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Summary 

This thesis has investigated the potential for simple pollution description 

techniques to be used within Integrated Catchment Models. The thesis proposes 

the use of an event mean concentration (EMC) as a measure which could be 

used to improve the assessment and design of solutions to manage the impacts 

of pollution on receiving water courses. 

Processes and models proposed by previous research which predict storm water 

TSS concentrations in urban catchments have been presented and discussed. 

The most important considerations when developing a simple transferable TSS 

EMC storm water model have been identified as the inclusion of components 

which account for the build-up and wash-off processes which can be 

conceptualized using explanatory variables. In this respect, following analyses of 

a comprehensive TSS storm water quality data set collected in Australia, a new 

TSS EMC model which uses climatic and rainfall characteristic variables has 

been developed. Analysis of the model’s calibration and validation results were 

compared with those made by existing TSS EMC models and showed that the 

model had significant predictive efficiency. 

To understand the potential and practical application of the model to catchments 

other than where it was developed, the model has been calibrated and validated 

to a water quality data set generated by a complex deterministic sewer quality 

model, subsequently, it has been used to estimate observed TSS EMC’s 

recorded at this catchment. Model calibration and validation results suggest that 

TSS EMC model accurately ‘mimics’ some of the water quality processes 

described by the complex model. 

The simple EMC approach and associated uncertainty method presented in this 

work could be used to improve the application of the ICM process by offering 

practitioners and decision makers a new planning dimension; the interpretation 

of probabilistic results which could be used to improve the application and 

understanding associated with the ICM approach. 
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Equations and Notation 

The following equations list and respective notation is specific to each chapter in which 

it is presented:  

Equation 3-1 

 
dM

dt
= Ps − (K

1
∗ M) 

Where: 

 � = the mass of deposit per surface unit (kg/ha) 

 �� = the build-up factor (kg/ha.day) 

 ��= the decay factor (0.08/day) default deduced from empirical calibration. 

 

Equation 3-2 

���� =
��

��
 

Where:  

���� = maximum surface mass available (kg/ha) 

�� = the build-up factor (kg/ha.day) 

��= the decay factor (0.08/day) default deduced from empirical calibration. 

 

Equation 3-3 

�� = �������� +  
��

��

(1 − �����) 

Where:  

M0 = the mass of sediment at the end of the build-up period or the projected mass at 
the end of the timestep (kg/ha) 

Md = the initial mass of sediment deposit (kg/ha) 

��= the decay factor (0.08/day) default deduced from empirical calibration 

NJ = the duration of the dry weather period or timestep length (days) 

Ps = the build-up factor (kg/ha.day). 
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Equation 3-4 

���(�) =
((� + � ∗ ��) ∗ ��

1,000,000
 

Where:  

PGn(t) = dissolved pollutant mass at timestep t (kg) 

C = initial pollutant concentration (mg/l) 

M = gradient of linear accumulation (mg/l days-1) 

ND = dry weather period or timestep length (days) 

Vg = gully pot volume (m3).  

 

Equation 3-5 

 

Where: 

Vg = gully pot volume (m3) 

 Dg = gully pot depth (m)  

A = runoff area of the respective runoff surface for the gully pot under consideration 
(m2). 

 

Equation 3-6 

 

Where:  

M(t) = mass of surface-deposit pollution per unit area (kg/ha) at time t 

Ka = the erosion/dissolution factor related to rainfall intensity (-) 

f(t) = the pollutant flow at time t (kg/(ha). 

 

 

�� = �� ∗ � 

��

��
= �� ∗ �(�) − �(�) 
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Equation 3-7 

 

Where:  

Me(t) = the mass of the pollutant dissolved or suspended pollutant (kg/ha) at time (t) 
per unit area. 

k = linear reservoir coefficient (s-1) 

f(t) = the pollutant flow at time t (kg/(ha.s). 

 

Equation 3-8 

 

Where:  

�(0) = initial TSS outflow (kg/(s.ha)) 

��(0) = the TSS flow (kg/s)  

C = proportion of sub-catchment area that is impermeable (-)  

Ar = sub-catchment area (ha). 

 

Equation 3-9 

 

Where:  

Kpn = Potency factor (-) 

IMKP = maximum rainfall intensity over a 5-minute period (mm/hr) 

C1, C2, C3 = coefficients (mm/hr).  

 

 

 

��(�) = � ∗ �(�) 

�(0) =
��(0)

� ∗ ��
 

��� = �1(���� − �2)�3 + �3 
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Equation 3-10 

��(�) = ��� ∗ ��(�) 

Where: 

fn(t) = pollutant flow (kg/(s.ha) at time t   

kpn = potency factor (-) 

fm(t) = TSS flow at time t (kg/(s.ha). 

 

Equation 3-11 

��

��
= −���(�) 

Where:  

M = erosion rate (kg/(ha.s)) 

Ka = rainfall erosion coefficient (-) 

M(t) = erosion rate at time t (kg/(ha)). 

 

Equation 3-12 

� = �(�) ∗
(1 − �����)

��
 

Where: 

� = erosion rate (kg/(ha.s)) 

M(t) = erosion rate at time t (kg/(ha.s)) 

Kd = erosion coefficient (-). 

 

Equation 3-13 

� =
(�� − �� ∗ �(�))��

86400
 

Where: 

� = surface build-up (kg/ha) 
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�� = build-up coefficients (-) 

�� = linear reservoir coefficient (-) 

M(t) = erosion rate at time t (kg/(ha.s)) 

86400 (seconds in 24 hours). 

 

Equation 3-14 

�(� + ��) = �(�)������ + � 

Where: 

M(t) = erosion rate at time t (kg/(ha.s)) 

Ka = rainfall erosion coefficient (-) 

� = surface build-up (kg/s). 

 

Equation 3-15 

���

��
= � − �(�) 

Where: 

Me = the mass in solution per unit area (kg/ha)  

E = erosion rate (kg/(ha.s)) 

f(t) = TSS flow per unit of active surface at time t (kg/(ha)). 

 

 

Equation 3-16 

�(� + ��) = �(�)�
���

� + �1 − �
���

� � + (1 − ������)�(�)/�� 

Where: 

f(t) = TSS flow per unit of active surface (kg/(s.ha)) 

k = linear reservoir coefficient (-) 



xxiii 

 

ka = rainfall erosion coefficient (-) 

M(t) = the mass of surface-deposit pollution (kg/ha). 

 

Equation 3-17 

��(�) = � ∗ �� ∗ �(�) 

Where:  

��(�) = TSS outflow per sub-catchment at time t (kg/s) 

C = the proportion of sub-catchment area that is impermeable (-) 

Ar = the sub-catchment area (ha) 

f(t) = TSS flow per unit of active surface at time t (kg/(s.ha)). 

 

Equation 3-18 

��(�) = ��� ∗ � ∗ �� ∗ �(�) 

Where:  

Fn(t) = the attached pollutant flow (kg/s) 

kpn = potency factor (-) 

C = the proportion of sub-catchment area that is impermeable (-) 

Ar = the sub-catchment area (ha) 

f(t) = TSS flow per unit of active surface at time t (kg/(s.ha)). 

 

Equation 3-19 

�� = ��(� + ��) ∗ �� + ���(�) 

Where: 

Pn = total pollutant mass (kg) 

Fn(t + dt) = dissolved pollutant inflow (kg/s) 

dt = timestep (s) 

PGn(t) = pollutant in gully at time t (kg). 
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Equation 3-20 

��(� + �) =
�(� + ��)

(�(� + ��) +
��

��
)

∗
��

��
 

Where:  

Fn(t + dt) = dissolved pollutant inflow (kg/s) 

Q (t + dt) = runoff from road surface at time t (m3/s) 

Pn = total pollutant mass (kg) 

dt = timestep (s) 

��= volume of gully (m3). 

 

Equation 3-21 

���(� + ��) = �� − ��(� + ��) ∗ �� 

Where: 

PGn(t + dt) = pollutant in gully at timestep (kg) 

Pn = total pollutant mass (kg) 

dt = timestep (s) 

Fn(t + dt) = dissolved pollutant inflow (kg/s) 

Note in current model no dissolved pollutant enters the gully pot from the road surface 
therefore Fn(t + dt) input to the Pn equation is always zero.  

 

Equation 3-22 

��

��
+ �

��

��
= 0 

Where:  

c = concentration (kg/m3) 

u = the flow velocity (m/s) (obtained from the hydraulic simulation)  

t = time (s)  

x = the spatial co-ordinate (m). 
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Equation 3-23 

�� = � �
���

�
�

�

�
���

�
�

�

��
�

�
|�|

��(� − 1)�
− ���

�
�

���

�
�

∈

�

�

 

Where: 

Cv = non-dimensional carrying capacity (-) 

We = the effective bed width (m) 

� = hydraulic radius of flow (m) 

� = cross sectional area of the flow (m2) 

��� = average sediment particle size (m) 

u = flow velocity (m/s) 

� = acceleration due to gravity (m/s2) 

s = specific gravity of sediment particles (-) 

�� = the composite friction factor, calculated using the Colebrook-White formula as 
described in Voogt, van Rijn and van den Berg, (1991) 

 �, �, �, �, �, �, �, �, = coefficients dependent on the dimensionless grain size ���. 

 

Equation 3-24 

��� = ��� �
�(� − 1)

��
�

�
�

 

Where:  

Dgr = grain size (-) 

d50 = the average sediment particle size (m) 

� = the kinematic viscosity of water (m2/s) 

g = the acceleration due to gravity (m/s2)  

s = the specific gravity of the sediment fraction (-). 
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Equation 3-25 

���� = ���� 

Where: 

Cmax = maximum carrying concentration (kg/m3) 

Cv = non-dimensional carrying capacity (-) 

� = density of fluid (kg/m3) 

s = the specific gravity of the sediment fraction (-). 

 

Equation 3-26 

 

�� = �����,� − �����
�

���

���

  

Where: 

VE = mean variation between the optimum EMC and the measured data for each event 

(mg/l) 

Mi,t = the measured parameter during spill event i at time t (mg/l) 

EMCi = EMC for spill event i (mg/l). 

Equation 3-27 

 

�� = �����,� − ��,��
�

���

���

   

Where: 

Vi = Minimum achievable variance between observed and predicted quality parameters 

for each event (mg/l) 

Pit = the predicted value of the concentration parameter during event i at time t (mg/l) 

Mi,t = the measured parameter during spill event i at time t (mg/l). 
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Equation 4-1 

� =  ��(1 − �����) 

Where: 

�t = transported sediment load after time t (g/m2) 

�� = Initial load of material on surface (g/m2) 

� = Calibration parameter (mm-1)   

� = Rainfall Intensity (mm/hr) 

� = time (hr). 

  

 

Equation 4-2 

�� =
�

��
= ��(1 − �����) 

Where: 

�� = Fraction of wash-off (-) 

�= Weight of material mobilized (g/m2) 

�� = Initial mass of material on surface (g/m2) 

�� = Capacity factor (-) 

� = Calibration parameter (mm-1)   

� = Rainfall Intensity (mm/hr) 

� = time (hr). 

 

Equation 4-3 

�� =
1

�
� ��

�

���

 

Where  

for each observation xi (mg/l), 
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 �� = the mean of the observed variable (mg/l) 

 n = the number of observations in the data set.  

 

Equation 4-4 

�� = � �
(�� − ��)�

�

�

���

 

Where: 

for each observation xi, 

 �� is the mean of the observed variable and n is the number of observations in the data  

SD = standard deviation (mg/l) 

 �� = the mean of the observed variable (mg/l) 

n = the number of observations in the data set.  

 

Equation 4-5 

����

��
=

��

�
(� ≤ �) +

��

��
(� > �) 

Where:  

EMC = TSS EMC (mg/l)  

X = Rainfall Depth (mm) * Antecedent dry weather period (days)  

λ  =  threshold value of X separating the two behaviors of EMC values 

b1  and b3 = model calibration parameters (mg/l). 

 

Equation 4-6 

��� = [(�� ln(�) + ��)(� ≤ �)] + ��
��

�
+ ��� (� > �)�  

Where: 

EMC = TSS EMC (mg/l)  

X = Rainfall Depth (mm) * Antecedent dry weather period (days)  
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λ = the threshold value of X separating the two behaviors of EMC values 

b1, b2, b4 and b3 = model parameters (mg/l). 

 

Equation 4-7 

� = 1 −
∑ (��

��� − ��
�����)��

���

∑ (��
��� − ���)�

���

�
[−∞|1] 

Where: 

For each observation ��, 

� = Nash-Sutcliffe co-efficient 

 ���� = Observed TSS EMC value for n data records (mg/l) 

������= Simulated TSS EMC for n data records (mg/l) 

 ���= Mean TSS EMC of observed data records (mg/l). 

 

Equation 5-1 

��

��
= −�� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 

 

Equation 5-2 

1

�

��

��
= −� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 
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Equation 5-3 

1

�
 �� =  −� �� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 

 

Equation 5-4 

�
1

�
 �� =

�

�

� −� ��
�

�

 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 

 

Equation 5-5 

��� + �� = −� � + �� 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

�� and �� = arbitrary constants. 

 

Equation 5-6 

��� = −�� + �� 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (-) 
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Equation 5-7 

�(�� �) = �(������) 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-8 

� = ������� 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-9 

� =  ������� 

Where: 

C = pollutant concentration (-)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-10 

�(�) = ������ 

Where: 

C = pollutant concentration at time t (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l).  
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Equation 5-11 

�(0) = �� = ����� � =  ���� = �� 

C = pollutant concentration (mg/l) at time (0)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

  

Equation 5-12 

�(�) = ������ 

Where: 

C(t) = the concentration of pollutant at time t (mg/l) 

�� = the initial concentration at time (0) (mg/l)  

k = the decay coefficient (s-1). 

 

Equation 5-13 

����� =
��

�
 

Where: 

����� = TSS EMC (mg l-1) 

�� =   Total mass over duration of event (mg s l-1) 

T = duration of the wash-off event (s). 

 

Equation 5-14 

�� = �� = � ������

�

�

=
��

−�
���� −

��

−�
���� 

Where: 
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�� = TSS EMC at time (0) (mg/l) 

�� = Total mass over duration of event (mg s l-1)  

�� = Total mass over duration of event (mg s l-1) 

T = duration of the wash-off event (s) 

k = the decay coefficient (s-1). 

 

 

Equation 5-15 

����� =
1

�
 

��

−�
(���� − 1) 

Where: 

����� = TSS EMC (mg/l) 

�� = Initial TSS concentration (mg/l) 

k = the decay coefficient (s-1) 

T = duration of the wash-off event (s). 

 

Equation 5-16 

���� = � �
������ − ����������

�
�

�
�

�

���

 

Where: 

for each data point ��,  

RMSE = root-mean-square error (mg/l) 

Cpred = TSS EMC (mg/l) predicted by the specific model formulation under analysis 

Cmeasured = observed TSS EMC (mg/l)  

n = number of observations in the data set.  

 

Equation 5-17 

�� = � ∗ ln(����) + � 
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Where: 

�� = Initial TSS (mg L-1) concentration at time (0)  

���� = antecedent dry weather period (s) 

a and b = calibration parameters (mg L-1). 

 

Equation 5-18 

� = � ∗ ��∗���� 

� = decay coefficient (s-1) 

���5 = average rainfall intensity (mm/s) 

c = calibration parameter (s-1) 

d = calibration parameter (-). 

 

Equation 5-19 

����� =
1

�
 
� ∗ ln(����) + �

� ∗ ��∗����
(���∗��∗����∗� − 1) 

Where: 

����� = TSS EMC (mg/l) 

T = duration of the wash-off event (s) 

���5 = average rainfall intensity (mm/hr) 

���� = antecedent dry weather period (hr) 

� = calibration parameter (mg/l) 

� = calibration parameter (mg/l)  

� = calibration parameter (s-1) 

� = calibration parameter (-) 
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Equation 5-20 

��� =
∑ ���

��
���

��
 

Where:  

��� = sensitivity index value  

�� = the number of input parameters 

��� = the sensitivity index of parameter �. 

 

 

Equation 5-21 

� = �
∑ ���

��
��� ����

− ∑ ���
��
��� ��

��
� 

Where: 

��� = sensitivity index value  

�� = the number of input parameters 

��� = the sensitivity index of parameter � 

�� = the number of simulations. 

 

Equation 5-22 

�������� ������ = ����������� − ���������� 

Where: 

 for the event i,  

�������� ����� = model residual error (mg/l) 

Cpredicted = the model prediction of TSS EMC (mg/l) 

Cmeasured = the measured TSS EMC (mg/l). 
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Equation 5-23 

�����������

����������
= ������� 

Where: 

 for the event i,  

������ = ratio of error (-) 

Cpredicted = the model prediction of TSS EMC (mg/l) 

Cmeasured = the measured TSS EMC (mg/l). 

 

Equation 5-24 

��� ���� = 2 ∗
���(�)

√�
�  

Where: 

��� ���� = number of bins 

IQR = the Interquartile range of the data (�) 

n = the number of observations. 

 

Equation 5-25 

 

Where: 

� = location parameter 

� = scale parameter 

� = Pi (~3.142) 

 



xxxvii 

 

Equation 5-26 

 

Where: 

� = location parameter 

� = scale parameter 

� = Pi (~3.142). 

 

Equation 6-1 

� + 1

�
= ������ ������ 

Where: 

n = the number of years of data 

m = the number of occurrences of the event under study. 

  

 

Equation 6-2 

�� = �
����

�5 − 60
 � ∗ � 

Where: 

SAAR is the annual average rainfall (mm) 

M5-60 = the 5-year 60-minute rainfall event (mm) 

R = the rainfall ratio (-). 
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Chapter 1.  Introduction 

1.1 Background and motivation of research 

Access to clean water is an integral part of any successful and thriving human 

society. Streams, rivers, lakes and wetlands not only serve as potential raw 

sources of water, but also provide amenity, recreational value and are home to 

an abundance of flora and fauna. Drainage systems are necessary in urban areas 

to manage the interaction between human activity and the natural water cycle. 

Drainage systems are commonly required to handle two types of water that occur 

from anthropogenic activity; wastewater and storm water. Wastewater is derived 

from previously supplied potable water which has become adversely affected 

after domestic and industrial usage. Storm water is precipitation runoff which has 

fallen on the urban area. Wet weather conditions can lead to an exceedance 

related to a drainage systems capacity, subsequently, organic and in-organic 

matter carried within storm and wastewater flows can be released into the aquatic 

environment, these intermittent forms of discharge are a significant threat to the 

chemical and ecological health of receiving water bodies (European Environment 

Agency, 2012). 

The European environment agencies report concerning the current status of 

water bodies across Europe estimated that only 52% of such bodies were set to 

reach the desired chemical and ecological status; defined as ‘good’, by the year 

2015 (European Environment Agency, 2012). With world population numbers 

expected to continue increasing through the century and the number of people 

living within urbanised areas projected to rise from approximately 54% to 66%, it 

is expected that by the year 2050, an additional 2.5 billion people could be living 

in cities across the globe  (United Nations World Water Assessment Programme, 

2015). Urbanisation transforms natural drainage areas into hard standing 

surfaces which increases volumes of runoff in wet weather conditions, coupled 

with an increasingly uncertain climate and the higher wastewater and storm water 

loads associated with future anthropologic activity, water management bodies 

face significant challenges if they are to restore, maintain and protect water body 

health (Butler and Davies, 2010; and United Nations World Water Assessment 

Programme, 2015). 
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Water management bodies endeavour to manage the negative impacts of 

intermittent discharges from drainage systems by implementing a wide range of 

solutions across the drainage network. Solutions can range from traditional 

capital schemes such as network storage capacity upgrades, to more 

operationally based schemes such as the implementation of real-time-control 

systems or sustainable urban drainage systems (SUDS) (Butler and Davies, 

2011). The design and success of such schemes is fundamentally underpinned 

by an ability to simulate and thus understand flow hydraulics and water quality 

behaviour throughout the system, mathematical models are commonly used 

provide this understanding (Ellis and Marsalek, 1996).  

Catchments can be considered as explicit geographical areas in which a human 

population lives. A catchments respective drainage system can be 

conceptualised into different interconnected components; sewerage networks, 

surface water networks, wastewater treatment works and receiving water bodies 

into which all water derived from a catchment is discharged. Historically, each 

component of a catchment drainage system was managed and thus modelled 

alone; however, under the guidance of the Water Framework Directive, an 

integrated approach, one whereby the aforementioned components and 

respective models are considered as one is now necessary to deliver holistically 

orientated schemes which can account for both current and future environmental 

pressures, this relatively recent approach is defined as Integrated Catchment 

Management (ICM) (Lerner et al., 2011). Whilst it is commonly accepted that the 

ICM approach is capable of coping with the requirements of the WFD, with such 

a wide range of computational models available to operators, and the new 

challenges this integrated approach to drainage modelling presents, the most 

effective and efficient means of delivering ICM are yet to be agreed (Freni, 

Mannina and Viviani, 2009). 

A mathematical model of any catchments drainage system can be considered as 

a quantitative, objective, rational means of processing information to predict the 

systems future behaviour (Butler and Davies, 2011). The behaviour of 

wastewater and storm water within a catchment is influenced by a wide range of 

complex chemical, physiochemical, biological, ecological and physical 

processes. If the complexity of a model can be considered to increase with the 

number of processes modelled and the temporal and spatial scales at which 
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these processes are simulated, and deterministic models are those which do not 

account for any random variation between mathematical relationships, then at 

present, the use of complex deterministic models to deliver the ICM approach is 

frequent and widespread (Freni et al., 2008). This is in part due to the previous 

piecemeal approach to drainage modelling, but also due of a ‘perceived’ increase 

in modelling result accuracy associated with modelling individual processes in 

interlinked catchment dynamics at high temporal and spatial scales (Ashley, 

Hvitved-Jacobsen and Bertrand-Krajewski, 1999; Jakeman and Letcher, 2003; 

Hamilton et al., 2015). 

Simulating water quality behaviour within an integrated catchment model can be 

a computational demanding process. This is due to the computation power 

required to solve complex algorithms, as a result, model simulation times can 

become large. This length of time can become prohibitive for carrying out multiple 

simulations, thus impeding model calibration, uncertainty analyses, scenario 

testing and solution optimisation. Uncertainty analyses, scenario testing and  

solution optimisation can be dependent on the ability to run large numbers of 

simulations over a range of different modelling conditions (Mannina and Viviani, 

2009). This length of time can become increasingly prohibitive as the numbers of 

sub-models exchanging information within an integrated model increases (Voinov 

and Shugart, 2013). 

Because many water quality processes are not yet fully understood, can be 

dependent on model inputs and model parameters which are difficult to 

accurately quantify or may be subject to natural variability, the levels of 

uncertainty associated with water quality modelling is said to be high (Willems, 

2010; Vezzaro et al., 2012; Bach et al., 2014). For this reason in an industrial 

context in which investment decisions regarding urban pollution management 

solutions are made by complex deterministic water quality models within 

integrated modelling approaches, there is a need to deal explicitly with 

uncertainty in water quality models (Pappenberger et al., 2006). 

As an alternative to deterministic models, various research groups have 

developed ‘stochastically’ based water quality modelling techniques capable of 

predicting pollutant loads and concentrations (Bach et al., 2010b and Daly et al., 

2014). Stochastic modelling approaches consider some of the natural variability 
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associated with water quality processes via the application of probability theory 

to variables and parameter values within a model. These techniques are 

dependent on the ability to run a model multiple times over various model input 

and parameter states. They are more readily applicable to ‘simple’ models, where 

run times are low, as oppose to complex, detailed, computationally expensive 

models widely used in the water industry (Obropta and Kardos, 2007a). 

The successful application of simple modelling approaches can be reliant on data 

for catchment specific parameter calibration. In most practical cases, water 

quality data are extremely limited, consequently, due to the costs associated with 

calibrating simple models, their potential role within the integrated urban drainage 

modelling setting is yet to be fully evaluated (Bach et al., 2014). 

The implications of using simple water quality models that utilise stochastic 

techniques within the ICM process are that practitioners can increase the speed 

of urban drainage solution scenario testing, quantify the uncertainty associated 

with these model predictions and ultimately add knowledge to the design solution 

process through optimisation (Vezzaro et al., 2013). Advancements in knowledge 

surrounding the delivery of the ICM will serve to aid the development of cost-

effective solutions designed to manage the detrimental impacts of urban pollution 

on the water environment, of great benefit to engineering practitioners, the 

research community and the wider public. 

1.2 Aims  

This thesis tackles a relevant issue in integrated catchment modelling; the 

availability of water quality predictions for combined sewer overflows. The 

mechanistic models incorporated in state-of-the-art complex water quality models 

require significant, often excessive, computational efforts; thus, this work aims to 

explore and develop different computational methods capable of predicting 

combined sewer overflow water quality. The implications of the work are 

determining the impact on a river of pollution discharged via combined sewer 

overflows.  

1.3 Objectives 

The objectives of the thesis are as follows: 
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1. Study existing water quality modelling methods utilised in the protection and 

management of the negative impacts caused by urban discharges. Identify 

which methods are of importance and how current prediction techniques 

could be improved through water quality model simplification and uncertainty 

analyses. Identify a suitable method by which modelling complexity could be 

reduced.  

2. Analyse the effects of reducing model complexity within an integrated model 

using case study data.  

3. Evaluate and understand the implications associated with reducing model 

complexity within an integrated model, subsequently provide 

recommendations to aid the development of a novel simplified modelling 

technique. 

4. Develop a new model with respect to the outcome of objectives 2 and 3. 

5. Study the implications associated with the application and transferability of 

the new model. 

1.4 Thesis Structure 

Figure 1-1 shows a schematic outline of the research carried out and the way it 

is been presented throughout the thesis. 
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Figure 1-1 Schematic outline of research activities and their description 

  



7 

 

Information on the urban drainage system and the approaches used to model it 

has been presented in Chapter 2. Due to the broad aims of the research, and the 

issue that each chapter’s direction is very much dependent on the outcomes of 

its predecessor, the scope of chapter 2 is limited to providing a sound scientific 

knowledge base as to how and why water quality models are used to protect the 

environment from the negative water quality impacts of urbanisation. To provide 

insight into the potential use of simple water quality models, Chapter 3 compares 

the performance of using water quality description techniques at varying temporal 

scales within an integrated catchment model. The chapter utilises a case study 

site, in that the integrated model has previously and is currently used by the water 

network and sewerage provider responsible for the management of urban 

drainage systems in the North-West of the United Kingdom. Chapter 4 explores 

the development and previous use of simple water models through the review of 

literature and the testing of one model on case study data, subsequently; all 

information presented through chapters 1 – 4 has been used to provide 

recommendations for the development of a new water quality model in chapter 5. 

Chapter 5 describes the development of a novel water quality model, following 

this, a Monte Carlo based technique has been incorporated into the model to 

allow the magnitude of uncertainty associated with its predictions to be 

established. Chapter 6 involves the testing of the new model on data other than 

where it was previously developed, allowing for discussion regarding its 

transferability. Chapter 7 concludes the work by summarising the previous 

chapters. 
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Chapter 2. Background to urban drainage 

systems and approaches to modelling their 

behaviour 

2.1 Introduction 

The purpose of this chapter, following the objectives of this thesis, is to present a 

solid foundation of science describing why and how water quality models are 

used to protect the aquatic environment from the negative impacts of 

urbanisation. Furthermore, a critical review of existing water quality modelling 

approaches has been presented, allowing for the research aims and objectives 

to be redefined, thus narrowing the scope of the research. This chapter is 

presented as follows: 

 An introduction as to how and why urban drainage systems are used to 

manage the interaction between human activity and the natural water cycle. 

 An overview of key water quality constituents and their respective impacts on 

receiving aquatic environments. 

 An overview of the scientific processes which dictate water quality changes. 

 A historical overview of the environmental legislation introduced to help guide 

UK water utilities manage the impacts of urban discharges. A detailed review 

of how the (UPM) Urban Pollution Management manual recommends 

solutions to manage the impacts or urban discharges should be conducted, 

as directed by the Water Framework Directive. 

 A review of quantitative modelling techniques used to manage the impacts of 

urban discharges: 
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 An introduction into the concept of integrated catchment modelling; a process 

whereby quantitative models representing different parts of the urban 

drainage system (UDS) system are holistically integrated to simulate network 

water quality behaviour throughout catchments, ultimately aiding the design 

of schemes capable of protecting the water environment. 

 A review of the problems associated with integrated water quality modelling 

and the need for new novel techniques which could improve its application. 

 Chapter conclusions and redefinition of research aims. 

2.2 The Urban Drainage System  

Urban drainage systems are required to handle two types of water that occur from 

anthropogenic activity; wastewater and storm water. Water is important to every 

living organism; Humans extract it from the natural water cycle for sustenance, to 

meet the needs of industry and support general standards of living. Once used, 

it becomes adversely affected and is commonly referred to as ‘wastewater’. 

‘Storm water’ is precipitation which has fallen on a developed area; its removal is 

required to prevent flooding and other health risks. 

Whilst typical concentrations of constituents contained within waste and storm 

waters vary from catchment to catchment, these waters contain a wide range of 

potentially harmful constituents such as bacteria, viruses, minerals, nutrients, 

metals, dissolved and undissolved chemicals (Metcalf & Eddy et al., 2003). The 

urban drainage system provides collection and passage of both waste and storm 

waters to designated treatment systems where constituents can be removed and 

degraded before being returned to the environment, thus minimising their 

potential adverse effects on human life and the environment (Butler and Davies, 

2011). 

The UDS sewerage system can be conceptually simplified as a network of 

interconnected manholes, pipes and structures designed to convey storm and 

wastewaters to a wastewater treatment works (WWTW). There are two types of 
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conventional sewage system; the separate system, in which storm water and 

wastewater flows are collected and conveyed by separate structures, and the 

combined system, in which wastewater and storm water are handled together. 

Whilst the proportions of each system vary significantly and across the world, 

approximately 70% of the UK’s sewerage infrastructure is estimated to be 

combined thus both systems and the respective flows are considered in this 

chapter of the thesis (Butler and Davies, 2011). 

