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Abstract

Cancer is the most common cause of death in the UK. Due to its aging population, the rate

of cancer diagnoses is expected to rise dramatically in the coming decades. Currently cancer

treatments have harsh side effects that cannot be well tolerated by the elderly, hence there

is a need to develop new methods of cancer therapy which offer substantially better patient

experiences. One such route is the use of near infrared–absorbent gold nanorods (AuNRs),

which offer suitable optical and thermal properties to enable their use in techniques such as

photothermal therapy and photoacoustic imaging. In this thesis we will explore the use of

AuNRs in these roles as cancer theranostic agents.

This is addressed in three core areas; firstly the seedless production of AuNRs using binary

surfactants. It is demonstrated how the morphology and optical properties of such particles can

be manipulated through the inclusion of a co–surfactant. As well as yielding improvements

in the monodispersity, shape yield and scalability of the protocol. Secondly, the surface func-

tionalisation of AuNRs with phospholipids, we demonstrate the effective removal of CTAB,

a toxic surfactant used in the synthesis, this is demonstrated through the use of 1H nuclear

magnetic spectroscopy, surface enhanced Raman spectroscopy and pH–dependent zeta potential

measurements, this is present alongside stability studies of AuNRs of different coating, demon-

strating the improved stability of AuNRs prepared with phospholipids. Finally, the application

of phospholipid–coated AuNRs in cancer therapy is explored. We show that these particles are

non–toxic in vitro and in vivo. We also explore their efficacy as photothermal conversion agents,

measuring the achievable temperature rises under CW illumination, as well as imaging them

using multispectral optoacoustic tomography of the particles in phantoms. In vivo measurements

of the effects of heating these AuNRs under CW and nanosecond lasers on human carcinoma

cell lines were also investigated. Finally the biodistribution of these particles was explored,

when passively targeted or functionalised with cancer specific adhirons though ICP–MS analysis

of ex vivo murine samples.
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Chapter 1

Introduction and Theoretical

Background

1.1 Introduction

Gold nanoparticles (AuNPs) offer a set of exciting set of material properties which has led to them finding

application in a large number of fields. AuNPs have highly tunable surface chemistry (whilst being relatively

nonreactive), that can strongly absorb and scatter light at visible and near–infrared (NIR) wavelengths, and

generate strongly localised electric fields. They can be synthesised relatively easily in a wide range of sizes

and shapes. This has meant they have proved very versatile; finding a wide range of applications, such as

catalysis, biosensing, and SERS probes [39]. A particularly popular application is their use as photothermal

conversion agents in the therapy and imaging of cancer. This is the application that this thesis will explore.

Cancer is the most common cause of death in the UK, causing 28.1% of all deaths in 2017 [93].

Because of the aging population now found in Western countries, it is expected that number of new cancer

diagnoses per year will increase by over 80% in the next 20 years [350]. Current treatment methods, such

as radiotherapy and chemotherapeutic drugs, present significant problems such as causing harmful damage

to healthy tissue, and presenting high levels of toxicity, respectively. Elderly patients show much lower

tolerances to current methods for the treatment of cancers such as chemotherapy [373]. Hence there is a

need to develop new treatment modalities, which are significantly less detrimental to patient experience over

the course of treatment and can be more readily used in elderly patients. This is an extremely active area of

research interest with many new methods being proposed, such as therapeutic microbubbles [227], targeted

drug delivery [354] and viral therapies [179].

Gold nanoparticles with their unique combination of optical, photothermal and chemical properties

offer one such route to potentially achieve this. This is discussed more thoroughly in this chapter. In brief,

gold nanorods (AuNRs) can be synthesised such that they strongly absorb light in the near–infrared, at

these wavelengths penetration of light into human tissue is significantly increased. AuNPs very efficiently

convert absorbed light into heat, hence these particles when deployed in vivo can be used to remotely heat

surrounding tissue upon illumination with NIR light, without the need for invasive surgery. It is possible

to generate temperatures high enough to induce the death of cells via this route, and thus it is hoped that

3



1. Introduction and Theoretical Background

by generating locally high concentrations of such particles within tumours, that this heating can be used to

thermally treat tumours with minimal damage to surrounding healthy tissue. A large number of challenges

are still left to be addressed before implementation of this technique will be realisable, these are discussed

later in this chapter, alongside the theoretical underpinnings that enable this technique to be considered.

Chapter 2, presents a summary of the experimental techniques and materials used in this thesis. Further

details of the theory and reasoning for the methods used are also given where it was felt that it was required.

This thesis contains three experimental results chapters, the first of which, Chapter 3, describes progress

made in the synthesis of AuNRs using binary surfactants and how this produces more monodisperse

AuNRs with high yield and can simultaneously be used to control the morphology and optical properties of

synthesised AuNRs. The effects of controlling other parameters in the synthesis have also been investigated.

Attempts have been made to understand the formation process of AuNRs during the synthesis and specific

role that the two surfactants play.

In the second results chapter, Chapter 4, we functionalise our nanorods with phospholipids, and

demonstrate the removal of hexadecyltrimethylammonium bromide from the surface of the AuNRs, via

surface enhanced Raman spectroscopy, nuclear magnetic resonance spectroscopy and pH–dependent zeta

potential measurements. We also investigate the colloidal stability of these particles in various physiological

media and demonstrate their suitability for use in in vitro and in vivo experiments.

In the final results chapter, Chapter 5 we look to the biomedical applications of these particles. We

demonstrate that the phospholipid coatings show improved biocompatibility compared to commonly used

polymer coatings, as well as investigating their uptake into cells. We demonstrate their suitability for use as

photothermal conversion agents by measuring the heat generation under NIR illumination. The particles

were then used in a pre–clinical photoacoustic imaging system. In vivo experiments were performed in mice,

to demonstrate their in vivo biocompatibility and biodistribution. Finally, an initial attempt at targeting the

AuNRs to a tumours were made.

In the rest of this introduction, a discussion of the theoretical background to this project is given, with a

focus on the optical and thermal properties of AuNPs, alongside the applications they have found in medicine.

Also discussed are the methods to synthesise AuNPs (in particular gold nanorods), and the methods used to

manipulate their surface chemistry.

1.2 Optical Properties of Gold Nanoparticles

1.2.1 Electrons in Metals

It is impossible to discuss the interaction of light with such particles without first discussing the electronic

structure of metals. Conduction electrons within metals are ‘quasi-free’, able to move freely relative to the

positively charged lattice resulting in properties such as their high electronic and thermal conductivities and

high reflectivity in the visible region. This behaviour is approximated by the Drude model [80], which is an

application of Lorentz’ dipole oscillator model to bulk metals [213]. Under this model conduction electrons

are considered to be free oscillators with no restoring force provided by the surrounding nuclei, and hence

because of this, there is no natural resonance frequency, ω0, as seen in dielectric materials.

4



1. Introduction and Theoretical Background

This model does not account for all the optical effects seen in gold, such as intraband transitions (which

explain why many metals are have colour). However the model provides a good approximation of the major

electronic–optical effects in metals. The high density of free carriers in Au (NAu = 5.9 · 1028 m−3), means

even at the nanoscale electronic energy levels are effectively continuous relative to thermal excitations kBT

at room temperature [217]. Hence quantum effects which are important in nanoscale structures made from

materials, with low free carrier densities, such as semiconductors can be ignored and Drude’s model can be

used as an accurate description of the electronic properties of nanoscale gold.

Under this model the electronic response of Au to a driving oscillating electric field of frequency, ω, can

is described as:

ε(ω) = 1 −
ω2

pτ

(ω2τ + iω)
(1.1)

= 1 −
ω2

pτ

1 + ω2τ
+ i

ω2
pτ

ω(1 + ω2τ2)
(1.2)

where τ is the characteristic scattering time of an electron and ωp is the plasma frequency, defined as:

ωp =

(
Ne2

ε0m∗

)1/2

(1.3)

N is the free electron density of the metal, e is the charge of the electron and m∗ is the effective mass of

the electron within the medium. τ as a parameter contains all the scattering processes which damp any

charge oscillations in the plasma, these include electron–electron, electron–phonon, electron–defect, and

electron–surface scattering all of which have their own characteristic timescales. This model makes a number

of important predictions, firstly it can be seen from eq. (1.2) that for ω < ωp the real part of the εr is ∼ 1 and

rapidly decays to 0 above ωp. Hence metals display high reflectivity below ωp, before becoming rapidly

transparent above it. We can also calculate the absorption coefficient from this expression for the dielectric

based on the following relation (assuming ε′′ � ε′):

α =
2ωk(ω)

c
=

2ω
c

√
ε′′(ω)

2
=

√
2ω2

pτω

c2 (1.4)

The absorption coefficient for metals is thus very high (5 – 7 ×107 m−1) preventing the penetration of

light into the interior of the metal. Electric field strength decreases in strength from the surface exponentially

(E(x) = E0exp{−2x/α}), hence a characteristic lengthscale known as the skin depth can be defined as follows:

δ =
2
α

=

√
2c2

ω2
pτω

(1.5)

Hence the excitation of electrons within bulk metals is restricted to immediate vicinity of the metal

surface, whilst electrons within the bulk of the metal are effectively screened from external AC electric fields

above ωp. The frequency dependence of the skin depth is plotted in fig 1.1. This effect is fundamental to

the existance of surface plasmon resonances (SPR) in gold, the driving of an evanescent wave at a metallic

surface. However, the ability to excite electrons at a metallic surface produces significantly more interesting

optical effects when the metal object is restricted in size to dimensions less than or similar to the skin depth.
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Figure 1.1: Skin depth of Au in the visible and NIR part of the spectrum.
Calculated using permittivity values for Au from ref [156].

In these circumstances, incident light fields are able to drive collective oscillation of all electrons within such

an object.

1.2.2 Intraband Transitions

There are limits to the Drude model which become important when considering the optical properties of

AuNPs. The Drude model does not account for the band structures of metals, and the most important effect

that emerges from this, intraband transitions. It can be from the density of states of Au (fig. 1.2 (a) that the

Fermi energy, EF of bulk Au falls within the 6s conduction band, with a large population of electrons in the

5d valence band, ∼ 2 eV below EF , an energy that corresponds to a wavelength of ∼ 600 nm. Hence photons

below this can excite electrons from the 5d band into the unoccupied energy levels within the 6s–p band.

The effect of this is very apparent in the dielectric function of gold when compared directly to the Drude

model (fig. 1.2 (b)).

There is a noticeable difference between the empirically derived values and the Drude model below 600

nm, as the unaccounted for absorbance driven by intraband transitions becomes an increasingly important

process. Incidentally this absorbance below 600 nm explains why Au has it characteristic yellow hue, instead

of acting as a mirror at all wavelengths of light above the plasma frequency. This absorbance becomes

an important consideration in optical properties of AuNPs, as intraband transitions will create electron–

hole pairs simultaneously with any plasmonic excitation, significantly increasing the e − e scattering rate,

ultimately damping the plasmon. The impact of damping from scattering processes is normally considered

through the plasmonic quality factor, QSPR = ε′/ε′′, which is plotted in fig. 1.2 (c) as function of excitation

wavelength for both the Drude model and empirically derived permittivity values. The significance of the

damping can readily be seen in the rapid drop off of the quality factor below 600 nm. As will be show in

section 1.2.3, the expected plasmon band of small nanospheres falls within this range, leading to significant

damping of the plasmon. Hence to truly realise the plasmonic potential of gold nanoparticles, we must

attempt to use AuNPs with resonances >600 nm, where QSPR is maximised.

This highlights the need to use empirically-derived permittivities in the calculations of the optical

properties of Au due to limitations of the Drude model below the band edge wavelength. The model is

incapable of explaining the observed damping of plasmons in Au below 600 nm and fails to predict the

6
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Figure 1.2: Intraband transitions in Au. (a) Density of states of bulk Au [46]. (b) Experimental permittivity
values for Au and water compared with the calculated Drude permittivity (ωp = 2.18 PHz and 1/τ = 18.0
THz). (c) Plasmonic Q–factor as calculated from experimental data and the Drude model. Permittivity data
for Au and water taken from refs [156] and [117] respectively.

absorbance of Au below ωp. Regardless, the Drude model serves as a good starting point from which to

understand the origins of plasmonic behaviour in metals, and accurately describes the electronic behaviour

of Au in the NIR, above its band edge wavelength.

1.2.3 Localised Surface Plasmon Resonances – Mie Theory1

Whilst named after the effect seen at continuous metal surfaces known as SPR, and emerging from the same

physics; localised surface plasmon resonances (LSPR) should be considered distinct phenomena. LSPRs are

the collective oscillation of all the free carriers within a metal nano–object. They emerge as a result of the

spatial confinement of an electronic plasma to length scales at or around the skin depth, and the resultant

behaviours of such systems are substantially different from those seen in SPR experiments.

Classical solutions already exist for the interaction of a electric plane wave and a metallic sphere using

Maxwell’s equations. First formulated in 1908, Mie theory was the first rigorous mathematical treatment

of the interaction between metallic particles and light [228]. In its original formulation the solutions are

given as an expansion of multipolar contributions to the electric field generated by the electronic response of

the particle (fig. 1.3). Without derivation, solutions to this problem are typically given in the form of two

scattering functions, for perpendicular polarisations, calculated in the far-field (d � λ):

S 1(ϑ) =

∞∑
m=1

2m + 1
m(m + 1)

[amπm(cosϑ) + bmτm(cosϑ)]

S 2(ϑ) =

∞∑
m=1

2m + 1
m(m + 1)

[bmπm(cosϑ) + amτm(cosϑ)]

(1.6)

where πm and τm are angle-dependent functions defined by:

πm(cosϑ) =
1

sinϑ
P1

n(cosϑ) τm(cosϑ) =
d

dϑ
P1

n(cosϑ) (1.7)

P1
n are the Legendre polynomials of the first degree. am and bm are scattering coefficients to be determined

1The equations in this section are largely adapted from Bohren and Huffman [36].
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Figure 1.3: Multipolar contributions: Electric and magnetic field lines generated at the surface of a metal
spheroid when interacting by light polarised in the vertical axis. Figure adapted from [228].

which dictate the contribution of each multipolar contribution. These require the most computation in

Mie theory calculations; the absorption and scattering cross sections can be expressed in terms of these

coefficients:

σabs =
2π
k2

∞∑
m=1

(2m + 1) Im{am + bm}

σscat =
2π
k2

∞∑
m=1

(2m + 1)
(
|am|

2 + |bm|
2
)

σext = σabs + σscat

(1.8)

1.2.4 The Quasistatic Approximation

For particles with diameters in the range 10 – 60 nm only the dipolar contributions (m = 1) need to be

considered to accurately calculate their optical properties. For particles larger than this, quadrupole and

higher order multipole contributions can no longer be considered negligible. Whereas small particles

less than 10 nm in diameter exist at scales below the typical electronic mean free path in metals leading

electron–surface scattering becoming the dominant electronic interaction which will damp any plasmon

resonance.

This is known as the dipolar or quasistatic approximation. Under which only the m = 1 terms in the

above sum are considered. Examination of the known boundary conditions allows it to be shown that the only

non–trivial solutions are a1 = −E0 and b1 = E04πε0a3(ε − εm)/(ε + 2εm). b1 can be identified as containing

the sphere polarisability:

α = 4πa3 ε − εm

ε + 2εm
(1.9)

where a is the radius of the particle, ε (= ε1 + iε2) is the permittivity of the particle and εm is the permittivity

of the surrounding medium. Combining this with eq. (1.8) yields the following relations:
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Figure 1.4: (a) Plot of the Frölich condition for Au in an aqueous environment showing a global minima
at 518 nm. (b)-(d) Generated spectra in the quasistatic approximation for 10, 50, and 100 nm AuNPs
respectively. Permittivity values for gold and water taken from refs [156] and [117] respectively.

σabs= 3k Im {α}

σscat=
k4

2π |α|
2

 σext = σabs + σscat (1.10)

where k is the wave vector given by k = 2πεm/λ. From eq. (1.9) it can be seen that both σabs and σscat are at

a maximum when |ε + 2εm| is minimised, this is known as the Fröhlich condition [99]. It can be calculated

from experimentally obtained permittivity values for gold that the expected absorbance peak will be found at

a wavelength of ∼520 nm (fig. 1.4 (a)) [156].

These relations provide a good approximation for particles with diameters in the range 10–60 nm and

closely match experimentally obtained spectra. It can be see that absorbance scales with a3, and scattering

scales with a6, with scattering becoming the dominant extinction mode for particles with a > 50 nm. The

rapid increase in scattering cross–section with particle radius has important implications for applications

such as darkfield microscopy which are unable to resolve particles below some critical diameter. From

these relations and experimentally obtained permittivity values, spectra can be calculated showing the single

predicted resonance predicted from the Frölich condition with some redshifting of the resonance with particle

diameter (fig. 1.4 (b)–(d)).

In the quasistatic limit, it is also possible to calculate the local electric field as a result of the induced

9



1. Introduction and Theoretical Background

dipole [17]. This can be expressed outside of the particle as follows:

~Eind = 3
r̂(r̂ · ~p) − ~p

4πε0εm

1
r3 (1.11)

where r̂ is radial unit vector, ~p is the dipole moment given by ~p = α~E0, and r is the distance from the

centre of the particle. It can be seen that field decays with the third power of the radius and increases

linearly with the incident field. The maximum induced field will thus be at the particle surface, aligned

with the axis of excitation and equal to |Eind |max = 2p/4πε0εma3. For a 50 nm AuNP this field maximum

is approximately 14× greater than E0 [234]. This field enhancement seen at the surface of nanoparticles

makes them particularly appealing as probes for surface enhanced Raman spectroscopy (SERS), where the

SERS enhancement scales with the fourth power of this enhancement, enabling the detection of molecular

species bound to nanoparticles resonant at the incident laser wavelength with high sensitivity [171]. This is

discussed further in section 1.2.8, and can be improved substantially by tuning the nanoparticle morphology.

1.2.5 Gans’ Solution

Often incorrectly referred to as a theory, in 1912 Gans provided a solution of Mie theory for ellipsoids

in the quasistatic approximation [101]. The significance of this solution comes from its prediction of the

optical properties of elongated particles 80 years in advance of their first synthesis [94]. In summary Gans’

solution re–expresses the Mie relations in terms of an anisotropic polarisability, α j, where j = x, y, z. Which

is defined as:

α j =
4π
3

axa2
yz

ε1 − εm

εm + L j(ε1 − εm)
(1.12)

where ax and ayz are lengths of the major and minor axes of the ellipsoid respectively. ε1 is the real part of

the permittivity of the medium and εm is the permittivity of the surrounding medium. L j is the shape factor

associated with each axis of the ellipsoid defined by:

Lx =
1 − e2

2e3

(
ln

(
1 + e
1 − e

)
− 1

)
Ly = Lz =

1 − Lx

2

(1.13)

where e is the eccentricity of the ellipsoid defined by the particle dimensions:

e =

√
1 −

( ayz

ax

)2
(1.14)

an important feature of these factors is that they are only dependent on the aspect ratio of the particle, rather

than the individual dimensions themselves, although this is only true for particles small enough for the

dipolar moment to dominate. It is also notable that as the aspect ratio of the particle tends to unity (i.e.

Lx = Ly = Lz = 1
3 ), eq. (1.12) returns the sphere polarisability. Using the above relations, eq. (1.10) can be
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Figure 1.5: Gans’ solution predicted absorption spectra for ellipsoids at a range of aspect ratios. The particle
volume has been held constant at 21000 nm3. Inset is a plot of the peak absorbance as a function of aspect,
demonstrating the linear dependence of the LM on the aspect ratio of the particle. Values for the permittivity
of bulk gold were taken from Johnston and Christy [156].

redefined as:

σabs= k Im
{

1
3αx + 1

3αy + 1
3αz

}
σscat=

k4

6π

(
1
3 |αx|

2 + 1
3 |αy|

2 + 1
3 |αz|

2
)

 σext = σabs + σscat (1.15)

Spectra generated using these relations tend to display several common characteristics, firstly there exists

two modes of excitation for these particles, a smaller doubly degenerate transverse mode (TM), at 520 nm or

lower, associated with excitation by light with a polarisation orientated along the minor axes of the ellipsoid.

This mode decreases in intensity and is slightly blue shifted with increasing particle aspect ratio. A second

much larger longitudinal mode (LM) associated with excitation by light with its polarisation orientated along

the major axis of the particle. This mode dramatically increases in intensity and red shifts with increasing

aspect ratio. Typically for the size of particle for which Gans’ solution is valid (de f f <60 nm), scattering is

negligible and can be ignored. Example spectra generated by this theory are given in fig. 1.5.

Gans’ solution can be used as an effective estimate of the optical properties of small AuNRs. However in

comparison with the observed spectra the LM peak is always significantly blue–shifted due to differences

in morphology between an ellipsoid and an actual AuNR. Also Gans’ solution fails to account for effects

such as surface–electron scattering, which acts as a damping term at resonance leading to broadening of this

peak. The relative ease of these calculations, compared with computational simulations still makes them a

relatively attractive option as a crude but effective estimation of the optical properties of AuNRs.
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Further extensions to Mie Theory

There are a number of other notable extensions to Mie theory allowing calculations to be made for particles,

notably Aden and Kerker’s solution for concentric spherical shells which can accurately model the optical

properties of gold nanoshells and can be extended further to include coated ellipsoids [3], and Lind and

Greenberg’s solution for infinite cylinders, applicable to metal nanowires [205].

1.2.6 Computational Simulation of Gold Nanoparticles

Beyond the few morphologies given above, there are no other simple solutions to Mie theory, instead the

problem must solved computationally. This offers the ability to predict the optical response of any given

particle morphology in an arbitrarily complex environment. Several common methods appear in the literature,

detailed as follows:

Direct Dipole Approximation - DDA

The discrete dipole approximation, these calculations represent an arbitrary–shaped particle as a cubic

lattice of N point dipoles each with a local polarisability, αi, leading to a set of 3N coupled linear equations

[76, 77, 281]. These equations are then typically solved numerically using the conjugate gradient method

[79]. DDA is currently the most popular simulation technique for metal nanoparticles, and offers simple

parameterisation and only requires that the particle volume be discretised [239]. However the simulations

typically require large amounts of computation time and are limited by the fact the accuracy suffers with

increasing refractive index, requiring finer meshing increasing N to often computationally prohibitive levels

for Au in the NIR. Freely distributed codes such as DDSCAT and OpenDDA make these simulations

relatively straightforward to implement.

Finite–Difference Time–Domain – FDTD

Finite–difference time–domain, these calculations provide numerical solutions to wave equations using the

Yee algorithm [397]. The entire space over which solutions are sought is modeled as a 3D–grid over which

Maxwell’s equations are discretised based on finite steps in time and space. The electric and magnetic field

over each finite volume are calculated and solved at a given instant in time and then stepped until steady-state

behaviour is achieved. This method is very processor and memory intensive, but given a fine enough mesh

and that the wavelength is much larger than the physical dimensions of the particle, can accurately provide

solutions to Maxwell’s equations over all space. These simulations are fairly easy to implement, but require

large amounts of computation time. It also requires that the permittivity be expressed as the sum over

multiple Lorentzians, which can make inclusion of experimentally determined values of ε(ω) more difficult

[239]. The most commonly utilised software distribution for these calculations in the literature is Lumerical.

Boundary Element Modelling – BEM

Boundary element modelling, which models the physical situation as a series of 2D elements situated on the

interface of materials and at the boundaries of region of interest; a set of differential equations can then be

solved for each element by minimising an error function [150, 336]. It can accurately calculate the optical

response of plasmonic nanostructures, and generally over a shorter timescale than other methods, since
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Figure 1.6: FEM simulated spectra of AuNRs varying aspect ratio, R, and end–cap eccentricity, e. Spectra
have been calculated for values of e between 0 and R (i.e. a cylinder and an ellipsoid) for AuNRs with aspect
ratios of (a) 3, (b) 4, (c) 5, and (d) 6. Inset are diagrams showing the crossection through the major axis of
each AuNR and a diagram showing the values with with e were calculated. Permittivity data for Au taken
from refs [156] and εH2O was assumed to be 1.77.

solutions only have to found for the interfaces in the system. This comes at the cost of losing information on

the volumetric distribution of calculated quantities, such as the electric field. Beyond this, BEM techniques

are limited to solving linear differential equations, any non–linear couplings are thus not calculable via this

technique. BEM is better suited to dealing with simple morphologies with low surface–to–volume ratios, as

increasing surface area results in increasing number of elements per particle. The computational requirements

of these simulation scale with the square of the number of elements (compared with FEM which increases

linearly with the number of elements), hence higher surface area particle morphologies increase computa-

tion time significantly. MNPBEM is a commonly used MATLAB plugin for the purposes of these simulations.

Finite Element Modelling – FEM

Finite element modelling, is a volume–discretisation technique, using a (typically irregular) mesh. Solutions

to differential equations throughout the volume can then be solved using variational methods from the calculus

of variations to solve each finite element. Typically solutions are coupled to neighbouring elements and thus

several runs must be completed to minimise the associated error. Typically the associated error is minimised

through the use of algorithms such as the Runge–Kutta method. Solutions for simple problems may require a

large amount of memory and computation time compared with BEM, but additional information is garnered

on the variation of individual parameters over the entire volume. For more complex geometries with a high

surface–to–volume ratio typically are solved faster in this formalism. Common FEM simulation packages

used for these calculations are COMSOL and ANSYS. These packages offer the additional benefit of being

bundled as multiphysics packages allowing the simulations of other physical phenomena to be considered

alongside plasmonic resonances such as heating or fluid dynamics.
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Figure 1.7: Simulated absorbance crosssections of AuNRs calculated using the method published by Yu
et al [401]. Spectra have been calculated for cylinders (e = 0, dashed lines) and hemispherically–capped
AuNRs (e = 1, solid lines) for aspect ratios between 1 and 6. Permittivity data for Au taken from refs [156]
and εH2O was assumed to be 1.77. The parameter sets used to calculate these spectra are those given in ref.
[401].

Example FEM simulated spectra calculated using COMSOL are shown in fig. 1.6.

1.2.7 Extensions to Computational Simulation

A more recent approach has been to create simple numerical model which can generalise the results of the

above methods to all similar nanoparticle shapes. Yu et al have shown it is possible to calculate the optical

response on certain metal NPs from a set of four parameters which can be extracted from computational

simulations, after which all NP of similar form can be calculated with minimal computational resources

[401]. The method is limited to the quasistatic limit, and hence can only be applied to simple with a single

electrostatic dipolar mode per symmetry axis.

These four parameters are ε j, the resonant permittivity, which describes the effects of geometry as an

effective permittivity. It can be extracted from fitting of the peak strength and postion of mode j from

several simulated absorption spectra. Secondly, V1, the electrostatic mode volume, and particle polarisability

expansion coefficients, a12 and a14, which can be calculated from the simulations of the induced electric

field. Sets of these parameters have to be calculated for each excitation modes of a given particle. These

numbers are independent of particle size (under the quasistatic limit), composition and environment, and

hence once calculated can be used to calculate the optical properties of particles of the same shape, but of

different characteristic dimensions (with in the limits of the quasistatic approximation).

These variables appear in a modified particle polarisability of form:

α(ω) =
1

3ε3/2
m

V1

(
εm

ε − εm
−

1
ε1 − 1

− A1(s)
)−1

(1.16)

where s is the shape factor defined by
√
εmL/λ, and A j(s) is function which describes retardation effects due

to the finite size of the particle relative to the wavelength of light defined by A j = a j2s2 + 4π2iV
2L3 s3 + a j4s4 + ....
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This polarisability can be inserted into the relations for σabs, σscat, and σext given in eq. (1.15) to give the

optical response of a given particle.

Once the four requisite parameters described above have been calculated, they can be inserted into

eq. (1.16). and subsequently eq. (1.15), enabling calculation of spectra in fractions of a second. However, the

calculated results are only as good as the simulations used to calculate the particle properties. It is also not

suited for any study which requires even relatively minor morphological changes to be made to the particle

geometry (such as end–cap modification of AuNRs) as a large number of simulations need to be performed

in order to arrive at each parameter set. Example spectra calculated using this method for cylindrical and

hemispherically–capped AuNRs are given in fig. 1.7 (using the parameter sets given in [401]).

1.2.8 Other Plasmonic Effects

Local Field Enhancement

As discussed in section 1.2.4, a metal NP excited close to its plasmonic resonance will induce a local

field in the surrounding enviroment. The near–field generated on the particle surface is greatly enhanced

compared to the excitation field, E0. This is true for all plasmonic nanostructures and has found a variety

of applications. The induced field can be greatly enhanced by fine tuning of the particle morphology to

maximise the plasmonic Q–factor, in the case of AuNPs by tuning the particle resonance above 700 nm

(fig. 1.2(c)). Presented in fig. 1.8(a) is the calculated field enhancement surrounding a (16 × 60) nm AuNR,

excited at resonance (λLS PR = 803 nm), it can be seen that an enhancement factor in excess of 70× is expected.

By comparison a 60 nm AuNS excited at resonance (λLS PR = 536 nm) has an expected enhancement factor

of 14 [234]. It can also be seen that the field becomes localised to areas of high curvature, in the case of the

AuNR above, this falls close to the intersection between the body of the AuNR and tip (fig. 1.8(b)&(c)).

These high field intensities close to the particle surface greatly enhance electronic transitions of optical

emitters and absorbers, leading to enhanced signal from electronic processes such as Raman scattering

[144]. The actual enhancements of the Raman signal is proportional to the fourth power of the electric field

enhancement and is given by the local field enhancement factor, emGSERS, defined by [171]:

emGSERS =

∣∣∣∣∣ E
E0

∣∣∣∣∣4 (1.17)

Figure 1.8(b)&(c) gives emGSERS as calculated along various axes and contours within the model, with a

maximum value of emGSERS of 2×107 being predicted by the model. These significant enhancements in

Raman signal intensity have wide use in applications requiring high sensitivity such as the detection of

explosives, pollutants and biomolecules [34]. Raman spectroscopy thus also provides a robust method to

with which to characterise the surface coatings of plasmonically active NPs.

Plasmonic Coupling (and Aggregation)

When multiple particles are considered in close proximity this induced field becomes important as it will

interact with surrounding particles. Calculations become more involved, as a universal plane electric field

can no longer be considered to be the only excitation source. Hence neighbouring particles will experience

plasmonic coupling. Under such conditions The field felt by an individual nanoparticle can be considered to
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Figure 1.8: Local electric field during excitation of the LSPR of a AuNR. (a) FEM simulated map of the
ratio of amplitudes of the local field and excitation field (|E|/|E0|) around a (16 × 60) nm AuNR (λLSPR = λ0
= 803 nm). The excitation wave was polarised along the major axis of the AuNR and traveling into the plane
of the image. (b) Plots of the local field enhancement factor, emGSERS along lines located (1) along the major
axis of the AuNR, (2) parallel to the particle surface originating from the intersection of the half–ellipsoid
and cylindrical sections of the AuNR, (3) perpendicular to the particle surface from the same point, and (4)
along the minor axis of the AuNR. For clarity, each of this vectors have been marked on the inset diagram.
(c) emGSERS along the surface contour shown in (a). The points along the contour which intersect with the
major and minor axis have been marked on the figure, as well the intersections between the half-ellipsoidal
caps and cylindrical sections of the AuNR. Diagrams above each section of the curve indicates which the
section of the contour corresponds with that section of the curve. The electrical response of the AuNR was
rotationally symmetric about the long axis of the AuNR, hence the contours perpendicular to this axis have
not been plotted as they can be determined from (c).

be ~E = ~E0 +
∑

i Ei,n f , where ~E0 is the excitation field and Ei,n f is the near field response of an individual

nanoparticle. These calculations are complicated as the near–field response of each particle is altered by the

presence of the others.

The net result of this are well–documented, in the simplest case, the spectral response of two NSs will

become increasingly red–shifted as the interparticle distance is reduced and the peak is seen to broaden. The

resulting colour change is significant enough that it has been widely exploited as a method of colourimetric

biosensing (e.g. see refs [10, 116, 233, 317]). In the case of anisotropic NPs, consideration of the relative

orientation of each particle must be given. Figure 1.9(a)&(b) shows FEM simulated extinction crosssections

of pairs of AuNRs as a function of interparticle distance. Showing how longitudinal alignment leads to

red–shifting of the plasmon and transverse alignment leads to blueshifting (it should be noted that transverse

alignment is significantly more energetically preferable) and that the magnitude of this shift is inversely

dependent on the interparticle distance.

In order to preserve the optical properties of a colloidal suspension of plasmonic NPs, the stability of the

particles must thus be maintained. Hence a great detail of consideration is given to functionalising particles

with suitable ligands to prevent aggregation and thus plasmonic coupling. This is particularly problematic in

the cases of large clusters of particles where the observed broadening can lead to complete suppression of

any observable plasmonic behaviour.
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Figure 1.9: FEM simulated extinction cross–sections for pairs of coupled AuNRs organised in (a) side-to-
side and (b) end-to-end configurations at a range of particle separations. (c) Plot of the observed plasmon
shift in both cases as a function of interparticle distance.

1.3 Photothermal Properties of Gold Nanoparticles

1.3.1 Heat Generation by Gold Nanoparticles

As in any physical system with a resonance condition, some form of damping must be present in the system

to prevent catastrophic failure of the system. In this case, the complete disassociation of the electrons from

the metallic lattice of the AuNP. Hence damping in plasmonic NPs occurs through electron thermalisation,

which can happen through two primary means, photoluminescence or resistive heating. Gold does not have a

band gap and hence presents quantum yields� 1%, thus thermalisation must occur predominantly through

resistive heating of the particle. Thus, to a good approximation all light absorbed by a NP is converted

into heat [149]. Resistive heating occurs through electron scattering, primarily electron–phonon (e–ph,

>85%), but also through electron-electron (e–e, <15%). Hence, e–ph scattering is the main means by

which excited electrons in the AuNP exchange heat with the lattice, this process has a typical timescale of,

τph ∼ 1 ps, and thermal equilibrium between the electrons and lattice will be achieved in 10–50 ps [84].

For excitations longer than these timescales it can be assumed given the high thermal diffusivity of gold

(αAu = 1.27 × 10−4 m2 · s−1) that the heat distribution through the particle will be uniform. The particle

surface and surrounding medium (presumed to be water in this case) will equilibrate over a time scale of

several 100 ps though phonon-phonon scattering (ph–ph). Typically for CW or pulse widths larger than

several nanoseconds these processes effectively happen simultaneously and a steady state of heat flow out of

the NP occurs throughout the entire pulse. On the assumption all absorbed light is converted into heat, the

power of heat generation by a NP, Qabs, is given by:

Qabs = σabsI

= σabscε0|~E|2
(1.18)

where I is the intensity of the incident light field and ~E is the electric field inside the nanoparticle.

In the case of steady-state heating (i.e. for pulses > 1 ns), the temperature distribution around a spherical

particle is given by the solution to the classical heat equation with an additional source term, Q(~r, t):

1
α
∂tT (~r, t) = ∇2T (~r, t) + Q(~r, t) (1.19)

where α is thermal diffusivity of the medium. For a particle of effective radius, r0, under illumination, this
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equation has a solution of form:

T (r) − T0 =


Qabs
4πκ

1
r0

|~r| ≤ r0

Qabs
4πκ

1
r0

erfc
(
|~r|−r0√

4αt

)
|~r| > r0

(1.20)

where κ is thermal conductivity of the surrounding medium and erfc(x) is the complementary error function

[256, 388]. This solution has been computed for a AuNR under continuous wave illumination in fig. 1.10.

The resulting temperature rise for a single AuNR is <1 mK, at a beam power of 1 W·cm2. This superficially

seems very low, but NPs are very rarely seen in isolation (i.e. the typical NP concentration in a AuNR

synthesis is ∼1011 ml−1), much more substantial temperatures are achieved in colloidal solutions.

Accounting for multiple particles in close proximity makes the heat equation significantly more complex,

because heat can now flow between particles, reducing the heat flow out of neighbouring particles, in turn

increasing the temperature of the particle and the medium. The heat source term, Q(~r, t), in the heat equation

is replaced by a sum over all particles ΣiQi(~r, t). The accumulative effect of several particles can yield

significant increases in temperature [113], this has been calculated theoretically for arrays of AuNSs [288]

and demonstrated experimentally though changes in the melt rates of frozen colloids a a function of AuNS

concentration [290].

1.3.2 Illumination Modes

The choice of light source used to heat the particles significantly affects the temperatures and mechanism of

action on surrounding tissue. With two options being most commonly used in the literature, continuous wave

(CW) lasers and nanosecond–pulsed lasers.
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Figure 1.10: (a) Calculated temperature profiles for a single randomly–orientated AuNR under 1 W·cm−2

continuous wave illumination at resonance (LSPR = 800 nm) calculated as the solution of the heat diffusion
equation. The particle ‘radius’ (dashed line) is given at the effective spherical radius, 17.1 nm. Inset is the
temperature at a point 10 nm from the particle surface, showing a steady state temperature distribution is
achieved after ∼1 µs. (b) & (c) FEM simulated temperature profiles in the lateral plane of a AuNR excited
by a single Gaussian nanosecond laser pulse (τp = 7 ns, fluence = 13 mJ·cm−2) on resonance (LSPR = 800
nm). Times are given relative to the centre of the pulse (i.e. t = 0 is during the peak intensity of the laser
pulse). The curves during the heating of the particle are given in (b) and the subsequent cooling is shown in
(c). Inset in (b) is the temperature of a point 10 nm from the particle surface demonstrating the transient
nature of the heating.
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Continuous Wave Illumination

Continuous wave sources are commonly used due to them being cheaper than pulsed sources, with suitable

high intensity single wavelength diode lasers being available for around 5–6× less than the cheapest suitable

nanosecond sources. However these are not useful in all medical applications and typically require greater

exposure times or total fluences to achieve suitable levels of cell death. From the calculated thermal profile

in fig. 1.10(a), it can be seen that the temperature distribution for a single NP effectively achieves equilibrium

heating after ∼1 µs. At this point, the thermal gradient has a characteristic length of ∼1 µm. Whilst this

increase may seem small initially, the mean inter–particle distance for a typical colloidal AuNR solution

(∼ 1011 ml−1) is 0.13 µm1, hence these thermal gradients overlap. Illumination of a solution with a continuous

wave light source should hence be considered a bulk heating effect, with local temperature variations due to

plasmonic excitation are typically less than ∼1 mK based on these calculations.

Similarly whilst 1 mK superficially seems like a tiny temperature increase, the high number of particles

in solution means that cumulatively they can increase the bulk temperature of a solution significantly. For an

infinite bulk solution of AuNRs at a concentration of 1011 ml−1, under 1 W·cm−2 illumination, we would

expect an increase in the bulk temperature of ∼2.4 °C·s−1, however the finite volume of any solution means

that heat losses to the surrounding environment will diminish the rate of localised heating with increasing

temperature.2. Heating colloidal solutions with continuous wave sources can generate bulk temperature

increases of several 10°C over several minutes of illumination.

Nanosecond–Pulsed Illumination

The other laser sources typically used in medical applications of AuNPs are nanosecond pulsed sources.

These are normally Nd:YAG laser pumped optical parametric oscillators, which usually offer ∼100 mJ pulses,

2 – 20 ns in duration, at repetition rates between 10 and 30 Hz (there is a lot of variability between lasers).

These can usually deliver similar laser average powers to continuous wave lasers, but have very small duty

cycles (∼10−5%). Significant heat diffusion cannot occur over the timescale of a single pulse. Hence such

lasers achieve temperatures increases that are restricted in both time and space. Often reaching temperatures

that are several times higher than the boiling point of water in a volume highly localised to the excited

nanoparticle. The transient temperature increases caused by such lasers are capable of instantaneously

denaturing proteins and cavitating nanobubbles in the surrounding medium, providing strong mechanical

agitation alongside the extreme heat profiles provided, hence these lasers are generally significantly more

effective at inducing cell death than CW lasers at the same average power.

Figure 1.10(b)&(c) show FEM–simulated temperature profiles around an AuNR under a typical Nd:YAG

OPO laser pulse. Comparison with the solution for CW heating (fig. 1.10(a)) shows how radically different

these heating regimes are. With a maximum temperature increase of ∼350°C expected for a 7 ns, 13 mJ·cm−2

Gaussian pulse. These simulations do not account for phase change of the surrounding medium, and hence

the insulating effects steam would have on the particle; it is expected in reality the particle would increase in

temperature further than calculated here in the case of nanobubble generation.

1Defined by the Wigner–Seitz radius: 〈r〉 = (3/(4πn))1/3.
2∂tT = Pmc where P is the power of heat generation, m is the mass of the heated volume and c is the specific heat capacity
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1.3.3 Thermal Reshaping

A major issue faced by nanoparticles when heated in this manner is that of thermal stability. Gold nanoparti-

cles have been observed to thermally reshape under both continuous wave and nanosecond pulsed lasers

[121]. This is often erroneously attributed to melting point depression, the reduction in the melting point of

nanoparticles with decreasing radius (as expressed by the Gibbs–Thompson equation). This is only really

an effect seen for particularly small nanoparticles (i.e. r � 10 nm) [271], the majority of nanorods in the

literature are of a size that would be expected to have melting points very close to bulk Au.

Instead this phenomenon is almost entirely driven by surface migration of atoms at elevated temperatures.

