
A Framework for Automated
Concurrency Verification

Matthew Bernard Windsor

Ph.D

University of York

Computer Science

April 2019



Abstract
Reasoning systems based on Concurrent Separation Logic make verifying

complex concurrent algorithms readily possible. Such algorithms contain subtle

protocols of permission and resource transfer between threads; to cope with

these intricacies, modern concurrent separation logics contain many moving

parts and integrate many bespoke logical components.

Verifying concurrent algorithms by hand consumes much time, effort, and

expertise. As a result, computer-assisted verification is a fertile research topic,

and fully automated verification is a popular research goal. Unfortunately, the

complexity ofmodern concurrent separation logicsmakes them hard to automate,

and the proliferation and fast turnover of such logics causes a downward pressure

against building tools for new logics. As a result, many such logics lack tooling.

This dissertation proposes Starling: a scheme for creating concurrent pro-

gram logics that are automatable by construction. Starling adapts the existing

Concurrent Views Framework for sound concurrent reasoning systems, overlay-

ing a framework for reducing concurrent proof outlines to verification conditions

in existing theories (such as those accepted by off-the-shelf sequential solvers).

This dissertation describes Starling in a bottom-up, modular manner. First, it

shows the derivation of a series of general concurrency proof rules from theViews

framework. Next, it shows how one such rule leads to the Starling framework

itself. From there, it outlines a series of increasingly elaborate frontends: ways

of decomposing individual Hoare triples over atomic actions into verification

conditions suitable for encoding into backend theories. Each frontend leads to a

concurrent program logic.

Finally, the dissertation presents a tool for verifying C-style concurrent proof

outlines, based on one of the above frontends. It gives examples of such outlines,

covering a variety of algorithms, backend solvers, and proof techniques.
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Chapter 1

Introduction

Your free lunch will soon be over. What can you do about it? What are you
doing about it?

— Herb Sutter [3]

In 2005, Sutter [3] predicted that years of constant performance gain through advances

in CPU design— the ‘free lunch’ —were about to end. Soon after, CPUs hit their acceptable

heat and power limits, and CPU designers changed tack: instead of faster cores, we now have

more of them. To exploit these multi-core systems, we write concurrent programs: programs

that let more than one thread of control exist at a time [4]. These threads may run in parallel

on separate cores1; this lets concurrent programsmakemore efficient use of multi-core CPUs

than sequential (non-concurrent) programs.

Concurrency is not a free lunch. Programmers pay through new challenges, including:

Deadlock Threads block, waiting for each other to perform tasks;

Livelock Threads are not blocked, but do not perform useful work;

Race conditions Changes to the scheduling of threads’ actions change the behaviour of the

program. Some race conditions are tolerable, but unexpected race condi-

tions may cause undesirable results. Race conditions include data races,
where one thread writes to a location at the same time as another accesses

the same location [5]. Such access can be a write, causing the final value

to be non-deterministic; or a read, causing non-determinism in whether

none, part, or all of the write appears in the value that is read.

These challenges can lead to bugs, breaking software in ways both hard-to-predict and

strikingly different from sequential breakages. For instance, sequential bugs are often safety
issues where programs perform some unwanted action [6, §1], but deadlock and livelock are

liveness issues that prevent programs from performing any wanted actions.

This said, concurrency safety bugs occur. Worse, they can kill: the Therac-25 medical

accelerator [7] is a well-known example. Its software, which used non-atomic shared-variable

concurrency with no proper synchronisation, exhibited harmful data races. These, and other

issues such as integer overflows, led to at least six radiation overdoses and three deaths.
1Concurrency does not enforce this: we can also sequence threads onto the same core.
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CHAPTER 1. INTRODUCTION

Program proof. To avoid such disasters, we can prove concurrent programs correct against

some specification. This specification can range from a loose collection of required properties

up to a formal mapping to a sequential model. Such proofs are not straightforward; timing

differences between cores, scheduling decisions, and other such factors mean that one

program can exhibit many possible behaviours, and our proofs must consider each. Inter-

thread interactions can make writing compositional proofs —where the parallel composition

of two proven-correct programs is known correct without further proof — challenging.

These issues give rise to correctness conditions: ways to check concurrent behaviours

against sequential specifications. Linearisability [8] is one such condition: it requires that

each high-level operation in the specification appears ‘to “take effect” instantaneously’ in

the concurrent program, and ‘the order of nonconcurrent operations should be preserved’.

Linearisability is compositional, but burdensome to prove, more so if the points where oper-

ations ‘take effect’ are subtle. Techniques such as aspect-oriented linearisability proofs [9]
help with, but do not fully solve, these problems.

While proving safety properties such as memory safety and mutual exclusion does not

give the same strong guarantees as linearisability or other full correctness conditions, it

still boosts our ability to trust concurrent code. Even so, such proofs remain challenging —

and interesting! This dissertation focuses on automatically proving safety properties over

atomic-action (or ‘fine-grained’) concurrency; let us now discuss these qualifiers.

Atomic actions. Modern programming languages often offer high-level concurrency primit-

ives. Go [10] and Rust push concurrency models based on threads sending messages through

channels; other approaches include Haskell’s Par monad [11]. These models shield program-

mers from data races by restricting the types of data access, and can be more intuitive than

low-level concurrency. They do not prevent all concurrency bugs, for a variety of reasons:

• We must first build them, using low-level concurrency. (In fact, to avoid bottlenecks

in high-level concurrent code, we must use efficient — and risky — primitives and

techniques when doing so.) This leads to the insight that, given a system for reasoning

about low-level concurrency, we can build high-level reasoning on top of it, instead of

building a new system for each new high-level primitive [12].

• High-level abstractions cannot always express all correct concurrent algorithms. For

example, Par works with deterministic parallelism, but some algorithms are inherently

non-deterministic. Data-race prevention tactics can make correct, but racy, algorithms

inexpressible. Message-passing systems cannot natively express mutual exclusion [13].

• High-level abstractions come with overhead, either by adding some directly or by

preventing certain optimisations and techniques. There are examples in the literature

of programmers gaining noteworthy speed-ups from using low-level tactics [14].

This dissertation considers low-level concurrency primitives. It focuses on small-scale

primitives (changing one or two memory words at a given time) that are atomic (neither we,

nor any part of the concurrent system, can observe their effect in an incomplete form). The

12
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main challenge of atomic-action concurrency is to sequence these small actions to perform

large state changes without causing concurrency bugs.

Automation. Proving properties of concurrent programs is hard, and the burden of doing

so has limited the adoption of formal methods in software engineering. As a result, finding

ways to shift the proof burden from humans to computers is a common research topic — as

we see in § 8.4, which explores some of the existing work.

What can we improve in a well-explored field? From a high-level perspective, which

Chapter 2 explores further, this work aims to build tools for fully automating proofs in the

Concurrent Separation Logic tradition. Such proof systems cope well with the unique issues

of shared-memory atomic-action concurrency, but are historically hard to automate. This is

because they are complex; they containmuch bespoke logical machinery; and tool production

lags behind the fast pace of logic design.

This dissertation’s goal is to find a way to balance the power and rapid development

of such logics with automation friendliness, and build tools to make proving properties of

atomic-action concurrent programs more straightforward.

1.1 Contribution

This dissertation explores the following thesis:

Automatic concurrency verification by building tools for existing Concurrent
Separation Logic-style program logics is hard: they are often complex, with much

bespoke meta-theory. We propose a new approach: adapting an existing frame-

work for proving soundness of program logics into a framework for building

sound concurrent program logics that are automatable by construction. We hy-

pothesise that this approach is flexible, expandable, and can produce practical

tools for proving safety properties of real-world concurrency algorithms.

Following this thesis, this dissertation contributes the following:

1. Starling, a framework for deriving sound program logics for safety reasoning on con-

current programs. Starling reduces concurrent proof outlines to verification conditions

in existing sequential theories.

2. A series of program logics built using Starling, which we provide as frontends inde-
pendent of the target sequential theory;

3. Starlingtool, a proof-of-concept tool for automating the generation and discharging of

Starling proof obligations using existing sequential solvers: the Z3 SMT solver, HSF

Horn-clause solver, and GRASShopper reachability logic solver.

4. A partial mechanisation of parts of Starling and Starlingtool in Coq.

13



CHAPTER 1. INTRODUCTION

1.2 Structure

The rest of this dissertation consists of the following chapters:

Chapter 2 Technical background needed to follow the rest of the dissertation;

Chapter 3 Discussion of how to build general proof rules for atomic-action concurrency by

progressively adapting the axiom soundness result from the Views framework;

Chapter 4 The Starling framework for building automatable program logics in terms of

frontends that implement the above proof rules, and backends that interface with

underlying sequential logic theories;

Chapter 5 Local-state reasoning for Starling by extending the Views framework, and a

prototype frontend for handling proofs with local state;

Chapter 6 Work towards practical frontends that balance automation with local-state reas-

oning, resulting in the gStarling frontend that forms a basis for the next chapters;

Chapter 7 Starlingtool (a tool for proving properties of concurrent programs) and Cview (its

C-like input language);

Chapter 8 Validation of Starlingtool and Cview by working through case studies, as well as

the use of unit tests and Coq mechanisations;

Chapter 9 Review of the above contributions, comparing them against the thesis, and

discussion of avenues for work going forwards.

14



Chapter 2

Background

The usual way in which we plan today for tomorrow is in yesterday’s
vocabulary. We do so, because we try to get away with the concepts we are
familiar with and that have acquired their meanings in our past experience.
Of course, the words and the concepts don’t quite fit because our future
differs from our past, but then we stretch them a little bit.

Edsger W. Dikjstra, EWD 1036 [15]

This chapter provides technical background needed to understand the rest of the dissertation.

It starts, in § 2.1, by discussing the type of concurrency that this dissertation concerns.

It then introduces the field of formal methods for concurrency in § 2.2, before focusing

specifically on Floyd/Hoare-style program logics (the formal method type used in the rest of

the dissertation) in § 2.3. In closing, it discusses two specific fields this dissertation bridges

together: in § 2.4 it outlines theViews Framework, a unifying theory of concurrent reasoning;

and in § 2.5 it discusses possible approaches for automating program logics.

2.1 Atomicity and atomic actions

This dissertation focuses on atomic-action concurrency. This section expands on this field,

as well as the more general idea of atomicity.

Atomicity

Atomicity is ‘the abstraction that an operation takes effect at a single, discrete instant in

time’ [16]. That certain actions appear atomic is a commonly required property of concurrent

algorithms; one reason is that atomicity prevents data races by disallowing simultaneous

accesses to resources being updated. Atomicity can be abstract: an operation that appears

atomic at a high level of abstraction may in fact take multiple steps in its implementation.

This dissertation does not directly consider abstract forms of atomicity. Instead, it focuses

on proving safety properties of programs that use primitive atomic actions. Such actions are

guaranteed to be atomic in their manipulation of individual shared-state locations. Showing

that these programs establish abstract atomicity is out of scope for this dissertation.
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CHAPTER 2. BACKGROUND

Action Cview syntax (§ 7.1) Sequential equivalent

Fetch 〈V〉 ‘=’ 〈S〉 V = S;
Store 〈S〉 ‘=’ 〈E〉 S = E;

Add 〈S〉 ‘+=’ 〈E〉 S = S + E;
Subtract 〈V〉 ‘=’ 〈E〉 S = S − E;
Increment 〈S〉 ‘++’ S = S + 1;
Decrement 〈V〉 ‘’ S = S − 1;

Fetch-and-increment 〈V〉 ‘=’ 〈S〉 ‘++’ V = S; S = S + 1;
Fetch-and-decrement 〈V〉 ‘=’ 〈S〉 ‘’ V = S; S = S − 1;

Compare-and-swap ‘Cas’ ‘(’ 〈S〉 ‘,’ 〈V〉 ‘,’ 〈E〉 ‘)’ if S == V { S = E; }
else { V = S; }

Table 2.1: Examples of atomic actions as used in the dissertation.

Atomic actions

CPU support for atomic actions has existed for decades. The System/370 architecture of the

1970s includes such actions for use ‘by programs sharing common storage areas in either a

multiprogramming or multiprocessing environment’ [17], and, in 1986, Treiber [18] used its

compare-and-swap operations to implement a non-blocking stack. This dissertation focuses

on a small set of atomic actions seen in modern CPU architectures (see Table 2.1).

Without CPU support, we can still ‘mock up’ atomic actions using locked sequences

of more primitive actions. While there are algorithms, such as Peterson’s [19], for making

locked critical regions using only atomic assignments, these come with the performance

detriment of performing multiple instructions to replace one.

2.2 Formal methods

We can contain the threats that concurrency bugs pose by finding ways to check the correct-

ness of concurrent programs. There are two main approaches: testing, where we show that

our programs give the expected behaviour in a given set of inputs and environments; and

formal methods, which are ‘mathematically-based languages, techniques, and tools’ [20] for

specifying and verifying computer systems.

While testing is an open research area, and both approaches are complementary [21]

(tests can show faults in formal specifications, for instance), this dissertation focuses on the

use of formal methods to specify and verify concurrent programs.

Properties

This dissertation both compares existing formal methods and proposes new ones. We need,

then, a set of criteria for evaluating formal methods. This section proposes a set of functional

and non-functional properties for doing so.
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Expressiveness. Formalmethods are only useful if they can express our proofs. Theymust be

expressive enough to encode the program we are proving and any assertions, properties, and

mathematics needed for its proof. Toomuch expressiveness can be as bad as too little, though,

as Jones et al. [22] argue through analogy with unstructured programming languages.

Safety and termination correctness. Some methods only prove safety properties (sometimes

called ‘partial correctness’ [23]); they show that programs never produce incorrect res-

ults. Other methods can prove termination properties (or ‘total correctness’), showing that

programs will always, eventually, produce correct results.

Compositionality and modularity. Vafeiadis [24] calls a method compositional if we can

combine the proofs of a system’s sub-components to form a proof of the full system, and

modular if it allows re-use of proofs in all valid contexts. Not all compositional methods are

modular, as Vafeiadis explains; some methods allow for combination of proofs only if each

proof exhaustively claims compatibility with each detail of the others.

Compositionality and modularity help us prove at scale. Compositional methods let

us make proofs incrementally, component by component. Modular methods let us replace

components without breaking the proof of the rest of the system.

Verify-while-develop. Formal methods literature often deals with the checking of existing

programs against specifications [25]. This works well when such programs are correct, but

not when we must fix mistakes: we must go around a loop of fully developing the program,

trying to prove it, finding bugs, and starting afresh.

Instead, de Roever advocates the verify-while-develop paradigm: while developing a

program from a specification, we prove the correctness of each design decision at themoment

we take that decision. We must be able to frame away parts of the program where we have

not made those decisions yet, assuming that they behave as specified.

Compositionality and modularity help us achieve verify-while-develop. This is because,

for verify-while-develop reasoning, we must break a system up into its key decision points,

and prove them in the absence of full proofs of the other points.

Reasoning capabilities

To refine our idea of expressivity, let us consider potential capabilities of formal methods.

Thread modularity. Some methods require that proofs be thread-modular. In such methods,

each thread must have a separate proof that does not depend on any information about what

each other thread is doing, except for general interference invariants [26].

Other methods let us reason more closely about assertion-level thread interactions.

Hoenicke et al. [27] generalise thread modularity accordingly; a proof is thread-modular at
level k if it is built from inductive assertions over products of k threads and a non-interference

clause specifying that the execution of a k+ 1th thread cannot invalidate any such assertion.
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Interference. To reason about correctness of concurrent programs, we must show that

anything a thread does only affects other threads in specific, permitted ways. If not, we have

no guarantee that any action one thread takes has not been the subject of an unexpected data

race or other such interaction from a different thread.

Approaches to interference differ in granularity. At one extreme, some methods do not

support concurrency at all. The next step up is disjoint parallelism, where we assume that

threads have no interference at all. Both of these systems have low expressivity. The other

extreme is to force the user to prove manually, for each thread, that each action the thread

takes preserves the proof of each other action on each other thread. This scales badly and

hurts both modularity and compositionality.

Most methods take a middling approach where we must write a specific protocol that

each thread must obey when accessing shared state. This scales, so long as we assume any

new operations on shared state obey the protocol.

Separation. Some methods support separation: splitting shared resources such that opera-

tions on one sub-resource cannot affect the other sub-resource. Given proofs on one such

sub-resource, we can frame on the other sub-resource to make proofs over the full resource.

Separation helps us establish local and modular reasoning. Under separation, if one

thread holds access to one section of memory and a second thread accesses another, then

any overlaps between those sub-heaps are in the context of a set of permitted actions. This

lets us reason only about whether each thread establishes its own obligations, and whether

the permitted actions’ effects meet the other threads’ expectations.

We usually associate this concept with separation logic [28], where separation splits

shared heaps into disjoint sub-heaps. However, others have since generalised it and applied

it to a wide range of other resources and separation models.

Higher-order and impredicative reasoning. Sometimes, we must parametrise the properties

we are proving with other properties. For example, properties over a lock may need to carry

the invariant properties of the resource the lock protects. For this, we need higher-order
reasoning. If these properties are self-referential (for example, the resource can access the

same lock that protects it) we need impredicative reasoning. Many modern program logics

have higher-order reasoning; some, such as iCAP [29], have impredicativity.

These features are not essential for concurrent reasoning, and increase the complexity of

logics that support them. This said, they enhance our ability to reason about more complex

concurrent systems while not ruling out first-order reasoning in the same logic.

Formal method types

There are many types of formal method, each with different approaches to satisfying (or not

satisfying) the above properties. This dissertation mainly concerns program logics, so the

rest of this background focuses on them.

18



2.3. FLOYD/HOARE-STYLE PROGRAM LOGICS

2.3 Floyd/Hoare-style program logics

Program logics use logical reasoning to reduce and discharge proofs that programs obey

certain properties. They combine axioms based on the semantics of primitive commands

with laws for assembling said commands into a control flow. Program logics are expressive

—modern logics support concurrency, interference, separation, and modularity —, but often

need a separate effort from program development, and can be hard to automate.

The program logic tradition upon which this work builds derives from the early work of

Floyd [30] and Hoare [31]; the rest of this dissertation calls such logics Floyd/Hoare-style
logics. These logics combine two languages: a command language (normally more abstract

than a real programming language), and a mathematical assertion language.

In these logics, we associate some command C with precondition (P) and postcondition

(Q) assertions, forming a Hoare triple {P} C {Q}. The meaning of such triples depends on the

logic. The original interpretation dealt with safety properties, not liveness: if P holds at the

beginning of C, andC terminates, thenQmust hold. In this reading (FH), P is a predicate

over the state before C, andQ a predicate over the state afterwards1.

Definition 2.1. If P and Q are predicates on states, and C a relation on states, the

Floyd/Hoare-style safety judgement FH of the triple {P} C {Q} is:

FH {P} C {Q}
def⇐⇒ ∀σ,σ ′.P(σ)∧ C(σ,σ ′) =⇒ Q(σ ′)

Floyd/Hoare-style logics have inference rules that let us combine Hoare triples along

control flows. Most give rules for repetition, selection, and sequential composition (and

some add non-deterministic choice and parallel composition). For example, logics typically

have the following sequential-composition rule:

{P} C1 {R} {R} C2 {Q}

{P} C1;C2 {Q}

This lets us treat two agreeing operations in sequence as a ‘black box’ that respects the

first and last conditions. In sequential logics, this is valid because we can assume that the

environment has no way to observe or modify the state between C1 and C2.

Floyd/Hoare-style reasoning involves proving a specification (a pair of precondition P

and postcondition Q) of a command C. We can do so by applying inference rules to show

that we can legally compose the primitive commands of C, in the form of triples containing

their inherent specifications, into the triple {P} C {Q}.

Proof outlines. Proof outlines are a compact way to present Floyd/Hoare-style proofs. They

consist of the program code to be proven, with assertions inserted between actions and

around control flows. Such outlines, resembling Floyd’s flowcharts [30], cover each Hoare

triple in the program proof (from those of each primitive command to the composed triples

for compound statements) while occupying minimal space. Proof outlines feature heavily in

this dissertation: for example, in Listing 2.1.

1Some treatments, including more recent ones by Hoare [32], support two-state relational postconditions.
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‘Hoare logic’

The first Floyd/Hoare-style logic wasHoare’s axiomatic basis for computer programming [31]
(or, informally, Hoare logic). This logic gives us a simple framework for using predicate logic

to reason about programs in a toy sequential programming language. It provides inference

rules for assignment, repetition, selection, and sequential composition, amongst others.

Hoare’s original logic is intuitive, lightweight, and mature, but supports neither con-

currency nor separation. As the conditions of a command are predicate-logic assertions,

specifications say nothing about any state not explicitly mentioned —meaning that framing

is not possible, and safety reasoning in the face of possible aliasing is difficult and scales

badly —, nor can they easily model intangible ideas such as permissions and resources.

Owicki-Gries

The elegance and immediate usability of Hoare’s logic shaped early attempts to provide

axiomatic reasoning for concurrent programs, including those by Hoare himself [33]. To

support such reasoning, logics must address the problem of showing that concurrent actions

do not interfere with the proof of other parts of the program. Hoare’s work in Towards a
Theory of Parallel Programming does so by requiring each such action to inhabit a conditional

critical region, which is unsuitable for low-level needs.

The Owicki-Gries method [34], a more flexible extension of Hoare’s work, influenced

many program logics in use today. Owicki-Gries adds Dijkstra-style [35] parallel composi-

tion (cobegin C1 // ... // Cn coend); atomicity at the individual-statement level2;

conditional critical regions (await B then C), to model synchronisation primitives; and

proof rules for the above, including the parallel-composition rule (Definition 2.2).

Definition2.2 (Owicki-Gries parallel). For commandsC1, ..., Cn, the followingholds:

{P1} C1 {Q1} , . . . , {Pn} Cn {Qn} are interference-free
{P1 ∧ · · ·∧ Pn} cobegin C1 // ... // Cn coend {Q1 ∧ · · ·∧Qn}

With this rule, we can prove each triple {Pn} Cn {Qn} in a cobegin sequentially, so long

as we also prove non-interference. To do so, we check that each atomic command (or await

body) preserves the precondition of any triple that is not its own.

As Owicki–Gries proofs are sequential proofs combined with a non-interference check,

they must be thread-modular. This means that, to prove algorithms with interaction between

threads, we often have to add auxiliary variables.

2This reduces to atomicity at the memory-reference level if programs follow certain conventions.
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Consider Listing 2.1, a classic concurrency example where two loops each atomically

increment one counter 20 times. Let us prove that the final counter value is 40.

Listing 2.1: Incomplete Owicki–Gries proof of multiple counter increment.

{C = 0} cobegin
{C > 0}
i := 0; while i < 20 do {C > i} C := C + 1; {C > i+ 1} end
{C > 20}

//
{C > 0}
j := 0; while j < 20 do {C > j} C := C + 1; {C > j+ 1} end
{C > 20}

coend {C = 40}

We cannot prove this using Definition 2.2, as C > 20∧ C > 20 6=⇒ C = 40. We must

make each thread’s contribution explicit in the proof, as in listing 2.2.

Listing 2.2: Corrected Owicki–Gries proof of multiple counter increment.

{C = 0}

C1 := 0; C2 := 0;

{C = C1+ C2∧ C1 = 0∧ C2 = 0} cobegin

{C = C1+ C2∧ C1 = 0}

i := 0;

{C = C1+ C2∧ C1 = i∧ i = 0}

while i < 20 do

{C = C1+ C2∧ C1 = i∧ i < 20}

await true then begin C := C + 1; C1 := C1 + 1; end

{C = C1+ C2∧ C1 = i+ 1∧ i < 20}

i := i + 1

{C = C1+ C2∧ C1 = i+ 1∧ i 6 20}

end

{C = C1+ C2∧ C1 = 20}

//

{C = C1+ C2∧ C2 = 0}

j := 0;

{C = C1+ C2∧ C2 = j∧ j = 0}

while j < 20 do

{C = C1+ C2∧ C2 = j∧ j = 0}

await true then begin C := C + 1; C2 := C2 + 1; end

{C = C1+ C2∧ C2 = j+ 1∧ j < 20}

j := j + 1

{C = C1+ C2∧ C2 = j+ 1∧ j 6 20}

end

{C = C1+ C2∧ C2 = 20}

coend {C = 40}
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Owicki-Gries was a key step towards the concurrent program logics of today. Its logic is

clean and simple, extendingHoare’s logic directly rather than replacing it. It adds no bespoke

logical constructs, and, while its rules generate a large amount of side-conditions, none of

them are particularly difficult to discharge. The method is still under active research: a 2015

paper gave a strengthening of the non-interference property for relaxed memory models [36].

Owicki-Gries has drawbacks compared with modern program logics. Its non-interference

check makes it neither compositional nor modular: each action must be checked against

the precondition of each other action, and composing another proof would make the check

incomplete. Owicki-Gries, then, does not scale to large, verify-while-develop-style proofs.

The thread-modularity of Owicki-Gries proofs also causes problems: many thread protocols

are not expressible without the use of auxiliary variables or abstraction leakage.

Rely/Guarantee

In 1981, Jones introduced the rely/guarantee method [37, 38]. Rely/guarantee gives a more

compositional treatment of interference than Owicki–Gries. To do so, Jones adds two new

assertions to each Hoare triple: the rely R, which specifies the environment interactions

under which the triple is stable, and the guarantee G, which captures the interference the

triple can cause to the environment. Each new assertion is a relation from states before

interaction to states after interaction. Though various conventions on how to write the

resulting tuples exist, this discussion uses the form {P,R} C {Q,G} as per Jones et al. [22].

Specifying interactions inside process specifications means that non-interference checks

are local and compositional. We see this in definition 2.3, the rely/guarantee parallel rule.

Definition 2.3 (Rely/guarantee parallel rule).

{P, R ∪G2} C1 {Q1, G1} {P, R ∪G1} C2 {Q2, G2}

{P, R} C1||C2 {Q1 ∧Q2, G1 ∪G2}

This is an adaptation of Vafeiadis’s [24] parallel-rule interpretation to a Hoare-style

presentation. Many other statements of the rule exist, such as that in Jones’s original

paper. Some generalise the rule to allow different preconditions and relies.

We usually represent the rely and guarantee as two-state predicates. This means we can

use predicate reasoning to make parts of a proof fit together, strengthening guarantees and

weakening relies until the composition works.

Rely/guarantee forms the basis ofmany other logics and is still under active research [39].

Modern rely/guarantee sheds the Floyd/Hoare-style formulation for an algebra based on

Morgan’s refinement calculus [40],where users embed relies and guarantees into the program

code. This recasting seeks to yield a cleaner expression of the system and its laws.

Separation logics

Separation logics support native separation reasoning over combinations of distinct resources.
They contain a separating conjunction operator ∗ that is distinct from ordinary conjunction

∧ (which joins two assertions about the same resource). Such operators obey a frame rule:
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{P} C {Q}

{P ∗ R} C {Q ∗ R}

This rule states that if we have an observation about a command Cmodifying a resource

P into a resource Q, we can put the command and resources into any disjoint context R.

Going backwards, should we have a resource P ∗R, we can frame off R and applyC, resulting

inQ ∗ R. This provides the idea of separation we saw earlier.

The original ‘separation logic’ [28] concerns the separation and framing of heaps. More

abstractly, we can form separation logics over separation algebras: cancellative, partial com-

mutative monoids over ∗ [41]. This idea of commutative monoids (sets with an identity

element and commutative, associative binary operator) as an abstract representation of

knowledge appears frequently both in concurrent verification [42, 43] and this disserta-

tion (as Definition 2.5). Cancellativity allows for framing, and partiality lets us handle the

possibility of ill-formed combinations of resources.

This more abstract treatment works with models that barely resemble the original heap

set-up. Hoare’s graphical models of separation logic [44], which adapts abstract separation

logic to the task of reasoning about programs as trace sets, is an exotic example.

Permissions accounting

Modelling the transfer of intangible permissions in program logics is useful for proving

algorithms where thread roles change dynamically3. Permissions accounting can take many

forms, from simple counting models to elaborate algebras and tree-based approaches.

Boyland’s fractional permissions [45] have been particularly influential on concurrent

separation logics such as CAP [46]). Such permissions are unforgeable tokens which can be

split and recombined. In the original model, a full permission grants the ability to read and

write a value; splitting one creates multiple read-only permissions, preventing data-races.

Marrying rely/guarantee and separation logic

Combining separation and interference in one logic is appealing but non-trivial. Vafeiadis’s

RGSep [24] does so through the ‘marriage’ of rely/guarantee and separation logic.

Vafeiadis observes that separation logic is useful for reasoning about state (by framing

off unchanged areas, for instance) but not interference, and that rely/guarantee works well

with interference but requires global reasoning in its specifications. RGSep applies each

system according to these strengths: rely/guarantee for shared state, and separation logic

for thread-local state. We can see this combination in Figure 2.1, the RGSep parallel rule.

{P1, R ∪G2} C1 {Q1, G1} {P2, R ∪G1} C2 {Q2, G2}

{P1 ∗ P2, R} C1||C2 {Q1 ∗Q2, G1 ∪G2}

Figure 2.1: The RGSep parallel rule.

3We see one such algorithm, the atomic reference counter, in § 8.1.
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RGSep originally targeted a toy language called GPPL. The language this dissertation

explores descends indirectly from GPPL through the similar Views language (Figure 2.3).

Concurrent Abstract Predicates

Based onRGSep,ConcurrentAbstract Predicates (for short, CAP) aims to improvemodularity

in concurrent separation logics [46]. CAP is based on abstract predicates, a way of separating

assertions from their shared-state interpretation. For example, we can state that ‘x is a lock

and lock(x) locks it while keeping it as a lock’, instead of ‘x points to false and lock(x) changes
it to true’. Abstract predicates can take resources, stating some abstract fact on that resource

without leaking knowledge of its contents.

CAP’s main idea is the fiction of disjointness: two separate abstract predicates can refer

to parts of the same resource, unlike normal separation logic reasoning which enforces

strict disjointness under ∗. Instead of explicit rely and guarantee relations, CAP structures

interference in terms of a interference relation on shared state, as well as a Boyland-style

permissions system used to guard interference transitions. By taking full permission on an

interference action, a thread can state that it expects no other thread to perform it, making

the rely and guarantee concepts implicit.

CAP’s modularity story lets us write proofs under one definition ∆ of the abstract predic-

ates, then reuse them under a weaker definition ∆ ′. This idea gives rise to the let rule:

∆ ` {P1} C1 {Q1} . . . ∆ ` {Pn} Cn {Qn} ∆ ` ∆ ′

∆ ′ ; {P1} f1 {Q1} ; · · · ; {Pn} fn {Qn} ` {P} C {Q}

{P} let f1 = C1, . . . , fn = Cn in C {Q}

CAP has tool support through Caper [47], which § 8.4 discusses further.

2.4 The Views framework

Though the program logics above share much common structure, such as their Floyd/Hoare

heritage, each differs in how it observes the shared state in assertions and context. Each

logic needs its own soundness proof; the resulting redundancy has caused concern [12].

The Concurrent Views Framework [42], or just Views, addresses this problem. Its main

idea is the view: an abstract unit of information about the shared state of a program, as well

as a grant of rights to change it. Views abstract logical formulae, abstract predicates, type

judgements, and many other types of observation and permission.

Given a views set, and some other logical parameters defining a reasoning system, Views
reduces the proof burden from full soundness to a smaller axiom soundness property. This
property is easier to prove, and the Views paper shows this with examples capturing separa-

tion logics, type systems, Owicki-Gries reasoning, and rely/guarantee reasoning. That said,

Views’s imposed structure on reasoning systems makes it unsuitable for some logics: for

example, those that use higher-order reasoning, or reasoning over liveness properties.
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Views in summary

This section presents Views in terms the dissertation uses throughout. The Views paper [42]
gives a detailed and authoritative account with which this summary is broadly compatible.

Views algebras. Views uses algebraic structures to abstract over the shape of views in

reasoning systems. It also separates the shared-state meaning of facts from their abstract

form: systems must provide a reification function to map between the two.

Unlike the paper, but in keeping with the Coq mechanisation of Views, views sets must

here have an equivalence relation ≡ (formally making them views setoids, as in Defini-

tion A.1), and≡ appears in many cases where the Views paper used Leibniz equality=. This

change makes working with views in intuitionistic settings, such as Coq, easier.

Views assumes that the views in a concurrent reasoning system can be combined in some

commutative, associative way. This models the combination of facts from local assertions

with facts from an external context: for instance, other threads running in parallel with the

local code. Views represents this requirement using views semigroups.

Definition 2.4. A views semigroup (V, •,≡) is a commutative semigroup with operation

•, where commutativity and associativity are defined over≡, and • is compatible with

≡ (∀x,y, z : V, . x≡y =⇒ x • z≡y • z).
(Coq: ViewsSemigroup in Starling.Views.Classes)

Reasoning systems sometimes allow for a global invariant: a view capturing theminimum

knowledge and permissions all part of a program can hold onto at all times. We can represent

this idea by adding a unit element to our semigroup. This gives us views monoids.

Definition 2.5. A views monoid (V, •, ε,≡) is a commutative monoid with operation •
and unit ε, with commutativity, associativity, compatibility, and unit laws over≡.
(Coq: ViewsMonoid in Starling.Views.Classes)

States and reification. Views makes a distinction between the concrete set of shared states

and the abstract set of views that map onto them.

Definition 2.6. A state set S is a set of all possible shared states in a reasoning system.

There are no constraints on the structure of the states.

As views are abstract, and can map to concrete states in complex ways, a Views instance
must provide a reification function that maps each view to the set of states that satisfy it.

Definition 2.7. A reification function b−c : V → P(S), where (V,≡) is a setoid, is a

function from views to state sets such that ∀x,y ∈ V. x≡y =⇒ bxc = byc.
(Coq: Reifier in Starling.Views.Frameworks.Common.Reifier)
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if (P1) {
C1();

} else if (P2) {
C2();

} else {
C3();

}

{
assume P1; C1();

} or {
assume (!P1 && P2); C2();

} or {
assume (!P1 && !P2); C3();

}

Figure 2.2: These control flows are equivalent under safety analysis.

〈Prog〉 ::= skip no-operation
| < 〈A〉 > atomic action
| 〈Prog〉 ; 〈Prog〉 sequential composition
| 〈Prog〉 || 〈Prog〉 parallel composition
| 〈Prog〉 + 〈Prog〉 nondeterministic choice
| 〈Prog〉 * looping

Figure 2.3: Views command language, parametric over an atomic action languageA. (Coq:
Prog in Starling.Views.Frameworks.Common.Language)

Programming language. Normally, a reasoning system designer would need to prove the

system’s soundness across the full program language on which the system can reason.

However, most languages used in imperative reasoning systems have the same basic control

flows: sequential and parallel composition, repetition, and selection.

As this dissertation only considers the proof of safety properties, we can exploit diver-

gence to reduce the control flow set. Conditional branching, for instance, becomes equivalent

to deciding nondeterministically which branch to take, then diverging if we chose wrongly.

To demonstrate, let or be nondeterministic choice, and assume P a command that diverges

if P is false; then, the programs in fig. 2.2 are equivalent under safety reasoning.

To take advantage of this commonality, Views supplies its own, Dijkstra-style program-

ming language. This language (fig. 2.3) resembles GPPL, but without basic commands, and

parametrised by an atomic action language provided by the reasoning system.

Definition 2.8. An atomic action language A, ranged over by α, is a set of atomic actions

supported by a reasoning system. We need not constrain the shape of A, as other

definitions impose further structure.

Atomic actions map onto state transformers through a total semantic function.

Definition 2.9. A semantic function J−K : A→ S→ P(S)maps from atomic actions in

languageA to non-deterministic state transformers on shared states in state set S.

Lifted sets and functions. TheViews paper defines lifted sets and functions for use in the rest

of the instantiation. One lifting (Definition 2.10), from atomic actions to labels in Views’s
transition-based semantics, expands the action language to contain an identity label id.
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While id appears in many parts of theViewsmeta-theory, it does not exist in the programming

language. This means that <id> is not expressible; instead, we would use skip4.

Definition 2.10. The atomic label language Aid isA ∪ { id }, where id is a unique atomic

action not inA. Let α̂ denote an arbitrary atomic label (which, unlike α, may be id).

We can lift J−K over atomic labels, giving id the expected identity semantics.

Definition 2.11. The label semantic function J−Kid : Aid → S→P(S) lifts J−K to labels:

J−Kid def
= J−K ∪ { id 7→ λσ. {σ } }.

We often need to apply Jα̂Kid to a state set, the result being all possible output states we

can reach by applying α̂ to any one of the input states. This leads to another lifting over J−K.

Definition 2.12. The lifted semantic function J−K∗ : Aid → P(S)→P(S) lifts J−Kid to the

domain of state sets: Jα̂K∗(S) def
=
⋃
{ Jα̂Kid(σ) | σ ∈ S }.

Signatures. The views semigroup, reification function, atomic actions, and semantic func-

tion together characterise a reasoning system’s proof language. We can see these parameters

as distinct from, but closely linked to, the actual proof rule the reasoning system implements.

This dissertation refers to the group of four parameters mentioned above as a views
signature, as they represent the outwardly visible signature of a reasoning system. This

distinction (not present in the original Views development) becomes useful later on, as parts

of the Starling meta-theory manipulate the two sides of the reasoning system separately.

Definition 2.13. A views signature is a tuple (V,A,S, •,≡, b−c, J−K), where:

• A is an atomic action language (Definition 2.8);

• (V, •,≡) is a views semigroup (Definition 2.4);

• b−c is a reification function (Definition 2.7);

• S is a state set (Definition 2.6);

• J−K is a semantic function (Definition 2.9).

Let Sig(V,A,S), ranged over by s, be the set of all signatures over V,A, and S.

(Coq: Signature in Starling.Views.Frameworks.Common.Signatures)

When the signature from which we draw a Views parameter x is ambiguous, this dis-

sertation uses the notation s.x to show that it comes from signature s. For example, s.bvc
expresses the reification of a view v, but explicitly using s’s reification.

4One reason for this distinction between id and skip is semantics: skip behaves as the terminating element
of the language’s structural operational semantics, while atomic actions have an explicit transition to skip.
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Axioms. Once the reasoning system designer has supplied Views with an signature, the

next step is to define the possible axioms of the reasoning system. These are Hoare triples

that witness each safe combination of views and atomic action. Since Views provides the

control flows that combine atomic actions into programs, it also provides the inference rules

needed to turn the axioms into a full program logic.

In Views, axioms are always a triple of a precondition view, a label, and a postcondition

view. This dissertation refers to such triples, axioms or otherwise, as atomic Hoare triples.

Definition 2.14. Given a views semigroup with carrier V and an atomic action language

A, the atomic Hoare triple set AHoare(V,A)
def
= V ×Aid × V.

Let us use the notation 〈p〉 α̂ 〈q〉 to refer to a triple (p, α̂,q) ∈ AHoare(V,A).

To instantiate Views, we must provide an axiomatisation: the set of all valid axioms of

the reasoning system. We need not give the set extensionally; typically, one would instead

define axiom schemata for each atomic action.

Definition 2.15. An axiomatisation is a set T ⊆ AHoare(V,A) of atomic Hoare triples

that the atomic proof rule of some reasoning system admits.

Axiom soundness. The final step is to show that every axiom 〈p〉 α̂ 〈q〉 in the axiomatisation

is axiom sound. Informally, this means that when we run α̂ in a state satisfying p, we get a

state satisfying q (so, local safety); in addition, where the initial state satisfies p • v for any

external context v, we get a state satisfying q • v (so, context preservation).

The axiom soundness definition comes in two steps. First, we consider the action judge-
ment, which tells us when a single axiom is axiom sound. Then, we can define axiom sound-

ness by quantifying the action judgement over all axioms in the axiomatisation.

Both parts of the action judgement have the form ‘when we run α̂ in a state satisfying x,

we get y’. This, effectively, lifts the judgement FH to views. To make the definition of the

action judgement clearer, let us give this sub-judgement its own notation:

Definition 2.16. The views–Floyd/Hoare judgement s, α̂ VFH {p}{q} holds for a signature

s : Sig(V,A,S) and atomic Hoare triple 〈p〉 α̂ 〈q〉 when Jα̂K∗(bpc) ⊆ bqc.

The views–Floyd/Hoare judgement has several useful properties:

bpc ⊆ bqc ⇐⇒ s, id VFH {p}{q} (entailment)

((bpc ⊆ bp ′c)∧ s, α̂ VFH {p ′}{q}) =⇒ s, α̂ VFH {p}{q} (left consequence)

((bq ′c ⊆ bqc)∧ s, α̂ VFH {p}{q ′}) =⇒ s, α̂ VFH {p}{q} (right consequence)

((p≡p ′)∧ (q≡q ′)∧ s, α̂ VFH {p ′}{q ′}) =⇒ s, α̂ VFH {p}{q} (proper)

A definition of the action judgement, and then axiom soundness, follows. They differ

from the original presentation by making the signature an explicit parameter.
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Definition 2.17. The action judgement s, α̂  {p}{q} holds for a signature s : Sig(V,A,S)

and atomic Hoare triple 〈p〉 α̂ 〈q〉when:

(s, α̂ VFH {p}{q}) ∧ (∀v ∈ V. s, α̂ VFH {p • v}{q • v})

Definition 2.18. Axiom soundness holds for a signature s and axiomatisation T if:

∀ 〈p〉 α̂ 〈q〉 ∈ T . s, α̂  {p}{q}

As axiom soundness depends only on showing a modified, interference-aware version of

FH, it concerns only safety. As a consequence, Views-based reasoning systems can only

soundly reason about safety properties, not liveness.

Views instances. Pairs of signatures and axiomatisations yield Views framework instances.

Definition 2.19. A views instance is a tuple (s, T) where, for some V, A, and S, s is a

signature in Sig(V,A,S), and T an axiomatisation (subset of AHoare(V,A)) over it. Let

Inst(V,A,S), ranged over by i, be the set of such instances over a particular V,A, and S.

If an instance’s axioms are axiom-sound, we call that instance sound. Sound instances

correspond, through the Views metatheory, to sound reasoning systems.

As with signatures, we use i.x to clarify that parameter x comes from instance i: for

example, i.T represents i’s axiomatisation. For brevity, we can write i in any place where we

would write i.s: for any x other than s and T , i.xmeans i.s.x.

Monoidal action judgement. If V carries a views monoid, we must consider the context

v = ε in the action judgement. In that case, the right-hand side of the judgement is α̂ VFH
{p • ε}{q • ε}, which is equivalent to α̂ VFH {p}{q}, and thus establishes the left-hand side of

the judgement. We can then simplify the action judgement:

Definition 2.20. The monoidal action judgement s, α̂ m {p}{q} holds when:

∀v ∈ V. s, α̂ VFH {p • v}{q • v}

This gives us a corresponding simplification of axiom soundness: an instance (s, T) has

axiom soundness if s is over a views monoid and ∀ 〈p〉 α̂ 〈q〉 ∈ T . s, α̂ m {p}{q}. While this

dissertation does not use these simplifications directly, Chapter 3 does use similar results.

The Views program logic

By defining its own programming language given a set of atomic actions and their semantics,

Views can provide a sound program logic over said language for each sound instance. This

logic maps each axiom in the axiomatisation to a primitive judgement, and includes many of

the standard rules of Concurrent Separation Logic. Figure 2.4 gives the logic’s main rules.
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{p} skip {p}

(a) Skip

〈p〉 α 〈q〉 ∈ T

{p} <α> {q}

(b) Atomic

{p} C {q}

{p • f} C {q • f}

(c) Frame rule

{p} C {p}

{p} C* {p}

(d) Iteration

{p} C1 {q} {p} C2 {q}

{p} C1+C2 {q}

(e) Nondeterminism

{p} C1 {r} {r} C2 {q}

{p} C1;C2 {q}

(f) Sequential composition

{p1} C1 {q1} {p2} C2 {q2}

{p1 •p2} C1||C2 {q1 •q2}

(g) Parallel composition

〈p〉 id 〈p ′〉 ∈ T {p ′} C {q}

{p} C {q}

(h) Left consequence

{p} C {q ′} 〈q ′〉 id 〈q〉 ∈ T

{p} C {q}

(i) Right consequence

Figure 2.4: The main rules of the Views program logic [42, Def. 8].

Figures 2.4(c) and 2.4(g) are interesting for two reasons. First, they neatly capture the

main concepts from Concurrent Separation Logic. Second, they show that, in Views, the act
of combining views from multiple threads and that of adding more context views within the

same thread are the same operation, •. In fact, Views has no concept of threads at all, but

reasoning systems can encode them if needed.

Consequence in both directions. From left and right consequence, we can derive a rule that

applies consequence in both directions simultaneously:

〈p〉 id 〈p ′〉 ∈ T {p ′} C {q ′} 〈q ′〉 id 〈q〉 ∈ T

{p} C {q}

Generalised parallel composition. Though fig. 2.4(g) only permits the composition of two

processes, the associativity of both parallel composition and the views semigroup means

that we can trivially construct an Owicki-Gries-style n-process parallel rule:

{p1} C1 {q1} . . . {pn} Cn {qn}

{p1 • · · · •qn} C1|| · · ·||Cn {q1 • · · · •qn}

2.5 Automating program-logic proofs

This dissertation aims to present automation-friendly proof rules for concurrency. Doing so

requires understanding possible schemes for automating such rules. These schemes include:

• expanding the rule into a set of predicates decidable by some satisfiability solver,

quantifying over any shared state, and asking the solver to try to refute each predicate;
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• expanding the rule into a constraint system, and using a constraint solver;

• partial automation by embedding the rule into an interactive prover.

Automation by satisfiability solver

In this approach, we first decompose the proof into the applications of the atomic proof rule,

by applying the program logic and expanding out quantifications where possible. Then, we

expand the proof rule applications into verification conditions in some decidable theory (for

example: Boolean logic, or linear arithmetic) and send them to a solver for that theory.

One possible sub-approach is to use a satisfiability modulo theories (SMT) solver, such as

Z3 [48]. These solvers are fast, accept predicates over a broad variety of theories, and are

widely used either directly or through intermediate verification languages such asBoogie [49].

Automation by constraint solver

In this approach, we decompose the proof into a system of partially uninterpreted basic

constraints. We then give the whole system to a constraint solver, which tries to solve the

system in one go by finding definitions for the uninterpreted constraints.

The advantage to this scheme is that it can infer definitions for uninterpreted terms—

in practice, this means that we can omit auxiliary assertions, or leave assertions open for

strengthening and weakening to make the proof work. On the other hand, this approach

needs a closed set of proof terms, which makes it hard to modify and compose proofs.

One sub-approach is to use Horn clauses (disjunctions in which at most one literal is in a

positive position) as the shape of each constraint [50]. Some or all of the terms in each Horn

clause can be left abstract, in which case the solver will try to find definitions such that the

system reaches a fixed point. Solvers such as Threader [51] use this approach.
Horn clauses are restrictive in shape, and it can be hard to arrange proof terms into pure

Horn clauses. Some solvers, such as HSF [52], accept more loosely-structured clauses, but

still impose some structure to allow fixed-point solution.

Interactive automation

While the above two approaches give us full automation, they rely on an unambiguous

decomposition of proofs into predicates or constraints. Automating this decomposition

restricts the expressivity of reasoning systems, as we see in § 3.4.

Instead, we can trade-off automation for expressivity, embedding the program logic into

an interactive prover that gives the user access to the logic’s inference rules, but leaves

decisions about when to use them (at least partly) to the user.

This approach can either target a general theorem prover such as Coq (for example,

FCSL [53]) or a custom prover for the logic (for example, Caper [47]).
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Chapter 3

Proof-Specific Views Instances

We are motivated not by an abstract ideal of elegance, but by the practical
problem of reasoning about real algorithms. Rigorous reasoning is the only
way to avoid subtle errors in concurrent algorithms, and we want to make
reasoning as simple as possible by making the underlying formalism simple.

Leslie Lamport, on TLA [54]

To achieve our goal of automated concurrency reasoning, we can design a new program

logic, then prove it sound (using the Views framework mentioned in § 2.4), then build

tooling for it. By optimising the logic for automation over expressivity, we can achieve fuller

automation than efforts over existing logics (such as Caper [47]).

This approach has risks. We risk our system becoming obsolete with the development of

more advanced logics. We risk not having the flexibility to adapt our system to the needs

of industrial programmers. We also risk making the wrong trade-off between automation,

expressivity, and elegance. For example, while the Owicki-Gries rule in § 2.3 is elegant and

straightforward to automate, it has many issues (thread modularity, lack of compositionality,

and so on) that a practical automatable logic must overcome.

This chapter proposes a new approach for building program logics. The approach uses

Views in an unusual way: instead of building single views instances for existing reasoning

systems, it derives a new one for each program proof, using it as a core part of the proof

argument. This lets us then apply the resulting Views program logic; § 3.2 discusses how to

do so automatically, reducing proof outlines with a particular structure to a set of atomic

Hoare triples that we can check against our instance’s axiomatisation.

Each instance built must be axiom-sound. Aswe control the construction of the instances,

we can explore routes to axiom soundness that exploit properties of the instances’ structure.

Free views instances, where we define the axiomatisation directly over the Views action

judgement, appear in § 3.4. In § 3.5, this approach leads to axiomatisation templates: func-
tions from proof-specific signatures to axiomatisations, built so that soundness depends on

a well-defined interface to which the signature must adhere.

Most of the later chapters use ideas from this chapter. Chapters 4 to 6 use its results

to develop Starling, a framework for building automatable program logics, and a family of

increasingly complex logics based on it. These logics then lead to Starlingtool in Chapter 7.
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3.1 Disposable views instances

We normally build views instances as part of the meta-theory development of a reasoning

system, to prove that every expressible statement in that system is sound. As such, we let V

be the set of all legal facts from that system;A the set of all atomic actions; and T the set of

all possible atomic Hoare triples over those parameters. If we prove axiom soundness, Views
gives us our desired soundness result.

Instead of proving soundness for a whole reasoning system with one instance, we can

build a new, ‘disposable’, instance for each proof. The way we carry out the proof — showing

that the proof decomposes into a set of axioms that inhabit the instance’s axiomatisation,

and showing that the instance is axiom-sound — is effectively the same as if we used Views
in the usual manner. The difference is that we need not fully define a reasoning system and

prove it sound: we can just define the sets of views, atomic actions, and axioms we need for

one proof (with caveats, which we see below).

This re-casting of Views gives us flexibility in several different areas. We can just check

axiom-soundness for the axioms that the proof uses (a relatively small, and potentially

bounded, set), rather than the set of all expressible axioms of a whole reasoning system. As

each instance need not be generally applicable, we can more easily apply approaches and

techniques that depend on the specifics of the views and atomic actions in use.

Which views semigroup? We cannot always use the set of all assertions in a program proof as

its views semigroup. To see why, consider this triple from a hypothetical reference counter1:

{reference} 〈refs := refs+ 1〉 {reference • reference}

Here, the set of assertions is { reference, reference • reference }; this set cannot form a

semigroup as it is not closed over •. We must take an over-approximation: for example,

V =


n times︷ ︸︸ ︷

reference • · · · • reference

∣∣∣∣∣∣ n ∈ Z+


Another consideration is that our choice of semigroup determines the set of contexts we

consider when deciding non-interference. This gives us compositionality: by including the

views from a program Q when proving program P, and vice versa, we show that P and Q

can run in parallel without violating each other’s assertions. For example, we could include

the views of some client of the reference counter in our proof, to show that increasing the

reference count cannot violate any of that client’s assertions.

3.2 Decomposing proof outlines

To achieve our goal of automatic verification of whole-program proofs, we need a way to

decompose those proofs into obligations that we can discharge against the proofs’ disposable

views instances. This decomposition must be sound and automatable.

