and the actual RUL is minimum. According to the model, the construction 

of testing folder and training folder is described by Figure 6.7. 

 

Figure 6.7 Construction of testing folder and training folder 
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In Figure 6.7, the input is a testing multidimensional time series with length as 𝐿𝑡. 

Testing Library 𝑖 is the 𝑖th testing library corresponding to the input time series and the 

length values of all the time series in Testing Library 𝑖 are set according to equation 6.1. 

The number of testing libraries corresponds to the input time series is set according to 

equation 6.2. For Training 𝑖 Library 𝑗, it represents the 𝑗th training library corresponds to 

the 𝑖th testing library and the length values of all the training time series in Training 𝑖 

Library 𝑗  are set according to equation 6.3, the number of time series in Training 𝑖 

Library 𝑗 is set according to equation 6.4. Once all the testing and training libraries are 

constructed, they are stored in testing folder and training folder separately. 

𝐿𝑡𝑒𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑝𝑡𝑒1 × 𝐿𝑡) + 𝑖 − 1                                                     (6.1) 

𝑛 = 𝐿𝑡𝑒𝑛 − 𝐿𝑡𝑒1 + 1                                                                 (6.2) 

𝐿𝑡𝑟𝑖𝑗 = 𝑓𝑙𝑜𝑜𝑟(𝑝𝑡𝑟1 × 𝐿𝑡𝑒𝑖) + 𝑗 − 1                                                  (6.3) 

𝑏 = 𝐿𝑡𝑟𝑖𝑏 − 𝐿𝑡𝑟𝑖1 + 1                                                               (6.4) 

where 𝑓𝑙𝑜𝑜𝑟(…) means rounding the input to the next smaller integer, 𝐿𝑡𝑒𝑖 means 

the length of time series in the 𝑖th testing library, 𝐿𝑡𝑟𝑖𝑗 means the length of time series in 

Training 𝑖 Library 𝑗. 

In this part, 50 sub-sequences are randomly selected from FD01 training dataset and 

used for the determination of 𝑝𝑡𝑒1, 𝑝𝑡𝑒2, 𝑝𝑡𝑟1 and 𝑝𝑡𝑟2. 

 

Figure 6.8 Length values of testing sequence in FD01 testing dataset 

For different dataset, the values of the four parameters in the model may be different. 

Take the first dataset as example, the distribution of length values of testing sequences is 

shown in Figure 6.8, and we can find that the length of most testing sequences in the 

range from 50 to 200. For the length values of the 50 selected training sub-sequences, 
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they are defined as 70, 100, 130, 160 and 190, and these sub-sequences are separated into 

5 different groups according to their length values. For one selected sequence, because 

the initial values of 𝑝𝑡𝑒1 and 𝑝𝑡𝑒2 are set as 0.5 and 1, it has a number of corresponding 

testing libraries. The testing folder construction process of is given by Algorithm 6.4. 

Algorithm 6.4 Construction of Testing Subsequence folder 

Requirements: Testing Sequence 𝑇 

𝑙𝑡 ← length of 𝑇 

for 𝑖 = 𝑓𝑙𝑜𝑜𝑟(0.5 ∗ 𝑙𝑡) to 𝑙𝑡 do 

      for 𝑗 = 1 to 𝑙𝑡 − 𝑖 + 1 do 

           𝑇𝑒𝑠𝑡_𝑓𝑜𝑙𝑑𝑒𝑟{𝑖 − 1, 𝑗} = 𝑇(: , 𝑗: 𝑗 + 𝑖 − 1)  
      end for 

end for 

The input of Algorithm 6.4 is a multidimensional time series and the output is a folder, 

in which there are a number of testing libraries and every testing library contains a number 

of testing sub-sequences. For every testing subsequence, due to the idea behind the 

proposed similarity measure method that the timeline drift should be less than half of the 

length of testing sequence, the length values of training sub-sequences are defined from 

half of the length of input sequence to 1.5 times of the length of the input sequence. The 

training folder construction procedure is described by Algorithm 6.5. 