2.3 Urban Drainage System Discharges 

Combined sewerage systems operate under two conditions; dry and wet weather 

flow. In wet weather conditions, flows within the UDS are normally up to five times 

the average dry weather flow, thus it is not feasible to allow full wet weather 

hydraulic capacity along the full length of sewerage infrastructure. If flow 

becomes sufficiently high, to prevent flows backing up the UDS, hydraulic relief 

is provided through Combined Sewer Overflows (CSO’s). These structures divert 

and discharge flows above a certain threshold into a natural water course, 

continuation flow is conveyed to the WWTW for treatment. In separate sewage 

systems, it is most common for all collected storm water to be directly discharged 

into a receiving water body. Discharges from both these systems can have a 

negative impact on receiving water bodies, whilst these receiving water bodies 

are subject to different classifications of discharge (Table 2-1). Intermittent 

discharges, particularly those from combined sewer overflow spills, remain the 

biggest contributor to poor water body health (Ellis and Marsalek, 1996). 
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Table 2-1 Characterisation of Urban Discharges 

Discharge 

classification 

Discharge description Example Polluter Condition 

during 

occurrence 

Intermittent The release of emissions 

into the environment that 

occurs with interruption. 

Arise in the form of a 

process effluent. 

Relatively simple to trace 

back to a single source. 

 WwTW’s Inlet 

overflow 

 Combined 

Sewer Overflow 

(CSO) 

 Storm Tank 

Overflow (STO) 

 Pumping Station 

Overflow (PSO) 

  

 Wet 

Continuous The release of emissions 

into the environment that 

occurs without 

interruption. Arise in the 

form of a process effluent. 

Relatively simple to trace 

back to a single source. 

 WwTW’s effluent 

 Industrial 

premises 

  

 Wet 

and 

Dry 

Diffuse Pollution arising from land-

use activities (urban and 

rural) that is dispersed 

across a catchment, or 

sub-catchment and does 

not arise as a process 

effluent, municipal sewage 

effluent, or farm effluent 

discharge. Difficult to trace 

back to a single source. 

 Sheet field run 

off 

 Soil seepage 

 Mine seepage 

 

 Wet 

As one of the most significant threats to the preservation and protection of water 

body health, intermittent discharges remain the focus of this study. The impacts 

of intermittent discharges can be broadly categorized into having three different 

negative effects on the health of a receiving water bodies; reductions in water 
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quality, public health issues and a negative aesthetic influence (House et al., 

1993) (Figure 2-1). 

 

Figure 2-1 Negative Impacts associated with intermittent discharges 

2.3 Water Quality 

‘Water quality’ refers to the biological, physical and chemical characteristic of 

water. Whilst wastewater quality is variable with respect to location and time, it is 

typically comprised of organic and inorganic matter, and present in many forms; 

coarse grits to suspended solids, colloidal and soluble, these constituents are 

derived from; human excreta; undigested food wastes; washing and laundry 

products; industrial practises; the ingress of ground water into the sewerage 

system.  

Stormwater quality varies further still, influenced by many different processes; it 

contains similar organic and inorganic matter to that of wastewater, with the 

addition of man-made substances derived from commercial, industrial practises 

and transport (House et al., 1993). The major sources of matter contained within 

storm water are derived from: vehicle emissions; infrastructure corrosion and 

abrasion (mainly buildings and roads); bird and animal excreta; litter; green 

wastes (fallen leaves and grass residues) and chemical spills (House et al., 

1993). 

Intermittent discharges

Water Quality 
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Changes to 
environment

Public Health Risks

Release of 
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2.3.1 Key water quality constituents 

When evaluating the impact of urban discharges on receiving water body health, 

it is not practical to experimentally quantify the wide range of constituents 

pertaining to water quality, instead, several key pollutant indicators are used; 

Dissolved Oxygen Concentration (DO); Biological Oxygen demand (BOD); 

Chemical Oxygen Demand (COD); Ammonium (NH4) and TSS (Total suspended 

solids).  

With higher aquatic life forms requiring well oxygenated environments to thrive 

and a strong correlation existing between biodiversity and oxygen concentrations 

within aquatic environments; DO is the most critical and widely adopted indicator 

of water body ‘health’ (Makepeace, Smith and Stanley, 1995). Oxygen 

concentrations within receiving water bodies become depressed when mixed with 

urban discharges due to many different chemical and metabolic microbiological 

processes. Due to natural degradation processes, all receiving water bodies can 

‘self-purify’, this occurs through re-oxygenation of the water body, whereby 

oxygen concentrations return to levels safe to the flora and fauna living within and 

around them. This ability, coupled with the varying levels at which water quality 

constituents become toxic to different flora and fauna, mean that to a certain 

extent, stormwater and wastewater discharges can be assimilated safely under 

certain constituent loading thresholds. However, if a water bodies assimilation 

capacity has been exceeded, constituents can cause a wide range of negative 

bio- chemical and physical impacts (Table 2-2).  

Table 2-2 Negative impacts associated with exceedance of water quality 

thresholds within receiving water bodies – adapted from (House et al., 

1993; Makepeace, Smith and Stanley, 1995; Ellis and Hvitved-Jacobsen, 

1996). 

Type of Impact Water Quality 

Category 

Water Quality 

Constituent 

Effect of constituent on receiving 

waters 

Biochemical 

and 

microbiological 

Organic 

Compounds 

 Carbohydrate; 

 Fats 

 Proteins 

  

 Depressed Oxygen levels 
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Type of Impact Water Quality 

Category 

Water Quality 

Constituent 

Effect of constituent on receiving 

waters 

Solids 

 Gross 

 Suspended 

 Volatile 

 Grit 

 Increased turbidity 

 Reduced light penetration 

 Bed blanketing 

 Negative Impacts on mixing 

in rivers and lakes 

Nutrients 

 Phosphorus 

 Nitrogen 

 

 

 Eutrophication 

 Algal Blooming 

 Water discolouration 

 Odours 

 Depressed Oxygen Levels 

Hydrocarbons 

 Aliphatic; 

 Aromatic; 

 Branch 

Chained; 

 Alicyclic; 

 Development of surface 

water sheens; 

 Inhibition of atmospheric re-

aeration 

 Depressed Oxygen Levels 

 Bioaccumulation of 

toxicants within aquatic 

species 

 Reduced ability for aquatic 

species to reproduce 

 Acutely toxic to aquatic 

species 

 Heavy 

Metal’s 

 Pesticides 

 Metalloids 

(particularly 

Arsenic); 

 Post Transition 

Metals (Copper, 

Zinc, Lead) 

 Organo-

Chlorides 

 

 Bioaccumulation of 

toxicants within aquatic 

species 

 Acutely toxic to aquatic 

species 
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Type of Impact Water Quality 

Category 

Water Quality 

Constituent 

Effect of constituent on receiving 

waters 

FOG’s (Complex 

Organic 

Molecules) 

 Tri-glycerides 

 Di-glycerides, 

 Mono-

glycerides 

 

 Development of surface 

water sheens inhibiting 

oxygen transfer and 

atmospheric re-aeration 

Micro-Organisms 

and Viruses 

 Faecal 

Coliforms, 

 Fecal 

Streptococci 

 E.coli, 

 Viruses 

(particularly 

enteric). 

 

 Direct threat to the health of 

organisms (responsible for 

gastrointestinal disease in 

humans) 

 Groundwater 

Contamination 

 

Sulpherous 

Compounds 

 Organic 

Sulphates 

 

 

 Changes in water density 

altering mixing patterns; 

causing extension of low 

oxygen zones 

 Acutely toxic to aquatic 

species 

Physical 

Thermal effects 
 Temperature 

changes 

 Reduction of cold water 

habitat 

 Degradation of Fish health 

through disease resistance, 

growth and morality. 

Flow and 

Channel 

alteration 

 Sediment 

erosion 

 Sediment 

deposition 

 Mixing 

 Degraded habitats due to 

channelization 

 Decline in species biological 

integrity 
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Type of Impact Water Quality 

Category 

Water Quality 

Constituent 

Effect of constituent on receiving 

waters 

Flow and 

Channel 

alteration 

 

Chemical oxygen demand (COD) is used to give an indirect indication of the total 

amount of organic matter present in water; Biological oxygen demand (BOD) 

gives an indirect indication as to what fraction of organic matter is readily 

biodegradable. Solids are also regarded as an important indicator of urban 

pollution, as efficient carriers of pollutants, the fine fraction of TSS is specifically 

associated with problematic pollutants such as metals and attached nutrients 

(Sartor, Boyd and Agardy, 1974; Deletic, Maksimovic and Ivetic, 1997). Typical 

concentration values of key water quality indicators are presented in Table 2-3, 

they are expressed in terms of their range and event mean concentration (EMC); 

the EMC is a representative value of the average pollutant concentration. 
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Table 2-3 Concentration ranges and event mean concentrations for key 

water quality indicators. 

WQ 

Parameter 

Wastewater Stormwater 

Ainger et al.,(1997) Metcalf and 

Eddy 

(1977) 

U.S. EPA 

(1983) 

Ellis and Mitchel 

(2006) 

Range 

(mg/l) 

EMC 

(mg/l) 

Range 

(mg/) 

Range 

(mg/l) 

Range 

(mg/l) 

EMC 

(mg/l) 

TSS 
180 - 

450 
300 270 - 550 67 - 101 21 – 2582 190 

BOD 
200 - 

400 
300 60 - 220 8 - 10 7 – 22 11 

COD 
350 - 

750 
550 260 - 480 40 - 73 20 – 365 85 

NH4 30 - 85 60 4 - 17 0.43 - 1 0.4 - 20 1.45 

P 15 - 1.2 - 2.8 0.67 - 1.66 0.02 - 4.3 0.34 

Typical values of key water quality indicators recorded at spilling CSO’s situated 

within combined drainage systems are presented in Table 2-4, in this case, the 

EMC is a representative value of the average pollutant concentration of the 

spilling discharge. 

Table 2-4 Key Water Quality Indicator concentrations recorded from CSO 

spills in combined systems referenced within the literature. 

Water Quality 

Parameter 

EMC (mg/l) EMC (mg/l) Range (mg/l) Range (mg/l) 

Ellis (1996) 
Lager et al., 

(1997) 
NWRW (1991) 

Suarez and 

Puertas (2005) 

TSS 425 370 105 - 320 421 - 733 
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BOD 90 115 40 – 124 166 - 389 

COD 380 367 148 - 389 293 - 834 

2.4 Management of Urban Discharges 

Water utilities seek to reduce the impacts of urban discharges on receiving water 

bodies by investing resource into new and existing solutions; these solutions are 

based upon the respective utilities understanding of the water cycle and how the 

individual components of catchments under their jurisdiction interact within it. This 

understanding is fundamentally provided by simulating the water system via the 

use of quantitative modelling techniques. It is therefore of significant benefit to 

UK water companies and to the wider public that the modelling techniques and 

methodologies deployed within utilities incorporate the latest and most effective 

science to ensure the realization of efficient solutions that meet the challenges of 

the present and future. This is of particularly note because many previously 

designed solutions to urban drainage issue will have been designed in the last 50 

years, thus investment decisions made in the present will have implications well 

into the future when conditions under which these solutions operate may be 

subject to change, hence why future scenario analysis is an important and useful 

concept within urban drainage modelling (Niemczynowicz, 1999; Butler and 

Davies, 2011). 

Conventional practice in the UK water Industry has been to manage and, 

therefore, model the various components of the engineered urban wastewater 

cycle (urban drainage, WWTW and receiving water body) in isolation (Butler and 

Davies, 2011). Each component has been engineered to meet the needs of its 

users and the environment, but with little feedback or cross-reference to other 

components. This approach led to increasing pressure to investigate the 

relationships between individual components of the cycle (Butler and Davies, 

2011). In 1994, Following the development of a major research program funded 

by the entire UK water industry, the Urban Pollution Management Manual (UPM) 

was released as a method of guidance to the management of pollutant 

discharges (UPM. FWR. 1st edition (1994); UPM. 2nd edition. (1998); UPM. 3rd 

edition. (2012). There are three recurring themes in the guidance: 
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 Analysis should be holistic, covering all elements in the sewer system 

itself, the wastewater treatment works and receiving river.  

 The level of detail of any study, and in particular; the models used, should 

be appropriate and that, in the right circumstances, a holistic approach 

may also be simple. 

 The approach should be underpinned by relevant environmental 

standards with models able to demonstrate compliance with those 

standards.  

Many of the planning concepts and enabling tools in the manual were 

substantially new at that time and addressed issues that were, and continue to 

be, of great importance to the industry, the intervening period has seen 

widespread adoption and application of the procedure throughout the UK and in 

the areas having acute combined sewer overflow problems. To fully understand 

the terminology and direction given with the UPM, the concept of water quality 

model classification must first be discussed. 

For any receiving water impact study, regardless of whether the system being 

modelled is combined or separate, quantification of the water quality constituents 

present within wastewater and storm water flows is necessary to provide 

information to a receiving water impact model. Water quality models provide this 

information by describing water quality constituents (pollutants) entering, 

travelling through and (most importantly) leaving the sewer or storm water 

system.  

Pollutants are derived from two major sources; the catchment surface and 

wastewater. Predicting generation of pollutants in the form of wastewaters is 

relatively simple as base flows of pollutants into the sewer system tend to follow 

a regular diurnal profile ((Metcalf & Eddy et al., 2003)). Storm water pollutant 

generation is stochastic in nature, pollutant ‘build-up’ is the overarching term used 

to encompass the different processes which contribute to the generation of 

pollutants on the catchment surface during dry weather, ‘wash-off’ is the 

overarching term used to describe the many different processes whereby 

accumulated pollutants become mobilized during storm water runoff events. 

Different catchment and event characteristics have been cited as influential on 

build-up and wash-off processes (Table 2-5) (Brodie and Rosewell, 2007; 
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Goonetilleke, Egodawatta and Kitchen, 2009; Murphy, Cochrane and O’Sullivan, 

2015). 

Table 2-5 Catchment characteristic influencing variations in storm water 

quality entering the urban drainage system. 

Build-Up Wash-off 

Land use 

Population 

Traffic flow 

Street cleaning 

Season of year 

Meteorological conditions 

Antecedent dry weather period 

Street surface condition 

Rainfall characteristics 

Topography 

Solids characteristics 

Street surface conditions 

 

Once within the sewer system, pollutants are subjected to a number of different 

in-sewer processes; hydrodynamics, mixing, advection-dispersion, 

biotransformation, sedimentation/resuspension, sediment erosion and deposition 

(Ashley, Hvitved-Jacobsen and Bertrand-Krajewski, 1999; Butler and Davies, 

2011). 

The pollutants can pass through to the receiving water body untransformed or 

become deposited; these deposited pollutants can then be subsequently re-

eroded at a later date (commonly during a rainfall event), causing significant 

variation to the original water quality characteristics of wastewater and 

stormwater (Ellis and Marsalek, 1996; Ashley, Hvitved-Jacobsen and Bertrand-

Krajewski, 1999; Mannina et al., 2012). Water quality models, are utilized to 

objectively quantify the concentrations of water quality constituents discharged 

into the receiving water body, however the quantitative methods and processes 

they use can vary significantly, a classification of available quantitative water 

quality techniques has therefore been provided.  
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2.4.5 Water Quality Models  

In the context of urban drainage and water quality modelling, authors’ have 

various definitions, descriptions and use a range of terminology to classify 

models, thus the classification of water quality models is an ambiguous process 

(Korving, 2004; Schellart, A. N. A., Tait, S. J., and Ashley, R. M. 2010). This 

section attempts to provide classification and provide a review of the types of 

water quality models within each classification. Examples of models currently 

used by practitioners and the research field have been provided and their 

methods of simulating water quality processes presented, hydraulic simulation 

processes have been largely ignored due to the scope of the thesis. 

Korving (2004) presented the following classification system with respect to 

models used commonly used within the urban drainage field: 

 Physically based or ‘white-box’ models. These models describe the 

fundamental physics and solve governing equations affecting water 

quality. These models will often attempt to describe complex processes 

such as advection-dispersion, sedimentation/resuspension and sediment 

transport behaviour within sewer and storm water systems. A strictly 

physical water quality models computational approach would involve the 

use of equations and relationships in which all in which all parameters 

were measurable physical quantities, however in practise, even the most 

physical of water quality models benefit from calibration due to the inherent 

empirical nature of certain scientific phenomena (Box, Jenkins and 

Reinsel, 1994). 

 Conceptual or ‘grey box’ models. Conceptual use equations used are 

calibrated input-output relationships that simulate the functional behaviour 

of water quality processes under observation (Harremoës and Madsen, 

1999). 

 Statistical and Empirical, or ‘black box’ models. These models calibrate a 

statistical relationship between inputs and outputs, without attempt to 

describe the behaviour of water quality processes ((Harremoës and 

Madsen, 1999)). 
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Physically based or ‘white-box’ models 

Harremoes and Madsen (1999) presented a similar modelling classification 

system, adding a further differentiation between stochastic and deterministic 

models. Harremoes and Madsen (1999) described stochastically based models 

as simple models often associated with expressing the accuracy of the system 

under observation, in the context of environmental modelling, stochastic models 

often utilise regression functions and transfer functions. It has been suggested 

that if any random variables with assigned probability distributions are used within 

a model, then the model is deemed stochastic, otherwise it can be classified as 

deterministic (Clark, 1973). In simplistic terms, deterministic models use a single 

set of input values and a single parameter set to generate a single set of outputs, 

thus they do not account for randomness with the same input values generating 

the same outputs values. Stochastic models represent some/or all of the inputs 

and parameter values as statistical distributions, for example, a standard 

deviation of a particular value i.e. catchment build-up capacity, can be applied to 

generate an array of output values, each derived from different combination of 

the inputs and parameters and/or each of them related to a certain probability of 

occurrence. These techniques are often utilised to quantify uncertainty/error 

associated with model inputs (Larson and Schubert, 1979). Unlike deterministic 

models, stochastic models commonly require the model to be run many times, 

each run with a different combination of parameters or model inputs, resulting in 

many outputs that can be analysed to define probability distributions of model 

outputs. Whilst it is widely accepted that no model can be fully deterministic due 

to the probability that not all physical phenomenon can be mathematically 

described and exactly calculated, these models attempt to deterministically 

simulate the key processes involved in determining water quality (Box, Jenkins 

and Reinsel, 1994). 

With respect to urban drainage water quality modelling, various deterministic 

water quality models are available to researchers and practitioners such as the 

United States Environmental Protection Agencies Storm Water Management 

Model (SWMM) (us-epa, www.epa.gov), the Danish Hydraulic Institute for Water 

and Environment (DHI) (www.dhi.dk/mouse) MOUSE and the Wallingford 

Software package InfoWorks CS (www.wallingfordsoftware.co.uk). 
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SWMM is a distributed discrete time simulation model. SWMMs surface build-up 

module utilises Sartor and Boyd’s (1972) nonlinear function of dry days to 

estimate pollutant build up for different land uses on the catchment surface; 

different functional options (power, exponential and saturation) are available 

within the model. For pollutant wash-off, SWMM offers a more simplified method 

of calculation. Research by Ammon (1979) concluded that whilst sediment 

transport theories are attractive to users, field data requirements to derive 

parameters involved in sediment transport theory are significantly large, SWMM 

therefore offers different empirical models to represent wash-off of pollutants from 

the catchment surface; exponential wash-off, rating curve wash-off and EMC 

wash-off. For pollutant transport, SWMM offers numerical solution of the 1-D 

Advection-dispersion equation , the model further assumes complete mixing 

within conduits via the form of a continuously stirred tank reactor model 

(Rossman, 2010).  

DHI Water & Environment developed the model MOUSE, it contains several 

modules capable of modelling pollutant processes, these modules are collectively 

known as MOUSETRAP. MOUSETRAP utilises a surface runoff quality module 

capable of simulating the build-up and wash-off of pollutants, a sediment 

transport module with the option of four different transport equations, an 

advection-dispersion module to compute pollutants advection and dispersion 

through the drainage network and a water quality process module to compute 

processes such as re-aeration, oxygen consumption from BOD/COD, biofilm and 

erosion of sediment and growth of suspension biomass (Bouteligier, Vaes and 

Berlamont, 2002).  

InfoWorks CS is a later version and update of the software Hydroworks, which 

was developed by merging previous models FLUPOL and MOSQITO (Ashley, 

Hvitved-Jacobsen and Bertrand-Krajewski, 1999). InfoWorks CS includes 

modules for pollutant surface build-up and wash-off, erosion and deposition, 

gully-pot build up and a variety of different solids transport modules; this will be 

discussed in greater detail within this thesis. 

‘Conceptual or ‘grey box’ models 

Whilst often not strictly conceptual in their methods of calculation, examples of 

‘grey box’ models examples of commonly utilised conceptual models within urban 
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drainage studies are Monash Universities Urban Stormwater Improvement 

Conceptualisation Model (MUSIC) (https://toolkit.ewater.org.au /Tools/MUSIC/ 

features) and the Leibniz Institute for Freshwater Ecology and Inland Fisheries 

Nutrient Emissions in River Systems Model MONERIS (http://moneris,igb-

berlin.de) These types of models commonly conceptualise pollutant processes in 

urban catchments (Bach et al., 2014). 

MUSIC allows conceptualisation of stormwater management systems such that 

urban catchment management measures can be evaluated in an integrated 

manner. MUSIC can be used to model various types of pollutant generated from 

urban areas using a stochastic process involving cross correlation between total 

suspended solids and other pollutants; and serial correlations of water quality 

time series. MUSIC’s pollutant generation process is based on statistical analysis 

or urban stormwater pollutants by Duncan (1999) and utilises a conceptual 

rainfall-runoff model developed by (Chiew at al., 1997), furthermore, 

conceptualised parcels of water carrying pollutants are assumed to exponentially 

decay towards an equilibrium value through strings of continuously stirred tank 

reactors (CSTRs), this behaviour is described in the model by first-order decay 

kinetics (Chiew et al., 1997; Duncan, 1999).  

MONERIS (Modelling Nutrient Emissions in River Systems) is a semi-empirical, 

conceptual model for the quantification of nutrient emissions from point and 

diffuse sources in river catchments (Behrendt et al., 2003). The MONERIS model 

contains eight sub modules to simulate the main processes involved in the 

generation of pollutants and the transport of suspended solids and nutrients into 

a river network. The MONERIS model utilises a geographical information system 

(GIS) to support environmental impact studies in a watershed-based approach. 

Complex pollutant generation and transport processes are simplified using a GIS 

based model with empirical characteristics. The conceptual approach can be 

used to quantify nutrient emissions from non-point and point sources in river 

catchments larger than 50 km2 (Huber et al., 1999). The key processes and 

pathways modelled in MONERIS are groundwater, erosion, overland flow, 

drainage, deposition of atmospheric pollutants on water surface areas, urban 

areas and point sources (e.g. wastewater treatment plants) (Huber et al., 1999). 
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Statistical and Empirical, or ‘black box’ models 

Black box models are those that solely calibrate a statistical relationship between 

inputs and outputs, without any attempt to describe physical water quality 

processes. Parameters utilised within these models are statically derived through 

regression techniques to determine the relationship between the model input and 

model output. Statistical end empirical models utilised within the urban water 

quality modelling field commonly use regression equations to estimate event-

based water quality loads. They focus on relating measurable quantities with 

measurable physical parameters considered key to the process under 

observation such as rainfall intensity and catchment parameters such as 

impervious area, land-use and catchment slope (Vaze and Chiew, 2003). 

Stochastic approaches are regularly employed within these types of models. 

There are many examples within the literature where empirically functions have 

been derived to predict water quality event loads by relation to stormwater 

characteristics (Driver and Tasker, 1988; Driver and Troutman, 1989; Maniquiz, 

Lee and Kim, 2010). Examples of process based empirical water quality models 

that attempt to simulate processes such as pollutant build-up and wash-off from 

the catchment surface include (Geiger & Dorsch, 1980; Hemain, 1986; Huber and 

Dickinson 1980; Jewell & Adrian, 1982). These models are often limited in that 

the statistical relationships they derive are limited to the given set of data which 

represents on spatial arrangement. They are often employed for planning 

purposes only or in cases where insufficient data is available to develop a more 

detailed representation of the processes under observation (Elliott and 

Trowsdale, 2007).  

The way, in which water quality models utilize input data, the number of 

processes (if any at all) and the amount of data available for calibration ultimately 

affects model predictive performance. Figure 2-2 shows the relationship between 

model complexity, data availability and consequent predictive performance 

(Grayson and Bloschl, 2000). 
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Figure 2-2 Visual interpretation of model characteristic relationships – 

(Grayson and Bloschl, 2000) 

2.5 Legislation 

In the year 2000, the European Union (EU) adopted the Water Framework 

Directive (WFD) (2000/60/EC). It is a legislative method to managing and 

protecting water, constructed not on national or political boundaries but on natural 

hydrological and geographical formations: river basins. It requires coordination of 

several EU policies, and prescribes a scheduled timetable for action, 2015 was 

the targeted date for transforming European waters into ‘good’ condition (Kallis 

and Butler, 2001), the WFD required that European countries produces river 

basin management plans to achieved this ‘good’ status. The aim of the 

procedures defined within it are focussed on combating the deterioration of water 

resources in the member state territories. Water quality models play a significant 

role in meeting the aims of the WFD, through providing a means of assessment 

of water quality, directing trends of water quality parameters and through 

identification of alternative actions and measures identified within each member 

states river basin management plans. The assessment of water bodies proved to 

be a difficult goal, linked to sufficient lack of data associated with river basins and 

the absence of systematic measures regarding the involved parameters 

associated with water quality (Tsakiris and Alexakis, 2012).  
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Annex V of the WFD (European Commision, 2000) provides standard definitions 

for the classification of water bodies into five ecological quality classes: high, 

good, moderate, poor and bad. The requirements for the good, moderate and 

high classifications are presented as follows: 

o High status – No or very minor deviation from an undisturbed 

(reference) condition. 

o Moderate status – Moderate deviation from the reference condition. 

o Good status – Slight deviation from reference condition. 

With respect to the WFDs reference assessment process, water quality 

parameters for a given surface water body is expressed as ecological quality 

ratios (EQR). EQR’s consist of the observed parameter in the water body divided 

by the same parameter in the reference condition.  

The EU Water Framework Directive (WFD) specifies a sophisticated and holistic 

assessment of the water quality within a catchment in order to meet 

environmental and ecological objectives, specifically, it requires a "combined 

approach" of emission limit values and quality standards (Borja et al., 2004). With 

the key guiding goal is to achieve ‘good status’ of ground and surface waters; 

‘good’ meaning that water bodies meet the standards established in the existing 

member stated water directives and in addition new ecological and emission 

standards. In the UK, water quality standards designed to protect aquatic life from 

urban discharges are the Fundamental Intermittent standards and percentile 

standards (FWR, 2012). Percentile standards are standards that are failed if the 

concentration of a pollutant is greater than the standards for 1% or more of the 

time; they are designed to help manage the risk posed by continuous discharges. 

Fundamental Intermittent standards (FIS) are expressed in terms of DO and un-

ionised ammonia, these two determinand’s have the most direct impact upon the 

health of fish and invertebrates, the standards are expressed in terms of 

concentration-duration thresholds and allowable return period or frequency, 

simply, predetermined concentration duration thresholds (CDT)s for DO and un-

ionised ammonia must not be breached more frequently than shown in Table 2-6 

(for salmonid and cyprinid fisheries) Table 2-7. They are designed to help 

manage the risk posed specifically by intermittent discharges. 
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Table 2-6 Fundamental Intermittent Standards for DO – 

concentration/duration thresholds not to be breached more frequently 

than shown (values are appropriate for salmonid and cyprinical fisheries). 

 Receiving river DO concentrations (mg/l) 

Return Period 1 hour 6 hours 24 hours 

1 month 4.0 5.0 5.5 

3 months 3.5 4.5 5.0 

1 year 3.0 4.0 4.5 

Table 2-7 Fundamental Intermittent Standards for Un-ionised ammonia - 

concentration/duration thresholds not to be breached more frequently 

than shown (values are appropriate for salmonid and cyprinical fisheries). 

 Receiving river DO concentrations (mg/l) 

Return Period 1 hour 6 hours 24 hours 

1 month 0.150 0.075 0.030 

3 months 0.225 0.125 0.050 

1 year 0.250 0.150 0.065 

FIS standards can be impractical to work with directly as considerable knowledge 

concerning the transport and reaction of pollutants after a discharge event and 

the in-river chemistry is needed. Because this knowledge is sometimes 

inaccessible privy to the use of field surveys and river modelling, ‘derived’ 

standards based on BOD and total ammonia have been developed. The 

standards are focused at the point of mixing and thus require no knowledge 

concerning following transport or degradation processes. It is difficult to present 

these ‘derived’ thus they are not described in this thesis, further information on 

all receiving water quality standards can be found within the Urban Pollution 

Management manual (FWR 2012). 

The WFD requires a management plan for each river basin to be developed every 

6 years. In England and Wales, the Environment Agency are the competent 
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authority for carrying out the objectives of the WFD achieved by assessing 

receiving waters against the WFD standards and in respect of managing the 

negative impacts on aquatic life within the UK: existing FIS and 99 percentile 

standards (DoE, 1977). With the implementation of the Water Framework 

Directive (2000/60/EC) (WFD) and its new water quality and ecological 

standards, the FIS and 99 percentiles standards have been reviewed 

(Environment Agency, 2012). The work compared the UPM FIS with WFD 

emission standards and indicated that the UPM FIS were “fit for purpose” and 

that for concentration/duration/frequency combinations the UPM standards for 

dissolved oxygen and ammonia provided a margin of safety for salmonid and 

cyprinid fisheries and that meeting UPM FIS standards would ensure that ‘good’ 

quality status of UK water bodies would be maintained. With regard to UPM 99% 

standards, the report indicated that they should continue to protect freshwater 

aquatic life from intermittent urban wet weather discharges and ensure that the 

existing ‘good’ quality status of a water body is not compromised. The report does 

however recommended that the WFD emission standards should be presented 

to the United Kingdom Technical Advisory Group to confirm suitability within the 

WFD and that UPM FIS and percentile standards be modified into a revised 

version of the UPM, however, in the intervening period, standards should 

continue to be used by regulators in preparing permit applications and in 

designing solutions to urban discharges (Environment Agency, 2012). 

Whilst the EA highlight and provide the need for investigation into failing 

watercourses, it is the responsibility of the respective wastewater service provider 

under whose jurisdiction the water body falls to provide a means of managing the 

impacts of pollution. To meet this responsibility, UK water companies endeavour 

to objectively evaluate the impacts of pollution on water receiving water bodies, 

this is done by simulating the behaviour and of the urban water system; 

information which is provided by numerical hydraulic and water quality modelling 

studies.  

