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Abstract 

Introduction:  The Gamma Knife (GK) was originally introduced as a radiotherapy 

unit for solid brain lesions.  The original skull-attached G-frame enabled submillimetre 

accuracy but allowed only single-fraction treatments, thus limiting to small lesion 

treatments.  To enable fractionated Stereotactic Radiosurgery, the GK Perfexion 

model (with eXtend) was introduced leading to new questions: 

• What is the  repositioning system accuracy? 

• What effect have positional uncertainties for the target; and for normal tissue 

(NT) and Organs at risk (OAR)? 

• How can positional uncertainties be handled? 

Material and Method:  eXtend uncertainty was investigated using trigger levels of 

the vacuum-surveilled patient positioning mouthpiece, measured for ten patients’ 

dental models mounted on a 0.05mm-accuracy computer-controlled positioner.  The 

dosimetric effect of these displacements in a single fraction was evaluated by 

calculating minimum dose, coverage and conformity-index changes for 

displacements of 0 to 4mm.The impact of positional displacements for 3 and 5 fraction 

treatments was evaluated for targets and organs-at-risk (OaR) by calculating total 

doses with simulated displacements of 0-4mm in combinations of X, Y, and Z 

directions for nine patients (in total almost 300 sumPlans).  All plans were prescribed 

to the 50% isodose.  Effects were calculated in physical dose and in biological 

effective dose (BED).   

Finally, from this a novel approach to minimize effects of displacement was proposed 

and feasibility-tested for 5-fraction plans.  Instead of applying margins to cover 

potential uncertainties,  a correction is applied in the last two fractions only after any 

observed systematic uncertainty is quantified in the first three fractions.  100 

displacement scenarios were tested, comparing for each the dose volume histogram 

(DVH) and dose profiles and the total dose with and without the correction procedure.   

Results:  Mean positional uncertainty with a clinical vacuum setting was 0.15mm (SD 

±0.05mm, range 0.05-0.29mm) and 0.33° (SD ±0.15°, 0.05°-1.0°).   

The most critical parameter in the dose distribution is minimum dose D99%.  In the 

evaluated scenarios D99% fell by 2% for a displacement of 0.5mm and 16% with 2mm 

in X or Y direction and >20% in Z direction, dependent on arrangement.   

Moving to hypofractionation increases the BED inside the target and reduces it 

outside, i.e. the dose gradient is increased at the 50% (prescription) isodose.  
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Displacement in opposing directions is predominantly random, which reduces the 

dose gradient but does not introduce an underdosage to the target for displacements 

of up to 2 mm.  At the same time the BED to OAR is increased but remains below 

single fraction dose.  

Feasibility testing the proposed correction method showed a significant improvement 

of the total BED indicating the method’s potential.  

Discussion:  Positional uncertainty is generally low, better than 0.5mm for Perfexion 

whilst the later GK version, Icon. starts treatment with minimal uncertainties following 

an initial Cone Beam CT (CBCT).  However, for both treatment units, target 

movement during treatment is possible and may be up to 2mm.  The most critical 

aspect is underdosage of the target.  Prescribing the dose to 50% reduces random 

uncertainty effects and ensures BED is at an optimal value (gradient) to avoid 

underdosage and protect OAR.   

A novel strategy is proposed and feasibility-tested to correct positional uncertainties, 

showing improved dose distribution in the scenarios tested.  However, this test was 

for static displacements only.  GK Icon corrects any positional displacement observed 

at the initial CBCT, so the correction method would only be needed when the system 

identifies further movement.  For practical clinical use, further investigation is needed. 
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Preface 

More than 120 years ago X-rays were observed by W.C. Röntgen, with 

radioactivity and gamma rays discovered almost at the same time.  X-rays and 

gamma-rays have been used in radiotherapy for cancer treatment from very 

soon after their discovery.   

 

Three main approaches developed in radiation therapy:  Brachytherapy, 

where sealed sources are placed inside or close to the tumour;  systematic 

radioisotope therapy (nuclear medicine) where radioactive substances are 

attached to a tracer that brings the radioactive isotope to the relevant 

metabolism which is predominantly the tumour; and teletherapy which means 

“from a distance” and means the source is positioned at a distance away from 

the tumour and radiation beams are directed towards it.  Gamma Knife (GK) 

is a teletherapy technique. 

 

From “source to skin distance” (SSD) to “source to axis distance” (SAD)  

With teletherapy, the patient is positioned in the radiation beams from an 

ionizing radiation source, i.e. for conventional radiotherapy, a high energy x-

ray tube, an isotope such as Cobalt 60 (Co60) that is focused in one direction, 

or the higher MegaVolt energy (MV) x-ray or electron beams of a linear 

accelerator (linac).  Early techniques used open square, or other simply 

shaped, fields.  They also had relatively low dose rates, so to minimise 

treatment time the distance of the irradiation source to the target was kept as 

short as possible, but still allowing for some adjustment movements without 

the risk of collision.  To minimize the dose to the skin, an organ highly sensitive 

to irradiation, (and to other tissues that the beam would pass though before 

the tumour) and to achieve uniform doses across the target, the dose was 

delivered with beams from different angles.  The treatment unit was set up 

relative to the patient to a fixed a source to skin distance for each field which 

made set up simple, but meant that the radiation treatment technologist (RTT) 

had to enter the room each time the source direction was changed.  This is 

time consuming and increases the risk that the patient moves between fields.  
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More modern MV linacs were designed to be isocentric, with the machine 

rotating around a single point that beams from all directions pointed to, the 

isocentre.  The distance from the source to this point on the rotation axis is 

generally 100 cm which was enough to place the isocentre at the centre of the 

target and efficiently move the gantry with the source around the target without 

moving the patient, but still focussing each beam on the target.  

 

From square fields to conformal fields  

The field shaping evolved from fixed applicators to variable square or 

rectangular fields and then conformal fields.  The first approach to shaping 

fields was to use shielding blocks.  With patient specific blocks the irradiation 

field could be formed individually for each patient to shield out areas that 

required to be spared.   

Casting blocks is time consuming and changes to the field are not easily 

possible.  So the next step was to introduce a multi-leaf collimator (MLC).  In 

an MLC, the straight field border is replaced by leaves of a certain width 

(varying with design) that can be moved individually thus aligning closely to 

the target outline.  Currently, typical standard linacs have MLCs with leaf 

widths of 0.5 cm as projected to the isocentre distance.    

 

Small field irradiation 

Irradiating small fields is difficult.  The flexible moving collimators from a linac 

have a positional tolerance on the order of 1 mm.  This is 10% of a small field 

width of 1 cm.  The standard set up accuracy of a rotating gantry-based system 

can be up to a few millimetres.  For small lesions (requiring small fields) this 

can be too large and requires specific approaches to quality assurance of the 

machine and the patient treatment delivery.  It was not possible until modern 

linacs and methods became available. 
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Gamma Knife, a short history 

In the 1960s, a Swedish neurosurgeon, Lars Lexell, and two physicists, Kurt 

Linden and Börje Larsson, developed a dedicated treatment unit to enable 

high precision treatments of brain lesions.  In 1967/68 the first GK was built.  

The principle was based on isocentric treatment, fixed collimation with several 

small (on the order of millimetres) diameter field sizes, a coordination system 

directly attached (screwed) to the skull using the ‘G-frame' to minimise set up 

error, and a couch with only three degrees of freedom on which the G-frame 

(and hence also the skull) is directly attached.  Since the couch can only be 

moved linearly in X, Y, and Z directions, the accuracy was significantly 

increased since rotation does not contribute, which can be a major source of 

uncertainty in other situations.  

While a linac had to rotate around the patient, GK used a range of fixed angles, 

defined by the multi-source positions and fixed collimation system; hence no 

moving parts and no associated uncertainties.  To achieve a steep dose 

gradient about 200 Co60 sources (201 in the models U, B, C and 4C, and 192 

in the model Perfexion) were used.   

 

In the 1980s, CT and MR imaging slowly became more commonly available 

to public health care centres.  With this 3D imaging the diseases treated with 

GK widened and the targets became more complex.  More shots (radiation 

spot deliveries, which combined make up the total treatment) were used which 

meant time consuming readjustment of the patient for each shot position.  At 

first the positioning of the patient was done manually (Model U, B and C).  With 

the model 4C an automated positioning system (APS) was introduced, which 

could enable all shots to be irradiated in one sequence if they had the same 

collimation requirements and the same plugging (blocking individual beamlets 

to protect an organ at risk (OAR).  

With increasing complexity of the target the number of shots increased.  In 

order to automate the blocking process the GK Perfexion (GKP) model was 

introduced in 2006.  To achieve this, the geometrical source arrangement was 

modified.  The sources were divided in 8 groups placed in sectors each 
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housing 24 Co60 sources.  The physical position of the sources was not on a 

hemi-sphere anymore but on a conical cylinder.  Each sector is attached to a 

motor that can move that sector’s sources to a range of collimation (from 4 to 

16 mm diameter shots) or blocked positions.  With this arrangement each 

sector can be individually chosen to be 4, 8, 16 mm or blocked in a single shot, 

generating so called “composite shots”.  This reduces the number of times the 

RTT has to enter the room for a collimation change or for adjustment of plugs 

and increases the flexibility in conformal planning.   

In addition the G-frame system meant that most GK use was for single fraction 

treatment. However, the GKP allows much easier routine fractionated 

treatments, using a re-positionable patient immobilisation system based on a 

vacuum surveilled mouthpiece (eXtend).  This enables treatment of larger 

lesions, but potentially introduces other (repositioning and patient movement) 

uncertainties.  These are the focus of the current work. 

A further evolutionary step has appeared during the course of this work, the 

Icon with a changed re-positioning system and the addition of a Cone Beam 

CT (CBCT) on-line imaging verification system to help deal with positioning 

uncertainties and changes and a reflector system that allows an indirect 

surveillance during treatment. 

 

Physical dose and biological effective dose (BED) 

While GK has generally been used to deliver single high fraction doses that 

destroyed all tumour cells in one session (multi target model), other 

radiotherapy techniques use lower doses in various fractions.  Based on 

clinical experience and analysis of patient clinical outcome, clinical trials were 

designed to find the “optimum” dose to minimize damage to individual normal 

tissues (NT) and OAR while increasing tumour cell damage and thus 

maximizing the therapeutic range.  The conclusion was that the biological 

effect is not only dependent on physical dose but also on cell type, 

fractionation, dose rate and other factors.  For in-vitro irradiation of cells, it was 

possible to demonstrate conversion factors (Linear Quadratic or LQ-model) 

and rules to quantify the biological effective dose (BED) but these do not 
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necessarily readily translate to in-vivo effects due to the metabolic system in 

place in living bodies and therefore have to be applied with caution to patients.   

Most radiotherapy is external beam using mega-voltage x-rays and mostly 

given in fractionated treatments.  So far, as above, GK has been mainly used 

for single fraction stereotactic radiosurgery applying a very high dose in one 

session.  The introduction of the Perfexion, and the possibility for more routine 

fractionated GK treatment, gave rise to the current work, firstly to consider the 

uncertainties involved in fractionated GK use and also their dosimetric impact 

for targets and OARs. 

In addition, where the prescribed dose is to the 50% isodose, as is common 

for GK treatment,  the dose inside the target is significantly higher than that 

outside.  Hypofractionation with GKP might thus benefit both, inside and 

outside the target volume, from biological effective dose effects, i.e. the high 

dose inside the target (multi target effect) and the protection of the NT in the 

low dose region (LQ region).   
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Chapter 1:           

Introduction and literature review 

 

 

 

“Chemotherapy has made substantial progress 

in the therapy of systemic cancer, 

but the pharmacological efficacy is insufficient 

in the treatment of brain metastases.” 

 

Lippitz et al 2013 [3]. 

 

 

 

 

 

 

 

Improving the treatment of brain metastasis could lead to better survival and 

Quality of Live for cancer patients. 
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1.1   Motivation 

About 20-40% of cancer patients develop brain metastasis [4].  Approximately 

11700 people in the UK have been diagnosed with a brain tumour in 2016.  

About 65% of those are <65 years old [5]. 

To treat brain tumours, fractionated whole brain radiotherapy (WBRT) is often 

applied but provides limited local tumour control and induces side effects such 

as fatigue or reduced cognitive function which leads to reduced quality of life 

(QoL [3]).  

Stereotactic radiosurgery (SRS) can reduce several of the side effects.  New 

and improved diagnostic technology like PET/CT or high resolution MR 

imaging can detect much smaller lesions thus reducing the risk of missing 

small lesions.  Due to the low dose in NT re-treatment is possible for both new 

lesions or recurrence.  The GammaKnife (GK) is an efficient and cost effective 

treatment unit dedicated to SRS of solid brain tumours, that can provide tightly 

conformal high dose deliveries, thus preserving a high QoL [3]. 

1.2   Treatment options 

1.2.1   The options for cancer treatment in general 

Treatment of brain tumours can be with chemotherapy, surgery, or radiation 

therapy.  Often a combination is used.  Steroids are often used to ease 

symptoms from a tumour such as headache.    

Chemotherapy is mostly used to treat the primary tumour, such as lung or 

breast cancer, and disseminated disease.  The effectiveness of such 

chemotherapy on a brain metastasis, for example from a small cell lung cancer 

(SCLC), is unclear.  The blood brain barrier (BBB)  makes it difficult for most 

drugs to penetrate through and reach the brain tumour.  However, Steroids 

are often used to reduce the pressure on the brain caused by cerebral oedema 

from the metastasis.  

If the tumour is accessible surgery is an option.  Surgery is often combined 

with WBRT or with stereotactic radio surgery (SRS).  Surgery is limited to a 

single metastasis or a few metastases.  Large metastases, multiple 
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metastases or metastases located next to or infiltrating an OAR cannot be 

safely removed.  In such situations, surgery can reduce the tumour load (total 

volume of all metastases) combined with whole brain radiation therapy for 

small micro lesions which are not yet visible in the CT or MR scan.  Remaining 

residual tumour, multiple solid lesions, and/or positive resection margins can 

in addition be treated with an SRS boost.  Such a combined approach 

increases the survival  [6-9]. 

1.2.2   Brain irradiation: WBRT and SRS 

Most primary tumours can spread cells to the brain.  Some of the most 

common are lung, breast, colon, kidney or melanoma tumours [5].  While the 

primary tumour could be controlled with surgery, the location of potentially 

developing brain metastases was challenging to predict.  MR was (and 

sometimes still is) not always available, and on a CT scan, a tumour is difficult 

to detect, even when using a contrast agent.  Experience from that time 

showed that, when there were three brain metastases visible, it was very likely 

that there were many more small ones not yet visible [10].  To be on the safe 

side, the whole brain was irradiated in order to target all, even the smallest, 

metastases.  This approach worked in terms of tumour control but had side 

effects in regards to QoL since the whole brain was receiving the prescribed 

dose, and also the dose was limited by such effects.  The patient suffered from 

fatigue and apathy [6, 9, 11-16].  Before the introduction of CT technology, 

brain metastases were not visible, and surgery rarely an option. WBRT was 

the primary treatment method.  When CT scanners were introduced, about 

50% of the brain metastases were judged as solitary, but later, when MR and 

became available and T sequences with gadolinium could be used, it turned 

out that less than 1/3rd of the metastases were solitary [17, 18]. With improving 

image quality, better resolution, contrast agent use, MR, more widely available 

etc., brain tumours could be detected at an earlier stage.  With few small brain 

lesions, SRS became an option.   

However, even with improved diagnostic imaging, it is not possible to detect 

all metastases in the first treatment.  If the primary tumour is controlled, no 

further metastases are seeded, but the small ones already sited in the brain 
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tissue will grow.  Therefore, if the patient has all other disease controlled and 

survives, several metastasis treatment sessions might be necessary.  With the 

development of new technologies such as MLC and intensity modulated 

radiation therapy (IMRT) on the linac, new approaches for WBRT became 

possible and were investigated.  The idea was that more localised and more 

conformal treatment, sparing critical brain structures where possible, e.g., the 

hippocampus, could control metastases but this time without the side effects.  

Today when high precision is required, and there are only a few metastases , 

SRS is chosen and when it is clear that there are many metastases and when 

a high-end linac is available, WBRT with hippocampus sparing and 

simultaneously integrated boost (SIB) may be chosen.  Or a combination with 

WBRT to a lower dose and a stereotactic boost to the larger lesions.  

 

1.2.3   Treatment of brain lesions 

1.2.3.1   Radiation therapy with GK  

Radiation therapy can be used for different goals in brain tumour treatment.  

With WBRT small micro lesions should be prevented from developing to full-

size tumours.  It should also stop the tumour growth of larger lesions.  WBRT 

is often applied when there is a primary tumour, e.g. lung or breast tumour, 

which has spread to multiple locations and more than those visible at the time 

of diagnostic imaging are expected to develop.  

Side effects of WBRT are dementia, fatigue, lack of initiative, to name just a 

few.  The approach with GK is different.  GK is not capable of WBRT but can 

only tackle small lesions.  Post-surgery RT with GK (or GK alone) aims, 

therefore to treat all visible lesions.  If the control image in a few months shows 

new lesions, a second round of treatment can be done.  This approach often 

works well.  However, if in the second control scan, more lesions are found a 

decision has to be made.  The usual option is WBRT.  The problem here is the 

total dose.  When the high dose from the SRS and the WBRT dose are added, 

the tolerance dose might be exceeded.  A compromise in the WBRT dose has 

to be chosen depending on the dose and size of the previous GK SRS 
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treatment.  However, an alternative option is to treat the new lesions with GK 

SRS [19, 20].   

With the side effects from WBRT and the restriction of GK to small lesions, 

alternative methods have been explored.  It is assumed that the side effects 

for WBRT are mainly due to the dose to the hippocampus [21-24].  WBRT was 

developed when there were only "open fields" available.  An "open field" is a 

homogeneous field of a certain size covering the whole brain for irradiation.  

Everything in the path of the beam gets the prescribed dose.  In earlier 

techniques beam modulation was only minimally possible by using a wedged 

absorber to induce a gradient in the dose.  In about the year 2000 IMRT was 

introduced, and about ten years later IMRT was widely available.  With IMRT 

it is possible to shape the dose distribution and reduce the dose to the 

hippocampus.  Trials went in this direction in the hope to reduce the side 

effects of WBRT. 

GK went in another direction (see section 1.2.).  Large lesions cannot be 

irradiated with a single fraction but with the G-frame fractionation was not a 

routine option.  Introducing a new model of GK, the Perfexion, allowed the 

redesign of the head fixation.  The frame was replaced by a vacuum surveilled 

mouthpiece (eXtend) and later (after this work had started) a mask system 

with a reflector on the patient as a motion detector.  With these systems, 

fractionation is possible.  

 

1.2.4   The treatment units capable of SRS treatment 

1.2.4.1   The principle of GammaKnife 

The history of the GammaKnife (GK) started around 1950 not with a radiation 

oncologist but with a neurosurgeon, Lars Leksell, from Stockholm, Sweden.  

Lars Leksell and a team of physicists led by Borje Larsson developed a 

treatment unit that was capable to ablate cells with ionizing irradiation [25-27].  

As a surgeon, Leksell’s aim was to destroy all tumour cells in one session 

while keeping the dose to the brain and organs at risk (OAR) as small as 

possible.  He introduced the “Gamma Knife” (Gamma=ionizing radiation and 

Knife=scalpel), a treatment unit containing 201 Co60 sources arranged hemi-



- 6 - 

spherically and focused such that their individual beams intersect at one point, 

the “isocentre”.  The objective is to position the centre of the patient’s target 

volume accurately at that isocentre.  

Co60 was chosen for this because the energy of 1.17 and 1.33 MeV is high 

enough to penetrate through skull and brain tissue and because it's potential 

for radioactive density (decays per volume) is high enough to make small 

sources that can be assumed to be point sources.  Another important 

characteristic of Co60 is it’s half-life time of 5.27 years.  With the decay of the 

sources the treatment times become longer.  This may be inconvenient and it 

may have an impact on the biological effect due to different repair mechanism  

Given that the head is smaller than the body (shoulders, pelvis, etc.), the 

radius or distance for the sources to the isocentre was designed to be smaller 

than for a linac thus increasing the dose rate and reducing treatment time.   

The system itself had the sources placed in a shielded semi-spherical housing.  

The shielding door protected the area outside.  The sources are considered 

point sources that irradiate in all directions.  Except for a small tube pointing 

towards the iso centre every other direction was blocked.  In order to define a 

specific beam diameter, a second layer of shielding is available,  the so called 

“helmet”.  This is a semi-spherical construct that contains tubes with a 

specified diameter so that the beam at the iso centre has a defined diameter.  

The sum of all beams results in a high dose with a near-spherical shape.  This 

single dose distribution is called a “shot”.   

For exact positioning at the target in the isocentre the skull of the patient is 

directly attached (screwed) to a reference frame, the G-frame, which then is 

attached to the positioning mechanism.  This then moves the patients head 

inside the helmet to be placed more right or left, up or down, further in or out 

of the helmet.  The positioning mechanism that is connected to the helmet is 

fitted with a high precision adjustment mechanism.  The principle of the GK 

model C is shown in Figure 1.1, the G-frame can be seen in Figure 1.2, the 

helmet, the collimator tubes, and the positioning mechanism can be seen in 

Figure 1.3.  Once the patient is positioned in the correct place inside the 

collimator helmet the couch with helmet and patient is moved inside the source 

housing.  After a precalculated time, when the prescribed dose has been 
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delivered, the couch is moved outside and the position for the next shot is set.  

The exact workflow id described later.   

 

Figure 1.1: The principle of a traditional GK is shown.  A big shielding block houses the Co60 

sources.  The centre of this block is semi-spherical with an opening towards the couch.  The 

helmet is mounted on the couch together with a connector for the G-frame and a positioning 

mechanism.  For the treatment, the patient is placed in the correct position within the helmet, 

and then helmet and patient are moved into the treatment position where they remain for a 

precisely defined time until the prescribed dose for this shot is delivered.  (image courtesy of 

Elekta) 

  

The connection with the G-frame, the precise (and simple) mechanics for the 

patient positioning and the static nature of the sources makes the whole 

system stable and allows for submillimetre accuracy [28-30].  For the small 

collimators, diameter of 4, 8, 12 and 18 mm are available, enabling even small 

lesions to be treated with optimal sparing of the surrounding healthy normal 

tissue (NT).  

In 2006, Elekta announced a new GK model named “Perfexion”.  This model 

differs in many ways from the previous models.  In addition to the automated 

couch, which was already installed on the model 4C it has automated source 

collimation, automated blocking and the option to treat not only with the G-

frame but also with a repositioning system that consists of a vacuum surveilled 

mouth piece and a novel position test tool.  More details about the procedure 

of a GK treatment and the differences of the new GK Perfexion (GKP) system 

are given in the sections on “workflow” and “the differences in the workflow 

treating with GKP”. 
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1.2.4.2   Adapting linacs for SRS 

Early linacs had simple jaws to irradiate square and rectangular fields.  Field 

conformity was achieved with blocks.  This was good for large volumes (larger 

than 4x4cm2) but too big for small brain lesions, especially if they were close 

to critical OARs like the brainstem or the chiasm.  For SRS, small fields were 

required.  The first systems for SRS on linacs were based on add-on systems 

using small circular collimating ‘cones’ and head frames or dedicated masks 

[31-33] e.g. Gill-Thomas-Cosman (GTC Frame) or BrainLab system [31-36].  

The BrainLab system, for example, consisted of cone collimators with various 

circular diameters that could be attached to the linac with a special adapter.  

Whenever the linac was used for stereotactic treatment the adapter was 

mounted and a Quality Assurance (QA) procedure was performed to make 

sure it was adjusted correctly.  A special mechanical system allowed the fine-

tuning of the adapter so that the collimation tubes were aiming perfectly 

towards the isocentre.  For this QA check, the Winston-Lutz-test was 

developed.  With this test, a radiographic film is irradiated to measure the 

isocentre accuracy of the gantry-, collimator-, and couch-rotation.  In all cases, 

an elongated, small irradiation field is rotated and the centre line per field 

drawn.  The intersection area indicates the isocentre accuracy.  The other part 

of the Brainlab system was the immobilization device.  Two options were 

available: A minimally invasive frame very similar to the G-frame of GK and a 

special designed mask system for fractionated treatment.  This mask has a 

reinforced part exactly under the nose and at the forehead, meant to minimize 

the head rotation.  Furthermore, on the side of the mask, there are spacers.  If 

the mask becomes loose or unbearably tight a spacer can be removed or 

added and the mask re-fitted again.  This should be with an investigation of 

why the mask has become loose.  Often it is an effect of the behaviour of 

thermal plastic but it might also be a change in patient anatomy.  With this 

dedicated system, accuracy of one to two millimetres is achievable [34, 36-

39]. 

This presented the challenge of accuracy.  SRS is treated with no margin or a 

very small margin.  The accuracy of the whole procedure on a linac should 

therefore be within 2 mm or better.  This includes imaging (resolution, 
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distortion), reproducibility of the set up between CT scanner and linac or 

frame-based SRS with a reliable docking system for the frame in the CT 

scanner and on the linac, couch position in X, Y and Z direction and couch 

rotation.  Set up, preparation and QA were very time consuming and required 

highly trained teams for mounting and adjusting the add on micro-MLC 

systems, and five, six or nine field plans were still no match for the dose 

gradient of GK.  Another option on linacs was non-conformal arc therapy.  This 

results in a steep dose gradient but loses conformity for irregularly shaped 

lesions.  Around the year 2000 dedicated micro MLCs were introduced with 

thinner, (e.g. 3 mm) leaves that allowed conformal fields [40, 41]. 

The next step in linac SRS was combining MLC and IMRT.  At first there were 

dedicated linacs with small field sizes and high-resolution MLC’s.  Today SRS 

is on “dedicated standard linacs” (high end) which have MLCs with a leaf width 

of 2.5mm in the centre and a positional accuracy of submillimeter for gantry, 

collimator and couch rotation, without the patient.  This is close to and maybe 

even reaching the accuracy of GK using a G-frame [42].  With arc technology 

(developing towards VMAT) conformal fields were replaced by conformal arcs 

thus distributing the entrance dose over a larger volume coming closer to GK 

dose distribution.  

1.2.4.3   Other types of treatment units: Tomotherapy and Cyberknife 

Linac and GK are the oldest treatment units used for SRS.  Starting from about 

the 1990s other systems have emerged, based on variations and novel 

designs of the traditional linac.  They play more a niche role but for the sake 

of completeness the most important ones are briefly described here. 

One such device is the Tomotherapy which was invented in the early 1990s 

at the University of Wisconsin–Madison by Mackie and Reckwerdt [43-45].  

Tomotherapy is built like a CT scanner, but with a short 6MV linac instead of 

a kV tube and delivering treatment dose instead of measuring the transmission 

dose for imaging.  n a way, it is equivalent to an inverse, single detector row, 

CT scanner using MV X-rays and delivering dose in a continuous helical 

manner via novel MLCs to provide flexible tailored dose distributions.  It is 
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particularly useful to treat complex target distributions or indications where a 

long field size is required.  

Another device from about 1991 is the Cyberknife.  The system was proposed 

and realized by Adler [46-48], a Stanford University Professor of neurosurgery 

and radiation oncology, and with Peter and Russell Schonberg of the 

Schonberg Research Corporation.  Here the linac tube is mounted on a robotic 

arm.  The original intention was to irradiate brain tumours, but due to its ability 

to move in all directions since it is a robotic arm, it is often used to irradiate 

moving targets in lung and liver. 

 

1.2.5   Why GK? 

Originally, the accuracy and possibility to treat small lesions provided by the 

GK was unrivalled by linacs.  Today, however, linacs can have a similar 

accuracy and have small MLC leaves that allow good conformity [49-51].  