1§ 8.1 investigates an actual proof of such a counter.
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〈P〉 ::= { 〈V〉 } skip { 〈V〉 } no-operation
| { 〈V〉 } < 〈A〉 > { 〈V〉 } atomic action
| { 〈V〉 } ( 〈P〉 ) * { 〈V〉 } iteration
| { 〈V〉 } frame 〈V〉 in ( 〈P〉 ) { 〈V〉 } frame rule
| { 〈V〉 } ( 〈P〉 ; 〈P〉 ) { 〈V〉 } sequential composition
| { 〈V〉 } ( 〈P〉 || 〈P〉 ) { 〈V〉 } parallel composition
| { 〈V〉 } ( 〈P〉 + 〈P〉 ) { 〈V〉 } nondeterministic choice

(Coq:Outline in Starling.ProgramProof)

Figure 3.1: Views proof outline grammar.

Views already gives us a program logic over a GPPL-style programming language. Let us

then define the decomposition as a function that, given proof outlines over that language,

returns a set of atomic Hoare triples. If each triple forms an axiom in a sound views instance,

the proof goes through. This method will need adapting to target more realistic programming

languages later, but the general approach remains the same.

The next task is to define the shape of proof our automated rules will accept. This leads

to a process for reducing proofs in that shape to atomic Hoare triples. The appendices give

the formal reasoning for said development.

Proof outlines

Proof outlines, as we saw in § 2.3, are a compact way to present proofs in Floyd/Hoare-style

logics. This section considers proof outlines as first-class structures on which we can base

automated proof rules and program logics.

Basing a program logic on proof outlines is not a new idea. De Roever et al., for example,

propose it as a way to handle the non-interference requirements of Owicki-Gries reason-

ing [25, §10.4]. As Views handles non-interference in an elegant, abstract way, modulo the

correct application of a set of inference rules, we can instead use proof outlines to help us

decide which rules to apply when, allowing for full automation.

Structure. To begin, let us impose a rigid structure on outlines: a precondition and postcon-

dition must surround each unit of the Views language seen in Figure 2.3. As these outlines

place assertions at each control flow in the program, they correspond to de Roever et al.’s

annotated programs [25, §10.4]. Figure 3.1 shows the resulting grammar.

The rigidity of this grammar makes automation easier at the expense of making the

proofs harder to write. Chapters 4 and 7 consider relaxed forms of this structure.

Examples. The proof outline {p} ({r} 〈a〉 {s} ; {s} 〈b〉 {t}) {q} stands for the Hoare triples:

{r} 〈a〉 {s} , {s} 〈b〉 {t} , {p} (〈a〉; 〈b〉) {q}

To see how to interpret the frame-rule construct in Figure 3.1, consider the following:

{p} ({r} 〈a〉 {s} ; {s} frame v in ({x} 〈b〉 {y}) {t}) {q}
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This proof states that we: split the view s into x • v; use the frame rule to preserve v

across the proof of b, giving us y • v; then recombine y • v into t. In Hoare triples, this is:

{r} 〈a〉 {s} ,

{x} 〈b〉 {y} , frame with v−−−−−−−→ {x • v} 〈b〉 {y • v} , split/combine−−−−−−−−→ {s} 〈b〉 {t} ,

{p} (〈a〉; 〈b〉) {q}

Access notation. Let us define notation to access parts of an outline without unfolding it:

Definition 3.1. For all outlines o = {p} c {q}, let o.p def
= p, o.c def

= c, and o.q def
= q.

Proving proof outlines automatically

To prove outlines by hand, we show that there exists some series of applications of the

program logic that deconstructs the outline into its primitive operations, such that the Hoare

triple at each stage matches the corresponding triple in our outline. We then show that each

primitive operation is valid; in Views, this means showing that its triple is a valid axiom.

To prove {p} ({r} 〈a〉 {s} ; {s} 〈b〉 {t}) {q} this way, we first unfold it by Views-logic rules:

〈p〉 id 〈r〉 ∈ T

〈r〉 a 〈s〉 ∈ T
Ax.

` {r} 〈a〉 {s}
〈s〉 b 〈t〉 ∈ T

Ax.
` {s} 〈b〉 {t}

SC
` {r} 〈a〉; 〈b〉 {t}

LC
` {p} 〈a〉; 〈b〉 {t} 〈t〉 id 〈q〉 ∈ T

RC
` {p} 〈a〉; 〈b〉 {q}

Then, we show that 〈r〉 a 〈s〉, 〈s〉 b 〈t〉, 〈p〉 id 〈r〉, and 〈t〉 id 〈q〉 are valid axioms; this

step depends on the views instance.

For automation, this approach has two problems. First, we need two decision processes:

one to apply program-logic steps, and another for the axioms. Second, arbitrary application

of program-logic steps is hard to automate: we may need to apply constructs like frame rule

and consequence in the proof without syntactic cues. How do automated techniques choose

when to apply them, and which parameters to use?

Instead, we can use the outline’s rigid structure to choose which logic rule to apply at

each step. We then automatically apply the rule of consequence where needed; the resulting

id-axioms discharge any obligations we need to apply the control-flow rules. This lets us

reduce the proof outline into a set of uniform axioms, which we can then hand to a solver.

Let us define a function, oflat, that takes a proof outline and produces a set of atomic

Hoare triples. This set combines the atomic Hoare triples contained in the outline with the

entailments 〈p〉 id 〈q〉 resulting from the automatic application of the rule of consequence

when stepping through control flows. Appendix A.4 contains a formal derivation of oflat
using the Views program logic.
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Definition 3.2. The outline flattening function oflat : P→P((V × A × V)) recursively

reduces a proof outline into a set of atomic Hoare triples, as follows:

oflat({p} skip {q}) = { 〈p〉 id 〈q〉 }

oflat({p} 〈α〉 {q}) = { 〈p〉 α 〈q〉 }

oflat({p} (
{
p ′} C

{
q ′})∗ {q}) = oflat(

{
p ′} C

{
q ′})

oflat({p} (frame r in (
{
p ′} C

{
q ′}) {q}) = oflat(

{
p ′} C

{
q ′})

∪ { 〈p〉 id
〈
p ′ • r

〉
,
〈
q ′ • r

〉
id 〈q〉 }

∪ { 〈p〉 id
〈
p ′〉 , 〈p ′〉 id 〈q〉 ,

〈
q ′〉 id

〈
p ′〉 }

oflat({p}
{
p ′} C1 {r} ; {s} C2

{
q ′})q {)} = oflat(

{
p ′} C1 {r})

∪ oflat({s} C2
{
q ′})

∪ { 〈p〉 id
〈
p ′〉 , 〈r〉 id 〈s〉 , 〈q ′〉 id 〈q〉 }

oflat({p} {p1} C1 {q1} ‖ {p2} C2 {q2} {q}) = oflat({p1} C1 {q1})

∪ oflat({p2} C2 {q2})

∪ { 〈p〉 id 〈p1 •p2〉 , 〈q1 •q2〉 id 〈q〉 }

oflat({p} {p1} C1 {q1}+ {p2} C2 {q2} {q}) = oflat({p1} C1 {q1})

∪ { 〈p〉 id 〈p1〉 , 〈q1〉 id 〈q〉 }

∪ oflat({p2} C2 {q2})

∪ { 〈p〉 id 〈p2〉 , 〈q2〉 id 〈q〉 }

(Coq: vcs in Starling.ProgramProof)

Applying oflat to {p} ({r} 〈a〉 {s} ; {s} 〈b〉 {t}) {q} gives us the axioms:

oflat({p} ({r} 〈a〉 {s} ; {s} 〈b〉 {t}) {q})

=

(
{ 〈p〉 id 〈r〉 , 〈s〉 id 〈s〉 , 〈q〉 id 〈t〉 , 〈t〉 id 〈q〉 }

∪ oflat({r} 〈a〉 {s}) ∪ oflat({s} 〈b〉 {t})

)
= { 〈p〉 id 〈r〉 , 〈s〉 id 〈s〉 , 〈q〉 id 〈t〉 , 〈t〉 id 〈q〉 , 〈r〉 a 〈s〉 , 〈s〉 b 〈t〉 }

Except for the trivial entailment 〈s〉 id 〈s〉, these axioms are those reached by hand-proof.

3.3 Case study: Peterson’s algorithm

This part of the dissertation uses Peterson’s algorithm [19] (Peterson, for short) as a running

example2. Peterson is a classic solution to the problem of two-thread mutual exclusion:

ensuring that only one of two threads can access a given shared resource. It uses three

variables: two flags capturing intent to access the resource, and a turn counter capturing

which thread has the ability to do so.

Figure 3.2 quotes the original, high-level, algorithm text. On the left, we have thread A;

on the right, thread B. Each line has a number Pl, where P is the thread and l the adjacent
2We do not yet consider a proof outline for the algorithm; Chapter 8 introduces one as a Cview case study.
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A1 QA := true B1 QB := true
A2 TURN := B B2 TURN := A
A3 wait until !QB or TURN=A B3 wait until !QA or TURN=B

(Critical Section)

A4 QA := false B4 QB := false

Figure 3.2: Peterson’s algorithm [19], annotated with thread and line numbers.

line in that thread’s code. Let Linum be the set of such numbers; each corresponds to the

moment of time just after its corresponding line has executed. The state after line 4 is the

same as that before line 1, so we can useA4 and B4 in both cases.

A specification for Peterson’s algorithm

Let us write down the specification for Peterson that we intend to prove. For Peterson (and

other mutual exclusion algorithms that we see later), the specification is:

There exists an abstract resource Lock such that each thread gains a copy of

Lock immediately before, and retains it throughout, its critical section; and there

is no execution of any number of threads in parallel such that more than one

simultaneous copy of Lock can exist.

The uniqueness and duration of a Lock implies that at most one thread may be in its

critical section at any given time. This specification does not require Locks release at the end
of the critical section; this is a liveness property. It also says nothing about whether holding

Lock permits invariant-violating access to any other resource; while program logics such as

iCAP [29] do support this form of reasoning, it is out of scope for this dissertation.

In Peterson, a Lock arises when the current thread’sQ flag is true, and either the other

thread’sQ flag is false or the turn counter has given the current thread priority.

A signature for Peterson’s algorithm

Peterson serves to show various applications of this chapter’s ideas, each resulting in views

instances that capture proofs for the algorithm. These instances share the same signature

(views semigroup, atomic actions, state set, and action semantics); let us now build it.

Let S be the set of records with type (QA : B,QB : B,TURN : {A,B }), assuming that the

atomic actions have the expected semantics over these sets. Next, consider the assertions

we need for the proof (leading to a view algebra). Proofs of Peterson rely on the following

relationships over the threads’ positions in the algorithm and the shared state:

Flags AtA1 up to and includingA3, we know that QA is true (and similarly for threadB and

QB). AtA4, we know that it is false (similarly for B). Since each thread maintains

its own flag, these assertions are always stable.
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Turn priority When thread A is in the critical section (at A3) and thread B is waiting to

enter (at B2), TURNmust beA, as thread B started waiting after threadA last modified

TURN. The reverse also holds.

Singleton threads To assert that the code of a thread T cannot run on more than one actual

thread, we must forbid all pairs (Tx, Ty) for arbitrary x and y (including where x = y).

Mutual exclusion To assert that the critical section has mutual exclusion, we must forbid

the presence of the pair (A3,B3) (both threads are in the critical section).

Our view algebra should be able to capture both the assertions in the proof text (which

relate to one thread only) and the relationships given by the above statements (which relate

to zero, one, or two threads). This algebra must also be a monoid, which complicates any

direct encoding as line-number pairs. One approach is to let V be the set of multisets3 over

Linum, with the emptymultiset as ε andmultiset sum as •. The ‘singleton threads’ statement

ensures that at most one position for each thread appears in any views considered.

To define b−c, we must consider every possible combination of positions. Though this

set is unbounded, we can translate our assertions into a small, bounded number of mappings

between ‘defining’ multisets (effectively, patterns that we can observe in the views we are

trying to define) and state sets. This can take the form of a partial function d : V9S:

d
def
=



Flags:

*A1+ 7→ {σ | σ.QA } *B1+ 7→ {σ | σ.QB }

*A2+ 7→ {σ | σ.QA } *B2+ 7→ {σ | σ.QB }

*A3+ 7→ {σ | σ.QA } *B3+ 7→ {σ | σ.QB }

*A4+ 7→ {σ | ¬σ.QA } *B4+ 7→ {σ | ¬σ.QB }

Turn priority:

*A3,B2+ 7→ {σ | σ.TURN = A } *A2,B3+ 7→ {σ | σ.TURN = B }

Singleton threads:

∀x,y. *Ax,Ay+ 7→ ∅ ∀x,y. *Bx,By+ 7→ ∅

Mutual exclusion: *A3,B3+ 7→ ∅


Each mapping encodes part of our informal assertion set: the one-position mappings

capture the flag assertions, and the three sets of two-position mappings capture turn priority,

singleton-threads, andmutual exclusion assertions. Let us define the reifier as the conjunction

of all such definitions that match some sub-multiset of the reified view:

bvc def=
⋂

{ σ | (u,σ) ∈ d∧ u ⊆m v }

Under this scheme, for example, *A3,B2+ would collect the mappings for *A3+, *B2+, and
*A3,B2+; after taking the intersection of all four definitions and simplifying, we get an

effective definition of {σ | σ.QA∧ σ.QB∧ σ.TURN = A }. This method of building a reifier

plays a major role later on (see Definition 3.12).

3We explore multisets as views further in § 6.1.
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other thread’s flag down

observe
I have priority
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Figure 3.3: The finite-state machine underlying a single thread in Peterson’s algorithm.

Peterson’s algorithm as a finite-state machine

Aswell as the program-counter-based treatment ofPeterson above, we can view the algorithm

as consisting of two threads with mirror images of the same finite-state automaton (Fig-

ure 3.3). This high-level view becomes useful for more sophisticated instances of this scheme

(specifically, in § 6.4), where thread state machines often form a source of proof assertions.

3.4 Free views instances

The action judgement (Definition 2.17) captures the essence of concurrent atomic-action

correctness. It shows that an atomic action is both sequentially safe and also does not

interfere with any views held by the context when combined with local assertions:

s, c  {p}{q}
def
=

Sequential safety︷ ︸︸ ︷
s, c VFH {p}{q} ∧

Non-interference modulo local observations︷ ︸︸ ︷
∀v ∈ s.V. s, c VFH {p • v}{q • v}

This view of soundness almost directly generalises theOwicki-Griesmethod4. AsOwicki-

Gries works as a standalone proof rule, we can infer that the action judgement itself forms

the core of a proof rule, expressed as the axiomatisation of a views instance. Such free views
instances — so named as they are the minimal sound instance over a given signature —

capture the elegance of Owicki-Gries, while generalising it to arbitrary signatures.

Definition 3.3. For all signatures s : Sig(V,A,S), we define the free views instance finst(s)
as the instance (s, { 〈p〉 c 〈q〉 | c  {p}{q} }).

Free views instances are interesting for two reasons. First, no matter how we fix its

remaining parameters, a free views instance is axiom-sound by construction.

4One difference is that the non-interference clause must show the state ends in q • v: informally, we must
both preserve v and show that locally finishing in q is consistent with v.
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Theorem 3.1. All free views instances are axiom-sound.

Second, free instances are maximal: the axiomatisation of each sound views instance

subsets that of the free instance over the same signature.

Theorem 3.2. For all sound views instances i, i.T ⊆ finst(i).T .

We can show this by noting that an axiom is in finst(i) if, and only if, it passes the action

judgement: i is sound, so all of its axioms do so. (Appendix B.1 formalises this property.)

Using free views instances in practice

Consider the free views instance over the Peterson signature we sketched in § 3.3, and the

triple 〈A4〉 QA := true 〈A1〉. This triple captures threadA’s first action: raising its flag.

To prove this, we show that it forms a free-instance axiom by the action judgement:

JQA := trueK∗(b*A4+c) ⊆ b*A1+c ∧ ∀v. JQA := trueK∗(b*A4 + • vc) ⊆ b*A1 + • vc

The first part is straightforward: after applying d and substituting out, we arrive at:{
σ ′

∣∣∣∣∣ ∃σ.(σ,σ
′) ∈ JQA := trueK

∧ σ.TURN ∈ { 1, 2 } ∧ σ.QA = false

}
⊆

{
σ ′

∣∣∣∣∣ σ ′.TURN ∈ { 1, 2 }

∧ σ ′.QA = true

}

Unless QA := true has a surprising semantics, this obligation checks out.

The non-interference part is troublesome, as we must discharge it for every v in V. As V

is the carrier of a views semigroup, it must close over •; for every u and v in the set, u • v is

also in the set. In algebras such as multisets, where this construction almost always yields a

new and distinct view, this makes the quantification unbounded.

If we try to automate free-instance reasoning, the quantification may expand indefinitely,

and the automated process may diverge. Avoiding this requires finding ways to restrict the

non-interference quantification to a bounded set. § 3.6 discusses this, but let us first take a

diversion to discuss the set-up for doing so in a sound manner.

3.5 Axiomatisation templates

The disposable-views approach reduces each program proof to an axiom-soundness proof

over the created instance. Producing such proofs from first principles every time would

neither scale nor be amenable to automation. To address this, we impose some structure on

how we construct the instances; we move closer to the original Views idea of instances per

reasoning systems, but keep much of the flexibility of our approach.

Recall that each views instance contains a signature (Definition 2.13) and axiomatisation.

The signature collects the parts of an instance that represent the structure of assertions,

actions, and their translation into state sets; the axiomatisation tells us which observations

(over signature elements) are valid according to some reasoning system.We can, then, see the

signature as the main variable between proofs, and focus on constraining the axiomatisation.

Let us construct each disposable-instance axiomatisation by taking a subset of an in-

stantiation of a signature-parametrised axiomatisation template. This lets us reduce the
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axiom-soundness proof to showing that the construction is sound over all possible signatures,

while keeping some flexibility in how we define the signature itself.

Definition 3.4. An axiomatisation template P : Sig(V,A,S)9 T maps each signature s

that satisfies the particular template’s requirements to an axiomatisation. We call an

axiomatisation template sound if (s,P(s)) is axiom-sound for all s in dom P.

This chapter develops three templates: the free (Definition 3.5), adjoint (Definition 3.6),

and defining-views (Definition 3.12) templates. Each imposes progressively stronger restric-

tions on signatures, but adds properties that are useful for automation.

Soundness by subsetting, and the free template

When building templates, we must show that any views instances they generate are axiom-

sound. We can do so from first principles on each template, but this becomes tedious as we

make increasingly large-scale changes. Instead, we can show that, over all compatible signa-

tures, the template yields a subset of the axioms produced by an existing, sound template.

Theorem 3.3. For all axiomatisation templates P,P ′:

∀s ∈ dom P.P(s) ⊆ P ′(s) P’ sound
P sound

This argument relies on the existence of a known-sound template. As a result, we need

at least one template with a full soundness argument. As lifting the action judgement to an

axiomatisation produces sound-by-construction, maximal free views instances, we can just

re-cast the lifting as a (free) template.

Definition 3.5. The free axiomatisation template freeT is λs. { 〈p〉 c 〈q〉) | s, c  {p}{q} }.

3.6 Automation-friendly templates

We can transform the free template, step-by-step, to ease its automation. The first step is to

re-arrange the non-interference part of the template to have a single, universally quantified

view in the head, making further rewrites easier and opening up automation by Horn solver.

The second is to bound the context set over which we quantify the non-interference part by

restricting the set of views that carry information not carried by their sub-views alone.

Unlike the free template, soundness for these new templates requires extra structure in

the target signatures. This comes, when needed, in the form of new algebraic classes.

The adjoint template

The non-interference part of the free template conjoins the atomicHoare triple’s precondition

and postcondition with the context view v. As we do not constrain the effects of •, we must

recompute both sides of the non-interference condition each time we choose a new v, wasting

effort. Worse, quantifying on part of the final view q • vmeans that we cannot judge whether

to consider v without also considering q, making context reduction difficult.
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We can rewrite the free template by introducing a new goal view, g = q • v— so named

as it captures the final intended view of this state. We then re-express both q • v and p • v in

terms of g, and quantify over g instead of v. Replacing p • v requires new structure in the

views semigroup: an operator \ that acts like a semantic adjoint to • (behaving similarly to

monus or residual operators in some varieties of commutative monoid).

With such an operator, we can express v as g \q, and so p • v becomes p •(g \q). This
construct strongly resembles a weakest precondition, and so the dissertation refers to it as

such throughout. Applying these changes gives us the adjoint template.

Definition 3.6. The adjoint template, defined over all s with a subtractive s.V, is:

λs. { 〈p〉 c 〈q〉 | (s, c VFH {p}{q}) ∧ (∀g ∈ V. s, c VFH {p •(g \q)}{g}) }

We define \, and subtractive views semigroups, below.

Defining \. To avoid overly constraining \, we can define it through an adjoint relationship

with •. The obvious relationship is a≡b • c ⇐⇒ a \b≡ c; this property holds on, for

example, integers (a = b+ c ⇐⇒ a− b = c), and admits the rewrite we need (from p • v
to p •(g \q)). This is stronger than we need, and rules out certain otherwise-valid views

models: for example, constructive sets cannot guarantee the full adjoint property.

The actual definition weakens the above in two ways. First, as we are subsetting the

template, and the rewrite occurs in a negative position, we still preserve soundness even if

the rewrite expands the view— so long as the reification expands monotonically with it. As

such, the definition concerns view inequalities, not equivalences. This mirrors separation

logic [28], where a =⇒ b ∗ c ⇐⇒ a ∗−b =⇒ c. Second, the property need not hold in the

backwards direction, as we need only show the soundness (not completeness) of the rewrite.

The adjoint operator uses a similar residuation property to that of separation logic, but

over \ and a new view inclusion operatorv. Each of these operators induces a new class of

views algebra: ordered (forv) and subtractive (for \) semigroups.

Ordered and subtractive views semigroups

In some semigroups, we can order views by the abstract quantities of information they rep-

resent. In our Peterson example, we can order *A1,B2+ (telling us two pieces of information:

the positions of both threads) above *A1+, but below *A1,A1,B2+. This order is partial: for
instance, *A1+ and *B2+ represent disjoint pieces of information.

We can capture this with ordered views semigroups: views semigroups with a pre-order5,

v, representing such an information ordering. In ordered views semigroups,≡ becomes the

induced equivalence overv: two items have equivalence if, and only if,v orders them both

ways. This gives us an antisymmetry-style property: avb ∧ bva ⇐⇒ a≡b. Ordered

views semigroups also require that conjoining a view to both sides of an ordering preserves

that ordering, andv orders each view below any • involving it.

5As the reasoning does not use view equality, it makes no sense to require antisymmetry (partial order).
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Definition 3.7. An algebra (V, •,v,≡) is an ordered views semigroup if (V, •,≡) is a

views semigroup, and the following laws hold:

ava (v-reflexivity)

avb ∧ bv c =⇒ av c (v-transitivity)

a≡b =⇒ avb (≡-v)

avb ∧ bva =⇒ a≡b (v-≡)

avb =⇒ (a • c)v (b • c) (•-v-increasing)

av (a •b) (•-v-inflation)

(Coq: PreOrder in Coq.Classes.RelationClasses)

(Coq:OrderedViewsSemigroup in Starling.Views.Classes)

Subtractive views semigroups. Not all view algebras have a subtraction operator, and so

those that do form a new class.

Definition 3.8. An algebra (V, •, \,v,≡) is a subtractive views semigroup if (V, •,v,≡)
is an ordered views semigroup, and \ : V→V→V obeys the following laws:

avb =⇒ (a \ c)v (b \ c) (\-v-increasing)

avb • c =⇒ (a \b)v c (v-residual-forwards)

These laws are weak (for example, they define no relationships between a and (a \b) •b),
but suffice for now. The later separating views semigroup class (Definition 6.1) adds further

laws that bring \ closer to the usual definition of subtraction operators.

Compatibility. Showing that the adjoint template yields subsets of the free template (for

Theorem 3.3) depends on one more property: removing q from p •(q • v)must preserve any

information that v contributes to the reification. As this property concerns reification (andwe

can achieve it by constraining b−c independently of the views algebra itself), its definition

is separate from the views algebra classes.

Definition 3.9. A signature is adjoint compatible if:

∀p,q, v ∈ V. bp • vc ⊆ bp •((q • v) \q)c

(Coq: adjoint_compat in Starling.ProofRules)

Theorem 3.4. For all adjoint compatible signatures s, the adjoint template yields subsets of

the free template. (Coq: adjoint_strengthens_free in Starling.ProofRules)

To get compatibility, we can add structure to either the reification or the views algebra.

If xvy always implies that byc ⊆ bxc, then the properties of adjoint semigroups give

us compatibility without needing to further constrain the algebra itself. Conversely, if

xv(y • x) \y, we gain compatibility through the algebra itself: as the adjoint property already
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entails (y • x) \yv x (through y • xv x •y), we get an equivalence, and can then use this

with •-compatibility to show that p • v≡p •((q • v) \q).

Running example. To use this new template in Peterson, we must show that multisets are

subtractive, ordered views semigroups. The appropriate views algebra instances formultisets

appear in § 6.1; for now, let us assume that two operators exist: \m, the adjoint of multiset

union (serving as \); and⊆m, the inclusion order on multisets (serving asv).
Next, we need adjoint compatibility. If we construct reification from the intersection of

d(u) for allu⊆m v, as v expands so does the number ofmatching definitions, and the resulting

set of states satisfying b−c(v) contracts monotonically. As a result, we get compatibility

without investigating the views algebra.

We can again try to discharge 〈*A4+〉 Q1 := true 〈*A1+〉; this time, the obligation is:

JQ1 := trueK∗(b*A4+c) ⊆ b*A1+c ∧ ∀g. JQ1 := trueK∗(b*A4+•(g \ *A1+)c) ⊆ bgc

Recall thatghere is the goal viewwe sawearlier.We can explore examples of non-interference

sub-obligations generated by choosing specific values of g. First, let g = *A1+:

JQ1 := trueK∗(b*A4 + •(*A1 + \ *A1+)c) ⊆ b*A1+c

= JQ1 := trueK∗(b*A4+c) ⊆ b*A1+c

This is the same as the local-correctness obligation from earlier. Now, consider g = *B4+:

JQ1 := trueK∗(b*A4 + •(*B4 + \ *A1+)c) ⊆ b*B4+c

= JQ1 := trueK∗(b*A4,B4+c) ⊆ b*B4+c

This expands to: σ ′

∣∣∣∣∣∣∣∣
∃σ.(σ,σ ′) ∈ JQ1 := trueK

∧ σ.TURN ∈ { 1, 2 }

∧ σ.Q1 = false∧ σ.Q2 = false

 ⊆
{

σ ′

∣∣∣∣∣ σ ′.TURN ∈ { 1, 2 }

∧ σ ′.Q2 = false

}

On the one hand, the adjoint template yields smaller terms that are closer in shape to

constraint-solver input. On the other, the quantification over g remains unbounded and

difficult to discharge in an automatable manner. We need further changes to the template.

The defining-views template

When automating the adjoint template, the quantification over g poses problems. Solvers do

not understand views natively, and thus cannot discharge the quantification themselves; we

must expand views into a form, such as Boolean formulae, that they do understand. As the

adjoint rule assumes nothing about the relationship between each view and its meaning over

shared states, we would need to expand out each possible context into such a form.

A problem with this approach is that g ranges over V, which is closed over • (for every
g1 and g2 in V, g1 •g2 is in V and distinct from both) and thus unbounded in size. We also

assume nothing about the relationship between bg1c, bg2c, and bg1 •g2c, and so cannot use
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results from larger contexts to prove results about smaller contexts and vice versa. The

adjoint rule gives us no context reduction: restricting the values of g we must consider.

Owicki-Gries, in contrast, does have context reduction. If we check non-interference

against a precondition P1 in one thread, and also against a precondition P2 in another thread,

we need not also check against the combined context P1 ∧ P2, as it carries no extra oblig-

ations. We can, then, prove an outline for an unbounded number of threads by checking

non-interference against the (finite) set of preconditions in the outline.

Context reduction in the style of Owicki-Gries puts strong restrictions on the shape of

the views semigroup, which limit generality. We need some structure to have any context

reduction, though, so we both rewrite the adjoint template and impose restrictions on the

signature that let us infer such relationships.

Defining views. One approach to context reduction is to split the information and rights

inside a views algebra into a finite number of pieces, then tie each to a specific defining view.

Every time a view has a piece of information, it includes the respective defining view, and

vice versa. This way, we define each view using a finite number of defining views.

Let us tie each defining view to a set of matching states and contain the resulting pair in

a definer. For now, the definition of definers is abstract.

Definition 3.10. A definer d : V9P(S) is a partial function mapping each defining view

v to a set of states. Intuitively, each set d(v) contains a particular state σ if, and only if,

σ is compatible with the specific shared-state knowledge and rights contribution made

by v— that is, not including those of its subviews.

This is precisely the role of the function d in our Peterson’s algorithm example; the

specific combinations of line numbers in its domain are, then, defining views.

Defining reification. When using a definer, the reification of each view v is the intersection

of the state-sets of each defining view uv v. This generalises the approach we used in § 3.3.

Definition 3.11. The definer reification function dReify : (V↔S)→V→P(S) is:

dReify(d)(v) def=
⋂

{d(u) | u ∈ dom d∧ uv v }

A state σ is in dReify(d)(v1) if it is in the image, in d, of each defining view uv v1.

Defining the template. The defining-views template differs from the adjoint template in

three ways. First, it assumes that the incoming signature’s reifier is equivalent to dReify(d)
for some d. Second, it applies context reduction in the quantification, taking g from the

domain of d and not V. Third, instead of showing that the post-state inhabits dReify(d)(g),
the new template checks it against one definition of g. This works since the former just

checks all definitions for all uvg, and the new quantification considers each such definition.

As the new template uses d(g) instead of dReify(d)(g), it cannot use VFH in the non-

interference part, and instead must range over state sets directly.
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Definition 3.12. The defining-views template, given some definer d, is:

λs.

{
〈p〉 α̂ 〈q〉

∣∣∣∣∣ s, α̂ VFH {p}{q}

∧ (∀(g,σg) ∈ d. Jα̂K∗(dReify(d)(p •(g \q))) ⊆ σg)

}

where s.V is a subtractive view semigroup, and s.b−c≡ dReify(d).
(Coq: defining_views_template in Starling.ProofRules)

Theorem 3.5. For all signatures s where, for some definer d, s.bvc = dReify(d)(v) for all v,
the defining-views template strengthens the adjoint template.

(Coq: defining_views_strengthens_adjoint in Starling.ProofRules)

Peterson. Let us apply the defining-views approach to our running example. Recall that

§ 3.3 gave b−c in terms of a definer function d: this set-up is already compatible with defining-

views. This time, the obligation for our example triple 〈*A4+〉 Q1 := true 〈*A1+〉 is:

JQ1 := trueK∗(dReify(d)(*A4+)) ⊆ dReify(d)(A1)

∧ ∀(g,σg) ∈ d. JQ1 := trueK∗(dReify(d)(*A4 + •(g \A1))) ⊆ σg

The quantifier over g in this non-interference obligation expands into 31 conditions: eight

corresponding to each single line number, three corresponding to forbidden pairs of numbers

across both threads, and twenty corresponding to cases where the same thread has two line

numbers active (accounting for symmetry). If we, once again, take g = *A1+ as an example,

the defining-views template gives us:

JQ1 := trueK∗(b*A4 + •(*A1 + \ *A1+)c) ⊆ d(*A1+)

= JQ1 := trueK∗(b*A4+)c) ⊆ d(*A1+)

The main difference between this obligation and that produced by the adjoint template is the

right-hand side: instead of requiring the set of final states to be a subset of the reification,

we now require it to be a subset of the definition of *A1+. While this seemingly weakens the

obligation, in practice the outer quantification over defining views does the job originally

performed by the subview intersection inside b−c. This reduces redundancy in the verification

conditions, and makes them more amenable to modelling as Horn clauses, but results in a

less obvious connection between conditions and the contexts that produce them.

Notes on views monoids

This dissertation mostly explores signatures over views monoids, not arbitrary semigroups.

This has two advantages: first, it provides a natural encoding for global invariants in a

defining-views context; second, it lets us simplify the proof rule templates accordingly.

Global invariants. When using the defining-views template with views monoids, ε does

not represent a complete lack of knowledge about the shared state, but instead the baseline
knowledge. First, because εv v for all views v, the reification of every view v includes the
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definition of ε. Second, the defining reification of ε need not be S: in fact, by substituting ε

for v in Definition 3.11, and noting that uv ε ⇐⇒ u≡ ε, we arrive at the observation that:

dReify(d)(ε) =
⋂

{σ | (u,σ) ∈ d∧ u≡ ε }

Defining-views monoids, then, let us define global invariants by mapping definitions to ε.

Simplifying templates. Views monoids let us express empty contexts as v = ε. If we substi-

tute this into the non-interference part of the free template, we get s,α VFH {p}{q}, and can

delete the sequential-safety part. This reflects the simplification we saw in Definition 2.20.

We can make a similar transformation to the adjoint and defining-views templates. As

hinted-at in our running example, the right value of g for the adjoint template is q; we get

this by substituting ε for v in the expansion of g. For the defining-views template, we must

separately consider each sub-view of q.

3.7 Summary

This chapter used Views to create a general scheme for building concurrent proof rules. In it,

we observed that we can build views instances on the fly by combining signatures taken from

proofs with axiomatisations built from rule templates, and that we can build automatable

templates by refining the action judgement.

The chapter explored three templates: free, adjoint, and defining-views. Given a compat-

ible views signature, these templates prove sequential safety and non-interference of atomic

actions. We designed defining-views, in particular, for automation through unfolding its

obligations into verification conditions that an external solver can discharge.

The chapter concluded with a method to reduce whole-program proofs, given as struc-

tured Floyd-style outlines, into repeated applications of such a proof rule.

Joining these parts gives us a general scheme for automatic proof of concurrent programs.

The next chapters expand upon this: Chapters 4 to 6 build Starling, a more elaborate frame-

work for building automatable program logics, atop the defining-views template. Chapter 7

shows how to use Starling as the theory underlying a tool for verifying concurrent programs.
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Chapter 4

The Starling Framework

While the scheme inChapter 3—particularly the defining-views template—helps us produce

automatable reasoning systems with a degree of separation between proof-specific and proof-

independent concerns, there are areas in which a more heavyweight logical framework would

help further. For example, the scheme places views and atomic actions — elements specific

to the proof — alongside the state model, which, when automating by targeting an existing

solver, is part of that solver’s underlying theory. Without some form of abstraction layer,

this tightly couples proofs to backends.

This chapter proposes Starling, a design for a logical framework on top of the template-

based rule scheme of Chapter 3. This framework builds in a separation of concerns between

the frontend (the solver-independent logical machinery used by the proof author) and the

backend (the solver theory, normally in the form of a decision procedure over FH ).

The frontend and backend combine, along with outline flattening § 3.2, to build a pipeline

from proof to verification result. Each stage in the pipeline has a degree of interchangeability;

for example, in § 8.1, we use several different backends with only minimal frontend changes.

This chapter starts by defining backends (§ 4.1) and frontends (§ 4.2). One question is how

to prove Starling pipelines sound; this chapter considers doing so by building an axiom-sound

Views instance such that verification of atomic triples in the pipeline entails the existence of

corresponding axioms in the instance’s axiomatisation. We can build these instances using

templates, and the frontends in this dissertation closely resemble the templates on which

their soundness is based. Figure 4.1 outlines the pipeline and soundness argument.

The rest of this chapter builds towards µStarling, an example frontend. Frontends must

re-express views and atomic actions in forms the backend solver will understand: syntactic
definers, in § 4.3, form a scheme for doing so. The frontend itself appears in § 4.4. µStarling

is a prototype for the more expressive (but less general) loStarling frontend built in Chapter 5,

and the gStarling frontend built in Chapter 6.

Starling serves as the meta-theory justification for the tool, Starlingtool, discussed in

Chapter 7. This tool uses a variation of gStarling as the frontend, and existing off-the-shelf

solvers, such as Z3, as the backends.
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Outline
{p} 〈α〉 {q}

Flattening (Definition 3.2)

High-level atomic triples
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Frontend (Definition 4.9)

examples:
µStarling, loStarling, gStarling

Backend conditions
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backend
decomposition

based on

viewdecomposition
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implies Hoare judgement
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instance

Starling framework
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ABC Proof artefact

DEF Justification artefact

GHI Framework process
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Flow of proof outline through framework

Flow of justification in the meta-theory

Figure 4.1: Interactions between the various parts of the Starling framework, including the
results that make up its soundness justification. Templates, from the last chapter, form the
base of both the frontends we construct and their soundness arguments.
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4.1 Backends

To turn concurrent proof outlines into verification conditions that external solvers can check,

we must reduce views and atomics into forms that those solvers understand. The last chapter

followed the Views approach, expanding them into state sets. While this is appropriate for

the meta-theory, it only works in practice if we can enumerate every possible state; this

overly restricts the states, and solvers, we can use.

Solvers normally decide formulae over states at a higher level than state sets: as con-

straints in linear arithmetic, or bit-vectors, and so on. Starling captures these underlying

theories as backends. A backend contains, amongst other things, a set of languages corres-

ponding to the predicates and relations the solver understands, and an abstraction over the

solver’s decision procedure over conditions built using those languages. We can then define

views and atomics over these languages1 to take advantage of said procedure.

Abstracting over solver differences

Each solver differs in terms of which formulae it can decide, both syntactically and semantic-

ally. Any interface we define over them must account for the following areas of difference.

Input languages. If we target, for instance, an SMT solver that can decide predicates over

certain theories,wemust defineStarling-level views and atomic actions using such predicates.

Horn-clause solvers may use a similar, but more rigidly defined, predicate language. If we

target a high-level sequential verification language, we may need to express conditions in its

Boolean expression language, but commands in its primitive statement language.

Decision process. Each solver’s process for deciding Hoare triples is different. For SMT

solvers, we can encode a form ofFH as a predicate. For Horn clauses, wemay need to encode

each judgement as a clause using a construct not available in the predicate language itself.

High-level languages may need an elaborate encoding: we may need to lift the conditions

into assume and assert commands, then pose each triple as a separate sequential program.

State model. While basic SMT solvers may only decide predicates over a fixed set of scalar

shared variables, others may reason about sequences, arrays, records, and so on. Some

solvers, like GRASShopper [55], model shared heaps: we must be able to use these with

Starling to verify programs that handle dynamically allocated graph structures.

Abstraction approach

One way to define a backend is to build a specific set of languages, decision procedures, and

state models, and assume that each solver we intend to use can implement them. Such an

approach is hard to scale — what if we need to target a new solver with a different scheme of

1We cannot just give the solvers views and atomics directly; to do so, we would need to add theories of
views and atomics to the backends, which would limit generality.
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observations and commands? —, ties our logics to the concrete details of their solvers at an

early stage, and makes using the full expressive power of our solvers hard.

Let us instead parametrise our logics with the set of languages, procedures, and models

that the solver can understand, and connect these to the mechanisms of defining views and

atomics. These components form a backend.

Definition 4.1. A backend is a tuple (EPr,ERl,S,Solve,GCtx, LCtx) of expression lan-

guages (Definitions 4.4 and 4.5), state set (Definition 2.6), solver predicate (Defini-

tion 4.8), and global and local context sets (Definitions 4.2 and 4.3).

Intuitively, EPr contains syntactic, single-state expressions that represent the final ex-

pansion of views; ERl captures syntactic, two-state expressions that represent the semantics

of atomic actions; Solve is a predicate abstractly reflecting the solver’s decision process over

said expressions; and the context sets let us capture additional quantifications (for example,

on local states, or on constraints) that the solver must handle internally.

Running example

Let us consider automating the Peterson (§ 3.3) proof using a toy solver that understands pro-

positional formulae over Boolean variables; primitive commands that set and clear variables;
and an assume command that cause the program to diverge if a proposition does not hold2.

The solver can also infer the bodies of uninterpreted Boolean functions P(x,y, . . . , z), where

x,y, . . . , z are also Boolean formulae. These functions have the same meaning throughout a

solver instance, and we can refer to them in any place where a Boolean formula is allowed.

Let us define EPr and ERl with the following grammars:

〈EPr〉 ::= 〈var〉 | (fun 〈var〉 〈EPr〉* )| (not 〈EPr〉 )| (and 〈EPr〉* )| (or 〈EPr〉* )

〈ERl〉 ::= (set 〈var〉 ) | (clear 〈var〉 ) | (assume 〈EPr〉 )

The solver takes sets of Hoare triples over these languages as input. It tries to infer

definitions for each fun such that each triple, with the definitions substituted in, satisfies the

Hoare judgement. If a consistent system of definitions exists, the solver accepts the set.

Expression languages and their interpretation

With an informal example of a backend in hand,we can start formally defining its components.

This section discusses expression languages; these, in turn, require us to discuss their

interpretation using global and local contexts.

Contexts. Defining expression languages requires us to provide a state-set interpretation

of the expressions. This is because, though backends deal directly with expressions, the

Views-based metatheory, and so the Starling soundness argument, still expects raw state

sets. These interpretations are purely theoretical, and need not be decidable.

2As we are concerned only with safety properties, this command can stand in for the conditional forms we
need to implement the ‘wait until…’ parts of the algorithm.
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For some solvers, the interpretation can rely on additional context that the solver builds

over the whole program. We saw this in our running example: the set of inferred function

definitions is one such piece of context. To model this at the state-set interpretation level,

we can parametrise interpretations over a global context set.

Definition 4.2. A global context set GCtx, ranged over by xg, is a set of internal states

that a backend uses when interpreting all expressions belonging to the same program.

The interpretation of each individual verification condition may depend on some solver

state besides S. While our running example has no such state, this idea becomes useful for

reasoning about thread-local state in § 5.5. We can capture this using a local context set.

Definition 4.3. A local context set LCtx, ranged over by xl, is a set of internal states over

which a backend quantifies separately for each individual verification condition.

As we existentially quantify over contexts in the meta-theory, solvers that do not use

them cannot define them as ∅. One tactic is to define them as a singleton set of some arbitrary

object tt; the Coq development uses this encoding. Our running example defines LCtx = { tt }.

Propositions. In Starling, proposition expression languages define views. Their definition

must consider the needs of frontends that implement a defining-views style of proof rule:

these need the ability to conjoin definitions with some associative, commutative conjunction

operator∧Pr, and represent a lack of matching definitions with a unit expression truePr.

Definition 4.4. A proposition expression language over states S, global contexts GCtx,
and local contexts LCtx is an algebra (EPr, truePr,∧Pr, J−KPr) where J−KPr is a func-

tion EPr→GCtx→ LCtx→P(S) interpreting expressions as the state-sets satisfying

their propositions, and (EPr, truePr,∧Pr) is a monoid over J−KPr such that∧Pr over two

expressions corresponds to the intersection of their interpretations:

∀x,y, xg, xl. Jx∧Pr yKPr(xg)(xl) = JxKPr(xg)(xl) ∩ JyKPr(xg)(xl)

This definition is restrictive — for instance, it makes it hard to use a separation algebra

as the expression language — but is necessary for key properties to hold later, and for our

use of proposition expressions to be compatible with the defining-views template.

Relations. A relation expression set ERl represents atomic actions. We do not assume an

algebraic structure for ERl yet, apart from requiring some special expressions to exist.

Definition 4.5. A relation expression language (ERl, idRl, ∅Rl, J−KRl) over states S and

contexts GCtx is an algebra where J−KRl is a function ERl→GCtx→ LCtx→(S↔S)

interpreting expressions as their underlying relations on states; and idRl is the identity,

and ∅Rl the empty relation, under said interpretation:

JidRlKRl(xg)(xl) = { (σ,σ) | σ ∈ S } J∅RlKRl(xg)(xl) = ∅
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Verification conditions

Proposition and relation expressions form the verification conditions we send to a backend

solver. In Starling, such conditions arise from applying some decidable encoding of a proof

rule — a frontend (§ 4.2) — to an atomic Hoare triple from an outline decomposition. Veri-

fication conditions are FH-style judgements over sequentialised executions of the original

atomic action modulo an environment, so we express them as Hoare triples.

Definition 4.6. For all EPr and ERl, a verification condition 〈〈w〉〉 c 〈〈g〉〉 is a Hoare triple

over a ‘weakest pre-condition’ predicatew : EPr, command c : ERl, and goal predicate

g : EPr, representing a backend-theory query we generate from an atomic Hoare triple.

VConds(EPr,ERl) is the set of all 〈〈w〉〉 c 〈〈g〉〉 over EPr and ERl.

Solving verification conditions. The job of the backend theory is to decide the correctness

of the verification conditions we generate from a proof outline. To let us use the scheme

from Chapter 3 as a soundness argument for this set-up, the whole process must entail the

application of the monoidal-defining-views rule to the decomposition of the outline.

Definition 4.7. The verification-condition Hoare judgement over 〈〈w〉〉 c 〈〈g〉〉 is:

(xg, c) EVFH {w}{g}
def
= ∀xl ∈ LCtx.FH {JwKPr(xg)(xl)} JcKRl(xg)(xl) {JgKPr(xg)(xl)}

An ideal solver would implement this judgement directly. As J−KPr and J−KRl exist only

at the theory level, and the exact format of σ and σ ′ is a black-box property of the theory, we

cannot implement such solvers in practice. Worse, the theory may be unable to reason about

individual verification conditions: for example, the inference our example solver does will

depend on the entire closed system of conditions. Instead, we model the solver as a predicate

on a verification condition set, and let it be stronger than Hoare reasoning.

Definition 4.8. A solver predicate is a predicate Solve over sets T ∈ P(VConds(EPr,ERl))

that, when true, implies that at least one global context exists such that the given set of

verification conditions is correct under Hoare reasoning:

Solve(T) =⇒ ∃xg. ∀ 〈〈w〉〉 c 〈〈g〉〉 ∈ T . (xg, c) EVFH {w}{g}

Free backends

If we consider Starling as being embedded in somemeta-theory (for example, first-order logic,

or Coq’s calculus of constructions), then we can construct a ‘free’ backend in which proposi-

tion expressions are propositions, relation expressions are relations, JxKPr = x, JxKRl = x,

and Solve is the construction on the right-hand side of Definition 4.8. § 8.3 outlines an

implementation of this idea in the Coq mechanisation.
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4.2 Frontends

The middle step in the Starling pipeline — a decomposition from atomic Hoare triples to

backend conditions — is where we make the main soundness argument. These decomposi-

tions form the front-of-house logical machinery that arranges flattened proof outlines into a

form the backend can process, so we call them frontends. Frontends are not fully decoupled

from backends: they must re-express views as proposition expressions and atomic actions as

relation expressions using systems such as syntactic definers (§ 4.3).

The frontend soundness argument involves a second decomposition, from atomic Hoare

triples to sets of Views axioms. While we can map each triple to arbitrarily many axioms in

which the views and atomic actions can differ from the originals, the obvious decomposition

(λx. { x }) is the one that most of this dissertation uses3.

Soundness also requires that, if we can solve the system of backend conditions, the

views-decomposition axioms inhabit the axiomatisation of a sound views instance. This

instance can depend on the solver’s global context: for example, different inferences for view

definitions can change whether certain atomic actions preserve certain views.

Definition 4.9. A frontend is a triple
Db : AHoare(V,A) ↔VConds(EPr,ERl),

Dv : AHoare(V,A) ↔AHoare(V ′,A ′),

I : GCtx → Inst(V ′,A ′,S)


consisting of a backend decomposition Db mapping each high-level atomic Hoare triple

to zero or more backend conditions; a views decomposition Dv mapping the same triples

to zero or more low-level Views axioms; and I, which maps a global context to a views

instance over the low-level views semigroup and commands.

Frontends must have the property that, for all high-level triples 〈p〉 α̂ 〈q〉 and global

contexts xg, if every verification condition 〈〈w〉〉 c 〈〈g〉〉 in the triple’s backend decom-

position satisfies the verification-condition Hoare judgement, then every Views axiom
in the triple’s Views decomposition is a member of the axiomatisation of I(xg):

( ∀ 〈〈w〉〉 c 〈〈g〉〉 . (〈p〉 α̂ 〈q〉)Db (〈〈w〉〉 c 〈〈g〉〉) =⇒ (xg, c) EVFH {w}{g} )

=⇒ ( ∀
〈
p ′〉 α̂ ′ 〈q ′〉 . (〈p〉 α̂ 〈q〉)Dv

(〈
p ′〉 α̂ ′ 〈q ′〉) =⇒

〈
p ′〉 α̂ ′ 〈q ′〉 ∈ I(xg).T )

(Coq: covering in Starling.Frontend.Common)

While the definition above does not constrain the sets of axioms to which triples map

— in fact, the most straightforward way to build a sound frontend is to let Dv = ∅— the

soundness of outline flattening depends on a correspondence between outlines, the axioms

generated by the frontend, and the Views program logic.

3This decomposition starts to become useful when we introduce the Local Views Framework in § 5.1.
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From decompositions to templates

Suppose we have both views and backend decompositions. We can then build a template

that contains precisely the set of axioms that correspond to views decompositions of atomic

Hoare triples whose backend decompositions satisfy the Hoare judgement.

Definition 4.10.We define the frontend-to-template function fTemp as follows:

fTemp : (AHoare(V,A)→VConds(EPr,ERl))

→ (AHoare(V,A)→AHoare(V ′,A ′))

→GCtx

→ (Sig(V ′,A ′,S)→P(AHoare(V ′,A ′)))

fTemp(Db)(Dv)(s)(xg)
def
=

〈
p ′〉 α ′ 〈q ′〉

∣∣∣∣∣∣∣∣
∃ 〈p〉 α 〈q〉 .〈

p ′〉 α ′ 〈q ′〉 ∈ Dv(〈p〉 α 〈q〉)

∧ Db(〈p〉 α 〈q〉) ⊆ { 〈〈w〉〉 c 〈〈g〉〉 | (xg, c) EVFH {w}{g} }


(Coq: builder_to_template in Starling.Frontend.Common)

Lemma 4.1. Given relations (Db, Dv, I) where Imaps from global contexts to views instances

with axiomatisations built through fTemp(Db)(Dv)(s), (Db,Dv, I) is a frontend.

4.3 Syntactic definers

Having discussed a way to express definitions of views and atomic actions in a backend

theory, we now consider constructs for mapping views and atomics to such definitions. As

the definitions are syntactic predicate and relation expressions from a backend interface, we

call the constructs syntactic definers. There are two types of syntactic definer: the syntactic
view definer, which maps views to proposition expressions; and the syntactic atomic definer,
which maps atomics to relation expressions.

This section builds basic syntactic definers that map views and atomic actions directly

to backend definitions. Chapter 6 shows that this direct mapping limits the expressivity of

our logics, and explores more complex schemes based on pattern matching.

Syntactic view definitions

First, we need a syntactic means of defining views in terms of proposition expressions. In

Definition 3.10, we defined semantic view definers as relations that map defining views

to the sets of states they admit. In practice, we leave the state-set interpretation to the

backend, so we cannot rely on the proof author to build such a definer. Instead, we show

that a correspondence between our syntactic definers and the semantic equivalent exists in

theory, and assume the backend handles the consequences in practice.
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4.3. SYNTACTIC DEFINERS

For now, let syntactic definers be partial functions V9EPr from views to proposition

expressions, and gloss over the exact implementation. For an example of a more concrete

realisation of syntactic definers, see Appendix A.3.

Syntactic reification and definition functions. Let us modify Definition 3.11 to account for

the fact that we are building up a proposition expression, not a state set. TheViews reification
is, then, the interpretation of this expression. As the interpretation depends on the particular

value of GCtx we pass as backend context, the reification — and, thus, the specific Views
instance we construct as our soundness argument — depends on that value. For example,

the Views instance can change depending on inferred meanings of uninterpreted functions.

Definition 4.11. The syntactic definer reification sdReify : (V9V)→V→EPr is:

sdReify(d)(v) =
∧
Pr

{ d(u) | uv v∧ u ∈ dom d }

(Coq: sd_syn_reify in Starling.Frontend.SynDefiner)

Given a definer d and contexts xg and xl, we can lift sdReify to a Views reification:

bvc = {σ | JsdReify(d)(v)KPr(xg)(xl)(σ) }

Syntactic atomic definitions

To interpret the atomic actions in the proof outline as relation expressions, we need another

syntactic definer. There may be a potentially unbounded set of valid atomic actions, so the

atomic syntactic definer is just a function.

Definition 4.12. An syntactic atomic definer ASDef is a function A→ERl that defines

every possible atomic action as a relation expression.