Water quality modelling studies allow practitioners to assess the compliance of 

their river systems against water quality standards and to identify, with supporting 

information on existing river condition, potential locations where discharges may 

be contributing to failing watercourses. Moreover, the studies enable UK water 

companies to design rehabilitation schemes and structures to remediate any 
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failing watercourse and further justify the capital investment needed to finance 

them to the Water Industries economic regulator OFWAT, thus satisfying the 

needs of the EA and protecting the health of the aquatic environment (Butler & 

Davis, 2010).  

2.6.1 Urban Pollution Management Manual 

The UPM procedure recommends four main phases for the management of urban 

pollution: 

 Initial Planning. 

 Assembling Data and Tools. 

 Developing Solutions. 

 Consenting and Detailed Design. 

A review of each of these stages is presented. 

2.6.1.1  Part A – Initial Planning 

Part A of the methodology is concerned providing an Initial assessment about the 

nature and severity of the pollution problem. The methodology can be separated 

into three distinct components; 

o Preliminary assessment of wet weather problems. 

o Framework for environmental assessment 

o Initial choice of data and tools needed. 

o Preliminary Assessment of Wet Weather Problems 

This section of the methodology provides guidance concerning the steps which 

should be taken for identification and severity assessment of wet weather 

discharges on local watercourses and coastal waters. The identification of 

‘satisfactory’, ‘unsatisfactory’ and ‘very unsatisfactory’ is advised through 

utilization of a CSO impact methodology Milne et al., (1992) according to NRA, 

(1995). Furthermore, an assessment of storm tank overflows and coastal impacts 

is also recommended; concluding with judgement on overall UPM study needs. 
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Framework for environmental assessment 

The aim of this section of the methodology is to establish an overall environmental 

framework for the planning study. Establishment of receiving water standards to 

be used throughout the study is first addressed. The desired Environmental 

Quality Objectives (EQOs) are defined as well as the Environmental Quality 

Standards (EQSs) necessary to provide reference against which the quality of a 

water body can be judged; and whether any future solution will provide adequate 

environmental protection (DoE, 1977). 

Intermittent discharges can impact surface waters with a variety of uses; river 

aquatic life, bathing and general amenity (Crabtree et al., 1994). Due to the scope 

of this thesis, presentation of the UPM procedure is with respect to the 

management of urban discharges on river aquatic life. 

Initial choice of data and tools needed 

This stage of the UPM methodology is concerned with the data and tools required 

and to be developed based on relative importance of different discharges and the 

complexity of water quality interactions. The manual recommends selection of the 

simplest tools that are likely to be required, consistent with generating a safe 

solution; and that technical complexity and cost are important factors that should 

be reflected in the selection of the final data and tools. The development of tools 

to simulate discharges to rivers is necessary, this process can be separated into 

the need to simulate the following components for discharges to rivers (adapted 

from FWR, 2012);  

o Rainfall Inputs, choice between: 

 Design storms - recommended for catchments up to 

about 5,000 population; 

 Long rainfall time series – give better interaction between 

rainfall and, for example, river flows and the build-up of 

pollutants during dry periods. 

o Upstream river flows and quality, choice between: 

 River flow/quality frequency distributions; or, 

 Daily rainfall/river flows. 

o Sewer flows, choice between: 
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 A simple tank simulation model; or, 

 A detailed sewer flow model - usually necessary when the sewer 

system is hydraulically complex with numerous CSO’s, such 

that spill volumes and frequencies cannot be adequately asses 

using a simple tank model. 

o Sewer quality, choice between using; 

 Simple methods for estimating BOD and ammonia 

concentrations; or, 

 Detailed quality simulation models, usually required if: 

 The sewer system is large, complex and flat such that 

detailed knowledge about sewer sediments (quantities, 

characteristics and behavior) is needed; and/or, 

 Sewage treatment effluent is a major factor affecting in river 

quality. 

o Sewage treatment effluent, choice between; 

 Effluent flows and quality distributions; and/or, 

 A detailed STW quality model. 

o The impact of discharges in rivers, choice between using: 

 Simple mass balance with the derived intermittent standards; or, 

 Detailed driver impact model to derived equivalent standards on 

a site-specific basis and simple mass balance to check 

compliance with standards. 

2.6.1.2 Part B - Assembling Data and Tools 

The second phase of the UPM procedure involves assembling key data such that 

the appropriate tools (identified in Part A) can be used for the study. This part of 

the UPM procedure has an increased focus on the tools and approaches 

available to perform the simulations specified in the Initial choice of data and tools 

needed section. 

Rainfall Modelling 

Rainfall is a key driver when considering the wet weather performance of urban 

drainage systems; its representation as an input to simulation models is crucial 

to an understanding of the drainage system under analysis and subsequently the 
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development of solutions. The various options for the development of rainfall 

inputs is discussed in this section. 

Synthetic Design Storms 

Research into UK Floods by the NERC (1975) led to the development of the 

Wallingford Procedure design storms. The storms (a series of synthetic design 

storms) were developed specifically to be suitable for hydraulic design and the 

analysis of sewer systems. The design storm is an idealized storm profile to which 

a statistically-based return period has been attached, its time pattern is deigned 

to mimic the ‘shape’ of an observed storm, They allow urban drainage 

practitioners to construct rainfall time timeseries of any depth, return period and 

duration (greater than one year)  allowing for the most severe response of the 

urban drainage system to be examined.  

Annual Time Series Rainfall 

To account for rainfall characteristic across different regions within the UK, 

(Henderson, 1986) developed Annual Time Series Rainfall (TSR), these are a 

number of series of real storms, each representing a typical year for different 

regions in the UK. These storms are typically used to investigate the hydraulic 

performance of existing systems but are limited in that the regionalization 

procedure is crude, extreme events are not included and return periods cannot 

be assigned to events; thus, checking for compliance with intermittent river 

standards cannot be performed.  

Long Rainfall Time Series 

The limitations of using Synthetic Design Storms and Annual Time Series Rainfall 

stem from the issues associated with their development; original rainfall data has 

been filtered to create a simplified set of storms, thus the application of these 

storms can be limited to certain types of analysis. Working with long rainfall time 

series can overcome these problems. Work by the Water Research Council 

(WRC) led to the design of the rainfall processing package (STORMPAC) (WRC, 

1994). The package gives practitioners an alternative solution by providing 

modules which allow for: 

 Synthesizing long time series of hourly rainfall for any location in the UK. 
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 Identification of storm events from either synthetic of historical series. 

 The ability to select storm events based on characteristics specified by the 

user. 

STORMPAC contains a stochastic rainfall generator (SRG) which by specifying 

a grid reference, altitude, the distance from the coast and mean daily rainfall for 

each month allows practitioners to obtain long term localised long term rainfall 

series data representative of an area (Henderson, 1986). An alternative to using 

SRG data is the use of historical rainfall time series data, these hourly rainfall 

data sets can be obtained from the Meteorological office. 

Following consideration of the available rainfall data and the purpose of the UPM 

study, practitioners are required to select ‘events’ suitable for the study. In respect 

of protecting river aquatic life, the events recommended for selection are all 

events which could cause failure to meet the one-year return period threshold for 

BOD and Ammonia.  

2.6.2.2 Upstream River Flow and Quality 

This section describes the alternative approaches available for generating 

upstream river flows and qualities to be used as boundary conditions within river 

impact modelling. 

River flows and quality conditions at the time of a storm are influenced by many 

factors: 

 The size, land use and geology of a catchment. 

 The time of year. 

 Rainfall patterns over previous days. 

 Upstream discharges and abstractions. 

Statistical procedures whereby repeated mass balance calculations during which 

the estimated storm induced urban discharges are mixed with river flows selected 

from appropriate frequency distributions are recommended.  

River flow frequency distributions are usually expressed by flow duration curves 

which give the daily mean flows which are exceeded for different proportions of 

time. Summer flows are critical for intermittent pollution events as low flow 
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conditions and high temperatures reduce dissolved oxygen levels within rivers 

and increase the potential for high concentrations of un-ionized ammonia due to 

reduced dilution effects. 

Hydrological models can be used to estimate river flow frequency distributions, 

these rainfall-runoff model create time series of daily mean flows based on long 

rainfall time series and evaporation data. Several models are available to perform 

this task, they often use simplified representations of the main physical processes 

(interception, evapotranspiration, transfers between soil, groundwater and 

channel storages and times of travel) governing water flow in a river catchment.  

The use of existing river quality data is necessary for estimating upstream river 

quality distributions for BOD and ammonia. An example of upstream river 

condition data is presented in table 2-8. 

 

Time (s)  NH4  (mg/l) 

0 0.0410692 

3600 0.0462924 

7200 0.0328054 

10800 0.0224986 

14400 0.0301561 

18000 0.039995 

21600 0.457389 

25200 0.617807 

28800 0.454406 

32400 0.313387 

36000 0.160158 

39600 0.0622826 

43200 0.0349556 

46800 0.0276046 

50400 0.0383101 

54000 0.0273219 

Table 2-8 Upstream NH4 river concentration data collected May 2003 from 

an independent dye tracing experiment conducted in The Chillan River.  
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The accuracy of upstream river flow quality is less important than the estimation 

of river flows or discharge quantities because in-river concentrations which are 

allowed for short durations are generally much higher than background river 

concentrations (FWR, 2012). 

2.6.2.3 Sewer Flow Modelling 

Hydraulic understanding of a sewer system is necessary to perform a pollution 

assessment study, to make realistic predictions of temporal variations in pollutant 

concentrations and loads it is essential to understand how flows vary during and 

before storm events. 

Various detailed sewer flow models at very levels of detail are available to 

practitioners. For most pollutions studies a detailed flow sewer model will be 

necessary however the level of detail can be varied depending on the 

requirements of the study. Specified rainfall profiles are routed through the 

modelled pipe network to produce surface runoff hydrographs, depths and flows 

are estimated throughout the sewer network at each timestep allowing surcharge 

and flooding at manholes to be predicted. Model simulation performance should 

be checked (model verification) using historical data and against specific field 

measurements. The models should account for all flows and loads that are 

discharged into the river or rivers under analysis (WRC, 1993; FWR, 2012). 

If dynamic sewer modelling is required, a high level of accuracy over a wider 

range of flows is required to estimate the erosion and depositions of sewer 

sediments (a major pollutant source). In situations where there is little interaction 

between CSOs because of relatively small catchments and where the 

continuation flow can be estimated with significant confidence, it is considered 

reasonable in the procedure to estimate spill volumes via simple tank models 

(WRC, 1993; FWR, 2012). 

Sewer Quality Modelling  

This section introduces the processes which affect pollutant loads during wet 

periods. The ability to model these processes is discusses and a brief introduction 

to the sewer quality models (SQMs) presented. 
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Pollutant loads carried by and discharged from sewer systems vary in a complex 

way as many different processes are involved. Dry weather processes contribute 

to the build-up of sediments on the catchment surface forming an important 

source of pollutants when later mobilized by rainfall and higher flows that occur 

during wet weather (Ball, Jenks and Aubourg, 1998). The key processes 

influencing the variability of pollutant loads are (Crabtree, 1989; Bouteligier, Vaes 

and Berlamont, 2002; Kanso, Chebbo and Tassin, 2005; Obropta and Kardos, 

2007b): 

 Foul Inputs. 

 Build-up and wash-off of sediments from the catchment surface. 

 Deposition and erosion of sediments within the sewer system. 

 In sewer sediment transport. 

 Advection and dispersion of pollutants. 

 Biochemical reactions. 

Domestic, commercial and industrial effluents all enter the sewer system as ‘foul’ 

inputs. These inputs will vary spatially and temporally from catchment to 

catchment, they are typically affected by a diurnal profile. During storm events, 

sediments and attached pollutants are washed from surfaces and enter the sewer 

system. The quantities of these sediments are linked to the intensity of rainfall 

and the quantity/availability of these sediments to be washed-off from the 

catchment surface (Bai and Li, 2013). When flow velocities are low in the sewer 

system, suspended sediments can settle out of the flow and deposit on the sewer 

bed. This process is influenced by: 

 Size of sediment particles. 

 Density of sediment particles. 

 The flow regime. 

Sediments that make it into the sewer system flow, they move down the system 

as bed load or in suspension. Deposited sediments can act as a store of 

pollutants within the sewer system. As flow rates increase, deposited sediments 

can be eroded again back into the flow, this phenomenon is influenced by: 

(Schellart, 2007): 

 The flow velocity. 
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 The width of sediment bed. 

 Characteristics of the sediment bed. 

 The shear strength of the sediment bed. 

The processes of advection and dispersion govern the way pollutants travel down 

the sewer system, the former – advection - is the main pollutant movement 

process. The total quantities of pollutants in the sewer system can change due to 

biochemical reactions which occur in the sewer system. In terms of the pollutant 

load discharged during wet weather, the approaches available to model sewer 

system performance are broadly defined in the UPM manual as either being: 

 Simple tank simulation models. 

 Detailed flow sewer models and subsequently the use of event mean spill 

concentrations. 

 Detailed dynamic sewer quality models. 

Simple tank simulation models give practitioners the ability to model multiple 

events or long chronological rainfall sequences rapidly because flow processes 

are represented by tanks in series and in parallel. These tanks receive runoff and 

foul flows from different sub-catchments, pollutants in these models can be 

modelled in a variety of ways, for example, foul flows and runoff are assigned 

event mean concentrations allowing loads at any point in the system to be 

calculated via a mass balance procedure. Another method of modelling pollutants 

in simple tank simulation models is by representing sediment stores in the tanks, 

allowing erosion to occur at a constant concentration by runoff, this allows effects 

such as the ‘first-flush’ to be simulated (FWR, 2012). 

Detailed dynamic sewer quality models are most commonly used in the delivery 

of the UPM procedure, a variety of detailed models are available to practitioners, 

examples are: 

 Storm Water Management Model (SWMM) (US-EPA, www.epa.gov).  

 MOUSTRAP (www.dhi.gk/mouse). 

 INFOWORKS CS (www.Innovyze.com).  

These types of models typically contain sub models which can be used to 

simulate: 
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 Foul inputs; 

 Surface wash off; 

 Pollutant and sediment behavior within pipes; 

 Pollutant and sediment behavior within tanks. 

Dynamic SQMs assign land uses to sub-catchment areas to estimate foul inputs 

from domestic sources; these are represented with diurnal variations in flow and 

quality. A variety of different approaches to surface wash-off are available within 

and between different SQMs, ranging from the simple - sediment sources are 

eroded at a rate that is proportional to rainfall intensity – to the more complex, 

whereby gully pot processes and the build-up of sediments are included (Ashley, 

Hvitved-Jacobsen and Bertrand-Krajewski, 1999). Various approaches to 

pollutant transport modelling are available within and between SQM’s, most 

critical to variations in water quality outputs is the modelling of sediment transport 

processes(Schellart, 2007). 

Simple deterministic SQM’s  

In Simple SQM models, pollutants and suspended sediments are moved in the 

flow of water by advection, dispersion is not accounted for it is considered to have 

little effect on subsequent variations in water quality. On a timestep basis, the 

amount of sediment transferable is commonly calculated using the Ackers White 

equation (Ackers and White, 1973). Sediment can be eroded from the pipe until 

the sediment store is depleted or the transport capacity is reached; two sediment 

layers are commonly represented within SQM, the storage layer and active layer. 

The storage layer can be defined by the user and is generally used to represent 

consolidated sediments deposited over a longer period. The active layer 

represents unconsolidated sediments (mostly of organic matter deposited from 

the dry weather flow). These sediments have a shear strength (Hrissanthou and 

Hartmann, 1998). This strength must be exceeded before erosion of a sediment 

will occur. The stored sediment cannot be eroded until the active layer has been 

removed. In simple SQM’s, deposition is often not accounted for in and sediment 

is held in suspension however pollutants and sediments which are attached to 

sediments can be partitioned using a settling model which incorporates the use 

of a tank efficiency factor (Schellart, 2007). 
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Sewer Model Build, Calibration and Verification 

The UPM procedure details model build, calibration and verification steps to aid 

in the development of sewer quality models which represent reality.  

During model build, the use of catchment characteristic data to build a 

representation of the sewer network, at this stage default values are commonly 

used for influential water quality variables such as dry weather flow and sediment 

characteristics. This data includes: 

 Land-use characteristics; 

 Pipe sediment depth data; 

 Point inflow data; 

 Storm quality data; 

 Physical and chemical sediment characteristics for pipe and surface 

sediments; 

 Dry weather flow quantity and quality data. 

Model Calibration  

The aim of this procedure is for the shape and dimensions of model hydrographs 

and pollutographs to represent the system being modelled. Model predictions are 

compared with observed field data and an adjustment process is undertaken such 

that default model parameter values are adjusted to values which represent the 

catchment. Flow data should be fitted before any SQM sub sediment transport 

sub-model is calibrated as pollutants associated with sediments can cannot be 

modelled effectively until a sediment transport sub model has been calibrated 

The extent to which data is available for calibration of model parameters can 

determine the accuracy (and usefulness) of the SQM. It is recommended that 

calibration data be collected at key points in the system i.e. ancillary structures 

and CSO inflow and outflow locations. 

Model Verification  

Model verification is carried out during model development with the goal of 

producing an accurate and credible model. Measured event data is required to 

evaluate how the model simulates reality in both wet and dry conditions. The 
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UPMs definition of a ‘valid’ model is one which obtains acceptable agreement 

between model prediction and independent field measurements not obtained for 

calibration.   

Sewage Treatment Works Quality Modelling 

Sewage Treatment Work Models (STQMs) are used in conjunction with river and 

sewer models to represent the whole urban catchment. Sewage treatment work 

performance is assumed to deteriorate during wet weather events if considering 

the total percentage removal of pollutants through treatment. Conversely, wet 

weather events have a dilutionary effect on sewerage and thus the concentration 

of TSS, BOD and NH4 within final effluent may not differ from average flow 

conditions. In summary, the effect of storm flows on STW can influence: 

 Settling Processes. 

 Biological removal processes. 

 Solids washout. 

 Mechanical problems on the treatment works. 

STW models can be generalized into the following categories: 

 Dynamic STQMs. 

 Reduced-order models. 

 Statistical models. 

 Time-series models. 

Detailed mechanistic (dynamic STQMs) use theoretical equations that describe 

physical and biological processes. Default calibration parameter values can be 

used but due to site to site variations; most of these models require calibrating 

for a given site (Stokes et al., 1993). STQMs will typically contain the following 

sub-models to determine final effluent concentrations of BOD, COD, NH4, 

oxidized nitrogen, and phosphorus: 

 Activated Sludge. 

 Storm Tanks. 

 Primary Settling Tanks. 

 Final Settling Tanks. 

 Trickling Filters. 
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Reduced-order are simplified versions of the above mechanistic models i.e. 

nitrification terms may be removed from mechanistic equations where the sewage 

works does not nitrify. These models may not be as valid as ‘detailed mechanistic’ 

models, however, they are as valid as a fully STW model if the effects removed 

are not significant.  

Statistical Correlations models use empirical equations/function relate effluent 

quality to operating characteristic and influent sewage (Temmick et al., 1993). 

Time Series models operate on the principle that the future will represent the past 

(they use historic time-series data to predict future, they are useful in stable 

operation conditions but are subject to failing to adequately represent reality 

(predict effluent quality) when gross changes in plant configurations occur 

(Novotny et al., 1991). 

These models follow a similar data collection, model build, calibration and 

verification procedures as those described for SQMs, the details of which are not 

considered within the scope of this work and are therefore not presented. 

River Quality Impact Modelling 

River impact models (RQIMs) allow an understanding of the effects of intermittent 

wastewater discharges on receiving water quality. 

The effects of intermittent discharges on river quality are presented in Section 2.3 

Table 2-3. The magnitude of the effect that the aforementioned processes have 

on DO is related to a number of riverine characteristics, adapted from (Nakamura, 

1989): 

 Upstream riverine quality – Assimilation capacity of the river is influence by 

levels of BOD and DO already present within the receiving water. 

 River channel slope – Steepness of channels can create turbulence, this can 

increase the rate oxygen transfer across the air/water interface. 

 River channel geometry and roughness – The channel cross-section and 

water depth can impact turbulence in river, conducive to the occurrence of 

reaeration. 
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 Riverine Structures – structures can impact flow velocities and thus water 

depth; usually having the reduced effect of aeration; thus, creating locations 

of critical water quality conditions. 

 pH – High pH levels increase the proportion of un-ionized ammonia at a given 

concentration of total Ammonia, however, at higher pH levels, un-ionized 

ammonia has a reduced toxicity to fish. Ultimately, determining pH levels in a 

river is critical in understanding the impact of un-ionized ammonia. 

 Temperature – River temperatures are also critical to determining the levels 

of un-ionized ammonia for given concentrations of total ammonia. Higher river 

temperatures ultimately cause lower DO saturation concentration conditions; 

reducing a rivers assimilative capacity. Degradation processes also increase 

at a higher temperature. 

 Aquatic Plant Growth – In river vegetation can affect DO levels by two 

processes related to the time of the day/the amount of sunlight present: 

 Photosynthesis adds oxygen to an in-river water column (during daylight 

hours); 

 Plant respiration reduces oxygen levels in the water column (at nighttime 

hours). 

A range of river quality impact models exist that assess the impact of intermittent 

discharges on receiving waters. Mass-balance models predict wastewater 

discharge quality with an appropriate quantity of river water to give an estimate 

of the resulting downstream quality. These types of models do not consider any 

in-river processes. The models are useful for determinants such as ammonia, this 

is because the worst impact is likely to be experienced at the point of mixing. 

These types of models are often used to compare BOD concentrations against 

standards set to achieve an acceptable DO regime. 

Mass balance models include BOD/DO relationships to allow BOD and DO levels 

to be calculated through time. The models use equations to calculate the DO 

balance following BOD decay and surface aeration within rivers. These models 

use relatively simple equations, this allows for the development of analytical 

solutions and the deployment of numerical procedures to develop solutions, thus 

the following simplification procedures are usually required: 

 Dismissal and thus non-inclusion of nitrogen transformations. 
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 The assumption that flow is steady and that the riverine channel is uniform 

in geometry. 

 Dismissal and thus non-inclusion of main oxygen demand processes, at 

either the riverine bed and/or the water column. 

Complex dynamic RQIMs describe the varying quality and flow in a river in 

response to wet weather events. Differential equations describing the 

hydrodynamics and water quality processes are solved via the use of numerical 

techniques. These types of models generally include description of the following 

processes: 

 Pollutant routing – inclusion of advection, dispersion and mixing of 

pollutants. 

 Biochemical processes – inclusions of biochemical degradation processes 

that will ultimately affect BOD and ammonia. 

 Sediment interaction – inclusion of settlement, resuspension, transport, 

storage and release of sewer derived and river sediments.  

As repeated through the UPM, the choice of model complexity is largely 

determined by the type of problem being analyzed (WaPUG, 1998b). 

The use of dynamic RQIMs has progressed rapidly with the development of 

computer processing power. These models can be used to model a wide range 

of varying flow conditions and pollutant impacts in complex riverine channel 

networks. Many of these models operate in one-dimension; flows and 

concentrations are presumed to be uniform both vertically and horizontally within 

the water column. Two and three-dimensional models are available however 

these are increasingly more appropriate and necessary for cases involving 

estuaries, tidal rivers, stratified river and lakes. It is beyond the scope of this work 

to consider these models in the context of RQIMs, thus this section discusses 

one dimensional models only. 

Examples of river impact models are: 

 MIKE 11 (www.mikepoweredbydhi.com). 

 DUFLOW (www.mx-systems.nl/duflow). 

 HYDRA (hydramodels.com). 

 SALMON-Q (https://arxiv.org). 
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These models all contain mathematical description models for: 

 Hydrodynamic effects. 

 Advection-dispersive effects. 

 Water quality.  

 Sediment deposition modelling. 

A hydrodynamic module to model hydrodynamic results are necessary before 

advection-dispersion or water quality processes can be simulated. Saint-Venant 

equations are solved using an implicit finite difference scheme to calculate 

varying flow conditions. The implicit finite difference scheme is also used to solve  

Fickian advection-dispersion equation; conservation of mass of both dissolved 

and suspended substances is performed. The advection-dispersion module can 

also conduct sediment transport equations. The water quality module describes 

biochemical processes at each specified time and distance step, they are based 

on empirical equations; this module is normally run simultaneously to the 

advection-dispersion module. Typical determinands modelled are: BOD; nitrate; 

temperature; ammonia; DO; sediments and BOD attached to sediments; 

coliforms; nutrients; chlorophyll-a and toxic pollutants. Sediment deposition 

modelling describes the erosion and transport of sediment attached to BOD such 

that the correct simulation of delayed Oxygen demand exerted from the polluted 

bed sediment; this is critical when trying to predict the impact of intermittent 

discharged from CSO’s (FWR, 2012). 

Results from RQIM’s are to be assessed in regard with the studies previously 

appropriate environmental criterion. Results of determinand concentrations are 

compared with concentration-duration-threshold (CDT) criteria by production of 

results in terms of summary statistics.  

Simplified Urban Pollution Modelling 

Detailed deterministic simulation models can be utilized to provide accurate 

representation of the urban drainage system performance under wet weather 

conditions. However, they can be somewhat onerous due to the time, effort and 

computer processing power required to complete multiple runs over the 

necessary ranges of wet weather conditions. Understandably, compromises are 

made and the impact of small sub-sets of events are selected and examined, as 
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a result, full understanding of system performance may be lost and the 

development of appropriate solutions may occur (Dempsey, Eadon and Morris, 

1997). 

An alternative approach to this problem is to create a simplified model of the 

urban drainage system and subsequently calibrate this model to a small number 

of detailed model results; thus, the simplified model may be used for multiple 

runs. It is accepted that the loss of accuracy is compensated for by the ability to 

understand the system performance over a greater range of even simulations; 

thus, greater overall confidence in system performance assessment is attained. 

These approaches allow for a greater account of variabilities in river conditions, 

marine conditions, foul quality flow and rainfall. This can enable the development 

of potential solutions to be evaluated rapidly through the reduction of total model 

run times. A model specifically recommended within the UPM procedure to 

achieve this paradigm is ‘SIMPOL’ (Dempsey, Eadon and Morris, 1997). SIMPOL 

is a spreadsheet model which represents the elements of the sewer system by 

tanks, these tanks are conceptually connected to simulate the system 

configuration. Pertinent to this work is the way in which SIMPOL allows the user 

to understand the systems environmental impacts. For the case of river flows and 

concentrations, specification of mean and 5%ile flows and mean 95%ile 

concentrations are obtained. The model then selects flows and concentrations at 

random from distributions (typically log-normal for water quality constituents) for 

pre-user defined rainfall events. Outputs files for each event - including total spill 

volumes and loads from each discharge structure (CSO tanks and storm tanks) 

are utilized together with STW outputs (typically six hours’ worth of data) and 

mixed with six hours of river data. The outcome is a prediction of quality 

concentrations for six hours at the specified event. This process is repeated using 

different random river flow and quality specifications; allowing for a given storm 

discharge to mix with different river conditions; this result is used to estimate the 

quality constituent under analysis (usually BOD in the first instance) exceeded for 

six hours as a specified return period event (usually one year). The modeler can 

then compare these results with derived intermittent standards (more readily 

applicable interpretations of the FIS and percentile standards. If compliance with 

the relevant standards is not achieved, system adjustments (pass forward 

capacities and storage volumes) can be made and the simulation repeated; 
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repetition typically takes less than one minute. Once a solution meets the 

predefine BOD solutions identified, the process can be repeated with a different 

quality constituent (Ammonia); in which case BOD stored would be set to zero 

and with dry weather flow and upstream river concentration changed to represent 

appropriate ammonia values. The results previously representative of BOD can 

then be interpreted for Ammonia.  

2.6.1.3 PART C – Developing Solutions 

Part C of the procedure involves establishing site specific environmental and 

emission standards. Once established, suitable events are selected for trial 

against these standards. The planning tools assembled in Phase B of the 

procedure can then be utilized to predict performance through comparison 

against the established environmental and emission standards can be performed. 

Modification to the modelled systems are then trialed until a suitable solution is 

identified. 

Finally, consideration is given as to whether the solution identified could be 

refined further by the utilization of more complex modelling tools. A decision is 

taken on whether the cost of building more complex models is necessary in 

respect of total solution costs, if further investigation can be justified, the study 

returns to Phase B. 

The solution development methodology can be summarized as follows (it applies 

to discharges to rivers, bathing waters and for meeting amenity standards): 

 Establish specific site standards; 

 Prepare rainfall event files; 

 Estimate the discharge regime; 

 Estimate river necessary water quality concentrations; 

 Compare with standards; 

 Add extra capacity in models; 

 Assess design requirements for solids separation; 

 Check solution is compatible with other plans; 

 Identify improvements needed in data/models. 



48 

 

This process attempts to ensure that adequate protection of riverine aquatic life 

will be provided by the solutions that are cost effective; do not incur unnecessary 

costs and are not over or under designed (FWR, 2012). 

2.6.1.4 PART D – Consenting and Detailed Design 

On completion of the planning study and identification of necessary UDS upgrade 

measures, under the guidance of the UPM, consent conditions need to be set for 

the new or modified discharges (NRA, 1994). The process is summarized as 

follows: 

 For existing satisfactory CSOs that are not subject to change, only specific 

current conditions need specifying. 

 For CSOs deemed unsatisfactory due to one criterion, new consent should 

be used to tighten performance for the failing criterion. 

 If CSOs fail two or three criteria, new consent should take account of all 

requirements. 

Any new consents issued must include: 

 Overflow locations. 

 Overflow type. 

 Weir settings. 

 Storage requirements. 

 Aesthetic performance standards as appropriate to the receiving water 

uses. 

2.6 Integrated Catchment Management 

The EU Water Framework Directive (WFD) specifies a sophisticated and holistic 

assessment of the water quality within a catchment in order to meet 

environmental and ecological objectives. Integrated catchment management 

approaches are increasingly being used to address this requirement, utilising a 

system of integrated models to identify cost and energy effective measures to 

meet water quality objectives (Benedetti et al., 2010). This Integrated Catchment 

Modelling approach is based on the use of modelling tools to represent the 

different components of the catchment system and their interactions i.e. 

catchment runoff, sewers, treatment works, and receiving waters (Jakeman and 
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Letcher, 2003). A representation of a typical catchment, conceptualized 

respective pollutant sources and a ‘combined’ drainage system discharging into 

a receiving water body is presented in Figure 2-3. 