However, a linac dedicated to stereotactic RT, is one of the high end expensive 

models.  It also requires additional costs like a bigger treatment room, much 

more expensive room shielding, expensive therapy planning system (TPS).  

Comparing plans from a linac with that of GK is difficult because the two 

treatment techniques are fundamentally different.  A linac can shape the field 

contour according to the target from every angle.  The aim is to achieve a 

homogeneous dose distribution.  This is important when large volumes are 

irradiated that contain an area with mixed tumour cells infiltrating NT.  The 

homogeneity protects the NT (therapeutic window).  On the other hand, GK 

methods prescribe the dose for most malignant tumours to around 50% 

because the cell type inside the target is considered to contain exclusively 

tumour cells.  In this situation, a higher dose inside the tumour is an advantage.  

Such comparisons show that a high-end linac is close to GK treatment in many 

cases.   

Even though the linac is not quite as accurate as GK it can deliver good quality 

SRS of the brain [52, 53]. Linac-based SRS might be more cost-effective than 

a dedicated GK machine where the number of patients for brain SRS is limited 

and the linac can be used to develop and deliver SRS to other body areas e.g. 
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lung, liver, spinal cord too.  These new techniques, Stereotactic Body 

Radiation Therapy (SBRT),  or Stereotactic Ablative Radiation Therapy 

(SABR) have been used mainly for lung, bone and liver tumours [54-60].  For 

these techniques, a highly focused beam is applied to treat a small volume 

with a very high dose.  As for SRS in the brain, accuracy is very important to 

reduce the dose to the surrounding tissue, especially since the lesion is either 

in the lung or near the spinal cord, etc.. To achieve a steep dose gradient, the 

gantry moves in an arc around the patient.  In order to spread the dose further 

such arcs are planned and delivered with various couch angles which limits 

the potential arc angles due to collision avoidance. 

GK on the other side is dedicated to brain SRS and is relatively easy to use, 

is comparatively low maintenance, and is cost-efficient, where the patient 

numbers are sufficient [61].  

 

1.3   Workflow of a GK treatment (traditional GK prior to 

Perfexion) 

The G-frame is directly attached to the skull bone. It has to remain firmly 

attached from MR scanning for planning until the end of the treatment.  

Fractionated treatment requires a minimum of six hours between fractions to 

allow for the repair of NT to take place.  A day would be better.  Thus a three 

fraction treatment would mean a planning MR in the morning, first fraction at 

noon ar afternoon, second fraction afternoon or next morning and the last 

fraction the next day or ideally the second next day.  This means the patient 

has to sleep with the frame on.  This is not only uncomfortable for the patient 

but also involves the risk of the frame slipping during the night.  A feasibility 

study by simonova et al. [62] showed fractionation with GK and G-frame is 

possible.  However, during the author’s own experience at the University 

Hospital in Zurich (Switzerland) one out of a total of three patients lost the 

frame overnight.  Therefore, even though fractionation would potentially 

reduce side effects, it is difficult to apply it on a routine basis with the G-Frame 

system.  Therefore the new GK model Perfexion and the relocatable system 

eXtend was introduced.    
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The following part shows the workflow of a treatment and explains the 

challenges and science of each step.  

 

1.3.1   Preparation and fitting the G-frame 

The original intention of GK was to treat a patient in a single fraction with a 

high, ablative dose.  The resulting workflow is described below. 

The patient arrives early in the morning in the GK centre.  The patient was 

informed about everything on the previous consultation, so he or she is 

mentally prepared for the next step.  Using local anaesthetic, the G-frame is 

attached to the skull bone (Figure 1.2).  

   

 

Figure 1.2: Top left shows the coordinate system used by GK.  The base frame (squared 

structure) is the original structure.  The main image shows how the frame is attached to the 

skull bone.  This frame base is from a newer model and which was modified to spare the 

mouth.  During the preparation of the patient for treatment, the G-frame is attached to the skull 

using screws.  Four posts are attached to the actual frame.  The length of the posts is chosen 

to allow the screws to be placed on a safe and solid place on the skull.  Screws are always 

tightened in opposing pairs. (image courtesy to Elekta)  
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With the frame firmly attached to the skull, the patient is taken to the MR 

scanner.  Here the localizer is attached to the frame base, and a planning MR 

scan is performed.  The localizer is a box with a “Z” like marking on either side 

so the exact orientation and position of the frame, and therefore of the head, 

within the GK coordinate system can be determined.   

The direct connection between frame and skull bone eliminates most sources 

of uncertainty.  Potential reasons for positional deviations could be flex in the 

posts or the frame fixation screws not properly tightened.  The overall accuracy 

of the G-frame is in the range of submillimetre [29, 30].  

 

1.3.2   Acquiring the planning MR image 

For accurate treatment, the position of the tumour and target within the GK 

coordinate system has to be identified correctly.  MR scanning is generally 

used.  The detailed functioning of an MR system is beyond the scope of this 

work.  However, one characteristic of an MR system is essential to understand: 

distortion of the acquired image! For an MR scan, an object, here a patient, is 

placed into a magnetic field.  Any object brought into a magnetic field disturbs 

and distorts the field, such that, the resulting image does not directly reflect 

the geometry of the actual image.  The distortion depends on the parameter 

setting of the MR unit (T1-, T2-weighted, relaxation time, etc.) and on the type 

of object entered in the field.  For diagnostic radiology, a distortion of a few 

millimetre is generally not a problem.  However for radiation therapy treatment 

purposes geometric accuracy is critical.  For GK treatment, displacing a shot 

for a small target by this amount could mean to miss a significant part of it.  If 

the materials and shapes of the object that is placed into the magnetic field 

are known, a correction can be applied for the reconstruction algorithm.  Since 

the head is close to spherical, this is taken into account.  In addition to that, 

scanning parameters can be selected that result in a more robust image.  So 

it is important to optimize the MR scan for minimal distortion.  Often there are 

dedicated sequences that are also checked in regular QA procedures.   

 

1.3.3   Planning with GKP 

Now, with the planning MR image available, the planning can take place based 

on this.  The frame must stay attached to the patient during this time.  In the 
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meantime, a dosimetrist imports the image data to the TPS and defines the 

localizer in order to define coordinate system.  This is by identifying the dots 

from the localizer in the transversal slices.  The TPS expects these in a clearly 

defined relationship to each other, which provides an internal QA.  If the dots 

are within a predefined tolerance of the expected position, the planning can 

proceed.  If the discrepancy is too big, the data set may not be accepted for 

planning.  One reason for this may be that the patient’s head differs too much 

from the assumed model used to correct the distortion of the magnetic field.  

In this situation, a CT scan can be performed, where contrast and image 

quality are less, but almost no distortion is present.  In this situation, the CT 

scan and MR scan are matched on the TPS with the best matching accuracy 

in the target region and the CT scan is used for the positional definition of the 

shot placements.  The clinician then uses the MR scan to delineate the target 

and possible OARs near the target.   

1.3.3.1   Prescribe to an isodose level  

In order to deliver the dose, several shots are placed inside the target where 

their combination is planned to covered the whole target volume with the 

prescribed dose.  Due to the overlap of the shots, the dose inside the target is 

inhomogeneous.  Since the target consists of tumour cells only, this is an 

advantage as long as all cells receive a certain minimum dose.  The dose is 

therefore usually prescribed to ‘about’ the 50% isodose, where “about” is used 

for two reasons.  Firstly, in order to treat the tumour a minimum dose has to 

be achieved.  To allow a tight fit of the isodose to the target, a small part of it 

may be below that prescribed dose.  This also covers uncertainties due to the 

finite pixel size and dose calculation resolution grid.  Covering every voxel in 

the target would result in a technical margin of half a voxel size since the target 

line just passes through the voxel and does not include the box-shaped voxel 

meaning NT or OAR is irradiated.  The amount of under-dosage allowed is 

smaller, e.g. 1%, for a malignant tumour and larger, about 2-5 %, for a benign 

tumour.  A critical aspect is the location of the under dosage.  If there is a small 

“tail” in the tumour growth that has been identified as tumour cells, the clinician 

should make sure that it is not that part that is underdosed.  The under dosage 

should smooth out the surface and should not be in a critical part of the target.  

The second reason relates to nearby OAR.  If a tumour is close to or even 

invading an OAR a decision has to be made whether the coverage of the target 

has to be compromised near the OAR to keep the dose to the OAR below a 

critical level or if the OAR (or an area of it) may be sacrificed.  This might be 
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possible, for example, for an essential but not life-critical  organ such as the 

optic nerve.  Such a decision has to be discussed with the patient and is 

usually only made if the function is already very poor or non-existent. 

Planning for GK treatment involves shot placement.  Prescribing to the 50% 

means that for every change in the plan, i.e. adding a new shot or moving a 

shot, the dose maximum has to be re-calculated and then the new 50% 

defined.  Therefore, even small changes can result in significant changes in 

shot times and therfore in isodose in different places.  For that reason, if a plan 

is almost perfect, but the coverage is too low (or for benign tumours too high), 

the prescribed isodose may be adjusted.  Lowering or increasing the 

prescribed isodose increases or reduces the prescribed dose volume 

respectively,  

There are other options for prescribing the dose.  A variation could be used for 

very small or near perfect spherical targets up to 20 mm in diameter.  By 

changing the prescribed isodose level the diameter of the shot can be varied 

and adjusted to fit the target.  The other usual variation is for the treatment of 

the trigeminal nerve.  Since the aim for trigeminal treatment is not to stop 

tumour growth but to block the transmission of facial sensation and pain, no 

volume needs to be treated, only a single, small point in the centre of the nerve.  

So for the trigeminal the prescribed dose is to the 100%, the dose maximum.   

1.3.3.2   Protecting OAR 

To achieve a steep dose gradient there are 201 beams pointing from all 

directions towards the isocentre and the target.  This steep dose gradient 

should protect OAR’s.  However, in some situations the beam might pass 

through the eye (aging, cataract) or the target is just very close to the optic 

nerve or the BS.  In such a situation it is possible to block these individual 

beams by replacing the collimator insert with a plug that stops the beam in that 

direction.  

1.3.3.3   Plan evaluation with quality indices PCI and GI 

Often several plans for the same target are created.  Due to the steep dose 

gradient, it is difficult to decide based on the dose distribution which plan is the 

best.   

In order to evaluate different plans for the same target objective standard 

parameters are used.  To put a number to the plan, quality indices have been 



- 16 - 

introduced.  For GK planning, the Paddick Conformity Index (PCI) and 

Gradient Index (GI) are most commonly used [63-66].  The PCI is an indication 

of how well the dose is covering the target without excessively spilling over to 

NT.  When Paddick suggested the new “proposed” conformity index there 

were two other indices used.  One was the PITV ratio from Shaw et al. (1993) 

[67].  For this, the prescribed isodose volume (PIV) is divided by the target 

volume (TV).  The problem with this index is that it results in a value of “one” 

(perfect plan) whenever the PIV is equal to the TV, regardless of the actual 

location of the dose.  In theory, the PITV could have a value of one,  indicating 

a perfect plan, even when the dose distribution completely misses the target.  

It would not cover any potential underdosage of the target.  In 1998 Knöös et 

al. [68] proposed another conformity index dividing the target volume receiving 

the prescribed isodose (TV∩PIV) by the target volume.  This method covers 

any underdosage of the target but fails to indicate excessive dose outside the 

TV.   

So in 2000, Paddick et al. [63] proposed another conformity index that covers 

both excessive dose outside the target in NT and underdosage of the target.  

Firstly, excessive dose to NT is picked up by calculating the ratio of the TV 

covered by the prescribed isodose divided by the PIV.  This factor is always 

smaller or equal to one.  Then to indicate potential underdosage of the TV, the 

ratio between TV covered by the prescribed isodose to TV (i.e. that should 

receive the prescribed isodose) is calculated.  Again, this value is always less 

or equal to one.  Multiplying the two ratios gives the Paddick Conformity Index 

(PCI).  A small PCI indicates either an underdosage of the target or a large 

volume of NT irradiated with the prescribed dose, but cannot distinguish 

between the two.  This is important because for a malignant tumour, 

underdosage is more problematic than irradiating some extra volume.  Benign 

targets, on the other hand, are treated to lower doses not risking severe 

damage to the NT.  In addition to PCI, the minimum dose and coverage are 

usually also reported. 

PCI gives information about the prescribed dose.  It says nothing about the 

low dose outside the TV.  In theory, the whole brain could be irradiated with a 

dose of only 1% below the prescribed dose, and the PCI would not indicate 

that.  In 2006 Paddick and Lippitz [69] suggested a “gradient index (GI)” that 
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would indicate the steepness of the dose gradient in order to protect the 

normal tissue outside the target.  The only aim is to reduce the dose to NT 

outside the TV as quickly as possible.  For this reason, the GI is the ratio 

between the volume of half the prescribed isodose and the volume of the 

prescribed isodose. 

It may be noted that all these conformity indices are unitless numbers, being 

ratios of volumes. 

 

These indices are useful to compare plans for the same patient but have little 

or for some even inverse significance in indicating clinical outcome [70-72].  

Clinically, small tumours have a better prognosis than large tumours.  In order 

to evaluate a plan, a higher PCI and a higher GI indicate better plans.  This is 

true if several plans for the same target are evaluated and compared against 

each other, but the achievable values depend on the target size.  For a large 

volume, it is much easier to achieve a PCI of 0.95 than for a small one.  This 

is because displacements are in one dimension and on the order of a 

millimetre, whereas a volume is amplified by the power of three.  For example, 

if a target with 10 mm diameter and one with 30 mm both have a plan that has 

about 1mm extra tissue irradiated to ensure coverage, then for the small 

volume, this is a volume of 173 mm3 NT or OAR irradiated and for the large 

volume an additional 1461 mm3 NT or OAR irradiated.  The PCI is 0.75 for the 

small volume and 0.91, much better, for the large volume.  This is because the 

coverage should be within a certain distance in millimetres (power of one), but 

the PCI is calculated from volumes (power of 3).  For that reason, PCI should 

only be used to compare various plans for the same target, and achievable 

goals should be adjusted to tumour size.   

1.3.3.4   Prescribed dose 

The dose prescribed depends on various parameters.  Most important is the 

target cell type.  

• Malignant tumours are preferably irradiated with a minimum of 20 

Gy[73, 74].  The aim is to stop cell proliferation and destroy the tumour 

cells.  Malign tumours grow rapidly and destroy surrounding tissue in a 
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short time.  The primary may also seed and create new tumours 

elsewhere.  For that reason, SRS is often combined with WBRT [7], but 

an alternative can be repeated SRS. 

• Benign tumours grow slowly and do not seed.  The aim is to stop tumour 

growth for the long term.  This can be done with 12-16 Gy.  The lower 

dose protects NT.  Examples are meningioma [75-80] or Acoustic 

Neuroma [81-83]. 

 

There are also other indications for GK treatment, for which different 

prescribed doses are chosen.  These are listed briefly below, but are not 

discussed in detail: 

• Trigeminal nerve: 80Gy (70-90Gy depending on institute guidelines [84, 

85]) placed over the skull bone and close to the BS so that the BS 

receives less than 20% - 50%, depending on institute [86]. Others limit 

it to a specific dose like “no more than 20 mm3 receive 15Gy” or “no 

more than 10 mm3 receives 12Gy and only 1 mm3 receives 15Gy” [87].  

(Note: This range in the literature concerning BS tolerances may 

highlight an important point.  One reason for the range may be a factor 

that is not published.  In this case it could be a different policy in 

contouring the BS or different parameter of the MR imaging or 

window/level setting during the contouring.  It is advisable to ask an 

author about local policy that might influence such variation before 

applying a higher tolerance level.) 

• Arteriovenous malformation (AVM) is a disorder in blood vessels in the 

brain.  Untreated the bulk of vessels can burst, and the patient can die.  

The prescribed dose selected is 25Gy for small AVM’s <2.5 cm but the 

dose is reduced to 16 to 20 Gy, depending on the target size [88-90].  

A special technique is sometimes used for large volumes, treating in 

two or three stages.  This means only half the volume is treated during 

a session.  After a 3 to 6 month gap, the second part is treated.  This is 

to reduce the dose to the brain or OAR and allowing recovery of the NT. 

• A newer treatment area is for psychiatric conditions, such as obsessive-

compulsive disorder.  Patients who are resistant to pharmacological 

and psychiatric treatments can be treated with a radiosurgical 

capsulotomy where two 4-mm isocentre targets at the midputaminal 
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point of the anterior limb of the capsule with a maximum dose of 120Gy 

[91]. This is not part of this work and is listed only for the sake of 

completeness and a potential future field of treatment.  

 

Another factor taken into account in prescribed dose considerations is  toxicity.  

This might give dose limitations and will depend on the size of the lesion and 

therefore the volume and dose that NT and OAR are receiving.  Large lesions 

touch on more NT than small lesions.  In addition the dose gradient is reduced 

with increasing target size.  Therefore larger targets are often prescribed with 

lower doses than small targets.   

 

1.3.4   Treatment of the patient 

Once the plan is accepted and approved the patient is taken for treatment.  

The patient is positioned on the GK couch where the first collimator is 

mounted, and the frame connected to the positioning system.  Until GK model 

C the positioning of every shot was set manually with a ruler for each axis.  

When the position for the first shot is set, the couch with helmet and patient 

moves inside the associated planned time.  When another shot size is required 

the helmet has to be changed and the patient positioned accordingly.  This is 

repeated until all shots are irradiated.  The model 4C has a robotic couch.  So 

all shots with a specific collimator can be irradiated in one sequence.  The 

patient is only retrieved from the GK when the collimator has to be changed.  

For OAR protection the relevant collimator tubes had to be replaced by plugs. 
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Figure 1.3: Patient prepared in a GK with a helmet system.  Each shot position was manually 

adjusted until with the GK model 4C the robotic couch was added.  The red arrow shows the 

ruler used for exact positioning.  The yellow arrow points to the collimation helmet.  Before 

the Perfexion model, the helmet had to be changed when the shot diameter was changed.  

The light green arrow points to a collimation insert.  For OAR protection the Insert could be 

manually replaced by a plug that would block the beam for the respective Co60 source. 

 

1.4   The GK modifications that allow automation and 

fractionation 

The high dose required for single fraction treatment limits the treatable lesions 

in size and proximity to organs at risk (OAR).  Although fractionated treatment 

with GammaKnife was tested early [62], to consider overcoming those 

limitations, the skull attached frame makes it difficult.  The new GK model 

Perfexion (GKP) had a larger head space (Figure 1.5, top right) that allowed 

to introduce a new, non-invasive fixation system, the eXtend.  The key 

component was a vacuum assisted and surveilled mouthpiece.  The function 

of the mouthpiece can be seen in Figure 1.4 bottom and in Figure 1.5.  This 

non-invasive positioning system allowed repositioning but introduced new 

uncertainties. 
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Figure 1.4: Top left: G-Frame for Gamma Knife treatment.  A localiation frame is directly 

screwed to the patients’ skull.  Top right: the Perfection model was completely redesigned.  

Among other major improvements the headspace was increased (right).  Bottom: For eXtend, 

the key fixation point was moved from the four screws at the skull to the vacuum surveilled 

mouthpiece.  (Images courtesy to Elekta) 

 

Figure 1.5 shows the new model GammaKnife Perfexion with a modified 

arrangement of 192 motor driven sources.  This arrangement produces a 

steep dose gradient leading to the best possible conformity [92].  In the 

Perfexion model, the Co60 sources are no longer placed in a semi-spherical 

arrangement with equal distances to the isocentre but on a conical collimator 

block made of tungsten.  The collimator is rigidly attached to the shielding 

block and contains four possible source positions: 16 mm, 4 mm, blocked, and 

8 mm (Figure 1.5).  This arrangement of the collimators was chosen to 

minimise unwanted irradiation.  The blocked position is between the smaller 

two collimators so the source can be moved directly to the 4mm or to the 8 
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mm collimator.  When the 16 mm collimator is chosen, the source has to travel 

over the 4 mm collimator.  This passing over the 4 mm collimator adds a very 

small dose to the intended dose of the 16 mm shot.  The so called “transit 

dose” was measured to be 0.035 Gy by Bhatnagar et al 2009 [93].  The linear 

design of the collimator allows to move the sources automatically with eight 

motors each moving 24 sources in a sector.   

     

 

Figure 1.5: The GK Perfexion, that was introduced in 2006, had a fundamental change in 

design of the source housing and the collimator system.  The tungsten collimator array is fixed 

and directly attached to the shielding block that houses the Co60 sources.  Rather than being 

spherically arranged, the geometry of the Perfexion is conical.  This allows linear movement 

of the sources  between collimators.  

 

With the collimator moved closer to the Co60 housing and shielding the new 

GK model Perfexion (GKP) had a larger headspace (Figure 1.4, top right) that 

allowed introducing a new, non-invasive fixation system, the eXtend.  The key 

component was a vacuum assisted and surveilled mouthpiece.  The function 

of the mouthpiece and the attachment to the frame can be seen in Figure 1.6.  

This non-invasive positioning system allowed repositioning. 
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1.5   Workflow for fractionated SRS with Perfexion and 

eXtend 

For fractionated SRS the patient has to  

attend several times for treatment.  The different steps are: 

• moulding the mouth piece 

• planning MRI scan 

• outline the target and create the plan 

• first treatment fraction 

• further treatment fractions 

 

1.5.1   Moulding the mouthpiece 

The patient arrives in the centre to prepare the mouthpiece.  This can be done 

in any examination room.  The patient sits in a chair (not in RT position) while 

a dentist or trained staff member prepares the mould.  The procedure is similar 

to that a dentist uses when making a mould.  The suitable U-shaped form 

(small, middle, or large) is selected and a two-component-paste mixed.  The 

mixed paste is filled into the U-form and the spacer adjusted.  The spacer is a 

small plastic disk with a pin in the centre.  The pin is fitted through a hole in 

the form so that during treatment, the vacuum tube can be connected.  

Important is that the disc is completely enclosed in the mould paste so that a 

sealed cavity is formed once the mould is hardened and the spacer removed.    

1.5.2   Finding the position for the mouthpiece and the frame 

The same day or another, the planning MR is done.  For this, the mould is 

loosely attached to the front piece of the frame.  The patient is then positioned 

on the couch with the head on a patient specific cushion and the mould 

attached to the upper palate to fit tight.  The front piece of the frame is then fit 

to the frame base and clamped tight.  For the set-up, the mouthpiece can be 

moved slightly to fit tight in the mouth of the patient while the patient is in a 

comfortable position.  When this is the case, the tightening screws are 

tightened and from then on never loosened until the treatment of the last 

fraction is finished.  Figure 1.6 shows the frame and the mouthpiece in 

preparation and for treatment. 
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Figure 1.6: The frame with the front piece to which the mouthpiece is attached is shown.  Left 

the loose frame before set up, Right: the frame with tightened screws which remain tightened 

and clamped down until the last fraction is completed. 

 

 

1.5.3   Planning MR and reference values 

The GKP, at the time of this work, had no CBCT system available for positional 

verification prior to the treatment session.  An indirect positional verification 

was therefore introduced with the Reposition Check Tool (RCT) The planning 

MR is then taken in this position.  The sequence after frame fitting is: 

 

• Sit up and rest again 

• Then take reference measurements and verify after another sit up. 

• Then MR scan 

• Planning, to calculate the composite shots required for delivery.  

• Treatment, including verification 

• Trigger level of vacuum is considered and what happens when the 
vacuum is lost (and treatment pauses) 
 

 

The RCT consists of a reference box and a probe that measures the distance 

between various reference points to the skull.  The box is see-through and 

contains several holes on the top, on the left and right side and the front.  The 
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box is attached to the frame in the same way as the localizer, thus allowing to 

verify the patient’s head position in relation to the mouthpiece and frame 

(Figure 1.7 head and localizer).  The holes in the box guide the probe in a 

defined direction towards the patients head.  The probe has a spring-loaded 

top which is pushed back when it hits a surface.  The digital display indicates 

the distance between the box and the head (Figure 1.8).  On each side, at 

least one measurement should be made, but several and taking the average 

is recommended.  From these measurements, a 3D displacement vector is 

calculated.  (Formula 1.1).  

 

𝑉 = √(
𝑋̅𝑟𝑖𝑔𝑡ℎ+𝑋̅𝑙𝑒𝑓𝑡

2
)
2

+ 𝑌̅2 + 𝑍̅2    Formula 1.1 

 

With  

𝑉 total displacement 

𝑋̅𝑟𝑖𝑔𝑡ℎ  average of the displacements measured on the right side 

𝑋̅𝑙𝑒𝑓𝑡  average of the displacements measured on the left side 

𝑌̅   average of the displacements measured on top side 

𝑍̅   average of the displacements measured on frontal side 

 

 

Figure 1.7: Left:  the eXtend system with the RTC box is shown.  The distance from reference 

points (holes with identifications) are measured.  A reference measurement is taken during 

the Planning MR session.  Before and after each treatment the values are re-measured 

andcompared with the reference values.  When the differences are within a specified limit the 

treatment can proceed.  Right: the frame with the localizer ready for the planning MR. (images 

are from Rushin et al. 2009, [94]) 
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Figure 1.7 from Ruschin et al. [94] shows on the left side the repositioning tool 

consisting of the box with the reference holes and the spring-loaded gauge 

(top of the frame box) and on the right side the localizer with the Z shaped 

reference structure to define the coordinate system.  Checking that the head 

is in the same place for treatment, each fraction ensures the correct position 

in relation to the MR planning scan.  Because the RTC box is attached to the 

frame box it is independent from the mouthpiece attached to the front piece.  

If the screws would loosen and the patient position would change this would 

be detected. 

  

 

Figure 1.8: The gauge with the designed measurement start-position and 

a part which is slightly thicker than the measurement probe.  This thicker 

part is used to guide the probe into the defined direction without swiveling.  

There is a long and a short probe since they have a limited measurement 

range.  The indication is the difference to the calibrated zero position.  The 

calibration takes place in the QA phantom (not imaged). (image from Sayer 

et al 2011, [95]) 
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1.5.4   Setting the vacuum 

Before the patient can undergo the MR scan or the treatment, the vacuum 

level has to be set.  The value that can be set is in relation to the normal air 

pressure.  So a set value of 30% is 30% reduced air pressure inside the cavity.  

The value can be chosen and set by the user.  The recommendation is to set 

the value between 30% and 35%.  A value too low would not support the 

patient, and a value too high would be uncomfortable.  

1.5.5   Planning with composite shots 

Once the planning MR is imported to GammaPlan (GP) the clinician can 

outline the target and the planning can be started.  The new design of the GKP 

has not only a motorised collimator system, but the sectors can have different 

collimator diameters at the same time.  This enables forming the individual 

shots and techniques that can be used to better protect OAR.  Some examples 

for shot forming are given in Figure 1.9 from Lindquist and Paddick’s “The 

Leksell Gamma Knife Perfexion and Comparisons with its Predecessors” in 

2007  [96]. 
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Figure 1.9: Some examples for shot forming are presented.  Example A, with all but two 

opposing shots blocked, may be used to achieve an extremely steep dose gradient on the 

sides.  This goes at the expenses of loss of dose gradient in the other direction and an 

increased treatment time because fewer sources are used for the dose delivery. ( Image from 

Lindquist and Paddick, 2007, [96])  

 

1.5.6   Treatment with vacuum surveillance 

Once the plan is ready and approved, an appointment with the patient can be 

made for the treatment.   