In our running example, this function might contain definitions like this:

ASDef(Q1 := false) = (clear Q1)

ASDef(Q1 := true) = (set Q1)

ASDef(TURN := 1) = (clear TURN)

ASDef(TURN := 2) = (set TURN)

ASDef(wait until !Q2 or TURN=2) = (assume ¬Q1∨ TURN)

When translating atomicHoare triples to backend verification conditions,wemust handle

commands given asAid, notA. This means we must lift the syntactic atomic definer:

Definition 4.13. The syntactic label definer ASDefid over a syntactic atomic definerASDef
is the functionAid→ERl defined piecewise as follows:

ASDefid(id) = idRl ASDefid(c) = ASDef(c)
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4.4 µStarling

This section builds an initial frontend, µStarling, by adapting the defining-views technique

(Definition 3.12). Instead of defining views and atomic actions over state sets, µStarling uses

syntactic definers. This gives us finite, bounded sets of verification conditions, which we

can send directly to an SMT solver, proof assistant, or other suitable backend solver.

The µStarling frontend depends on three parameters. It needs a subtractive views semig-

roup from which we draw the target proof’s assertions directly. It also assumes that said

views map to proposition expressions through a syntactic view definer, and that atomic

actions map to relation expressions through a syntactic atomic definer, per § 4.3.

The µStarling backend decomposition

With a syntactic view definer d and atomic definer ASDef, we can build µStarling’s backend

decomposition. This corresponds to applying the defining-views judgement over the triple,

and we define it in several steps. We assume the definers are in scope throughout.

Building a single backend condition. Each µStarling backend condition corresponds to a

combination of an atomic Hoare triple 〈p〉 α̂ 〈q〉 and a goal view g (which, as we saw earlier,

combines q with a view from the outside context).

Definition 4.14. The function Dµ
g : (V ×Aid × V)→V→VConds(EPr,ERl) translates an

atomic Hoare triple, given a goal view g, into a backend condition:

Dµ
g(〈p〉 α̂ 〈q〉)(g)

def
= 〈〈sdReify(d)(p •(g \q))〉〉 ASDefid(α̂) 〈〈sdDef(d)(g)〉〉

(Coq:ms_decomp_ni_single in Starling.Logics.MicroStarling)

We can translate an atomic Hoare triple into a set of verification conditions, by taking

the Dµ
g result for every g that is a defining view. When V is not a views monoid, we must

add an extra verification condition per triple to check sequential safety. This gives us a new

function, Dµ
b. The result of Dµ

b is bounded and finite whenever the definer’s domain is.

Definition 4.15. The function Dµ
b translates an atomic Hoare triple into a set of backend

conditions that cover both sequential safety and non-interference:

Dµ
b(〈p〉 α̂ 〈q〉)

def
= { 〈〈sdReify(d)(p)〉〉 ASDefid(α̂) 〈〈sdReify(d)(q)〉〉 }

(sequential safety)

∪ {Dµ
g(〈p〉 α̂ 〈q〉)(g) | ∃e.d = d1 ++〈(g, e)〉++d2 }

(non-interference)

(Coq:ms_decomp in Starling.Logics.MicroStarling)
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4.5. SUMMARY

The µStarling views instances

Dµ
b gives us the backend decomposition for our µStarling frontend. We next provide a sound

views instance, and a decomposition into axioms in that instance. For µStarling, the axiom

decomposition is straightforward: as we have nothing in the assertion views and atomic

actions that needs reducing, we just use λx. { x }. With this set-up, we can build templates

that capture the decision procedure that µStarling and the solver implement together.

Definition4.16. The µStarling template, given a global contextxg and appropriate definers,

is fTemp(Dµ
b)(λx. { x })(xg). (Coq:ms_template in Starling.Logics.MicroStarling)

This template yields instances in the usual way, through instantiation with a correspond-

ing signature. To show that such instances are axiom-sound, we show that the template

subsets the defining-views template in the presence of a compatible signature. Then, through

the chains of subset results we built in § 3.6, we show that each subsets the free template,

and, thus, produce axiom-sound instances.

Lemma 4.2. The µStarling template produces subsets of the defining-views template.

(Coq:ms_strengthens_defining in Starling.Logics.MicroStarling)

Corollary 4.2.1. The µStarling template produces axiom-sound instances.

Through the definition of frontends (Definition 4.9), we know that when a solver accepts

a set of atomic Hoare triples, the corresponding views axioms inhabit the axiomatisation of

the appropriate µStarling instance. Since, for µStarling, said axiomatisation is sound, the

mapping from the triples into it is direct, and our outline decomposition follows the rules of

the Views framework, we can combine all of the pieces into a single proof rule. As before,

the specific rule differs if we have a views monoid.

Definition 4.17. The µStarling outline rule applies the Starling decision process, using

the µStarling frontend, to a Views-language outline o:

`µ o
def
= Solve({Db(〈p〉 α̂ 〈q〉) | 〈p〉 α̂ 〈q〉 ∈ oflat(o) })

Theorem 4.3. Rule `µ entails the Views semantic judgement on its respective outlines.

While this section does not justify it in depth, we can apply the simplification discussed

in § 3.6. This frees us from needing to prove sequential safety for each triple explicitly.

4.5 Summary

This chapter introduced Starling, a framework for building automation-friendly concurrent

program logics. Starling depends on two loosely-coupled components: a backend that ab-

stracts over a Hoare-logic theory for which we have a solver, and a frontend that reduces

atomic Hoare triples to a bounded set of verification conditions in said theory. In turn,

Starling provides a sound process for verifying Views-language proof outlines.
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The chapter then demonstrated frontend-building for Starling using µStarling, a direct

lifting of the defining-views template from Definition 3.12. This frontend gives us a way to

prove properties about programs where all state is shared, all actions are atomic and sequen-

tially consistent, and where we can represent any shared-state assertions as a semigroup

where parts of the semigroup map directly to shared-state subsets.

The next chapters expand µStarling’s expressivity in various ways. In Chapter 5, we

add native support for thread-local state to Views, and discuss how to adapt our frontend

to make use of it while keeping full automation. This poses restrictions on how we can use

thread-local state: so, in Chapter 6, we build a frontend that allows a limited, but automation-

friendly, degree of local-state parametrisation. By adding ways to parametrise views, we

also solve the problem, in µStarling, of needing to duplicate view structures any time we

want to vary a view’s interpretation.
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Chapter 5

Adding Local-State Reasoning

To encode thread-local state in µStarling, we must encode it into shared state. We then

must, manually, separate each thread’s local state (eg. with discrete variables, or arrays

with separate thread IDs). This causes problems for encoding proofs like Listing 2.2, where

we track threads’ contributions to a counter through ghost variables. In µStarling, we must

encode these variables as shared state, and build their relation to the counter directly into

each view’s definition. This entangles the system’s proofwith its implementation, and pushes

local observations into shared state.

This chapter explores how to add local-state reasoning to Starling. In §§ 5.1 to 5.3, it

presents a modified Views framework based on work by Khyzha, Gotsman, and Parkinson.

This framework restricts programs to a fixed top-level parallel composition of sequential

threads, but lets us add native local state on top of Views — reusing a lot of meta-theory.

This chapter initially considers parametrising thread assertions directly over local state.

(In the counter example, we can then use one view to relate the global counter to the current

thread’s local counter; the proof of each thread is then identical, making the proof cleaner

and more compositional.) The resulting set-up models assertions as functions from local

state to shared-state views. Proving non-interference on a thread uses only these shared

views, and never depends on other threads’ local state.

In § 5.5, we explore adding local state to the outline–frontend–backend pipeline by lifting

backend expressions to functions over local state. Then, in § 5.6, we use this approach to

build loStarling, a lightweight extension of µStarling with local state. We find that, while

loStarling is sound, it does not generate a bounded verification-condition set: Chapter 6

considers restricting the shape of local-state assertions to restore boundedness.

Local-state actions cannot interferewith other threads’ local state, evenwhennon-atomic.

As we see in § 5.7, we can sometimes use the proof of a complex local action, modelled

atomically, to prove the same action modelled as a non-atomic sequential composition

without making strong assumptions about semantics.

Running example

Until now, our attempts to prove Peterson’s algorithm have required us to specify both

threads as two mirror-image programs, even though the only differences are tied directly to

the identity of the thread (whether we look at flagQ1 or flagQ2; whether we write 1 or 2
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t1 Q[t] := true
t2 TURN := t

t3 wait until !Qt or TURN=t

(Critical Section)

λt. t4 Q[t] := false

Figure 5.1: One-thread-proof version of Peterson. Here, tmeans ‘the thread that is not t’.

to the turn variable; and the set of line numbers we use as views). This duplication makes

eyeballing and hand-proving the proof tedious, and also slows down automation.

This chapter considers a modified version of Figure 3.2 where we model the global

variables as two-place arrays, and parametrise the program-position assertions over the

current thread ID. Figure 5.1 gives this revised version.

5.1 The Local Views Framework

To reason about local state in Starling, we must adapt the shared-state-centric Views frame-

work. There is already a Views-based framework that supports local-state parametrisation:

Khyzha et al.’s generic linearisability logic [56] (for short, ‘the GLL’); as the name suggests,

it targets linearisability proofs, which causes its action judgement to be too strong for our

existing template infrastructure to target soundly.

Here, we present a modification of the GLL to target Hoare-style safety properties, and

have an action judgement that more closely resembles that of Views. We can also consider

the resulting framework as an extension of Views to add GLL-style support for local states,

and so we call it the Local Views Framework (or LVF).

Like the GLL, we internally model local state inside shared state, as a map from thread

IDs to states. Unlike the GLL, which embeds linearisation points into its action judgements,

we just extend Views’s existing set-up with local-state tracking. This leads to a different

soundness derivation, which we sketch in § 5.3.

While our smaller, more Views-like framework does not natively support the strong

correctness guarantees about programs that the GLL does, the interface that it requires

reasoning systems to implement — LVF axiom soundness — is smaller and easier to satisfy.

Also, by only making small changes to Views, we make it easier to embed parts of the LVF

into Views, letting us re-use much of our existing meta-theory.

We take a bottom-up approach to constructing the framework. First, we add a framework

parameter for local states, and restructure action semantics to let actions modify both shared

state and the current thread’s local state1. Then, to allow local-state observations to influence

proof assertions, we lift views to view functions, parametrised directly by the current local

state. As local state only serves to select a specific shared-state view, knowledge of one

thread’s local state never leaks to other threads, and we retain a form of the Views frame

rule. We then introduce a local form of the action judgement, and propagate it to the other

Views constructs: signatures, axiomatisations, instances, and axiom soundness.

1We discuss ways to get around the implied requirement that all local actions are atomic in § 5.7.
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The introduction of local state requires large changes to theViews programming language,

program logic, and soundness argument. As a result, we leave these to later sections: we

introduce the language in § 5.2, and discuss soundness in § 5.3.

We also show that, for every LVF instance, we can build aViews instance by making local

state explicit in the instance’s axioms, and that local axiom soundness of the LVF instance

directly relates to axiom soundness of the Views instance.

Local parametrisation

This section introduces local state itself, and the ways in whichwe parametrise the high-level

parts of the framework — atomic actions and views — by it.

Local states. Like shared state, we model local state as an abstract set of possible states.

We refer meta-syntactically to such a set as L, just as we use S for shared state.

Definition 5.1. A local state set is a set L of possible local states. When such a set is in

scope, we use l to refer to a pre-state in the set, and l ′ to a post-state in the set.

In our modified Peterson, we track one local variable (the thread ID), so L = {A,B }.

Atomic actions over local and shared states. As before, we assume atomic actions form a

symbolic setA—but we now allow them to modify local state. This means that we must

modify the semantic function (Definition 2.9). To capture the semantics of actions that

modify both local and shared state, we use a local semantic relation.

Definition 5.2. A local semantic relation J−Klo : A→((L×S)↔(L×S)), for some atomic

action setA, local state set L, and shared state set S, is a relation between pairs of local

and shared pre-state, and local and shared post-state.

In our example, we assume that each thread begins execution with the right ID stored

locally, and that each atomic action behaves as the identity on the ID.

As with J−K in Definition 2.11, we can lift J−Klo to atomic labels. Let Jα̂Kid
lo stand for this

lifting, which, when applied to id, maps every pair (l,σ) to itself.

View functions. In LVF axioms,we drawpreconditions and postconditions from the function

space L→V. This lets us use local state to choose which shared-state view to assert at a

given point in the program. When we build the LVF action judgement, we will supply the

local pre-state to the precondition, and the local post-state to the postcondition.

This is a strict expressivity increase fromViews axioms, as we can always encode a view v

with no local-state dependencywith the constant functionλx. v.Weuse this encoding so often

that we introduce shorthand for it: const(v) (which we formally define in Definition A.2).

In our one-proof Peterson, we must encode our views into the function space {A,B }→V

(for someV), so that the functionsmodel the selection of a program location given a thread ID.

Here, we let V be the same as our last Peterson example ({A1,A2,A3,A4,B1,B2,B3,B4 }),

and model each assertion at locationN in the form λt. tN.
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Lifted views algebras. View functions form a views semigroup whenever V is a views semig-

roup, and so on for views monoids, subtractive semigroups, and ordered semigroups. This

lets us lift the views notation and logical tooling we’ve built in the previous chapters to such

functions. This approach to local-state parametrisation resembles that which Appel et al.
describe in their Coq mechanisation of separation logics [57].

Lemma 5.1. If V forms a views algebra, we can derive an algebra on X→V for any X:

x •y def
= λi. x(i) •y(i) x≡y

def
= ∀i. x(i)≡y(i) ε

def
= const(ε)

x \y
def
= λi. x(i) \y(i) xvy

def
= ∀i. x(i)vy(i)

(Coq: Starling.Views.Transformers.Function)

The position multisets we used in our last Peterson exploration were subtractive, ordered

viewsmonoids, so {A,B }→ bag {A1,A2,A3,A4,B1,B2,B3,B4 } inhabits the same classes.

Local signatures, axioms, and instances

For the LVF, we modify signatures to contain local state sets, and use local semantics

relations. We make no other changes: reification, for instance, still acts directly on V (and,

so, in our Peterson example, we still use the reification we built in § 3.3). This reflects the

fact that local views, in our set-up, are just shared-state views lifted into local functions.

Definition 5.3. A local signature slo : LSig(V,A,L,S) is a tuple (•,≡, b−c, J−Klo), where:

• A is an atomic action language (definition 2.8);

• (V, •,≡) is a views semigroup (definition 2.4);

• b−c is a reification function over V (definition 2.7);

• L is a local state set (definition 5.1);

• S is a shared state set (definition 2.6);

• J−Klo is a local semantic relation (definition 5.2).

(Coq: LocalSignature in Starling.Views.Frameworks.LVF.Signatures)

As with Views, we can combine signatures with axiomatisations to create instances of

the local Views framework. We use the same definition for axiomatisations (Definition 2.15)

but, now, each axiom takes view functions as assertions.

Definition 5.4. A local instance il : LInst(V,A,L,S) is a tuple (slo, T), where:

slo : LSig(V,A,L,S) T ⊆ AHoare(L→V,A)

(Coq: LVFInstance in Starling.Views.Frameworks.LVF.Instances)
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Local instances, like their Views counterparts, are only sound if their axiomatisations

obey axiom soundness. Before we define the local Views form of axiom soundness, we first

define the new form of action judgement on which it depends.

Local action judgements. Recall the Views action judgement over p,q ∈ V:

s,α  {p}{q}
def
= (s,α VFH {p}{q}) ∧ (∀v ∈ s.V. s,α VFH {p • v}{q • v})

(s,α VFH {p}{q}
def
= JαK∗(bpc) ⊆ bqc)

To extend this judgement to local state, we first alter the views–Floyd/Hoare judgement

to quantify over local states and use our local semantics. As the new judgement performs

the local quantification itself, we supply it views of type L→V.

Definition 5.5. The local views–Hoare judgement slo, α̂ LVFH {p}{q}, over views p,q ∈
(L→V) where V is the views set of slo, is the judgement:

slo, α̂ LVFH {p}{q}
def⇐⇒ ∀σ,σ ′ ∈ S, l, l ′ ∈ L. σ ∈ bp(l )c ∧ ((l,σ), (l ′,σ ′)) ∈ Jα̂Kid

lo

=⇒ σ ′ ∈ bq(l ′)c

(Coq: slhoare in Starling.Views.Frameworks.LVF.ActionJudgements)

In the action judgement, we also change the type of p and q to L→V — but leave v as V .

This is for two reasons. First, as the context, it can depend on local states other than those

currently in scope (so we would need to give it its own local-state quantification). Second,

by quantifying over V, we over-approximate quantifications over both L and L→V at the

same time, making any such split redundant.

There is a type mismatch here: we need to join p and qwith v, but v is not a view function.

Instead, we use const(v): since • is pointwise, the result of p • const(v) is λl.p(l) • v, and we

achieve the intended behaviour. We then define the local action judgement as follows:

Definition 5.6. The local action judgement slo, α̂ lo {p}{q}, over views p,q ∈ (L→V)

where V is the views set of slo, is the judgement:

slo, α̂ lo {p}{q}
def⇐⇒ slo, α̂ LVFH {p}{q}

∧ ∀v ∈ V. slo, α̂ LVFH {p • const(v)}{q • const(v)}

(Coq: slactionj in Starling.Views.Frameworks.LVF.ActionJudgements)

Framing. The local action judgement has a similar framing property to the Views action
judgement, though only for constant view functions.

(s,α  {p}{q} =⇒ ∀v ∈ V. s,α  {p • v}{q • v})

slo,α lo {p}{q} =⇒ ∀v ∈ V. slo,α lo {p • const(v)}{q • const(v)}
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Local axiom soundness. Local axiom soundness follows directly from Views axiom sound-

ness, with the requisite changes to the signature and action judgement.

Definition 5.7. A local signature slo and axiom set T are locally axiom-sound if:

∀ 〈p〉 α 〈q〉 ∈ T . slo,α lo {p}{q}

We can derive the same simplifications for monoidal local action judgement and axiom

soundness as for Views. These forms are closer to those used by Khyzha et al., whose model

considers only views monoids.

Semantic judgements

Let us discuss the core program-level proof rules of the LVF, the semantic judgements. These
rules are similar to the CVF semantic judgement, and have the same intuition: they determine

that a program is safe with regards to a pair of view assertions. As with the CVF, the LVF

program logic then takes the form of inference rules over these judgements.

For the LVF, as we assume a top-level thread conjunction, we need separate single-thread

and multi-thread semantic judgements. A later step shows that the parallel composition of

threads running single-thread-safe programs forms a multi-thread-safe program, and that

any multi-thread-safe program is sound with respect to the LVF language semantics.

Single-thread. The single-thread semantic judgement states that a single thread of an LVF

program is safe: each time we take a transition labelled α̂ in that thread, we move from a

view p to some other view r such that the movement satisfies the local action judgement,

and the remaining program is safe. Once the thread reaches skip, we show that the final

precondition entails the whole program’s postcondition. The semantic judgement proves

that the thread’s transitions are locally correct and preserve any other thread’s views.

The single-thread semantic judgement has two forms. The first is an explicit version,
taking the current local state of the thread’s program at each step. To let us thread local

state through the judgement, we define it in terms of the CVF action judgement. This, in

turn, lets us prove useful atomicity rules later on, in § 5.7.
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Definition 5.8. The explicit single-thread semantic judgement slo 
l
lo {p} c {q}, for signa-

ture slo, local views p and q, program c, and initial local state l, is:

slo 
l
lo {p} c {q}

def⇐⇒ (c = skip =⇒ ∀l ′. Sig↑lo(slo), (id, l, l
′)  {p(l)}{q(l ′)})

∧ ∀α̂, c ′.


c

α̂−−→s c
′ =⇒ ∃r. ∀l ′.

Sig↑lo(slo), (α̂, l, l
′)  {p(l)}{r(l ′)}

∧ (l
α̂
 l ′ =⇒ slo 

l ′

lo {r} c ′ {q})


where l

α̂
 l ′

def⇐⇒

l = l ′ α̂ = id

∃σ,σ ′. ((l,σ), (l ′,σ ′))) ∈ Jα̂Kid
lo otherwise

(Coq: SSafeEx in Starling.Views.Frameworks.LVF.SemJudgements)

The condition l
α̂
 l ′ limits the recursive checks we make on the safety of the rest of a

program. After making a step with label α̂, we only consider starting from local states l ′ that

can arise from the semantics of α̂ starting from l.

From the explicit judgement, we define an implicit form that quantifies over l. This

judgement shows that a thread’s program is safe from all starting local states.

Definition 5.9. The single-thread semantic judgement slo lo {p} c {q} is:

slo lo {p} c {q}
def⇐⇒ ∀l. slo 

l
lo {p} c {q}

(Coq: SSafe in Starling.Views.Frameworks.LVF.SemJudgements)

Multi-thread. To reason about the safety of a program with n threads, in which any thread

can progress at any time, we use a multi-thread semantic judgement. As before, we define a

version with an explicit current local state, then quantify over it to make an implicit form.

Unlike the single-thread case, we now assume that the views, local states, and commands

inside the judgement are in the form of parallel lists of length n.

Definition 5.10. The explicit multi-thread semantic judgement slo 
l
loM {p} c {q}, for

signature slo, local view lists p and q, and program list c starting in local state l, where

all lists are of the same size, is:

slo 
l
loM {p} c {q}

def⇐⇒(
(∀t ∈ Tid. c[t] = skip)

=⇒ (∀t ∈ Tid, l ′. Sig↑lo(slo), (id, l[t], l
′)  {p[t](l[t])}{q[t](l ′)})

)

∧∀t ∈ Tid, α̂, c ′.


c

(α̂,t)−−−−→m c ′ =⇒

∃r. ∀l ′. Sig↑lo(slo), (α̂, l, l
′)  {p(l)}{r(l ′)}

∧ l
α̂
 l ′ =⇒ slo 

l[t 7→l ′]
lo {p[t 7→ r]} c ′ {q})


(Coq:MSafeEx in Starling.Views.Frameworks.LVF.SemJudgements)
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As before, we form the semantic judgement proper by quantification.

Definition 5.11. The multi-thread semantic judgement slo loM {p} c {q} is:

slo loM {p} c {q}
def⇐⇒ ∀l. slo 

l
loM {p} c {q}

(Coq:MSafe in Starling.Views.Frameworks.LVF.SemJudgements)

In place of a parallel composition rule, we have a separate result that lifts single-threaded

safety to multi-threaded safety. This, intuitively, tells us that the semantic judgement on

one thread is strong enough to ensure that said thread can operate correctly in any context

that is safe under the same definition of views and actions.

Theorem 5.2. If each thread in a multi-thread LVF program satisfies the explicit single-thread

semantic judgement, the program satisfies the explicit multi-thread semantic judgement:

∀t ∈ Tid. slo 
l[t]
lo {p[t]} c[t] {q[t]}

slo 
l
loM {p} c {q}

(Coq: all_SSafeEx_MSafeEx in Starling.Views.Frameworks.LVF.SemJudgements)

Corollary 5.2.1. If each thread in a multi-thread program satisfies the single-thread semantic

judgement, the program satisfies the multi-thread semantic judgement. (Coq: all_SSafe_MSafe

in Starling.Views.Frameworks.LVF.SemJudgements)

The LVF program logic

As with the CVF [42][Def. 8], the LVF’s semantic judgements induce a program logic.

Figure 5.2 presents the logic as inference rules over the implicit judgements. As in the CVF,

the frame rule (5.2(f)) is a special case of the generalised frame rule (5.2(g)). The atomic

rule (5.2(b)) does not subsume the skip rule (5.2(a)) as it does not accept α = id.

5.2 The LVF programming language

To use the LVF to prove whole programs, we use the same language as the GLL: the Views
language, without parallel composition2. Instead, we have outer parallel compositions of

multiple threads, each running a sequential program but communicating with other threads

through shared-state atomic actions.

Structural operational semantics

Togive the LVF language a semantics,we can use the same techniques as theViews paper [42]
and build a small-step structural operational semantics in the form of a single-step labelled

transition system and its multi-step transitive closure. We make one big change from Views:
as parallel composition now happens outside the (per-thread) programs under proof, we

provide separate single-thread and multi-thread transition systems.

2This is also the language Calcagno et al. use to demonstrate abstract separation logic in [41].
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slo, id lo {p}{q}

slo lo {p} skip {q}

(a) Skip

slo,α lo {p}{q}

slo lo {p} <α> {q}

(b) Atomic

slo lo {p} c {r} slo lo {r} c
′ {q}

slo lo {p} c;c ′ {q}

(c) Seq

slo lo {p} c {q} slo lo {p} c
′ {q}

slo lo {p} c+c ′ {q}

(d) Choice

slo lo {p} c {p}

slo lo {p} (c)* {p}

(e) Iter

slo lo {p} c {q}

slo lo {p • const(f)} c {q • const(f)}

(f) Frame

f locally f-step preserving slo lo {p} c {q}

slo lo {f(p)} c {f(q)}

(g) GenFrame

slo, id lo {p}{p
′} slo lo {p

′} c {q}

slo lo {p} c {q}

(h) Cons-p

slo, id lo {q
′}{q} slo lo {p} c {q ′}

slo lo {p} c {q}

(i) Cons-q

Figure 5.2: The LVF logic, with local variables left implicit.

Single-thread transitions. Let us define a labelled transition system that captures the pos-

sible steps we can take on a single thread when executing a LVF program. As in Views, the
labels of the transitions correspond to atomic labels. Recall that, in LVF, these labels capture

both shared-state and local-state operations.

Definition 5.12. The single-thread labelled transition system −
−−−→s − is the system

given by the rules in Figure 5.3. (Coq: Transition in Starling.Views.Frameworks.Common.Language)

This transition system is the same as the Views transition system [42, Def. 3], with two

differences. First, as there is no ‖ operator, there are no parallel transitions. Second, there is

no single-thread equivalent of the multi-step operational transition relation. The multi-step

relation only exists in the multi-thread case, to allow for interleaving of multiple threads3.

Multi-thread transitions. In an n-thread LVF program, there are n single-thread programs

executing at once. As we assume sequential consistency, each transition of the n-thread

program is a legal single-thread transition (given by −
−−−→s −) in one of the n threads,

leaving the other n − 1 programs unchanged. We can model n-thread programs as lists4

3In Views, this interleaving is explicit in the labelled transition relation itself.
4Modelling as lists helps us fold n-thread preconditions and postconditions into single views later on.
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<α> α−−→s skip

(a) Atom

P
α̂−−→s P

′

P ; Q
α̂−−→s P

′ ; Q

(b) Seq-step

skip ; P
id−−→s P

(c) Seq-skip

(P)* id−−→s P ; (P)*

(d) Iter-step

(P)* id−−→s skip

(e) Iter-skip

P + Q
id−−→s P

(f) Ndt-left

P + Q
id−−→s Q

(g) Ndt-right

Figure 5.3: Single-thread labelled transitions.

of length n, fixing Tid as {0, . . . ,n− 1 }. To model updates to one thread, we can use a list
override operator l[i 7→ x], meaning ‘l, but with the value at index i replaced with x’5.

The multi-thread transition system is straightforward. Every time we can update the

t’th thread’s program with a transition labelled l, we derive a transition labelled (l, t) that

updates the list of n programs with the corresponding list override.

Definition 5.13. The multi-thread labelled transition system −
(−,−)−−−−→m − is the system

defined by the rule:

t ∈ Tid c[t]
α̂−−→s c

′

c
(α̂,t)−−−−→m c[t 7→ c ′]

Local state as thread-partitioned shared state. Before we can define the multi-step opera-

tional transition relation, which gives the semantics of multi-thread LVF programs executing

to completion, we need a model for the state of the abstract machine that executes such

programs. As we’ve previously only dealt with the state visible to a single thread (one local

state and one shared state), we need a way to encode the existence of n local states, each

assigned to its corresponding thread as above.

Like the GLL, the model for machine states is a product between ‘true’ shared states (as

we saw in µStarling), and maps from unique, linear thread identifiers (that is, Tid) to local

states. The latter forms a parallel n-list of local sets L.

Definition 5.14. An LVF machine state (l,σ) : list L× S is an abstract representation of

the state of a multi-threaded machine executing an n-thread LVF program, consisting

of a list of n local states and a single shared state.

5See Definition A.5 for a more formal definition.
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Multi-step operational transition relation. We can now define a multi-step relation similar

to that given for Views. This, intuitively, is the reflexive transitive closure of −
(−,−)−−−−→m −,

with accounting for the initial and final state of the abstract machine.

Each time we take a step in thread t with label α̂, we use the local semantic relation

(Definition 5.2) to work out all possible resulting values of the shared state and t’s local

state. For each resulting machine state — the combination of the shared state, and the initial

local state overridden with the new value for t—, we produce a transition.

Definition 5.15. The multi-step operational transition relation −
∗−→m − is the system

defined by the rules:

c, (l,σ) ∗−→m c, (l,σ)

c
(α̂,t)−−−−→m c′ ((l[t],σ), (l ′,σ ′)) ∈ Jα̂Kid

lo

c, (l,σ) ∗−→m c′, (l[t 7→ l ′],σ ′)

5.3 Soundness of the LVF

For the LVF to be useful, we must show that it gives us the expected guarantees about

programs. Like Views (but unlike the GLL), our target is proving safety properties — spe-

cifically, of multi-threaded LVF programs. Intuitively, this means that, from any machine

state that satisfies a given precondition, any machine state we can reach where the program

has terminated (that is, all threads are at skip) satisfies a given postcondition.

From local-view lists to single views

To formulate the safety judgement, we must be able to map the multi-threaded program’s pre-

conditions and postconditions — local-view lists — into state predicates. As LVF reification

functions accept only single, non-local views, we must reduce the former to the latter.

First, we reduce all local views to non-local views. As the views and local states are

parallel lists, we can apply each thread’s view to the thread’s local state in a zipping operation.

We call said operation— from lists of local views, and local states, to lists of non-local views

— Vlc (view list combine). We define Vlc formally in Definition A.11.

Next,wemust combine the lists of non-local views into single views in away that captures

the multi-thread program’s sum precondition and postcondition. Recall the Views parallel
composition rule (from Figure 2.4):

` {p1} c1 {q1} ` {p2} c2 {q2}

` {p1 •p2} c1 ‖ c2 {q1 •q2}

To safely enter a two-thread composition, we must establish the •-join of their precon-

ditions; to leave, we establish their postconditions’ •-join. The same principle holds for

n-thread LVF programs. To join together view lists, we use a right fold[58] of •with base

case ε; we represent this with a new iterated view join operator � 6, and formally define it

in Definition A.12. As • is commutative and associative, the order of thread views does not

6It is not sufficient to satisfy each thread’s conditions in isolation: the join may introduce restrictions on
how the threads interact and interfere with each other.
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matter, and we can rearrange the iterated join of two7 or more threads into the form v •�(v),

where v is an arbitrary thread’s view and v holds all other threads’ views. This means that,

when a thread updates its view, we can frame over all other threads’ views.

Let us now adapt the CVF’s safety set-up for multi-thread LVF programs.

Definition 5.16. A list c of thread programs is safe with respect to parallel local view

lists p of preconditions and q of postconditions when:

∀l, l ′,σ,σ ′.σ ∈ b�(Vlc(p, l))c∧(c, l,σ) ∗−→m (skip, l ′,σ ′) =⇒ σ ′ ∈ b�(Vlc(q, l ′))c

(Coq: ltsound in Starling.Views.Frameworks.LVF.Soundness)

Soundness of the program logic

Showing soundness of the program logic involves investigating each rule in Figure 5.2 in

turn. The approach below involves, for most rules, first showing soundness of an explicit

version of the rule. We can then derive the implicit rule’s soundness by stepping inside the

quantification over local states l, applying Corollary 5.14.1 to each LVF action judgement in

the hypotheses, and instantiating the hypotheses with lwhere necessary.

Skip rule. The semantic judgement over skip holds if, and only if, the given precondition

entails the given postcondition:

∀l ′. Sig↑lo(slo), (id, l, l ′)  {p(l)}{q(l ′)}
Skip-ex

slo 
l
lo {p} skip {q}

Lemma 5.3. Skip-ex is sound in both directions.

(Coq: safe_skip_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.3.1. Skip is sound in both directions.

(Coq: safe_skip in Starling.Views.Frameworks.LVF.SafetyRules)

Atomic rule. The atomic rule lifts action judgements to semantic judgements over programs

that perform the respective atomic action, then terminate (as long as the action did not

diverge). As with the skip rule, it works in both directions:

∀l ′. Sig↑lo(slo), (α, l, l ′)  {p(l)}{q(l ′)}
Atomic-ex

slo 
l
lo {p} <α> {q}

Lemma 5.4. Atomic-ex is sound in both directions. (Coq: safe_atomic_ex in Starling.Views.Frame-

works.LVF.SafetyRules)

Corollary 5.4.1.Atomic is sound in both directions. (Coq: safe_atomic in Starling.Views.Frame-

works.LVF.SafetyRules)

7One or more threads, if we have a views monoid.
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Iteration. There is no sound explicit iteration rule (and so only an implicit rule exists). To

see why, suppose our local state is an integer k, and we prove slo 
5
lo {p} <k = k+1> {p}.

From this, again starting from 5, can we prove the iteration (slo 
5
lo {p} (<k=k+1>)* {p}) ?

We cannot always do this. For example, let the meaning of p(k) be k < 10. We can see

that the original judgement holds: k = 5, k ′ = k+1 = 6, and both are less than 10. However,

the iteration can (nondeterministically) expand to an arbitrary number of increments to

k, which can result in k > 10. We must show that the original program satisfies its loop

invariant p regardless of local state — hence, the implicit rule.8

Lemma 5.5. Iter is sound. (Coq: safe_loop in Starling.Views.Frameworks.LVF.SafetyRules)

Sequence. The sequence rule has a semi-explicit form: the proof of the first program can

name an initial state, but the proof of the second must not. This is because the initial local

state of the second program is the final local state of the first, and the LVF has no means to

narrow the set of possible final states further than L.

slo 
l
lo {p} c1 {r} slo lo {r} c2 {q}

Seq-ex
slo 

l
lo {p} c1;c2 {q}

Lemma 5.6. Seq-ex is sound. (Coq: safe_seq_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.6.1. Seq is sound. (Coq: safe_seq in Starling.Views.Frameworks.LVF.SafetyRules)

Single-atomic sequence. In the special case where the first program in a sequential compos-

ition is a lone atomic, we can consider just the local states that can result from the atomic’s

semantics as initial states for the second program.

slo 
l
lo {p} <α> {r} ∀l ′. l α

 l ′ =⇒ slo 
l ′

lo {r} c {q}
Atomic-seq

slo 
l
lo {p} <α>;c {q}

Lemma 5.7.Atomic-seq is sound.

(Coq: safe_seq_atom_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Nondeterministic choice. The explicit nondeterministic choice rule is straightforward:

slo 
l
lo {p} c1 {q} slo 

l
lo {p} c2 {q}

Choice-ex
slo 

l
lo {p} c1+c2 {q}

Lemma 5.8. Choice-ex is sound. (Coq: safe_ndt_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.8.1. Choice is sound. (Coq: safe_ndt in Starling.Views.Frameworks.LVF.SafetyRules)

8We would, instead, require just that {p} c {p} holds for all local states reachable from the initial state, but
this would complicate the logic.
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Frame rules. The LVF frame rule, like its CVF equivalent, is a special case of the generalised

frame rule. We can, then, use a sketch of that rule (given below) to justify the frame rule.

f locally f-step preserving slo 
l
lo {p} c {q}

GenFrame-ex
slo 

l
lo {f(p)} c {f(q)}

Definition 5.20 defines local f-step preservation — this delay in definition occurs as the

definition depends on encoding the LVF into the CVF.

Lemma 5.9.GenFrame-ex is sound.

(Coq: safe_genframe_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.9.1.GenFrame is sound.

(Coq: safe_genframe in Starling.Views.Frameworks.LVF.SafetyRules)

We can now prove the frame rule. The rule comes from the •-closure property on action

judgements, and as such is limited to framing over constant view functions.

slo 
l
lo {p} c {q}

Frame-ex
slo 

l
lo {p • const(v)} c {q • const(v)}

Lemma 5.10. Frame-ex is sound. (Coq: safe_frame_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.10.1. Frame is sound. (Coq: safe_frame in Starling.Views.Frameworks.LVF.SafetyRules)

Consequence. We give consequence as separate precondition (p) and postcondition (q)

rules. This is because we can derive the combined rule from applying both rules in sequence.

We start with the p-rule, as it is more straightforward to prove.

In the explicit form of the p-rule, the view entailment that strengthens the precondition

need only hold for the initial local state.

Sig↑lo(slo), (id, l, l)  {p(l)}{p ′(l)} slo 
l
lo {p

′} c {q}
Cons-p-ex

slo 
l
lo {p} c {q}

Lemma 5.11. Cons-p-ex is sound.

(Coq: safe_cons_p_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.11.1. Cons-p is sound. (Coq: safe_cons_p in Starling.Views.Frameworks.LVF.SafetyRules)

The q-rule is weaker, and harder to prove, as it involves the end of a program rather than

the beginning. Again, we cannot work out the final local state of c, so the explicit form of the

q-rule must consider all local states.

∀l ′.Sig↑lo(slo), (id, l ′, l ′)  {q ′(l ′)}{q(l ′)} slo 
l
lo {p} c {q ′}

Cons-q-ex
slo 

l
lo {p} c {q}

Lemma 5.12. Cons-q-ex is sound.

(Coq: safe_cons_q_ex in Starling.Views.Frameworks.LVF.SafetyRules)

Corollary 5.12.1. Cons-q is sound. (Coq: safe_cons_q in Starling.Views.Frameworks.LVF.SafetyRules)
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Soundness. The main LVF soundness property is as follows:

Theorem 5.13. Let p, c, q be parallel lists giving the preconditions, single-thread programs,

and postconditions of a LVF multi-threaded program. Then, for any slo, slo loM {p} c {q}

implies the safety of cwith respect to p and q, using slo’s reifier and local semantics.

(Coq:msafe_ltsound in Starling.Views.Frameworks.LVF.Soundness)

5.4 Embedding the LVF in the CVF

The previous sections presented the LVF as a separate logic framework from the CVF. To use

LVF with Starling (which depends on an axiom-sound CVF instance backing each frontend),

we must either retarget large parts of the theory we built in Chapters 3 and 4 atop the LVF,

or build a formal link between the LVF and CVF.

We can encode LVF instances as CVF instances, if we use the intuition that local state

is a layer of parametrisation over shared-state views and actions. The core idea is to map

each LVF axiom to the set of all possible instantiations of that axiom with local pre–and

post-states, replacing each label with a triple of label and local states.

Definition 5.17. The local axiom lift Ax↑lo lifts each LVF axiom to a set of CVF axioms by

explicitly quantifying over local state and moving it into the atomic action:

Ax↑lo : AHoare(L→V,A)↔AHoare(V, (Aid × L× L))

Ax↑lo
def
=


(
〈p〉 α̂ 〈q〉 7→ 〈p(l)〉 (α̂, l, l ′)

〈
q(l ′)

〉) ∣∣∣∣∣∣∣∣
p,q ∈ L→V

α̂ ∈ Aid

l, l ′ ∈ L


There are some subtleties here. First, id maps not to id, but to the action 〈id, l, l ′〉. This is

because the semantics of id requires that l ′ = l, which we cannot model without having the

local states available. Second, one LVF axiom can map to an unbounded set of CVF axioms:

this makes this encoding unsuitable as a way to automate LVF proofs. Third, by moving the

local post-state l ′ into the atomic action, we appear to move it into a negative position in the

triple. In fact, this copy of the post-state exists just to restrict the shared state transformer

that the atomic action produces (see Definition 5.18); the view q(l ′) carries the post-state’s

effect on the final view into the positive position of the triple.

Semantics

For the above idea to work, we must give a shared-state semantics to triples (α̂, l, l ′) that

reflects the local-state semantics of α̂ when moving from local state l to local state l ′. Since

we quantify over all possible local states, not just those mapped by α̂’s local semantics, we

must make sure the encoded semantics diverges properly when it meets invalid local states.

We do so through applying a local semantics lift, or Sem↑
lo, to the LVF semantics.
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Definition 5.18. The local semantics lift Sem↑
lo lifts a local semantics to a shared-state

encoding by moving the local states into the atomic label:

Sem↑
lo : (A→((L× S)↔(L× S)))→((Aid × L× L)→S→P(S))

Sem↑
lo(J−Klo)((α, l, l

′))(σ)
def
= {σ ′ | ((l,σ), (l ′,σ ′)) ∈ JαKid

lo }

(Coq: lsem_erase in Starling.Views.Frameworks.LVF.Signatures)

Signatures

Using the local semantics erase, and the encoding of local state in atomic labels, we can lift

local signatures to CVF signatures (as in Definition 2.13).

Definition 5.19. The local signature lift Sig↑lo lifts local signatures to CVF signatures:

Sig↑lo : LSig(V,A,L,S)→Sig(V, (A× L× L),S)

Sig↑lo((•,≡, b−c, J−Klo))
def
=(•,≡, b−c,Sem↑

lo(J−Klo))

(Coq: lsig_erase in Starling.Views.Frameworks.LVF.Signatures)

Action judgement

We can relate the LVF action judgement over a local signature to the CVF action judgement

over its lifting. This mapping introduces an explicit quantification over the local pre–and

post-state, treating each as part of the CVF atomic label.

Lemma 5.14.We can relate the LVF and CVF Views–Hoare judgements as follows:

slo, α̂ LVFH {p}{q} ⇐⇒ ∀l, l ′.Sig↑lo(slo), (α̂, l, l
′) VFH {p(l)}{q(l ′)}

Appendix B.3 gives a proof.

Corollary 5.14.1. The LVF and CVF action judgements relate as follows:

slo, α̂ lo {p}{q} ⇐⇒ ∀l, l ′.Sig↑lo(slo), (α̂, l, l
′)  {p(l)}{q(l ′)}

Proof sketch. Apply Lemma 5.14 to both sides of the judgement, rewriting (p • const(v))(l)
to p(l) • v, and similarly for q and l ′, in the RHS.

This encoding introduces a potentially unbounded pair of quantifiers in the atomic la-

bel, and, therefore, axiom soundness. Proof rule templates targeting the LVF through this

encoding, then, must take care to handle these quantifiers in an automation-friendly manner.

Generalised framing

The CVF framing operation λx. x ∗ v is an f-step preserving function [42, Prop. M]: a function

f : V→V where action judgement closes over applying f to p and q. The CVF frame rule

generalises to any such f, and this lets us encode non-trivial framing properties such as that
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of rely/guarantee. We can define a similar idea for LVF, which backs the earlier definition of

generalised framing. The LVF f-step preservation must consider the same local variables on

both sides of the closure, so the definition uses the CVF action-judgement encoding.

Definition 5.20. A function f : (L→V)→(L→V) is locally f-step preserving if:

∀l, l ′ : L, p,q : L→V, α̂ : Aid.

Sig↑lo(s), (α̂, l, l
′)  {p(l)}{q(l ′)} =⇒ Sig↑lo(s), (α̂, l, l

′)  {f(p)(l)}{f(q)(l ′)}

Instances

We can encode LVF instances in the CVF using the signature and axiom lifts.

Definition 5.21. The local instance lift Inst↑lo lifts LVF instances to views instances:

Inst↑lo : LInst(V,A,L,S)→ Inst(V, (A× L× L),S)

Inst↑lo(slo, Tlo))
def
=

(
Sig↑lo(slo),

{
〈p〉 α̂ 〈q〉

∣∣∣∣∣ ∃
〈
p ′〉 α̂ ′ 〈q ′〉 ∈ Tlo.

(
〈
p ′〉 α̂ ′ 〈q ′〉 , 〈p〉 α̂ 〈q〉) ∈ Ax↑lo

})

(Coq: instance_lvf_to_cvf in Starling.Views.Frameworks.LVF.Instances)

Lemma 5.15. A CVF encoding of an LVF instance is axiom-sound if, and only if, the original

instance was locally axiom sound.

5.5 Local states in backends

Let us now port Starling to the LVF. As we can encode the LVF in the CVF, much of the

theory carries over with a small amount of encoding, but we do need to make some changes

to both Starling backends and frontends to accommodate local-state reasoning.

This section discusses how to quantify over local state in backends. Not doing so (in

other words, quantifying in the frontend) limits us in practice to a finite, enumerable set of

local states — the same limit we hit if we encode our LVF axioms as CVF axioms.

Local state in local context

We can add local-state quantification by encoding it into LCtx. Such an encoding is required

because local state applies to backend conditions in a different manner from shared state:

while we distribute the shared pre-state to theweakest precondition and the shared post-state

to the goal, we send both local states to the weakest precondition. Specifically, local pre-state

goes to the original precondition, and post-state to the original postcondition.

Let us define LCtx as the triple L× L× LCtx ′, where LCtx ′ is some other local context

set (or ∅). Here, the first local state represents the pre-state, and the second represents the

post-state. We rely on the frontend to use the correct state when expanding each view and

action. Defining the local-state encoding like this makes adding local state on top of an

existing backend set-up straightforward.
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Functions as propositions and relations

If we have backends over shared state only, we want to be able to make them work with local

state without changing their expression languages to add native support. Specifically, given

the appropriate local state up-front, we should be able to reduce backend expressions over

local state to expressions that only mention shared state.

We can model the above encoding by lifting the backend’s expressions to functions with

local state as their domain. In fact, we can lift expressions over any local context LCtx to

a larger local context LCtx ′ × LCtx by turning them into functions with domain LCtx ′. The

lifting is pointwise, and similar to how we lift views to functions:

truePr
def
= const(truePr) e1 ∧Pr e2

def
= λxl. e1(xl)∧Pr e2(xl)

JeKPr(xg)((x
′
l, xl))

def
= Je(x ′

l)KPr(xg)(x
′
l) idRl

def
= const(idRl)

∅Rl
def
= const(∅Rl) JeKRl(xg)((x

′
l, xl))

def
= Je(x ′

l)KRl(xg)(x
′
l)

(Coq: Starling.Backend.Transformers.Function)

Erasing functions in backend conditions

Representing local-state parametrisation as predicate and relation functions lets us reduce

sets of functional backend conditions to sets of backend conditions over their codomains in

a straightforward manner. We call this reduction the function erasure, or FErase.

Definition 5.22. Given a set X of backend verification conditions over functions, a veri-

fication condition is in FErase(X) if, and only if, we can reach it by applying some valid

local context to a condition in X:

FErase(X) def= { 〈〈w(xl)〉〉 c(xl) 〈〈g(xl)〉〉 | 〈〈w〉〉 c 〈〈g〉〉 ∈ X, xl ∈ LCtx }

(Coq: fun_erase in Starling.Backend.Transformers.Function)

Lemma 5.16. A backend condition satisfies the verification-condition Hoare judgement if,

and only if, its erasure also satisfies it for all local contexts:

(xg, c) EVFH {w}{g} ⇐⇒ ∀xl. (xg, c(xl)) EVFH {w(xl)}{g(xl)}

(Coq: bvhoare_fun in Starling.Backend.Transformers.Function)

Corollary 5.16.1. A setX of functional backend conditions satisfies the verification-condition

Hoare judgement if, and only if, each condition in its function erasure also satisfies it:(
∃xg. ∀ 〈〈w〉〉 c 〈〈g〉〉 ∈ X.

(xg, c) EVFH {w}{g}

)
⇐⇒

(
∃xg. ∀ 〈〈w〉〉 c 〈〈g〉〉 ∈ FErase(X).

(xg, c) EVFH {w}{g}

)

(Coq: bvhoare_fun_erase in Starling.Backend.Transformers.Function)
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Since we build the erased set with an existential quantifier over local contexts, the set

is neither guaranteed bounded nor guaranteed finite. This poses a problem with solving a

functional system by solving its erasure: if we rely on sending each erased condition to the

solver individually to get a result for the program, our decision process will not terminate.

As a result, we will avoid the function erasure in the frontends we build in Chapter 6.

5.6 loStarling

Having laid the groundwork for a local-state extension to µStarling in the previous sections,

we now build the extension itself. loStarling uses the same outline decomposition technique

as µStarling, but adds local state and support for using local state to choose between views,

and targets the local backends we built in § 5.5.

Using proof outlines with the LVF

When frontends appeared in § 4.2, they formed the middle of a pipeline from outline decom-

positions (§ 3.2) to backends. To keep this pipeline when using the LVF, we must make sure

that we decompose valid LVF outlines into valid triple sets. As the LVF and program logics

are almost identical, the original decomposition rules still work, though we must prove

them sound in the new framework. As the LVF logic sits atop the single-thread semantic

judgement, each outline will represent the program of one thread: to prove a multi-thread

program, we prove multiple outlines in the same context, and use Corollary 5.2.1 to derive a

multi-thread result.

A problem with re-using our existing outline decomposition is that, as some valid CVF

programs are invalid LVF programs, not all valid CVF outlines are valid LVF outlines. Spe-

cifically, we forbid parallel compositions, and the frame rule only works for constant frames.

We can solve this with a filtering predicate.

Definition 5.23. An outline is LVF-compatible if its assertions are view functions, it has

no parallel compositions, and each frame view is equivalent to const(x) for some x.

We can extract LVF single-thread programs from such outlines. Combined with accessor

notation (Definition 3.1), this lets us state the soundness result we need to use the outlines

to represent LVF program proofs.

Definition 5.24. The LVF program extraction LVFExtract(o), over LVF compatible o, is:

LVFExtract({p} skip {q}) = skip

LVFExtract({p} 〈α〉 {q}) = <α>

LVFExtract({p} frame v in (o) {q}) = LVFExtract(o)

LVFExtract({p} (o)∗ {q}) = (LVFExtract(o))*

LVFExtract({p} o1;o2 {q}) = LVFExtract(o1) ; LVFExtract(o2)

LVFExtract({p} o1 + o2 {q}) = LVFExtract(o1) + LVFExtract(o2)
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Theorem 5.17. For all local-axiom-sound instances il, and outlines o over il’s views, local

states and atomic actions, oflat(o) ⊆ il.T =⇒ il lo {o.p} LVFExtract(o) {o.q}.

To show this, we can use similar decomposition reasoning to that we used for normal

outlines, now targeting the program logic in § 5.1.

Defining loStarling’s frontend

The definition of loStarling’s frontend uses the same high-level approach as that of µStarling

in § 4.4, but with some differences:

• atomic Hoare triples now have assertions from L→V;

• backend conditions now come from the function-lifted expression languages from § 5.5.

To use a µStarling-compatible solver with loStarling, we must take the function erasure

of the generated set, which is not bounded in general;

• syntactic atomic definers now return function-lifted relation expressions (view definers

still define shared-state views, and so use normal proposition expressions);

• to make sure id is the identity on local states, it has a different translation.

Fixing identity. In µStarling, to lift the atomic definer ASDef over labels, we returned idRl for

id, andASDef’s definition otherwise.Wemight try to do the same for loStarling, returning the

function-lifted version of idRl. Unfortunately, as we defined this as const(idRl), the resulting

expression ignores local states and considers only whether the shared states are equal. This

means that id would behave as havoc over local states.

We could fix this by redefining the function lifting to return ∅Rl when the local state has

changed, and idRl otherwise. This would force us to specialise the lifting to work only when

using the local context for local states, and would not scale if we added more local context

later on. Instead, let us build a new lifting function.

Definition 5.25. Given an syntactic atomic definer ASDef over (L× L)→ERl, ASDefidlo is:

ASDefidlo(α̂)((l, l ′))
def
=


idRl α̂ = id ∧ l = l ′

∅Rl α̂ = id ∧ l 6= l ′

ASDef(α)((l, l ′)) otherwise

(Coq: ls_label_avd in Starling.Logics.LoStarling)

As the built expression depends on whether l = l ′, that equality must be decidable.

