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ABSTRACT 

Movement disorders are a subset of neurological conditions that are responsible 

for a significant decline in the health of the world’s population, having multiple negative 

impacts on the lives of patients, their families, societies and countries’ economy. 

Parkinson’s disease (PD), the most common of all movement disorders, remains 

idiopathic (of unknown cause), is incurable, and without any confirmed pathological 

marker that can be extracted from living patients. As a degenerative condition, early and 

accurate diagnosis is critical for effective disease management in order to preserve a good 

quality of life.  It also requires an in-depth understanding of clinical symptoms to 

differentiate the disease from other movement disorders. Unfortunately, clinical diagnosis 

of PD and other movement disorders is subject to the subjective interpretation of 

clinicians, resulting in a high rate of misdiagnosis of up to 25%. However, computerised 

methods can support clinical diagnosis through objective assessment. The major focus of 

this study is to investigate the use of machine learning approaches, specifically 

evolutionary algorithms, to diagnose, differentiate and characterise different movement 

disorders, namely PD, Huntington disease (HD) and Essential Tremor (ET). In the first 

study, movement features of three standard motor tasks from Unified Parkinson’s Disease 

Rating Scale (UPDRS), finger tapping, hand opening-closing and hand pronation-

supination, were used to evolve the high-performance classifiers. The results obtained for 

these conditions are encouraging, showing differences between the groups of healthy 

controls, PD, HD and ET patients. Findings on the most discriminating features of the 

best classifiers provide insight into different characteristics of the neurological disorders 

under consideration. The same algorithm has also been applied in the second study on 

Dystonia patients. A differential classification between Organic Dystonia and Functional 

Dystonia patients is less convincing, but positive enough to recommend future studies.
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Introduction 

This chapter provides an overview of the thesis, motivations for the work, the hypothesis 

and the contributions made. 

1.1 Overview 

Human body movement is a result of a complex system comprising our brain, spinal cord, 

nerves and muscles. When a human has a desire or need to move, a specific part of the 

brain sends signals through the spinal cord and nerves to the muscles. Muscles that are 

attached to the bones of the skeletal system along with other moving parts such as skin 

and soft tissues are responsible for human movement. If there are problems in the part of 

the brain responsible for sending the signals or failure of the signals to reach the muscles 

as intended, movement disorders can occur. The term ‘movement disorder’ was coined 

in late 1960’s and since then has become a distinct domain. Movement disorders are a 

sub-set of neurological conditions which in turn are the biggest cause of loss of healthy 

life in the world’s population. Examples of common and well-known movement disorders 

are Parkinson’s disease, dystonia, essential tremor and a range of diseases known 
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collectively as atypical parkinsonism. Some of these diseases worsen over time and, 

hence, are known as neurodegenerative disorders. Some are hereditary, such as 

Huntington’s disease and Wilson’s disease. Movement disorders symptoms vary from the 

slowing of movements, spontaneous muscle contractions, to repetitive and involuntary 

movements such as grimacing or eye blinking. They also come with non-motor symptoms 

such as depression, dementia, sleep disorders and pain. 

Being able to move our body normally is a most important part of every-day 

living. Inability to do so has many implications for quality of life and the care required. 

Movement disorders cause multiple impacts to a patient, family, society and the country’s 

economy. One of the important efforts to reduce this impact is an early and accurate 

diagnosis. Unfortunately, clinical diagnosis of movement disorders is subject to the 

interpretation of clinicians, causing a high rate of misdiagnosis. Computerised methods 

can support clinical diagnosis through objective assessment. However, many of the 

computerised methods can be expensive, need experts to operate or are too specific to a 

certain type of disorder. Therefore, this research proposes a computerised method that 

can be used on a range of movement disorders at relatively low cost, that is reliable in a 

conventional clinical setting and provides an objective assessment to support a clinical 

diagnosis. This method manipulates real-time kinematic data of movement disorders from 

patients performing basic motor tasks, acquired using electromagnetic tracking sensors to 

build classifiers employing Evolutionary Algorithms (EAs). EAs are a type of a machine 

learning method that is inspired by natural evolution. The classifiers evolved have been 

trained to identify a specific movement disorder with the added benefit of characterising 

the features of the disorder. Movement disorders of interest in this research are 

Parkinson’s disease (PD), essential tremor (ET), Huntington’s disease (HD), dystonia and 

functional (psychogenic) dystonia. 
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1.2 Motivation 

Movement disorders are a category of neurological disorders. Neurological disorders, 

also known as central nervous disorders, are conditions caused by an abnormality in the 

human central nervous system. The symptoms vary according to which part of the brain 

is affected. In Europe, neurological disorders are classed as the highest contributor to 

global burden of disease (GBD) that assesses mortality and disability (World Health 

Organization, 2006). In the latest analysis of 2015, the worldwide GBD study found that 

neurological disorders as a group is the largest cause of loss of healthy life and second 

only as causes of global death (Naghavi et al., 2015). 

With the exception of Alzheimer’s disease, movement disorders such as Parkinson’s 

disease, essential tremor, restless legs syndrome and dystonia, are the most common 

neurological conditions (Wenning et al., 2000). In 2005, over one million people in 

Europe were diagnosed with Parkinson’s disease, with around 127000 of them living in 

the United Kingdom. It has been projected that the number will double by 2030 (Dorsey 

et al., 2007). Approximately 2.2% of the US population have essential tremor, some 6.38 

to 7.63 million people (Louis & Ottman, 2014). These disorders afflicted not only the 

patients; they pose a challenge to families, caregivers, communities, the health care 

system and the economy. 

 

Cost 

The economic cost of movement disorders is high, consisting of public health delivery 

activities that include formal health care, personal medical attention, home care and self- 

care, health promotion and disease prevention (World Health Organization, 2006). It was 

estimated in 2011 European countries spent 13.9 billion euros on public health deliveries 

for Parkinson’s disease alone. While in the United States, the national economic burden 
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of PD exceeds $14.4 billion in 2010 (EPDA, 2012; Kowal et al., 2013). Apart from direct 

costs, there are indirect costs that result from job loss, change in worker productivity, 

reduced earning ability and missed work days caused by the disease. In fact, indirect cost 

became the bigger part of the economic burden especially in advance stages of the disease 

(Keränen et al., 2003). The high cost of economic burden is linked to not only to the 

financial burden but also to the quality of life of patients and their families (Dowding et 

al., 2006). 

 
Quality of life (QOL) 

The symptoms of movement disorders are many-fold. A few examples are slow decreased 

movement, spontaneous muscle contractions, repetitive and involuntary movements such 

as grimacing or eye blinking and involuntary rhythmic shaking of parts of the body. Apart 

from motor symptoms, there are also non-motor components, such as olfactory 

dysfunction (disturbances of smell and taste), depression, dementia, sleep disorders, 

bowel and bladder problems, fatigue, apathy (lack of emotion, passion, interest or 

motivation) and pain. Although these abnormalities and disturbances in movement have 

a major impact on health, they are rarely a direct cause of death. Instead, the conditions 

result in disabilities that affect the patient’s functioning and quality of life. The symptoms 

cause a decrease in quality of living (QOL) in many ways including loss of independence, 

negative impact on relationships and work, and difficulties in performing day-to-day 

activities (Dowding et al., 2006; Soh et al., 2013; World Health Organization, 2006). The 

disorders affect QOL not only of the patients, but the caregivers as well (Carter et al., 

2008; Martínez-Martín et al., 2005, 2007). The degrading quality of life of patients and 

caregivers is especially true for neurodegenerative disorders such as PD and HD where 

the burden increases as the disease progresses. In addition, recent research also indicates 

that the most common movement disorder, essential tremor, might also worsen over time 
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(Louis et al., 2016). In order to reduce the burden caused by movement disorders, well- 

planned, efficient disease management programs are critical. However, the first step of 

such program, must be an accurate diagnosis. 

1.3 Clinical diagnosis of movement disorders 

One of the critical parts of the management of a disease is the diagnosis. Diagnostic tests 

are imperative to provide information about the patient’s condition, to influence the health 

care provider’s plan for managing the patient and to understand disease mechanism and 

its history through research. However, for most movement disorders, diagnosis proves to 

be difficult and requires experts in the field to achieve higher accuracy. For many 

disorders, no known pathological markers are available to confirm the diagnosis. 

Although many diagnostic tests are available, some of these, such as single photon 

emission computed tomography (SPECT) and positron emission tomography (PET), are 

expensive and invasive (National Collaborating Centre for Chronic Conditions., 2006). 

Hence, most diagnosis of movement disorders remains clinical. Clinical diagnosis is 

based on clinical features taken from examination, patient history and response to 

medication. Unfortunately, the clinical diagnosis is usually complex, subjective and 

hence, often unreliable. The accurate diagnosis of movement disorders is particularly 

difficult at the early stages. Clinical misdiagnosis rates in movement disorders is high. 

For example, in Parkinson’s Disease, it is estimated that the misdiagnosis rate remains as 

high as 25% since the 1970’s (Ali H Rajput & Rajput, 2014). About one in three patients 

with other tremor conditions were misdiagnosed as having ET, with the most frequent 

incorrect diagnoses being Parkinson’s disease and dystonia (Jain et al., 2006). This means 

that there are ET patients being treated as PD patients (and vice versa) when the prognosis 

of the two diseases are clearly different. Moreover, since there are disorders that are 
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genetically inherited (such as Huntington Disease and Wilson’s disease), the diagnosis 

has serious implications for patient’s family. Apart from that, due to their sometimes 

unusual presentations, patients with movement disorders may be diagnosed as having 

disorders caused by psychological problems (psychogenic movement disorders). More 

objective diagnosis is needed to confirm the clinical diagnosis. 

1.4 Objective diagnosis of movement disorders 

There are many potential objective assessment methods in movement disorders based on 

motor symptoms. Works include using electronic sensors to collect movement data. For 

example, using the patient’s performance in drawing an Archimedes spiral, handwriting, 

rapid alternate movement or doing an everyday task such as walking. Different 

technologies have been used in clinical settings to obtain kinematic data, such as 

digitising pads for 2D drawing data, gyroscopes for rapid alternating movements, motion 

capture using cameras and optical devices, and electromagnetic sensors for motion 

capture in 6 degrees of freedom (Allen et al., 2007; Daneault et al., 2013; D. a. Heldman 

et al., 2014; D. A. Heldman et al., 2011; Á. Jobbágy et al., 2005; Rovini et al., 2017; 

Spasojević et al., 2017; Stamatakis et al., 2013; Yokoe et al., 2009a). Using the acquired 

kinematic data, quantitative studies demonstrate that movement features belonging to 

different groups of movement disorders or healthy controls can be differentiated 

statistically. Significant features, such as speed and acceleration of movement, can be 

used to train algorithms that are able to automatically classify these groups. The 

classification task is part of what is known as predictive modelling. Predictive modelling 

is basically the process of developing a mathematical tool or model that generates an 

accurate prediction by considering relationships between the available data sets. Previous 

work has demonstrated that using machine learning methods can successfully achieve 
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high accuracy in the classification of movement disorders. However, many of these works 

focused on classifying movement disorders of patients from healthy controls as in in the 

reviews of machine learning classification of PD patients (Ahlrichs & Lawo, 2013). Yet, 

to address the problem of misdiagnosis, the real challenge is to differentiate between 

groups of different movement disorders that are commonly mistaken for each other. 

1.5 Predictive modelling of small and imbalanced data 

In a classification task, as is widely understood, the bigger the sample size, the higher the 

probability of finding a significant result. However, a large sample size is not always 

obtainable in any field of research, biomedical data included. A small sample size can be 

the consequence of research protocols, a small research population, or when it is ethically 

and morally unjustified to gather a larger sample. The number of training samples may 

also be limited because obtaining samples in a form suitable for learning may be costly 

or impractical (Weiss & Provost, 2003). Another well-known challenge in classification 

tasks is when the data in one group or class is very small compared to the other class(s). 

The problem is called an imbalanced data distribution or imbalanced dataset. There are 

many natural situations with imbalanced datasets such as analysing financial risk, 

predicting technical equipment failures, managing network intrusion and information 

filtering (He & Garcia, 2009; He & Ma, 2013). It is also common in the medical field, 

such as the occurrence of a rare disease, or newly found version of known medical 

conditions, as in case of psychogenic movement disorders. There are many machine 

learning methods tested to combat imbalanced dataset problems. Some use standard 

learning algorithms, others propose new methods to address the specific problems and 

some, combinations of the two. However, most of these solutions were tested in isolation 

usually with artificial datasets, and their solutions are not easily pertinent to the real-world 



21  

problems (Napierala & Stefanowski, 2016). The challenge of binary classification on 

small and imbalanced real datasets of movement disorders is yet to be tested using EAs. 

1.6 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a computational intelligence technique inspired by 

natural evolution and survival of plants and animals. There are several different types and 

versions of EAs with the major ones being genetic algorithms, evolutionary programming 

and genetic programming. EAs and genetic computation are known for their significant 

contributions to medical applications (Smith, 2011; Smith & Cagnoni, 2011). EAs have 

not only proven effective in classification tasks for medical diagnosis but offer one great 

advantage – an ability to provide “white box” analysis in which a complete description of 

how features in the data have been used to classify between the groups ( Lacy, 2015;  

Lones, Alty, et al., 2014; Lones et al., 2013). With a reliable amount of data, the 

description of these features can be generalised to inform clinical assessment and support 

clinical diagnosis (Lones et al., 2013). 

1.7 Summary 

When individuals lose the ability to move normally (along with other symptoms that 

present with movement disorders) it impacts their quality of life, as well as the people 

around them, their community and public health providers. Early and accurate diagnosis 

plays an important role in reducing the impact and prolonging a good quality of living. 

Clinical diagnosis of movement disorders are often subjective, prove to be complex and 

contribute to high rates of misdiagnosis. EAs, applied to predictive modelling using data 

from motion sensors offer an objective diagnosis of movements disorders. Additionally, 

they can give a deeper understanding of movement characteristics of different disorders 
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while performing the same motor tasks. Further analysis of the movement characteristic 

open possibilities to inform clinical assessment. However, the reality is biomedical data 

from patients are hard to obtain, time-consuming and expensive; this is true of data 

obtained from movement disorders patients as well. Furthermore, certain types of 

movement disorders, such as psychogenic movement disorders, are rare and naturally 

small in number, but need to be differentiated from their organic counterparts. Motivated 

by these challenges, the work presented in this thesis employs EAs to evolve classifiers 

that can objectively support clinical diagnosis and characterise a range of movement 

disorders. 

1.8 Hypothesis 

Based on the evidences that (1) movement disorders are common conditions with high 

global morbidity and mortality, causing a significant impact to the economy and 

negatively affecting quality of living of involved parties, (2) current clinical diagnosis of 

movement disorders is complex and largely subjective which results in a high rate of 

misdiagnosis, and (3) EAs offer great potential in objective diagnosis and characterisation 

of movement disorders, it is the hypothesized that: 

 
“Evolutionary Algorithms offer a means of differentiating and characterising a 

range of movement disorders using digitised kinematic data from common 

conventional clinical tasks.” 

 

The work in this thesis considers using kinematic data from three motor tasks taken from 

a conventional and often used clinical assessment, the Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale, MDS-UPDRS namely finger tapping, hand 

opening-closing and hand-pronation-supination.  
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The objectives are to: 

 

• Apply EA predictive modelling to classify Parkinson’s disease patients from 

healthy controls, essential tremor and Huntington’s disease patients using 

available datasets. 

• Observe characteristics of different movement disorders performing the same 

motor tasks by analysing the EA classifiers evolved. 

• Use EAs to discriminate patients of functional (psychogenic) dystonia from 

healthy controls, and its organic counterpart, primary dystonia 

1.9 Thesis structure 

This thesis is organised as follows: 

This chapter provides an introduction and outline of work presented in the thesis. It also 

states the motivations, objectives and hypothesis of the research. Chapter 2 gives an 

overview of Parkinson’s disease and other movement disorders describing their history, 

anatomy, causes, main symptoms and the cognitive impairment associated with them. 

Chapter 3 provides an overview of evolutionary algorithms, examining the different 

program representations that define the different kinds of algorithm. The focus is on 

Cartesian Genetic Programming, the evolutionary algorithm chosen for this work, which 

is explained in detail in section 3.4. Chapter 4 contains a description of the motor tasks 

assessments, equipment used and the methodology used in this study. Chapter 5 presents 

results of classification and characterisation of movement features of four groups: healthy 

elderly people, PD, Huntington’s disease and essential tremor patients. Chapter 6 gives 

an overview of dystonia, describing its history, the different kinds of dystonia with their 

signs and symptoms, the cause, the diagnosis and the two kind of dystonia considered: 
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functional and organic dystonia. The results of classification experiments are also 

discussed. Chapter 7 presents the conclusions of the work, revisits the hypothesis and 

offers suggestions for future work. 
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Movement Disorders Conditions 

The term ‘movement disorders’ was coined in late 1960’s by Stanley Fahn and Lewis P. 

Rowland in an effort to extend a Parkinson’s disease clinic at the University of 

Pennsylvania into a clinic that also covered other movement abnormalities (Klein, 2005). 

Since then, the term has been widely used in research related to neurological problems. 

Movement disorders are neurologic syndromes that show excess of movement or a 

paucity of voluntary and automatic movements, but not related to muscle weakness or 

spasticity (Fahn, 2011). However, the disorders that were included under this term are 

characterised by many other complex signs and symptoms (Fernandez et al., 2015). 

Historically, whereas the nineteenth century can be viewed as the century that established 

neurology as a speciality in medicine, the twentieth century,specifically the second half, 

marked the evolution of movement disorders as a distinct domain (Goetz et al., 2001). 

Although many conditions that are today known as movement disorders had already been 

discovered since the last century, it is only in late 1960’s that the field of movement 

disorders was born. It was started with observations and efforts by C. David Marsden and 

Stanley Fahn (Goetz et al., 2001). In the beginning, the classification of the disorders was 

according to localisation of anatomical parts of body where the movement was affected. 
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Since then, other classifications were introduced, such as according to aetiology (causes), 

phenomenology (experience), and pathophysiology (Fahn, 2011). Perhaps the modern 

classification that is most accepted is the one developed and updated by Marsden, Fahn 

and Jankovic, published in Fahn et al. (2011). In this classification, the two major groups 

are the hypokinesias and the hyperkinesias. Hypokinesia conditions are where the 

movement is slower than normal, and hyperkinesia is the opposite. Other modes of 

classification are by clinical criteria such as age of onset and response to treatment, by 

post-mortem criteria such as presence of Lewy bodies in PD patients, and by 

genetic/molecular criteria such as a defect in protein function (Klein 2005). 

 
Table 2.1 : Classification of movement disorders based on speed of the abnormal movements. Content of 

the table from (Fahn et al., 2011) 
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2.1 Parkinson’s Disease 

Parkinsonism syndrome or Parkinsonism is a group of neurological conditions that share 

common symptoms clinically defined by the presence of certain motor features; tremor 

at rest, rigidity, bradykinesia, and gait and postural abnormalities. Parkinson’s disease 

(PD) is the idiopathic version of this syndrome where a person slowly develops difficulty 

with the control of movements without any known cause or confirmed risk factors. Simple 

daily activities such as walking and reaching for an object become challenging. 

Parkinson’s disease is chronic and progressively worsening over time. The difficulties are 

largely caused by loss of dopamine-generating neurones in a part of the brain called the 

Substantia Nigra. Both motor and non-motor deficits caused by Parkinson’s disease 

substantially impact on a person’s quality of life (Martinez-Martin et al., 2011). Although 

Parkinson’s disease is one of the most well-researched movement disorders it does not 

bring us closer to a complete understanding of this complex disease. Significant progress 

has been made in the treatment of PD motor symptoms, though the mechanisms 

underlying treatment success are often not well understood (Sulzer et al., 2015). 

Parkinson’s disease cannot be confirmed while the patient is alive. The diagnosis can only 

be made with certainty during post mortem. Low diagnostic accuracies have been linked 

to PD for more than 20 years where autopsies revealed about 25% of patients with PD as 

final clinical diagnosis did not meet required pathological markers (Ali H Rajput & 

Rajput, 2014). 

2.1.1 Signs and Symptoms of Parkinson’s disease 

There are four main signs of Parkinson’s disease: resting tremor, rigidity, bradykinesia 

and postural instability. 
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Tremor 

Tremor is a rhythmic, involuntary shaking of a part of the body. Rest tremor is the most 

common and easily recognised symptom of PD. It is obvious when the affected body part 

is supported against gravity (and is often absent or disappears during voluntary 

movement). The frequency of the rest tremor is between 4 and 6 Hz, and usually initially 

showing in one hand or foot without any regular pattern (Stanley Fahn et al., 2011). The 

term ‘‘unilateral onset’’ is used to describe the usual pattern of onset in Parkinson’s 

disease, meaning that the rest tremor begins on one side of the body and in one limb. 

 

Rigidity 

Rigidity is an increase in resistance to passive movements that occurs in the limbs. For 

any movement to happen, there needs to be a pattern of contraction and relaxation of 

muscles. Contraction is stimulated by signals from brain that prompts the movement of 

the muscle, whereas relaxation follows when the signals end, and the muscle eases back 

to its natural state. Rigidity in Parkinson’s disease develops when the natural contraction 

and relaxation of opposing muscles fails to take place, caused by the failure of the brain 

signals to trigger the muscle movement. 

 

Bradykinesia 

The term akinesia literally means absence of movement; bradykinesia, meaning slowness; 

and hypokinesia, meaning decreased amplitude; are all used interchangeably to describe 

the most prominent phenomena of Parkinsonism. The conditions they describe are usually 

referred to collectively as bradykinesia (Figure 2.1). The complex nature of Bradykinesia 

itself is one of the reasons that make it difficult for clinicians or neurologists to be certain 

of its existence at an early stage of Parkinson’s disease. Clinicians look for signs of 
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bradykinesia by observing a patient’s ability to perform rapid, repetitive, alternating 

movements of the hand such as finger taps, hand grips and hand pronation– supination 

(Jankovic, 2008). 