 

Figure 2-3 Conceptualisation of catchment and inputs into receiving water 

body (in this example, the river). 

In both the urban and rural areas of a catchment, contributing components of flow 

and water quality can be conceptually separated, in reality they are far from 

discrete and interact significantly. On the catchment scale, to quantitatively 

evaluate the impact of urban discharges on a receiving water body, all sources 

of flows and water quality which contribute to the quality of receiving water bodies 

must be accounted for; this includes those from the rural ‘upsteam’ areas of a 

catchment. In these areas, diffuse pollution is derived mainly in the form of 

pesticides and sediments transported during rainfall events within overland flows 

from activities such as agriculture, forestry and mining (represented in Figure 2-3 

as ‘rural runoff’). The ‘hydrological flow’ component shown in Figure 2-3 

incorporates this rural based pollution. 

The urban drainage system (often referred to as the sewer system) can be 

considered as a network of channels, structures and/or underground pipes. In the 

UK, approximately 70% of sewer system are ‘combined’ that is that the surface 

water collection system is integrated into the sewerage system, thus both 
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wastewater and storm water flows are conveyed together to the ‘downstream’ 

waste-water treatment works before being treated and discharged into the 

receiving water body, during rainfall events. As previously discussed, if the 

hydraulic carrying capacity of the sewer system is exceeded, storm water and 

wastewater can be discharged into a receiving water body (as shown Figure 2-3). 

The ICM approach allows for the consideration of catchments as one whole 

system and can be used to assess a combination of factors across different 

components within a catchment system which could lead to a critical situation 

(whereby the status of receiving water body becomes compromised), this could 

not be assessed by focussing on one part of the catchment system only, the 

approach promotes a catchment wide approach to interconnected environmental 

issues and consideration of possible future pressures and impacts (Lerner, et al., 

2011). ICM is a philosophy underlying the WFD (Mannina and Viviani, 2009), the 

approach is fundamentally underpinned by the ability to simulate and predict the 

current and future hydraulic water quality behaviours of each component within a 

catchment. A schematic interpretation of the integrated catchment methodology 

is presented in Figure 2-4, for simplicity and understanding; the surface water 

component has been represented as a separate input to the receiving water 

model. 
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Figure 2-4 Schematic interpretation of the Integrated Catchment 

Methodology (WWTW inputs are represented as part of the ‘continuation 

flow and WQ’ an input into the receiving water model). 

Hydraulic and water quality modelling is applied to each catchment component 

to simulate the behaviour of the integrated catchment system and to account for 

the effects of transient flow and load characteristics in the sewer, waste water 

treatment works and receiving river system. Continuous simulations are carried 

out with different models to ensure that discharge and climatologically changes 

are taken into consideration and that accumulative loads are accounted for. 

Following compliance assessment (application of the water quality standards 

presented in section 2.6.1.1 PART A and in accordance with the WFD standards)  
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solutions are proposed to remediate any failing water courses and these solutions 

modeled further until compliance with environmental and ecological standards is 

attained.  

2.7 Uncertainty 

Models are ultimately mathematical simplifications of reality, this can lead to 

uncertain model results, it has been suggested that uncertainty elimination is not 

possible and that uncertainties within models will always be inherently present 

(Harremoës and Madsen, 1999). With outputs from models utilised in various 

urban drainage applications, understanding how the impact of model 

simplifications representing reality is necessary (Morgan and Henrion, 1990). The 

use of quantitative uncertainty techniques seeks to address this need (Deletic et 

al., 2012). This section presents a structure with which to describe uncertainty, 

provides examples regarding the implementation of uncertainty techniques and 

the associated implications of such implementations within urban drainage 

modelling. 

2.7.1 Classifying Uncertainty 

Different methods of classifying uncertainty are presented within the literature 

(Korving, 2004). Jensen (2002) presented the argument that when model 

objectives change, uncertainties associate with such a model may also change. 

Wynne (1992) suggested that model uncertainties can be classified on a 

spectrum ranging from ignorance to certainty. Harremoes and Madsen (1999) 

and Korving (2004) used the following system to classify uncertainties within 

urban drainage systems: 

 Ignorance: “We don’t know that we don’t know”, stated by Wynne (1992). 

 Indeterminacy: consequence, probability or both are not known for a given 

event. 

 Uncertainty: Important system parameters are known, but the probability 

distributions of these parameters are not. 

 Risk: probabilities of failure can be predicted due to system behaviour being 

understood. 

 Certainty: future system performance is predictable. 
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When dealing with uncertainties, only those which can be quantitatively and 

qualitatively described can be examined further, uncertainties classified as 

‘ignorance’ cannot be dealt with for they are unknown. Classification of 

uncertainties is important for it enables the reduction in types of uncertainty that 

are unexaminable to be removed (Vanrolleghem et al., 2015). Figure 2-5 presents 

uncertainty types defined by Slijkhuis et al., (1999) and Van Gelder (2000), this 

uncertainty classification system was used by Korving (2004). 

 

Figure 2-5 Uncertainty classification system according to Korving (2004) 

Inherent uncertainty represents the phenomena of randomness, often referred to 

as stochasticity within natural processes, this is sometimes referred to as ‘natural 

variability’ (Deletic et al., 2012). Work by Kiureghian & Ditlevsen (2009) 

represented a similar classification system but utilised different terminology, using 

the term ‘aleatory’ as oppose to ‘inherent’ to describe uncertainties related to 

natural variabilities. These ‘inherent’ or ‘aleatory’ uncertainties are found both in 

the temporal and spatial realm. Inherent time-based uncertainties are fluctuations 

in processes due to time which cannot be known in advance; these uncertainties 

are not linked to data availability. In the context of urban drainage modelling, the 

temporal distribution of a rainfall event would be an inherent time-based 

uncertainty, an example of a space based inherent uncertainty within the urban 

drainage modelling process would be the spatial distribution of a rainfall event 

(Schellart, 2007). 
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Epistemic uncertainty represents the lack of knowledge concerning the 

fundamental phenomena associated with the system under observations, model 

based types of epistemic uncertainty can arise from a lack of understanding 

regarding physical processes being modelled (Schellart, 2007). Sediment erosion 

and transport would be a strong example of where epistemic model-based 

uncertainties are present within urban drainage modelling, these types of 

uncertainty have been attributed to the complexity of the physical processes 

involved in their mathematical description (Bertrand-Krajewski, J.L. Barraud et 

al., 2007; Schellart, A. N. A., Tait, S. J., and Ashley, R. M., 2010). Epistemic 

statistical uncertainties are often data related, they can be classified as parameter 

uncertainties or distribution types of uncertainty. Epistemic statistical 

uncertainties arise when there is insufficient data to accurately define the 

probability distributions of random variables or the data available fits more than 

one type of distribution seemingly well (Vezzaro et al., 2013). Sources of 

uncertainty within urban drainage models have also been classified by Deletic 

(2010) as follows: 

 Model input uncertainties: 

o Input data. 

o Model parameters.  

 Calibration uncertainties: 

o Calibration data uncertainties.  

o Selection of calibration input and output data sets. 

o Calibration algorithms. 

o Objective functions. 

 Model Structure uncertainties:  

o Errors in model conceptualisation. 

o Inadequate model equations. 

o Inappropriate numerical methods and boundary conditions. 

The classification system covers the same sources of uncertainty but defines 

uncertainty sources in a way which could be perceived as more applicable to the 

practical modelling process. In the classification system, model input 

uncertainties are those inputs required to run a non-calibrated or calibrated 

model, they include both random and systematic errors associated with the input 

data collection process and uncertainty in the calibrated estimates of model 
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parameters. Calibration uncertainties are related to the processes and the data 

used in the calibration process, dependent on the quality of the data monitoring 

campaigns used to collect the data and the quality of the instruments utilised to 

deliver it (Dotto et al., 2010). Calibration uncertainties can also be linked to the 

choice of calibration variables i.e. pollutant concentrations or loads and the 

appropriate spatial and temporal resolution of the data e.g. the number of events 

collected in the monitoring campaign. The selection of calibration algorithms 

(utilised to find optimal model parameter sets) and the appropriateness of the 

objective functions are also sources of error associated with the total uncertainty 

attributed to calibration uncertainties (Refsgaard et al., 2007). Model structure 

uncertainties are commonly concerned with process conceptualisation, are 

commonly associated with poorly defined model equations and the inappropriate 

employment of numerical techniques, therefore it has been suggested that it is 

inherently difficult to distinguish the attributing source of error between these 

sources, however, it has been suggested that whilst uncertainties cannot be 

eliminated, their amplitude and impact on modelling outputs can be quantified 

(Deletic et al., 2012). Model structure uncertainties have been highlighted in the 

literature as the most important source of uncertainty (Haydon and Deletic, 2009). 

With an increased awareness concerning modelling uncertainty and the need to 

deal with its presence in urban drainage models explicitly argued in the literature 

(Pappenberger et al., 2006), the need to account for uncertainty within urban 

drainage modelling studies is clear, even more so if the results of such studies 

are used in the design of solutions for urban pollution management. 

2.7.2 Applications and Implications of Utilising Uncertainty Assessment 

Techniques within Urban Drainage Modelling. 

Uncertainty is present in all urban drainage models (Deletic et al., 2012). It is 

particularly prevalent in water quality models where natural variations in 

processes are high, the processes influencing pollutions concentrations are 

complex and the data used for model development in this area limited (Willems, 

2012). The application of uncertainty analysis techniques within urban drainage 

modelling is limited and challenging, this has been attributed to the complexity 

and data requirements associated with modelling urban areas; they are often 

strongly heterogeneous in nature (large spatial variations in soil use, slope, 

coverage), these complexities and the requirements for large amounts of data 
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have made it difficult to define a universal methodology for the assessment of 

urban drainage modelling uncertainties (Ballinas-González, Alcocer-Yamanaka 

and Pedrozo-Acuña, 2016). Considering the classification of uncertainty 

described in section 2.7.1, a large proportion of uncertainty associated with urban 

drainage modelling outputs stems from inherent stochastically related 

uncertainties, this is largely due to the random spatial and temporal nature of 

rainfall as a model input (Dotto et al., 2014). The understanding of uncertainty 

related to model input data uncertainties is generally poorly understood (Dotto et 

al., 2010). Mourad (2005) suggested that when assessing uncertainties 

associated with calibration, the generation of equally plausible parameter sets 

can lead to reduced confidence in model outputs. The impact of input data 

uncertainties has also been examined by Haydon & Deletic (2009), the study 

assessed the impact of rainfall uncertainties on the performance of non-urban 

catchment models and suggested that even when using simplistic modelling 

approaches, the Monte-Carlo simulations required to estimate uncertainty within 

a practical system can take a significantly long period of time per input variable 

or model parameter. 

Several researchers have investigated natural variability of rainfall, Stransky 

(2007) used tipping bucket rain gauges to investigate the link between rainfall-

runoff processes and rainfall measurement uncertainties; quantifying sources of 

error, it was suggested that a 30% underestimation of peak flows was possible if 

rainfall calibration data was not included and that there could be up to a 15% 

underestimation if systematic errors were neglected. In the context of integrated 

modelling, Rauch (1998) suggested that a 20% offset in actual to measured 

rainfall data has an equally significant impact on integrated drainage modelling 

output results. 

The Generalised Likelihood Uncertainty Estimation (GLUE) methodology is an 

example of a Bayesian approach to assessing uncertainty, its application 

assumes that prior to the use of quantitative or qualitative information being 

introduced into the process, model parameter sets which are equally capable of 

predicting variables of interest must be considered equally likely as simulators of 

the system under observation (Beven and Binley, 1992). The approach assumes 

that because all model structures are in a state of error and that because all data 

sets utilised for calibration will also be subject to error, no one true parameter set 
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can be found. The method is based on the premise that is it be only possible for 

assessment regarding the likelihood of parameter sets being acceptable 

simulators of the system, it is therefore suggested that the assignment of 

likelihood weightings be assigned to model structures and parameter sets on the 

basis evidence, this evidence can be in the form of both qualitative and quantitate 

information. Mannina et al., 2006 utilised the GLUE methodology to evaluate 

appropriate levels of complexity required when modelling sediment erosion 

processes within sewers, the study utilised twelve rainfall events and 

corresponding BOD, COD and TSS sampled in Bologna, Italy, to compare the 

capabilities of six different sediment erosion algorithms of varying complexity. The 

study concluded that when limited amounts of data are available, the comparison 

of models with respect to their ‘best fitting’ capabilities are not important if only 

limited amounts of data are available. The implications of this approach when 

utilised to assess uncertainty within complex models were expressed in work by 

Thorndahl et al., 2008, the work argued that the approach involved significantly 

high computation costs to carry out assessment on a complex model. Beven and 

Freer (2001) introduced the argument that the concept of using parameter should 

be replaced by the concept of ‘equifinality’, whereby the concept of unique optimal 

parameter sets may result in equally good fits between model observations and 

model predictions. Bayesian uncertainty analysis techniques present a statistical 

framework to the treatment of parameter distributions, the implications of these 

approaches are that they require large amounts of data, this can make their 

application within water quality urban drainage modelling limited (Beven and 

Freer, 2001). 

Uncertainty quantification methods whereby input/model parameters described 

as probability distributions are presented within the literature (Vezzaro et al., 

2013). The use of Monte Carlo simulation techniques can be used to apply this 

type of method, it does not require changes to model structure but becomes 

increasingly difficult to apply to computationally expensive models, these 

methods of uncertainty quantification are thus increasingly restricted to simplified 

models (Sriwastava 2018 – in press). 

A method whereby the use of a ‘probabilistic’ shell built around a deterministic 

model has been used to quantify the uncertainty in wastewater treatment model 

design (Benedetti et al., 2006) . The study involved the use of input parameter 
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probability distributions, random sampling of these distributions during each 

deterministic simulation and the use of independent parallel simulations 

techniques to derive probabilistic simulation results to be evaluated from 

economic and environmental perspectives. The study concluded that with recent 

advances in computation power, the introduction of uncertainty techniques and 

the availability of well-defined and accepted water quality models, a move from 

conventionally ‘stiff’ design practises as imposed by emission limits, to 

transparent and cost-effective procedures provides a more appropriate approach 

capable of coping with the complexity introduced by integrated water 

management procedures. 

Model reduction techniques involve approximations of a complex model and the 

subsequent introduction of uncertainty via realisation of the physical system on 

top of the uncertainty in the complex model (Sriwastava et al., 2018). Schellart 

(2007) examined the propagation of uncertainty through an integrated catchment 

model using model reduction and a response database to estimate water quality 

failures in a receiving watercourse over an extended period. A response database 

was used to achieve model reduction before application of Monte Carlo 

simulation to propagate uncertainty through a simplified hydrological model, a 

computationally expensive sewer hydrodynamic model and a simple river quality 

model. The study concluded that the overall levels of uncertainty in the ICM inputs 

had a significant impact on model outputs (water quality failures) and that 

modelling approaches which do not take into account the uncertainty associated 

with model inputs and model parameters may results in over or under 

dimensioned solutions, furthermore the study concluded that with changing 

external inputs e.g. rainfall and river flows due to climate change, thus better 

accounting for uncertainty is required. 

There are high levels of predictive uncertainty associated with sewer and surface 

water quality models (Schellart, A. N. A., Tait, S. J., and Ashley, R. M., 2010b). 

In practise, the propagation of these uncertainties between models, the relative 

scale of uncertainties derived from individual assumptions/processes and the 

magnitude of final integrated model predictive uncertainties are seldom 

considered (Deletic et al., 2012). Combining these factors with the uncertainty 

associated with input data and field measurements, it could be argued that that 

the results obtained from such models should always be accepted with caution 
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and evaluated criticality (Ashley, Hvitved-Jacobsen and Bertrand-Krajewski, 

1999). Furthermore, the variation and uncertainties within water quality models 

increase compared to that of hydraulic models making it much harder to transfer 

experience or default values across catchments, even though they appear similar 

(Willems, 2010). Work by Dotto et al., (2012) compared the use of different 

uncertainty techniques, the study concluded that modellers should select a 

method based on the chosen models structure, number of parameters and the 

amount of skill/knowledge level the modeller already holds.  

2.8 Knowledge Gaps 

Whilst it is commonly accepted that the ICM methodology is capable of coping 

with the requirements of the WFD (Tsakiris and Alexakis, 2012), the most efficient 

and effective means of delivering the methodology are yet have been agreed. 

This section describes some of the major problems cited within the literature 

concerning the application of the ICM procedure, with focus on the use of 

‘industry standard’ water quality models currently used within UK utilities to 

deliver the methodology. This section concludes with a summary of the key 

knowledge gaps which provide scope for further investigation throughout the 

remaining chapters of the thesis. 

The ICM methodology relies on the use of computer based hydraulic and water 

quality models to simulate different components of the water system. Computer 

models for drainage design and analysis emerged in the 1970’s, but complex 

models only became standard tools of drainage engineers when appropriate 

computer power became available in the 1980s (Butler and Davies, 2011). 

Detailed hydraulic models were developed based on accepted mathematical 

relationships between physical parameters; the models simulate flow propagation 

in pipes and rivers by solving non-linear partial differential equations i.e. the Saint-

Venant equations, with the use of complex numerical algorithms. They involved 

some method of simplification but could and still can be classified as 

deterministic: the model is considered to follow definite laws of certainty but not 

any law of probability. Whilst it is commonly accepted that the application of 

complex deterministic hydraulic models within the water industry is a successful 

one, it is also acknowledged that the computational power required to solve such 

complex algorithms within a business environment is significantly large, thus, 
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model run times can be significantly high. The whole computational time of the 

integrated model become increasingly prohibitive for carrying out long term 

simulations of the whole system (Mannina and Viviani, 2010). Furthermore, due 

to the previous piecemeal approach to catchment modelling, various existing 

modelling suites represent individual components of the catchment in isolation 

and with little appreciation for other model component input requirements, this 

can cause the need for an increased amount of time dedicated to the task of 

processing data between models or additional data processing steps when 

exchanging data between models (Refsgaard et al., 2007). 

Work by Rauch (2002), suggested that whilst the use of complex models usually 

improves its ‘realism’, increased complexity of a model can make it increasingly 

difficult to understand, analyze, pose computational problems and inhibit 

numerical instability. It has also been suggested that the use of complex models 

over that of more simplified models does not necessarily improve modelling 

results since problems and error sources increase with respect to complexity. The 

integration of individual software components into one system has led to the term 

‘intergronsters’. The term has been used to describe integrated models that 

exhibit ‘constructs that are perfectly valid as software products but ugly or even 

useless as models’ (Voinov and Shugart, 2013). It is suggested that such 

constructs ignore the fluid relationships that exist between each component 

model and reality, the evolving nature of models and their constant need for 

modification and recalibration. 

Furthermore, the integrated model has increased complexity, changes which 

previously caused impact to relatively contained component models, now 

propagate through the whole model. This makes complexity difficult to control and 

goes against the potential benefits of ‘modularity’, whereby efficiency is gained 

from the independency of component models. This problem becomes further 

exacerbated by increasing numbers of component models used within an 

integrated model (Voinov and Shugart, 2013).  

The current UK industry standard software package InfoWorks CS is used to 

model water quality behaviour in the surface water and sewerage systems. The 

software simulates the transport of suspended sediment and dissolved pollutants 

by solving the one-dimensional advection-diffusion equation. This equation is 
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formed on the conservation of mass principles and then solved in each conduit 

or river reach by the Holly-Priesmann method. Different sub models are available 

to calculate the sediment erosion and deposition in pipes (Zug et al., 1998), 

however, the most widely accepted sediment model used for erosion and 

deposition prediction is the Ackers White carrying capacity model (Schellart, 

2007;Voogt, van Rijn and van den Berg, 1991). Considering the total 

computational power required to perform one hydraulic time step simulation 

coupled with the power to perform an equivalent array of water quality 

simulations, the use of this complex deterministic ICM model to explore a wide 

range of design options within an integrated model could be considered to be an 

inefficient process (Willems, 2010). 

The application of complex deterministic models that simulate water quality to a 

comparable level of detail to that of hydraulic models is much less of a success 

(Butler and Davies, 2011), the predicative accuracy of these models has been 

questioned (Deletic et al., 2012). It has been suggested that this lack of accuracy 

can be attributed to the wide range of physical, chemical and biological processes 

occurring over a variety of temporal and spatial scales which these models try to 

describe, many processes of which are currently poorly understood. It has even 

been suggested that the physical processes in certain water quality models are 

so complex and catchment specific that it may simply be over ambitious or 

inappropriate to attempt to represent them in a physically deterministic model 

(Freni, Mannina and Viviani, 2009). This lack of accuracy is particularly 

associated with the use of sewer and surface water models, which involve the 

numerical description of several scientific phenomena related to the fate and 

transport of pollutants, such as; advection, dispersion, sedimentation and re-

suspension. Furthermore, many of the chemical and physical transformations 

described within these models are dependent on parameters which are very 

difficult and expensive to quantify accurately or have a high natural variability 

(Mannina et al., 2012). 

The prospect of verifying a pre-calibrated quality model is a less realistic 

proposition than for a flow model. All models need local data to enable model 

build, calibration, and verification and it is widely accepted that in general, the 

accuracy of model outputs can significantly increase with respect to an increase 

in available data; however, it is often the case that only few measured events are 



62 

 

commonly used for such calibration (Mourad, Bertrand-Krajewski and Chebbo, 

2005). In practice, data collection is highly resource demanding, budget driven 

and consequently data are lacking. It has been suggested that according to sewer 

managers, many water quality models are not cost effective because of the cost 

of the calibration campaigns and their poor accuracy level compared with that of 

hydraulic models (Ahyerre et al., 2005). 

The use of models as planning, management and design tools is common within 

the urban drainage field, at present, particularly within industry. Whilst it may 

appear that water quality modelling software packages are moving forward 

(offering highly resolute geo-spatial domains in which they can perform an 

increasingly wide range of analyses), the uncertainty associated with many urban 

drainage modelling results is often not communicated; this is of significant 

importance when the outputs of such models are used to plan, manage and 

design drainage infrastructure which affects various stakeholders (utilities, 

regulators, the environment and the public). Further still, with integrated analyses 

becoming increasingly widespread, due to many different urban drainage models 

providing outputs which are used as inputs into other urban drainage models 

(often at various temporal and spatial scales) the need to deal explicitly with 

uncertainty in water quality models is clear (Pappenberger et al., 2006).  

2.9 Conclusions  

Less complex or ‘simple’ models are less detailed representations of reality; they 

generally account for less of the processes that cause variations in hydraulic and 

water quality behavior and do so at lower spatial and temporal resolutions. This 

lack of complexity/conceptualization of reality often means that these models 

require a ‘low’ amount of computational power to perform one full model 

simulation, thus model run times are low. Low model run times allows these 

models to be used more readily in scenario analyses and uncertainty 

assessments, techniques which provide additional information to the decision-

making process when investing in large-scale urban drainage solutions and 

current assets. There is a ‘perceived’ lack of accuracy associated with modelling 

results from simple water quality models and also a lack of quantitative studies 

within the literature that supports this perception. This is in part due to the cost of 
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expensive water quality data collection campaigns and the subsequent shortages 

in comprehensive water quality data available for study. 

In a business context, the implementation of the ICM methodology is still relatively 

recent and there is little supporting guidance advising users which types of 

models are best to support the methodologies deliverance. Furthermore, With the 

accuracy of results from complex deterministic models questioned, the use of 

complex deterministic models for water quality prediction and solution 

development is potentially ineffective and inefficient, if better management 

decisions are to be made based on ICM results, it seems necessary to evaluate 

the ‘fitness for purpose’ of the current ‘industry standard’ software tools used to 

deliver the methodology within industry. 

As an alternative to ‘complex’ deterministic quality models, several research 

groups have developed simple regression based models to predict Event Mean 

Concentration’s (EMC’s) of pollutants based on catchment and rainfall event 

characteristics (Kim, Kayhanian and Stenstrom, 2004; Francey et al., 2010; 

Maniquiz, Lee and Kim, 2010; Dembélé et al., 2011). These models produce 

results at the event scale, dismissing the inter-event variations of water quality 

constituents, instead representing them as average pollutant concentration 

values; in a lumped-temporal manner. They are seldom used within the UK water 

industry due to the aforementioned ‘perceived’ lack of accuracy associated with 

such water quality descriptions, yet their utilisation would present decision 

makers with the opportunity for increased knowledge on the uncertainties present 

and increased capabilities for scenario analyses within integrated catchment 

models. 

It is in conclusion to this chapter that investigation into the simplification of the 

ICM methodology without significantly influencing, and potentially decreasing the 

predictive capacity of the whole ICM process is needed. This thesis therefore 

proposes that in the context of integrated catchment models, an investigation into 

the potential use of ‘simple’ water quality models is needed, and that if such a 

potential is present, a process should be developed which enables modellers to 

derived knowledge on the uncertainty associated with such model outputs. 



64 

 

Chapter 3 utilises a previously conducted ICM study in the UK, to explore the 

significance of the representation of dynamic pollution events as mean values 

within an ICM methodology.  
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Chapter 3. Evaluating the use of Simple Water 

Quality models within Integrated Catchment 

Models 

The aim of this chapter is to investigate the effects of reducing the model 

complexity of the CSO representation from a fully dynamic to an EMC approach 

on overall ICM model accuracy, subsequently, the chapter looks to establish 

whether there is potential for the use simple pollutive descriptive techniques to 

produce CSO spill modelling results within ICM.  

From an operational perspective, when utilising an integrated catchment model 

for river impact studies, the prediction of sewer/surface water intermittent 

discharge concentrations and loads is the primary objective (Dembélé et al., 

2011). The current industry standard complex deterministic models meet this 

objective by calculating and describing water quality constituents at high temporal 

and spatial scales. The models generate dynamic descriptions of CSO water 

quality spills which are then used as inputs to a receiving water model. As an 

alternative to ‘complex’ deterministic quality models, several research groups 

((Irish Jr et al., 1998; Dembélé, Bertrand-Krajewski and Barillon, 2010; Dembélé 

et al., 2011) have developed ‘simple’ water quality models that predict water 

quality. Many of these models, characterise water quality at the temporal ‘event’ 

resolution, and are separated by their calculation processes into site-mean 

concentration (SMC) and event mean concentration (EMC) models, they have 

been mostly established and applied by researchers (Gromaire-Mertz et al., 

1999). These models are an inherently simplified approach to water quality 

modelling in that the temporal variability of a spill event is not considered, they 

instead characterise spill events as an average concentration. 

Due to their inherently simplified description of pollutants, these models require 

low computational power and have low run times, thus they offer increased 

capabilities for scenario analyses within integrated catchment models. There 

utilisation remains limited due to a perceived lack of accuracy, especially in the 

context of integrated catchment models where the impact of characterising 

intermittent discharges as average concentrations on final receiving water model 



66 

 

accuracy is currently unknown. This chapter seeks to answer this unknown in a 

case study manner, by utilising a previously developed industry standard 

integrated catchment model and corresponding observed catchment water 

quality data to evaluate the potential for simple water quality description 

techniques to be used within integrated models. 

The chapter presents results of an ICM study on BOD, NH4 and TSS water quality 

parameters conducted in the UK. The data from this water quality collection 

campaign has been used to define optimum EMCs for a range of CSO spill events 

and quantify the minimum possible variance between EMCs and observed water 

quality parameters over each monitored dynamic spill event. These variances are 

compared to those observed from the use of industry standard complex 

deterministic modelling tools used within the original ICM study. To define the 

relative significance of the inherent EMC variance within an ICM study, the 

hydrodynamic ICM surface water quality model is used to predict river quality 

parameters using the optimum spill EMCs as inputs. Results are compared to the 

original ICM model verification study via the direct comparison of observed and 

predicted water quality parameters at six locations within the receiving waters. A 

version of this chapter was presented at the 13th international conference of urban 

drainage 2014 (Norris, Saul and Shucksmith, 2014).  

3.1 Case Study Area and Integrated Catchment Model 

The case study catchment used for this study is situated in the North-West of 

England. The ICM approach was used to model the impact of four urban 

catchments on the river Tame. The study area is on the east side of Manchester, 

a heavily urbanised city. A total of 37km of the receiving water course – the river 

Tame - was modelled as part of United Utilities integrated catchment modelling 

studies in AMP-5. The watercourse is impacted by four combined sewer/surface 

water networks; Ashton-Under-Lyne, Dukinfield, Hyde, and Denton, referred to 

as catchments A, B, C and D respectively for the remainder of this work. Each of 

these catchments intermittently discharges into the river Tame and its tributaries 

via numerous CSO’s during significant rainfall events, 18 of these CSO’s across 

the four sewer networks were highlighted by the Environment Agency as having 

an ‘unsatisfactory’ impact on the river Tame, thus these CSO’s and 6 downstream 

river locations were monitored for the water quality parameters; BOD, COD and 
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TSS. Figure 3-1 shows the location of the catchments and the receiving water 

course being modelled, Figure 3-2 shows the subsequent schematic 

representation of the catchment system with the location of monitored and 

unmonitored CSO’s within each sewer. 

 

Figure 3-1 Case study catchment (image taken from google maps) shows 

four urban catchments (Ashton. Duckinfield, Hyde and Denton) which 

discharge into the River Tame 
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Figure 3-2 Integrated catchment consisting of catchments; A-Ashton-

Under-Lyne B –Dukinfield. C –Hyde and D -Denton; Rain gauges; 

Monitored CSOs, Un-monitored CSOs and the River Tame 

The key characteristics of each catchment and each catchment’s respective 

sewer/surface network are presented in Table 3-1. 
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Table 3-1 Sewer Network Characteristic – UK Sewerage Utility, United 

Utilities 

Sewer Network ID A B C D 

Population Density (p/ha) 47 50 54 32 

Catchment Area (ha) 1001 1218 786 1151 

Impermeable Area (%) 12 25 31 9 

Permeable Area (%) 88 75 69 91 

Sewer Length (collectors) (km) 54 75 82 50 

Average Sewer Slope (%) 0.024 0.038 0.004 0.016 

Monitored CSO’s 4 5 5 3 

Un-Monitored CSO’s 7 32 9 15 

3.2 Initial ICM study  

The UK water industry operates in Asset Management Plan (AMP) periods, at the 

beginning of every five-yearly cycle, OFWAT sets water prices following 

submissions from each utility about what it will cost to deliver their business plan. 

In AMP5 United Utilities undertook ten integrated catchment modelling studies, 

this section uses the integrated model and corresponding observed validation 

data utilized for one of these ICM studies. 