[276, 287, 341, 371]. With surface atoms located at high energy, high curvature sites at the tips of AuNRs

preferentially moving towards to more energetically preferable sites along the edge of the AuNR. The net

result of this for AuNRs is reduction in aspect ratio. The effects can be observed at temperatures as low as

50°C [247], and more rapidly change shape with increasing temperature above this [162]. The threshold for

thermal reshaping is sensitive to both surface coating [127, 162] and NP size, with smaller particles being

expected to reshape less readily than larger particles [51, 162, 174].

This phenomenon is extremely problematic for applications that are dependent on the optical properties

of AuNPs. These properties are shape–dependent and, for instance, any reduction in the aspect ratio of

AuNRs will result in a blue–shift of the LSPR peak. Given how spectrally narrow most laser sources are, this

will likely result in the absorbance peak no longer overlapping the excitation source, resulting in little, or no,

plasmonic activity. Hence, this represents a major concern facing the application of AuNRs as photothermal

conversion agents. Hence, an area of active research interest is to find strategies to prevent this, including the

use of stabilising surface capping agents such as silica [31, 53, 59, 60, 157, 216, 382], or optimisation of the

particle morphology [51, 173].

1.3.4 Photoacoustic Pulse Generation

Another interesting phenomenon that emerges from the intense heating generated by AuNPs under illu-

mination is that of sound generation. This is the result of the photoacoustic effect, first recognised by

Alexander Graham Bell in 1880, in which he observed that a selenium disc exposed to a modulated beam of

light produced an audible sound at the frequency of modulation [32]. This effects stems from the thermal

expansion due to heating driven by optical absorption by the material, resulting in an oscillating thermal

expansion at the frequency of modulation. The strength of this effect is thus proportional to the absorbance

of the material at particular wavelength and can be used to distinguish between materials [33]. The advent of

much more intense light sources in the form of lasers in the 1960s led to the development of photoacoustic

spectroscopy enabling detection of parts–per–trillion concentrations of analytes based on their absorbance

spectra [295].

In the case of AuNPs, the combination of their extremely large absorbance cross–sections, high pho-

tothermal conversion efficiency and very small size means that they are effectively point sources from which

acoustic pulses can be generated.

Before consideration of the photoacoustic response of AuNPs, the stress confinement time should be

discussed, τs, which characterises the time for a sound wave to cross the heated region. Any sudden increase

in stress which occurs below this timescale, will result in a localised buildup of stress. This will then be
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dissipated as acoustic pulse equal in width to τs. It is expressed as τs = l/vs, where l is the characteristic

length of the heated region and vs is the speed of sound in a medium. When a nanoparticle is illuminated

it will produce heat and the particle and its surroundings will expand linearly with ∆T , with coefficient

of proportionality, β, this also creates stress in the material which is dissipated as a pressure wave. If the

heating occurs in less than τs, localised stress will build up in the heated region. The greater the heating the

more severe the stress gradient within the heated region. For pulsed excitations, with τp � τs, this will be

dissipated as a broadband acoustic pulse which will propagate in all directions at velocity, vs. For such a

pulse generated by plasmonic exciting a AuNP, the majority of the signal will be generated in the medium,

since heat diffuses out of the particle within ∼50 ps [271], and the stress relaxation time for water/biological

media will typically be ∼ 1 µs; hence the nanoparticles act as the heat source for pulse generation1.

We will consider heating a distribution of particles throughout a volume. The photoacoustic wave

equation dictating the pressure generated by heating of a localised region is [63]:

(
∇2 −

1
v2

s
∂2

t

)
p(~r, t) = −

β

Cp
∂tQ(~r, t) (1.21)

where p(~r, t) is the pressure field, and Cp is the specific heat capacity at constant pressure. Q(~r, t) is the

heating function describing the cumulative effect of a spatial distribution of absorbers. For a single AuNR it

is given by eq. (1.18), but is normally given as Q(~r, t) = α(~r)F(~r), for a distribution of absorbers under pulsed

illumination (where α(~r) is the absorption distribution and F(~r) is the local laser fluence). The photoacoustic

wave equation has a general solution of form:

p(~r, t) =
β

4πCp

∫
1

~r −~r′
∂tQ(~r′, t)

∣∣∣∣∣
t=t′−|~r−~r′ |/vs

d~r′ (1.22)

From this we can take that the maximum pressure will be achieved by minimising |~r−~r′|, hence reducing

displacements due to thermal expansion, by restricting the excitation pulse width to significantly below the

stress confinement time. The maximum pressure is linearly proportional to the energy of the pulse, where

the peak pressure can be calculated as:

p0 = Γ(T )Q(~r′, t) (1.23)

= Γ(T )α(~r)F(~r) (1.24)

where Γ is the Grüneisen parameter. Hence it can be seen that the photoacoustic response of a system is

linearly proportional to laser fluence and the absorbance cross-section of the absorber. Combining this

with the expressions for σabs in eq. (1.15), it can be seen for a distribution of AuNRs the photoacoustic

response should be linearly proportional to the concentration of Au. Hence the primary means of maximizing

the photoacoustic response, is to optimise the monodispersity of the sample to yield the highest possible

absorbance at the illumination wavelength.

The twin requirements of high pulse fluence and pulse widths� τs, have led to led to Nd:YAG pumped

OPO lasers becoming particularly popular for this application, offering pulse widths of a few nanoseconds,

over a very broad range of wavelengths with extremely high pulse energies of several hundred mJ available.

1A pulse is actually generated by the nanoparticle, but is typically < 1% of the total signal.
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(peak powers of 0.1–1 MW). There has been work however attempting to use diode lasers as cheaper

alternative light sources, they suffer from the key disadvantage of having significantly much lower peak

powers/pulse energies1, but are considerably less costly, being typically 10% the cost of Nd:YAG OPOs, are

very compact and offer variable pulse widths and repetition rates. The ability to vary the repetition rate is key

since it offers the opportunity to sample acoustic pulses at many times the rate offered by a Nd:YAG pumped

OPO (10–30 Hz), allowing significantly better averaging to be performed, increasing the signal–to–noise

ratio substantially. These systems have been successfully implemented by Beard’s group at UCL for in vitro

tests [14, 15, 16, 192, 193].

1.4 Applications of Gold Nanoparticles in Cancer Nanomedicine

The optical and thermal properties discussed above have been utilised as agents for both the treatment and

imaging of cancer. Discussed here are the relevance of those properties and the some of the most prolific

methods utilising them in the literature.

1.4.1 The Near–Infrared Biological Window

The primary interest in AuNRs over other particle morphologies and materials is their strong absorbance

peaks which are tunable throughout the near infrared (NIR). They fall into what is known as the first NIR

window in biological tissue, a range of wavelengths at which light sees increased penetration into tissue. The

first NIR window falls on a wavelength range2 between 650 and 850 nm, a second window between 950 and

1400 nm has also attracted increasing attention in recent years [323]. As shown in fig. 1.11 between 650

and 900 nm haemoglobin (Hb), oxyhaemoglobin (HbO2), and water and have their lowest absorbance in

the UV-vis-NIR region [376]. At such wavelengths the penetration depths of light at increased from 1 – 1.5

mm at blue/green wavelength to 1–2 cm at 800 nm [344]. Hence AuNPs can be made such that they absorb

strongly at wavelengths which can penetrate in vivo and can thus be used as in vivo photothermal conversion

agents in theranostic applications.

1.4.2 Plasmonic Photothermal Therapy

Using NIR–absorbent particles thus offers a potential method to remotely heat localised regions within

the body without significant damage to surrounding tissue along the light path. As discussed above,

plasmonic nanoparticles irradiated at their resonance wavelength will rapidly heat up, diffusing heat into

the surrounding environment. Living cells cannot withstand temperatures beyond a few degrees beyond

homeostasis, hence remotely heating them using plasmonic nanoheaters irradiated with NIR light offers a

non–invasive, collateral–free and potentially non-toxic route to destroy tumours within the body.

The increasingly severe effects of increasing temperature on human tissue are shown in fig. 1.12.

Prolonged exposure to elevated temperatures of around 42–43°C will induce cell necrosis, this is already

widely exploited in current hyperthermia treatments [215]. Hence, the temperature range between 42 and

48°C is often referred to as the ‘clinically relevant’ regime. Above this the thermal damage is severe and

1The highest available peak power nanosecond–pulsed diode was 650W/100µJ at the time of writing
2Other limits to this range are given in the literature, 850 nm has been given as the upper limit as it is the point at which the

detrimental effects of water absorption begin to be see in photoacoustics.
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Figure 1.11: Optical absorbance of key in vivo chromophores. There is clear reduction in absorbance for all
components between 650 and 850 nm known as the first NIR biological window in tissue. Hb/HbO2 values
taken from ref. [340], H2O values taken from ref. [270], Fat values were taken from ref. [353], and Melanin
values were taken from refs. [65] and [305].

instantaneous, prolonged heating at such temperatures is not clinically safe without good control of the local

distribution of the heat generation [149, 357].

Hence the use of thermal conversion agents have become a widely investigated method to deliver heat in

a highly localised manner, either through tumour–specific targeting or direct intratumoural injection, with

AuNPs being identified to as a one potential candidate. Alternatives include organic fluorophores such as

indocyanine green [56, 57, 58], which whilst NIR–absorbent, are significantly less efficient at generating

heat. Typically fluorophores have an absorption cross section six orders of magnitude smaller than a typical

AuNP. They also cannot be targeted to the tumour site efficiently (given the much larger size of targeting

ligands) and hence require significantly higher doses of photothermal agent for safe levels of radiation to be

maintained due to the reduced heating efficiency and lack of specificity [1].

In looking to optimise the effectiveness of photothermal heat generation an inspection of eq. (1.18),

points to the immediate dependence on absorption cross–section, and hence its morphological dependence.

Currently AuNRs offer the highest known σabs–to–volume ratio of all AuNPs1, typically with σabs an order

of magnitude higher than AuNSs or AuNShs at equivalent volumes of Au per particle, and come with a

smaller effective radius [145]. This smaller effective radius increases the allowed high penetration of tissue

and small blood vessels and hence improves the efficacy of AuNP accumulation at specific target sites [83],

although these suggested benefits are still under investigation.

The first attempts at utilising the photothermal effects of AuNPs to destroy cancer cells came in 2003,

when Hirsch et al used gold nanoshells (AuNShs) to selectively kill cells in vitro upon illumination with

NIR light. With the first in vivo murine model following in the next year, when O’Neal et al used multiple

treatments of intravenously injected PEGylated AuNShs followed by illumination with a 850 mW diode laser,

to completely destroy tumours containing CT26.WT cells; after 90 days all treated mice were still alive [261].

A number of reports on the use of AuNShs in vivo has followed these reports [54, 197, 212, 225, 369]. This

has ultimately culminated in the first human trials utilising AuNShs (branded as AuroShell) for photothermal

treatment of prostate neoplasms, delivered via intratumoural injection [190].

The first in vitro photothermal experiments using AuNRs came later in 2006 [141, 338]. Despite the better

theoretical optical properties of nanorods, the synthetic protocols and surface functionalisation strategies

1There are some simulations that suggest nanobipyramids might be better, although the improvement is marginal at best
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Figure 1.12: The effects of different temperatures on cells within the body. Adapted from: [149].

required to make them in bulk and use them in biological contexts only emerged in the mid–2000s (discussed

in section 1.5 and section 1.6). In the first photothermal studies Huang et al achieved selective killing of

HSC and HOC cells at intensities below 15 W·cm−2 using EGFR–targeted AuNRs with a LM of 800 nm

[141]. There have been a large number of studies since demonstrating that heat generation from AuNRs can

induce death in Human cell lines since (i.e. [11, 138, 251, 380]). AuNRs have also been heavily studied

in vivo, with most treated mice showing improved mortality (i.e. [111, 203]) or reduced tumour volumes

[55, 61, 198] after the combined administration of AuNRs and NIR exposure.

This is not to say that the technique is not without difficulties, a number of issues remain. The largest

is that of actually delivering the particles to the tumour site. The easiest solution to this is intratumoural

injection, but this cannot always be implemented depending on the location of the tumour. Instead many

studies using intravenously administered AuNPs rely on what is known as the enhanced permeability

and retention effect (EPR). This is the effect whereby intravenously administered small molecules are be

disproportionately taken up by tumours, which would be a panacea for drug delivery researchers. However

the EPR effect remains controversial, with open questions about its veracity, having often proved unreliable

in murine models [249], and further questions about how translatable any observed EPR effect in murine

model is to humans [68, 249]. The other strategy left open is that of targeting, but the results of these

strategies in the literature are also fairly inconsistent. A recent review article by Willhelm et al found that

the average delivery of non–targeted particles to tumour sites was 0.6% of the injected dose (%ID), by

comparison particles functionalised with a targeting ligand achieved just 0.7% [379]. There was a large

degree of variability in the reviewed papers with both non–targeted and targeted particles having a %ID in

the literature of ∼10.5%. As it stands there is no intravenous delivery strategy that results in consistent and

significant uptake of the injected nanoparticles.

Beyond delivery other issues exist, such as maintaining colloidal stability in vivo and preventing in-

tracellular aggregation after endocytosis [2, 314, 406], which can potentially destroy the useful optical

properties of AuNPs. Alternatively there are the competing priorities of preventing the immune system

too rapidly collecting administered particles whilst simultaneously preventing particles remaining in the
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body indefinitely [11]. These are all issues that also affect the next technique to be discussed, photoacoustic

imaging.

1.4.3 Photoacoustic Imaging

As discussed above, the photoacoustic effect only really found use in spectroscopy for most of the 20th

century [295]. In 1981, Bowen was the first to suggest the potential of photoacoustics in biomedical imaging

[38]. The technique was developed during the early to mid 1990s (e.g. [187, 264]) predominantly using

NIR–absorbent dyes as the contrast agent.

Using the photoacoustic effect to generate images relies on pulse generation as described in section 1.3.4.

Fluorophores heated under a nanosecond pulsed laser will effectively act as a point source for acoustic

pulse generation. The generated pulse will travel with a group velocity equal to the speed of sound in the

surrounding medium vs. Hence the position of the pulse can be calculated using time–of–flight measurements

from multiple transducers allowing the source to be located in space with a theoretical maximum precision

equal to vsτp, where τp is the pulse width, for a 1 µs wide pulse the highest resolution achievable is thus

∼1 mm. Imaging a complex distribution of pulse sources requires use of specialist time–of–flight imaging

algorithms able to convert the complex signals recorded by an array of transducers into a 2D dimensional

slice. It is thus possible to map the biodistribution of an administered dose of NIR absorbent–chromophore

within an animal due to the increased penetration of light.

It is possible to extend this further using a technique known as multispectral optoacoustic tomography.

By choosing a series of wavelengths at the major turning points in the spectra of water, Hb, HbO2 and

the chromophore of choice, it is possible to map the distribution of all four components simultaneously.

Deconvolution algorithms can be used to ‘spectrally unmix’ each pixel of the obtained image. This process

is optimised by choosing a chromophore with a large, narrow absorbance peak between 800 and 850 nm,

where all other components are at minimum absorbance. Hence AuNRs are well suited to this role, with

their tunable absorbance peaks and high photothermal conversion efficiency.

Figure 1.13: Schematic showing the key processes and the involved timescales used in in–vivo photoacoustic
imaging. An optical pulse < 10 ns illuminates a target leading to heating of the target and the surrounding
medium. This leads to localised thermal expansion and ultimately at high enough intensities is dissipated as
an acoustic pulse. Such pulses can be located in space through time–of–flight measurements allowing the
formation of an image of the target absorber within the medium.
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The first studies using AuNPs as photoacoustic contrast agents were in 2001, which demonstrated the

efficacy of AuNSs as photoacoustic contrast agents in phantoms [161, 265]. In particular, it was shown that

AuNS’ ability to cavitate nanobubbles in the surrounding medium significantly increases the amplitude of

the generated PA signal. In 2004 the first NIR–absorbent particles were used for PAI, where non–targeted

AuNShs were used to image a rat brain in vivo [369].

Some early work demonstrated that AuNRs could generate strong PA pulses in biosensing systems,

showing their potential for use in photoacoustics [199, 200]. The first in vivo use of AuNRs for PAI did

not occur until 2007, allowing whole body imaging of a mouse [83]. Since these early studies, there have

been a large number of improvements in utilising AuNPs in photoacoustics, including three dimensional

mapping [169], and the observation of both passive [284] and targeted [55, 327] uptake of AuNRs into

tumours. A wide range of other AuNP morphologies have found application in PA imaging [201], including

other NIR–absorbent morphologies such as nanocages [389], nanoprisms [26] and nanotubes [393].

Photoacoustic imaging utilising AuNRs suffers many of the same limitations as photothermal therapies,

its efficacy is significantly reduced by any effect that will change the optical properties of the photothermal

contrast agent, such as thermal reshaping or aggregation (plasmonic coupling). The lasers required to

generate the required pulse intensities are typically Nd:YAG–pumped OPOs, the intense fluence of these

lasers has been regularly observed to result in the reshaping of AuNRs (and hence the loss of their optical

properties) [121, 127, 162, 337]. This is also a problem faced by photothermal therapy if a nanosecond

pulsed laser is used. Hence a number of strategies have been devised to cope with this such as coating

the AuNRs in a silica shell which does not so easily thermally reshape [31, 59], or optimising the nanorod

morphology to minimise thermal reshaping [51, 174]. In relation to prevention of aggregation, silica coating

offer a potential solution to this if made thick enough to prevent plasmonic coupling [62]. Alternatively

targeting AuNPs to extracellular sites, in an attempt to prevent endocytotic uptake and ultimately intracellular

aggregation [348].

1.4.4 Other Medical Applications of Gold Nanoparticles

PPTT-Assisted Chemotherapy

There are several potential methods to extend to PPTT which could significantly increase its effectiveness,

firstly, AuNPs offer a potential delivery vehicle through which to deliver chemotherapeutic drugs to a

tumour site. Delivery of these drugs would be hugely beneficial; current chemotherapeutic drugs are very

effective at killing cancer cells, but they are also toxic resulting in significant collateral damage to healthy

cells and a severe depreciation of the quality of life of patients. A large proportion of these suffer from

solubility problems, with around 40% of currently available drugs and 90% of upcoming drugs showing poor

water–solubility, preventing delivery to the tumour site [159]. Hence there is now a concerted effort to devise

in vivo delivery mechanisms to overcome these problems such as targeted AuNPs. These have the potential to

allow a significant reduction in required dosage and increased efficacy due to the proximity of drug release to

tumour sites. Beyond this chemotherapeutic drugs when used alongside thermal therapy become significantly

more effective, due to the increased vascular permeability (encouraging local drug delivery) and increased

cellular pore size (allowing large-molecule drug absorption) brought about by localised heating of tissue. For

example, Yavus et al have developed a drug delivery based on gold nanocages coated in a smart polymer,
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which when irradiated in the NIR contracts to allow the release of drug molecules contained inside [392]. In

vitro tests showed a 40% decline in cell viability after drug release showing the potential effectiveness of this

alongside PPTT in ensuring cell death.

Biosensing

The strong optical properties of gold nanoparticles makes them potentially useful as colourimetric biosensors.

The proposed methods tend to fall under two schemes of based either on specific binding or induced

aggregation in the presence of a molecule of interest. The former are generally simple lateral flow assays

in which AuNPs functionalised with an antibody will bind to another antibody–functionalised strip in the

presence of an analyte (i.e. ref. [168]). Alternatively, deliberately induced aggregation in the presence of an

analyte of interest can be used [10]. If the analyte present several binding sites multiple AuNPs can be bound

to it leading to rapid aggregation in the presence of enough analyte. These changes can be easily detected

through UV-vis spectroscopy, enabling rapid quantification of the analyte concentration.

The other significant form of biosensing is that of single particle SERS, especially in the case of AuNP

dimers, or particle–on–a mirror configurations [158, 322]. Which enable huge enhancement of the Raman

signal from single molecules. For example enabling sensitive monitoring of trace levels of hormones such as

dopamine in urine and correspondingly allowing dosage of medication to be made directly in response to

actual physiological levels of biomarkers.

1.5 Chemical Synthesis of Gold Nanoparticles

The discussion here is limited to the liquid–phase synthesis of gold nanoparticles using chemical reducing

agents, a number of other methods exist but are not well suited to the bulk production of nanoparticles for

the applications discussed here.

1.5.1 A Brief History of Gold Nanoparticle Synthesis

The earliest reported nanoparticle synthesis in the scientific literature remains that of Faraday in 1857

[87]. In the course of preparing gold films, Faraday inadvertently synthesised a red colloidal suspension

through the reduction of NaAuCl4 by white phosphorus. Faraday correctly identified the origin of this colour

emerging from the optical properties of suspended particles. However the study of gold colloidal suspensions

languished for most of the next century, with only a few notable exceptions, such as the work of Zsigmondy,

who created liquid–suspensions of gold nanospheres through the reduction of gold salts by tin chlorides

and studied their optical properties through darkfield microscopy [412]. Also the work of Turkevich in

1951, further developed by Frens in the early 1970s [97, 98, 349], which developed the most commonly

used method the synthesis of AuNSs currently used today. This was the single step reduction of HAuCl4 by

sodium citrate at elevated temperature, leading to the production of relatively monodisperse citrate capped

AuNSs 10–20 nm in diameter.

From the late–1980s there was an increased interest in the synthesis of AuNPs, with a number of

important synthetic protocols emerging. Including the development of the polyol process in 1989 [89, 90],

where by metal salts are reduced in a α–diol such as 1,2-ethanediol (ethylene glycol) at high temperature
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(210°C). It is a widely used process due to the relatively facile synthesis and ease–of–scalability, it has

also notably been adapted for the synthesis of metal nanowires ([332, 333, 334]). The early 1990s saw

the publication of the Brust–Schiffrin method, an important method for the organic phase synthesis of

monodisperse alkanethiol–capped AuNPs with diameters less than 10 nm [42]. It was also in this period that

the first NIR–absorbent gold nanoparticles were synthesised in the liquid–phase with in the form of gold

nanoshells, initially on Au2S cores in 1994 [409], but rapidly followed by the use of silica cores in 1998

[260].

The earliest liquid–phase syntheses of AuNRs appeared during this period via photochemical [86] and

electrochemical [400] methods. Both protocols used a shape directing agent called cetyltrimethylammonium

bromide (CTAB) to yield AuNRs in solution. The real surge in interest in the synthesis of AuNRs appeared

after the publication by Jana et al of a protocol, which seeded the reaction with pre-synthesised AuNPs and

used a weak reducing in tandem CTAB to yield AuNRs in solution [148]. This protocol suffered from high

polydispersity and poor shape yield, requiring a large number of rounds of shape separation by centrifugation

in order to produce AuNRs in high yield. Following this an number of additional improvements were made to

the synthesis, through the inclusion of silver nitrate [253] and the optimisation of the reaction pH [12]. More

recently trends have focused on the inclusion of aromatic additives, such as salicylate [307, 395], dopamine

[209], hydroquinone [355] or resveratrol [367], or through the inclusion of co-surfactants such as BDAC

[253] and oleic acid [396]. Other strategies have involved controlling micellular structure through inclusion

of Hofmeister salts [269] or the use of alternative surfactants such as dodecylethyldimethylammonium

bromide [16, 253, 359] and gemini surfactants [385]. A discussion of the formation processes of AuNRs and

the effects of these is given in section 1.5.2 and the following sections.

1.5.2 Control of Colloidal Synthesis

The typical starting point from which to consider the product of any chemical process is that of kinetic and

thermodynamic products. Often in a chemical reaction there exist competing pathways to the formation

of multiple products, the composition of which are determined by the reaction conditions. Typically these

are grouped into either ‘thermodynamic’ products, that is the product which exists at the global Gibbs free

energy minimum, ∆G0; or ‘kinetic’ products, which exist at a higher Gibbs free energy, ∆G0′, but have a

lower energetic barrier, E′a to formation.

In the archetypal case (fig. 1.14), there exists a higher energetic barrier to the formation of the thermody-

namic product, such that Ea > E′a, and hence control over the reaction temperature and reduction potential,

allows for direct control of the composition of the resulting populations of the thermodynamic and kinetic

products. Under such conditions the lower activation energy of the kinetic product leads to higher rate of

product formation, and simultaneously the thermodynamic product forms at a lower rate due to the kinetic

barrier to formation. The ratio of the rates of formation, kx, is determined by the difference in the activation

energy, Ea, of the two products and the available thermal energy, given by:

kC

kD
= exp

(
−

∆Ea

RT

)
(1.25)

However, if this reaction is reversible (i.e. A + B −−−⇀↽−−− C), the thermodynamic product (A + B −−−⇀↽−−− D)

will form at a lower rate due to its higher activation energy, but simultaneously is more stable than the kinetic
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Figure 1.14: Typical representation of the energy profiles involves in kinetic vs. thermodynamic processes.
In the example reaction two possible products can emerge as a result of the reaction i.e. A + B −−−⇀↽−−− C ∨ D,.
Firstly, the thermodynamic product, D, which has the lowest chemical potential, but there exists a large
activation energy, Ea, providing a kinetic barrier to its formation. Alternatively, the kinetic product, C,
which has a lower activation energy, E′a, but whose final product, C, sits at a higher potential energy than
D. The lower activation energy of C leads to it forming at much faster rate than D. It can be seen for hot
reactions, such that kBT & Ea + ∆G0′ that the thermodynamic product will dominate, whereas below this the
kinetic product will be preferable. It is possible for a product to be both kinetically and thermodynamically
preferable.

product as result of its lower Gibbs free energy. Hence if the reaction is allowed to continue for an increasing

amount of time we expect to see thermodynamic products make up a increasingly larger fraction of the

products. Ultimately reaching a stable ratio of product concentrations, known as the equilibrium ratio, Keq,

determined by the difference in Gibbs free energies, and the the available thermal energy, given by:

Keq = exp
(
−

∆G0′ − ∆G0

RT

)
(1.26)

A number of factors can be utilised to control the resultant product from such reactions. For instance,

the concentration of kinetic products can maximised, by reducing the reaction temperature to the minimum

required for kinetic product formation, restricting the reaction time and controlling the reduction potential.

Conversely, long and high temperature reactions will maximise the number of thermodynamic products that

are formed.

It is worth noting that it is possible for a single product to be both kinetically and thermodynamically

favourable, in which case no control over the reaction can be achieved. Simultaneously if a kinetic product is

irreversibly formed (i.e. A + B −−−→ C), then no thermodynamic control can be exerted once this product

has formed.

Kinetic vs. Thermodynamic Considerations in Nanoparticle Synthesis

These considerations have important implications to the synthesis of AuNPs, however unlike the above

system nanosynthesis typically involves the complex interplay of kinetic and thermodynamic processes.

Factors ranging from the minimization of surface energy, energies of individual crystal facets (and the

respective binding affinities of ligands to them), ligand–ligand packing density, and interactions between the
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nanoparticle, ligand and surrounding solvents all must be considered in understanding the formation of a

nanocrystal.

Foremost, the thermodynamic shape is usually that which minimises the surface energy, (i.e. that which

minimises the surface–to–volume ratio). For a liquid droplet the solution is simple, it is a sphere; but in the

case of solids there exist cohesive interactions between atoms, requiring a consideration of both the surface

free energy, γi, and strain energy [368]. Atoms at the surface with the highest number of neighbors have

the lowest surface free energies, hence it follows that specific surface facets are energetically preferable to

form and in the case of fcc–metals, γ(111) < γ(100) < γ(110) < γHI (HI = higher index) [370]. These energies

can be modified through use of facet–specific capping agents enabling direct morphological control to be

achieved. Generally speaking, for such materials, the shapes that predominantly present {111} and {100}

facets are typically global thermodynamic structures [220], such solutions are called Wulff constructions.

For Au these comprise of monocrystalline icosahedra, octahedra, truncated octahedra, cubes, truncated cubes

and cubooctahedra; or penta–twinned decahedra [29]. Hence in general it can be said that anisotropic AuNP

morphologies are kinetic products [220], and thus a great degree of thought must be put into controlling the

reaction conditions to yield them.

The simplest methods for controlling the growth kinetics of such reactions include temperature and pH,

the effect of each on the reduction potential, Eh, of a reaction is readily expressed in the Nernst Equation

[244, 245, 246]:

Eh = E0 −
RT
F

h
n

pH (1.27)

where E0 is the reference potential, R is the universal gas constant, T is temperature, F is the Faraday

constant, h is the number of protons transfered, and n is the number of electrons transfered in the reaction.

It can be seen that Eh increases linearly with T , and decreases linearly with pH. Under standard reaction

conditions (T = 25 °C), RT/F = 59.16 mV; we expect a linear decrease in Eh with pH, with a gradient of

-59.16 h/n mV.

More generally when discussing particle synthesis, it is typical to frame it in terms of monomer generation,

with the initial barrier to achieving particle formation being that of nucleation itself. This emerges from a

consideration of the Gibbs free energy; for a sphere this is given by ∆G = 4πr2σ − 4/3πr3Gv, where Gv is the

energy per unit volume and σ is the surface energy per unit area. It can be seen that a critical radius exists at

r∗ = 2σ/Gv below which we expect dissolution of any forming nucleus and above which particle growth is

preferable. For many materials this means that supersaturation of monomers in solution must be achieved

before large enough nuclei can form that are stable (i.e. for calcite, r∗ = 1–3 nm [132]). However, in the

case of most metal salts, the critical radius is effectively non-existent at common synthesis temperatures and

dissolution of small clusters need not be considered, with even metal dimers remaining stable in solution

[241]. Hence formation of most metal nanoparticles can occur stably even at relatively low concentrations of

metal salts.

The classic example of a thermodynamically controlled nanoparticle synthesis is that of the Turkevich

synthesis [97, 98, 349]. This is the simplest possible case, a two component system containing a metal salt

(HAuCl4) and a reducing agent (sodium citrate). The whole reaction is heated close to boiling, run over a

long period of time providing enough energy to clear any kinetic barriers to complete reduction of the metal
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salt resulting in a homogeneous population of thermodynamic products (in this case amorphous spheres).

The main challenge which emerges under these conditions is that continuous nucleation will occur, leading

to nuclei forming at different time points, and hence having varied growth times, resulting in a polydisperse

population. The entire reaction is thus performed under very rapid stirring to encourage collisions between

freshly–formed monomer units and already–formed particles, leading to more homogeneous particle growth.

The size of the particle can be controlled between 10 and 150 nm through variation of the Au:citrate ratio,

additional of additional surfactants and control of the reaction pH [311].

The alternative is a kinetically controlled nanoparticle synthesis. That is a reaction performed as rapidly

as possible to deplete free monomers units in solution, preventing further particle growth. A good example of

this is the Creighton method for the preparation of gold seeds [64]. In this system a HAuCl4 solution under

vigorous stirring is rapidly reduced by a strong reducing agent in the form of NaBH4. The result of this

reaction, if performed properly1 is to yield very small monocrystalline particles (<4 nm), instead of the more

thermodynamically stable penta–twinned morphologies which present only {111} facets. Another example

of this is the so-called “hot injection” technique used in quantum dot synthesis, in which one precursor is

injected at lower temperature relative to the main reaction vessel, resulting in an initial burst of nucleation

followed by a slower growth phase as the temperature drops [274]. The net result of this is to achieve growth

directly onto the initially kinetically favoured product.

The final consideration is that of shape–directing capping agents, ligands can be added to a growth

system which will bind to specific facets which high affinity. Examples of commonly used capping agents

selected for this role include citrate, which preferentially binds to {111} facets or poly(vinyl pyrrolidone)

which preferentially binds to {100} [404]. The net result of including either capping agents allows generation

of structures that present majority {111} or {100} facets (in the case of Au, decahedra or cubooctahedra

respectively). Hence, control over what is considered the kinetic product of a reaction can be tuned through

the inclusion of additional additives in the growth solution.

Separation of Nucleation and Growth

As alluded to above, a large number of nanoparticle syntheses require the synthesis of seed particles, that is

an initial particle from which to grow the rest of the particle. These are typically prepared under completely

different reaction conditions to the final product. Seeding fits under a broader strategy deemed separation of

nucleation and growth which applies equally as a description to seeded and so–called ‘seedless’ synthetic

protocols. The discussion here will be limited to gold nanorods, but seed synthesis protocols have much

wider use in the synthesis of other particle morphologies such as plates, bipyramids and decahedra.

The synthesis of seeds is typically achieved via the Creighton method, albeit normally assisted by the

inclusion either CTAB or citrate. In short a mixture of HAuCl4 and either citrate or CTAB is prepared. The

HAuCl4 is then rapidly reduced by NaBH4 under vigorous stirring. In these cases the choice to do these

syntheses rapidly is due to the desire to keep particles small and monodisperse, rather than to achieve kinetic

or thermodynamic control of the morphology.

CTAB has a high affinity for the {100} facets of Au compared with citrate and will considerably lower

their surface potential upon binding, leading to preferential formation of these facets alongside {111} facets

1Using just NaBH4 is typically unreliable, and so CTAB is usually adding to stabilise the {100} facets not seen on penta-twinned
seeds
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and hence produce monocrystalline seed particles. Such particles can be used in the synthesis of particles

such as monocrystalline AuNRs and nanoplates. As stated above, the decahedral seed morphology is the

thermodynamic product and hence populations of monocrystalline seeds synthesised using CTAB, can be

converted to penta–twinned decahedra through thermal annealing post–synthesis [303]

Whereas citrate has higher affinity to {111} facets [272], and particle formation in its presence will lead

to morphologies which maximise these facets, in the case of gold this is penta–twinned decahedra. Such

particles have five twinned defect planes dividing monocrystalline regions which only present outward {111}

facets. Such particles are crucial to the formation of particles such as bipyramids, penta–twinned nanorods

and decahedra, all of which present fivefold symmetry.

The synthesis of penta–twinned AuNRs would not be possible if the seeds were produced in the same

growth solution the rest of the growth was performed because this second step is done in the presence of

CTAB (which has a higher affinity for Au than citrate). Hence separation of nucleation and particle growth

is a requirement of such syntheses. By comparison the CTAB–directed seeds can be produced in the same

growth solution, this is the basis of the so–called seedless and one–pot recipes. A small volume of NaBH4 is

added to the CTAB containing growth solution, to nucleate a limited number of particles relative to the total

amount of available gold. Under such a procedure the nucleation and growth are effectively separated, due to

the seeds being generated by a different reducing agent to that which drives the growth. It should be noted

that seedless protocol tend to generate small nanorods than those grown from seeds.

Inducing Anisotropy – Synthesis of Gold Nanorods

The actual growth process of AuNRs is still not fully understood, but fairly robust models have been estab-

lished which appear to explain the main observed processes. The actual growth processes of monocrystalline

AuNRs and penta–twinned AuNRs are different in the processes that drive anisotropic growth, but share

certain common features

Seeds are typically added to a solution containing a growth mixture of HAuCl4, CTAB, and ascorbic acid

(AA). Mixing HAuCl4 with CTAB in solution leads to rapid formation of AuBr−4 through a halide-exchange

reaction (4 CTAB + AuCl –
4 −−−→ CTA−AuBr4 + 4 Cl– + 3CTA+). AuBr−4 is more stable than AuCl−4 and

hence less easily reduced which appears to be key to controlling the growth kinetics during the synthesis.

AuBr−4 readily forms a complex with CTA+ ions in solutions resulting in the mixture becoming a distinct

orange colour1. Addition of AA, a mild reducing agent, then results the reduction of Au3+ to Au1+ via the

following two–step reaction2 [164]:

(1) CTA−AuBr –
4 + C6H8O6 −−−→ AuBr –

3 + C6H7O –
6 + H+ + Br–

(2) CTA−AuBr –
3 + C6H7O –

6 −−−→ AuBr –
2 + C6H6O6 + H+ + Br–

This is visible during the course of the reaction due to the disappearance of broad absorbance band at 395 nm,

leading the solution to turn from a semi-transparent orange to near completely clear [316]. Under the pH and

temperature conditions of a typical growth solution, reduction of AuCl−2 cannot occur without presence of a

surface potential to catalyze the reaction. Hence at this point the reaction is normally initiated by addition

1CTA-AuBr−4 has a characteristic broad absorbance band at 395 nm
2Ascorbic acid and dehydroascorbic acid can fulfill the role of reducing agent in either step.

32



1. Introduction and Theoretical Background

of seed particles (or in the case of seedless syntheses addition of a much stronger reducing agent such as

NaBH4 which can nucleate seeds in situ).

There is a debate around the specific role that ascorbic acid plays in the synthesis beyond this. Some have

suggested that growth of the AuNRs occurs primarily through a autocatalytic disproportionation reaction of

form:

3 AuCl –
2

Au0 sur f ace
−−−−−−−−→ AuCl –

4 + 2 Au0 + 2 Cl–

in which the ascorbic acid primarily performs the role as a scavenger, reducing the AuCl−4 produced from

this reaction to AuCl−2 , allowing all ionic Au in solution to be reduced on to the surface of the forming AuNR

[82]. However, this does not seem to be the case, if the synthesis is performed in the presence of weaker

reducing agents such as salicylic acid [307] or oleic acid [189, 292, 396], without AA, no growth onto the

AuNRs is observed. Both of these molecules are capable of reducing Au3+ to Au1+, and are hence capable of

performing the Au3+ scavenging role suggested in the above scheme. Instead the ascorbic acid is suggested

to play a direct role in reducing Au1+ onto the particle surface in the following autocatalytic reaction:

CTA−AuBr –
2 + C6H8O6

Au0 sur f ace
−−−−−−−−→ Au0 + C6H7O –

6 + CTA+ + H+ + 2 Br–

Also counter to proposed disproportionation reaction, other studies have suggested that in the presence of

CTAB, the reverse comproportionation reaction is actually more preferable (i.e. Au3+ + 2 Au0 −−−→ 3 Au1+)

[275, 294]. This process is essentially oxidative etching of the nanoparticle surface, and probably does occur

during synthesis, but is largely outpaced by the much faster parallel reduction of Au driven by the large

excess of AA in solution [390]. It is possible to use other mild reducing agents to drive this growth (i.e. refs

[81, 91]), although AA is by far the most commonly used reducing agent.

Regardless of the exact mechanism, the presence of AA leads to reduction of the AuBr− in solution onto

the surface of a seed particle. In order to achieve anisotropic growth with both penta–twinned seeded AuNRs

and monocrystalline seeds, a shape directing agent in the form of CTAB1 is required (and in the case of

monocrystalline seeds the presence of Ag ions) to direct anisotropic growth.

The precise role of CTAB was similarly misunderstood for along time, with a number of the early

papers attributing its role to that of a soft template in which nascent AuNRs could form. Hence there

was a large emphasis placed on the requirement for the formation of ‘needle’– or ‘rod’–like micelles (e.g.

[148, 238, 254]). It is now widely accepted that the actual growth mechanism occurs through preferential

adsorption onto {110} facets located the edge of the AuNRs (and {100 facets in single crystalline AuNRs}

[25]. Although this preferential binding on its own is not enough to ensure uniaxial growth. Hydrophobic

interactions between surfactant molecules are important too, studies looking at the impact of the hydrocarbon

chain length attached to the N+[CH3]3 headgroup have found shorter chains (H21C10–TAB) only create

AuNSs. Whilst longer chains allow the synthesis of rods of increasing aspect ratio up to C16 (CTAB), after

which the aspect ratio decreased alongside the rod yield decreased2 [103] .This appears to result from the

optimised bilayer packing density providing better suited growth rates on each facet. The counterion is also

crucial, replacement with iodide results in binding to the surface becoming too stable inhibiting particle

1Alternative shape directing agents to CTAB have been used in the literature, such as dodecylethyldimethylammonium bromide
[16], gemini surfactants [385], and hydrogen peroxide [361] (the latter is yet to be replicated in literature and reported very low shape
yield). CTAB is by far the most commonly used shape–directing agent in synthesising AuNRs.

2This seems to result from the effect decreased solubility of C18TAB rather than and inability to pack on the AuNR surface.
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Figure 1.15: Schematic: Formation of penta–twinned AuNRs.

growth, whereas replacement with chloride results in too weaker binding of CTAB to the particle surface

[211].

The specific role of CTAB in the synthesis of penta–twinned AuNRs vs. that of monocrystalline AuNRs

is worth considering. In the penta–twinned case the initial seed has no {110} facets present hence initial

particle growth is required to create {110} facets along the plane of symmetry in the seed. CTAB molecule

can then bind to this nascent surface stabilising it and slowing the rate at which Au can be reduced on to

it. This process is shown in fig. 1.15, whereby CTAB is able to consistently bind to the forming {110}

facets whilst reduction continues at the {111} facets at the tips. CTAB also plays another important role

in this process, by supplying bromide ions, which help further encourage uniaxial growth by oxidatively

etching the {111} facets. This oxidative etching dually prevents the binding of CTAB at the tips (encouraging

uniaxial growth), and offers kinetic inhibition slowing the rate at which Au is deposited at the tips [25, 381].

The resultant AuNRs are thus pentagonal in cross–section and can be hypothetically grown indefinitely to

produce very high aspect ratio AuNRs.

By comparison, monocrystalline AuNRs are grown from seeds that are typically cuboctahedral, these

present {100} and {111} facets in all directions, meaning there is no preferential direction of growth. Hence

additional components must be added to growth solution in order to induce anisotropic growth, in the form

of silver ions [362]. This is true for seedless growths also.

The Role of Silver in the Growth of Monocrystalline AuNRs

The advantages of adding silver ions to the growth solution was realised fairly quickly after the 2001 Jana

publication [147], although there was little elucidation the role played by silver in the synthesis (i.e. at this

point it was still being used in conjunction with citrate–capped seeds). The most commonly excepted model

is that AgNO3 is deposited on to the AuNRs through a process known as underpotential deposition (UPD).