 

                  Figure 2.1: Spectrum of Bradykinesia. Figure edited from Fernandez et al.( 2014) 

 

 

Postural instability 

Postural instability is the inability of a person to maintain posture and balance caused by 

impaired postural reflexes. People with Parkinson’s disease tend to fall backward, 

although falls are unusual in the early stages. Postural instability can be present even at 

diagnosis in some patients but when prominent in early stages of the disease it should 

suggest the possibility of an atypical parkinsonian disorder, such as progressive 

supranuclear palsy (Egerton et al., 2012). A normal individual should be able to recover 

balance spontaneously with a quick backward step, but patients with PD often take several 

steps to recover balance and may even fall if not caught in time. Although the four main 

symptoms described above are the most well-known signs of PD, several secondary signs 

and symptoms, including non-motors symptoms, have been detected. Note that not 

everyone with Parkinson’s disease develops the same symptoms. Other reported 

symptoms include masked facies (loss of facial expression and a decreased rate of eye 

blinking), speech deficits, dysphagia (difficulty in swallowing), drooling, gastrointestinal 

complications, micrographia (handwriting becomes small because of difficulty with fine
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motor movement), disturbance of the spatiotemporal aspects of gait, sleep disorders, and 

mood fluctuations. Non-motor symptom such as depression is the most common 

psychological problem in Parkinson’s disease (Sharma, 2008). These symptoms will 

eventually severely impair patients of PD quality of life such as shown in advanced 

Parkinson’s disease patients. 

2.1.2 The anatomy of Parkinson’s Disease 

In the 1960s, scientists discovered that deficiency of a compound named dopamine in the 

specific part of the brain called basal ganglia is at the root of Parkinson’s disease 

(Hornykiewicz, 2006). The basal ganglia refers to a group of structures linked to the 

thalamus in the base of the brain and involved in coordination of movement. Parkinson’s 

disease is associated with damage to the basal ganglia and has several distinct outward 

symptoms. 

Symptoms of Parkinson’s disease are caused by the death of neural cells in one of 

the nuclei (group of neurons) of the basal ganglia called the Substantia nigra; the cause of 

the cell death is unknown. The Substantia nigra naturally produces a neurotransmitter 

(chemical messenger) called dopamine that helps in the transmission of signals in the 

brain. Dopamine is vital to regulate movement throughout the body. 
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Figure 2.2: Location of the substantia nigra within the basal ganglia (Figure from https://en.wikiversity.org) 

 

 

As the disease progresses and less dopamine is delivered, outgoing signals become 

undependable and movements become irregular and uncontrolled. Figure 2.3 shows a 

normal midbrain compared to Parkinsonian midbrains with pigmentation loss. 

 
 

 
 

Figure 2.3: Pigmentation loss in the substantia nigra a) Normal b) Parkinsonian midbrain showing a 

characteristic of pigmentation loss in the substantia nigra (arrowed). Micrographs of the substantia nigra 

reveal c) normal pigmented neurons in normal brain and d) the loss of pigmented neurons in a brain affected 

by Parkinson’s disease. Figure from Chaudhuri & Ondo (2009). 

 



32  

Apart from the cell loss in the Substantia nigra, pathological changes of PD also include 

the presence of Lewy Bodies (LBs) in surviving cells. Lewy bodies are abnormal masses 

of protein that develop inside nerve cells found in PD and occur in all areas of neuronal 

degeneration. Although LBs are a pathological hallmark of idiopathic PD, unfortunately, 

they are not unique to PD; other conditions in which they may be seen in degenerating 

neurons include corticobasal degeneration, progressive supranuclear palsy, motor 

neurone disease, ataxia telangiectasia and Hallevorden-Spattz disease (Gibb & Lees, 

1988), classic Pick’s disease, argyrophilic grain disease, Alzheimer’s disease, and 

dementia with Lewy bodies (Popescu et al., 2004). 

 

 

Figure 2.4: Lewy bodies presence in neurological conditions LBs are numerous in the amygdala in 

Alzheimer disease (A), dementia with LB (B), and classic Pick ‘s disease (C). Figure from Popescu et al., 

(2004). 

 
Other than pathological overlap with these diseases, PD also shares some clinical features 

with a number of other neurodegenerative conditions which make it even difficult for a 

clear-cut diagnosis. Conditions showing similar symptoms as PD are discussed further in 

Section 2.1.6. The success of determining what is happening to PD patients still leaves us 

puzzling what cause it to happen. The idiopathic nature of PD means that scientists still 

cannot comprehend what is actually causing the loss of neurons cells and presence of LBs 

in affected areas of the brain. Research is ongoing to find out possible causes of PD and 

who the people are that have a higher chance of developing the disease. 
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2.1.3 The diagnosis of Parkinson’s Disease 

As for most movement disorders, the diagnosis of Parkinson’s disease is a ‘clinical’ 

diagnosis since the methodology depends heavily on the observation for manifestations 

of the Parkinsonism symptoms and history taking of the subject by the neurologist or 

other qualified medical practitioners (National Collaborating Centre for Chronic 

Conditions., 2006). In the face of huge resources devoted to learn more about Parkinson’s 

disease, there are still no laboratory tests such as a tissue diagnostic or other conclusive 

biomarkers test that can confirm the diagnosis of Parkinson’s disease while a patient is 

alive. 

2.1.4 Clinical assessment of Parkinson’s disease 

Demonstration of Parkinsonism requires evidence of bradykinesia and at least one of the 

other cardinal features: tremor at rest, rigidity and postural instability. These criteria have 

been summarised in the UK Parkinson’s Disease Society Brain Bank Criteria (UKBBDC) 

(Gibb & Lees, 1988). UKBBDC is the most widely accepted clinical criteria for the 

diagnosis of PD and may improve clinicopathological correlation when strictly applied 

(Hughes et al., 2001). There are many scales that have been developed for the purpose of 

quantifying the severity of PD. There are scales to assess PD manifestation (impairment), 

disability, and scales that assess impairment and disability (Perlmutter, 2010). Table 2.2 

summarise the scales. Among these scales, the Unified Parkinson’s Disease Rating Scale 

(UPDRS) has been the most accepted and popular rating scale (Martinez-Martin et al., 

1994). However, several highlighted limitations of UPDRS (Hilten et al., 1994; 

Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease, 2003) 

have led to a new revised version of UPDRS by the Movement Disorders Society: MDS-

UPDRS (Goetz et al., 2008) 
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Table 2.2: Clinical rating scales used to assess Parkinson’s disease 

Assessment Scales 

 
Motor symptoms 

• Webster Scale 

• Columbia University Rating Scale 

• PD Impairment Scale 

Disability 
• Hoehn & Yahr 

• Schwab and England 

 

 
 

Motor symptoms & disability 

• UPDRS, MDS-UPDRS 

• New York University Scale 

• Short PD Evaluation Scale 

• University of California Los Angeles PD 

Disability Scale 

 

MDS-UPDRS 

 

The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease 

Rating Scale (MDS-UPDRS) has four sections: 

 

Part I: non-motor experiences of daily living  

Part II: motor experiences of daily living  

Part III: motor examination, and 

Part IV: motor complications. 

 

In each part, there are items that assess different parts of PD. This rating scale evaluates 

the severity of PD symptoms in a 5-point scoring system, 0 for no symptom and 4 for a 

marked severity of the symptom. Items from parts I, II and IV are rated by the patient 

themselves, either by filling in the questionnaire or by answering questions (from the 

scale) from the clinicians. Part III items are rated by clinicians, through observation and 

motor examination. In part III, instructions are given on motor tasks to be executed by 

patients and guides for clinicians on how to rate the performance. The full MDS-UPDRS 

scale is provided in Appendix A of this thesis. Examinations by clinicians comprise items 
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to test symptoms such as rigidity, speech impairments and leg agility. Motor tasks include 

finger tapping, hand movements (opening-closing), pronation-supination movement of 

hands, toe-tapping and gait testing. 

Part III of the scales (UPDRS and MDS-UPDRS) have been tested and proven to 

provide good quality of measurements (Goetz & Stebbins, 2004; Goetz et al., 2008). 

However, there is no confirmation on how strictly the criteria in any guide are followed 

during the diagnosis process. The clinical diagnosis is considered as not definitive. The 

gold standard for definitive diagnosis of PD is pathologic findings which is neuronal loss 

in substantia nigra and present of Lewy bodies in the brain of patient. This confirmation 

is done during autopsy. Comparison has been made between clinical diagnosis and 

findings of autopsy on PD patients to determine the diagnostic accuracy of Parkinson’s 

disease. 

2.1.5 Measurement of diagnostic accuracy 

Accurate diagnosis is very important in medicine, usually determining what additional 

diagnostic tests are needed, help in choosing more targeted, effective and often less 

invasive treatments or interventions, to eventually improve patient care management and 

reduce healthcare costs. The accuracy of a diagnosis is measured by comparing the test 

results to the true condition status of the patient or the gold standard. In case of PD, the 

gold standard is autopsy report of the patient. Two basic measures of diagnostic accuracy 

are sensitivity and specificity. Their definitions are best illustrated by a table with 2 rows 

and 2 columns, or table of frequency (Table 2.3 from Petrie & Sabin (2000)). 
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If n is number of individuals studied, then a + c individuals have the disease. Of the a + c 

individuals who have the disease, a have positive test results (true positives, TP) and c 

negative have test results (false negatives, FN). Of the b + d individuals who do not have 

the disease, d have negative test results (true negatives, TN) and b have positive test 

results (false positives, FP). 

Sensitivity is the proportion of individuals with the disease who are correctly identified 

by the test. A test that is able to detect all the individuals with disease is said as having 

perfect sensitivity or 100% sensitivity or a sensitivity of 1.0. It can be calculated as: 

 

 

 

 

 

Specificity is proportion of individuals without the disease who are correctly identified 

by the test, calculated as following: 

 

 
A test with 100% specificity will detect all the healthy individuals and give a negative 

result to them (negative of having the disease). The best test would be one that has a 

                                                        Table 2.3: Table of frequencies 
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sensitivity and specificity that are both as close to 1 (or 100%) as possible. However, in 

practice, sensitivity may be gained at the expense of specificity, and vice versa. Whether 

the aim is for a high sensitivity or high specificity depends on the condition or disease, 

also what the consequences of FN or FP test result on the individuals tested are. For 

conditions that are easily treatable, high sensitivity is preferable; for those that are serious 

and untreatable, high specificity is important to avoid making a false positive diagnosis 

(Petrie & Sabin, 2000). In the case of Parkinson’s disease, false positive diagnosis results 

in the unnecessary administration of drugs, a false negative diagnosis delays the initiation 

of drug therapy or other types of therapies. 

Another way diagnostic accuracy is commonly described are predictive values 

which highlights the consequences associated with the test results. These predictive 

values provide information about how likely it is that the individual is correctly 

diagnosed. Positive predictive value (PPV) is the proportion of individuals with a positive 

test result who have the disease. Negative predictive value (NPV) is proportion of 

individuals with a negative test result who do not have the disease. These values can be 

calculated as following: 

 

 
 

 
 
 
 
 

Predictive values are dependent on how common the disease in the population is being 

studied or the disease prevalence. In populations where the disease is rare, the NPV value 

will be much lower than in populations where the disease is common and vice versa. In 

certain cases, there are needs to make a diagnosis on the basis of a continuous 

measurement. It means that there is no certain definitive threshold above (or below) that 
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implies the disease is positively detected. In these cases, the upper (or lower) limit of the 

reference interval can be used. A cut-off value choice will change its related sensitivity, 

specificity and predictive values. The objective is to choose a cut-off value that will 

optimise these measures as desired. 

2.1.6 Differential diagnosis of Parkinson’s disease 

The low diagnostic accuracy is one of the issues that have been associated with 

Parkinson’s disease for years. The accuracy rates were observed by comparing final 

clinical diagnosis of a patient to autopsy result on brain matters. This type of study is 

known as clinicopathological. Perhaps the first significant clinicopathological study that 

presented a quite shocking result about the diagnostic accuracy of Parkinson’s disease 

was published in 1991. In  Rajput et al.(1991) , autopsy was performed on 65 patients, 41 

of them having PD as a final clinical diagnosis after an average of 11.7 (range 2 -39) years 

of illness. A 22 year study by Rajput et al. (1991) found out that out of the 41 patients, 

Lewy bodies’ presence was detected in only 31 of them which indicated only a 76% rate 

of diagnostic accuracy. Soon later, another clinicopathological study with a bigger 

number of subjects was published; the study on 100 cases of clinically diagnosed PD 

shown same rate of accuracy at 76% (Hughes et al., 1992). In contrast, very high 

percentages of diagnostic accuracy (99%) have been reported in tertiary hospitals by 

movement disorder specialists (Hughes et al., 2002). It was speculated that the higher 

accuracy may be due different methodology (Rajput & Rajput, 2014) or the fact that 

patients were evaluated by specialist neurologist in a specialist movement disorder 

service. This may have been proven by a later study by Joutsa et al. (2014) that 

investigated diagnostic accuracy of parkinsonism syndromes by general neurologists in 

Finland. Only 58 (75.3%) of the 77 patients that had been diagnosed as Parkinson’s 

disease (PD) were confirmed after the neuropathological examination. Another recent 
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study by Adler et al. ( 2014) reports results of diagnostic accuracy of an ongoing clinical- 

neuropathologic research. Taking into account all PD patients examined in this study, the 

final clinical diagnosis of PD is accurate in only 77% of the subjects. It can be seen that 

both studies, Adler et al.(2014) and Joutsa et al.( 2014) showed percentage of diagnosis 

accuracies remarkably similar with 1990’s studies, indicating that PD is still facing 

serious problems in this area. It is rather sobering that there is no marked improvement in 

accuracy of diagnosis since more than 20 years ago (Ali H Rajput & Rajput, 2014). 

Diagnostic inaccuracy can cause patients to receive treatment as PD patients up 

to their demise when they actually had other Parkinsonism syndromes with similar 

features with PD. There are many possible answers to low diagnostic accuracy of 

Parkinson’s disease. One possibility is the difficulty of rejecting other Parkinsonism 

conditions with the different degrees of overlap especially in the early course of the 

disease. Parkinsonism is an umbrella term used to describe many conditions that share the 

main symptoms of slow movement, sometimes with tremor, rigidity and problems with 

walking. A variety of conditions may cause Parkinsonism syndromes (also called 

Parkinsonian) independent of the idiopathic loss of substantia nigra neurons; these include 

degenerative conditions, drug-induced and several other types of movement disorders. 

Several conditions that have been misdiagnose as PD include Alzheimer’s disease, 

progressive supranuclear palsy, multiple system atrophy, dementia with Lewy bodies, 

corticobasal ganglionic degeneration, vascular Parkinsonism (Adler et al., 2014; Hughes 

et al., 2002; Joutsa et al., 2014) and drug-induced parkinsonism (Rajput et al., 1991). 

Apart from Alzheimer’s disease, they are all rarer than PD but may be clinically indistinct 

in the early stages of disease. 
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Multiple system atrophy (MSA) 

Multiple system atrophy, MSA is a condition often confused with Parkinson’s disease 

because of its Parkinsonism symptoms. There is up to 55% of cases where MSA patients 

die with PD as final clinical diagnosis (Quinn, 2005). Two variants of MSA are MSA-P 

and MSA-C. “P” in the first variant is for parkinsonian where there is predominating 

Parkinson’s –like symptoms, and clinically the MSA-P phenotype presents the most 

difficulty in differentiating it from Parkinson’s disease (Chaudhuri & Ondo, 2009). 

The parkinsonian features of MSA include progressive bradykinesia, which is usually 

symmetrical, rigidity and postural instability. MSA-C is a cerebellar dysfunction variant 

and characterised by progressive ataxia (an inability to coordinate voluntary muscular 

movements) of the gait and arms and dysarthria (difficulty in pronouncing words). 

Compared to PD, autonomic failure in the form of sympathetic dysfunction occurs early 

and more severe in MSA. Genitourinary problems such as erectile failure and urinary 

symptoms are also common in MSA. In contrast to PD, it is also unusual for a patient 

with MSA to develop dementia or hallucinations. 

 

Progressive Supranuclear Palsy (PSP) 

PSP is also known as Steele-Richardson-Olszewski syndrome. PSP can have a wide 

clinical spectrum, with different clinical variants. Classic PSP variant is characterised by 

supranuclear gaze palsy (predominantly vertical gaze), Parkinsonism, pseudobulbar 

affect, prominent frontal lobe syndrome, axial symptoms (neck and trunk) with early falls 

in the first year after onset, and symmetric symptoms. Resting tremor is uncommon. Gait 

is broad-based and unsteady, unlike the typical small-stepped shuffling gait in PD, with 

the typical “surprised” facies, spastic dysarthria, and retrocollis. Parkinsonian variant has 

parkinsonian features very similar to those seen in PD or MSA, but without much 

response to levodopa and a predominance of postural instability and gait dysfunction 



41  

(Fernandez et al., 2014). Even with strict clinical diagnostic criteria applied, autopsy 

revealed 22% of patients with PSP as final clinical diagnosis turned out to be PD patients 

(Respondek et al., 2013). 

 

Dementia with Lewy bodies (DLB) 

DLB is characterised by early onset progressive dementia with behavioural abnormalities 

that may interfere with normal social and occupational function, visual hallucinations, 

visual defects fluctuation in cognition and attention, even psychosis in the drug-naive 

state and Parkinsonism. DLB is very difficult to differentiate from PD dementia because 

patients with either condition can exhibit fluctuations in alertness, frequent falls, 

hallucinations, and sensitivity to PD medications (Fernandez et al., 2014). During 

autopsy, cases of DLB cannot be differentiated from cases of dementia occurring late in 

Parkinson’s disease (Chaudhuri & Ondo, 2009). 

 

Corticobasal Ganglionic Degeneration (CBD) 

CBD is a slowly progressive rare condition with patients aged 60’s to 70’s. Unilateral 

development of tremor, apraxia and rigidity in an upper limb are among the first 

symptoms shown. Patients then develop progressive gait disturbances, cortical sensory 

loss, motor apraxia and stimulus-sensitive myoclonus, which results in a jerky, 

uncontrollable hands. In 50% of patients, a jerky, uncontrollable movement called alien 

limb phenomenon may have occurred. Along the course of the disease, the condition 

becomes bilateral with progressive cognitive impairment. Patients do not respond to 

Levodopa or other forms of dopaminergic treatment (Chaudhuri & Ondo, 2009). 
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Alzheimer’s disease 

Alzheimer’s disease is the most common progressive late-onset disorder. It is a 

degenerative condition that leads to a condition called dementia. Dementia is a general 

term used to describe the loss of memory and mental abilities severe enough to affect 

daily life. Sixty to eighty per cent of all dementias are Alzheimer’s disease cases that 

make it the most common type of dementia. With progressive loss of memory as its main 

feature, there are cases where it is mistaken as Parkinson’s disease, especially PD with 

dementia variant (Adler et al., 2014; Joutsa et al., 2014). 

 

Vascular Parkinsonism 

Vascular Parkinsonism symptoms include rest tremor, bradykinesia, rigidity and postural 

instability but unlike in Parkinson’s disease, the motor symptoms are usually bilateral. 

Most patients have predominant lower-extremity symptoms, such as a gait disturbance 

(freezing, gait initiation failure, turning difficulties), with minimal upper-extremity 

symptoms, or walk with small steps. These common features might make it challenging 

to differentiate the condition with Parkinson’s disease that showing postural instability 

and gait difficulty (Chaudhuri & Ondo, 2009). 

 

Drug-induced Parkinsonism (DIP) 

Dopamine receptor-blocking antipsychotic drugs such as thioridazine, chlorpromazine 

and haloperidol commonly known to cause Parkinsonism, although any kind medication 

have a potential of doing so. Due to many overlaps of clinical features such as rigidity, 

bradykinesia, tremor and gait disturbance, Drug-induced parkinsonism may be 

misdiagnosed as Parkinson’s Disease. Although DIP symptoms are usually more bilateral 

or symmetrical compared to PD and might have a slightly faster tremor, symptoms 



43  

between the two diseases are almost impossible to be clinically distinguished (Chaudhuri 

& Ondo, 2009). 

2.2 Huntington Disease 

Huntington’s disease (HD) is a genetically inherited neurodegenerative disease, resulting 

in death within 15 to 20 years after diagnosis. The prevalence of diagnosed HD in the UK 

has doubled between 1990 and 2010. By extrapolation, it is estimated that there are more 

than 5700 diagnosed adult HD patients in UK (Evans et al., 2013). Huntington's disease 

has autosomal dominant inheritance. In this type of inheritance pattern, each children of 

an affected individual have a 50% risk of inheriting the disorder. Individuals at-risk are 

not gender dependent and it does not skip generations (Figure 2.5). Apart from apparent 

effects to quality of life of patients, the fact of dominant inheritance touches entire 

families: at-risk individuals and even genetically normal family members. 

 

 

Figure 2.5: Chart redraw from Bates et al. (2002) to show autosomal dominant transmission in HD. 

 

https://en.wikipedia.org/wiki/Autosomal_dominant
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The accepted clinical feature of HD are psychiatric abnormalities, cognitive decline and 

movement disorders (Bates et al., 2002). Early signs and symptoms can include 

irritability, depression, small involuntary movements, poor coordination, and trouble 

learning new information or making decisions. As the disease advanced, these signs 

become more noticeable. Psychiatric abnormalities include changes in personality such 

as depression, anxiety, apathy, obsessive-compulsive behaviours, outbursts, addictions, 

and occasionally psychosis (Dayalu, 2015) . Cognitive decline in many cases ends up as 

dementia. Although many signs of behavioural changes might be shown at early stages 

of HD, motor signs are still the best indication for diagnosis. 

2.2.1 Bradykinesia in Huntington’s disease 

The most well-known neurological feature of HD is the movement disorder chorea, an 

involuntary movement produced by jerk-like contractions of muscles that move randomly 

from one part of the body to another (Albanese et al., 2013). Chorea is characterised by 

excessive spontaneous movements that are irregularly timed, non-repetitive and abrupt. 

Other movement disorders include rigidity, slow or abnormal eye movements, impaired 

gait, posture and balance, and difficulty with the physical production of speech or 

swallowing. Progressive motor failure is a major cause of life-ending complications. 

Bradykinesia also exists in HD. Although HD is characterised by chorea, a hyperkinetic 

disorder, studies shown that it can co-exist with bradykinesia. In fact, in Garcia Ruiz et 

al. (2000), not only HD patients were slower than controls; they were even slower than 

PD patients of matching ages. A follow-up study of 76 HD patients found that 

bradykinesia was already evident in early stages and increased linearly with increasing 

disease stage (van Vugt et al., 2004). On the contrary, other studies challenged the 

findings and suggest that bradykinesia is not a feature of movement disturbance in HD. 

Rather, it was suggested that slowness of movement, when observed in HD, is a result of 
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compensatory adjustments in velocity to improve accuracy in the presence of choleric 

intrusions (Duval et al., n.d.; Fenney et al., 2008). It raises the question of whether 

bradykinetic features found in HD share the same characteristics shown by PD patients 

or healthy people of old age. 

2.3 Essential tremor 

Tremor is a rhythmic, oscillatory movement produced by alternating or synchronous 

contractions of antagonist muscles (S. Fahn et al., 2007). It is the most common 

involuntary movements humans can experience. There are many ways to categorise 

tremor. Phenomenologically, it can be divided into two, action tremor and rest tremor. 