Algorithm 6.5 Construction of Training Sub-Sequence Folder for One Testing 

Sub-Sequence 

Requirement: one testing sub-sequence from testing sub-sequence library 𝑇𝑛 

                         training dataset 𝑇𝑟𝑎𝑖𝑛 

𝑛𝑢𝑚𝑏𝑒𝑟 ← number of units in 𝑇𝑟𝑎𝑖𝑛 

𝑙𝑡𝑟𝑎𝑖𝑛 ← working cycles of all units in 𝑇𝑟𝑎𝑖𝑛 

𝑙𝑡𝑛 ← length of 𝑇𝑛 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ ← from half of 𝑙𝑡𝑛 to 1.5 times of 𝑙𝑡𝑛 

for 𝑖 = 1 to 𝑛𝑢𝑚𝑏𝑒𝑟 do 

      𝑥 ← 𝑇𝑟𝑎𝑖𝑛{𝑖} 
      if length of 𝑥 greater or equal to 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ do 

          for 𝑗 = 1 to 𝑙𝑡𝑟𝑎𝑖𝑛(𝑖) − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ + 1 do 

                𝑡𝑟𝑎𝑖𝑛𝑙𝑖𝑏𝑟𝑎𝑟𝑦{𝑗, 𝑖} ←  𝑥(𝑗: 𝑗 + 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ − 1, : ) 
          end for  

        for 𝑗 = 𝑙𝑡𝑟𝑎𝑖𝑛(𝑖) − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ + 2  to max(𝑙𝑡𝑟𝑎𝑖𝑛) −
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ + 2 do 

             𝑡𝑟𝑎𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦{𝑗, 𝑖} ← 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟  
        end for 

     else 

          for 𝑗 = 1 to max(𝑙𝑡𝑟𝑎𝑖𝑛) − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑒𝑛𝑔𝑡ℎ + 2 do 
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                𝑡𝑟𝑎𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦{𝑗, 𝑖} ← 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 

          end for 

     end if 

end for 

The inputs of Algorithm 6.5 are the original training dataset and one testing 

subsequence from testing folder. The output is a corresponding training folder. 

In order to define the values of the four parameters in the folder construction model, 

a 5-dimensional matrix is constructed, in which the four variables are 𝑝𝑡𝑒1, 𝑝𝑡𝑒2, 𝑝𝑡𝑟1 

and 𝑝𝑡𝑟2 (𝑝𝑡𝑒2 > 𝑝𝑡𝑒1 and 𝑝𝑡𝑟2 ≥ 1 ≥ 𝑝𝑡𝑟1), and the value of each point represents 

the average gap between estimated RUL and actual RUL. 

Once the 5-dimension matrix is constructed, the minimum value in the matrix and its 

corresponding coordinates are utilized to construct the folder construction model. In this 

chapter, the minimum value in the matrix is 11.32 and its corresponding coordinates are 

𝑝𝑡𝑒1 = 0.86 , 𝑝𝑡𝑒2 = 1 , 𝑝𝑡𝑟1 = 0.93  and 𝑝𝑡𝑟2 = 1.05 , which means, for the 50 

selected sequences, the average gap between estimated RUL and actual RUL is 11.32 

when 𝑝𝑡𝑒1, 𝑝𝑡𝑒2, 𝑝𝑡𝑟1 and 𝑝𝑡𝑟2 are equal to 0.86, 1, 0.93 and 1.05. 

6.3.5 RUL Estimation 

For a testing sequence, its RUL is the mathematic average of the estimated RUL 

values of all the sub-sequences in testing folder, and the RUL of each testing subsequence 

is the mathematic average of all its own estimated RUL values that are calculated 

according to its corresponding training folder. Given a testing sequence, one of its 

subsequence is 𝑇𝑒  and one of the training libraries corresponds to 𝑇𝑒  is 𝑇𝑟𝑎𝑖𝑛. The 

procedure of calculating RUL of 𝑇𝑒 is separated into 3 steps: The first step is to build a 

vector containing the distance values (based on the proposed multidimensional time series 

distance measure method) between 𝑇𝑒  and all the training sequences in 𝑇𝑟𝑎𝑖𝑛 . The 

second step is to extract the closest 200 training sequences and calculate RUL of 𝑇𝑒 

according to the RUL of these extracted sequences. The third step is to construct a 

sequence 𝑆, whose abscissa is the ranking of similarity between training sequences in 

𝑇𝑟𝑎𝑖𝑛 and 𝑇𝑒, and ordinate is the estimated RUL of 𝑇𝑒. Take the testing sequence of unit 

17 in the first testing dataset as example, when 𝑝𝑡𝑒1 = 1 , 𝑝𝑡𝑒2 = 1 , 𝑝𝑡𝑟1 = 1  and 