Backend decomposition. As before, each verification condition represents an atomic Hoare

triple and a goal view. The backend decomposition mirrors its µStarling counterpart:
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Definition 5.26. The function Dlo
g translates a local atomic Hoare triple, given a goal

view g, into a backend condition:

Dlo
g : AHoare(L→V,A)→V→VConds((L× L)→EPr, (L× L)→ERl)

Dlo
g(〈p〉 α̂ 〈q〉)(g)

def
=〈〈

λ(l, l ′). sdReify(d)(p(l) •(g \q(l ′)))
〉〉

ASDefidlo(α̂) 〈〈const(sdDef(d)(g))〉〉

(Coq: ls_decomp_ni_single in Starling.Logics.LoStarling)

If we take Dlo
g for every defining (shared-state) view g, we can build a bounded set of

function-lifted backend conditions.

Definition 5.27. The function Dlo
b translates an atomic Hoare triple into a set of backend

conditions that cover both sequential safety and non-interference:

Dlo
b(〈p〉 α̂ 〈q〉)

def
=

{ 〈〈λ(l, _). sdReify(d)(p(l))〉〉 ASDefidlo(α̂)
〈〈
λ(_, l ′). sdReify(d)(q(l ′))

〉〉
}

∪ {Dlo
g(〈p〉 α̂ 〈q〉)(g) | ∃e.d = d1 ++〈(g, e)〉++d2 }

(Coq: ls_decomp in Starling.Logics.LoStarling)

Views instances. In µStarling, each flattened outline’s atomic triples formed the axioms

of its underlying views instance. While the loStarling outline flattening gives us valid LVF

axioms, and we could directly build a LVF instance over them, the template-based approach

only works with CVF axioms and instances. To use it without modification, we can first build

CVF instances, then show that they correspond to the LVF instances we would have built.

As before, we can build templates from backend decompositions using fTemp. The
loStarling templates use Ax↑lo (Definition 5.17) to map the incoming triples to CVF axioms.

Definition 5.28. The loStarling template, given a global context xg and the appropriate

definers, is fTemp(Dlo
b)(Ax↑lo)(xg).

CVF instances generated using this template are axiom sound, by connection to the

defining-views template. Through the link between CVF and LVF instances (Lemma 5.15),

this shows that valid loStarling proofs correspond to local-axiom-sound LVF instances.

Lemma 5.18. The loStarling template yields subsets of the defining-views template.

Corollary 5.18.1. The loStarling template produces axiom-sound CVF instances.

Corollary 5.18.2. The loStarling template produces local-axiom-sound LVF instances.

(The Coq development does not have direct mechanisations of the above results, but does

have results for the simplified form over viewsmonoids, in which the backend decomposition

omits the local safety verification condition: (Coq: ls_template_ni in Starling.Logics.LoStarling), (Coq:

ls_strengthens_defining_ni in Starling.Logics.LoStarling).)
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As with µStarling, we can build outline rules by combining the flattening, frontend, and

backend. These rules entail the LVF single-thread semantic judgement on their respective

outlines, by the Views logic; the definition of flattening (§ 3.2); and frontend soundness.

5.7 Atomicity of local actions

The LVF assumes that all primitive actions are atomic (and sequentially consistent): this

assumption is unrealistic for actions that only modify local state. Atomic, sequentially

consistent actions need expensive memory fences, making them unpalatable for operations

that are not visible to other threads. In practice, the default semantics of primitive actions

in languages such as C is non-atomic, as the assumption is that most state is local.

This section explores some options for reasoning about non-atomic local actions in the

LVF. These results do not need a specific action set or semantics, but domake some high-level

assumptions. This makes the guarantees available weak, but generalisable.

Local actions and view preservation

Let us formally define what it means for actions9 to be local. Local actions have no effect on

shared state. We also forbid local actions from depending on shared-state observations: if a

local actionmaps l to l ′ when the state is σ, it must do so when the state is σ ′, too. In practice,

programs can load shared-state dependencies into local state using atomic actions.

Definition 5.29. An atomic action α is local if, and only if:

∀l, l ′ : L, σ,σ ′ : S. ((l,σ), (l ′,σ ′)) ∈ JαKlo

=⇒ σ = σ ′ ∧ (∀σ ′′ : S, ((l,σ ′′), (l ′,σ ′′)) ∈ JαKlo)

(Coq: is_local_cmd in Starling.Views.Frameworks.LVF.Atomicity)

Local actions preserve any shared-state view held before the action executes. We can

capture this in a series of inference rules:

α local LPreserve-vh
Sig↑lo(slo), (α, l, l ′) VFH {v}{v}

α local LPreserve-act
Sig↑lo(slo), (α, l, l ′)  {p(l)}{const(p(l))(l ′)}

α local LPreserve-ex
slo 

l
lo {p} <α> {const(p(l))}

Lemma 5.19. LPreserve-vh is sound.

(Coq: local_cmd_view_stability_hoare in Starling.Views.Frameworks.LVF.Atomicity)

We can validate the other rules using LPreserve-vh, Atomic-ex, and the structure

of action judgements.
9id is inherently local — it has no effect on state whatsoever — so we only consider actions.
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Corollary 5.19.1. LPreserve-act is sound.

(Coq: local_cmd_view_stability in Starling.Views.Frameworks.LVF.Atomicity)

Corollary 5.19.2. LPreserve-ex is sound.

Atomic compositions

Adding native non-atomic local-state actions to the LVF would complicate it. Instead, we

observe that, in many programming models, non-atomic local actions are sequential compos-

itions of atomic local actions. For example, we can rewrite the action x = y++ as x = y;

y++: these two actions are more likely to be atomic in a given model than the original.

Definition 5.30. An action α composes actions α1 and α2 (denoted α ∼ (α1;α2)) if:

α ∼ (α1;α2)
def⇐⇒∀l1, l3 : L, s1, s3 : S.

((l1, s1), (l3, s3)) ∈ JαKlo ⇐⇒

(
∃l2 : L, s2 : S. ((l1, s1), (l2, s2)) ∈ Jα1Klo

∧ ((l2, s2), (l3, s3)) ∈ Jα2Klo

)

(Coq: atomic_comp in Starling.Views.Frameworks.LVF.Atomicity)

Atomic expansion rules

When an action is an atomic composition of a local action and another action (local or not), we

can in certain cases use proofs over that action to infer proofs over sequential compositions

of the other two. The inference rules, and the restrictions they place on their actions, differ

depending on the local action’s position in the composition. The most straightforward case

is when the local action comes first or both actions are local:

α ∼ (α1;α2) α1 local slo 
l
lo {p} <α> {q}

LAtom-l-ex
slo 

l
lo {p} <α1>;<α2> {q}

Lemma 5.20. LAtom-l-ex is sound.

(Coq: local_pre_cmd_ex in Starling.Views.Frameworks.LVF.Atomicity)

When the local action comes after a non-local action,wemustmake stronger assumptions;

we need to predict the local state after the action given the local state before the action. As

such, we must be able to model the action as a deterministic, total function f : L→L.

Definition 5.31. Anactionα is deterministic, denoted det(α), if itmaps a local and shared

pre-state to at most one corresponding pair of local and shared post-state:

det(α) def⇐⇒ ∀l, l ′, l ′′ : L, σ,σ ′,σ ′′ : S. ((l,σ), (l ′,σ ′)) ∈ JαKlo

∧ ((l,σ), (l ′′,σ ′′)) ∈ JαKlo

=⇒ l ′ = l ′′ ∧ σ ′ = σ ′′

(Coq: is_deterministic in Starling.Views.Frameworks.LVF.Atomicity)
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Definition 5.32. A function pair (f,g)models an actionα, denoted mdl(α, f,g), ifαmaps

each pair of local and shared state to the projection of the local state through f and

shared state through g:

mdl(α, f,g) def⇐⇒ ∀l : L, σ : S. ((l,σ), (f(l),g(σ))) ∈ JαKlo

(Coq: is_fun in Starling.Views.Frameworks.LVF.Atomicity)

When an action is both deterministic and modelled by a function pair, every state pair

(l,σ)maps to (f(l),g(σ)), without divergence or nondeterminism. This lets us predict exactly

which local state we need for the intermediate view.

Lemma 5.21. If (f, id), for some f, models a deterministic action, that action is local. (Coq:

is_det_fun_local in Starling.Views.Frameworks.LVF.Atomicity)

With these components, we can introduce an inference rule:

α ∼ (α1;α2) det(α2) mdl(α2, f, id) slo 
l
lo {p} <α> {q}

LAtom-r-ex
slo 

l
lo {p} <α1>;<α2> {q}

Lemma 5.22. LAtom-r-ex is sound.

(Coq: local_post_cmd_ex in Starling.Views.Frameworks.LVF.Atomicity)

5.8 Summary

This chapter introduced the Local Views Framework (LVF), a modified version of the CVF

that adds native support for thread-local state. This framework adapts ideas from Khyzha et
al.’s general linearisability logic, recasting them in Views’s safety-properties setting. We

can embed the core of the LVF in the CVF, letting us re-use large parts of meta-theory.

The chapter then used the LVF to produce loStarling. This frontend showed that we can,

in theory, extend logics like µStarling with local-state reasoning. Using loStarling in practice,

though, is difficult. As it returns backend conditions over arbitrary functions from local

state, we must either use a solver that can accept any such function, or use function erasure

to generate a potentially unbounded set of conditions over shared state. Both options limit

the usefulness of the approach, ruling out combinations of backend and local state model.

Another approach is to limit the set of local-state functions we can take as assertions.

If we choose a set where we can express each function’s body in the backend expression

languages, we can expand and eliminate the functions as we build the backend conditions.

This gives us a bounded set of conditions that quantify over local state, but no longer contain

uninterpreted functions. We take this approach in the next chapter, building specialised

frontends that balance expressivity with automation-friendliness.
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Chapter 6

A Practical Starling Frontend

While loStarling adds sound local-state reasoning to µStarling, it loses the guarantee that a

bounded proof outline maps to a bounded set of backend verification conditions. This makes

it unsuitable for the form of automation we aim to support.

To move forwards, we can restrict local-state parametrisation to forms that preserve

boundedness. To start, let us allow two forms. First, local observations can guard views: the

view only participates in the assertion when the local guard is true. Second, views can take

expressions over local state as parameters. A third form— iterated views, a form of counter

abstraction — appears at the end. Starlingtool uses iterated views, but there is not yet a full

formalisation of them.

The frontends seen so far (µStarling and loStarling) are liberal in the views semigroups,

backends, and other parameters they accept. While this makes them adaptable, it means

that there is no guaranteed uniformity between proofs. The lack of structure in the frontend

parameters also limits the frontend-level optimisations and extensions we can make.

This chapter poses a frontend, gStarling,whichmoves towards a practical automatic proof

system by constraining frontend parameters and local-state parametrisation. In specific:

• unlike the previous frontends, gStarling assumes that we can express the shared state

model as a total map from variables to values, and that we can parametrise predicate

and relation expressions by the pre–and post-states of those variables;

• the new frontend specialises loStarling’s view functions into forms that we can trans-

late into bounded condition sets. View functions now use Concurrent Abstract Predic-
ates [46] style view atoms: indivisible tokens parametrised by local-state expressions.

The above restrictions on local-state parametrisation now apply;

• assertions are now syntactic view expressions that map indirectly to atom-based views.

We can refine this expression language without changing the underlying view model;

• the gStarling frontend uses a richer form of syntactic definer, based on a general idea

of view patterns that match against view expressions.

Some of the changes just refine loStarling; others, such as pattern-based definers, need

deep logic changes. As such, we would need to prove gStarling’s soundness afresh; doing so

formally is, for now, left to future work.
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6.1 Practical views semigroups

Our new frontend will need stronger laws over views algebras than the existing classes give

us. These laws form a new class, which this dissertation calls separating views semigroups.
The class of separating views semigroups has a large set of requirements, so showing that

the class is inhabited is important.We show that the natural numbers form a separating views

semigroup. While N is unlikely to be a practical views algebra on its own, this result lets us

derive a more useful algebra: multisets, the free commutative monoid. We use multisets as

the core views algebra in the logic underlying Starlingtool.

Separating views semigroups

Though our existing views algebra classes covers a large amount of operations and laws —

sufficient enough to build µStarling and loStarling —, the developments we make in this

chapter need even more structure from views algebras. We will need:

• the converse of the adjoint law of Definition 3.8;

• cancellativity, but strengthened tov: when we have two ordered views with a common

part, we can remove that part and still preserve order;

• distribution of \ over •: subtracting c from a •b is the same as subtracting c from a,

then subtracting any remainder from b.

These properties do not form a cohesive unit, unlike the other classes of algebra, but

similar properties appear in various treatments of separation algebras. Cancellativity, in

the standard mathematical sense, is an assumed property of Calcagno et al.’s separation
algebras [41]. Cao et al.’s version of separation logic [59] assumes that separating implication

(in our system, flipped \) is a right adjoint in both directions. (The last property is less

relatable to other formulations, but is similar in spirit to Cao et al.’s magic wand as frame
rules.) As such, we refer to views semigroups with the above properties as separating.

Definition 6.1. A separating views semigroup (V, •, \,v,≡) is a subtractive views semig-

roup that obeys the following extra laws:

(a \b)v c =⇒ avb • c (v-residual-backwards)

av (a •b) \b (v-cancellativity)

(a •b) \ c≡ (a \ c) • (b \(c \a)) (\-distribution)

(Coq: FullView in Starling.Views.Classes)

While the above cancellativity property looks different from the intuitive description we

gave above, the two forms are actually equivalent.

Lemma 6.1. ∀a,b. av(a •b) \b ⇐⇒ ∀a,b, c. (a • cvb • c) =⇒ (avb).

This new class adds various properties that were strikingly absent from the subtractive

class. By rearranging the backwards adjoint property, we get a maximality result about \:
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Lemma 6.2. ∀a,b. avb •(a \b). (Coq: inc_sub_dot in Starling.Views.Classes)

Lemma 6.3. Signatures over separating semigroups are adjoint compatible (Definition 3.9).

(Coq: adjoint_compat_FullView in Starling.ProofRules)

Natural numbers as a separating views monoid

Natural numbers forma separating viewsmonoid.While such amonoid is of little use by itself,

we can later use it to define a monoid over multisets. Each result below has a corresponding

proof in Appendix B.2 and in the Coq mechanisation (Coq: Starling.Views.Instances.Nat).

For natural numbers, we just define equivalence as= (Leibniz equality), which is trivially

reflexive, commutative, and associative.

Lemma 6.4. (N,=) is a setoid.

Addition (+) is our chosen join operator for naturals. Addition is associative, commutat-

ive, and has compatibility with =, as needed.

Lemma 6.5. (N,+,=) is a views semigroup.

As the unit of +, 0 has the right property (0+ x = x) to be a views monoid unit.

Lemma 6.6. (N, 0,+,=) is a views monoid.

We can definev on naturals as6. This gives us the expected relationship with =, and

also makes 0 the least element of our monoid.

Lemma 6.7. (N, 0,+,6,=) is an ordered views semigroup.

When defining subtraction over naturals, we must be careful: the − operator does not

give us natural numbers when its right operand exceeds its left (5− 6 = −1). To be a legal

subtractive views semigroup, the subtraction operator we choose must close over N, so we

instead use truncated subtraction ·− (also known as monus)1.

Truncated subtraction has arithmetically unusual properties. For instance, (a+b) − c =

(a − c) + b, but (a + b) ·− c = (a ·− c) + (b ·− (c ·− a)). This suggests that N might be a

separating views semigroup, and, indeed, we can show that it is.

Lemma 6.8. (N,+, ·−,6,=) is an subtractive, separating views semigroup.

Multisets as a separating views monoid

When discussing how to prove Peterson (Figure 3.2), we used multisets of program locations

as our views algebra. Multisets are the free commutative monoid, and we can show that they

also form a subtractive, ordered (decidably so, if finite) separating views monoid. As such,

they form a flexible, if minimalist, views algebra.

Let us define a multisetm ∈ bag T as a total function from each item in a carrier set T to

the number of times it occurs. Any item not in the multiset maps to 0. (For completeness,

we give a formal definition in Definition A.3).

1For completeness, Definition A.4 gives a formal definition.
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This representation has a straightforward argument for being a separating views monoid:

we can function-lift (Lemma 5.1) the N algebra2. The pointwise lift λx,y.∀t : T . x(t) = y(t)

relates multisets x and y provided that they contain each item in T the same number of times.

Let us denote this form of multiset equivalence using the operator≡m.

Lemma 6.9. For all T , (bag T ,≡m) is a setoid.

Lifting + gives us an operator producing a multiset with every item appearing as many

times as the sum of its appearances in both parents — the multiset sum ]m.

Lemma 6.10. For all T , (bag T ,]m,≡m) is a views semigroup.

Lifting 0 gives us a multiset unit ∅m. This multiset has every item in T exactly zero times.

Lemma 6.11. For all T , (bag T , ∅m,]m,≡m) is a views monoid.

Lifting6 gives us a multiset subset operator⊆m. For multisets x and y over T , x⊆m y if,

and only if, each element in T appears no more often in x than in y.

Lemma 6.12. For all T , (bag T ,]m,⊆m,≡m) is an ordered views semigroup.

Lifting ·− gives us an operator we callmultiset minus, or \m. The multisetm1 \m m2 maps

every item in T to the N-closed subtraction of its cardinality inm1 by its cardinality inm2.

Intuitively, we take items away fromm1 until either none remain or the amount we have

taken is equal to the amount present inm2.

Lemma 6.13. For all T , (bag T ,]m, \m,⊆m,≡m) is a subtractive, separating semigroup.

Multiset finiteness and ordering decidability

It is not possible to decide⊆m or≡m in general. This is because, for any multisetm, the set

{ x ∈ T | 0 < m(x) } of elements present inm is bounded only by T , which is itself unbounded.

This set is precisely thatwhich a decision proceduremust enumerate, and somust be bounded.
The fact thatm(T)may be∞ also poses issues for arithmetic-based decision procedures.

We need a decidable ⊆m to build gStarling-based tooling3. As a result, the rest of this

dissertation makes implicit assumptions that multiset views have a finite set of present

elements, and that the multiplicity of each element is also finite. In practice, multiset views

track bounded quantities of bounded varieties of assertions, and these assumptions hold.

A refinement of multisets-as-functions that enforces these finiteness assumptions is to

modelmultisets as lists, ignoring element order. (This is howStarlingtool, and parts of theCoq

mechanisation, model multisets.) We can then decide inclusion by (say) checking whether

the subtraction is empty ((x \y) = 〈〉), and equivalence by checking in both directions.

2The Coq development does not do this, but does show that its instances are compatible with the ones we
would have built from doing so.

3See also Appendix A.2.
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6.2 View expressions

As we saw in § 4.2, the assertion algebra of Starling outlines need not be the view algebra of

its justification. This lets us convert from LVF views to CVF views as in loStarling, but also

lets us refine the assertion algebra to be more abstract and syntactic. We can then:

• embed syntactic sugar and complex structures into syntactic views, without affecting

the underlying semigroup;

• make changes to the logic’s underlying semigroup without changing the syntax of the

high-level assertions;

• abstract away more of the underlying Starling logical machinery, providing a more

user-friendly interface.

We can explore someof these ideas using viewexpressions: syntactic tree-representations4

of applications of view operations (•, \, and ε) over a set Atom of primitive view elements,

or atoms. Each atom itself maps to a concrete view.

Definition 6.2. The set VExpr(Atom) of view expressions, where Atom is an atom set, is

the set of all productions of the grammar below:

〈vexpr〉 ::= ‘1’ unit

| ‘(@’ 〈atom〉 ‘)’ atom

| ‘(•’ 〈vexpr〉 〈vexpr〉 ‘)’ join

| ‘(\’ 〈vexpr〉 〈vexpr〉 ‘)’ part

We can adapt view expressions to non-subtractive views monoids that provided that we

delete the part production. We can support non-monoidal semigroups if we remove unit. For
simplicity we only consider the subtractive monoidal case in this section; we give limited

support for other cases in the Coq development.

Atom sets, languages, and interpretation

The choice of atom set defines the interface between consumers of a view-expression proof

outline and the underlying reasoning system. Atom sets can be high-level, representing

abstract ideas like ‘the lock is locked’, or low-level, representing concrete facts such as ‘thread

A is at program counter 1’. Atom sets need not map to indivisible information fragments;

the sets this dissertation covers do. This flexibility comes from atom sets’ loose coupling to

views (which, in turn, loosely couple to state observations).

Example. The line numbers in our Peterson assertions (Figure 3.2) form an atom setAtom =

{A1,A2,A3,A4,B1,B2,B3,B4 }. Using this set directly, valid view expressions include:

1, (• 1 1), (• (• (@A1) (@B4)) (\ (@A3) 1))

4Though view expressions are S-expressions here, this is not required; Chapter 7 uses a more C-like notation.
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Abstract predicates. For consistency across proofs, the atom sets that this and further

chapters use derive from Dinsdale-Young et al.’s concurrent abstract predicates [46]. In these

sets, each atom is, or contains, a pair (t,a): t is a tag representing an abstract shared-state

observation5; a is an argument list of local-state expressions parametrising the observation.

Definition 6.3. An abstract predicate, in Starling, is a member of the set:

APred(Tag)(EVal)
def
=(Tag× list EVal)

where Tag is some tag set. (Coq: LooseAPred in Starling.Frontend.APred.Core)

Abstract predicates appear below as S-expressions of the form (t a0 a1 . . . ). For ex-
ample, the various Peterson atoms, having no parameters, become (A1), (A2), and so on.

Interpreting atoms. We must be able to interpret atom sets in terms of a low-level views

semigroup for them to have practical use. As atom sets can have multiple interpretations

and target multiple semigroups, we can port proof outlines over high-level atom sets across

reasoning systems. We call a pair of atom set and one such interpretation an atom language.

Definition 6.4. An atom language is a triple (Atom,V, r) of atom set, underlying view

set, and interpretation function (of type Atom→V).

(Coq: AtomLanguage in Starling.Views.Expr.AtomLanguage)

A possible atom language for Peterson is (APred(Atom)(∅), bag Atom, λ(x). *x+).

Interpreting view expressions. To lift r over view expressions, we define a new function.

Definition 6.5. The view expression interpretation veinterp, parametrised over an atom

language (Atom,V, r), is:

veinterp : (Atom→V)→VExpr(Atom)→V

veinterp(r)(1) = ε

veinterp(r)((@a)) = r(a)

veinterp(r)((• a b)) = veinterp(r)(a) • veinterp(r)(b)

veinterp(r)((\ a b)) = veinterp(r)(a) \ veinterp(r)(b)

(Coq: interpret_sm in Starling.Views.Expr.Type)

View expressions as views semigroups

Views expressions form views semigroups by projection into the underlying semigroup. The

projection resembles a flipped version of the functional lift of Lemma 5.1:

5Unlike normal abstract predicates, tags in Starling abstract predicates need not be strings; later on, we use
composite types, such as lists, as tags.
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Lemma 6.14. If V forms a views algebra, we can derive a views algebra on X→V, for any X,

by projection through veinterp(r):

x •y def
= (• x y)

x \y
def
= (\ x y)

ε
def
= 1

x≡y
def
= veinterp(r)(x)≡ veinterp(r)(y)

xvy
def
= veinterp(r)(x)v veinterp(r)(y)

(Coq: Starling.Views.Transformers.Function)

We can derive the algebra laws by unfolding the view interpretations then applying the

same laws on the underlying algebra. Formal proofs exist in Coq and Appendix B.2.

Replacing atoms in view expressions

The main advantage of view expressions over concrete views is that they give us a regular

structure over which we can perform atom transformations. This helps us to add syntactic

abstractions on top of the underlying views algebra. The free-form structure of view expres-

sions means that we can substitute both atoms and arbitrary view expression trees for atoms:

schemes for both appear below.

Definition 6.6. The view bind function vbind maps a function f over every atom in a view

expression. The function fmust return view expressions over some atom set; this need

not be the original atom set.

vbind : (Atom→VExpr(Atom ′))→VExpr(Atom)→VExpr(Atom ′)

vbind(f)( 1) def
= 1

vbind(f)( (@a)) def
= f(a)

vbind(f)((• x y)) def
= (• vbind(f)(x) vbind(f)(f))

vbind(f)((\ x y)) def
= (\ vbind(f)(x) vbind(f)(f))

(Coq: vbind in Starling.Views.Expr.Instances)

The view map vmap behaves as vbind, but takes a function that returns single atoms:

vmap : (Atom→Atom ′)→VExpr(Atom)→VExpr(Atom ′)

vmap(f) def
= vbind((λa. (@a)) ◦ f)

(Coq: vmap in Starling.Views.Expr.Instances)

The function vbind makes view expressions an example of the functional programming

abstraction known as a monad; similarly, vmap makes view expressions a functor [60].

Lemma 6.15. (V, vmap) is a functor: that is, vmap obeys the functor laws [60][4.2]:

vmap(id) = id vmap(f ◦ g) = vmap(f) ◦ vmap(g)
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Lemma 6.16. (V, λx. (@x), vbind) is a monad with (V, vmap) as the underlying functor: that

is, vbind obeys the monad laws [60][4.5]:

vbind( k)( (@a)) = k(a)

vbind(λx. (@x))( m) = m

vbind( k)(vbind(h)(m)) = vbind(λx. vbind(k)(h(x)))(m)

vmap( f)( m) = vbind((λx. (@x)) ◦ f)(m)

Let us adopt theHaskell notation for functormapping andmonadic binding: let fmap(f)(x)
refer to any mapping operation that obeys the functor laws (for example, vbind(f)(x)), and
x>>= f refer to any binding operation that obeys the monad laws (for example, vbind(f)(x)).
Similarly, return(x) can stand for any valid monadic return (in the above case, λx. (@x)).

Equivalence-preserving transformations. Using view expressions as a functor or monad pre-

serves equivalence provided that the given function does. As we define equivalence in terms

of expressions’ interpretations, this extends to functions that change the atom language but

preserve the underlying views set.

Lemma 6.17. Given the atom languages (Atom,V, f) and (Atom ′,V,g), and a function h :

Atom→VExpr(Atom ′), binding preserves equivalence over V provided that h does:

∀a : Atom. f(a)≡ veinterp(g)(h(a)) ⇐⇒ ∀m : VExpr(Atom). m≡m>>=h

Corollary 6.17.1. Given the atom languages (Atom,V, f) and (Atom ′,V,g), and a function

h : Atom→Atom ′, mapping preserves equivalence over V provided that h does:

∀a : Atom. f(a)≡g(h(a)) ⇐⇒ ∀m : VExpr(Atom). m≡ fmap(h)(m)

These results let us perform ‘syntactic sugar’ transformationswherewe reduce a complex

atom set to a simpler atom set while preserving the underlying views.

Normalising view expressions

View expressions, as symbolic trees of operations on atoms, do not map bijectively to equival-

ence classes of underlying views. In fact, we can represent the same view as infinitely many

expressions of varying complexity. For example, (\ a (• b c)) and (\ (\ a b) c) represent
equivalent views in a subtractive, separating semigroup. This complicates matching view

expressions against definitions later on.

Ideally, we would reduce view expressions to a normal formwhere each view equivalence

class has a unique expression. The associative, commutative nature of views makes this

hard: for example, should the conjunction of a and b be (• a b) or (• b a)? We would need

to make strong assumptions about the atom and view sets, such as the existence of total

orderings between atoms, to reach a single normal form.

We can make view expressions more regular, if not fully normalised, by arranging them

into the form (• (@a) (• . . . (• (@z) 1))). This form resembles an S-expression cons list;
as a result, we call such expressions list-normalised. We can manipulate such expressions

using recursive procedures similar to those used on cons lists in Lisp-style languages.
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Definition 6.7. A view expression is list-normalised provided that it is 1, or is (• (@a) x)
where x is list-normalised. We denote list-normalised expressions with the suffix ‘l’ in

type signatures. Let (� a b . . . z)benotational shorthand for (• a (• b . . . (• z 1))).

List normalisation algorithm. To reduce view expressions to list-normalised form, we must

eliminate all part operations.We do so by symbolically computing the subtraction in terms of

the atom language. This means we cannot provide a fully generic list-normalising algorithm;

we instead build an example algorithm and revisit it as we change our atom language.

Our example list-normalisation algorithm, lnorm, works over atom languages where

subtraction occurs atom-by-atom with each subtraction being ‘all-or-nothing’. The set of

program locations we used for Peterson’s algorithm is one such language; the languages we

use in gStarling and Starling are not. We will therefore need to refine lnorm as we proceed.

To allow this refinement, we define lnorm in four stages. Each stage makes more assump-

tions about the atom language; we need only swap out stages with assumptions that no

longer hold. The stages have the following names and type signatures:

lnorm : VExpr(Atom) → VExpr(Atom)l

lnormB : VExpr(Atom)l →VExpr(Atom)l → VExpr(Atom)l

lnormA : VExpr(Atom)l →Atom → VExpr(Atom)l

lnormP : Atom →Atom → ((Atom ∪ {⊥ })× (Atom ∪ {⊥ }))

Subtracting atoms from atoms. lnormP(m)(s) computes subtraction of an atom s from an

atomm. It returns a pair (m ′, s ′) of optional atoms:m ′ represents any remainder after the

subtraction; s ′ represents the atom to subtract from any forthcoming atom. Here, we assume

an atom language where two atoms cancel-out provided that they are equal.

lnormP(m)(s)
def
=

(⊥,⊥) m = s

(m, s) m 6= s

This definition may come as an anti-climax given lnormP’s signature. This is deliberate: it

lets us swap lnormP with a more complex definition if the atom language needs one.

Subtracting atoms from expressions. We can lift lnormP (or any function with the same

signature and properties) to subtract atoms from list-normalised expressions.

lnormA(1)(s) def
= 1

lnormA((• (@a) x))(s) def
= recur(lnormP(a, s))(x)

where recur((⊥, s ′))(x) def
= lnormA(x)(s ′)

recur((a ′, s ′))(x) def
= (• (@a ′) lnormA(x)(s ′))

The function lnormA returns list-normalised expressions by construction.
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Subtracting expressions from expressions. The function lnormB lifts lnormA to accept sub-

trahends that are full expressions, using a rule that holds for all separating views semigroups:

Lemma 6.18. a \(b • c) ≡ (a \b) \ c. (Coq: sub_by_dot in Starling.Views.Classes)

We can define lnormB as a recursion on the subtrahend.

lnormB(m)(1) def
= m

lnormB(m)((• (@a) s ′)) def
= lnormB(lnormA(m)(a))(s ′)

The finished algorithm. We now define lnorm. We start with a view expression v and no

assumptions about its structure; our first goal is to reduce v to either a list-normalised

expression or a parting of two list-normalised expressions.

As we can use lnorm recursively to reduce sub-expressions, most of its complexity arises

in the handling of joins and parts. Applying • directly to two list-normalised expressions

does not give a list-normalised result in general. Instead, we build an auxiliary function to

append one list-normalised expression to another.

Definition 6.8. The list-normalised append function lapp is:

lapp : VExpr(Atom)l→VExpr(Atom)l→VExpr(Atom)l

lapp(1)(y) def
= y lapp((• (@a) x))(y) def

= (• (@a) lapp(x)(y))

(Coq: lapp in Starling.Views.Expr.List)

The last stage arranges themost primitive expressions into list-normal form, then replaces

joins with lapp and parts with lnormB:

lnorm(1) def
= 1

lnorm((@a)) def
= (� (@a))

lnorm((• x y)) def
= lapp(lnorm(x))(lnorm(y))

lnorm((\ x y)) def
= lnormB(lnorm(x))(lnorm(y))

As the two base cases produce list-normalised, and the two inductive cases preserve list

normalisation, the result of lnorm is list-normalised.

Summary

This section introduced view expressions as an abstract notation for views. View expressions

let us manipulate views in regular ways. We can, for example, apply a reduction across the

atoms in an expression, and use the equivalence lemmas to reason about the semantics

preservation of such operations. View expressions abstract over the underlying view algebra

in a way that preserves said algebra’s laws and operations.

One issue with views expressions is that their free-form nature complicates matching

against patterns. To remedy this, we gave an example algorithm for partially normalising
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views expressions. The result — list-normalised form— is not strictly a normal form, but is

easier to work with. We modify the algorithm as we introduce increasingly elaborate atom

schemes in later chapters, but the general structure persists.

The next section discusses an abstract notation for predicate expressions. This gives us

the same advantages as view expressions: regularity across proofs and backends; functor

and monad operations; and a straightforward approach to substitution and syntactic sugar.

6.3 Structured propositions

While § 4.1 dismissed the idea of a single backend interface across all solvers, a level of uni-

formity is useful in practice. If we abstract over the exact syntax of each solver’s expressions,

we can make our proofs portable between solvers (to a degree). In addition, most solvers

support a common set of theories: for example, variable assignment, linear integer arithmetic,

and propositional logic. By assuming these features (and, so, solvers that supports them),

we can make the logic and tooling easier to use, and more efficient, when applying them.

This section introduces structured propositions: an abstract syntax for proposition ex-

pressions. Structured propositions represent propositions over a set of abstract values in
much the same way that view expressions range over abstract atoms. While these values can

be primitive, later sections refine them to be expressions over shared and local variables.

The structured proposition language aims to capture the common operations of the

solvers we can use with Starlingtool. It includes the operations of the proposition expression

class; to support the advanced frontends that later sections build, it also depends on the

operations of several new, expanded expression classes, which we encounter below.

To support the variety of solver operations that are not captured in an expression class,

structured propositions have support for custom operators over both propositions and val-

ues. We can assume certain distributivity laws over those operations, but nothing more.

Sometimes, proofs may depend on features of a backend that are unavailable through cus-

tom operators; to support this, structured propositions allow symbols: arbitrary pieces of

value-parametrised syntax that the backend can expand into concrete propositions.

This section does not construct an equivalent structured abstraction over relation ex-

pressions. Instead, we can model relations as two-state structured propositions.

Extending proposition expressions

This section extends the proposition expression class in three stages. First, it extends propos-

ition expressions to support falsehood, implication, and negation; these let us move guards

from atoms into the backend conditions. The next two stages further extend proposition

expressions to support equality reasoning over some abstract value set; we can then fill that

set parameter with a new class of value expressions, parametrised over variables.

Implying proposition expressions. The proposition expression class in Definition 4.4 is in-

tentionally minimal, requiring only truth and conjunction. Let us extend the class to support

some features that gStarling needs.
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Definition 6.9. An implying proposition expression language is a proposition expression

language with expression falsePr : EPr and operation⇒Pr : EPr→EPr→EPr where:

JfalsePrKPr(xg)(xl) = ∅ (false-empty)

J(e1⇒Pr e2)∧Pr e1KPr(xg)(xl) ⊆ Je2KPr(xg)(xl)

(modus ponens)

∀s. (Je1KPr(xg)(xl)(s) =⇒ Je2KPr(xg)(xl)(s)) =⇒ Je1⇒Pr e2KPr(xg)(xl)(s)

(conditional proof)

We can derive negation from these operations in a similar way to systems like Coq:

Definition 6.10. On implying proposition expression languages, the negation operation
¬Pr is a derived operation with the following definition:

¬Pr : EPr→EPr ¬Pr(x)
def
= x⇒Pr falsePr

Alphabetised proposition expressions. We can extend proposition expressions to carry vari-

ables from some alphabet. The requirements on such an alphabet are loose: we need only

assume that we can compare two variables for equality (forming a proposition expression),

and that we can traverse a proposition expression to rewrite all variables inside equality

comparisons. Let us first focus on shared state only; a later section considers local variables.

While the previous classes of proposition expression targeted any valid state set, alpha-
betised proposition expressions assume that the state set contains partial6 functions from

some abstract alphabet T to some concrete value setVal. Alphabetised proposition expression

languages assume a particular Val, but not a particular T ; they form a second-order type

where each instantiation for a given T forms an implying proposition expression language.

Definition 6.11. An alphabetised proposition expression language EVcPr(Val), for a value

set Val, is a family ∀T .EPr(T) of implying proposition expression languages such that:

• the state model used for J−KPr is the set of partial functions T 9Val;

• there exists an operation =Pr : T→ T→EPr(T), for all T , that represents an equal-

ity comparison between values in some value set T ;

• EPr is a legal functor.

The following laws must also hold:

σ ∈ Jx=Pr yKPr(xg)(xl) ⇐⇒ x ∈ dom σ∧ y ∈ dom σ∧ σ(x) ≡ σ(y)

σ ∈ Jfmap(f)(x)KPr(xg)(xl) ⇐⇒ (σ ◦ f) ∈ JxKPr(xg)(xl)

6Partiality lets us model the possibility of ill-formed members of T ; for instance, T could be a set of pointer
expressions that may be ill-typed, reference illegal locations, and so on.
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Finally, the functor instance must satisfy the following distributivity equivalences:

fmap(f)(truePr) ≡ truePr

fmap(f)(falsePr) ≡ falsePr

fmap(f)(x∧Pr y) ≡ fmap(f)(x)∧Pr fmap(f)(y)

fmap(f)(x⇒Pr y) ≡ fmap(f)(x)⇒Pr fmap(f)(y)

fmap(f)(x=Pr y) ≡ f(x)=Pr f(y)

(Coq: EqPredEx in Starling.Backend.Alpha.Classes)

Values in Val need not be expressible in the backend theory. This means that we can, for

example, model a heap as a ‘heap variable’, despite heaps being intractable to express.

Value expressions

While EVcPr lets us reference values (or variables) in propositions, it gives us no obvious

way to embed constants or complex expressions. We can capture these with another class of

expressions: value expressions. Like alphabetised proposition expressions, value expressions

have an interpretation supplied by the backend solver; this time, the interpretation accepts

total variable-to-value functions, and returns values from that function’s codomain.

Value expressions forma second-order type over alphabets, as do alphabetised proposition

expressions. This time, alphabets are sets of valid variable names in the backend theory.

Definition 6.12. A variable set Var, ranged over by x, contains all possible denotations

for variables in the shared-state model.

The variable set is likely to be infinite; it contains every single possible variable identifier

the backend can understand. The alphabet we choose as the domain for the value expressions

(and, therefore, the domain of the state model) will be a finite subset7 of Val. Let Σ range

over any such alphabets formed in this way.

Definition 6.13. A value expression language ∀Var.EVal(Val)(Var) is a second-order type

where, for all Var:

• we have an interpretation J−KVal with type EVal(Var)xg→ xl→(Var→Val)9Val;

• we have a bottom expression⊥, symbolising inconsistency;

• EVal is a legal functor and monad over Var, with fmap corresponding to variable

rewriting and >>= corresponding to variable substitution; the monadic return,

which we call var, corresponds to a variable reference expression.

7The Coq development represents alphabets using dependent subtypes of Var, in which lists model finite
subsets. Whenever set operations over alphabets appear, the Coq equivalent uses similar list operations.
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The following laws must also hold:

Jfmap(f)(x)KVal(xg)(xl)(σ) ≡ JxKVal(xg)(xl)(σ ◦ f)

σ ≡ σ ′ =⇒ JxKVal(xg)(xl)(σ)

JvarKVal(x)(xg)(xl)(σ) ≡ σ(x)

(Coq: ValEx in Starling.Backend.Alpha.Classes)

Inside alphabetised expressions. Consider inserting value expressions into alphabetised pro-

position expressions. Doing so directly, by instantiating EVcPr(EVal(Σ)), works, but gives us

a state model over EVal(Σ)9Val. As J−KVal has type EVal(Var)xg→ xl→(Var→Val)9Val,
we can regain the Var→Val state model, but must build a new proposition language to do so.

Definition 6.14. The chained proposition language over an alphabetised proposition lan-

guage (∀T .EVcPr(Val)(T)) and value expression language (∀Σ.EVal(Val)(Σ)) is the lan-
guage formed by the set (∀Σ.EVcPr(Val)(EVal(Val)(Σ))) and the interpretation:

JxKchainedPr (xg)(xl)(σ)
def
= JxKPr(xg)(xl)(λev. JevKVal(xg)(xl)(σ))

Local variables

To use our new expression classes in local-state logics such as gStarling, we must handle

local variables correctly. Doing so needs a few changes from the above set-up.

Expressible values. A soundness argument for gStarling will rely on being able to erase

local variables in abstract predicates by substituting their final values. As these final values

will eventually form part of shared-state propositions over value expressions, they must be

expressible in the value expression language. Instead of building a new type (or subtype of

Val) for these values, we can model them as value expressions with no variables8.

Definition 6.15. The expressible value set of a language EVal(Val) is the set EVal(Val)(∅).

We can lift expressible values into expressions over any variable set Var: formally, we

can do this with fmap(∅) (using ∅ as an uninhabited function ∅→Var). We can also use

J−KVal to lift expressible values into ordinary values; we can use this to lift local states

Σlo→EVal(Val)(∅) into the form Σlo→Val.

Combining states. The variable-function approach tomodelling states gives us a straightfor-

ward way of modelling the combination and separation of states, provided that the alphabets

are disjoint. Removing state is straightforward: we can use a function overΣ1 in any situation

where we need one over Σ1 \ Σ2 by dropping all mappings of variables in Σ2.

Combining state needs more work, but is also tractable. Suppose we have a state function

s1, over a variable set Σ1, and need to frame onto another function s2 over Σ2. Provided that

8Technically, this is an over-approximation; it permits complex expressions such as 12+ (42/3.14).
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s1 and s2 produce equivalent results where their domains overlap9, the state join SJoin(s1, s2)
models the resulting composed state.

Definition 6.16. The state join SJoin : (Σ1→Val)→(Σ2→Val)→(Σ1 ∪ Σ2→Val) is:

SJoin(σ1)(σ2)(x)
def
=

σ1(x) x ∈ Σ1

σ2(x) x ∈ Σ2

To join a shared state σ : Σs→Val and a local state l : Σlo→EVal(Val)(∅), we can use

SJoin(σ)(J−KVal ◦ l). We can then pass the combined state to interpretation functions.

Marked proposition expressions as relation expressions

We now have a class of proposition expressions that let us traverse variables (in expression

equalities, at least) and substitute new variables, or arbitrary expressions, for each.

Itwould be useful to have similar functionality for relation expressions. To do so,we could

build a class of value-parametrised relational expressions with broadly the same operations

and requirements. Instead, to avoid duplication between the two types of expressions, we

repurpose proposition expressions as relation expressions. While this set-up is not suitable

for all backends, backends that receive input as single propositions to begin with (such as

Z3) work well with it. This unification of proposition and relation expression languages takes

inspiration from the Unifying Theories of Programming [61, Def. 2.0.1].

Variablemarking. Touse one-state proposition expressions as two-state relation expressions,

we can treat a pair of pre–and post-states as one single state. As our states are maps from a

variable set Var, the result is effectively a map from variable and position in time to value.

We can use a convention similar to the UTP [61, §1.1], marking each variable with its time

position (pre-state or post-state) and using primes to denote the post-state.

Definition 6.17. Given a variable set Var, the marked variable set VarM is the set of

pairs ({Pre,Post } × Var). Given an alphabet Σ ⊆ Var, the marked alphabet ΣM is the

corresponding subset of VarM.

Where it is unambiguous to do so, let any primed identifier v ′ : VarM stand for

(Post, v), and any unprimed identifier v : VarM stand for (Pre, v).

Assuming that the variable alphabet does not change mid-program, we can build the

combined state function as follows:

σM = { ((Pre, v),σ(v)) | v ∈ dom σ } ∪ { ((Post, v),σ ′(v)) | v ∈ dom σ ′ }

Relational identity of proposition expressions. Using proposition expressions as relation ex-

pressions requires us to implement idRl and ∅Rl. The empty relation is straightforward to

encode as a proposition in implying proposition languages: it is just falsePr. (Completing the

lattice, truePr relates any pre-state to any post-state and so encodes havoc.)
9The easiest way to enforce this is by requiring Σ1 ∩ Σ2 = ∅.
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For idRl, we need a proposition that is true provided that the post-state σ ′ equals the

pre-state σ. We cannot assert σ = σ ′ directly in the proposition language, but can emit

equality checks for each variable in dom σ. If we assume the domain does not change, these

equalities cover the whole state. This gives us a recursive definition for idRl:

id∅Rl
def
= truePr id{a }]ΣM

Rl
def
= idΣ

M

Rl ∧Pr (a=Pr a
′)

(Coq: gen_frame in Starling.Backend.Alpha.PredAsRel)

Framing. To define an atomic or local action using proposition-as-relation expressions, we

must make sure that it preserves all of the local and shared state it does not affect. Doing so

manually scales poorly: ifwe addnewvariables,wemust change all of the action definitions to

add preservation. Instead, wewant a function that frames proposition-as-relation expressions

over ΣM
1 -expressions to preserve all variables in ΣM

2 .

A framing function is valid if it converts a proposition-as-relation expression over ΣM
1

to one over a larger alphabet ΣM
1 ] ΣM

2 such that any verification condition holding over the

original expression still holds after conversion. At the same time, any valid precondition p

over Σ2 must also be a valid postcondition. In other words:

c EVFH {w}{g} =⇒ Frame(c) EVFH {w∧Pr p}{g∧Pr p}

Unlike normal proposition expressions, we cannot just lift the expression to the wider

variable domain. The resulting expression would behave as truePr (full non-determinism)

for the framed variables. We can instead take the expression, compute idRl over the new

variables, lift each to the union of their domains, and conjoin them.

Definition 6.18. The relational frame rframe adds equalities to a proposition-as-relation

expression to expand its variable domain, behaving as the identity on the new variables:

rframe(ΣM
2 ⊆ VarM) : E

ΣM
1

Pr → E
ΣM

1 ]ΣM
2

Pr rframe(ΣM
2 )(e)

def
= e∧

ΣM
1 ]ΣM

2
Pr idΣ

M
2

Rl

(Coq: add_frame in Starling.Backend.Alpha.PredAsRel)

Theorem 6.19. rframe is a valid framing function, according to the definition above. (Coq:

framing_preserves_bvhoare in Starling.Backend.Alpha.PredAsRel)

Non-determinism. When describing atomic actions as two-state propositions, we can en-

code non-determinismas ambiguity in the post-state. For example, a command thatmay fetch-
and-increment butmay instead decrement may look like (x ′ = y∧ (y ′ = y−1∨y ′ = y+1)).

We can model ‘havoc’ — full non-determinism over a variable v’s post-state, and so the

loss of any information about its value — by omitting v ′ from the relation expression. As

with the UTP, we can model abort —non-determinism over a full shared state — with the

Boolean expression true. Similarly, we can model miracle — the hypothetical command that

satisfies any specification asked of it — with false.
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The grammar of structured propositions

This dissertation gives structured propositions a S-expression-based grammar based on

SMT-LIB’s core syntax [62]. To let us extend structured propositions, the grammar provides

extension points. These permit custom unary and binary operators on both propositions

and values, as well as symbols: a generic method for quoting pieces of the backend’s own

proposition syntax, parametrised over values (or value expressions).

While symbols are not the focus here, they become important for proving heap-based

algorithms in § 8.1. Symbols are the only part of a structured proposition that may depend

on the solver’s global context; this becomes useful later on.

Definition 6.19. The structured propositions set SPred(Val), where Val is a value set (or

value expression set), is the set of all productions of the grammar below:

〈SPred〉 ::= true | false literals

| (and 〈SPred〉 〈SPred〉 ) conjunction

| (=> 〈SPred〉 〈SPred〉 ) implication

| (= 〈Val〉 〈Val〉 ) equality

| (cvbop 〈cvbop〉 〈Val〉 〈Val〉 ) custom value binary

| (cebop 〈cebop〉 〈SPred〉 〈SPred〉 ) custom proposition binary

| (cvmop 〈cvmop〉 〈Val〉 ) custom value unary

| (cemop 〈cemop〉 〈SPred〉 ) custom proposition unary

| (sym 〈symbol〉 〈Val〉* ) symbols

In examples where we assume a particular theory, and therefore a particular set of

custom operators, we can elide the c…op prefix for concision.

As a functor. We can map over the values in a structured proposition. Unlike proposition

languages in general, where we only assume that fmap reaches values inside equalities, fmap
on structured propositions is guaranteed to reach all values in the expression (except any

values embedded within a symbol’s syntax).

Lemma 6.20. SPred(Val) forms a legal functor with the following fmap:

fmap(f)( true) = true

fmap(f)( false) = false

fmap(f)( (and x y)) = (and (fmap(f)(x)) (fmap(f)(y)))

fmap(f)( (=> x y)) = (=> (fmap(f)(x)) (fmap(f)(y)))

fmap(f)( (cvbop o x y)) = (cvbop o (f(x)) (f(y)))

fmap(f)( (cebop o x y)) = (cebop o (fmap(f)(x)) (fmap(f)(y)))

fmap(f)( (cvmop o x)) = (cvmop o (f(x)))

fmap(f)( (cemop o x)) = (cemop o (fmap(f)(x)))

fmap(f)((sym s x1 . . . xn)) = (sym s (f(x1)) . . . (f(xn)))
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Asproposition expressions. Structured propositions have productions for truePr (true), falsePr

(false),∧Pr ((and - -)),⇒Pr ((=> - -)), and =Pr ((= - -)). If structured propositions abstract

over a member of one of our previously-defined language classes, they inhabit that class too.

Encoding heap reasoning

The discussion of Definition 6.11 claimed that the state-variables approach would support

heap-based reasoning. Let us expand on this claim.

Heap values and heap variables. To encode a heap, we can assume that Val contains a poten-

tially infinite set of heap values. The exact nature of these values depends on the backend.

We can then set aside a variable denotation in Σ to reference the heap; the discussion below

refers to this variable as heap. As backend results always imply those of the verification-

condition Hoare judgement, which quantifies over all valid state functions that satisfy the

weakest-precondition and command, valid heap backends must quantify over all possible

assignments for heap, and so all heaps.

Heap equality and framing. As heap appears in Σ, the backend theory must allow us to

express the comparison (= heap heap), and the implementation of idRl for propositions-as-

relations generates the proposition (= heap heap’). At first, this seems intractable, as it asks

us to compare heaps for equality. In practice, so long as we only allow one heap variable to

exist, this comparison can only take one of three dischargeable forms:

• reflexivity (= heap heap), whichwe canmodel as truewithout further heap inspection;

• comparison (= heap x)with some other variable x; since only one heap variable exists,

the comparison is ill-typed, and we can model it as false;

• framing (= heap heap’).

The translation of the last case depends on the backend solver. If the backend heap is

a discrete variable with explicit framing, we can emit the equality as normal. Where heap

framing is implicit (at each atomic action, the absence of any heap operation is equivalent to

the preservation of the heap) we can model the equality specially, for example as true or an
empty command. As framing is the only case where a comparison between two heap variables

with lexically distinct variable names is valid, detecting this case is straightforward.

Rationale. This work models the heap as a special variable both for historical reasons (the

first versions of Starling worked only with discrete variables) and because parts of the theory

are more straightforward if we assume discrete variables throughout. Adding the heap as a

first-class theory concept remains future work.

This approach works, framing clumsiness aside, for several reasons. We make few as-

sumptions about how variables fit into proposition expressions, and can easily work around

them for heaps. We assume that heap accesses are atomic and sequentially consistent; each
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verification condition can assume exclusive access over the heap. By assuming only one heap

variable exists, any appearance of heap equalities in practice has a well-defined meaning.

6.4 Guarded views

To build an automation-friendly LVF logic, we must restrict how local variables affect the

choice of shared state view (as we saw in § 5.6). We must forbid local variables from influen-

cing the choice of which defining views appear inside a view— unless they do so in ways

we can offload to the backend solver. The abstract predicate atom scheme (Definition 6.3),

along with the value expressions in § 6.3, lets us embed local observations into views as

parameters to the underlying definitions.

This section proposes an additional way to embed local-state reasoning. Guarded views
are view assertions containing atoms annotated with a predicate over the local state. The

predicates form guard conditions over their atoms: when the predicate is false, the atom

logically disappears from the view and no longer participates in reification or definition. By

lifting the guards into implications in the underlying theory, and propagating them across

reification, we can delay the evaluation of which atoms appear in each assertion until the

backend solver can quantify over the local variables on which the guards depend.

Guard expressions

We can model guards as proposition expressions targeting L as the state set. Guard expres-

sions cannot use any global or local context beside the current local state. The meta-theory

justification of proofs over guarded views assumes that we can reduce a guarded view ex-

pression to its underlying views monoid; this means we must be able to decide the truth of

each guard.