Action tremor is recognised  when muscles are in use voluntarily. It is the opposite of rest 

tremor, which is one of the main symptoms of PD. Rest tremor is the type of tremor 

detected when the muscles are not in action. Action tremor is the main characteristic of 

Essential Tremor (ET), one of the most common neurological conditions. ET is chronic 

and progressive, and although once known as merely a motor disorder but psychological 

complications are now recognised as part of the features of this condition. ET is linked to 

degeneration of neurons in the cerebellum which is, like the basal ganglia (where 

movement disorders in PD start), also plays important roles in motor functions. Although 

patients of these two conditions experience different kinds of movements disorders, they 

have been mistaken for each other many times. A study disclosed that 30% of patients 

that were diagnosed as having ET were, in fact, having other conditions where most of 

them should be diagnosed as PD patients (Jain et al., 2006). The other way, in PD 

diagnosis, ET was one of the most common causes of misdiagnoses. The relationship 

between ET and PD always been a great interest in movement disorders research 

(Berkhout, 2015; Geraghty et al., 1985;  Jiménez-Jiménez et al., 2012; Shahed & Jankovic, 
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2016). This is especially with findings of Lewy bodies in brain matter of ET patients 

suggesting the possibility that ET is also a neurodegenerative disease. That ET is also a 

type of disease that progress with the death of certain neurons, a major debate related to 

the topic of connection between ET and PD is whether ET is a risk-factor of PD (Benito-

León, 2014; Louis et al., 2016). Even though the main similarity between PD and ET is the 

tremor itself, another main symptom of PD, bradykinesia, also exists in ET. This was 

reported in Duval et al. (2006) and a recent study by Goubault et al.(2017). Duval and 

Goubault used ET patients recorded movements of executing rapid alternate movements 

(pronation-supination) to make objective assessment. Prior to Duval, other research also 

detected a level of bradykinesia in ET patients that was comparable to mild symptoms of 

PD patients (Montgomery et al., 2000). Then, the idea was challenged by another study 

by Özekmekçi (2005) that found no significant difference of time taken to push 

microswitches between ET patients and healthy controls. Interestingly, they found 

slight prolong in ET patients, but concluded that the delay was due to the patient’s effort 

to control the tremor in executing the task. 

With all the controversies about the connections between ET and PD, until 

recently, no conclusions have been made and we are still far from learning the true nature 

of the relationship between these two disorders, if any (Algarni & Fasano, 2018). More 

methods of objective assessments are needed to confirm previous findings. 

 

2.4 Objective assessment of Bradykinesia in movement disorders 

Bradykinesia might have the highest potential as a motor progression marker of 

Parkinson’s disease (Maetzler et al., 2009). As it is the only clinical sign that is 

compulsory for diagnosis, this may also contribute to current high diagnostic inaccuracy 

of Parkinson’s disease (Bajaj et al., 2010). There are many potential objective methods to 
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assess bradykinesia in movement disorders. Research has previously used patient’s 

digitised performance in drawing the Archimedes spiral, handwriting, rapid alternate 

movement, finger tapping or doing an everyday task such as walking. Different 

technologies have been used in clinical settings; for example, wearable sensors to obtain 

kinematic data such as digitising pads for 2D drawing data, a gyroscope for rapid 

alternating movements, motion capture cameras and optical devices, as well as 

electromagnetic sensors for motion in 6 degrees of freedom (Allen et al., 2007; Daneault 

et al., 2013; Heldman et al., 2014; Heldman et al., 2011; Jobbágy et al., 2005; Rovini et 

al., 2017; Spasojević et al., 2017; Stamatakis et al., 2013; Yokoe et al., 2009a). In these 

studies, movement features were extracted from the recorded data. Features such as 

movement times, speed, rhythm, reaction times and frequencies can be used to describe 

the structure of the data or make inference by comparing the movement features of 

involved groups. Popular statistical tests were used for comparison between groups of 

movement disorders and healthy controls, to look for the difference between the means 

or standard deviation of variables. Examples of common tests are the t-test and ANOVA 

for normally distributed data; Wilcoxon rank tests or sign test for data that does not meet 

statistical assumptions required for parametric tests. 

In differentiating PD patients from healthy controls, several features of finger 

tapping movement have shown a marked difference between the two groups. Example of 

said features are finger-tapping test score (Jobbágy et al., 2005), maximum opening 

velocity and total distance of finger-tapping movement (Yokoe et al., 2009b), index for 

decrementing frequency, index for augmenting frequency, number of hesitations and 

number of halts (Stamatakis et al., 2013). Using other motor tasks, Daneault et al.(2013) 

found that maximum velocity of pronation-supination task correlated well with UPDRS 

clinician’s score. Other useful features extracted in diadochokinetic movements studies 



48  

that involve hand pronation-supination can be found in Okada & Okada (1983) and 

Jiménez-Jiménez et al. (2010). 

Other than PD patients, similar studies have been conducted on other movement 

disorders such as Huntington Disease (Garcia Ruiz et al., 2000; Künig & Alba, 2011; 

Mann et al., 2012; Martínez Pueyo et al., 2016; Müller et al., 2013; Thompson et al., 1988) 

and essential tremor (Duval et al., 2006; Jiménez-Jiménez et al., 2010; Kwon et al., 2016). 

From these studies, many important movement features have been extracted and proven 

as significant features in differentiating the groups. However, statistical analysis is usually 

focused on understanding the data (descriptive statistics) and making statements about 

the analysis of in-hand data (inference). Statistical techniques can be used in the prediction 

of unseen data points, but the performance is usually not optimum for complex, non-linear 

problems. Hence, the use of machine learning techniques which have been shown to 

classify unseen data, without prior assumptions about its statistical properties. 

2.5 Machine learning in movement disorders 

The significant features such as speed and acceleration of movement can be used to train 

classifiers that able to classify different groups automatically. The classification task is 

part of what is known as predictive modelling. Predictive modelling is basically the 

process of developing a mathematical tool or model that generates an accurate prediction 

by considering relationships between available data. Predictive modelling is commonly 

divided into two categories depending on type of the predicted data. To predict a 

continuous value a regression model is used, classification models are used when the 

response are in form of a categorical variable. There are many studies that have employed 

machine learning on PD patients’ data to evolve classifiers. For example, in Deløcan et 

al., (2011), several types of Evolutionary Algorithm-Based Neural Networks were used 
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on a PD dataset taken from repository. In Spadoto et al.(2011), a classification task used 

an Optimum-Path Forest (OPF) on available PD features of Oxford Parkinson’s Disease 

Detection Dataset. Apart from for classification task to detect PD, machine learning was 

also used to assess inter-rater agreement of motor task assessment. Martinez-Manzanera 

et al. (2015) used the popular machine learning method, Support Vector Machine (SVM) 

to check on inter-rater agreement of Bradykinesia items in MDS-UPDRS. The data in this 

study was collected using orientation sensors while PD patients performed finger tapping, 

diadochokinesis (pronation-supination) and toe-tapping. A similar study was conducted 

by Patel et al. (2009), also using SVM but the data was collected using accelerometers. 

Naive Bayes and Optimum-Path Forest were used on handwriting and spiral drawing data 

in Pereira et al.(2015). A review paper by Ahlrichs & Lawo (2013) listed many other 

studies that employed machine learning methods for automatic detection of PD motor 

symptoms. However, many of these works focused on classifying movement disorders 

patients from healthy controls. Whereas, to address the problem of misdiagnosis, the real 

challenge is to differentiate between groups of different movement disorders that 

commonly mistaken for each other. 

2.6 Conclusions 

As discussed in this chapter, bradykinesia is the only physical sign that is obligatory for 

diagnosis of PD. It is a complex clinical sign that comprises several abnormalities of 

movement including delayed initiation, reduced amplitude, reduced speed, impaired 

rhythmicity, and decrementing speed and amplitude. The phenomenology of the 

components of bradykinesia remain incompletely understood. This means that it can be 

very difficult to clinically ascertain whether bradykinesia is definitely present or not when 

a patient presents with only some of the components of bradykinesia, with very subtle 
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abnormalities or when other abnormal movements such as tremor are also present. 

Bradykinesia also exits in Huntington disease despite the fact that its main feature is 

chorea, a hyperkinetic movement. However, there are suggestions that the slowness in 

HD is not a feature, just an effort to mask other movement problems. The same goes for 

ET, bradykinesia was detected in a few studies but challenged by others. There is a 

question whether bradykinesia exists in HD and ET, and if it does, does it have the same 

characteristics with bradykinesia in PD? At the heart of this problem is uncertainty about 

the true nature of bradykinesia and its distinguishing characteristics. A better 

understanding of the characteristics of bradykinesia and how it differs between these 

groups can be used to inform clinical assessments towards conforming early diagnosis. 

Quantitative studies (using statistical analysis of recorded data) have proven it can be 

used to help objective assessment of bradykinesia and other signs of movement disorders. 

Statistical techniques are not often used in quantitative studies as the problems are often 

complex and non-linear, leading to poor performance in describing and making inferences 

about the data collected. The selection of motor tasks in previous quantitative studies 

rarely mirror the standard motor tasks used in conventional clinical assessment. 

Therefore, it is proposed that in supporting the diagnosis of movement disorders and to 

inform clinical assessment, machine learning methods applied to movement data acquired 

from standard clinically accepted motor tasks, such as the Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), is an optimal approach to 

providing an effective and practical approach to diagnosing Parkinson’s disease and 

differentiating it from other, similar neurodegenerative conditions. 
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Machine Learning 

Machine Learning  is a field that has been growing in popularity for more than 30 years. 

It has taken inspiration from many aspects of human nature and biology in various ways. 

The biggest impact of machine learning has included applications in finance, information 

technologies, decision-making, healthcare, manufacturing and securities, to name a few 

(Paliouras et al., 2003). Machine Learning is often considered to be a part of artificial 

intelligence where computer algorithms learn by itself from data and information. It then 

uses information gathered from the learning process to autonomously identify underlying 

patterns in a dataset to describe the data and also make prediction based on the given 

pattern. The capability to produce sensible outputs for new inputs that were unseen during 

learning (the ability to generalise) is the main advantage of machine learning, especially 

compared to traditional statistical analysis. Textbooks usually categorise machine 

learning algorithms based on their learning methods. Marsland (2015) classifies Machine 

Learning algorithms into four types: supervised learning, unsupervised learning, 

reinforcement learning and evolutionary learning (Table 3.1). In this thesis, only two 

types of learning algorithms were applied, supervised learning and evolutionary learning 

(evolutionary algorithm). 
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3.1 Supervised learning 

The most common type of learning is supervised learning; many real-life applications 

were based on this type of learning. In any learning algorithm, a set of data is used as the 

training data. In supervised learning, the training data consists of a set of input data that 

is mapped to its output; which is the answer that the algorithm should produce. 

 

 

 

 
 

When an underlying function from inputs to outputs exists, it is referred to as the target 

function. The estimate of the target function output by the learning algorithm is known as 

the solution of the learning problem. In the case of classification this function is 

sometimes referred to as the decision function. The solution is chosen from a set of 

candidate functions which map from the input space to the output domain (Cristianini & 

Shawe-Taylor, 2000). 

There is an overwhelming range of supervised learning algorithms to choose from. 

However, until now there is no ‘one algorithm fits all’ solution. Each algorithm has its 

          Table 3.1: Types of machine learning algorithms as defined by Marsland (2015). 
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advantages and disadvantages and users need to consider characteristics of the problem 

in-hand to decide on a suitable algorithm. Two types of very popular supervised learning 

algorithms, Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) 

are used in this study to provide a comparison of performance with the algorithm under 

investigation. 

 

Artificial Neural Networks (ANNs) 

ANNs are learning algorithms that base their learning on how the human brain processes 

information. ANNs learn (or are trained) through experience as in the human neural 

network, gain their knowledge by identifying the patterns and relationships in the data. 

ANNs have been used for a variety of tasks including the construction of models for 

prediction, clustering and classification. Basically, an ANN is a network of simple 

processing units called neurons. Signals or influences can only pass in one direction along 

given connection (also called arc or edge). The effect of the signal along a connection 

may be adjusted by a weight. This means that ANNs are weighted directed graphs. Each 

node processes the combination of weighted signals presented to it, in a manner that varies 

according to the type of an ANN. There are many types of ANNs, they can be 

differentiated from each other by looking at following criteria: 

i. connection topology, 

ii. basis function, 

iii. training method, and 

iv. learning algorithm. 

 

The connection topology defines how the processing units (nodes) are connected to each 

other. 

 



54  

The basis function defines what processing each node carries out on the combination of 

all its inputs, in order to generate its output value. 

 

The training method is concerned with how the ANN learns. ANNs can be used in 

supervised learning environment where the ANN is provided with training data (input 

data for which the output is already known), learn from it and try to predict the correct 

output for inputs not given in the training data. It can also be used in unsupervised learning 

when the ANN is not provided with outputs, but rather, is left to uncover patterns in the 

input data without a priori information as to what these patterns may be (Brabazon et al., 

2015). The main drawback of ANNs is their black box approach towards problem solving. 

An ANN does not provide more information on how the learning problem was solved. 

Symbolic rules may be extracted from trained ANNs, but other algorithms such as genetic 

programming provides better option in this area, as it is truly white box in its operation 

providing a discrete mathematical expression describing how data inputs are used in the 

resulting classification. 

 

Support Vector Machine (SVM) 

SVMs are classification algorithms that are based on statistical learning theory. It is a 

very popular supervised learning methodology in modern machine learning and perhaps 

the most used one. It can be used for classification, regression and prediction and are 

particularly suited to binary classification, where there are only two classes to the 

problem. SVMs aim for good fitting of training data, while avoiding overfitting, so that 

the solution generalises well to new instances of data (Brabazon et al., 2015). SVMs work 

on the concept of linearly separating data into their correct classes. The linear boundaries 

between classes are generally known as hyperplanes: linear or affine subspaces of 

dimension n − 1, where n is the dimension of the space of linearly separable classes. 
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Hyperplanes can be straight line in case of 2D space (Figure 3.1) or a plane in 3-D space, 

or a 3-D space in 4-D space. A hyperplane splits the n- dimensional space into two parts, 

in the positive and negative directions along the nth dimension either side of the 

hyperplane. 

 

 

 
Figure 3.2 a) shows a simple example of a dataset that can be divided into two classes 

(labels × and +) which are not linearly separable. However, when mapped into the higher 

dimensional ‘feature space’, the classes are now linearly separable (Figure 3.2 b)) 

 
 

Figure 3.2: a) Two-class dataset that is not linearly separable. b) When the dataset i (a) transformed to 

higher dimension, it is now separable. Figure from Brabazon et al. (2015) 
 

 

Figure 3.1: Hyperplane: a line that linearly separate two-class dataset (left) compared with a nonlinearly 

separable two-class dataset (right). Figure from Brabazon et al., (2015) 
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The mapping of data into a higher dimension is known as kernelling. The kernel function 

in SVM transforms the messy pattern or input vector space to the higher dimensional 

feature space by a nonlinear mapping; the classes in the feature space may be linearly 

separable even if they were not in the original pattern space. In implementing SVMs, 

choosing an appropriate kernel function and choosing good values for its associated 

parameters is very important. 

SVMs has been implemented in many real-life applications such as text classification 

tasks, handwritten digit recognition, category assignment, detecting spam and sentiment 

analysis, among others (Hearst et al.,1998; Ma & Guo, 2014). In the medical field, it has 

been used extensively for medical image recognition and classification of diseases 

(Statnikov et al., 2011) . However, SVMs have acknowledge drawbacks (Brabazon et al., 

2015): 

i. It is difficult to incorporate domain knowledge into an SVM, other than in the data 

pre-processing or kernel selection steps. 

ii. The rationale for the resulting classification decisions can be hard to reverse- 

engineer, as the support vectors provide limited information to the modeller. 

iii. SVMs were originally designed to work with real-valued vectors, so there is no 

unique way to incorporate noncontinuous data (for example, categorical data) into 

an SVM. 

iv. The SVM methodology also requires that data vectors be scaled, and different 

methods of scaling can produce different results. 
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3.2 Evolutionary Algorithms 

The Evolutionary Algorithm is a computational intelligence technique inspired by natural 

evolution and survival of plants and animals. The original basis of the technique is 

Darwin’s theory of natural selection. Biologically inspired computation is one of the 

fields inspired by Darwin’s theory which is considered to be one of the most prominent 

and important works in the history of human civilization (Serrano &  Castillo, 2012) . The 

notion suggests that all living things on earth today are results of millenniums of 

adaptations to natural environment. It is based on observation that in an ecosystem, 

different organisms must share resources. The most skilled organism in securing the 

resources and reproduction are most likely to have surviving offspring. Whilst organisms 

that are less skilled may have none or only few descendants left in the future. This was 

summarised clearly in a chart by Gregory (2009) - see Figure 3.3. The concept is  known 

as ‘the fittest survive’ or ‘the survival of the fittest’ (Eiben & Smith, 2003). EAs mimic 

this part of nature to optimize a solution to a predefined problem. 

3.2.1 EAs basic elements and components 

Since the 1960s, many algorithms with similar properties have been proposed that 

resulted in several different types and versions of EAs. The major ones are genetic 

algorithms, evolutionary programming and genetic programming. However, almost all 

EAs share a number of common elements (Coello et al., 2007; Yu & Gen, 2010) : 

 

a) Population-based. EAs maintain a group of solutions, called a population (of 

individuals), to optimize or learn the problem for potential solutions, instead of a 

single candidate solution at a time. 



58  

b) Fitness-oriented. EAs used a selection method biased by fitness. Every individual 

has its performance evaluation, called its fitness value. The better the fitness of an 

individual, the more often it is selected and the more some parts of its "genetic 

material” (parts of its candidate solution) will be passed on to later generations of 

individuals. 

 

c) Variation-driven. New individuals based on the selection of older ones are 

generated by randomised processes intended to model mutation and 

recombination & crossover. 

 

 

 
 

Basically, EAs try to find solutions by going through repetitive steps of selecting the best 

candidate based on its fitness. Initially, given a problem to solve, a set of candidate 

                                 Figure 3.3: The Basis of Natural Selection by Darwin. 
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solutions is randomly generated. The set is known as a population and the candidate as 

an individual to that population. Every individual in the population is assigned, by means 

of a fitness function, a measure of its goodness with respect to the problem under 

consideration. Based on this fitness, some of the better candidates are chosen to seed the 

next generation by applying crossover and/or mutation to them. In essence, crossover 

swaps some genetic material between two or more individuals, while mutation changes 

the value of a small part of the genetic material of an individual to a new random value, 

simulating self-replication of individuals. Executing crossover and mutation leads to a set 

of new candidates (the offspring) that compete - based on their fitness (and possibly age) 

- with the old ones for a place in the next generation. This process can be iterated until a 

candidate with sufficient quality (a solution) is found or a previously determined 

computational limit is reached. In the form of pseudo code, the process can be written as 

in Figure 3.4 (figure from Eiben & Smith (2003)). The key components and steps are 

explained graphically in Coello et al. (2007) ( Figure 3.5). 

 

 
 

 

 

                            Figure 3.4: The general scheme of EA in pseudocode. 
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3.2.2  Applications of evolutionary algorithms 

Many activities involve unstructured, real life problems are difficult to model, since they 

require several unusual factors. Certain engineering problems are complex in nature: job 

shop scheduling problems, timetabling, traveling salesman or facility layout problems. 

For all these applications, evolutionary computation provides a near-optimal solution at 

the end of an optimisation run. Evolutionary algorithms are thus made efficient because 

they are flexible, and relatively easy to hybridize with domain-dependent heuristics. 

Applications of evolutionary computation include the following fields: 

• Medicine and healthcare 

• Engineering application (including electrical, mechanical, civil, production, 

aeronautical and robotics). 

• Traveling salesman problem. 

• Machine intelligence. 

                                          Figure 3.5: Important elements of EA 
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• Expert system 

• Network design and routing 

• Wired and wireless communication networks. 

(Sivanandam & Deepa, 2008) 

 

 

Evolutionary algorithms in Medicine and Healthcare 

Since EAs were developed decades ago, they have been used to solve problem in 

medicine. EAs are considered as an alternative approach to medical quantitative studies 

(that employ statistical methods) ( Smith, 2011). Examples of EA applications in medical 

and healthcare include: 

• Medical imaging: image segmentation, image registration, reconstruction and 

correction, detection of breast cancer. 

• Data mining medical data and patient records 

• Clinical expert systems and knowledge-based systems: computer aided detector 

for breast cancer, decision support system for the diagnosis and classification of 

heart disease. 

• Modelling and simulation of medical processes 

• Clinical Diagnosis and Therapy: automated heart disease diagnosis, diagnosis of 

Parkinson’s disease, diagnosis of language impairments in speech pathology, 

diagnosis of Alzheimer’s disease, drug design, medicinal chemistry and predictive 

toxicology. 

(Gandomi et al., 2015; Smith & Cagnoni, 2011) 
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3.3 Genetic Programming 

Genetic Programming (GP) is a well-known branch of EAs. It became more widely 

adopted after the publication of John Koza’s book in 1992 (Koza, 1998). The most 

important feature of GP is its ability to automatically generate functional programs from 

a high-level statement of the problem. This addresses one of main challenges of computer 

science that is to get a computer to do what needs to be done, without telling it how to do 

it. This idea can be expanded to generate artificial intelligence by computer (Yu & Gen, 

2010). 

GP may be defined generally as any direct evolution or breeding of computer programs 

for the purpose of inductive learning. In particular, this definition leaves GP independent 

of a special type of program representation (Brameier & Banzhaf, 2007). GP is closely 

related to genetic algorithms (GA) and based on the same Darwin’s principal of “survival 

of the fittest”. Only in the case of GP, the initial population consists of computer programs 

which are generated randomly. However, three important differences exist between GAs 

and GP (Sivanandam & Deepa, 2008) : 

 

Structure: GP usually evolves tree structures while GAs evolve binary or real number 

strings. 

 

Active vs Passive: Because GP usually evolves computer programs, the solutions can be 

executed without post processing i.e. active structures, while GA’s typically operate on 

coded binary strings. i.e. passive structures, which require post-processing. 

 

Variable vs fixed length: In traditional GAs, the length of the binary string is fixed before 

the solution procedure begins. However, a GP parse tree can vary in length throughout 
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the run. Although it is recognised that in more advanced GA work, variable length strings 

are used. 

3.3.1 General form of GP 

 The representation used by genetic programming is in the form of executable 

computer programs. There are many different forms of computer programs which are 

used in genetic programming implementations, but most of them use a tree-structured 

representation. (Other representations commonly used will be introduced later in this 

section.) Usually there are two types of nodes in representing individuals: Terminals and 

Functions. 