The ICM approach is based on the use of modelling tools to represent the 

different components of the urban drainage system and their interactions (i.e. 

catchment runoff, sewers, WwTWs, and rivers). Hydraulic and water quality 

modelling is applied to each component in order to simulate the behaviour of the 

integrated system and to account for the effects of the transient flow and load 

characteristics in the sewer-WWTW-river system. Continuous simulations are 

carried out to ensure that discharge and climatological changes are taken into 

consideration and that accumulative loads can be accounted for. Prior to the 

application of the model as a decision-making tool, model build, calibration and 
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verification processes were carried out to the standards expressed in the 

following UK guidance documentation: 

 Code of Practice for the hydraulic modelling of sewer systems (WaPUG, 

2003). 

 Code of Practice guide for the water quality modelling of sewer systems 

(WaPUG, 2006).  

 River Modelling Guide (WaPUG, 1998b). 

 River Data Collection Guide (WaPUG, 1998a). 

 Urban Pollution Management Manual (FWR, 2012). 

The documents provide a summary of current best practice in the UK at present 

and provide a framework in which to carry out sewer hydraulic and quality 

modelling. The WaPUG group was formed in 1982 as an ‘advisory group for 

Urban Drainage’, it became the Chartered Institute for Water and the 

Environment (CIWEM) urban drainage group in 2009, it is run by a committee to 

reflect its members within the urban drainage. The integrated catchment model 

and its individual model components were built in accordance with these 

guidance documents and were passed as suitable by the Environment Agency 

as appropriate for the design of solutions aimed at managing Urban Pollution. A 

description of the component model builds, calibration and verification provided 

by United Utilities and used within the study is presented in the following sections, 

in line with the scope of the work, full detailed description has been applied to the 

water quality components of the sewer model, reviews and of other models and 

their respective calculation methods are also presented. 

3.2.1 Hydrological Model 

Hydrological modelling provides the rural inflows to the hydraulic models in order 

to calculate flows and water levels along the river channel. The RAM rainfall-

runoff model, developed by DUFLOW (version 3.8.5.0) was employed for this 

purpose (IHE Delft, 1995). RAM is a physical-deterministic model that simulates 

the surface runoff by calculating the losses from precipitation and delays in runoff. 

In the RAM model, a division into types of surfaces is made in view of the 

differences in rainfall-runoff processes (i.e. open water surface, paved surface, 

and unpaved surface). The processes that can be modelled in RAM include 

infiltration into the soil moisture, percolation into the groundwater, groundwater 
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discharge into the drainage system, interaction between saturated and 

unsaturated zone, and process of leaching and runoff of nutrients. 

The RAM rainfall-runoff modules are of strong empirical nature. Therefore, the 

parameters in the model usually do not have a direct physical meaning. Typical 

values of these parameters are usually used and calibrated based on the 

measured discharges. A specific Rainfall-runoff (RAM) model was developed for 

the River Tame’s hydrological catchment. A single RAM model was developed 

with an area equal to the rural catchment area, calculated by subtracting the 

urban area included in sewer models from the total catchment area. In the 

hydrological catchment the aim of the modelling process was to use a single rain 

gauge to develop a single set of model parameters to represent the hydrological 

characteristics of the catchment. The model parameters were verified by 

comparison of simulated runoff against an appropriate river gauge records. These 

parameters could then be applied to simulate runoff from detailed rural sub-

catchments which excluded the urban areas represented in sewer and surface 

water models. These simulations took rainfall variability into account by 

employing multiple rain gauges based on a Thiessen polygon distribution, 

modified to take account of topography, the Thiessen polygon distribution is a 

simple and practical method for computing rain gauge station weights. The runoff 

generated was then introduced into the river hydraulic models, in conjunction with 

sewer and surface water runoff generated in the sewer/surface water models, 

and a final comparison made against the EA’s river gauge records. In addition, it 

was found necessary in some cases to apply seasonal hydrological parameters 

to get satisfactory matches through the year. Evaporation data from Met Office 

Rainfall and Evaporation Calculation System (MORECS) square 106 was applied 

in the models. The MORECS method provides estimates of evaporation, soil 

moisture deficit and effective precipitation under British climatic conditions, further 

information on the science behind this method and system is presented in (Hough 

and Jones, 1997).  

The RAM hydrological model for the River Tame was calibrated against the 

available flow measurements at EA river gauging stations. Calibration of the 

model was performed using trial and error adjustments of selected model input 

parameters, model parameters were verified through comparison of simulated 

and observed flow measurements.  
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Time series of flows at the head of the catchment river, and additional lateral 

inflows, were generated using the hydrological model described above. The 

hydrological catchment was initially subdivided based on the FEH CDROM 

catchment watersheds technique, further information on this technique is 

described in the Flood Estimation Handbook (Centre for Ecology & Hydrology 

(formerly the Institute of Hydrology), 1999). Using this approach, the river Tame 

hydrological catchment was divided into 6 sub-catchments. Some of these sub-

catchments were further sub-divided into smaller areas to assign the runoff flows 

more precisely based on topography and the locations of point discharges from 

the urban sewer, surface water and WwTW assets. The calibrated RAM model 

was applied to each sub-catchment to simulate the flows from the rural areas 

based on historical rainfall data. The time series of simulated flows from the sub-

catchments and tributaries were used as hydraulic input to the river model. 

3.2.2 Surface/Sewer Model 

The four sewer/surface models were built using the complex deterministic 

software package InfoWorks CS version 12.5 (Innovyze, 2011, 

http://www.innovyze.com/). The models have been built and maintained by 

various UK consultants on United Utilities service framework over AMP periods 3 

to 5, the initial build date of the models is unknown, in part because InfoWorks 

CS is a later version and update of the software Hydroworks, which was 

developed by merging previous models built in FLUPOL and MOSQITO (Ashley, 

Hvitved-Jacobsen and Bertrand-Krajewski, 1999). Within InfoWorks CS, the 

modelling of pollutants is fully conservative, there is no interaction between 

pollutants and their environment, or between one pollutant and another. 

InfoWorks CS includes the following modules used to describe water quality 

processes in the surface/sewer system: 

 Solids surface build-up module; 

 A gully pot build-up module; 

 A surface wash-off module; 

 A pollutant transport, sediment erosion and deposition module (three 

parts within a conduit module). 

With this chapter’s focus being on the accuracy of results generated from 

deterministic sewer quality modelling packages within an ICM study, the water 
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quality modules utilised within InfoWorks CS (the package utilised in this ICM 

study) and their scientific description have been described in depth, other 

deterministic sewer water quality models are available which could have been 

used to provide inputs into the receiving river impact model within the Integrated 

Catchment Model used for this study such as the United States Environmental 

Protection Agencies Storm Water Management Models (US-EPA, www.epa.gov) 

and DHI Water and Environment model MOUSETRAP (www.dhi.dk/mouse). 

SWMM is a distributed discrete time simulation model. SWMMs surface build-up 

module utilises Sartor and Boyd’s nonlinear function of dry days (1972) to 

estimate build up for different land uses on the catchment surface; different 

functional options (power, exponential and saturation) are available to the 

modeller. For surface wash-off, SWMM offers a more simplified method of 

calculation. Research by Ammon (1979) concluded that whilst sediment transport 

theories are attractive to users, field data requirements to derive parameters 

involved in sediment transport theory are significantly large, SWMM therefore 

offers different empirical models to represent wash-off of pollutants from the 

catchment surface; exponential wash off, rating curve wash-off and EMC wash 

off. For pollutant transport, SWMM offers numerical solution of the 1-D advection-

dispersion equation, the model further assumes complete mixing within conduits 

via the form of a continuously stirred tank reactor model. MOUSETRAP utilises a 

surface runoff quality module capable of simulating the build-up and wash-off of 

pollutants, a sediment transport module with the option of four different transport 

equations, an advection-dispersion module to compute pollutants advection and 

dispersion through the sewer network and a water quality process module to 

compute processes within the sewer network.  

InfoWorks CS Modelling 

InfoWorks CS combines geographical analysis with a relational database to 

provide an environment in which modellers can simulate key elements of 

wastewater, storm water and/or combined or sewer systems within a single 

environment. The software utilises a time-series simulation engine to perform 

numerical solutions in a time-stepping manner. Interactive views of model 

networks are provided by a geographical user interface, users can view long 

sections, geographical plan views, spreadsheet and time varying geographical 
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data. Underlying network model data is stored in a database categorised by 

network nodes, link and sub-catchment network objects. 

Network Model Data 

Networks nodes are used to represent manholes, storage structures, ponds, 

outfalls and breaks. Nodes must be joined by a link, which represents either: 

 the physical connections between two nodes: either a close pipe or an 

open channel, or 

 A control, representing a weir, pump, or other flow device. 

Sub-catchments represent the physical area with which a manhole or other inflow 

node collects water, each sub-catchment can be defined as collecting the 

following types of water: storm (rainfall collection); foul (wastewater collection); 

combined (rainfall and wastewater collection) and overland (overland floodwater 

collection). How a sub-catchment behaves during simulation is influenced by 

default or user defined runoff and land use characteristics. 

Links can be used to represent and describe the following network objects and 

object characteristics respectively: conduits; culvert inlets; culvert outlets; flap 

valves; flumes; head discharge; flow efficiencies; orifice’s; pumps; rivers; 

screens; siphons; sluice’s; user defined controls; weir and river shapes.  

Model Simulation 

The behaviour of the network under conditions is modelled by running 

simulations. Simulations test the effects of a given flow of water through the 

network over a prescribed period of time, this allows modellers to understand the 

behaviour of the network under given rainfall patterns. Simulation parameters 

govern how InfoWorks CS performs model calculations in the hydraulic and water 

quality simulation, it is not normally necessary to amend the network simulation 

parameters; default values have been chosen for optimum simulation 

performance regarding computation cost. The data for simulations comes from 

the definition of an event - hydrological and hydraulic data that varies with time - 

which contains data such as rainfall records or a prediction of domestic 

wastewater inflow. The software performs full solution modelling of:  
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 Backwater effects and reverse flow. 

 Ancillary structures. 

 Trunk sewers. 

 Conduits (pipes) and respective conduit connections. 

InfoWorks CS Water Quality Modelling 

The InfoWorks CS Water Quality model simulates the build-up of sediment in the 

network and the movement of sediment and pollutants through the drainage 

system during a rainfall event. The hydraulic module calculation process takes 

place before the water quality model calculation process at each timestep as 

outputs from the hydraulic model are used in the water quality calculations.  

The modelling process takes place in two stages; model initiation and model 

simulation. The initialisation stage involves carrying out initialisation runs to find 

a steady state for the network. These runs will often be dry weather flow runs to 

generate an initial state in dry weather conditions. In the simulation stage, users 

can apply different rainfall events to the initialised model. InfoWorks CS 

recommends a build-up period prior to each modelling simulation to let the 

surface sediment and pollutants reach a steady state. In the simulation stage, 

application of different rainfall events is used to initialise the model.  

InfoWorks CS allows users to model up to nine different pollutants and two 

different sediment fractions. There are five named pollutants and four additional 

user defined pollutants. The named pollutants are: Biochemical Oxygen Demand; 

Chemical Oxygen Demand; Total Kjeldahl Nitrogen; Ammoniacal Nitrogen and 

Total Phosphorus. Each pollutant can be modelled as a dissolved pollutant, or as 

pollutant attached to one or both sediment fractions using a potency factor 

(Ammoniacal Nitrogen can only be modelled as a dissolved pollutant). The two 

sediment fractions can be modelled: 

 Completely independently, with no interaction between them; or  

 as dependent fractions, where average sediment parameters are 

calculated and then a single calculation carried out for the combined 

sediment.  
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InfoWorks CS includes the following modules used to describe water quality 

processes in the surface/sewer system: 

 Solids surface build-up module.  

 Gully pot build-up module. 

 Surface wash-off module. 

 Pollutant transport module (part of the conduit module).  

 Sediment erosion and deposition module (part of the conduit module).  

InfoWorks CS Surface Build-Up Module 

In dry weather conditions, sediment builds up until a steady state is reached on 

catchment surfaces, a layer of active sediment also builds up in network conduits. 

This active sediment can be transported by flows in the network. Active sediment 

sits on top of a fixed layer of bedded sediment that does not change during the 

simulation. Inflows of sediment and pollutant that follow a 24-hour pattern can 

come from areas of population (wastewater events) and industrial sources (trade 

events). Inflows of sediment and pollutants that do not follow a 24-hour pattern, 

such as weekly tank flushing at an industrial plant, can be applied using 

associated pollutant profiles and inflow hydrographs.  

During a storm event, dry weather inputs continue to enter the network, however 

rainfall generates runoff from the catchment and into the network; this causes 

sediment to be eroded from the catchment surface and washed into the network. 

Dissolved pollutants are also flushed into the system by surface runoff and 

increased flows cause increases in the erosion and transport of sediments.  

The solids surface build-up module within InfoWorks CS calculates sediment 

build up prior to and during the period of simulation, this governs the amount of 

sediment than can be washed into the network. The build-up equation (Equation 

3-1) is used to determine the mass of sediment build-up only.  

Equation 3-1 

 
dM

dt
= Ps − (K

1
∗ M) 

Where: 

 � = the mass of deposit per surface unit (kg/ha) 

 �� = the build-up factor (kg/ha.day) 
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��= the decay factor (0.08/day) default deduced from empirical calibration. 

 

The maximum surface mass available is given by: 

Equation 3-2 

���� =
��

��
 

Where:  

���� = maximum surface mass available (kg/ha) 

�� = the build-up factor (kg/ha.day) 

��= the decay factor (0.08/day) default deduced from empirical calibration. 

 

The maximum surface mass available calculated in Equation 3-2 is never 

exceeded, user defined limits can be applied to stop sediment build-up if required. 

InfoWorks CS calculates the build-up of sediment and the erosion of sediment in 

parallel for each timestep. Both these calculations begin with the initial sediment 

mass at the start of the timestep. The sediment mass at the end of a timestep is 

calculated by projecting the mass without erosion less the amount of eroded 

sediment; both these amounts can be calculated by integration of the build of 

equation (Equation 3-1). The mass of deposit is given by: 

Equation 3-3 

�� = �������� +  
��

��

(1 − �����) 

Where:  

M0 = the mass of sediment at the end of the build-up period or the projected mass at 
the end of the timestep (kg/ha) 

Md = the initial mass of sediment deposit (kg/ha) 

K1 = the decay factor (0.08/day) unless otherwise specified by the user  

NJ = the duration of the dry weather period or timestep length (days) 

Ps = the build-up factor (kg/ha.day).  
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During a rainfall event, surface mass is dependent on the erosion rate and build-

up equation (Equation 3-1) using the first order numerical Euler approximation 

method. Surface build-up changes with respect to the surface build-up factor in 

Equation 3-1, if not otherwise specified, InfoWorks CS uses the factors presented 

in Table 3-2 with respect to sub-catchment land-use.  

Table 3-2 InfoWorks CS default surface build-up factors 

Land Use Surface Build--up Factor 

(kg/ha/day) 

Origin 

Residential (dense) 25 Desbourdes  

Residential 6 Desbourdes  

Town Centre 25 US Calibration (EPA) 

Industrial 35 US Calibration (EPA) 

Mixed Suburban 6 Debourdes  

Gully Pot Build-Up Module 

The gully pot module calculates the initial pollutant concentrations in gully pots 

before and during a simulation. The calculation is carried out for each sub-

catchment. Only dissolved pollutants are modelled in gully pots. Sediment build-

up is not considered. The basic hypothesis underlying pollutant build-up is the 

time-linear accumulation of each pollutant in a gully pot. InfoWorks CS uses the 

same build-up equation (Equation 3-1) to calculate build-up during the build-up 

time period and for each timestep during the simulation, actual concentrations of 

each pollutant are calculated by: 

Equation 3-4 

���(�) =
((� + � ∗ ��) ∗ ��

1,000,000
 

Where:  

PGn(t) = dissolved pollutant mass at timestep t (kg) 
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C = initial pollutant concentration (mg/l) 

M = gradient of linear accumulation (mg/l days-1) 

ND = dry weather period or timestep length (days) 

Vg = gully pot volume (m3).  

 

The gully pot volume for each sub-catchment is given by: 

Equation 3-5

 

Where: 

Vg = gully pot volume (m3) 

 Dg = gully pot depth (m)  

A = runoff area of the respective runoff surface for the gully pot under consideration 
(m2). 

 

Surface Wash off Module 

InfoWorks CS calculates the amount of sediment and pollutant entering the 

system for each sub-catchment at each water quality timestep. The surface wash 

off and gully pot flushing calculations are completely independent. The following 

calculations take place: 

 the wash-off of sediment from the surface and the resulting inflow of each 

attached pollutant based on their potency factors. Wash off is taken from 

the effective impermeability; and,  

 the amount of each pollutant flushed from the gully pots.  

The surface wash off model is based the Desbordes Model (a single linear 

reservoir runoff routing model) (Desbordes and Servat, 1983). InfoWorks CS 

assumes that the pollutant flow at the sub-catchment outlet (node) is proportional 

to the quantity of pollutant dissolved or in suspension in the storm water present 

on the sub-catchment, InfoWorks CS performs the following calculation 

procedure: 

�� = �� ∗ � 
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 the amount of sediment eroded from the surface and held in suspension 

in the storm water (the Total Suspended Solids). This erosion is 

proportional to rainfall intensity;  

 the amount of sediment washed into the drainage network using the single 

linear reservoir routing model; 

 the amount of each pollutant attached to the sediment entering the 

drainage network. This is also proportional to rainfall intensity.  

Sediment Erosion 

The mass of sediment eroded from the sub-catchment is a function of the rainfall 

intensity and the mass of deposit on the ground: 

Equation 3-6 

 

Where:  

M(t) = mass of surface-deposit pollution per unit area (kg/ha) at time t 

Ka = the erosion/dissolution factor related to rainfall intensity (-) 

f(t) = the pollutant flow at time t (kg/(ha). 

 

Sediment Wash off 

InfoWorks CS calculates sediment wash-off using values for runoff calculated 

with the Desbordes runoff. The Desbordes model’s basic hypothesis is that of the 

single linear reservoir coupled with the assumption that the flow at the catchment 

outlet is proportional to the volume of storm water present on the catchment. The 

calculation for sediment wash-off uses the runoff from Runoff Surface 1 and 

Runoff Surface 2 defined in the land use definition, these are both impervious 

surfaces, runoff surface 1 is the road surface and runoff surface 2 is the roof area: 

Equation 3-7 

 

��

��
= �� ∗ �(�) − �(�) 

��(�) = � ∗ �(�) 
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Where:  

Me(t) = the mass of the pollutant dissolved or suspended pollutant (kg/ha) at time (t) 
per unit area. 

k = linear reservoir coefficient (s-1) 

f(t) = the pollutant flow at time t (kg/(ha.s). 

 

If the simulation uses the final state of another simulation to provide the initial state of 

the current simulation, the initial total suspended solids (TSS) outflow per surface unit 

is calculated from: 

Equation 3-8 

 

Where:  

�(0) = initial TSS outflow (kg/(s.ha)) 

��(0) = the TSS flow (kg/s)  

C = proportion of sub-catchment area that is impermeable (-)  

Ar = sub-catchment area (ha). 

 

Attached Pollutants 

The mass of each pollutant attached to the sediment washed into the system is 

calculated using potency factors. The potency factors depend on the rainfall 

intensity. These potency factors (Kpn) relate surface mass of sediment to surface 

mass of pollutant and are calculated using the potency factor equation: 

Equation 3-9 

 

Where:  

Kpn = Potency factor (-) 

IMKP = maximum rainfall intensity over a 5-minute period (mm/hr) 

�(0) =
��(0)

� ∗ ��
 

��� = �1(���� − �2)�3 + �3 
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C1, C2, C3 = coefficients (mm/hr).  

 

Equation 3-9 shows that the more intense the rainfall, the more significant the 

proportion of mineral matter becomes. InfoWorks CS assumes that the potency 

is constant throughout a sub-event. The coefficients used in the potency factor 

equation are entered via a surface pollutant editor related to the type of land use 

being modelled, all surface potency factors are constant throughout a given 

simulation. InfoWorks CS calculates the mass of pollutant attached to the washed 

off sediment using: 

Equation 3-10 

��(�) = ��� ∗ ��(�) 

Where: 

fn(t) = pollutant flow (kg/(s.ha) at time t   

kpn = potency factor (-) 

fm(t) = TSS flow at time t (kg/(s.ha). 

 

During a simulation, the following calculations are made at every timestep for 

surface wash off: 

1. Calculation of the erosion rate (kg/(ha.s)). The erosion equation is written:  

Equation 3-11 

��

��
= −���(�) 

Where:  

M = erosion rate (kg/(ha.s)) 

Ka = rainfall erosion coefficient (-) 

M(t) = erosion rate at time t (kg/(ha)). 

 

On integration of the erosion equation, the erosion rate between time t and time 

t + dt is calculated from: 
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Equation 3-12 

� = �(�) ∗
(1 − �����)

��
 

Where: 

� = erosion rate during timestep (kg/(ha.s)) 

M(t) = erosion rate at time t (kg/(ha.s)) 

Kd = erosion coefficient (-). 

 

2. The surface build-up (kg/ha) between t and time t + dt using Euler 

approximation to the build-up equation is given by: 

Equation 3-13 

� =
(��� − ��) ∗ �(�)��

86400
 

Where: 

� = surface build-up (kg/ha) 

� and �� = build-up coefficients (-) 

�� = linear reservoir coefficient (-) 

M(t) = erosion rate at time t (kg/(ha.s)) 

86400 (seconds in 24 hours). 

 

3. Calculation of the residual surface mass (kg/ha) for use at the next time 

step using: 

Equation 3-14 

�(� + ��) = �(�)������ + � 

M(t) = erosion rate at time t (kg/(ha.s)) 
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Ka = rainfall erosion coefficient (-) 

� = surface build-up (kg/s). 

 

4. Calculation of the TSS outflow per active surface unit. The expression for 

TSS outflow is obtained by substituting the reservoir equation Me = Kf(t) 

into the continuity equation:  

Equation 3-15 

���

��
= � − �(�) 

Where: 

Me = the mass in solution per unit area (kg/ha)  

E = erosion rate (kg/(ha.s)) 

f(t) = TSS flow per unit of active surface at time t (kg/(s.ha)). 

 

By integration, the TSS outflow per active surface unit is written: 

Equation 3-16 

�(� + ��) = �(�)�
���

� + �1 − �
���

� � + (1 − ������)�(�)/�� 

Where: 

f(t) = TSS flow per unit of active surface (kg/(s.ha)) 

k = linear reservoir coefficient (-) 

ka = rainfall erosion coefficient (-) 

M(t) = the mass of surface-deposit pollution (kg/ha). 

 

5. Calculate TSS outflow per sub-catchment:  

Equation 3-17 

��(�) = � ∗ �� ∗ �(�) 



85 

 

Where:  

��(�) = TSS outflow per sub-catchment at time t (kg/(s.ha)) 

C = the proportion of sub-catchment area that is impermeable (-) 

Ar = the sub-catchment area (ha) 

f(t) = TSS flow per unit of active surface at time t (kg/(s.ha)). 

 

The pollutant outflow per sub-catchment can thus be calculated by: 

Equation 3-18 

��(�) = ��� ∗ � ∗ �� ∗ �(�) 

Where:  

Fn(t) = the attached pollutant flow (kg/s) 

kpn = potency factor (-) 

C = the proportion of sub-catchment area that is impermeable (-) 

Ar = the sub-catchment area (ha) 

f(t) = TSS flow per unit of active surface at time t (kg/(s.ha)). 

 

Gully Pot Flushing 

The Gully Pot model within InfoWorks CS describes the method for calculating 

the amount of dissolved pollutant removed from each gully pot at each timestep 

during a rainfall event. The Gully Pot model represents the amount of dissolved 

pollutant washed into the system from the gully pots by runoff from the road 

surface. The model uses the runoff value calculated by the hydraulic engine for 

Runoff Surface 1 defined in the Land Use Definition. By convention, Runoff 

Surface 1 is the road surface. The underlying assumption is even mixing of the 

pollutant mass in the gully-pot and resulting from surface wash-off, the resulting 

pollutant flow depends on the inflow from the runoff module: 

Equation 3-19 

�� = ��(� + ��) ∗ �� + ���(�) 

Where: 
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Pn = total pollutant mass (kg) 

Fn(t + dt) = dissolved pollutant inflow (kg/s) 

dt = timestep (s) 

PGn(t) = pollutant in gully at time t (kg). 

 

Equation 3-20 

��(� + ��) =
�(� + ��)

(�(� + ��) +
��

��
)

∗
��

��
 

Where:  

Fn(t + dt) = dissolved pollutant inflow (kg/s) 

Q (t + dt) = runoff from road surface at time t (m3/s) 

Pn = total pollutant mass (kg) 

dt = timestep (s) 

��= volume of gully (m3). 

Equation 3-21 

���(� + ��) = �� − ��(� + ��) ∗ �� 

Where: 

PGn(t + dt) = pollutant in gully at timestep (kg) 

Pn = total pollutant mass (kg) 

dt = timestep (s) 

Fn(t + dt) = dissolved pollutant inflow (kg/s). 

Note in current model no dissolved pollutant enters the gully pot from the road surface 
therefore Fn(t + dt) input to the Pn equation is always zero.  

 

In the current model, no dissolved pollutants enter the gully pot from the road 

surface, therefore Fn(t+dt) input to the Pn equation is always zero. 

Initial values for sediment mass on the catchment surface can be set by the user 

or default values provided by InfoWorks CS. Users can model the build-up of 

sediment during the dry spell prior to a simulation, once the simulation starts, 
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alternating dry weather periods and spells of rainfall can be utilised, during dry 

weather, build-up of sediment and pollutants continues, during a storm, sediment 

and pollutants enter the drainage network, build-up continues during storms. 

Conduit Model 

The conduit model is used to calculate the transport of suspended sediment and 

dissolved pollutant, and the erosion and deposition of sediment, in conduits. The 

transport process and the sediment erosion and deposition process are solved 

separately within each time step. 

As with the hydraulic conduit model, a conduit is represented as a conceptual link 

of defined length between two nodes in the network. Control structures are 

treated as links of zero length in which no erosion or deposition takes place, It is 

assumed that:  

 The flow is one-dimensional in the conduit;  

 The concentration of any suspended sediment and dissolved pollutant is 

fully mixed across the section of the conduit;  

 The suspended sediment and dissolved pollutants are transported along 

the conduit with the local mean velocity of the flow;  

 Dispersion of the suspended sediment and dissolved pollutant along the 

conduit is negligible; 

 Erosion of sediment from the bed is instantaneous;  

 Deposition of suspended sediment depends on a settling velocity 

calculation; and, 

 Deposition of suspended sediment does not affect the hydraulic 

calculations. 

Transport 

The equation describing the transport of the suspended sediment and the 

dissolved pollutant is based on conservation of mass. With the assumptions listed 

above, this leads to the one-dimensional advection equation as described in, for 

example, Cunge J A et al (1980). It is written: 
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Equation 3-22 

��

��
+ �

��

��
= 0 

Where:  

c = concentration (kg/m3) 

u = the flow velocity (m/s) (obtained from the hydraulic simulation)  

t = time (s)  

x = the spatial co-ordinate (m). 

 

The carrying capacity of the flow is calculated using one of the three 

erosion/deposition models available in InfoWorks CS (Ackers and White, 1973; 

Zug et al., 1998; Bouteligier, Vaes and Berlamont, 2002). The advection equation 

is solved in each conduit by the Holly-Preissmann scheme (Holly F.M. & 

Preissmann A., 1977)  

Sediment Erosion and Deposition 

InfoWorks CS supports three different models for calculating erosion and 

deposition in pipes. These models are: 

 The Ackers White Model ((Ackers and White, 1973) 

 The Velikanov Model (Zug et al., 1998) 

 The KUL Model (Bouteligier, Vaes and Berlamont, 2002) 

The following assumptions and limitations apply to erosion and deposition of 

sediment: 

 suspended sediment is assumed to be well mixed; 

 erosion of suspended sediment is instantaneous; 

 deposition is based on settling velocity; 

 cohesive forces are ignored; and, 

 no deposition is allowed to occur if the total sediment depth (active plus 

passive layer) is greater than a user defined percentage (up to 80%) of 

pipe depth.  
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Sediment 

In InfoWorks CS, sediment in pipes is treated differently by the hydraulic model 

and the water quality model. InfoWorks CS models two different layers of 

sediment in pipes in a drainage system. 

The two sediment layers are: 

 Passive Layer - the passive layer is fixed throughout a simulation.  

 Active Layer - sediment from the active layer can be eroded, transported, 

and deposited during a water quality simulation  

If the sum of the passive and active layers is greater than 80% of the conduit 

height, no more deposition of the active layer can occur. 

InfoWorks CS provides the option of feeding back changes in the depth of the 

active layer during a water quality run to the hydraulic simulation engine, so 

changes in the sediment depth affect the hydraulic calculations. Alternatively, 

these changes can be ignored and only use the passive layer used for hydraulic 

calculations.  

If the active layer for hydraulic runs is not included in calculation, InfoWorks CS 

recommends the use of a lower value for maximum sediment depth (10%) to stop 

the sediment depth recognised by the hydraulic model becoming significantly 

different from that used by the water quality model. 

Passive Layer 

The passive layer of sediment is considered to be fixed and remains unchanged 

during any simulation. It effectively acts as a constriction on the pipe. The depth 

of the passive layer is set using the sediment depth field for each conduit. 

Alternatively, users can define a set of pipe sediment data and include it in a run. 

If you define pipe sediment data and include it in a run, the pipe sediment data 

overrides values in the Sediment Depth field. Pipe sediment data is most 

commonly used to adjust the passive layer, and so places restrictions on the 

maximum depth of the active layer during water quality simulations, thus pipe 

sediment data can only be used in a water quality simulation. 
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Active Layer 

The active layer is made up of mobile sediment that can be eroded, transported, 

and deposited during a simulation. The active layer is made up of one or two 

sediment fractions that can have different characteristics. These sediments are 

referred to as Sediment Fraction 1 (SF1) and Sediment Fraction 2 (SF2). Each 

sediment fraction is defined by two parameters: 

 d50 - the average sediment particle size (default value 0.04mm); and,  

 Specific gravity - the gravity of the sediment fraction (default value 1.7).  