Definition 6.20. A guard expression language EGd is a proposition expression set with

both context sets fixed to the singleton set { tt }, and the property:

∀e : EGd, l : L. JeKPr(tt)(tt)(l) ∨ ¬JeKPr(tt)(tt)(l)

The set of guard expressions is, typically, a subset of the normal proposition expression

set. The guard-compatible subset must only reference local state, and be independent of any

global or local context. When using structural proposition expressions, as in gStarling, we

can guarantee this by forbidding shared-variable references and symbols.

Guarded atoms

Guard expressions attach to individual atoms. This lets us enable or disable the atoms

depending on local-state observations.

Definition 6.21. For all Atom, the guarded atom set AtomG is the set (EGd × Atom).
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If we can expand unguarded atoms into views, we can expand guarded atoms into the

same view algebra — provided that the view set is L→V for some V. This captures the

guards’ local-state dependency. (We assume that the original atom language depends on

local state for two reasons: first, we can use const to lift languages that do not; second,

languages such as abstract predicates already have such a dependency.)

Definition 6.22. The guarded interpretation function intG wraps an atom language in-

terpreter to handle a guard:

intG : (Atom→L→V)→AtomG→L→V

intG(r)(g,a)(l) def=

r(a) JgKPr(tt)(tt)(l)

ε ¬JgKPr(tt)(tt)(l)

Lemma 6.21. If (Atom, (L→V), r) is an atom language, so is (AtomG, (L→V), intG(r)).

Guarded abstract predicates. We can apply atom guarding to the abstract-predicate atom

scheme (Definition 6.3) to produce guarded abstract predicates (GAPs). Let us denote GAP

sets as APred(Tag)(EVal)
G, and give GAPs the following S-expression grammar:

〈APred(Tag)(EVal)
G〉 ::= ( 〈tag〉 〈arg〉* ) | (→ 〈expr〉 〈tag〉 〈arg〉* )

A guardless S-expression is syntactic sugar for one with the guard true.

We assume the existence of a functor instance over GAPs, where fmap distributes over

the expressions in both argument and guard positions.

Example. We can now try to write an idiomatic assertion set for Peterson’s algorithm using

view expressions over guarded abstract predicates10.

The first task is build a tag set that represents high-level assertions about the algorithm’s

state. We can do so by mapping each state from the finite-state automaton we gave earlier

(Figure 3.3) to a tag. This gives us the tags flagDown, flagUp, waiting, and holdLock. The
two threads will share these tags, but we can disambiguate by parametrising the abstract

predicates with thread identifiers. For this example, letA andB be legal values corresponding

to the thread of the same name. Then, (flagDown A) corresponds to threadA having its flag

down—A1 and A4 in the original line-number system. We can annotate threadA as follows:

A1 (@(flagDown A)) Q1 := true

A2 (@(flagUp A)) TURN := 1

A3 (@(waiting A)) wait until !Q2 or TURN=2

(Critical Section)

A4 (@(holdLock A)) Q1 := false

In practice, we will likely not implement A3 as a single atomic action. A more realistic

implementation is to loop over locally fetching the turn counter and other thread’s flag,

testing them, and proceeding to the critical section if the condition is met:
10We do not convert the algorithm itself into a valid LVF outline yet; doing so is unnecessary at this stage.
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A3a (@ (waiting A)) q := Q2;

A3b (• (@(→ q waiting A)) t := TURN;

(@(→ (not q) holdLock A)))
A3c (• (@(→ (and q (= t 1)) waiting A)) if q and t=1

(@(→ (or (not q) (= t 2)) holdLock A))) then goto A3a;

A4 (@ (holdLock A)) . . .

The guarded atoms show the increase in information after each read operation. This

progression highlights an important property of Peterson’s algorithm: once thread A is

waiting for the lock, it acquires the lock as soon as B releases it (by dropping its flag or by

setting TURN to 2), and keeps it until it exits the critical section. As soon as we see one of

those conditions, we infer (@holdLock)A. Regardless of whether the conditions remain true,

the predicate is stable, and we can keep the lock.

Guarded view equivalence and inclusion

Lemma 6.14 states that view expressions lift their underlying views algebra. This lets us use

operators like ε, •, and \ at the view expression level; these operators work as expected, and

distribute properly down to the underlying algebraic level.

This lifting also defines≡ andv. These lifted operators must be used with caution on

guarded view expressions; the underlying algebra is over functions from local state to atom

multisets, so the relations only hold over the expressions where they hold for the underlying

multisets over all possible local states. This is neither decidable nor guaranteed to give the

expected result at the multiset level.

We can also define structural equivalence and inclusion on list-normalised guarded view

expressions. A view expression v1 structurally includes a view expression v2 if every atom

provided that no atom appears in v2 more times than it appears in v1; structural equivalence

is inclusion in both directions. (In other words, we treat view expressions as multisets of

atoms, and use the usual views algebra for multisets). These structural definitions form the

core of the pattern matching algorithms we introduce in § 6.5.

Adapting lnorm for guarded atoms

Suppose we now want to build a set of verification conditions for one of the atomic actions

in Peterson’s algorithm: for example,

{(@(waiting A))} q := Q2; {(@(→q flagUp A))}

If our frontend is based on the adjoint proof rule (gStarling is), then we will eventually

consider part expressions over guarded atoms: for example,

∀x ∈ {A,B } . (\ (@(flagDown x)) (@(→q flagUp A)))

To make the matching process more straightforward, we can list-normalise such expres-

sions. While the above example is trivial (the atoms have different tags and thus cannot

cancel out) we must be careful in general; the assumption we made when building lnorm
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— the atom set has equality that we can decide while list-normalising — does not hold for

guarded atoms. For example, consider this equality on guarded abstract predicates11:

(→(x > 5) atom y) ?
= (→(z < 6) atom 3)

This decision depends on the values of x, y, and z; these are not known until we reach

the backend solver! To list-normalise guarded view expressions, we must replace lnormP

with a function that computes atom-wise subtraction without deciding equality itself. We do

so by embedding the decision into the guards of the returned atoms.

Equality guards. Let us assume an equality guard function eqG : Atom→Atom→EGd. This

function returns a guard that evaluates to true provided that the two provided atoms, less

their current guards, are equal (formally: JeqG(x)(y)KPr ⇐⇒ r(x) ≡ r(y)). If tag equality is

decidable, we can define abstract predicate equality guarding as follows:

eqGap((s1a1 . . . z1))((s2a2 . . . z2))
def
=

falsePr s1 6= s2

a1 =Pr a2 ∧Pr · · ·∧Pr z1 =Pr z2 otherwise

In the above example, the equality guard would be y=Pr 3.

Remainder guards. We can use the equality and atom guards to work out the guards of the

atoms we return. Let (\ (@(→gm m)) (@(→gs s))) be the subtraction in question. Then,

the remainder guards, and their intuitive justifications, are:

g ′
m

def
= gm ∧ ¬( gs ∧ eqG(m)(s) )

g ′
s

def
= gs ∧ ¬( gm ∧ eqG(m)(s) )

if
m was active

if
s was active

and either
s was inactive

and either
m was inactive

or
atoms do not match

or
atoms do not match

In our atom example, g ′
m becomes x > 5 ∧ ¬(z < 6 ∧ y = 3), and g ′

s becomes z <

6∧ ¬(x > 5∧ y = 3).

Replacing lnormP. The remainder guard definitions lead towards a new version of lnormP.

This new function, lnormG
P , returns guarded atoms instead of Atom ∪ {⊥ }.

lnormG
P : AtomG→AtomG→(AtomG × AtomG)

lnormG
P ((gm,m))((gs, s))

def
=
(
(g ′

m,m), (g ′
s, s)

)
Lemma 6.22. If we apply the remainder guards to their respective atoms, we get the appro-

priate remainder atoms to perform a single step of lnormA:

(\ (• (@(→gm m)) r) (@(→gs s))) ≡ (• (@(→g ′
m m)) (\ r (@(→g ′

s s))))
11While we use GAPs in the examples, these adaptations work with any guarded atom set.
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Replacing lnormA. Wemust alter lnormA slightly to reflect the new return type of lnormG
P .

lnormG
A(1)(s) def

= 1

lnormG
A((• (@a) x))(s) def

= recurG(lnormG
P (a, s))(x)

where recurG((a ′, s ′))(x) def
= (• (@a ′) lnormG

A(x)(s ′))

The only change we make to lnormB and lnorm is to substitute lnormG
A for lnormA. We

call the resulting functions lnormG
B and lnormG respectively, but omit their definition.

6.5 Guarded syntactic definers

The syntactic definers we used to define views in µStarling and loStarling directly map view

fragments to proposition expressions. This approach is unsuitable, without adaptation, for

guarded abstract predicates; using it, we would be unable to abstract over the arguments

supplied to a guarded abstract predicate, and our definers would need a separate definition

for every possible argument combination.

We would also need to work out whether one guarded abstract predicate expression is

included in another. We must be able to evaluate each guard at definition expansion time or

build a decidable ordering over guards; neither restriction is appropriate.

We can instead adapt syntactic definers to permit a looser relationship between views,

definitions, and the resulting proposition expressions.

The ticket lock

As Peterson has a highly regular atom set and verbose definitions, a new example — Al-

gorithm 1, the ticket lock popularised by Mellor-Crummey and Scott [63]12 — better demon-

strates guarded syntactic definers. The lock provides mutual exclusion for an arbitrary

number of threads using a queuing system based on taking integer tickets, and waiting for a

monotonically increasing ‘now serving’ counter to reach the taken number.

Specification. The specification we will try to prove is that given for Peterson in § 3.3: that

there is some abstract Lock resource that can have at most one instance (which persists

across a thread’s critical section). In Algorithm 1, the critical section is the period between

the end of a call to Lock and the beginning of a call to Unlock inclusive. A Lock exists

when s < n (since, if s = n, the ticket being served has not yet been taken).

Defining the definers

This section outlines the structure of guarded syntactic definers. As an example, it builds a

guarded syntactic definer for the ticket lock.

12As Starling does not consider temporal properties, we need not model exponential backoff.
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Algorithm 1 Mellor-Crummey and Scott’s ticket lock
s : N shared . ticket currently being served
n : N shared . next ticket

procedure Lock
t : N . local storage for ticket
c : N . local storage for current view of s
〈t := n; n := n+ 1〉 . take a ticket
repeat
〈c := s〉 .wait until our ticket is being served

until c = t

end procedure

procedureUnlock
〈s := s+ 1〉 . serve the next ticket

end procedure

Predicate prototypes. The first part of a guarded syntactic definer is a system of predicate
prototypes. These describe which tags, and argument counts, yield valid abstract predicates.

Definition 6.23. A predicate prototype function PProto(Tag) is a function Tag→N, map-

ping tags to the number of arguments they expect.

Each thread using the ticket lock can be in one of three states: idle, waiting in the queue

(holding a ticket), and holding the lock. There is no limit on the number of threads using the

lock, and each thread uses the shared state in the same way, so we need not encode thread

IDs into the abstract predicates. Idle threads have no non-invariant information about the

shared state, as we see in the final definer, so we need only two tags for the proof: tick, which

represents queuing, and lock, which represents locking. We parametrise tick by the number

of the ticket the thread is holding. This gives us the prototype list [(tick, 1), (lock, 0)].

Patterns. In § 4.3, we matched definitions to views by directly deciding view inclusion.

As definitions now abstract over the arguments of their defined atoms, we need a pattern

language and pattern matcher that can handle such definitions.

If all atoms are well-formed according to a prototype list, then tags hold all of the in-

formation we need about an atom inside a pattern. We can, then, model patterns in guarded

syntactic definers as tag lists.

Definitions. Each definition in a guarded syntactic definer is a pair of a tag list and a struc-

tured predicate template. The template contains value expressions parametrised over both

shared variables and the parameters of each abstract predicate the pattern represents. Let

us model parameter indices as N: 0 is the first parameter of the first abstract predicate, and

indexing proceeds left-to-right across all parameters and predicates13.

13This allows out-of-bounds indexing, but we can just map invalid references to⊥.
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([ ], (>= n s) ) (we cannot reallocate expired tickets)

([tick ], (> n P0) ) (we cannot reallocate queuing tickets)

([lock ], (not (= n s)) ) (we cannot reallocate lock-holding tickets)

([lock, tick ], (not (= s P0)) ) (tickets are given up when taking the lock)

([tick , tick ], (not (= P0 P1))) (tickets are unique)

([lock, lock], false ) (mutual exclusion)

Figure 6.1: A guarded syntactic definer for the Mellor-Crummey/Scott ticket lock.

Definition 6.24. The definition set over a prototype set P and shared alphabet Σ is:

GDefn(P)(Σ) def=(dom P × N)

A guarded syntactic definer over P and Σ is a list of GDefn(P)(Σ).

Figure 6.1 is an example definer for the ticket lock, inwhichPn denotes thenth parameter.

The pattern matching algorithm

To match a (list-normalised) view expression against a pattern, we can calculate all partial

permutations of that view’s atoms such that each atom’s tag matches the tag at the same

position in the pattern. Each permutation becomes a distinct instantiation of the definition;

if at least one such permutation exists, the view matches the pattern.

For example, the view (� (@(tick 1)) (@(tick 2)))matches [tick, tick] in twoways: either

we map the first tag to the 1 atom and the second to the 2 atom, or we reverse the order. In

this case (but not in general), both matches yield equivalent predicates.

This section develops a pattern matching algorithm in stages, with pseudocode.

Matching a single tag. In the first stage, we traverse a view until we either run out of atoms

or find one with the required tag. When we find a match, we record its position in the view

and continue traversing; once we reach the end of the view, we have the positions of all

matches for that tag.Wewill need to ‘un-traverse’ the skipped atoms for use in later matches,

so the algorithm uses a zipper [64] data structure to hold each position:

Zipper def
= ( VExpr(APred(Tag)(EVal)

G)l × VExpr(APred(Tag)(EVal)
G)l )

view traversed so far

(in reverse order)

view left to traverse

(in normal order)

(Coq: Starling.Utils.Zipper)14

14The Coq development represents the views inside the zipper as atom lists.
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The first-stage algorithm accepts views-to-traverse as zippers. The view starts on the

right-hand side of the zipper; as we check each atom, it moves to the left.

Algorithm 2 First stage of guarded pattern matcher
functionMatchTag(t : Tag, v : Zipper)

p : list Zipper := []
while ∃a, vl, vr. v = (vl, (• (@a) vr)) do

if a has tag t then
p := p++[v]

end if
v := ((• (@a) vl), vr)

end while
return p

end function

Processing the match positions. Next, for each position in the resulting list, we split the

view, removing the matched atom. This gives us two results per match: the actual atom we

matched against, and the rest of the view to use when matching further tags.

Let us now assume each position is a zipper whose second view starts with the matched

atom; we can then remove the atom and rewind the view traversal using cons and uncons

operations. Assume also that we have some view expression vp that contains the subview

match for the sub-pattern preceding tag t. By appending each matched atom onto this ex-

pression in turn, we get the list of subview matches up to and including t. This operation

is exponential, as each choice between two matches for t doubles the number of overall

matches, but the length of the patterns is usually too small to cause issues.

Algorithm 3 Second stage of guarded pattern matcher

function ProcessTagMatch(p : list Zipper, vp : VExpr(APred(Tag)(EVal)
G)l)

m : list (VExpr(APred(Tag)(EVal)
G)l × Zipper) := []

for all p in p by reference do
assert ∃a,pl,pr.p = (pl, (• (@a) pr))
p := (pl,pr) . remove matched atom
while ∃a ′,p ′

r.pr = (• (@a ′) p ′
r) do

p := ((• (@a ′) pl),pr) . rewind zipper
end while
m := m++[((• (@a) vp),p)] . add match and remaining view to results

end for
return m

end function

Matching an entire pattern. Tomatch a pattern, we can recursively apply the previous stages

for each tag in the pattern. As the second stage appends matched atoms to the front of the

view, we match the tags in reverse order15.

15The mechanisation implements this loop using a right fold.
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Algorithm 4 Third stage of guarded pattern matcher

functionMatchPattern(v : VExpr(APred(Tag)(EVal)
G)l, t : list Tag)

m : list (VExpr(APred(Tag)(EVal)
G)l × Zipper) := [(1, (1, v))] . empty pattern

matches unit
for all t in t reversed do

m′ : list (VExpr(APred(Tag)(EVal)
G)l × Zipper := []

for all (vp, vn) inm do
p := MatchTag(t, vn)
m′ := m′++ProcessTagMatch(p, vp)

end for
m := m ′ . use new matches for next tag

end for
r : list VExpr(APred(Tag)(EVal)

G)l := []
for all (vp, vn) inm do . remove zippers

r := r++[vp]
end for
return r

end function

Final steps. The pattern-matching algorithm returns a list of view expressions over guarded

abstract predicates. For the match to hold, all of the matched abstract predicates must be

switched on; in other words, all of the guards must be true. We can, therefore, replace the

atom-level guards with a single guard across the whole view expression. We can do so in the

obvious way: extracting and conjoining each atom guard.

Theorem 6.23. The pattern-matching algorithm is sound:

• each result contains exactly as many atoms as the pattern has tags;

(Coq: g_pattern_matches_merged_length in Starling.Frontend.APred.GMatch)

• each atom’s tag corresponds to the tag in the same position in the pattern;

(Coq: g_pattern_matches_tags in Starling.Frontend.APred.GMatch)

• each result is a subview of the original input view.

(Coq: g_pattern_matches_subview in Starling.Frontend.APred.GMatch)

Defining and reifying views using guarded syntactic definers

The next step towards using guarded syntactic definers is to consider how to build schemes

for defining and reifying views using them. These schemes depend on the ability to instantiate

the definitions of pattern matches.

Instantiation. Once we have a pattern match, we can instantiate its definition. This involves

replacing each positional index used in the definition with the corresponding argument in

the match. As the indices count upwards across the match’s atoms, we must resolve each

index to the right argument of the right atom. To make this easier, we can flatten the match

into a single atom, combining the tags and arguments of the original atoms.

111

https://gitlab.com/MattWindsor91/starling-coq/blob/v0.1-T/Starling/Frontend/APred/GMatch.v
https://gitlab.com/MattWindsor91/starling-coq/blob/v0.1-T/Starling/Frontend/APred/GMatch.v
https://gitlab.com/MattWindsor91/starling-coq/blob/v0.1-T/Starling/Frontend/APred/GMatch.v


CHAPTER 6. A PRACTICAL STARLING FRONTEND

Definition 6.25. The function vflat flattens list-normalised view expressions over ab-

stract predicates into single abstract predicates, where the tag is the list of each atom’s

tag, and the argument list the concatenation of the atoms’ argument lists:

vflat : VExpr(APred(Tag)(EVal)
G)l→APred(list Tag)(EVal)

G

vflat(v) def
= vflat ′(v)(([]))

where vflat ′( 1)( a)
def
= a

vflat ′( (• (@(t e)) v))( (t e)) def
= vflat ′(v)((t++[t] e++[e]))

Flattened abstract predicates are valid over a prototype set P when each tag in their tag

list appears in P and the argument count is the sum of each tag’s argument count in P. More

formally, we can derive a new prototype set for flattened predicates:

PF def
= { ([t1, t2, . . . , tn],Σ {P(t1),P(t2), . . . ,P(tn) }) | t1, t2, . . . , tn ∈ dom P }

Definition6.26. The instantiation ginst(d)(a) of a definitiond against a flattened guarded

abstract predicate a is the substitution of each argument in a for the corresponding

reference in d’s expression, guarded by implication over a’s guard:

ginst : GDefn(P)(Σ)→VExpr(APred(Tag)(EVal)
G)l

ginst((p, e))((=> g t a1 . . . an))
def
= (=> g fmap(λv. v>>= ginstp)(e))

where ginstp(n ∈ N) def
=

{
an in bounds

⊥ otherwise

ginstp(v ∈ Σ)
def
= return(v)

(Coq: inst_gmatch in Starling.Frontend.APred.GDefiner)

We can reduce a match for the pattern [tick, tick] to an instantiated definition as follows:

(� (@

(@

(tick

’(tick tick) 27

27

P0

27

)) (@ (tick 53

53

P1

53

(=(=> ) false)

(=(=> ) false)

)) )

)

flattening

apply to definition

instantiation

Lemma 6.24. vflat maps P-valid abstract predicates to PF-valid abstract predicates.

Reification. Reification on guarded syntactic definers is similar to that of syntactic definers

(Definition 4.11): we traverse the definer to find definitions with view-matching patterns. As

there can be multiple (or zero) such matches, we must conjoin the resulting instantiations.
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Definition 6.27. The function gsdReify reifies views with a guarded syntactic definer:

gsdReify : listGDefn(P)(Σ)→VExpr(APred(Tag)(EVal)
G)l→SPred(EVal(Σ))

gsdReify(d)(v) def
=
∧
Pr

{ ginst((t, e))(m) | (t, e) ∈ d∧m ∈ matchPattern(v)(t) }

Definition. Views need not have a single definition in guarded syntactic definers. Definition,

like reification, involves pattern matching and instantiation. To convert reification into

definition, we must ensure all of the matches we instantiate are not just sub-expressions of

the view to define, but are equivalent (as discussed in § 6.4).

Lemma 6.25. If a pattern match has the same number of guarded abstract predicates as the

matched view expression, the two expressions are equivalent.

Definition 6.28. The function gsdDef defines views with a guarded syntactic definer:

gsdDef : listGDefn(P)(Σ)→VExpr(APred(Tag)(EVal)
G)l→SPred(EVal(Σ))

gsdDef(d)(v) def
=
∧
Pr

 ginst((t, e))(m)

∣∣∣∣∣∣∣∣
(t, e) ∈ d

∧m ∈ matchPattern(v)(t)

∧ |m| = |t|


Because of the issues we saw in § 6.4, showing that gsdReify has the right relationship

with gsdDef is challenging, and left to a formal soundness proof.

6.6 The gStarling frontend

This section discusses the gStarling frontend, and the work done on its soundness proof.

Assumptions. The gStarling frontend fixes many parameters left open in previous frontends,

and makes more assumptions about the frontend’s usage, such that:

• the views algebra for outline assertions is VExpr(APred(Tag)(EVal)
G), the set of (non-

normalised) guarded views expressions;

• the front-facing guard and predicate languages is SPred(EVal), the set of structured

propositions. We forbid symbols in guards, making each guard context-independent;

• the outline is LVF-compatible (Definition 5.23);

• all variables mentioned in the proof belong to a single set Var with two disjoint alpha-

bets: Σlo for local variables, and Σs for shared variables;

• local statesmap variables to expressible values (Definition 6.15). In practice, this is not

a strong requirement; it mainly forbids cases like modelling heaps as local variables.
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Parameters. As with µStarling and loStarling, each gStarling proof depends on several para-

meters describing the specific view algebra and command language that the proof uses. The

above requirements limit gStarling’s parameter interface to the following:

• the aforementioned variable set Var with disjoint alphabets Σlo and Σs;

• an atomic action setA; with semantics function J−K : A→SPred(Σlo ] Σs);

• a tag set Tag with prototype function P : PProto(Tag);

• a definer d : list GDefn(P)(Σs).

From atomic triples to proof terms

As usual, the frontend is a relation from outline triples 〈p〉 c 〈q〉 to backend conditions

〈〈w〉〉 c 〈〈g〉〉. Like previous frontends (§ 4.4 and § 5.6), g is one syntactic definition of a goal

view g ′, andw the syntactic reification of a weakest-preconditionw ′ = (p •(g ′ \q)); unlike

before, we now use gsdReify and gsdDef instead of the functions from § 4.3.

This section discusses how to derive g ′ andw ′, and so derive the high-level proof terms
we use to generate backend conditions. To demonstrate how this process works, we use the

following triple, which corresponds to the wait loop in the ticket lock:

〈(� (@(tick t)))〉 c← s
〈
(� (@(→(= c ′ t ′) lock)) (@(→(≠ c ′ t ′) tick t ′)))

〉
Deriving g ′. Previously, the definer domain contained full views which we could use as g ′.

As definitions are now over view templates, we must instantiate those templates instead.

While the arguments of abstract predicates inside p and q are expressions over the local

state of the current thread, the arguments of g ′’s abstract predicates must represent all

possible instantiations of said predicates, and therefore must quantify over all possible

arguments. To have the solver perform the specific quantification for the goal view in use,

we must map each argument to a fresh goal variable.
Handling goal variables raises several difficulties. Unlike local and shared variables, goal

variables (being parameters to stable assumptions about the shared state) implicitly frame

over atomic actions, and therefore have only one state. Like each local state, but unlike the

shared states, they appear in bothw and g.

The number of goal variables in use depends on the goal. If we modelled this dependency

accurately, the alphabet of each term would be different. This complicates formalisation,

especially in the Coq mechanisation where the variable domain is part of the type of terms.

Instead, we can loosen the domain to N, as with parameters in definitions. The solver need

not instantiate the spurious goal variables; it can, for example, pull them to⊥.
Instantiating a goal from a tag list involves distributing the goal variables in ascending

order, from left to right, according to each tag’s defined argument count. The resulting atoms

then form a list-normalised view expression.
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Definition 6.29. The function instGoal instantiates a pattern as a goal view, mapping

each parameter to a fresh goal variable:

instGoal : PProto→ listTag→VExpr(APred(Tag)(N))l

instGoal(P)(t) def= recur(P)(t)(0)

where recur(P)([])(n) def= 1

recur(P)([t] ++ t)(n)
def
= (• (@(t Gn . . . Gn+P(t))) recur(P)(t)(n+ P(t)))

Example. The function above instantiates the ticket lock goals as follows:

[ ] −→ 1

[tick ] −→ (� (@(tick G0)))

[lock ] −→ (� (@(lock)))

[lock, tick ] −→ (� (@(lock)) (@(tick G0)))

[tick , tick ] −→ (� (@(tick G0)) (@(tick G1)))

[lock, lock] −→ (� (@(lock)) (@(lock)))

We can use these instantiated goals in terms. We implicitly append the guard true to

each goal atom; we need not quantify over all possible guards as we already consider every

defining combination of atoms. For example, the goals 1, (� (@(lock))), (� (@(tick G0))),
and (� (@(lock)) (@(tick G0))) together model the situation where an environment thread

holds the view: (� (@(→b1 tick x)) (@(→b2 lock))).

Deriving w ′. As in previous frontends, w ′ is p •(g ′ \q). One difference is that w ′ now

contains references to both goal and local variables. As with § 5.6, we must assign the right

local states to the right parts ofw ′.

To demonstrate this, and further transformations, let us focus on three of the ticket

lock goal views. g ′ = (� (@(lock))) checks that the lock acquisition itself is sound. g ′ =

(� (@(tick G0))) checks that we can safely retain the ticket if we did not acquire the lock.

Finally, g ′ = (� (@(lock)) (@(lock)))models mutual exclusion.

In our example, the non-normalisedw ′ for g ′ = (� (@(lock))) is:

(• (@(tick t)) (\ (� (@(lock)))

(� (@(→(= c ′ t ′) lock)) (@(→(≠ c ′ t ′) tick t))))

We get the other two versions ofw ′ by substituting the appropriate goal.

Building the proof terms. Each proof term combinesw ′, c, and some representation of the

goal. While we could use g ′ here, this is wasteful: we synthesise a view over g ′’s underlying

definition gd, then break it down again. The resulting proposition expression will be the

conjunction of all exact pattern matches for g ′ — gd and any other definitions over the same

tags; we can get the same result by building a separate proof term for each gd directly, and

using the outer quantification over proof terms to reconstruct the conjunction.
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Definition 6.30. A gStarling proof term is a triple (w ′, α̂,gd), where α̂ is an atomic label;

gd is a definition from the frontend’s definer; andw ′ is a viewexpression (• p (\ g ′ q)),
where gd is one of the definitions of g ′.

Building verification conditions

Once we have a proof term (w ′, c,gd), we can generate its underlying backend verification

condition by reification and semantics analysis.

Command. To get the relation expression c from an atomic label α̂, where α̂ 6= id, we just

apply J−K directly. For our example, we can assume that c := s has the expected semantics:

Jc := sK = rframe((= c ′ s)) = (and (= c ′ s) (= s ′ s) (= t ′ t) (= n ′ n))

Goal variables (for example, G0) are single-state, and need no framing.

As in loStarling, the case where α̂ = id needs care; the returned expression must act as

identity on both local and shared state. Unlike Definition 5.25, we need not compare local

states in the frontend. Instead, we just emit framing equalities:

JidK = id{c,s,t,n }

Rl = (and (= c ′ c) (= s ′ s) (= t ′ t) (= n ′ n))

List normalisation. The guarded syntactic definition and reification functions accept list-

normalised view expressions. While g ′ is list-normalised by construction,w ′ is not; our next

step, therefore, is to list-normalisew ′. We can do so with rmpartG from § 6.4.

In our three examples, the sole non-trivial part of this normalisation is subtraction. For

each, we subtract first (@(→(= c ′ t ′) lock)), then (@(→(≠ c ′ t ′) tick t)), from g ′:

(� (@(lock))) −→ (� (@(→(≠ c ′ t ′) lock)))

(� (@(tick G0))) −→ (� (@(→(not (and (≠ c ′ t ′) (= G0 t))) tick G0)))

(� (@(lock)) (@(lock))) −→ (� (@(→(≠ c ′ t ′) lock)) (@(lock)))

To getw ′, we conjoin these results with the precondition (@(tick t)) in a list-normalised

manner. For example, when g ′ = (� (@(lock))),

w ′ = (� (@(tick t)) (@(→(≠ c ′ t ′) lock)))

Below, we concentrate on this particular pair ofw ′ and g ′.

Reification and definition. The next step is to define g ′ and reifyw ′ against the definer from

§ 6.5. Atoms in g ′, by construction, only have true guards; this simplifies the former. In

our example, just one pattern matches g ′ with the same number of atoms ([lock]), and so its

definition contains one instantiation. Recall that, when we match against guarded views,

we lift and conjoin the guards, then flatten the view into one atom. For g ′, we have just one

atom with a tautological guard, so the result of this match processing is exactly g ′:

gsdDef(g ′) = ginst(([lock], (≠ n ′ s ′)))((• (@(lock)) 1)) = (≠ n ′ s ′)

When reifyingw ′, four patterns match:
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[tick] [lock, tick] [lock] []

(@(’(tick) t))
(@(→(≠ c ′ t ′) ’(lock tick) t))
(@(→(≠ c ′ t ′) ’(lock)))
(@(’()))

(@(tick t))(� (@(→(≠ c ′ t ′) lock)) )

Note that the explicit guard on lock carries over to both matches involving it16.

Finally, we instantiate and conjoin the definitions of the pattern matches:

gsdReify(w ′) = (> n t) [tick]

∧ (=> (≠ c ′ t) (≠ n s)) [lock, tick]

∧ (=> (≠ c ′ t) (≠ s t)) [lock]

∧ (>= n s) []

Puttingw ′, c ′, and g ′ together, we get the final condition:

〈〈
(and (> n t) (=> (≠ c ′ t) (≠ n s))(=> (≠ c ′ t) (≠ s t)) (>= n s)

〉〉
(w ′)

(and (= c ′ s) (= s ′ s) (= t ′ t) (= n ′ n)) (c ′)〈〈
(≠ n ′ s ′)

〉〉
(g ′)

We can dry-run this condition by case analysis on whether c ′ = t (and, transitively,

s = t). If so, then n > t implies n > s, and therefore n ′ > s ′. If not, the guarded parts of the

weakest-precondition guarantee that n 6= s, and therefore n ′ 6= s ′.

Towards a soundness argument for gStarling

There is not, yet, a formal soundness argument for gStarling. To achieve this, we could

use the standard frontend argument (Figure 4.1), using fTemp (Definition 4.10) to build

a template with the necessary properties. Earlier sections discussed the translation from

gStarling atomic Hoare triples to verification conditions via proof terms, so the remaining

burden lies in deriving a sound LVF instance17.

Relating definition and reification. As in loStarling, we must show that reifying a view v

entails the conjunction of the definitions of each subview u. For gStarling, conjoining every

pattern match of v should be equivalent to conjoining every exact pattern match of every u.

16Strictly speaking, the guard for ’(lock tick) is the conjunction of those for lock and tick.
17Again, Lemma 5.15 helps us carry out our soundness proof on the CVF encoding.
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Lowering gStarling for LVF compatibility. To target the LVF, we must be able to lower our

assertions and definers to view functions L→V. This was straightforward in loStarling, as

the assertions were already view functions. In gStarling, this is no longer the case— the local

dependency comes indirectly through argument vectors and guards — so we must produce a

scheme for evaluating and removing the guards, and substitute the arguments’ (expressible)

values for their expressions, that we can express in the form of view functions. At the same

time, we must also handle the arguments of goal views.

The ‘lowered’ form of gStarling maps outline views to functions that, given mappings

from local and goal variables to expressible values, perform the evaluations and substitutions

needed to produce shared-state-only views. These view functions have the type:

(Σlo→EVal(Val)(∅)) (pre-state)

→ (Σlo→EVal(Val)(∅)) (post-state)

→ (N→EVal(Val)(∅)) (goal-state)

→ bag APred(Tag)(EVal(Val)(∅)) (erased view)

Note the existence of a new goal state parameter; we use this to deal with the assignment

of view parameters in goal views, and describe it in detail later on.

By treating the states as part of the local context of the backend, we can hopefully use the

same techniques we saw in the loStarling soundness proof. As we rearrange both the views

and backend conditions to push through the soundness argument, we must show that the

sets of states permitted by the original and lowered schemes equate. We must also show that

any pattern matches over normal gStarling correspond to matches over lowered gStarling.

Goal states. In loStarling’s meta-theory, the solver quantification over local states becomes

a pair (l, l ′) inside the backend’s LCtx. For gStarling, we can keep this model, but need a third

piece of local context: a goal state, modelling solver quantifications over goal parameters.

Definition 6.31. A goal state lg : N→EVal(Val)(∅) maps goal variables to expressible

values.

When we lower a view built using instGoal, we substitute lg(n) for each Gn in the view.

Erasing variables in arguments. Erasure depends on the distribution, through functorial

and monadic operations, of argument-erasing functions. Since different situations contain

different combinations of local-pre, local-post, and goal variables, we define a family of

functions eraseArgX, where X is some combination of P (pre),Q (post), and G (goal). Here,

we formally define eraseArgPQG; the other definitions are trivial alterations.
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Definition 6.32. The function eraseArgPQG uses local and goal states, bundled together

as a local context triple, to lower a view argument into an expressible value:

eraseArgPQG :

(Σlo→EVal(Val)(∅))→(Σlo→EVal(Val)(∅))→(N→EVal(Val)(∅))

→(ΣM
lo ] N)→EVal(Val)(∅)

eraseArgPQG(l)(l ′)(lg)(v)
def
= l(v) (local pre-state)

eraseArgPQG(l)(l ′)(lg)(v ′)
def
= l ′(v ′) (local post-state)

eraseArgPQG(l)(l ′)(lg)(n)
def
= lg(n) (goal-state)

We also assume that, for each eraseArgX, we have a lifting eraseArgXS that can map over

shared variables, ignoring them.

To apply eraseArgX to a value expression e, we use e>>= eraseArgX; by chaining this with

the instance of fmap over GAPs, we can apply it over whole atoms.

Suppose we apply this erasure to the examplew ′ from earlier. In this example, t, c ′, and

t ′ are local variables that must be erased:

(� (@(tick t ) (@(→ (≠ c ′ t ′ ) lock)) )

(� (@(tick l(t) ) (@(→ (≠ l ′(c) l ′(t) ) lock)) )

Any goal variables would also have been erased; for example, G0 would become lg(0).

We can interpret the lowered expression as a multiset of unguarded abstract predicates,

according to Definitions 6.5 and 6.22. Doing so finally evaluates, and eliminates, the guards.

For instance, if we suppose that l(t) = 1, l ′(c) = 2, and l ′(t) = 3, we can interpret our

example as *(tick 1), (lock)+.

Shadowing. At the frontend level, goal views represent a quantification over all possible

instantiations of a given template. This means that each goal view represents potentially

infinitely many LVF-level defining views. As our soundness argument requires us to show

that each axiom in gStarling is also inside the corresponding defining-views instance, we

must show the reverse: at least one goal view covers each defining view. To show this, we

show that wherever we have a view v that is an exact pattern match for a pattern t— and

therefore corresponds structurally to a goal view—, we can decompose that view into said

goal gv and a goal state lvg. If we lower gv with lvg, each original argument re-appears in its

original position18 — and so, lvg shadows v.

Definers. In lowered gStarling, definers operate on erased views, and ignore guards; in

normal gStarling, they operate on the parametric forms, and respect guards. To show that

18Modulo possible permutation of the atoms inside the view.
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the lowered form has the right relationship with the normal form, we must show that a

meaningful mapping exists between the two definer forms. While formally doing so remains

further work at this stage, we outline some of the subtleties here.

First, we must show that erasure distributes across pattern matches. Ignoring guards for

now, this shows that, if the input to a lowered definer matches the input to a normal definer,

then so do their respective outputs.

Lemma 6.26. For all views v, and functions f over atoms, if f preserves tags, then the list of

pattern matches on fmap(f)(v) is equal to mapping fmap(f) over all matches on v.

Intuitively, this property holds because the matcher only considers tags in decisions.

Second, we must deal with the absence of guards in the lowered version. The only views

with guards other than true appear in the weakest-precondition position. Finally, to show

that gStarling’s approach yields subsets of the defining-views rule, we would need to adapt

guarded syntactic definers into the semantic definer format given in Definition 3.10.

6.7 Iterated views and other extensions

While gStarling is an expressive frontend that can handle proofs of real-world algorithms

such as the ticket lock, it still has restrictions that complicate proof of other classes of

fine-grained concurrent program. In this section, we sketch extensions to gStarling that relax

these restrictions while maintaining the overall structure and soundness argument we have

built. These extensions are available in Starlingtool, and outlined in previous publications [2],

though we leave formal and mechanised soundness arguments to future work.

Iterated views

One of themain restrictions is the requirement that patterns contain a finite, bounded, known

quantity of each tag; this prevents us from writing proofs for many algorithms that involve

the transfer of an unbounded number of resources. Iterated views are an extension to the

guarded syntactic definers from § 6.5 that allows tags in patterns to match an indefinite

number of atoms, and definition predicates to use the number of matches as a parameter.

Iterated tags. The first change we make to gStarling is to add a second class of tag: the set

Tag∗ of iterated tags. Iterated tags differ from normal tags in several ways:

• patterns either contain zero or more non-iterated tags, or exactly one iterated tag;

• iterated tags contain an implicit extra parameter, which binds during pattern-matching

to the number of times the iterated tag appears in the match;

• definitions over iterated tags have additional restrictions, which we discuss below.

Adapting rmpart for guarded-iterated atoms. When extending atom subtraction to guarded

atoms, we needed to deal with the issue of not knowing whether or not an atom was present
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(specifically, the truth value of its guard) in advance of sending verification conditions to

the backend solver. Guarded-iterated atoms complicate subtraction further: we now have

two axes on which the presence and quantity of atoms can vary. As a result, subtraction for

guarded-iterated atoms needs significant adaptation from the guarded case.

Let us assume that the subtrahend always has a known iterator k. This is a reasonable

assumption for our frontends, as the only atoms in this position are those from a proof-outline

postcondition, and we can syntactically restrict these to have known iterators.

When the other atomalso has a known iterator,we canuse the same subtraction procedure

as before. If not, we must statically model removal from a quantity n known only at solve-

time — which may be smaller than the amount we intend to remove! As before, we do so by

moving decisions into the guards. In the case that k = 1, we have:

(\ (@(→gm an)) (@(→gs b))) =

(\ (• (@(→(and gm gs (= a b) (> n 1)) a(- n 1)))

(@(→(and gm (not (and gs (= a b)))) an)))

(@(→(and gs (not (and gm (= a b) (> n 0)))) a)))

Wecan reduce other cases to this by rewriting subtractions of iteratork intok subtractions

of iterator 1. If we assume a statically known iterator, this rewrite is bounded, if inefficient.

Adapting pattern matching. Recall that the usual scheme for reifying a view v is to collect

the definitions of all defininguv v; in guarded syntactic definers, this translates to collecting

all definitions with patterns that match v. This works, and is automation-friendly, as each

pattern maps to defining views in a bounded manner. We can construct a set of goal views

that shadow all possible defining views, and the number of pattern matches in a view that

lead to unique defining views is bounded and finite.

Unrestricted iterated view patterns do not have these properties. Consider, for example,

the definition [bad∗]→ (= x P∗). If x is a shared variable, this pattern expands to a different

observation about the shared state each time we add another copy of bad into the view. To

expand this pattern into a goal view,wemust consider all possiblen, and so the goal’s iterator

becomes a universally quantified variable v in the same manner as other goal arguments. In

turn, this causes the weakest precondition of any term over the goal to contain v copies of it,

where the exact value of v is opaque until we reach the backend solver.

Suppose we consider all possible ways in which bad∗ matches v copies of an atom with

tag bad. The most obvious match is against all v copies, giving us the instantiated definition

(= x v). However, we can also match against v− 1 copies for (= x (- v 1)), v− 2 copies for

(= x (- v 2)), and so on. In fact, all views satisfy the pattern when n = 0, causing (= x 0)
to become a system invariant! As we do not know the final value of v when expanding

the matches, the expansion of each of the v matches into predicates is undecidable, and

impossible to automate. To resolve this problem, we restrict definitions such that:

• we need never consider matches where the iterator is 0 (so, above, we never match for

n = 0); we call this restriction base downclosure;
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• we need only consider the maximal match for iterated atoms (so, above, we only match

for n = v); we call this restriction inductive downclosure.

Definition 6.33. An iterated definition P(n) satisfies base downclosure when the defini-

tion of the empty pattern implies P(0).

The definition of bad only satisfies base downclosure if (= x 0) is invariant — in which

case the presence of any bad atoms leads to an inconsistent state.

Definition 6.34. An iterated definition P(n) satisfies inductive downclosure when:

∀n : N,P(n+ 1) =⇒ P(n)

Ourbad definition fails this requirement outright: (= x (+ n 1)) does not imply (= x n).

Matching guarded-iterated abstract predicates. Pattern-matching in the presence of guarded-

iterated abstract predicates is complicated, as iterated view patterns can match any number

of atoms in the view being reified. While downclosure means that, in practice, we need only

consider the largest possible match, subtleties remain.

When we have two (or more) atoms that match a pattern, but have different guards,

we must consider all possible combinations of those atoms, conjoining the guards and

summing the iterators. With downclosure, this ensures that we get the right final iterator

regardless of the truth value of the atoms’ guards. For example, when matching [A∗] against

(� (@(→B1 Ai)) (@(→B2 Aj))), we first match against the two instances of A individually,

then also match against the combination to get (@(→(and B1 B2) Ai+j).
Iterated patterns can also match combinations of atoms when parameter equality can

make them equal. When we match [A∗] against (� (@(→B1 Ai y)) (@(→B2 Aj z))), we

both match against each side of the join individually and the combination — adding an

equality guard over x and y—, which gives us (@(→(and B1 B2 (= y z)) Ai+j y).

Local assertions

Our LVF-based set-up has no first-class support for assertions on local state. To reason about

the local state (even if reasoning only about local state), we must wrap the assertion in a

view. This is unwieldy and wasteful: we must consider such wrapped assertions as being

susceptible to interference from other threads.

Fully introducing first-class local assertions into gStarlingwould require invasive changes

to the LVF, and these would likely cause it to diverge heavily from its Views base. Instead,
let us consider a lightweight encoding that simplifies the task of writing proofs over local

assertions while not (yet) addressing the efficiency issues.

Local-lift atoms. To encode local assertions into gStarling-style logics without changing the

underlying views algebra, we can introduce a single-parameter atom local with an attached

definition that resolves directly to that parameter (for example, ([local],P0)). This has the

expected semantics so long as there are no other definitions over local.
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This encoding works only if we can express proposition expressions in the value expres-

sion language. We can do so in Cview(§ 7.1), and so Starlingtool supports local lifts.

Zero and false views

Our views algebras are (primarily)monoids,with a unit view representing baseline knowledge

about the shared state. Various reasoning systems, such as theUTP and some separation logic

models, contain a zero assertion; in Starling, a zero view would represent an unsatisfiable

observation of the shared state. Such a viewwould be useful for asserting unreachable states,

error conditions, and other inconsistencies.

Algebraic zero. Suppose we extend our views algebras with a zero in the semigroup sense:

an element 0 such that, for all a, •0≡0 •a≡0. To establish 0 as the view holding the most

restrictions on shared state, analogous to ε’s role as the least-restrictive valid view, we can

also require that av0. This set-up, while compatible with our existing algebra classes, leads

to a meaningless algebra in which 0 (and, by ordering, every view) is equivalent to ε:

ε≡ ε (reflexivity)

→(ε \0)≡ ε (subtraction on ε idempotent)

→ε≡(ε •0) (adjoint)

→ε≡0 (0)

This problem relates to that of division by zero inN, both intuitively and directly through

the views algebra in § 6.1. We could take the analogy further by making \ partial (and a \0

undefined), but this would complicate our algebra classes, and we do not do so here.

False observations. To capture most of the advantages of a zero view without reworking

our views algebras, we can encode failure as a local observation of false. We can then use the

local-assertion encoding we introduced above. Strictly speaking, the existence of such a view

signifies that its holding thread has entered an impossible local state; the view also does not

obey either of the algebraic properties we suggested above. In practice, the encoding suffices

for several use cases of an zero atom: for example, marking certain control-flow paths in a

proof as theoretically unreachable, and then checking that this is indeed the case.

6.8 Summary

This chapter introduced gStarling, a Starling frontend based on guarded abstract predicates.

Like loStarling, gStarling supports local-state parametrisation of shared-state observations.

Unlike loStarling, it does so in a more structured manner that preserves the bounded enu-

merability of defining views. This, along with other changes such as view expressions and a

pattern-matching view definer, makes it more suitable for practical use.

Work on gStarling is ongoing. A soundness proof, as well as a formalised version of the

extensions the preceding section discussed, remain as further work (see § 9.2).
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Chapter 7

Automating Proofs with Starlingtool

So far, we’ve used Starling as a framework for building theoretically automatable program

logics. This chapter shows the practical suitability of Starling for automated reasoning by

building a tool, Starlingtool. This tool uses a variant of gStarling as its underlying theory and

accepts proof outlines in a C-like language we call Cview.

At time of writing, source code for Starlingtool, as well as examples (including those in

§ 8.1), is available at https://github.com/MattWindsor91/starling-tool.

7.1 The Cview language

Cview is Starlingtool’s input language. It takes syntactic cues from C and derivatives, while

remaining compatible with the LVF language. We discuss Cview as it appears in the tool; see

§ 9.2 for future development ideas, and Appendix A.6 for a BNF sketch of the Cview grammar.

Semantics. Cview has a semantics in terms of compilation to the Views language with local

state. This means that we can apply Starling on the compiled program and quickly get

correctness results over the original program, so long as we trust the compilation process. A

standalone operational semantics remains future work.

Definition 7.1. The notation J−Kc denotes compilation from Cview to the Views language.

Running example. This section uses a Cview version of the ticket lock (Algorithm 1) as an

example. This example does not exercise some parts of Cview, such as iterated views; § 8.1

gives further examples (including a version of Peterson) that cover more of Cview.

Types

As an extension to gStarling, Cview has a type system— a near-subset of that of C99, but

with changes to better support interfacing with external solvers. This lets Cview tools catch

various mistakes in algorithm specification that the logic would otherwise map to⊥ or false.

It also helps tools interface with solvers, like Z3, that have many-sorted underlying theories.
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Primitive types. Cview supports the C99 int and bool types, with one difference: we define

int as arbitrary-precision, with range [−∞,∞], rather than being fixed to an architecture-

defined size. This set-up mirrors the definition of integers in solvers such as Z3.

Typedefs. Cview lets users define new types from existing primitive types1 with typedef.

Unlike C, Cview treats the new types as distinct subtypes of the old type. It uses rules similar

to the treatment of defined types and constants in Go [65]: unifying two different subtypes

fails (regardless of their original type), as does unifying a subtype with its original type; but

subtypes can accept constants and expressions with no specific type.

Arrays. Cview also has array types. While array indices are always ints, array elements can

be of any type, including nested array types. Arrays can optionally contain a size bound.

Variables

Non-goal variables must be declared before use. The syntax follows that of C, except that we

explicitly mark variable declarations as either thread (thread-local) or shared.

The ticket lock’s variables translate to Cview as follows:

shared int s, // ticket currently being served

n; // next ticket

thread int t, // local storage for ticket

c; // local storage for current view of s

Thread variable declarations may also appear in methods as statements (with the syntax

above) or parameters (less the thread prefix). In both cases, the semantics is the same as if

the variables were declared at the top-level (with appropriate scoping and freshening).

Expressions

Cview’s expression language is almost exactly that of C; see Appendix A.6 for differences.

For direct backend-theory access, Cview expressions support gStarling’s symbols. Cview

symbols are variable-interpolated pieces of uninterpreted backend syntax, and look like this:

%{(>= [| n |] [| s |])}

The above example encodes the invariant from Figure 6.1 by escaping from Starlingtool
syntax into the SMT-LIB language understood by Z3 2

Assertions

Shared-state assertions in Cview proofs take the form of view expressions over guarded

iterated abstract predicates. The Cview view expression syntax differs from that used in the

previous chapters, more closely resembling traditional separation logic: emp represents 1, *
represents •, and view atoms have a syntax similar to C function calls.

1Future work may allow transitive typedefs and typedefs of arrays.
2Starlingtool does not yet support this particular use of symbols, but we consider it to be future work.
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Prototyping atoms. Wemust prototype Cview atoms before use. While gStarling prototypes

only map tags to parameter counts, Cview prototypes also carry parameter types. Prototypes

have similar syntax to those of C functions, but allow empty parameter lists () to be dropped;

for example, we can prototype the ticket lock’s atoms as view Lock, Tick(int t);.

We can translate each Cview prototype to its guarded-iterated equivalent by counting the

number of parameters; extracting the tag (checking for the iter keyword, which denotes an

iterated tag); and building the appropriate mapping.

Defining atoms. To add a definition to Cview’s equivalent of gStarling’s guarded syntactic

definer, we use a constraint statement. Instead of using positional parameter references

such as P0, we bind each parameter to a unique identifier in the pattern, then place those

identifiers into scope in the proposition expression. We can also define patterns as ?—this

relates to inference, and we discuss it later on. The ticket lock’s definer translates as follows:

constraint emp −> n >= s;

constraint Tick(t) −> n > t;

constraint Lock −> n != s;

constraint Tick(a) * Tick(b) −> a != b;

constraint Lock * Tick(t) −> s != t;

constraint Lock * Lock −> false;

To map normal (non-?) definitions to guarded syntactic definers, we substitute a posi-

tional parameter reference for each named parameter in the definition; then, we extract the

list of tags from the pattern, replacing empwith [].

Jconstraint emp −>PKc
def
= ([], JPKc)

Jconstraint a(x0, . . . ,xi) ∗ b(xi + 1, . . . ,xj) ∗ . . . ∗ z(xk, . . . ,xn) −>P(x0, . . . , xn)Kc

def
= ([a, . . . , z], JP(P0, . . . ,Pn)Kc)

Local lifting. In § 6.7, we discussed how to encode local observations in gStarling by lifting

them into a local atom. Cview supports embedding local predicates e into assertions using

the syntax local{e}. To be able to lower this syntax later on, we insert the following code:

view _local(bool e); // where '_local' is some fresh identifier

constraint _local(e) −> e;

Local lifting, in turn, gives us a way to embed the false atoms we discussed in § 6.7.