𝑝𝑡𝑟2 = 1, one RUL sequence is shown in Figure 6.9. 
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Figure 6.9 Remaining useful life sequence 

In general, the training sequence that is closest to 𝑇𝑒 should be utilized to estimate 

the RUL of 𝑇𝑒, but it should be noted that there is no guarantee that there is no outlier in 

the training libraries. In addition, due to the characteristics of the proposed similarity 

measure method that timeline between two candidates can be warped so that most similar 

points are aligned to each other, there will be a number of training sequences similar to 

the testing subsequence. In this paper, instead of calculating RUL of 𝑇𝑒 according to the 

RUL of the training sequence that is closest to 𝑇𝑒, a number of fragments are extracted 

from sequence 𝑆 and used for RUL calculation of 𝑇𝑒. The pseud-code of this method is 

given in Algorithm 6.6. 

Algorithm 6.6 Fragments Extraction from RUL Sequence 

Requirement: RUL sequence 𝑆 

𝑙𝑆 ←length of 𝑆 

while 𝑟𝑖𝑔ℎ𝑡 <  𝑙𝑆 do 

      𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑒𝑎𝑛(𝑆(𝑙𝑒𝑓𝑡: 𝑟𝑖𝑔ℎ𝑡)) 
     for 𝑖 = 𝑙𝑒𝑓𝑡: 𝑟𝑖𝑔ℎ𝑡 do 
                     𝑠𝑒𝑟𝑟𝑜𝑟(𝑖) = 𝑎𝑏𝑠(𝑆(𝑖) − 𝑏𝑎𝑣𝑒𝑟𝑎𝑔𝑒)  
     end for 

     if 𝑚𝑎𝑥(𝑠𝑒𝑟𝑟𝑜𝑟) >  𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 0.2 do 
                 𝐴𝐴𝐴 = 𝑆(𝑙𝑒𝑓𝑡: 𝑟𝑖𝑔ℎ𝑡 − 1)  
                 𝑁𝑒𝑤{𝑘} = 𝐴𝐴𝐴  
                 𝑙𝑒𝑓𝑡 = 𝑟𝑖𝑔ℎ𝑡  
                 𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑖𝑔ℎ𝑡 + 2  
                 𝑘 = 𝑘 + 1  
     else do 

      𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑖𝑔ℎ𝑡 + 1 
     end if 

end while 

[𝑚𝑁𝑒𝑤, 𝑛𝑁𝑒𝑤] ← 𝑠𝑖𝑧𝑒(𝑁𝑒𝑤)  
for 𝑖 = 1 to 𝑛𝑁𝑒𝑤 do 

    𝑙𝑁𝑒𝑤(𝑖) =length of 𝑁𝑒𝑤{𝑖} 
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end for  

𝑙𝑁𝑒𝑤𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑓𝑖𝑛𝑑(𝑙𝑁𝑒𝑤 > 8)  
𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙𝑁𝑒𝑤𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)  
for 𝑖 = 1 to 𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 do 

𝐴𝐴𝐴{𝑖} = 𝑁𝑒𝑤{𝑙𝑁𝑒𝑤𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑖)}  
end for  

The input of Algorithm 6.6 is a RUL sequence and the output of this Algorithm is one 

or several RUL fragments. Take the RUL sequence in Figure 6.9 example, the output RUL 

fragments are shown in red color in Figure 6.10. 

 

Figure 6.10 Extracted fragments of remaining useful life sequence 

Once the fragments that satisfy the extraction requirements are obtained via 

Algorithm 6.6, RUL of 𝑇𝑒 is the mathematic average of these fragments. For the testing 

sequence of unit 17 in the first testing dataset, set as 𝑇𝑎, its actual RUL is 50, when 𝑝𝑡𝑒1, 

𝑝𝑡𝑒2, 𝑝𝑡𝑟1 and 𝑝𝑡𝑟2 are set equal to 1 ,1 ,1 and 1, the calculated RUL of 𝑇𝑎 is 48. When 

the four parameters are set equal to 0.86, 1, 0.93 and 1.05, the calculated result is 49, 

which is very promising.  

6.4 Case Study 

In order to validate the performance of the proposed similarity measure method for 

prognostic, this method is applied to turbofan engines dataset provided by NASA 

Prognostic Data Repository (Saxena and Goebel 2008). In this section, basic information 

of the dataset is described firstly, then the evaluation index is given, and finally we present 

the performance of our proposed method. 