On the treatment day the patient is prepared, the mouthpiece with the front 

piece of the frame is fitted to the upper palate, the patient is carefully 

positioned on the couch and helped to find the optimum position in their 

custom made head rest. When the patient is comfortable in the right position 

the front piece is clamped down tightly to the frame.  The vacuum is set to the 

value used for the MR scan and the RCT box is attached to the frame.  With 

the probe the same reference positions are measured as were for the MR scan 

and the values entered in the Gamma Knife system.  The GK system 

calculates then from the differences a total displacement vector (magnitude 

but without direction).  If this value is larger than 1 mm the patient is taken out 

of the frame and then re-positioned, and the measurement repeated.  When 
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the displacement vector is below 1 mm the treatment can start.  

 

The vacuum functions as support for the patient and as surveillance to detect 

patient movement.  If the patient moves, an air leak will appear and the vacuum 

level drops.  When a leak is detected a flag is raised and the treatment paused.  

The definition of a leak that initiates a pause in the treatment is a drop of the 

vacuum by 10% of the initial set level.  If this is the case, the patient is removed 

from the frame, and repositioned.  As soon as the new measurements are 

better than 1 mm the treatment can continue where it had stopped. 

 

1.6   What to consider for fractionation 

1.6.1   Introducing fractionation introduces uncertainties: 

Accuracy and how to measure it  

High positional accuracy is required to place the gradient exactly on the border 

between target and NT.  Before this, with the previous GK models which were 

intended to work like a knife destroying the tumour in a single session, this is 

achieved by a direct, rigid, screwed connection between the skull bone 

(containing the target) and the G-frame (Figure 1.4, top left).  The G-frame is 

then connected to the Gamma Knife coordinate system.  This direct 

connection between imaging and treatment unit coordinate system is unique 

to Gamma Knife and eliminates the positioning error present in other treatment 

units such as Linac or CyberKnife.  The system achieves submillimetre 

accuracy [29].   

 

However, for the re-positioning system on the Perfexion, additional potential 

positional uncertainties in the set up can be introduced.  These may be due to 

displacement or shift in X, Y, or Z direction.  The X and Y direction would be a 

lateral shift, respectively in ventrodorsal direction within the mouthpiece.  In 

these two directions, the mouthpiece should give excellent support.  The third 

direction is the Z direction craniocaudal.  The Z-direction is the direction in 

which the mouthpiece is attached, and certainly a direction the patient can 
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move.  In addition to a linear displacement inside the planes, rotation is also a 

possibility.   

Set-up uncertainties of eXtend and the reliability of the RCT have been 

evaluated by Ruschin et al (2009) [94].  They mounted the system to an Elekta 

Linac equipped with a CBCT.  In linac therapy, a planning CT is performed to 

acquire the anatomy and to do the planning.  The advantages of a CT scan 

over MR images is that the anatomy is not distorted and the Hounsfield units 

(HU), a measure of linear attenuation of the photon beam for radiodensities in 

relation to water, can be used for accurate dose calculation.  A CBCT works 

with a larger field and has more scatter, which reduces the image quality.  

Furthermore, the construction is more sensitive to flex than a CT scanner [97].  

However, a CBCT is small and can be mounted on the linac and therefore be 

calibrated to the same isocentre as the linac.  CBCT for positional verification 

is standard in linac radiotherapy.  At the time Ruschin’s work was carried out,  

GK did not have a CBCT, so this linac-based method was an excellent way to 

verify the RCT.  With this setting, Ruschin et al. treated intracranial tumours 

with a conventional fractionation scheme.  Position accuracy was verified with 

a CBCT scan.  The CBCT deviation was compared to the 3D deviation vector 

as measured with the RCT from eXtend.  The 3D vector as displayed on 

Gamma Knife is the distance from the original planning position to the actual 

treatment position but does not include the direction.  Considering only RCT 

deviations of ≤1.0mm (suggested action level by Elekta) the mean deviation 

measured with the CBCT was 1.3mm with the largest contribution in superior-

inferior direction.  The largest mean rotation was 0.6° in pitch.  The mean intra-

fraction motion (pre and post treatment) was <0.4mm.  However, this was the 

difference between pre and post treatment.  In one case the post treatment 3D 

vector was 3.9mm.  They assumed that “ … the patient attempted to turn his 

or her head when the therapist entered the room … “ [94].  This is a likely 

explanation for the large displacement.  However, it leaves the question open: 

at which point would the vacuum surveillance system have paused the 

treatment?  The conclusion of this study was that the system provides 

excellent immobilisation and the RCT is a reasonable surrogate for bony 

structure.  However, this paper does not address the question of what level of 

intra-fraction movement the treatment would be paused at.  
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In another study Ma et al (2013) [92] evaluated the full chain (or end to end) 

accuracy simulating the whole treatment process starting from imaging, 

including image registration, planning, mounting the mouthpiece in treatment 

position and irradiation, thus including all potential errors and deviations in a 

treatment routine except for the patient introduced errors such as inducing 

torsion or flex in the mouthpiece adaptor or not fitting perfectly to the 

mouthpiece.  For this measurement, the Winston–Lutz-test [98] was adapted 

for use with GKP.  As a reference point, metal wire was put through the hole 

for the vacuum surveillance connection (Figure 1.10).  The tip of the wire was 

aligned with the film which was placed in the mouthpiece.  A CT scan with 

1.5mm slice thickness was made for planning.  A single shot was planned at 

the centre of the wire tip.  The plan was transferred to the treatment unit and 

the dose delivered.  The film was then evaluated with an in-house programme 

(Error! Reference source not found.).  The method allows a full chain test u

sing CT imaging.  They found a 3D mean deviation of 0.69mm (SD 0.73mm).  

However, their experimental design is limited to measure the centre point of 

the mouthpiece only; the origin of a potential rotation.  Ma et al [92] mention 

that the only way to measure rotation is with on-board-imaging at the GKP 

which was not then available. 
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Figure 1.10: Arrangement of film on a 

patient mouthpiece with the wire as 

marker as reference point to verify the 

irradiation position. (image from 

publication Ma et al [92]) 

 

Figure 1.11: Isodoses on scanned film for 

evaluation of reference point. (image from 

publication Ma et al [92]) 

 

The difficulty to measure set-up uncertainty independently may be shown from 

the study by Sayer et al (2010) [95].  The group reported on handling of 

fractionated radiotherapy (RT) with eXtend.  Their only criteria regarding 

accuracy was the 3D vector measured by the RCT.  No attempt was made to 

evaluate the sensitivity or correctness of those measurements.  

To  date, (to the best of the author’s knowledge) no publication has reported 

on the trigger level of the vacuum surveillance system which defines the intra-

fraction accuracy and to a significant part the set up accuracy.  Ruschin et al 

(2010) [99] measured initial set up uncertainties on a linac where rotation in 

pitch can also be induced by table sag,  Ma et al (2013) [92] measured the 

whole chain accuracy including imaging and other uncertainties which are not 

eXtend specific and Sayer et al (2010) [95] and the author’s own 

measurements [100] showed the procedure can be performed within RCT 

tolerance but no independent verification of the positioning was done because 

no direct set up verification is available.  
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Research question 1: 

What is the intra-fraction tolerance from the vacuum surveillance system 

of eXtend?  Special consideration is given to the question at which level 

the treatment is paused by the vacuum surveillance system. 

 

 

1.6.2   What effect does positional uncertainty have on the dose 

distribution of a GK plan prescribed to the 50% isodose? 

So far, the philosophy of GK treatment was always that the uncertainty in 

positioning with the skull attached G-frame is so small (submillimetre) that it 

can be neglected [27, 30].  And the little uncertainty remaining was a simple 

displacement or shift when treated as a single fraction.  Now GK treatment 

may be fractionated.  The uncertainty will be bigger and with several fractions 

the effect of a dose shift is only one option in the case that all fractions are 

displaced in the same direction.  With displacement in different directions for 

different fractions the total dose will look different.  Effects of displacement 

have been intensively studied in conventional conformal (fractionated external 

beam) radiation therapy [101-104].   

The result was that systematic effects should be avoided with QA.  This means 

for example that for a patient treated on the same linac every day and if the 

linac has a displacement of the couch of 2mm to the right (hanging couch top, 

miscalibration …) then the patient will receive the dose 2mm displaced.  The 

treatment will be every day with the same displacement in the same direction 

until the couch is re-calibrated.  Such a systematic displacement can be 

avoided if the couch is checked more frequently, and re-calibration is 

performed at a smaller threshold level.  Other inter-fraction uncertainties are 

anatomical, e.g. bladder filling, rectum filling or change in weight or tumour 

size.  Bladder and rectum filling can be influenced by a strict diet and treatment 

schedule (treatment at the same time every day).  

However, for a brain treatment diet and treatment schedule time are less 

important.  More relevant could be some behavioural habits of the patient.  For 
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example, if the patient is used to watch the RTT when they leave the room or 

if the patient relaxes a small systematic movement may occur.  Such habits 

may lead to head rotation in the same direction each treatment.  Such 

possibilities are minimized with the immobilization aid but cannot be eliminated 

completely.   

For random effects, in contrast, the dose is not displaced but drops near the 

edges [103, 105].  Since conventional conformal radiation treatment targets a 

mixed cell target volume the aim is to achieve a homogeneous dose 

distribution at a dose level in the therapeutic window (high enough to destroy 

tumour cells but low enough to spare the NT) any displacement leads to an 

underdose in the target area that is missed out.  This missing dose cannot be 

compensated for in the next treatment because the area gets just the “exact” 

dose with a dose maximum of ideally less than 107% [106, 107].  Any random 

displacement results therefore in a sum of “prescribed dose” and “less than 

the prescribed dose” and is therefore in total always lower than the prescribed 

dose.  Because this displacement is random, it is potentially smeared in all 

directions.  Whilst for a systematic displacement the dose is correct on one 

side but too low on the other side,  for a random displacement it drops on all 

sides (but not as low as for systematic displacement because sometimes the 

dose is randomly correct). 

The situation for GK is completely different.  The prescribed dose is usually 

around 50%.  This means the dose gradient at the target circumference is 

steeper and a displacement may have a dose drop but also a significant dose 

increase.  Another difference is the fraction size.  While conventional  external 

beam fractionation uses a high number of fractions in the range of 20 to over 

40, of conventionally around 2 Gy each, GK is intended to use schemes with 

three, five or seven fractions and with higher hypo-fractionated dose.  For a 

large number of fractions, the dose distribution is averaged  out.  However, for 

small numbers of fractions some specific scenarios are more likely.  This could 

be “all three or five fractions are displaced in the same direction”, “in a similar 

direction” or “ with some fractions incompletely different/opposing directions to 

others”.  The potential for averaging out is much less.  Due to these differences 
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the effect of displacement uncertainties needs to be evaluated specifically for 

the hypofractionation situations used in GK treatments. 

In order to evaluate the changes in the total dose, standard parameters are 

used in treatment planning to report the quality of the plans.  There are in 

general two systems.  One is based on ICRU (International Commission on 

Radiation Units) recommendations [106-109] for treatment techniques aiming 

for a homogeneous dose distribution, such as in most external beam  

radiotherapy, and  it requires reporting of  target coverage, hotspot and 

underdosed volume.  The other, used for and based on  GK irradiations, where 

the prescribed dose is usually around the 50% isodose, reports the quality of 

the plan as given by the Paddick Conformity Index (PCI) and Gradient Index 

(GI) or similar parameters [63-66].   

 

These indices are useful to compare plans for the same patient but have little 

or even inverse significance in indicating clinical outcome [70-72].  However, 

PCI and GI are most commonly used in GK SRS.  Plan evaluation produced 

in this project will therefore be reported using both types of reporting,  ICRU 

style and SRS standards.  An international working group has developed a  

standardization for SRS reporting [110, 111] taking both philosophies into 

consideration and considering clinical relevance.   

 

Research question 2: 

what effect does positional uncertainty for GK have in a three or five 

fraction setting? 

 

 

1.6.3   Relation between fractionation size, dose reporting and 

biological effect.  

The biological effect of a delivered physical dose depends on factors like 

tissue type, total dose, dose per fraction and others.  For example a total 

dose of 30Gy delivered in ten fractions to the whole brain is considered to be 
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safe and often used as a standard treatment [112] whereas Korytko et al. 

2006 [113] found a significant increase in necrotic tissue for a volume of 

10cm3, irradiated with 12Gy in a single fraction 

The reason for this difference is the cell mechanisms to repair some damage 

when embedded in a living organism.  When the dose is above a certain level, 

the damage is too complex to repair. This is the case with a single high dose.  

The actual level of “too high” depends on the cell type, the function this cell 

fulfils in the body, and whether it is possible that other cells take over the 

function or not.  One criterion for the tolerance dose is the cell dividing time.  

As a rule of thumb, the more frequently a cell goes into mitosis, the more 

sensitive to short term damage.  The tissues in this category include, for 

example, mucosa or bowel wall.  Tissue that undergoes mitosis rarely, such 

as the brain is far less sensitive.  However, another aspect in radiation damage 

is the effect damaged tissue has.  If a part of the lung is damaged, other parts 

can take over the function.  The loss of some lung tissue reduces the overall 

capacity but the function as such remains.  This is called a parallel organ . 

In contrast to this is a so-called serial organ where the function of a damaged 

volume cannot be substituted by other parts.  An example of a serial organ is 

the spinal cord, which is a tube-like structure that carries messages between 

the brain and the rest of the body.  If a part of this tube is damaged, no signal 

can pass through, and the whole function is lost.   

The brain stem, as one main OAR in this work, is between the two.  The brain 

stem is an organ that performs many vital functions such as breathing or 

sleeping.  If a part of it is damaged, its role cannot be taken by another part of 

the brain stem.  Hence any damage can cause a specific function to 

malfunction or cease to function at all. 

Tumour type cells are different from healthy type cells in the way that they 

divide continuously without regulation mechanism and without a functioning 

mechanism that could send them into apoptosis.  This lack of regulation 

mechanism is the reason why a tumour grows fast, and one reason why a 

tumour is more sensitive than the surrounding healthy tissue.  Tumour cells 

undergo mitosis more often, where a cell is more vulnerable.  For that reason, 

irradiation does more damage to tumour cells than to healthy tissue.  Another 

effect that can protect healthy tissue is the repair mechanism.  Because a 
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tumour grows fast and unorganized the vessel system as a supply chain is not 

as well defined as in healthy tissue.  This allows NT to repair some damage 

more efficiently than a tumour cell.  This repair mechanism is the reason why 

fractionation reduces side effects.  Moreover, it is the reason why physical 

dose cannot just be summed up to estimate the biological effect of cell 

damage.  For this reason, the “Biological Effective Dose” (BED) was 

introduced.  Note: since repair mechanism strongly depend on the cell type 

each cell type has a different BED for the same physical dose. To compare 

the different fractionation schemes dose conversion models have been 

developed.  The most commonly clinically used one is the Linear-Quadratic 

model (LQ-model) [114-116] that converts physical dose to BED based on the 

theory that normal tissue can repair sublethal damage between fractions better 

than tumour cells.  The model parameters are derived from conventionally 

fractionated RT data [114, 115, 117, 118].  

The multi-target theory became one of the crucial concepts for understanding 

radiobiology other than the LQ model.  For higher doses, the multi-target 

single-hit model is more applicable.  The model assumes that a cell has 

several targets that would inactivate it with a single hit [119, 120].  The 

research for this model was done on bacteria and viruses and showed that the 

survival of the organism decreased exponentially with increased dose [121-

123].  

For hypo-fractionated radiotherapy the situation is not fully known but is likely 

to be a transition from one model to the other or a mix between them.  Whether 

or not the LQ model is appropriate is a controversial issue [124-130].  Park et 

al (2008) [131] tried to close the gap by combining the two models 

mathematically, ensuring a seamless transition between the two.  However, in 

order to find reliable parameters for these models, clinical data are required.  

The data published by Emami et al 1991 [118] are based on irradiating the 

volumes with a uniform dose with a conformal technique and a fraction dose 

of 2Gy to the target.  Modern RT techniques like image guided radiotherapy 

(IGRT),  intensity modulated radiotherapy (IMRT) or SRS can replace the 

uniform dose by a dose distribution adapted to any available knowledge on the 

tumour cell density, a voxel based approach.  In order to compare different 
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plans, concepts like BED [132-134] where different dose/fraction schemes are 

compared by recalculating the physical dose into a standard dose/fraction 

scheme with the same biological effect, or another “Equivalent Uniform Dose” 

(EUD) [135, 136] where a dose distribution over parts of an OAR is reported 

as the homogeneous dose to the whole organ that would result in the same 

clinical effects. 

The on-going QUANTEC (“Quantitative Analyses of Normal Tissue in the 

Clinic”) project  was recently initiated [116, 137, 138] aiming to add knowledge 

about the clinical effect of such new techniques.  In order to start the project a 

number of literature reviews have been published about the existing data 

available.  

Lawrence et al 2010 [139] summarized the available data for brain irradiation 

and Mayo et al 2010 [140] made a similar literature review for brainstem 

toxicity.  Both found that most data available is about fractionated treatment 

schemes.  Few publications were available for single fraction treatment and 

even then the problem was that patient numbers were low, generally no 

randomization was involved and the reported results were not standardized 

and therefore were not comparable. 

Today, in 2019, the treatment on a linac has considerably changed.  As 

mentioned, the original data were collected for treatments of homogeneous 

field and most of the time for 2Gy or near it and delivered from distinct 

directions.  The result was a dose distribution where the target had a 

homogeneous dose distribution and the surrounding healthy tissue hat either 

part of the dose or no dose at all.  The aim was to keep large OAR volumes 

outside any fields and keep the dose zero (except for the scatter dose).  So 

the Emami table [118] refers to dose limits with 1/3rd of an organ irradiated, 

2/3rd or the whole organ irradiated.  Today arc therapy is becoming more and 

more the standard technique.  In arc therapy, the Gantry rotates around the 

patient and delivers continuously dose to the target.  Even though the dose-

rate is varied and kept low while the beam travels over the OAR during the 

rotation the result is still that a larger volume of the OAR is irradiated.  It is a 

long-standing question: "What is better: a lot to a little or a little to a lot?" [141].  

The techniques have moved from the first to the second.  The Emami data 
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were collected in a time when dose was delivered was as a homogeneous 

fields.  When data were ready to use the technique advanced to “SIB” 

“simultaneously, integrated boost”, and QUANTEC are both from the time 

when 2Gy was standard, and OAR was avoided if possible.  So QUANTEC 

faces a new challenge.  How to deal with inhomogeneities?  Despite the new 

challenges, QUANTEC is widely used as a reference, and new data are 

compared with the database [142-144].      

For the evaluation used in the current work,  the approach of Park et al to 

define a combined conversion curve for both, dose level in the LQ range and 

dose level in the high dose region is adapted.  For this theoretical evaluation 

the BED to the OAR at the target circumference was kept constant and the 

total BED for a range of fractionation schemes was compared to evaluate 

which would result in the best OAR protection;  and for two schemes the effect 

of displacement was evaluated.  Dose evaluation was done by comparing 

Dose Volume Histograms (DVH) and profiles.  The DVH was used to 

investigate the potential underdose of the target to the initial fractionated plan, 

and a potential increase of the OAR to the initial fractionated plan and the 

single-fraction SRS plan.   

DVH does not contain any spatial information.  Therefore, profiles are used to 

evaluate the distance from a critical isodose due to displacement from that of 

the original plan and from the single fraction plan. 

 

Research question 3:  

What effect has fractionation on BED to the OAR and is the dose to the 

OAR increasing with displacement? 
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1.6.4   In the special situation of GK, can margins be replaced by 

a correction strategy?  

Lesions in the brainstem are particularly difficult to manage.  Yen et al (2011) 

[145] evaluated the effect on the BS in a series of 85 arteriovenous 

malformation (AVMs) in or adjacent to the brainstem treated with GK SRS.  

AVM is a benign disease where the patient has a long life expectancy but may 

die at any time due to sudden bleeding in the brain.  The dose to the AVM 

target is similar to that of a malign metastasis, at about 25 Gy for AVM’s <2 

cm in diameter and 16 Gy for large AVM’s >3 cm in diameter  [88-90].  The 

long life expectancy allows a long follow up on the one hand and on the other, 

any side effects are long lasting and therefore should be avoided even more 

than for malignant targets.  Despite the high radiation-induced changes, nine 

patients with neurological deficits and one large cyst, the authors considered 

GK SRS a reasonable method to treat AVMs in or near the BS.  Toxicity with 

brainstem metastasis is lower, partly because of the shorter survival and partly 

due to different tissue mechanics with AVM treatment aiming only to obliterate 

the vessels with effect in a few weeks or month.  Any brain tissue between the 

vessels is not identified as a target but cannot be avoided.  In contrast to this, 

treatment of metastasis aims to destroy all cells within the target.   

Jung et al (2013) [146] evaluated the outcome of 32 consecutive patients 

treated for brainstem metastasis.  Seventeen of those received prior WBRT.  

Median target volume was 0.73 cm3, median age was 50 years, and median 

margin dose was 13 Gy.  They found a statistically significant survival benefit 

based on the Radiation Therapy Oncology Group (RTOG) recursive partition 

analysis (RPA) class, especially early stages RPA class 1 with a median 

survival of 19.2 months and concluded that brainstem metastasis should be 

considered for SRS. 

In conventional external beam fractionated radiotherapy, margins are added 

to the actual tumour (Gross Target Volume GTV) to compensate for sub-

clinical microscopic malignant disease to get the Clinical Target Volume (CTV) 

and a margin to cover positional uncertainties which results in the final 

Planning Target Volume (PTV) [106, 107].  Adding all these margins results in 

a larger volume of NT to be irradiated.  For small lesions, a margin would add 
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relatively more NT volume to be irradiated.  However, for GK fractionated 

treatments there is a possibility that it might not be necessary to add physical 

margins.  Results found from the work on research question three showed that 

the errors in dose associated with opposing displacements are cancelled out.  

It might be possible to use this effect to apply a correction strategy instead of 

a margin.  The problem is the low number of fractions.  Each displacement 

might be due to random or systematic error.  The option of a correction strategy 

is therefore evaluated with a series of simulations with random and systematic 

displacements.  

 

Research question 4:  

Do OAR still benefit from fractionation even if there is a margin 

required? Can the need for margins be influenced by different planning 

strategies, for example with the use of a correction strategy? 

 

 

1.7   Aims and Objectives 

In order to treat brain lesions with hypo-fractionated treatments using the 

GammaKnife Perfexion, set-up uncertainties should be minimal.  In order to 

avoid recurrence, adequate dose coverage of the target has to be guaranteed 

while at the same time the BED to any OAR should not be significantly 

increased.  The aims and objectives of this work are summarised together in 

the research questions discussed above: 
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1.7.1   Research Questions: 

 

Research question 1: 

What is the intra-fraction tolerance from the vacuum surveillance system 

of eXtend?  Special consideration is given to the question at which level 

the treatment is paused by the vacuum surveillance system. 

 

Research question 2:  

what effect does positional uncertainty for GK have in a three or five 

fraction setting? 

 

Research question 3:  

What effect has fractionation on BED to the OAR and is the dose to the 

OAR increasing with displacement? 

 

Research question 4:  

Do OAR still benefit from fractionation even if there is a margin 

required? Can the need or margins be influenced by different planning 

strategies,  for example with the use of a correction strategy? 

 

 

 

 

The overall aim is to study these effects to provide information that can inform 

and optimise clinical strategies and decisions for the application of fractionated 

GK treatments for brain lesions. 
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Chapter 2:  

Accuracy of the eXtend system 

 

The work in this chapter was published as [1]: “Quantifying the trigger level 

of the vacuum surveillance system of the Gamma-Knife eXtend™ 

positioning system and evaluating the potential impact on dose delivery” 

in the journal of Radiosurgery and SBRT, 2016, Vol. 4.1, pp. 31-42   

 

2.1   Introduction 

To treat brain tumours, fractionated whole brain radiotherapy (WBRT) is often 

applied but provides limited local tumour control and induces side effects like 

fatigue or reduced cognitive function which leads to reduced quality of life 

(QoL) [3].  Stereotactic radiosurgery (SRS) can reduce several of these side 

effects by focusing the dose on the target and sparing normal brain tissue [13, 

147].  Gamma Knife (Elekta Instruments, AB, Sweden) (GK) is an efficient and 

cost effective treatment unit dedicated to SRS of solid brain tumours [61, 148].  

For the clinical success of intra-cranial SRS, high positional accuracy is 

required to place the dose gradient exactly on the border between target and 

normal tissue (NT).  This was originally achieved by a direct, rigid connection 

between the skull bone and the G-frame where the G-frame is screwed directly 

to the skull bone.  The G-frame is then connected and aligned to the GK 

coordinate system.  This direct connection between imaging and treatment 

unit coordinate system is unique to GK and eliminates the positioning error 

present in other treatment units, thus achieving submillimetre accuracy [29, 

149]. 

A high dose per fraction limits the treatable lesion size (<3 cm in diameter) and 

proximity to organs at risk (OAR) [150-152].  This can be overcome by 

fractionating the treatment [15, 36, 151, 153, 154].  Fractionation or hypo-

fractionation results in a lower dose per fraction and allows the NT in the 

gradient region to repair sub-lethal injury between the fractions thus reducing 

toxicity [46, 131, 155-157]. 
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There is no universally agreed definition of exactly what SRS is.  The 

international Gamma Knife society has recently published a standardization 

report [111] which suggests regarding the treatment unit as “a system for 

stereotactic guidance of radiation output with submillimetre accuracy”.  

Fractionated radiosurgery is expected to achieve that specification (with an 

arbitrary limitation of five fractions).  

 

The spacious design of the Leksell Gamma Knife Perfexion™ (GKP) (Elekta 

Instruments, AB, Sweden) model led to the introduction of a new non-invasive 

repositioning system known as eXtend™ (Elekta Instruments, AB, Sweden).  

This is based on a head rest with an individually formed vacuum cushion and 

a vacuum assisted mouthpiece.  As a positional verification during the 

treatment, the vacuum level of the mouthpiece is continuously monitored and 

the treatment interrupted as soon as a movement induced drop of the vacuum 

is detected. 

The key part of this vacuum surveillance is a spacer that is placed on top of 

the mouthpiece towards the upper palate to create a cavity.  While the 

mouthpiece is in close contact with the upper palate the cavity is sealed and a 

vacuum can be established.  Any movement of the patient would create a gap 

and the vacuum would be lost.  A good mould fits tightly and allows setting a 

vacuum level indication of 50 to 60% (deviation relative to ambient 

atmospheric pressure).  However, for patient comfort in clinical practice, it is 

recommended to set the level between 30 and 40%.   

The vacuum surveillance software of the patient control unit constantly 

monitors the vacuum level and pauses the treatment as soon as the vacuum 

drops by 10% of the initially set level.  Any movement or displacement until 

this trigger level is reached causes a deviation of the delivered dose from the 

calculated one. 

Uncertainties of the initial patient setup associated with the use of eXtend™ 

have been assessed by Ruschin et al [99] as described previously.  One 

finding was that the largest mean deviation of 1.3 mm was in the superior-
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inferior direction.  This is the direction in which the mouthpiece is fitted each 

day and likely the direction with the least support.   

Ma et al [92], also as described previously, tested the whole chain accuracy 

(or ‘end to end’ testing, i.e. including a combination of all defined contributing 

factors) of eXtend™ on GKP.  This was a test including imaging, image 

registration, planning and delivering the dose but excluded the patient.  The 

test was basically to evaluate pure mechanical accuracy without human 

effects.  Even so, they found a mean systematic deviation of 0.69 mm (0.73 

mm SD). 

Schlesinger et al [158] reported a series of ten patients undergoing 

fractionated treatment by GKP.  In one case, the treatment was paused by the 

vacuum surveillance system.  After re-set up the treatment was continued 

without further problems.  However, they mention the importance of “further 

work to characterize the sensitivity of the vacuum monitoring system to detect 

patient motion.” 