These parameters can be user specified in the surface pollutant editor; if left 

unchanged, the aforementioned defaults are used in water quality simulations.  

The maximum depth for the Active Layer is calculated as the maximum sediment 

depth less the depth of the passive layer. Depths of the Passive Layer can be 

altered to the maximum depth of the Active Layer. This is achieved by setting new 

values for the sediment depth field for each conduit. A more practical alternative 

is to define a set of pipe sediment data and include it in a run. The pipe sediment 

data will then override values in the sediment depth field. If the depth of the 

passive layer is equal to or greater than the maximum sediment depth, there will 

be no sediment in the active layer. 

Ackers White Model 

This section describes the Ackers White algorithms available for calculating the 

erosion and deposition of sediment in pipes. The algorithm is based on the 

Ackers-White theory (Ackers and White, 1973). 

The erosion and deposition calculations are made at the end of every water 

quality timestep after the advection equations have been solved. The algorithm 

is as follows: 

1. At each computational point along each pipe, a non-dimensional carrying 

capacity (Cv) is calculated that represents the maximum concentration of 

a given sediment fraction that can be held within the flow. The equation 

used to calculate Cv is written:  
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Equation 3-23 

�� = � �
���

�
�

�

�
���

�
�

�

��
�

�
�

��(� − 1)�
− ���

� �
���

�
�

�

�

�

 

Where: 

Cv = non-dimensional carrying capacity (-) 

We = the effective bed width (m) 

� = hydraulic radius of flow (m) 

� = cross sectional area of the flow (m2) 

��� = average sediment particle size (m) 

u = flow velocity (m/s) 

� = acceleration due to gravity (m/s2) 

s = specific gravity of sediment particles (-) 

�� = the composite friction factor, calculated using the Colebrook-White formula as 
described in Voogt, van Rijn and van den Berg, (1991) 

 �, �, �, �, �, �, �, �, = coefficients dependent on the dimensionless grain size ���. 

 

Equation 3-24 

��� = ��� �
�(� − 1)

��
�

�
�

 

Where:  

Dgr = grain size (-) 

d50 = the average sediment particle size (m) 

� = the kinematic viscosity of water (m2/s) 

g = the acceleration due to gravity (m/s2)  

s = the specific gravity of the sediment fraction (-). 

2. The non-dimensional carrying capacity number is converted to a maximum 

concentration by: 
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Equation 3-25 

���� = ���� 

Where: 

Cmax = maximum carrying concentration (kg/m3) 

Cv = non-dimensional carrying capacity (-) 

� = density of fluid (kg/m3) 

s = the specific gravity of the sediment fraction (-). 

 

3. If the actual concentration is greater than Cmax then the excess sediment 

is deposited. If the actual concentration is less than Cmax the bed is eroded 

until either Cmax = Cactual or all the bed has been eroded. Erosion is 

assumed to occur instantaneously while the rate of deposition is a function 

of the sediment settling velocity.  

4. All flow concentrations and bed masses are updated before the sediment 

is advected at the next timestep. 

The Ackers White model has been utilised throughout this study; thus, full 

description has been provided, alternatively, the Velikanov and Zug Model can 

be used to calculate erosion and deposition in pipes. The Velikanov model 

determines two concentrations (Cmin and Cmax). If the flow concentration is below 

Cmin then erosion occurs to achieve Cmin if possible. If the flow concentration is 

above Cmax then deposition occurs to achieve Cmax if possible. If the flow 

concentration is between Cmin and Cmax then no erosion or deposition occurs. The 

KUL model was developed at the Katholieke Universiteit Leuven in Belgium, the 

model determines two shear critical stress values (tau critical deposition and tau 

critical erosion). If the shear stress is below tau critical deposition, then deposition 

occurs. If the shear stress is above tau critical erosion, then erosion occurs. If the 

shear stress is between tau critical deposition and tau critical erosion, then no 

erosion or deposition occurs. The rate of deposition or erosion depends on shear 

stress. All erosion and deposition calculations are made at the end of every water 

quality timestep after the advection equations have been solved. 

The four catchment models as represented in the InfoWorks CS software are 

presented in Figure 3-3, Figure 3-4, Figure 3-5 and, Figure 3-6, the CSO spill 
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data used in this study was collected in CSO conduits highlighted in red, these 

spill pipes can be seen to correspond with the CSO’s in Figure 3-2. 

 

Figure 3-3 Ashton-Under-Lyne InfoWorks CS sewer network model 

(Catchment A) – CSO spill pipes monitored 3, 4, 5 and 7 are highlighted in 

red 
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Figure 3-4 Dukinfield InfoWorks CS sewer network model (Catchment B) – 

CSO spill pipes monitored 1, 2, 6, 8 and 9 are highlighted in red. 
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Figure 3-5 Hyde InfoWorks CS sewer network model (Catchment B) – CSO 

spill pipes monitored 10, 11, 12, 13 and 14 are highlighted in red. 

. 
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Figure 3-6 Denton InfoWorks CS sewer network model (Catchment D) – 

CSO spill pipes monitored 15, 16, 17 and 18 are highlighted in red. 

3.2.3 River Model 

The DUFLOW model was used to model the river Tame in the integrated model 

(IHE Delft, 1995). It is a network model in which the rivers and their main 

tributaries are represented by a network of branches and nodes. The branches 

represent individual stream sections while the nodes represent confluences, 

bifurcations, inflow locations or other locations where model results are required.  

The DUFLOW model is a computer package for simulating one-dimensional 

unsteady flow, it utilises the 1D Advection Diffusion Equation to describe the 

concentration of quality parameters as a function of time and space. The 

hydraulic model within DUFLOW can be directly coupled with one of two pre-

defined water-quality models EUTROF1 and EUTROF2. EUTROF1 model is a 

predefined eutrophication model which describes the cycling and transformation 

of water quality parameters without considering interaction between the water 

column and channel sediment. It is based on the EUTRO4 model from WASP4 

developed by the U.S. EPA (Ambrose et al. 1988). For the TAME Integrated 

catchment modelling study, EUTROF1, was used to simulate water quality in the 
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river systems within the river Tame. Water quality constituents that can be 

simulated in EUTROF1 are dissolved oxygen (DO), biochemical oxygen demand 

(BOD), algal biomass, components of the nitrogen cycle (organic nitrogen, 

ammonia, nitrate), components of the phosphorous cycle (organic and inorganic 

phosphorous), and suspended solids. Only BOD, COD and TSS water quality 

variables were simulated in this study. A schematic representation of the river 

Tame represented in the DUFLOW model is shown in Figure 3-7.  

 

Figure 3-7 River TAME and respective inputs represented in DUFLOW 

modelling software 

3.2.4 Water Quality Monitoring 

To assess the impact of the 18 CSO’s highlighted by the EA as ‘unsatisfactory’ 

on the River Tame, water quality monitoring campaign was conducted over a 

period of two months within the catchment. The monitoring campaign was carried 

out by consultant contractors Montgomery-Watson-Herza (MWH) in conjunction 

with the EA. MWH were selected from the United Utilities approved contractors 

list; a list of contractors whose work meets the necessary criteria to be classified 

as adhering to ‘best industry practice’ by Unities Utilities and the EA. Whilst 
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information on the monitoring campaigns structure is presented, due to the 

monitoring campaign being carried before this study, limited detailed information 

regarding the sampling methodology is available, however, it is assumed that due 

to the campaign being carried out under the authority of the EA, all ‘best practice’ 

sampling procedures in conjunction with those expressed in the WaPUG (1998a) 

guidelines have been adhered to; location of samplers, transportation of samples, 

laboratory testing and statistical analysis. Subsequently, it is assumed that the 

resulting data generated from the monitoring campaign is of sufficient accuracy 

to be used in this study. 

Water quality loggers were placed in the continuation pipes of the ‘unsatisfactory’ 

CSO’s within each sewer catchment and at 6 in-river locations previously 

highlighted as ‘sensitive’ to intermittent discharges by the EA (Figure 3-8). Further 

to this, in order to confirm the sensitivity of the river to intermittent discharges, the 

dynamic pollutant descriptions of BOD and NH4 river model inputs (InfoWorks CS 

outputs for rainfall event 2) were replaced with EMC’s in the typical range 

expected from that of extremely dilute sewage to crude sewage (Table 3-3). 

Table 3-3 EMC input concentration for river sensitivity analysis 

 EMC Sewer model output 

Model Input Reference Number BOD (mg/l) NH4 (mg/l) 

1 8.75 1.1 

2 17.5 2.3 

3 35.4 4.6 

4 70.9 9.3 

5 140 18.7 

6 280 37.5 

7 560 75 
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Figure 3-8 shows the river models response to the 8 EMC inputs and the 

observed values recorded at river monitoring location 2, it was determined that 

the river was sensitive to intermittent discharges at all six of the locations 

highlighted by the EA, thus it is hypothesised that any changes to the description 

of water quality outputs from the sewer model (CSO spill event description) for 

use as inputs to the river model, would be reflected in the modelled 

concentrations at these locations.  

 

Figure 3-8 River model response to varying EMC inputs and observed 

BOD at river monitoring station 2. 

Data Collection 

Loggers were remotely triggered to take samples of intermittent discharges 

during spill events. Water quality measurements following two rainfall events are 

presented in this work. During each rainfall event a different number of spills were 

recorded at each CSO. The data collection exercise captured time series 

concentration data of BOD, NH4 and TSS every 15 minutes during each event. 

Time series rainfall data (recorded in mm every 2 minutes for the duration of each 

rainfall event) was collected via tipping bucket rain gauges (see Figure 3-2 for 

location). Rain gauge data was used as inputs to each sub-catchment’s hydraulic 

sewer model, which was then run to determine the start/end time, volume and 

duration of CSO spills within the study. Table 3-4 presents sub-catchment 

averaged rainfall characteristics for the two rainfall events. 
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Table 3-4 Summary characteristics of rainfall event 

Sub-

Catchment 

Average 

Intensity 

(mm/hr) 

Peak 

intensity 

(mm/hr) 

Depth 

(mm) 

Duration 

(hrs) 

Rainfall 

Event 

Rainfall 

Event 

Rainfall 

Event 

Rainfall 

Event 

1 2 1 2 1 2 1 2 

A 1.2 2.9 42.8 10.5 19.4 7.4 15.8 2.5 

B 1.5 2.3 11.3 7.8 15.9 5.8 10.5 2.5 

C 1.1 2.0 17.7 5.4 23.3 2.2 21.4 1.1 

D 1.1 2.9 13.2 12.0 30.3 6.4 2.5 2.2 

 

3.2 Analysis: Calculation of EMCs and Variance for each 

Spill Event  

For the two rainfall events with corresponding water quality data, a total of 29 

independent spill events were recorded at monitored CSOs within the catchment. 

Mean concentrations of BOD, NH4 and TSS were calculated over each of the spill 

events recorded by the water quality loggers; this was defined as the ‘optimum’ 

EMC for each spill event. The difference between the optimum EMC value and 

the actual concentration parameter entering the receiving water will vary over 

each spill event due to the temporal variability of the rainfall event and pollutant 

transport processes. For each event (i) of length (n) the mean variation VE, 

between the optimum EMC and the measured data (BOD, NH4 and TSS) for each 

spill event is defined as: 
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Equation 3-26 

 

�� = �����,� − �����
�

���

���

  

Where: 

VE = mean variation between the EMC for event i and the measured data for each 

event i (mg/l) 

Mi,t = the measured parameter during spill event i at time t (mg/l) 

EMCi = EMC for the spill event i (mg/l). 

 

To identify the relative scale of this variance it is directly compared to the variation 

between predictions using the pre-calibrated InfoWorks CS sewer model used 

within the ICM study and the measured data for each spill event. This mean 

variance, Vi for each event (i) is defined as: 

Equation 3-27 

 

�� = �����,� − ��,��
�

���

���

   

Where: 

Vi = Minimum achievable variance between observed and predicted quality parameters 

for each event (mg/l) 

Pit = the predicted value of the concentration parameter during event I at time t (mg/l) 

Mi,t = the measured parameter during spill event i at time t (mg/l). 

An example of the variance analysis is presented in Figure 3-9. 
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Figure 3-9 BOD measured spill event with calculated optimum EMC and 

prediction using calibrated InfoWorks CS/ICM model. Recorded spill 

details: date 16/01/2012, spill time 07:30 – 15:05, catchment D, rainfall 

event 1, CSO 16. 

In the original ICM river impact study carried out by United Utilities, InfoWorks CS 

predictions of spill concentrations were used as inputs to the river impact model. 

To assess the relative significance of using mean concentrations within an ICM 

study, these InfoWorks CS predictions were replaced with optimum EMC values 

(for monitored CSOs) and sub-catchment event mean concentrations (for 

unmonitored CSOs), all other input parameters were unaltered. For both the 

original ICM study and the mean concentration methodology the variance 

between the modelled and observed water quality parameters at the six water 

quality sampling locations was quantified using Equation 3-27 for each spill event. 

An example of this analysis is presented in Figure 3-10. 

 

Figure 3-10 BOD measured within receiving waters after a spill event 

compared with associated ICM predictions using both mean concentration 
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and InfoWorks CS. Recorded spill details: date 16/01/2012, time 07:30 - 

18:31, catchment C, rainfall event 1, CSO 12. 

3.3 Results  

3.3.1 Sewer Quality Results 

Tables 3-4, 3-5 and 3-6 show the calculated optimum EMCs as well as mean 

variances, VE and Vi calculated using Equation 3-26 and Equation 3-27 for each 

monitored CSO spill event. 

Table 3-5 Characteristics of each spill event and measured variances for 

BOD 

Sub-

catchment 

Rainfall 

Event 
CSO 

Spill 

Duration 

(hh:mm) 

Optimum 

EMC 

Deterministic 

Variance (Vi) 

EMC 

Variance, 

(VE) 

BOD 

(mg/l) 

BOD 

(mg/l) 

BOD 

(mg/l) 

A 1 7 00:50 25.3 34.4 4.0 

A 1 4 04:00 23.4 16.6 7.3 

A 1 3 03:25 23.2 23.0 10.5 

A 1 5 05:00 41.2 15.4 11.2 

B 1 2 06:46 33.5 87.4 12.5 

B 1 1 07:30 62.3 167.9 14.7 

B 1 9 00:42 13.0 11.6 0.7 

B 1 8 20:39 51.9 13.4 9.7 

B 1 6 01:32 90.3 46.0 18.1 

C 1 10 00:52 20.0 8.1 21.0 
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C 1 13 12:14 5.3 75.5 7.7 

C 1 12 11:01 8.5 8.0 0.7 

C 1 14 02:01 112.5 33.2 14.0 

C 1 11 04:26 83.9 83.0 5.6 

D 1 15 05:55 30.3 13.1 14.1 

D 1 16 07:35 24.6 4.9 6.3 

D 1 17 01:55 30.4 10.6 29.9 

A 2 7 04:05 37.5 7.4 40.7 

A 2 3 01:50 45.0 90.6 52.8 

A 2 5 01:30 101.4 49.1 48.1 

B 2 2 01:27 124.8 3.9 43.7 

B 2 1 01:28 142.5 5.5 40.6 

B 2 6 00:41 100.7 1.4 51.5 

C 2 14 01:22 139.0 116.2 8.5 

C 2 11 02:45 133.0 86.8 35.2 

D 2 15 00:51 152.7 89.1 58.2 

D 2 17 00:50 151.0 201.6 82.4 
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Table 3-6 Characteristics of each spill event and measured variances for 

NH4 

Sub-

catchment 

Rainfall 

Event 
CSO 

Spill 

Duration 

(hh:mm) 

Optimum 

EMC 

Deterministic 

Variance, (Vi) 

EMC 

Variance, (VE) 

NH4 

(mg/l) 

NH4 

(mg/l) 

NH4 

(mg/l) 

A 1 7 00:50 3.7 1.7 1.1 

A 1 4 04:00 4.2 2.1 1.4 

A 1 3 03:25 2.7 2.1 1.1 

A 1 5 05:00 4.6 1.4 1.6 

B 1 2 06:46 1.6 8.1 0.9 

B 1 1 07:30 5.5 6.0 2.0 

B 1 9 00:42 1.9 0.5 0.7 

B 1 8 20:39 7.5 3.9 1.5 

B 1 6 01:32 2.2 0.4 0.6 

C 1 10 00:52 0.9 0.1 0.4 

C 1 13 12:14 0.5 3.5 0.5 

C 1 12 00:29 0.9 0.5 0.3 

C 1 14 02:01 28.8 3.0 4.1 

C 1 11 04:26 9.4 1.6 2.7 

D 1 15 05:55 2.7 0.8 1.1 

D 1 16 13:35 7.2 3.2 2.3 

D 1 17 01:55 2.8 1.0 1.2 
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A 2 7 04:05 6.4 1.1 4.6 

A 2 3 01:50 15.2 3.2 2.4 

A 2 5 01:30 14.0 4.9 9.7 

B 2 2 01:27 15.5 0.7 0.1 

B 2 1 01:28 20.8 0.8 5.3 

B 2 6 00:41 8.0 0.3 1.2 

C 2 14 01:22 15.6 10.2 3.0 

C 2 11 02:45 8.6 3.3 1.6 

D 2 15 00:51 11.1 5.2 2.2 

D 2 17 00:50 14.0 10.2 7.1 

Table 3-7 Characteristics of each spill event and measured variances for 

TSS 

Sub-

catchment 

Rainfall 

Event 
CSO 

Spill 

Duration 

(hh:mm) 

Optimum 

EMC 

Deterministic 

Variance, (Vi) 

EMC 

Variance, (VE) 

TSS 

(mg/l) 

TSS 

(mg/l) 

TSS 

(mg/l) 

A 1 7 00:50 34.6 32.3 6.4 

A 1 4 04:00 41.7 19.1 9.4 

A 1 3 03:25 26.9 29 7.4 

A 1 5 05:00 48.2 18.3 13.4 

B 1 2 06:46 50.4 44.1 14.6 

B 1 1 07:30 72.1 101.2 14.7 
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B 1 9 00:42 19 8.4 3.6 

B 1 8 20:39 84.1 14.6 12.4 

B 1 6 01:32 103.6 33.3 23.4 

C 1 10 00:52 42.3 9 26.7 

C 1 13 12:14 11.2 67 11.7 

C 1 12 00:29 14.6 9.2 2.6 

C 1 14 02:01 162.3 27.4 16.7 

C 1 11 04:26 74.1 79.6 7.4 

D 1 15 03:36 30.4 10.2 11.3 

D 1 16 13:35 44.6 4.2 8.4 

D 1 17 01:55 40.1 11.4 36.5 

A 2 7 04:05 50.3 11.6 42.1 

A 2 3 01:50 62.3 74.6 59.3 

A 2 5 01:30 144.2 44.2 44.8 

B 2 2 01:27 163.3 6.2 42.6 

B 2 1 01:28 174.1 7.4 36.7 

B 2 6 00:41 114.3 2.4 53.5 

C 2 14 01:22 140.3 105.7 7.4 

C 2 11 02:45 144.3 77.6 34.2 

D 2 15 00:51 141.3 93.4 62.4 

D 2 17 00:50 172.1 178.6 77.4 
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During event 1, mean optimum EMC’s of 40.0mg/l, 5.1mg/l and 52.9 mg/l were 

observed for BOD, NH4 and TSS respectively. Significantly higher mean EMC’s 

of 112.8mg/l, 12.9mg/l and 130.6 mg/l were observed during event 2. The 

average variance between optimum EMC’s and observed values (VE) across all 

events FOR BOD was 24.1 mg/l, compared to a variance of 48.3mg/l using the 

deterministic model (Vi). The average variance between optimum EMC’s and 

observed values (VE) across all events for NH4 was 2.9 mg/l, compared to a 

variance of 2.2 mg/l using the deterministic model (Vi). The average variance 

between optimum EMC’s and observed values (VE) across all events for TSS was 

41.4 mg/l, compared to a variance of 25.4 mg/l using the deterministic model (Vi). 

Minimum EMC Variance and Rainfall Characteristics 

It is hypothesized that the minimum EMC variance is linked to the nature of the 

rainfall event which caused hydraulic overload of the drainage system. As shorter, 

more intense rainfall events are more temporally and spatially variable, such 

events may cause spills with a greater degree of temporal variation than longer 

more ‘steady’ events. Representation of these events using a mean value may 

therefore cause a higher degree of inherent variance between predicted and 

observed spill characteristics.  

Figures 3-11 and 3-12 show the variance between BOD measured and Optimum 

EMC and NH4 measured and optimum EMC versus the average intensity of the 

rainfall event that caused the associated CSO spill respectively.  

 

Figure 3-11 Minimum variance of EMC (VE) for BOD versus average 

intensity of all rainfall events for all measured data presented in Table 3-5. 
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Figure 3-12 Minimum variance of EMC (VE) for NH4 versus average 

intensity of all rainfall events for all measured data presented in Table 3-6. 

A positive correlation can be seen between the intensity of rainfall events and 

variance between EMC’s for BOD. The trend for NH4 is less clear. 

 3.3.2 River Quality Results  

Tables 3-7, 3-8 and 3-9 present the variance between observed and model 

predicted water quality parameters at each ‘in river’ water quality monitoring 

location. The ‘deterministic’ variance represents the variance between observed 

water quality parameters and the DUFLOW model utilising InfoWorks CS 

dynamic pollutant descriptions as inputs. The ‘Mean’ variance represents the 

variance between observed water quality parameters and the DUFLOW model 

predictions utilising the optimum EMC values presented in section 3.3. Optimum 

EMC values were used in conjunction with hydraulic flows calculated by 

InfoWorks CS for all spills.  
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Table 3-8 In-river variances between observed BOD measurements and 

those predicted by the DUFLOW model using InfoWorks CS 

(deterministic) and optimum EMC values for CSO spills. 

River Monitoring 

Location/Station 

Event 1 Event 2 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

BOD (mg/l) BOD (mg/l) BOD (mg/l) BOD (mg/l) 

1 12.3 11.9 1.5 1.7 

2 13.5 9.9 3.3 2.8 

3 15.9 52.3 4.8 3.6 

4 9.6 6.7 3.1 3.9 

5 3.2 3.3 5.1 13.8 

6 7.9 6.7 2.7 4.1 

Average 

Variance 
10.4 15.1 3.4 5.0 

Table 3-9 In-river variances between observed NH4 measurements and 

those predicted by the DUFLOW model using InfoWorks CS 

(deterministic) and optimum EMC values for CSO spills. 

River Monitoring 

Location/Station 

Event 1 Event 2 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

NH4 (mg/l) NH4 (mg/l) NH4 (mg/l) NH4 (mg/l) 

1 0.12 0.15 0.13 0.13 
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2 0.63 0.68 0.49 0.65 

3 0.72 0.70 0.75 0.79 

4 0.52 0.58 0.61 0.88 

5 0.50 0.44 0.60 1.31 

6 0.43 0.48 4.05 0.71 

Average 

Variance 
0.49 0.51 1.11 0.75 

Table 3-10 In-river variances between observed TSS measurements and 

those predicted by the DUFLOW model using InfoWorks CS 

(deterministic) and optimum EMC values for CSO spills. 

River Monitoring 

Location/Station 

Event 1 Event 2 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

Deterministic 

Input 

Variance 

Mean Input 

Variance 

TSS (mg/l) TSS (mg/l) TSS (mg/l) TSS (mg/l) 

1 20.4 16.8 2.4 2.21 

2 18.4 14.1 5.7 4.7 

3 21.3 55.7 7.4 6.7 

4 14 14.2 3.4 24.4 

5 6.5 6.8 8.9 18.7 

6 12.9 9.4 4.5 5.4 

Average 

Variance 
15.58 19.50 5.38 10.35 
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3.4 Discussion and Conclusions 

In this chapter, the use of a hydrodynamic deterministic sewer model to describe 

CSO spill events resulted in predictions with a greater mean predictive variance 

when compared to optimum EMC’s derived from observed data. Whilst the 

‘optimum’ EMC methodology presented here is not a predictive technique, the 

results indicate there is significant potential to use EMC’s to describe CSO spills 

as an alternative to deterministic models if accurate methods for EMC prediction 

are used. Whilst optimum EMC’s vary significantly across different sub-

catchments, no notable relationship between EMC’s or deterministic model 

variances and catchment characteristics were observed.  

Analysis of storm events suggests that the potential accuracy of EMC’s is linked 

to properties of rainfall events; shorter duration, high intensity events being 

inherently more variable with time. This trend is more evident for BOD and TSS 

than NH4, it cannot be said with certainty, but this could be linked to the portions 

of total TSS and BOD which are derived from the catchment surface, as NH4 is 

more commonly associated with wastewater flows (Brombach, et al, 2005). It is 

known that storm water TSS concentration values are inherently linked to a 

rainfall events ability to mobilise particles on the catchment surface (Brodie & 

Roswell, 2006), thus an increased intensity could cause increased variation of 

TSS values around that of a mean representative value for a given spill event. 

Large fluctuations of TSS around a representative mean value could also be 

linked to a phenomenon described as the ‘first flush’, whereby significantly large 

portions of total TSS and BOD loads in a given spill event are witnessed at the 

beginning of a storm event (Bach et al., 2010a). It is recognized that a more 

detailed analysis and further datasets are required to adequately explore the 

relationship between the temporal and spatial variation of rainfall events and 

water quality characteristics of spill events.  

Analysis of the river quality datasets show that for this catchment the variance 

between the observed and predicted water quality parameters is of a similar scale 

when both the mean concentrations and deterministic models are used to 

describe the CSO spill events. It is apparent that the observed predictive variance 

is higher during the more intense rainfall event. In nearly all six river locations the 

difference in variance between both methods is relatively small when compared 
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to the actual observed variance; this would suggest that for this catchment the 

most significant source of variance between the ICM methodology and observed 

values is derived from the river impact model itself, and that the different methods 

of pollutant description (dynamic and EMC) are of less significance. This could 

be either due to model structure or that the adopted calibration procedure is not 

robust. This would also suggest that there is significant potential to use simpler 

mean concentrations within ICM’s as there would appear to be no significant loss 

of accuracy in final receiving water quality predictions. 

Chapter 1 introduced the concept of intermittent urban discharges; chapter 2 

gave an overview of the Integrated Catchment Modelling framework ultimately 

highlighting how the use of simple water quality description techniques could aid 

the application of the ICM process. The chapter related the variance between 

EMC and ‘dynamic’ observed values to rainfall characteristics and shows that 

these variances, whilst noticeable, may not be significant in contrast to observed 

variances when using industry standard deterministic sewer and river water 

quality models. Hence it is evaluated that there is significant potential for more 

widespread use of EMCs within integrated modelling approaches if a ‘reliable’ 

EMC prediction methods can be found.  

Research groups have previously developed and successfully verified the use of 

EMC models on catchments where they were originally formulated (Dembélé et 

al., 2011); however, with water quality data often limited, the transferability of 

these models to catchment other than where they were developed is limited within 

the literature (Dotto, 2010). Whilst this chapter showed the potential for the use 

of the EMC pollutant description technique within the ICM approach, in order to 

further understand this potential and with the key aim of this thesis being to 

develop a new simplified modelling technique, the underlying science behind 

simple EMC models and their transferability to new catchments needs 

investigation, chapter 4 seeks to address this need.
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Chapter 4. Evaluating the performance of EMC 

models using case study data 

The aim of this chapter is to robustly test a previously published EMC 

methodology presented within the literature to evaluate the transferability of this 

‘simple’ approach to water quality modelling, and to subsequently provide 

recommendations to aid the development of a new novel EMC water quality 

model in chapter 5. A version of this chapter was presented at the 10th 

International Urban Drainage Modelling Conference (Norris et al., 2015). 

With the overarching aim of this work being to ‘develop’ a new novel water quality 

model, the UK water quality data set presented in chapter 3 was deemed 

unsuitable for model development due to an insufficient number of water quality 

events available for study (Fletcher and Deletic 2008). For this reason, a new 

comprehensive TSS storm water quality data set provided by Monash University 

has been presented in this chapter. For this reason, at this point in the thesis, the 

scope of the work is narrowed to the development of a novel TSS EMC storm 

water model, thus an in-depth description of the key processes affecting 

variations in TSS storm water quality; build-up and wash-off, and further literature 

on the development of simple storm water TSS EMC modelling techniques has 

been presented. Due to data gathering limitations, BOD and COD models have 

not been investigated further in this work. 

4.1 Background to storm water modelling of total suspended 

solids  

A number of research groups have suggested that suspended solids are the most 

appropriate indicator of urban runoff pollution levels within stormwater flows, It 

has been suggested that many other problematic pollutants become attached to 

the finer fractions of TSS, thus when evaluating urban runoff pollution, the 

prediction of TSS concentrations or loads is considered the most important 

requirement for any storm water model (Deletic, 1997). As an alternative to 

‘complex’ deterministic quality models, several research groups have developed 

simple regression-based models to predict TSS Event Mean Concentrations 

(EMC) based on catchment type and rainfall event characteristics. Whilst the use 
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of such models to estimate TSS pollutant concentrations has been achieved with 

mixed success, this success is inherently sensitive to the strength of available 

experimental data that can be used for calibration (Dembélé et al., 2010). It is 

generally agreed that land use has an important impact on TSS concentrations, 

however establishing any explicit relationships which allow transferability of 

default model parameter values across catchments has been achieved with little 

success (Maniquiz et al., 2010). Mitchell 2001 presented average values of storm 

water TSS EMC’s and specific TSS EMC values associated with various land use 

types, these values are presented in Table 4-1 and Table 4-2 respectively. 

Table 4-1 Average Storm water TSS EMC values recorded in urban areas 

(adapted from Mitchell 2001) 

 
Mitchell 

(2001) 

Duncan 

(1999) 

US EPA 

(1983)  

US EPA 

(1999) 

Ellis 

(1989) 

Williamson 

(1991) 

TSS 

EMC 

(mg/l) 

138.9 154 174 78.4 190 170 

Table 4-2 Storm water TSS EMC values for given land uses (adapted from 

Mitchell 2001) 

 
Land Use 

Category 
Mean 

1st 

Quartile 

3rd 

Quartile 

TSS 

EMC 

(mg/l) 

Urban 

Open 
126 57 280 

Developed 77 32 190 

Urban 

Roads 
191 101 361 

The values show that TSS EMC’s can vary significantly across catchments and 

between different areas of land use, section 4.1 presents information within the 

literature concerning the processes that influence these variations. 
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4.2.1 Stormwater Processes influencing TSS pollutant concentrations 

This section looks further into the literature in an attempt to further understand 

the processes which cause variations in TSS concentrations; four key processes 

influence these variations (Murphy, Cochrane and O’Sullivan, 2015): 

 Atmospheric deposition of pollutants on the catchment surface. 