6.4.1 Performance Assessment 

Performance assessment plays an important role during the procedure of RUL 

estimation, especially for safety related components. This is because that performance 
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assessment can show the estimation quality and give us important evidence to make the 

right decisions for further works. In this paper, the prediction score that was defined in 

the PHM08 data challenge competition is applied (Saxena and Goebel 2008), as shown 

in equation 6.5: 

𝑆 = {
∑ 𝑒

𝑟𝑒−𝑟𝑡
𝑎1 − 1𝑛

𝑖=1                   for                  （𝑟𝑒 − 𝑟𝑡） > 0

∑ 𝑒
−
𝑟𝑒−𝑟𝑡
𝑎2 − 1𝑛

𝑖=1                for                  （𝑟𝑒 − 𝑟𝑡） ≤ 0
                       (6.5) 

where 𝑆 is computed score, which is the sum of scores of all the estimations for the 

𝑛 units, 𝑛 is the number of units under test; 𝑟𝑒 is the estimated RUL, 𝑟𝑡is the actual RUL; 

𝑎1 is set equal to 10 and 𝑎2 is set equal to 13, this is because an early prediction is 

preferred over late prediction. 

Due to the difference between 𝑎1  and 𝑎2 , the score prediction is asymmetric, as 

shown in Figure 6.11, in which abscissa represents the gap values between estimated RUL 

and actual RUL. With the increasing of absolute value of gap, the score will increase 

exponentially. For the performance assessment according to the score values, the smaller 

the score is, the better the prediction is. 

 

Figure 6.11 Score as a function of gap 

6.4.2 Results and Discussion 

The proposed similarity-based RUL estimation method is firstly applied to the first 

dataset. During the procedure of estimating the RUL of testing units in this dataset, on 

one hand, because there is only one operation condition, only the measurements from 21 

sensors are considered and the operation setting is ignored. On the other hand, because 

there is only one fault mode, with the decreasing of RUL, measurements from sensors 

that do not change or change in different directions are eliminated. For these 21 

measurements in the first dataset, only 12 of them are kept for further analysis. 
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As the step of pre-processing described in 6.3.2, in order to reduce the complexity of 

calculation and the impact of noise, the 12 measurements are divided into 2 groups (one 

with increasing trend and one with decreasing trend). Then PCA is applied to extract 

principal components from each group, and finally a third-order polynomial is utilized to 

smooth the sensor values. Figures 6.12a and 6.12b respectively represent the fitted curve 

of increasing group and decreasing group. 

          
    a) fitted curve of increasing group                                   b) fitted curve of decreasing group 

Figure 6.12 Fitted curve of principal components 

After data pre-processing, the proposed RUL estimation method is applied to extract 

training time series that are similar with testing time series, and the RUL is estimated 

according to the information of these extracted training time series. Figure 6.13 shows 

the histograms of the prediction errors based on the proposed method. 

 

Figure 6.13 Histogram of prediction errors 

As the distribution of error values shown in Figure 6.13, we can find that most of the 

error values are concentrated around 0 and only 3 of them less than -30 and none of them 

greater than 30. In this part, the distribution of error values is also represented by another 

type of image, as shown in Figure 6.14, where the red line means the actual RUL. The 

blue dot line illustrates the estimated RUL, the vertical axis expresses the RUL value, the 

abscissa axis indicates the 100 independent testing units. For this abscissa axis, the testing 

units are sorted in decreasing order for better observation (Zhao et al 2017). 
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The smaller the vertical distance between the blue line and red line, the more accurate 

the estimated RUL. For the comparison shown in Figure 6.14, where the blue points 

represent the estimated RUL, the red point represent actual RUL, when the actual RUL 

value greater than 0 and less than 50, the estimated RUL is close to actual RUL and the 

average estimation error is 4.8878. This is because the principal components of the 21 

sensors have significant changes in this range and it is helpful to extract similar time 

series from training libraries. When the actual RUL values locate between 50 and 120, 

the average estimation error is 11.7222 and it is bigger than the average estimation error 

of last range, this is because the changes of the principal components of the 21 sensors 

are not obvious. When the actual RUL values bigger than 120, some of estimation errors 

are over 30 and the average estimation error is 15.4615, it is bigger than last two average 

values. This is because the change almost equals 0 and it is challenging to extract useful 

historical time series. 