UPD is an electrochemical technique whereby a monolayer of a metal is deposited on another metal at a

redox potential more positive than the Nernst potential [28]. Above this potential a metal will no longer

be readily deposited onto itself, but can be deposited on by a metal higher in the reactivity series. The net

result of this in this system is that silver will be reduced onto the nanorod surface, but no other metals ions in

solution can will be reduced on top of this, hence a silver monolayer forms. Hence the reduction potential

must be finely tuned to achieve this, too higher pH and no UPD will occur. UPD is sensitive to the surface

free energy of individual facets, and hence the reduction potential can be set such that silver is only deposited

on the {110} facets along the sides of the AuNR [362].

The importance of this is twofold, firstly, the deposition of Ag early in the growth appears to be key to

providing the initial symmetry breaking. Attempting the synthesis of monocrystalline AuNRs without Ag (in
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Figure 1.16: Schematic: The role of silver in stabilising a nascent truncating {110} surface during AuNR
synthesis and subsequent stabilisation of that surface by UPD. Figure taken from [362].

both seeded and seedless reactions) will result in the formation of no AuNRs. Instead only spherical particles

will grow from the seeds. The seeds are effectively isotropic, with no preferential growth direction, as these

seeds grow at the start of the reaction {110} truncations will intermittently appear along the intersections of

facets, before further reduction of Au destroys them. However in the presence of Ag will disproportionately

reduce on to these embryonic {110} surfaces, resulting in them being stabilised. It is speculated that strong

internal mechanical forces encourage the formation of ‘paired’ {110} truncations in a single plane [362]. The

growth of these facets then leads to preferential growth along a single axis. This mechanism is shown in

fig. 1.16(a).

Secondly, the presence of Ag plays an important role in regulating anisotropic, beyond this initial

symmetry breaking role. The epitaxial layer of Ag on the {110} facets serves an important role in slowing

Au reduction along the sides of the AuNR. Silver on these surfaces can be redissolved into solution via a

galvanic replacement reaction1, hence the capping is not permanent. Instead what is occurs is a continuous

parallel process of UPD and galvanic replacement, the net result of which is that growth in these directions is

inhibited, rather than completely prevented. Thus the AuNRs growth in both length and diameter during

the synthesis. The mechanism which drives the growth of the {110} facets is shown in fig. 1.16(b), whereby

disproportionate growth at the {111} and {100} facets at the tips leads to progressive expansion of the {110}

facets along the major axis of the AuNR [362].

Experimental evidence seems to support this model, energy dispersive X–ray spectroscopy suggests that

silver is located only on the surface of the AuNR and not in the bulk interior [143]. Attempts at overgrowing

monocrystalline AuNRs without the the presence of Ag also results in isotropic growth of the particles

ultimately resulting in their conversion to spheres, demonstrating the important role Ag plays in controlling

anisotropic growth beyond the initial symmetry breaking [307]. X–ray photoelectron spectroscopy has also

been used to demonstrate that alternative explanations for the role of Ag, such as surface passivation by

AgBr species is unlikely to be true, as the observed concentrations of Br− were independent of the [Au]:[Ag]

ratio of a given set of AuNRs [405].

It has also been observed that commonly reported problems resulting for iodide impurities in CTAB can

be mitigated by increasing the concentration of Ag ions during the growth [152]

1Probably via Ag + AuCl –
2 −−−→ AgCl + Au + Cl– , rather than 3 Ag + AuCl –

4 −−−→ AgCl3 + Au + Cl– , due to the large excess
of reducing agent present.
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Other Additives

The roles of additional additives in monocrystalline AuNR syntheses is still not fully understood, but seems

to stem from manipulating the packing density of CTAB monomers on the surface of the forming AuNR.

The most obvious example of this is the inclusion of oleate in the synthesis, a negatively charged surfactant

that will intercalate into the bilayer, adding additional screening between CTAB headgroups and encouraging

higher packing on the AuNR surface [396]. The inclusion of aromatic additives seems to similarly result

in intercalation into the bilayer, and providing a similar screening effect [395]. The same dynamics have

been demonstrated by varying the concentrations of Hofmeister salts in the growth solution which will

similarly provide screening of the positively–charged CTAB headgroups enabling tight packing of the CTAB

monomers [269]. This higher packing density will help lower the access of Au ions to AuNR surface along

the sides of the AuNRs slowing lateral growth, encouraging the formation of anisotropic particles and hence

resulting higher shape yields. These additives also result in higher monodispersity in the synthesised AuNRs

which probably results from the impact of the effect of increased surfactant packing on the growth kinetics.

1.6 Surface Functionalisation of Gold Nanorods

The surface coating of AuNPs are highly important to their applications, as they imbue particles with a wide

range of properties such as hydro–phobicity/–philicity, surface charge, steric stability, specific targeting and

biocompatibility. Hence an active area of research is the development of novel surface coatings with which

to prepare AuNPs for the wide variety of applications in which they are now used. This section will focus

primarily on the functionalisation of AuNRs, but the majority of techniques can be more widely applied to

all AuNPs.

Thiol Displacement

These are a general strategy by which any simple thiol containing molecule can be bound onto the surface

of a particle. Thiols have a particularly high affinity for binding with the noble metals, as such in theory

can easily displace more weakly bound molecules such as CTAB. Typically the molecules used for this are

alkanethiols [48] or PEG–thiols [310, 407], these can be decorated by large number of functional groups to

provide additional desired properties. The efficiency of ligand transfer is can be very low in some of these

protocols, and hence additional strategies have been developed recently to optimise this exchange [310].

Passivation

These are a set of protocols grouped together because they do not actually remove CTAB from the surface of

the AuNRs. Instead they passivate the CTAB bilayer by coating it with a layer of silica or organic materials

which prevents release of free CTAB from the particle surface.

The first of these is silica coating. A layer of silica can be grown directly on the CTAB bilayer coating

the AuNR surface [112]. This has been shown to be an effective strategy for increasing the biocompatibility

of CTAB–capped AuNRs [140]. It also has a number of other advantages in that it can prevent thermal

reshaping [31, 53, 59, 60, 157, 216, 382] and plasmonic coupling [62].

36



1. Introduction and Theoretical Background

Other passivation strategies include coating the CTAB layer with polymers. This is normally achieved

based on simple charge interactions with a negatively charged polymer, which will readily bind to the

positively charged AuNR surface. Popular materials for this include poly(styrene sulphonate) [109, 196] and

poly(acrylic acid) [129, 130]. Such protocols can easily allow thick coatings to be created through building

up multiple alternating layers of negatively and positively charged polymers [109].

Both the polymeric and silica coating strategies offer the opportunity for drug–loading enabling the

inclusion of small molecules in the passivating layer, for slow or thermally–triggered released [109, 328].

Direct Exchange

Because of the manner in which CTAB actively exchanges with with molecules in solution, it is possible to

directly exchange the CTAB bilayer with other molecules if a sufficiently large excess is placed in the bulk

solution. Hence CTAB–coated particles can be resuspended in a strong solution of the desired molecule and

additional agitation provided to encourage exchange (by heating or sonicating). These techniques have been

reported for a number of molecules including phospholipids [222, 266, 304, 339, 398], oleic acid [204, 364]

and bovine serum albumin [342]

Conjugation of Targeting Ligands

Finally, in a wide number of applications additional functionalisation with targeting ligands (or other

molecules, such as fluorophores) is desirable, hence conjugation of these molecules to the surface is desirable.

A wide number of routes to conjugate such molecules to surface ligands are available such as ‘click chemistry’

[37, 40], NHS–EDC linker chemistry [30, 286], biotin – streptavidin coupling [277] and thiol – maleimide

coupling [365].

1.7 Gold Nanoparticles and Biology

1.7.1 In Vitro Toxicology

Nanotoxicology, study of the toxic effects of nanoparticles, has grown substantially in the last 20 years with

from 1,100 publications in 1998 to over 75,000 last year. A large amount of concern has been expressed

about the potential toxic effects of nanomaterials. These are not limited to manufactured nanoparticles, but

include the wide array of nanoparticles generated as a result of combustion and industrial processes as well

naturally occurring particles from events such as volcanic eruptions. Here we discuss very briefly the current

questions surrounding the human toxicology of AuNPs, with specific emphasis on AuNRs.

A lot of the results in the literature are contradictory, as is attested by a recent major review by Krug

which laments the current state of nanotoxicology [186]. In particular the problems arising from the large

number of studies that are now being contributed by non–toxicologists, highlighting the large number of

studies that lack careful analysis of the dose–response relationship of nanoparticles without identifying a

safe, intermediate or lethal dose of nanoparticles. A number of studies reporting toxic effects were based on

exposure of cells to very high in vitro concentrations of AuNPs unrepresentative of the exposures expected

during actual treatments [186]. Hence an important aspect of taking this research forward in a sensible

direction will that of collaboration between material scientists and biomedical researchers.
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In a similar vein, the toxicological properties of gold nanoparticles remain improperly understood, as the

large number of inconclusive reviews can attest (e.g. [47, 96, 166]). Whilst gold in bulk remains one of the

least reactive elements, when reduced to the nanoscale this can no longer be taken for granted. The high

surface area of AuNPs makes them significantly more reactive than the bulk state and their plasmonic activity

makes it possible catalyse chemical reactions. Toxicology studies on AuNPs present a particular problem

due to significant range of sizes, morphologies, and surface functionalisations which have to be considered,

making broad general statements about to toxicity of AuNPs difficult to conclusively argue. In the case of

‘bare’ AuNPs (i.e. citrate–capped), the primary concern is largely that of oxidative stress, resulting from the

generation of reactive oxygen species at the surface of the particle [185, 218]. This is an inherent property of

all AuNPs and means they will always present a low level toxicity, although this is a relatively minor effect

with citrate–capped AuNRs presenting an IC50 > 150 µg·ml−1 [356]. However different surface coatings and

morphologies radically change this how AuNPs will interact with biological systems.

In the case of AuNRs the most commonly used methods for synthesis require the use of CTAB. This is

extremely problematic, CTAB is highly cytotoxic, presenting an IC50 of ∼ 4 µM [232, 296], whereas the

typical background concentrations of CTAB required to maintain colloidal stability are typically >100 µM

[13, 296]. Hence CTAB coated particles are completely unsuited for use in biological application. Free

CTAB is a positively charged surfactant and will disrupt cellular membranes and simultaneously quench the

enzyme ATPsynthase preventing metabolisation of energy by cells [309]. Hence, there is a large amount of

work seeking to detoxify CTAB–capped AuNPs, such as AuNRs, by replacing or passivating CTAB on the

surface of such NPs. These strategies are discussed in section 1.6, but generally speaking the most common

strategies are PEGylation and silica–coating resulting in IC50 values around or higher than that seen for

citrate capped particles [134, 297] with charged polyelectrolyte coated AuNRs showing IC50 values around

∼150 µg·ml−1 [196], although these numbers vary considerably in the literature and are cell–line dependent.

These IC50 values are well above the local concentrations likely to achievable in vivo when administered

intravenously, and inform the suitable dose for in vivo experiments.

1.7.2 In Vivo Toxicology

The fate of nanoparticles after in vivo administration is also an open question. The broad mechanisms by

which particles are cleared are relatively well understood, smaller particles (< 5 nm) are at least partially

captured by the kidneys and disposed via the urinary tract [73]. However this clearance is not based only

simplistic size filtration, and is charge dependent, preferentially allowing the passage of positively–charged

particles [41]. Larger particles are typically collected by the mononuclear phagocyte system (MPS), and

then accumulate in the liver and spleen, before being eliminated via the digestive tract. Accumulation in the

liver is the most commonly observed result in the administration of nanoparticles [352]

The rate at which the MPS can collect particles is highly dependent on the surface charge, with charged

particles being collected and more rapidly delivered to the liver [352]. This has been attributed to increased

interaction between the particle surface and charged biomolecules in the blood identifying these cells to

macrophages for clearance. This rate seems to also be size–dependent, where larger particles are much more

rapidly collected by the MPS than smaller ones [326].
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The clearance of particles from the liver to the digestive tract is also problematic. With a number of

papers reporting very slow clearance from the liver for a variety of surface functionalisations, with typically

<20% reduction in Au concentration of the liver for citrate (6 months later [300]), silica (3 days [363])

and PEG (3 months) [282] and 15 months [11]) capped AuNRs [5]. This persistence in the liver could be

very problematic, since the long term impact of these on organ function remains unclear, with potential

side–effects including drug– or nanoparticle–related toxicity [352].

PEGylation is the most commonly strategy to increase blood circulation time. PEGylated particles

display low surface charge and non-specific binding and are hence are much more slowly uptaken by the

MPS [251]. Once cleared to the liver or spleen, the particles tend to accumulate there, only very slowly

clearing thereafter, with particles still being detectable months after administration. Although the benefits of

this increased blood circulation are open to question, with some papers suggesting that there is very little

evidence to demonstrate increased blood circulation time necessarily leads to with increased tumour uptake

[352].

1.7.3 Interactions of Particles with Physiological Media – Formation of Protein

Corona

Nanoparticles in media containing charged biomolecules, such as proteins, peptides and lipids, will rapidly

undergo the formation of what are known as protein corona. That is non–specific binding of such molecules

to the particle surface, which radically alters the surface functionalisation of such particles. The nature

of the formed corona is dependent not only particle properties such as size, curvature, surface charge

and functionalisation, but also on factors such as exposure time (corona biomolecule populations change

dynamically) and temperature [78]. These have been observed for a wide range of surface functionalisations

[13, 313], and seem to be largely unavoidable, with even PEGylated particles so far showing the formation

of coronae [352]. Zwitterionic coatings have, to a limited extent, been shown to display some resistance to

non–specific binding [126].

These are potentially a major problem, as the unknown surface chemistry of these corona make prediction

of NP behaviour difficult to predict. It also has the potential to completely undermine targeting strategies,

given that corona can often be as much as 100 nm thick [178], obscuring any small surface bound targeting

ligand. Hence there is a need for an understanding of the nature of such corona, the effects it has on NP

interactions in vivo and in vitro and potential methods for mitigating the effects of them or utilising them as

part of a therapeutic strategy. There are a large number of studies attempting to characterise and understand

the nature of corona on nanoparticles using techniques such as differential centrifugal sedimentation [69, 70],

isothermal titration calorimetry [24], liquid chromatography – mass spectroscopy [343], as well as molecular

spectroscopy techniques (i.e. FTIR, Raman or NMR).

1.7.4 Uptake of Nanoparticles by Cells

Humans have been exposed to naturally occurring nanomaterials throughout their evolutionary history and

as such have evolved defenses to deal with the potential negative health consequences. This is as true

at a cellular level, as it is at the level of the whole organism. Cells interact with NPs primarily through

endocytosis, a process in which foreign material is brought into the interior of cell contained within a
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vesicle [181]. The rate at which this occurs is dependent on both the cell type and the characteristics of the

nanoparticle itself (i.e. size, shape, surface charge, protein corona...) [4, 408]. Charged particles are typically

endocytosised at a higher rate than non–charged particles, due charge interactions between the phospholipid

headgroups in cellular membrane and the particle surface [243]. Particle size also plays an important role

with smaller NPs (<50 nm) being taken up by cells much more rapidly than larger ones [188].

Endocytosis is a potential problem when using plasmonic NPs, as multiple particles are typically enclosed

in each endosome. The small volume combined with the a relatively high concentration of NPs makes

aggregation inevitable. In the case of plasmonic AuNPs this means that plasmonic coupling will occur and

the desired optical properties will be lost, this is a widely recognized problem [8, 115, 280]. Some solutions

have been demonstrated such as thick silica–coating which prevents coupling between particles, even during

aggregation [62] or the functionalisation of particles with cell penetrating peptides which avoid endocytotic

uptake [242].
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Chapter 2

Methods and Materials

2.1 Synthesis of AuNRs

All glassware used in the synthesis were cleaned by sonication in a 10% Decon90 solution for 10 minutes,

followed by through rinsing using Milli-Q water and further sonication in Milli-Q. The glassware was then

by soaking in freshly prepared aqua regia for 30 minutes. Aqua regia is a 1:3 mixture of concentrated HNO3

and HCl, a mixture of a strong oxidiser and source of Cl− ions which will readily dissolve gold, removing

any potential nucleation sites for the reduction of gold during the synthesis reaction. All glassware was then

throughly rinsed with Milli-Q water and dried overnight in an oven at 70°C. All glassware was cooled to

room temperature before use.

Small Batch Syntheses

To prepare 10 mL of AuNR colloidal solution the following steps were performed. Solutions of CTAB

and NaOL (200 mM) were prepared in advance of the synthesis and heated to 70°C until all solute was

dissolved. These were then added in the desired ratio and topped up to 5 mL with Milli–Q (total surfactant

concentration between 20 mM and 180 mM). This was followed by adding sequentially 5 mL HAuCl4 (1

mM), 240 µL AgNO3 (4 mM), 50 µL HCl (11.8 M), and 75 µL ascorbic acid (85.8 mM). To this 7.5 µL

freshly prepared, ice–cold NaBH4 (10 mM) was rapidly injected into the mixture. The mixture was then

kept at 30°C for 4 hours. The AuNRs were then isolated by centrifugation at 9000 g for 30 minutes. The

supernatant was discarded and the precipitate resuspended in Milli–Q. AuNR solutions were stored in the

dark at room temperature.

Large Batch Syntheses

For the production of larger batch sizes of ∼0.5 L, some modification to this recipe is required. The initial

CTAB–NaOL surfactant mix was prepared by heating 250 ml Milli–Q water to 70°C in a water bath, under

constant stirring. The desired quantity of powdered CTAB and NaOL were then added directly to the heated

water and stirred until completely dissolved. The stirred solution was then cooled to 30°C. 250 ml HAuCl4 (1

mM), 12 ml AgNO3 (4 mM), 2.5 ml HCl (11.8 M), 3.75 ml ascorbic acid (85.8 mM) were added in sequence

under constant stirring, the mixture was allowed to stir for ∼5 minutes between addition of each solution.

Finally, the stirring of the solution was increased to 1200 rpm and 0.375 ml ice–cold freshly–prepared
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NaBH4 (10 mM) was rapidly injected. Stirring was immediately ceased and the solution kept at 30°C for 4

hours. The resulting AuNRs were cleaned by centrifugation at 9000g for 30 min as above.

2.2 Surface Modification of AuNRs

2.2.1 Preparation of PSS–Functionalised AuNRs

1 ml of as–synthesised 75 µg·mL−1 AuNR solution was washed twice by centrifugation and was then placed

under magnetic stirring. To this was added dropwise a solution containing 10 mg·mL−1 PSS and 5 mM NaCl.

The mixture was left stirring for 24 hours, followed by cleaning by centrifugation (9000g, 30 min) and the

pellet was redispersed in a 1 mg·mL−1 PSS solution. This cleaning process was repeated twice more, before

redispersal in Milli–Q grade water. This process was scaled up as required.

2.2.2 Preparation of Phospholipid SUV Solutions

Upon receipt from Avanti and Lipoid, phospholipids were dissolved in a 2:1 chloroform–methanol mixture

by volume to a known concentration of 10–20 mg·mL−1 using the method originally described by Folch et al.

[92]. Stock lipid–solvent solutions were stored at -20°C. In order to prepare SUV solutions, the solvent was

evaporated using a rotary evaporator (40 mbar, 100 rpm and 30°C), until the lipids formed a visible film on

the inside surface of the flask and no solvent was apparent. Residual solvent was removed by dessicating the

lipid film overnight. The films were then hydrated using to a desired concentration and then bath–sonicated

for a further 24–hours in a refridgerated sonicating bath. The peak size of the vesicles were then measured

using a Malvern Zetasizer Nano ZSP and used if the size peak of the vesicles was . 50 nm.

2.2.3 Preparation of Phospholipid–Functionalised AuNRs

1 mL of as–synthesised 75 µg·mL−1 AuNR solution was washed twice by centrifugation and was resuspended

in 300 µl 10 mg·mL−1 phospholipid SUV solution. The mixture was placed in a refrigerated sonicating bath

for 24 hours. The AuNRs were cleaned by centrifugation (2000g, 15 min) and redispersal in 300 µL 10

mg·mL−1 phospholipid SUV solution. This process was repeated threefold (i.e three rounds of redispersal,

sonication, centrifugation, and removal of the supernatant). After the third round, the pellet was redispersed

in Milli–Q grade water. To reduce the background concentration of free lipid the AuNRs were cleaned

further by centrifugation. This process was scaled up as required.

2.2.4 Conjugation of Targetting Affimer

A portion of the lipids can be replaced with DSPE-mPEG-Maleimide enabling conjugation of thiolated

molecules to the surface. For the purposes of targetting our AuNRs, a CEA–specific affimer was selected.

After preparation of the phospholipid–functionalised particles (with for instance 5% mol. DSPE-mPEG-Mal).

A solution containing 23 mM TCEP, 0.2 M MOPS and 1 mM EDTA (pH 8.2) was prepared and added to a

stock of the affirmer (55 µM) at a ratio of 1:2 TCEP solution to adhiron suspension (210× molar excess of

TCEP). The solution was kept at room temperature for 90 minutes. AuNRs were centrifuged at 3000g for
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10 minutes, the supernatant discarded and the pellet resuspended in the prepared affimer–TCEP mixture,

such there was a 3.3× molar excess of adhiron per maleimide site. The number of maleimide sites availible

was calculated based on assuming that each lipid headgroup occupied a 1 nm2 space on the surface on

the AuNR and the molar composition of lipids on the surface was the same as that in the SUV solution.

Post–conjugation particles were cleaned by centrifugation and sterile–filtered.

2.3 Characterisation

Lower manification TEM images were obtained using a Tecnai G2 Spirit TWIN/BioTWIN with an ac-

celeration voltage of 120 kV. A field emission gun TEM microscope (Philips CM200 FEGTEM; 200kV)

equipped with a Gatan GIF200 imaging filter running Digital-Micrograph software was used to take higher

magnification TEM images and selected area of diffraction. TEM samples were prepared by drying ∼5 µL of

10× concentrated nanoparticle dispersion (in Milli–Q) on an amorphous carbon–coated 400–mesh copper

grid (Electron Microscopy Services, CF400–Cu). Sizes of AuNRs were measured manually using ImageJ.
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Figure 2.1: Measured Au0 concentrations as a function of A400nm. The red line is a linear fit, whereas the
green line is the published value of ∼0.416 mM.

Concentrations were determined by using either a Varian 240fs atomic absorbance spectrometer (AAS)

or from by measurements of the absorbance of AuNP solutions at 400 nm. The latter method was prefered,

due to the increased convenience, and seems to provide similar levels of accuracy to AAS itself. It relies

on using the change in absorbance in the section of the AuNP spectrum dominated by interband transitions

(see section 1.2.2), rather than the higher wavelengths dominated by plasmonics which are sensitive to other

factors other than cocentration, such as polydispersity. This technique is only viable for small particles,

around or below the skin depth, where absorbance is the still the dominant optical effect. In fig. 2.1 a

comparison of A400nm and the AAS determined C[Au0] values is shown, demonstrating the strong linear

correlation between the two measurements for a set of four samples. The measured gradient is in close

agreement with the values published in the literature [167, 308, 315]. This was used in conjunction with the

TEM determined geometries to ascertain the particle concentrations in solution.

UV–vis spectroscopy

UV–vis spectra were taken with a Agilent Cary 5000 UV–vis-NIR using quartz crystal cuvettes (path length

= 1 cm). Samples were typically diluted by a factor of 10 before spectra acquisition. Where spectra are
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presented unnormalised, they have been multiplied through by the dilution factor to account for this spectra

are multiplied through by a factor of 10 to account for this (in accordance with the Beer–Lambert law).

For kinetic spectra, AuNR growth solutions were prepared in a 20 mL vial, after addition of the NaBH4,

the solution was mixed quickly and 700 µl was pipetted into a cuvette and spectra capture immediately started.

During the first 5 hours of a synthesis kinetic spectra were taken at 2 minute intervals at the 1800 nm·min−1,

this was then followed by 10 minute intervals at 900 nm·min−1 for the following 24 hours. Solutions were

heated to 30°C throughout. Samples monitored during the kinetic spectra were undiluted, instead a quartz

cuvette with a path length of 0.1 cm was used in order to prevent the LSPR peak exceeding the detection

threshold of the instrument. Spectra from these measurements are multiplied through by a factor of 10 in

order to retrieve the true extinction value (again in accordance with the Beer–Lambert law).

2.4 Optical Microscopy

Figure 2.2: Left: Simplified diagram of key optical components in the DIC–darkfield microscope. The
assembly shown above is for use as a DIC microscope. The condenser turret assembly (highlighted in green)
containing aperture #2 and Wollaston prism #1 can be replaced with a darkfield condenser (highlighted in
pink) to allow the system to be used as a darkfield microscope. Right: Diagram demonstrating the principle
behind transmission darkfield microscopy. Collimated light travels through a condenser lens and with a
central patch stop, creating a hollow cone of illumination which is focussed onto the sample. Directly
scattered light is collected by the objective. For high numerical aperture objectives, an internal iris is used to
further eliminate indirectly scattered light. The image then directed to a digital camera, and the eye–piece or
a �10 µm multimode optical fibre centred on the image. This fibre carries scattered light to a high sensitivity
spectrometer allowing measurement of the scattered light spectrum from a sample.

2.4.1 Darkfield Microscopy and Single Particle Spectroscopy

Darkfield microscopy images only the light scattered by the sample to produce an image. It is particularly

useful for imaging plasmonic metal nanostructures due to their high scattering cross sections. The first use

of such techniques to image plasmonic nanoparticles was by Zsigmondy et al. in 1902 [321], who pioneered

the development of optical darkfield techniques in the study of colloids [402, 403]. The core components of
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such systems include a collimiated bright light source with a broad emission spectrum, which is focused

through a darkfield condenser (consisting of a condensing lens and annulus shaped aperture) onto the sample.

This produces an inverted hollow cone with the sample at the apex. The angle of incidence of this cone is

such that only light scattered by the sample is collected by the objective, whilst transmitted light is discarded.

For higher numerical aperture objectives, some of this light may also be collected and an internal iris must

be used to shutter it from reaching the camera/eye–piece.

Individual scatter spectra can be collected by using a fibre optic to sample the emitted light across a

circular spot. The fibre will a combined spectrum resulting from the background and any particles within

this region. We can thus express the measured spectrum from the sampled area as:

Imeas(λ) = Ibulb(λ) ·
[
S NP(λ) + S bkgd(λ)

]
(2.1)

where Imeas(λ), and Ibulb(λ) are the measured and illumination spectra, and S NP(λ), and S bkgd(λ) are the

scattering functions of the nanoparticle and surrounding substrate. The angular dependence of the scattering

functions are ignored, as the numerical aperture of the condenser is fixed at ∼0.875, resulting in a angle

of incidence of 61°. This fortunately means the unpolarised light focussed on the sample closely excites

the LSPR and TSPR of particles roughly correct proportions for a random orientation in space. Hence

from eq. (2.1), measured signals must be corrected by dividing through by the normalised spectrum of the

illumination source and then subtracting the corrected background spectrum. The background spectrum is

taken to be equal that of a region of the substrate free from particles.

Experimental Set–up

Darkfield microscopy images were taken on a Nikon Ti–S microscope using a TI–DF dry darkfield condenser

and a CFI Plan Fluor 100× oil–coupled objective. Images were captured using an Olympus UC90 camera

and spectra collected via Ocean Optics QE–Pro fibre–coupled to the microscope with a 1000 µm fibre optic

(Ocean Optics, QP1000–2–VIS–BX). The fibre optic collected light from a 10 µm spot. In order to obtain

a scatter spectrum, background spectra were collected from regions without particles. A particle was then

moved into the central focus and a spectrum collected. The background spectrum was then subtracted from

this and then divided through by the normalized illumination spectrum, to correct for the non–uniform power

spectrum density of the bulb. Particles with a LSPR outside of the human visual spectrum (>750 nm) were

beyond the spectral range of the camera. The following steps during sample preparation were found to

minimize background scatter during spectra collection. Samples were prepared on (24 × 50) mm coverslips

(Menzel Gläser, CS2450100). To minimize background scatter these cleaned by washing sequentially in

10% Decon90 solution, acetone, isopropanol and finally Milli–Q water. These were then placed in piranha

solution heated to 80°C for 30 minutes, rinsed using Milli–Q water and then stored under ethanol until use.

After drying, the coverslip was placed in a spin–coater and 100 µl of AuNR solution diluted to ∼5 fM was

placed onto the centre of it. The coverslip was spun at 1000 rpm for 1 minute ensuring all particles which

adhered to the surface were well separated during imaging and spectra collection.
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2.5 Measurements of Colloidal Stability

Figure 2.3: Comparison of the effective buffering ranges of commonly used buffers. Buffers used in this
thesis for ζ–potential measurments are outlined with bold text.

Buffer pH Solution #1 Solution #2
(100 mM) (100mM)

HCl – KCl 1 HCl 39.7 ml KCl 10.3 ml
2 14.9 ml 35.1 ml

Phosphate–Citrate

3

C6H8O7

39.8 ml

Na2HPO4

10.2 ml
4 30.7 ml 19.3 ml
5 24.3 ml 25.7 ml
6 17.9 ml 32.1 ml
7 6.5 ml 43.6 ml
8 3.5 ml 46.5 ml

Tris 9 HCl 4.5 ml C4H11NO3 45.5 ml

Carbonate–Bicarbonate 10 NaHCO3 22.5 ml Na2CO3 27.5 ml

Hydroxide–Phosphate 11 NaH2PO4 7.2 ml NaOH 42.8 ml

KCl – Hydroxide 12 KCl 9.7 ml NaOH 40.3 ml
13 13.8 ml 36.2 ml

Table 2.1: Recipes used for preparing 50 ml 100 mM buffer between pH 1 and pH 13. Small adjustments to
in the pH were acheived by adding dropwise 100 mM NaOH or 100 mM HCl

2.5.1 Zeta Potential Measurements

In order to monitor the surface charge of nanoparticles, measurements were taken of the ζ–potential of

solutions using a Malvern Zetasizer Nano ZSP. ζ–potential is measured by monitoring the response of

particles in solution to an applied DC voltage. Specifically the electrophoretic mobility is directly measured

and then related to the ζ–potential through the Henry equation [124]:

UE =
2εζ f (ka)

3η
(2.2)

where UE is the electrophoretic mobility, ε is the dielectric constant of the dispersant, ζ is the zeta potential,
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η is the dispersant viscosity and f (ka) is Henry’s function 1, k is the debye length and a is the paticle radius.

For the measurements here f (ka) is taken to be 1 under the Debye–Hückel approximation (a < 100 nm and

celectrolyte << 10 M) [74].

The Malvern Zetasizer uses laser doppler velocimetry to measure the particle velocity distribution.

Briefly, a monochromatic light beam illuminating the sample is modulated by an oscillating mirror, the

intensity of the light scattered by the particles in solution is recorded and then analysed by a digital signal

processor to extract the characteristic frequencies in the scattered light. the frequency of the fluctuating scatter

intensity signal is directly proportional to the electrophoretic mobility and measurement of the Doppler shifts

of the incident light gives an a direct measure of the direction of motion.

Colloidal solutions are often quoted to display stability, if |ζ | > 30 mV, based on the qualititative

definitions outlined by Riddick in his 1968 book [291], although this threshold is somewhat arbitrarily

selected. Optimisation of the ζ–potential of solution through proper surface modification and buffer pH is

key to maintaining the long–term stability of charged stabilised samples.

Stability characteristics ζ–potential (mV)

Extreme to very good stability -100 < ζ ≤ -60
Reasonable stability -60 < ζ ≤ -40
Moderate stability -40 < ζ ≤ -15
Threshold of light dispersion -15 < ζ ≤ -10
Threshold of agglomeration -10 < ζ ≤ -5
Strong agglomeration and precipitation -5 < ζ ≤ 5

Table 2.2: Stability of colloidal solutions from their ζ-potential. Taken from ref. [291]

Two key parameters to consider during these measurement are the ζ–potential are pH and electrolyte–

concentration, which will radically change the measured ζ–potential. Hence because of the low buffering

capacity of DI water, the pH is very poorly defined, meaning all measured values of ζ in this medium are

pratically meaningless. Beyond this, the poor conductivity of DI water leads to electrode polarisation, making

it impossible to reliably produce a uniform electric field with in the typical folded capilliary cuvettes used

for ζ–potential measurements. Hence all measurements must be performed in buffer at known pH and ion

concentration. Hence the following buffers were used to control the pH during ζ–potential measurements:

ζ–potential measurements are taken in disposable folded capilliary cells purchased directly from Malvern.

In a standard measurement the folded capillary is filled throughout with the colloidal dispersion, however

a number of issues arise from this technique when applied to highly conductive colloidal samples. For

instance, Joule heating and electrode polarization, which can be minimised by reducing measurement time

and voltage. But more concerningly electrode blackening and sample degradation, due the denaturation

of many organic materials, including surface–stabilising ligands, in response to the high electric field in

close proximity to electrodes. The only route to avoid this is to avoid direct contact of the colloid with the

electrode. Either through the use of a semi–permeable membrane or through a diffusion–limited barrier

methodology [18, 19, 236, 237, 347].

All work here was performed using the diffusion barrier method. The folded capillary was loaded with

buffer at known pH and concentration (typically 10–100 mM). A small volume (∼50 µl) of colloidal solution

1Henry’s function: f (ka) = 1 + 1
16 (ka)2 − 5

48 (ka)3 − 1
8

[
1

12 (1 − ka) −
(
1 − 1

12 (ka)2
)

ekaE1(ka)
]

from refs [124] and [335]. E1(ka) is
the exponential integral.
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Figure 2.4: Different configurations for ζ–potential measurement. The “standard” measurement with colloid
in close proximity to the electrodes and the difusion–limited measured with the colloidal solution isolated at
the bottom of the folded capillary.

suspended in the buffer was injected into the base of the cuvette using a 200 µl gel–loading tip. This creates

a high concentration of colloid in the measurement region of the cuvette with minimal osmotic pressure

(i.e diffusion–limited). Further to prevent material from reaching the electrode, the measurement voltage in

reduced with increasing buffer concentration1. Measuring via this technique is in full compliance with the

current standard for measuring the colloidal stability of biological nanomaterials (ASTM E2865-12(2018)

[21]).

2.5.2 Surface Enhanced Raman Spectrscopy

Quartz slides were sonicated with acetone, 1% Decon 90 and rinsed with Milli–Q prior to piranha etching

using 30% Hydrogen Peroxide and Sulfuric Acid ( >95%) at 3:7 (v/v) ratio. Slides were cleaned for 20 m

and rinsed and stored in Milli–Q and dried with nitrogen gas prior to use.

Concentrated AuNR sample was dried onto the quartz slide using hydrophobic chambers. A Raman

confocal microscope system (inVia Raman, Renishaw) was used with a 785 nm laser line, 1800 mm−1 grating

and a near infrared enhanced CCD array detection. Before each experiment, the system was calibrated by

collecting spectra of a silicon sample using a 10× objective and peak calibrated to 520.5 cm−1. For AuNR

measurements, a 40× objective was used and focused on the dried surface. For each sample, a Raman spectra

map was acquired over a 200 × 200 µm area with 25 measurement points with a spot size of ∼10 µm and

laser power of 10 %, to prevent sample degradation. Raw spectra were background corrected using the

f baseline corr MATLAB function with a smoothing width of 30 and bandwidth of 350 for 75 iterations

[175]. After background subtraction, each spectra was summed and normalised to the maximum peak value.

2.5.3 NMR

All NMR spectra were taken on a Bruker Avance500 instrument at 500 MHz at 295 K using a 5 mm

broadband solution probe. For CTAB, Oleate, DOPC and DSPE–mPEG-2000 an acquisition time of 3.6

1The measurement voltage was approximately set using the following relationship: Vmeas = 18 + 162·exp{−0.02 ·C}, where Vmeas
is the measurement voltage in mV and C is the buffer concentration in mM.
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s and 16 scans were used. For AuNR spectra an acquisition time of 3.6 s and 128 scans were used. All

spectra were taken using D2O as the solvent. Spectra were corrected according to the expected position of

the chemical shift resulting from residual HDO.

Preparation of solutions for NMR

Solutions of 10 mM CTAB and sodium oleate were prepared by hydration of the powder in D2O.

Phospholipid solutions were prepared by first drying the lipid stock (in CHCl3 – CH3OH (1:1)) under a

nitrogen stream for 30 minutes. Residual solvent was removed by overnight dessication. The lipids were

rehydrated using D2O and tip–sonicated for 30 minutes. The solutions were then repeatedly passed through

a 50 nm track–etched membrane to further reduced the size of formed vesicles. Without extrusion only

poor quality NMR spectra were recovered for phospholipid solutions. AuNR solutions were cleaned by

centrifugation and resuspending the pellet in D2O, this was repeated threefold to remove as much residual

H2O as possible.

2.5.4 Stability in Biorelevant Media

In order to test the long–term stability of AuNRs, AuNRs were resuspended in various biorelevant media

at 75 µg·ml−1 including a number of buffers, media, serum and mouse plasma. The resuspended AuNRs

were placed in a 96–well plate and the longitudinal surface plasmon monitored at various timepoints across a

2–week period using a well plate reader. The solutions were stored at room temperature during this period.

The following buffers were prepared as biorelevant surrogates for blood plasma, due to their similar ionic

compositions in addition to DPBS.

Compound
Plasma-lyte 148 Pseudo-plasma Buffer

Conc. Mass in 100 ml Conc. Mass in 100 ml
(mM) (mg) (mM) (mg)

Sodium Chloride 90.00 526.0 89.70 523.8
Potassium Chloride 5.00 37.0 4.25 31.7
Sodium Lactate 1.50 30.0 2.00 22.4
Trisodium Phosphate – – 1.15 18.9
Calcium Chloride – – 1.15 12.8
Magnesium Chloride – – 0.88 8.4
Sodium Persuphate – – 1.00 23.8

Sodium Acetate 27.00 368.0 – –
Sodium Gluconate 23.00 502.0 – –
Sodium Bicarbonate – – 20.00 168.0
Sodium Carbonate – – 11.90 126.1

Table 2.3: Recipes used in buffers prepared for measuring the stability of various nanoparticle functionalisa-
tions.

2.6 Photothermal Experiments

A bespoke system was assembled to allow the automated photothermal heating of cells a tunable laser source

in a controlled environment. The rig allowed a well–plate to be precisely moved above the laser source
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Figure 2.5: Optical Schematic showing the components used to shape and monitor the beam used in
photothermal heating experiments.

Figure 2.6: Optical Schematic showing relative positives of the XY–stage, well–plate, and beam dump
relative to the final mirror in the optics path. Right: Beam intensity profile after passing through the aperture.
Red dashed lines indicate the lost beam intensity at the periphery of the beam.

within an environment maintained at 37°C. Additionally the resultant temperature change could be monitored

through an 8–channel thermocouple logger.

A Coherent Mira 900–F was selected as the light–source. This is a tunable femtosecond–pulsed Ti:Sapp-

hire laser, however it was utilised as a CW source. The Mira 900–F provides a 0.8 mm diameter horizontally

polarised Gaussian beam, tunable between 700 and 980 nm, at up to 2.2 W in CW mode. ∼1% of this beam

was sampled using a polarised beam splitter and the power measured using a Thorlabs PM100D power meter

fitted with a S120C sensor–head, and the wavelength monitored using a fibre–coupled Ocean Optics Flame

spectrometer.

The main beam was expanded 7.5 times to achieve a FWHM of 6 mm (the diameter of a well on a

96–well plate). The low intensity region outside the FWHM were removed by passings the beam through a 6
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mm aperture, the effect of this on the beam profile is shown in fig. 2.6. The beam was then passed through

an interlocked bespoke shutter (which simultaneously acted as a beam dump when closed), allow remote

control when the sample was exposed to the beam. Finally the beam was reflected vertically by a 45° prism

mirror into the main chamber (fig. 2.6).

The main chamber contained a Prior H128 motorised XY–stage, fitted with a mount for standard well

plates, allowing them to be moved directly above the beam. Directly above this was a beam dump terminating

the path of the beam. The chamber could be maintained at a setpoint temperature, typically 37°C, using an

IncuKit cabinet incubator heater. Finally, an 8–channel Pico Technology data logger could be mounted to the

stage allowing direct monitoring of the temperature inside well using thermocouples. The entire chamber

and beam path were self contained and interlocked to prevent exposure to the beam. After the beam had

passed through all components beam intensities upto 2.7 W·cm−2 could be acheived across a 6 mm diameter

circle, dependent on wavelength.

The spectrometer, thermocouple datalogger, XY–stage and shutter were all connected to a PC via USB.

A python script was written to allow a sequence of wells and exposure times to be directly input through a

graphical user interface and allow experiments to proceed without the need for constant monitoring.

2.7 Tissue Culture

All tissue culture was performed under sterile conditions in a class II A1 biosafety cabinet. All consumables

were either purchased sterile or autoclaved at 131°C for 30 mins. Cells were incubated at 37°C in 5% CO2

and passaged at a 1:10 ratio upon reaching ∼70% confluency. Cells were disgarded as the passage number

approached 100. The following cell lines were used during the course of this thesis:

2.7.1 Cell Viability Assays

The cytotoxity of AuNPs to the various cell lines were assessed using the CCK-8 cell viability assay. In brief,

CCK-8 consists of a water soluble tetrazolium salt, WST–8 which is reduced by dehydrogenase inside living

cells leading to the formation of WST-8 formazan an orange dye which a strong absorbance peak at 450 nm.