 Build-up of pollutants on the catchment surface. 

 Wash-off of pollutants on the catchment surface. 

 Transportation of pollutants washed off within the UDS. 

Whilst the atmospheric deposition and build-up of pollutants are explicitly 

independent processes, in the context of study, they are difficult to separate due 

to the quantity of pollutant build-up being directly influenced by atmospheric 

deposition (Egodawatta, Ziyath and Goonetilleke, 2013). It is also considered 

very difficult to explicitly separate the wash of pollutants from the catchment 

surface and their transportation to receiving water bodies; this is due to the spatial 

resolution of monitoring campaign water quality loggers, normally located at the 

downstream discharge point of catchments under study (Bertrand-Krajewski, 

Chebbo and Saget, 1998). For the remainder of this work, the first two processes; 

Atmospheric deposition and build-up of pollutants, and the latter two processes; 

wash-off and transportation of pollutants are described together as ‘build-up’ and 

‘wash-off’ respectively. 

Pollutant Build-Up 

Sartor (1974) presented significant work into the build-up of pollutants by studying 

their behavior on various types of urban street surfaces. The study suggested 

that pollutant build up is greater in industrial areas due to the poor condition of 

vehicular surfaces and in areas of road sweeping, it was the first study to also 

present the link between pollutants and the finer fraction of solids in build-up 

material. The relationship between antecedent dry weather periods (ADWP) 

defined as the time period preceding the rainfall event/wash off event under 

analysis) and pollutant build-up is still not clear; however, it is assumed and 

accepted that build-up is a function of ADWP (Deletic, Maksimovic and Ivetic, 

1997).  
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Modelling descriptions of the pollutant build-up process generally focus on the 

processes of pollutant accumulation following a rainfall event and the deposition 

of materials from traffic, via wind and numerous other sources (Deletic, 

Maksimovic and Ivetic, 1997). Grottker (1987) suggested that material is 

deposited at an increased rate during the first 24 hours following a rainfall event, 

whilst many authors have agreed with this hypothesis, due to the variations and 

lack of confidence in results, no specific technique has been agreed to describe 

pollutant build-up. It has been suggested that the two processes; Atmospheric 

deposition of pollutants on the catchment surface and the build-up of pollutants 

on the catchment surface reach a state of equilibrium after approximately 9 days 

(Pal, Wallis and Arthur, 2011).  

Descriptions of pollutant accumulation used in build-up models vary significantly; 

linear, exponential and constant relationships have all been used to describe the 

relationship between accumulated pollutant load on the urban surface and a 

rainfall events preceding ADWP. In the most basic sense, these descriptions 

assume that the pollutant load accumulated starts at zero after a rainfall event; 

they thus lack the ability to account for accumulation of loads and cases where 

the entire pollutant load is not removed from the urban surface during the 

previous rainfall event. Ball et al., (1998) suggested that power functions were 

the most reliable mathematical description of pollutant build-up, however, Sartor 

and Boyds original description of pollutant build-up still remains the most common 

descriptor used in modelling practice. Table 4-3 shows some of the typical 

mathematical equations used to model pollutant build-up within the literature. 

Table 4-3 Pollutant build-up equations 

Equation Definition References 

� = � +  
�

�
 

� = � + � ln � 

� = ����� 

� = min (�, ���) 

� = Antecedent dry period 

(days) 

� = Accumulated pollutant 

(g/m2) 

�, �, and � = Calibration 

parameters 

(Ball, Jenks and Aubourg, 

1998) 

(Egodawatta, Thomas and 

Goonetilleke, 2007) 

(Chow, Yusop and Abustan, 

2015) 
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Whilst no mathematical description of pollutant build-up has been universally 

agreed within the literature, it is acknowledged that build-up does not infinitely 

increase with ADWP and at some point in time following a rainfall event, the 

amount of pollutant load available to be washed off increases no further (Deletic, 

Maksimovic and Ivetic, 1997). It has been suggested that pollutants initially 

accumulate at a high rate and that the rate of accumulation is followed by a 

decreased accumulation rate and asymptotes to a threshold level (Goonetilleke, 

Egodawatta and Kitchen, 2009). Hatt et al., (2004) suggested that the rate of 

increase is specific to each individual catchment. In many build-up models, such 

as the stormwater management model (SWMM), the user is offered a choice of 

different build-up functions (US EPA). Vaze et al., (2003) concluded that the 

amount of pollutant surface load does not automatically translate to the amount 

of pollutant washed off the urban surface, and that the proportion of pollutant 

washed off is significantly influenced by other factors. 

Vaze et al., (2003) investigated the type of material which accumulates on urban 

surfaces, they suggested that two different types of particle make up the surface 

load; free and fixed. The work suggested that free loads (loads made up of 

particles ‘easily’ removable) decrease after a rainfall event and that the 

consistency between daily accumulation levels was low. It was also suggested 

that total build up, even of the free load particle category is not reduced to zero 

following a rainfall event. This work suggested that a rainfall event of sufficiently 

high intensity would be necessary to provide enough energy for both types of 

particles to be completely removed. The work further proposed that these ‘free’ 

types of particle were replaced quite easily by the movement of particles in wind 

and deposition from vehicular sources. The MOSQITO model was developed 

based around this theory; separating accumulated fractions into varying cohesive 

strengths, however its application is limited due its extra step of complexity and 

lack of proven increased performance when compared to models that do not 

include this particle cohesive theory (Crobeddu and Bennis, 2011). 

Pollutant Wash-off 

The removal and transportation of accumulated pollutants into stormwater runoff 

is known as wash-off. Two main physical processes govern the variations in 

pollutant wash-off loads and concentrations; the removal of particulates from the 
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urban surface due to rainfall drops impact energy and the removal of particulates 

via shear stress provided by overland flow (Egodawatta, Thomas and 

Goonetilleke, 2007). 

Numerous researchers have highlighted the significance of rainfall characteristics 

on pollutant wash-off (Brodie and Rosewell, 2007; Egodawatta, Thomas and 

Goonetilleke, 2007). It has been suggested that increases in wash-off TSS 

concentrations are related to the intensity of the rainfall event in which the wash-

off occurred (Brodie and Dunn, 2010). It is widely accepted that the more intense 

a rainfall event, the more energy can be supplied on impact to the accumulated 

layers of pollutant, thus allowing greater quantities of wash-off to become 

mobilised and entrained within stormwater flow (Van Dijk et al., 2002). Two 

commonly used equations presented by Sartor and Boyd (1974) and Egodawatta 

et al., (2007) to describe pollutant wash-off respectively are: 

Equation 4-1 

�� =  ��(1 − �����) 

Where: 

�t = transported sediment load after time t (g/m2) 

�� = Initial load of material on surface (g/m2) 

� = Calibration parameter (mm-1)   

� = Rainfall Intensity (mm/hr) 

� = time (hr). 

  

and: 

Equation 4-2 

�� =
�

��
= ��(1 − �����) 

Where: 

�� = Fraction of wash-off (-) 

�= Weight of material mobilized (g/m2) 

�� = Initial mass of material on surface (g/m2) 
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�� = Capacity factor (-) 

� = Calibration parameter (mm-1)   

� = Rainfall Intensity (mm/hr) 

� = time (hr). 

 

Egodawatta et al., (2007) suggested that the amount of pollutant washed off is 

related to the intensity of rainfall and the accumulated pollutants characteristics. 

Brodie and Rosewell (2007) suggested that the kinetic energy provided by 

raindrops is a dominant guiding process in the prediction of pollutant wash-off. 

Studies on catchment in the United States by Jewell and Adrian (1982) suggested 

that when trying to link various rainfall and catchment characteristics to event 

loads and fluxes, not one set of variables was found to consistently outperform 

another, indicating that not one set of catchment or rainfall variables is better at 

predicting pollutant wash-off.  

Deletic et al., 1997 used Ordinary Least Squares (OLS) regression and achieved 

R-squared values of 0.65 when comparing observed TSS loads with predicted 

values by creating a model which included particle detachment from raindrop 

energy and total shear stress. Irish et al., 1998 built upon this work, adapting the 

method to predict highway runoff, the work suggested that TSS is affected more 

by ADWP than other pollutants.  

A ‘first-flush’ is a term used to describe a phenomenon when significantly large 

portions of the total pollutant load derived from a rainfall event are temporally 

distributed in the early phases of the rainfall event under analysis (Bertrand-

Krajewski et al., 1998). The presence and definition of this phenomenon argued 

by various authors with some studies failing to confirm its existence (Deletic 

1998). 

4.2.2 Simple Approaches to Stormwater TSS modelling 

Due to the stochastic nature and inter-process variability of build-up and wash-

off processes, building models that can accurately and consistently predict storm 

water quality remains a difficult task. Many authors have citied that the problem 

be so site specific and stochastic in nature, that no one technique can be ‘best’ 

for every modelling problem, subsequently, a large number of mathematical 
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techniques with varying degrees of complexity are available to storm water quality 

modellers (Zhang et al., 2015). In line with a key philosophy often associated with 

modelling problems, Franciscan friar William of Ockham suggested that when two 

competing theories make the same prediction, the simpler one is the most 

appropriate (Sorensen, 2011). In line with this paradigm and considering the 

conclusions of chapter 3, a review of ‘simple’ methodologies capable of producing 

Event Mean Concentrations of TSS has been presented in this section.  

Event based EMC models are statistical models which can be used to describe 

the generation of pollutants. The models describe pollutants in terms of loads or 

concentrations, which can then be multiplied by the discharging/event volume of 

a system or catchment to determine total event loads (Charbeneau and Barrett, 

1998). The use of purely statistical EMC modelling approach has generally been 

accepted as a tool suitable for longer term impact assessment (Charbeneau and 

Barrett, 1998) the wider implementation of this approach is hindered by the 

significant variation in EMC concentrations across urban catchments, even those 

with similar land and hydrological characteristics (Chiew and McMahon, 1999). 

In further detail, whilst these simple model functions may adequately describe 

build-up and wash-off processes, catchment specific calibration of parameter 

values is necessary, subsequently, collection of calibration data sets can incur 

significant further costs during the calibration procedure (Dotto et al., 2011). 

Whilst physically descriptive complex models have larger numbers of parameters 

that need calibrating due to the many different processes represented in these 

models, in contrast, simple models require more temporarily distributed data, but 

for the calibration of fewer parameters (Kleidorfer et al., 2009).  

Probabilistic EMC models such as MUSIC are often more sophisticated models 

that stochastically generate EMC’s concentrations based on predefined pollutant 

distributions, these models ignore build up and wash off processes, ultimately 

predicting event loads concentrations by deriving statistical relationships between 

observed values and catchment characteristics (Dotto et al., 2011). A move from 

simply statistical EMC techniques towards EMC techniques which have some 

method of physical description has seen the development of conceptual-empirical 

regression-based EMC models. During the 1980’s, a national stormwater quality 

monitoring study in France allowed for the examination of statistical relationships 

between TSS and storm characteristic variables. In the two urban catchments 
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under study, maximum rainfall intensity was used to successfully describe the 

variance in EMC TSS values; R2 values of approximately 0.9 and 0.6 were 

reported (Desbordes and Servat, 1983). The study concluded that when using 

maximum rainfall intensity and runoff volume as variables, errors of 30% and 10% 

were calculated for individual event EMC’s and annual totals respectively.  

In the United States, the Nationwide Urban Runoff Program (US EPA, 1983) 

measured urban runoff water quality in 28 urban catchments. Driver and Tasker 

(1988) and used regression analysis to conclude that rainfall duration and 

maximum rainfall intensity were the most important variables to explain the 

variance in TSS EMC’s. The event variable ADWP has been implemented to 

improve these regression models in urban catchments (Driver and Troutman, 

1989). 

In Australia, a review of urban stormwater processes by Duncan (1995) 

incorporated the wash-off potential energy of rainfall events into a simple power 

equation to predict event loads, Vaze and Chiew (2003) used regression analysis 

to examine the use of various rainfall characteristic within this model in 

comparison with a widely used deterministically process based model (SWMM) 

(Huber and Dickinson 1998), the work suggested that when using rainfall intensity 

as a variable within the power equation, the predictive capabilities of both the 

simple calibrated power equation and the process model were similar.  

Dotto et al., (2010) examined the performance of three empirical continuous 

concentration models widely adopted in practise; STORM (USACE, 1977), 

SWMM (Rossman, 2010) and P8-UCM (Palmstrom & Walker, 1990). This work 

suggested that whilst models which used ‘routed’ variables were more accurate 

than those which did not, the temporal accuracy gained by this extra step of 

complexity was not likely to outweigh the extra calibration costs, furthermore, it 

argued that to develop efficient pollution generation models, future research 

efforts should be directed toward the use of models which use explanatory factors 

such as ADWP and rainfall event variables.  

The literature reviewed showed that in the context of storm water quality, 

accounting for build-up and wash-off processes appears fundamental when trying 

to predict variations in TSS concentrations, and that rainfall event characteristics, 

in particular, the variable rainfall intensity is a key driver in TSS pollutant 
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generation due to the role it plays in the wash-off process. It is therefore 

hypothesized that any description of stormwater TSS should account for both 

build-up and wash-off processes; by utilizing a conceptual relationship between 

TSS EMC’s and some form of rainfall event characteristic. The literature also 

showed that storm water models have been developed which accurately predict 

catchment EMC’s, their application remains limited to the catchments in which 

they were developed, thus their transferability to new catchments remains 

unknown. To address this unknown, the remainder of this chapter uses case 

study data to evaluate the transferability of the EMC model presented in Dembélé 

et al., (2011) to catchments other than where it was originally developed. 

4.3 Transferability of EMC TSS storm water quality models 

The key objective of this work was to develop a novel water quality model, one 

which could improve the application of the integrated modelling methodology, in 

turn helping water utilities reduce the negative impact of urban discharges. To 

develop a model with the aforementioned characteristics, a data set containing 

catchment storm water outfall TSS water quality measurements and respective 

rainfall event characteristics was required. Whilst monitoring campaigns 

designed to provide data for model development have been deployed at various 

spatial and temporal resolutions, in accordance with (Leecaster, Schiff and 

Tiefenthaler, 2002), it was determined that the UK water quality data set used in 

chapter 3 (data collected for 5 WQ events over four different catchments) was not 

adequate for model development. In respect of this issue and the thesis 

objectives, following oral presentation of the work described in chapter 3, a 

comprehensive water quality data set was obtained courtesy of a research 

placement with Professor Ana Deletic at the Water Sensitive Urban Design group 

at Monash University. 

Dembélé et al. (2011) published an empirical model capable of predicting 

stormwater EMC TSS, the model linked catchment TSS EMC’s to explanatory 

rainfall characteristics; rainfall depth (DURA) and ADWP. The model was derived 

and calibrated for two catchments in Lyon, France: Chassieu and Ecully (Table 

4-4). Calibration and verification of this model was judged to be a success; mean 

values of calibration uncertainties less than 20%, low variabilities in model 

parameters and model verification efficiency coefficients of approximately 0.5 (J. 
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E. Nash and Sutcliffe, 1970). The calibration and verification of the model was 

only conducted using 21 events on two catchments, thus to assess the 

transferability of this model, it has been applied to new comprehensive water 

quality dataset. 

Table 4-4 Characteristics of catchments used in Dembélé et al., (2011) 

Site Primary Land Use 
Area 

(ha) 

Total 

Impervious 

Fraction 

Ecully Residential 245 0.42 

Chassieu Industrial 185 0.75 

The extensive high-resolution water quality data set was obtained courtesy of 

Monash University. The Monash monitoring program was performed to take 

representative samples of urban runoff during storm water events across several 

catchments with varying land use characteristics. The program was unique to 

previous large-scale monitoring studies in that it measured very short-term rainfall 

intervals with accompanying water quality data. A total of 237 rainfall events and 

corresponding storm water quality data were monitored across 6 urban 

catchments in Melbourne Australia (Table 4-5). Further to the information 

presented in this thesis, details of the monitoring campaign can be found in 

Mitchell et al., (2008). 

Table 4-5 Catchment characteristics and number of events monitored for 

each catchment. 

Catchment 

Reference 

Primary Land Use Area 

(ha) 

Total 

Impervious 

Fraction 

No. of events 

monitored 

GR Industrial 28.2 0.8 60 

RICH High Density Residential 89.1 0.74 

 

54 
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RCW Medium Density 

Residential 

105.7 0.51 34 

SHEP Medium Density 

Residential 

38 0.45 20 

NW Low Density 10.5 0.2 55 

ER Mixed residential and 

commercial 

186 0.46 22 

The following section provides information regarding the original monitoring 

program and preliminary data analysis. It should be noted that further to the 

receipt of the raw data (excluding the definition of rainfall event start and end 

times) all data analysis was carried out independent to those presented in 

McCarthy et al., (2008); Mitchell et al., (2008) and Dotto et al., (2011). 

4.4 Overview of Monitoring Campaign 

Rainfall was measured using onsite tipping buckets with measurement volumes 

of 0.2mm at a temporal resolution of 1 minute; these were positioned as near to 

the centroid of each catchment as possible. Flow rates were recorded by Sigma 

900 auto-samplers located in the respective storm water collection systems pipe 

outlet, flow rates were measured every 1 minute. After each rainfall event, 

monitors were inspected and cleaned to ensure water quality sampling was 

carried out effectively. Discrete pollutant sampling was carried out for Total 

Suspended Solids (TSS), Total nitrogen (TN), Total Phosphorus (TP) and E.coli. 

TSS water quality data and respective rainfall event data are utilized in this work. 

Wet weather samples were collected via autosampler connected to a flowmeter 

at each catchment respectively; the samplers were triggered to sample after a 

‘significant’ increase in flow was detected by the flow meter (McCarthy et al., 

2008). The samplers were programmed to sample for a 1 in 3 month return period 

event, this period of time was estimated using the MUSIC software package 

developed at Monash University (CRCCH 2003). The following sampling regime 

presented in Fletcher and Deletic (2008) was adhered to: 
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 Of 24 bottles, the first 10 were sampled uniformly to account for the initial 

30% of flow volume; 

 10 bottles were used for the next 40% of flow volume; and 

 the Remaining 4 bottles for the last 30% of the event. 

The method was refined during the sampling period once expected volumes 

respective to each catchment were established. The specific regime was adopted 

as a trade-off between good capture of rising limb pollutant concentrations and 

the total capture of large events. 

The land use of each catchment was established according to Melbourne’s 

Department of Sustainability and Environment planning scheme zonings 

classifications (Melbourne’s Department of Sustainability and Environment, 

2005). The impervious fraction of each catchment was established via the use of 

aerial orthophotos and site inspection. This information was used to create an 

area based weighted average to estimate the total fraction of impervious area. 

One-meter topographic contours were utilized to estimate the average slope of 

all catchments. To ensure that ‘actual’ rainfall events were recorded, average run-

off coefficients (total runoff volume divided by rainfall depth multiplied by area) 

were calculated for each catchment, if extreme values were recorded (those 

significantly greater than 1), these data were excluded from the data set.  

For an event to start, over 0.2mm of rainfall needed to be recorded at the tipping 

gauge. An event was finished if no rainfall was detected for four hours. The ADWP 

for each rainfall event was defined as the total time in days between the previous 

and selected rainfall event, ADWP was extracted straight from continuous daily 

rainfall records recorded by Melbourne Water, these records were provided by 

Monash University. The data were synthesized in preparation for model 

calibration of the model presented in Dembélé et al., (2011); for each event, total 

suspended solids event mean concentration (TSS EMC), antecedent dry weather 

period (ADWP) and rainfall duration (DURA) were defined as follows; 

 Total Suspended Solids event mean concentration (TSS EMC) (mg/l); 

mathematically defined as the average of the TSS samples recorded 

between the specified event start and end time. 

 Antecedent dry weather period (ADWP) (days); extracted from continuous 

rainfall records, the time between the previous and selected rainfall event. 
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 Rainfall Duration (DURA) (mins); the total time between the 

commencement and last recorded tip of the respective catchment 

rainguage. 

 Rainfall Depth (DEPT) (mm); sum of all recorded tips during from the first 

recorded and last recorded tip throughout the duration of the selected 

rainfall event. 

 Average rainfall intensity (AGI5) (mm/hr); division of total rainfall depth by 

the rainfall duration. 

 Initial average ten-minute rainfall intensity (IT10) (mm/hr); Initial average 

rainfall intensity recorded from the first ten-minute period of each rainfall 

event. 

The variables DURA and AGI5 were not required for testing of the model but are 

later utilised in chapter 5; for simplicity, they have presented in section 4.4.1. 

4.4.1 Univariate Analysis of Monitoring Campaign Data 

Univariate analysis was performed on all variables to provide understanding of 

the data. The parameters Mean (��), standard deviation (SD) and coefficient of 

variation (CV) were selected to describe the given data sets. The mean of a given 

data set is its most representative single value, calculated using Equation 4-3: 

Equation 4-3 

�� =
1

�
� ��

�

���

 

Where:  

for each observation xi, 

 �� = the mean of the observed variable (mg/l) 

 n = the number of observations in the data set.  

 

The standard deviation (SD) of a given data set is a single value which represents 

the dispersion of data points around the mean. The more concentrated a given 

data set is around the mean, the smaller the SD value will be. The SD was 

calculated using Equation 4-4: 



128 

 

Equation 4-4 

�� = � �
(�� − ��)�

�

�

���

 

Where for each observation xi, 

SD = standard deviation (mg/l) 

 �� = the mean of the observed variable (mg/l) 

n = the number of observations in the data set.  

 

A summary of the univariate statistics derived for each catchments TSS EMC’s 

is presented in Table 4-6, corresponding quartile box plots of catchment TSS 

EMC’s are shown in Figure 4-1 and the respective quartile statistics used to 

create these box plots in Table 4-7. 

Table 4-6 Summary of catchment TSS EMC’s  

 Catchments 

Catchments ER GR NW RCW RICH SHEP Mean 

TSS 

EMC 

(mg/l) 

Mean 60.8 59 99 78 97 62 76 

SD 

(mg/l) 
56.5 40.4 72.8 74.1 82.9 61.9 64.8 
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Figure 4-1 Box plots of catchment TSS EMC’s 

Table 4-7 Box plot statistics of catchment TSS EMC’s 

 
ER GR NW RCW RICH SHEP 

Upper 

(mg/l) 
149.3 130.7 244 161.7 213 119.7 

75th 

Percentile 

(mg/l) 

79.3 73.9 131.8 85 117.7 74.7 

Median 

(mg/l) 
40.4 50.9 76.1 53.4 59.6 34.4 

25th 

Percentile 

(mg/l) 

29.3 31.2 47.8 33.4 48.6 23.94 

Minimum 

(mg/l) 
13.4 13.3 21.9 17.7 19.5 16.7 

Maximum 

(mg/l) 
393.8 183.1 392 418.5 388.6 230 

Table 4-6 shows the mean and standard deviation of TSS EMC’s for each 

respective catchment. Whilst the mean across all catchment seems relatively 

stable, in the range (59-99 mg/l), Figure 4-1 and Table 4-7 show that event EMC’s 
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vary significantly with minimum and maximum EMC values recorded during 

certain rainfall events of 13.3 and 418.5 mg/l respectively, SD values of 40.4 to 

82.9 confirm this observation. These large variations in EMC’s show the potential 

need for some physical/process description when attempting to predict EMC’s, 

and the dangers of using simple site mean concentration models that are based 

on recorded values of EMC’s alone. 

In the context of catchment land use characteristics, the RICH and NW 

catchments showed the largest variations (SD values) in TSS EMC’s; 82.91 and 

72.8 mg/l respectively. Both the NW and RICH catchments are residential areas, 

comparing SD values from these catchments to those observed in the industrial 

catchment GR; 40.4 mg/l, it could suggest that large variations in TSS EMC’s 

could be linked to the inherent uncertainty more commonly associated with 

human behaviours which influence pollutant build-up (traffic patterns, 

construction activities). Conversely, ‘medium density residential’ catchments 

showed low variance of TSS EMC’s around each catchment’s respective mean, 

thus is it concluded that in this study, the results of the water quality monitoring 

campaign would suggest that it is difficult to describe variations in TSS EMC’s 

with respect to land use characteristics. A summary of respective rainfall event 

statistics for each catchment is presented in Table 4-8. 

Table 4-8 Summary of univariate statistics for catchment rainfall events 

 Statistic ER GR NW RCW RICH SHEP Mean 

No Events - 24 60 55 34 54 20 - 

Antecedent 

Dry Weather 

Period 

(Days) 

 

Mean 2.9 3.13 3.05 2.28 2.64 3.15 2.9 

Range 
0.64-

7.25 

0.09-

23.06 

0.1-

46.0 

0.08-

16.8 

0.40-

28.2 

0.50-

13.3 
- 

SD 2.0 4.3 7 3.7 4.5 3.3 4.1 
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CV 0.71 1.37 2.31 1.64 1.29 1.10 1.40 

Rainfall 

Duration 

(mins) 

 

Mean 374 285 324 349 281 425 339 

Range 
56-

1351 

16-

987 

140-

1256 

12-

1326 

14-

1012 

18-

1409 
- 

SD 288 209 300 294 238 400 288 

CV 0.77 0.97 0.93 0.85 0.83 0.94 0.88 

 

Rainfall 

Depth (mm) 

 

Mean 9.29 7.43 10.11 6.58 7.33 10.1 8.5 

Range 
1 – 

23.4 

0.8 – 

38.6 

0.2 – 

33.1 

0.6 – 

20.8 

0.80-

39.2 

0.6-

35.4 
- 

SD 7.8 6.1 7.8 4.9 6.8 24 9.6 

CV 0.84 0.82 0.78 0.78 0.93 1.61 0.96 

Average 

Rainfall 

Intensity 

(mm/hr) 

Mean 2.1 2.5 3.2 2.2 3.6 3.1 2.6 

Range 
0.5–

12.5 

0.4-

30.1 

0.29-

19.9 

0.1-

16 

0.4-

28 

0.5-

13.3 
- 

SD 2.4 6.1 7.8 3.9 4.2 3.5 4.8 

CV (%) 1.17 0.82 0.78 0.78 1.59 1.10 1.04 
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Table 4-7, shows statistical information on the rainfall events responsible for TSS 

EMC’s. The largest SD values of the variable ADWP were associated with the 

rainfall events recorded on the RICH and NW catchments; 4.5 and 7 days 

respectively. Furthermore, the variable ‘rainfall intensity’ associated with RICH 

and NW had the largest mean and largest variation; mean intensity of 3.6 and 3.2 

mm/hr, with SD’s of 4.2 and 7.8 mm/hr respectively. Whilst it is difficult to draw 

any specific conclusions regarding this univariate analysis, these initial results 

tend toward the hypothesis that the TSS EMC values recorded during this 

monitoring campaign are driven by rainfall characteristics rather than land use 

characteristics. The variable driving variations in TSS EMC are considered further 

in chapter 5. 

Huber (1986), Duncan (1999) and Francey et al., (2004) suggested that 

catchment storm water TSS EMC event data follows a log-normal distribution; the 

Lilliefors test was used to test this hypothesis on the Melbourne data set within 

the software package Matlab version R2013a (www.mathworks.com). The 

Lilliefors test applies a test decision for the null hypothesis that the data comes 

from a distribution in the normal family (thus the data was first transformed), 

against the alternative that it does not; rejected at the 5% significance level. 

Following transformation of EMC TSS concentrations for all catchments, each 

catchments data set met the null hypothesis (Table 4-9), confirming a non-normal 

distribution. 

Table 4-9 Lilliefors test statistics applied to Melbourne catchment EMC 

data  

Catchment 

EMC’s 

Null 

Hypothesis 1 

= Reject 

P-Value KSTAT Critical Value 

ER 0 0.50 0.10 0.15 

GR 0 0.50 0.06 0.11 

NW 0 0.50 0.07 0.12 

RCW 0 0.36 0.11 0.15 
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RICH 0 0.04 0.13 0.13 

SHEP 0 0.06 0.19 0.19 

Catchments event TSS EMC’s were sorted in ascending order and fitted with an 

exponential trend line, ‘closeness of fit’ to this trend (indicated by the OLS 

‘closeness of fit’ indicator R2), Figure 4-2 presents all derived catchment TSS 

EMC’s. 

 

Figure 4-2 Event TSS EMC’s sorted in ascending order and plotted for 

each catchment, R2 value shows least squares closeness of fit to 

exponential trend line.  

4.5 Calibration of TSS EMC model 

The TSS EMC model presented in Dembélé et al. (2011) describes two distinct 

behaviours during a rainfall event; in the first part, the model assumes a 

logarithmic increase of TSS EMCs, with rainfall depth which becoming the limiting 

factor, defined by a threshold value λ. In the second declining part, TSS EMCs 

decrease with the rainfall depth as the accumulated mass is the limiting factor 

(Equation 4-3). 
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Equation 4-5 

����

��
=

��

�
(� ≤ �) +

��

��
(� > �) 

Where:  

EMC = TSS EMC (mg/l)  

X = Rainfall Depth (mm) * Antecedent dry weather period (days)  

λ  =  threshold value of X separating the two behaviors of EMC values 

b1  and b3 = model calibration parameters (-). 

 

The final equation of the model is obtained by analytical integration of Equation 

4-5: 

Equation 4-6 

��� = [(�� ln(�) + ��)(� ≤ �)] + ��
��

�
+ ��� (� > �)�  

Where: 

EMC = TSS EMC (mg/l)  

X = Rainfall Depth (mm) * Antecedent dry weather period (days)  

λ = the threshold value of X separating the two behaviors of EMC values 

b1 , b2, b4 and b3 = model calibration parameters (-). 

 

Calibration of the model is carried out in two steps, firstly a specific algorithm is 

applied to calculate the value of λ, and secondly, the Levenberg-Marquardt 

algorithm (damped least-squares fitting minimisation technique used to solve 

non-linear least squares problems) was used to estimate b1, b2, b3 and b4. Further 

information on model formulation both the specific calibration and Levenberg-

Marquardt algorithm is described in Dembélé et al. (2011). The observed data 

sets for each catchment were used to calibrate and validate each catchment, data 

were split randomly 80:20 for calibration and validation respectively (Figure 4-3 

and Figure 4-4 respectively). 
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Figure 4-3 Observed data used for calibration of model and validation in 

NW catchment. 