 

Terminals are inputs to the program; they can be constants or variables. Figure 3.6 shows 

an example of a tree-structured representation for a genetic programming implementation. 

In the example a, b, y and integers are terminals. 

 

Functions take inputs and produce outputs and have some possible side-effects. The 

inputs can be terminals or the output of other functions. In the above example +, /, *,- and 

sin are functions. The functions may be standard arithmetic operations, standard 

mathematical functions, logical functions, standard programming functions or domain 

specific functions. 

 

Genetic Operators of reproduction, crossover and mutation are three basic operators in 

genetic programming (Koza, 1998). 
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Reproduction: The reproduction operation for genetic programming is asexual operation 

where it operates on only one parent and produces only one offspring. The operation of 

reproduction consists of two steps. First, a single parent is selected from the population 

according to some selection method based on fitness. Second, the selected individual is 

copied, without alteration, from the current population into the new population 

 

Crossover:  The crossover operation generates a new offspring that consists of parts of 

its parents. In Figure 3.7(a) there are two parent: A and B. Each parent independently 

selects a point for crossover operation randomly. Then two offspring will be generated by 

swapping two selected fragments of parents to produce children Figure 3.7 (b). 

 

Mutation: In genetic programming a point is selected at random within a selected 

individual. The mutation operation then removes whatever is currently at the selected 

point and whatever is below the selected point and inserts a randomly generated sub-tree. 

Another method is to randomly find a function node anywhere on the tree and then replace 

the function with another selected at random, from the set of functions, where the function 

takes the same number of arguments. 

 

Figure 3.6: An example of tree-structured GP representation. 
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In general, the process of GP can be executed by the following three steps (Koza, 1998) 

(1) Generate an initial population of random compositions of the functions and 

terminals of the problem (computer programs). 

(2) Iteratively perform the following sub steps until the termination criterion has been 

satisfied: 

a) Execute each program in the population and assign it a fitness value according 

to how well it solves the problem. 

b) Create a new population of computer programs by applying the following two 

primary operations. The operations are applied to computer program(s) in the 

population chosen with a probability based on fitness. 

(i) Copy existing computer programs to the new population. 

(ii) Create new computer programs by genetically recombining randomly 

chosen parts of two existing programs. 

                                                         Figure 3.7: Crossover operation. 
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(3) The best computer program that appeared in any generation (i.e., the best-so-far 

individual) is designated as the result of genetic programming. This result may be 

a solution (or an approximate solution) to the problem. The whole cycle visualised 

in Figure 3.8 adapted from Langdon & Poli (2002). 

 

 

 

 

3.3.2 Other representation of Genetic Programming 

GP is traditionally represented by a tree structure as explained earlier. However, non-tree 

representations have been suggested and successfully implemented. The other two 

popular representations of GP are linear and graph representations (Banzhaf et al., 1998). 

 

Linear Genetic Programming (LGP) 

LGP is where computer programs in a population are represented as a sequence of 

instructions from machine language. In linear GP programs are linear sequences of 

                                      Figure 3.8: Genetic Programming cycle. 
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instructions, as shown in Figure 3.9. The number of instructions can be fixed or varies. It 

means that all the programs can have the same length or that different individuals can 

have different size (Poli et al., 2008). 

 
 

 

As in machine language instruction execution, in linear GP, instructions read their 

input(s) from one or more registers or memory locations and store the results of their 

calculations in a register. Instructions in linear GP all have equivalent roles and 

communicate only via registers or memory. In linear GP there is no equivalent of the 

distinction between functions and terminals which is fundamental in tree-based GP. Also, 

in the absence of loops or branches, the position of the instructions determines the order 

of their execution. 

Originally there are two types of linear GPs: machine code GP, where each 

instruction is directly executable by the CPU, and interpreted linear GP, where each 

instruction is executable by some higher-level virtual machine (typically written in an 

efficient language such as C or C++). When the instructions are actual machine code, then 

the order of the elements of the representation shown in Figure 3.8 is determined by the 

particular computer architecture used, and the corresponding data must be packed into bit 

fields of appropriate sizes. On the contrary, when one is using virtual machine instructions 

the designer of a GP system has complete freedom as to how the virtual machine will 

interpret its instructions. If the goal is execution speed, then the evolved code should be 

machine code for a real computer rather than some higher-level language or virtual 

machine code (Poli et al., 2008). 

                                                         Figure 3.9: Typical LGP representation. 
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Graph-based Genetic Programming 

Starting from the middle 1990s, researchers have proposed several extensions of GP that 

able to evolve graph-like programs. A few examples of variants for this branch of GP are 

Parallel Distributed GP (PDGP), Parallel Algorithm Discovery and Orchestration 

(PADO), and Cartesian GP. Riccardo Poli in Poli (1996) proposed an approach called 

parallel distributed genetic programming (PDGP). Poli stated that PDGP can be 

considered as a generalization of GP. However, PDGP has more complex representations 

and evolves finite state automata, neural networks and more. In PDGP programs are 

represented in as graphs with nodes representing functions and terminals. 

In a system called parallel algorithm discovery and orchestration (PADO), a 

combination of GP and linear discrimination was used to obtain parallel classification 

programs for signals and images. The actions are drawn from a primitive set including 

the standard algebraic operations, minimum, maximum, negation, read from indexed 

memory; write to indexed memory, deterministic and non-deterministic branching 

instructions, and primitives related to the task of classifying images (Poli et al., 2008). 

The traditional tree representation of programs is the root of GP, even though many 

different GP approaches and program representations exist. A general motivation for 

investigating different representations in evolutionary computation is that for each 

representation form, as is the case for different learning methods in general, certain 

problem domains may exist that are more suitable than others (Brameier & Banzhaf, 

2007). 

3.3.3 Classification applications of GPs 

Daily, huge amounts of data are being stored in databases around the world. This creates 

both an opportunity and a need to discover the knowledge in such databases. If such 

knowledge discovery activity is successful, discovered knowledge can be used to improve 
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the decision-making process of an organisation (Freitas, 2010). Research fields such as 

statistic and machine learning have been used to gain the knowledge from real- world 

data sets. It is also known as data mining. Classification is probably the most studied data 

mining task and EA is an evolutionary learning technique that offers a great potential for 

classification (Espejo et al., 2010). Classification can serve many different purposes, like 

credit scoring, bankruptcy prediction, medical diagnosis, and so many more. 

The advantages of application of GP to classification task include: 

• Flexibility, which allows the technique to be adapted to the needs of each problem. 

• GP can be employed to construct classifiers using different kinds of 

representations. 

• GP can be useful not only for inducing classifiers, but also for other pre- 

processing and post processing tasks aimed at the enhancement of classifiers. 

• Interpretability, GP can employ more interpretable representation formalisms, like 

rules and automatic feature selection. 

In the classification task each data instance (or database record) belongs to a class, which 

is indicated by the value of a goal attribute. This attribute can take on a small number of 

discrete values, each of them corresponding to a class. Each instance consists of two parts, 

namely a set of predictor attribute values and a goal attribute value. The former are used 

to predict the value of the latter. The predictor attributes should be relevant for predicting 

the class (goal attribute value) of a data instance. For example, if the goal attribute 

indicates whether a patient has or will develop a certain disease, the predictor attributes 

should contain medical information relevant for this prediction. 

In a simplified version of the classification task, first the set of data instances is 

randomly divided into two subsets, called the training set and the test set. The training set 

is made entirely available to the search algorithm, so that the algorithm has access to the 
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values of both predictor attributes and the goal attribute for each data instance. The aim 

of the algorithm is to discover a relationship between the predictor attributes and the goal 

attribute using the training set. In order to discover this relationship, the algorithm has 

access to the values of both predictor attributes and the goal attribute for all instances of 

the training set. The discovered relationship is then used to predict the class (goal-attribute 

value) of all the data instances in the test set.Apart from construction of a classifier from 

a dataset, there are some other related tasks that usually have to be addressed as well such 

as data pre-processing and model interpretation and enhancement (Espejo et al., 2010). 

 

Data pre-processing. Model extraction techniques are not usually applied to the database 

in its original form. There are a great variety of pre-processing techniques available in 

order to prepare the data to take advantage of its maximum potential. Some of the issues 

to consider are s u ch  a s  the removal of noise or outliers, strategies for handling 

missing data, feature selection and construction, instance selection, data rebalancing and 

data projection, and normalisation. 

 

Model interpretation and enhancement. Sometimes the classifier obtained is not 

readily usable, and some kind of post-processing is necessary. Some of the issues to be 

addressed at this point may include the elimination of redundant knowledge, application 

of visualisation techniques, evaluation of the model obtained, translation to a more 

interpretable form, combination of models, and any other way of improving the model 

obtained. 
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3.4 Cartesian Genetic Programming 

Cartesian genetic programming (CGP), introduced by Miller and Thomson (Miller & 

Thomson, 2000), is a form of genetic programming where the candidate solutions are 

represented as a string of integers of fixed length that is mapped to a directed oriented 

graph. CGP can efficiently represent common computational structures including 

mathematical equations, computer programs, neural networks and digital circuits. CGP is 

Cartesian in the sense that the method considers a grid of nodes that are addressed in a 

Cartesian coordinate system. Although CGP is relatively new to other GPs, it has shown 

great potential with a wide range of applications. 

 
“Cartesian Genetic Programming (CGP) is now attracting considerable 

recognition as an evolutionary algorithm that not only delivers high 

performance, but one that has a representation that is flexible and easy to adapt 

to a range of applications. “ 

(Smith, 2011) 

 

3.4.1 General form of CGP 

The graphs in CGP are represented as a two-dimensional grid of computational nodes. 

The genes that make up the genotype in CGP are integers that represent where a node 

gets its data, what operations the node performs on the data and where the output data 

required by the user is to be obtained. When the genotype is decoded, some nodes may 

be ignored. This happens when node outputs are not used in the calculation of output data. 

When this happens, the nodes and their genes are referred as ‘non-coding’. Programs that 

result from the decoding of a genotype is called phenotype. The genotype in CGP has a 

fixed length. However, the size of the phenotype (in terms of the number of computational 

nodes) can be anything from zero nodes to the number of nodes defined in the genotype. 
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A phenotype would have zero nodes if all the program outputs were directly connected 

to program inputs. A phenotype would have the same number of nodes as defined in the 

genotype when every node in the graph was required. The genotype–phenotype mapping 

used in CGP is one of its defining characteristics.  

The types of computational node functions used in CGP are decided by the user 

and are listed in a function look-up table. The function gene is the address of the 

computational node function in the function look-up table. The connection genes 

determine where the node gets its data from. These genes represent addresses in a data 

structure (typically an array). Nodes take their inputs in a feed-forward manner from 

either the output of nodes in a previous column or from a program input (also known as 

a terminal). The number of connection genes a node has is chosen to be the maximum 

number of inputs (often called the arity) that any function in the function look-up table 

has. The program data inputs are given the absolute data addresses 0 to ni - 1 where ni is 

the number of program inputs. The data outputs of nodes in the genotype are given 

addresses sequentially, column by column, starting from ni to ni +Ln −1, where Ln is the 

user-determined upper bound of the number of nodes.The general form of a Cartesian 

genetic program is shown in Figure 3.10 (figure from Miller (2011)). If the problem 

requires no program outputs, then no integers are added to the end of the genotype. In 

general, there may be several output genes (Oi) which specify where the program outputs 

are taken from. Each of these is an address of a node where the program output data is 

taken from (Miller, 2011). 
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3.4.2 Encoding 

CGP encodes a candidate solution (typically a circuit or a program) using an array 

consisting of c x r programmable nodes. The c determines the number of columns and r 

determines the number of rows. These are two out of three parameters that are chosen by 

the user. The third one is levels back, denoted by l. The product of the first two parameters 

determine the maximum number of computational nodes allowed: Ln = ncnr. The 

parameter l controls the connectivity of the graph encoded. Levels-back constrains which 

columns a node can get its inputs from. If l = 1, a node can get its inputs only from a node 

in the column on its immediate left or from a primary input. If l = 2, a node can have its 

inputs connected to the outputs of any nodes in the immediate left two columns of nodes 

or a primary input. Each node input can be connected either to the output of a node placed 

in the previous l columns or to one of the program inputs. Because of the complicated 

evaluation, feedback is not allowed in the standard version of CGP. The main feature of 

CGP is that all the parameters including the number of programmable nodes is fixed. It 

means that the array of programmable nodes can be encoded as a string of integers which 

has the fixed number of items. The main advantage of CGP encoding is that even if the 

                                                          Figure 3.10: General form of CGP. 
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size of chromosome is fixed, the size of phenotype is variable since some nodes need not 

to be used. 

An example of 2 x 2 nodes CGP network is shown in Figure 3.11 from  Smith, 

(2011). Inputs, I/P 0 and I/P 1 feed the input values to the network, manipulated by 

function in each node and deliver the result to the output, O/P 0. The reference number of 

each node is shown in the top right-hand corner of each node. Table 3.2 shown example 

of a look-up table that listed user defined functions of the nodes in the network. 

 

 

                                                           Figure 3.11: Example of a CGP network. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Example of function set look-up table. 
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3.4.3 Evolution of CGP genotypes 

CGP uses two common EAs operators; mutation and crossover /recombination. The 

former is mostly used compare to the latter. 

 

 

Mutation 

A point mutation operator is used in CGP. In a point mutation, an allele at a randomly 

chosen gene location is changed to another valid random value. If a function gene is 

chosen for mutation, then a valid value is the address of any function in the function set, 

whereas if an input gene is chosen for mutation, then a valid value is the address of the 

output of any previous node in the genotype or of any program input. Also, a valid value 

for a program output gene is the address of the output of any node in the genotype or the 

address of a program input. The number of genes in the genotype that can be mutated in 

a single application is determine by a user defined mutation rate, μr which is normally a 

percentage of the total number of genes in the genotype. An example of point mutation is 

shown in Figure 3.12 ( Figure from Miller (2011)). 

 
Crossover 

Recombination operators have received relatively little attention in CGP. Originally, a 

one-point crossover operator was used in CGP (similar to the n-point crossover in genetic 

algorithms) but other studies also suggest improvement to the performance of CGP by 

using floating-point crossover operator (Clegg et al.,2007). 
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                                                          Figure 3.12: Point Mutation process. 

 

3.4.4 Evolutionary strategy 

CGP usually uses a variant of a simple algorithm called (1 + 4). Figure 3.13 shown the 

procedure of 1 + 4 strategy (from (Miller, 2011)). One of the conditions of the algorithm 

is an offspring is always chosen as a new parent if it is equally as fit or has better fitness 

than the parent ( Figure 3.14). When offspring genotypes in the population have the same 

fitness as the parent and there is no offspring that is better than the parent, in that case an 

offspring is chosen as the new parent (Figure from Miller & Thomson ( 2000)). 

 

 

Figure 3.13: : The (1+4) evolutionary strategy. 



 

 
 

                                              Figure 3.14: Priority to offspring with same fitness as parent. 

 

3.4.5 CGP medical applications 

There are many examples where CGP and its variants have been used in classification 

tasks involving medical data. One of the early examples is a work that classifies 

mammogram data in detection of breast cancer (Hope et al., 2007). Also, on detection of 

breast cancer, a CGP variant, Cartesian genetic programming evolved artificial neural 

networks (CGPANN) have been used in Ahmad et al. (2012) to determine whether a 

breast cancer is ‘‘malignant’’ or ‘‘benign’’ based on features of breast mass. Other 

examples are classifications for diagnosis of Alzheimer’s disease (Hazell & Smith, 2008), 

classification of arrhythmia for Cardiovascular diseases (Ahmad et al., 2013) 

discriminating normal and cancerous thyroid cell lines (Lones et al., 2010), classifications 

of PD patients from healthy controls based on movement data ( Lones et al., 2014) and 

many more. 

 

 

 

 

 

 



 

3.5 Summary 

Machine learning is not a new founded field, yet it continues to expand with algorithms 

inspired by new inspirations from biology and nature. Consequently, there are a great 

number of algorithms to choose from for problem solving. In a classification task, popular 

algorithms such as Support Vector Machines (SVMs) and Artificial Neural Networks 

(ANNs) usually perform very well. However, the ANN is a ‘black box’ that makes 

understanding of how the problem was solved, difficult to achieve. SVM also does not 

provide rationale for the resulting classification decisions. This study’s main objectives 

are to differentiate and characterise movement disorders. Although popular algorithms 

such as SVM and ANN can differentiate very well, they cannot help with characterisation 

to the same degree. An evolutionary algorithm such as Genetic Programming (GP) is 

more suitable for this task. In this thesis, the main algorithm used is Cartesian Genetic 

Programming (CGP). CGP is a type of graph-based genetic programming with increasing 

applications across many aspects of real life. CGP typically finds good solutions 

efficiently in few evaluations. Although it uses many generations, it also uses extremely 

small populations, of typically five individuals, where one individual is the fittest from 

the previous generation. Other advantages of CGP is that it does not bloat like other forms 

of GP and sub functions can be easily reused in the Cartesian representation. CGP has 

been shown to successfully classify and characterised medical data in previous examples, 

providing further justification for its use in this study. 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

                                                            

Methodology 

This chapter describes the methodology adopted in obtaining measurements from patients 

in the respective clinical studies undertaken in medical centres as part of ongoing research 

in collaboration with University of York . 

Participants with different neurological disorders and healthy adults (controls) were 

recruited by qualified clinicians in two medical centres: 

• Leeds Teaching Hospitals NHS Trust, UK 

• Monash Medical Centre, Melbourne, Australia 

All patients have an established clinical diagnosis according to the relevant diagnostic 

criteria, established at the respective medical centres. Controls are healthy adults with  no 

expression or history of a medical disorder that could affect movement. 

4.1 Data Collection 

Data collections were administered in line with the protocols written for the study under 

investigation but share common clinical settings in comparable testing environments for 

clinical evaluation. All subjects provided informed written consent and approval was 



 

obtained from Yorkshire and Humber Sheffield Research Ethics Committee (HREC code: 

14/YH/0143). 

4.1.1 Equipment 

The Polhemus Patriot EM tracking sensor system, a motion tracking system is used for 

data collection. The Polhemus device comprises a system electronics unit (SEU), a 

magnetic transmitter and two electromagnetic (EM) tracking sensors (Figure 4.1). The 

transmitter serves as the system’s reference frame where the EM sensors record positions 

and orientations relative to the transmitter in six degrees of freedom with an update rate 

of 60 Hz per sensor. 

 

 

 
The collection of data was administered in a clinical setting as a common practice of 

motor examination of MDS-UPDRS. The electromagnetic sensors (EM sensors) were 

attached to the thumb and index finger using Velcro tapes (Figure 4.2). For consistency, 

the sensors were attached at the same places during the administration of all the three 

tasks. The Polhemus device is based on varying magnetic fields. Large metal objects can 

affect the fields, and this adversely affects the results. Therefore, care was taken to 

Figure 4.1: Polhemus Patriot system (www.polhemus.com), a motion tracking system used to record 

movements during the motor assessment. a) SEU, b) magnetic transmitter cube and, c) EM sensors. 



 

examine the effect of metal objects used in performing the tasks. The position of subjects 

and their distance from the Polhemus transmitter cube during measurement is also 

important. 

 

                              Figure 4.2: EM sensors were attached on nail beds of index finger and thumb. 

 

This is due to the manufacturer recommended maximum distance from the sensors to the 

transmitter is about 150 cm; beyond this limit, the recordings will be interrupted. To make 

sure the positions of sensors were always within the working distance, clinicians used a 

fixed arrangement for the subject and the equipment as shown in Figure 4.3. 

 

 

Figure 4.3: Arrangement of the motion tracking system and participant position during movement 

recordings. 



 

After the sensors were fastened to the thumb and index finger, the participant was 

requested to sit straight with their back to the chair. Next, they were asked to lift their 

dominant hand unsupported so that it was around the level of their shoulder. The clinician 

demonstrates the correct way to perform the task, but the demonstration was not carried 

on during the execution by the participants. The participants were not allowed any 

practice movement; the first attempt was recorded as the experimental data. The recording 

was only repeated if there were technical problems such as the system was not recording, 

or the output file was not saved automatically to the storage or the sensors were not at 

correct positions. After the measurement the dominant hand was repeated two times, the 

sensors then were attached to the non-dominant hand to complete the same measurement. 

The Patriot system allows for customisation of the interface (Figure 4.4) where the tasks 

were sequenced along with instructions on how to execute the task. Before the recording 

started, clinicians can enter demographic and medical information of the participant. 

When the recording of movements was completed, the system stores the data file 

at a designated location with a pre-determined file name that combined unique participant 

code along with date and time of the assessment. The created interface and automatic 

storage system ensured clinicians (involved in this study) in different centres to follow 

the same protocol of the assessment and data storage management. Encrypted data files 

were hand-delivered or transmitted electronically from the test centres to the University 

of York to be analysed. 

 
 

 

 



 

 

Figure 4.4: An example of the interface created to ensure the same protocol was followed by clinicians 

from different centres. 

 

4.1.2 Movement tasks 

The Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) was used as the conventional clinical evaluation from which participant 

measurements were to be captured. The MDS-UPDRS has four sections: 

Part I: non-motor experiences of daily living  

Part II: motor experiences of daily living  

Part III: motor examination, and 

Part IV: motor complications 

Part I, II and IV are based on the history taking of the subjects by the clinician and 

patients personal notes (if any). Part III, also referred to as the motor section, is based on 

the examination by the clinician. This rating scale evaluates the severity of PD symptoms 

in a 5-points scoring system (0 for no symptom and 4 for a marked severity of the 

symptom). 



 

For this study, subjects performed the following MDS-UPDRS items 

• Finger tapping 

• Hand opening-closing (written as hand movements in MDS-UPDRS) 

• Pronation/Supination 

4.2 Computation of movement features 

Based on the literature and direct consultations with clinicians involved in the research, 

movement features were extracted from the recordings and used as input to the classifiers. 

The nature of the movement in each task also considered. The features extracted contain 

important information about the bradykinesia characteristics of every movement task. In 

order to calculate the features, the data were first pre-processed. 

4.2.1 Data pre-processing 

The Polhemus device returns the recordings of movements for both sensors in a text file 

consisting of eight columns (Figure 4.5). The first column is sensor numbers: 01 refers to 

thumb sensor and 02 is finger sensor. The next three columns give readings for the 

Cartesian coordinates of X, Y and Z, in that order. Columns four to six are for orientations 



 

in Euler angles: azimuth, elevation and roll respectively. The last column is the time stamp 

at which the specific measurement was made. 