The absorbance at this wavelength is linearly proportional to the number of viable cells and hence can be

used to ascertain the relative viabilities of cells under different conditions.

Cells were seeded in 96 well plates at a density of 5000 cells per well in 100 µl media. The plates

were then incubated at 37°C in 5% CO2 for 24 hours. Post–incubation the media was exchanged with

media containing a known concentration of AuNRs and the plate incubated for the required exposure time.

Following this the media was replaced with media containing 10% CCK-8 solution and incubated for a

further 4 hours. The absorbance at 450 nm was then measured using a a microplate reader (Mithras LB 940).

Cell line Tissue Disease Morphology Origin Culture Medium

SW620
Colon,
derived from metastatic
lymph node

Colorectal adenocarcinoma
Duke’s type C epithelial Male, 51,

Caucasian
RPMI 1640
+ 10% FBS

HEK293 Embryonic kidney – epithelial Female, Fetus,
ethnicity unknown

RPMI 1640
+ 10% FBS

HCT116 Colon Colorectal carcinoma epithelial Male, Adult,
Caucasian

RPMI 1640
+ 10% FBS

LS174T Colon Colorectal adenocarcinoma
Duke’s type B epithelial Female, 58,

Caucasian
DMEM
+ 10% FBS
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Cell viabilities were then expressed as a fraction of the untreated control viability. The measurement was

background corrected through subtraction of the absorbance of wells treated with AuNRs and media, but

containing no cells. All absorbances were calculated from the average of at least six wells and the experiment

performed in triplicate on different cell passages. The expression for the cell viability, θ, is as follows:

θviability =
A(sample)

450 nm − A(bkgd)
450 nm

A(control)
450 nm − A(bkgd)

450 nm

(2.3)

2.7.2 Photothermal Assays

Cell viability was assessed using the CCK-8 cell viability assay as above. Cells were seeded in 96 well plates

at a density of 5000 cells per well in 100 µl media. The plates were then incubated at 37°C in 5% CO2 for 24

hours. Post–incubation the media was exchanged with media containing a known concentration of AuNRs

and the plate incubated for the required exposure time. Cells kept at 37°C were then illuminated using a

continuous wave tunable laser at a known light intensity and wavelength, before a further incubation of 24

hours. Following this the media was replaced with media containing 10% CCK-8 solution and incubated

for a further 4 hours. The absorbance at 450 nm was then measured using a a microplate reader (Mithras

LB 940). Cell viabilities then calculated as a fraction of the untreated control viability (eq. 2.3, as above).

All absorbances were calculated from the average of at least three wells and the experiment performed in

triplicate on different cell passages.

2.7.3 Preparation of Cells for Optical Microscopy

Cells were seeded on to a 20 × 20 mm glass coverslip in a six-well plate at density of 2 · 105 cells per well

and incubated at 37°C in 5% CO2 for 48 hours. The media was then exchanged with media containing

known concentrations of AuNRs. The cells were then incubated for the desired exposure time. Following

this the cells were washed twofold with DPBS, before being placed in a 4% paraformaldehyde solution in

DPBS for 10 minutes, fixing the cells. The cells were then rinsed with DPBS a further two times before

removing excess fluid and adhering the coverslips to clean glass slides using an aqueous mounting medium.

2.7.4 Preparation of Cell Sections for Electron Microscopy

The method followed here is adapted from J.H. Luft 1961. ‘Improvements in epoxy resign embedding

methods’ [214].

SW620 and LS174T were seeded in 6-well plates at densities of 6 · 105 and 6.9 · 105 cells per well

respectively. Cells were incubated at 37°C in 5% CO2 for 24 hours before the media was exchanged with

media containing 15 µg·ml−1 AuNRs. After a set amount of time had occured, cells were washed three times

with 150 mM PBS, before being trypsinised and washed once more with PBS. The cells were fixed using

2.5% glutaraldehyde in 150 mM PBS for 2.5 hours. The cells were then centrifuged again and washed twice

in 150 mM PBS. The supernatant was disgarded and replaced by 1% osmium tetroxide in 150 mM PBS

overnight. The cells were then washed twice in in 150 mM PBS. The pellet was then dehydrated by washing

in an ascending alcohol (in water) series at 20%, 40%, 60%, 80%, 100% (twice) for 20 min per step. The

pellet was then washed in propylene oxide twice for 20 min to remove residual alcohol, before resuspension

in 50% propylene oxide – 50% araldite mixture and being left overnight. Araldyte mixture is comprised of
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52.9% Araldite CY212, 45.1% DDSA, 1.9% DMP 30. The pellet was then transferred to 25% propylene

oxide – 75% araldite mixture and left for 6 hours. Finally the pellet was transfered to 100% araldite mixture

and left in an oven overnight to cure at 60°C.

Sections were then prepared by taking ∼90 nm sections using a ultramicrotome (Reichert-Jung Ultracut

E) fitted with a 45° glass knife. Sections were collected in an aqueous bath, and prepared on 300 mesh

copper grids and then post-section stained with uranyl acetate.

2.7.5 Protein Expression

The CEA–expression of the following cell–lines was measured by immunofluorescence and flow cytom-

etry; LS174T, HEK293, SW620, SW480, LoVo, HCT116, and DLD–1. The primary antibody used was

CEA/CD66e (mouse) and the secondary was anti–Alexa488.

Immunofluorescence Measurements on Fixed Cells

Cells were plated on coverslips in 6–well plates at densities of 105 cells per well and incubated for 72 h.

Cells were then fixed with ice–cold methanol or 4% PFA, cell were then washed threefold with DPBS. 100

µL 1% BSA in DPBS was then added to each well for 1 h at room temp to block non–specific binding. This

was replaced by the primary antibody at the appropriate concentration in 1% BSA in PBS and incubated for

a further 1 h. The cells were washed threefold with DPBS. The secondary antibody (with fluorophore) at the

appropriate concentration in PBS was added to each well and incubated for 1 h in the dark. The cells were

washed threefold in DPBS and mounted using 20 µL of Prolong Gold Antifade Mountant. This was allowed

to set in the dark overnight at room temperature.

Flow Cytometry for the Titration of Antibodies

Cells were washed in DPBS and 1 mM sterile–filtered EDTA added, a minimal amount was left on the cell

monolayer for 10 m at room temperature. Cells were then trypsinised until individual cells were suspended

in solution. The trypsin was then inactivated by the addition of media and then the cells then spun down into

a pellet at 400g, before being resuspended in FACS buffer (5% FBS + 0.05% NaN3 in PBS). 107 cells were

placed into FACS tubes and increasingly dilute concentrations of antibodies (1:200 – 1:1600) added to each

tube (100 µL). The cells were then incubated for 30 m in the dark on ice. 2 mL FACS buffer was added and

the cells spun down to a pellet before the addition of 50 µL of the secondary antibody (1:300). Cells were

then incubated for 30 m in the dark on ice. 2 mL FACs buffers was then added and the cells pelleted. The

buffer was removed and 5 µL of 10 µg·mL PBS added before reading on a flow cytometer.

2.8 Murine Models

All mice used were BALB/c nude mice (originally obtained from Charles River Laboratories, Kent) and

maintained in house. All mice were maintained under high health status and are specific pathogen free (SPF)

status. Mice were housed in individually vented cages (IVCs) with access to food and water ad libitum.

All procedures were approved by the UK Home Office and carried out according to the Animals (Scientific
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Procedures) Act 1986 and under the project licence of Dr Louise Coletta (70/7965) with the technical work

carried out by Dr Nicola Ingram under PIL IDD6965FF.

2.8.1 Administration of Gold Nanomaterials in vivo

BALB/c mice were injected substaneously with 1×109 of LS174T cells in 100 µL 289 mOsm·L−1 DPBS

(culture protocols given in section 2.7). Tumour volumes were measured by calliper until a desired tumour

volume of ∼200 mm3 was reached. Gold nanomaterials were concentrated to 200 µg·mL−1 suspended in 289

mOsm·L−1 DPBS. 200 µL of this preparation was then administered to the mice via tail vein injection. Mice

were then monitored to determine if any adverse effects on the health of the animals. Mice were sacrificed at

predetermined time–points and tissue harvested for ex vivo analysis.

2.8.2 Tissue collection and ex vivo Biodistribution Analysis

Organs were extracted immediately post–sacrifice. Individual organs were measured for their mass and then

placed in cryo–vials. These were then flash–frozen in liquid nitrogen before transfer to a freezer at -80°C.

Preparation of the samples for elemental analysis requires digestion in aqua regia to liberate metal ions

into solution. Hence water must be removed from the samples prior to digestion, this was acheived by

placing samples in a lyophyliser for at least three days. Each organs was then measured for its mass again

and transferred to an acid–resistant 15 mL centrifuge tube. Larger samples were homogenised prior to

digestion. 1 mL aqua regia was then placed in each tube and left overnight to digest. Occasionally samples

were agitated by vortexing if required. After digestion an additional 10 mL Milli–Q grade water was added

to each tube and the samples centrifuged at 4000 g for 30 minutes and the supernatant collected, this was

repeated twice, ensuring the removal any non-digested particulate matter.

In order to demonstrate the efficacy of the extraction process, a liver from a mouse untreated with AuNPs

was dissected into five and doped with a known quantities of Au prior to lyophilisation. The samples were

then processed by the same digestion process described above.

2.8.3 Blood Collection and Haemolysis Assays

Blood was collected post–sacrifice by terminal cardiac puncture into an EDTA-coated paediatric blood

collection tube (Greiner). Tubes were centrifuged at 500 g for 5 min at 4°C. The plasma and red blood cells

and were then separated.

Haemolysis Assays

Red blood cells were then gently resuspended in 150 mM NaCl. The red blood cells were washed a

further two times with 150 mM NaCl. Finally the red blood cells were resuspended in PBS. This was then

diluted 1:50 with PBS. 10 µl of particles at 2000 µg·mL−1 and 400 µg·mL−1 were added to 190 µL of diluted

red blood cells in a 96–well plate in triplicate alongside a positive control (1% (v/v) Triton x-100) and

negative control (PBS). The final concentrations of AuNRs were 100 µg·mL−1 and 20 µg·mL−1. The cells

were incubated at 37°C for one hour at 100 rpm on an orbital shaker. The plate was then centrifuged at 500 g
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for 5 minutes to pellet the intact red blood cells. 100 µl of the supernatant was placed in a fresh 96 well plate

and the absorbance at 420 nm was read 1. The lysed fraction, θlysed, was then expressed as:

θlysed =
A(sample)

420 nm − A(negative)
420 nm

A(positive)
420 nm − A(negative)

420 nm

(2.4)

where A(sample)
420 nm , A(negative)

420 nm , and A(positive)
420 nm are the absorbances at 420 nm for the sample, negative control, and

positive control respectively.

CTAB AuNRs for this assay, were cleaned twice by centrifugation after synthesis, reducing the back-

ground CTAB concentration to approximately 40 µM. The particles were then centrifuged a third time and

∼96% of the supernatant removed, concentrating the sample to 2000 µg·mL−1. Cleaning the particles further

than this this resulted in loss of colloidal stability, hence it was decided that this represented the best case

lowest acheivable cytotoxicity without comprising the properties of the CTAB–functionalised AuNRs.

2.9 Photoacoustic Imaging

All photoacoustic (PA) measurements were taken in a real–time preclinical multi spectral optoacoustic

tomography (MSOT) scanner (MSOT inVision 128, iThera Medical Germany). All photoacoustic spectra

were calculated from ‘raw’ PA intensity maps, any other images are multispectral projections, based on the

provided absorbance spectra of the administered particles.

2.9.1 Phantoms & Photoacoustic Spectra

For assessment of the spectral response of AuNRs, solutions were placed in an agar phantom (fig. 2.7). The

solutions were contained within 4 mm plastic straws and capped with glue. Agar phantoms were prepared

according to published protocols [66]. 0.75 g Agar was added to 50 mL of Milli–Q grade water and brought

to boil. To this was added 1.5 mL Intralipid and a drop of Germall Plus. The mixture was then poured into

moulds and allowed to set. The Intralipid served to give similar attentuation due scattering as observed in

human tissue and the Germall Plus prolonged the life span of the phantoms by preventing mould growth. A

multispectral reconstruction of the AuNR solution distribibution is given in (fig. 2.7).

Photoacoustic spectra could then be measured by sweeping the illumination wavelength and recorded the

PA intensity through a single plane inside the phantom. A second sample containing only H2O was also

inserted in the agar phantom, allowing the spectrum of the supernatant to be recorded. The PA signal was

recorded by placing measuring the average intensity of the top 5% most intense pixels. The PA response of

the H2O control was subtracted from the PA response of the AuNR solution, to give the PA reponse of the

AuNRs.

2.9.2 In Vivo Imaging

All mice were prepared with subcutaneous tumours and administered according to the protocol given in

section 2.8.1. During imaging mice with anesthetized with isofluorane and placed in supine position inside

1Normally 540 nm is used for haemoglobin, the transverse band of the AuNRs interfered too much at this wavelength, 420 nm
(Soret band) was used instead.
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Figure 2.7: Left: Diagram of agar phantom, showing the relative positions of the sample and water control.
Not shown are the plastic straws used to contain the samples when submerged in the water bath. Right:
MSOT image of phantom containing H2O (left circle) and 37 µg·mL−1 AuNR solution (λLSPR = 811 nm),
right circle). The MSOT signal was reconstructed using a linear regression algorithm which calculated
the spatial distribution of the AuNR solution based on an extinction spectrum measured using a UV-vis
spectrometer. The background signal is the response seen at 680 nm.

the imaging chamber. Imaging was taken during AuNP administration, although only the 24 h time point is

presented here. Transverse slices through the mouse were taken at 1 mm intervals throughout the abdomen

of the mouse. Laser excitation wavelengths of 715, 730, 760, 800, 830, 850, and 900 nm were selected

corresponding to the absorption maxima and minima in the spectra of the PSS–AuNRs, oxyhaemoglobin

and haemoglobin. Each frame was construction from an averages of 10 pulses per transverse slice. Images

were reconstucted and individual spectral components were decovoluted using a using a linear regression

model. No background correction was performed after the initial scan due to the mouse being repositioned

between scans.

2.10 Finite Element Simulation of Gold Nanoparticles

For the purposes of the simulations in this work finite element analysis was utilised via the COMSOL

Multiphysics package. COMSOL was used since it offers a user-friendly interface with no requirement

for significant prior knowledge of the underlying modelling technique to generate accurate solutions to

the physical problem (only a knowledge of the relevant physics to be solved). Secondly, as a multiphysics

package it offers the ability to solve complex problems that involve multiple physical phenomena, such as

the thermal response of a nanoparticle to an incident light field.

2.10.1 Absorption and Scattering Cross Sections

For the simulation of the optical response of AuNPs, COMSOL’s radio frequency module was used. This

is a module designed for solving general physics problems involving electromagnetic waves. To reduce

computation time simulations were performed in the frequency domain under the assumption that all

electronic responses would show a sinusoidal time dependence. For excitation of a simple plasmonic
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nanostructure by an electro-magnetic plane wave of the form ~Eb(~r, t) = ~E0exp{i~k · ~r − iωt}, this is a

reasonable assumption.

Each AuNP was simulated in a centrally located position embedded within an ambient medium, typically

water, with a width several times larger than the length of the largest wavelength of light used. Values for

the refractive index of gold were taken from Johnston and Christy [156], and the values for the medium

were taken from the COMSOL Multiphysics Material Library. The surrounding medium was encased by a

perfectly matched layer, a region which perfectly absorbs incident radiation without reflection or scattering.

This is used to prevent the external boundaries of the model creating radiation patterns which overlap with

the calculated solution of interest.

To further improve accuracy all calculations were computed in the scattered field formulation, the benefits

of this are two fold. Firstly, the incident field is usually significantly larger than the scattered field (the

quantity of interest), leading to it being inaccurately resolved in the full–field formulation. By solving only

for the scattered field this problem it is thus possibe to significantly boost the accuracy of solutions. Secondly,

it allows for a global plane–wave excitation to be used without any need to account for the damping inside

the PML, which is otherwise required in the full–field approximation.

Parameters of interest can then be found by solving the time-harmonic wave equation:

~∇ ×
1
µr

(
~∇ × ~Erel

)
−

(
εr − i

σ

ωε0

)
k2

0
~Erel = 0 (2.5)

where k0 is the free space wavenumber, σ is the conductivity of the particle and ~Erel is the relative field

defined by ~Erel = ~E− ~Eb, where ~E is the total field at any point and ~Eb is the background field. Typically this

is solved using the PARDISO direct solver included with COMSOL, which is particularly memory-intensive,

but is significantly faster than other provided solvers.

σabs(λ) can be obtained on the assumption that all energy dissipation from the particle occurs through

resistive heating (no photoluminescence), and hence can be calculated from the volume integral of the

resistive heat losses through the particle, Qrh. Conversely, and σscat(λ) can be calculated through a surface

integral of the time averaged power flux out of the particle, or the Poynting vector, ~SP :

σabs(λ) =
1
I0

∫
VNP

Qrh(~r, λ) dV

σscat(λ) =
1
I0

∫
S NP

~SP(λ) · d~S

σext(λ) = σabs(λ) + σscat(λ)

(2.6)

Considerations of the symmetry in the system allows for the averaged angular crosssection to be

calculated. For a AuNR with its long axis in the z-direction, the longitudinal excitation can be driven by light

polarised in the z-direction propagating in the x–y plane, (notated here as Ex,z and Ex,z). Two methods to

then excite the transverse mode; firstly light both polarised and propagating in the x–y plane (Ex,y and Ey,x)

can excite it across the waist of the particle, and secondly, light propagating in the z direction (Ez,x and Ez,y)

will similarly excite the transverse mode but with a different particle orientation relative to the plane wave.

Due to the symmetries of rods, all three cases are doubly degenerate and only need to be simulated in a

single case to calculate the averaged crosssection i.e only using Ex,z, Ex,y and Ez,x (fig. 2.8 (a)).
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Figure 2.8: (a) Different plasmonic excitations of AuNRs. Longitudinal excitations in blue, Transverse
excitations in the x − y plane in purple and transverse excitations perpendicular to the zaxis in green. (b)
COMSOL simulated absorbance crosssections for a (60 × 16)nm AuNR, with a tip eccentricity of 0.5,
alongside the averaged crosssection and crosssection for a aingle simulation calculated to reflect the averaged
angular crosssection. Good correlation can be seen between this model and the average from the three
individual excitations. Inset: Closeup of the crosssections around the transverse excitation.

Further consideration allows the averaged angular crosssection to calculated in a single simulation,

exciting the particle with light propagating the x direction with the polarisation axis at 45 from the y-axis

(Ex,yz) allows excitation of both the longitudinal and transverse axis across the side of the AuNR. Furthermore

in addition to this a rotation of the AuNR about the y-axis of sin−1( 1
√

3
) ∼35.26° allows excitation of the

transverse mode from the end of the AuNR in the correct proportion to produce a value equal to the average

angular excitation. Fig. 2.8 (b) shows the all three calculated crosssections, the averaged crosssection and the

crosssection from the arrangement just described, showing near perfect agreement

The end–caps of AuNRs were paramerised as hemispheres of an ellipsoid, with an eccentricity defined

by, e = 2a/D, where a is the semi–minor axis of the ellipsoid and D is the diameter of the AuNR [384].

Eccentricities were considered between the two theoretical extremes, a cylinder (e = 0) and a prolate ellipsoid

(e = R).

2.10.2 Particle–on–a–substrate

In order to simulate the expected scatter spectra for AuNRs at a glass–air interface, such as is the case with

the darkfield–single particle scatter spectroscopy system, a different approach was required. Simulations

were still performed using the RF module in the frequency domain. Due to the presence of the interface the

background field can no longer be assumed to be the same as the excitation field. Hence a travelling–wave

incident at 61° from normal to the surface (average angle of incident for the darkfield condenser) was used

with port conditions above and below the interface. All side boundaries were set up with Floquet boundary

counditions, effectively extending the geometry infinitely in the plane of the interface.

The simulation was initially run without the AuNP present, allowing the background field to be calculated.

A second RF frequency interface was then set up to introduce the AuNP and solve for the scattered field.

This particle was typically a single hemispherically–capped AuNR in contact with the glass surface. As

58



2. Methods and Materials

above an angle of polarisation and incidence was selected such a single simulation provided the averaged

excitation expected from darkfield excitation. The effect of surface coating was not considered, real–world

spectra are expected to be red–shifted relative to those simulated due to the presence of CTAB on the surface

of the AuNRs.

2.10.3 Heat Generation

The results of section 2.10.1 can be used to calculate the expected heat generation from pulsed light sources.

This is conditional on the region being simulated being large enough to contain the generated temperature

gradient within the simulated timescale. The Heat Transfer in Solids module in the time domain was used as

second-simulation step. This simulation is restricted to using a single wavelength, this is not a significant

issue, since most lasers used for photothermal heating have spectral bandwidths significantly narrower than

the typical longitudinal SPR peak. A single wavelength simulation at the LSPR and expected peak intensity

of a nanosecond pulse of was run to determine σabs(λLSPR). From this simulation the corresponding heat

generation function, Q(λ,~r, t) inside the domains constituting the AuNP was obtained. This can then be

multiplied by a normalised Gaussian pulse of form:

f (t) =
2
w

√
ln2
π

exp
{
−4ln2

(t − t0)2

w2

}
(2.7)

where w is the pulse width and t0 is the pulse centre. Providing a heating pulse which is Gaussian in time

and the correct peak intensity. Temperature distributions can then be recovered from point probes along a

single axis. At the time of writing there are no boundary condition availible which allow heat to flow out of

the simulated region, hence the upper time limit over which these temperature distributions will be physical

is given by the thermal diffusion time, τth = L2/α, where L is the shortest distance between the particle and

the boundary of the simulation and α is the thermal diffusivity (1.43 × 10−7 m2s−1 for water). However for

nanosecond pulses in sufficiently large volumes the bulk temperature rise is sufficiently low relative to the

localised heating in the vicinity of the AuNP that is not a major concern.
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2.11 Materials

Milli–Q water (18 MΩ·cm) was used in the preparation of all solutions. All chemicals were used without

further purification.

2.11.1 Synthesis

Reagent Name Product No. Supplier

l–(+)–ascorbic acid A15613 Alfa Aesar
Hydrochloric acid (12.1 M) UN1789 Fisher Scientific
Silver nitrate 11414 Fisher Scientific
Sodium borohydride 10599010 Fisher Scientific
Gold (III) chloride trihydrate 520918 Sigma–Aldrich
Hexadecylammonium bromide H6269 Sigma–Aldrich
Sodium oleate O0057 TCI

2.11.2 Phospholipids

Reagent Name Product No. Supplier

DOPC 556600 Lipoid
1,2-dioleoyl-sn-glycero-3-phosphocholine

DSPC-PEG2000 588200 Lipoid
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

DOPG 564300 Lipoid
1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)

DSPC-PEG2000-Maleimide 880126 Avanti
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000]

2.11.3 Tissue Culture

Reagent Name Product No. Supplier

DMEM + GlutaMAX media 31966 Gibco Life Sciences
Dulbecco’s phosphate–buffered saline 14190-144 Gibco Life Sciences
Foetal bovine serum A3160401 Gibco Life Sciences
RPMI 1640 + GlutaMAX media 11875-093 Gibco Life Sciences
TrypLE express 12604054 Gibco Life Sciences
CCK-8 cytotoxicity assay reagent 96992 Sigma–Aldrich
Paraformaldehyde 158127 Sigma–Aldrich
Poly–l–lysine P4707 Sigma–Aldrich
Trypan blue T8154 Sigma–Aldrich

Consumable Product No. Supplier

0.22 µm–pore syringe filters SLGP033RS Millipore
T75 culture flasks 3290 Corning
96 well plates, clear 3599 Corning
12 well plates, clear 3513 Corning
6 well plates, clear 3516 Corning
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2.11.4 Preparation of Tissue Samples for Electron Microscopy

Reagent Name Product No. Supplier

DDSA – dodecenyl succinic anhydride R1053 Agar Scientific
DMP-30 – 2,4,6-tris(dimethylaminolmethyl)phenol R1042 Agar Scientific
Osmium tetroxide R1016 Agar Scientific
Propylene oxide R1080 Agar Scientific
Uranyl acetate R1260A Agar Scientific
Glutaraldehyde G-5882 Sigma

2.11.5 Surface Coating, Conjugation and Targetting Experiments

Chemical Name Product No. Supplier

MOPS 327661000 Acros
Poly(sodium-p-styrenesulfonate) M.W. 70000 222271000 Acros
CEA protein 30-AC25 Fitzgerald
Tris(hydroxymethyl)aminomethane B2005 Melford
Ethyldiaminetetraacetic acid (EDTA) EDS Sigma–Aldrich
Sun Fluor 488 Thiol SF488-TH-1 Sunlights

2.11.6 Buffer Solutions

Chemical Name Product No. Supplier

Tris(2-carboxyethyl)phosphine hydrochloride C4706 Aldrich
Sodium acetate A16230 Alfa Aesar
Trisodium citrate 45556 Alfa Aesar
Sodium lactate solution 60% w/w S/5161/08 Fisher Scientific
Potassium chloride P/4240/53 Fisher Scientific
Sodium bicarbonate S6014 Fluka
Sodium chloride 71376 Fluka
Sodium phosphate dibasic 30435 Honeywell Fluka
Sodium phosphate monobasic S9638 Honeywell Fluka
Magnesium chloride 8.14722 Merck
Gluconic acid 8.22058 Merck
Citric acid 27847 Sigma
Calcium chloride C1016 Sigma–Aldrich
Sodium carbonate S77795 Sigma–Aldrich
Sodium hydroxide S5881 Sigma–Aldrich
Sodium persuphate 13457 Sigma–Aldrich
Trisodium phosphate 342483 Sigma–Aldrich

2.11.7 Other Acids, Oxidisers, Solvents... etc

Chemical Name Product No. Supplier

Nitric acid (15.6 M) A15613 Fisher Scientific
Hydrogen peroxide (30%) H/1750/17 Fisher Scientific
Ethanol E/0650DF/17 Fisher Scientific
2–propanol 20842 VWR
Acetone 20066 VWR
Chloroform 22711 VWR
Methanol 20847 VWR
Sodium dodecyl sulphate LS750 Sigma–Aldrich
Sulphuric acid (18.4 M) 07208 Sigma–Aldrich
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Chapter 3

Synthesis and Morphological Control of

Gold Nanorods

Some of the content discussed in this chapter forms the basis of the following publication:

L. Roach et al. 2018. ‘’Morphological control of the seedless synthesis of gold nanorods using binary

surfactants’ in Nanotechnology 29:359501 [292].

The dataset associated with this paper is available from the University of Leeds: doi.org/10.5518/273.

3.0.1 Motivation

Gold nanorods (AuNRs) offer the highest absorbance cross section per unit mass of any AuNP1. They offer

easily tunable optical properties with high photothermal conversion efficiency in the NIR. Hence AuNRs

were chosen as the candidate nanomaterial for our theranostic applications. As detailed in section 1.5, two

key approaches exist for the aqueous synthesis of single crystalline AuNRs, seeded and seedless methods,

both present challenges. As the literature currently stands, seeded protocols currently offer the method for

producing AuNRs with the highest monodispersity and shape yield, but they suffer from being a two–step

process, seeds must synthesised in advance of the main growth, and used in relatively narrow time window.

Seedless protocols are a single–step protocol, avoiding the seed synthesis step, but historically have suffered

from high polydispersity and low shape yield. One–step protocols are desirable, in that they are simpler to

perform and should be easier to translate into industrial syntheses or allowing the synthesis of AuNRs under

continuous–flow.

Hence, the approach decided upon here was to pursue improvements in the seedless synthesis of AuNRs,

thus making it a viable method for synthesising good quality AuNRs. Recent approaches in improving

the yield of seeded AuNRs has been to include additional additives in the growth solution. Of particular

interest was inclusion of oleate as a co–surfactant, which demonstrated significant improvements in the

morphological control and monodispersity [396]. Here we present an investigation of the effects of including

oleate in the seedless synthesis of AuNRs and have sought to further understand the underlying formation

process of gold nanorods formed during this process.

1A possible exception to this are bipyramids, which are fairly similar in shape in that they can be approximated by an ellipse
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Figure 3.1: (a): Wide–field TEM image of sample showing good monodispersity and high shape yield.
(b): High resolution TEM showing the crystalline structure of a AuNR synthesised using a 48 mM CTAB –
CTAB 15 mM oleate growth solution. Annotated on the image is the measured lattice spacing of 2.04 Å
(calculated from 100 lattice rows), corresponding to a (200) lattice spacing. Inset is a (4 × 4) nm region
showing the visible lattice structure. (c): Selected area electron diffraction image of the same AuNR. The
corresponding Miller indices for each spot have been labeled on the figure. These are consistent with a
monocrystalline FCC metal. (e): Photo of a 500 mL as-synthesised AuNR batch synthesised using a 60 mM
CTAB – 12.5 mM oleate growth solution (e) UV–vis spectrum of the same 500 mL solution.

3.1 Gold Nanorod Synthesis Protocol

The full protocol followed is detailed in sec. 2.1.

AuNRs were synthesised using a binary–surfactant seedless protocol similar to that published by Lai

et al. [189], however the range of surfactant concentrations used to control the morphology has been

expanded substantially. The particles were synthesised in a growth solution containing a mixture of

cetyltrimethylammonium bromide (CTAB) and sodium oleate in the presence of a weak reducing agent,

ascorbic acid (AA), and silver nitrate. Initially, HAuCl4 was added, to a CTAB–oleate mixture, which

was observed to turn a dark orange–yellow as CTA+–[AuCl4]− ion complexes were formed [308]. The

unsaturated double–bond of sodium oleate is capable of the slow reduction of Au3+ to Au1+, hence the

mixture was observed to clear if left undisturbed after this point [189, 396]. To this mixture, AgNO3, HCl

and AA were added sequentially, any remaining yellow hue in the solution cleared following the addition of

AA due to the reduction of all Au3+ to Au1+. Finally, nucleation of the particles was initiated by the rapid

injection of freshly prepared ice–cold NaBH4. The solution was then left unstirred for 4 hours, at 30 °C.

Particles were then cleaned by centrifugation at 9000 g for 30 min. The supernatant was discarded and the

precipitate resuspended in Milli–Q grade water.

This protocol showed good reproducibility, with little variation in optical properties between different

batches grown to the same recipe (fig. 3.3(d)) and can be scaled up substantially1, with only a minor reduction

in the quality of the end product (3.1(d)&(e). The samples synthesised by this protocol showed very high

shape yields, normally in excess of 98% as shown in figure 3.1(a). For several batches it was not possible

1The highest volume synthesised to date is 2 L.
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Figure 3.2: (a): Effect of surfactant concentration on LSPR wavelength as function of both CTAB and oleate
concentration, with all other components held constant. The shape of the each point indicative of shape
yield, with: ut >98% AuNRs; ◦ >90% AuNRs; – low shape yield. The LSPR wavelength is interpolated
between points, the colour scale for this is given in the right of the figure. (b): Effect of CTAB concentration
on length (black) and diameter (red) of AuNRs at a constant oleate concentration of 17.5 mM (horizontal
line in (a)). (c): Effect of oleate concentration on length (black) and diameter (red) of AuNRs at a constant
CTAB concentration of 48 mM (vertical line in (a)). Error bars indicate the standard deviation of the AuNRs
in each batch.
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Figure 3.3: (a): Photograph of particle solutions exhibiting LSPR from 520 to 900 nm, coloured circles on
lid indicate the associated UV–vis spectrum shown in (b). (b): UV–vis spectra of solutions with resonances
over same range. Spectra have been normalised to unity at 400 nm [308]. (c) Experimentally observed
AuNR vs FEM predicted LSPRs for different end–cap geometries. Coloured lines are λLS PR by a linear fit
to FEM simulated spectra for various tip eccentricities (e = 0, 0.1, 0.5, 1,R) as a function of aspect ratio.
Experimental data collected via UV-vis and TEM measurements. Point colours represent the cap geometry
most closely matched by those simulated (0 ≥ e ≥ 1). All samples fall within the theoretically expected
ranges. There is some deviation from the simulations for the hemispherically–capped particles. (d) 11
batches grown to the same recipe, showing high reproducibility in position of the LSPR peak. All spectra
were normalised to the peak absorbance of the LSPR band of each batch.
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Figure 3.4: TEM of (150 × 150) nm areas of particles synthesised at different surfactant concentrations,
demonstrating the change in morphology.

to locate any non–rodlike AuNPs, suggesting yields approaching 100%. Consistent with other seedless

protocols the synthesised AuNRs are monocrystalline, as indicated by the strong diffraction pattern seen

using SAED (figure 3.1(b)&(c)).

3.2 Morphological Control using Binary Surfactants

The effects on the morphology of synthesised AuNRs from variation of the concentrations of each surfactant

in the growth solution were explored. The initial concentrations of HAuCl4, NaBH4, AgNO3, and AA

explored were decided upon based on values commonly seen in the literature, the range of surfactants
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explored could probably be expanded further by synergistically varying these other parameters with the

surfactant concentration. The variation of the two surfactants in tandem allows us to define a bivariate space

in which the changes to the morphology can be studied.

It was found that the presence of sodium oleate in the growth solution and the reduced concentration

of CTAB, increased the pH to such an extent that the growth of AuNRs became extremely rapid. This

uncontrolled growth led to low rod yields and a high population of spheres. Hence the amount of HCl had to

be increased from 12 µL to 50 µL compared with CTAB–only synthesis protocols, achieving a pH of ∼1.5

in the growth solution. The effect of varying the amount of HCl added to the growth solution is discussed

further in section 3.3.1.

Concentrations of oleate between 5 and 25 mM, and CTAB concentrations between 22 and 78 mM were

added to the growth solution. Over these ranges a region of viable surfactant concentrations which produced

high nanorod yields. Figure 3.2(a) plots the variation in LSPR as function of the two concentrations; it can be

seen from this that a roughly ellipsoidal region centred on 45 mM CTAB – 16.5 mM oleate (with boundaries

±22 mM CTAB and ±7.5 mM oleate) exists where AuNR yields in excess of 98 % can be achieved. Shape

yield drops off rapidly beyond this region, which is apparent in the UV–vis spectra through noticeable

through the appearance of a third peak at ∼550 nm due to the presence of spherical inclusions.

Within this region batches were synthesised with LSPR values between 620 and 900 nm (fig. 3.3). The

LSPR wavelength was seen to decrease with an increase in the oleate concentrations. Conversely a small

increase was observed with an increase in CTAB concentration. However this change in LSPR (and hence

aspect ratio) is significantly more sensitive to changes in oleate concentration than CTAB. Analysis of this

via TEM (see (fig. 3.2(b)&(c)) and fig. 3.4) showed that this reductions in aspect ratio occurred through

an increase in the diameter of the synthesised AuNRs whilst yielding a proportionally smaller increase

in the length, blue–shifting the LSPR. By contrast, a much greater change in the concentration of CTAB

was required to have similar effects on the geometry of particles. Potentially the increased range of sizes

made available here could be extended further through direct overgrowth in a two–step process [165]. Size

distributions from analysis of TEM images are given in appendix A).

There is also a noticeable difference in the end–cap morphology of the AuNRs alongside the overall

changes in morphology. Some batches showing end–caps varying between hemispheres whilst others have

flat near–cylindrical tips (fig. 3.4). Tip geometry is known to change the optical properties of AuNRs,

red–shifting the LSPR with decreasing tip eccentricity [281, 384], hence control of this represents a route for

further modifying the optical properties of synthesised AuNRs. It is also expected to be of importance in

the packing of AuNR assemblies, with flatter caps exhibiting higher capillary forces due to the increased

available contact surface [386], making tip–to–tip arrangements more energetically favorable. Comparison

with simulated spectra of AuNRs of varying tip morphology show that the measured resonances fall within

the ranges expected from theoretical predictions (fig. 3.3(c)). However, there is some deviation between the

simulations and the experimental data, especially for the hemispherically–capped samples, which showed

generally higher resonances than expected. Hence the end–cap geometry seems to be sensitive to the changes

in surfactant concentration in the growth solution and may offer a potential route to achieve control over this.

For surfactant concentrations which demonstrated a low shape yield, it was found that decreasing the

pH further significantly improved the shape yield [12], although this was accompanied by a corresponding

red–shift of the LSPR [374]. It seems highly probable that proper optimisation of the concentrations of
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other components in the system at these surfactant concentrations would extend range of viable recipes and

potentially extend the range of achievable LSPR wavelengths.

The samples synthesised by this protocol displayed good monodispersity, as indicated by the well–defined

LSPR mode in the UV–vis spectra and confirmed by TEM images for a number of samples. Typically

the standard deviation of a sample amounted to approximately ∼15 % of both the diameter and length

(appendix A). The narrow NIR absorbance peaks resulting from this low polydispersity will make them

well–suited for use as photothermal agents in photoacoustic imaging [372] and plasmonic photothermal

therapies [283].

3.3 Other Parameters

In addition to the effect of the surfactants on the particle morphology, the effect of the other components

such as HCl, AgNO3, AA and NaBH4 in the growth solution were explored. The effects of each of the

components are interrelated, making it difficult to categorically identify changes as the result of a single

variable. However the impact of the introduction of new component, oleate, on the others was not well

understood so studies were undertaken on each of these.

3.3.1 Hydrochloric Acid

The addition of sodium oleate to the growth mixture alters the reaction pH significantly which has important

implications for the reaction kinetics. Solutions of sodium oleate above its CMC typically have pH values of

∼pH 9. Increased concentrations of oleate will thus make the growth solution more basic and hence decrease

the reduction potential increasing the formation rate of particles (see eq. (1.27)). If the pH is increased too

far, this will result in the rapid formation of spherical particles.

This is already an issue in CTAB–only growth protocols where typically a concentration of 14 µM HCl

is added to the growth solution to slow down the reaction kinetics, achieving a pH of ∼1.5 [12]. If this HCl

is not added to the reaction mostly spherical AuNPs are created. In the case of a oleate–CTAB mixture,

initially an increase to 59 µM was used to reliably synthesise AuNRs.

Hence it was decided to explore the effect of changing the concentration of HCl in the growth solution.

A single 48 mM CTAB, 12.5 mM oleate growth solution was prepared and aliquoted in 11 separate 10 mL

aliquots, to this was added between 23 and 74 µM HCl, followed by the two reducing agents. The spectra of

the synthesised AuNRs and the respective LSPR positions can be seen in fig. 3.5.

Based on the changes in the UV-vis spectra it can be seen that increases in the HCl volume above 18

µM leads to high yields of AuNRs evident from the decreased width of TSPR peak. Above this increasing

the concentration leads to a redshift in the position of the LSPR, the changes in the height of the peak is

broadly in line in what is expected from Gans theory, due to increasing plasmonic damping below 700 nm

(see figs. 1.2 and 1.5), suggesting that the rod yield is quite high. The red–shift in this peak appears to stop

once the the HCl volume is increased above 45 µL. HCl thus offers a potential method to fine–tune the LSPR

resonance position of synthesised AuNRs.

A concentration of 59 µM HCl was used for all further syntheses, unless otherwise specified. It is

worth noting that variations in pH will still occur for other syntheses as a result of changing the surfactant
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Figure 3.5: Effect of varying HCl concentration on synthesised AuNRs in a 48 mM CTAB, 12.5 mM oleate
growth solution. Left: UV-vis spectra normalised to 400 nm. Low volumes of HCl (. 25 µL) lead to high
populations of AuNSs, increasing the HCl content further leads to a red–shift in the LSPR peak up to around
58.5 µM. Right: LSPR as a function of HCl volume, demonstrating the increase in LSPR peak position
with increasing HCl concentration. This behaviour begins to plateau above ∼ 59 µM HCl. The data point
associated with 28 µM has been omitted as no LSPR was visible (i.e. an overwhelming majority of spheres
appear to have been synthesised.)

composition due to the limited buffering capacity of the growth solution, and hence further optimisation of

the volume of the HCl concentration may actually improve these syntheses further.

3.3.2 Sodium Borohydride

The volume of the strong reducing agent added, NaBH4, used to induce nucleation will shift the LSPR

substantially. Increasing the amount of NaBH4 added has been observed in other seedless protocols to

decrease the aspect ratio of synthesised AuNRs (e.g. [302]). This is effectively the same as varying the

number of seeds used in the seeded growth of single crystalline AuNRs. Increasing in the initial NaBH4

concentration provides a greater number of nucleation sites onto which Au0 can be reduced. Hence there are

less Au ions per nucleation site, and the average particle volume will thus be lower. It has also been widely

observed that monocrystalline AuNRs grow in a two–step process, initially an anisotropic growth phase

leads to increasing aspect ratio, followed by a more isotropic growth phase where growth along the sides of

the AuNR occurs at a similar rate to the tips, leading to increased AuNR volume, but a decreased aspect ratio

[209, 367]. Hence increasing the number of AuNRs leads to the depletion of free Au ions during this initial

anisotropic growth phase and the resulting AuNRs are lower volume, exhibiting a higher aspect ratio.

This behaviour can be observed in the kinetic UV–vis studies described below in section 3.5. Providing

higher NaBH4 concentrations leads to a lower availability of Au1+ per nucleation site and provides greater

surface area to catalyse the reaction, leading this being depleted more rapidly and earlier completion of the

reaction. Hence the growth of the nascent AuNR is terminated earlier and hence the anisotropic growth

phase forms a larger fraction of the growth time cumulatively leading to the formation of smaller AuNRs

with higher aspect ratio.