To date, to the authors’ knowledge, there has been no report on the trigger 

level of the vacuum surveillance system which defines the intra-fraction 

accuracy.  This work investigated the trigger level and characteristics of the 

vacuum surveillance system of eXtend™ and what effect a displacement 

would have on the dose distribution in the target.  

 

2.2   Material and methods  

2.2.1   Dental model, mouthpiece moulding and fixation 

For accurate measurements on the order of 0.1 mm, clearly defined surfaces 

and reference points are required.  Such a surface should be flat, have a 

reference point, and should be hard enough so that pressure would not 

influence the result.  If trying to measure on a patient, teeth would be the only 

accessible hard surface, but teeth are neither flat, nor do they have a reference 

point, nor are they accessible.  Accessible surfaces would be nose, lips and 

possibly top of the scalp.  All are less than ideal for accurate measurement.  
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The mould itself has hard surfaces, but not flat.  However, it might be possible 

to create a reference point by drilling a small reference hole.   

However, to measure the distance between patient and mould, which is 

attached to the frame of the GKP, two surfaces are required.   

Another problem is movement.  In order to measure at which point the vacuum 

level is broken, the mould and patient would have to be  moved away from 

each other in small accurate increments on the order of 0.1 mm, the accuracy 

that is required.  The two options would be: 

• The patient is fixed, and the mould is moved 

• The mould is fixed, and the patient is moved.  

The patient is fixed: The problem here is that the patient actually can move 

one or two millimetres despite being fixed in the mask.  An option might be the 

G-Frame, but the procedure to attach the G-frame just for measurement is not 

realistic (and not ethical).  The second problem would still be to move the 

mould in 0.1 mm increments in relation to the patient, which would require a 

complex and difficult method to be designed.   

The mould is fixed:  A design where the mould would be fixed is easier.  It 

could just be mounted on the frame but then the patient would have to be 

moved in 0.1 mm increments.  As above, the only feasible way would be with 

the G-frame and that is not practical or realistic.  

For these two reasons, no surface to measure the distance and no fixation for 

the patient that limits movement to 0.1 mm or less, means another solution is 

required, based on a simulated ‘patient’.  

Of interest is the distance the upper palate moves away from the mould until 

the trigger level of the surveillance system is reached.  Therefore a model 

needs to represent only the teeth and upper palate.  Such models were 

available from the dentistry department.  On one side, the model is of the real 

patient while on the opposite, rear, side there is a flat and hard surface from 

which accurate measurements are possible.  Thus dental models have been 

used for the measurements.  Twenty moulds from dental plaster models of the 

upper human jaw were produced applying the procedure described by 
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Ruschin et al [99].  The dental models were a random selection representing 

a range of dental conditions and geometric shape.  The solid flat surfaces on 

the model allowed the definition of a reproducible reference point for the 

measurements.  Examples are shown in Figure 2.1. 

 

 

Figure 2.1: Four examples of the dental models used to 

evaluate the trigger level of extend.  The model represent 

a variation of dental condition from “”excellent” (all teeth 

in good condition) to “poor” (few teeth left).  The flat 

surface of the models provides a solid, plain surface for 

exact measurements. 

 

To fit the mouthpiece to the patient in clinical practice the mould has to be 

slipped over the teeth in an upward movement and wiggled into snug fit with 

the teeth and the upper palate.  This represents a shift in the Z-direction 

(superior/inferior) and a rotation around the X- and Y- axes.  These 

movements are the most likely ones to happen during treatment and are those 

quantified in this work (Error! Reference source not found.).  If the mould w

ould be loose and allow movement, the vacuum could not be established and 

treatment prevented at all.  However, there might be a very small movement 

possible if the dental mould can be slightly compressed.    
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Figure 2.2:  The image shows one of the moulds.  The fitting procedure is 

that the mould is moved in inferior direction (Z-direction) towards the upper 

palate and then wiggled slightly around X and Y axis (involving movement in 

the Z direction) to achieve a perfect fit.  Movement in lateral (X-axis) and 

ventro/dorsal (Y-axis) directions are minimized due to the large contact area 

(with and black lines).  A movement in those directions is only possible when 

the mould is loose or by compressing the mould material.  Compressing the 

material is negligible, and when the mould is loose, no vacuum can be 

established. 

2.2.2   Translational measurements 

To measure translational movement the mouthpiece was fitted to a holder with 

a pole and then mounted with a collet on a computer numerically controlled 

(CNC) machine (SM2000 milling machine) with positional accuracy of 0.01 

mm.  The dental model was fixed on the CNC table.  For best alignment the 

mouthpiece was formed in the measurement position (Error! Reference s

ource not found.).  As a surrogate for the mucosa, Vaseline gel was applied 

to the surface of the dental model.    

Dental model and mouthpiece were put together in close contact.  Then the 

vacuum level was set and the collet from the CNC machine tightened.  This 

position was set to zero.  The mouthpiece was then moved away from the 

dental model in steps of 0.05 mm and the vacuum level was recorded at each 

position until it had dropped to zero indication which equals atmospheric 
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pressure.  The position where the vacuum level had dropped by 10% of the 

original setting was recorded as the trigger distance.  This was repeated for 

each mould 30 times at different vacuum levels (10 times at 30% vacuum level, 

15 times at 35% the recommended vacuum level and 5 times at 40% vacuum 

level).  Where a higher (non-clinical) vacuum level was achievable, 

measurements between 45% and 70% were added.  The measurements have 

always been performed in groups of five to get information about the 

reproducibility.  After five measurements, the vacuum level was changed.  

Measurements were performed in the order of 35% vacuum level, 30%, 35%, 

40%, 30% and then again 35% vacuum level.  This way, in addition, to test the 

reproducibility, it was also possible to check if the same results are measured 

when the vacuum level is re-set afresh. 

 

 

Figure 2.3: the eXtend™ mouthpiece with a pole attached was 

fitted to the collet of the computer numerically controlled (CNC) 

machine for precise positioning. 
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2.2.3   Rotation measurement  

To measure rotation, the dental model was fixed to a base plate with the 

mouthpiece and dental model in close contact then the vacuum level was set 

to the initial level.  A digital inclinometer (Fisco Solatronic, Model EN17, 

resolution 0.1°) was placed on the flat surface of the mouth-piece and the 

indication set to zero.  As for the translational measurements, five 

measurements each were performed for vacuum levels in a consecutive series 

of 35%, 30%, 35%, 40% and 35%.  The value of 35%, as the recommended 

clinical level, was measured in between the other levels to confirm 

reproducibility. 

Head rotation around X- and Y-axes may cause a significant change in target 

position.  A head rotation would cause pressure on one side and tension on 

the opposite side of the mouthpiece.  The more tension is applied, the more 

this resembles the situation of a simple shift that can break the vacuum.  If the 

pressure is dominating the patient is moving towards the mouthpiece and thus 

keeping the vacuum seal tight.  Applying pressure simulated the worst-case 

scenario.  Therefore,  a rotation was induced by applying pressure at the 

periphery of the mouthpiece.  Action points were right, left, front and at the 

back of the mouthpiece (marked as circled crosses in Figure 2.3).  The 

pressure was applied in the superior and inferior directions.  When the vacuum 

level was set, pressure at each action point was continuously increased and 

the rotation measured with a digital inclinometer (Fisco Solatronic, Model 

EN17, resolution 0.1°).  The rotation at which the vacuum level had reached 

the trigger level, a drop by 10%, was then recorded.   

 

2.2.4   Target selection 

Very small lesions were excluded from this investigation because small lesions 

are no problem for single-fraction treatment.  Any displacement on a small 

lesion would mean a miss of a large proportion of the volume, and adding a 

margin would increase the NT volume significantly.  So the G-Frame, with its 
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high accuracy, is best for small lesions.  The aim of fractionated SRS is to treat 

larger lesions of more than 3 cm in diameter (roughly 10 cm3 in volume) or 

medium-sized targets near OAR.  The targets selected for this simulation were 

from real patients previously treated with single-fraction SRS  Plans for ten 

metastatic lesions with a size between 7.7 cm3 and 19.3 cm3 were selected for 

dosimetric simulation of displacements.  Location varied across the brain 

including three lesions adjacent to the skull bone and two near an OAR (optic 

nerve and chiasm).  Detailed characteristics are given in Table 2.1.  All patients 

had been previously treated in a single fraction using the G-frame screwed to 

the skull for imaging and treatment.  This plan was used for recalculation of 

the dose distribution with a displacement induced.  

 

Table 2.1.  Characteristics of ten targets treated with single fraction used for 

calculating the dosimetric effects of hypothetical displacements due to rotation 

Characteristic Mean Range 

Tumour volume (cm3) 12.8 7.7 – 19.3 

Distance to centre of rotation (mm) 105.3 55.7 – 147.8 

Prescribed dose (Gy) 17.4 16 - 18 

Prescription Isodose (%) 48.7 45 - 51 

Minimum dose (Dose to 99% of volume, D (99%)) 17.08 15.6 - 18 

Coverage (%) 98.6 97 - 99 

Total number of shots 23.1 16 - 32 

Paddick conformity index (PCI)   0.873 0.765 – 0.918 

 

 

2.2.5   Potential displacement due to rotation for target, chiasm 

and optic nerve   

For a given patient, the potential displacement of the target due to rotation 

depends on its position relative to the centre of rotation (COR, the centre of 
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the mouthpiece at the hard palate).  Ma et al  [92] had the point defined at the 

connection of the vacuum tube to the mouthpiece.  In this work it was defined 

at two centimetres dorsal from the dentures on the level of the hard palate in 

the central sagittal slice of the MR image.  Figure 2.2 shows the estimated 

point.  In reality there is no single COR for each rotation but it is close to the 

pressure point along the teeth.  The patient cannot move into the mouth piece 

but will rotate “out of the mouthpiece” with the COR on the inside of the rotation 

radius.  It could be one time on the right, another time on the left side or could 

be the front teeth or the back.  The centre of the palate was taken as an 

estimate and average of all options. 

Rotation influences the target position in two ways: a target rotation and a 

translational displacement.  In this work, the target rotation was ignored 

because of the near spherical shape of the selected targets.  The spherical 

shape of metastases is favored due to the location where metastases develop.  

Usually, there is no solid barrier in the proximity, so the cancer cell expands in 

all directions and forms often a sphere-like volume. An AV in contrast, is more 

pear-like shaped with the spike squeezing through the skull bone or a 

meningioma that grows along the meninges and has flat extensions. 

However, one pixel at a distance of 2.5 cm from the tumour centre would be 

displaced by 0.8 mm from a two-degree rotation.  This would mean if a cube 

would be rotated by two degrees, only the corner pixels would be 

compromised.  All lesions selected are spherical like and are therefore much 

less compromised. 

The potential displacement was evaluated from the distance between the COR 

to the centre of the target (centre of gravity) for the mean and maximal rotation 

around X and Y axes, respectively measured in the previous experiment.  The 

displacement was calculated for each axis individually as in Figure 2.4 and 

equations 1 to 3 for rotation around the Y axis.  The same analysis was made 

for the chiasm and ON. 

 



- 53 - 

 

Figure 2.4: Graphic visualisation of the effect of rotation on the target.  A 

rotation around the Y axis causes a displacement of a target in the X and 

Z directions.  The magnitude of such a displacement depends on the 

rotation angle and the distance in the Z direction between target and COR 

for the magnitude of the displacement in the X direction and the distance 

in the X direction for the displacement in the Z direction. 

 

  dX ≈ Z * TAN(a(Y))   (1) 

  dY ≈ 0    (2) 

   dZ ≈ X * TAN(a(Y))   (3) 

 

  dX: displacement in X direction (dY and dZ accordingly) 
  Z= distance in Z direction between COR and target  
  (Y accordingly)   
  a(Y)= rotation around Y axis  
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2.2.6   Keeping shot time constant 

Recalculation of the effect of a displacement requires the plan to be calculated 

with the actually irradiated shot times, i.e. the times from the original plan.  

GammaPlan Software® (Elekta Instruments, AB, Sweden) automatically 

adjusts treatment time for all shots to achieve the prescribed dose in relation 

to the actual maximum dose.  A shift of the shots may change the path length 

and therefore the dose to the modified point.  The shot time is automatically 

“corrected” for this change.  This time modification by GammaPlan was 

reversed to the original planned time by modifying the prescribed dose and 

where necessary the individual shot weight.  This method allowed us to keep 

the total treatment time variation ≤0.5% and the individual shot time variation 

≤1.0%  

 

2.2.7   Re-calculating dose distribution after displacement 

For the original treatment plan the effect of a potential uncertainty was 

simulated by shifting the shots in all three axes in positive and negative 

directions for 18 positions in steps of 0.1 mm up to 0.4 mm and then in steps 

of 0.2 mm up to 1 mm plus shifts of 1.5 and 2 mm.  The shift was performed 

for one axis at a time.  The small step size at the centre was chosen because 

small displacements are more likely than large ones and it is more important 

to see the detailed behaviour of displacements.  A maximum realistic 

displacement was considered to be 1 mm.  To cover potential outliers  

displacements of 1.5 and 2 mm have been added to verify that the trend (of 

the curve) would be continued. 

 

2.2.8   Plan evaluation 

For plan comparisons three parameters were considered: minimal dose to the 

target D(99%), percent target coverage and Paddick Conformity Index (PCI) [63] 

as a commonly used quality index in GK radiosurgery.   
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The values of the original plan were set to 100% to normalize the values.  

Parameters calculated from the shifted plans are given in relation to the 

original plan.  

 

  



- 56 - 

2.3   Results 

2.3.1   Accuracy of the vacuum surveillance 

2.3.1.1   Translational measurements:  Shift until trigger level is 

reached 

With the vacuum level set in the clinical range between 30% and 40% the 

mean shift was 0.15 mm (SD ±0.05 mm, range 0.05-0.29 mm) until the vacuum 

level dropped by 10% of the initially set value.  When the vacuum level was 

set to a non-clinical level of ≥45% the shift until trigger distance was 0.22 mm 

(SD ±0.09 mm, range 0.09-0.43 mm). 

 

2.3.1.2   Rotation measurements:  Rotation until trigger level is reached 

For the clinically used vacuum level between 30% and 40%, the mean rotation 

was 0.33° (SD ±0.15º, range 0.05º – 1.0º) until the vacuum level dropped by 

10% of the initially set value.  Analysis in respect of the direction of the applied 

force showed twice as large a rotation for an inferior force (pressing the teeth 

on one side into the mouthpiece) than for a force in the superior direction (a 

patient ‘pulling out’ of the mouthpiece) from one side; being a mean rotation 

0.42º (SD ±0.16º, range 0.05º -1.00º) and a mean rotation 0.21º (SD ±0.09º, 

range 0.05º - 0.60º), respectively.  A possible explanation for this difference is 

that pulling on one side means the teeth move away from the mould and the 

vacuum seal breaks.  Applying pressure means the teeth are pressed into the 

mould and deforming it slightly.  However, pressing the teeth into the mould 

means the vacuum seal is tightened until the deformation is so severe that it 

creates a leak.  

No dependence on the point of action, right (0.31°, SD ±0.19º), left (0.32º, SD 

±0.17º), front (0.33º, SD ±0.19º) or back (0.35º, SD ±0.24º), of the rotational 

force was observed. 

For both, translation and rotation, the results were very reproducible.  

However, it appears that better moulds where a high maximum vacuum level 
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could be set (better quality mould and/or dental condition) have a higher 

tendency to have an occasional larger displacement than those with lower 

maximum vacuum level even when the vacuum level is set to the same value 

for the measurement.   

 

2.3.1.3   Resulting displacement due to rotation 

The mean distance from the COR to the target was 112 mm (SD ±27.9 mm, 

range 59.7 mm – 147.8 mm), from the COR to the chiasm was 68 mm (SD 

±7.1 mm, range 57.2 mm – 75.4 mm) and from the COR to the optic nerve 

was 57 mm (SD ±5.2 mm, range 48.8 mm – 68.1 mm).  These distances result 

in a potential displacement for the mean rotation of 0.33° of 0.64 mm, 0.39 mm 

and 0.33 mm, respectively.  For the largest rotation measured, 1.0°, a target 

displacement of up to 2.56 mm total vector might be possible, for chiasm 1.32 

mm and for optic nerve 1.11 mm respectively.  Individual results for target and 

chiasm are shown for mean displacement and one standard deviation in 

Figure 2.5. 
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Figure 2.5: Displacement of the target (A)) and chiasm (B)) for ten patients in the different directions 

due to mean rotation (0.33°) and one standard deviation added (0.48°) as line. 

 

 

2.3.2   Impact of position uncertainty on dose distribution 

The main criteria for plan acceptance for brain metastasis are minimum dose 

D(99%), coverage and PCI.  Figure 2.6 presents the recalculated values as a 

function of the displacement as a percentage from their original plan values.   
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All three parameters show little change in the first 0.5 mm shift.  With 

increasing displacement the curves become steeper and indicate 

compromises in the plan quality.  In all three curves an asymmetry between 

the right and the left side of the +Z direction can be seen.  This is due to the 

OAR protection in two plans.  In these two plans, the target was adjacent to 

the BS.  The dose distribution was therefore planned to minimize the dose to 

the BS.  The prescribed dose was very tightly positioned, and in places, a 

minimal underdosage in the target was accepted while the opposite side 

encompassed the target with 0.5 to 1 mm margin.  Therefore a displacement 

away from the BS results in an underdosage even for small displacements.  

The difference to a plan without special attention to a steep dose fall of on one 

side is within one standard deviation.  

The asymmetry for the displacement in Z direction is more systematic due to 

the shot profile.  While the beamlets are aiming from all directions around the 

head (transversal) towards the target, the directions in up and downwards are 

limited.  There are no beamlets from lower angles coming towards the target 

because those beamlets would go through the mouth and the eyes.  All 

beamlets are inclined upwards and incoming from above.  This results in a 

shift of Dmax towards the cranial direction and affects the steepness of the dose 

gradient, with a steeper gradient on the cranial side than on the caudal side.  

The effect is visible in the coverage and the PCI change.  This is also still just 

inside one SD. 

The minimum dose D(99%) in the target changes by less than 2.5% for the first 

0.5 mm shift and then starts to drop rapidly with 7.5% reduction for 1mm 

displacement.  While there is no significant difference between X and Y axes, 

the Z axis shows a steeper drop after about 0.75 mm shift.  The standard 

deviation increases with distance (1 SD indicated in Figure 2.6 A)).  

Coverage in Error! Reference source not found. B), represented as p

ercentages of the original parameter taken from the reference plan, shows less 

change and drops only by 0.5%.  In comparison to the minimum dose D(99%) 

the coverage in Z direction changes in a similar way as for a shift in X or Y axis 

on the left side (inferior shift).  On the right side coverage drops less for a shift 
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in +Z direction (superior) than for X or Y shift.  This is due to OAR protection 

in two plans. 

PCI changes behave similarly for shifts in all three axes (Figure 2.6 C)).  

Differences in the +Z direction are again due to the OAR protection in two 

plans as seen in minimum dose D(99%) and coverage changes. 
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Figure 2.6: Effect of displacement on typical plan evaluation indexes.  A) Minimum dose 

drops faster for Z direction (superior/inferior) shifts than for those in X or Y directions (right/left 

and ventro/dorsal respectively).  This is due to the steeper dose gradient in the Z-direction.  

Figure B) (coverage change) and C) (PCI) show no axis specific variation.  The asymmetry 

seen in the +Z axis is due to a compromise in two plans in order to keep the dose to an OAR 

below a certain tolerance level.  The shift towards the OAR improved the plan quality 

parameters which do not take the OAR risk into account.  All values are normalised to the 

original plan parameters.  Error bars indicate one standard deviation. 
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2.4   Discussion:  

2.4.1   Accuracy of the vacuum surveillance 

The use of dental models provides solid and flat surfaces that allows the 

measurement of not only a static set up but to quantify the submillimetre 

changes with both shift and rotation that can lead to a treatment interruption.  

It was possible to evaluate different situations such as simulating a patient 

“pulling out” of the mouthpiece or to “settling in” to a more comfortable position 

(rotation with one sided pressure in inferior direction).  Assuming that in most 

cases the patient moves with distinct, sudden motion the treatment 

surveillance is very sensitive and would pause the treatment before any 

deviation in irradiation could take place.  If the patient gradually moves into a 

slightly different position then rotation is the most critical aspect which usually 

results in submillimetre displacement of the target but might cause up to 2.56 

mm displacement in one of the selected test cases.  

A vacuum can only be established if a tight fit is achieved between patient and 

mould.  Ideally, the positional relation is identical as it was during mould 

forming.  In real life this will never be exactly the case.  Assuming the trigger 

level is activated as soon as the vacuum breaks would mean that any position 

of the patient where a vacuum can be set has to be within the range between 

“ideal and perfect” set up and “just before trigger level activation”.  Several 

authors [92, 95, 99] evaluated the set up and intrafraction accuracy of eXtend.  

If this assumption is correct the setup displacement measured in those studies 

should be within the intrafraction range evaluated in this work.  

The RCT system from eXtend™ measures the distance from a predefined 

reference point to the surface of the head.  No discrimination between shift 

and rotation is available nor is a displacement due to rotation linked to the 

target position.  For this reason, Ruschin et al [99] mounted the eXtend™ 

system on a linac and evaluated the difference between RCT indicated 

displacement and CBCT measured displacement from the CT localiser box to 

the anatomy.  They evaluated twelve patients treated for a total of 333 
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fractions.  For RCT deviations of <1.0 mm per axis they reported a total vector 

mean deviation of 1.0 mm measured with the RCT compared to 1.3 mm 

measured with CBCT.  Ruschin et al [99] deliberately chose the most distal 

measuring points.  This is probably the most sensitive indication of 

displacement in case of a rotation.  The biggest displacements were measured 

in connection with a rotation.  This is in agreement with the work reported here, 

that rotation leads to the largest displacement for distal targets.  The mean 

displacement of 1.3 mm they found was slightly larger than that found in this 

work’s experiment with just below 1 mm due to rotation.  However, no 

information is given about target location.  Furthermore their results included 

whole chain uncertainties such as imaging, fusion error or CBCT tolerances, 

in addition to set up uncertainties whereas the results in this work are 

exclusively the potential difference between patient and mouthpiece. The aim 

of the work of Ruschin et al. was to establish that the RCT is a reliable tool, 

and the set up with the mouthpiece is reproducible. Also, the vacuum system 

can be set to assist the patient for positioning , so the actual vacuum function 

to pause the treatment would not work on a linac.  This work was aiming to 

find out at which point the treatment pause would be. 

The uncertainties for the whole chain accuracy excluding the mouthpiece 

patient interface was measured by Ma et al [92] using the centre point of the 

mouthpiece as reference for an adapted Winston-Lutz-Test [98].  The 

measured uncertainty included errors from imaging resolution, target definition 

and mechanical uncertainties of the frame and holder when mounted on GKP.  

Patient dependent uncertainties were not included.  They reported a mean 

deviation of 0.55 mm, 0.78 mm and 0.72 mm for X, Y and Z axes.  Adding 

these full chain uncertainties of the system to the measurements from this 

work from the experiment evaluating the intrafraction uncertainties between 

the mouthpiece gives patient results in good agreement with Ruschin’s results.   

Sayer et al [95] reported a good reproducibility of the setup with eXtend™ 

while treating four patents with three to four fractions each.  All setups were 

within <1.0 mm radial deviation ranging from 0.33 mm to 0.84 mm mean value.  

From the same institute, Schlesinger et al [158] reported in more detail on ten 

patients undergoing fractionated treatment.  They compared measurements 
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pre and post irradiation to estimate a potential intrafraction uncertainty and 

found a mean radial displacement (vector) of 0.64 mm and a mean 

intrafraction displacement of 0.47 mm.  Both experiments are based on RCT 

measurements only and include potential measurement errors from soft tissue 

effects (e.g. muscle flex on the side when the bite pressure changes, hair at 

the top) and do not give direct information about the actual target position.  

Their work shows that a tighter tolerance than 1.0 mm is generally achievable.  

However, they too mention the importance to choose the RCT measurement 

points in a way that a displacement due to rotation can be recognised.   

 

2.4.2   Strategies to deal with displacement uncertainties due to 

shift and rotation? 

To be sure the delivered dose is covering the target, margins can be applied.  

A commonly used method is proposed from van Herk et al [103].  He simulated 

random set up uncertainties and internal motion of prostate treatment for 36 

fractions and derived a formula from those data for a margin to achieve the 

desired tumour coverage.  However, with SRS only four or five fractions are 

treated.  A true randomisation that would blur the dose distribution is therefore 

not possible.  So questions remain as to how to add margins, what size and 

should margins be evenly applied in all directions?  Ma et al [159] 

demonstrated that even small margins increase the volume of irradiated NT 

significantly.  Therefore it is important to minimize margins.   

Particularly interesting for Gamma Knife treatments are lesions near the optic 

nerve, chiasm and brainstem.  Several authors reported good results when 

treating tumours near the optic nerve, chiasm or orbital targets both, in tumour 

control and in preserving the OAR [155, 160-163].  Ganz et al [155] even found 

an improvement of the visual function for cases where the optic nerve was 

considered damaged by the tumour and not specially protected.  To minimize 

margins in these areas is in particular important.  The results of this work 

revealed that the main factor for a displacement is a rotation.  Therefore 

targets closer to the COR (mouthpiece) have a smaller potential for 

displacement due to rotation than distal targets.  Figure 2.7 demonstrates the 
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difference in displacement between chiasm and a distal lesion for the same 

rotation and therefore the same RCT values. 

The change in coverage and minimum dose D(99%) is small for 0.5 mm 

displacement as demonstrated in Figure 2.6.  This is likely due to the slightly 

larger volume of the treatment dose volume compared to the target.  So targets 

near the chiasm or ON might not need a margin at all.   

However, peripheral targets may require 2 mm and more positional 

uncertainties.  This could reduce the minimum dose D(99%) to 80%.  To 

minimize the margin the potential displacement direction due to the target 

position could be taken into account.  For example patient 3 in Figure 2.5 A) 

has a target dorsal in close proximity to the skull.  Potential displacement in X 

and Y direction is less than 0.5 mm but might be more than 1.0 mm in Z 

direction.  Minimizing margins in X and Y direction might spare NT.  For patient 

7 on the other hand, the margin might be minimized in the Z direction. 

It may be noted that image resolution in Z direction (cranio/caudal) is typically 

1.5 mm which is the resolution for target outlining in this direction.  

Furthermore, inter-observer variation may vary in many cases by more than 

the just one millimetre.  The magnitude of the set up uncertainties or 

intrafractionation movement is about within the range of target delineation 

accuracy.  

Due to the proximity to the mouthpiece, being the COR, lesions near the optic 

nerve, chiasm and brainstem may be very suitable for fractionation with 

eXtend™.  Several authors reported good results when treating tumours near 

the optic nerve, chiasm or orbital targets [155, 160-163]. 
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2.4.3   Availability of CBCT on Gamma Knife 

While this work was being completed, Elekta launched the Icon model, which 

adds a CBCT and a High Definition Motion Manager (HDMM) system to the 

GKP, intended for use with thermoplastic masks and customised made head 

cushions.  This CBCT replaces the RCT verification system.  Some authors 

have demonstrated in the past that patient movement during long treatments 

can be in millimetre range [164-166].  With the Icon HDMM system patient 

position is continuously verified to an accuracy of 0.15 mm with a reflector 

point on the nose tip of the patient.  On the treatment console a tolerance level 

depending on target and proximity to OAR can be set.  As soon as the detected 

position exceeds this tolerance the treatment is paused until the patient 

position is again within tolerance. 