Using atoms. As before, we use these atoms in view expressions. Compared to gStarling,

Cview has a richer syntax for view expressions, though all extensions are in the form of

syntactic sugar that we lower down to gStarling-compatible constructs.
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We translate view expressions (except ?, which we discuss later) as follows:

JvKc
def
= lower(true)(v)

lower(g)(emp) def
= 1

lower(g)(x * y)
def
= (• lower(g)(x) lower(g)(y))

lower(g)(if e { v }) def
= lower(g)(if e { v } else { emp })

lower(g)(if e { x } else { y }) def
= (• lower((and g JeKc))(x)

lower((and g (not JeKc)))(y))

lower(g)(false) def
= lower(g)(local{ false })

lower(g)(local{ e }) def
= lower(g)(_local(e))

lower(g)(f(x1, x2, . . . , xn))
def
= (@(→g f Jx1Kc Jx2Kc . . . JxnKc))

Action language

We now discuss Cview’s primitive actions. These actions represent the high-level setA; for

each, we give an informal definition of J−K in terms of structured predicates (Definition 6.19).

Atomic and non-atomic actions. Anything between a pair of triangles—<| and |>—forms

a single atomic action. Inside such actions, both shared and thread variables are in scope.

Cview permits a limited set of control-flow constructs (see below) inside atomic actions,

which translate into logical operators in the two-state proposition encoding.

Anything outside of triangles is non-atomic. Primitive commands encode into LVF ac-

tions, but the atomicity rules from § 5.7 apply where possible. Control flows encode into

LVF control flows, with some desugaring. In non-local actions, only thread variables are in

scope; non-atomic actions on shared variables would break the correspondence to the LVF.

Assignment. We use a subset of C’s assignment syntax. Expressions on the left of assign-

ments (lvalues) must be variables or array subscripts thereof. Right sides of assignments

(rvalues) may be expressions, or lvalues followed by ++ (fetch-and-increment) or −− (fetch-

and-decrement). The semantics, using rframe (Definition 6.18) to represent framing, is:

Jl = rK def
= rframe((and (= l ′ r) (= r ′ r)))

Jl = r++K def
= rframe((and (= l ′ r) (= r ′ (+ r 1))))

Jl = r−−K def
= rframe((and (= l ′ r) (= r ′ (- r 1))))

Increment and decrement. We can also use the above modifiers on an lvalue directly. The

semantics is that of the fetch-and-modify actions, but without assignment:

v++ def
= rframe((= v ′ (+ v 1))) etc.
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Assume and assert. Some proof scriptsmustmake assumptions that a condition holds before

proceeding, or assertions that abort the program if a condition does not hold. Cview’s assume

and assert commands permit this. Encoding assumption is straightforward:

Jassume PK def
= rframe((=> (not P) ∅Rl))

We encode assertion in two steps. First, we insert the following variable and invariant:

shared bool _ok; constraint emp −> _ok; // && previous invariant

Here, _ok is similar to the UTP [61, Def. 3.0.1] ok variable; it witnesses that the program

has not crashed. With these additions, we can define assertion:

Jassert PK def
= rframe((and (=> (not P) (= _ok ′ false)) (=> P (= _ok ′ _ok))))

As this encoding modifies shared variables, we cannot permit it outside atomic actions.

Compare-and-swap. Cview also contains primitives for compare-and-swap. The expressions

correspond to the destination, the variable containing the expected value, and the value-to-

set respectively. The expected-value variable always receives the original destination value;

this resembles the semantics of the x86 CMPXCHG instruction [66].

Errors. Wemay want to prove that a program branch is unreachable. While we could use

an opening {| false |} assertion, or <| assert false; |>, Cview provides an explicit

<| error; |> action. This has the same semantics as assert-false, but is clearer in intent.

Non-determinism. Cview has two constructs for statement-level non-determinism:havoc v,

which non-deterministically sets v to any value in its domain; and ... (‘miracle’), which

stands for any set of statements that obey its proof obligation.

The havoc command is semantically equivalent to idRl for all variables except v and v ′,

where it is equivalent to true. We allow havoc vwherever v is in scope: as a result, havoc

on thread variables can appear in non-atomic actions. This effect is entirely encodable in

structured predicates, and so we can class each havoc as a member ofA.

The semantics of miracle is harder to reconcile with Views. Informally, {P} ... {Q}

represents a gap into which we can insert some program provided that it obeys P, Q, and

the usual non-interference properties3. We can see Cview outlines containing miracles as

incomplete proofs to be filled in later, rather than valid proofs in their own right.

Still, we can simulate miracle in the Views language if we have access to P andQ while

doing so. Let +S be the iteration of the choice operator + over all programs in S. Then:

...(P,Q) ≈ + {C | ` {P} C {Q} }

Control flows

We now outline the control flow constructs in Cview, and how they map to the LVF language.
3As we are investigating safety properties only, divergence (assume false) is one such program, so the

validity of a miracle does not guarantee that the subsequent outline is reachable.
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Sequential composition. Unlike Views, sequential composition is not an explicit operator in

Cview. Instead, like C, we implicitly sequentially-compose statements, using semicolons to

terminate statements with ambiguous endings.

Choice. Instead of the Views + operator, Cview has C-style if statements. The syntax is the

same as that of Go: a modified version of C’s syntax, permitting only brace-delimited blocks

as branches, and allowing the brackets around conditions to be elided.

The special * condition represents a straight non-deterministic choice.

Jif * {X}Kc
def
= Jif * {X} else {}Kc

Jif * {X} else {Y}Kc
def
= (JXKc) + (JYKc)

Statement-level choices with condition expressions reduce to Views non-deterministic

choices guarded by assumptions. This follows the observation we made in Figure 2.2.

Jif P {X}Kc
def
= Jif P {X} else {}Kc

Jif P {X} else {Y}Kc
def
= Jif * { assume P; X} else { assume ¬P; Y}Kc

We allow if inside atomic actions, with the following two-state predicate semantics:

Jif P {X}K def
= Jif P {X} else { id; }K

Jif P {X} else {Y}K def
= (and (=> P JXK) (=> (not P) JYK))

Jif * {X}K def
= Jif * {X} else { id; }K

Jif * {X} else {Y}K def
= (or JXK JYK)

Iteration. Cview has two C-style loop constructs: while, which conditionally executes a

block zero or more times, and do while, which guarantees at least one execution. Like if,

loop bodies must be braced blocks; unlike if, atomic actions cannot contain loops.

Semantically, both loops reduce to theViews iteration, adding assume guards to enforce

the truth or falsehood of the loop condition.

Jdo {B} while P;Kc
def
= JB; while P {B}Kc

Jwhile P {B}Kc
def
= (Jassume P; BKc)

∗; Jassume ¬PKc

Methods. We organise blocks of Cview code, at the top level, into one or more methods.

These resemble C functions, but can (presently) neither return a value nor return early. We

can consider methods, or sequential invocations thereof, as being the programs that each

thread is running in an instance of the LVF multi-thread set-up (Definition 5.13).

Inference

Weallow a? operator to replace certain Cview elements. This lets us use the inference abilities

of a suitable backend to find stable views and definitions to complete the proof.
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In constraints. When ? appears in a constraint clause, it asks the backend to infer a

stable definition. While its semantics depends on the backend in question, typically we

lower ? to a symbol invoking an uninterpreted function over the shared variables and pattern

parameters. For example, suppose we wanted to infer the following ticket lock constraint:

constraint Tick(ta) * Tick(tb) −> ?;

This constraint might expand to a symbol similar to the following:

constraint Tick(ta) * Tick(tb) −>

%{infer_Tick_Tick([| s |], [| n |], [| ta |], [| tb |])};

Constraint search. As a convenience, Cview has a top-level directive for constraint search. A

search n; directive expands to a series of constraint X −> ?; directives, one for each

pattern X of size 0 6 |X| 6 nwith no existing definition.

In assertions. We can infer whole view assertions by using the {| ? |} form. This is syn-

tactic sugar: to reduce it, we expand it to a fresh atom, parametrised by all thread variables

in scope. While we synthesise a prototype for the new atom, we do not generate any con-

straints for it; we instead rely on the existence of a search directive.

Building whole proof outlines

We can now construct Cview proof outlines. For convenience, and to better support C-style

syntax, Starlingtool does not expect assertions surrounding every statement and control-flow

construct as in Figure 3.1. Instead, we require one assertion at each block start, block end,

and sequence point between statements. When a required view assertion is missing, the

backend supports inference, and we have a search directive, we insert an implicit {| ? |}.

To demonstrate, Listing 7.1 gives a valid proof outline for the ticket lock. This proof

focuses on mutual exclusion, and assumes that the lock is statically allocated into shared

variables4. In § 8.1, we discuss how Starlingtool verifies the proof.

7.2 The Starlingtool frontend

We now discuss how Starlingtool converts Cview outlines into verification conditions. We can

view Starlingtool as a pipeline, roughly organised into four main stages—the Cview top-level;

graph analysis; term generation; and the emitter and backend interface:

4We give a heap-allocated version of the ticket lock proof in Starlingtool’s examples directory.
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Listing 7.1: Cview proof of mutual exclusion for the Mellor-Crummey/Scott ticket lock.

1 shared int s, n;
2 method lock() {
3 {| emp |}
4 thread int t, c; <| t = n++; |>
5 {| Tick(t) |}
6 do {
7 {| Tick(t) |}
8 <| c = s; |>
9 {| if c == t { Lock } else { Tick(t) } |}

10 } while c != t;
11 {| Lock |}
12 }
13 method unlock() { {| Lock |} <| s++; |> {| emp |} }
14 view Tick(int t), Lock;
15 constraint emp −> n >= s;
16 constraint Tick(t) −> n > t;
17 constraint Lock −> n != s;
18 constraint Tick(a) * Tick(b) −> a != b;
19 constraint Lock * Tick(t) −> s != t;
20 constraint Lock * Lock −> false;
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We now briefly discuss each main stage, and any major subtleties in its interpretation of

the gStarling frontend. For each, we link to the relevant parts of Starlingtool’s F] source code.

Cview top-level

(Code: Starling.Lang.Parser) (Code: Starling.Lang.Collator) (Code: Starling.Lang.Modeller)

Starlingtool first parses the outline, checks it for issues, and assigns types to expressions.
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Parsing. The first step is to parse the outline. We also collate each top-level entity into

separate sets: one for view atoms; one for variable declarations; and so on.

To simplify the rest of the tool, we lower as much syntactic sugar as possible at this point.

For example, we synthesise the _ok variable and _local view from in the last section, and

lower local and false view expressions to use the latter. We also insert {| ? |}wherever a

view assertion is expected but missing; reduce Cview view assertions to a form closer to view

expressions (with guarded atoms rather than selections); expand {| ? |} to fresh views;

and expand search directives to constraints; amongst other lowerings.

Validation. At this stage, Starlingtool also checks for issues in the outline, such as references

to variables that are out of scope (including uses of shared variables in non-atomic code);

references to missing view atoms; and iterated constraints on non-iterated atoms. Doing so

at this level gives users assurance that their proofs are free from several classes of human

error, and makes Cview act more like a practical programming language.

Type checking. Type checking is orthogonal to the rest of the verification process, so we

perform it in advance. Starlingtool’s goal is to assign a full type record (including subtype

information) to every expression and lvalue in the outline. The main subtlety here is that

Starlingtool respects the subtyping rules in § 7.1 during type checking.

Aside: microcode

(Code: Starling.Core.Command)

While performing lowering and validation, Starlingtool reducesCview’s command language

to a smaller set of primitive commands; this simplifies the later translation to two-state

predicates. By analogy with modern CPUs, we call this small language microcode. Microcode

consists of the following commands:

(← l v) (assignment)

(←? l) (havoc/nondeterministic assignment)

(assume b) (assumption)

(if b x y) (if-then-else)

(% s) (symbol)

(seq a b . . . z) (sequence)

For example, a = b++ lowers to (seq (← a b) (← b (+ b 1))); CAS(d, t, s) becomes:

(if (= d t) (seq (← d s) (← t t)) (seq (← d d) (← t d)))

Graph analysis

(Code: Starling.Lang.Grapher)

Once we have a validated, typed, and simplified outline, we decompose it into a set of

atomic Hoare triples. While we already have a scheme for decomposition, it targets the LVF
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1

(@(tick t))

(seq (← t n) (← n (+ n 1)))

(@(tick t))

(id)

(• (@(→(= c t) lock)) (@(→(≠ c t) tick t)))

(← c s)

(@(lock))

(assume (= c t))

(assume (≠ c t))

Figure 7.1: Unoptimised CFG of the ticket lock’s lockmethod.

outline language;wewould need to first convert the outline fromCview to LVF.Doing sowould

waste time and throw away program structure; such structure is useful for optimisations,

and giving feedback to the user when proofs fail.

Instead, we translate method outlines into an intermediate control-flow graph (CFG)

representation. Each graph node is a sequence point, holding a view assertion. Each edge is

an LVF label (a primitive command or id-transition). We then optimise the CFG to reduce

the number of generated verification conditions while entailing the original proof.

From outlines to CFGs. Starlingtool translates outline methods into CFGs by recursively

analysing each control-flow construct and instantiating corresponding graph fragments.

Each CFG should decompose into the same triple set we get from lowering the outline to

the LVF and applying the LVF decomposition; as such, each fragment closely resembles its

construct’s lowering in § 7.1. Table 7.1 gives translations for some of Cview’s control flows;

we omit the non-deterministic forms, as they are broadly similar. As an example, Figure 7.1

shows the CFG corresponding to the ticket lock’s lockmethod.

As the CFG transformation pieces together graph fragments without any further analysis,

the resulting graphs have a large degree of redundancy. We can see this in the lockmethod:

the second transition in the graph is 〈(@(tick t))〉 id 〈(@(tick t))〉, which is trivial. Before

we proceed, we need to limit the amount of redundancy in the CFG, and, therefore, the

amount of redundant verification conditions we send to the backend solver.

Graph optimisations. Once we have a CFG, we can perform optimising transformations on

it. These transformations range in severity: some preserve the semantics of the original

program; some sacrifice the program semantics but preserve the relationship between the

output verification conditions and the program’s proof; and some— disabled by default —

weaken the proof by eliminating advisory views.

Figure 7.2 gives the optimised form of the lock CFG. While there are clear semantic

differences, we see later that the final proofs are equivalent.
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{| P |} X {| Q |} Y {| R |} P X Q Y R

{| P |}
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}
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while e {
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}
{| Q |}

P

Pl
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} while e;
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(assume (not e))
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Table 7.1: A selection of Cview control flows, and corresponding control-flow graphs.
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1

(@(tick t))

(seq (← t n) (← n (+ n 1)))

(@(lock))

(seq (← c s) (assume (= c t)))

Figure 7.2: Optimised CFG of the ticket lock’s lockmethod.

From CFGs to atomic Hoare triples. The structure of Starlingtool’s CFGs makes reduction

to a set of atomic Hoare triples straightforward: we just take every edge c, its source node p,

and its target node q, and return 〈p〉 c 〈q〉. The CFG in Figure 7.2, for example, reduces to:

〈1〉 (seq (← t n) (← n (+ n 1))) 〈(@(tick t))〉

〈(@(tick t))〉 (seq (← c s) (assume (= c t))) 〈(@(lock))〉

By looking at the same reduction for the unoptimised CFG, we can check that the optim-

isations have not weakened the method’s proof obligation. For lock(), these are:

〈1〉 (seq (← t n) (← n (+ n 1))) 〈(@(tick t))〉

〈(@(tick t))〉 (id) 〈(@(tick t))〉

〈(• (@(→(= c t) lock)) (@(→(≠ c t) tick t)))〉 (assume (≠ c t)) 〈(@(tick t))〉

〈(• (@(→(= c t) lock)) (@(→(≠ c t) tick t)))〉 (assume (= c t)) 〈(@(lock))〉

〈(@(tick t))〉 (← c s) 〈(• (@(→(= c t) lock)) (@(→(≠ c t) tick t)))〉

We see that: the first triple is the same as its optimised counterpart; the second triple is

trivial; the next two triples are straightforward entailments oncewe process the assumptions;

and the last triplemaps either onto the second optimised triple or a relatively-straightforward

entailment over the stability of (tick t)—depending on how we case-split (= c t).

Term generation

(Code: goalAdd in Starling.Core.Axiom) (Code: Starling.Core.TermGen)

Next, Starlingtool generates high-level proof terms, analogous to those in Definition 6.30.

We first take the Cartesian product of atomic triples and constraint patterns, instantiating

each pattern into a view expression over goal variables (as in gStarling). Internally, we call

the resulting (〈p〉 c 〈q〉 ,g) pairs goal axioms.

To turn goal axioms into 〈w〉 c 〈g〉 terms, we build the weakest-precondition w =

p •(g \q). Instead of building w then list-normalising it as in gStarling, we build a nor-

malised version directly by appending p to a variant of rmpart over g and q. The Cview syntax

guarantees that q has constant iterators, so we avoid non-termination problems.

Throughout this process, we try to keep as much information about the original goal and

triple as possible. This helps us provide meaningful feedback when a term fails.
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Emitting: microcode expansion

(Code: Starling.Semantics)

We now expand microcode into two-state predicates. To do so, we must handle three

subtleties: arrays, seq clauses, and framing over variables not mentioned in the microcode.

Arrays. Array assignments only modify part of a variable. This causes problems when

framing, so we lift them into whole-variable assignments. We lift normal assignments (of

the form (← a[i] v)) to the list override (← a a[i 7→ v]), and lift multi-dimension array

assignments recursively, from outer subscript inwards.

Starlingtool’s treatment of array havocs is incomplete; the havoc (←? a[i]) propagates
outwards to become (←? a). This is an over-approximation of the original command’s non-

determinism, meaning that Starlingtool may reject some terms where the postcondition

depends on at least part of the array avoiding havoc. In practice,we can encode such situations

as (seq (←? x)(← a[i] x)), where x is a fresh local variable5.

Sequential composition. Sequential compositions inside actions need care, as intermediate

states must not be observable outside of the action. To expand sequential compositions, we

can either symbolically compute their effect (eliminating intermediate states entirely), or

introduce fresh, solver-quantified variables to hold intermediate results; for example:

Original

(seq (← y x)

(← x (+ x 1))

(← y (+ y x)))

Symbolic computation

(and (= x ′ (+ x 1))

(= y ′ (+ x (+ x 1))))

Intermediate variables

(and (= y0 x)

(= x ′ (+ x 1))

(= y ′ (+ y0 x ′)))

While symbolic computation leads to smaller verification conditions, it requires heavy-

weight analysis on each command—analysis that gets complicated whenwe add conditionals

and variable havoc. The solvers we target, on the other hand, cope acceptably well with

encodings using intermediate variables, and so we choose that approach for Starlingtool.

Intermediate variable generation interacts subtly with havoc. When an (←? x) action
sequences before another action using x, we generate (but do not assign to) a variable to

represent whichever value x non-deterministically assumes after havoc. If nothing assigns

to x afterwards, this variable is just x ′; else, we make an intermediate variable. For example,

<| havoc x; havoc y; y = y+x; |> becomes (= y ′ (+ y0 x ′)).

Framing. While microcode actions only refer to the specific variables they affect, two-state

predicates must bind all variables that are not the subject of a (←? − ) clause. To handle this

discrepancy, we apply a version of rframe to each translated microcode action, introducing

an (= x ′ x) constraint for each x neither assigned nor subjected to havoc.

5Future versions of Starlingtool may apply this encoding automatically.
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Framing does not occur over intermediate variables. This is because such variables

correspond to intermediate assignments; if an intermediate variable does not exist for a

given x, there are no such assignments, and generating a framing constraint on x ′ will suffice.

Emitting: view expansion

(Code: Starling.Reifier) (Code: Starling.Flattener) (Code: Starling.Instantiate)

Aswell as expandingmicrocode into two-state predicates, we expand views into one-state

predicates. This process closely follows the analogous part of the gStarling frontend.

Pattern matching. First, we expand the weakest precondition into the set of all pattern

matches against the constraint system. This expansion happens in the reifier, thus named

because of its correspondence to the (syntactic) reification stage in gStarling.

Since the constraint system translates to a guarded (iterated) syntactic definer, the

pattern-matching stage corresponds to the syntactic reification we sketched earlier.

View flattening. After pattern matching, the weakest precondition is a multiset of views;

the goal remains a single view. To simplify the final conversion to predicates, we flatten these

views into single atoms. This process resembles the gStarling flattening step; one difference

is that we route shared states to term views (pre-state to weakest precondition, post-state to

goal) by appending the right shared variables onto each atom’s arguments list.

View instantiation. In thefinal step,we instantiate the constraint predicate for eachflattened

atom in both views. As each atom carries every variable—shared variable or argument—used

in the constraint predicate, this is a straightforward substitution step.

Emitting: interfacing with solvers

Oncewehave fully-instantiated verification conditions,we can prepare them for consumption

by a solver. This includes checking for anything in the outgoing conditions that cannot be

expressed in the given solver; translating the conditions to the solver’s native format; and

calling the solver. We discuss solver-specific interfacing considerations in the case studies.

Boolean simplification. As well as interfacing with a solver to check verification conditions,

we use a combination of Z3 and bespoke symbolic analysis to perform basic Boolean sim-

plification throughout Starlingtool. As Z3 is optimised for checking Boolean expressions

over the domains we use in Starlingtool, we use it to check whether Boolean expressions are

tautological, contradictory, or reducible to simpler expressions.

7.3 Summary

This chapter introduced Starlingtool, an automated concurrency verifier based on gStarling,

and its input language, Cview. It discussed how Cview maps to the LVF language, and how

Starlingtool performs the functions of a gStarling frontend.
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Chapter 8

Case Studies and Validation

We have Starling, a method for building automatable concurrent program logics; gStarling,

one such logic; and Starlingtool, which implements a derivative of it. While Starlingtool’s

existence suggests that Starling can produce tooling of some form, we have not yet seen

evidence that said tooling (or, indeed, the meta-theory behind it) is useful. Can Starlingtool
prove real-world concurrent algorithms correct, and disprove algorithms that are broken for

interesting reasons? Can it give us insights into why concurrent algorithms work and fail?

We use a variety of approaches to answer these questions. In § 8.1, we show that

Starlingtool can prove and disprove real-world algorithms using a selection of case stud-
ies. For reproducibility, we distribute the case studies with Starlingtool. As evidence for the

tool’s correctness, we use unit and regression testing; we discuss these approaches in § 8.2.

We also may ask whether the Starling meta-theory we produced in the previous chapters

is consistent, and whether the tool implements gStarling-style reasoning correctly. While

we do not have a formal mechanisation of all of Starling, or Starlingtool, we have mechanised

parts of each. § 8.3 outlines the mechanisation and its usefulness as a validation tool.

8.1 Case studies

So far, we have seen one Cview proof: the ticket lock (Listing 7.1). In this section, we explore

other algorithms for which our tool can prove useful properties. We give full proofs for each,

as well as examples of code and specification bugs that Starlingtool can detect. We discuss

which solvers we can use for each proof, and subtleties in how proofs map to solver input.

Table 8.1 summarises the case studies we give in this section.

Verifying the ticket lock proof

(Code: Examples/Pass/ticketLock.cvf)

This section outlines how Starlingtool verifies the ticket lock proof in Listing 7.1. As the

proof contains neither inference requests nor heap accesses, we can use Starlingtool’s Z3

backend to carry out the proof.

Starlingtool sends each verification condition to Z3, using its .NETAPI1, as a separate neg-

1Amore portable, but less efficient, manner would be to send conditions to Z3 as SMT-LIB input.
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Z3 GRASShopper HSF

Study Pass Fail Pass Pass

Ticket lock Listing 7.1 Listings 8.9 and 8.10 Listing 8.8
Peterson Listing 8.1 Listing 8.11

Circular buffer Listing 8.2
ARC Listing 8.3 Listing 8.5

CLH lock Listing 8.7

Table 8.1: Case study matrix, mapping case studies below to solvers used and whether the
proofs pass or fail. Each proof entry refers to its discussion in the dissertation, which, in
turn, refers to the source in the Starlingtool repository.

ated Hoare judgement (w∧c∧¬g). A proof succeeds when all such clauses are unsatisfiable;

this double negation represents a search for counter-examples to each condition.

Consider this goal axiom, which comes from the optimised ticket lock CFG:

(〈(@(Tick t))〉 (seq (← c s) (assume (= c t))) 〈(@(Lock))〉 , (@(Lock)))

The resulting proof term, in structured predicate form, is:

〈〈(and (>= n s) (> n t))〉〉 (and (= c ′ s) (= c ′ t))
〈〈
(≠ n ′ s ′)

〉〉
This proof term is smaller than, for example, the proof term we generated in § 6.5 through

rote application of gStarling. This reflects the fact that Starlingtool performs expression

optimisation (both at Boolean and view level), and its approach to framing lets us eliminate

post-state variables when no assignment or havoc occurs to them.

The proof term generates a Z3 query similar to the following SMT-LIB input:

(and (and (>= VnBEFORE VsBEFORE) (> VnBEFORE VtBEFORE))

(and (= VcAFTER VsBEFORE) (= VcAFTER VtBEFORE))

(= VnBEFORE VsBEFORE))

Peterson’s algorithm

(Code: Examples/Pass/petersonArray.cvf)

Having used Peterson’s algorithm as a source of running examples in previous chapters,

let us now build a Cview version of the algorithm and prove that it obeys mutual exclusion.

Proof outline. There now follows aCview proof outline forPeterson. This outline corresponds
to the sketches of § 6.4, but uses Cview’s higher-level syntax.

We start by modelling the algorithm’s variables. While the original sketch used a two-

element type to model thread IDs, we opt for int; 0 represents threadA, and 1 thread B. (We

can encode the assumption that IDs are always 0 or 1 in our constraint table later on.)

We then model the flags as an ID-indexed Boolean array. This lets us reduce the difference

between the two threads to the ID itself, which we can pass as a method parameter.
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Listing 8.1: Peterson’s algorithm: Cview proof using Z3

1 shared bool[2] flag; // Whether each flag is seeking the lock

2 shared int turn; // Used to give the other thread priority

3 thread bool oFlag; // The thread's view of its opponent's flag

4 thread int oTurn; // The thread's view of the current turn

The view atoms we use correspond to the tag set we gave for Peterson’s algorithm in

§ 6.4 (and therefore to the per-thread states we identified in Figure 3.3):

5 view FlagDown (int i), FlagUp (int i), Waiting (int i), Lock (int i);

The lock and unlockmethods follow. There are some changes over the previous sketch,

reflecting the encoding of thread IDs as integers. Here, turn stores the ID of the thread

that does not have turn priority (with appropriately altered turn conditions). To read another

thread’s flag, we can use modular arithmetic to find that thread’s ID.

6 method lock(int i /* thread id */) {

7 {| FlagDown(i) |}

8 <| flag[i] = true; |>

9 {| FlagUp(i) |}

10 <| turn = i; |>

11 {| Waiting(i) |}

12 do {

13 {| Waiting(i) |}

14 <| oFlag = flag[(i + 1) % 2]; |>

15 {| if oFlag { Waiting(i) } else { Lock(i) } |}

16 <| oTurn = turn; |>

17 {| if oFlag && oTurn == i { Waiting(i) } else { Lock(i) } |}

18 } while oFlag && (oTurn == i);

19 {| Lock(i) |}

20 }

21 method unlock(int i) {

22 {| Lock(i) |} <| flag[i] = false; |> {| FlagDown(i) |}

23 }

Constraints. The constraints start with the invariant: turnmust be a valid thread ID.

24 constraint emp −> 0 <= turn <= 1;

The goal of Peterson, as with the ticket lock, is mutual exclusion.We can re-use the ticket

lock’s mutual-exclusion constraint, with changes to account for thread IDs:

25 constraint Lock(me) * Lock(you) −> false;

In Peterson’s algorithm, the individual thread automaton states (and, by extension, the

atoms) do not correspond directly to the concrete state of the shared variables. In fact,

FlagUp,Waiting, and Lock all have the same definition:
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26 constraint FlagDown (t) −> flag[t] == false && (0 <= t <= 1);

27 constraint FlagUp (t) −> flag[t] == true && (0 <= t <= 1);

28 constraint Waiting (t) −> flag[t] == true && (0 <= t <= 1);

29 constraint Lock (t) −> flag[t] == true && (0 <= t <= 1);

The difference between them relates to constraints on the allowed pairs of thread states.

For Peterson’s algorithm to work, the situation in which two threads simultaneously contest

the lock must resolve to a stable situation in which only one thread holds the lock. This

property comes from the fact that both threads atomically flip the turn variable before they

begin waiting — this imposes an ordering on the threads where the last thread to do so must

wait. We enforce this ordering with a two-atom constraint onWaiting and Lock:

30 constraint Lock(me) * Waiting(you) −> me != you && turn == you;

The additionalme != you relates to the fact that each thread can only be in one auto-

maton state at a given time. To enforce this, we constrain each pair of states such that the

thread identifiers must differ; this gives us the following extra constraints:

31 constraint FlagDown (me) * FlagDown (you) −> me != you;

32 constraint FlagUp (me) * FlagUp (you) −> me != you;

33 constraint FlagUp (me) * Waiting (you) −> me != you;

34 constraint FlagUp (me) * Lock (you) −> me != you;

35 constraint Waiting (me) * Waiting (you) −> me != you;

Other proofs. Peterson’s 1981 article gave an informal correctness argument in prose,

including a paragraph onmutual exclusion [19]. The argument resembles ours; it also focuses

on the way in which the turn variable breaks ties between threads, therefore eliminating

states in which mutual exclusion fails.

Dijkstra gave a more formal Owicki-Gries-style proof in 1981 [67]. This proof is similar

to ours2, but uses auxiliary program-counter variables to achieve the two-thread assertions

that we represent natively in gStarling with two-atom constraints.

These two proofs aremore human-readable than ours— their main arguments are prosaic,

and Dijkstra’s annotations are flat logical propositions. This informality makes the proofs

hard to verify automatically; in addition, the auxiliary variables used in Dijkstra’s treatment

blur the boundaries between proof and algorithm.

Circular buffer

(Code: Examples/Pass/circular.cvf)

So far, we have only considered mutual exclusion algorithms. To validate the approach

over other algorithm types, let us consider Algorithm 5: a toy circular buffer implementation.

Circular buffers let us send an unbounded data stream from one producer to one consumer

in constant space, with the only interruptions to data flow being buffer underruns or overruns.

Their use cases include transferring audio data from a decoder thread to a playback thread.

2Excluding the fact that Dijkstra’s presentation uses guarded commands rather than C-like control flows.
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Figure 8.1: Circular buffer with writer and reader spaced evenly apart; both capacities are 5.

In the circular buffer, both producer and consumer maintain separate pointers into the

same memory space. As the producer produces data, it writes the data at its pointer and

advances it, as the consumer consumes data, it reads from, and advances, its pointer. When

pointers reach the end of the memory space, they cycle back to its start: hence, they make

circular paths across the buffer. The two pointers divide the buffer into disjoint regions as

seen in Figure 8.1: the span from the read pointer to the write pointer holds data ready to

consume, and the span from write to read is free space the producer can use.

Specification. The ideal specification for the circular buffer is that it refines a fixed-capacity,

immutable queue with support for batch reading and writing as well as erasing (‘flushing’).

Let us call the number of items in the queue the write capacity, and the number of extra

items for which the queue has space at any given time is the read capacity. Any writes to the

queue must not exceed the write capacity, and any reads must not exceed the read capacity.

Flushing can only happen if both reader and writer agree.

This specification leads to the properties that:

• the read and write capacities are always non-negative and sum to the queue capacity;

• once an item is written, it does not change until it is read;

• if the writer writes n items, then, eventually (and perhaps over multiple reads), the

reader will read those n items in first-in-first-out order;

• after a flush (inwhich both reader andwritermust synchronise), there exist no elements

in the queue (read capacity is 0).

The level of expressivity in Starlingtool limits the amount of this specification that we can

prove. There is no known way to express the first-in-first-out property, or immutability (the

nature of the circular buffer involves repeatedly overwriting unused data, and expressing

in views which data is known to be ‘used’ is not straightforward). As such, the case study

below proves a somewhat weaker specification in which we show the remaining properties,

as well as a small step towards showing immutability: that there is no overlap between the

regions of the circular buffer accessed by the reader and writer.

143



CHAPTER 8. CASE STUDIES AND VALIDATION

Algorithm 5 Circular buffer
b : array 1 . . . 100 of N shared . buffer
r : N shared . read capacity
w : N shared .write capacity
p : N local . current position of thread in buffer
l : array 1 . . . 100 of N local . local buffer

procedureWrite(n)
x : N . storage for estimated write capacity
d : N . amount written so far
〈x := w〉
for d := 0 . . .Min(x,n) do . (exclusive)
〈b[p] := l[d]〉
p := (p+ 1) mod 100 . advance pointer with wrap-around

end for
〈r := r+ d;w := w− d〉 . update capacities

end procedure

procedure Read(n)
x : N . storage for estimated read capacity
d : N . amount read so far
〈x := r〉
for d := 0 . . .Min(x,n) do . (exclusive)
〈l[d] := b[p]〉
p := (p+ 1) mod 100 . advance pointer with wrap-around

end for
〈r := r− d;w := w+ d〉 . update capacities

end procedure

Proof outline. We now consider a Cview proof of Algorithm 5. For simplicity, the outline

keeps as close to the pseudocode as possible. As a result, it has some features, such as

representing read and write capacity as separate variables kept in lock-step, that do not

necessarily correspond to real-world circular buffer implementations.

The variable declarations are exactly the same as their equivalents in the pseudocode:

Listing 8.2: Circular buffer: Cview proof using Z3 (full version at Appendix A.7)

1 shared int[100] circ_buf;

2 shared int r_capacity, w_capacity;

3 thread int position;

4 thread int[100] local_buf;

The writer-thread outline follows. Throughout, we track the writer’s position in the

buffer and its estimate of the write capacity in theWriter atom. Local assertions ensure the

amount to be written (c) and the amount already written (wrote) remain in-bounds.

5 method write(int c) {

6 {| Writer(position, 0) * local{0 <= c <= 100} |}

7 thread int wc; <| wc = w_capacity; |>

8 {| Writer(position, wc) * local{0 <= c <= 100} |}
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9 if wc < c {

10 {| Writer(position, wc) * local{0 <= c <= 100} |}

11 c = wc;

12 {| Writer(position, wc) * local{0 <= c <= wc} |}

13 }

14 {| Writer(position, wc) * local{0 <= c <= wc} |}

15 thread int wrote; wrote = 0;

16 {| Writer(position, wc) * local{0 <= wrote <= c <= wc} |}

17 while wrote < c {

18 {| Writer(position, wc) * local{0 <= wrote < c <= wc} |}

19 <| circ_buf[position] = local_buf[wrote]; |>

20 position = (position + 1) % 100;

21 wrote++;

22 {| Writer(position, wc) * local{0 < wrote <= c <= wc} |}

23 }

24 {| Writer(position, wc) * local{0 <= wrote && wrote <= wc} |}

25 <| w_capacity = w_capacity − wrote;

26 r_capacity = r_capacity + wrote; |>

27 {| Writer(position, wc − wrote) |}

28 }

The readmethod is, for the most part, a mirror image of write. As such, it does not

appear here; Appendix A.7 gives the full proof script.

To empty the buffer, we just mark the whole buffer as writable. In this implementation,

we do so by atomically resetting the write capacities. To flush safely, we need both threads

to synchronise; we can model this by collecting both atoms in one assertion.

53 method flush(int p1, int p2) {

54 {| Reader(p1, 0) * Writer(p2, 0) |}

55 <| r_capacity = 0; w_capacity = 100; |>

56 {| Reader(p1, 0) * Writer(p2, 100) |}

57 }

Flushing expects both threads to have capacity estimates of 0. We can show that each

thread can safely forget its estimate like so (eliding a similar method for the reader):

58 method forget_wcap(int c) {

59 {| Writer(position, c) |} ; {| Writer(position, 0) |}

60 }

Constraints. The invariant constraint ensures that the read and write capacities sum to 100,

the buffer’s storage capacity. It also requires the capacities to be non-negative (to prevent,

say, situations where one capacity is 101, but the other is −1).

64 constraint emp −> 0 <= w_capacity && 0 <= r_capacity

65 && w_capacity + r_capacity == 100;
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The writer thread’s constraint ensures that: its buffer position must be in-bounds; its

capacity estimatemust be non-negative; and the estimatemust be pessimistic with regards to

the actual write capacity at all times. This pessimism lets the reader grow the write capacity

in parallel with the writer. As in Peterson, another constraint prevents two threads from

assuming the writer role.

66 view Writer(int position, int cap_estimate);

67 constraint Writer(position, cap_estimate) −>

68 0 <= position < 100 && 0 <= cap_estimate <= w_capacity;

69 constraint Writer(xp, xc) * Writer(yp, yc) −> false;

The reader thread’s constraints mirror those of the writer, so we do not discuss them here.

Atomic reference counter: static

(Code: Examples/Pass/arc.cvf)

Guarded views work well on proofs over protocols between fixed numbers of threads,

with pre-arranged thread roles and limited resource movement. When proofs involve the

transfer of an unbounded number of counting permissions, we need iterated views.

The atomic reference counter (ARC) is a small, but realistic, algorithm that relies on

such transfers. The ARC counts references to a shared resource (using atomic actions to

ensure the counter’s accuracy in the face of multi-thread reference acquisition and releasing),

freeing the resource once no references remain. A sophisticated ARC forms a major plank of

the Rust language’s concurrency support [68][16.3]; Algorithm 6 gives an idealised version.

Algorithm 6 Idealised atomic reference counter, due to Dreyer [69].
functionArcClone(x : Arc)
〈x.count := (x.count) + 1〉 . add reference
return x . all threads reference the same counter and data

end function

procedureArcPrint(x : Arc)
Print(x.data)

end procedure

functionArcDrop(x : Arc)
c : N . storage for current counter value
〈c := x.count; x.count := (x.count) − 1〉 . remove reference
if c = 1 then . no references remain

Free(x)
end if

end function

This case study concerns a version of the ARC that only uses shared variables: while this

does not reflect usual ARC usage, it simplifies the proof, and lets us use Z3. A further study

later on concerns a variant that allocates the ARC in a heap; that study targets GRASShopper.
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Specification. The ARC specification this case study uses concerns the memory safety of

reference counting (specifically, a property we can call no-use-after-free):

Given a reference counter over a potentially unavailable resource Data in which

each reference is a copy of a resource Ref, Data is unavailable (‘freed’) only if

precisely zero copies of Ref exist.

As long as a thread is aware that a Ref exists (for example, by owning one itself), it can

rely on the availability of Data (and so, if a reference guards all uses of the data, there can be

‘no use after free’). In Algorithm 6, count tracks the number of Refs in existence.

The specification does not guarantee that the data is freed if no more references exist.

This is not a safety property, but rather one of resource efficiency.

Proof outline. As usual, the outline starts listing the shared variables. While the integer

count directly represents the reference count, the outline abstracts away the actual data

being governed by the ARC. Instead, it uses a flag, free, as an abstract representation of

whether or not the data has been deallocated by the ARC.

Listing 8.3: Atomic reference counter: Cview proof using Z3 (static allocation)

1 shared int count; shared bool free;

The proof uses two atoms. The iterated atomArc represents one reference to the reference-
counted resource. A thread may hold as many Arcs as needed, and transfer them to other

threads. The regular atom CountWas over c asserts that, at one time, the reference count

was c; we use this to reason about whether we can safely free the resource.

2 view iter Arc; view CountWas(int c);

The first method modelsArcClone. As Cview does not support returns, and this form

of the ARC does not heap-allocate the counter, the method omits the second statement.

3 method clone() { {| Arc |} <| count++; |> {| Arc * Arc |} }

The next method models ArcDrop up to freeing the ARC. We cannot model freeing

directly, so we instead simulate it by raising the free flag. Between fetch-and-incrementing

the counter and (potentially) freeing the ARC, a CountWas atom holds the fetched value.

4 method drop() {

5 {| Arc |}

6 thread int c; <| c = count−−; |>

7 {| CountWas(c) |}

8 if c == 1 { {| CountWas(1) |} <| free = true; |> {| emp |} }

9 {| emp |}

10 }

As we have neither data nor a way to print it, we model ArcPrint in a stylised manner.

To simulate the act of reading the data for printing, we test whether the free flag has been

set to true, and assert that it has not; we also assert that the test preserves our Arc atom.
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11 method print() {

12 {| Arc |} thread bool f; <| f = free; |> {| local{ !f } * Arc |}

13 }

Constraints. Wefirst constrainArc. Holdingn copies ofArc tells us that at least n references

are active3, so our constraints reflect this. As we are proving no-use-after-free, we also assert

that the presence of even one Arcmeans that the data has not yet been freed.

14 constraint iter[n] Arc −> n > 0 => (free == false && n <= count);

ForCountWas, we cannot assert any inequalities between the observed and current values

of count. This is because any thread holding an Arc can clone it (increasing count) or

drop it (decreasing count). Instead, we note that once we observe a count of 1, we must

have just relinquished the last reference; if so, the count is 0 but the data is still present. We

further constrain CountWas to assert that only one thread can be in this position.

15 constraint CountWas(c) −> c == 1 => (free == false && count == 0);

16 constraint CountWas(m) * CountWas(n) −> (m != 1) || (n != 1);

This example demonstrates that constraints need not (and sometimes cannot) fully and

directly describe the atom’s abstract meaning in terms of the program’s concrete state.

Verification. While we again rely on Z3 to verify the static ARC, this time we must deal

with iterated views. To demonstrate, we focus on the following goal axiom of clone (line 3):

(〈(@(Arc))〉 (← count (+ count 1)) 〈(• (@(Arc)) (@(Arc)))〉 , (@(Arcn)))

Converting this goal axiom into a verification condition is less straightforward than in

non-iterated cases. We must calculate (\ (@(Arcn)) (@(Arc2))), a subtraction4 of a known

number of atoms from a universally-quantified number5. This subtraction results in a guarded

view, (→(> n 2) Arc(- n 2)); this models the fact that the subtraction only leaves behind

some Arc atoms when that number is positive. We now have this proof term:〈
(• (@(Arc)) (@(→(> n 2) Arc(- n 2))))

〉
(← count (+ count 1)) 〈(@(Arcn))〉

We can now apply the command semantics and reification. The semantics is straightforward:

J(← count (+ count 1))K = (and (= count ′ (+ count 1)) (= free ′ free) (= c ′ c))

The reification is subtle, for the reasons we discussed in § 6.7. While we need only match

against the pattern [Arc∗], and can use downclosure to put bounds on the number of matches

we consider, we must match all potential combinations of the Arc atom. This includes both

(@(Arc)) and (@(→(> n 2) Arc(- n 2))) as expected, but also the result of matching the

two atoms together, which simplifies to (@(→(> n 2) Arc(- n 1))). Inductive downclosure

means that this merged case subsumes the Arc(- n 2) case, so we can eliminate it.
3We cannot stably assert that exactly n references exist; this, for example, would violate the frame rule.
4Technically, at time of writing, Starlingtool would subtract each of the two atoms separately.
5We assume that n is disjoint from all other variables.
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As with the ticket lock, we finish by expanding the definitions and sending the negation

of the judgement to Z3. Viewed as a SMT-LIB query, the result looks like this:

(and (= count ′ (+ count 1)) (= free ′ free) (= c ′ c)

(=> (> n 2) (=> (> (- n 1) 0) (and (not free) (<= (- n 1) count))))

(not (=> (> n 0) (and (not free ′) (<= n count ′)))))

Atomic reference counter: heap-based

(Code: Examples/PassGH/arc.cvf)

We now modify the ARC to allocate the counter structure on a shared heap. This is more

realistic, but requires us to target a new backend solver and make changes to our proof.

GRASShopper. For heap-based programs, we can use GRASShopper [55]. GRASShopper

implements a decision procedure for GRASS, a reachability logic over pointer graphs highly

similar to Reynoldsian separation logic.

GRASShopper’s model is based on sets of heap locations and reachability properties over

sets. By building predicates over the pointer paths between set elements, we can assert the

existence and correctness of heap data structures. The syntax below defines a GRASShopper

predicate asserting that the location set Footprint contains a list with head x and tail y:

predicate list_segment(Footprint: Set<Node>, x: Node, y: Node) {

acc(Footprint) &*&
Footprint = {z: Node :: Btwn(next, x, z, y)}

}

First, acc(Footprint) asserts that each node in Footprint exists in the heaplet that

the predicate can access. The Btwn(next,x,z,y) predicate asserts that we can reach z

by starting at x and following the next pointers until y; each such z thus belongs to a list

between x and y. The comprehension {z: Node :: Btwn(next, x, z, y)} tells us that

each node in Footprint is on said list.

Adapting the proof. Thefirst changeswemake to the proof set up several types andpragmata

that the GRASShopper backend expects. First, in a separate file (let us assume the filename

arcmodule.spl), we define the shape of an ARC structure (or node):

Listing 8.4: Auxiliary GRASShopper module arcmodule.spl

1 struct ArcNode { var count : Int; var val : Int; }

On the Cview side, ArcNode is a subtype of int. This reflects the fact that, at the gStarling

level, ARC nodes are opaque pointers. Another int subtype handles the fact that GRASShop-

per uses the type Int (capital ‘I’) for integers.

Listing 8.5: Atomic reference counter: Cview proof using GRASShopper (dynamic allocation)

1 typedef int Int; typedef int ArcNode;
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Next follows a set of pragma statements: key-value pairs that provide instructions to

the backend. Here, they tell the backend: where to find the file with the ArcNode definitions;

that the set of all ARC nodes is ArcFoot; and that ArcFoot is a set of ArcNodes.

2 pragma grasshopper_include {arc−module.spl};

3 pragma grasshopper_footprint {ArcFoot};

4 pragma grasshopper_footprint_sort {Set<ArcNode>};

The view atoms remain broadly the same as their static counterparts, except that they

now take an extra parameter: the pointer to the ArcNode that the atom concerns.

5 view iter Arc (ArcNode x); view CountWas (ArcNode x, Int c);

A new initmethod models the heap allocation of ARC nodes. It uses symbols to access

GRASShopper primitives for memory allocation and variable update. Let us assume that the

ARC node is exclusively owned by the initialising thread throughout the method; treating

the method body as an atomic action models this.

6 method init(ArcNode ret) {

7 {| emp |}

8 <| ret = %{ new ArcNode }; %{ [|ret|].count := 1 }; |>

9 {| Arc(ret) |}

10 }

Cloning a dynamic ARC is the same as cloning a static ARC, except that we delegate the

increment action to GRASShopper through a symbol.

11 method clone(ArcNode x) {

12 {| Arc(x) |}

13 <| %{ [|x|].count := [|x|].count + 1 }; |>

14 {| Arc(x) * Arc(x) |}

15 }

As the proof targets a backend that ensures that heap accesses target properly-allocated

objects (that is, objects inside the footprint set), we can model printmore accurately than

before. print now does so by fetching the ARC node’s value into a thread variable.

16 method print(ArcNode x) {

17 {| Arc(x) |} thread int p; <| p = %{ [|x|].val }; |> {| Arc(x) |}

18 }

The model of drop is largely unchanged. Instead of simulating freeing the ARC node

with a flag, the model now uses GRASShopper’s language to free the node for real.
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19 method drop(ArcNode x) {

20 {| Arc(x) |}

21 thread int c;

22 <| c = %{ [|x|].count }; %{ [|x|].count := [|x|].count − 1 }; |>

23 {| CountWas(x, c) |}

24 if c == 1 {

25 {| CountWas(x, 1) |} <| %{ free([|x|]) }; |> {| emp |}

26 }

27 {| emp |}

28 }

The constraint set receives some minor changes, too. First, each single-atom constraint

now refers to the ARC node pointed to by the atom. Second, the free-status of node x now

corresponds to its membership in ArcFoot. Third, the final constraint relaxes such that it

need only hold if both CountWas atoms refer to the same node.

29 constraint iter[n] Arc(x) −>

30 n > 0 => %{ [|x|] in ArcFoot && [|n|] <= [|x|].count };

31 constraint CountWas(x, c) −>

32 c == 1 => %{ [|x|] in ArcFoot && [|x|].count == 0 };

33 constraint CountWas(x, m) * CountWas(y, n) −>

34 x == y => ((m != 1) || (n != 1));

Verification. GRASShopper accepts sequential programs in a C-like language; each program

consists of procedures with requires–ensures specifications. Unlike Z3, where we translated

verification conditions into universally-quantified predicates and asked the solver to try to

falsify each separately, we now model each condition as one procedure in a program.

Most of the pipeline for producing GRASShopper proofs is similar to the SMT case.

(Indeed, Starlingtool first tries to discharge as many verification conditions as possible using

Z3, substituting true and false for each symbol to produce a sound but incomplete approxim-

ation.) The presence of a heap model causes some differences. Suppose we try to model the

allocated-ARC equivalent of our previous working example:

〈(@(Arc x))〉 (← count (+ count 1)) 〈(• (@(Arc x)) (@(Arc x)))〉

Given a context of (• (@(Arc x)) (@(Arc x))) (the same x as in the local state of the

thread), our translation would give the following in pseudo-SMT format:

(and (sym x.count := x.count + 1;)

(sym x in ArcFoot && 1 <= x.count)

(=> (> n 2) (and (sym x in ArcFoot) (<= (- n 1) (sym x.count))))

(not (=> (> n 0) (and (sym x in ArcFoot) (<= n (sym x.count))))))

We cannot discharge this term using SMT, but can convert it into a GRASShopper

procedure. The command becomes the procedure body, and the left- and right-hand sides of
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the proof rule body become requires and ensures clauses. Both of these quantify over a

footprint set representing the whole heap – in the ARC this is the ArcFoot set. This allows

predicates to state conjunctive constraints over a single shared heap. Arguments to the

procedure stand for input and output variables. With this translation, the above becomes:

procedure Example (n: Int, x: ArcNode)

requires exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&
((x in ArcFoot && 1 <= x.count) &&

(n <= 2 || (x in ArcFoot && n <= x.count))) )

ensures exists ArcFoot:Set<ArcNode> :: (

acc(ArcFoot) &*&
(n <= 0 || (x in ArcFoot && n <= x.count)) )

{ x.count := x.count + 1; }

Whenever we must model variable mutation, we can declare fresh GRASShopper vari-

ables in the procedure body, and connect them to the input and output variables by assertion.

CLH queue lock

GRASShopper’s dynamic-data-structure support lets us targetmore complex algorithms than

the ARC. Here, we verify the CLH lock (due to Craig [70] and Landin and Hagersten [71]).

In the CLH lock, each thread owns a single node in a linked queue. To contend for the

lock, a thread raises a flag on the node, atomically adds it to the back of the queue, then waits

on its predecessor. To release the lock, the thread lowers the node’s flag; once a thread’s

node’s predecessor is released, the thread can take the lock.

When a thread finishes releasing the lock, it must still own a node — else it cannot

re-acquire the lock later on. The thread cannot immediately re-use its last node, as another

thread may still be observing it; instead, the thread takes ownership of its predecessor.
Threads always exclusively hold some node, but the node varies over time.

To make sure the lock queue is always in a valid state, the lock starts with one unlocked

sentinel node. In addition, each thread allocates an initial node when it joins the lock system.

Let us once again design a proof by viewing the algorithm as a series of interacting

finite-state automata. The automaton, which we give in Figure 8.2, has the same abstract

shape of that of Peterson’s algorithm (Figure 3.3). This time, each automaton corresponds

to a queue node (not a thread), and we give the states a different concrete meaning. The

differences between the states are subtle, so Figure 8.3 gives diagrams for each.

Specification. The specification that this case study explores is that used for previous lock

algorithms (§ 3.3). Like the ticket lock, the CLH lock proof has separate lock and unlock

methods, and a critical section is any span between their respective calls. A thread acquires an

abstract Lock when its node matches the shape shown in the rightmost diagram in Figure 8.3.
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Figure 8.2: The finite-state automaton underlying a single node in the CLH lock.
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Figure 8.3: The four states of a CLH lock node, as box diagrams.

Auxiliary definitions. As before, a separate GRASShopper file defines CLH lock queue nodes.

Each node physically contains the flag that signals whether the node’s owner is contesting

the lock. To make the proof easier, a ghost-state pointer tracks the predecessor node.

Listing 8.6: Auxiliary GRASShopper module clhmodule.spl.

1 struct Node { var lock: Bool; var pred: Node; }

Proof. Like the dynamic ARC proof, the Cview script starts with type definitions and prag-

mata that define the node type, footprint, and footprint sort.