As shown in fig. 3.6, AuNRs synthesised in this binary CTAB–oleate system also show an increase
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Figure 3.6: Effect of varying NaBH4 concentration on synthesised AuNRs in a 48 mM CTAB, 12.5 mM
oleate growth solution. Left: UV-vis spectra normalised to 400 nm. A general trend of increasingly red–
shifted LSPR peaks can be seen with increasing NaBH4 volumes. Low NaBH4 volumes can be seen to
lead to broader LSPR peaks (and hence more polydisperse). Right: LSPR as a function of NaBH4 volume,
demonstrating the increase in LSPR peak position with increasing NaBH4 concentration. The red data point
associated with 2 µL is not included in the fit.

in aspect ratio with increasing NaBH4 volume. A single batch of 48 mM CTAB, 12.5 mM oleate growth

solution was prepared and aliquoted in to 10 mL sub–samples; volumes of 10 mM NaBH4 between 2 and

16 µL were then added to each. A clear increase in LSPR wavelength with increasing NaBH4 volume can

be observed, indicating higher aspect ratio AuNRs were synthesised. Given that there is expected to be an

increased concentration of AuNRs and the same finite reservoir of Au ions available, it can be assumed that

these AuNRs must have a lower diameter than those synthesised using smaller volumes of NaBH4. The

spectrum associated with 2 µL NaBH4 is considerably off the general trend for other higher volumes. It is

not clear whether this is the result of experimental error, or the result of a new regime of particle formation at

low NaBH4
1.

Whilst this demonstrates that NaBH4 can be used to control the aspect ratio of synthesised AuNRs,

it seems that 7.5 µL is a sensible NaBH4 concentration to minimise variability between batches. This is

because 7.5 µL falls in a section of the curve which is less sensitive to change in NaBH4 concentration. The

respective gradients at low (6 µL) and high (14 µL) NaBH4 volumes are ∼ 1 nm·µL−1 and ∼ 9.7 nm·µL−1

respectively.

3.3.3 Silver Nitrate

The presence of silver ions in solution is essential to the formation of single crystalline AuNRs. Silver

appears to play two key roles in the formation process, it is critical to the initial symmetry breaking in

the formation of nascent nanorods, and beyond this is crucial to regulating the growth on the {110} facets

along the sides of AuNR through a cycle of galvanic replacement and silver deposition leading to continued

1At some point the concentration of initial nucleation sites will become so low that the reaction will not complete within 4 hours
and the LSPR wavelength measured here will no longer be representative of the ‘completed’ synthesis
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Figure 3.7: Effect of varying AgNO3 concentration on synthesised AuNRs in a 48 mM CTAB, 15 mM
oleate growth solution. Left: UV-vis spectra after inclusion of different concentrations of AgNO3. A general
trend of increasingly red–shifted LSPR peaks can be seen with increasing AgNO3 concentrations. Low
AgNO3 volumes do not form AuNRs and higher ones led to increasingly polydisperse samples. Right:
LSPR as a function of AgNO3 concentrations. Also plotted is wred/wblue which is the ratio of the widths at
half maximum above and below the LSPR peak.

anisotropic growth [348, 362]. Hence variation in the concentration of Ag in the growth solution is expected

to have a strong effect on the aspect ratio of synthesised nanorods.

As is expected in the absence of AgNO3, only AuNSs form, resulting from the fact that there are no Ag

ions present to break the symmetry during the initial rod formation [362]. The presence of some particles of

higher aspect ratio can be observed at 22 µM from the tail extending out into the NIR, but the population

is still dominated by AuNSs. There then appears to be a threshold, between 22 and 44 µM, at which point

nanorod formation becomes significantly more preferable. The AuNR aspect ratio can then be directly

increased by increasing the amount of AgNO3 added to the solution. This trend has been widely observed

elsewhere in literature (e.g. [248, 253, 267, 302, 324, 394]). Interestingly though, once the Ag concentration

increased up to ∼108 µM, the LSPR wavelength decreases and an apparent increase in the polydispersity

emerges, evident in the increasingly asymmetry in the LSPR peak.

In order to quantify this increasing asymmetry, the ratio of the widths at half maximum above and

below the LSPR peak was measured for each LSPR (wred/wblue). This ratio is an indirect measure of the

polydispersity resulting from increasing high populations of higher aspect ratio AuNRs (plotted in fig. 3.7).

It was not possible to fit peaks where the LSPR and TSPR peaks overlapped significantly, hence it is

only plotted for AgNO3 volumes ≥66 µM. The manner in which the LSPR peak becomes increasingly

weighted towards higher wavelengths is observable in the spectra of other publications, although normally

uncommented upon (i.e. ref. [152]). It presumably results from the {110} stabilising role played by the

AgNO3, preferentially stabilising these facets making higher aspect ratio AuNRs more stable, however the

limitations of this growth system seem to prevent these forming with high uniformity. It may be the case that

optimisation of the growth kinetics may allow more monodisperse high aspect–ratio AuNR populations to be

formed, although this has not been explored here.

Alongside the drop off in shape yield below 44 µM AgNO3, there is noticeable reduction in the fraction

of ionic Au that is reduced onto the particles. The reaction is also noticeably slower, taking significantly
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Figure 3.8: Samples at low AgNO3 concentrations as recorded at 4, 28, and 52 hours after NaBH4 addition.
Samples above 66 µM AgNO3 have been omitted as they showed no change after 4 hours. Inset: Absorbance
at 400 nm after apparent completion of the reaction. Results are fitted with an sigmoid.

longer than 4 hours before the absorbance at 400 nm saturates1 . This is somewhat unexpected as it has

generally been reported in the literature than increased Ag concentration in the growth solution results in

slower kinetics [43, 131, 308]. It can be see from fig. 3.8 that whilst there is little change 4 hours after

NaBH4 addition in the samples synthesised using greater than 66 µM AgNO3 solution, those containing

concentrations below this show continued particle growth during the following 24 hours. There were however

only minor changes in the shape of spectra during this time period, suggesting an increase in the volume of

the particles without any significant morphological changes.

The final values of A400 nm are lower, implying that Ag ions are some how acting as a limiting reagent in

this synthesis at lower concentrations. This is probably not occurring through the silver acting as capping

agent, as the large excess of free Au ions in solution should enable silver to be galvanically replaced on

the particle surface. This has not been observed elsewhere in the literature, and remains unexplained as it

currently stands.

It is apparent based on these measurements is that the AgNO3 concentration is a reliable parameter to

control the LSPR between ∼44 µM and ∼170 µM, but above this the polydispersity rapidly increases as the

increasingly large population of higher aspect AuNRs form.

3.3.4 Ascorbic Acid

Ascorbic acid (AA) is the primary reduction agent during the synthesis, although the precise nature of its role

is debated (see: section 1.5). Hence changes in its concentration will directly affect the kinetics of AuNR

formation. There are a number of reports in the literature suggesting that increasing AA concentration leads

to a decrease in aspect ratio (i.e. [198, 306]). However other reports, suggest that in fact the AA dependence

of the aspect ratio falls on curve with positive gradient at low AA concentrations and negative at higher

1Interband transitions for Ag fall in the UV, so it should have minimal contributions to the extinction at 400 nm, hence it can be
ignored as a reasonable approximation.
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Figure 3.9: Effect of varying AA concentration on synthesised AuNRs in a 48 mM CTAB, 15 mM oleate
growth solution. Left: UV-vis spectra of AuNRs synthesised using different concentrations of AA 4 hours
after addition of NaBH4. A general trend of increasingly red–shifted LSPR peaks can be seen with increasing
AA concentration. LSPR peaks were not visible for the 0 and 0.083 mM samples. The 0.21 and 0.42 mM
samples did not completely reduce all Au1+ in solution based on the the absorbance at 400 nm. All other
spectra appear to have reduced the majority of Au1+ in solution. Right: LSPR as a function of AA volume.
The values at 4 and 28 hours after NaBH4 addition are presented as separate series they overlap above 0.62
mM. After 28 hours the additional LSPR peak visible in the 0.083 mM spectrum and shifted resonance in
the 0.21 mM spectrum continue the linear trend seen at higher concentrations up to ∼1.43 mM, compared
with the more sigmoidal shape seen after 4 hours (see fig. 3.10 for 28 hour spectra).

concentrations [231, 399]. This relationship has been seen for other reducing agents such as hydroquinone

[248]. It is not clear whether this discrepancy results from differences in the synthetic protocols or whether

the same relationship is true in all and more syntheses at lower AA concentrations in studies suggesting a

purely negative correlation would reveal this.

It has been also reported in the literature that large excesses of AA result in rapid uncontrolled deposition

on the tips of the forming AuNR leading to the formation of ‘dog–bone’ or ‘dumb–bell’ structures [306, 399].

Although this is not immediately evident in the spectra of forming AuNRs and can only be confirmed by

electron microscopy.

In the binary surfactant system used here, the presence of oleate complicates matters slightly. Oleate

is a mild reducing agent, and during a synthesis can be observed to reduce Au3+ to Au1+, evident by the

clearing of the HAuCl4 – surfactant mixture without the addition of AA. It is also generally present at a

higher concentration than AA. The oleate–CTAB surfactant mixture alone (i.e. without the addition of Ag

and HCl), is capable of nucleating AuNSs at higher temperatures (∼60°C). It was not necessarily clear if

oleate alone could perform the role of AA in forming AuNRs (albeit very slowly) post–introduction of

NaBH4 to the growth solution. Hence the reaction was performed also without the addition of any AA to the

growth solution.

Following the same protocol as above, a single growth solution was split into several 10 mL samples

and the concentration of AA added was varied between 0 and 1.63 mM. The resulting spectra and change in

LSPR as a function of AA concentration are given in fig. 3.9. A very clear increase in the LSPR was seen

with increasing AA concentration. The change in LSPR begins to plateau at around 1.43 mM. Hence the

effect of AA concentration in this system appears to follow the behaviour reported in refs [231] and [399]
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Figure 3.10: Samples at low AA concentrations as recorded at 4, 28 and 52 hours after NaBH4 addition.
Samples above 0.62 mM AA have been omitted as they showed no change after 4 hours. It can be seen that
there is a slight change in the peak position of the 0.42 mM sample and substantial changes in the spectra of
the 0.083 and 0.21 mM samples. There was no formation of AuNRs in the 0 mM sample at any time point.
All samples showed no change between the 28 and 52 hour indicating the reaction had completed by 28
hours after NaBH4 addition. Inset: Absorbance at 400 nm after apparent completion of the reaction as a
function of AA concentration. Results are fitted with an exponential association.

in which the LSPR peak begins to drop at much higher AA concentrations, although to demonstrate this

conclusively would require repeating this experiment with concentrations in excess of 1.7 mM.

The spectra shown in fig. 3.9 were taken four hours after addition of the NaBH4, it can be seen that

at concentrations of AA below 0.62 mM lead to incomplete reduction of the Au3+ in solution within 4

hours. Hence, the solutions were further incubated at 30°C and spectra taken at 24 hour intervals after this

point. The spectra of all samples synthesised with concentrations of AA in excess of 0.62 mM showed

no further change at 28 hours. However the spectra of samples containing 0.083, 0.21, and 0.42 mM AA

continued to evolve over this time period, showing the reaction kinetics were considerably slower at these

low AA concentrations. This is most clear in the 0.083 mM spectrum where two peaks not previously present

emerged; but also in the 0.21 mM spectrum which increased considerably after this point. None of the

spectra showed any change beyond 28 hours indicating the reaction had completed. The final concentration

of reduced Au is also lower for these samples indicative of a regime where AA is the limiting reagent. The

peaks from this 28 hour time point have been added as a separate series to fig. 3.9, and suggest that a linear

change in LSPR wavelength with AA concentration is expected up to some critical value around 1.43 mM. It

seems probable that the deviation from the linear trend seen above this results from depletion of the free of

Au ions in solution (i.e. Au has become the limiting reagent) [82]; speculatively the addition of additional

HAuCl4 later in the growth may enable this trend to be extended further.

Also of note, is that the reaction does not progress at all without the presence of AA, this was also

observed in the original seeded protocols utilising oleate [396]. Oleate on its own has too low a reduction

potential to reduce Au1+ to Au0 even with the presence of a Au surface at pH ∼1.5 and T = 30°C. This

would seem to imply that the role of AA in the synthesis is the direct reduction of Au1+ in solution to Au0
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on to the surface of the forming nanorod. Rather than acting as a scavenger of Au3+ after reduction on Au

on the surface through a disproportionation reaction as has been suggested elsewhere [154]. Instead the

conproportionation scheme suggested elsewhere seems more probable, as shown elsewhere by the inclusion

of additional mild reducing agents [307].

Conversely the increase in AA will substantially speed up the reaction, and based on the spectra here

appears to have little impact on the quality of the end–product. The synthesised rods show narrow symmetric

peaks with high ALSPR : ATSPR ratios, with no evidence of non–rodlike NPs in the spectra. This decreased

synthesis time could potentially enable these sort of seedless synthesis techniques to be use to grow AuNRs

via continuous flow methods which offers an easy method to substantially scale up such reactions for

industrial production. However experimental confirmation of this would be required via kinetic monitoring

of the UV–vis spectra of forming AuNRs at different AA concentrations allowing study of the kinetics of the

reaction and electron microscopy evaluation of the morphological changes that could potentially result from

this.

3.4 Darkfield Microscopy and Single Particle Spectroscopy

To investigate the change in the optical properties of the AuNRs at the single particle level, darkfield

microscopy was performed on several batches of AuNRs. Single particle spectroscopy was perform on

individual nanoparticles to qualitatively look at the position each AuNR’s individual LSPR mode (the

scattering and absorbance peaks are degenerate). In order to minimise background scattering signals piranha–

cleaned glass cover slips were used at the substrates. Diluted AuNR solutions were then spun–coat onto

the surface to provide well separated individual scatterers suitable for single particle spectroscopy. It was

found that AuNRs with diameters below 15 nm were below the detection threshold of the single particle

spectroscopy system, this is expected as the scattering section is proportional to V2 (as approximated by

Gans theory) [101].

Images showed sharp individual red spots with a consistent colour demonstrating the AuNPs were well

separated on the substrate and monodisperse (fig. 3.11(d)–(f)), this colour is consistent with AuNRs resonant

in the NIR [141]. Recorded single particle spectra showed distinct sharp resonance peaks for each AuNR

measured, red–shifting with increasing average aspect–ratio (fig. 3.11(d)–(e)). The signal–to–noise ratio

of the LSPR mode is noticeably improved for thicker AuNRs, in agreement with Gans theory [101]. The

observed peaks show relatively close agreement with the optical properties expected at the morphologies

given based on FEM simulations of their properties.
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Figure 3.11: Darkfield microscopy images and single particle spectra of AuNRs.(a)–(c) Darkfield mi-
croscopy images of different aspect ratio (R) AuNRs spun–coat on a glass surface, average particle dimen-
sions and standard deviation are inset on each figure (based on TEM measurements given in appendix A).
Darkfield images are given at optimum exposure and gain settings for each sample.(d)–(f): Single particle
spectra obtained for each sample, showing the expected red–shift with increasing aspect ratio. The filled
blue curve on each image is the FEM simulated–scatter spectra at an air/glass interface. The peak LSPR
wavelength is close, but overestimated in the simulations, this likely results from end–cap geometry being
presumed to be hemispherical in–silico. The shape of the spectra match the experiment relatively closely.

3.5 Kinetic UV–vis studies of AuNR formation1

To further understand the evolution of the AuNRs, their spectra during the synthesis were monitored. Spectra

were taken at two minute intervals and the change in the peak wavelength, maximum extinction and FWHM

of the LSPR recorded, as well as the extinction at 400 nm. From this we can make qualitative assessments

of the concentration of reduced Au0 in solution, and the average aspect ratio and monodispersity of the

synthesised AuNRs.

Additional kinetic spectra and their analysis are presented in appendix B.

In line with expectations, the spectra evolve in a similar fashion to those seen in silver–assisted seeded

growths [82, 273, 307, 362]. The LSPR band becomes visible from the background after around 20 minutes

and its position shows a rapid red–shift. This process slows and the peak position begins to blue–shift at

a slower rate before settling to value in the NIR fig. 3.12. Throughout both phases there is growth in the

extinction at 400 nm, indicating Au0 is still being reduced from the solution. In the literature these shifts

have largely been attributed to a rapidly anisotropic growth phase which results in a rapid increase in the

forming particles aspect ratio, followed by a slower isotropic growth phase which results in a slow drop off

in aspect ratio [273, 362].

1n.b. The work presented here is ongoing and incomplete, it is intended to be supplemented with additional spectra and data.
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Figure 3.12: Kinetic UV-vis monitoring of AuNR synthesis. (a) Kinetic UV-vis spectra of a AuNR synthesis
taken at 2 minute intervals using a growth solution containing 48 mM CTAB, 12.5 mM oleate. (b) Measured
extinction at the LSPR maximum and LSPR full–width–at–half–maximum as determined by a Gaussian fit
to the LSPR peak. (c) LSPR peak wavelength as a function of time, the stationary point of this curve at ∼65
m has been marked by a dashed line in (b) and (d) also. (d) Extinction at 400 nm and the corresponding
concentration of Au0.

Edgar et al. using a CTAB–only growth solution, observed the reduction in LSPR peak wavelength occurs

after Au0 reduction has ceased. They suggest that this blue–shift cannot therefore be caused anisotropic

growth and instead must be caused by reshaping of the AuNRs themselves, primarily through modification of

the end–caps from sharp crystalline facets to more rounded tip geometries [82]. Changes in tip morphology

can cause shifts of around 100 nm, as shown in simulations above fig. 3.3(b), so it is plausible for this be

driving the change in peak LSPR wavelength. Other studies using statistical analysis of TEM images of

AuNRs at different time points during synthesis, show that LSPR continues to blue–shift even after the length

and diameter have stopped growing, due largely to morphological changes at the tips [273].

However, the experiments here do not show the reaction completing before the blue–shift in peak

wavelength occurs. In every spectrum studied the peak LSPR wavelength was achieved at before or in

tandem with the point at which the maximum Au0 reduction rate was achieved, with extinction at 400 nm

falling at ∼40–50% of its maximum value at this point. Hence the AuNRs studied here are clearly still

growing during this period, so it is not possible to eliminate changes in aspect ratio as the primary cause of

this wavelength shift. The studies mentioned above only utilise CTAB in their growth solution, completing

within 30–40 minutes [82, 273], by comparison the reactions here take more than 2 hours to complete, and

are often significantly longer than this. The timescales for the processes which drive end–cap reshaping in

these papers, such as cycles of oxidative etching and Au deposition, and adatom migration, occur over a
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Figure 3.13: Effect of varying oleate concentration on the growth kinetics of AuNRs. Curves are normalised
to the final stable value of A400nm. NOTE: The 25 mM oleate curve is not raw data has been corrected to
account for turbidity in growth solution, see appendix B for details of this.

period of an hour, hence it seems plausible that end–cap reshaping is probably occurring in tandem to the

AuNR growth in our system.

The FWHM of the LSPR peak decreases throughout the reaction is occurring, suggesting the polydisper-

sity of the AuNRs is consistently dropping. There is a noticeable point of inflection in a number of these

curves that occurs around 90 minutes after NaBH4 addition (A notable exception to this is appendix B, in

which the reaction completed before this point). It is not clear at this point what causes this, but it seems to

be largely independent of the surfactant concentrations, it is hoped further measurements will elucidate the

cause.

Spectra were taken at a number of concentrations of oleate (CCTAB = 48 mM), inspection of the change in

the extinction at 400 nm shows a clear trend, with increasing oleate concentration leading to slower reaction

rates (fig. 3.13). It seems probable that the driving force behind this is the increasing packing density of the

surfactants on the AuNR as the molar fraction of oleate in the bilayer is increased reducing the accessibility of

ions to the surface. However it is not possible based on these measurements alone to judge whether this is the

case, this could plausibly be explained by the presence of more surfactant of any variety affecting the growth

rate. It is intended that alongside completing this series; an additional series of syntheses be monitored at

constant oleate concentration varying the CTAB concentration. If this results from the packing density on the

surface then the reverse trend should be seen, increasing CTAB molar fraction should result in more rapid

AuNR formation. Otherwise the reverse trend would indicate it results from surfactant concentration alone.

Based on the trends in the LSPR peak wavelength seen in fig. 3.2 (roughly increasing LSPR with CTAB

concentration, decreasing LSPR with oleate concentration), it seems probable that the former condition is

true. Further clarification of this would require a study of the particle morphology at different time–points

within the synthesis via electron microscopy.

The other apparent lesson learned from these experiments is that the decision to terminate the reactions

after 4 hours may have erroneously led to conclusion that some of the syntheses performed at higher

concentrations of oleate failed. When in fact synthesising for longer would have led to completion of the

reaction.
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3.6 Proposed Growth Mechanism

It is clear that the interaction between two surfactants in the system allows the synthesis of a much wider

range of AuNR sizes. It is known that the addition of a negatively–charged oleate ion to the micellular CTAB

structure screens electrostatic repulsion between the head groups allowing denser packing of the surfactant

monomers leading to preferential formation of parallel arrangements of surfactant molecules, such as bilayers

and rod–like micelles [180]. This is evident in studies of micelle formation in CTAB–oleate mixtures which

show a significant reduction in the free energy of micellisation with increasing molar fractions of oleate

[85, 229, 230]. For example, the 2nd CMC is reduced from 37 mM for 100% CTAB solutions [151] to ∼1

mM for 90% CTAB – 10% oleate mixtures [85, 229]. Whilst the formation of these micelles has been shown

to be largely irrelevant to the formation of AuNRs in the literature [104], the increasing packing implied by

these results does appear to be crucial in enabling the formation of AuNRs at lower surfactant concentrations.

We have synthesised AuNRs with high yield at CTAB concentrations as low as 20 mM, by contrast without

the presence of oleate, concentrations of CTAB of around 100 mM were required [12, 146]. The increased

packing of surfactant monomers in binary surfactant systems also appears to be crucial to accessing larger

AuNRs. Broadly speaking higher molar fractions of oleate lead to lower LSPR resonance and these are

generally achieved by synthesising higher diameter AuNRs.

It is proposed here that this change in packing density, alongside the role that Ag plays in driving

anisotropic growth, results in the observed changes in morphology. The presence of silver is key to

regulating the anisotropic growth of the AuNRs. Two competing processes lead to regulation of lateral

growth, underpotential deposition of monolayers of Ag onto to the {110} facets along the edge of the AuNR

preventing further Au deposition, and oxidative etching of this layer primarily by galvanic replacement [362].

This results in much slower growth in the lateral directions compared to the AuNR tips are not regulated by

the presence of silver. Alongside this the presence of a CTAB bilayer at the surface also limits the rate of

growth, by reducing the accessibility of Au ions to the NR surface. By incorporating oleate into this bilayer,

increasing the packing density of surfactant monomers on the surface, access to the surface can be reduced

further slowing the growth rate. Molecular dynamics studies suggest that CTAB is expected to pack on {100}

and {110} facets at similar densities [223, 224], hence it slows growth in both the lateral and longitudinal

directions to a comparable degree.

When the blocking effects of silver and the surfactants are considered in tandem, the overall effect of

increasing the surfactant density on the surface of the AuNR is to decrease the growth rate to a greater

relative extent than along the sides of the AuNR. Hence the overall result is a slower growth over which time

relatively more growth occurs in the lateral direction1.

Finally, the change in packing density of the surfactants may offer some explanation of the observed

changes in end–cap morphology. A plausible, but untested hypothesis, is that the changes in packing density

actually enable the surfactants to show increased affinity for higher index facets at the tips of the AuNRs.

This may explain the range of tip morphologies seen in the TEM images of the AuNRs synthesised here.

However changes in tip morphology are generally observed over the time–course of single crystalline AuNR

1One possible way to consider this to be the cumulative effects of two growth inhibition factors, Rsur f and RAg, due to surfactants
and Ag respectively. The ratio of cumulative effects of these on the {100} and {110} facets would thus be; Rsur f /(RAg + RAg). Hence
increasing Rsur f would lead to this ratio tending towards unity. The net result being the relative amount of lateral growth over the course
of the synthesis increases.
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syntheses [82], so time–resolved electron microscopy would be required to clarify whether these result from

point at which the synthesis was ceased, or they consistently form the tip geometries observed.

3.7 Conclusion

We have demonstrated that manipulation of the concentrations of CTAB and sodium oleate in the seedless

synthesis of AuNRs represents a reliable method for the controlled modification of the morphology of

AuNRs. The protocol has been shown to yield AuNRs of tunable dimensions with high shape yield and good

monodispersity in a scalable manner. The effects of other parameters in the system have been investigated and

also shown as controls on the optical properties of the synthesised AuNRs. Time–resolved UV–vis suggests

the primary mechanism for affecting the synthesis is regulating the growth kinetics of the synthesised AuNRs,

although this remains to be fully experimentally explored. The particles synthesised via this method will

serve as a reliable method to simply produce AuNRs in large–scale with suitable optical properties for the

theranostic applications we intend to pursue.
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Chapter 4

Surface Modification of Gold

Nanoparticles with Phospholipids

4.0.1 Motivation

The use of CTAB in the synthesis of AuNRs is problematic for their biological applications. Whilst the

optical properties of AuNRs are highly desirable and requires the used of CTAB, it is highly cytotoxic

(intraveneous LD50 = 44 mg·kg−1), and particles stabilised with it present poor colloidal stability. Since no

reliable alternative to the use of CTAB in the bulk liquid–phase synthesis of AuNRs has emerged, a large

body of work has focused on the development of novel surface functionalisations to passivate or displace

CTAB on the surface of AuNRs. These are discussed in section 1.6, and have mostly focused on thiol

displacements, or coating the CTAB layer in silica or polymers. Some work, however, has been focused on

the use of phospholipids to replace the CTAB bilayer. These are of particular interest as such coatings have

the potential to mimic surfaces already found inside the body such as cell membranes or other theranostics

moieties such as microbubbles. They also offer an easy route to improve the biocompatibility and tune

the surface functionalisation of AuNRs, enabling the straight forward inclusion of targeting ligands and or

fluorophores. In this chapter, we discuss the characterisation and colloidal stability of various nanoparticle

surface modifications.

4.1 Functionalisation Strategies

4.1.1 Polyelectrolyte Passivation

Polyelectrolytes have become a popular method of passivating the surface of CTAB–functionalised AuNRs.

Negatively–charged electrolytes such as poly(styrene sulfonate) (PSS) or poly(acrylic acid) will electrostati-

cally self assemble on the positively charged CTAB bilayer surface. Due to the change in surface charge,

the coating process must be performed in the presence of at least 1 mM buffer to screen charge interactions

preventing rapid aggregation [109]. These methods were initially performed as a single–step, but further

studies have shown that particles treated this way still possess a relatively high cytotoxicity largely due to

the slow release of CTAB through this coating, this can be reduced much further through repeated cycles of
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Figure 4.1: (a) UV-vis spectra of AuNRs before and after surfactant exchange with DOPC – DSPE-mPEG
(19:1). (b) UV-vis spectra of AuNRs before and after functionalisation with DOPC, DOPC – DOPG (19:1),
and PSS. Spectra have been normalised to 400 nm.

passivation [196]. These techniques also afford the ability to build–up alternating layers of negatively and

positively charged polymers on the surface of the AuNR [109] and also incorporate chemotherapeutic drugs

within the polyelectrolytes as a means of achieving drug delivery [139].

For the purposes of this work, particles were treated with PSS, according to three–step coating process

detailed in ref. [196]. Which briefly consists of resuspending the as-synthesised concentrations of AuNRs

in an equal volume of 10 mg·ml−1 PSS solution (+1 mM NaCl) and left stirring overnight. AuNRs were

washed by centrifugation and resuspended in 1 mg·ml−1 PSS solution, this was repeated twice, before a final

round of centrifugation followed by resuspension in Milli–Q water.

4.1.2 Surfactant Exchange

The phrase “surfactant exchange” is used here to refer to a group of techniques that have emerged in

the literature which directly replace the CTAB bilayer on the surface of AuNRs with other surfactants,

such as phospholipids or fatty acids. These techniques generally consist of redispersing a pellet of CTAB–

functionalised AuNRs in a large excess of the desired surfactant in solution and then providing energy to

encourage exchange between the solution and the particle surface in the form of heat or sonication. These

techniques have been reported for a number of molecules including phospholipids [222, 266, 304, 339, 398]

and oleic acid [204, 364]. We have elected to focus purely on phospholipids here, as oleate is too toxic to

use for in vivo applications, having an intravenous LD50 of 150 mg·kg−1 in rats (by comparison CTAB is

44 mg·kg−1). Naturally occurring phosphatidylcholines have an LD50 in excess of 10000 mg·kg−1 and are

widely considered nontoxic comprising 20–25% of cell membranes [9, 377]

Phospholipids offer a number of benefits resulting from the highly tailorable properties of lipid mem-

branes, allowing potential surface functionalisation which offer low non–specific binding, or the inclusion of

specialist functionalised lipids, enabling the conjugation of targeting ligand and fluorophores, or inclusion of

steric–stabilising agents such as DSPE-mPEG. Phospholipids can be purchased relatively cheaply in bulk1

and the surfactant exchange procedure is straightforward, scalable and reproducible.

1For comparison, functionalisation with DOPC costs approximately £0.10 per mg of AuNRs compared with £0.05 of CTAB used
to synthesise them.
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The method followed here is similar to that published by Matthews et al. [222], although the sonication

time was significantly increased. The following lipid compositions were investigated; DOPC, DOPC – DOPG

(19:1), and DOPC – DSPE-mPEG (19:1). Whilst Matthews et al. have reported that DOPC–functionalised

AuNRs were unstable [222], our results are counter to this, and a number of other studies have found that

phosphatidylcholines can stably displace CTAB from the surface of AuNRs [50, 267, 304, 398]. In brief, the

following protocol was used for each phospholipid functionalisation; each millilitre of 75 mg·mL−1 AuNR

solution was centrifuged at 9000g for 30 m and and the precipitate resuspended in 300 µl of 10 g·L−1 lipid

SUV solution, this mixture was then sonicated in a refrigerated sonication bath overnight. It was found after

a single round of sonication that the ζ–potential of DOPC–AuNRs in 1 mM NaCl (pH 7) still presented a

positive charge (+8 mV), suggesting the continued presence of CTAB (this is consistent with the observed

ζ–potential results in refs [267] and [398]). An additional round of centrifugation, resuspension in DOPC

SUV solution, and sonication reduced this to neutral. Thorough removal of CTAB was deemed a priority

and hence a further round of phospholipid displacement was added to minimise any trace amounts of CTAB.

4.2 Nuclear Magnetic Resonance Spectroscopy

To identify the molecular species present on the surface of the AuNRs 1H NMR was employed. 1H NMR

allows identification of molecular species by observing the relative shift in the resonance of hydrogen nuclei

in a strong magnetic field. A 11.7 T magnetic field was used here producing a 500 MHz resonance for free 1H.

This resonance shifts due to spin–spin coupling between protons within a molecule. In particular, this shift is

characterised by other atoms bound to a particular 1H nucleus, and the atoms immediately neighbouring

those atoms within the molecule. Hence these shifts can be used to identify the chemical environment of

a proton within the molecule. These shifts are typically in the range of -4 – 14 ppm. Each molecule will

generate a set of measurable characteristic chemical shifts which can be used to identify it.

NMR studies of the surface coatings of AuNPs are somewhat challenging. They pose two major

challenges, firstly from the small amount of material bound to the surface of the particles, means that very

high AuNP concentrations must be used in order to achieve good SNRs. Secondly, the rotational correlation

time of the molecules of interest, typically on the order of ∼1 ps when free in solution, are significantly

increased when bound the surface of a much larger object with a rotational tumbling time on the order of

∼1 µs1. The net result of this is a broadening (and hence reduction in amplitude) of the NMR peaks which

increases with particle diameter [219], this can be particularly problematic at larger particle diameters as the

resultant peaks can be difficult to resolve. The same problem occurs for molecules which self–assemble into

larger structures such as micelles. Finally, the resonances associated with protons close to an Au surface

are expected to undergo what is known as a ‘Knight shift’ [172]. An apparent chemical shift due to the

hyperfine coupling between unpaired conduction electrons in the metal and nuclei in close proximity to the

metal surface [172, 219, 366]. These shifts have been observed elsewhere for CTAB bound to the surface of

AuNRs, for the γ–methyl protons this is normally a shift of ∼0.06 ppm relative to CTAB free in solution

[142, 266].

1Tumbling time calculated using: τR = 4πηa3/3kBT . where η is the dynamic viscosity, T is the ambient temperature, and a is the
hydrodynamic radius of the particle (η = 10−3 Pa·s, kBT = 4.1 · 10−21J). For an (11 × 45) nm AuNR, a = 10.2 nm, hence τR ∼ 1 µs
[155].

83



4. Surface Modification of Gold Nanoparticles with Phospholipids

Alternative methods of performing NMR on such samples have been deployed elsewhere, such as

complete oxidative etching of the AuNR with KCN, followed by lyophilisation and subsequent dissolution

in a deuterated solvent [310]. The resultant NMR spectra obtained by this method do not display any peak

broadening, but the harsh etching conditions cause the appearance of additional peaks associated with various

hydrolysis and oxidation products of reactions between the molecules functionalising the surface and the

etchants. These methods have been observed to result in the complete dissolution of CTAB rendering it

undetectable in the NMR spectra, which make this method completely unsuitable for use here [310].

NMR has been employed by Orendorff et al. to demonstrate the replacement of CTAB on the surface of

their AuNRs with POPC [266]. Key to demonstrating the removal of CTAB was monitoring the chemical

shifts associated with the γ–methyl protons in the trimethylammonium (3.11 ppm) and choline (3.39 ppm)

groups of CTAB and POPC respectively (see fig. 4.2 for labeled molecular diagrams). The other chemical

shifts associated with CTAB from the alkane chain broadly overlap with those expected from the hydrocarbon

chains of a phospholipid.

The system under analysis here is more complex as the surface coatings initially comprised of a CTAB –

oleate mixture and are hoped to have been replaced with a DOPC – DSPE-mPEG mixture through surfactant

exchange. Hence NMR spectra must be collected for each component molecule in the surface coatings and

peaks unambiguously associated with CTAB identified. Fortunately, oleate does not possess any chemical

shifts in the range of 3–4 ppm and DSPE-mPEG’s β and ζ chemical shifts are significantly above those

expected from those in CTAB’s γ–trimethylammonium group.

4.2.1 Results

CTAB and Oleate

The observed chemical shifts for the CTAB – oleate functionalised AuNRs and their identifications based on

the experimentally determined chemical shifts and literature values for free CTAB and oleate are as follows:

Label
Chemical Shift Identification

(ppm) CTAB Oleate

a 0.94 1 (CH3) 1 (CH3)

b 1.35 2–13 (CH2) 2–7, 12–15 (CH2)

c 1.62 – – 16 (CH2)

d 1.81 15 (CH2) – –

e 2.10 – – 8, 11 (CH2)

f 2.18 – – 17 (CH2)

g 3.20 γ (CH3) – –

h 3.39 16 CH2 – –

i 5.41 – – 9,10 (CH)

Table 4.1: 1H NMR chemical shifts from CTAB – oleate (4:1) functionalised AuNRs and their identified
CTAB and oleate peaks as given in fig. 4.3(c). Peaks have been identified based on the experimentally
determined chemical shifts given in fig. 4.2(a)&(b).
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(a) CTAB

(b) Oleate

(a) CTAB chemical shifts

Chemical Shift
Identification n

(ppm)

0.94 1 (CH3) 2
1.36 2–13 (CH2) 22
1.44 14 (CH2) 2
1.85 15 (CH2) 2
3.24 γ (CH3) 9
3.48 16 CH2 2

(b) Oleate chemical shifts

Chemical Shift
Identification n

(ppm)

0.89 1 (CH3) 3
1.30 2–7, 12–15 (CH2) 20
1.56 16 (CH2) 2
2.05 8,11 (CH2) 4
2.17 17 (CH2) 2
5.37 9,10 (CH) 2

(c) DOPC

(d) DSPE-mPEG

(c) DOPC chemical shifts

Chemical Shift
Identification n

(ppm)

0.91 1, 1’ (CH3) 6

1.35
2–7, 12–15 (CH2)

40
2’–7’, 12’–15’ (CH2)

1.60 16, 16’ (CH2) 4
2.07 8, 11, 8’, 11’ (CH2) 8
2.40 17, 17’ (CH2) 2
3.27 γ (CH3)) 9
3.70 α (CH2) 2
4.27 g3 (CH2) 2
4.35 β (CH2) 2
4.45 g1,(CH2) 1
5.35 g2 (CH) 1
5.38 9, 10, 9’, 10’ (CH) 4

(d) DSPE-mPEG chemical shifts

Chemical Shift
Identification n

(ppm)

0.90 1, 1’ (CH3) 6

1.31
2–15 (CH2)

56
2’–15’ (CH2)

1.61 16, 16’ (CH2) 4
2.35–2.40 17, 17’ (CH2) 4

3.36 ζ (CH3) 3
3.39 β (CH2) 2
3.57 δ45, ε45 (CH2) 4
3.64 ε1 (CH2) 2
3.72 δn, εn (CH2) ∼86∼

3.86–3.90 α (CH2), γ (NH2) 3
4.00 g3 2
4.21 g1a (CH2) 1
4.44 g1b, δ1 (CH2) 3
5.29 g2 (CH) 1

Figure 4.2: 1H Chemical shifts and identifications for (a) CTAB, (b) oleate, (c) DOPC, and (d) DSPE-mPEG
in D2O. The corresponding identifications for each protonated atom in each molecule are given in their
respective molecular diagrams. Identifications are based on calculated chemical shifts in MestReNova and
published values for CTAB [142, 183, 266], oleate [320], DOPC [330] and DSPE-mPEG [133]. n indicates
the number of 1H associated with each chemical shift on each molecule. The trimethylammonium groups in
CTAB and DOPC have been highlighted.
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Figure 4.3: 1H NMR spectra for (top) ∼25 nM CTAB – oleate (4:1) functionalised AuNRs, and (bottom)
∼25 nM DOPC – DSPE-mPEG (19:1) functionalised AuNRs. Chemical shifts labels are given in fig. 4.2 and
tables 4.1 and 4.2. All spectra were taken in D2O, details of sample preparation and acquisition settings for
each spectrum are given in section 2.5.3. Spectra for pure CTAB, oleate, DOPC and DSPE–PEG are given in

As shown in fig. 4.3(c) the presence of both CTAB and oleate can be seen on the surface of the AuNRs

based on the peaks given in fig. 4.3(a)&(b). The peaks are noticeably broader compared to the free molecular

solutions as a result of the reduced mobility of the molecules when bound to the surface of an AuNR. Also,

the SNR is significantly lower due to the reduced concentrations of each molecules on the surface of the

AuNR compared to the 10 mM free molecular solutions. In order to achieve the SNR seen here for the

colloidal scans averages over 384 spectra was required, this is an unusually large number of spectra, by

comparison averaging over 16 spectra was required to get the much higher SNR seen for the free molecular

solutions.

The asymmetric peaks at 0.94 and 1.36 ppm correlate well with the -CH3 and -[CH2]- 1H nuclei of the

alkyl chains. Peaks at 2.10 and 5.41 match the expected positions for 1H nuclei neighbouring and within the

alkene of the oleate chain. Shifts associated with the 1H nuclei located in the -[CH2]- monomers closest to

the carboxylic acid head group of the oleate are also visible at 1.62 and 3.39 ppm. Similarly the protons from

the equivalently positioned -[CH2]- monomers from the CTAB can also been resolved in the spectrum at 1.62

and 3.39 ppm. These peaks suggest a mixed composition of CTAB and oleate present on the AuNR surface.

Most important for the work here is the peak observable at 3.20 ppm, associated with the γ–methyl

protons in the trimethylammonium group. This is lower than observed in for the free molecular solution

of CTA+. This has been observed elsewhere and is caused by a Knight shift due to the close proximity to

the Au surface of the nanorod [142, 266, 331]. This peak falls in a different position to that expected for

the γ–methyl protons found in the choline of DOPC, unlike other peaks which are largely degenerate with

CTAB. Hence it can be used to detect the present of CTAB on the AuNR surface
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The value of 3.20 ppm seen here is slightly higher than seen elsewhere (i.e. 3.12 ppm [142], 3.16 ppm

[331], 3.11 ppm [266]), this may potentially result from the inclusion of the negatively charged headgroup

of oleate into the CTAB bilayer on the particle, such changes in the chemical shifts have been observed in

mixed micellular system [118]. Regardless this is not problematic as it is still resolvable from the observed

position of the DOPC shift at 3.27 ppm.

DOPC and DSPE-mPEG

The observed chemical shifts for DOPC – DSPE-mPEG functionalised AuNRs and their identifications

based on the chemical shifts experimentally determined for free DOPC and DSPE-mPEG are as follows:

Label Chemical Shift Identification
(ppm) DOPC DSPE-mPEG

a 0.91 1,1’ (CH3) 1,1’ (CH3)

b 1.31 2–7,12–15 (CH2) 2–15 (CH2)
2–7,12–15 (CH2) 2’–15’ (CH2)

c 1.60 16,16’ 16,16’ (CH2)
d 2.04 8,11,8’,11’ (CH2) – –
e 3.27 γ (CH3) – –
f 3.71 – – δn, εn (CH2)
g (5.33) 9,10,9’,10’ – –

Table 4.2: 1H NMR chemical shifts from DOPC – DSPE–mPEG (19:1) functionalised AuNRs and their
identified DOPC and DSPE–mPEG peaks as given in fig. 4.3(f). Peaks have been identified based on the
experimentally determined chemical shifts for ‘free’ DOPC/DSPE-mPEG given in fig. 4.2(d)&(e).