 

 

 

Digital filtering 

In a study of movement where the signal is anatomical coordinate that changes with time, 

noise might be a problem. The presence of this higher-frequency noise is of considerable 

importance when considering the problem of trying to calculate velocities and 

accelerations (Winter, 2009). The kinematics data in this research were pre-processed to 

remove noise using the Low Pass 5Hz Butterworth filter. The Butterworth filter is the 

most common filter used in biomechanics data analysis due to its excellent passband 

response (Christodoulakis et al., 2010). Figure 4.6 shows an example of raw finger 

tapping data plot against time before and after passing through the filter. 

Figure 4.5 : Content of the text file returns by Polhemus device contains recordings of the movement in six 

degrees of freedom. 
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Figure 4.6: The raw data of Cartesian coordinates in the left column effectively smoothed using Butterworth 

filter as shown in the right column. 
 

4.2.2 Finger Tapping computed features 

As mentioned in Chapter 2, finger tapping task is a very popular task in studies that 

evaluate motor symptoms of PD. Previous studies using finger tapping to assess 

movement disorders were detailed in Section 2.4. In this study, nineteen kinematic 

features were selected to represents FT movement. The selection of the features was based 

on the literature and direct consultation from the clinicians involved in this study. Most 

of the features were adapted directly from Lacy (2013). Lacy  used the same  FT protocol 

and equipment with this study and successfully evolved very high-performance classifiers 

of PD and healthy controls. The rest of the features were based on findings from Yokoe 

et al. (2009), Stamatakis et al. (2013), Jobbágyly et al. (2005), Espay et al. (2009) and  

Teo et al. ( 2013)  Table 4.1 mapped each feature to the research that it was based on. 
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                                       Table 4.1: Movement features of finger tapping task. 

Feature Previous study 

Mean amplitude  

Mean speed 

Max opening acceleration 

Max opening deceleration 

Max closing acceleration 

Max closing deceleration 

Periodicity  

COV amplitude ( amplitude rhythm) 

COV speed (speed rhythm) 

Lacy (2013) 

Halts  

Hesitation 

Decrementing amplitude 

Decrementing speed  

Cycles frequency  

Stamatakis et al. (2013) 

Amp*freq Jobbágyly et al. (2005) 

Max overall amplitude 

Max overall speed 
Espay et al., (2009) 

Max opening speed 

Max closing speed 
Yokoe et al. (2009) 

 

The version of finger tapping in this study was administered as suggested in the motor 

section of MDS-UPDRS. Participants were guided to continually tap their index finger to 

the thumb as fast and as widely as possible for ten repetitions. There are two phases of 

finger tapping task, closing phase and opening phase ( Figure 4.7). The sequence started 

with the closing phase. For the finger tapping task, only positional data of x, y and z are 

used for the calculation of the features. The separation distance between the finger and 

the thumb during the finger tapping action was computed by first calculating the difference 

between the x, y and z coordinate values for the respective sensors (Xd, Yd and Zd), and 

then, calculating the Euclidean distance, or overall positional separation, between index 

finger and thumb.  
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                   Figure 4.7: a) Finger tapping closed position. b) Finger tapping maximum opening. 

 

 

 

The Euclidean distance D, was calculated as: 

 

However, different hand sizes of subjects can give the effect of bigger or smaller 

amplitude that may result in vary speeds and accelerations of tapping sequences 

dependent on hand size. Additionally, as the sensors were placed on the nails beds, there 

was a gap between two sensors that depended on the thickness of the subject’s thumb and 

finger. The gap was considered as the minimum separation during measurement. To avoid 

this human factor affecting the calculation results, the separation data were normalised to 

scale of 0 to 1 to represent the relative distance between the thumb and finger. To do this, 

first, the minimum separation value for each subject was subtracted from all its other 

separation data points. The resulting values were then divided by the maximum separation 

of the tapping recording. The normalised separation time series data, Dn, then was 

differentiated to produce the speed time series data (dDn/t) and then differentiated again 

to give the acceleration time series data (dDn2/t). Figure 4.8 shows examples of 

amplitude, speed and acceleration data of a healthy control. 

a) 
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Figure 4.8 : Visuals of time series kinematic FT data. From top is amplitude in centimetres, velocity and 

acceleration for ten cycles of finger tapping. 
 

 

Calculation of movement features 

There are two approaches for calculating the features; most of the features are based on 

individual finger tapping cycles, but some features were calculated over the whole taping 

sequence. 

 

A. Calculation within a single finger tap cycle 

A full FT cycle comprises completed closing and opening phases. The closing phase 

begins once the sensors move towards one another after the point of maximal separation 

and finishes when the sensors have achieved a minimum separation; the opening phase 

begins once the fingers are separated, from an initially closed position equating to a 

minimal distance between the sensors to when they are maximally separated (Figure 4.9). 

Minimum, maximum and average of the normalised amplitude, speed and acceleration of 

both cycle phases were computed. 
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The features were calculated as follows:  

Amplitude 

The term amplitude here refers to the normalised separation values between sensors 

during the FT movement, thus, generating values between 0 and 1. 

• Maximum overall amplitude: The maximum amplitude for each FT cycle was 

taken, the mean over the whole test then calculated to obtain a single value for 

each test. 

• Mean overall amplitude: The mean amplitude of each FT cycle is calculated and 

then averaged. 

 
 

 

Figure 4.9: Separation data are showing opening and closing phases of a tapping cycle. Maximum amplitude 

is when the thumb and finger are farthest apart. 

 

 

Speed 

The speed instead of velocity is calculated because the goal is to observe the slowness 

regardless of the direction of movement. The following speed components were 

calculated: 
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• Maximum overall speed: The maximum speed reached in every FT cycle is 

averaged to obtain this value. 

• Maximum opening speed: The average maximum speed of individual FT cycles 

during the opening phase 

• Maximum closing speed: The average maximum speed of individual FT cycles 

during the closing phase 

 

Acceleration and deceleration 

Acceleration and deceleration in cm/s2 were calculated separately for opening and closing 

phases of each FT tap. The following components were calculated: 

 

• Maximum opening acceleration: The fastest acceleration during the opening 

phase of each FT tap was taken. The values were then averaged to get a single 

value for each test. 

• Maximum opening deceleration: The most negative acceleration during the 

opening phase of each FT tap was taken. The values were then averaged to get a 

single value for each test. 

• Maximum closing acceleration: The fastest acceleration during the closing 

phase of each FT tap was taken. The values were then averaged to get a single 

value for each test. 

• Maximum closing deceleration: The most negative acceleration during the 

closing phase of each FT tap was taken. The values were then averaged to get a 

single value for each test. 
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Periodicity 

Measures of amplitude and speed alone may not be sufficient to capture the full movement 

patterns of subjects. For example, a subject may be faster due to smaller amplitude and 

vice versa. To express the relationship between these components a variable called 

periodicity was calculated for each tap cycle as follows: 

 
 

The mean was then taken to provide a single value for the whole test. 

 

 
 

B. Calculation over tapping sequences 

 
 

Cycles frequency 

Patients often have difficulties in performing the exact number of the cycles as instructed. 

Therefore, cycles frequency is one of the features selected instead of time taken to finish 

the task. 

 
 
 

Decrementing amplitude and speed 

To calculate the decrementing trend, maximum separation amplitude or speed for each 

tap cycle, each value was linearly regressed against the number of cycles. A negative 

slope indicates that the overall trend of a movement component measure is decrementing 

and a zero or positive slope indicates that there is no decrementing pattern. Figure 4.10 

provides examples of linear regression plots of maximum amplitude to obtain the slope 

indicating a trend of separation amplitude. 
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Halts 

Halts were measured by calculating the percentage of the tap cycle duration spent at ‘zero’ 

speed. ‘Zero’ speed is assumed as when the speed is less than five percent (< 5%) of the 

maximum speed of the whole test. 

 
 

Hesitation 

When the movement showed smaller peaks between tapping cycle phases (Figure 4.11), 

it is treated as hesitation. All the hesitations detected in a test total up to a single value. 

                                  Figure 4.10: Amplitude decrement pattern 



94  

 

                                                               Figure 4.11: Hesitations in tapping cycle 
 

 

Coefficient of Variation (COV) 

To measure rhythm, the Coefficient of Variation (COV) was used. COV reflects how 

much a movement component measure varies over a defined period. It shows how 

rhythmic the repetitive movements are. High COV values imply less rhythmic 

movements than small COV values. COV of amplitude and speed were calculated over a 

period of tapping cycles as following: 

 

 
 

Bigger amplitude with greater frequency during finger tapping means faster finger 

movement. This is considered to be a better performance. Alternatively, the movement 

can be executed faster with smaller amplitude. The amplitude × frequency of tapping is 

suggested in  Jobbágy et al. (2005) to characterise the speed. This feature is determined for 

each tapping cycle and then averaged over the whole test. 
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All nineteen features extracted from the finger tapping (FT) task were given input 

numbers to be used as classifier inputs  (Table 4.2). 

 
                               Table 4.2: FT extracted features with classifiers input numbers 

 
 

4.2.3 Hand pronation-supination computed features 

For the hand pronation-supination task (PS), the MDS-UPDRS requires the participant to 

extend the arm out in front of their body with the palms face down and then turn the palm 

up and down alternately 10 times as fast and fully as possible. (Figure 4.12) 
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Figure 4.12: Hand pronation-supination task: the phase when the palm is facing down is called pronation. 

Supination is the phase when subject twists the palm up from pronation phase. 

 

After some experimentation, it was concluded that the most useful data in our pronation- 

supination recordings came from the movement of the thumb. The PS cycle starts with 

the pronation phase followed by supination (Figure 4.13). Referring to  the thumb sensor 

recorded movement, when the position of thumb sensor (position A) begin to change at 

the beginning of the task, it is considered as the start of the pronation phase. When the 

sensor reaches point B and starts moving towards C, the supination phase starts. 

For analysis of movement using only one sensor, the amplitude is defined as the Euclidean 

distance between thumb sensor and Patriot transmitter. 

 
 

Speed was calculated by differentiation of each Cartesian coordinate component (x, y, z) 

over the sampling time to compute the respective velocity components (𝑣𝑥,𝑣𝑦,𝑣𝑧 ) . The 

total velocity was computed from the sum of its components and its magnitude, the speed: 
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                            Table 4.3: Extracted features of PS. 

 
 

 

                                              Figure 4.13: Phases of pronation-supination. 
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Acceleration is obtained by differentiating the speed, using the same sampling time. The 

same method of calculation as in Section 4.2.2 was used to compute items (0) to (18) in 

Table 4.3. 

4.2.4 Hand opening-closing 

Item 3.5 in MDS-UPDRS is hand movements, which is known as hand opening-closing 

in this study. In this task, participants were first instructed to make a tight fist with the 

arm bent at the elbow so that the palm faces the examiner (Figure 4.14). Subjects were 

then asked to open the hand as fully and as quickly as possible. The participant repeated 

the opening and closing movements ten times. 

 

 

Figure 4.14: The phases of hand opening-closing task. Subject starts with the hand closed by making a fist 

and proceeds to the opening phase by fully opens the hand.. 

 

 
In the hand opening-closing task, sensors were placed at the same positions as in the 

finger tapping task. However, unlike finger tapping, which is a simultaneous movement 

of thumb and fingers, the hand-opening task involves two steps movement. Therefore, the 

selection of extracted features was considering the measurements of both sensors 

separately. The cycle of the HO task started from the closing position to maximum 

amplitude opening and back to closing position. Figure 4.15 shows the task cycle 

represented by the movement of the finger sensor (FS) amplitude. 
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The calculation of amplitude for each sensor used the Euclidean distance between the 

Patriot transmitter and the sensor itself (as in section 4.2.3). The speed and acceleration 

is then calculated from the amplitude values. . The maximum values for each sensor are 

the highest from both phases, opening or closing. For example, to get FS maximum 

speed, the maximum speeds of the finger sensor during the opening and closing phases 

were compared, whichever is higher is taken as the feature. 

 

 

 

                                     Figure 4.15: The opening and closing phases of the HO task. 

 
 

The thumb and finger movement data executing the HO task were used to compute the 

total of seventeen features (Table 4.4). 
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                                         Table 4.4: Hand-opening extracted features. 

 
 

4.3 CGP Classification 

The classification used a typical CGP evolutionary strategy which selects one parent from 

each generation and uses mutation to produce four children. The next generation then 

comprises the parent and the four children, giving a population of size five - four children 

plus one parent: (1+4) - ES. The fitness assigned to each classifier is simply the proportion 

of samples correctly classified. Previous CGP classifiers of FT (refer section 2.5) used 

the area under a ROC Curve (Fawcett 2006) as fitness function, but in this study, 

classification accuracy is used for simplicity and directcomparison.  

The CGP platform used to evolve the classifiers was developed by Turner & 

Miller, (2014) called the CGP-Library. The CGP-Library provides a number of structures 

including which describe the CGP parameters and CGP chromosomes.These structures 
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are initialised and freed up using provided functions. The following three CGP-Library 

structures are used to train and test classifiers. 

• The parameters structure is used to store general CGP parameters including the 

size of the chromosomes, the evolutionary strategy to use and the mutation rate. 

• The dataSet structure is used to store input output pairs of data which may be used 

by the fitness function.   

• The chromosome structure is used to store the fittest chromosome found after CGP 

has been applied towards the classification  task. 

Through experimentation, the CGP parameters values as in Table 4.5 were adopted. The 

function set comprised ({+, -,×,÷,mean, min, max, mode }).  

 
 

                            Table 4.5: CGP parameters adopted to evolve classifiers. 

Evolutionary strategies (1+4) - ES. 

Nodes available 15,50 

Node arity 2,5 

Mutation rate 0.05 

Function set ({+, −, ×, ÷, 𝑚𝑒𝑎𝑛, 𝑚𝑖𝑛, max, 𝑚𝑜𝑑𝑒}) 

Generations 10000 

 

The features extracted from the movement tasks were used as the inputs to evolve 

classifiers. For each movement recording, a set of input values were computed. The input 

values are floating numbers from calculation explained in Section 4.2. Each set of input 

was mapped to one output according to the group of the input data. For example, an input 

set belong to the Control group was given output ‘0’, and ‘1’ for PD group. Figure 4.16 

shown an example of CGP network with FT features as inputs. The number in bracket  

represents a node number; where a node can be an input node or a function node.  Each 

function node is labelled with a textural description of the operation it undertakes such as 
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‘add’. The nodes in the network are numbered sequentially starting at zero with the first 

of the input nodes. Therefore, the input numbers in the CGP network are tally with the 

input numbers in Table 4.2, 4.3 and 4.4. The movement features data  was fed into the 

algorithms in the form of dataset files. There were two text files in each 

 

Figure 4.16: Example of a CGP netwrork using FT movement features as input. 
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training-test cycle; the training file contained data to train a classifier and the test data that 

is later used to test the predictive accuracy of the evolved classifier. The CGP platform 

requires a specific format of dataset file. The header of the text file contains information 

on the number of inputs, outputs and lines of data samples (Figure 4.17). The following 

lines comprise the inputs followed by the outputs for each sample with all the values 

comma separated. In every sample line, the input values were arranged according to the 

sequence of the input numbers of the features extracted.  

 

 

 

           Figure 4.17: The computed features arranged in a text file to be used in the classification task. 

 

4.3.1 Repeated stratified K-fold cross-validation 

To compensate for any effect on results caused by small amounts of training and test data, 

the repeated k-fold cross-validation was used along with the stratification of data. 

In the k-fold cross-validation method, the overall data set is divided into separate k groups 

of the same, or approximately the same size. In each iteration, only a fold is used for 

evaluation (test set), and the rest of the folds are used for model training (training set). In 

machine learning, k= 10 is a very popular choice for the number of folds. However, in 

this study, the number of participants is not big enough to be divided into ten groups. 
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Thus, k =5 is used, and in some cases, k = 3. Figure 4.18 illustrates the 5-fold cross 

validation with A as the resulting accuracy which is the average of all iterations. 

 

                                       Figure 4.18:5-fold cross-validation technique. 

 

In small sample size classification such as in this study, a class imbalance can easily 

occur. This can happen in the partition itself, although the overall classes are balanced. 

For example, consider the healthy controls and PD patients’ dataset. There are kinematics 

data for 22 controls and 20 PD patients which is almost a balanced class distribution. 

However, when the data set is randomly partitioned, it is possible that the class 

balancewill be destroyed. The training set may contain more healthy controls than PD 

patients and the opposite for the test set. To avoid this, the data were stratified. It means 

that when the data were divided into groups (folds), the program was written to randomly 

pick a balanced number of subjects from both groups for each fold. The k-fold cross-

validation was repeated ten times for improving statistical significance and to increase 

the number of predictions. The data is reshuffled and re-stratified before each run. 
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4.3.2 Record-wise and Subject-wise cross-validation. 

Participants repeat the movement task twice for each hand. Each participant will have at 

least four different kinematic records of the same task. There are two ways the data can 

be partitioned for cross-validation: record-wise or subject-wise. In record-wise validation, 

all the records were used as different samples and randomly divided into training and test 

sets. Whilst in a subject-wise validation, the records for the same subject will not be in 

the training and test set at the same time. Figure 4.19 visualises subject-wise and record- 

wise cross-validation for clinical predictions. 

 

Figure 4.19: Visualisation of subject-wise and record-wise cross-validation used at the stage of selecting 

kinematic features into training and test set. 

 

Saeb et al. (2017) in their critical article proposed that in the clinical diagnostic 

application of machine learning, subject-wise CV should be used instead of records-wise 

CV. Using empirical evidence and simulation of classification on a few public database, 

they claimed that record-wise CV greatly overvalues the prediction accuracy of the 

algorithms used. They believed this is because records-wise CV creates a dependence 

between training and test sets due to shared subjects across train/test sets, so it will 

produce biased estimates. However, reviewers believed that it is not fair to oversimplify 

the application of the cross-validation technique and make assumptions based on the 

results of a few simulations (Little et al., 2017). In this study, both types of CV were used, 

and comparisons were made between the accuracies of both methods. 
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4.3.3 Comparisons with other methods of machine learning 

In medical classification, there are other methods that are popular and useful for the 

purpose of classifying classes (refer to Chapter 2). In this study, two other machine 

algorithms were used as a comparison to evaluate the performance of CGP in the 

classification task. The algorithms are Support Vector Machine (SVM) and Artificial 

Neural Network (ANN). 

For SVM, the WEKA default algorithm that employed sequential minimal 

optimization algorithm (SMO) for training a support vector classifier was used. The 

default settings used polinomial kernel function.  Different experiments were done using 

other kernel functions (Gaussian, linear) without any marked improvement in the 

accuracies, so the WEKA SMO default settings were used.  

The Neural network used was a feed-forward back propagation network with 20 

hidden layers and a tan-Sigmoid transfer function. The number of hidden layers was 

chosen using an iterative method; the number of hidden layers were increased gradually 

registering the maximum improvement in the results when 20 is considered. A greater 

number of hidden layers did not improve the results so the hidden layer number was 

chosen equal to 20. For both algorithms, 10-fold cross-validation was used , and all 

records treated as different instances (record-wise cross- validation)  

4.4 Summary 

There are many ways movement data collection can be done. We opted for the low-cost, 

easy to used equipment for this study. The motion tracker, Polhemus only used two 

electromagnetic sensors but able to records movement in six degrees of freedom. Good 

quality of data is very important in machine learning classification task. The data 

collected were pre-processed and explored to get to know the data. Based on previous 
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quantitative studies of PD motor tasks, many movement features were extracted. 

Statistical tests conducted for selection of useful features. The extracted feature were used 

to evolve classifiers that able to differentiate between groups of movement disorders and 

healthy controls. 
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Evaluation of Bradykinesia in Parkinson’s Disease and 

other movement disorders 

As discussed in Chapter 2, of the four main signs of Parkinson’s disease, bradykinesia is 

the only mandatory motor sign for a clinical diagnosis of PD ( Heldman et al., 2011). The 

complex nature of bradykinesia makes it difficult for clinicians to be certain of its 

existence in the early stages of Parkinson’s disease. Bradykinesia also exists in 

Huntington’s disease (HD), a genetically inherited neurodegenerative condition that 

causes movement disorders such as chorea (Garcia Ruiz et al., 2000; Martínez Pueyo et 

al., 2016; Thompson et al., 1988). On the contrary, there is research suggesting that 

bradykinesia is not a core feature of movement disturbance in HD (Duval et al., n.d.; 

Fenney et al., 2008). The same pattern occurs in the case of Essential Tremor. A few 

papers suggest Bradykinesia exists in ET (Duval et al., 2006; Goubault et al., 2017), but 

others oppose the idea (Özekmekçi, 2005). The aim of this work is to provide a better 

understanding of the characteristics of bradykinesia, how they differ between these 

conditions and may be used to confirm an early diagnosis and inform clinical assessment. 

In light of the arguments presented in Chapter 3, a type of Evolutionary Algorithm (EA), 

Cartesian Genetic Programming (CGP), was applied to the movement data of motor tasks 
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obtained from conventional clinical assessment using the Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008), as 

described in Chapter 4. The aim being to evolve diagnostic classifiers that can 

differentiate between the specified movement disorders. Movement data were provided 

by a team of clinicians and neurologists through a joint research project funded by Centre 

for Chronic Diseases and Disorders, University of York. Data collection was undertaken 

in two research centres; Leeds Teaching Hospitals NHS Trust, UK and the Monash 

Medical Centre, Melbourne, Australia. Participants in the United Kingdom were recruited 

primarily from Dr Jane Alty’s and Dr Stuart Jamieson’s consultant caseload. Both Dr Alty 

and Dr Jamieson are consultant Neurologists at Leeds Teaching Hospital NHS Trust. 

Patients recruited had an established clinical diagnosis of PD, HD and ET according to 

diagnostic criteria performed by consultants working at these centres. Healthy controls in 

this study are healthy adults with no history of a medical disorder that could affect 

movement i.e. exclusion criteria for controls include tremor, clinically diagnosed 

parkinsonism, stroke, dopamine receptor antagonists’ drugs, significant arthritis of upper 

limbs, dementia, inability to provide informed consent. In total, 27 healthy controls were 

recruited. Each participant wore electromagnetic sensors on their thumb and index finger 

and then performed three MDS-UPDRS motor tasks: finger tapping, hand pronation- 

supination and hand opening-closing, as described in Chapter 4. The recorded movement 

data was then used as inputs to train the CGP networks. Full details of the methodology 

used is described in Chapter 4. This study was designed to answer following questions: 

 
Primary question: 

 
What features of bradykinesia differentiate subjects with PD from subjects with other 

movement disorders and from healthy age-matched controls? 
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Secondary questions: 

 

i) What are the essential differences between age-related loss of movement 

efficiency and bradykinesia in idiopathic PD? 

ii) How is the bradykinesia of PD different from other non-PD parkinsonian 

conditions such as Huntington’s disease? 

iii) Do subjects with non-parkinsonian tremulous conditions such as Essential tremor 

also exhibit bradykinesia? 