 

Figure 6.14 Sorted estimation for 100 units in dataset 1 

The experimental results by the proposed method and 2 previous published methods 

for the first dataset are tabulated in Table 6.4, where the first column gives the methods 

for prediction and the second column presents the average estimation score given in 

equation 6.5. 

Table 6.4 Performance Evaluation for Dataset 1 

Method Average Prediction Score of Eq. (6.5) 

Proposed Method 2.41 

Estimation based on Method in  

(Malinowski et al. 2015) 
6.52 

Estimation based on Method in  

(Wang et al. 2015) 
7.91 

Scores of methods in (Malinowski et al. 2015) and in (Wang et al. 2015) are obtained from (Malinowski et 

al. 2015). 
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The proposed method is also applied to the 4th dataset for RUL estimation. But it 

should be noted that: 1) because there are 6 different working conditions of every unit in 

the dataset and these 6 working conditions are highly independent to each other, the entire 

working procedure of every unit has to be separated into 6 independent multivariate time 

series. As the operation setting of all units shown in Figure 6.15, where each red point 

represents one kind of working condition. 2) As the number of fault modes is 2, with the 

decreasing of RUL under one condition, measurements do not change or change in 3 or 

more directions are eliminated. For the measurements from 21 sensors, 15 of them are 

retained for further analysis. 

 

Figure 6.15 Operational settings 

Because there is no failure mode nor failure criteria, the only difference between 

analysing dataset 4 and dataset 1 is the number of operation conditions. The process of 

similar time series extraction from the 4th dataset is same as that for dataset 1, and there 

are two more steps for the entire procedure of RUL estimation for dataset 4: 1) separate 

the entire working procedure of every unit into 6 groups before data pre-processing; 2) 

estimate the final RUL according to the RUL of extracted time series from 6 different 

groups. Due to the degradation degrees of measurements from 6 groups are different, 

weight values are calculated according to the degradation degrees and the final RUL is 

the weight average of the RUL values from those 6 groups. For example, a fragment, 

which begins from the 107th cycle with length equal to 160, is extracted from working 

procedure of the 47th unit in dataset 4. This fragment is then separated into 6 groups and 

the RUL is calculated according to the degradation patterns of the 6 groups. The RUL of 

this testing fragment that are calculated according to the 6 groups are 49, 55, 82, 59, 55 

and 74, and the weight values of these 6 working conditions are 0.1810, 0.1544, 0.1278, 
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0.2280, 0.1576 and 0.1513. The final RUL of the testing fragment is 61, as the entire 

working cycles of the 47th unit in dataset 4 is 375, and the real RUL of the fragment is 

63. It can be seen that the result obtained according to our proposed method is promising.  

The experimental results by the proposed method and 2 previous methods for the 4th 

dataset are shown in Table 6.5: 

Table 6.5 Performance Evaluation for Dataset 4 

Method Average Prediction Score of Eq. (6.5) 

Proposed Method 15.0607 

Estimation based on Method in (Malinowski et al. 2015) 37.7097 

Estimation based on Method in (Wang et al. 2008) 69.2928 

Scores of methods in (Malinowski et al. 2015) and in (Wang et al. 2015) are obtained from (Malinowski et 
al. 2015). 

From Table 6.4 and 6.5, it can be noticed that the average score of the proposed 

method is smaller than previous two methods, which means the proposed method 

performs better than the two previous methods in terms of the accuracy of RUL estimation. 

6.5 Summary 

In this chapter, we proposed a similarity-based RUL estimation method, which can 

more effectively predict the RUL of critical equipment. The promising performance of 

this proposed method is mainly benefited by three aspects: i) PCA was introduced to 

extract useful measurements from original data and the original multidimensional time 

series is replaced by low-dimensional time series; ii) the construction of testing folder 

and training folder is helpful to accurately find historical fragments that the degradation 

patterns of these historical fragments are similar to that of testing units; iii ) a 

multidimensional time series similarity measure method was proposed, which can 

improve the precision of distance measure between multidimensional time series. 

In order to validate the performance of this proposed method, it was applied to the 

aircraft dataset provided by Prognostic Data Repository, and the final score shows that 

the proposed method perform very well in terms of RUL estimation.   
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Chapter 7  

Conclusions and Future Work 

This chapter concludes the main works of this thesis and offers some 

proposals for further study. 