Unfortunately, in the spectra of the free lipids, a peak associated with the presence of contaminating

methanol at 3.36 ppm is visible. This appears to have contaminated the system during tip sonication, as a

result of residual methanol from cleaning the tip and jacketed beaker used in preparing the SUV solutions.

It also overlaps the expected position of the ζ–methyl group of the DSPE-mPEG. It is not present in the

spectrum of the phospholipid coated AuNRs and hence does not affect the viability of this measurement in

determining the presence of CTAB.

Peaks at 0.91, 1.31 and 1.60 (weak) ppm can be attributed to the alkyl chains in both DOPC and

DSPE-mPEG. Additionally peaks at 2.04 and 5.33 (weak) ppm can be attributed to the double bonds located

in the chains of DOPC. The 1H resonances of the -[CH2]- monomers in the PEG chains of DSPE-mPEG

are clearly visible at 3.71 ppm. There is no evidence of methanol contamination in the spectra of the

phospholipid–functionalised AuNRs.

Most importantly, the chemical shift associated with the CTAB γ–methyl protons is not visible in the

spectrum of the AuNRs, instead only a single peak at 3.27 ppm is visible in NMR spectra of the DOPC –

DSPE-mPEG functionalised AuNRs. While complete elimination is impossible to argue from the low SNR

of these measurements, they do suggest that substantial displacement of the CTAB from the surface of the

AuNRs by phospholipids has occurred. However this measurement on its own is limited in its sensitivity by

the low SNR and needs to be supported by additional measurements. Hence it was decided to accompany

this with with additional molecular spectroscopy in the form of surface–enhanced Raman spectroscopy.
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4.3 Raman Spectroscopy

Surface–enhanced Raman spectroscopy (SERS) was used as an additional technique to identify the species

of molecules present on the surface of our AuNRs. Raman spectroscopy is a technique based on the

measurement of inelastically scattered light from a monochromatic source off of a sample. Shifts in the

frequency of scattered light are caused by interactions between the electronic distribution around the molecule

and incident light. Vibrational modes in molecules which alter the polarisability of this distribution present

characteristic frequencies shifts which can be used to characterise the molecular species present. Additionally,

the large near–surface electric fields generated at the tips of a AuNR, when excited at their LSPR, allows

enhancement of Raman scattering by as much as 1014–1015 times [250] enabling the study of the relatively

small amount of material located there with much higher sensitivity. Hence study of molecule–specific

Stokes shifts enables identification of the species of molecule present on the particle surface.

The Raman system available offered illumination wavelengths at 532 and 785 nm, it was decided to

maximize the field enhancement at the particle surface by utilising particles synthesised with a LSPR

maximum at 800 nm. This was close to the 785 nm excitation sources and offered a resonance close to the

maximum plasmonic Q–factor for Au (see fig. 1.2(c)), and hence the largest attainable field enhancement.

After CTAB displacement coating this peak wavelength shifted to 790 nm offering a closer match to the

excitation wavelength.

4.3.1 Raman Peak Identifications

100–350 cm−1 – Bromine and Poly(ethylene glycol) Deformations

The band observed at 176 cm−1 has been attributed to the ν(Au−Br –
2 ) mode [177]. This peak is not present

in solutions of pure CTAB and can be observed to shift in AuNP solutions when the counter–ion is exchanged

with other halide ions such as chloride [195]. Bromide will form a polar covalent bond with Au atoms at the

surface of the NR, enabling the weak ionic bonding of CTA+ onto the particle surface. The presence of this

peak is not unexpected, as the trimethylammonium head groups of both phosphocholine and CTA+ are both

capable of binding to AuBr– . This peak has been observed to remain in SERS studies of AuNRs coated by

DOPC displacement of the CTAB performed by Matthews et al., suggesting that phosphocholines bind to the

surface through the same ionic interaction albeit at a lower density [222]. Contradicting this, more recently

Santhosh et al published a study observing that the ν(Au−Br –
2 ) peak vanishes over the course of displacing

CTAB with DMPC [304]. However, their sensitivity to the ν(Au−Br –
2 ) peak is far lower than observed

here. Observing a ν(Au−Br– ) peak around half the height of the ν(C4N+) headgroup peak at ∼ 760 cm−1.

By comparison, in this study and in Matthews et al, the ν(Au−Br– ) peak was significantly more intense,

at ∼ 22× and ∼ 60× bigger respectively. This is expected due to the SERS enhanced of material in close

proximity with the surface. Based on this disparity, it seems that tracking the amplitude of the ν(Au−Br– )

peak is not a reliable method of establishing the presence of CTAB. It is also not clear why bromine would

dissociate from the particle surface during the displacement. It will form a relatively strong polar covalent

bond with the Au surface, and should interact with the quaternary ammonium group of phosphocholines in

the same manner as the one found on CTAB. Hence, it seems unlikely the resilient of this peak is indicative

of the presence of bromine on the surface.
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The presence of a monolayer of Ag is expected on the {110} facets along the sides of the AuNR [131, 405],

hence relatively high amounts of AgBr –
2 is expected to be present close to the particle surface [252]. These

should present an additional SERS peak at 156 cm−1 in addition to the one from ν(Au−Br –
2 ) [153], however

this is not observable in either of the spectra from CTAB– or phospholipid–functionalised AuNRs. This

probably results from the concentration of the excited field at the tips of the AuNR where there is expected

to be minimal amounts of Ag present. The selected excitation wavelength will predominantly excite the

LSPR of the particles and hence yields much higher field enhancement at the tips of the AuNR, leading to

much higher sensitivity the molecules located there, as is evident from the plots of Raman enhancement in

fig. 1.8(b) and (c).

A broad band centred at 261 cm−1 appears in the spectrum of AuNRs functionalised with DOPC –

DSPE-mPEG, and is not present in the CTAB functionalised spectrum. This has been attributed to the

δ(OCC) and δ(COC) modes of PEG [176]. The band comprises of the supposition of multiple peaks centred

on 226, 169, and 365 cm−1 associated with variations on these bending modes.

350–700 cm – Trimethylammonium Asymmetric Stretching Modes and Carboxylic Acid

In the spectrum of the CTAB – oleate AuNRs, peaks can be seen at 378, 455, and 489 cm −1 associated

with the asymmetric stretching modes of the trimethylammonium group of CTAB. Only one of these modes

can be resolved in the spectrum of the DOPC – DSPE-mPEG functionalised AuNRs at 489 cm−1. A peak

can be seen in both spectra at 610 cm−1, this can be identified as the ν(OC−−O) mode of the carboxylic acid

headgroups and carboxylic acid esters of the oleate and phospholipids respectively.

In addition to these, a distinct peak at 676 cm−1 can be seen on the CTAB – oleate functionalised

AuNR spectrum. There are no functional groups in CTAB which would produce a vibrational mode at this

wavenumber. For oleate, there are two potential candidates the out-of-plane δ(R1HC−−CHR2 mode (665–730

cm−1) and the in–plane δ(C−O) mode (630–800 cm−1) associated with carboxylic acid headgroup [325].

The latter seems more probable, both vibrational modes are only weakly Raman active, hence a significant

field enhancement would be required to give the peak seen in the spectrum. Given that the negatively charged

headgroups of oleate are expected to intercalated amongst the positively charged headgroups of CTAB, they

should be in close proximity to the particle surface explaining this enhancement. However some studies

of micelle–structure have suggested that the double–bond of oleate can also sit in this layer, although it

is unclear that this would be true for a supported bilayer on the surface of a particle [85, 229]. This peak

has been tentatively identified as the δ(C−O) mode. It is not present in the phospholipid–stabilised AuNR

spectrum, whilst DOPC does contain carboxylic acid esters they will sit further from the particle surface,

and hence will receive significantly less field enhancement. The removal of this peak does suggest that the

oleate is removed from the particle surface during the displacement process.

700–800 cm−1 – Trimethylammonium Symmetric Stretching Modes

The peak observed at 763 cm−1, in the spectrum of the CTAB – oleate AuNRs, has been widely recognized

to be associated with the symmetric ν(C4N+) mode of the CTAB headgroup. The position of this peak is

consistent across a range of n–alkyl trimethylammonium cations1. It has become a useful diagnostic for the

1i.e. for n–alkyl trimethylammoniums where; n = 6, νCN+ ∼ 760 cm−1 (from FTIR [SpectraBase]), n = 7, νCN+ = 762 cm−1 [177],
n = 8, νCN+ ∼ 760 cm−1 [ChemBook], n = 9, νCN+ = 760 cm−1 (from FTIR [SpectraBase]), n = 10, νCN+ = 761 cm−1 [106], n = 12,
νCN+ = 762 cm−1 [ChemBook], n = 14, νCN+ = 761 cm−1 [106], n = 16, νCN+ = 761 cm−1 [106]
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presence of CTAB in SERS studies of surface coatings [202, 222, 304, 342], due to the high sensitivity to

this peak resulting from its close proximity when binding to a metallic surface.

By comparison the trimethylammonium group found in the choline headgroup of DOPC has a associated

symmetric ν(C4N+) peak at 720 cm−1 [329]. The difference in wavenumber between the ν(C4N+) symmetric

shifts between these two molecules stems from the presence of the electronegative negative oxygen located

in the choline. This can be seen from the sensitivity of this shift to conformational changes in the headgroup.

With the trans conformation yielding a peak of ∼770 cm−1 and the gauche conformation yielding a peak of

∼715 cm−1 [6, 22]. This is a common method to measure the population of conformations within bilayers (e.g.

refs. [6, 7, 88, 120, 170, 358]). This sensitivity to conformation is suggested to originate from electrostatic

interactions between the electronegative oxygen atom and positively-charged quaternary ammonium, both

contained with the choline group [20, 22]. By comparison, the trimethylammonium group found on CTAB is

insensitive to conformational changes seen in choline despite the close similarities between the two functional

groups and consistently presents a Stokes shift of ∼ 760 cm−1[259]. Even though the trans conformation is

the predominant conformer of DOPC found in bilayers, a small population of the choline headgroups are

typically observed in the gauche conformation regardless, leading to the observation of a small peak around

770 cm−1 [6, 293]. Due to the close proximity of this peak to one associated with the symmetric ν(C4N+)

CTAB peak, resulting in residual CTAB being more difficult to distinguish from the this small population of

gauche conformers. However, a significantly higher SNR, than achieved here, would be required to resolve

this gauche peak in these experiments.

Finally, DSPE-mPEG presents a weak band at 759 cm−1 associated with the ν(C−N) mode of the amide

linker [182, 257]. This will overlap the ν(C4N+) peak of CTAB at 763 cm−1. This is not a major concern

given how weak this peak is, and also that DSPE-mPEG is expected to sit in the outer leaflet of the surface

bilayer leading to relatively minor electric field enhancement at this bond.

Despite these potential additions at this wavenumber, there is no obvious peak that can be observed in the

Raman spectrum of the DOPC – DSPE-mPEG at 768 cm−1, suggesting that the majority of the CTAB has

been removed from the surface of the AuNR. However the strong background signal attributed to the PEG

chains of the DSPE-mPEG makes it difficult to make any further assertions beyond this. The numbers of

counts at the DOPC ν(C4N+) is 1380 compared to 360 at 760 cm−1 quantitatively putting an upper limit for

CTAB content at 26%. However it seems more probable, given that the presence of any peak at 760 cm−1 is

impossible to distinguish from the background that the amount of CTAB present has been reduced to below

the threshold of detection.

800–1500 cm−1 – Phosphate Group and Alkyl/Poly(ethylene glycol) Chains

A peak is visible in both spectra at ∼959 cm−1 this is attributable to two degenerate asymmetric ν(C4N+)

modes, associated with the trimethylammonium in both CTAB and DOPC. This peak position is insensitive to

conformation and hence appears in the same place for all conformers of DOPC [6]. An additional asymmetric

ν(C4N+) mode is expected to have a peak at 870 cm−1 and 910 cm−1 for DOPC and CTAB are also expected,

but these are not resolvable in either spectrum [6, 75].

The rest of the observable peaks are either present in both spectra (i.e. from the alkyl chains), or only

found in spectra of the phospholipids used here (e.g. phosphate and poly(ethylene glycol)). Hence they are

not particularly useful as a diagnostic for the presence of CTAB. Peaks in the spectrum of CTAB – oleate
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AuNRs at 1029, 1080, 1196, 1304, and 1449 cm−1 are all associated with the alkyl chains of CTAB. The

observable peaks in the DOPC–DSPE-mPEG AuNRs at 1088, 1300, and 1445 cm−1 are all associated with

the alkyl chains of the lipids and are close to peaks seen in the CTAB – oleate AuNR spectrum. It is probable

that the ν(O−P−O) mode from the phosphate also contributes to the peak at 1080 cm−1. Also, a peak at

1646 cm−1 associated with the ν(C=C) mode is evident and associated with the alkene bond in the chains of

DOPC.

Finally, there is clearly a strong contribution from poly(ethylene glycol), which has make the background

appear very uneven. Inspection of the Raman spectra of poly(ethylene glycol)s shows that these charac-

teristically have strong bands resulting from overlapping peaks in the following regions: 770–900 cm−1,

1015–1170 cm−1, 1230–1330 cm−1, 1410–1480 cm−1 [176]. These bands are marked on fig. 4.4 and the

various peaks that contribute to them are summarised in table 4.3.

4.3.2 Summary

The absence of the trimethylammonium asymmetric stretching modes in the DOPC – DSPE-mPEG AuNR

spectrum gives another good indication that the quantity of residual CTAB has been reduced to a very small

population. It is difficult to provide absolute quantification, due to the strong background resulting from other

components in our surface. All the peaks identified are consistent with the expected species of molecules

present on the surface of our particles.

4.4 Zeta Potential – pH Response of Surface Functionalisations

In addition to the molecular spectroscopy performed, a pH–dependent ζ–potential study was undertaken. The

electrostatic properties of the coatings of colloids can be directly measured via their ζ–potential. Different

surface ligands will provide nanomaterials with varying different surface charges dependent on their surface

packing density and the functional groups comprising the molecule. The charge of which are dependent on

the surrounding medium pH, with different groups becoming ionised at their respective pKa values. The

ionised fraction of a given functional group can be expressed in terms of its pKa and the bulk pH. This is

expressed by the Henderson–Hasselbalch equation [122, 123], which gives the ionised fraction of anionic

and cationic functional groups, Xn− and Xn+ respectively, at a given pH as:

Xn− =
1

1 + 10pKa−pH =
[X−]

[XH] + [X−]
(4.1)

Xn+ =
1

1 + 10pH−pKa
=

[X+]
[X+] + [XOH]

(4.2)

where H and OH, are cationic and anionic counterions respectively (i.e. they do not necessaily have to

be a proton or hydroxyl ion). According to Gouy–Chapman theory the ζ–potential of a given particle is

related to the surface charge density, σ by an sinh−1(σ) function [105]. Hence ζ increases with |σ|, and the

change in σ due to ionisation/deionisation of functional as a result of a change in pH can be seen in the

measured ζ–potential. Hence the pKa values of individual molecules comprising the surface coating can

be used to assess the species of molecules present on the surface of a particle, by observing changes in the
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Molecule Functional Group pKa

CTAB Trimethylammonium n/a R N+

CH3

CH3

CH3

Oleic Acid Carboxyl 5 R C
O

OH
←−−→ R C

O

O−
+ H+

DOPC

Phosphate 1.86 (1) R1 P

O

OH

R2 ←−−→ R1 P

O

O−

R2 + H+

Trimethylammonium n/a R N+

CH3

CH3

CH3

DOPG

Phosphate 1.89 (2.8) R1 P

O

OH

R2 ←−−→ R1 P

O

O−

R2 + H+

Hydroxyl 13.7
R

OH

OH ←−−→

R

O−

O− + 2H+

PSS Sulphonic acid -1.92 R S

O

O

OH ←−−→ R S

O

O

O− + H+

DSPE-mPEG

Phosphate 1.88 R1 P

O

OH

R2 ←−−→ R1 P

O

O−

R2 + H+

Ethylene oxide –
	
O



n

Table 4.4: Functional groups of the various molecules used to functionalise AuNRs in this section and their
associated pKa values. pKa values were calculated using ChemAxon. The pKa values in brackets for DOPC
and DOPG are observed shifts due to inclusion in a bilayers or liposomes.

ζ–potentials as a function of medium pH. The pKa values of the important functional groups found in the

various molecules used to functionalised AuNRs in this section are given in species used in table 4.4. More

importantly the presence of CTAB can be determined by measurement of a positive ζ–potential at pH values

which should induce a net neutral surface charge in other species of capping agents. Alongside the DOPC –

DSPE-mPEG functionalised AuNR discussed above; PSS, DOPC and DOPC – DOPG functionalised AuNRs

have also been characterised by this technique.

As no single buffer can span the entire range of pH used here, a range of buffers were used (detailed

in section 2.5.1). No unusual effects came about of as a result of this and the behaviours of measured

ζ–potentials were consistent between buffers and with theory. All buffers used were diluted to 10 mM from

the stock concentrations given in section 2.5.1 using degassed Milli–Q grade water. It is worth remembering

that the stability thresholds for the magnitude of the ζ–potential specified in the same section have little
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meaning for particles which are sterically stabilised or stabilised using zwitterions.

The embedding of molecules within a bilayer structure will lead to shifts in the pKa values and a

broadening of the pH response [266]. This results from the close packing of headgroups attracting counter–

ions in solution creating a locally different pH compared to bulk solution [387]. For instance, positively

charged functional groups will attract negatively charged ions from solution creating a local environment

which is effectively lower in pH than in the bulk solution.

4.4.1 Results

CTAB

In order to provide a basis for assessing the presence of residual CTAB on the surface of the surface–modified

AuNRs a single batch of AuNRs were synthesised using 100 mM CTAB (no oleate was added and the HCl

concentration was also reduced by 75%). Resulting in AuNRs stabilised by CTA+ ions only.

The positively charged trimethylammonium group in CTA+ is permanently ionised in solution, hence

particles stabilised with it should present a constant positive ζ–potential so long as the background ion

concentration is maintained. This behaviour was witnessed for CTAB-capped AuNRs across all pH (fig. 4.5).

However the actual surface charge presented by the CTAB coating was also dependent on the background

concentration of CTAB, as it exists in a dynamic equilibrium with the background concentration of free

CTA+ ions [296]. As this background concentration drops the packing density of CTA+ on the surface drops

and the resultant ζ–potential also drops. In this experiment, the particles were washed twice by centrifugation

before being resuspended in 10 mM buffer, reducing the concentration of CTAB in the bulk solution to

approximately 0.1 mM, close to the limit of stability (further washing resulted in irreversible aggregation).

The measured value of ζ ∼ 20.5 mV, while low, reflects the depletion of the surface bound CTAB due to

repeated washing. It would be expected to increase if additional CTAB were added to the colloidal dispersion

(or alternatively a lower buffer concentration were used) to values in line with the higher zeta potentials

reported elsewhere (e.g. refs. [11] and [410]).

CTAB – Oleate (4:1)

By comparison AuNRs prepared by the method outlined in chapter 3, using a 38 mM CTAB and 10 mM

oleate growth solution (∼ 4:1 molar ratio) yield a ζ–potential which changes dynamically with pH. The

ζ–potential is positive at all pH values consistent with a higher surface concentrations of CTA+ than oleate-,

however the presence of the negatively charged oleate ions in the surface coating has substantially suppressed

the ζ–potential below the threshold for electrostatic stability in 10 mM buffer (they are stable in water for at

least two years).

The pKa of the –COOH head group of the oleate leads to a positive shift of the ζ–potential at lower pH.

The estimated pKa for a free molecule is 5.0, however the measured shift in ζ–potential indicates a pI of 4.3

suggesting a shift in the pKa of the oleate relative to the bulk pH. This is not unexpected due to the packing of

the negatively charge headgroups of oleate in amongst an excess of positively charged trimethylammonium

headgroups, leading to localised repulsion of cations in the vicinity of the water/bilayer interface and an

apparent pH shift of ∼ 0.7 locally based on these measurements [387].

Also notable is the ratio of the ζ–potentials above (12.2 mV) and below (29.2 mV) the apparent pKa,

is actually not reflective of the ratio of surfactants used to the synthesis the AuNRs (4:1), but more closely
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Figure 4.5: Left: Experimentally determined ζ–potentials for AuNRs coated with 100% CTAB and PSS as
a function of buffer pH (10 mM). Right: Theoretically predicted charge for a population of CTAB and PSS
monomers, where n is the ionisation number and Xn is the ionised fraction.
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Figure 4.6: Left: Experimentally determined ζ–potentials for AuNRs synthesised in a CTAB – oleate (4:1)
mixture as a function of buffer pH (10 mM). Right: Theoretically predicted charge for a population of CTAB
and oleate monomers, where n is the ionisation number and Xn is the ionised fraction. Also presented are the
predicted curves for 4:1 and 3:2 CTAB – oleate mixtures.
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resembles the curve predicted for a 3:2 molar ratio of CTAB and oleate. This implies the formed bilayer

does not necessarily contain the same surfactant ratio as the original growth mixture and may instead reflect

some more energetically preferable configuration of surfactants on the surface.

PSS

The primary functional group of PSS, a sulphonic acid has a pKa of -1.92, hence it outside the range of

the buffers used here and would only become protonated under the extremes of concentrated acids. Hence

PSS should present a constant negative ζ–potential at all pH measured here, which is matched closely

by our experimental observations fig. 4.5. Because PSS functionalisation passivates the CTAB layer, the

positive charge is obscured by the PSS layer, despite still being present on the surface of the particle, it is not

detectable by measurement of the AuNR ζ–potential measurements, which sensitive only to the external

surface charge.

DOPC

Due to the zwitterionic character of DOPC, it is neutrally charged at physiological pH. The phosphate group

has a pKa of 1.88 when the molecule is free in solution, but this shifts to around ∼pH 1 inside a DOPC

bilayer [221]. Hence the pH response of the molecular charge is expected to be positive around pH 1 and

decay to neutral as the pH is increased. This means that the pI for the DOPC–coated AuNRs cannot be

determined from the pH range covered here because fitting accurately would require bulk pH values where

all phosphate groups were completely protonated. However, the observed pH response of DOPC coated

AuNRs correlates strongly with that described above. The neutral ζ–potential observed above ∼pH 4 is

consistent with this and suggests reduction of the residual CTAB to only trace amounts.

For comparison, other published phospholipid surfactant exchange methodologies (which utilise only

a single round of sonication in phospholipid SUV solution) still present a positive charge at neutral pH,

suggesting incomplete removal of the CTAB [267, 339, 398]. The work of Orendorff et al presented the pH

dependence of the zeta potential their POPC–functionalised AuNRs, displaying a similar pH response to that

seen in fig. 4.7, albeit declining to a ζ–potential of 10 mV at higher pH values, which the authors attributed to

an estimated inclusion of ∼10% CTAB in the surface coating [266]. Confusingly, other work have reported

negative zeta–potentials for DMPC–functionalised AuNRs of -9 mV, which is difficult to explain with the

functional groups that could potentially be present on the particle surface [304]. Comparatively, we observe

neutral surface potential (to within ±3 mV) suggesting the additional rounds of sonication in phospholipid

SUV solution deployed here are effective at removing this residual CTAB from the surface coating.

DOPC – DOPG (19:1)

The observed pH response of AuNRs functionalised in a DOPC – DOPG (19:1) lipid SUV solution is

consistent with a surface coating containing two negatively charged groups with pKas at around ∼pH 1 (hard

to determine reliably) and ∼pH 3. This is not inconsistent with the known pKa values for the phosphate

groups of DOPC and DOPG which both fall at around pH ∼1.9 when free in solution. As stated above the

pKa of DOPC is expected to shift to around pH 1 when embedded in a bilayer [221], and DOPG has been

observed to have a pKa of 2.7 embedded in liposomes [383]. Hence the observed behaviour is consistent with

that expected for a DOPC – DOPG mixture on the surface. The excess negative charge of the DOPG will

obscure the presence of residual CTAB in the ζ–potential measurement. It seems reasonable to assume that

the residual CTAB will might be expected to be similarly low as in the pure DOPC system. The theoretically

expected curves are given in fig. 4.7 alongside the combined curves for a 19:1 and a 1:1 mixture of the
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two lipids. As can be seen the shape of the combined curve for a 1:1 DOPC – DOPG is considerable more

consistent with the experimentally measured ζ–potential curve. This suggests, alongside the results from

the mixed CTAB – oleate coatings that the ratio of different surfactant species adsorbed on the surface of a

AuNP do not necessarily reflect the ratio of surfactants in the bulk solution.

DOPC – DSPE-mPEG (19:1)

Whilst the phosphate groups of DOPC and DSPE-mPEG both have pKa values of around 1.8, they are

not expected to have an apparent effect on the pH response of particles functionalised with a significant

number of PEGylated phospholipids. Since ζ–potential measurements are only sensitive to the functional

groups exposed at the surface of the particle, the extended PEG brush structure will effectively screen the pH

response of the phosphate, choline and amide groups present on these molecules. Hence we would expect

based on the protonation dynamics of PEG that the particles would present a neutral ζ–potential at all pH.

This is not what is observed, instead the particles show a slightly negative ζ–potential at low pH, which

grows increasingly negative with increasing pH, this behaviour has been observed elsewhere (e.g. [35, 226]).

This can likely be explained by the preferential absorption of anionic species into the PEG layer, which has

been observed to occur for oligo(ethylene glycol) monolayers [184].

4.4.2 Summary

The observed shifts in the ζ–potential are consistent with the known pKa values of the molecules we have

functionalised our AuNRs with. The absence of any positive charge on our DOPC–functionalised AuNRs

implies that the level of CTAB on the surface of the AuNRs is being successfully reduced to trace levels

during the phospholipid exchange process described above. This is also supported by the NMR and Raman

spectroscopy performed above.

4.5 Stability in Biorelevant Media

The body presents a particularly challenging environment for the maintenance of colloidal stability, hu-

man plasma exhibits a relatively high salinity of around 300 mOsm·L−1 and contains a wide variety of

biomolecules which will non-specifically bind to particles, often undermining any specific surface function-

alisation bestowed on the particle. This is extremely problematic for most targeting strategies as protein

corona are typically 10–100 nm in thickness [178], in excess of the size of most targeting ligands (i.e.

antibodies are ∼10–15 nm), leading to corona completely obscuring such molecules. Whilst such measure-

ments have been performed for the more common AuNR coatings such as CTAB and PSS, the stability

of phospholipid–coated AuNRs outside of the idealised environment of deionised water has received no

attention (i.e. [50, 267, 304, 398]). Hence, it was decided to explore the stability of each of the surface

functionalisations in a variety of ‘biorelevant media’, such as buffers, cell culture medium, serum and blood

plasma.
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Electrolyte
Reference Values Dulbecco’s Plasma-lyte Pseudo-plasma

RPMI 1640 FBS
Human Plasma PBS 148 Buffer

(mM) (mM) (mM) (mM) (mM) (mM)

Sodium Na+ 133 - 146 152 140 141 124.27 137

Chloride Cl− 95 - 105 144 98 98 100.16 103

Potassium K+ 3.5 - 5.3 4.2 5 5 5.33 11

Calcium
ionised Ca2+ 1 - 1.3 0.9 – – 1.3 0.42 3.4

total – – 2 - 2.6 – – – – – – – – – –

Phosphate PO3−
4 0.8 - 1.5 9.5 – – 1.3 5.63 1

Magnesium Mg2+ 0.7 - 1 0.5 – – 1 0.42 0.1

Sulphate SO−4 1 – – – – 1 0.41 <0.0001

Ammonia NH+
4 0.011 - 0.051 – – – – – – – – 0.5

Nitrate NO−3 0.0013 - 0.013 – – – – – – 0.85 – –

Copper Cu2+ 0.011 - 0.022 – – – – – – – – <0.0001

Zinc Zn2+ 0.011 - 0.024 – – – – – – – – <0.0001

Organic acids (lactate) C3H5O –
3 0.5 - 2.2 – – 2 – – – – – –

Bicarbonate HCO –
3 22 - 29 – – 23 – – – – 16.8

Carbonate CO –
3 23 - 30 – – 26 – – – – <23?

Acetate H3CO –
2 2.5 – – – – 27 23.81 0.4

Gluconate C6H11O –
7 – – – – – – 23 – – – –

Table 4.5: Comparison of the various ion concentrations of the prepared buffers and media used in measuring
the stability of various nanoparticle functionalisations alongside typical ranges for a healthy human adult.
Human reference values taken from ref. [100] RPMI 1640 and foetal bovine serum are complex mixtures
containing a large number of additional molecules, such as vitamins, amino acids and proteins, an incomplete
summary of these are detailed in table 4.6.

Three buffers were selected as surrogates to test the impact of similar ion concentrations to those seen

in human plasma on the stability of AuNPs. Firstly, Dulbecco’s PBS (DPBS) was used as a commercially

available buffer at a suitable pH and osmolarity, due to its ubiquity in the literature as a stability testing

medium. DPBS has Na+, Cl−, K+, Ca2+, Mg2+ and SO−4 concentrations within the expected reference ranges

for human plasma. But it has around an eightfold excess of PO3−
4 ions compared to human plasma. Higher

valency electrolytes such as PO3−
4 are significantly more detrimental to colloidal stability than monovalent

electrolytes, this is expressed by the Schulze–Hardy law 1 [119, 312]. For instance, the critical coagulation

concentration is typically ∼100× lower for divalent counterions and ∼1000× for trivalent counterions,

compared with monovalent counterions [255]. Variation in concentration of phosphate will thus have a

disproportionate effect of the stability of particles compared with the other common ions in blood plasma.

Secondly, Plasma–Lyte 148 (PL–148), an isotonic intravenously administered fluid replacement which is

designed to resemble the electrolytic composition of human plasma was chosen as additional commercially

available product with a standardised recipe. It contains sodium, chloride and potassium at normal human

reference values, but also contains acetate and gluconate ions significantly well above these, they are included

for medicinal purposes as alkinising agents and are metabolised to bicarbonate by muscle and peripheral

tissues or renally excreted from the body [375]. It is also missing a the vast majority of electrolytes found at

lower concentrations, limiting its potential as a plasma mimic somewhat.

Thirdly, a bespoke buffer was created to reflect the homeostatic concentrations of the most common

electrolytes in human plasma (Cion ≥ 1 mM) dubbed ‘pseudo–plasma’ buffer (PP). The recipe for this is

given in table 2.3. The pH of the buffer was measured to be ∼pH 7.4, 1 hour after preparation.

1This law is normally stated as the critical coagulation concentration of an oppositely charged colloid is ∝ z−6, where z is the
valency of the counterion [45]
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The ion concentrations of each buffer are given in table 4.5

In addition to these electrolyte mixtures, mixtures of RPMI 1640 cell culture medium (CCM) and

foetal bovine serum (FBS) were also used. CCM is commonly used in the literature as a stability–testing

medium for AuNPs. It is a useful preliminary experiment to demonstrate colloidal stability throughout

in vitro testing of NPs. Although it is somewhat limited in its similarity to the in-vivo environments in

which theranostic AuNPs are expected to be deployed. CCM is a mixture of electrolytes, vitamins, free

amino acids and nutrients (detailed in table 4.5 and table 4.6) and is intended to function as an optimal

environment for the in-vitro growth of cells. Hence, its composition is selected to encourage indefinite

proliferation of mammalian cells. It contains substantially elevated levels of PO3−
4 and NO−3 compared

with human plasma (PO3−
4 being particularly problematic to colloidal stability due to its high valency), and

the bicarbonate–carbonate buffering system of the blood is entirely missing. It also contains a free amino

acids profile that does not reflect that found in plasma, and elevated levels of B vitamins, glucose, and

para–aminobenzoic acid. Reflecting its purpose as an artificial environment designed to nourish immortalised

cells, but it is one into which these particles will be placed and hence should be considered on those grounds.

Foetal bovine serum (FBS) is a by–product of the beef industry, and is prepared from blood collected

from bovine fetuses. It is a complex (and ill–defined) mixture of molecules, including electrolytes, amino

acids, proteins, antibodies, enzymes and peptides. The electrolyte content is detailed in table 4.5 and other

commonly identified components are given in table 4.6. Hence FBS is a close match in many regards to

the composition of human blood plasma. But it presents its own problems, due to the manner by which

it is collected from many individual cattle, there is a large amount of batch–to–batch variability, limiting

the amount of information that can reliably be gained from a single batch. Also the method by which it is

prepared changes the composition compared with that of blood plasma. Collected blood is allowed to clot

at low temperature and then the clotted fraction removed by centrifugation. This leads to fibrinogen and

coagulant proteins being reduced to a small fraction of their normal levels. It is also not an exact match to

human sera, not only because it contains the bovine–variants of proteins, but also because it is harvested

from foetuses, concentrations of growth factors are much higher and and antibody and complement protein

concentrations are much lower than would be found in an adult. This is beneficial in its use as an additive to

CCM for encouraging cell growth, but does make it less ideal in testing the stability of our particles. It is

also notable that most studies do not report the presence of lactate in FBS. Lactate is almost certainly present

in FBS at the point of collection, with presumably the presence of lactic dehydrogenase in serum leading to

breakdown of lactate before its use in labs.

Regardless of the above potential issues, FBS is much closer to the in vivo environment in which the

particles will be utilised than the simple buffers and CCM discussed above. It will also be used to enrich

the media used in in vitro studies and hence demonstrating colloidal stability in that environment is also

important. It was decided to test ratios of CCM and FBS at 100% RPMI, 90% RPMI – 10% FBS, 50% RPMI

– 50% FBS, and 100% FBS, allowing some assessment of the increasing impact of serum proteins on AuNR

stability.

Finally, in addition to the above media, it was decided to test AuNR stability in mouse plasma, because

this would be the closest possible match to the in vivo models in which these particles would be tested. Plasma

is different from serum as it has not been allowed to clot and hence still contains all the coagulant proteins
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and fibrinogen. In order to prevent coagulation the blood was collected in a tube containing the chelation

agent tripotassium ethylenediaminetetraacetic acid (K3EDTA) and the cells removed by centrifugation. This

will affect the ionic make up of the sample, K3EDTA which will disproportionately chelate divalent cations,

hence a number of electrolytes will have been removed from the plasma (i.e. Ca2+, Cu2+, Mg2+, Zn2+,

Fe2+) and replaced with K+. K3EDTA is not expected to interact with the particles given that it should

be rendered chemically inert by divalent cations in the plasma. Whilst this does mean that the harvested

plasma is not a perfect replicate of in vivo plasma, these ions make up a relatively small fraction of the

electrolytes in solution and the impact of them without the presence of plasma proteins will be assessed by

the ‘pseudo–plasma’ buffer discussed above. This collected plasma represents the closest match to the in

vivo environment in which our NPs will operate, and would be usable over the timescale of the experiment

(i.e. whole blood will clot).

4.5.1 Results

Particles were suspended at a concentration of 75 µg·ml−1 in 200 µl of the desired medium in a 96-well

plate and the spectra of each well read at the desired time–points using a well plate–reader. This allowed

a large number of samples to be processed simultaneously, reducing the time required considerably, but

came at the cost of a lower SNR and occasional artefacts appearing in the data. Additionally problems were

encountered, due to the inclusion of phenol red in RPMI 16401 with its strong absorbance peaks at 443 and

570 nm, which made baseline correction of the spectra difficult below 600 nm, and prevented normalisation

of the spectra for Au0 concentration at 400 nm. This was also true for the plasma harvested from mice which

also showed strong absorbance bands below 600 nm associated with a small amount of haemoglobin and

oxyhaemoglobin which entered the sample during processing. Instead, it was found that normalising to the

minimum between TSPR and LSPR for each spectrum where the plasmonic contributions to the optical

properties were minimised worked well as an alternative, this also meant that the effect of some of the optical

artefacts at lower wavelengths in the buffer spectra could safely be ignored.

The spectra obtained are available in appendix D, and have been summarised in fig. 4.8. In number

of the spectra the LSPR was observed to drop in intensity which no accompanying increases in extinction

at higher wavelengths normally ascribed to aggregation. This is highly likely to be caused by AuNRs in

solutions losing stability and adhering to the walls of the well-plate over the long time-scale of the experiment,

leading to them effectively disappear from the measured spectra. Results are discussed for each surface

functionalisation below:

CTAB – Oleate functionalised AuNRs

CTAB–functionalised particles possess an inherent instability, due to the way in which molecules dynamically

exchange with the surrounding environment. Repeatedly washing of the particles by centrifugation will result

in depletion of the free CTAB in the bulk solution and hence encourage the dissolution of the surface–bound

CTAB, reducing the stability of these particles. Hence, two experiments with CTAB–capped AuNRs were

run in parallel, one in which the CTAB – oleate stabilised particles were washed threefold and suspended

in the media of interest and the other in which an additional 1 mM CTAB was added to the well. Making

1Phenol red free RPMI 1640 CCM is available, but it was decided that since the LSPR (λLSPR > 600 nm) was the primary means
by which aggregation would be assessed, it was not worth repeating the measurement with alternative CCM.
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4. Surface Modification of Gold Nanoparticles with Phospholipids

it possible to distinguish between aggregation induced by degradation of the CTAB bilayer and charge

screening due to ions in solution.

The effects of this are easily visible in the results; the presence of 1 mM free CTAB increased the stability

of the particles in solution in higher osmolarities in all cases. Particles without additional CTAB were

unstable in 96, 20, and 188 mOsm·L−1 in DPBS, PL148 and PP1 buffers respectively. The addition of 1

mM free CTAB improved stability at higher concentrations of DPBS although aggregation was still visible.

In PL148 and PP buffers the particles were stable at increased concentrations of 98 and 282 mOsm·L−1

respectively. Both sets of experiments showed worst stability in PO−3
4 rich environments such as DPBS and

RPMI 1640 CCM, which is expected given the interaction between the trivalent negative charge of the PO−3
4

and the positive charge of the N+–(CH3)3 headgroup of CTAB.

Both sets of CTAB–capped AuNRs were unstable in 100% RPMI CCM. However, the addition of serum

stabilises the particles in the presence of CTAB, suggesting proteins in the serum were providing stability to

the particles through the formation of a corona. These particles also showed better stability in mouse plasma,

presumably also resulting from corona formation. They still aggregated over the course of 24 hours though.

The well containing plasma without additional CTAB became visibly cloudy, suggesting the formation of

large aggregates which scattered light strongly. This additional signal meant that the normalisation performed

on the other spectra became unreliable, the TSPR and LSPR are visible in these spectra, but much weaker

than this scattering signal. The formation of these large aggregates would imply some interaction between

molecules in the media and the less stable CTAB–AuNRs, which is otherwise prevented by maintaining a

higher surface charge in the presence of 1 mM CTAB.

The results for the triply washed samples containing an additional 1 mM CTAB in PBS, pure RPMI, and

RPMI + 10% FBS are consistent with those reported elsewhere for singly–washed CTAB–AuNRs [137].

Demonstrating the clear requirement to maintain a high background concentration of CTAB to maintain

colloidal stability.

Poly(styrene sulfonate) functionalised AuNRs

PSS–AuNRs was observed to aggregate at 289, 98, and 94 mOsm·L−1 in DPBS, PL148, and PP, respectively.

Faster and more complete aggregation was observed above these concentrations. The variation in the

maximum concentration is difficult to explain, being negatively charged the stability of PSS–stabilised NPs

should be much less affected by the presence of PO−3
4 due to it being a co–ion2. It is also not consistent with

the presence of small concentration the divalent counterions in Ca2+ and Mg2+ in DPBS and PP.

PSS–AuNRs were also unstable in RPMI 1640 culture medium. This has been observed elsewhere,

where the presence of serum proteins was required to maintain stability [289]. The particles here were

not stable in 10% serum–enriched RPMI 1640 (which have been observed to be stable in elsewhere (i.e.

[289, 393])). However, increasing the serum content further did convey stability and PSS–functionalised

AuNRs show good stability in 50% and 100% serum, suggesting corona formation can stabilise the particles,

consistent with these other results.
1 The case of 10 mOsm·L−1 PP buffer has been deemed to be an artefact. The drop–off in LSPR peak intensity is paired with a

blueshift in peak position, a trend that is more consistent with directional oxidative etching of the AuNRs [294]. Given that the same
trend is not seen for higher concentrations of the buffer, it seems more likely that this results from an optical artefact, due to the presence
of something strongly refractive in the well such as a bubble. Hence this result has been ignored in further discussion.

2The effect on the critical coagulation concentration of co–ions is given by the inverse Schulze–Hardy law, which states that it is
proportional to z−1, where z is the valency of the co–ion [45].
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4. Surface Modification of Gold Nanoparticles with Phospholipids

The particles aggregate at a faster rate than CTAB–coated particles in mouse plasma. Over the course of

the experiment the LSPR decreased to the point of being virtually undetectable, accompanied by an increase

in the extinction at higher wavelengths consistent with the formations of aggregates.