5.1 Bradykinesia in Parkinson’s Disease and healthy controls 

Using finger tapping (FT) data, Evolutionary Algorithms (EAs) have previously been 

used to evolve high accuracy classifiers that differentiate Parkinson's disease patients 

from healthy controls ( Lones et al., 2014; Smith & Timmis, 2008). Further investigation 

into the classifiers evolved was able to characterise movement disorder in PD ( Lacy et 

al., 2013) and inform clinical assessment (Lones et al., 2013). This study is extending 

these successful previous studies by using other motor tasks to evolve classifiers. Two 

additional motor tasks are hand pronation-supination (PS) and hand opening-closing 

(HO). FT data were used as a comparison and a baseline for the study. In total 26 patients 

with idiopathic Parkinson’s disease were recruited along with 27 healthy controls. 

5.1.1 CGP classification results (controls vs PD) 

As explained in Chapter 4, we used accuracy to evaluate the performance of the CGP 

classifiers. Accuracies are the prediction of the classifiers trained on an unseen data called 

the “test set”. Final accuracies in this study are the average of 10 runs where each run 

included 5 or 3 iterations of cross-validation (5-fold cross-validation or 3-fold depending 

on the number of participants available). The averaged acuracies results are reported in 
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the form of mean ± standard deviation. Both results for train and test set are present for 

each task. 

For the FT task, the final accuracy of the test set across 10 runs is 82.37%, for the 

pronation-supination (PS) task, 86.71%, and for the hand opening (HO) task, 71.19%. 

Classifiers using data from PS task achieved the highest accuracies with the best classifier  

providing an average of 96.88 %. The best classifier accuracy for the finger tapping task 

(FT) is slightly lower at 95.12%, and the best classifier accuracy for the hand opening-

closing (HO) task, is the lowest with an accuracy below 80%. Overall performance of HO 

classifiers were poor compared to the other two tasks. Best classifier and average across 

ten runs accuracies in the case of Controls vs PD of all tasks are summarised in Table 5.1. 

In Table 5.1, the result reported is in the form: mean ± standard deviation, where the mean 

and the standard deviation of the accuracies for both values of train and test set are stated. 

Averaged accuracies are visualised in Figure 5.1 to show the minimum and maximum 

performance for each task.  

 
 

       Table 5.1: Average and best accuracies of classifiers evolved for all motor tasks (controls vs PD). 

                                                              Controls vs PD 

 

Task 

Accuracy (%) 

Averaged ten runs Best classifier 

Train Test Train Test 

Finger Tapping 91.64 ± 1.03 82.37 ± 2.49   93.75 95.12 

Hand pronation-supination 92.50 ± 0.65 86.71 ± 3.71 92.65 96.88 

Hand opening-closing 82.18± 2.56 71.19± 2.84 84.19 75.87 
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               Figure 5.1: Averaged accuracies of CGP classifiers according to type of motor task data. 

 

5.1.2 Discriminating features 

 

The best classifier of each task was selected based on its ability to predict the class of 

unseen data in the test set. All iterations in the ten runs were considered to find which 

iteration yielded the best classifier. The best-run accuracies shown in Table 5.1 are an 

average of 5-fold cross-validation iterations. These high-performance classifiers were 

considered to identify most discriminating features of the motor task. In order to easily 

identify discriminative movement features of the best classifiers, the CGP chromosomes 

of the classifier were visualised using the open source cross-platform Graphviz utility 

(Ellson et al., 2000). The chromosomes are displayed with the inputs on the left, outputs 

on the right and the position of the internal nodes optimised by Graphviz. The function 

nodes are labelled with their functionality and given in bold if active. By looking into the 

visualised chromosome, the most discriminating features were identified. Only classifiers 
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with averaged test set accuracy higher than 80% were considered to determine the 

discriminating features. Therefore, all classifiers using HO data were not considered. 

 

Finger tapping discriminating features 

In order to verify which FT movement features make the biggest contribution in 

classifying the controls and PD groups, five FT classifiers with highest accuracies ranging 

from 88.24% to 95.12%, labelled FTPD_C1 to C5 were investigated together (Table 5.2). 

 

        Table 5.2: Five best FT classifiers differentiating PD patients from healthy controls. 

Classifier 
Accuracies (%) 

Train Test 

FTPD_C1 93.75 95.12 

FTPD _C2 91.03 93.02 

FTPD _C3 87.74 91.95 

FTPD _C4 90.68 90.12 

FTPD _C5 92.99 88.24 

 
 

In each classifier, features that were used at least once were ranked based on the number 

of times they were used. Feature with the highest number of usages were given rank 1, 

and so on (Table 5.3). If a feature was not used at all, no rank given and indicated by ‘X’. 

For each feature, the rank they get from all five classifiers were summed. By using the 

combination of the rank, the most discriminating features were determined. 
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          Table 5.3: Ranking of feature usage in five best FT classifiers for class controls vs PD. 

 

Feature 

          

Classifiers FTPD (rank) 

 

 

Total 

C1 C2 C3 C4 C5 

(0) Cycles frequency 3 6 6 4 X X 

(1) Maximum overall amplitude 5 6 6 4 X X 

(2) Mean amplitude 4 5 X 4 1 X 

(3) Maximum overall speed 1 X X 3 4 X 

(4) Mean speed 4 6 X X 4 X 

(5) Maximum opening speed X 2 X X 4 X 

(6) Maximum closing speed 2 6 3 4 X X 

(7) Maximum opening acceleration 1 6 2 4 2 15 

(8) Maximum opening deceleration 3 6 2 4 X X 

(9) Maximum closing acceleration 3 1 1 3 X X 

(10) Maximum closing deceleration 1 6 6 1 X X 

(11) Periodicity 4 X 3 3 2 X 

(12) COV amplitude 2 6 X 4 4 X 

(13) COV speed 2 X X X X X 

(14) Decrementing amplitude 1 4 4 1 3 13 

(15) Decrementing speed 3 X 5 3 3 X 

(16) Halts 4 3 4 3 3 17 

(17) Hesitation 1 X 1 3 X X 

(18) Amp*freq 3 X X X 4 X 

 
There are only three features that were used at least once in all the five classifiers 

(highlighted in Table 5.3 ). The smaller total of rank values from all five classifiers, the 

more important the feature is. Combined rank values revealed the most important FT 

features in classifying healthy controls and PD patient (in order of importance) are as 

following: 

i. (14) Decrementing amplitude. 

ii. (7)   Maximum opening acceleration.  

iii. (16) Halts.  
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The feature that was least used in all the five classifiers is coefficient of variance (COV) 

of the speed of movement (13). Feature numbers are from Table 4.2 in Chapter 4. 

The CGP network of chromosome of the best FT classifier (FTPD_C1) is shown in Figure 

5.2. This classifier achieved 95% accuracy. The most used input by this classifier is input 

7, which is averaged maximum acceleration during opening phase of FT (refer to Section 

4.1 in Chapter 4). It is used 5 times in finding the solution. 

 

Pronation-supination discriminating features 

The top five classifiers using PS data achieved accuracies ranging from 93.75% to 96.88% 

(Table 5.4). Out of nineteen PS features, only six were used at least once by all the five 

classifiers. 

                                    Table 5.4: The best PS classifiers for class Controls vs PD. 

 

Classifier 

Accuracies (%) 

Train Test 

PSPD_C1 92.65 96.88 

PSPD_C2 91.67 94.44 

PSPD_C3 91.67 94.44 

PSPD_C4 90.91 94.44 

PSPD_C5 90.44 93.75 

 
Using the same method of giving ranks based on number of times a feature was used, the 

PS features that are most useful in classifying healthy controls and PD patients are as 

follows (ranked most important to least important from the top): 

i. (12) COV amplitude  

ii. (11) Periodicity  

iii. (15) Decrementing speed  

iv. (1) Mean amplitude  

v. (2) Maximum amplitude  

vi. (8) Maximum pronation deceleration  
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Figure 5.2: Visualised chromosome of the FT best classifier for the case of controls vs PD.  



117  

The full report on rank given to each movement feature for all five best PS classifiers is 

shown in Table 5.5. Feature numbers are from Table 4.3 in Chapter 4. 

The best PS classifier for this case of controls vs PD (labelled PSPD C1 in Table 5.4)  has 

a training accuracy of 92.65 % and predicted instances in the test set correctly at 96.88%. 

The most used features for this classifier are (12) COV amplitude and (2) mean amplitude. 

 
 

Table 5.5: Rank given to the movement features of top five best PS classifiers based on the number of times 

the feature is used in evolving the classifiers. 

Feature 
Classifier PSPD (rank) 

Total 
C1 C2 C3 C4 C5 

(0) Cycles frequency 6 X 6 3 4 X 

(1) Maximum overall amplitude 1 10 4 3 4 22 

(2) Mean amplitude 4 8 4 2 2 20 

(3) Maximum overall speed 5 7 8 3 X X 

(4) Mean speed 3 8 2 X X X 

(5) Maximum pronation speed 3 9 7 2 X X 

(6) Maximum supination speed 4 10 6 3 X X 

(7) Maximum pronation acceleration 7 2 6 X X X 

(8) Maximum pronation deceleration 7 6 3 3 2 21 

(9) Maximum supination acceleration 8 5 8 X X X 

(10) Maximum supination deceleration X 10 7 1 2 X 

(11) Periodicity 6 3 4 2 1 16 

(12) COV amplitude 2 1 3 3 5 14 

(13) COV speed 7 6 6 X X X 

(14) Decrementing amplitude 4 6 1 X 3 X 

(15) Decrementing speed 6 5 3 3 1 18 

(16) Halts 7 6 6 X X X 

(17) Hesitation 8 4 7 3 X X 

(18) Amp*freq 8 8 5 X 4 X 

 

 

5.1.3 Record-wise cross-validation 

As explained in Chapter 4, many research studies have employed record-wise cross- 

validation (cv) in order to provide more data for learning process of machine learning 
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algorithms (Saeb et al., 2017). This is especially true in clinical studies where real data 

are difficult to obtain (Forman & Cohen, 2004). We run record-wise cv in classification 

of controls and PD patients for comparison purposes and to investigate the claim that 

record-wise cv is not suitable to use in the case of medical data. We retained the same 

method of stratified k-fold cross-validation (k = 10). However, instead of making sure no 

files from the same subject appear in both training and test sets of the same fold, files 

were picked randomly regardless of subjects. Table 5.6 shows accuracies achieved by 

CGP classifiers from all three tasks using record-wise cross-validation. Using record-wise 

cv, the best classifiers for FT and PS tasks are able to classify all the instances correctly. 

HO classifiers at best can classify correctly 88% of the instances. 

 
 

                 Table 5.6: CGP accuracies using record-wise stratified 10-fold cross validation. 

                                                         Controls vs PD 

 

Task 

CGP accuracy (record-wise cv) 

10-fold average Best classifier 

train test train test 

FT 95.834 93.517 95.96 100 

PS 89.679 91.03 90.07 100 

HO 81.204 74.444 81.29 88.24 

 
Figure 5.3 showing comparison of accuracies between subject-wise cross-validation and 

record-wise cross-validation. In two out of three cases, classifiers using record-wise 

cross-validation have higher accuracies compared to subject-wise classifiers. This might 

be an indication that record-wise CV is overestimating the accuracy due to dependency 

of the training and test instances. However, the difference between the accuracies are not 

so obvious to assume that the learning process was totally bias. In fact, in case of HO 

classifiers, using subject-wise cross validation yielded better accuracy than using record- 

wise cross-validation. 
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5.1.4 SVM and ANN classifiers 

Support vector machines (SVMs) and Artificial Neural Networks (ANNs) are known for 

their ability to generate good classifiers (refer Section 3.1 in Chapter 3). These two 

machine learning methods were used to compare to the CGP classifiers.WEKA 

(Bouckaert et al., 2010), an open source machine learning workbench, was used to run 

SVM and ANN classification tasks. 

For SVM, the WEKA default algorithm that employed sequential minimal 

optimization algorithm (SMO) for training a support vector classifier was used. 10-fold 

cross-validation, and all records treated as different instances (record-wise cross- 

validation) was used. For ANN classifiers, popular feed forward backpropagations were 

used to learn a multi-layer perceptron to classify instances. Table 5.7 summarise the 

accuracies of using three types of algorithms to classify controls and PD patients. For fair 

comparison, CGP classifiers in Table 5.7 were also validated using record-wise cv. For 

FT classifiers, CGP gave the best performance at 93.51% followed by ANN classifiers 

with 87.90%, and SVM classifiers have slightly lower accuracies, 84.68%. All classifiers 

Figure 5.3 : Comparison of CGP classifiers accuracies using subject-wise and record-wise cross-

validation 
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using PS data showed good accuracies with around 6% difference between three types of 

algorithms (85% - 91%). HO classifiers showed poor performance, regardless of the type 

of algorithms used. CGP HO classifiers perform slightly better than both SVM and ANN 

classifiers. None of the HO classifiers reached 80%. However, the averaged accuracies 

for HO classifiers are no lower than 70%. 

                                                                       

Table 5.7: Performances of SVM and ANN classifiers for controls vs PD compared to CGP classifiers. 

                                                    Controls vs PD 

 

Task 

Accuracy (%) 

CGP (record-wise cv) SVM ANN 

train test train test train test 

Finger Tapping 95.83 93.51 87.50 84.68 98.39 87.90 

Hand pronation-supination 89.67 91.03 88.10 86.90 98.80 85.1 

Hand opening-closing 81.20 74.44 75.58 69.77 76.16 73.26 

 

The comparison between test set accuracies of each algorithm is visualised in following 

Figure 5.4. 

 

             Figure 5.4 : Comparison between performance of different algorithms for Controls vs PD. 

 

Test set accuracies for Control vs PD using 

different algorithms 
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5.1.5 Discussion 

FT kinematic data have been used many times to distinguish healthy controls and PD 

patients. Indeed, some studies also used CGP in differentiating these two groups ( Lacy 

et al., 2013;  Lones et al., 2013; Lones et al., 2014). However, FT data were investigated 

again in this study, but for the purpose of validating the method used, as we extend the 

study to other motor tasks and later other groups of movement disorders. At 80% and 

above, the results of this study showed accuracies achieved by the FT classifiers are 

comparable to results from the previous FT (using CGP, SVM and ANN) studies ( Lacy 

et al., 2013; Lones et al., 2013; Lones et al., 2014; Martinez Manzanera et al., 2015; Picardi 

et al., 2010). The important finding in the FT results is that the most discriminating FT 

features did demonstrate the method used in this study is applicable. The results report 

that the most discriminating FT feature is ‘decrementing amplitude’, an accepted 

characteristic of Bradykinesia (Fernandez et al., 2014). The second most important FT 

feature is ‘opening acceleration‘, and has similarity with findings in Yokoe et al. (2009), 

where they claimed opening velocity as a novel parameter in differentiating PD patients 

movement from healthy old people. The third most discriminating feature, ‘halts’ might 

be an important feature that was known but not deemed important before. 

Subsequently, the same bradykinesia features used as input to FT classifiers were 

applied to hand pronation-supination (PS) data by replacing opening phase with 

pronation, and closing phase with supination movement. PS classifiers reached accuracies 

even better than FT classifiers and lead to several important features that might not have 

been given sufficient attention before. This is especially true because there have not been 

as many PD objective assessment studies where PS kinematic data is compared to FT. 

Whilst rhythm and periodicity of amplitude are not important to the FT task, they are the 

most discriminating features of PS.  
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Pronation-supination itself is a rhythmic movement; it is a motor task that is 

commonly used to test the ability of executing diadochokinetic movements. 

Diadochokinesia is ability to perform rapid, alternating movements (RAM), capability to 

cease current movement and start the opposite movement instantly after that. The 

assessment of ability to perform RAM can provide important information about the 

condition of the nervous system. Unfortunately, a significant amount of information can 

be lost during the clinical test where qualitative rating scales are used instead of 

quantitative assessment. The abnormality of diadochokinesia can be seen in the 

completeness of the sequence, and in the variation of amplitude. Furthermore, two other 

amplitude characteristics of PS, namely mean and maximum amplitude of both phases, 

are also deemed as important distinguishing features. The smaller amplitude means 

subjects did not get to finish the phases (of pronation or supination). The high accuracies 

of PS classifiers indicate that there is a significant difference between the way healthy old 

people and PD patients execute RAM such as hand pronation-supination. HO classifiers 

performance in the controls vs PD case is not very encouraging compared to the other 

two tasks. However, the accuracies are not so low that the classifications are unuseful. 

This may be due to the different nature of movement of HO; unlike FT and PS, HO 

involves two steps movement where thumb and fingers move at different phases. Hence, 

there are possibilities the same method of data collection and features extraction cannot 

be applied to HO movement for this purpose. 

 

 

 

 



123  

5.2 Bradykinesia in Parkinson’s disease and Huntington’s disease 

The majority of previous quantitative studies to measure the existence of Bradykinesia in 

Huntington’s disease (HD) focused on slowness of movement (refer section 2.5 in 

Chapter 2). Bradykinesia itself is not purely slowness, but is a complex disturbance of 

initiation and execution of actions and the ability to sustain them. Akinesia (failure to 

initiate movement) and hypokinesia (underactive movement) both relate to bradykinesia, 

as does the sequence effect—repetitive movements becoming smaller or slower. This part 

of study observed characteristics of Bradykinesia in Huntington’s disease (HD) compared 

to Parkinson’s disease (PD) and healthy old people (controls). As described in Chapter 4, 

three motor tasks were used, finger tapping (FT), hand opening-closing (HO) and hand 

opening-closing (PS). Eleven HD patients recruited for this study; however not all of them 

were able to finish all the three tasks. Table 5.8 lists the number of subjects for each group 

for different motor tasks. 

 
 

         Table 5.8: Numbers of healthy controls, PD and HD patients performed different motor tasks. 

Task Controls PD HD 

Finger tapping 27 26 11 

Hand pronation-supination 27 26 6 

Hand opening-closing 27 26 10 

5.2.1 CGP classification results 

Classifiers were evolved using the same method as described in Chapter 4. Two cases 

were considered, healthy controls vs Huntington’s disease patients (controls vs HD) and 

Parkinson’s disease vs Huntington’s disease (PD vs HD). Table 5.9 presents classification 

accuracies of controls vs HD for all three tasks in the form: mean ± standard deviation for 

both values of train and test set . The averaged accuracies are visualised in Figure 5.5 with 

mean, maximum and minimum accuracy plotted.                                                         
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                                            Table 5.9: Accuracies for classifiers of controls vs HD. 

                                                            Controls vs HD 

 

 

Task 

Accuracy (%) 

Averaged ten runs Best classifier 

Train Test Train Test 

Finger Tapping 92.36 ± 1.19 83.42 ± 2.11 91.41 91.38 

Hand pronation-supination 93.61 ±1.06 85.98 ± 1.85 92.39 95.83 

Hand opening-closing 90.63 ± 2.31 76.17 ± 5.60 98.75 77.5 

 

 

 

                          Figure 5.5: CGP Accuracies averaged across ten runs for case controls vs HD. 

 

 

For the finger tapping task, accuracy of the test set across 10 runs for controls vs 

HD is 83.42 %. Slightly higher accuracy was obtained for PS classifiers at 85.98%. HO 

classifiers, as in case of controls vs PD, is still showing poor performance with only 

76% accuracy. Overall performance of all classifiers shows that the selected Bradykinesia 

features are able to differentiate HD from healthy controls. In other words, it can be 

hypothesised that Bradykinesia does exist in Huntington’s disease. 
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The following results provide information on whether Bradykinesia features in HD have 

the same characteristic as the features in PD patients’ movement. The summary of the 

classifier’s accuracies for PD vs HD is given in Table 5.10 in the form: mean ± standard 

deviation for both values of train and test set. The averaged accuracies are visualised in 

Figure 5.6 for comparison of CGP classifiers according to motor tasks.   

                                                                 

                                       Table 5.10: Accuracies for CGP classifiers of PD vs HD. 

                                                                     PD vs HD 

 

 

                         Figure 5.6: CGP Accuracies averaged across ten runs for case PD vs HD. 

 

 

Task 

Accuracy (%) 

Averaged ten runs Best classifier 

Train Test Train Test 

Finger Tapping 85.47 ± 1.19 67.97 ± 2.95 83.67 80.95 

Hand pronation-supination 95.65 ± 0.85 87.20 ± 1.91 94.19 95.45 

Hand opening-closing 93.38 ± 1.19 84.81 ± 3.73 90.28 97.22 
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The best classifiers for PD vs HD case were evolved using kinematic data from 

the pronation-supination task (PS), with an averaged accuracy of 87.20%. FT classifiers 

did not show a good performance in differentiating PD from HD. In previous cases, the 

majority of HO classifiers achieved lower accuracies below 80%, but in the case of HD 

patients, HO classifiers obtained high accuracies of 85% for the PD vs HD case. This 

indicates that although HO movement features cannot reliably distinguish healthy 

controls from PD and HD, it can recognise HD very well when compared with PD 

patients. It is therefore interesting to determine which HO features evolved the best HO 

classifiers for class of PD vs HD. 

5.2.2 Discriminating features 

In the case of PD vs HD, both HO and PS classifiers achieved very good accuracies. 

However, the number of HD patients is higher for the HO task compared to participants 

that completed the PS task, giving more confidence in the results. Focusing on the 

potential of HO data in the classification of PD and HD patients, strong discriminative 

features have been noted. Table 5.11 shows the number of times every HO movement 

feature was used in evolving the best HO classifier for PD vs HD. This classifier has 

accuracy of 97%. CGP network of the chromosome for this classifier is visualised in 

Figure 5.7 where it can be seen that input number (6) and (3) were used repeatedly in 

finding the solution, which indicates that features ‘thumb maximum deceleration’ and 

‘thumb maximum speed’ are among most discriminative features in this classification. 

Other important features are (0) ‘maximum opening’, ‘COV of speed’ for (7) thumb sensor 

and (13) finger sensor and (14) ‘halts’. 

. 
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                       Table 5.11: Best HO classifier discriminating features for PD vs HD case. 