Listing 8.7: CLH lock: Cview proof using GRASShopper

1 typedef int Node;

2 pragma grasshopper_include {clh−module.spl};

3 pragma grasshopper_footprint {Foot};

4 pragma grasshopper_footprint_sort {Set<Node>};

Let us track the node queue’s tail pointer at the Cview level with a shared variable. The

head of the queue appears as ghost state; the combination of tail node, head node, and

predecessor pointers lets us model the CLH queue as a linked list in GRASShopper, despite

this structure being entirely implicit in the actual algorithm.

5 shared Node tail, Node head; // ('head' is ghost code)
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Each thread tracks the node it holds and, once the node is queued, its predecessor.

6 thread Node mynode, mypred;

The tracked nodes mainly serve as arguments to view atoms representing each node’s

automaton state. By associating the states with nodes, we need not assign thread IDs.

7 view Dormant (Node node), Active (Node node),

8 Queued (Node node, Node pred), Lock (Node node, Node pred);

The CLH lock functions now follow. These use Cview to model assignments and other

actions, and GRASShopper symbols for things Cview cannot express.

9 method lock() {

10 {| Dormant(mynode) |}

11 <| %{ [|mynode|].lock := true }; |>

12 {| Active(mynode) |}

13 <| mypred = tail; tail = mynode;

14 %{[|tail|].pred := [|mypred|]}; |>

15 {| Queued(mynode, mypred) |}

16 thread bool test;

17 do {

18 {| Queued(mynode, mypred) |}

19 <| test = %{ [|mypred|].lock }; |>

20 {| if test { Queued(mynode, mypred) }

21 else { Lock(mynode, mypred) } |}

22 } while test;

23 {| Lock(mynode, mypred) |}

In the unlockmethod, the subtle ownership transfer — where a thread abandons its

node and unilaterally acquires its predecessor — becomes a straightforward substitution.

24 method unlock() {

25 {| Lock(mynode, mypred) |}

26 <| %{ [|mynode|].lock := false }; %{ [|mynode|].pred := null };

27 head = mynode; |> // last two assignments are ghost code

28 {| Dormant(mypred) |}

29 mynode = mypred; // ownership transfer

30 {| Dormant(mynode) |}

31 }

As usual, we prove mutual exclusion, which we formulate as the usual constraint:

32 constraint Lock (a, ap) * Lock (b, bp) −> false;

Wemust also assert that each node, regardless of state, is held exclusively by one thread:

33 constraint Queued (a, ap) * Queued (b, bp) −> a != b;

34 constraint Dormant (a) * Dormant (b) −> a != b;

35 constraint Active (a) * Active (b) −> a != b;
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So far, the CLH lock proof has been straightforward. This is because most of the proof

complexity manifests in the invariant and single-atom definitions, through reachability

predicates across the lock nodes. The invariant specifies several properties:

• both ends of the queue must be inside the footprint, and there must be a chain of

predecessor pointers from the tail to the head;

• the head (the last-unlocked node, or the sentinel if none exist) has a lowered flag;

• all nodes with a predecessor have a raised flag; all nodes without one are either outside

the queue, or are the head.

These properties, together, define the lock queue as a chain of nodes seeking the lock, with

precisely one unlocked end node at any time.

36 constraint emp −> %{

37 [|head|] in Foot && [|tail|] in Foot

38 && Reach(pred, [|tail|], [|head|])

39 && ![|head|].lock

40 && (forall x : Node :: (x in Foot && x.pred != null) ==> x.lock)

41 && (forall x : Node ::

42 (x in Foot && Reach(pred, [|tail|], x) && !x.lock)

43 ==> x == [|head|]) };

We now define the node states. Dormant and active nodes exist in the footprint, but are

not on the queue; we enforce this by stating that the nodes have no predecessors, and are not

the head node. The two states differ only by the status of the lock flag.

44 constraint Dormant(node) −> %{

45 [|node|] in Foot

46 && [|node|] != [|head|] && [|node|].pred == null

47 && [|node|].lock == false };

48 constraint Active(node) −> %{

49 [|node|] in Foot

50 && [|node|] != [|head|] && [|node|].pred == null

51 && [|node|].lock == true };

If a node is enqueued, it must be somewhere on the path of predecessor pointers from

the tail to the head, and must have a raised lock flag. Since we track the predecessor node in

theQueued atom, we must also assert that it is, indeed, the node’s predecessor. The Locked
atom is definitionally identical to theQueued atom with one exception: instead of asserting

that the lock is raised, we instead assert that the node is directly behind the head.

52 constraint Queued(node, pred) −> %{

53 [|node|] in Foot && [|pred|] in Foot

54 && [|node|].pred == [|pred|]

55 && [|node|].lock

56 && Btwn(pred, [|tail|], [|node|], [|head|]) };
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Number of lines Number of terms Time (s)

Input Output

Study Cview Aux. Proof GH Gen. SMT-elim Tool Z3 GH

Ticket lock 44 - 14 - 18 18 1.31 0.05 -
Peterson 94 - 27 - 72 72 1.51 0.17 -
Circular 122 - 36 - 138 138 1.87 0.28 -
ARC static 48 - 17 - 40 40 1.42 0.06 -
ARC dynamic 57 13 32 850 20 5 1.42 0.01 1.98
CLH 124 10 58 1407 50 21 1.38 0.02 4.79

Table 8.2:Metrics for each valid case studymentioned so far. From left: lines of input in Cview
script and auxiliary GRASShopper files; estimated lines of which are proof annotations; lines
of GRASShopper output; number of proof terms generated; number of terms discharged by
Z3 (remainder sent to GRASShopper); and time spent in Starlingtool, Z3, and GRASShopper.

57 constraint Locked(node, pred) −> %{

58 [|node|] in Foot && [|pred|] in Foot

59 && [|node|].pred == [|pred|]

60 && Btwn(pred, [|tail|], [|node|], [|head|])

61 && [|pred|] == [|head|] };

Measurements

Table 8.2 collects various measurements of Starlingtool, Z3, and GRASShopper’s perform-

ance on the (passing) case studies we discussed above.

Case studies with inference

So far, we have not seen any usage of Starlingtool’s inference support. There follows some

brief examples of inference in Cview proofs. Each example uses the ticket lock.

Inferring predicate definitions. Starling proofs often depend on many small constraints

whose relation to the constrained atoms’ human intuition is loose. Delegating such con-

straints’ discovery to a constraint solver lets us focus on mapping the high-level intuition

onto the proof by writing atom definitions and assertions.

The ticket lock has several such constraints, so we alter its proof to infer definitions for
each (except mutual exclusion, since this is the property we want to prove):

Listing 8.8: Ticket lock: modified constraint set for use with HSF

17 constraint emp −> ?;

18 constraint Tick(t) −> ?;

19 constraint Lock −> ?;

20 constraint Tick(a) * Tick(b) −> ?;

21 constraint Lock * Tick(t) −> ?;

22 constraint Lock * Lock −> false;
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The constraints between lines 17 and 21 amount to a search for constraints on all views

of size 0 through 2, so we can replace them with a search 2; statement.

Neither backend seen so far supports Cview’s inference features; instead, we can target

HSF. AsHSF is a constraint solver over a relaxed variant ofHorn clauses, we send its input as

one self-contained system. First, we translate each definite constraint to HSF’s Datalog-like

syntax, modelling it as a pair of implications in both directions (effectively an if-and-only-if).

For example, Starlingtool’s translation of the constraint over Lock * Lock is:

false :− v_lock_lock(Vserving, Vticket).

v_lock_lock(Vserving, Vticket) :− false.

Unlike the other backends, we must give HSF an initial state from which it can begin

inference, and show that this state satisfies the invariant. In the current version of Starlingtool,

we assume that this state is that where each variable is set to 0:

emp(Vserving, Vticket) :− Vserving = 0, Vticket = 0.

We can then translate the verification conditions themselves. For example:

emp(VservingBEFORE, VticketBEFORE + 1) :−

emp(VservingBEFORE, VticketBEFORE),

VtAFTER = VticketBEFORE.

Inferring view assertions. While inferring the constraints shifts some proof effort from

proof author to computer, the onus is still on the author to provide view assertions at each

sequence point in the algorithm. While these assertions often line up with underlying state

automata or other structures inside the algorithm, sometimes this is not obviously the case.

Caveats. Starlingtool’s HSF backend only supports a fragment of Starlingtool; for example,

Boolean and array variables are unsupported (though Boolean expressions are allowed in con-

ditions and constraints). We could improve this situation by performing more encoding and

transformation at the Starlingtool end; for example, we already manually model Boolean vari-

ables in HSF-bound proofs as integers constrained to the set {0, 1 }, with Boolean operations

modelled as integer equivalents. We leave this to future work.

Checking Starlingtool’s response to induced proof errors

This section shows the type of proof problems that Starlingtool can detect by investigating two

deliberately-induced mistakes in Cview proofs. Both of these studies use Z3 as the backend6.

Ticket lock, specification. Proof failures can indicate problems with the specification (the

combination of assertions and constraints). With well-known algorithms such as the ticket

lock, this is likely to be the source of any such failures we encounter.

To demonstrate how Starlingtool copes with such failures, we return to the valid lock

proof in Listing 7.1, but sabotage the constraint set as follows:

6For more failing-proof examples, see the Fail and FailGH directories in the tool’s examples set.
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Listing 8.9: Ticket lock: induced specification failure

18 constraint emp −> n != s;

This specification mistake allows the lock to hand out tickets with values below that of

the ticket being served, and forbids it from handing out a ticket that immediately acquires

the lock. Trying to prove the lock now gives us three failures:

lock_C000_000 fail:
Could not prove action: ASSIGN t, n; ASSIGN n, (+ n 1)
under weakest precondition: the invariant
establishes: the invariant

lock_C000_002 fail:
Could not prove action: ASSIGN t, n; ASSIGN n, (+ n 1)
under weakest precondition: Lock()
establishes: Lock()

unlock_C000_000 fail:
Could not prove action: ASSIGN s, (+ s 1)
under weakest precondition: Lock()
establishes: the invariant

The first two failures arise from the case where n = s− 1; the fetch-and-increment gives

us n ′ = s ′, violating the constraint. This situation cannot arise in a valid ticket lock, and so

the broken constraint fails to forbid an invalid situation. The third failure arises the case

where s = n− 1; the increment again gives us n ′ = s ′, but the fact that no locks can exist

afterwards makes this situation well-formed. Here, the constraint forbids a valid situation.

Over-constrained and under-constrained specifications, therefore, result in similar Z3-

level failures. This is a side-effect of the weakest-precondition approach gStarling takes

to generating proof terms. We leave the generation of more sophisticated proof failures,

including the ability to distinguish between these classes of proof error, as future work.

Ticket lock, control flow. Starlingtool failures can also come from errors in the algorithm

itself. We do not have an example of a known-broken algorithm to explore, but we can

manufacture bugs in existing code and check whether Starlingtool notices.

Accidentally inverting the conditional in a while loop can produce significant errors

that are then hard to track down. Consider one such inversion in the body of the ticket lock:

Listing 8.10: Ticket lock: induced code failure

10 /* ... */ } while c == t;

This one-character change produces many failures, which Figure 8.4 collects. These

actions correspond to the program-logic entailments needed when moving from the end of

the while loop to the top of the loop and out of the loop respectively. Many of these failures

correspond to the fact that the precondition of these entailments now asserts Tick and

Lock in the opposite order from those needed to establish the entailments. Changing this

precondition would fix many of these issues, but introduce others.
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lock_C002_001 fail:
Could not prove action: ASSUME (= c t)
under weakest precondition:
((= (before c) (before t)) -> Lock())
((not (= (before c) (before t))) -> Tick((before t)))
((not (= (goal 29 t) (after t))) -> Tick((goal 29 t)))

establishes: Tick((goal 29 t))
lock_C002_004 fail:
Could not prove action: ASSUME (= c t)
under weakest precondition:
((or
(= (goal 36 ta) (after t))
(not (= (goal 36 tb) (after t)))

) -> Tick((goal 36 tb)))
((= (before c) (before t)) -> Lock())
((not (= (before c) (before t))) -> Tick((before t)))
((not (= (goal 36 ta) (after t))) -> Tick((goal 36 ta)))

establishes:
Tick((goal 36 ta))
Tick((goal 36 tb))

lock_C003_002 fail:
Could not prove action: ASSUME (not (= c t))
under weakest precondition:
((= (before c) (before t)) -> Lock())
((not (= (before c) (before t))) -> Tick((before t)))

establishes: Lock()
lock_C003_003 fail:
Could not prove action: ASSUME (not (= c t))
under weakest precondition:
Tick((goal 19 t))
((= (before c) (before t)) -> Lock())
((not (= (before c) (before t))) -> Tick((before t)))

establishes:
Lock()
Tick((goal 19 t))

lock_C003_005 fail:
Could not prove action: ASSUME (not (= c t))
under weakest precondition:
Lock()
((= (before c) (before t)) -> Lock())
((not (= (before c) (before t))) -> Tick((before t)))

establishes:
Lock()
Lock()

Figure 8.4: Failures caused by the code change in Listing 8.10.
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Peterson, atomic action. We can observe the importance of the <| turn = i; |> action

on Line 10 of Peterson’s algorithm by considering the following erroneous change:

Listing 8.11: Peterson’s algorithm: induced code failure

9 {| FlagUp(i) |}

10 <| turn = (i + 1) % 2; |> // accidentally prioritise THIS thread

11 {| Waiting(i) |}

If we run Starlingtool with this mistake present, we get the output:

Could not prove action: ASSIGN turn, (% (+ i 1) 2)
under weakest precondition:
FlagUp((before i))
Lock((goal 129 me))
((not (= (goal 129 you) (after i))) -> Waiting((goal 129 you)))

establishes:
Lock((goal 129 me))
Waiting((goal 129 you))

As expected, the broken turn action failed. Looking at the goal definition, we see that we

cannot establishme != you && turn == you in the post-state. We then see that, when

you is the current thread i, the weakest precondition states thatme != i, and so we must

set the turn to i. Instead, we set it to the other thread — precisely the inserted bug.

A broken mutual exclusion algorithm. In the 1982 edition of Principles of Concurrent Pro-
gramming [1], Ben-Ari gives a step-by-step construction of a mutual exclusion algorithm by

refining a broken attempt into a safe and fair implementation (a two-thread form of Dekker’s

algorithm). Most of the intermediate attempts fail for liveness reasons and not safety reasons,

and so Starlingtool cannot express their failures. As the second attempt (of which Listing 8.12

is a Cview translation) does fail to uphold mutual exclusion, it serves as a useful example.

Listing 8.12: Attempted proof of a flawed mutual exclusion algorithm [1]

1 shared bool[2] flag;

2

3 method lock(int tid) {

4 {| Idle(tid) |}

5 thread bool other_flag;

6 do {

7 {| Idle(tid) |}

8 <| other_flag = flag[(tid + 1)% 2]; |>

9 {| if other_flag { Idle(tid) } else { Checked(tid) } |}

10 } while other_flag;

11 {| Checked(tid) |} // `checked' the other thread is not locking

12 <| flag[tid] = true; |>

13 {| Lock(tid) |}

14 }
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15

16 method unlock(int tid) {

17 {| Lock(tid) |} <| flag[tid] = false; |> {| Idle(tid) |}

18 }

The algorithm is broken: both threads can pass through the loop at the beginning of lock

before either raises its flag. In theory, no assignment of views to constraints will make the

proof go through; while it is impossible to show that this is the case in this study, we can

still explore a couple of possibilities.

Let us start with a system that maps each of the three views to the state of flag, asserts

mutual exclusion, and forbids the holding of multiple views with the same thread ID. At this

stage, there is no difference between Checked and Idle.

19 view Idle(int tid), Checked(int tid), Lock(int tid);

20 constraint Idle(tid) −> (tid == 0 || tid == 1) && !flag[tid];

21 constraint Checked(tid) −> (tid == 0 || tid == 1) && !flag[tid];

22 constraint Lock(tid) −> (tid == 0 || tid == 1) && flag[tid];

23 constraint Idle(x) * Idle(y) −> x != y;

24 constraint Idle(x) * Checked(y) −> x != y;

25 constraint Idle(x) * Lock(y) −> x != y;

26 constraint Checked(x) * Checked(y) −> x != y;

27 constraint Checked(x) * Lock(y) −> x != y;

28 constraint Lock(x) * Lock(y) −> false;

This proof fails as follows:

Could not prove action: ASSIGN (select 13_1_tid flag), true
under weakest precondition:
Checked((before 13_1_tid))
((or
(= (goal 30 x) (after 13_1_tid))
(not (= (goal 30 y) (after 13_1_tid)))

) -> Lock((goal 30 y)))
((not (= (goal 30 x) (after 13_1_tid))) -> Lock((goal 30 x)))

establishes:
Lock((goal 30 x))
Lock((goal 30 y))

The failure, while somewhat verbose, shows that raising flag[tid] does not establish

mutual exclusion. we can see that the weakest-precondition view may contain a copy of

Lockwith a thread ID other than tid, and the goal is Lock(x) * Lock(y).

One issue with the constraint system above is that it does not capture the intuition that,

after acquiring Checked, we should have stable knowledge that the opposite thread has not
raised its flag. A first try to encode this could involve the following change:

21 constraint Checked(tid) −> (tid == 0 || tid == 1)

22 && !flag[tid] && !flag[(tid + 1)%2];
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This change fixes the mutual exclusion failure, but opens a new failure:

Could not prove action: ASSIGN (select 8_1_tid flag), true
under weakest precondition:
Checked((before 8_1_tid))
Checked((goal 26 tid))

establishes: Checked((goal 26 tid))

This failure tells us that the new constraint is not stable. The specific situation shown

corresponds to both threads checking each other (resulting in two instances of Checked),

then one thread trying to raise its flag, immediately violating the other thread’s Checked.

A possible solution is to rule out two threads being in Checked at the same time, which

we can model by changing another constraint:

27 constraint Checked(x) * Checked(y) −> false;

Again, this replaces the previous failure with a new one:

Could not prove action:
ASSIGN 11_9_other_flag, (select (% (+ 8_1_tid 1) 2) flag); ASSUME (not 11_9_other_wants)

under weakest precondition:
Idle((before 8_1_tid))
((or
(= (goal 66 x) (after 8_1_tid))
(not (= (goal 66 y) (after 8_1_tid)))

) -> Checked((goal 66 y)))
((not (= (goal 66 x) (after 8_1_tid))) -> Checked((goal 66 x)))

establishes:
Checked((goal 66 x))
Checked((goal 66 y))

Like the first error, this represents a failure to achieve mutual exclusion (over Checked).

This failure echoes Ben-Ari’s explanation that the problem with this algorithm is that its

critical sections begin immediately on threads exiting the check loop, not after raising flag.

8.2 Testing Starlingtool

Starlingtool is, in many ways, a typical software engineering project, and so standard testing-

based software validation methods apply. Though such methods cannot show the absence of

bugs, only their presence [15], they prove to be useful for that purpose.

Case-study regression tests

When making changes to Starlingtool, we can cause changes (intentional or otherwise) to the

tool’s output. These changes can range from cosmetic (changes in output format, condition

naming and order, etc.) to erroneous (non-termination, crashing), and even subtly unsound

(false negatives and positives). To help us detect these cases, and make sure they only belong

to the first class, we can use regression tests.
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We can use our case studies as regression tests. To do so, the tool repository keeps

a list of expected results (the names of each failing verification condition) for each Z3

and GRASShopper case study7. When executing the tests, a script checks each Z3 and

GRASShopper case study in the tool directory. If the case study is not in the results list, the

test fails; this helps us detect accidental omissions of test data.

Unit tests

While regression tests help us detect errors that manifest in Starlingtool’s output, they do

not directly flag a particular part of the tool as the cause. For finer-grained validation, the

Starlingtool codebase contains unit tests. These tests check Starlingtool’s behaviour on a

function-by-function basis, providing simplified sample input.

Some parts of Starlingtool are unsuitable for comprehensive unit testing. This, together

with the complexity of building useful unit tests, means that Starlingtool’s unit tests cover

a smaller range of the code than the regression tests. Where unit tests do cover the code,

though, we can detect errors faster and increase our confidence about the tool’s correctness.

8.3 Mechanisation

While testing gives us confidence that the tool correctly implements the logic, it does not help

us validate the logic itself; at the same time, formal reasoning about the tool’s algorithms can

significantly improve our validity argument. As a result, there exists a Coq mechanisation of

core results from the Starling theory, as well as some algorithms used in Starlingtool. Certain

dissertation definitions and results contain notes like this one:

(Coq: sub_by_dot in Starling.Views.Classes)

These link definitions with parts of the Coqmechanisation; the above example states that

Starling.Views.Classes.sub_by_dotmechanises some (attached) definition8. The

location of such notes gives an idea ofwhich parts of Starling have successfulmechanisations.

At time of writing, the mechanisation is available as Coq scripts at https://gitlab.

com/MattWindsor91/starling-coq.

Mechanisation as validation

Wemechanise the Starling theory to gain confidence in its soundness. The mechanisation,

therefore, complements the tool (which witnesses Starling’s automatability and practical

usefulness). We describe ways in which the mechanisation validates our theory below.

Traceability to the Views Framework. By encoding the Views Framework in Coq (or by dir-

ectly targeting its existing Coq mechanisation), we can prove that the Starling framework

produces sound program logics by applying the Views mechanisation as a sub-theorem.

7HSF studies are not automatically regression-tested, as they can be slow to process.
8In digital copies of the dissertation, the file name serves as a link to an on-line copy of the mechanisation.
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Local views. The mechanisation’s treatment of the LVF is the main source of confidence

we have in its soundness. For the most part, we created the LVF by trying to push loStarling

through the normal Views framework in Coq, and solving the arising problems through a

combination of insightful discussion9 and interactive Coq sessions.

Termination of algorithms. Recursive programs written in Coq’s programming language

must carry termination proofs [72][7]. Therefore, by mechanising Starlingtool algorithms

and decision procedures in Coq, we can prove their termination.

For example, an old version of Starlingtool’s strategy for list-normalising guarded iterated

abstract predicates10 tried to subtract one atom from another without considering the value

of their iterators. It did so by recursively subtracting any resulting remainders in a way that

diverged in some situations. While our case studies and unit tests did not exercise those

cases, Coq rejected an attempt to mechanise the strategy for reasons of non-termination

— revealing the bug. Starlingtool now uses a more conservative process that makes more

assumptions about the iterators, but terminates correctly and works on our case studies.

Mechanisation as a proof tool

We can instantiate the mechanisation’s backend interface directly using Coq’s own predicate

types (Prop for constructive logic, and bool for classical logic) and corresponding decision

procedures based on the verification-condition Hoare judgement. This way, we can use the

mechanised frontends, views frameworks, and their soundness relationships to carry out

Starling proofs inside Coq.

(Coq: Starling.Backend.Instances.Prop) (Coq: Starling.Backend.Instances.Bool)

As the Starlingmethod targets fully automated solvers, direct interactive proof of Starling

verification conditions is intractable. This is because the method skews towards generating

large amounts of small conditions.

8.4 Related work

This section discusses existing tools and languages for computer-assisted verification. It aims

to compare and contrast the Starling approach, highlight relative strengths and weaknesses,

and motivate potential future work.

SmallfootRG

SmallfootRG [24][Cp6] is a tool for verifying programs against theRGSep logic (see § 2.3). It

has a similar purpose to Starlingtool: validation for a new reasoning system. Though RGSep

captures interference and separation in a different and more elaborate way than gStarling,

we draw inspiration from parts of SmallfootRG’s design.

9See the collaboration history for details.
10See also: https://github.com/MattWindsor91/starling-tool/commit/faa7559.
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SmallfootRG asks the user to give a requires–ensures specification at the method level,

with further annotations if necessary (including annotations on each atomic action that

modifies state). Our approach — expecting a Hoare-style proof outline with view-level

annotations at each sequence point — can demand more user annotation at the method level,

but removes the need for explicit invariant and rely-condition annotation [2].

SmallfootRG symbolically executes programs to verify their specifications. Starling’s

use of solvers to quantify over states when verifying atomic triples has a similar flavour, but

at a finer grain: each triple and goal gives rise to a symbolic execution in the solver, with

Starling’s focus being on building sets of easily-discharged verification conditions.

SmallfootRG’s language, while self-admittedly toy, is a good balance between the math-

ematical rigour ofRGSep’s nativeGPPLand the practicality of a ‘real’ programming language.

Cview aims for a similar effect, and re-uses some of SmallfootRG’s control-flow syntax.

Caper

Caper [47] is a tool for automated verification ofCAP proofs. As such, it exposes the typical

CAP logical machinery (shared memory, guard algebras, and so on) to users. In contrast with

Starlingtool, certain logical actions, like determining where to open shared regions, need

interactive user input. While Caper uses Z3 as a backend, it adds a bespoke heap solver.

Though Caper and Starlingtool have a shared heritage in CAP, the shape of their input is

quite different. As an example, Listing 8.13 gives Caper’s version of the ticket lock.

If we compare this to Listing 7.1, we see a more CAP-style proof process: the ticket

lock forms a shared region TLock; the tickets themselves form a counting algebra TICKET

of abstract guards; and the tickets both guard an interference transition system actions

and participate in the concrete interpretation of the lock region. In Cview, all of these

concepts map either to views or methods.

Comparing our work against Caper is insightful for several reasons. First, it shows

the difference between a proof-outline based approach such as ours, and a requires-ensures-

invariants approach; we argue that, while our approach can impose a larger burden for proof

authors, it maps well (through outline decomposition) to the Starling workflow and neatly

reflects the typical style of on-paper Concurrent Separation Logic-style proofs.

Second, we see that Caper, in targeting an existing logic designed for rich on-paper

reasoning, brings expressivity — Caper proofs, for example, can reason about functional

properties, such as whether stack push operations correctly insert the right element —, as

well as modularity. It also imports a lot of conceptual overhead (shared regions, guard algeb-

ras, transitively closed action transition systems) and hard-to-automate logical machinery.

In contrast, Starlingtool exposes a more minimalistic proof environment designed specifically

for automation, but struggles with functional properties and has no modularity support.

Threader

Threader [51] supports automatic Owicki-Gries and rely/guarantee reasoning over C. It

implements both reasoning systems using recursive abstraction refinement and Horn-clause
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Listing 8.13: Ticket lock: Caper proof (via https://github.com/caper-tool/
caper/blob/1e88663/examples/iterative/TicketLock.t)

region TLock(r,x) {
guards #TICKET;
interpretation {
n : x |−> m &*& (x + 1) |−> n &*& r@TICKET{ k | k >= m }
&*& m >= n;

}
actions { n < m | TICKET{ k | n <= k, k < m } : n ~> m; }
}
function makeLock()
requires true; ensures TLock(r,ret,_);

{ v := alloc(2); [v + 0] := 0; [v + 1] := 0; return v; }
function acquire(x)
requires TLock(r,x,_); ensures TLock(r,x,n) &*& r@TICKET(n);

{
do { t := [x + 0]; b := CAS(x + 0, t, t + 1); }
invariant TLock(r,x,ni) &*&
(b = 0 ? true : r@TICKET(t) &*& t >= ni);

while (b = 0);
do { v := [x + 1]; }
invariant TLock(r,x,ni) &*& r@TICKET(t) &*& t >= ni &*& ni >= v;
while (v < t);

}
function release(x)
requires TLock(r,x,n) &*& r@TICKET(n); ensures TLock(r,x,_);

{ v := [x + 1]; [x + 1] := v + 1; }

solving; this set-up allows it to infer invariants. This use of Horn clauses relates indirectly

to our use of Gupta and Rybalchenko’s later HSF project as a backend.

Like our set-up, Threader allows for non-thread-modular proofs, and its input is similar

to real-world concurrent C. One major difference is that it assumes a fixed number of threads,

each corresponding directly to a C function; our approach makes no such assumption as

we never explicitly apply the LVF parallel rule. Another is that assertions in Threader take

the form of free-form C assert(expr); statements over shared variables; this is more

lightweight than our view-outline approach, and closer to how C programmers typically

record such assertions, but limits the shape of expressible assertions.

Threader only supports discrete variables, as with Starlingtool when combined with Z3

or HSF. When using Starlingtool with GRASShopper, we can go beyond this limitation.

To compare and contrast Threader proofs againstCview, Listing8.14 replicates its example

proof for Peterson. The assertions in the critical section indirectly witness mutual exclusion:

both threads entering their section at the same time may invalidate one of the assertions.

Other work

This section identifies several more loosely-related projects.
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Listing 8.14: Peterson’s algorithm: Threader proof (via https://www.model.in.tum.
de/~popeea/research/threader.html)

1 int turn;
2 int x;
3 int flag1 = 0, flag2 = 0;
4 void thr1() {
5 flag1 = 1;
6 turn = 1;
7 do {} while (flag2==1 && turn==1);
8 // begin: critical section
9 x = 0;

10 assert(x<=0);
11 // end: critical section
12 flag1 = 0;
13 }
14 void thr2() {
15 flag2 = 1;
16 turn = 0;
17 do {} while (flag1==1 && turn==0);
18 // begin: critical section
19 x = 1;
20 assert (x>=1);
21 // end: critical section
22 flag2 = 0;
23 }

Boogie and its frontends. Some verification tools are not directly user-facing, but instead

accept an intermediate language between high-level conditions and low-level solver input;

verification tool builders can then target that language to reduce their workload.

Microsoft’s Boogie [49] is one such system, designed for verifiers targeting imperative

and object-oriented languages. Its frontends include the Dafny [73] sequential programming

language, which can produce compiled programs targeting the .NET platform [74].

Boogie may be a good fit for Starlingtool in the future. Targeting GRASShopper showed

that there are parallels between the shape of verification conditions Starling logics produce

and imperative sequential programswith requires-ensures specifications. As this parallel was

not evident when Starlingtool’s development started — and, in many cases, the verification

conditions fit directly into Z3’s domain —, this remains as future work.

VeriFast. Instead of creating a newverification language,we can introduce formal reasoning

to an existing one. A characteristic example is VeriFast [75, 76], a program verifier for C and

Java. VeriFast verifies requires–ensures-style comment assertions over variables, arrays,

heaps, fractional permissions, and pthreads-style multi-threading.

As with CAPER, comparing VeriFast with our approach reveals the effect of trade-offs.

Certainly, VeriFast is a polished and highly expressive system that can verify properties

of real-world C and Java code. However, we argue that this comes at the expense of high

cognitive and annotation burden: VeriFast proofs contain manymoving parts, such as lemma
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functions and predicate opening and closing, that gStarling-style reasoning omits. It is also

unclear as to how one can use VeriFast to reason about atomic-action concurrency: the focus

appears to be on coarser synchronisation techniques such as mutexes.

This contrasts with Cview (which takes just enough cues from existing languages to be

familiar). Targeting real-world languages, and capturing their semantics in terms of LVF

programs, is by no means straightforward, and left to future work.

Theorem provers as verification languages. Another approach concerns building a domain-

specific algorithm specification language in a theorem prover (usually Coq), then building a

reasoning system on top using the prover’s vernacular as a framework. FCSL [53], which

targets fine-grained concurrency, and Bedrock [77], which targets reasoning about programs

at the assembly level of abstraction, typify this approach. Another project, Verifiable C [57,

78], provides a Coq-embedded separation logic for C; this represents a richer (but interactive

and sequential) reasoning system than gStarling, but also inspires parts of ourmechanisation.

Though these approaches need more user input than ours, using theorem provers has

advantages. These include expressivity; access to the prover’s existing result and tactic

library; and a smaller code-base that we must trust before accepting the resulting proofs.

8.5 Summary

This chapter discussed the validation of the gStarling logic and its derived tool (Starlingtool).

It considered three approaches: a set of Cview case studies based on existing algorithms; a

set of conventional unit tests integrated into Starlingtool; and a partial mechanisation of

gStarling and its underlying Starling framework in Coq.

These results give us confidence that the Starling approach can verify properties of small,

but realistic, concurrent algorithms. The approach fits well when said algorithms form a set

of thread-local finite state automata, and when we can describe any inter-thread protocols as

constraints on which combinations of thread states can occur simultaneously.

There remains more work to be done. The case studies consider small algorithms mostly

concerning mutual-exclusion; we need more results on Starlingtool’s scalability to larger

programs. The Coq mechanisation is partial: we need more results on iterated views, and a

practical means to use the mechanisation as a stand-alone program logic. Code coverage in

unit tests can be improved. This said, Starlingtool (and, to an extent, gStarling) is a proof of

concept for the Starling approach, and we can expect a large pool of arising future work.
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Conclusions and Further Work

What the world needs are not more proofs of ten-line concurrent algorithms.
The world needs some way of getting Bank of America to be able to
eliminate those 95% of their crashes — some tool, some method, maybe
some way of teaching programmers how to use the techniques that we
already have, but some way of getting these proof methods out into the real
world. I strongly advise people to knock on the doors of Bank of America
and say. ‘Hey, can we help you?’

Leslie Lamport, in 1985 [13]

9.1 Conclusions

This dissertation covered:

• how to use Views’s axiom soundness to build templates for building Views axiomatisa-

tions, and, from them, instances customised to the proofs they underpin;

• how to use the defining-views template to reduce atomic Hoare triples to finite sets of

verification conditions which we can discharge using sequential Hoare-logic tactics;

• Starling: a scheme for reducing Views proof outlines to such conditions, using a fron-
tend that implements defining-views and a backend that implements Hoare reasoning;

• µStarling, loStarling, and gStarling: frontends that implement increasingly elaborate

forms of defining-views, adding features such as guarded views and local state;

• the Local Views Framework, a layer on top ofViews that allows for said local reasoning;

• a sketched extension to gStarling adding iterated views, which parametrise the defini-

tion of a view atom on the number of copies of that atom held by a given thread;

• Starlingtool, a tool based on gStarling, and Cview, the C-like proof language it accepts.

Though Starling’s part-formalisation, both here and in the Coq developments, is volu-

minous in areas, the core ideas — defining-views, its implementation in Starlingtool, and its
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informal justification against Views — are straightforward. The first stages of Starlingtool’s

development form evidence that prototyping minimal tools atop Starling, then using them

as a base for more complex tooling, works well.

Every part of the approach expands on Views, either directly or through Khyzha et al.’s
work on generalised linearisability logics. Views’s focus on small, well-defined parameters

that connect together to form sound program logics shaped Starling in many ways. While the

most obvious example of this is the way in which we derived our axiomatisation templates,

we also, for example, used Views’s focus on semigroups and monoids as inspiration for tying

Starling’s requirements on assertion languages used in proofs to a tightly-defined series of

algebraic classes, providing a large amount of flexibility and future expandability.

While this dissertation did not fully explore the generality of the approach, it structured

the approach in a modular, layered manner, expressing dependencies as minimal algebraic

laws where possible. It explored several different ways to build Starling frontends, from the

basic µStarling to the more heavyweight gStarling, as well as the frontend informally imple-

mented by our tooling. By doing so, the dissertation intends to give evidence of Starling’s

flexibility and expandability, while keeping Starlingtool as the main deliverable.

The approach can capture both Owicki-Gries reasoning and, through GRASShopper-style

backends, an approximation of concurrent separation logic. This dissertation showed that

our approach produces tooling that can prove interesting properties of real-world algorithms:

mutual exclusion of Linux-style ticket locks and implementations of Peterson’s algorithm;

memory safety of Rust-style atomic reference counters; and so on.

9.2 Further work

This section highlights possible avenues for further work. It begins with the most promising

future directions: modularity and inference. It then gives an outline of other possible work

directions, grouped by the part of our work they extend.

Modularity

This dissertation gives no modularity results for Starling or its derived logics. This is a

weakness in comparison to CAP (and CAPER), where modularity is one of the main features.

A modularity story would improve the practical usefulness of Cview and Starlingtool.

While we can prove properties of small components of concurrent systems, such as locks and

reference counters, trying to prove algorithms that use those components withoutmodularity

requires either textually inlining proofs (resulting in poor scaling) or leaving gaps in the proof

(resulting in an unconvincing correctness argument). For instance,whilewe explore the ticket

lock implementations in § 8.1, the CAPER paper [47] gives proofs of both implementations

and clients, where the latter just relies on the abstract specification of the former.

Disjoint state and views. Suppose that we just considered connecting fully disjoint proofs,

where there is no sharing of views or state. This would give us a limited form of modularity

where we can join proofs of separate systems into single proofs without further proof-work.
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We expect that this form of modularity would just amount to applying Views’s existing

framing properties across the proofs, and be trivial to show.

Disjoint state but shared views. A more realistic target is proof joining where, while the

proofs’ shared states remain disjoint, we allow abstract information to cross between the

proofs in the form of views. In the simplest case, the information moving across would just

be view atoms; such a scheme can capture situations where we need to thread a permission

to use an external module through a long function.

To support work-flows such as lock clients where we depend on the external lock guar-

anteeing mutual exclusion over the client’s resource, we would need to be able to import

constraints from the external module. In a disjoint-state scenario, these constraints would

need to have no shared-state dependencies. By importing a subset of the original constraints,

we can build a CAP [46]-style modularity story where we abstract over the meaning of the

external views before using them around calls into the external code.

When sharing views, we must ensure that clients of an external view cannot use that

view in ways that violate the external module’s constraints. If we imported a Lock view from

a lock proof but none of its constraints, the triple 〈(@Lock)〉 id 〈(• (@Lock) (@Lock))〉may

be valid in the client but would violate mutual exclusion in the lock.

Clients generally do not know which constraints exist in the external module. As a result,

we hypothesise that the set of safe operations a client can do with external views is to forget

them, or receive and consume them in calls into the external module. We can loosen this

restriction by constraining the possible external constraints on a shared view: for instance,

by specifying that the imported constraint set is precisely the set in the external module.

Finding a balance between abstraction and expressivity in this area remains future work.

Overlapping state. An ideal modularity system would permit the sharing of state as well

as views. We would then need to handle the interface of possible shared-state interference

betweenmodules as well as the possibility of proof violation by incorrect use of shared views.

This may take the form of a rely/guarantee-style model: by adding new actions to the proof

summarising the set of possible interactions in a foreign module, we can approximate a rely;

by importing views from a foreign module’s proof, we can approximate a guarantee.

Inference

While Starlingtool has rudimentary support for definition inference usingHSF,we can improve

Starlingtool’s inference story in a variety of ways.

Initial states. Starlingtool’s HSF-based inference set-up requires that, if we set every shared

variable to 0, we obey emp. This makes using inference in situations where 0 is not a valid

starting value for one or more variables cumbersome, but should be straightforward to fix.

Stabilising definitions. SmallfootRG [24] can automatically strengthen unstable definitions

to stabilise them. We may be able to support a similar tactic in HSF/Starlingtool by mapping
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such definitions to their atoms in one direction ( =⇒ ) rather than two (⇐⇒ ). As view defin-

itions appear in both positive and negative positions, this form of inference is not guaranteed

to be monotone, and we may also need to consider the ability to weaken definitions.

Improving assertion-level inference. The ‘?’ syntax for assertion-level inference always cre-

ates a fresh view, which is not always an efficient solution. Sometimes, we know that the

view we need is some combination of the existing view atoms, but do not necessarily know

what the combination is — inference need just choose the correct set of atoms to put in the

gap. This form of inference is different from that implemented by Starlingtool/HSF, as it

involves objects — atoms— that exist at a higher level than HSF natively understands.

A straightforward first approach to inferring combinations of existing atomsmay be to try

heuristics such as inserting emp, or the previous assertion, or a bounded iterative deepening

search of atom combinations. These approaches would not need specific backend support,

but would be incomplete (for example, we cannot exhaustively consider all combinations of

atoms, or even all mappings of local-state parameters in a single atom), and it is unclear how

they would perform in practice. More sophisticated forms of inference may be possible.

In other cases, we know that the inferred assertion contains some existing atoms, and

just want the inferrer to strengthen those atoms into a valid assertion. We may model this

explicitly in the outline as SomeView * ?, at which point the future work mainly just

concerns Starlingtool infrastructure. A more sophisticated form of inference may be to do so

automatically on failing proof triples in an attempt to correct the proof.

On Starling and its frontends

This section outlines smaller-scale work avenues over the dissertation’s theory contributions.

Sequential consistency and weak memory. This dissertation’s contributions assume that

atomic operations are sequentially consistent; as such, atomic writes propagate immediately

to future reads. Multi-core systems rarely have native sequentially consistent atomic actions.

Instead, their memory models are weak: writes can be reordered, buffered [6, §7.1], and

otherwise tampered with on their way to corresponding reads. However, we can regain

sequential consistency (at the cost of performance) by inserting fence instructions.

Much research in concurrent separation logics has involved weak memory models [79,

80, 81]. As such, the extension of this dissertation’s contributions to follow suit would be a

natural further work avenue. It is unclear whether weak memory models would fit in the

CVF/LVF language semantics, where atomic writes do indeed propagate immediately to the

shared-statemodel; if an encoding is not possible, it is unclear how to construct aViews-style
program logic over a weak-memory semantics.

Parallel composition. The LVF adds local-state reasoning by Khyzha et al.’s approach of

treating programs as an outer parallel composition of threadswith specific identifiers [56]. To

regain inner parallelism in the LVF and Cview languages, we would need to track the splitting

and merging of local states )when such compositions begin and end) in their semantics.
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Having a concurrencymodel based onDijkstra-stylecobegin–coend parallelismmeans

we cannot feasibly express fork/join concurrency. Logics such as deny-guarantee reason-
ing [82] support such constructs; the Views logic does not, requiring us to extend Views with

such support or loosen Starling’s dependency on Views.

Linearisability. Starling has no native linearisability support. This mainly results from

its basis in Views’s Floyd/Hoare-style model, and its aim of proving incremental safety

properties. Indeed, the LVF results from taking work intended for linearisability proof (the

GLL [56]) and paring it down to fit the existing CVF model.

An automation-friendly framework for linearisability proof, based on re-targeting Starling

to the GLL, would be an interesting future direction. It is unclear how we can automate the

GLL action judgement; much of our work in Chapter 3 comes from the observation that

the CVF judgement lines up well with Owicki–Gries-style reasoning, and there is not yet a

similar form of intuition available for the GLL. Also, the GLL judgement is more complex

than the CVF one, involving tracking of linearisation points.

Soundness proofs. While the Coq development has soundness arguments for µStarling and

loStarling, it has no arguments for gStarling or its extensions. It also has no results for

Starlingtool’s frontend. These omissions threaten the validation argument in Chapter 8.

The main reason for the lack of gStarling soundness argument is time constraint; at time

of writing, a soundness proof in Coq has been started, but needs much work. Issues that have

made work on the soundness proof slow and challenging include, on the mechanisation side:

problemswith typeclass inference (themeans bywhich the Coqmechanisation structures use

of algebra classes) that mean that automatic resolution fails to terminate; Coq’s separation

of propositions and computable types into distinct universes, which has led to universe

mismatches as parts of the meta-theory disagree on whether, say, views can be propositions;

and other design decisions taken early in the mechanisation that have not paid off.

The attempted soundness proof relies on the same logical pathways as the loStarling

argument, but correspondence between gStarling and the LVF is more subtle than that of

loStarling, making re-use of the same machinery challenging. This involves the need to erase

local and goal variables, and show correspondences between gStarling’s pattern-based reifier

and loStarling’s more direct reifier. These steps have been harder to justify than expected.

As well as the further work of finishing the soundness proofs, a general work avenue

lies in finding a more compositional soundness scheme for Starling instances. The current

CVF-based scheme does not fully respect the boundaries between outline decomposition,

frontend, and backend, with tight coupling between the three. The encoding of local-variable

frontends into the soundness argument requires some mapping from the CVF to the LVF,

which adds confusing indirection into the proof; work to recast this would be useful.

Completeness proofs. None of the frontends have completeness proofs. This is less import-

ant than soundness (the case studies, targeting a variant of gStarling, serve as evidence that

the approach can express a variety of proofs), but is still a gap in the Starling formalisation.
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One possible tactic is to encode Owicki-Gries into the frontends; as de Roever et al. give a
completeness proof for Owicki-Gries [25], this would witness the frontends’ completeness.

View partitioning. In theory, it should be possible to split a view definer into partitions

based on whether the definitions of certain views refer to disjoint parts of state, and treat

each partition as a separate sub-semigroup in a views semigroup product. This would help

make defining-view proofs more incremental, as we can prove each subgroup separately.

Refinement. As in the UTP [61], propositional expressions form a lattice: true is the most

permissive proposition, false is the least, and X 6 Y if each state satisfying X also satisfies

Y. We can form a similar lattice over relation expressions, using⊆ over their sets of pairs.

This lattice model gives us a refinement rule across verification conditions:

〈〈w〉〉 c 〈〈g〉〉 w 6 w c 6 c g ′ 6 g

〈〈w ′〉〉 c ′ 〈〈g ′〉〉

Since bothw and g contain the same view in opposite positions, we cannot easily refine

views at the atomic Hoare triple level. Atomic-action refinement may work, though, letting

users write proofs on abstract actions and programs and get free proofs over concrete re-

finements thereof. This may help with modularity: if we weaken the specification of atomic

actions from an external proof into vague ‘guarantees’ of interference, we can reduce the

client proof’s coupling to that external proof’s details.

On Starlingtool, and towards adoption

The quote at the chapter head was, and is, a powerful motivating call for practical, adoptable

concurrency verification methods. That the tool shown in this dissertation proves small

concurrent algorithms and not the safety of industrial-strength systems is, of course, a strong

limiting factor on its immediate usefulness. While the status of the tool as a proof of a more

abstract concept (the usefulness of Starling) mitigates this issue, there remains much work

to be done to address Lamport’s concerns in 1985, let alone those of practitioners in 2019.

The future work paths below concern the tool itself. A general theme is to improve the

usefulness of Starlingtool in a real-world setting, and drive adoption of the tool: this leads

us to consider targeting real-world programming languages and improving error reporting.

Improvements in modularity and inference would also move Starlingtool towards practicality:

modularity would make it easier to verify large-scale systems along module boundaries, and

inference would reduce the workload of Starlingtool users when writing proofs.

Implementation language support. While Cview (a thin layer on the Starling theory) suffices

for verifying algorithms, basing Starlingtool on a ‘real’ language such as Ada or C would help

in verifying implementations (to use Lamport’s example, the code-base of Bank of America).

This would bring Starlingtool closer to systems like Threader [51] and VeriFast [75]. Doing

so would add complexity, and require a way to encode assertions in the target language.
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Code extraction. Another way to verify implementations with Starlingtool would be to sup-

port extraction of program code from proofs: either by Starlingtool working as a compiler

for Cview to machine code or an intermediate form such as LLVM IR (or, as with Dafny [74],

.NET), or by extraction into a language such as C or Rust. While extracting code from a

Cview proof would be straightforward, showing that the extraction preserves semantics is

not, especially with languages such as C where the semantics is often ill-defined.

Error reporting. Starlingtool’s proof-error reporting is at the verification-condition level, and

exposes the underlying defining-views rule. This reporting can be difficult to map back to

the original proof, as the views in each verification condition combine both proof assertions

and external contexts. This is problematic when the proof failure concerns the sequential

safety of the failing command— such errors should be more straightforward to debug and

fix than concurrency failures, but Starlingtool treats the two classes identically.

We can add a step to Starlingtool’s error handling that checks the sequential-safety

verification condition (〈p〉 c 〈q〉) and reports resulting failures distinctly. This effectively

changes the monoidal defining-views rule to the semigroup form, and so forms a compatible

(but slower) proof rule. As such, we can limit it to running on failing goal axioms.

Other backends. Adding more backends to Starlingtool would provide more evidence that

the idea of separating backend from frontend and outline flattener in the Starling framework

is a useful engineering decision. Possible backends that could be targeted with minimal

changes to the rest of Starlingtool include Boogie [49].

While Starling broadly assumes that backends target some theory of sequential safety, it

may be possible — with appropriate changes to the framework meta-theory, and perhaps the

frontend — to achieve stronger guarantees by targeting other forms of solver. We could, for

instance, target bounded model checkers to sacrifice soundness for ease of automation.

One exotic possibility would be to investigate the encoding of Starling proofs in a process

algebra such as CSP, using tools such as FDR [83] as a backend. Such systems support

refinement checking over semantic models that can express liveness properties as well as

safety properties (for instance, failures–divergences refinement), which would address a

significant weakness of the safety-only Starlingtool system. It is, however, unclear how

such a system would reconcile with both the Starling framework, which skews towards

Floyd/Hoare-style reasoning over safety properties, and the CVF and LVF, which only

guarantee soundness for such forms of reasoning.

Multi-backend proofs. While Starlingtool/GRASShopper discharges under-approximations

of verification conditions using Z3 where possible to reduce the workload sent to the more

heavyweight solver, it does not support the general combination of solvers in a proof. This

stops us from, for example, reasoning about a proof’s heap in GRASShopper while applying

inference to its shared-variable components using HSF, or using HSF’s inference at the same

time as Z3’s arrays and rich type support. Finding a way to partition proofs into regions that

different solvers can discharge, or allowing solvers to collaborate, is future work.
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Further case studies

While chapter 8 gives examples of Starlingtool’s use, we can improve the case for Starling

and Starlingtool by verifying more examples. We can give more examples outside of the realm

of mutual exclusion, and of tricky concurrency protocols.

Lock clients. CAPER’s case studies include toy lock clients, which use externally-proven

locks to enforce mutual exclusion. With a practical modularity story (see above), proofs of

such clients should become possible in Starlingtool, andwould be a natural way to exercise our

approach. Such proofs would also witness the ability to prove properties of realistically-sized

concurrent programs, more so if we base the lock clients on real-world algorithms.

Time-stamped stack. An early goal of Starlingtool was to prove properties (ideally linear-

isability) of racy lock-free concurrent data structures such as the time-stamped stack [84].

This stack delays the total ordering of pushed items to the point of popping by assigning

each item a time-stamp on push, maintaining each stamped item in a set of thread-specific

single-producer pools, and comparing time-stamps on pop. This gives good performance, but

needs a non-trivial linearisability argument that cannot use syntactic linearisation points.

While initial work occurred to build memory safety proofs of the single-producer pool, a

Starlingtool port remains as future work, in part because of time constraints. A linearisability

proof remains ambitious: we would need to extend Starlingtool to support such proofs (see

above), and tackle the specific difficulties of showing time-stamped stack linearisability.
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Appendix A

Additional Definitions

This appendix contains extra definitions, derivations, and other related items.These items are,

generally, either too large to give in the main text, or are specific phrasings or developments

of well-known mathematical ideas given for completeness.

A.1 Trivial definitions

Definition A.1. A setoid (A,≡) is a setA with an equivalence relation≡.
(Coq: Setoid in Coq.Classes.SetoidClass)

Definition A.2 (Constant function). const def
= λx. λy. x.

Definition A.3. A multiset m : bag T , over some element type T , is a function T→N
from items in type T to the number of times they occur (their multiplicity).
(Coq:multiset in Coq.Sets.Multiset)

Definition A.4 (Truncated subtraction). ∀x,y : N. x ·− y
def
= max(0, x− y).

Definition A.5. Given a list l of length n, we define the list override l[i 7→ x] as:

l[i 7→ x]
def
=

{
〈l[0], . . . , l[i− 1]〉++〈x〉++〈l[i+ 1], . . . , l[n]〉 i in bounds

l otherwise

In the case of thread lists, i is in bounds if, and only if, i ∈ Tid.
(Coq: list_override in Starling.Utils.List.Override)

A.2 Backend interfaces

Compositional backends

We do not, in general, assume any relationship between the success of Solve on two veri-

fication condition sets X and Y, and the success of Solve on X ∪ Y. This is because adding
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or removing verification conditions could change the requirements on the solver context.

These changes are not guaranteed to lead to a valid proof. For example, in a constraint solver

backend, adding or removing verification conditions will add or remove constraints in the

constraint system, which could make the problem underspecified or unsatisfiable.

While this lack of compositionality does not stop us from proving proof outlines as closed

systems, it makes it hard to apply the laws of the Views logic to them. To fix this, we add a

class of compositional backends, whose use will permit us to apply the logic rules as normal.

Definition A.6. A compositional backend is a tuple 〈EPr,ERl,S,Solve,GCtx〉, where said

tuple is a backend and, for all X and Y, Solve(X ∪ Y) ⇐⇒ Solve(X)∧ Solve(Y).