Thermoplastic masks have been used for SRS for a long time.  The accuracy 

of a such a mask is typically around 3.0 – 3.7 mm ± 2 mm [36-38, 167].  For 

dedicated SRS treatment, critical points are strengthened or supported 

(BrainLab mask or GTC system [35, 36]) and with image guidance,  mean 

 

Figure 2.7:  Example of the effect of a rotation visualized in a patient image.  The effect of 

rotation depends on the target location in respect to distance and direction to the mouthpiece 

as the COR.  With rotation only possible around X- and Y- axes the target displacement is 

ventro/dorsal for a lesion above the COR and sup/inf for a lesion in the back of the head.  

(Note: the COR is defined in the central saggital slice.  The images shown here are off centre.  

The COR in these images is an estimated projection from the true COR.) 
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accuracies are achieved in the range of 1-2mm.  The mask system from Icon 

is aided by a CBCT for initial set up accuracy and the HDMM.   

In a pre-clinical setting Chung et al. [39] evaluated the accuracy of the HDMM 

using a mechanically controlled device to position the reflector in various 

known positions.  The mask and HDMM system were used on a linac for four 

patients, treating 28 fractions in total where the HDMM measurement was 

verified to pre and post CBCT.  The agreement for the pre-set position was 0.1 

mm under good conditions, with one difference between CBCT and HDMM of 

0.5 mm.  The intrafraction motion was up to 3.6 mm, in agreement with 

previous experience of other thermoplastic mask systems.  In their study, no 

detailed information about direction or rotation is given.  As seen in previous 

work of the same group [99] and in the measurements in this work, rotation is 

most critical for a potential displacement.  A single point cannot detect a 

rotation.  In a mask system the COR might more likely be expected to be at 

the centre of the head, so the reflector at the nose may overestimate the 

displacement.  On the other hand, a rotation around the nose tip might produce 

an undetected displacement which could potentially be up to several 

millimetres.  Thus pre and post CBCT seem advisable, but can only document 

a potential displacement during RT not discriminating when the displacement 

has occurred.  

Using the mask is probably more comfortable for the patient but may increase 

the uncertainty to potentially several millimetres.  This can be compensated by 

gating the treatment.  A threshold can be set in the HDMM system so that dose 

delivery is paused while the position of the reflector is exceeding the set 

tolerance.  The level of the required threshold might be estimated from the 

measurements presented in Figure 2.6 always bearing in mind that a single 

point cannot detect a rotation and therefore target location should be 

considered too.  

The Icon may also impact on imaging uncertainties.  MRI, as used for input to 

GK planning has recognised distortion issues.  Special sequences have been 

developed to minimize this.  With a CBCT on the treatment unit a new workflow 

might be considered, using the diagnostic MR images and matching the target 

to a distortion free CT scan.  Wangeried at al [168] have compared this 
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workflow with the usual one using the distortion optimized MR.  They found a 

mean difference in the resulting isocentre of 0.47 mm.  This comparison was 

simulated and it is unclear which workflow is more accurate in practice. 

 

2.4.4   Limitations of the current study  

This study was performed on dental models.  The results are in good 

agreement with the literature.  However, in particular the simulation of the 

upper/hard palate as a rigid structure has to be considered with care.  Real 

patients might have some upper palate changes between fractions such as 

swelling.  Whether this would make the system more sensitive (different 

anatomy, more likely to produce a leak) or less sensitive (more soft tissue, 

better fit with the mould) remains to be investigated.   

Furthermore, the movements tested were each applied individually, a shift or 

a rotation in one specific direction.  In a clinical situation it is likely that multiple 

movements will occur simultaneously.  Again, whether this would increase or 

decrease the intrafraction trigger distance remains to be investigated. 

In Figure 2.6 the curves on the right side are slightly biased due to the plan 

modification to protect an OAR in two plans.  Keeping the dose tight towards 

the OAR (ON / chiasm) results in a compromise in coverage which is undone 

when the plan is “moved” towards the OAR.  With a shift towards the OAR, the 

coverage is increased and the parameters seem to indicate a better plan.  The 

effect on the OAR would need a separate investigation. 

The measurements show the potential uncertainties and demonstrate the 

significant effect of rotation.  As has been mentioned by other authors [92, 99, 

158], there  is no direct link between target position as evaluated in this work 

and the RCT values.  A rotation would result in a specific RCT deviation but 

the target displacement is depending on the target position, with the highest 

displacement in peripheral lesions. 

The recalculation of the dose distribution with displacement assumes that the 

treatment is interrupted by a sudden and distinct movement and any positional 

displacement is mainly due to set up error.  This is a likely scenario.  However, 
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it is also possible that the patient gradually changes its position and the 

displacement of the different shots varies leading to a “blurred” dose 

distribution.   

 

2.5   Conclusion 

The vacuum surveillance system on the eXtend system for the GKP is 

sensitive and reproducible.  For lesions close to the COR (mouthpiece, top of 

hard palate), e.g. near the optic nerve, chiasm or brainstem, the trigger level 

reliably prevents mistreatment within submillimetre accuracy.  Potential 

movement of the chiasm was <0.6 mm for a rotation of 0.48° (mean rotation 

observed, plus 1SD).    

Lesions which are further away might experience deviations up to one 

millimetre as a result of a mean rotation, which would reduce the minimum 

dose to 94% of the original value.  A 2 mm deviation is in rare situations 

possible and would reduce the minimum dose to 80% if it were a deviation in 

the Z direction.  Often the potential displacement is dominant in one direction, 

dependent on the lesion position, so this direction might be given special 

attention when considering the addition of margins. 
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Chapter 3:  

Effect of positional uncertainties on dose to the target 

volume 

 

The work of this chapter was published as [2]: “Quantifying the effects of 

positional uncertainties and estimating margins for Gamma-Knife® 

fractionated radiosurgery of large brain metastases.” in the journal of 

Radiosurgery and SBRT, Vol. 4.4, 2017, pp. 275-287 

 

3.1   Introduction  

3.1.1   From single fraction to fractionated SRS 

Stereotactic radiosurgery (SRS) is an effective treatment option for brain 

metastases.  It can reduce toxicity associated with whole brain irradiation [3, 

13, 147].  The high single dose is very effective for local control but can cause 

radiation injury for larger volumes [169, 170].  Treatment dose is therefore 

reduced for large volumes, which may be one of the main reasons for the lower 

local control of large brain metastases compared to small ones [148].  

Biological effects allow repair of some cell damage after each irradiation.  The 

effectiveness of this repair depends on the tissue type and is usually better for 

normal tissue (NT) than for cancer cells [154, 171].  Therefore there have been 

moves towards (hypo-) fractionated SRS to increase the effective dose and 

reduce toxicity [46, 139, 157] for these larger volume cases. 

For the traditional single fraction GK SRS the G-frame is used.  This rigid frame 

fixed to the skull provides a direct link between imaging and treatment unit thus 

achieving a sub-millimetre accuracy [29] but due to its invasive nature it is not 

ideal for fractionated treatment.   
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3.1.2   GK systems suitable for fractionated SRS 

In 2006 the GK model Perfexion™ (Elekta Instruments AB, Stockholm, 

Sweden) was introduced.  The completely new design has a conical housing 

for the 192 cobalt sources and three different flexibly-selected integrated 

collimator sizes.  Thus the older-design collimator ‘helmets’ are no longer 

required.  The extra space now available has been used to introduce re-

locatable non-invasive fixation systems that allow repositioning a patient on 

different days for fractionated treatment. 

The original repositioning system for the Perfexion™ was eXtend™.  It is 

based on a vacuum surveilled mouthpiece and vacuum cushion.  Accurate 

position is verified with the repositioning check tool (RCT) that measures the 

distance from various specified points to the surface of the head.  Intra-fraction 

movements during treatment are detected with the vacuum surveillance 

system at the mouthpiece and will pause the irradiation.  The positional 

accuracy of eXtend™ has been evaluated while it was mounted on a linear 

accelerator (linac) [99], in a clinical setting [95] and in a whole chain test up to 

the centre point of the mouthpiece [92].  The trigger level of the vacuum 

surveillance was evaluated based on phantom measurements [1].  

Displacements were found to be usually within 1 mm but larger displacements 

of 2 mm and more are possible.   

In 2015 the Icon™ repositioning system was introduced.  It uses a mask, a 

custom formed cushion, cone beam CT (CBCT) to verify the initial set-up 

position and a tracking system. the “high definition motion manager” (HDMM), 

which tracks a marker placed on the tip of the patient’s nose.  The mask 

system itself has been tested in a clinical setting on a linac using CBCT pre 

and post treatment.  Intra-fraction displacements of up to 3 mm were found 

[39].  The HDMM system allows setting a threshold level at which the treatment 

is paused if the patient moves.  The tracking accuracy of the marker is 0.15 

mm [39].   

Positional uncertainties in the order of millimetres require special attention, 

which could be to define a margin, or in the case of the Icon™ to select the 

optimal threshold level on the HDMM. 
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3.1.3   Analysing uncertainties 

In order to make an informed decision regarding margin or threshold the 

behaviour of the total dose depending on the positional error per fraction 

should be understood.   

In conventional conformal radiation therapy applied with 20 or more fractions, 

positional errors are separated into systematic errors and random errors.  The 

systematic error results in a mismatch of target and dose distribution.  

Systematic error (shift), caused for example by a miss-calibration of the 

imaging device would result in a displacement in the same direction and 

magnitude for each treatment.  The result would be a “shift” of the dose 

distribution.  A systematic error can be minimised by quality assurance of the 

system and appropriate procedures.  The remaining random error (spread) is 

unpredictable in direction and magnitude.  It is for example caused by play in 

table positioning or a mask that is not tight enough.  Random error or spread 

blurs the edges of the dose distribution and reduces the dose to the target.  A 

margin can be calculated and added to the clinical target volume (CTV) to 

define the planning target volume (PTV) and ensure coverage despite 

positional uncertainties [116, 117].   

Hypo-fractionated SRS uses far fewer fractions, typically between three and 

five.  A representative random dose distribution is therefore not reached.  Any 

random error with a single fraction appears as a shift of the planned dose 

distribution, i.e. is effectively systematic in terms of the dose distribution for 

this particular patient.  If the cause of the error is systematic it would be in the 

same direction each time whereas if the cause is random it could have been 

in any direction.  Two fractions are a combination of spread (distance between 

the same shots in the two fractions) and shift (displacement of the centre of 

gravity of the shots).  Hypo-fractionated treatments are usually dominated by 

one or the other effect.   

In this work the impact of positional error on the dose distribution was 

investigated, choosing a systematic approach.  The worst case scenarios for 
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random error (spread) and systematic error (shift, calculated in a previous 

work [1]) were used to define the largest deviations from the ideal dose 

distribution.  Based on the results a formula was introduced to estimate the 

required margin for each simulated set-up scenario.  A novel strategy to handle 

uncertainties is suggested that reduces NT irradiation compared to using 

fixed margins alone.  

 

3.2   Material and methods 

3.2.1   Evaluating the effect of set up uncertainties on total dose 

for large metastases 

3.2.1.1   Simulated displacement 

According to the standardization report from Torrens et al. [111], a 

hypofractionation is considered as SRS if the fraction number is between two 

and five.  So five fraction treatments were chosen for simulation as the 

maximum fractionation scheme that is still considered SRS.  Three fractions 

were also selected to give a comparison with treatments with a smaller number 

of fractions.  In a single fraction, any displacement is a shift (systematic in 

effect) independent of its cause, whether random or systematic.  With two 

fractions, the displacements can be a combination of shift and spread (random 

in effect).  This is comparable to a plan with two shots, so no additional 

significant insight can be gained from two fraction scenarios.  Three and five 

fractions are commonly used schemes with on-going discussion as to which 

might be better.  With three fractions, there is less opportunity to have 

displacements, while with five fractions, random displacements might have 

less impact because they would average over the five fractions.  Thus three 

and five fraction schemes were chosen to be analysed. 

Since random error would not create a representative average for three or five 

fractions a “worst case scenario” with maximal displacement in different 

directions has been evaluated.  Three and five fraction plans were simulated 

with displacements in a specific different direction for each fraction.  For 

practical reasons, the directions allowed were X, Y, and Z.  For the three 
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fraction plans the simulated displacement directions were ±X (spread) and +Z 

direction (3F±XZ).  The five fraction plans represent an extreme spread 

scenario.  The displacements were symmetric in ±X and ±Y directions and a 

shift element in +Z direction (5F±X±YZ).  The displacement in the Z-direction 

was chosen because this seemed to be the most likely direction for a 

systematic error.  This is the direction in which the patient has to move to reach 

the treatment position. 

In order to add a situation between shift and spread, a second three fraction 

displacement is calculated with a displacement in +X (lateral), +Y 

(ventro/dorsal), and +Z (cranio/caudal) direction (3FXYZ).  In this setting, shift 

is the main effect with a minor spread contribution.  No such "intermediate" 

situation was chosen for the five fraction plan because the simulation task 

would have been significantly greater, and the result would be similar to that 

of the three fraction plan without producing significant additional information.  

All plans have been calculated for displacements of 0.0 mm, 0.5 mm, 1.0 mm, 

2.0 mm, 3.0 mm and 4.0 mm to cover and go beyond normally expected 

values.  Figure 3.1Error! Reference source not found. shows the different 

directions of the simulated set-up uncertainties. 

 

Figure 3.1: The simulated displacements for each fraction are shown.  The magnitude of 

displacement is simulated to be the same for each fraction of a course.  For example if the 

displacement is 2 mm for the 3FXYZ plan then the first fraction is displaced 2 mm in X direction, 

the second fraction 2 mm in Y direction and the third fraction is displaced 2 mm in Z direction. 

 

3.2.1.2   Target selection  

For this simulation five targets with a large single brain metastasis (median 

12.18 cm3; range 10.72 – 19.31 cm3) at various locations have been selected.  

Four lesions had no organ at risk nearby, one lesion was close to the optic 

nerve and more attention was given during planning to create a steep dose fall 

off towards it.  
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The dose was prescribed to a nominal 50% (range 45-50%) of the maximum 

dose, following our usual local clinical practice.  In this work the difference 

between calculated dose and irradiated total dose including set-up 

uncertainties was evaluated.  Therefore the original dose was set to 100% with 

each fraction contributing 33% and 20% of the total dose (distribution) for three 

and five fractions, respectively.  

 

3.2.1.3   Creating a sumPlan for multiple fractions 

All targets have previously been planned on GammaPlan Software® (GP, 

Version 10.2.0) and treated in a single fraction.  These plans were used to 

simulate a fractionated treatment by multiplying the plan according to the 

simulated fraction number.  At this point, no displacement had been 

introduced.  Correct positions and beam weighting (shot time) were verified.   

In a second step the displacement was added to each “fraction” i.e. the group 

of shots representing the fraction.  Each fraction of the treatment plan had the 

same magnitude of displacement but was simulated to be in a different 

direction.  The sumPlan was created by summing up the dose of each fraction 

incorporating the positional information.  

 

3.2.1.4   How to keep shot time constant with GammaPlan® 

For these simulations, every displaced shot time has to be the same as the 

originally planned one.  However in GP, there is only the dose, the prescribed 

dose, and the shot weight defined.  It is not possible to define the shot time 

and observe what the resulting dose would be.  The total dose is defined, the 

shot is placed, and then the weighting can be modified.  

GP normalizes the dose distribution based on the maximum dose Dmax.  Each 

added shot modifies the dose distribution and Dmax. 

When two fractions without positional error are calculated then the plan has 

an identical shot at the same place for each “fraction”.  The resulting change 
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is simply that Dmax is doubled.  Since the total dose too is doubled, the 

individual shot times do not change.  

However, simulating a displacement means that the shots are moved by up to 

4 mm.  This changes the dose distribution, and with it, the value of Dmax 

considerably.   

If this would be the only influence, then the weighting of all shots of a fraction 

would simply have to be changed by an identical factor.  Unfortunately, this is 

not the case.  With any displacement the path length of the shot from the 

entrance point to the shot centre and the shot time changes.  Moreover, 

because each shot is in a different place, the change in path length is different 

for each.  For the normalization, the dose in the shot centre is used for relative 

weighting, meaning that for each displaced shot the shot time is changed 

individually.  Changing the weight of a single shot changes the dose 

distribution and therefore Dmax and all other shots.   

 

In summary, changing the positions of the shots to simulate a positional error 

modifies the plan and therefore the position and value of Dmax.  This results in 

a renormalisation and thus in a change to all shot times.  Then the individual 

shot weights and times also change linked to the path length issue.  This effect 

has to be reversed.  The time cannot be directly set in GP.  Instead time 

corrections have to be made by changing the shot weight.  This might change 

Dmax and thus change the normalisation.  An iterative process was used to set 

the correct time for each shot: 

1. The isodose level to which the dose was prescribed was modified until 

the total treatment time matched the total treatment time of the original 

plan.  

2. Due to the different path length the shots from one “fraction” might now 

be different than in the original plan.  This can be corrected by 

modifying the shot weight first as a bulk function, then fine tuning the 

individual shots until an accuracy of <0.5% was achieved.   



- 77 - 

3. Modifying the shot weight changes the contribution of each shot to the 

normalisation point.  The maximum dose might have changed and 

therefore changed the overall treatment time.  

4. The procedure was repeated until all individual shot times were within 

the limits below. 

With this method the total time was corrected to <0.1% deviation from the 

original plan time.  The individual shot time was in general <0.5% deviation, 

but up to 1% deviation was accepted for short shot times.   

 

3.2.1.5   Parameters evaluated from the simulation: 

In relation to the target the following parameters were recorded: 

• Minimum dose as the lowest 1% (Dmin1%) in the dose volume histogram 

(DVH) of the target volume (TV) (≈0.5% of the TV) normalised to the 

original plan. 

• Coverage in percent of the TV receiving the prescribed dose 

• Maximum dose (Dmax) normalised to the original plan 

 

Volumes evaluated: 

• Prescribed isodose volume in the matrix (PIV) 

• Volume of the 50% of prescribed dose (PIV50) 

 

Two quality indices are commonly used for stereotactic radiosurgery:  

• Paddick conformity index [63] (PCI) relating to target coverage and 

normal tissue sparing  

• Gradient index (GI) [69] as a measure of the dose gradient and 

normal tissue irradiation.  

Both indices are size dependent but are useful for comparison of plan 

variations. 
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3.2.2   Estimating the required margin 

From the results of the simulation a margin was calculated such that there was 

adequate target coverage with the imposed displacements.  

Metastatic volumes are approximately spherical and are ideally covered with 

the reference dose in a close match.  For the estimation of the required margin, 

the volumes TV and PIV are assumed spherical and similar in size and 

position.  Displacements of the individual fractions change the shape and 

position of the PIV.  This leaves part of the TV underdosed.  Assuming that a 

shift element is involved, the underdosed part of the TV is always located on 

one side.  To cover all (100%) of the TV a margin (m) of the size of the shift 

(s) of the PIV would have to be added to the CTV to create the PTV.  

The parameters available from GP for this calculation are: TV, PIV and the 

intersecting volume (PIVTV), as in Figure 3.2.  The intersecting volume 

PIVTV is the volume where the target receives the prescribed dose and is 

approximately the sum of the two spherical caps, TVcap plus PIVcap.  The 

volume of a sphere cap is calculated with the formula   Vcap =
1

3
πh2(3r − h).  

Assuming the two volumes TV and PIV are approximately identical then the 

volume of the cap can be evaluated by dividing PIVTV by two.  With iteration 

the height (h) of the cap was evaluated and then the shift (s) of PIV is 

calculated with the formula:   s=2(r-h):  The minimal margin (m) to cover the 

whole TV is equal to the shift.  Figure 3.2 illustrates this.  This theoretical 

margin was calculated for each plan. 
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Figure 3.2:  Positional uncertainty changes shape and position of the PIV.  Splitting the 

intersection volume PIVTV into two cap volumes, the cap height h and from there the shift s can 

be calculated.  The required margin m is at least equal to the shift s. 
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3.3   Results    

3.3.1   Effect of set-up uncertainties on total dose 

3.3.1.1   Coronal images of total dose 

Figure 3.3 shows the dose distribution of the sumPlan in a coronal slice for 

one patient.  The effect goes from systematic error (shift) in the top line to 

“random error” (spread) in the bottom line.  With a shift, the PIV is unchanged 

in shape but displaced, leaving a sector on one side of the TV underdosed and 

another sector of NT on the opposite side irradiated.   

Spread (5F±X±YZ) is shown in the last line.  Here the position appears 

unchanged except for a small caudal displacement due to one fraction 

displaced in the Z direction.  The shape of PIV appears to be wider in X and Y 

directions and compressed in the Z direction (no opposing displacement).  The 

high dose volume of 24 Gy is smaller than in the original plan.  

Lines two and three are a combination of the two effects.  In line two, shift is 

the dominant effect with some spread (3FXYZ) and in line three spread is the 

dominant effect with some shift (3F±XZ).   
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Figure 3.3: Isodose lines shown for the simulation of various fractionated plans.  From top to 

bottom: row A): systematic error or shift, B): three fraction plan 3FXYZ with shift dominating 

combined with some random error or spread, C): 3F±XZ with increased random error (spread) 

and reduced systematic error (shift in z direction) and last D): 5F±X±YZ with dominant random 

error or spread.  Systematic error (A) displaces PIV but does not change its shape, whereas 

a spread (D) for the five fraction plan leaves PIV almost unchanged but reduces the high dose 

volume (24 Gy) and increases the low dose volume (9 Gy). 
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3.3.1.2   Behaviour of minimum dose Dmin1% coverage and maximum 

dose Dmax 

Minimum dose and coverage drop with increasing displacement (Figure 3.4).  

Any shift element of the total error increases the dose drop while a spread 

reduces the effect.  For a displacement of two millimetres Dmin1% (Figure 3.4 

A) is reduced by 16.7%, 9.0%, 4.4%  and 0.9% for a plan with systematic error 

(shift), a plan with dominant shift and some spread (3FXYZ), with dominant 

spread and some shift (3F±XZ) and with spread (5F±X±YZ) respectively.  

Coverage (Figure 3.4 B) is reduced from the original mean of 98.4% to 90.8%, 

95.6%, 97.8% and 97.8% respectively for the same 2 mm displacement.  

 

Figure 3.4: Behaviour of Dmin1% and coverage for systematic error and selected fractionation 

simulations.  While Dmin1% and coverage drop quicker with a systematic error because the 

distance to the reference dose is increased within the steep dose gradient whereas coverage 

does quantify the underdosed volume but not the dose level.  (Note: values for syst.err are 

taken from previous work [1].  Lines represent mean value of the patients.) 

 

Dmin1% is more affected than coverage because any shift element in the total 

error moves the dose distribution to one side increasing the distance of the 

underdosed part of the target to the reference dose along the steep dose 

gradient.   

With displaced fractions the dose maximum Dmax is in a different place for each 

treatment.  Therefore, Dmax of the sumPlan is smaller than planned Dmax.  The 

effect is strongest for the five fraction simulation.  For the different simulations 

at 2 mm displacement, the mean value of Dmax is 100.3%, 95.7%, 95.5% and 
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94.1% for a shift, 3FXYZ, 3F±XZ and 5F±X±YZ respectively.  For a displacement 

of 4 mm the corresponding values are 100.4%, 89.9%, 89.3% and 87.6%. 

 

3.3.1.3   Effect of displacement on PIV and PIV50 

For a systematic error or shift the volume receiving the reference dose PIV 

and the volume receiving 50% of the reference dose PIV50 remain almost 

unchanged because the shape of the isodose lines is only influenced minimally 

by a slight change in attenuation on the pathway but not by rearranging the 

shots in relation to each other.  With a random error, where the fractions are 

irradiated with displacement in relation to each other, the borders are blurred 

thus reducing PIV (Figure 3.5 A)) and enlarging PIV50 (Figure 3.5 B)).  

 

Figure 3.5: PIV and PIV50 are predominantly affected by the relation of the shots/fraction 

position to each other.  Positional error reduces the high dose volume and increases the low 

dose volume for the total dose.  (Note: values for syst.err are taken from previous work [1].  

Lines represent mean value of the patients.) 

 

3.3.1.4   Plan evaluation parameters, PCI and GI 

The quality index PCI decreases with shift (syst.err and 3F(XYZ)) because an 

essential part of the PCI is the actual coverage of the target and with a 

systematic error the dose distribution is moved away from the target.  When 

the displacement is random (spread) and in different, near opposing 

directions, the PCI  changes only slightly for spread (3F±XZ and 5F±X±YZ) (Figure 
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3.6 A).  Note: The highest PCI value of 0.895, as compared to 0.892 in the 

original plans, is with a displacement of 2 mm. 

Contrary to PCI, GI, the ratio of the volume of half the prescribed dose divided 

by the volume of the prescribed dose, varies with spread.  However, all plans 

remain within the commonly used tolerance value for GI of less than 3.0 [63, 

69, 71, 110, 111] (Figure 3.6 B)). 

 

Figure 3.6: Quality indices for GK SRS are PCI and GI.  The PCI depends mainly on relative 

position to the target and is therefore sensitive to systematic error or shift (A).  GI is a function 

of random error (spread) (B).  (Note: values for syst.err are taken from previous work [1].  Lines 

represent mean value of the patients) 

 

3.3.2   Margin required to cover target for selected scenarios 

The required margin for a shift is of the same magnitude as the shift itself for 

values of between 1 and 4 mm.  The required margin becomes smaller with 

increasing spread and reduced shift and it levels off below 0.7 mm.  Figure 3.7 

shows the details. 

 



- 85 - 

 

Figure 3.7: a potential margin required to cover 
100% of the target is smaller for plans with little 
systematic displacement component even if the 
individual displacements are as large as 4 mm.  
(lines represent mean value of the margin of the 
five patients evaluated in this analysis) 

 

 

 

3.4   Discussion 

Overall survival of cancer patients has increased in recent years due to new 

and better treatment options.  In this situation brain metastases can severely 

reduce quality of life (QoL) for the patients.  SRS can improve local control 

with minimal toxicity.  However, for large metastases the problem is the toxicity 

due to the irradiation of NT proximal to the TV.  Fractionation allows the total 

dose to be increased but introduces positional uncertainties.  Biologically 

Effective Dose (BED) effects favour NT over some tumour cell types for the 

same dose thus increasing the therapeutic window [139, 140, 172].  

Unfortunately, if a margin is added to the TV the NT inside this margin would 

get a higher than prescribed dose if the dose is prescribed to 50%.  It is 

therefore essential to minimise the initial NT included in the PTV.  Good 

knowledge of the effects of uncertainties can help to choose the optimal 

strategy to reduce the required margin. 

In this work the effect of different displacement patterns on the total dose 

distribution for fractionated SRS with GK was analysed.  A systematic 
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approach was used to find the most critical parameters and suggest strategies 

to minimize uncertainty effects.  

 

3.4.1   SumPlan and the estimated margin 

The effect of a shift or systematic error has been evaluated in the earlier work 

for a displacement of up to 2 mm [1].  Some of those results are included here 

for comparison.  Furthermore, for one patient the isodose lines of the sumPlan 

are shown in the coronal slice.  For this patient the sumPlan for a displacement 

up to 4 mm was added.  

The estimated margins plotted in Figure 3.7 match the visual impression of the 

isodose lines in Figure 3.3.  The plan with the systematic error (grey circles) 

requires the same margin as the displacement whereas the 5F±X±YZ and even 

the 3F±XZ fractionation scheme where random error dominates need only small 

margins such as 0.7 and 1.2 mm for 5F±X±YZ and 0.9 and 1.6 mm for 3F±XZ for 

2 and 4 mm displacements.   