Feature Number of times used 

Maximum opening 6 

COV opening 2 

HO frequency 3 

TS maximum speed 6 

TS average speed 3 

TS maximum acceleration 3 

TS maximum deceleration 8 

TS COV speed 6 

TS Halts 1 

FS maximum speed 5 

FS average speed 5 

FS maximum acceleration 5 

FS maximum deceleration 3 

FS COV speed 6 

FS Halts 6 

 

5.2.3 SVM and ANN classifiers 

In this section, comparisons are made between accuracies of the CGP classifiers with 

popular algorithms ANN and SVM. The parameters for ANN and SVM are as explained 

in Section 5.2.4. Two cases were considered, controls vs HD and PD vs HD. The results 

for all three types of classifiers are shown in Table 5.12 for controls vs HD. For fair 

comparison, CGP classifiers in the table used record-wise cv. It can be seen in the table 

that for the case of controls vs HD, ANN gained high accuracies in all tasks. In fact, using 

PS kinematic data, ANN get 100% accuracies predicting classes of instances in the test 

set. Results of SVM are comparable to CGP except for SVM PS classifiers where the 

accuracy is nearly 100%. Overall, the same patterns are shown by ANN and SVM where 

the highest accuracies achieved for PS, followed by FT and lowest accuracies for HO. 

This can be argued to validate the CGP results because the same ranking of accuracies is 

also shown by CGP.                                                        
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Table 5.12: Accuracies of classifiers evolved using CGP and two other popular algorithms, SVM and ANN 

in classification of healthy controls vs Huntington’s disease patients. 

                                                           Controls vs HD 

 

Task 

Accuracy (%) 

CGP (record-wise CV) SVM ANN 

train test train test train test 

Finger Tapping 92.36 84.87 88.02 86.98 99.48 84.38 

Hand pronation-supination 100 100 100 99.04 100 100 

Hand opening-closing 88.33 81.67 84.17 77.5 90 80.83 

 
In PD vs HD case, the same pattern of performance is shown by all classifiers where 

highest accuracies were obtained by PS classifiers, followed by HO and lowest accuracies 

by FT classifiers. CGP gained comparable results to SVM and ANN for all tasks (Table 

5.13). As in previous cases, PS classifiers (for all three algorithms considered) showing 

the best performance. Poor performance by FT classifiers evolved using CGP are also 

reflected in ANN and SVM FT classifiers with most of classifiers obtaining accuracies 

below 70%. As described in Section 5.3.1, surprisingly, CGP evolved HO classifiers with 

high accuracies for the PD vs HD case. Similar results were gained by ANN HO 

classifiers. However, SVM HO classifiers do not show good results, with accuracy below 

80%. This suggets ANN and CGP were learning characteristics that were missed by SVM.                                                                    

 

Table 5.13: Results of classification accuracies using ANN and SVM algorithms compared to accuracies 

of classifiers evolved using CGP for PD vs HD case. 

                                                         PD vs HD 

 

Task 

Accuracy (%) 

CGP (record-wise CV) SVM ANN 

train test train test train test 

Finger Tapping 83.176 78.57 74.29 72.14 95 66.43 

Hand pronation-supination 99.602 98.258 100 98.21 100 97.32 

Hand opening-closing 88.637 87.255 79.55 77.27 91.67 84.09 
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                                                       Figure 5.7: Visualised chromosome of the best classifier for PD vs HD class using HO data .
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5.2.4 Discussion 

FT as a popular task in machine learning classification, which in this work shows 

expected results of high accuracies in the case of controls vs PD. However, in HD study, 

compared to HO and PS classifiers, FT classifiers achieved the lowest accuracy when 

used to differentiate between PD and HD groups. This suggests that selected bradykinesia 

features in FT are not strong discriminative characteristics of PD and HD patients. PS 

classifiers continue to consistently achieved high accuracies in HD cases, but the low 

number of HD patients used in the PS task lessens the confidence in the PS classifiers 

accuracies. 

This is the first time CGP was applied in classifying other movement disorders (apart 

from PD) using kinematic data of common clinical motor tasks. Both HO and PS achieved 

very good accuracies for the PD vs HD case. Focusing on the potential of HO data in 

classification of HD patients, discriminative features have been noted. The best HO 

classifier (PD vs HD) used the ‘thumb sensor (TS) maximum deceleration’ feature eight 

times in finding the solution. Other important discriminative features are ‘maximum 

opening (0)’, ‘COV of speed’ for the thumb sensor (7) and finger sensor (13) and ‘halts’ 

(14). The results suggest that bradykinesia features in healthy old people, PD and HD 

patients have different characteristics. 
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5.3 Bradykinesia in Parkinson Disease and Essential Tremor 

The objective of this part of the study is to identify the existence of Bradykinesia in 

Essential tremor (ET). Although ET has been repeatedly mistaken for PD and vice-versa, 

the symptom perceived as the cause of the confusion is tremor instead of slowness. 

However, as mentioned at the beginning of this chapter, a few studies found slowness in 

ET patients compared to healthy old people. If Bradykinesia does exist in ET, then it is 

important to know if Bradykinesia in ET has the same characteristics as in PD. In pursuit 

of this, kinematic data of six ET patients was collected for preliminary experiments. Using 

extracted data of the three motor tasks from the MDS_UPDRS, classification using CGP, 

SVM and ANN were run for two cases: controls vs ET and PD vs ET. 

5.3.1 CGP classification results 

Table 5.14 shows classification accuracies of controls vs ET for all three tasks. The 

averaged accuracies are visualised in Figure 5.8 with mean, maximum and minimum 

accuracy plotted. It can be seen that the same pattern as seen in controls vs HD had 

reoccurred where the best performance was shown by PS classifiers with an averaged 

accuracy of 98.77% followed by FT classifiers with 85.99% accuracy and 78.47% 

accuracy for HO classifiers.                                                         

 

                      Table 5.14: Accuracies for CGP classifiers for the case of controls vs ET. 

                                                           Controls vs ET 

 

Task 

Accuracy (%) 

Averaged ten runs 

Train Test 

Finger Tapping 95.28 ± 1.01 85.99 ± 1.70 

Hand pronation-supination 100.00 ± 0 98.77 ± 1.42 

Hand opening-closing 92.09 ± 1.82 78.47 ± 3.19 
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               Figure 5.8: CGP Accuracies averaged across ten runs for case controls vs ET. 

 

In the case of PD vs ET, PS classifiers correctly classified 90% of the instances in their 

correct classes (Table 5.15). In both Table 5.14 and Table 5.15, the result reported is in 

the form: mean ± standard deviation, where the mean and the standard deviation of the 

accuracies for both values of train and test set are stated. Although the other two tasks 

only evolved classifiers with accuracies ranging from 75% to 79%, with a higher number 

of ET participants better performance of FT classifiers might be expected. The 

performance of all classifiers across 10 runs are visualised in Figure 5.9. 

 

Table 5.15: Accuracies for CGP classifiers of the case of PD vs ET 

 

                                                                             PD vs ET 

 

Task 

Accuracy (%) 

Averaged ten runs 

Train Test 

Finger Tapping 91.43 ± 1.57 78.59 ± 2.81 

Hand pronation-supination 97.73 ± 1.44 88.94 ± 2.57 

Hand opening-closing 91.89 ± 1.08 75.00 ± 4.09 
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                            Figure 5.9 : CGP Accuracies averaged across ten runs for case PD vs ET. 

 

 

5.3.2 SVM and ANN classifiers 

In the case of controls vs ET, CGP classifiers performed better than SVM and ANN in all 

motor tasks. It is argued this is due to CGP’s better capabilities of finding connection 

between instances of the same subject as record-wise cv is used here. CGP PS classifiers 

classify all instance in the correct classes. Very small differences in performance are 

achieved by CNN and SVM at 97% and 98% accuracies, respectively. HO classifiers 

performance is almost uniform between all three algorithms at the border of 80% 

accuracies. 
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Table 5.16: Performance of CGP, SVM and ANN in classification of controls vs ET. 

 

                                                                        Controls vs ET 

 

 
Task 

Accuracy (%) 

CGP (record-wise CV) SVM ANN 

train test train test train test 

Finger Tapping 92.59 89.71 87.9 85.06 94.83 86.21 

Hand pronation-supination 100 100 98.08 98.08 100 97.12 

Hand opening-closing 87.50 81.001 79.81 76.92 86.54 79.81 

 
In the case of PD vs ET, ANN induced the best classifiers in two out of three motor tasks. 

Only in case of HO classifiers, CGP performed better. In almost all motor tasks, SVM 

performances are in between of CGP and ANN. 

 
Table 5.17: Performance of CGP, SVM and ANN in classification of PD vs ET. 

 

                                                                     PD vs ET 

 

 
Task 

Accuracy (%) 

CGP (record-wise CV) SVM ANN 

train test train test train test 

Finger Tapping 88.52 83.653 81.15 80.33 99.18 90.16 

Hand pronation-supination 97.82 91.213 91.96 91.07 100 96.43 

Hand opening-closing 88.41 79.224 80.43 78.26 100 76.09 

5.3.3 Discussion 

Although the number of ET participants in this study is small, the same pattern of 

performance between motor tasks (with our studies with higher number of participants; 

controls vs HD, controls vs HD) indicates that the results of this study can be used to 

argue the existence of Bradykinesia in ET. High-performance classifiers of three 

algorithms; CGP, SVM and CGP in differentiating ET from healthy controls supports the 

argument that Bradykinesia features exist in ET. Bradykinesia is not the main source of 

confusion between PD and ET, but this study indicates that by using Bradykinesia 
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features, CGP and other machine learning algorithms managed to perform well in 

differentiating the two disorders. This suggests that the two disorders have different 

characteristics in their bradykinetic features. 

5.4 Conclusion 

Each classification in this study plays an important role in the characterisation of 

Bradykinesia in PD, HD and ET. Most previous machine learning studies on PD motor 

symptoms focus on classifying PD patients from healthy controls, as reviews on machine 

learning classification of PD testify (Ahlrichs & Lawo, 2013). Yet, to address the problem 

of misdiagnosis, the real challenge is to differentiate between groups of different 

movement disorders and observe the discriminating features. FT as a popular task in 

machine learning classification shows expected results of high accuracies in case of 

controls vs PD. The overall accuracy was lower than shown in previous studies of CGP 

classifications using finger tapping data (Lacy et al., 2013; Lones et al., 2014), but it is 

suggested that this is due to smaller numbers of subjects in this study. One of the original 

intentions of this study was to extend usage of finger tapping (in classification of PD) to 

other motor tasks. Clearly the results in controls vs PD case show that the PS task can 

also be used for this purpose. Although HO classifiers accuracies are not as encouraging 

compared to the other two tasks, the performance is the classification is still quite good. 

Most HO classifiers achieved accuracies above 70%. 

The most interesting cases in this study are regarding HD patients. This is the first 

time CGP was applied in classifying other movement disorders (apart from PD) using 

kinematic data in common clinical motor tasks. PS and HO classifiers achieved very good 

accuracies for the HD cases. The fact that HD patients can be differentiated from healthy 

control using extracted Bradykinesia features supports the argument that Bradykinesia 
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does exists in Huntington’s disease. In the case of PD vs HD, both PS and HO classifiers 

show good accuracies, but with higher number of participants in HO tasks giving more 

confidence to HO classifiers compared to PS classifiers. Hence, the focus of investigating 

discriminating features (of PD vs HD case) was given to HO classifiers. Several HO 

movement features were highlighted as strong discriminative features for PD vs HD 

cases. Among the most important HO features are the speed of thumb movement during 

the slowing down process and the rhythm of speed of the thumb and fingers during hand 

opening and closing. Another exciting finding is that classifiers evolved using pronation- 

supination data not only achieved comparable accuracy with FT classifiers in all cases 

but are able to classify better in many cases. This implies that features of bradykinesia in 

PS movement have highly distinguishing characteristics between the classes (controls, 

PD and HD). Surprisingly, FT classifiers achieved low accuracy for PD vs HD cases. 

This suggests that selected bradykinesia features in FT are not the most distinctive 

characteristics of PD and HD patients. 

The second study of other movement disorders (than PD) involved patients of 

Essential Tremor. Only six ET patients were available, but sufficient to provide some 

insights on Bradykinesia in ET. High-performance PS and ET classifiers of three 

algorithms, CGP, SVM and CGP, in differentiating ET from healthy controls, suggest 

that Bradykinesia features exist in ET. Bradykinesia is not the main source of confusion 

between PD and ET, but this study indicates that by using Bradykinesia features, CGP 

and other machine learning algorithms managed to perform well in differentiating between 

the two disorders. It is suggested that the two disorders have different characteristics of 

bradykinetic features but a higher number of participants can confirm this. 

All the CGP results were validated by comparing them to results obtained using widely 

adopted machine learning algorithms, SVM and ANN. It is the common practice in 

statistical machine learning to perform classification by random instances divided into 
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training and test sets without consideration of the instances (records) belonging to the 

same participant or not (record-wise cv). Therefore, to obtain results that can be compared 

with previous studies, record-wise cv was used to compare the three algorithms (CGP, 

ANN and SVM) performances. The results show that the same pattern of performance 

were demonstrated by SVM and ANN as in CGP classifiers. For example, in the controls 

vs PD case, the best CGP classifiers were evolved using PS kinematic data, followed by 

FT classifiers and lowest accuracies obtained by HO classifiers. This ranking of 

performances also shown by SVM and ANN, validate the CGP results. Overall, CGP 

accuracies are comparable and sometimes higher than ANN and SVM classifiers. 
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Differentiation of Organic and Functional Dystonia 

In 2013, an international Consensus Committee, consisting of investigators with years of 

experience in dystonia agreed to proposed revised definition of dystonia as following 

(Albanese et al., 2013) : 

• Dystonia is a movement disorder characterized by sustained or intermittent 

muscle contractions causing abnormal, often repetitive, movements, postures, or 

both. 

• Dystonic movements are typically patterned, twisting, and may be tremulous. 

• Dystonia is often initiated or worsened by voluntary action and associated with 

overflow muscle activation 

 

Currently, there is no known cure for Dystonia, but effective treatments, coping 

strategies and support are available. In most cases, dystonia does not shorten a person's 

lifespan. Historically, Dystonia lacked unifying criteria to put it under a type of disorder; 

it is not until late 1970’s that Dystonia was recognised as its own class of movement 

disorder. Before that, generalised Dystonia have been managed along the psychiatric line, 

viewed as not organic disorders (Newby et al., 2017). After Dystonia was recognised as 
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a class of movement disorder, the psychiatric part of Dystonia still remained, it is known 

as Psychogenic Dystonia and later renamed to Functional Dystonia (FD). Functional 

dystonia is a condition where some specific symptoms of dystonia appear, but tests that 

normally establish the cause of these symptoms are negative. It is part of what is known 

as Psychogenic Movement Disorders (PMDs). PMDs can look like any organic 

neurologic condition, but it has a psychiatric cause. A variety of blood, imaging and other 

tests are usually normal and do not reveal any physical (organic) cause that could explain 

these motor abnormalities. Functional dystonia is arguably the most challenging 

functional movement disorder to diagnose and manage. It is especially difficult to 

differentiate FD from its organic version, Organic Dystonia (OD). Consequently, delays 

in diagnosis and treatment initiation have a negative impact on outcome, increasing the 

risk of long-term disability and the resulting financial burden on society. Hence, there is 

a growing emphasis on the need for ‘laboratory supported’ criteria, based on objective 

measurements of movement vectors and/or muscle activity. In order to support this need, 

this study was designed for objective assessment using evolutionary algorithm by 

application of classification task between organic and functional dystonia. 

6.1 Types of Dystonia 

Classification of Dystonia can be made along several dimensions. Among important 

dimensions or axes include body distribution, age onset, and cause of the dystonia. (Geyer 

& Bressman, 2006). In details, dystonia experts consensus suggested classification 

according to recognised using two axes (Albanese et al., 2013): 

Axes 1: clinical characteristics 

Axes2: aetiology (causes) of the disorder 
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6.1.1 Axes 1: Clinical characteristics 

The clinical characteristics describe the phenomenology of dystonia in a given patient. 

Descriptors that can be used to specify clinical characteristics: 

 

i. Age at onset 

• Infancy dystonia (birth to 2 years) 

• Childhood dystonia (3–12 years) 

• Adolescence dystonia (13–20 years) 

• Early adulthood dystonia (21–40 years) 

• Late adulthood dystonia (>40 years) 

 

ii.  Body distribution 

Body regions involved by dystonia are the upper or lower cranial region, the cervical 

region, the larynx, the trunk, the upper or lower limbs. These different territories may be 

involved individually or in different combinations. 

 

Focal. Only one body region is affected. Typical examples of focal forms are 

blepharospasm, oro-mandibular dystonia, cervical dystonia, laryngeal dystonia, and 

writer’s cramp. Cervical dystonia is considered a form of focal dystonia, although by 

convention the shoulder can be included as well as the neck. 

 

Segmental. Two or more contiguous body regions are affected. Typical examples of 

segmental forms are cranial dystonia (blepharospasm with lower facial and jaw or tongue 

involvement) or bi-brachial dystonia. 
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Multifocal. Two non-contiguous or more (contiguous or not) body regions are involved. 

 

Generalized. The trunk and at least two other sites are involved. Generalized forms with 

leg involvement are distinguished from those without leg involvement. 

 

Hemidystonia. More body regions restricted to one body side are involved. 

Typical examples of hemidystonia are due to acquired brain lesions in the contralateral 

hemisphere. 

 
iii. Temporal pattern 

Disease course can be either static or progressive. The variability can have four different 

patterns: 

Persistent. Dystonia that persists to approximately the same extent throughout the day. 

Action-specific. Dystonia that occurs only during a certain activity or task. 

Diurnal fluctuations. Dystonia fluctuates during the day, with recognizable circadian 

variations in occurrence, severity and phenomenology. 

Paroxysmal. Sudden self-limited episodes of dystonia usually induced by a trigger with 

return to pre-existing neurological state. 

 

iv. Coexistence of other movement disorders 

Isolated dystonia. Dystonia is the only motor feature, with the exception of tremor. 

Combined dystonia. Dystonia is combined with other movement disorders (such as 

myoclonus, parkinsonism, etc.). 
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v. Other neurological manifestations. 

The presence or absence of other neurologic or systemic features is a vital component for 

characterizing dystonia syndromes. Wilson disease is a disorder where dystonia is 

typically combined with other neurological or psychiatric symptoms and liver disease 30. 

The broad neurological spectrum evolves over time, with frequent revisions as new 

information is gained. 

 

Axes 2: aetiology —although there is effort to redefine the categories of Dystonia 

regarding the causes (Albanese et al., 2013), the still popular etiologic classification 

divide Dystonia into two broad categories: primary (idiopathic; without no known cause) 

and secondary (symptomatic) (Albanese & Jankovic, 2012). Primary and secondary 

Dystonia according to (Geyer & Bressman, 2006) are as following: 

 
Primary Dystonia 

In primary dystonia, no abnormality other than dystonia is present, apart from the 

occasional occurrence of tremor (resembling essential tremor) or myoclonus. Findings 

such as parkinsonism, seizures, dementia, ataxia, ocular motor abnormalities, weakness, 

or spasticity suggest that dystonia is secondary. Moreover, when tremor or myoclonus 

accompanies primary dystonia, these associated movements are less prominent than the 

dystonia. If these movements predominate, a secondary dystonia is likely. In primary 

dystonia, there are no structural brain abnormalities on radiographic studies and no inborn 

errors of metabolism identifiable with conventional investigations. Most primary 

dystonias are focal or segmental in distribution, with onset in adulthood. Around 10% of 

patients with primary dystonia have generalised dystonia, usually starting in childhood or 

adolescence. 
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Secondary Dystonia 

When dystonia is secondary to a hereditary neurological disorder or an exogenous insult, 

additional neurological abnormalities are likely to be present. An important exception is 

dystonia resulting from dopamine receptor blocking agents (acute dystonic reaction and 

tardive dystonia), which usually consists of dystonia only. One subcategory of secondary 

dystonia comprises the dystonia-plus syndromes. In these inherited disorders, dystonia is 

accompanied by other neurological abnormalities, but like in the primary dystonias, there 

is no evidence of brain degeneration. The dystonia-plus syndromes include dopa- 

responsive dystonia, myoclonus- dystonia, and rapid-onset dystonia-parkinsonism 

6.2 Organic and Functional Dystonia 

Classification of Dystonia as in Section 6.1 is describing the ‘real’ or Organic Dystonia 

(OD). When a patient showing some specific symptoms of dystonia appear, but tests that 

normally establish the cause of these symptoms are negative, it is what is known as 

Psychogenic or Functional Dystonia (FD). It is part of what is known as Psychogenic 

movement disorders (PMDs). Most psychogenic movements are considered involuntary 

– performed without conscious awareness or effort. Other types of PMDs include 

Psychogenic tremor (also called functional tremor), Psychogenic parkinsonism and 

Psychogenic gait disturbances. 

6.2.1 Diagnosis of Organic and Functional Dystonia 

 

The diagnosis of dystonia, like that of all neurological disorders, rests most firmly on the 

history and physical examination. A clinical diagnosis of OD is made through recognition 

of its core motor features and their distribution and temporal evolution. Non-motor 

features include disturbed sensory and cognitive processing and psychiatric features 
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(Albanese et al., 2013). A complex interplay between motor, sensory and limbic centres 

may give rise to odd and atypical features (e.g. task-specificity, geste antagonist), 

potentially misleading the inexperienced clinician. The resulting misdiagnosis rate is 25- 

52% (Stamelou et al., 2012). 

On the other hand, a diagnosis of FD rests on assessment of inconsistency and 

incongruence (in both the history and neurological examination) with organic disease 

patterns (Espay & Lang, 2015; Ganos et al., 2014). Functional dystonia is arguably the 

most challenging functional movement disorder to diagnose and manage. Current 

diagnostic criteria place disproportionate weight on features with poor predictive value: 

historical features (such as sudden-onset or stress-induced symptoms) and psychiatric 

comorbidity, which are also prevalent in organic dystonia. Consequent delays in diagnosis 

and treatment initiation have a negative impact on outcome, increasing the risk of long-

term disability and the resulting financial burden on society. Hence there is a growing 

emphasis on the need for ‘laboratory supported’ criteria, based on objective 

measurements of movement vectors and/or muscle activity. 