Decidability

To automate µStarling, we must show that certain predicates, such as view inclusion, are

decidable. Specifically, for a predicate P(x), we show that some decision process exists that

always terminates with a result of either true (P(x)) holds) or false (P(x) does not hold). This

distinction, which mirrors the way decidability works in Coq and other constructive logics,

helps stop us from accidentally building a logic we cannot implement as a tool.

In § 4.3, we pointed out the need for decidable forms of ordering and equivalence over V.

For any two views u and v, we must be able to compute that either uv v or ¬(uv v), and

likewise for≡. We formalise this as a new class of views semigroup.

Definition A.7. An algebra (V, •,v,≡, Inc) is a decidably ordered views semigroup if

(V, •,v,≡) is an ordered views semigroup, and Inc is a function V→V→Bwhere:

∀x,y. Inc(x)(y) = true ⇐⇒ xvy

(Coq: DecOrderedViewsSemigroup in Starling.Views.Classes)

If we have decidable order, we have decidable equivalence: as x≡y ⇐⇒ xvy∧ yv x,

we can define the decidable witness for equivalence as λx. λy. (Inc(x,y)∧ Inc(y, x)) = true.

Solver functions

Definition 4.8 does not require the solver to be able to distinguish between failed proofs and

proofs where correctness cannot be determined. We can model the ability of solvers to do so

using a solver function.

Definition A.8. A solver function SolveF : P(VConds(EPr,ERl))9B decides whether

a configuration exists in the backend solver such that the given set of verification

conditions is correct. For all P ∈ dom SolveF, SolveF must obey the following rules:

SolveF(P) =⇒ ∃xg. ∀ 〈〈w〉〉 c 〈〈g〉〉 ∈ P. (xg, c) EVFH {w}{g}

¬SolveF(P) =⇒ ∀xg. ∃ 〈〈w〉〉 c 〈〈g〉〉 ∈ P.¬((xg, c) EVFH {w}{g})

To use solver functions as solver predicates, let Solve(V) = V ∈ dom SolveF∧SolveF(V).
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A.3 Syntactic definers

List syntactic definers

We can implement syntactic definers as finite lists of individual pairs of view and associated

proposition expression.

Definition A.9. A list syntactic definer d ∈ Defn(V,EPr) is a finite sequence of pairs

(v, e), where v : V and e : EPr.

Syntactic definers can assign multiple definitions to a view, and can give different defini-

tions for views that are equivalent but not equal. This means we cannot define the definition

of a view as the result of finding the firstmatching definition pair.We can instead use a similar

process to the syntactic reification, but matching on equivalence rather than inclusion.

Definition A.10. The syntactic definer definition sdDef : Defn(V,EPr)→V→EPr is the

function defined by the recursion:

sdDef([])(v) = truePr

sdDef([(u, e)] ++d)(v) =

e∧Pr sdDef(d)(v) u ≡ v

sdDef(d)(v) otherwise

(Coq: sd_syn_define_expr in Starling.Frontend.SynDefiner)

Given a definer d, we can lift sdDef to a definer function, per Definition 3.10:

λv.

sdDef(d)(v) ∃(u, e),d1,d2. v ≡ u∧ d = d1 ++〈(u, e)〉++d2

undefined otherwise

The definer and reifier operations differ only by the condition on which umatches v, so

we can write them in terms of a single collector function:

sdCollect(•)(〈〉)(v) = truePr

sdCollect(•)(〈(u, e)〉++d)(v) =

e∧Pr sdCollect(f)(d)(v) u • v

sdCollect(f)(d)(v) otherwise

sdDef = sdCollect(≡)

sdReify = sdCollect(v)

A.4 Derivation of outline flattening

Atomic actions. Atomic actions decompose into themselves, as follows:

oflat({p} 〈c〉 {q}) = { 〈p〉 c 〈q〉 }
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Skip. Skip commands form the axiom {p} skip {p} in the Views program logic. Thus, to

prove {p} skip {q} for arbitrary q, we apply consequence1 to show that p entails q:

oflat({p} skip {q}) = { 〈p〉 id 〈q〉 }

Since skip introduces a consequence into our decomposition without changing the pro-

gram semantics, we can use it to insert arbitrary consequence steps into our proof.

Iteration. Recall that iterations correspond to the following proof rule:

{p} c {p}

{p} c∗ {p}

Suppose we want to prove the following outline, for arbitrary p, p ′, q ′, and q:

{p} (
{
p ′} c

{
q ′})∗ {q}

One way to do so is as follows:

〈p〉 id 〈p ′〉 ∈ T

` {p ′} c {q ′} 〈q ′〉 id 〈p ′〉 ∈ T
RC

` {p ′} c {p ′}
It.

` {p ′} c∗ {p ′} 〈p ′〉 id 〈q〉 ∈ T
RC

` {p ′} c∗ {q}
LC

` {p} c∗ {q}

This gives us the following decomposition:

oflat({p} (
{
p ′} c

{
q ′})∗ {q}) = oflat(

{
p ′} c

{
q ′})∪{ 〈p〉 id 〈p ′〉 , 〈p ′〉 id 〈q〉 ,

〈
q ′〉 id

〈
p ′〉 }

Intuitively, the consequence applications correspond to entering the loop, exiting the

loop, and iterating on the loop.

Sequential composition. Recall the proof rule for sequential composition:

{p} c1 {r} {r} c2 {q}

{p} c1; c2 {q}

Suppose we aim to prove the following outline, for arbitrary p, p ′, r, s, q ′, and q:

{p} (
{
p ′} c {r} ; {s} d

{
q ′}) {q}

We can do so as follows2:

〈p〉 id 〈p ′〉 ∈ T

` {p ′} c {r}

〈r〉 id 〈s〉 ∈ T ` {s} d {q ′}

` {r} d {q ′}

` {p ′} c;d {q ′} 〈q ′〉 id 〈q〉 ∈ T

` {p ′} c;d {q}

` {p} c;d {q}

This gives us the following decomposition:

oflat({p} (
{
p ′} c {r} ; {s} d

{
q ′}) {q}) = oflat(

{
p ′} c {r})

∪ oflat({s} d
{
q ′})

∪ { 〈p〉 id
〈
p ′〉 , 〈r〉 id 〈s〉 , 〈q ′〉 id 〈q〉 }

1Whether we apply left or right consequence makes no difference.
2We can, instead, apply right-consequence to {p ′} c {r}— but we still get 〈r〉 id 〈s〉.
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Parallel composition. Recall the proof rule for parallel composition:

{p1} c1 {q1} {p2} c2 {q2}

{p1 •p2} c1 || c2 {q1 •q2}

Consider the following outline, for arbitrary p, p1, p2, q, q1, and q2:

{p} ({p1} c {q1} || {p2} d {q2}) {q}

The proof tree for this outline is as follows:

〈p〉 id 〈p1 •p2〉 ∈ T

` {p1} c {q1} ` {p2} d {q2}

` {p1 •p2} c || d {q1 •q2} 〈q1 •q2〉 id 〈q〉 ∈ T

` {p1 •p2} c || d {q}

` {p} c || d {q}

This gives us the following decomposition:

oflat({p} ({p1} c {q1} || {p2} d {q2}) {q}) = oflat({p1} c {q1})

∪ oflat({p2} d {q2})

∪ { 〈p〉 id 〈p1 •p2〉 , 〈q1 •q2〉 id 〈q〉 }

Unlike the earlier control flows, the decomposition for parallel composition mentions

views — p1 •p2 and q1 •q2 — that are not expressed inside the proof outline.

Nondeterministic choice. Recall the proof rule for nondeterministic choice:

{p} c1 {q} {p} c2 {q}

{p} c1 + c2 {q}

Consider the following outline, for arbitrary p, p1, p2, q, q1, and q2:

{p} ({p1} c {q1}+ {p2} d {q2}) {q}

One proof tree (which we split for space reasons) for this outline is as follows:

〈p〉 id 〈p1〉 ∈ T ` {p1} c {q1}

` {p} c {q1} 〈q1〉 id 〈q〉 ∈ T

` {p} c {q}

(A)

〈p〉 id 〈p2〉 ∈ T ` {p2} d {q2}

` {p} c {q2} 〈q2〉 id 〈q〉 ∈ T

` {p} d {q}

(B)

(A) (B)
` {p} c + d {q}

This gives us the final decomposition:

oflat({p} ({p1} c {q1}+ {p2} d {q2}) {q}) = oflat({p1} c {q1})

∪ { 〈p〉 id 〈p1〉 , 〈q1〉 id 〈q〉 }

∪ oflat({p2} d {q2})

∪ { 〈p〉 id 〈p2〉 , 〈q2〉 id 〈q〉 }
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A.5 Operations on view lists

View list combine

Definition A.11. Given a local view list v and a parallel local state list l, the view list
combine Vlc(v, l) is the recursion:

Vlc(〈〉, 〈〉) = 〈〉 Vlc(〈v〉++ v ′, 〈l〉++ l ′) = 〈v(l)〉++Vlc(v ′, l ′)

Iterated view join

Definition A.12. The iterated view join � : listV → V, where V is the carrier of a views

semigroup with join • and optional unit ε, is the recursion:

�(〈〉) = ε �(〈v〉) = v �(〈v〉++ v) = v •�(v)

The iterated view join is undefined on the empty list if V is not carrier of a viewsmonoid.

A.6 Cview

This section contains more information about Cview (§ 7.1).

Expressions

Cview makes no syntactic distinction between predicate and value expressions; all valid bool

expressions, over appropriate variable sets, are valid proposition expressions.

Cview uses C’s expression language, with some changes. C operators that produce side

effects — ++, −−, =, and so on — are either statements in Cview or omitted entirely. This

change prevents various classes of errors, for example confusion between = and ==.

Cview forbids Boolean expressions in arithmetic positions3. This means that chaining

of relational expressions, such as x < y <= z, no longer has its C meaning of evaluating

x < y, casting it to an integer, and comparing the result against z. This, along with the lack

of side-effects in expressions, frees us to interpret such chains in their usual mathematical

sense: x < y <= z is syntactic sugar for x < y && y <= z, and so on.

Cview makes minor changes to the operator set. Table A.1 summarises the operators

Cview understands in expression position (that is, excluding constant-level operators such as

signs, and special-purpose operators such as assignment and increment/decrement suffixes).

Informally, the operators have the same semantics as their C equivalents (the new operator

x => y being equivalent to !x || y). The formal semantics depends on the backend theory:

Starlingtool maps operators to their equivalent in the solver’s language.

Operator precedence

Table A.1 gives a precedence table for the operators in Cview.

3In C, true behaves as 1, and false 0, for arithmetic operations.
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Group Arity Fixity Assoc. Input types Output types Members

subscripts 2 mixed4 left any5 any []
negation 1 prefix — Boolean Boolean !

multiplicative 2 infix left arithmetic arithmetic * / %
additive 2 infix left arithmetic arithmetic + −

relational 2 infix left arithmetic Boolean < <= >= >
equality 2 infix left any Boolean != ==

implication 2 infix left Boolean Boolean =>
conjunction 2 infix left Boolean Boolean &&
disjunction 2 infix left Boolean Boolean ||

Table A.1: Operators in Cview, and their syntactic properties. Rows denote precedence levels.

Grammar sketch

Below is a sketch of the Cview grammar. As the expression language is that of C (aside from

the differences mentioned above), the sketch defers to existing C expression grammars [85].

〈typedef 〉 := typedef 〈prim-type〉 〈identifier〉 ;

〈prim-type〉 ::= int | bool

〈type-lhs〉 ::= 〈prim-type〉 | 〈identifier〉

〈array-subs〉 ::= [ [〈integer〉] ] [〈array-subs〉]

〈type〉 ::= 〈type-lhs〉 [〈array-subs〉]

〈scope〉 ::= thread | shared

〈id-list〉 ::= 〈identifier〉 [, 〈id-list〉]

〈var-decl〉 ::= 〈scope〉 〈type〉 〈id-list〉 ;

〈interpolate〉 ::= [| 〈expression〉 |]

〈sym-word〉 ::= 〈non-whitespace-string〉 | 〈interpolate〉

〈sym-words〉 ::= 〈sym-word〉 [〈sym-words〉]

〈symbol〉 ::= %{ [〈sym-words〉] }

〈params〉 ::= 〈type〉 〈identifier〉 [, 〈params〉]

〈proto〉 ::= 〈identifier〉 [( [〈params〉] )]

〈protos〉 ::= 〈proto〉 [, 〈protos〉]

〈atom-proto〉 ::= view 〈proto-list〉 ; | view iter 〈func-proto〉 ;

〈assign〉 ::= 〈expr〉 = 〈expr〉 〈var-modifier〉? ;
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〈var-modifier〉 ::= ++ | 

〈binding-list〉 ::= 〈identifier〉 [, 〈binding-list〉]

〈atom-pattern〉 ::= 〈identifier〉 [( [〈binding-list〉] )]

〈view-pattern〉 ::= 〈atom-pattern〉 [* 〈view-pattern〉]

〈pattern〉 ::= emp | iter 〈atom-pattern〉 | 〈view-pattern〉

〈definition〉 ::= 〈expression〉 | ?

〈constraint〉 ::= constraint 〈pattern〉 > 〈definition〉 ;

〈expr-list〉 ::= 〈expression〉 [, 〈expr-list〉]

〈atom〉 ::= 〈identifier〉 ( [〈expr-list〉] )

〈view-ite〉 ::= if 〈expression〉 { 〈view-product〉 } [else { 〈view-product〉 }]

〈view-elem〉 ::= 〈atom〉 | false | local { 〈expression〉 } | 〈view-local〉 | 〈view-ite〉

〈view-product〉 ::= emp | 〈view-elem〉 | 〈view-product〉 * 〈view-product〉

〈view-expr〉 ::= ? | 〈view-product〉

〈view-assert〉 ::= {| 〈view-expr〉 |}

〈var-mod〉 ::= 〈expr〉 〈var-modifier〉 ;

〈floyd〉 := assume 〈expression〉 ; | assert 〈expression〉 ;

〈cas〉 ::= CAS ( 〈expression〉 , 〈expression〉 , 〈expression〉 ) ;

〈condition〉 ::= 〈expression〉 | *

〈selection〉 ::= if 〈condition〉 〈block〉 [else 〈block〉]

〈iteration〉 := while 〈expression〉 〈block〉
| do 〈block〉 while 〈expression〉 ;

〈statement〉 ::= 〈iteration〉 | 〈selection〉 | 〈block〉 | <| 〈statement〉* |>
| 〈action〉 | 〈miracle〉 | 〈view-assert〉 | 〈var-decl〉

〈block〉 ::= { 〈statement〉* }

〈method〉 ::= method 〈proto〉 〈block〉

〈search〉 ::= search 〈positive-integer〉 ;

〈pragma〉 ::= pragma 〈identifier〉 { 〈anything-except-close-brace〉 } ;

〈top〉 ::= 〈var-decl〉| 〈method〉| 〈view-proto〉| 〈constraint〉| 〈search〉| 〈pragma〉

〈cview〉 ::= 〈top〉 [〈cview〉]
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A.7 Full Circular Buffer

This section contains a more complete version of the circular buffer from § 8.1.

1 shared int[100] circ_buf;

2 shared int r_capacity, w_capacity;

3 thread int position;

4 thread int[100] local_buf;

5 method write(int c) {

6 {| Writer(position, 0) * local{0 <= c <= 100} |}

7 thread int wc; <| wc = w_capacity; |>

8 {| Writer(position, wc) * local{0 <= c <= 100} |}

9 if wc < c {

10 {| Writer(position, wc) * local{0 <= c <= 100} |}

11 c = wc;

12 {| Writer(position, wc) * local{0 <= c <= wc} |}

13 }

14 {| Writer(position, wc) * local{0 <= c <= wc} |}

15 thread int wrote; wrote = 0;

16 {| Writer(position, wc) * local{0 <= wrote <= c <= wc} |}

17 while wrote < c {

18 {| Writer(position, wc) * local{0 <= wrote < c <= wc} |}

19 <| circ_buf[position] = local_buf[wrote]; |>

20 position = (position + 1) % 100;

21 wrote++;

22 {| Writer(position, wc) * local{0 < wrote <= c <= wc} |}

23 }

24 {| Writer(position, wc) * local{0 <= wrote && wrote <= wc} |}

25 <| w_capacity = w_capacity − wrote;

26 r_capacity = r_capacity + wrote; |>

27 {| Writer(position, wc − wrote) |}

28 }

29 method read(int c) {

30 {| Reader(position, 0) * local{0 <= c <= 100} |}

31 thread int rc; <| rc = r_capacity; |>

32 {| Reader(position, rc) * local{0 <= c <= 100} |}

33 if rc < c {

34 {| Reader(position, rc) * local{0 <= c <= 100} |}

35 c = rc;

36 {| Reader(position, rc) * local{0 <= c <= rc} |}

37 }

38 {| Reader(position, rc) * local{0 <= c <= rc} |}

39 thread int read; read = 0;

40 {| Reader(position, rc) * local{0 <= read <= c <= rc} |}
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41 while (read < c) {

42 {| Reader(position, rc) * local{0 <= read < c <= rc} |}

43 <| local_buf[read] = circ_buf[position]; |>

44 position = (position + 1) % 100;

45 read++;

46 {| Reader(position, rc) * local{0 < read <= c <= rc} |}

47 }

48 {| Reader(position, rc) * local{0 <= read <= rc} |}

49 <| r_capacity = r_capacity − read;

50 w_capacity = w_capacity + read; |>

51 {| Reader(position, rc − read) |}

52 }

53 method flush(int p1, int p2) {

54 {| Reader(p1, 0) * Writer(p2, 0) |}

55 <| r_capacity = 0; w_capacity = 100; |>

56 {| Reader(p1, 0) * Writer(p2, 100) |}

57 }

58 method forget_wcap(int c) {

59 {| Writer(position, c) |} ; {| Writer(position, 0) |}

60 }

61 method forget_rcap(int c) {

62 {| Reader(position, c) |} ; {| Reader(position, 0) |}

63 }

64 constraint emp −> 0 <= w_capacity && 0 <= r_capacity

65 && w_capacity + r_capacity == 100;

66 view Writer(int position, int cap_estimate);

67 constraint Writer(position, cap_estimate) −>

68 0 <= position < 100 && 0 <= cap_estimate <= w_capacity;

69 constraint Writer(xp, xc) * Writer(yp, yc) −> false;

70 view Reader(int pointer, int cap_estimate);

71 constraint Reader(pointer, cap_estimate) −>

72 0 <= pointer < 100 && 0 <= cap_estimate <= r_capacity;

73 constraint Reader(xp, xc) * Reader(yp, yc) −> false;
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Proofs

This appendix contains human-readable proofs for some of the theorems and lemmas posed in

the main body. Where these proofs complement a Coq-mechanised proof, we give a reference

to the Coq development in the main body, alongside the reference to this appendix.

B.1 The free views instance

Theorem 3.2: maximality of the free views instance

Proof. Backwards proof: strengthen i.T ⊆ finst(i).T to axiom soundness, which we assume:

i.T ⊆ finst(i).T

i.T ⊆

{
〈p〉 c 〈q〉

∣∣∣∣∣ JcK∗P(bpc) ⊆ bqc

∧ ∀v ∈ V. JcK∗P(bp • vc) ⊆ bq • vc

}
(expand RHS)

∀a.a ∈ i.T ⇒ a ∈

{
〈p〉 c 〈q〉

∣∣∣∣∣ JcK∗P(bpc) ⊆ bqc

∧ ∀v ∈ V. JcK∗P(bp • vc) ⊆ bq • vc

}
(unfold set inclusion)

∀ 〈p〉 c 〈q〉 . 〈p〉 c 〈q〉 ∈ i.T ⇒ JcK∗P(bpc) ⊆ bqc∧ ∀v ∈ V. JcK∗P(bp • vc) ⊆ bq • vc
(unfold set membership)

∀ 〈p〉 c 〈q〉 . JcK∗P(bpc) ⊆ bqc∧ ∀v ∈ V. JcK∗P(bp • vc) ⊆ bq • vc
(weaken precondition)

B.2 Views algebras

This section contains proofs that various constructs (multisets, views expressions, and so

on) are instances of particular views algebras (semigroups, monoids, and so on).
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Function lifts

These proofs correspond to the results in Lemma 5.1. In each case, we assume that the lifted

algebra has the appropriate properties.

Setoid

Proof. Per Definition A.1, we must show that the lifted≡ (λx,y. ∀z : T . x≡y) is an equival-

ence. We do so by proving reflexivity, symmetry, and transitivity:

Reflexivity Unfold to ∀x : T . f(x) ≡ f(x); apply reflexivity of≡.

Symmetry Unfold to (∀x : T . f(x) ≡ g(x)) =⇒ (∀x : T .g(x) ≡ f(x)); apply symmetry of≡.

Transitivity Backwards proof from RHS to LHS.

∀x : T . f(x) ≡ h(x)

←−∀x : T . f(x) ≡ g(x) ∧ g(x) ≡ h(x) (Transitivity of≡)

←−(∀x : T . f(x) ≡ g(x)) ∧ (∀x : T .g(x) ≡ h(x)) (Generalise quantification)

Semigroup

Proof. By Definition 2.4, prove commutativity and associativity of lifted • over lifted≡, and
compatibility of lifted •with lifted≡.

Commutativity To prove: ∀f,g : T→V. (f •g) ≡ (g • f); first, unfold and β-reduce fully:

(f •g) ≡ (g • f)

∀x : T . (f •g)(x) = (g • f)(x)

∀x : T . (λy. f(y) + g(y))(x) = (λy.g(y) + f(y))(x)

∀x : T . f(x) + g(x) = g(x) + f(x)

Then, prove by commutativity of + over N.

Associativity To prove: ∀f,g,h : T→V. (f •(g •h)) ≡ ((f •g) •h); first, unfold fully:

(f •(g •h)) ≡ ((f •g) •h)

∀x : T . (f •(g •h))(x)≡ ((f •g) •h)(x)

∀x : T . (λy. f(y) •(g •h)(y))(x) ≡ (λy. (f •g)(y) •h(y))(x)

∀x : T . f(x) •(g •h)(x)≡ (f •g)(x) •h(x)

∀x : T . f(x) •(λy.g(y) •h(y))(x)≡ (λy. f(y) •g(y))(x) •h(x)

∀x : T . f(x) •(g(x) •h(x))≡ (f(x) •g(x)) •h(x)

Then, prove by associativity of the underlying •.
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Compatibility To prove: ∀f,g,h : T→V. f ≡ g =⇒ (f •h) ≡ (g •h). Backwards proof

from RHS to LHS:

(f •h) ≡ (g •h)

←−∀x : T . (f •h)(x)≡(g •h)(x) (Unfold)

←−∀x : T . (λy. f(y) •h(y))(x)≡(λy. (g(y) •h(y))(x) (Unfold)

←−∀x : T . f(x) •h(x) ≡ g(x) •h(x) (β-reduction)

←−∀x : T . f(x) ≡ g(x) (Compatibility of underlying algebra)

←−f ≡ g (Fold)

Monoid

Proof. By Definition 2.5), we must show that ε is a unit: ∀f : T→V . ε ≡ f ≡ f. To prove this,

unfold and β-reduce fully:

ε • f ≡ f

∀x : T . (ε • f)(x)≡ f(x)

∀x : T . (λy. ε(y) • f(y))(x)≡ f(x)

∀x : T . ε(x) • f(x)≡ f(x)

∀x : T . (λy. ε)(x) • f(x)≡ f(x)

∀x : T . ε • f(x)≡ f(x)

Then, appeal to the underlying views monoid.

Ordered views semigroup

This proof relies on the following lemmas:

Lemma B.1 (Lifted≡–v). ∀f,g : T→V. f ≡ g =⇒ fvg.

Proof. Forwards from LHS to RHS.

f ≡ g

= ∀x : T . f(x)≡g(x) (Unfold)

→ ∀x : T . f(x) 6 g(x) (underlying semigroup)

= fvg (Fold)

Lemma B.2 (Lifted ε is least element). ∀f. εv f.
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Proof. Unfold and β-reduce fully:

εv f

∀x : T . ε(x)v f(x)

∀x : T . (λy. ε)(x)v f(x)

∀x : T . εv f(x)

Then, appeal to the underlying semigroup.

Lemma B.3 (Lifted≡-v-congruence). ∀f, f ′,g,g ′ : T→V . (f ≡ f ′)∧ (g ≡ g ′)∧ (fvg) =⇒
(f ′vg ′)

Proof. Forwards from LHS to RHS.

(f ≡ f ′)∧ (g ≡ g ′)∧ (fvg)

→ (f ′ ≡ f)∧ (g ≡ g ′)∧ (fvg) (Symmetry ofv)

→ (f ′v f)∧ (gvg ′)∧ (fvg) (Lemma B.1)

= (f ′v f)∧ (fvg)∧ (gvg ′) (Rearrange)

→ f ′vg ′ (Transitivity)

We can now prove that functions are ordered views semigroups.

Proof. Per Definition 3.7, we must prove thatv is a pre-order (reflexive and transitive); we

must also prove the≡–v andv–≡ laws, and that • is increasing and inflationary overv.

Reflexivity Unfold to ∀x : T .m(x) = m(x); then, by reflexivity of N-ordering.

Transitivity Backwards proof from RHS to LHS.

fvh

←−∀x : T . f(x) 6 h(x) (Unfold)

←−∀x : T . f(x) 6 g(x)∧ g(x) 6 h(x) (Transitivity of N-ordering)

←−(∀x : T . f(x) 6 g(x))∧ (∀x : T .g(x) 6 h(x)) (Generalise quantification)

←−fvg∧ fvh (Fold)

The≡–v law See Lemma B.1.

Thev–≡ law To prove: ∀f,g : T→V . fvg∧gv f =⇒ f ≡ g. Forwards from LHS to RHS.

fvg∧ gv f

−→(∀x : T . f(x) 6 g(x))∧ (∀x : T .g(x) 6 f(x)) (Unfold)

−→∀x : T . f(x) 6 g(x)∧ g(x) 6 f(x) (Unify quantifiers)

−→∀x : T . f(x) = g(x) (Antisymmetry of6 over N)

−→f ≡ g (Fold)
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Increasing To prove: ∀f,g,h : T→V. fvg =⇒ (f •h)v(g •h). Forward proof from LHS

to RHS.

fvg

−→∀x : T . f(x) 6 g(x) (Unfold)

−→∀x : T . f(x) + h(x) 6 g(x) + h(x) (Monotonicity of6 over N)

−→∀x : T . (λx. f(x) + h(x))(x) 6 (λx.g(x) + h(x))(x) (β-abstraction)

−→∀x : T . (f •h)(x) 6 (g •h)(x) (Fold)

−→(f •h)v(g •h) (Fold)

Progressing To prove: ∀f,g : T→V. fv(f •g). Backwards proof: reduce to Lemma B.2.

fv(f •g)

←−(f • ε)v(f •g) (inner ε is a unit)

←−(ε • f)v(g • f) (Lemma B.3, using inner • commutativity)

←−εvg (Apply inner •–v)

Natural numbers

These proofs correspond to the results in § 6.1. As Lemmas 6.4 to 6.6 just rely on collecting

trivial properties of natural numbers, we do not prove them here.

Lemma 6.7: naturals are ordered views semigroups

Proof. Per Definition 3.7, we must show that6 is a pre-ordering (reflexive and transitive),

which is trivial. We must also prove the ≡–v and v–≡ laws, and that + is increasing and

inflationary with respect to6. overv.

The≡–v law This is ∀x,y : N. x = y =⇒ x 6 y, which we get by substitution and

reflexivity.

Thev–≡ law This is ∀x,y : N. x 6 y∧ y 6 x =⇒ x = y, a well-known property of N.

Increasing This is ∀x,y, z : N. x 6 y =⇒ (x+ z) 6 (y+ z), also well-known.

Inflation This is ∀x,y : N. x 6 (x + y); we can show it by transitivity through (x + 0):

x 6 x+ 0 by 0 being the additive unit, and x+ 0 6 x+ y through compatibility and 0

being the least member of N.
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Lemma 6.8: naturals are subtractive views semigroups

Proof. By Definition 3.8, we must show that ·− is compatible with6, and that naturals have

an adjoint property over6.

Compatibility To prove: ∀x,y, z : N. x 6 y =⇒ (x ·− z) 6 (y ·− z). First, unfold the RHS:

(x ·− z) 6 (y ·− z)

−→ max(0, x− z) 6 max(0,y− z)

When x < z, this reduces the RHS to 0 6 k for some k, and, as 0 is the lowest natural

number, we have a tautology. Otherwise, we have that the RHS is x− z 6 y ·− z. When

y < z, we can use the assumption that x 6 y to show that, transitively, x < z. As a

result, x− z = 0, and we have the tautology 0 6 0.

For the remaining case (x > z ∧ y > z), the RHS becomes x − z 6 y − z, at which

point we appeal to the natural numbers and assumption x 6 y.

Adjoint To prove: ∀x,y, z : N. x 6 (y+ z) =⇒ (x ·− y) 6 z.

Backwards proof, from RHS to LHS. First, unfold the RHS to max(0, x − y). Then,

case split on x < y. If this is the case, then we have 0 6 z, which is always true as 0 is

the least member of N. Else, continue with backwards proof:

max(0, x− y) 6 z

←− x− y 6 z (Apply case split)

←− x 6 y+ z (Add y to both sides, using case split to justify closure over N)

i.e. the LHS.

View expressions

This section contains extra definitions and facts over view expressions.

Equivalence, and view expressions as setoids. Syntactic equivalence across view expressions

is hard to calculate for two reasons. First, syntactically different view expressions can

correspond to the same view through the laws of views semigroups. For example, (@A),
(• (@A) 1), and (• (• (@A) 1) (\ (@A) (@A))) are all equivalent.

Second, different view expressions can correspond to the same view through the algebraic

structure or reification of the underlying views monoid. For example, if our views monoid is

idempotent (∀v, v • v ≡ v) then (@A) becomes equivalent to (• (@A) (@A)).
Instead of needing a complex, view-monoid-specific decision process for equivalence, we

can define it in terms of equivalence on the underlying views.
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Definition B.1. For all Atom, V, and r, the view expression equivalence≡v relates view

expressions v1 and v2 if, and only if, their interpretations are equivalent:

≡v : VExpr(Atom)↔VExpr(Atom) v1≡v v2
def
= I(r)(v1) ≡ I(r)(v2)

This definition leads to a general result that all views expressions are setoids per Defini-

tion A.1, assuming that their underlying monoids are setoids.

Theorem B.4. For all Atom, V, and r, where V is a setoid, VExpr(Atom) is a setoid over≡v.

Proof. By proving reflexivity, symmetry, and transitivity:

Reflexivity To prove: ∀v. v≡v v. Unfold to I(r)(v) ≡ I(r)(v); then,≡ reflexivity.

Symmetry To prove: ∀v1, v2. v1≡v v2 =⇒ v2≡v v1. Unfold to I(r)(v1) ≡ I(r)(v2) =⇒
I(r)(v1) ≡ I(r)(v1); then,≡ symmetry.

Transitivity To prove: ∀v1, v2, v3. v1≡v v2 ∧ v2≡v v3 =⇒ v1≡v v3. Unfold:

I(r)(v1) ≡ I(r)(v2)∧ I(r)(v2) ≡ I(r)(v3) =⇒ I(r)(v1) ≡ I(r)(v3)

Then,≡ transitivity.

Join, and views expressions as views semigroups. As with most of the view expression oper-

ators, the join operator maps directly to a production of the grammar, namely •.

DefinitionB.2. The viewexpression join ∗v : VExpr(Atom)→VExpr(Atom)→VExpr(Atom),

over an atom language, is: v1 ∗v v2
def
= (• v1 v2).

Theorem B.5. For all Atom, V, and r, such that V is a views semigroup, (VExpr(Atom), •,≡)
is a views semigroup.

Proof sketch. Unfold each property (commutativity, associativity, compatibility) until it

becomes the equivalent property over views in V; then appeal to V’s views semigroup.

We give a formal proof in Appendix B.2.

Unit, and view expressions as views monoids. The unit expression also corresponds to a

grammar production, namely 1.

Definition B.3. For all Atom, V, r, the unit view expression 1v : VExpr(Atom) is 1.
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View expressions are views monoids. We now show that, if the underlying views model is a

monoid, view expressions are also views monoids with 1v as unit.

Theorem B.6. For all Atom, V, and r, if V is a views monoid, then (VExpr(Atom), 1v, ∗v,≡v)

is also a views monoid.

Proof. By Definition 2.5), we must show that 1v is a unit: ∀v : VExpr(Atom). 1v ∗v v≡v v. To

prove this, unfold:

1v ∗v v≡v v

I(r)(1v ∗v v) ≡ I(r)(v)

I(r)((* 1v v)) ≡ I(r)(v)

I(r)(1v) • I(r)(v) ≡ I(r)(v)

I(r)(1) • I(r)(v) ≡ I(r)(v)

1 • I(r)(v) ≡ I(r)(v)

Then, apply the unit property of the underlying views monoid.

Order, and view expressions as ordered views semigroups. We can define inclusion on view

expressions in the same way, substituting the underlying monoid’s 6 for ≡, and arriving

at Definition B.4.

Definition B.4. For all Atom, V, and r, the view expression inclusion vv relates view

expressions v1 and v2 if, and only if, the interpretation of v1 is included in that of v2 by

the underlying inclusion relation:

vv : VExpr(Atom)↔VExpr(Atom) v1vv v2
def
= I(r)(v1)v I(r)(v2)

Theorem B.7. For all Atom, V, and r (VExpr(Atom), ∗v,v,≡v) is an ordered views semigroup

if V is.

Proof sketch. Unfold each property, applying the definition of I where needed, until it be-

comes the equivalent property over views in V; then appeal to V’s ordered views semigroup.

Appendix B.2 gives a formal proof.

Subtraction, and view expressions as subtractive views semigroups. We also define the \-

operator for view expressions in the same way as we did the •-operator.

Definition B.5. For all atom sets Atom, views monoids V, and atom projections r, we

define the view expression part \v : VExpr(Atom)→VExpr(Atom)→VExpr(Atom) as

follows:

v1 \v v2
def
= (\ v1 v2)

With \v, view expressions form a subtractive views semigroup, provided they abstract

over subtractive views semigroups themselves.
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Theorem B.8. For all Atom, V, and r, (VExpr(Atom), ∗v, \v,vv,≡v) is an subtractive views

semigroup.

Proof sketch. Unfold each property, applying the definition of I where needed, until it be-

comes the equivalent property over V; then appeal to V’s subtractive views semigroup.

View expression reification. If we treat view expressions as a thin layer on top of an ex-

isting views monoid, the most straightforward approach to reification is to compose the

interpretation function with the reification we plan to use with the views monoid.

Definition B.6 (View expression reification). Given an atom projection r and reification

b−c, the view expression reification VReify(r)(b−c) is the function b−c ◦ I(r).

This definition easily gives us the relationship between reification and equivalence we

need from views reification functions.

Lemma B.9.

∀v1, v2 : VExpr(Atom).

v1≡v v2 =⇒ VReify(r)(v1) ⊆ VReify(r)(v2)∧ VReify(r)(v2) ⊆ VReify(r)(v1)

Proof. Backwards proof from LHS to RHS:

VReify(r)(v1) ⊆ VReify(r)(v2)∧ VReify(r)(v2) ⊆ VReify(r)(v1)

←−(b−c ◦ I(r))(v1) ⊆ (b−c ◦ I(r))(v2)∧ (b−c ◦ I(r))(v2) ⊆ (b−c ◦ I(r))(v1)
(Unfold VReify)

←−bI(r)(v1)c ⊆ bI(r)(v2)c∧ bI(r)(v2)c ⊆ bI(r)(v1)c (Apply composition)

←−I(r)(v1) ≡ I(r)(v2) (Apply Definition 2.7 property)

←−v1≡v v2 (Fold definition of≡v)

Adjoint-rule compatiblity on view expressions. Unlike multisets, view expressions are not

adjoint-compatible for all reifiers. Instead, they are adjoint-compatible when their underlying

monoid (and its reifier) are adjoint-compatible.

Theorem B.10 (View expression adjoint-rule compatibility). For all Atom, V, r, and b−c, if
(V, •, \,v,≡) and b−c are adjoint-rule compatible, then (VExpr(Atom), ∗v, \m,v,≡v) and

VReify(r)(b−c) are adjoint-rule compatible.

Proof. By unfolding from the definition of adjoint-rule compatibility to the same property

on the underlying semigroup, which we assume.
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VReify(r)(b−c)(p ∗v v) ⊆ VReify(r)(b−c)(p ∗v((v ∗v q) \v q))

= (b−c ◦ I(r))(p ∗v v) ⊆ (b−c ◦ I(r))(p ∗v((v ∗v q) \v q)) (Unfold VReify)

= bI(r))(p ∗v v)c ⊆ bI(r))(p ∗v(v ∗v q) \v q)c (Unfold composition of VReify)

= bI(r)((* p v))c ⊆ bI(r)((* p ((v ∗v q) \v q)))c (Unfold ∗v)

= bI(r)((* p v))c ⊆ bI(r)((* p (\ (v ∗v q) q)))c (Unfold \v)

= bI(r)((* p v))c ⊆ bI(r)((* p (\ (* v q) q)))c (Unfold ∗v)

= bI(r)(p) • I(r)(v)c ⊆ bI(r)(p) • I(r)((\ (* v q) q))c (Definition of I)

= bI(r)(p) • I(r)(v)c ⊆ bI(r)(p) •(I(r)((* v q)) \ I(r)(q))c (Definition of I)

= bI(r)(p) • I(r)(v)c ⊆ bI(r)(p) •((I(r)(v) • I(r)(q)) \ I(r)(q))c (Definition of I)

These proofs correspond to the results in § 6.2. Some of the proofs for views expressions

are short enough to appear inline in the main text: we do not repeat them here.

Theorem B.5: multisets are views semigroups

Proof. By Definition 2.4), prove commutativity and associativity of ∗v over≡v, and compat-

ibility of ∗v with≡v.

Commutativity To prove: ∀v1, v2 : VExpr(Atom). (v1 ∗v v2)≡v(v2 ∗v v1).

Unfold the body as follows:

(v1 ∗v v2)≡v (v2 ∗v v1)

−→ I(r)(v1 ∗v v2) ≡ I(r)(v2 ∗v v1)

−→ I(r)((* v1 v2)) ≡ I(r)((* v2 v1))

−→ I(r)(v1) • I(r)(v2) ≡ I(r)(v2) • I(r)(v1)

Then, appeal to commutativity of the underlying semigroup.

Associativity To prove: ∀v1, v2, v3 : VExpr(Atom). (v1 ∗v(v2 ∗v v3))≡v((v1 ∗v v2) ∗v v3).

Unfold the body as follows:

(v1 ∗v(v2 ∗v v3))≡v ((v1 ∗v v2) ∗v v3)

−→ I(r)(v1 ∗v(v2 ∗v v3)) ≡ I(r)((v1 ∗v v2) ∗v v3)

−→ I(r)((* v1 (v2 ∗v v3))) ≡ I(r)((* (v1 ∗v v2) v3))

−→ I(r)((* v1 (* v2 v3))) ≡ I(r)((* (* v1 v2) v3))

−→ I(r)(v1) • I(r)((* v2 v3))) ≡ I(r)((* v1 v2)) • v3
−→ I(r)(v1) •(I(r)(v2) • I(r)(v3)) ≡ (I(r)(v1) • I(r)(v3)) • v3

Then, appeal to associativity of the underlying semigroup.
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Compatibility To prove: ∀v1, v2, v3 : VExpr(Atom). v1≡v v2 =⇒ (v1 ∗v v3)≡v(v2 ∗v v3).

Backwards proof from RHS to LHS:

(v1 ∗v v3)≡v(v2 ∗v v3)

←− I(r)(v1 ∗v v3) ≡ I(r)(v2 ∗v v3) (Unfold)

←− I(r)((* v1 v3)) ≡ I(r)((* v2 v3)) (Unfold)

←− I(r)(v1) • I(r)(v3) ≡ I(r)(v2) • I(r)(v3) (Definition of I)

←− I(r)(v1) ≡ I(r)(v2) (Compatibility of underlying semigroup)

←− v1≡v v2 (Definition of I)

Theorem B.7: view expressions are ordered views semigroups

Proof. Per Definition 3.7, we must prove thatvv is a pre-order (reflexive and transitive). We

must also prove the≡–v andv–≡ laws, and that ∗v is increasing and inflationary overvv.

Reflexivity Unfold to I(r)(v)v I(r)(v); then, by reflexivity ofv.

Transitivity Unfold:

I(r)(v1)v I(r)(v2)∧ I(r)(v2)v I(r)(v3) =⇒ I(r)(v1)v I(r)(v3)

Then, by transitivity of≡.

The≡–v law To prove:

∀v1, v2 : VExpr(Atom). v1≡v v2 =⇒ v1vv v2

Unfold:

I(r)(v1) ≡ I(r)(v2) =⇒ I(r)(v1)v I(r)(v2)

Then, by≡–v over the underlying setoid.

Thev–≡ law To prove:

∀v1, v2 : VExpr(Atom). v1vv v2 ∧ v2vv v1 =⇒ v1≡v v2

Unfold:

I(r)(v1)v I(r)(v2)∧ I(r)(v2)v I(r)(v1) =⇒ I(r)(v1) ≡ I(r)(v2)

Then, byv–≡ over the underlying setoid.

Increasing To prove: ∀v1, v2, v3 : VExpr(Atom). v1vv v2 =⇒ (v1 ∗v v3)vv(v2 ∗v v3).
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Backwards proof from RHS to LHS:

(v1 ∗v v3)vv(v2 ∗v v3)

←− I(r)(v1 ∗v v3)v I(r)(v2 ∗v v3) (Unfold)

←− I(r)((• v1 v3))v I(r)((• v2 v3)) (Unfold)

←− I(r)(v1) • I(r)(v3)v I(r)(v2) • I(r)(v3) (Definition of I)

←− I(r)(v1)v I(r)(v2) (Compatibility of underlying semigroup)

←− v1vv v2 (Definition of I)

Inflation To prove: ∀v1, v2 : VExpr(Atom). v1vv(v1 ∗v v2). Unfold:

v1vv (v1 ∗v v2)

−→ I(r)(v1)vv I(r)(v1 ∗v v2)

−→ I(r)(v1)vv I(r)((• v1 v2))

−→ I(r)(v1)vv I(r)(v1) • I(r)(v2)

Then apply inflation property of underlying ordered views semigroup.

Theorem B.8: view expressions are subtractive views semigroups

Proof. By Definition 3.8, we must show that \v is increasing with respect to vv, and that

VExpr(Atom) has an adjoint property overvv.

Compatibility To prove: ∀v1, v2, v3 : VExpr(Atom). v1vv v2 =⇒ (v1 \v v3)vv(v2 \v v3).

Backwards proof from RHS to LHS:

(v1 \v v3)vv(v2 \v v3)

←− I(r)(v1 \v v3)v I(r)(v2 \v v3) (Unfold)

←− I(r)(( \v1 v3))v I(r)(( \v2 v3)) (Unfold)

←− I(r)(v1) \ I(r)(v3)v I(r)(v2) \ I(r)(v3) (Definition of I)

←− I(r)(v1)v I(r)(v2) (Compatibility of underlying views semigroup)

←− v1vv v2 (Definition of I)

Adjoint To prove: ∀v1, v2, v3 : VExpr(Atom). v1vv(v2 ∗v v3) =⇒ (v1 \v v2)vv v3.
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Backwards proof from RHS to LHS:

(v1 \v v2)vv v3

←− I(r)(v1 \v v2)v I(r)(v3) (Unfold)

←− I(r)(( \v1 v2))v I(r)(v3) (Unfold)

←− I(r)(v1) \ I(r)(v2)v I(r)(v3) (Definition of I)

←− I(r)(v1)v I(r)(v2) • I(r)(v3) (Adjoint property on underlying semigroup)

←− I(r)(v1)v I(r)((* v2 v3)) (Definition of I)

←− I(r)(v1)v I(r)(v2 ∗v v3) (Definition of ∗v)

←− v1vv(v2 ∗v v3) (Definition of I)

B.3 Local Views Framework

Lemma 5.14

Proof. By backwards rewrite:

∀l, l ′.Sig↑lo(slo), (α̂, l, l
′) VFH {p(l)}{q(l ′)}

= ∀l, l ′. (Sem↑
lo(J−Klo)(α̂, l, l

′))∗(bp(l)c) ⊆ bq(l ′)c (unfold Definition 2.16)

= ∀l, l ′.
⋃{

(Sem↑
lo(J−Klo)(α̂, l, l

′))id(σ)
∣∣∣ σ ∈ bp(l)c } ⊆ bq(l ′)c

(unfold Definition 2.12)

= ∀l, l ′,σ.σ ∈ bp(l)c =⇒ (Sem↑
lo(J−Klo)(α̂, l, l

′))id(σ) ⊆ bq(l ′)c
(expand out iterated union)

⇐⇒ ∀l, l ′,σ.σ ∈ bp(l)c =⇒ Sem↑
lo(J−Klo)(α̂, l, l

′))(σ) ⊆ bq(l ′)c (label is not id)

= ∀l, l ′,σ.σ ∈ bp(l)c =⇒ {σ ′ | ((l,σ), (l ′,σ ′)) ∈ Jα̂Kid
lo } ⊆ bq(l

′)c (unfold)

= ∀l, l ′,σ,σ ′.σ ∈ bp(l)c =⇒
(
((l,σ), (l ′,σ ′)) ∈ Jα̂Kid

lo =⇒ σ ′ ∈ bq(l ′)c
)

(expand set-builder)

= ∀σ,σ ′ ∈ S. ∀l, l ′ ∈ L. σ ∈ bp(l)c ∧ ((l,σ), (l ′,σ ′)) ∈ JαKid
lo =⇒ σ ′ ∈ bp(l ′)c

(rearrange quantifications and double implication)

= slo, α̂ LVFH {p}{q} (Definition 5.5)

Theorem 5.2 (sketch)

Proof sketch. By co-induction. First, split the multi-thread semantic judgement into its two

cases. In the first, all threads are skip, and we satisfy the semantic judgements by applying

the corresponding result from each thread’s single-thread judgement.

In the second case, we unfold Definition 5.13 to determine that there exists some c ′ such

that c ′ = c[t 7→ c ′], and a single-thread transition exists between the two on thread t. We
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then apply this to the single-thread semantic judgement to get the correct value for r and

the action judgement. For the remaining case, we recur co-inductively, which gives us the

obligation to show single-thread safety for each thread over the new triple {p[t 7→ r]} c ′ {q}.

We do this by case analysis: where the thread is t, we use the safety result from the transition

we just made; otherwise, we note that the view and program have not changed for that thread,

and re-use the original result.
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Glossary

Symbols

µStarling

Starling frontend supporting shared-state reasoning only; see § 4.4 49, 201

A

action judgement

Views judgement that states that a Hoare triple is safe modulo all possible contexts;

see Definition 2.17 28, 29, 201, 202

atom set

set of primitive components used in view expressions 89, 201, 204

atomic action language

(Views parameter) the set of syntactic atomic actions for use inside atomic program

steps; see Definition 2.8 26, 201, 204

atomic Hoare triple

Hoare triple over a single atomic action; see Definition 2.14 28, 201, 204

atomic label language

Atomic action language extended with id; see Definition 2.10 27, 201, 204

B

backend decomposition

Frontend element: map from atomic Hoare triples to backend conditions; see Defini-

tion 4.9 55, 201, 204
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base downclosure

Iterated definition property: definition of empty pattern must imply all iterated defini-

tions when the iterator is 0 121, 122, 201

C

constant function

A function of two parameters x and y that always returns x; see Definition A.2 177,

201, 205

F

Floyd/Hoare-style safety judgement

Traditional safety (or ‘partial correctness’) judgement on Hoare triples 19, 201, 204

free views instance

a views instance with an axiomatisation defined directly over the action judgement;

see Definition 3.3 40, 201, 205

function erasure

Lifts a set of functional verification conditions to a set over its codomain; see Defini-

tion 5.22 78, 201, 204

I

inductive downclosure

Iterated definition property: iterated definitions at iterator n+ 1 must imply the same

definitions at iterator n 122, 201

L

label semantic function

lifting of semantic function to map id to the identity transformer; see Definition 2.11

27, 201, 202, 205

lifted semantic function

lifting of label semantic function to state sets; see Definition 2.12 27, 201, 205

list override

Operation that replaces one element of a list at a specified index; see Definition A.5

70, 177, 201, 205

local action judgement

Extension of the action judgement to local view functions; see Definition 5.6 65, 201,

205

202



GLOSSARY

local views–Hoare judgement

Extension of the views–Floyd/Hoare judgement to local view functions; see Defini-

tion 5.5 65, 201, 205

M

multiset

See Definition A.3 86, 177, 201, 205

P

proposition expression

syntactic representation of propositions over one states, representing a backend’s view

of view definitions; see Definition 4.4 53, 201, 204, 205

R

relation expression

syntactic representation of relations over two states, representing a backend’s view of

atomic actions; see Definition 4.5 53, 201, 204, 205

relational frame

Function to frame a proposition-as-relation expression over a set of variables; see

Definition 6.18 100, 201, 205

S

semantic function

Views parameter: function from atomic actions to shared-state transformers. See defin-

ition 2.9 201, 202, 205

setoid

A set with an equivalence relation; see definition A.1 25, 87, 88, 177, 201, 204

structured propositions

Common language for gStarling proposition expressions; see Definition 6.19 95, 101,

113, 201

T

truncated subtraction

Subtraction, closed over natural numbers, that saturates to zero; see definition A.4

177, 201, 205
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SYMBOLS

V

verification condition

Hoare triple over backend predicate and relation expressions, representing solver input;

see Definition 4.6 54, 116, 201, 202, 205

verification-condition Hoare judgement

Hoare-style judgement over verification conditions, which should be implied by solver

predicates; see Definition 4.7 54, 78, 102, 164, 201, 204

view expressions

Common language for gStarling assertions; see Definition 6.2 89, 126, 201, 205

views decomposition

Frontend element: map from atomic Hoare triples to Views axioms; see Definition 4.9

55, 201, 205

views–Floyd/Hoare judgement

Atomic safety judgement over views; see Definition 2.16 28, 65, 201, 203, 205

Symbols

Notation Description

α (meta-syntactic) atomic action

α̂ (meta-syntactic) atomic label

Atom (meta-syntactic) atom set

Dlo
b loStarling backend decomposition; see Definition 5.27

Dµ
b µStarling backend decomposition; see Definition 4.15

Db (meta-syntactic) backend decomposition

EPr (meta-syntactic) set of proposition expressions

ERl (meta-syntactic) set of relation expressions

A (meta-syntactic) Atomic action language

VCFH verification-condition Hoare judgement

FErase function erasure

Dlo
g loStarling decomposition from atomic Hoare triple–goal pairs to backend

conditions; see Definition 5.26

Dµ
g µStarling decomposition from atomic Hoare triple–goal pairs to backend

conditions; see Definition 4.14

≡ setoid equivalence function

FH Floyd/Hoare-style safety judgement

id Identity atomic action; see Definition 2.10

Aid Atomic label language

204



SYMBOLS

Notation Description

J−Kid Label semantic function

−,− lo {−}{−} local action judgement

finst(−) free views instance over the given signature

− ∼ (−;−) atomic composition; see Definition 5.30

rframe relational frame

J−K semantic function

J−K∗ lifted semantic function

VConds(EPr,ERl) verification condition set over EPr and ERl

Dv (meta-syntactic) views decomposition

VExpr(Atom) set of view expressions over Atom
〈〈w〉〉 c 〈〈g〉〉 verification condition overw, c, and g

c (meta-syntactic) command relation expression

g (meta-syntactic) goal proposition expression

w (meta-syntactic) ‘weakest-precondition’ proposition expression

l[i 7→ x] List override (replacing the ith element of l by x)

LVFH local views–Hoare judgement

bag T multiset
·− truncated subtraction

VFH views–Floyd/Hoare judgement

const constant function
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