A margin of 0.7 mm is calculated for the original plan yet the reference isodose 

line of 18 Gy in Figure 3.3 A) (with 0 mm shift) seems to match the target 

volume (red) with almost no margin.  The reason for this discrepancy is the 

assumption for the margin calculation that the underdosed area is entirely on 

one side.  This is the case as soon as a systematic error (shift) is involved but 

not in the initial state of the original plan where underdosed areas are 

distributed in small patches all over the surface of the TV.  In this situation 

without shift of PIV the required margin is half the size.  Since neither the TV 

nor the PIV are perfectly spherical the two volumes are slightly different.  In 

fact, the PIV (yellow line in Figure 3.3 would have a margin of 0.4 mm towards 

TV if both volumes were perfectly spherical.  This is the magnitude of margin 

that occurs in normal planning in the attempt to cover 99% of a large target.   
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3.4.2   Robustness for higher fraction schemes a consequence of 

prescribing to the 50% isodose line 

For plans with spread (random uncertainty) as the dominant effect the   

coverage and Dmin1% in the TV change by 0.6% and 0.9% respectively for the 

5F±X±YZ plan with 2 mm displacement.  For the symmetric 3F±XZ simulation 

where two fractions were displaced in opposing directions the reduction was 

0.6% for coverage and 4.4% for Dmin1%.   

Why is there so little change in coverage and Dmin1% for GK treatments?  The 

secret lies in the dose homogeneity within the target.  In Error! Reference s

ource not found. the principle is visualised.  The profiles of three single 

beamlets from a 16 mm shot of the GK collimator are plotted in the planned 

position and with +2 mm and -2 mm displacement.  Then the sum of all three 

profiles was calculated and normalised (red line).  While a 2 mm shift to one 

side increases the dose at the reference point by about 40% to 90% the dose 

is reduced when shifted to the opposite side by almost the same amount.  

Such an error would reduce the integral dose inside the TV (blue area) and 

increase the integral dose outside the TV (red area).  At the centre of the profile 

(50% level) the two effects cancel out and the total dose of the sumPlan 

remains unchanged at the 50% level.  For comparison, at the 70% isodose 

line the volume treated with the prescribed dose would be smaller (Error! R

eference source not found., blue triangle at the 70% isodose line) while the 

volume would increase for a prescribed dose to the 30% isodose line (Figure 

3.8Error! Reference source not found., red triangle).  The main effect of up 

to ±2 mm displacement (dependent on the steepness and distance between 

the 10% and 90% isodose line) in exactly opposing directions is a reduction of 

the dose gradient but would not change the position of the 50% isodose line.  

In clinical practice, random displacements may not be in exactly opposing 

directions, but still prescribing at the 50% level would give more robustness 

than other levels. 
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Figure 3.8: The graph shows the effect of displacement for a single 16 mm shot.  The 

normalized profile (red) is the sum of three profiles from a treatment with one 16 mm shot in 

place and the other two displaced by +2 and -2 mm. The dose on the 50% dose level remains 

almost unchanged but the gradient becomes less steep.  Choosing a prescribed dose of 70% 

results in an underdosage (blue triangle) while a prescribed dose of 30% results in an 

overdosage (red triangle). 

 

3.4.3   Alternative handling of set-up uncertainties for GK: 

margins on demand 

3.4.3.1   Why margins are more critical in GK SRS than in linac SRS  

Linac based RT, including linac based SRS, aims for a homogeneous dose 

distribution in the target.  Any set-up uncertainties reduce the volume of the 

treatment dose because the prescribed isodose level is typically 80% or 

higher.  Margins are introduced to prevent underdosage but quickly increase 

the volume of irradiated NT [101, 151, 173`].   

GK treatment has often been prescribed close to the 50% isodose, although 

other prescription levels are also used.  Dose inhomogeneity is accepted, in 

practice a high dose inside the target is favoured for single fraction GK SRS 

because any hot spot is within the solid tumour.  If a margin is added, normal 

tissue is included in the treated volume that receives a dose between 

prescribed dose and the maximum dose.  An option to reduce the dose to NT 

is to choose a higher prescribed isodose.  However, this requires more small 
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shots and therefore increases the treatment time and the additional NT 

irradiated would still get a higher dose then the prescribed dose.  Minimizing 

margins is therefore even more important than for linac RT.   

3.4.3.2   Estimating the potential maximum uncertainty with the GK 

Icon 

With Icon™ a CBCT is performed pre-treatment.  Then a virtual six degrees of 

freedom correction is performed by adapting the planned shot positions to 

correct for translation and rotation.  So every treatment starts with no 

measurable positional displacement.  During treatment the HDMM system 

verifies this position continuously by tracking a single point and stops 

treatment if the deviation exceeds the predefined threshold, usually 1 mm.  

However, the positional accuracy of thermoplastic masks is generally in the 

range of 3-3.7mm [36-38, 167].  Chung et al (2014) [39] evaluated the Icon™ 

mask and HDMM system in a pre-clinical setting on a linac, ie using the CBCT, 

geometries and correction approaches of a linac system.  They evaluated the 

intrafraction motion for four patients treating 28 fractions.  After setting up the 

patient a pre-treatment CBCT was performed and any uncertainty corrected 

as done on the Icon.  Post treatment a second CBCT was performed.  The 

mean deviation between pre and post treatment was 0.49 mm (CBCT) and 

0.51 mm (HDMM).  However, this does not mean that the displacement was 

in the same direction since the HDMM value has no direction.  In theory, but 

also unlikely, the two mean values could be up to 1.0 mm apart from each 

other.   

The maximum displacement measured in Chung et al’s series was up to 3.6 

mm intrafraction displacement using CBCT.  The maximum difference 

between CBCT and HDMM of the reflector position mounted on the nose tip 

was 0.55 mm (3.71 mm measured with CBCT compared to 3.16 mm measured 

with the reflector).  The reason for the difference between CBCT and reflector 

position post treatment is not clear.  One explanation might be a rotation of the 

head induced during treatment.  A linac CBCT matches to the anatomy of the 

patient.  A rotation might induce a different displacement of the target than of 

the marker on the nose tip.  This problem, that the marker displacement might 
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not precisely represent the target displacement, is the reason that only the 

magnitude of the marker displacement is given and not the individual 

coordinates.  A 1.0 mm threshold as tolerance for the HDMM plus up to 0.55 

mm discrepancy between CBCT and reflector would result in a worst-case 

(direct addition) potential displacement of 1.55 mm of the nose tip as a total 

intrafraction uncertainty.  Murphy et al [165, 166] found a drift pattern for 

intrafraction motion which reached 2 mm in 20% of the cases and 1.0 mm in 

80% of the cases in their studies.  So in order to ensure that the whole target 

is covered with the correct dose a margin of at least 1.55 mm would be 

required. 

3.4.3.3   Not every displacement pattern requires an action 

Margins increase the irradiated volume of NT and not all patients have a 

significant intrafraction movement at all.  The HDMM system displays the 

magnitude of the intrafraction movement (of the nose tip) but not the direction.  

If the patient moves one millimetre each treatment but in a different direction 

no margin might be required, whereas one millimetre systematically in the 

same direction plus a potential rotation causing an additional uncertainty might 

require a correction.  For patients who move during treatment more than, for 

example, 0.5 mm depending on the distance to critical structures, a post CBCT 

could provide this directional information.  Rather than adding a margin to 

cover such uncertainties a corrective shift could be applied.  

3.4.3.4   A potential novel approach to deal with positional 

uncertainties for GK 

The work above begins to suggest a possible novel approach to handle the 

impact of intrafraction positional uncertainties for fractionated GK treatments.  

GK SRS is planned in a different way than linac SRS.  For the GK, the effect 

of two opposing displacements has been shown to not result in a reduction of 

the prescribed dose but only in a reduced dose gradient.  Instead of having a 

margin applied throughout the treatment, as would be done for conventional 

external beam radiotherapy which would irradiate additional NT on every 

fraction, a procedure could be defined that corrects only treatments that would 
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have moved out of tolerance and have added up to a relevant systematic error 

because the movement was always in the same direction; i.e.  an “individually 

customizable margin” so to say.  

For such a procedure a higher number of fractions is required so that a pattern 

can be established.  Therefore five fractions would be preferable to three 

fractions.  The initial set-up is done as normal.  At the end of each treatment 

or every time the treatment is interrupted a post CBCT is done and the position 

recorded.  Then the results of the post CBCT are evaluated for total shift out 

of these three fractions and the remaining two fractions are used to “correct” 

any systematic position deviation by a corrective treatment displacement in 

the opposite direction so that the accidental displacement and the deliberate 

displacement in the opposite direction cancel out, as seen in Figure 3.8.  To 

avoid errors of correction in the wrong direction such a procedure should be 

automated as is the pre-treatment correction [174].   

Slow drift seems to be the dominant cause of displacement [165, 166] of a 

patient.  The position of the reflector is internally measured in X, Y and Z 

directions individually by the HDMM, but not displayed on the system.  Then 

the total vector is calculated and displayed.  The reason for not displaying the 

full data is that the displacement of the nose tip due to potential head rotation 

does not necessarily represent the displacement of the target.  However, 

detailed information about direction and speed of the reflector movement 

might (but does not have to) correlate with the movement of the target and 

might be useful to differentiate between random or systematic displacement.  

Final confirmation would be needed from a post CBCT.   

Any displacement would still cause extra NT irradiation.  However, with this 

method treatment could be planned without margin, thus sparing NT and at 

the same time still providing a strategy to cover intrafraction uncertainties of 

up to 2 mm by a deliberate corrective displacement in the opposite direction.  

With this method only that part of the NT is irradiated that was irradiated due 

to intrafraction displacement (one to three fractions) and the opposing part for 

the corrective fractions rather than the entire surrounding NT for five 

treatments.  This could reduce the NT volume irradiated with a high dose 
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significantly and would only increase GI if a correction is needed.  As seen in 

Figure 3.6 B) even with a displacement of 4 mm the GI is still below 3.0. 

The technique may also allow relaxing the threshold of the HDMM for patients 

who struggle to keep still or allow treating patients where the reflector cannot 

be placed on a convenient point to be tracked during the whole procedure. 

 

3.4.4   eXtend 

Without a CBCT system the exact position of the patient cannot be verified 

with an eXtend system.  In the previous work, some suggestions have been 

made of how to minimize a margin based on the knowledge of the target 

position in relation to the centre of rotation mouthpiece [1].  In addition to that, 

a higher number of fractions could further reduce the effect of positional 

uncertainties.  If the displacement is systematic the total effect is similar to a 

single fraction.  Any random displacement in additional fractions reduces the 

deviation of the 50% isodose and improves coverage and D(min).   

 

3.4.5   Limitations of this study 

The study has been conducted for lesions with volumes of 10.72 cm3 or larger.  

The assumption was that the volume is near spherical and that TV and PIV 

are similar in size.  A spherical volume is typical for a metastasis but not 

necessarily so for a meningioma.  Small lesions will be investigated separately 

because in those cases PIV is bigger than TV and the simplifications made for 

the margin estimations cannot be applied.  

In this study the aim was to find characteristic patterns in how set-up errors 

influence the total dose.  For that reason, displacements have been chosen to 

cover shift (systematic error), spread (worst case of random error with 

opposing displacements) and selected combinations of them.  Real set-up 

errors will typically be something in between the selected cases.  A five fraction 

treatment is unlikely to have all the displacements in different directions as 

simulated in this work.  It is more realistic that some of the fractions are 
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displaced in the same or similar directions and with different magnitude.  The 

result of a real five fraction treatment might be similar to the 3F±XZ simulation 

or even to the 3FXYZ scheme with a significant systematic contribution.   

The effect of cancellation depends on the dose gradient.  This work shows the 

potential effects and strategies for displacements of up to 2 mm for multi-shot 

plans.  However, in a multi shot plan the situation is more complex than shown 

in Figure 3.8.  The gradient is not always smooth as for the single shot used 

for the illustration of the principle.  Therefore the effect is likely dependent on 

the planning style.  This work demonstrates that the principle works for multi-

shot plans.  However, it is likely that the gradient should be smooth and shots 

should not be placed on or even outside the target in order to improve 

conformity.  A good GI as described by Paddick and Lippitz (2006) [69] should 

be achieved.  Furthermore, no investigations have been made here for the 

effect for plans with other prescribed isodose levels such as 70% or 80%.     

The possibility to “correct” an underdosage in the target and the respective 

overdosage in the NT on the opposite side seems to have potential for the 

future.  It should be noted that the calculations in this work are based on 

physical dose.  The BED effects are not necessarily the same.  Physical dose 

cannot be easily converted into BED because the effects for small volumes 

and high dose levels are not well researched [171, 172].  Furthermore dose 

rate has an impact too [175]. 

Using the last part (last few fractions) of the treatment course to correct a 

systematic error characterised during the first part requires an exact recording 

of the intrafraction movement and post fraction positions.  Careful quality 

assurance for such a technique would be essential.  The total displacement 

(averaged from post treatment CBCT values) of the first three fractions would 

have to be measured and evaluated automatically.  To avoid correction in the 

wrong direction the “correction coordinate” would need to be evaluated 

automatically; ideally together with an automatic sumPlan calculation including 

the effect of the measured displacements for each fraction plus the calculated 

dose distribution for the planned corrective treatment fraction about to be 

delivered next.  This could be implemented similarly to the pre-treatment 

correction [174].  Icon™ has the tools (CBCT, marker tracking with X, Y and Z 
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coordinate information, HDMM) to realise this potential development and for 

the overall workflow to be further developed.    

 

3.5   Conclusion 

Prescribing the treatment dose to the 50% isodose minimizes the effect of 

random error on coverage.   

In order to characterise the random distribution, SRS fractionation schemes 

with higher fraction numbers are preferable in terms of coverage.  More 

fractions allow the quantification of potential systematic errors and the 

potential to develop the GK Icon workflows to correct systematic error for up 

to 2 mm displacement.  

Any applied margins do not only increase the irradiated NT but also irradiate 

it with higher than the prescribed dose.  

BED is not well investigated or characterised in a steep dose gradient situation 

and for high doses.  BED effects are likely to change the effects of coverage 

and especially on the GI in one or the other direction.  
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Chapter 4:  

Dose to brainstem due to positional uncertainty 

 

The work in this chapter will form the basis of a paper to be submitted for 

publication. 

 

 

4.1   Background and Introduction 

4.1.1   Fractionated SRS and uncertainties 

Treating the whole target volume is essential to avoid recurrence.  However, 

it is equally essential to protect organs at risk that are vital for survival.  One 

of the most important and critical organs is brainstem (BS) and this is used 

here as an example of OAR effects.  The BS connects the brain to the rest of 

the body.  It controls the flow of messages.  It also controls many vital body 

functions such as breathing, sleeping, heart rate, or blood pressure.  Each 

function is located in a specific region within the BS.  For that reason, the 

function of a damaged part of the BS cannot be substituted by another part as 

is possible in a parallel organ like the lung or kidney where a certain 

percentage of the volume may be spared, but the location is not critical.  Hence 

no percentage of volume can be irradiated safely over the tolerance dose for 

BS.   

A “tolerance dose” is defined in relation to the treatment.  When the disease 

treated is not life threatening the tolerance dose is lower compared to the 

treatment of a malignant and life threatening disease.  Tolerance dose is a 

value that balances the risk in relation to the benefit.  Or in other words: 

keeping the dose below the tolerance dose does not guarantee that the patient 

will not suffer from side effects.  

Tissue damage is a function of dose and volume.  In single-fraction SRS 

necrotic brain tissue can be observed at dose levels of 12 Gy [13, 113, 140, 

176-182].  As a general rule of thumb, the tolerance dose for brainstem is 
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therefore 12 Gy for a BS volume of maximal 10mm3.  “Rule of thumb” because 

there are two exceptions.  One is with the treatment of the trigeminal nerve.  

In cases where the trigeminal is hypersensitive, the nerve can be "blocked".  

There are various options to do this, such as drugs, surgery, injections, and 

others.  Radiosurgery is only one possible method.  In order to numb the nerve, 

a high point dose of 70-90 Gy has to be applied where the nerve passes 

through the skull bone [84, 85] right next to the BS.  However, the volume is 

an important factor, and the trigeminal treatment is done with a single small 4 

mm shot [183].  The accepted tolerance dose for BS in this situation varies 

from a maximum of 10 mm3 with 12 Gy and no more than 1 mm3 with 15 Gy 

[86, 184] up to the 50% isodose touching the BS. In our hospital, 80 Gy and 

the 40% isodose touching the BS was used at the time this work was carried 

out.  As an aside: comparing the contouring of different clinicians shows 

differences which may reach a millimetre or even more, which would influence 

the dose to the BS without affecting the reported numbers.  

The other exception for a higher BS dose is when the tumour itself would 

cause severe side effects and possibly death, for example, when the tumour 

is completely embedded in the BS.  In this situation, the exact location of the 

tumour (BS function in that place), tumour doubling rate, and other factors 

have to be assessed on a case to case basis for the radiation oncologist to 

decide the optimum balance.  Especially in such situations where the safe 

dose for the BS has to be exceeded, it is much more important to keep the 

dose as low as possible while not compromising the target.  

4.1.2   Effect of uncertainties on nearby tissue 

In the previous work [1] potential uncertainty of eXtend, the GK relocatable 

repositioning system, was evaluated.  On eXtend a vacuum assisted 

mouthpiece is used to ensure the correct position of the patient’s head.  A 

change in the level of the vacuum is assumed to be due to a patient movement 

and pauses the treatment.  Generally, the pause would be triggered for a target 

movement of less than 1 mm but potential movements of up to 2 mm were 

observed.   
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The most recent GK model, the Icon system, uses a different approach for set 

up and intrafraction surveillance.  An individually moulded cushion and a 

thermoplastic mask is used for the initial set up.  The correct position is verified 

against a stereotactic reference planning cone beam CT (planning CBCT).  

Displacement and rotation are then corrected before treatment commences.  

During the treatment the correct position is surveyed with a tracking system 

based on a reflector placed on the nose tip.  Its position is compared to the 

reflectors on the rigid reference system of the Icon mask adapter.  A tolerance, 

typically 1 mm, can be set in the high definition motion manager (HDMM) 

which would stop the treatment if it is exceeded and the position corrected with 

an additional CBCT.  Wright et al [185] measured the reliability of the reflector 

of the nose tip by introducing a known error and using a phantom head.  They 

found good agreement between induced reflector displacement and reflector 

indication on the HDMM within 0.15 mm.  Based on the phantom measurement 

they found in most cases that the intracranial anatomy is displaced 43% 

(mean) less than the nose tip but can be displaced more than the nose tip and 

may reach 2 mm or more depending on the lesion location.  The HDMM 

system internally measures translation in X, Y and Z directions, calculates a 

total vector and displays the total magnitude of it but not the direction.  

Chung et al [39] evaluated the inter- and intrafraction motion of four patients 

in the mask system treated clinically on a Clinac for 28 sessions in total.  As in 

the phantom experiment of Wright et al, Chung too found that the displacement 

of the nose tip reflector may be different to that of the target.  For the target 

they found the mean displacement during treatment (difference between pre 

and post CBCT) was 0.27 mm.  The largest intrafraction variation of the target 

was 3.63 mm.  On the other side the maximum intrafraction motion of the nose 

tip indicated by the reflector was 3.16 mm while the CBCT for the nose tip 

reflector indicated a movement of 3.71mm or 0.55 mm more than the HDMM 

system detected.  The potential uncertainties based on four patients and a 

HDMM action level of 1 mm would be about 1.5 mm.   

In the previous work [2] the dose gradient was found to decrease with 

increasing displacement.  This means the physical dose inside the target 

decreases but remains above the prescribed dose while the dose outside the 
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target in NT and OAR increases.  However, with fractionation the dose per 

fraction in the OAR is reduced to levels below 7.5 Gy and benefits from the 

repair effect.  

This chapter evaluates the effects of uncertainties on OAR dose in terms of 

BED outside the target using the brainstem as an example.  Lesions in or near 

the BS are of particular interest. Any tumour growth damaging the BS may 

lead to the death of the patient, but the same could happen with too large a 

volume of the BS irradiated excessively, for example due to an added margin 

or a reduced dose gradient.  Strategies to minimise underdosage due to set 

up error without the necessity of adding a margin would be of significant 

benefit. 

 

4.1.3   Physical dose and biological effective dose  

So far GK SRS has typically been delivered in a single fraction with a clearly 

defined dose, prescribed to the 50% isodose line.  Treatment with hypo-

fractionation should keep the BED at the prescribed isodose level the same 

(or higher) than that for the single fraction treatment.  Cell death depends on 

fraction dose, the total dose, the overall time in which the dose is delivered 

and the cell type [154, 171].  Up to about 6-8 Gy per fraction the relationship 

between physical dose and BED is described by the linear quadratic (LQ) 

model [186, 187].  The model is widely used in fractionated radiation therapy 

for fraction doses in the range 1.8-5 Gy and occasionally up to 8 Gy.  For these 

lower doses some of the damage to the DNA can be repaired between 

fractions.  These repair mechanisms work better for NT than for tumour tissue 

hence the advantage for NT with fractionation. The higher the dose the higher 

the damage and the less effective the repair.  The LQ-model is a continuously 

upward bending curve describing the higher damage for higher doses.  

However, for higher doses above around 6-8 Gy, depending on the cell type, 

the damage to the DNA is so high that no repair is possible and the formula 

overestimates the BED and so, for example, cannot be applied to doses used 

in single fraction SRS.  There has been considerable experience with single 

fractions where a single high dose is delivered but there is limited data in the 
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range between 6 - 8 Gy per fraction and the higher SRS doses [139, 171, 188, 

189]. In the higher dose region, where the LQ model overestimates the dose 

effect, BED has a linear relation to the physical dose and the multi target 

model, which assumes a minimum number of hits is required to destroy the 

DNA, predicts the outcome better [115].  

 

Park et al [131] suggested a universal survival curve (USC) that combines the 

two models, tweaking the parameters from (historic) in vitro survival studies, 

covering a range of potential values, such that the two parts of the curve, the 

low dose range for fractionated RT where the LQ model is used and the high 

dose range from single fraction SRS where the multi target model is applied, 

transition seamlessly into each other [131].  More recently, this approach, to 

combine LQ model and multi target model, has become more popular with the 

option of in-silico experiments [190].  

 

In order to add the correct BED in the case of a displacement and for 

comparison with a single fraction treatment the conversion of physical dose to 

BED for higher doses is needed.  This work will investigate the BED outside 

the target in the BS with and without positional displacement 

 

4.2   Material and methods 

4.2.1   Calculation of BED 

For the theoretical study in this work the split formula from Park et al. [131] 

was used.  In this formula equation 1 describes the conversion of physical 

dose to BED in the lower dose region up to the transition dose using the LQ 

model while equation 2 describes the conversion for the higher dose range 

using the multi target model.  The parameters have been selected to ensure 

that both parts of the curve match.   
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𝐵𝐸𝐷 = 𝐷(1 +
𝑑
𝛼

𝛽

)      equation 1  for d ≤ DT 

 𝐵𝐸𝐷 =
1

𝛼𝐷0
(𝐷 − 𝑛𝐷𝑞)   equation 2  for d ≥ DT 

 

n number of fractions 

d fraction dose [Gy] 

D Total dose (n*d) [Gy] 

α/β dose at which the linear and quadratic components of cell killing 
are equal [Gy] 

α parameter of initial slope of cell survival curve [Gy-1] 

D0 Parameter of the slope of the multi target curve [Gy]; slope is 1/ 
D0 

Dq x-intersection of multi target curve [Gy] 

DT Dose at which the LQ model transitions to the multi target model 

 

The BS is outside the target therefore the physical dose to the BS is below the 

prescribed physical dose which, for fractionated delivery, is less than 8 Gy and 

therefore covered by the commonly used LQ part of the split formula.  

However, the physical dose to the target is ideally above 20 Gy but can be 

lower if compromises are required due to size (more NT irradiated with higher 

doses) or OAR such as BS nearby, doses can be reduced to 18 Gy or even 

16 Gy.  In order to choose the steepness of the linear part of the high dose 

curve other reference points from the literature were used to fit the curve.  

Millar et al [175] evaluated the BED for a GK treatment of a patient with a 

meningioma and calculated the BED for 12, 13 and 14 Gy dependent on the 

dose rate which was indicated by the number of shots.  The steeper the linear 

part of the curve the higher the effect of fractionation.  For that reason the 

lower end of the range was chosen as reference to optimise the curve 

parameters.  The BED values for 12 Gy, 13 Gy and 14 Gy physical dose were 

45.5 Gy, 52.2 Gy and 58 Gy, respectively.  Furthermore, this work compares 

the effect of fractionation compared to a single fraction for the same plan, so 

the doserate would be the same for all treatments.   

This investigation focused on the potential effect of the gradient in the low dose 

volume outside the tumour.  Of particular interest is what effect one fraction 
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out of three or five fractions displaced towards the BS could have on the total 

BED to the BS, increasing the BED in the BS for that one treatment while the 

other fractions are displaced in different directions.  

 

4.2.2   Target selection  

For this investigation nine patients were selected.  Seven had medium sized 

targets (range 611-4840 mm3) in close proximity (2) to, overlapping with (2), 

or embedded (5) in the brainstem as can be seen in Figure 4.1.  In addition to 

that, two extreme situations were added with a small target (15.3 mm3) in the 

brainstem and a large target (14570 mm3) approximately 5 mm dorsal to the 

brainstem. 

The targets are shown in Figure 4.1 where the lesions and their position in 

relation to the brainstem are shown for seven patients in transverse slices 

including the plan.  Figure 4.2 shows an extreme situation with a lesion inside 

the brainstem leaving only a small rim of brainstem and Figure 4.3 shows a 

large lesion in close proximity to the brainstem so that high doses reach inside 

the brainstem.  
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Figure 4.1: Overview of the general location of the medium sized lesions and transverse slice 

of the BS and the lesion for seven patients evaluated in this study. 
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Figure 4.2: : transverse and sagittal slice of a lesion in the brainstem.  The lesion is an 

extreme location completely embedded in the BS leaving only a small rim of BS. 

 

 

    

Figure 4.3: A large lesion at approximately 5 mm distance to the brainstem was selected.  

Due to the size of the target the BED gradient is less steep and the 9Gy isodose (BED 48.5 

Gy, depending on the prescribed dose) reaches far into the brainstem (outer green line in 

lower zoomed images). 
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4.2.3   Planning 

For each case, target and brainstem were contoured.  A reference plan using 

GammaPlan Software® (GP, Version 10.2.0, Elekta AB, Stockholm, Sweden) 

was created.  No special optimisation (no blocking of sectors) to reduce the 

dose to the BS was made other than a tight conformation to the target because 

the contact area was too large to avoid it.  The physical dose was prescribed 

to a nominal 50% of the maximum physical dose.  Then the 3D dose 

distribution (resolution 0.5 mm) and the contours of target and BS were 

exported as DICOM RT files and further processed with in-house software 

based on Matlab and Excel where it was converted to BED for further 

processing and evaluation.   

 

4.2.4   Simulated displacement  

As in the previous work [2] three and five fractions have been simulated.  The 

displacement was in +X (lateral) for the first fraction, +Y (ventro/dorsal) for the 

second fraction, and +Z (cranio/caudal) for the third fraction for the simulation 

of Plan 3FXYZ.  Accordingly the displacements for the Plan 3F±XZ were in +X for 

the first, -X for the second and in +Z direction for the third fraction.  The five 

fraction plans represent an extreme spread scenario with symmetric opposing 

displacements in +X for the first fraction and -X direction for the second 

fraction.  The displacement in Y direction (+Y for the third and -Y for the fourth 

fraction) was also symmetrical.  The fifth fraction was simulated in +Z direction 

(5F±X±YZ).  All plans have been calculated for displacements of 0.0 mm, 0.5 

mm, 1.0 mm, 1.5 mm and 2.0 mm.  A predefined set of displacements have 

been used to evaluate extreme situations.  This approach allows to define a 

range of reference situations that cover typical clinical displacement values, 

but go further to consider trends.  With three or five fractions there is no 

averaging out of the total dose distribution.  For real patients the actual 

measured displacements can then be compared with these reference 

situations for an indication of likely effects to aid in decisions about further 

treatment fractions.  A pure systematic shift with all fractions displaced in the 
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same direction was not included in this evaluation since it is basically only a 

displacement of the ideal curve as demonstrated with the physical dose in the 

previous work [2].  