6.3 Classification of organic and functional Dystonia using EA 

Research to date has shown that diagnostic criteria for FD have poor inter-rater reliability 

(Ganos et al., 2014) placing emphasis on historical variables and/or psychiatric 

comorbidity, which have poor predictive value. The need for ‘laboratory supported’ 

criteria for FD, based on electrophysiological signifiers, has been highlighted (Espay & 

Lang, 2015). Such criteria would permit earlier diagnosis and treatment, reducing the risk 

of long-term disability and the accompanying health and social care costs (the estimated 

UK cost for all ‘medically unexplained symptoms’ being £18 billion) (Hons et al., 2010) 

In previous quantitative studies, characteristics of Bradykinesia such as variability 



145  

(coefficient of variation), rhythm and slowness while performing finger tapping test were 

found as indications of malingering or psychogenicity (Arnold et al., 2005; Kalogjera- 

Sackellares & Sackellares, 1999; Rapport et al., 1998). For example, tapping was less 

rhythmic with higher variability in both malingering and psychogenic disorders. Subjects 

with suspected malingering performed the finger tapping more slowly than their 

comparison group counterparts regardless of the type of neurological diagnosis. Objective 

assessment studies differentiating organic and functional disorders are not common 

(Criswell et al., 2010). In fact, there are no studies that we know of trying to objectively 

differentiate FD and OD using kinematic data of any motor task. Based on these facts, 

this study employed Cartesian Genetic Programming for classification of organic 

dystonia, functional dystonia and healthy controls using movement data of finger tapping 

task as the input. The method of movement data collection, data processing and 

classification steps explained in Chapter 4. However, there is a slight change made for 

Dystonia study in term of movement data collection method. In PD study (as described 

in Chapter 4), participants executed finger tapping for ten times as suggested by MDS-

UPDRS with two repetitions for each hand. However, in this study, participants tap their 

fingers for 15 seconds. There are three repetitions for each hand which means, for each 

participant, six finger-tapping movement recordings were obtained. There are altogether 

29 healthy controls, 31 Organic Dystonia and 12 Functional Dystonia patients. 

Participants with dystonia were recruited from the current caseloads of the 

movement disorders consultants at Monash Medical Centre in Melbourne (Australia) and 

Leeds General Infirmary, Leeds, UK. Assessments took place between September 2015 

and February 2018. Ethical approval was obtained from the Monash Health Human 

Research Ethics Committee (HREC code: 13424B) and the Yorkshire and Humber 

Sheffield Research Ethics Committee (HREC code: 14/YH/0143).  
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Patients and controls subjects were chosen following the three inclusion criteria: 

 

i. Organic dystonia: Expert diagnosis, according to accepted guidelines, with 

upper limb or cervical involvement (genetic, idiopathic focal or secondary); 

ii. Functional Dystonia: Expert diagnosis, documented or clinically established 

according to the Fahn-Marsden criteria, with upper limb involvement; 

iii. Controls: Capacity to consent and able to perform assessments. Control 

subjects were recruited from spouses and friends of the patients who attend 

clinics at the Monash Medical Centre. 

 

Subjects were removed from the study according the following exclusion criteria: 

- Aged under 18 years; 

- Lacking capacity to consent; 

- Unable to perform movement assessments (e.g. due to cognitive deficit).  

6.3.1 CGP classification results 

 
CGP classifiers were evolved using the same method described in Chapter 4 using 

movement data from the MDS-UPDRS defined finger tapping task. Three cases of 

pairwise classification were considered: 

• Controls vs OD 

• Controls vs FD 

• OD vs FD 

 

Table 6.1 shows classification accuracies of all the three cases in the form: mean ± 

standard deviation, where the mean and the standard deviation of the accuracies for both 
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values of train and test set are stated. The averaged accuracies across ten runs and the 

accuracies of the best run is visualised in Figure 6.1 with mean, maximum and minimum 

accuracies plotted.  

 
 

Table 6.1: CGP classifiers accuracies for all three cases of pairwise classification considered: Con vs OD, 

 Con vs FD and OD vs FD. 

 

 

Task 

Accuracy (%) 

Averaged ten runs Best run 

Train Test Train Test 

Finger Tapping 64.30 ± 0.62 60.12 ± 3.19 65.55 64.58 

Hand pronation-supination 83.84 ± 0.97 74.33 ± 2.55 85.62 77.00 

Hand opening-closing 81.45 ± 1.09 70.09 ± 1.94 83.78 72.49 

 

 

 

 

Figure 6.1: CGP accuracies averaged across ten runs for compare according to classification cases 

considered 
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None of the CGP classifiers evolved in any of the cases, achieved an accuracy beyond 

80%. The classification for the case between controls and OD patients has the worst 

accuracies, with some of the CGP classifiers with accuracies below 55%. A better 

performance is shown by classifiers evolved for the case of controls vs FD, achieving 

results as high as 77% accuracy. Surprisingly, the case that is considered most challenging 

to diffrentiate, OD vs FD, achieved accuracies ranging from 68% to 77%. The best-run 

accuracies do not show any vast difference from the averaged values. 

6.3.2 Comparison with SVM and ANN 

Comparisons were made between accuracies of CGP classifiers and popular machine 

learning algorithms; SVM and ANN. SVM and ANN parameters used in this study 

discussed in Section 5.2.4 of Chapter 5. 

 

Table 6.2: Performances of SVM and ANN classifiers for all cases of Dystonia study compared to CGP 

classifiers 

 
Case 

Accuracy (%) 

CGP (best run) SVM ANN 

train test train test train test 

Controls vs OD 65.55 64.58 66.10 64.41 89.55 66.95 

Controls vs FD 85.62 77.00 77.92 75.00 93.33 68.75 

OD vs FD 83.78 72.49 78.00 66.81 84.00 62.92 

 
In all cases, results using CGP and other algorithms are comparable with very small 

differences between each other. ANN shows signs of overfitting where the accuracies of 

the training sets were much higher than the those of the test set. 
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6.4  Discussion 

It is a known fact that diagnosis of FD is very difficult. It might be the main reason for 

poor performance of all machine learning algorithms applied in this study. The fact that 

all three algorithms, CGP, SVM and ANN, produced comparable results demonstrates 

that the problem is with the data rather than the method applied. 

There are several possible reasons why the data is unreliable. The problem might be with 

regard to the selected motor task. Although a few previous studies using finger tapping 

data of Psychogenic Movement Disorders (PMD) shows significant difference between 

PMD and healthy controls, the studies did not specifically address Functional Dystonia. 

The movement characteristics of Functional Dystonia and other PMDs might be different. 

The second reason might be the participants. Dystonia patients in this study consists of 

various subtypes of Dystonia. Although all Dystonia participants have affected upper 

limb movements, the symptoms might not be shown in the hand only. In future it is 

suggested that the use of a combination of motor tasks is considered that involve other 

affected body parts as well. The third problem might be in number of instances available. 

The number of participants in the Dystonia study is good compared to PD study. 

However, due to the high variation of symptoms in Dystonia patients, the study needs 

more participants for the algorithms to better predict these. 

The differentiation of PMD from its organic version is very important to support 

the clinical diagnosis. The misdiagnosis rate is too high for the costs to be ignored. 

Therefore, it is suggested that this study be continued but by looking into different 

arrangements of experimental setup and higher numbers of participants. 
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Conclusions and future works 

In this chapter, a summary of the whole study is presented, stating the findings deemed 

important and suggestions for future work. Finally, the hypothesis and objectives of the 

study stated in Chapter 1 are revisited. 

7.1 Research summary 

The real-world aim of this study is towards improving diagnosis and monitoring of 

neurological conditions, particularly the conditions that cause movement disorders. 

Neurological conditions are the biggest caused of loss of healthy life in the world 

population. The main motivations for this study stem from the multiple impacts of 

movement disorders to the life of patients, family, society and a country’s economy. The 

symptoms of the condtions cause a decrease in quality of life (QOL) in many ways 

including loss of independence, negative impact on relationships and work, and having 

difficulties performing day-to-day activities (Dowding et al., 2006; Soh et al., 2013; 

World Health Organization, 2006). The disorders affected QOL not only of the patients 

but the caregivers as well (Carter et al., 2008; Martínez-Martín et al., 2005, 2007). The 
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degrading quality of life of patients and caregivers is especially true for 

neurodegenerative disorders such as PD and HD where the burden increase as the disease 

progress. The economic cost of movement disorders is high, involving public health 

activities that include formal health care such as personal medical attention, home care 

and self-care, health promotion and disease prevention (World Health Organization, 

2006). The effect is big and global. In 2005, over one million people in Europe were 

diagnosed with Parkinson’s disease, with around 127000 of them living in the United 

Kingdom. It is projected that the number will double by 2030 (Dorsey et al., 2007). 

Approximately 2.2% of the US population have essential tremor, smoe 6.38 to 7.63 

million people (Louis & Ottman, 2014). Until now, there are no cures for movement 

disorder conditions; however, accurate and early diagnosis can help lessen the effects 

through effective management of the disease. Unfortunately, for most movement 

disorders, diagnosis proves to be difficult and unreliable and requires experts in the field 

to achieve higher accuracy. This is largely due to the fact that the diagnosis of movement 

disorders remains clinical. Clinical diagnosis is based on observation of clinical features 

from examination and history taking and response to medication. Clinical diagnosis is not 

straightforward, usually complex and may be variable. This is the main reason why 

misdiagnosis rate in movement disorders are high. In Parkinson’s disease, it is estimated 

that the misdiagnosis rate remains as high as 25% since 1970’s (Ali H Rajput & Rajput, 

2014). About one in three patients with other tremor conditions were misdiagnosed as 

having ET, with the most frequent incorrect diagnoses being Parkinson’s disease and 

dystonia (Jain et al., 2006). In additon, due to their sometimes-unusual presentations, 

patients with movement disorders may be diagnosed as having disorders caused by 

phycological problems (psychogenic movement disorders, PMD). The misdiagnosed rate 

of PMD is also high at 25-52% (Pal, 2011). 
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In effort to overcome difficulties caused by clinical diagnosis, objective assessments have 

been suggested. Many previous potential objective assessment methods in movement 

disorders are based on motor symptoms. The studies include using electronic sensors to 

collect movement data. For example, using patient’s performance in drawing an 

Archimedes spiral, handwriting, rapid alternate movement or doing an everyday task such 

as walking. From these studies, many important movement features have been extracted 

and proven as significant features in differentiating the groups healthy old people and 

movement disorders. However, statistical analysis applied in these studies is usually 

focused on understanding the data (descriptive statistics) and making statements about 

the analysis of in-hand data (inference). Statistical analysis is often poor in the prediction of 

unseen data points. In order to support clinical diagnosis, the prediction part is obviously 

crucial. The ability to put unseen data into the correct classes, without any prior 

assumptions about the data can, however, be achieved by classification tasks using 

machine learning methods. 

Considering previous efforts towards objective diagnosis, this study was 

conducted by employing EA on kinematic data of standard motor tasks. First, movement 

data collection was done by clinicians and consultant Neurologist in two research centres, 

Leeds Teaching Hospitals NHS Trust, UK and Monash Medical Centre, Melbourne, 

Australia. In the first phase, healthy controls and idiopathic PD patients were recruited. 

A total of 26 controls and 27 PD patients finished three standard motor tasks from MDS-

UPDRS, namely finger tapping (FT), hand pronation-supination (PS) and hand opening-

closing (HO). The movement data were collected in form of recordings of the positions 

of electromagnetic sensors worn by participants. Polhemus, a motion tracker system was 

used for the purpose. In the second phase, 11 HD patients and 6 ET patients were 

recruited. The last phase involved data collection of Dystonia patients. 
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The obtained data was then pre-processed using the Digital Signal Processing Toolbox™ 

in MATLAB®. Simple filtering, a Butterworth filter, was used to filter out noise. 

Exploration of the data were done to understand the data. Every data file was plotted, 

checked for missing values and corruption. For example, the maximum distance between 

two sensors can indicate if the data was corrupted. This can happen if there were strong 

magnetic sources around the motion tracking system or the basic arrangement of the 

experiment protocol was not followed. The details of the recording process is explained 

in Chapter 4. 

The next step is to extract useful features that might be able to differentiate 

movement of participants from different groups. Focus was on features of Bradykinesia. 

This is due to the importance of Bradykinesia feature in PD as explained in Chapter 2. 

Previous quantitative studies of PD were used as basis for features selected. For finger 

tapping and pronation-supination, 19 movement features were extracted. In case of hand-

opening task, 15 features were extracted. The same features in PS and FT cannot be used 

for HO due to the different nature of HO movement. Unlike in FT, where distance of 

thumb and finger are basis of the extracted features, most of the features in HO considered 

the movement of the thumb and fingers separately. Basic statistical tests were conducted 

to find out if there were significant differences between groups of healthy controls and 

the movement disorders data. The extracted features were then used as inputs to evolve 

CGP classifiers. CGP’s advantages were discussed in Chapter 3. A CGP platform (and 

library) was used to evolve the classifiers (Turner & Miller, 2014). These classifiers were 

trained and validated to differentiate groups of healthy elderly people (controls) and 

movement disorders patients.  
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The disorders considered are Parkinson’s disease, Huntington Disease patients and 

Essential Tremor. Altogether, there are six cases considered in this study: 

 

• Controls vs PD 

• Controls vs HD 

• Controls vs ET 

• PD vs HD 

• PD vs ET 

• Controls vs Dystonia 

• Organic Dystonia vs Functional Dystonia (OD vs FD). 

 

Based on the accuracies of evolved CGP classifiers, the best classifiers were selected to 

investigate features that contributed most to the discrimination. Only classifiers from the 

cases that achieved avaerged accuracies above 80% were considered. 

Other machine learning algorithms were also used for comparison and validation. 

Two popular machine learning algorithms, Support Vector Machines (SVMs) and 

Artificial Neural networks (ANNs) were chosen. Accuracy is used to measure the 

performance of classifiers evolved and two forms of cross-validation (cv) were applied. 

The first approach was to use subject-wise cv where records (repetitions of recordings) 

from the same participant are not used in both the training and the test sets of the same 

fold. This is to avoid dependency between instances in training and test set that may cause 

bias. Stratified repeated k-fold cross-validation was used to assure statistical significance. 

However, it is quite common practice to disregard the precaution and instances from the 

same participant picked randomly to be included in both the training and test sets (record- 

wise cv). Therefore, it was decided to use both approaches to provide a meanful 
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comparison. Therefore, record-wise cv was used to compare performance of the three 

algorithms (CGP, SVM and ANN) with previous studies. 

7.2 Study findings and future works 

This study used one set of experiments with applications to different groups of movement 

disorders. To the best of knowledge, this is the first time a machine learning study that 

the three components (motor tasks) from the UPDRS have been measured together on the 

same patient. This is also the first time that comparisons were made between the 

performances of machine learning classifiers evolved using the kinematic data of all the 

three components.  

7.2.1 Study findings 

To conclude the study, useful findings on the application of EA and other machine 

learning algorithms on the kinematic data of the motor tasks are presented. Following, are 

conclusions and observations that can be made based on the results of the classification 

results and scrutinisation of the chromosomes from the best classifiers evolved. 

 

i) CGP Classifiers using PS kinematic data performed better than FT 

classifiers in PD study 

In the PD study, CGP classifiers had been evolved using kinematic data of three types of 

motor tasks; finger tapping (FT), hand pronation-supination (PS) and hand opening- 

closing. These classifiers were trained and validated to differentiate groups of healthy 

elderly people (controls) and movement disorders patients. The disorders considered were 

Parkinson’s disease, Huntington Disease and Essential Tremor. In all five cases 

considered for the classification task involving PD and other movement disorders (listed 

in section 7.1), PS classifiers showed the highest accuracies compared to classifiers 



156  

evolved using the other two tasks. This indicates that Rapid Alternating Movements 

(RAM) such as hand pronation-supination might be a better motor task to differentiate 

PD from healthy controls and other movement disorders, compared to finger tapping. 

 

ii) HO classifiers differentiate PD from HD better than FT classifiers 

FT classifier accuracies are comparable to PS classifiers in most cases except for the case 

of PD vs HD, where FT classifiers achieved accuracy of 70% at best. HO classifiers 

showed less convincing performance with the majority of the classifiers’ accuracies 

ranging from 65 % to 78%, in all cases except for the case of PD vs HD, where averaged 

best run achieved an accuracy of 84%. This indicates that HO is a better task to use in 

differentiating PD from HD. 

 

iii) Bradykinesia exists in HD and ET 

There is research suggesting that bradykinesia is not a core feature of movement 

disturbance in HD (Duval et al., n.d.; Fenney et al., 2008). It is interesting to note that in 

this research, the only feature of Bradykinesia considered was slowness, when in fact 

Bradykinesia comprises other features, as explained in Chapter 2. The same pattern 

occurred in the case of Essential Tremor. Some researchers suggested Bradykinesia exists 

in ET (Duval et al., 2006; Goubault et al., 2017), but other research opposes this idea 

(Özekmekçi, 2005). Looking at the results of this study, classification in the majority of 

classifiers, be it using CGP, SVM or ANN (for all three motor tasks), achieved at least 

80% accuracy in identifying HD from healthy controls. Several high-performance 

classifiers even achieved 100% accuracies in classifying HD. Since the movement 

features used to induce the classifiers are Bradykinesia features, it is concluded that 

Bradykinesia does exists in HD. Excellent results were also achieved in classification of 

ET and healthy controls. However, because of the small number of ET patients it can’t be 
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confirmed with confidence, but it is a strong indication that bradykinesia exists in ET, but 

will need further clarification with higher numbers of participants in the future. 

 

iv) Strong discriminative movement features are present in classifications with 

high accuracies 

For classifiers that showed good performance, with averaged accuracies above 80%, the 

best discriminative movement features were investigated. For every case considered, the 

five best classifiers were investigated, by rank-ordering the movement features most 

influential in finding the solution, and identifying these as discriminating features. In case 

of controls vs PD, two of the discriminating features are established characteristics in 

identifying PD (from previous objective assessment studies). This gives more confidence 

in the findings. Discriminative features for every case considered were summarised in 

Chapter 5. The ability of CGP to inform how the solution was achieved is very important 

and is especially useful in future clinical studies. 

 

v) Classification using CGP is in all cases comparable with, and in certain cases 

better than, ANN and SVM 

Accuracies of CGP classifiers in all cases were compared to classifiers induced by SVM 

and ANN. SVM and ANN results are used as a baseline to validate the results obtained 

using CGP. In all cases, accuracies of CGP classifiers are comparable to those obtained 

using SVM and ANN. In the case of controls vs PD, and controls vs ET, CGP classifiers 

even achieved higher accuracies than SVM and ANN. 

 

vi) Record-wise cross-validation yielded better accuracies than subject-wise 

cross-validation in most of the cases 

In record-wise validation, all the records were used as different samples and randomly 

divided into the training and test set datasets. Whilst in subject-wise validation, the 

records for the same subject will not be in the training and test set in the same iteration. 



158  

We were taking advantage of having real medical data  to test the effect of using different 

style of cross-validation. The results showed that record-wise cross-validation yielded 

better accuracies than subject-wise cross-validation in most cases. This might be a sign 

of bias and overestimating as claimed in (Saeb et al., 2016); however further clarification 

is needed. All SVM and ANN classifiers induced in this study were achieved using record-

wise cross-validation; a practice that is common. For example, leave one out cross-

validation is a type of record-wise cross-validation. 

 

 

vii) Organic and Functional Dystonia cannot be clearly differentiated using the 

same FT movement features in PD study 

The movement features of FT have been used to differentiate between organic and 

functional Dystonia. The classification results were not very encouraging with averaged 

accuracies below 80%. Early statistically significance tests done on the at the beginning 

of the experiments shown promising results. However, as we include more participants, 

the performance decreased. There are few factors that might be the reasons of the lack of 

good performance by the classifiers. The first is, the classification between OD and FD - 

itself a very difficult clinical case. No study known has been successful in objectively 

differentiating between these two types of Dystonia. The second reason might be the 

motor task selected to evolve the classifiers is not suitable to measure the differences 

between the two groups. Finally, it may not be possible to differentiate between OD and 

FD by movement features alone as noe difference is actually expressed. Further work 

needs to be done as suggested in the next section (Section 7.2.2). 
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7.2.2 Future work 

This study has two main limitations: 

• The electromagnetic sensors were put at the same places during all motor tasks 

although the nature of movement for each task might be different. 

• The small number of participants for the HD and ET studies. 

 

In future work, new experiments should be considered for movement data collection. The 

electromagnetic sensors should be placed at suitable locations according to the task. For 

example, in case of hand pronation-supination, a sensor placed at wrist and another at 

thumb or finger might lead to better results. This way, the angels of movement can be 

measured. In case of Dystonia study, other motor tasks should be considered as well apart 

from finger tapping. 

Although classifications of HD cases yielded very good accuracies, a higher number of 

participants will give more confidence in the accuracies and discriminating features 

achieved. As for ET cases, the classification in this study can be regarded as pilot study 

or preliminary experimentation to a future study with more participants. Another 

suggestion is to use a smaller set of features as CGP classifiers inputs. CGP is an 

algorithm than can predict solutions without any prior assumption and able to process any 

type and distribution of data. Also, this structure should be taken advantage of by using 

raw data points as inputs instead of using a set of features. This way, new movement 

features other than stated in literature might emerge as discriminating features. 
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7.3 Final conclusions 

Having summarised, this study in Section 7.1 and highlighted the useful findings in 

Section 7.2, we can now revisit the hypothesis defined in section 1.6: 

 

“Evolutionary Algorithms offer a means of differentiating and characterising a range of 

movement disorders using digitised kinematic data from common conventional clinical 

tasks.” 

 

In order to test the hypothesis, three study objectives were set: 

• Apply EA predictive modelling to classify Parkinson’s disease patients from 

healthy controls, essential tremor and Huntington’s disease patients using 

available datasets. 

• Observe characteristics of different movement disorders performing the same 

motor tasks by analysing the EA classifiers evolved. 

• Use EAs to discriminate patients of functional (psychogenic) dystonia from 

healthy controls, and its organic counterpart, primary dystonia. 

 

In Chapter 5, we concluded that CGP successfully differentiated PD from healthy 

controls, PD and ET. Although in order to generalise the results and inform clinical 

assessment, further clarifications are needed by increasing the number of participants. We 

also highlighted that one of the CGP advantages is the ability to investigate the solution. 

In this case, the study on the chromosomes of the best classifiers exposed the most 

discriminating features of that differentiated each group. 

In Chapter 6, it was presented that the performance of Dystonia classification is 

not so encouraging. Nonetheless, it shows the positive trends where the almost all the 
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classifiers evolved achieved accuracies above 65%. With further work as suggested in 

Section 7.2, we believed better results can be obtained. 

In light of experimental results presented in Chapter 5 and 6, a case can be made 

that Evolutionary Algorithms in form of Cartesian Genetic Programming offer a means 

of differentiating and characterising a range of movement disorders specifically 

Parkinson’s disease, Huntington’s disease and Essential Tremor using digitised 

kinematic data from common conventional clinical tasks of MDS-UPDRS, namely finger 

tapping, hand pronation-supination and hand opening-closing. It is hoped that this study 

can be used as the foundation to further efforts of using EAs in supporting clinical 

diagnosis of movement disorders. This study can be extended in many ways such as 

application to other types of movement disorders, or using kinematic data of other motor 

tasks, or using components from other assessment scales. 
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