DOPC functionalised AuNRs

DOPC showed relatively poor stability in DPBS, relative to PL-148 and PP, and is also have poor stability

in RPMI 1640 CCM suggesting that the higher concentrations of PO−3
4 has a disproportionate impact

on the stability of DOPC functionalised AuNRs. There was little–to–no reduction in LSPR intensity of

DOPC–functionalised AuNRs in PL–148 or PP.

Whilst the DOPC–AuNRs were not stable in RPMI 1640, enriching with serum stabilises the NPs,

suggesting either the formation of a corona or the reduction in the PO−3
4 concentration stabilised the particles.

It is more likely primarily driven by corona formation, given that a 10% reduction in RPMI concentration led

to near complete stability, but both effects are likely to be occurring to some extent. DOPC–AuNRs were

stable in the presence of serum.

As with all other functionalisations the particles showed worse stability in mouse plasma, compared with

pure FBS. As is visible in the drop in LSPR intensity and growth in extinction at higher wavelengths. The

LSPR intensity dropped to around 60% of its initial intensity, so they performed marginally worse than the

other phospholipid coated AuNRs.

DOPC – DOPG (19:1) functionalised AuNRs

The DOPC – DOPG AuNRs were relatively stable in all buffers tested. A small drop off in LSPR intensity

was seen in some cases, although it did not correlate with ionic strength. They were also stable in all

combinations of media and FBS and will almost certainly be forming a corona in the presence of serum, due

to charge interactions between the PSS and serum proteins.

Some aggregation in plasma was visible over the course of the experiment, but they retained the around

80% of their absorbance peak over the course of the first 24 hours, making them suitable NIR–absorbent for

in vivo use over this period.

DOPC – DSPE-mPEG functionalised AuNRs

The spectra associated with the DOPC – DSPE-mPEG AuNRs in each media are given in fig. 4.9. The

spectra in buffers are given at the highest concentrations tested.

No aggregation was visible in the spectra of DOPC – DSPE-mPEG in any of the buffers, in media or in

serum. The optical properties were consistent across all concentrations and time points.

Again, as with the other phospholipid–functionalised AuNRs some aggregation was displayed in mouse

plasma however and it is fairly consistent with the results seen for the other phospholipid coated AuNRs.

The intensity of the LSPR is around 80% of its initial value after 24 hours, which is still high enough to

utilise for photo–thermal therapy, suggesting they are stable enough for in vivo use.
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4. Surface Modification of Gold Nanoparticles with Phospholipids

4.5.2 Discussion

All varieties of phospholipid–functionalised AuNRs showed higher stability than the CTAB– and PSS–

AuNRs. The DOPC functionalised AuNRs faired worse in DPBS and RPMI media, but worked similarly

well in all other cases, suggesting they should be suited to in vivo use. The DOPC – DOPG and DOPC

– DSPE–mPEG AuNRs showed similar stability in FBS and mouse plasma, with the DOPC – DSPE–

mPEG showing marginally better stability in some of the buffers, likely resulting from the additional steric

stabilisation. All three of these show potential for in vivo use.

The measured stability of CTAB – oleate AuNRs in the presence of 1 mM free CTAB is somewhat

redundant in the context of their use in theranostics, given the high toxicity of free CTAB. However

it does provide some insight into maintaining their stability in higher salinity conditions. PSS AuNRs

showed worse stability than CTAB – oleate functionalised AuNRs under a number of conditions, which

is somewhat unanticipated, as it generally reported that PSS functionalisation is used provides additional

stability alongside higher biocompatibility [134, 318]. Given the large number of publications surrounding

theranostic applications of PSS–AuNRs, they will continue to be used in this study as a reference point for

comparison as biocompatible surface functionalisation.

All coatings performed considerably worse in mouse plasma compared with FBS, this probably results

from a non–specific interaction between the AuNRs and the fibrinogen/coagulant proteins that are removed

during the processing of FBS. If it is the presence of fibrinogen and coagulant proteins that are root cause

of this increased instability, it could have important implications for the applications of nanoparticles in

in vivo applications. In order to definitely establish this though further experiments are needed observing

nanoparticles in a range of sera, plasma, and more simple protein suspensions.

In an ideal world, these stability measurements would be accompanied by additional characterisation of

corona formation during incubation in media, serum and blood plasma. This would involve the monitoring

the change in size and surface charge the particles after incubation via techniques such as dynamic light

scattering, electron microscopy, fluorescence correlation spectroscopy and measurement of the ζ–potential.

Characterisation of the population of proteins on the particles surface via methods such analytical ultra-

centrifugation, isothermal titration calorimetry, liquid chromatography – mass spectroscopy and molecular

spectroscopy (i.e. FTIR, Raman or NMR). However, resources are finite and time is limited, and these

experiments were deemed outside the feasible scope of this project.

4.6 Conclusion

In this chapter, we have demonstrated that the displacement of CTAB with a variety of phospholipids can be

achieved through repeated rounds of sonication and cleaning through centrifugation. This repeated process

appears to be more effective at removing CTAB from the surface of AuNRs than other published methods.

We have shown this through characterisation of the surface through NMR spectroscopy, surface–enhanced

Raman spectroscopy and pH–dependent ζ–potential measurements, in all cases we were unable to identify the

presence of CTAB on the surface of the phospholipid–functionalised AuNRs. The ζ–potential measurements

in particular do not show any residual positive charge from CTAB at pH values where we would expect the

AuNRs to be otherwise neutral.
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4. Surface Modification of Gold Nanoparticles with Phospholipids

We have also shown they display superior colloidal stability compared with alternative surface coatings,

such as CTAB and PSS, in the presence of wide range of ‘biorelevant’ media, such as buffers, cell culture

media, serum and blood plasma. We have elected to focus on DOPC – DSPE-mPEG AuNRs going forward

on the basis that the additional steric stabilisation should be of benefit. Hence, in the next chapter we

proceeded to assess the potential of these as theranostic agents, by measuring their photothermal properties,

biocompatibility, cellular uptake and biodistribution in mice.
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Chapter 5

Theranostic Application of Gold

Nanoparticles

5.1 Motivation

In this chapter the potential of the particles synthesised in chapter 3 and modified with phospholipids in

chapter 4 for use in theranostics will be explored. Whilst their stability in a variety of biologically relevant

media was explored in section 4.5, a large number of other questions remain around their biocompatibility

and suitability for use as photothermal conversion agents. Here we investigate their inherent toxicity to

human colorectal cell lines and their interactions with these cells, as well as whether they induce lysis. We

also characterise the ability of these particles to generate heat under NIR illumination, their usefulness as

photoacoustic contrast agents, and the ability of these particles to induce cell death through photothermal

heating. Finally, we assess their biocompatibility in vivo and measure the biodistribution of our particles

after intravenous injection, with and without a conjugated targeting affimer.

5.2 Gold Nanorods in this Chapter

As discussed section 1.4.1 (and also shown in fig. 1.11), the optimum wavelength range for in vivo light

penetration is 650–850 nm, with the optimum contrast in multispectral optoacoustic tomography (MSOT)

being achieved between 800 and 850 nm. Hence it was decided that to utilise particles with an LSPR

maximum in this region. A 1 L batch of AuNRs were synthesised in a growth solution containing 48 mM

CTAB and 13.5 mM sodium oleate, yielding AuNRs with an LSPR maximum of 811 nm (fig. 5.1(d)). TEM

measurements gave the average dimensions of these AuNRs as (57 ± 7) nm in length with an average diameter

of (13.1 ± 1.2) nm (fig. 5.1(a)–(c)&(e)). These were then functionalised with DOPC – DSPE-mPEG (19:1),

which led to the LSPR blueshifting to 801 nm (fig. 5.1(d)). These particles were used for all experiments in

this chapter unless otherwise stated.
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5. Theranostic Application of Gold Nanoparticles

Figure 5.1: Characterisation of the AuNRs used in this chapter. (a)–(c) Distribution of diameters, lengths
and aspect ratios of AuNRs based on measurements from 500 AuNRs. Dimensions are given as the median
size ± the measured standard deviation. (d) UV–vis spectra before and after functionalisation with DOPC –
DSPE-mPEG (19:1). (e) TEM image of a (425 × 425) nm region of AuNRs representative of the sample.

5.3 Biocompatibility

5.3.1 Selection of Cell Lines

For the purposes of targeting these AuNRs it was decided to use human carcinoembryogenic antigen (CEA)

as the target protein. In healthy individuals, CEA is typically only found at high levels of expression during

foetal development in the gastrointestinal (GI) tract (and also the liver to a much lesser extent) [360]. It was

first identified as a specific marker of colorectal cancer in 1965 [107], and has since become recognized

as one of the most reliable biomarkers for monitoring the treatment of colorectal cancers [378]. It is over

expressed in 90% of GI cancers, 70% of lung cancers, and 50% of breast cancers [108], and hence can be

used as a highly specific marker for use in targeting cancerous tumours.

The targeting molecule of interest was a cysteine terminated CEA–specific affimer, provided by the

Millner group1, which has been shown to be effective in targeting CEA–positive tumours in mice with silica

NPs [163, 346]. This could be conjugated to the surface of our AuNRs through simple maleimide–thiol

linker chemistry, through the replacement of DSPE-mPEG with DSPE-PEG-Maleimide in our phospholipid

surface coatings [125].

Two cell lines were selected based on reports in the literature, LS174T, a human colorectal adeno-

carcinoma (Dukes’ type B) and SW620, a human colorectal adenocarcinoma (derived from a metasta-

sis) (Dukes’ type B). CEA has been widely reported in the literature to be over expressed by LS174T

[114, 136, 319, 345, 346]. By comparison SW620 has been reported to only produce minimal levels

1School of Biological Sciences, University of Leeds
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Figure 5.2: In vitro cell viabilities of SW620, HEK293, HCT116 and LS174T cells after 24 hours incubation
with AuNRs. Cells incubated with increasing concentrations of (a) PSS–AuNRs and (b) DOPC – DSPE-
mPEG (19:1) coated AuNRs. Results are expressed as a percentage of the control plates (0 µg·ml−1))
and is the mean result from three plates at different passage numbers. Results are fitted with a Hill-type
dose–response curve.

[136, 285, 319]. This was confirmed experimentally by our collaborators in the Leeds Institute for Medical

Research by flow cytometry and immunofluorescence staining (data not shown). Hence going forward

LS174T was selected as our CEA–positive cell line and SW620 as our negative control.

5.3.2 In Vitro Toxicity

Based on the cell–lines identified in the previous subsection; the cytotoxicity of the DOPC – DSPE-

mPEG functionalised AuNRs was assessed on four cell lines; three CEA–negative (SW620 colorectal

adenocarcinoma, HEK293 embryonic kidney, HCT116 colorectal adenocarcinoma) and one CEA–positive

(LS174T colorectal adenocarcinoma).

The toxicities for phospholipid–functionalised AuNRs in the literature are limited to two studies, the

first in HeLa cells using phosphatidylcholine–functionalised AuNRs up to concentrations of 2.9 µg·ml−1

and reported 20% cell death (although this is likely due to high residual levels of CTAB) [339]. The second

using DMPC–functionalised AuNRs measured cell viabilities up to 20 µg·ml−1 in MCF–7 and HMEC–1

cells, with no drop off in viability [304]. Neither of these are particularly high doses and the IC50 was not

reported in either case. Hence the upper limit to the cytotoxicity of these particles, whilst expected to be

significantly lower than CTAB–functionalised AuNRs, remains an open question. An extremely high upper

concentration of 200 µg·ml−1 was decided upon hoping that the IC50 could be determined. Viabilities were

compared with those seen for PSS–functionalised AuNRs, due to their ubiquity in the literature and the

relative ease of preparation. PSS–coated NPs typically present IC50 values in in vitro cell studies between 1

and 100 µg·ml−1 [196, 278, 289, 393], the values are highly variable between cell lines, hence assays had to

be performed for each potential cell–line under consideration to provide a direct comparison.

The results of the cell viability assays are presented in fig. 5.2. In all cases, the DOPC – DSPE-mPEG–

coated AuNRs showed higher viabilities than their PSS–coated equivalents. For three cell lines, SW620,

HCT116 and LS174T, the IC50 could not be determined as ∼100% cell viability was seen even at the highest

dose. HEK293 cells showed some toxicity, reaching 50% viability at (55 ± 1) µg·ml−1, by comparison when
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treated with PSS–AuNRs this dose was found to be (4 ± 1) µg·ml−1. The IC50 for the SW620, HCT116 and

LS174T cells treated with PSS–AuNRs were (102 ± 1), (186 ± 1), and (81 ± 1) µg·ml−1 respectively.

Hence these particles appear to be highly biocompatible and are safe for use at the concentrations we

expect to achieve in vivo.

5.3.3 Cellular Uptake

One potential concern that remained after these assays was that the higher viabilities may arise through a

lack–of–uptake by the cells. If the particles were not interacting with the cells at all and sitting inertly in the

surrounding media then we would expect higher viabilities through this alone. Qualitative concentration–

dependent studies of the uptake by colorectal cells. This was undertaken twofold firstly, by optical microscopy

using darkfield and differential interference contrast (DIC) techniques (fig. 5.3) and secondly through electron

microscopy imaging of sections taken through the cells. Due to time restraints, only a single cell–line was

investigated, SW620, it seems reasonable to assume similar interactions in all cell lines.

Cells were incubated in media containing AuNRs at concentrations between 0 and 200 µg·ml−1 for 24

hours (i.e. spanning the range of concentrations and incubation period used in the viability assays above).

And the cell fixed and embedded in mounting medium. The resultant darkfield and DIC images are show in

fig. 5.3. Not much uptake can be seen at 0.32 µg·ml−1 and below. At 1.6 µg·ml−1 a small number of green

spots can be seen inside the cells in the darkfield image. At the higher concentration increasing amounts

of these bright spots can be seen inside the cells. The amount of bright objects inside the cells correlates

strongly with the particle concentration (this method is not quantitative however). The positions of these

also correlate with what appear to be small ‘ball–like’ objects in the DIC images. Hence, these signals have

been attributed to uptake of particles by the cells. Curiously, at 200 µg·ml−1, huge numbers of AuNRs seem

to be being up taken by the cells, with no noticeable impact on the functioning of the cells visible in the

viability assays above. This would seem to suggest that these coatings are inherently biocompatible and

support the conclusions from chapter 4 that the CTAB concentration in the particles has been reduced to only

trace levels.

However, some problems are evident from these figures. We know from the darkfield experiments in

chapter 3 that the colour of scattered light from these AuNRs is red (fig. 3.11). The spots visible at 1.6

and 8 µg·ml−1 are green and at higher concentrations a variety of colours are visible. These colours are

more consistent with that expected for AuNR aggregates due to plasmonic coupling between many particles.

Based on the observed stability in serum–enriched CCM in section 4.5, this aggregation is unlikely to be

occurring outside of the cells and intracellular aggregation is the most likely cause of this. This is extremely

problematic to their potential use in photothermal therapy as it renders the optical properties of these particles

useless for this purpose.

To complement this, it was decided to use electron microscopy to investigate what the state of the AuNRs

in the intracellular environment. Pellets of the SW620 cells incubated with AuNRs for 4 hours were prepared

for imaging, by fixing, embedding in resin, and microtoming. Two example images are given in fig. 5.4,

showing AuNRs that had been up–taken into cells. No AuNRs were observed in isolation and in the lower

figure a relatively large cluster was observed. Only a limited number of images of the AuNRs inside cells

were able to be acquired in the time available, so the conclusions that can be drawn from these images are
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5. Theranostic Application of Gold Nanoparticles

Figure 5.4: TEM micrographs of cell sections containing endocytosed AuNRs. Cells were incubated with
DOPC – DSPE-mPEG AuNRs for four hours, before fixing, embedding in resin, and sectioning. Cells were
stained with osmium tetroxide and uranyl acetate for contrast.
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Figure 5.5: Measured haemolysis frac-
tions for DOPC – DSPE-mPEG (19:1),
PSS and CTAB – oleate functionalised
AuNRs at 100 µg·ml−1 and 20 µg·ml−1.
The lysis values for the supernatant ex-
tracted from 100 µg·ml−1 AuNRs is also
presented.

limited, but these images would seem to support the case that intracellular aggregation is being observed.

Based on the staining of the cells it would appear that these particles are also contained within endosomes,

suggesting uptake through endocytosis, which is consistent with what is expected for NPs of this size.

5.3.4 Haemolysis

Another concern relating to the use of nanoparticles in vivo is that of haemolysis, the rupture or destruction

of red blood cells. Free CTAB being a positively charged amphiphile can disrupt the negatively charged

membrane of red blood cells (or any other cell) inducing haemolysis [191]. This membrane disruption is

one of the primary mechanisms by which CTAB is toxic. Hence a sensible prerequisite of in vivo testing

of AuNRs of any novel surface functionalisation is that of haemolysis testing. Particles were tested at 100

µg·ml−1 and 20 µg·ml−1. The presence of free CTAB is a primary concern, hence the supernatant of the 100

µg·ml−1 concentrations of each functionalisation were also tested. If these came back at similar values to

the 100 µg·ml−1 AuNR samples, the supernatant itself could be concluded to be the cause of any observed

haemolysis (this was not observed to be the case for the PSS and DOPC – DSPE-mPEG AuNRs).

It was found that the absorbance from the transverse mode prevented accurate calculation of the lysis

fraction at 540 nm, the wavelength typically used for these assays. instead the Soret band at 420 nm was

used. This solution has also been implemented for other AuNP haemolysis assays elsewhere in the literature

(i.e. ref. [191]).

The haemolysis assay showed lysis fractions below 10 % for all DOPC – DSPE-mPEG AuNR con-

centrations. The PSS AuNRs showed higher lysis values, but were relatively low. Where as the CTAB

functionalised AuNRs showed very high lysis values above 75% at 100 µg·ml−1, and 40% for the 20 µg·ml−1

case, as well as the supernatant. Hence functionalisation with PSS and phospholipids has significantly

improved the in vivo toxicity of the AuNRs, with the phospholipid–functionalised AuNRs performing better

at higher doses. This is consistent with the cytotoxicity data collected above.
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Figure 5.6: (a) – (e) Temperature profiles of 200 µl AuNR solutions (5 to 200 µg·ml−1) heated at by CW
laser irradiation at the LSPR (811 nm) for 10 min at a variety of intensities: (a) 0.32 W·cm−2, (b) 0.5
W·cm−2, (c) 1 W·cm−2, (d) 2 W·cm−2, (e) 3 W·cm−2. The legend in (b) applies to figures (a) – (e). (f)
Max temperature as a function of Au0 concentration. The maximum temperature achievable plateaus as the
nanoparticles effectively absorb all light incident on the sample at concentrations above ∼50 µg·ml−1.
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Figure 5.7: (a) Heating profile of a sample heated to increasingly high temperatures in 5°C increments.
The time required to achieve this are given in the legend; the time required increases asymptotically as ∆T
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exponential association curve. Increasing heat losses to the environment at higher ∆T result in the curve
saturating at ∼64°C. All measurements were taken at a background temperature of 37°C
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5.4 Photothermal Heating with AuNRs

To confirm that the prepared phospholipid–functionalised AuNRs could generate suitable temperatures to

induce cell death, preparatory studies measuring the temperature increase of the AuNRs under continuous–

wave illumination were performed. Measurements were carried out on a bespoke experimental rig assembled

with the express purpose of monitoring the effects of photothermal heat generation by plasmonic nanoparticles

on cells. Samples were prepared on a 96–well plate in 200 µL aliquots and temperatures measured by directly

placing a thermocouple into the well. Neighbouring wells to those containing samples were left empty

to provide better thermal insulation, and minimise the rate of heat flow out of the illuminated well (and

simultaneously prevent indirect heating of other sample–containing wells). All measurements were taken at

a background temperature of 37°C.

Figure 5.6(a)–(e) shows the temperature response of colloidal AuNR solutions ranging in concentration

between 0 and 200 µg·ml−1 at light intensities between 0.32 W·cm−2 and 3 W·cm−2. The maximum

temperature observed at each laser intensity as a function of concentration is summarised in fig. 5.6(f).

Illustrated in fig. 1.12 are the effects of increased temperatures on human tissue, it can be seen that

an increase in temperature of +10°C is required in order to achieve cell death over short exposure times.

Higher temperatures are far more effective at achieving cell death with +23°C providing energy to induce

instantaneous protein coagulation resulting in incredibly rapid cell death.

Hence, by comparison an increase in temperature of +9°C is achievable at 0.32 W·cm−2 at concentrations

of above 50 µg·ml−1, which close to the lower threshold for inducing cell death. 0.32 W·cm−2 is significant

because the maximum permissible exposure (MPE) at 811 nm with a CW source, hence in an ideal world it

would not be exceeded. However, 50 µg·ml−1 is a concentration that could not be realistically achieved in

vivo without resorting to intratumoural injections. Beyond this the heating in this set-up is occurring in an

idealised set–up, it is not limited by the high attenuation of human tissue (i.e. this is the temperature increase

we could achieve at the skin surface). Under these conditions a +9°C increase is not large enough, regardless

of the high concentration required to achieve it.

If the MPE is ignored, on the justification that the small amount of potential collateral damage that

could occur due to the beam is a worthwhile price for the potential therapeutic benefits of the treatment, the

higher beam powers do offer temperature increases which look significantly more promising. For instance

at 1 W·cm−2, a +10°C can be achieved at 5 µg·ml−1 and a +23°C increase at 20 µg·ml−1. At 2 W·cm−2,

+23°C is achievable at 5 µg·ml−1. At these higher powers the temperature increases even at relatively low

concentrations are high enough that they would be therapeutically relevant. The fact that we have to exceed

the MPE to achieve these however is problematic. However, considering the large collateral damage that

is associated with with treatment via current generation chemotherapeutic agents, a cost–benefit argument

would be relatively easy to present to justify using such beam powers. The potential damage to tissue at

these powers is not particularly severe compared with the potential benefits of cancer therapy. Alternatively,

other laser sources could be utilised such as nanosecond pulsed lasers which use much lower total fluences

to generate highly–localised high–temperature transient heating around the nanoparticle. Although these

have not been explored here due to time constraints, but are of considerable interest.

The heat profiles of each curve can reliably be recreated, and heating to desired max temperature will

consistently produce a curve which matches the shape of the initial shape of the heating response (fig. 5.7(a)).

117



5. Theranostic Application of Gold Nanoparticles

The time required to achieve a particle temperature increases asymptotically as the temperature increase

approaches the saturation value.

Finally, the limitations of the experimental set–up can be seen. Heat losses to the environment become

increasingly dominant at higher values of ∆T , leading to a maximum realisable value of ∆T . Plotting the

maximum temperature achieved at the highest concentrations of AuNRs as function of laser intensity reveals

that the highest value of ∆T we can achieve is ∼64°C (fig. 5.7(b)). Increasing ∆T beyond this would require

better thermal isolation of the illuminated site, although this would not offer any significant insight into the

therapeutic potential our AuNRs.

We can also compare our observed heating rates with those predicted in section 1.3.2, where an estimate

of the initial heating rate (i.e. with minimal losses to the environment) of 2.4 °C·s−1 was calculated based

on FEM simulations of the extinction cross-section of a AuNR with an LSPR of 800 nm under 1 W·cm−1

illumination. The equivalent case here (∼75 µg·, 1 W·cm−1) has an initial heating rate of 0.8 °C·s−1. The

calculations are likely overestimating, because they (a) assume a perfectly monodisperse sample (i.e. all

AuNRs are perfectly matched to the excitation wavelength) and (b) the FEM simulations fail to account for

plasmonic damping effects such as electron–surface scattering. The numbers are relatively close however,

suggesting that inclusion of these factors would likely bring them into closer agreement.

5.4.1 Thermal Stability Under CW Illumination

A commonly raised concern about the potential of AuNRs as therapeutic agents is that of thermal stability.

This is not an unjustified concern, however the nature of problem is seems to be misunderstood in the

literature. For instance a number of publications have offered the ‘low thermal stability’ of nanorods as

a reason to utilise other novel NIR–absorbing nanomaterials, whilst using a continuous–wave lasers to

demonstrate the ‘higher’ stability of such materials (for example refs. [27] and [49]). This seems to stem

from a misunderstanding of the nature of the heating generated by continuous wave lasers versus that of

nanosecond–pulse lasers. The maximum local temperature increase achieved under continuous–wave heating

is significantly lower than that achieved under pulsed illumination.

Calculated solutions the heating of single nanorods under typical continuous wave and nanosecond

pulsed illumination conditions are presented in fig. 1.10. Continuous–wave illumination will result in bulk

heating and can achieve macroscopic increases in temperature of several 10°C, but it is very difficult to

achieve temperatures that will cause rapid reshaping of AuNRs. By comparison, individual AuNRs are

expected to instantaneously achieve temperatures well in excess of 300°C under a typical pulse from a

nanosecond–pulsed laser (see fig. 1.10 & ref. [279]). This is not in excess of the melting point of Au, but

will provide sufficient energy to atoms to enable significant migration of atoms from the AuNR tips towards

the centre of the rod, lowering the aspect ratio [341]. Hence, a relatively short train of pulses is capable

of reducing the maximum LSPR wavelength below that of the illumination source, significantly reducing

photothermal efficiency.

Both regimes present opportunities, the higher temperatures achievable with nanosecond–pulsed lasers,

offer much more efficient photothermal killing, the high temperatures will instantaneously denature proteins,

and can potentially induce cavitation, providing mechanical stress, which is even more effective at damaging

cells. But this comes with the potential downside of photothermal reshaping and the higher cost of Nd:YAG
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Figure 5.8: (a) Heating curves of 200 µL 75 µg·mL AuNR solution illuminated at its LSPR maximum (801
nm) in repeated cycles. Cycles consisted of 10 minute of laser exposure at 1 W·cm−2, followed by 20 minutes
of cooling (no laser exposure). 30 minutes sections corresponding to each heating cycle have been overlaid.
Dashed lines mark every 20 cycles. (b) The maximum temperature achieved as a function of cycle number,
it can be seen to decrease roughly linearly with time. (c) UV-vis spectrum before and after laser exposure,
the extinction at the laser illumination wavelength for each spectrum have been marked.

laser systems. At typical fluences continuous–wave lasers do not face this issue, but they require significantly

longer periods of exposure and high concentrations of AuNRs to achieve temperatures likely the induce

the death of surrounding cells. Non–tunable continuous wave sources are significantly cheaper that the

nanosecond–pulsed systems typically used in these applications. At higher fluences (12 W·cm−2), it has been

reported that CW illumination can induce significant thermal reshaping [121].

No discernible change in the optical properties of the AuNRs was observed during the experiments

performed in fig. 5.6, the resultant spectra from the 75 µg·ml−1 after illumination at each laser intensity are

given in fig. 5.8(a). To further test the stability of our particles under repeated CW photothermal heating

the LSPR resonance and measuring the maximum temperature increase over time. A 200 µL solution was

sealed airtight inside a single well of a 96–well plate at 37°C and then heated in cycles of 10 minutes at

1 W·cm−2 laser exposure followed by 20 minutes unilluminated. To demonstrate that degradation of the

optical properties under CW illumination is not a concern, this was tested to excess and allowed to run over

the course of 3.5 days (∼160 cycles). The resultant temperature responses have been compiled in fig. 5.8(b).

Over the course of this time period a reduction in ∆Tmax was visible, reducing from ∆Tmax = 35°C to ∆Tmax

= 25 °C (fig. 5.8(c)). This this drop was achieved over a cumulative total illumination time of 26 h 40 m,
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well in excess of what would be used in treatment. This represents an average drop of 0.06°C per cycle,

which is negligible. Inspection of the spectra of the AuNRs before and after these photothermal heating

cycles showed a drop in the LSPR intensity and blueshift in the peak position (fig. 5.8(c)). There was a drop

in absorbance at the laser wavelength of ∼29% (consistent with the drop in ∆Tmax of ∼26%). The change

in the shape of the spectrum is consistent with that seen for reshaping of AuNRs when heated in solution

due to surface migration of atoms [247, 341, 411], as compared to the highly selective reshaping of AuNRs

resonant close to the laser wavelength seen under high intensity pulsed systems [110, 174].

Hence it seems that these particles show good thermal stability under CW illumination and this should

not be considered a concern going forward. Their stability under pulsed illumination is another matter and is

discussed further in the next section.

5.5 Photoacoustics

AuNRs represent some of the most promising agents for use in photoacoustics, the combination of large

absorbance crosssections (which are tunable and spectrally narrow) as well as their extremely high photother-

mal conversion efficiency, meaning that they are well suited as targets which produce a large signal and can

be spectrally deconvoluted with relative ease. The theory behind signal generation is well understood and

the existing challenges surrounding their use lie largely in problems surrounding maintaining their stability

in vivo and the thermal stability of AuNRs under the high peak powers seen during nanosecond–pulsed

illumination [382].

With regards to the thermal stability of AuNRs, in many ways AuNRs are victims of their own success,

the very properties which make them appealing; the large absorbance crosssections and high efficiencies of

heat generation, leads to the generation of temperatures high enough to induce thermal reshaping. Smaller

diameter AuNRs (similar in dimensions to the ones used here) with their higher surface–to–volume ratios

and lower heat generation per NP have been reported to be less likely to undergo thermal reshaping than

larger AuNRs [51, 173]. The only reported study on the thermal stability of phospholipid–functionalised

AuNRs, observed minimal reshaping of phosphatidylcholine–capped AuNRs of similar dimensions to those

utilised here under 10 Hz pulsed nanosecond illumination at 127 mJ·cm−2 over the course of several minutes

[127]. Hence whilst this is a commonly reported problem, it was not clear whether this would be an issue

that would affect our particles.

As an initial proof of concept, AuNRs were synthesised with LSPR maxima approximately 100 nm apart

(630 nm, 750 nm, 847 nm and 935 nm) across the tunable range of the laser source (680 – 950 nm) and their

photoacoustic response measured as a function of illumination wavelength. The samples were placed in an

agar phantom to replicate the expected illumination condition in vivo and measured using a pre–clinical

MSOT imaging system. The photoacoustic (PA) response is expected to scale linearly with the absorbance

of the sample (eq. (1.24)), hence the measured PA response should correlate strongly with the absorbance

spectrum of the sample. However the sensitivity of the system to individual absorbers components is limited

by the surrounding components. In particular the absorbance of water increases substantially between

850 and 980 nm, hence samples which display similar increasing absorbance in this region are difficult to

deconvolute from the water signal. There is a large amount of water in the system, the phantom is suspended

in a water bath (enabling acoustic transmission), the agar phantom is self is ∼96% water by weight and the
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Figure 5.9: (a) UV–vis extinction spectra of AuNRs with a resonances at 630 nm, 750 nm, 850 nm and
935 nm. Samples were diluted to have an absorbance of 5 at their LSPR maximum. AuNR spectra are
normalised to their maximum extinction in the range 680–950 nm. Also plotted is the absorbance spectra of
H2O (right axis), showing the increasing absorbance from 850 nm to 950 nm. Absorbance values for water
taken from ref. [270]. (b) Photoacoustic spectra, as determined from MSOT images reconstructed using a
back projection algorithm. PA intensity values were calculated by averaging the intensity of the top 5% of
pixels in the region of interest (3 mm circle placed over the position of the sample). Spectra were corrected
by subtracting the PA response of the water control from that of the AuNR suspensions and normalised to
the maximum PA intensity in the range 680–950 nm. The PA spectra show good qualitative similarity to the
UV–vis spectra below 850 nm. At higher wavelengths the increasing absorbance of water (and hence that in
the surrounding water bath) reduces the intensity of light reaching the sample and hence suppresses the PA
signal, leading the spectra above 850 nm to become increasingly unreliable.

AuNRs themselves are suspended in water. This all contributes to a large increases in light attenuation before

it reaches the sample (reducing the intensity of the PA signal), and creates a much stronger background

PA signal. Hence samples which display an absorbance below 850 nm are optimal for use within these

phantoms.

In vivo there are additional absorbance signals which need to be considered such as haemoglobin (Hb),

oxyhaemoglobin (HbO2), melanin and fat. At typical in vivo concentrations these components combined

these have a minimum absorbance in the visible–NIR at ∼800 nm (see fig. 1.11). Hence PA contrast agents

which absorb here can be more easily deconvoluted from Hb, HbO2 and H2O, and thus typically present the

best contrast in reconstructions.

The UV-vis and recorded PA spectra are presented in fig. 5.11(a)&(b). It can be seen that all four

spectra correlate relatively strongly below 850 nm, consistent with what is stated above. Above 900 nm

it becomes apparent that the spectra have become more unreliable, as it becomes increasingly difficult to

distinguish between the sample and background H2O signal. This is particularly apparent in the λLS PR = 935

nm spectrum, which presents an apparent maximum closer to 890–900 nm in its PA spectrum. Regardless of

this, it is relatively easily to distinguish between the spectra of each set of AuNRs and clearly demonstrates

that these particles are suitable PA conversion agents.

To optimise the AuNRs for use in vivo, it was decided to work as close to 800 nm as possible. Hence,

the AuNRs described above in section 5.2 were used going forward (λLSPR = 801 nm after phospholipid

exchange). In order to find the required AuNR concentrations to reliably image them in vivo, AuNR phantoms

were measured at a variety of concentrations between 0.32 µg·ml−1 and 1000 µg·ml−1. Five spectral runs

were taken on the samples at a single position in the phantom. The reconstructed PA intensity maps recorded

by the MSOT scanner are given in fig. 5.10 and the spectra reconstructed from these scans are given in
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Figure 5.10: MSOT intensity maps of a single plane through an agar phantom containing a variety of
AuNR concentrations. Images were reconstructed using a linear reconstruction algorithm which calculated
the spatial distribution of the AuNR solution based on an extinction spectrum measured using a UV-vis
spectrometer. The reconstructions have been cropped to the region of interest around the AuNR solution;
an example of a non–cropped image is give in fig. 2.7. Each row consists of a single measurement, with 5
repeats measured in series (displayed left to right). The linear regression algorithm struggles to reconstruction
the sample distribution at lower concentrations, which is evident from the signal visible in the background of
the 1.37, 4.11, and 12.33 µg·ml−1 images. For concentrations of 111 µg·ml−1 and above, it is evident that
light is no longer penetrating the interior of the sample, leading to a ring of single from the surface particles
which are effectively screening the interior AuNRs. There is also a noticeable drop off in intensity after the
first measurement for all concentrations below 37 µg·ml−1 indicating that the spectral properties of the probe
have changed (i.e the AuNRs have thermally reshaped).
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Figure 5.11: (a) Photoacoustic spectra, as determined from MSOT images reconstructed using a back
projection algorithm. PA intensity values were calculated by averaging the intensity of the top 5% of pixels
the region of interest (3 mm circle placed over the position of the sample). The values shown are those
obtained during the first of the five runs show in fig. 5.10. (b) Comparison of the photoacoustic spectra
obtained for the 37 µg·ml−1 concentration and the UV-vis of the sample prior to laser exposure. (c) UV–vis
spectra of samples before and after being exposed to the laser source inside the MSOT scanner for the images
give in fig. 5.10. Lower concentration samples clearly undergo thermal reshaping. Gray lines indicate the
wavelengths used to measure the photoacoustic response of the particles. (d) The maximum pixel intensity
measured by the MSOT as a function of AuNR concentration. Samples were prepared by serial dilution from
1000 µg·ml−1. Fitted with a linear function below ∼360 µg·ml−1 (with an assumed maximum achievable PA
intensity value of 3500 a.u.). Inset is the same data plotted using a logarithmic x–axis.

fig. 5.11(a). In the spectra it can be see for the 333 and 1000 µg·ml−1 samples, the intensity of the PA

response has begun to become increasingly saturated, leading to the top of the spectral response of the

particles to become flattened. This saturation could be attributed to either complete absorption of all incident

light by the sample, or the reaching the peak negative pressure of the transducers in the system. The former

seems more likely based on the reconstructions seen in fig. 5.10, which show minimal signal generation

inside the the phantom, suggesting complete absorption of the light at the surface of the phantom.

The spectral response of the 111 µg·ml−1 phantom correlates very strongly with the UV–vis spectrum

fig. 5.11(b), however below this the correlation becomes increasingly weak. The spectra of the 37 µg·ml−1

phantom has a blue–shifted peak, this is presumed to result from thermal reshaping. The wavelength of

the laser source was swept from 660 to 960 nm, hence reshaping could occur below the LSPR maximum,

reducing the PA intensity at the original LSPR once the laser had been tuned to it, leading to a reduced signal

and a apparent blueshift in the maximum PA intensity.

Below 37 µg·ml−1 it was not possible to clearly distinguish the spectrum of the AuNRs, this also attributed

to thermal reshaping at lower wavelengths. This is supported by UV–vis spectra taken of the samples after
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measurement on the MSOT imaging system (fig. 5.11(c)), which show significant reduction in the absorbance

of the particles over the wavelength range of the laser exposure. There is also a noticeable increase in the

absorbance between 600 and 660 nm consistent with the observed reshaping behaviour of AuNRs under

high intensity pulsed lasers [110, 174, 207, 208]

Some reshaping can be inferred from the 111 µg·ml−1 spectrum, by the increased absorbance below

680 nm and reduced intensity of the LSPR maximum. These features are not present in the spectra of

concentrations above this, and there was no reduction in the strength of the PA signal in later scans, leads to

the conclusion that they do not appear to undergo significant reshaping. It is unclear whether this results

from any reshaped AuNRs making up a very small proportion of the total population of AuNRs or the higher

concentrations somehow providing a shielding effect. The potential benefits of this are quite limited, given

that such particle concentrations cannot be achieved in vivo without intratumoural injections.

The reshaping can be seen more clearly through inspection of the reconstructed images of the AuNR

PA signal distribution shown in fig. 5.9, in it can be seen that the AuNR signal intensity drops dramatically

after the second spectral scan for concentrations below 37 µg·ml−1. Reconstructions are generated based on

spectral data for the AuNRs obtained by UV–vis prior to the measurement, which enables the response of the

particles to be deconvoluted from the background signal. However the change in spectral properties caused

by thermal reshaping is preventing the reconstruction algorithm from being able to identify their presence,

meaning the spatial distribution cannot be reliably reconstructed. Equally the signal from the 1.37 µg·ml−1

phantom was so weak that it could not reliably be reconstructed, leading to the system presenting a near

meaningless intensity profile.

At higher concentrations, light cannot penetrate the centre of the sample leading to the reconstructed

image resembling a ring. The width of this ring decreases with increasing concentration as the penetration

depth of incident light is further reduced. Hence any heating is confined to relatively narrow shell around

the outside of the sample, which could potentially leave only a relatively small fraction of the sample to

thermally reshape. If this is occurring it is not evident in the post–MSOT UV-vis spectrum though.

It was planned that further studies of the AuNRs in the MSOT imaging system would be performed,

however technical issues with the system prevented further measurements, including its use for in vivo

measurements, alongside time restrictions. It was also planned that these additional measurements would be

supported by TEM images of the particles post–exposure, but these were prevented by the same technical

difficulties and hence this dataset does not exist.

The PA signal intensity is expected to scale linearly with concentration up to a saturation value at which

all light incident on the sample is absorbed. The short duration of the laser pulses here and the small

length scales involved in heating, means that macroscopic heat flow out of the system can be assumed to be

negligible1. Hence, the concentration dependence of the heat–generation–per–pulse (and hence PA signal

intensity) is described by a linear function up to some saturation value fig. 5.11, unlike the exponential

association function used to describe the CW heating above (fig. 5.7(f)).

The fact that these particles reshape under pulsed illumination presents another major hurdle, which will

remain unaddressed by this thesis due to time restraints. As stated earlier this problem was not unanticipated,

and has been widely recognized in the literature [51, 341, 351], although it was unclear whether it would

1The width of the generated pulse is defined by the stress relaxation time and is typically ∼1 µs (see section 1.4.3), hence the
thermal diffusion length can be calculated as dth = 2

√
αt ∼0.7 µm. Hence macroscopic transfer of heat generated by the particles to the

environment during pulse generation will be negligible.
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be the case for the particles used here. The fluences observed inside phantoms are also likely to be higher

than those achieved in vivo, where tissue is likely be more attenuating, as the phantoms only replicate the

scattering seen in tissue, but not the absorbance. Hence, these AuNRs may still be usable in vivo.

The solution to preventing reshaping that has gained most traction is the use of silica coating to prevent

thermal reshaping of AuNPs during PA imaging or photothermal therapy utilising pulsed lasers [31, 53, 59,

60, 157, 216, 382]. If the silica layer is made thick enough it also offers the potential benefit of preventing

plasmonic coupling between particles that have undergone aggregation [62]. This represents a potential

avenue for future work as these phospholipid coatings will readily bind to the silica surfaces, enabling any

benefits of them to still be realised.

5.6 In vitro Photothermal Studies

The bespoke rig used in section 5.4 for solution heating was deployed here to measure the effects of laser

ablation on colorectal cells prepared in a 96–well plate. No temperature monitoring was performed during

these assays, as introducing a thermocouple into the media would undermine the sterility of the plate. A

thermal imaging camera was an alternative option, but 96–well plates are not transparent at the wavelengths

that such cameras use. Hence, any temperatures recorded by such devices are the external temperature of the

plate, not temperature of the well itself, hence the information garnered is not particularly useful other than

confirming heating is occurring (which can be fairly reliably assumed).

As an initial experiment was performed to demonstrate that laser exposure at 801 nm (the LSPR maxima

of the AuNRs to be used) was not detrimental to the cells. SW620 cells were plated in 96–well plates and

exposed to light at maximum achievable laser intensity from our laser source, for times between 0 and 10

minutes. The intensity was 3.85 W·cm−2, which is 12 times higher than the MPE. Each exposure time was

repeated across six wells and the viability measured by the CCK–8 assay was expressed as a percentage of

that of the control.