The displacement schemes were chosen to be zero (single fraction, three 

fractions and five fractions), pseudo-random (displacements in opposing 

directions in order to keep the resulting systematic error low but have a large 

“spread”), and a combination of the two where a systematic displacement and 

a random displacement is simulated.  The systematic shift is always towards 

the BS to simulate the worst case for the OAR.  

 

4.2.5   Creating a SumPlan for multiple fractions 

For each fraction the BED distribution was shifted according to the above 

described displacements and added to the total BED of each voxel.  In addition 

to the volume of the BS irradiated, it is also important that on each slice at 

least a part of the BS receives a BED well below tolerance BED since the BS 

is predominantly a serial organ.  A profile through a critical diameter was also 

evaluated for the effect of the total BED.  Of interest was the BED change due 

to positional displacement in the low dose area, i.e. up to the prescribed BED.  

The prescribed physical dose levels are 1 x 18 Gy for a single fraction, 3 x 7.5 

Gy = 22.5 Gy and 5 x 5.5 Gy = 27.5 Gy for the fractionated schemes and the 

respective BED doses are 1 x 78.5 Gy, 3 x 25.5 Gy = 76.5 Gy and 5 x 15.6 Gy 

= 78 Gy.  A more detailed description can be found in the previous work 

dealing with effects of similar geometric uncertainties on the target volume 

doses in fractionated GK treatments [2]. 

For the single plan and fractionated plans with no displacement the dose was 

calculated in physical dose and BED.  For the plans with displacements only 

BED was calculated.  
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4.2.6   Parameters evaluated from the simulation: 

Dose profiles orthogonal to the target surface were evaluated in terms of 

physical dose and BED for three different fraction schemes (1, 3, and 5 

fractions) and three different scenarios of set-up errors (3FXYZ, 3F±XZ and 

5F±X±YZ) with displacements of 0.5 mm, 1.0 mm 1.5 mm and 2.0 mm.  In 

addition the DVH of the BS dose was evaluated.   

 

4.3   Results   

4.3.1   Calculation of BED chosen parameter 

The conversion formula was split into two parts at the transition dose DT of 7 

Gy, taken as a mid-value between 6 and 8 Gy to which the LQ model is valid.  

For the lower part / was set to 3 for the brainstem [139, 140].  

The parameters for the high dose range were adapted from Park et al [131] 

and modified to fit the low dose part of the curve and to go through the points 

reported by Millar et al [175] in the high dose region.  The parameters were 

0.18 Gy-1 for , 1.1 Gy for D0 and 2.45 Gy for Dq.  The resulting curve is shown 

in Figure 4.4.  
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Figure 4.4: BED is plotted as a function of physical dose where BED calculation for low and 

high physical dose uses the combined universal survival curve (USC) based on Park et al 

[131].  For doses below 7 Gy the LQ model was used to convert the physical dose into BED 

(green dashed/dotted line).  For high physical doses a linear curve is used (thin purple dashed 

line partly overlaying the combined curve).  Additional points in the high physical dose range 

(blue dotted line) have been derived from the work of Millar et al. [175]) The combined curve 

is used for comparison of the plans. 

 

Based on this conversion curve (Figure 4.4) the BED for fractionated treatment 

was calculated.  Table 4.1 lists the physical dose and the appropriate BED for 

the reference (prescription) doses, maximum doses and the respective 

physical doses to 1 x 12 Gy in a single fraction treatment, a frequently used 

measure of BS toxicity and necrosis.  The percentage changes are shown 

relative to the single fraction regime. 

 



- 108 - 

Table 4.1.  Physical dose and the corresponding BED with single fraction as reference (Ref) 

Fract. 

Scheme 

Physical dose 

BED 

1x18Gy 

1x78.5Gy 

3x7.5Gy 

3x25.5Gy 

5x5.5Gy 

5x15.6Gy 

Total prescribed dose    

 Phys dose (Change [%]) 18Gy (0%, Ref) 22.5Gy (+25%) 27.5Gy (+53%) 

 BED (Change [%]) 78.5Gy (0%, Ref) 76.5Gy (-2.5%) 77.9Gy (-0.8%) 

Total max dose    

 Phys dose (Change [%]) 36Gy (0%, Ref) 45Gy (+25%) 55Gy (+53%) 

 BED (Change [%]) 170Gy (0%, Ref) 191Gy (+12.8%) 217Gy (+27.6%) 

Equiv of 1x12Gy Physical Dose     

 Phys dose (Change [%])  12Gy (0%, Ref) 15Gy (+25%) 18.3Gy (+53%) 

 BED (Change [%]) 48.5Gy (0%, Ref) 39.9Gy (-17.7%) 40.7Gy (-16.1%) 

 

4.3.2   Fractionation versus single fraction (BED) 

Fractionation increases the BED inside the target while it is reduced outside 

and this steeper dose gradient (BED gradient) allows a better protection of the 

BS (Figure 4.5, target as seen in Figure 4.7).  The position of the 48.5 Gy BED 

(1 x 12 Gy physical dose) isodose for the hypo-fractionated treatment is shifted 

by 0.45 mm towards the target thus reducing the BED to the BS compared to 

the single fraction SRS.  These results are valid for the selected fractionation 

schemes and may vary if other fraction numbers and doses are used.   
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Figure 4.5: Profile of the BED for single fraction (1F), three 

(3F) and five fractions (5F), each with no displacement (s0).  

BED is the same for all three schemes at the level of the 

prescribed isodose.  With increasing number of fractions the 

gradient increases.   

 

The DVH of the BED for the same three fractionation schemes show the same 

effect as the profiles.  The BED to the BS is lower for the fractionated 

treatments than for the single fraction treatment (Figure 4.6, target as seen 

inFigure 4.7).  The BED in the target was omitted in the DVH because the 

parameters to calculate BED are specific to each cell type and likely differ for 

the tumour cells compared to the BS cells. 
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Figure 4.6: The DVH of the BED to the BS (BED below 80 Gy) for different fractionation 

schemes without displacement (s0) shows a lower dose to the BS for fractionated treatment 

(3F, 5F) than for the single fraction treatment (1F). 

 

4.3.3   Introducing positional uncertainties 

Applying a displacement of 2 mm for the 3FXYZ plan (combination of spread 

and shift) the BED to the BS increases.  Considering the profile, in Figure 4.7 

the example of a medium sized target embedded in the BS, the effect of 

pushing the treatment towards the BS increases the BED at the target line by 

9.8 Gy (standard deviation (SD) 4.6 Gy).  However, only about 0.4 mm (SD 

0.1 mm) of the BS receives this increased BED when one fraction is displaced 

by 2.0 mm towards the BS and the other two fractions are displaced in ventral 

and dorsal directions by 2.0 mm (Figure 4.7, top left).  
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Figure 4.7: Profile through the centre of the lesion embedded in the BS.  The displacement 

for the three fraction plan was in X (lateral, fraction one), Y (ventro-dorsal, fraction two) and Z 

direction (cranio-caudal, fraction three).  A systematic shift is visible with an underdosage 

(BED) of the target on the right side and a small overdosage (BED) of the BS on the left side.  

However, the overdosage (BED) is only observed in a range of less than 0.5 mm (3FXYZ, top 

left).  For the other two schemes where the displacement is predominantly in opposing 

directions (3FXZ, top right and 5FXYZ, bottom left) no displacement of the overall or total BED 

from all three or five fractions respectively can be seen.  The displacement in opposing 

directions results in a lower BEDmax and a reduced BED gradient.   

 

When the displacement component is predominantly symmetric (spread) with 

two displacements in opposing directions (3FXZ as seen in Figure 4.7 top right 

and 5FXYZ as seen in Figure 4.7 bottom left) then the main effect is a slight 

increase of BED to the BS.  With increasing displacement per fraction the BED 

to the BS is increased until it reaches the BED of the single fraction plan with 

about 1.5 mm displacement per fraction.  No significant volume of the BS 

receives a BED higher than the prescribed dose, or in other words the dose 

increase due to one displacement towards the BS is not critical if another 

displacement is in the opposite direction.  This is unlike the situation of a 

conventional treatment with homogeneous dose distribution. 
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The effect of the BED reduction due to the hypo-fractionation is also visible in 

the DVH of the BS.  However, the effect of increased/reduced BED to the BS 

due to the shift component is almost undetectable because of the lack of 

positional information in a DVH and the large volume of the brainstem 

compared to the target volume.  

In Figure 4.8 top right the DVH of the BS with the target close to but not 

embedded in the BS shows the increase of BED to the BS when 3FXYZ 

displacement is recalculated.  However, despite the increase the BED is still 

generally below the BED to the BS from a single fraction.  The BS volume 

receiving 48 Gy BED (1x12 Gy equivalent) is smaller for a displacement of 0.5 

and 1.0 mm than for the single fraction while the volume of the 3FXYZ plan with 

a displacement of 1.5 and 2.0 mm is slightly larger than that of a single fraction 

treatment.  

 

           

 

Figure 4.8: DVH based on BED of the BS only.  The target is close to the BS and the 

displacement was simulated towards the BS.  The DVH of the three fraction plan with a shift 

(systematic) element shows an increase of BED dose to the BS but still below the BED for a 

single fraction.  For the other two treatments there is no significant change observable in the 

DVH of the BS. 
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For the plans simulated with spread (Figure 4.8 bottom left for 3FXZ and Figure 

4.8 bottom right for 5FXYZ) the BED to the BS for fractionated treatments 

remains below that of the single fraction treatment. 

 

4.3.4   Comparison of small volume to large volume 

With increasing spread the BED gradient becomes less steep.  For small 

volumes this may lead to a dose reduction inside the target.  Figure 4.9 top 

shows the decline of the BED dose gradient for a large volume where the BED 

in the centre remains constant but the border areas are reduced to almost the 

BED of the single fraction.  For small volumes (Figure 4.9 bottom) the flat top 

area is not reached in the initial plan due to the small size.  With increasing 

spread in the fractionated treatments the BED to the target is reduced and 

becomes, in this example, below the BED from a single fraction treatment 

when the fractionated treatments have a displacement of 2 mm. 
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Figure 4.9: Profile through a medium/large target (top) and a small target (bottom) shows the 

reduction in BED gradient with increasing spread.  

 

4.4   Discussion 

Radiation therapy with conventional fractionation uses the advantage of the 

better repair for NT compared to tumour cells.  A higher α/β for tumour cells 

than for NT is a particular advantage in regions where the two types of cells 

are mixed.  With single fraction SRS another advantage is present.  Solid 

tumour cells often suffer from low oxygenation and are therefore more 

resistant to irradiation.  With the high single dose the damage is so great that 

all cells are killed.  Moving to hypo-fractionation mixes the two effects.  

Depending on planning strategies, cell parameters and fractionation schemes, 

to mention just the most important factors, the tumour is still treated with a high 

fraction dose where the multi-target model is dominant.  However, in the 

border region the two effects are mixed or transitioning from one into the other, 

whereas in traditional SRS the dose effect of the multi target model was 
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relevant to a few millimetres beyond the target volume.  In fractionated 

treatments the LQ model needs to be applied which reduces the BED adjacent 

to the target where tumour cells could potentially be infiltrating into the BS or 

other NT.   

 

While the general behaviour of the BED usually follows the results presented 

in this work, it is essential to emphasize that the details may differ depending 

on cell type and other parameters.  The most challenging problem is that the 

parameters for the conversion from physical dose to BED are cell type 

dependent.  This means that an individual BED distribution should be 

calculated for each cell type present.  As a result either the BED distribution 

might contain steps and sudden changes in direction/steepness at positions 

where the cell type changes or an individual BED isodose plan for each cell 

type should be calculated.   

Parameters for conversion factors are known from in-vitro experiments for the 

LQ model of the most important NT types.  For other cell types the values have 

to be estimated or ideally evaluated.  

Even when the conversion parameters are well known the conversion to BED 

also depends on the dose rate, so respectively on the plan characteristics such 

as source strength, shot size, plan efficiency and shot placement [175, 191].  

In this work the principal changes in BED between single fraction and hypo-

fractionated have been evaluated and discussed.  The exact values of BED 

may differ and need to be evaluated individually case by case.  With the option 

of in-silico experiments research has started in the direction of such cell type 

specific BED calculation with combined models [190, 192-194]. 

With the move to hypo-fractionation the prescribed (physical) dose, at the 50% 

or similar isodose, moves closer to the transition (physical) dose between the 

two conversion models, resulting in a BED increase inside the target where 

the physical dose is higher and a BED reduction outside the target where it is 

lower.  This is equivalent to a steeper BED gradient across the two areas.  

With the steeper BED gradient, in the displacement scenarios modelled the 

BED to the BS increases only in a very small region near the target.  However, 
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any shift rapidly results in an under dosage (BED) of the target as compared 

to a single fraction plan without displacement.  The effect of a pure systematic 

shift, albeit with physical dose, has been modelled in previous work [2].  The 

mask system allows more movement of the patient head then the fixed frame 

would.  Chung et al 2014 [39] measured the potential displacement in the Icon 

mask on a Clinac system at up to 3 mm.  A Clinac system is not fully 

comparable with the Icon system.  With clinical use on the Icon a reflector is 

placed on the nose tip and the position is measured using infrared cameras to 

detect patient movement.  A HDMM threshold can be defined, usually 1 mm, 

at which the treatment is paused.  Chung et al found good agreement between 

the marker as detected by the HDMM system and the CBCT but measured up 

to 0.5 mm differences in some cases meaning the treatment might only be 

stopped at a nose displacement of 1.5 mm.  Wright et al 2017 [185] evaluated 

the displacement of the target in relation to the nose tip marker for eleven 

patients.  No patient case showed a target displacement greater than the 

marker displacement.  However, in the phantom study part of their work, 16 of 

the 161 displacement simulations showed a potential intracranial 

displacement of the target that exceeded the displacement in the nose tip 

marker.  The most severe case was 1.2 mm more than the marker meaning 

more than 2 mm target displacement is possible depending on the lesion 

location, when the HDMM threshold is set at 1mm.  These results are highly 

dependent on the origin of rotation.   

 

In the plans considered for this work the 48 Gy (BED) isodose is always about 

0.5mm closer to the target for hypo-fractionated treatments than for the single 

fraction treatment, meaning that in areas with BED below that value (when the 

physical dose prescribed is 1x18 Gy to the 50% isodose line) the fractionated 

treatments have a smaller volume with increased BED than a single fraction 

treatment.  However, it also means that the BED reduction to the target on the 

opposite side is bigger than that of a single fraction with the same 

displacement and an underdosage might lead to a recurrence.  Adding a 

margin would increase the volume of the BS with high dose.  In previous work 

[2] the physical dose was shown to change minimally at the 50% isodose level 
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when displacements are in opposite directions.  In this work the same effect 

can be observed when the dose is calculated in BED.  As seen previously, a 

spread results mainly in a reduction of the BED gradient.  Since the HDMM is 

set to a certain level, usually 1.0 mm, to pause the treatment and since the 

position of the target may have moved even more than that, repeating the 

CBCT could quantify the true magnitude and direction of the target movement.  

The displacement could then be corrected and the treatment re-started.   

In this experiment the treatments were simulated to be in one place for the 

whole treatment meaning the simulation assumed a displaced treatment start.  

In a clinical treatment all initial displacements are corrected before the 

treatment starts.  For a displacement occurring during treatment it is not clear 

whether it was displaced immediately after the start or just shortly before the 

HDMM paused the treatment.  As can be seen in the 5F±X±YZ and 3F±XZ 

SumPlans displacements of even 2 mm do not significantly increase the total 

BED as long as the displacement is random and in different directions.  When 

the displacements are in a similar direction, such as in the series of the 3FXYZ 

plans, the BED to the BS at that side increases.  Since the profiles suggest an 

underdosage of the target on the opposite side a margin might be considered.  

However a margin would further increase the dose to the BS, which would 

work against the advantage of GK treatment to minimize dose to OAR and 

normal tissues in the usual no margin approach.  It may be possible instead to 

consider quantifying systematic displacements in earlier fractions to consider 

corrections in later fractions, but this requires further work and careful 

evaluation and to be considered within the framework of the specific workflows 

used. 

 

4.5   Conclusion 

Fractionation reduces the BED to the BS by increasing the steepness of the 

BED dose gradient compared to a single fraction treatment, which in turn will 

increase the safety margin towards OAR.  This is especially the case for doses 

below 7 Gy.  In this simulation the BED of the prescribed dose at the 50% 

isodose level was kept constant for all fractionation schemes.  Positional 
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uncertainties in fractionated treatments then reduce the BED gradient, but it 

remains steeper than the BED curve from a single fraction treatment.  Random 

displacements in near opposing directions cancel each other out meaning a 

single displacement towards the BS does not result in an increased BEDmax in 

the BS if another fraction is displaced in the opposite direction. 
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Chapter 5:   

Evaluation of the options for a correction instead of a 

margin. 

 

The work in this chapter will form the basis of a paper to be submitted for 

publication. 

 

5.1   Background and Introduction 

5.1.1   Fractionated SRS and uncertainties 

To treat a solid tumour successfully with stereotactic radiosurgery (SRS) it is 

important to ensure that all tumour cells receive a minimum dose which 

depends on the cell type.  It is equally important to avoid toxicity of normal 

tissue, especially to organs at risk (OAR) such as the brainstem (BS).  Until 

recently Gamma Knife treatments have been single fraction treatments, with 

a fixed used to minimize set up uncertainties.  This single fraction is treated 

with a high dose that limits the treatable targets in size and location (proximity 

to an OAR) [3].  Hypo-fractionated SRS (hfSRS) can reduce the toxicity of 

OAR because the biologically effective dose (BED) to the OAR is reduced 

[152] but fractionation requires a relocatable positioning system that 

introduces positional uncertainties [36, 195-197].  Positional uncertainties may 

reduce the dose to the tumour and at the same time increase the dose to the 

OAR. 

 

5.1.2   Avoiding underdosage of the target 

For fractionated treatment a mask system is applied which allows repositioning 

within a few millimetre.  Before the treatment starts a cone beam CT (CBCT) 

is acquired to evaluate the exact position of the tumour and correct any 

detected displacement before irradiation is started.  However, Chung et al [39] 

found that the patient and with them the target may move up to 3.6mm inside 
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the mask between start and end of a single treatment session.  To avoid large 

movements during irradiation GK Icon has a high definition motion 

management (HDMM) system, which measures the position of a reflector 

placed on the nose tip to estimate the patient’s movement.  Although the 

movement of the nose tip is not necessarily identical with that of the target it 

may be assumed that in general the target moves less than the reflector.  

Wright et al [185] evaluated the displacement of the reflector and the target in 

eleven patients and found in all cases that the target movement was less than 

the reflector movement.  A more systematic evaluation of 16 potential locations 

evaluated in a phantom showed that a target displacement of up to 1.2 mm 

larger than the movement of the reflector placed on the nose tip is possible.  

This means a theoretical target displacement of 2.0 mm is possible at the 

trigger level of 1.0 mm.  

A displacement may result in an underdosage of the target and lead to a 

recurrence.  To avoid underdosage in conventional radiation therapy a margin 

is applied.   

 

5.1.3   Avoiding overdosage on BS and OAR  

Normal tissues that surround tumours in the brain are mostly brain tissue and  

often very important and sensitive organs like optic nerve, chiasm or BS.  Due 

to the steep dose gradient any displacement would lead to an increase in dose 

to the OAR.  Even worse, due to the steep dose gradient and because the 

dose is prescribed to the 50% isodose a displacement would not just increase 

the volume of the OAR receiving the prescribed dose but the dose in the OAR 

would also be higher than the prescribed dose.  Adding a margin to avoid 

underdosage of the tumour would increase the problem.  Margins should 

therefore be avoided or minimized in GK SRS.  
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5.1.4   Differences between GK-SRS and conventional 

fractionated external beam RT 

The concept of adding margins to avoid underdosage originates from 

conventional radiation therapy (RT).  For this type of treatment, a low fraction-

dose is used for a high number of fractions, the prescribed dose and the 

maximum dose are similar with the aim of a homogeneous dose distribution 

and a D(max) of less than or equal to 107% [108] of the prescribed dose.  

Under these conditions any displacements, random or systematic, lead to a 

reduction of the volume receiving the prescribed dose.  In conventional RT 

larger movements are observed (patient and organ movement) and in addition 

to that a degree of cell infiltration into the NT area is assumed.  For these 

reasons it is necessary to irradiate mixed cell tissues consisting of NT and 

tumour cells.  Each cell type has a different dose that will kill the cell.  Usually 

the toxic dose to the tumour is slightly lower than that for a NT cell.  Achieving 

a homogeneous dose distribution in the target volume maximises the therapy 

effect with best tumour control and low (tolerable) NT damage.  This difference 

in toxic dose for NT cells and tumour cells allows the use of a margin to cover 

all tumour cells without exceeding toxic dose for NT cells at the same time. 

This condition does not exist in brain SRS.  The brain as an organ usually does 

not move like lung or bowel.  Tumours treated with SRS are considered to be 

solid without mixing with normal tissue several millimetres away from the 

tumour and last but not least, most organs adjacent to a brain tumour are 

highly sensitive and benefit from a low dose which can be achieved by a steep 

dose gradient.  

With the skull attached G-Frame is screwed directly to the skull bone and then 

mounted to the GK-treatment couch, accuracy was well below a millimetre and 

the impact of uncertainty of low concern.  Therefore, and because it was a 

single fraction, there were no investigations made in how displacements affect 

the total dose.  The dose gradient above the prescribed dose and the dose 

inhomogeneity might behave differently than for conventional RT.  

Furthermore, with only five or less fractions no statistical averaging is 

happening.  However, re-positioning systems for (hypo-)fractionated 

treatments introduces greater positional uncertainty. 
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5.1.5   Alternative method: Correction of displaced treatment.  

Investigating the effect of positional uncertainties to the total dose distribution 

(biologically effective dose (BED)) showed that a random error (two 

displacements in opposing direction had almost no effect on the volume of the 

prescribed dose or the target coverage for a displacement of up to 1.5 to 2.0 

mm (depending on the plan characteristics [2]).  This means, no margin is 

required to compensate for underdosage due to random error.  However, a 

systematic error (or a shift) would cause an underdosage in the target and an 

overdosage in the NT or OAR next to the target.  A margin certainly would 

cover the underdosed area but would further increase the volume and the dose 

to the OAR which has a relatively larger impact due to the small volumes 

compared to conventional RT.  For a small volume of 0.3cm3 or 1 cm diameter,  

a margin of 1 mm increases the volume receiving target dose by 73%.  Since 

opposing displacements cancel each other out due to the dose gradient and 

the prescribed dose to 50% [2] and as seen in chapter four prepared to publish, 

it might be possible to actively correct a displacement.  This chapter tests the 

hypothesis that displacements from the first three fractions can be corrected 

in the remaining two fractions.   

 

A displacement should be the exception.  Applying a margin and increasing 

toxicity without justification and need, if there is any safe and proven 

alternative, is open to debate around radiation protection and ethical issues.  

In our previous work [1, 2] random error was shown to have little effect on the 

dose distribution.  On close consideration, it turned out that two treatments 

displaced in opposite directions result in a loss of gradient but almost no 

change in coverage when prescribed to the 50% isodose.  In this work, the 

feasibility is evaluated of defining a treatment strategy that allows to correct a 

potential displacement after it has occurred.  
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5.2   Material and methods 

The procedure is a modification from the previous work as presented in 

chapter 4 and [2].  A single patient was selected with a medium sized tumour 

(9 mm diameter) embedded in the Brainstem (BS).  The original GP plan was 

used to simulate the fractionated treatment with induced uncertainties 

simulated and added in-silico using GP, Excell and Matlab.  Lesion, location 

and plan are shown in Figure 5.1.   

 

.   

Figure 5.1: Transversal slice of the BS and the lesion of the 

target chosen for this study.  The lesion is 9 mm in diameter 

and embedded in the brainstem. 

 

As treatment, a five-fraction-scheme was chosen where the first three fractions 

have been assumed to be “treated” and observed only i.e. the displacement 

was only recorded but “not corrected”.  Then the mean displacement of all 

three treatments was evaluated and a correction in the opposite direction was 

made for the remaining two fractions.  For comparison, the SumPlan of the 

last two fractions were also calculated without correction and the SumPlan 

calculated.  All doses were processed as BED.  The dose of 5.5 Gy (physical 

dose) was prescribed to the 50% isodose line. 
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5.2.1   Displacement 

The displacement was assumed to be due to a combination of systematic error 

and random error.  As systematic error 0 mm, 0.5 mm, 1.0 mm, 1.5 mm and 2 

mm were chosen.  All systematic displacements were in the X direction.  For 

each systematic error value, ten treatments of five fractions with weighted 

random error have been simulated.  The weighted random error assumed that 

no or small deviations are more likely than large ones and used a Gaussian 

distribution.   

For each fraction, the magnitude of the displacement was defined by 

multiplying the maximum displacement of 2 mm by a value between zero and 

one received from a random number generator.  The direction of the 

displacement was similarly defined.  The simulated directions were +X, -X, +Y, 

-Y, +Z, and -Z.  The range between zero and one was divided into six sections.  

Each direction was assigned to a section.  This value, with the according 

direction, was then added to the systematic displacement.    

For each treatment the total dose of each voxel was calculated as the sum of 

the BED of all five fractions with, and without correction. 

 

5.2.2   Evaluation 

For the evaluation, the total dose (BED) for each treatment series was 

calculated without correction for all five treatments and with correction where 

three treatments have been observed and evaluated for displacement and the 

remaining two treatments have been “displaced” in the opposite direction to 

correct for the first three treatments’ systematic displacement.  For the 

corrected fractions the calculated error as defined by the random number 

generator was included in the correction, meaning that theoretically the 

displacement could be up to 2 mm larger or smaller than calculated.   

A profile was drawn through the centre of the target in the lateral direction, the 

direction with the systematic error hence the most visual effect and in 

ventro/dorsal direction where random error dominates.  In addition, the DVH 
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for the whole volume as well as the DVH for the target and for the BS was 

calculated.  

Of special interest are the volume underdosed inside the target and the volume 

outside the target, especially in the BS, with a dose increase. 

For this work BED was calculated with parameters for brain cells only.  In truth, 

the tumour cells and brain tissue would have to be calculated independently.  

In this work this simplification is reasonable as only the principle of a correction 

approach is explored.  
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5.3   Results   

5.3.1   Profiles 

The profiles in the lateral direction (shift direction) are shown in Figure 5.2 

(random error only), Figure 5.3 (random error and 1 mm systematic shift) and 

Figure 5.4 (random error and 2 mm systematic shift).  On the top of each pair 

the five fractions without corrections are shown and on the  bottom of each 

pair the same displacements but corrected for the last two fractions.  For the 

corrected series with the systematic introduced shift of 0.0mm a slightly larger 

variation in the 10 plans is visible (due to random shift).  However, it is barely 

noticeable.  When the shift is 1.0 mm a large part of the target/profile is 

underdosed.  This underdosage disappears completely when the last two 

fractions are used to correct the first three fractions.  Note, 1.0mm is the 

threshold on which the treatment is interrupted.  For a shift of 2.0 mm the 

correction starts to fail.  The steep dose gradient on the left side of the profile 

cannot be compensated for by the lower dose of the corrected two treatments.  