7.1 Conclusion 

Time series is an important class of temporal data objects and can be easily obtained 

from scientific researches and daily activities. With the explosive growth of time series, 

we often try to make good use of them to discover the most important patterns, so that 

these can help us to find the relationship between different things and give us important 

evidence to make right decision. This thesis presents some studies on time series data 

mining: time series distance measure, anomalies detection from time series, automatic 

time series clustering and remaining useful life estimation of time series.  

In Chapter 3, in order to improve the performance of similarity measure between time 

series, we proposed a calculation of distances between symbols and a similarity measure 

method. The idea behind the calculation of distance between symbols is to use the 

maximum and minimum mean values of all segments in individual areas to compute the 

distances between symbols. Additionally, the idea of the similarity measure method is to 

use the distance between symbolic series to compute the distance between original time 

series (through back calculation of time series normalization). To validate the 

performance of the proposed methods for time series distance measure, we integrated the 

proposed methods to previous popular used symbolic representation and distance 

measure methods (SAX and SAX-TD), and applied these integrated methods and original 

algorithms to 1000 pairs of benchmark time series. The experimental results show that 

the proposed methods improve the similarity measure performance of the corresponding 

original methods.  
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Chapter 4 focused on anomalies detection from ECG data. In order to deal with 

timeline warping during the process of time series similarity measure, dynamic time 

warping was modified by considering the optimal path in distance measure. Additionally, 

in order to overcome the drawback of previous published methods (BFDD and AWDD) 

that they can only work well for anomaly detection when all the anomalies in time series 

of interest are significantly different from each other. We introduced average non-self 

match, which is used to replace the minimum value of non-self match distance during the 

process of anomalies detection. Through applying the introduced method and previously 

published methods to 30 real ECGs, experimental results show that our proposed methods 

outperform others in terms of accuracy and efficiency. 

In Chapter 5, we provided an automatic time series clustering method, called AT-

means, which can be used to automatically complete the clustering process of a set of 

time series. There are 3 contributions in this chapter: 1) we proposed an initial sequence 

determination method, based on which the initial centres are close to real centre sequences. 

2) We developed a global time series averaging method so that the average sequence can 

represent the main structure of original time series. 3) We provided an elbow point 

extraction method to determine the number of clusters. For comparison, AT-means, along 

with 3 K-means approaches (K-means with 3 different conditions), are applied to 10 real-

life time series datasets. The results shown that the performance of AT-means outperform 

the K-means approaches in terms of accuracy. 

Chapter 6 gave attention to similarity-based remaining useful life estimation. Since 

that high-dimensional time series mining is time-consuming, we firstly used low-

dimensional time series to represent original high-dimensional time series (through PCA). 

Then, we presented a multidimensional time series distance measure method, called 

multivariate rime series warping distance (MTWD), which can be used to properly extract 

historical degradation patterns that are similar to that of testing equipment. Next, based 

on RUL of extracted historical patterns, the RUL of testing equipment was computed. For 

comparison, this proposed similarity-based RUL estimation method was applied to 

aircraft dataset provided by Prognostic Data Repository, and the estimation scores show 

that the proposed method outperforms previously published methods in terms of accuracy.  
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7.2 Future Works 

Feature extraction from time series is a research field full of challenge. In this thesis, 

we separately proposed several approaches for distance measure, anomalies detection, 

clustering and remaining useful life estimation. However, there are still many problems 

need to be solved. Broadly, my future work plan includes three aspects:  

• Existing anomalies detection approaches that are shown to perform well in one 

domain are not guaranteed to perform well in other domains. This is because the 

nature of time series in different domains is often significantly different. In Chapter 

4, the proposed anomalies detection method can only work well in terms of ECG 

anomalies detection. In further work, a more generic anomalies detection approach 

is deserved to be researched. 

• Time series clustering is a challenging issue because real-life time series are often 

with large size, this will lead to a heavy computation. In Chapter 5, the main work 

is to make sure that the proposed method is totally automatic, but does not consider 

the calculation complexity. In further work, reduce computational complexity 

should be given top priority. 

• Similarity-based RUL estimation approaches are implemented only according to 

historical data. However, most of similarity-based approaches are not easy to 

explain the physics-based RUL estimation approaches. Physics-based RUL 

estimation approaches are derived from the understanding of physical mechanisms. 

In future work, it is desirable to generate a hybrid model, which is a combination 

of the proposed similarity-based approach (in Chapter 6) and a physical model. 
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