No drop in viability was seen at any exposure time (fig. 5.12 hence the background effect of irradiating

the cells at this laser intensity or below were deemed to have no effect on cells in vitro. The expected

heating should come entirely from RPMI 1640 CCM, the most absorbing component of which at 801 nm is

water. Figure 5.6 shows that we only expect a temperature increase of ∼4°C in the absence of AuNRs at this

intensity, which is consistent with the observed lack of cell death.
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Figure 5.12: Viability of SW620 exposed to 3.85
W·cm−2 CW laser light at 801 nm (maximum output
power). Experiments were performed in the absence
of AuNRs to demonstrate no negative effects on cell
viability due to laser exposure. The background
temperature was maintained at 37°C during laser
exposure.
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Figure 5.13: Viabilities of SW620 cells exposed to 1 W·cm−2 CW laser light. Cells were incubated with
40 µg·ml−1 for 4 hours before illumination. (a) shows cell viabilities if the media is replaced with fresh
RPMI 1640 CCM and (b) shows cell viabilities with the original AuNR–enriched media still present (i.e.
non–internalised AuNRs are still in solution). Both figures are calculated from the results of separate assays
repeated in triplicate. All viabilities are expressed as a percentage of the control (i.e. cells that received no
Au and no laser exposure).

5.6.1 Cells Incubated With AuNRs

It was decided to proceed to testing photothermal ablation of cells using of AuNRs. Cells were incubated

with AuNRs for four hours prior to illumination. In order to slightly more closely match the uptake conditions

we expect in vivo. The media was removed, the cells washed with PBS and the media replaced after four

hours of incubation prior to the laser exposure, removing free AuNRs in solution, and relying only on the

particles that had been endocytosised by the cells.

At the MPE (0.32 W·cm−2) no cell death was observed (results not shown). It was thus decided to repeat

the experiment at an increased laser intensity of 1 W·cm−2, the resultant assay is shown in fig. 5.13(a). Again,

no cell death was observed for any exposure time.

As an initial demonstration that the heat generation from AuNRs at this concentration and laser intensity

could induce cell death. The entire experiment was repeated without replacing the media prior to laser

exposure. The results of this assay are shown in fig. 5.13(b). A reduction in viability to 80 % is seen after 1

minute of exposure and is reduced to with error of 0% after 5 minutes. The lack of cell death seen above

therefore does not seem to emanating from aggregation in solution induced as a result of an unforeseen

interaction by the cells.

Two probable explanations for the issues seen have been postulated:

1. Cells are not being incubated long enough for significant AuNR uptake to occur.

2. The particles are undergoing intracellular aggregation (loss of optical properties).

To eliminate incubation time as a cause, another photothermal viability assay was run, this time varying the

incubation time after the addition of AuNR enriched media. The laser power was also increased to 2 W·cm−2

to increase the chances of observing cell death. The results of this assay are presented in fig. 5.14. Again

all viabilities are within error of (or above) 100%, based on the darkfield images presented in fig. 5.3, it

can reasonably be concluded that limited uptake is not the problem causing the lack of observed cell death.

Ideally this data would be supported by a more quantitative measurement of AuNR uptake, such as ICP–MS
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Figure 5.14: Viabilities of SW620 cells exposed to 2 W·cm−2 CW laser light for 5 minutes. Cells were
incubated with 40 µg·ml−1 for varying amounts of time. Cell viabilities are expressed as a percentage of the
control wells. All wells were repeated in triplicate. Only the results from a single well plate are presented.
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Figure 5.15: Photothermal viability assay of SW620 cells treated using a Nd:YAG nanosecond–pulsed laser.
Cells were incubated with 40 µg·ml−1 for 4 hours prior to the AuNR–containing media being removed, the
cells washed with DPBS and supplied with fresh non-AuNR containing media. The cells were then exposed
to the laser tuned to 800 nm, with a pulse fluence of 13 mJ·cm−2 and repetition of 10 Hz for between 0 and
60 seconds. Cell viabilities were expressed as a percentage of the control. Only the results from a single well
plate are presented.

which have been performed elsewhere (i.e. ref [262]), but this was not feasible within the limited time frame

available at the end of this project.

As discussed in section 5.3.3, the green colour of the AuNRs located within cells is suggestive of

intracellular aggregation, this is the most likely cause of the lack of cell death. It would seem that particles

are entering the cell through endocytosis, aggregating into clusters within cytosomes, resulting in the

complete loss of the longitudinal LSPR required to generate heat from our NIR laser source. In a final

attempt to induce cell death through photothermal ablation, an alternative nanosecond–pulsed Nd:YAG OPO

laser located within the McLaughlan group lab1 was utilised. As has already been discussed, these lasers

enable much higher temperatures to be achieved in a volume highly localised to the AuNRs. Hence, such

lasers should be able to induce cell death if the AuNRs are absorbent in the NIR.

1School of Electronic and Electrical Engineering, University of Leeds
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The assays in fig. 5.13(a) were repeated with the new laser source. A pulse fluence of 13 mJ·cm−2 was

selected as this has been shown to induce cell death in other viability assays on this system [174, 393]. Cells

were incubated with AuNRs at 40 µg·ml−1 for 4 hours, before removal of the media, washing with DPBS

and addition of fresh AuNR–free media. Samples were exposed to the laser between 0 and 60 seconds (up to

600 pulses and 7.8 J·cm2 total fluence). No decreases in viability was observed as a result of any length of

exposure, suggesting that AuNRs up taken by the cells are no longer absorbent in the NIR.

These results are pretty devastating for the potential of AuNRs functionalised with DOPC – DSPE-mPEG

(19:1) alone to be used a photothermal agents. It is not as if the particles incapable of generating the heat

required to kill cells as is evident from fig. 5.14(b), and it is also apparent the particles are being up taken by

the cells based on the darkfield images in fig. 5.3 and the EM images in fig. 5.4. Hence the most reasonable

explanation is that of intracellular aggregation, which seems to be largely unavoidable with the current

particles. A new strategy will be required in order to make such phospholipid coatings a viable option, such

as pre–coating with silica to prevent plasmonic coupling if intracellular aggregation was to occur.

5.7 Murine Models

Murine models were used to assess the in vivo toxicity, and the efficacy of targeting our AuNRs to CEA.

16 nude BALB/c mice, 5 females and 11 males, were prepared with subcutaneous tumours of LS174T

colorectal adenocarcinoma (positive CEA–expression). The murine experiments were completed as two

separate experiments, the five females in the first experiment and 11 males in the second. The mice were

assigned groups based on the whether the particles were functionalised with affimer or not and the time point

at which they would be sacrificed. These have been summarised in the following table:

Administered Mouse Time Point

AuNRs Gender 24 h 48 h 72 h 9 d

Untargeted
F 2 1 – 2

M – 2 – –

Targeted
F – – – –

M 3 3 3 –

It was originally planned that there would be three time points in total at 24 h, 48 h and 9 d. However the

planned experiments were postponed after the laser inside the MSOT scanner suffered a mechanical fault, in

order for an attempt to repair it to be made. It was not possible to repair the MSOT scanner during this delay.

But it did mean that the 9 d time point fell outside of the expiry date of the project license. This meant 3 of

the mice were sacrificed prematurely relative to the planned schedule of experiments, at 72 h. Whilst not

ideal, this has not affected our ability to draw conclusions from the ex vivo distribution data we collected.

The MSOT scanner had major technical faults immediately prior to both in vivo experiments. Because the

mice had been prepared with subcutaneous tumours in preparation for these experiments, it was not possible

to delay in time for repairs to be carried out on the scanner. Hence no in–vivo imaging of the mice after

DOPC – DSPE-mPEG AuNRs administration was performed and the only information on biodistribution
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Figure 5.16: Ex vivo biodistribution of phospholipid–functionalised AuNRs as determined by ICP–MS. (a)
as percentage of the injected dose, and (b) as a percentage of injected dose per gram of tissue/sample.

was obtained ex vivo after the mice were sacrificed.

Targeted AuNRs

Targeted particles were prepared by replacing the 5% DSPE-mPEG in the phospholipid mixture used

to displace the CTAB with DSPE-PEG-Mal and preparing the particles in the same manner as previously

discussed. The maleimide in DSPE-PEG-Mal allowed conjugation of thiolated targeting agents. In this case

we used a cysteine terminated CEA–specific affimer, which had been shown to be effective in targeting silica

NPs in vivo [163, 346]. The DOPC – DSPE-PEG-Mal (19:1) AuNRs were washed once more, and then

mixed with a solution containing 18 mM CEA affimer + 23 mM TCEP, such that there was 3.3× excess of

affimer relative to the number of expected maleimide sites (calculated to be approximately 90 per AuNR).

The mixture was left under gentle stirring for 2 hours, before cleaning by centrifugation and sterilisation

using a syringe filter.

In vivo Biocompatibility

Mice were administered with 2 mg of AuNRs suspended in 200 µl PBS at 0 h via tail vein injection, and

observed intermittently over the following 9 d/72 h. All mice survived post–injection to the planned time

point at which they would be sacrificed. There were no noticeable detrimental effects to their health during

this period, and no noticeable differences between the mice injected with targeted and untargeted AuNRs.

This further supports the conclusion that these particles demonstrate good biocompatibility based on the in

vitro experiments performed above.

5.7.1 Ex vivo Biodistribution

In order to assess the biodistribution of the particles ex vivo analysis of the organs was undertaken by

ICP–MS. The following organs were harvested in their entirety; the brain, colon, heart, kidneys, liver, lungs,
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sex organs, spleen. In addition the tumour was harvested and samples of the skin and colonic faeces were

also taken. It was expected that the tissues which would show the highest uptake were the liver, spleen and

tumour. As a result of them being cleared by the mononuclear phagocyte system (MPS), with AuNRs being

filtered out by the liver and spleen, and ultimately cleared from the body via faeces. Each of the samples was

lyophilised, and digested in aqua regia to liberate any gold into solution. The samples were then centrifuged

to remove undigested particulate matter and processed by ICP–MS to determine the Au concentration in

solution.

The results of this study are presented in fig. 5.16, and are given as a fraction of the injected dose (%ID)

of AuNRs and as %ID per gram of tissue/sample processed. The error on some of the %ID per gram values

are quite large, due to the low masses of some of the recovered samples, often close to the sensitivity of the

scales use to measure them (∆m = ±1 mg), this is particularly true for some of the tumour masses.

It can be seen that the majority of the sample is ending up in the liver and spleen, with 15 – 30% being

observed there. There were differences between the mice administered with targeted and untargeted AuNRs.

In the untargeted case, the total amount of AuNRs in the liver was much higher than the spleen, but the overall

concentration (%ID per gram) was fairly similar. This distribution is consistent with reported biodistribution

values for PEGylated particles more generally [5, 102, 251, 299]. The introduction of a targeting ligand

increased the uptake into the spleen significantly, when expressed in %ID per gram it can be seen that the

concentration of gold in the spleen is around 5–6× higher than that seen in the liver. It is not clear what drives

this increased uptake, the mice in this study were immuno–compromised, and hence could not produce the

T–cells required to drive uptake of foreign tissues into the spleen. There is little in the literature to suggest

that CEA would be expected to be at elevated levels within the spleen, and other studies targeting CEA

with nanoparticles did not report significant uptake in to the spleen (i.e. [163, 346] although neither study

provided quantitative biodistribution measurements). It is not clear what is driving this increase in spleenic

uptake, and further studies would be required to properly explore it.

More worryingly, the concentrations of these particles in the liver and spleen are not changing significantly

with time. The untargeted AuNRs are still present in the liver at similar concentrations after 9 days. The same

is true for the concentrations of targeted AuNRs in the liver after 72 h. This also paired with the observation

of relatively low quantities of Au in the colonic faeces, suggesting a very low rate of clearance. This is

extremely problematic, as it indicates that the body is not clearing these particles after they are collected

by the MPS system. This is also consistent with time dependent studies of the clearance of PEGylated

particles, which have found similarly high levels of PEGylated particles in the liver and spleen 15 months

after administration of the original AuNPs [11]. In the vast majority of cases, there are no reported cases of

long–term toxicity emerging from this continued presence. It does however remain an open question whether

the persistence of such particles in vivo should be tolerated as part of any treatment

No residual Au is seen in any of the other organs, the %ID measured for the brain, colon, heart, kidneys,

lungs, sex organs and skin are all close to the detection limit of the ICP–MS. This is expected, but also good

as it indicates that these coatings are not being unexpectedly retained by any of the other major organs.

Tumour Up Take

Figure 5.16 shows only a marginal increase in uptake, when the targeted AuNRs are administered, with

the average %ID falling below 0.7% at all times points. However inspection of the individual data for each
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Figure 5.17: Observed %ID values for each tumour
measured using ICP–MS. Each bar is data from the
subcutaneous tumour(s) of a separate mouse. In a
single case a metastasized tumour site was found, this
has been stacked above the main tumour bar. A red ×
indicates the ‘absence’ of a data point (i.e. the dataset
was n = 2). Errors are instrumental.

tumour shows a high degree of variability between the mice. Plotted in fig. 5.17 are the measured %ID values

for each tumour. It can be seen that the majority of tumours measured showed %ID < 0.5%, indicating low

uptake similar to the other non–liver and non–spleen samples.

There are notably two tumours which showed increased uptake of targeted AuNRs into the the tumours at

48 h and 72 h (%ID ∼ 0.5%) by comparison with the other tumours (typically %ID ∼ 0.1%). In two instances

the amount of targeted AuNRs located in the tumour was considerably increased with % ID = 2.7% and

3.5%. These are both well above the 0.7% median value for %ID for the delivery of targeted nanoparticles to

tumours identified by Wilhelm et al. in 2016 [379], although it is below the highest uptakes observed by

them at ∼10.5%.

In the 48 h case, the tumour had metastasized, suggesting that the tumour was vascularised. Because we

did not have access to real–time MSOT imaging the mice, we were no able to ascertain which tumours were

vascularised, through imaging of the biodistribution of Hb and HbO2. Tentatively, based on this, it might be

speculated that that tumour vascularisation is a prerequisite of successfully deploying a targeting strategy.

This offers a potential future line of inquiry, and the use of in vivo MSOT might help elucidate this with its

ability to image both haemoglobin and oxyhaemoglobin (although unfortunately we were unable to perform

these measurement in tandem with the ICP–MS quantification).

It’s also worth remarking on that fact that in the combined data (fig. 5.16), the 24 h time–point showed

higher uptake for the mice administered with untargeted AuNRs. It can be seen from the data in fig. 5.17

that this originates from a unusually high uptake from a single mouse, combined with the low number of

repeats at this time-point (n=2). It seems probable that this individual result is an outlier, although there is

little basis to completely exclude it, and other explanation such as the enhanced permeability and retention

effect could be offered plausibly (although it would fail to explain why it never appeared in any of the other

untargeted cases).

5.7.2 In vivo Biodistribution of PSS–AuNRs

As mentioned repeatedly, it was planned that the above ex vivo studies would be supported by in vivo MSOT

imaging, but this was prevented by technical issues with the scanners and the time limitations surrounding

the experiments. However, earlier work has looked the mapping the in–vivo biodistribution of the control

PSS–AuNRs. These measurements were taken prior to the decision to functionalise the AuNRs with an

affimer (and hence change the the control particles to AuNRs functionalised with no DSPE-PEG-Mal). These
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Figure 5.18: Reconstructed photoacous-
tic intensity map measured using a MSOT
scanner of c/BALB nude mouse injected
with PSS–functionalised AuNRs and pre-
pared with a subcutaneous tumour. The
image was taken 24 hours after injection
of 100 µg of AuNRs. The observed cross–
section is taken through a plane contain-
ing the tumour, kidneys, liver, and spleen.
The AuNR signal is predominantly found
in the spleen/liver, with little–to–no up-
take into the tumour. The outlines of or-
gans have been added as a guide based
on the positions seen in a cryo–slice of
a mouse given in the MSOT software,
hence they are not definitively correct, but
represent a best guess.

experiments were performed over a year earlier with PSS–AuNRs synthesised with a LSPR maximum of

900 nm. The mice were also administered with a lower dose of 100 µg AuNRs in 100 µL PBS based on the

lower observed cytotoxicity for these particles (fig. 5.2(a)).

This data has some relevance in that it showed a very similar in vivo biodistribution to what we would

expect based on the DOPC – DSPE-mPEG AuNR ex vivo distribution data shown in fig. 5.16. An example

MSOT image 24 hours after injection is shown in fig. 5.18. It has been annotated with ‘suggested’ positions

of the organs, based on organ distributions seen in mouse cryo–slices shown with the reconstruction software

and the structures seen within the image itself. However these should not be treated as the definitive

positions of the organs, there is a lot of variation between individuals and the reconstructed images are fairly

ambiguous, making organ identification difficult. What can be seen is that the majority of AuNRs have ended

up the spleen (or liver) in the lower–left part of the image.

The results also suggest that aggregation may not as larger issue in vivo, compared with the problems

seen in vitro. A strong, spectrally deconvolutable, MSOT signal was still detectable after 24 hours, which

is highly indicative that the AuNRs had not aggregated and undergone plasmonic coupling. It is worth

remembering that when tested PSS–AuNRs showed poor stability relative to the DOPC – DSPE-mPEG

AuNRs under all conditions (fig. 4.8). Which might suggest that the DOPC – DSPE-mPEG would maintain

stability to similar extent in the in vivo. When stored in 100% FBS, PSS–AuNRs showed good stability,

presumably through the formation of a corona. So this in vivo stability is not necessarily such a surprise.

Unfortunately, the lack of MSOT images of the DOPC – DSPE-mPEG AuNRs in vivo means that the

usefulness of these comparisons are fairly limited, and we know very little about the state of them in vivo,

other than where they has accumulated at the time of sacrifice. Although there is some basis to believe they

might maintain their plasmonic properties in vivo, but further work would be required to determine this.
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5.8 Conclusion

These surface coatings show excellent biocompatibility both in vitro and in vivo. They also demonstrate the

ability to generate a good level of heat under CW illumination and are able to maintain thermal stability

over multiple ‘treatment cycles’. However images of the particles after uptake by cells suggests they are

undergoing intracellular aggregation, destroying their plasmonic properties and rendering them inert as a

photothermal treatment modality. This conclusion is supported by the failed attempts at in vitro photothermal

treatment using only the AuNRs ingested by cells, whereas AuNRs free in the culture medium could easily

induce cell death.

The thermal stability of the AuNRs under pulsed illumination is also a problem. Whilst these shown

initial strong contrast under PA imaging, they rapidly underwent thermal reshaping preventing there further

use. The lack of thermal stability under these systems is particularly problematic, as it will prevent them

being used as an imaging modality.

The obvious solution to these issues is silica coating, providing a stabilising silica layer in excess of 10

nm should prevent plasmonic coupling during aggregation and prevent the particles from reshaping under

typical nanosecond pulses. This would simultaneously solve the issues surrounding the inability to thermally

ablate cells in vitro and make them much more robust photoacoustic contrast agents. Silica coated AuNRs

could easily be modified with phospholipids, allowing them to achieve a wide range of surface properties

through control of the lipid composition. The phospholipid coatings still offer potential benefits, but they

will need to used in addition to other surface functionalisation techniques.

The in vivo distribution of our particles is very similar to that seen for other nanoparticles, with large

uptake into the spleen and liver. The conjugation of a targeting ligand unexpectedly increased uptake into

the spleen. There was increased uptake into the tumour in two cases, suggesting that the targeting strategy

may have potential, although significant questions remain about the reliability of it as a technique. These

experiments would need to be supported by additional experiments, including real–time in vivo imaging to

better understand what is occurring.

133



5. Theranostic Application of Gold Nanoparticles

134



Chapter 6

Conclusion and Future Work

The aim of this project was to develop gold nanomaterials for use in the photothermal treatment of cancer.

This work was split into three key areas; developing methods to synthesise suitable particles for use in

the treatment of cancer, investigation of suitable surface functionalisations for use in this application and

exploration of the potential of these particles as theranostic agents through in vivo and in vitro experiments.

This chapter summarises the results of each chapter and discusses the future work which would extend and

improve upon the results obtained in this thesis.

In Chapter 3, focus was given to the synthesis of AuNRs. The role of oleate as a co–surfactant in the

seedless synthesis of AuNRs was investigated. It was shown that through variation of the concentrations of

oleate and CTAB in the growth solution provided good and reproducible control over the morphology of

synthesised AuNRs. This is important as control over the morphology of AuNRs is crucial to controlling

their optical properties and hence optimising them for use as photothermal conversion agents. It was also

demonstrated that the presence of oleate in seedless synthesis presented the additional benefits of significantly

improving the shape yield and monodispersity compared to traditional seedless syntheses performed using

only CTAB. This is also beneficial to their application as photothermal conversion agents as the more intense

and narrower LSPR band leads more efficient heat generation from the population of AuNRs as a whole.

This synthesis was scaled up to 2 L with no appreciable drop in the quality of the end–product, potentially

making industrial scale syntheses more possible.

Experiments were also run characterizing the effects of varying other parameters in the synthesis in the

presence of oleate. Additionally, initial experiments were performed looking at the dynamic changes in the

spectrum of the particles during the synthesis as a function of oleate concentration. It was observed that

increasing oleate concentration dramatically slowed the growth kinetics, suggesting that oleate plays a role

regulating the rate at which gold is reduced onto the forming nanoparticle surface in this synthesis.

This protocol as offers a facile method synthesise high quality AuNR samples with good control over the

particle morphology.

In Chapter 4, the development of phospholipid based surface coatings for AuNRs was explored. A

protocol was developed to ensure the thorough removal of CTAB, improving the biocompatibility and

stability of the particles. The removal of CTAB was demonstrated through a combination of NMR, SERS
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and pH–dependent zeta potential measurements. The level of CTAB was reduced to such an extent it was

not detectable by any of these techniques, suggesting reduction to trace amounts. These coatings offer a

straightforward method to replace the CTAB coating at low cost with highly tunable surface properties (in

this chapter particles were stabilised with anionic, zwitterionic and steric phospholipids), which can easily be

decorated with other components through the inclusion of specialist lipids decorated with functional groups

such as maleimide.

The stability of these particles was also investigated and compared to that of CTAB and PSS function-

alised AuNRs. The phospholipid coated particles shown superior stability to these alternative coatings in a

variety of biologically relevant media selected to replicate conditions within the body. This suggests that

particles once functionalised in this manner can be used reliably in a wide variety of environments.

In Chapter 5, initial experiments looking to use these particles in medical contexts were performed.

Foremost it was shown that particles functionalised in this manner show very low cytoxicities, compared

with PSS coated AuNRs. This is despite a large number of AuNRs being internalised by the cells (as demon-

strated using darkfield and EM). There was little to no observed lysis in the presence of the phospholipid

functionalised AuNRs and no toxic effects seen in any of the in vivo tests. Combined these results suggest

that these particles are biocompatible and thus represent a facile method to achieve the detoxification of

AuNRs. It also gives credence to the conclusion from Chapter 4 that the CTAB used in the synthesis of these

particles has been successfully displaced.

They also were shown to generate the expected levels of heat for AuNRs of this size upon illumination

with NIR light and were relatively stable under extended CW laser exposure. The AuNRs initially showed

good contrast when measured using a preclinical MSOT scanner, but evidently underwent thermal reshaping

under the nanosecond pulses of the laser source used in this system, preventing their further use as contrast

agents.

Attempts at killing cells in vitro under CW laser exposure showed mixed results. Cells illuminated

in cell culture medium containing AuNRs died very quickly under NIR illumination, demonstrating the

potential efficacy of PPTT using these AuNRs. However when relying only on AuNR that were internalised

by cells, little–to–no cell death was observed. This was true for illumination with continuous wave lasers

and nanosecond pulsed lasers. It seems highly probable that the particles that are internalised by cells are

undergoing intracellular aggregation, this view is supported by the darkfield and electron microscopy images

of AuNRs within cells.

Finally, the AuNRs were tested in vivo in murine models prepared with subcutaneous LS174T tumours.

The particles showed no toxic effects in any of the mice. Unfortunately, no in vivo imaging was possible

during these experiments. However, the final biodistribution was determined ex vivo via elemental analysis,

showing significant uptake into the liver with minimal uptake into the tumour. This is consistent with

clearance via the MPS system. Additional AuNRs conjugated with an affimer targeted to CEA, showed a

similar biodistribution to the untargeted particles, albeit with significantly increased uptake in to the spleen.

Two of the nine tumours treated with targeted AuNRs showed significantly increased uptake, with minimal

uptake into the others. Additional experiments are needed before interpretation can be drawn on this data.

Combined this data shows potential for phospholipid functionalised AuNRs as theranostics agents, with

their low toxicity, good heat generation and good initial contrast in PAI. But it also highlights problems
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that will need to addressed before they can be realised as a cancer treatment strategy. Primarily, these are

intracellular aggregation and thermal reshaping. There remain open questions about the efficacy of the

targeting strategy deployed here. The strategies with which these are intended to be addressed are discussed

in the next section.

6.1 Future Work

Some of the work in Chapter 3 remains unfinished, primarily that of the kinetic spectra taken during the

growth. Work is ongoing to collect more of these in order to elucidate the impact of both surfactants on the

growth. Currently all of the collected spectra were taken at a single concentration of CTAB, whilst varying

the oleate concentration alone. In order to distinguish whether the changes that have been observed result

from purely changing the concentration of surfactant in the solution (rather than just the oleate concentration);

more measurements are needed also varying the concentration of CTAB. This should help provide more

information on the actual effects on the growth kinetics that we are witnessing. Ideally these measurements

will be supported by TEM of the particles at various points during the growth. It is possible to halt the growth

of AuNRs instantaneously through the injection of strong solution of thiolated polystyrene [273] enabling a

snapshot of the particles at single point during the growth to be achieved. This should allow the building

up of an understanding of the mechanism by which the presence of oleate effects the growth, which could

potentially enable further improvements in the synthesis of AuNRs.

Additional experiments taking this synthetic protocol forward are planned, attempting to implement it

under continuous flow conditions. This should enable the volume of particles that can be synthesised to

be scaled up considerably. The ease with which we can tune the optical properties of our AuNRs means

that such methods can utilise the relative concentrations of NaOL and CTAB as direct inputs with which to

control the morphology of AuNRs, providing a simple, industrially applicable method for the bulk production

of AuNRs.

The issues with intracellular aggregation and thermal reshaping do seem to have an obvious solution,

silica coating. This has been repeatedly demonstrated as an effective strategy against thermal reshaping

[31, 53, 59, 60, 157, 216, 382]. Whilst it does not prevent intracellular aggregation it can act to mitigate

the problematic parts of it, by separating the AuNR cores and preventing plasmonic coupling [62]. This

does not negate the potential advantages of phospholipid coatings, as they offer a simple method to easily

tune the surface properties of silica–coated AuNRs. Phospholipids will readily form a bilayer on silica and

hence such particles can be imbued with the same surface functionality. This should significantly improve

the efficacy of photothermal treatment with these AuNRs and improve their stability during photoacoustic

imaging.

It would also be a good idea to test the other lipid compositions tested in Chapter 4 in in vitro and in

vivo conditions to demonstrate the versatility of this method. It is highly probable that these would present

similarly low toxicities, and as such would be a facile method of fine–tuning the surface properties of AuNRs.

It was always intended that the in vivo targeting work would be accompanied by in vitro studies of the

targeting. However events conspired to prevent this from happening. The following experiments should

be performed to demonstrate the validity of the targeting strategies. The CEA–negative (SW620) and
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CEA–positive (LS174T) should be prepared with concentrations of both targeted and non-targeted AuNRs

and then a time dependent study of the uptake be performed. There are three core methods by which the

difference in uptake can be assessed. Firstly, darkfield imaging of the cells fixed at different time points will

give a qualitative assessment of the particle uptake into each cell line. Secondly, this can be accompanied by

EM imaging of the cells fixed at the same time–points can provide information on the relative changes in

the particles positions within the cells. Finally, elemental analysis can be performed on pellets of the cells

incubated under the same conditions will provide a quantitative assessment of the average mass of Au per

cell. These combined would allow a good understanding of the efficacy and nature of targeting in each cell

line.

Additionally, it would be beneficial to obtain the missing in vivo imaging that was prevented by me-

chanical failure of the preclinical MSOT scanner. This would provide addition insights into the dynamic

biodistribution immediately after administration of the AuNRs. It is also possible to conjugate a thiolated

fluorophore to the AuNR through the same protocol as the targeting ligand was attached. This would provide

a method to image the distribution of AuNRs within tissue sections, enabling a qualitative understanding of

the distribution of the AuNRs within individual organs.

Taken together these improvements would both provide of greater understanding of how these particles

behave both in vitro and in vivo, and would also simultaneously significantly improve the efficacy of these

particles as theranostic agents.
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Appendix A

Particle Sizes

Particle sizes obtained from analysis of TEM images.

Shape yields were based on counting all particles in a each EM image analysed and expressing the AuNR

number as percentage of total number of particles observed.
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38 mM CTAB, 17.5 mM NaOL – 99.0% AuNRs, LSPR = 773 nm, N = 302
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38 mM CTAB, 22.5 mM NaOL – 99.8% AuNRs, LSPR = 730 nm, N = 399
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48 mM CTAB, 12.5 mM NaOL – 99.97% AuNRs, LSPR = 848 nm, N = 266
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48 mM CTAB, 15 mM NaOL – 99.1% AuNRs, LSPR = 869 nm, N = 362
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48 mM CTAB, 17.5 mM NaOL – 99.7% AuNRs, LSPR = 728 nm, N = 346
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48 mM CTAB, 20.2 mM NaOL – 99.7% AuNRs, LSPR = 730 nm, N = 596
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A. Particle Sizes

48 mM CTAB, 22.5 mM NaOL – 99.6% AuNRs, LSPR = 737 nm, N = 301
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48 mM CTAB, 25 mM NaOL – 98.0% AuNRs, LSPR = 724 nm, N = 355
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60 mM CTAB, 20.2 mM NaOL – 99.0% AuNRs, LSPR = 727 nm, N = 258
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Appendix B

Kinetic UV–vis Measurements of AuNR

Synthesis

Presented here is the analysis of all current kinetic spectra, as discussed in in section 3.5. For each figure,

(a) contain the kinetic UV-vis spectra. (b) contains the LSPR extinction and FWHM . (c) contaoins the

LSPR peak wavelength as a function of time. (d) contains the extinction at 400 nm and the corresponding

concentration of Au0; inset into this panel is the derivative of the Au0 concentration giving the rate of

Au0 reduction. The dashed vertical lines in (b)–(d) are the times of peak reduction (blue) and the time of

maximum LSPR wavelength (red). In the instances where these two times coincided the line is black.
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The synthesis solution containing 48 mM CTAB, 25 mM NaOL presented an issue. The growth solution

became was cloudy upon preparation indicating the formation of structures that scattered light strongly such

as vesicles or bubbles. In the spectra presented (a) the formation of plasmonic peaks is apparent, but an

additional spectrum, which evolves with time is present also limiting the usefulness of the kinetic spectra.

The spectrum of the final product after washing via centrifugation is given as the thick black in this panel,

without the scatter spectrum resulting from the growth solution. We cannot reliably extract the LSPR peak

extinction and FWHM values from these spectra. In panel (b) an attempt at correcting the extinction value at

400 nm has been made. The correction was made by subtracting the extinction value at 1100 nm (where

there is minimal plasmonic and no interband contribution) multiplied through by a scaling factor, to give a

final extinction value of ∼ 1.2 at 400 nm. The recovered values broadly fit in with the trends seen in fig. 3.13,

but should still be treated with skepticism. Panel (c) presents the position of the peak LSPR wavelength as a

function of time.
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Appendix C

Nuclear Magnetic Spectroscopy
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C. Nuclear Magnetic Spectroscopy
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1H NMR spectra for (a) 10 mM CTAB, (b) 10 mM oleate, (c) ∼25 nM CTAB – oleate (4:1) functionalised
AuNRs; (d) 10 mM DOPC, (e) 10 mM DSPE-mPEG and (f) ∼25 nM DOPC – DSPE-mPEG (19:1)
functionalised AuNRs. Chemical shifts labels are given in fig. 4.2 and tables 4.1 and 4.2. Line overlapping
the peaks associated with the AuNR spectra have been extended across all associated spectra as a visual aid.
All spectra were taken in D2O, details of sample preparation and acquisition settings for each spectrum are
given in section 2.5.3
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Appendix D

Stability in Biorelevant Media

D.1 Aqueous
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[17] Amendola, V., Pilot, R., Frasconi, M., Maragó, O. M., and Iatı́, M. A. Surface plasmon resonance in gold

nanoparticles: a review. Journal of Physics: Condensed Matter 29 (2017), 203002.

[18] AN120906 The diffusion barrier technique for accurate and reproducible protein mobility measurement. Applica-

tion note, Malvern Instruments Ltd, Malvern, UK, 2017.

[19] AN140930 Zeta potential measurements of high conductivity colloidal samples. Application note, Malvern

Instruments Ltd, Malvern, UK, 2014.

[20] Ashworth, C. R., Matthews, R. P., Welton, T., and Hunt, P. A. Doubly ionic hydrogen bond interactions within

the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18 (2016), 18146.

[21] ASTM E2865–12(2018) Standard guide for measurement of electrophoretic mobility and zeta potential of

nanosized biological materials. Standard, ASTM International, West Conshohocken, PA, 2018.

[22] Bae, J., and Hong, S. B. Conformation of intrazeolitic choline ions and the framework topology of zeolite hosts.

Chem. Sci. 9 (2018), 7787.

[23] Baetz, A. L., Hubbert, W. T., and Graham, C. K. Developmental changes of free amino acids in bovine fetal fluids

with gestational age and the interrelationships between the amino acid concentrations in the fluid compartments.

J. Reprod. Fert. 44 (1975), 437.

[24] Baier, G., Costa, C., Zeller, A., Baumann, D., Sayer, C., Araujo, P. H. H., Mailänder, V., Musyanovych, A.,

and Landfester, K. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration

calorimetry and the influence on cellular uptake. Macromol. Biosci. 11 (2011), 628.

[25] Bakshi, M. S. How surfactants control crystal growth of nanomaterials. Cryst. Growth Des. 16 (2016), 1104.

[26] Bao, C., Beziere, N., del Pino, P., Pelaz, B., Estrada, G., Tian, F., Ntziachristos, V., de la Fuente, J. M., and

Cui, D. Gold nanoprisms as optoacoustic signal nanoamplifiers for in–vivo bioimaging of gastrointestinal cancers.

Small 9 (2013), 68.

[27] Bao, Z., Liu, X., Liu, Y., Liu, H., and K., Z. Near–infrared light–responsive inorganic nanomaterials for

photothermal therapy. Asian J. Pharm. 11 (2016), 349.

[28] Bard, A., and Faulkner, L. Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons,

New York, 1980.

[29] Barnard, A. S. Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. Acc. Chem.

Res. 45 (2012), 1688.

[30] Bartczak, D., and Kanaras, A. G. Preparation of peptide–functionalized gold nanoparticles using one pot

EDC/sulfo–NHS coupling. Langmuir 27 (2011), 10119.

[31] Bayer, C. L., Chen, Y. S., Kim, S., Mallidi, S., Sokolov, K., and Emelianov, S. Multiplex photoacoustic molecular

imaging using targeted silica–coated gold nanorods. Biomed. Opt. Express 2 (2011), 1828.

158

https://dx.doi.org/10.1117/12.698651
https://dx.doi.org/10.1117/12.597321
https://dx.doi.org/10.1117/12.597321
https://doi.org/10.1088/1361-648X/aa60f3
https://doi.org/10.1088/1361-648X/aa60f3
https://www.malvern.com/en/support/resource-center/application-notes/AN120906DiffusionBarrierTechnique.html
https://www.malvern.com/en/support/resource-center/application-notes/AN140930ZPHighConductivityColloid.html
http://dx.doi.org/10.1039/C6CP02815B
http://dx.doi.org/10.1039/C6CP02815B
https://dx.doi.org/10.1520/E2865-12R18
https://dx.doi.org/10.1520/E2865-12R18
http://dx.doi.org/10.1039/C8SC02581A
https://doi.org/10.1530/jrf.0.0440437
https://doi.org/10.1530/jrf.0.0440437
https://dx.doi.org/10.1002/mabi.201000395
https://dx.doi.org/10.1002/mabi.201000395
https://dx.doi.org/10.1021/acs.cgd.5b01465
https://dx.doi.org/10.1002/smll.201201779
https://doi.org/10.1016/j.ajps.2015.11.123
https://doi.org/10.1016/j.ajps.2015.11.123
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471043729.html
https://doi.org/10.1021/ar3000184
https://dx.doi.org/10.1021/la2022177
https://dx.doi.org/10.1021/la2022177
https://dx.doi.org/10.1364/BOE.2.001828
https://dx.doi.org/10.1364/BOE.2.001828


REFERENCES

[32] Bell, A. G. Upon the production and reproduction of sound by light. Am. J. Sci. 9 (1880), 404.

[33] Bell, A. G. Production of sound by radiant energy. The Manufacturer and Builder 13 (1881), 156.

[34] Ben-Jaber, S., Peveler, W. J., Quesada-Cabrera, R., Cortés, E., Sotelo-Vazquez, C. Abdul-Karim, N., Maier,

S. A., and Parkin, I. P. Photo–induced enhanced Raman spectroscopy for universal ultra–trace detection of

explosives, pollutants and biomolecules. 12189.

[35] Bloemen, M., Brullot, W., Luong, T. T., Geukens, N., Gils, A., and Verbiest, T. Improved functionalization of

oleic acid-coated iron oxide nanoparticles for biomedical applications. J. Nanoparticle Res. 14 (2012), 1100.

[36] Bohren, C. F., and Huffman, D. R. Absorption and Scattering of Light by Small Particles. Wiley Interscience,

New York, 1983.

[37] Boisselier, E., Salmon, L., Ruiz, J., and Astruc, D. How to very efficiently functionalize gold nanoparticles by

“click” chemistry. Chem. Commun. 44 (2008), 5788.

[38] Bowen, T. Radiation-induced thermoacoustic soft tissue imaging. IEEE Trans. Sonics and Ultrasonics (1981),

817.

[39] Boysen, E., and Boysend, N. Nanotechnology for Dummies. 2nd Edition. Wiley, Hoboken, NJ, 2005.

[40] Brennan, J. L., Hatzakis, N. S., Tshikhudo, T., Dirvianskyte, N., Razumas, V., Patkar, S., Vind, J., Svendsen, A.,

Nolte, R. J. M., Rowan, A. E., and Brust, M. Bionanoconjugation via click chemistry: The creation of functional

hybrids of lipases and gold nanoparticles. Bioconjugate Chem. 17 (2006), 1373.

[41] Brenner, B. M., Bohrer, M. P., Baylis, C., and Deen, W. M. Determinants of glomerular permselectivity: Insights

derived from observations in vivo. Kidney Int. 12 (1977), 229.

[42] Brust, M., Walker, M., Bethell, D., Schiffrin, D., and Whyman, R. Synthesis of thiol-derivatised gold

nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Comms. (1994), 801.

[43] Bullen, C., Zijlstra, P., Bakker, E., Gu, M., and Raston, C. Chemical kinetics of gold nanorod growth in

aqueous CTAB solutions. Cryst. Growth Des. 11 (2011), 3375.

[44] Bump, E. A., and Reed, D. J. A unique property of fetal bovine serum: High levels of protein–glutathione mixed

disulfides. In Vitro 13 (1977), 115.

[45] Cao, T., Szilagyi, I., Oncsik, T., Borkovec, M., and Trefalt, G. Aggregation of colloidal particles in the presence

of multivalent co–ions: The inverse Schulze–Hardy rule. Langmuir 31 (2015), 6610.
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[403] Zeiss, C. Über ein neues Ultramikroskop [German] (On a new ultramicroscope). Phys. Z. 14 (1913), 975.

[404] Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z. Y., Zhang, Q., Zhu, Y., and Xia, Y. Controlling the shapes of

silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132, 25 (2010), 8552.

[405] Zhang, Q., Jing, H., Li, G. G., Lin, Y., Blom, D. A., and Wang, H. Intertwining roles of silver ions, surfactants,

and reducing agents in gold nanorod overgrowth: Pathway switch between silver underpotential deposition and

gold–silver codeposition. Chem. Mater. 28 (2016), 2728.

[406] Zhang, W. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR

absorption spectroscopy. PLoS ONE 7 (2012), e31957.

[407] Zhang, Z., and Lin, M. Fast loading of PEG–SH on CTAB–protected gold nanorods. RSC Adv. 4 (2014), 17760.

[408] Zhao, J., and Stenzel, M. H. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym.

Chem. 9 (2018), 259.

[409] Zhou, H. S., Honma, I., Komiyama, H., and Haus, J. W. Controlled synthesis and quantum–size effect in gold-coated

nanoparticles. Phys. Rev. B 50 (1994), 12052.

[410] Zijlstra, P., van Stee, M., Verhart, N., Gu, Z., and Orrit, M. Rotational diffusion and alignment of short gold

nanorods in an external electric field. Phys. Chem. Chem. Phys. 14 (2012), 4584.

[411] Zou, Z., Zhang, Q., Zhao, Q., Peng, F., Wang, H., Yu, H., and Yang, J. Thermal stability of gold nanorods in an

aqueous solution. Colloids Surf. A 372 (2010), 177.
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