However, it was still possible to correct the underdosage on the right side of 

the profile.   
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Figure 5.2: An existing plan for a single fraction (black profile dose in BED) was used to 
simulate a fractionated treatment with uncertainties.  Ten courses with applied uncertainty 
were simulated and the total dose calculated (dotted profiles). All uncertainties were random 
in this series.  1mm systematic displacement was added. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The introduced uncertainties result in small deviations from the ideal, 
calculated distribution. 

Bottom image. Here the first three fractions have been analysed for the mean displacement, 
and this evaluated displacement was “corrected” in the last two fractions.  This “correction” 
resulted in an increased dose variation among the fractionated courses.  
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Figure 5.3:  An existing plan for a single fraction (black profile dose in BED) was used to 
simulate a fractionated treatment with uncertainties.  Ten courses with applied uncertainty 
were simulated and the total dose calculated (dotted profiles). All uncertainties were random 
in this series.  1mm systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The profile shows a clear under dosage of the target on the right side of 
the profile (blue triangle) and an increase in dose in BS on the left side (red triangle).  

Bottom image. Here the first three fractions have been analysed for the mean displacement, 
and this evaluated displacement was “corrected” in the last two fractions.  This correction 
increased the dose to the target (right side) and reduced the dose to the BS to near planned 
dose.  
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Figure 5.4: An existing plan for a single fraction (black profile dose in BED) was used to 
simulate a fractionated treatment with uncertainties.  Ten courses with applied uncertainty 
were simulated and the total dose calculated (dotted profiles). All uncertainties were random 
in this series.  2mm systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The profile shows a clear under dosage of the target on the right side of 
the profile (blue triangle) and an increase in dose in the BS on the left side (red triangle).  

Bottom image. Here the first three fractions have been analysed for the mean displacement, 
and this evaluated displacement was “corrected” in the last two fractions.  In this case, the 
under dosage of the target was corrected, and increased dose to the BS was reduced. The 
dose profile has significantly widened because the displacement exceeds the shot gradient.  
It is still a significant improvement. 
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5.3.2   Dose Volume Histogram of the Target 

The DVH of the dose to the target is shown in Figure 5.5 with random error 

only, in Figure 5.6 with 1 mm systematic shift and random error and in Figure 

5.7 with 2 mm systematic shift in addition to the random error.  The top curve 

for each is without correction while the bottom curve is with correction.  

In Figure 5.5 the increase of BED due to fractionation is visible (top curve, red 

area between the single fraction curve and the fractionated curves).  

Introducing a correction (bottom curves) increases the variation of the dose 

distributions for the ten simulated plans.  The dose range is slightly increased 

between courses, and in one series a small reduction in coverage is visible.   

When a systematic displacement is introduced, 1 mm in Figure 5.6 and 2 mm 

in Figure 5.7, then 15% and 30% of the target respectively of it is underdosed.  

When the last two fractions are used to correct the displacement of the first 

three fractions the underdosing almost disappears.  The 2 mm shift is too large 

to be fully compensated.  The displacement goes beyond the dose gradient.  

However, the underdosed volume is still significantly reduced.  This is at the 

expense of the high dose area inside the target which is slightly reduced (but 

still above the BED of a single fraction).   
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Figure 5.5: An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were simulated 
and the total dose calculated (dotted DVH). All uncertainties were random in this series.  0mm 
systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the random 
generator.  The DVH shows small variations in the total dose. The red area visualizes the gain in 
BED due to fractionation.  

Bottom image. Here the first three fractions have been analysed for the mean displacement, and 
this evaluated displacement was “corrected” in the last two fractions.  Because there was no 
systematic component in the displacement the total dose of the different simulations are more 
than without correction.  The BED gained inside the target is reduced and some parts of the target 
are slightly underdosed. 
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Figure 5.6: An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were 
simulated and the total dose calculated (dotted DVH). All uncertainties were random in this 
series.  1mm systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The DVH shows small variations in the total dose. With 1 mm systematic 
displacement, the target is underdosed in some areas (blue area). 

Bottom image. Here the first three fractions have been analysed for the mean displacement, 
and this evaluated displacement was “corrected” in the last two fractions.  The under dosage 
in the target is almost completely corrected at the cost of a slight reduction of the BED inside 
the target.  
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Figure 5.7: An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were simulated 
and the total dose calculated (dotted DVH). All uncertainties were random in this series.  2mm 
systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the random 
generator.  The DVH shows that about 30% of the target is underdosed (blue area).  The little 
“bump” in the DVH at 50% is a sign that the displacement is larger than the penumbra width.  

Bottom image. Here the first three fractions have been analysed for the mean displacement, and 
this evaluated displacement was “corrected” in the last two fractions.  Most of the under dosage 
is eliminated. The dose gain due to fractionation is almost completely lost.  BED is still equal to 
that of a single fraction. 
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5.3.3   Dose Volume Histogram of the brainstem 

Figure 5.8 to Figure 5.10 show the difference between no correction (top of 

the pair) and with correction for the last two fractions (bottom of the pair).  

Figure 5.8 is calculated with random error only.  No systematic error was 

introduced.  In this situation, the correction did not introduce an increase in BS 

dose.  Figure 5.9 shows the same configuration, but with 1 mm systematic 

error added to the random error.  In the top image without correction, an 

increase in dose to the BS can be seen.  This increased dose is reduced with 

correction.  Figure 5.10 with 2 mm systematic simulated error shows this effect 

and the potential of the correction very clearly. Error! Reference source not f

ound.  Note, for SRS the limit for the BS is often 12 Gy to not more than 10 

mm3.  This is is only a tiny part of the total BS volume.  Compensating a 

displacement reduced the dose to the BS almost to the planned value. 
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Figure 5.8:  An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were 
simulated and the total dose calculated (dotted DVH). All uncertainties were random in this 
series.  0mm systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The DVH shows small variations in the total dose. The blue area visualizes 
the reduction in BED to the BS due to fractionation.  

Bottom image. Here the first three fractions have been analysed for the mean displacement, 
and this evaluated displacement was “corrected” in the last two fractions.  Almost no change 
is visible in the DVH of the BS. 
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Figure 5.9: An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were 
simulated and the total dose calculated (dotted DVH). All uncertainties were random in this 
series.  1mm systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the 
random generator.  The DVH shows a further reduction in the low dose region of the BS. 
However, in the high dose region a dose increase is visible (due to the small target compared 
to the total BS volume this is difficult to spot).  

Bottom image. Here the first three fractions have been analysed for the mean displacement, 

and this evaluated displacement was “corrected” in the last two fractions.  The 1 mm, 

systematic displacement in the first three fractions, was almost completely corrected with the 
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last two fractions.

 

Figure 5.10: An existing plan for a single fraction (black DVH in BED) was used to simulate a 
fractionated treatment with uncertainties.  Ten courses with applied uncertainty were simulated 
and the total dose calculated (dotted DVH). All uncertainties were random in this series.  2mm 
systematic displacement was added to each fraction. 

Top image: all fractions have been applied with the displacement as calculated from the random 
generator.  The DVH shows a further reduction in the low dose region of the BS. With a systematic 
displacement of 2 mm the dose increase in the BS is clearly visible in the DVH.  

Bottom image. Here the first three fractions have been analysed for the mean displacement, and 
this evaluated displacement was “corrected” in the last two fractions.  The 2 mm, systematic 
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displacement in the first three fractions, was almost completely corrected with the last two 
fractions. 

 

5.4   Discussion 

SRS is a high precision treatment.  With a region as delicate as the brain dose 

to NT (brain, BS, optic nerve, chiasm …) should be kept as low as possible.   

In usual practice no margin is used with GK Icon.  Instead a CBCT scan is 

performed pre-treatment and a continuous surveillance of the patient with the 

reflector on the nose tip as part of the HDMM is used.  Generally, the treatment 

is interrupted at a displacement of the reflector of 1mm.  This means that the 

treatment will have started correctly but has “moved” out of the treatment 

limits.  The impact of such a displacement is different than the one simulated 

in this work.  However, from previous work and this work it is known that 

displacements in random/opposite direction have a minimal influence on the 

total dose distribution.  Therefore, if the treatment is interrupted and the target 

appears to move randomly no correction is required.  However, if the 

displacement is each time in the same direction action might be considered 

since even a small displacement of 1.0mm may make a significant impact as 

the profiles and DVHs show.   

Real displacements cannot be directly compared to the simulated 

displacements in this work.  Every treatment is started with no error after the 

CBCT.  When the treatment is interrupted some movement must have 

happened between the beginning of the treatment and the interruption at 1 

mm displacement of the nose tip.  In this case it might be possible to link the 

reflector movement to the target movement.  This should be done for each 

patient individually because each patient behaves differently, and the target 

location is at a different place in relation to the reflector.  This would be 

challenging. 

An alternative could be to add a margin.  However, when calculating the 

required margin the compensation effect should be considered.  A margin 

should be chosen to be smaller than the expected displacement.  
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A third method might be a margin for the last two sessions.  This method is a 

mix of margin and compensation technique.  The first three treatments are 

observed.  If there is no problem no margin is added.  All OAR and NT are 

optimally protected.  However, if, in a very rare case the patient moves in the 

same direction for each treatment fraction the underdosed part of the target 

might be corrected by adding a margin around the whole target.  This way the 

target is adequately treated, but the NT receives an increased dose.  However, 

this increase in dose is only received when needed and not prophylactically 

for all patients. 

 

The method to correct a displaced treatment works because the dose 

distribution inside the target is inhomogeneous and much higher than the 

prescribed dose.  The potential range of correction depends on the steepness 

of the dose gradient.  With greater steepness (small lesions) a smaller 

displacement can be corrected.  It also depends on the difference between 

prescribed dose and dose inside the target reducing the potential correction 

range with higher prescribed isodose level.  In this work the dose is prescribed 

to the 50% isodose which resulted in almost 2mm correction range.  If the dose 

would be prescribed to 70% the correction range would be reduced [2]. 

 

5.5   Conclusion 

It is possible in principle to correct a displacement of the first three treatments 

in the last two treatments with minimal risk (remaining random error, lack of 

options to distinguish between systematic and random error).  However, since 

treatments begin with no displacement the challenge is to find a way to correct 

a dynamic change during treatment.  Further investigations to link the reflector 

position with the target may lead to a novel technique to handle positional 

uncertainties.  Meanwhile the findings can be used to define a reduced margin.  

Patients who move randomly do not need a margin for the PTV to ensure 

coverage. 
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Chapter 6:  

Summary and future work 

The work presented in this thesis was motivated by the development and 

availability of a new version of Gamma Knife (GK) that, in addition to the 

traditional single fraction stereotactic radiosurgery (SRS) allows for 

fractionated treatment, the Gamma Knife Perfexion with the eXtend 

relocatable patient positioning system.  The option of fractionating GK SRS 

was introduced to increase the range of brain  lesions treatable, by reducing 

the biologically effective dose (BED) outside the target, since  the dose level 

there can be in the range of the LQ model,  while the dose to the target is still 

in the multi target model applicable region.  In this thesis three questions were 

asked.  A fourth question then arose from the results of the work done. 

1. What is the positional accuracy of the system? 

2. What is the effect of positional displacement on dose to the target? 

3. What is the dose to an organ at risk (OAR) when positional 

displacement occurs? 

4. Based on the results from answering questions two and three: Can a 

correction strategy be developed in order to reduce dose to normal 

tissue (NT) and OAR? 

 

6.1   What is the accuracy of the system? 

When this work was started the eXtend system was only recently in use.  It 

used a dental mould to position the patient’s head and a vacuum surveillance 

system to monitor potential significant patient positional changes.  However, it 

had the disadvantage that there was no direct method to verify the actual 

positional uncertainty other than with the relocation check tool (RCT) prior to 

treatment.  A displacement even as low as one millimetre may have a 

significant impact on a small target hence it was important to quantify the 

displacement in order to develop a strategy to cope with it.   

This work (Chapter 2) showed that the trigger level pauses the treatment at 

small displacements of about 0.5 mm.  However, the main problem is due to 
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possible rotation which might scale up the displacement for the tumour 

depending on its position to potentially 2.0 mm.  This work was published in 

the Journal of Radiosurgery & SBRT in 2016 as a full paper [1]. 

For the further work, this value of up to 2 mm was taken as the potential 

displacement that should be considered to have to be dealt with, even if on 

rare occasions.  

 

Elekta later introduced a new system, the Icon, during the course of this 

research.  The dental mould has been replaced by a mask system and the 

vacuum surveillance is replaced by a nose tip reflector.  In addition an integral 

cone beam CT (CBCT) imager can measure the exact displacement of the 

target.  Other groups have investigated this  and found that the likely 

displacement is small, but 2 mm and even more are possible.  Thus, the 2 mm 

used for the following work is still valid and relevant.   

The work in Chapter 2 quantifies the potential uncertainties  and begins to 

consider their dosimetric impact and so provides data to support and evaluate 

clinical practice and decisions for fractionated GK treatments. 

 

6.2   What effect does a displacement have on dose 

distribution for the target? 

The next step (Chapter 2) was to evaluate the wider dosimetric effect of a 

displacement; sub questions have been the impact for three fraction and for 

five fraction treatments.  Would a lower number of fractions be better because 

there are fewer occasions where a displacement could occur? Or would  a 

higher number of fractions be better to average out any random uncertainties? 

In addition, what is the impact of a systematic error (each fraction in the same 

or similar direction) compared to a random error (for each displacement being 

in different directions, including in near opposite directions)?  
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As expected a systematic displacement for all fractions has a similar effect as 

a displacement in a single fraction.  The dose distribution is simply shifted.   

However, the result for the “random” displacement was unexpected.  In 

fractionated conventional external beam conformal therapy, with a 

homogeneous dose distribution inside the target, a random displacement 

results in an underdosage of the target.  Hence, a margin around the target 

prevents the target from being underdosed.  This is not the case for GK plans.  

Due to the dose inhomogeneity where the dose inside the target is up to twice 

as high as the prescribed dose (when typically prescribing to about the 50% 

isodose) an underdosage due to displacement in one direction is almost 

perfectly compensated by a displacement in the near opposite direction.  This 

means a higher fraction number is more favourable because random 

displacements are more likely to compensate each other in this way.  This 

work was published as a full paper in 2017 in the Journal of Radiosurgery & 

SRBT [2]. 

 

6.3   What effects do displacements have on OAR? 

Fractionated SRS changes not only the dose (BED) to the target but also the 

dose to the OAR.  This is evaluated in Chapter 4. Due to the lower fraction 

dose, as compared to single fraction SRS,  the BED to the OAR is reduced 

and the OAR better protected.  Displacement towards the OAR results in an 

increased dose.  Unlike in conventional linac-based multi-fraction conformal 

RT, this dose increase is not limited by the prescribed dose.  With conventional 

conformal RT the dose maximum is close to the prescribed dose and the dose 

distribution over the target volume is relatively homogeneous and thus small 

displacements still limit the dose to the OAR to about the prescribed dose even 

if a displacement moved the OAR completely into the high dose region.  In GK 

SRS the dose inside the target is twice as high as the prescribed dose (since 

prescribed dose is commonly close to 50%) thus if a displacement is towards 

the OAR,  the dose can increase relatively rapidly to the OAR in a potentially 

harmful way.  This effect is increased by the greater damage from higher 

fraction doses due to the multi target effect.  
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For a random displacement the BED in the OAR increased slightly but never 

reached the BED dose in the OAR from a single fraction SRS.  A systematic 

displacement results either in an underdosage or an over dosage depending 

on the direction.  This work is being submitted for publication. 

The work in Chapters 3 and 4 together suggested a possible novel approach 

to handling systematic displacements that was proposed and (in silico) 

feasibility tested in Chapter 5. 

 

6.4   A proposal and theoretical testing of a correction 

strategy for systematic displacements 

An under dosage to the tumour, e.g. from a systematic displacement, may lead 

to a recurrence.  In conventional RT this is taken into account by adding a 

margin.  As shown in the OAR section, a margin in GK SRS would increase 

the dose to the OAR beyond the therapeutic window.  A margin would do 

similar damage in all directions as a displacement in one direction does.  So a 

margin could prevent an underdosage but could produce significant damage 

and therefore destroy the advantage of SRS which is a precise treatment 

where the prescribed dose matches the tumour outline with the best possible 

precision. 

In the evaluation of the effects of displacement for target and OAR 

displacements in opposite directions were shown largely to cancel each other 

out for GK SRS.  Minimal changes occur in the reduced doses inside the target 

and in the increased doses to the NT around the target due to the reduction of 

the steepness of the dose at the target border.  The prescribed dose itself 

remains constant.  If this finding can be used as the basis of correcting a 

systematic displacement no margin would be required and no compromise in 

precision would be needed.  

In this first evaluation of the feasibility of a correction approach (Chapter 5), 

the task was simplified by assuming the treatment would be delivered without 

patient movement during the treatment.  In reality the treatment starts without 

any displacement (other than imaging uncertainty) but during treatment the 
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patient moves.  With tracking technologies movements of a few millimetres 

can be corrected as soon as they are identified. 

To do this though, requires estimating the magnitude of any systematic 

displacement and in addition considering how subsequent random 

uncertainties might affect a correction.  Unfortunately the direction and 

magnitude of any random displacement cannot be predicted by definition.  If it 

is in the same direction as the correction movement it might worsen the 

situation.  If it is in the opposite direction it might cancel out the correction.   

Testing the proposed correction strategy with a series of simulated 

displacements showed that a correction is feasible and improved the overall 

dose to the tumour with minimal influence of the dose to the OAR and NT.  

However the test setup assumed that the displacement was present during the 

whole fractionation and did not change during the treatment.  The real situation 

is more complex.  With the Icon a CBCT is made prior to the treatment.  Any 

displacement is a result of a motion of the patient during treatment.  In the 

simulation the whole dose distribution was displaced.  In a treatment the 

different shots would be displaced and each shot slightly differently to the 

others.  In reality, the treated dose distribution does not match the planned 

one.  A simple correction of a displacement that occurs in the middle of the 

treatment is therefore overcorrecting the displacement.  However, this strategy 

is a completely novel suggestion that may allow the possibility to treat without 

margins,  even for potential displacements  of up to 2 mm.  This work is being 

submitted for publication to demonstrate the principle and feasibility, whilst 

recognising that this needs further development and testing before any clinical 

use. 

 

6.5   What can be applied in clinical practice from this work? 

From the measurements of the trigger level of eXtend [1] and from the work of 

other groups [39, 99, 185] it is known that the potential displacement is small 

but may reach up to 2 mm.  With Icon, a CBCT measures the rotation and 

displacement of the patient/tumour and corrects it before the treatment starts.  
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When the reflector on the nose tip moves more than a millimetre (level may be 

set differently) the treatment stops and a CBCT can evaluate the exact 

displacement of the target.  An active correction as described in chapter 5 is 

not  yet clinically applicable.  More research is needed on how best to apply 

this approach in clinical practice where, after the initial correction before 

treatment starts, any displacement only applies to a part of the treatment.  

However, the knowledge of the effects of displacements from the simulated 

situations for targets (Chapter 3) and OAR (Chapter 4) can be used to judge 

the impact of the displacement and help with clinical evaluation and decisions.  

Some patients move frequently.  The results of this project can indicate 

patients for whom this might be a problem and those for whom it is no problem.  

If this movement is in a different direction each time then the dosimetric 

consequences are small.  With a CBCT the patients with systematic 

displacement can be identified and a possible correction in the form of a 

margin can be considered, or a correction strategy, once further developed 

and tested for clinical applicability and safety, might be used.  When the CBCT 

finds displacement in different directions no action is required. 

 

6.6   Future work 

This work is the first of its kind.  The assumptions/simplifications are relatively 

basic and can be further refined and the range of situations tested can be 

extended.  With eXtend it is possible that the displacement is present right 

from the beginning of the treatment.  If the trigger level is activated, the 

displacement to be dealt with would be a combination of static/systematic 

(from the beginning of each fraction and in the same direction) and dynamic 

(arising during treatment in various directions)  displacement/movement.  

Even this scenario is not identical in clinical practice with the assumptions 

applied in the simulation . 

Today  the Icon  system is becoming more widely used.  Treatment with the 

Icon starts without any displacement (except uncertainty of the imaging 

system).  However, with a mask system small movements, i.e. dynamic 

positional displacements, in the order of millimetres are possible during 
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irradiation.  The impact of movement on dose distribution for a system that 

delivers the dose shot by shot is not yet investigated.  One problem is that so 

far not even characteristics of the possible types of movement are 

investigated.  There might be sudden step-wise movements or smooth, 

continuous drift movements, or combinations.   

The evaluation in this work considered static displacements and led to a 

proposal of a correction after part of the treatment.  Ideally a displacement 

should be measured immediately and corrected before it has an impact.  A 

CBCT can only be made when the irradiation is stopped.  However, the 

reflector on the nose tip is monitored continuously.  Because the position of 

the target varies from patient to patient and the reflector cannot distinguish 

between a rotation and a shift it is not possible to correlate the reflector 

movement to the tumour movement.  However, it might be that for each patient 

(or at least most) having a five-fraction treatment, a correlation could be 

established after the first three treatments (using the CBCT after each 

treatment pause).  If such a correlation could be established a correction 

movement might be developed for the remaining two fractions.  If this could be 

realised a near perfect treatment, across all five fractions taken together, could 

be achievable. 

 

It frequently happens that patients move out of the tolerance zone during 

irradiation.  A possible practical application for at least 5 fraction treatments  

would be to observe the first three fractions and evaluate in which direction the 

patient moves.  If each time there is a different direction, there is no need for 

action according to the results from chapters three and four.  If the movement 

is always in the same direction, the result may be an underdose of the target 

volume.  A simplified “correction” strategy could be evaluated.  Instead of a 

margin for the whole treatment the first three fractions could be observed and 

if a displacement occurs a margin of the according size could be applied for 

the remaining two fractions.  The aim would be to evaluate if this would have 

the same effect for the underdosed area as a correction and also the effect of 

a margin for the opposite area.  So a strategy could be developed that is only 

applied if the patient moves always in the same direction.  Patients who do not 
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move or move in different directions do not need correction.  In a next step, 

the effect on dose distribution due to movement (dynamic) could be evaluated 

(marker tracking) and a possible dynamic correction movement could be 

calculated for the last two sessions.  This would be possible if the marker can 

be correlated with the patient's movement.  Such a correlation would be 

different for each patient because each patient has their own movement 

pattern. 
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6.7   Some comments on the future for radiation therapy and 

for technology advances 

Radiation therapy is almost 125 years old.  After the groundbreaking discovery 

of x-rays, there was a continuous development to improve techniques by the 

invention and technical and clinical development of linear accelerators, MLC, 

IMRT, VMAT, SBRT, etc. Greater understanding of the biology behind the 

therapy led to safer applications and novel fractionations and combinations 

with other modalities.  Personalised medicine is attempting greater precision 

per individual patient. 

Significant research is currently being carried out in novel areas with potential 

for further combination with the 'traditional' treatment modalities, for example 

in immunotherapy and in gene therapy.  The results are promising but cannot 

yet be widely applied to larger groups of patients. Such therapies add to the 

approach to individually adjust treatment for a specific patient. In the past, it 

has been shown that a therapy that alleviates some symptoms is not 

necessarily better in terms of survival than no treatment. Long-term results 

and results from large studies are still missing for immunotherapy and gene 

therapy, including still for safe application which needs still further research.  

Even if those issues are solved, it is likely that new types of therapy will be 

used as an integral part of wider combined treatment methods, along with 

other treatments rather than replacing all previous therapies. 

Radiotherapy technology continues to advance, e.g. via automation, image 

guidance moving to MRI-guidance (MR-linacs), adaptive therapy, motion 

management systems, etc. Linac radiotherapy has significantly improved, and 

with onboard imaging, it can reach submillimeter accuracy similar to the 

Gamma-Knife.  Is it likely that the Gamma Knife will be replaced by linac 

technology?  In general, probably not by conventionally designed linacs.  Even 

though these can treat arcs, they still do not provide the steep dose gradient 

achieved by the GK, especially for small lesions.  The dose distribution from a 

linac is more homogenous than that of a GK and whilst a homogenous dose 

distribution is vital for a mixed cell volume, it is not for a solid tumour containing 

only targeted cancer cells. Other advantages of the GK over a linac include 
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the compact design and built-in radiation protection, meaning that only a small 

room with little extra room shielding is required.  This makes GK a relatively 

simple, high precision treatment unit dedicated to brain lesions. 

Recently Mackie (the inventor of the Tomotherapy system, see Chapter 1) and 

Adler (the inventor of the Cyberknife system, see Chapter 1) together have 

developed a new treatment device called ZAP-X.  It consists of a Linac tube 

mounted on a gyroscope.  The gyroscope looks like a helmet similar to the GK 

system (Figure 6.1).  The patient is moved on a couch into the gyroscope 

system similar to the GK set up.  Unlike GK, the patient area is shielded too, 

so no external shielding is required at all.  This system has some similar 

characteristics to GK, plus it has the advantage that it contains no radioactive 

sources.  Handling, managing and changing these in the GK is expensive and 

an additional risk factor.  The ZAP-X treated its first patient in Dec 2018.  It 

could prove to be a close competitor to the GK and especially as it arises from 

developers, in Mackie and Adler, who have successfully designed and 

marketed other novel radiotherapy devices.  Commercial competition, timing 

and market and clinical acceptability can determine the success or failure of 

novel designs.  For example, the Mitsubishi Vero (reference), a gimbaled-head 

system with significant treatment degrees of freedom for dynamic adaptive 

treatment was viewed as technologically revolutionary, but was discontinued 

for commercial reasons after only 25 systems were installed.  The evolution, 

acceptability and success of such systems can only be judged after some time. 
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Figure 6.1:  The new Zap-X unit developed by Mackie (inventor of the tomotherapy) and Adler 

(inventor of the Cyberknife).  The system has similar characteristics to the GK but with a linear 

accelerator tube mounted on a gyroscopic mechanism instead of distributed radioactive 

sources.  It contains built in imaging.  The shielding requirements are almost nil because the 

patient is shielded while treated.  A video is available with the folloing link: 

https://zapsurgical.com/ 

 

  



- 151 - 

6.8   Concluding remarks 

Finally, in overall summary, the work presented here has considered the 

relatively recently introduced Gamma Knife systems designed to enable 

routine fractionated radiosurgery.  It has evaluated likely positional 

uncertainties and simulated the dosimetric impacts of these for targets and 

organs at risk  for GK hypofractionated treatments of small lesions in the brain, 

where treatment is typically limited by doses and effects on critical normal 

tissues such as brainstem.  Simulated dose distributions were systematically 

studied for target lesions and nearby organs at risk in realistic clinical situations 

across a range of potentially likely systematic and random displacement 

scenarios.  The findings  provide novel information that can inform and 

optimise clinical strategies and decisions for the application of fractionated GK 

treatments for brain lesions and lead to suggestions of future work to develop 

this further and for its clinical application.  In addition to evaluating and 

characterising the effects, when the dose is prescribed to the 50% isodose, as 

is often the case for GK treatments, a novel way to deal with positional 

uncertainties has been proposed for fractionated treatments of at least 5 

fractions.  This novel correction strategy was feasibility tested showing it could 

reduce the toxicity of NT and OAR adjacent to the tumour and has  potential 

to be further developed and clinically tested to deal with uncertainties without 

using margins.  The complete work forms the basis of a systematic approach 

to considering positional uncertainties in fractionated GK use and presents 

ways in which it can be extended and taken forward, enabling support of wider 

clinical use of these treatment approaches. 
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