 

Figure 4-4 Observed data used for calibration of model and validation in 

SHEP catchment. 

4.6 Discussion and Conclusions 

Calibration of parameters and validation were evaluated by way of R2 co-

efficients of determination and the Nash-Sutcliffe efficiency criterion E (Nash and 

Sutcliffe (1970). The Nash-Sutcliffe coefficient compares measured values (in this 
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application TSS EMC’s) with those predicted by a model; the coefficient E is 

calculated as: 

Equation 4-7 

� = 1 −
∑ (��

��� − ��
�����)��

���

∑ (��
��� − ���)�

���

�
[−∞|1] 

Where: 

For each observation ��, 

� = Nash-Sutcliffe co-efficient 

 ���� = Observed TSS EMC value for n data records (mg/l) 

������= Simulated TSS EMC for n data records (mg/l) 

 ���= Mean TSS EMC of observed data records (mg/l). 

 

The Nash-Sutcliffe coefficient gives an indication of the model predictive 

accuracy, with an efficiency of 0 indicating that the model predictions are as 

accurate as the mean of the observed data, E values in the negative range show 

that the model has less predictive power than the mean of the observed values. 

The closer the model efficient value E is to 1, the more accuracy and thus 

predictive power the model has at reproducing the observed values (Nash and 

Sutcliffe, 1970). Calibrated parameter values and calculated Nash-Sutcliffe 

coefficients for each catchment are presented in Table 4-10. 
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Table 4-10 Parameters values and Nash Sutcliffe coefficients obtained 

from model calibration. 

Parameters and 

Nash Coefficients 

NW GR SHEP RICH RD ER 

b1 32.98 15.1 36.91 97.12 69.24 52.16 

b2 160.8 65.17 76 205.1 -61.21 155.5 

b3 3158 2001.6 1103 266.9 565 222.7 

b4 99.71 32.44 56.03 74.55 18.75 43.54 

λ 2.4 4.8 3.2 1.76 36.1 0.92 

R2 0.68 0.55 0.44 0.68 0.44 0.42 

E -5.05 -5.54 0.79 0.57 0.4 0.73 

All six catchments were calibrated; R2 values in the range of 0.44-0.68. Validation 

was considered successful in all but two catchments, Nash-Sutcliffe coefficients 

for successfully validated catchments in the range 0.4-0.79, this would represent 

a slight drop in predictive capacity when compared to the original study where all 

Nash-Sutcliffe coefficients were reported to be above 0.7. However, as reported 

by Dotto et al. (2010), when tested, many previously derived regression-based 

models have negative Nash-Sutcliffe values, thus the model was judged to be 

transferable to these catchments, this concurs with Dotto et al. (2010) hypothesis 

that efficient TSS pollutant models should account for explanatory factors such 

as antecedent climatic variables and rainfall characteristics. 

The study shows that a previously published semi-empirical TSS EMC model can 

be used to predict TSS EMC’s in catchments other than where it was first derived, 

strengthening the common hypothesis found in the literature that simplified water 

quality techniques should include some explanatory variables which account for 

build-up and wash off processes.
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Chapter 5. Development of a new stochastic 

TSS EMC model  

The principle objective of this thesis is to develop a new simple water quality 

model to be used to improve the ICM approach. Previous chapters have shown 

that any such model: 

 Should give quantification of uncertainty associated with its predictions 

(Chapter 2). 

 Can be used to predict event mean concentrations (Chapter 3). 

 Use explanatory rainfall variables to give some account of key processes 

(build-up and wash-off) (Chapter 4). 

 Should be transferable between catchments other than where It was 

developed (Chapter 4). 

This aim of this chapter is to develop a new stochastic model capable of predicting 

storm water TSS EMC’s, the chapter seeks to: 

1. Identify the explanatory variables which ‘best’ describe variations in TSS 

EMC’s. 

2. Describe the development of a new simple TSS EMC model, the format 

of which incorporates build-up and wash-off processes by utilizing the 

explanatory variables identified in (1). 

3. Investigate the use of different mathematical functions which ‘best’ 

describe the build-up and wash-off functions within the model. 

4. Present a method of model calibration and validation to establish optimal 

parameter values and provide information on the model’s predictive 

capabilities. 

5. Present and develop an uncertainty technique which can be used within 

the model to quantity the uncertainty associated with its predictions. 

5.1 Selection of model variables  

As discussed in chapter 4, rainfall characteristics can be used as explanatory 

variables to describe variations in storm water quality. As part of the storm water 
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quality monitoring campaign described in chapter 4, corresponding rainfall tipping 

bucket event data were analysed to enable the characterisation of rainfall 

variables for each of the 237 events monitored. The following rainfall event 

variables were derived from the data; antecedent dry weather period (ADWP); 

event duration (DURA); rainfall depth (DEPT); average rainfall intensity (AGI5); 

initial average ten-minute rainfall intensity (IT10) and corresponding TSS EMC’s 

concentrations for each event. 

With no clear academic consensus on which rainfall characteristics are ‘best’ for 

explaining variations in catchment TSS EMC’s, and many possible model input 

variables (six), to find the rainfall variables which ‘best’ described variations in 

TSS EMC, multi-variate data analysis was required. Various multivariate analysis 

techniques such as principle component analysis (PCA), Cluster analysis and 

Discriminant analysis are described in (Miller and Miller, 2005). Due to the 

implementation of PCA for multivariate analysis in water quality studies within the 

literature, it was selected for multivariate analysis in this work (Herngren, 

Goonetilleke and Ayoko, 2005; Egodawatta, Thomas and Goonetilleke, 2009; 

Abdul Zali, Retnam and Juahir, 2011; Mohd Nasir et al., 2011). 

Principle component analysis (PCA) is a multivariate analysis technique often 

used for investigating the relationships between a multivariate data set. In this 

application PCA analysis was utilised to investigate the relationship between 

rainfall event characteristics and corresponding event TSS EMC’s. The technique 

developed in 1901 by Karl Pearson can be used to show relationships between 

variables within a given data set via informative display of statistical pattern 

recognition. More than one variable in a data set may be measuring the same 

driving principle that governs the behaviours of the observational variable under 

investigation, thus groups of variables may ‘move’ together; showing correlations 

with one another but describing the variance of the observation variable under 

investigation with varying ability. By creating new principle components (PC’s), 

linearly uncorrelated variables and groups of variables are replaced by a single 

new variable, thus the analytical problem is simplified. The newly created PC’s 

are created orthogonal to one another, thus there is no redundant information, 

these new PC’s form an orthogonal basis for the space of the data. 
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The first principal component is a single axis in space. When projecting each 

observation on this axis, the resulting values form a new variable, the variance of 

this variable is the maximum among all possible choices of the first axis. The 

second principal component is another axis in space, perpendicular to the first. 

Projecting the observations on this axis generates another new variable. The 

variance of this variable is the maximum among all possible choices of this 

second axis, the full set of principal components is as large as the original set of 

variables. It is commonplace for the sum of the variances of the first few principal 

components to describe most of the variance, these PC’s can be subsequently 

analysed to determine which predictor variables or combinations of best describe 

the variance in the observational variable, further information on the technique 

can be found in (Li and Barrett, 2008). 

A data matrix (237 x 6) containing all rainfall characteristic variables and 

corresponding TSS EMC’s described in chapter 4 was created for PCA. As 

variables were in different units and were of varying magnitude, data were 

subjected to mean centring (subtraction of the mean value from each element) 

and standardization (individual values being divided by the standard deviation of 

the total variable data set) prior to PCA analysis, this pre-treatment is a common 

weighting technique employed to ensure all variables have equal weight in the 

analysis (Settle et al., 2007). 

Six new PC’s were created from the original variables, the most significant of 

these can be identfied by way of a scree plot, in which the variation of eigenvalues 

associated with each PC are plotted in descending order, thus showing what 

proportion of the variance in TSS EMC’s each new PC describes (Miller and 

Miller, 2005) (Figure 5-1). 
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Figure 5-1 Scree plot showing what proportion of TSSEMC’s variance is 

described by each PC. 

PC1 accounts for nearly 40% of the total variance in TSS EMC’s, PC1 and PC2 

explain approximaltely 60% of the total variance combined, these two PC’s were 

selected for further examination via the presentaiton of their variables through 

PCA bi-blots. Figure 5-2 shows the resulting PCA biplot for PC1 and PC2.  

The bi-plot of the PC’s show the orthonormal principle component coefficients for 

each variable and the respective principle component scores for each PC. In the 

bi-plots, vectors of each respective variable are represented by the blue lines, the 

length of each vector and the angles between them are indications of the 

correlation strength between variables; small angles indicating strong 

correlations, obtuse or greater angles indicate weak correlations between 

variables (Miller and Miller, 2005).  
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 Figure 5-2 PCA bi-plot showing relationships between variables 

In Figure 5-2, the angle between vectors TSS EMC and AGI5 is small, suggesting 

that ‘average rainfall intensity’ is correlated with the most standardized variation 

in TSS EMC concentrations, it is noted that the variables rainfall duration (DURA), 

antecedent dry weather period (ADWP) and rainfall depth (DEPT) show 

correlation with one another, as do average rainfall intensity (AGI5) and initial 

rainfall intensity (IT10), this would be expected as these variables are derived 

from the same rainfall events. ADWP is a relatively independent parameter in 

comparison to the five other rainfall variables, ADWP does show some correlation 

with TSS EMC’s, the angle between these two vectors approximated to be 45 

degrees.  

The two key storm water processes influencing variations in TSS EMC’s are 

build-up and wash-off. Multi-variate data analysis was performed to identify which 

variables could be used in a simple model to describe these processes. Due to 

antecedent dry weather period ADWP being the only measured variable 

associated with the build-up phenomena, this variable was selected for use in the 

model development. Of the multiple variables analysed to predict wash-off, 

rainfall intensity (AGI5) described the most variation in TSS EMC’s and was there 

for selected for further use in the model development. 
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5.2 Model Development 

Following the principal component analysis, it was hypothesised that the variation 

in TSS EMC’s could be best described by the antecedent dry weather period 

preceding the event under analyses and average rainfall intensity, the two 

variables give some conceptual representation of build-up and wash-off 

processes respectively, such that TSS EMC’s could be predicted be functions of 

these two variables. 

The aim of the model is to predict average pollutant concentrations over a 

specified period to enable the prediction of TSS EMC’s. Pollutant-wash off is most 

commonly replicated in storm water modelling approaches as an exponential 

decay equation (Egodawatta and Goonetilleke, 2008). The exponential decay 

equation assumes that storm water pollutant concentrations decrease 

exponentially with volume.  

Various derivations of this equation have been utilized in well-known storm-water 

models such as SWMM (Tsihrintzis and Hamid, 1998). The equation has also 

been used to successfully develop a probabilistic storm water quality model for 

assessment of the ‘first-flush’ and in the development of stochastic approach to 

predicting storm water run-off during urban discharges (Bach et al., 2010b and 

Daly et al., 2014). Due to the previous successful application of this equation, it 

was selected for use in this work. 

Considering the exponential wash-off equation in the temporal domain at the 

resolution of a single rainfall event, it has also been said that the pollutant 

concentration C decreases exponentially with respect to time (Daly et al., 2014). 

Equation 5-1 

��

��
= −�� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 
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This first order differential equation (Equation 5-1) can be analytically solved to 

provide further understanding of its behaviour. Equation 5-1 and Equation 5-2 

suggest that the rate of change in pollutant concentration with respect to time is 

dependent on the amount of concentration currently available to be washed from 

the catchment surface. Equation 5-1 can be rearranged in terms of the decay 

constant k by dividing both sides by C as follows: 

Equation 5-2 

1

�

��

��
= −� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 

 

Multiplying both sides of Equation 5-2 by dt yields: 

Equation 5-3 

1

�
 �� =  −� �� 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 

 

Taking the integral of Equation 5-3: 

Equation 5-4 

�
1

�
 �� =

�

�

� −� ��
�

�

 

Where: 

C = Pollutant concentration (mg/l)  

k = the decay constant (s-1). 
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It can be said that: 

Equation 5-5 

��� + �� = −� � + �� 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

�� and �� = arbitrary constants (-). 

 

Collecting the arbitrary constants �� and �� in Equation 5-5 gives: 

Equation 5-6 

��� = −� � + �� 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

By raising both sides of Equation 5-6 to the base e, pollutant concentration C can 

be given as a function of time: 

Equation 5-7 

�(�� �) = �(������) 

Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-8 

� = ������� 
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Where: 

C = pollutant concentration (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-9 

� =  ������� 

Where: 

C = pollutant concentration (-)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 

 

Equation 5-9 

�(�) = ������ 

Where: 

C = pollutant concentration at time t (mg/l)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l).  

 

If the concentration of a pollutant equals zero at time = 0, substituting back into 

Equation 5-9, it can be said that 

Equation 5-10 

�(0) = �� = ����� � =  ���� = �� 

C = pollutant concentration (mg/l) at time (0)  

k = the decay constant (s-1)  

 �� = arbitrary constant (mg/l). 
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Thus, we are left with the following expression (Equation 5-11), which is the 

‘closed-form’ analytical solution of Equation 5-2: 

Equation 5-11 

�(�) = ������ 

Where: 

C(t) = the concentration of pollutant at time t (mg/l) 

�� = the initial concentration at time (0) (mg/l)  

k = the decay coefficient (s-1). 

 

With the primary output of this work being the development of a simplistic model, 

a model capable of producing EMC’s, Equation 5-11 has been expressed 

graphically to show how it can be used to derive the TSS EMC (�����) of a wash-

off event of duration T (Figure 5-3). 

 

Figure 5-3 graphical event-based representation of the exponential wash-

off equation 

Where:  

T = duration of the wash-off event (seconds) 

It can be shown that for any event, the areas Ao and AI (annotated in Figure 5-3) 

are considered equal, thus 

Equation 5-12 
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����� =
��

�
 

Where: 

����� = TSS EMC (mg/l) 

�� =   Total mass over duration of event (mg s l-1) 

T = duration of the wash-off event (s). 

By integrating Equation 5-12 between limits set by the start and end times of the 

wash-off event under analysis (between 0 and T), it can be said that: 

Equation 5-13 

�� = �� = � ������

�

�

=
��

−�
���� −

��

−�
���� 

Where: 

�� = TSS EMC at time (0) (mg/l) 

�� = Total mass over duration of event (mg s l-1) 

�� = Total mass over duration of event (mg s l-1) 

T = duration of the wash-off event (s) 

k = the decay coefficient (s-1). 

 

By simplifying equation 5-14 and combining with equation 5-13, it is said that: 

Equation 5-14 

����� =
1

�
 

��

−�
(���� − 1) 

Where: 

����� = TSS EMC (mg/l) 

�� = Initial TSS concentration (mg/l) 

k = the decay coefficient (s-1) 

T = duration of the wash-off event (s). 
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. 

 

�� and k are hypothesized to be functions of the explanatory variables ADWP and 

AGI5 respectively. Following derivation of the model form, the next step in the 

model development process was to investigate the use of different mathematical 

functions for �� and k, utilizing the variables ADWP and AGI5 to account for the 

build-up and wash-off components within the model respectively.  

5.2.1 Model Functions 

For a given catchment, �� and � are assumed to be functions of the explanatory 

variables ADWP and AGI5 respectively, in this section, the water quality data set 

presented in chapter 4 is utilized to explore the different possible mathematical 

representations of these functions. Various regressive power and exponential 

functions have been used to describe pollutant build-up and wash-off loads and 

concentrations within the literature (Driver and Troutman, 1989; Vaze and Chiew, 

2003; Dembélé et al., 2011), these functions involve the use of explanatory 

variables and catchment specific parameter values to estimate storm water loads 

and concentrations. In this work, five possible functions for �� involving use of the 

explanatory variable ADWP and three possible functions for � using the 

explanatory variable AGI5 were selected for investigation within the model 

(Equation 5-14). The functions were classified with an alpha-numeric system to 

aid understanding during the analysis (Table 5-1), a, b, c and, d represent model 

parameter values. 

Table 5-1 Functions selected to describe �� and k 

Function 

classification 

number 

�� Function 

classification 

letter 

� 

1 � ∗ ����� A � ∗ ���5� 

2 � ∗ (1 − �(�����∗�) B � ∗ ��∗���� 

3 � ∗ ����

� + ����
 

C � + (���5 ∗ �) 
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4 � ∗ �� (����) + �  

5 (� ∗ ����)

(1 + (� ∗ ����)
 

With five possible functions for �� (1-5) and three possible functions for k (A-C), 

a total of 15 different possible model formulations were available for trial on each 

catchment data set. Storm water quality event data were split randomly 80:20 for 

calibration and validation respectively, these events were selected at random 

within the mathematical programming software tool MATLAB version R2013a 

(www.mathworks.com). 

5.2.1.1 Development of Calibration Algorithm 

In order to trial the different possible model formulations, a specific calibration 

algorithm was developed in MATLAB, the optimization function ‘fminsearch’ was 

utilized within the algorithm. The optimization function ‘fminsearch’ is a commonly 

used optimization function utilized to find the minimum of an unconstrained 

multivariable function using a derivate-free method, the function was used to 

minimize the root-mean-square error (RMSE) between observed TSS EMC’s 

(Cmeasured) and corresponding model predictions (Cpred) for each event. 

The RMSE is a frequently used measure of the differences between values 

predicted by a model and those observed, the statistical parameter indicates the 

extent to which a model over or under-estimates measured values by aggregating 

the magnitudes of the errors in model prediction over all predictions into a single 

measure of predictive power (Miller and Miller, 2005). The RMSE is calculated as 

follows: 

Equation 5-15 

���� = � �
������ − ����������

�
�

�
�

�

���

 

Where: 

for each data point ��,  

RMSE = root-mean-square error (mg/l) 
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Cpred = TSS EMC (mg/l) predicted by the specific model formulation under analysis 

Cmeasured = observed TSS EMC (mg/l)  

n = number of observations in the data set.  

 

The closer the modelled results are to the observed value, the smaller the RMSE 

value (an RMSE value of 0 representing no error and an exact model prediction 

of the observed data). The algorithm iteratively changed parameter values a,b,c 

and d within the chosen model necessary to minimize the objective function 

(RMSE). For understanding, the specific calibration algorithm steps have been 

summarized: 

1. Input calibration data variables for each catchment as vectors into Matlab 

o  Observed TSS EMC’s (Cmeasured) and corresponding variables; 

DURA, AGI5 and ADWP. 

2. Select functions of �� and k to test within the model; 

3. Set initial parameter values for model functions (a,b,c and d); 

o Various combinations of these values were iteratively trialed within 

the calibration algorithm until the ‘fminsearch’ optimization tool ran 

successfully. If initial parameter values were ‘sufficiently’ incorrect, 

the ‘fminsearch’ optimization tool within MATLAB failed. 

4. Predict TSS EMC (Cpred) of all events in calibration data set with selected 

functions and initial parameters; 

o Yields vector of model predictions (Cpred) based on initial parameter 

set. 

5. Calculate Root Mean Square Error (RMSE) between Cmeasured and Cpred for 

all calibration events; 

o Yields RMSE value for model using initial parameter set.  

6. With vector of observed values Cmeasured fixed, run the optimization function 

‘fminsearch’ to minimize the objective function RMSE by iteratively 

changing the initial parameter set used to yield Cpred in (4);  

o Yields optimal parameters in model for the catchment under 

analysis.  

7. Re-run Cpred using optimal model parameter set and present final RMSE 

values. 
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o Yields final RMSE value representative of how well the optimized 

model predicted observed TSS EMC’s. 

The calibration algorithm was applied to each of the catchments presented in 

chapter 4, optimal parameter values for each possible model formulation and 

associated RMSE values are presented in Table 5-2 to Table 5-7. 

Table 5-2 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for ER catchment (Optimal model formulation 

highlighted in bold). 

Model  Co k a b c d RMSE 

1A � ∗ ����� � ∗ ���5�  21.8 0.71 0.0007 0.5 25.7 

2A 
� ∗ (1

− �(�����∗�)) 
� ∗ ���5�  111 -0.25 0.007 0.007 26.9 

3A 
� ∗ ����

� + ����
 � ∗ ���5�  210 38.83 -0.07 -1.4 26.9 

4A � ∗ ln(����) + � � ∗ ���5�  125.2 2.12 0.072 -1.5 21.7 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5�  56.72 0.031 0.063 -1.4 26.9 

1B � ∗ ����� � ∗ ��∗���� 87 0.46 0.01 -0.001 30.3 

2B 
� ∗ (1

− �(�����∗�)) 
� ∗ ��∗���� 253 -27 0.06 -0.3 27.1 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 436 3.9 0.04 -0.36 27.0 

4B 
� ∗ ��(����)

+ � 
� ∗ ��∗���� 131 1.70 0.04 -0.34 21.1 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 111 0.25 0.04 -0.3 27.1 

1C � ∗ ����� 
� + (���5

∗ �) 
108 0.34 0.0129 -0.0011 30.4 

2C 
� ∗ (1

− �(�����∗�)) 

� + (���5

∗ �) 
944 -0.04 0.012 -0.001 32.3 
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3C 
� ∗ ����

� + ����
 

� + (���5

∗ �) 
212 0.645 0.013 -0.0012 31.0 

4C � ∗ ln(����) + � 
� + (���5

∗ �) 
95 2.3 0.013 -0.0011 29.3 

5C 
� ∗ ����

1 + (� ∗ ����)
 

� + (���5

∗ �) 
328 1.54 0.0156 -0.012 31.0 

Table 5-3 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for GR catchment (Optimal model formulation 

highlighted in bold). 

Model  Co k a b c d RMSE 

1A � ∗ ����� � ∗ ���5�  46 0.31 0.0005 -0.475 37.7 

2A � ∗ (1 − �(�����∗�)) � ∗ ���5�  204 0.024 0.0061 -0.077 50.2 

3A 
� ∗ ����

� + ����
 � ∗ ���5�  

99 
1.62 0.001 0.24 37 

4A � ∗ ln(����) + � � ∗ ���5�  37 2.18 0.007 0.32 36.8 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5�  

 61 
0.614 0.001 0.24 37.9 

1B � ∗ ����� � ∗ ��∗���� 46 0.26 0.006 0.0466 38.5 

2B � ∗ (1 − �(�����∗�)) � ∗ ��∗���� 68 -17.3 0.002 -0.412 39.3 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 32 3.61 0.005 

-

0.0075 
38.3 

4B � ∗ ��(����) + � � ∗ ��∗���� 37 1.95 0.0011 0.0298 35.1 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 53 0.51 0.0014 0.0263 37.9 

1C � ∗ ����� � + (���5 ∗ �) 16 0.319 0.0014 0.0040 78.1 

2C � ∗ (1 − �(�����∗�)) � + (���5 ∗ �) 63 -42 0.007 
-

0.0001 
39.7 
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3C 
� ∗ ����

� + ����
 � + (���5 ∗ �) 69 0.216 0.0002 

-

0.0001 
39.6 

4C � ∗ ln(����) + � � + (���5 ∗ �) 32 3.79 0.0001 
-

0.0001 
38.1 

5C 
� ∗ ����

1 + (� ∗ ����)
 � + (���5 ∗ �) 319 4.62 0.0002 

-

0.0001 
39.6 

 

Table 5-4 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for NW catchment (Optimal model formulation 

highlighted in bold). 

Model  Co k a b c d RMSE 

1A � ∗ ����� � ∗ ���5�  137 0.05 0.002 -0.93 69.2 

2A � ∗ (1 − �(�����∗�)) � ∗ ���5�  111 -5.2 0.0001 6.1 76.5 

3A 
� ∗ ����

� + ����
 � ∗ ���5�  139 0.087 0.0029 -0.969 

69.7 

4A � ∗ ln(����) + � � ∗ ���5�  49 13.4 0.0027 -0.952 69.1 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5�  1.59 0.0115 0.0001 -0.0008 

69.7 

1B � ∗ ����� � ∗ ��∗���� 130 -0.001 0.0053 -0.463 67.9 

2B � ∗ (1 − �(�����∗�)) � ∗ ��∗���� 130 -66.9 0.0054 -0.489 65.4 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 128 0.0013 0.0019 0.0053 69.8 

4B � ∗ ln(����) + � � ∗ ��∗���� 53 11.69 0.0044 -0.406 67.9 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 1.06 0.0074 0.007 0.01 69.1 

1C � ∗ ����� � + (���5 ∗ �) 137 0.132 0.0034 0.0008 79.2 

2C � ∗ (1 − �(�����∗�)) � + (���5 ∗ �) 116 -369 0.005 -0.001 63.5 
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3C 
� ∗ ����

� + ����
 � + (���� ∗ �) 112 -0.009 0.0051 -0.002 63.4 

4C � ∗ ln(����) + � � + (���5 ∗ �) 15 2.692 0.000 -0.000 63.5 

5C 
� ∗ ����

1 + (� ∗ ����)
 � + (���5 ∗ �) 579 0.0495 0.000 -0.000 64.3 

Table 5-5 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for RCW catchment (Optimal model formulation 

highlighted in bold). 

Model  Co k a b c d RMSE 

1A � ∗ ����� � ∗ ���5� 148 0.49 0.030 -1.29 52.6 

2A � ∗ (1 − �(�����∗�)) � ∗ ���5� 493 -0.25 0.031 -0.132 55.1 

3A 
� ∗ ����

� + ����
 � ∗ ���5� 673 4.7 0.033 -1.27 

54.7 

4A � ∗ ln(����) + � � ∗ ���5� 172 1.52 0.029 -1.28 52.6 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5� 142 0.21 0.031 -1.27 

54.7 

1B � ∗ ����� � ∗ ��∗���� 109 
0.20

7 
0.0029 -0.03 66.7 

2B � ∗ (1 − �(�����∗�)) � ∗ ��∗���� 150 -2.95 0.0030 0.05 69.8 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 164 0.27 0.0031 0.003 68.5 

4B � ∗ ��(����) + � � ∗ ��∗���� 172 1.54 0.054 -0.510 34.2 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 148 0.23 0.06 -0.525 51.9 

1C � ∗ ����� � + (���5 ∗ �) 135 0.14 0.0029 0.007 67.8 

2C � ∗ (1 − �(�����∗�)) � + (���5 ∗ �) 149 -3.02 0.0031 0.0001 69.7 

3C 
� ∗ ����

� + ����
 � + (���5 ∗ �) 164 0.27 0.0030 0.000 68.5 

4C � ∗ ln(����) + � � + (���5 ∗ �) 73 2.74 0.0031 -0.003 66.3 
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5C 
� ∗ ����

1 + (� ∗ ����)
 � + (���5 ∗ �) 601 3.65 0.0030 0.000 68.5 

Table 5-6 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for RICH catchment (Optimal model formulation 

highlighted in bold). 

Model  Co k a b c d RMSE 

1A � ∗ ����� � ∗ ���5� 121 0.28 0.0028 0.0086 72.6 

2A � ∗ (1 − �(�����∗�)) � ∗ ���5� 144 -4.7 0.0015 -0.132 79.2 

3A 
� ∗ ����

� + ����
 � ∗ ���5� 176 0.22 0.0022 -0.091 

77.7 

4A � ∗ ln(����) + � � ∗ ���5� 90 2.3 0.0024 -0.006 69.8 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5� 786 4.4 0.0022 -0.09 

76.4 

1B � ∗ ����� � ∗ ��∗���� 120 0.27 0.0030 0.0194 72.6 

2B � ∗ (1 − �(�����∗�)) � ∗ ��∗���� 319 -0.19 0.0032 0.0704 83.7 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 165 0.17 0.0023 0.0039 77.5 

4B � ∗ ��(����) + � � ∗ ��∗���� 78 2.01 0.014 -1.17 60.4 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 847 4.1 0.0052 -0.188 77.3 

1C � ∗ ����� � + (���5 ∗ �) 294 0.37 0.0119 0.0073 78.6 

2C � ∗ (1 − �(�����∗�)) � + (���5 ∗ �) 139 -5.14 0.011 0.0003 78.5 

3C 
� ∗ ����

� + ����
 � + (���5 ∗ �) 162 0.18 0.0014 0.0004 77.4 

4C � ∗ ln(����) + � � + (���5 ∗ �) 85 2.45 0.0016 0.0005 71.5 

5C 
� ∗ ����

1 + (� ∗ ����)
 � + (���5 ∗ �) 881 5.44 0.0014 0.0004 77.4 
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Table 5-7 Calibrated Model formulation, optimal parameter sets and 

respective RMSE values for SHEP catchment (Optimal model formulation 

highlighted in bold). 

Model  C0 k a b c d RMSE 

1A � ∗ ����� � ∗ ���5�  95 0.28 0.0058 -2.87 60.6 

2A � ∗ (1 − �(�����∗�)) � ∗ ���5�  224 -4.7 0.0015 -0.132 57.5 

3A 
� ∗ ����

� + ����
 � ∗ ���5�  192 0.67 0.0069 -2.52 

58 

4A � ∗ ln(����) + � � ∗ ���5�  47 2.16 -0.001 1.397 62.3 

5A 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ���5�  287 1.49 0.0069 -0.52 

58.1 

1B � ∗ ����� � ∗ ��∗���� 48 0.38 -0.0003 0.2981 65.0 

2B � ∗ (1 − �(�����∗�)) � ∗ ��∗���� 195 -1.29 0.0044 0.0025 68.4 

3B 
� ∗ ����

� + ����
 � ∗ ��∗���� 197 0.60 0.0033 0.0025 68.6 

4B � ∗ ln(����) + � � ∗ ��∗���� 45 2.03 0.0004 0.2542 64.3 

5B 
� ∗ ����

1 + (� ∗ ����)
 � ∗ ��∗���� 393 1.7 0.0749 -1.232 55.9 

1C � ∗ ����� � + (���5 ∗ �) 2.43 2.25 2.022 -0.0886 68.6 

2C 
� ∗ (�

− �(�����∗�)) 
� + (���� ∗ �) 180 -0.96 0.0057 -0.0013 55.4 

3C 
� ∗ ����

� + ����
 � + (���5 ∗ �) 196 0.95 0.0050 -0.0011 56.0 

4C � ∗ ln(����) + � � + (���5 ∗ �) 70 1.58 0.0031 -0.0008 58.4 

5C 
� ∗ ����

1 + (� ∗ ����)
 � + (���5 ∗ �) 205 1.04 0.0050 -0.0011 56.0 

For simplicity, the most effective model formulations and RMSE characteristics 

derived for each catchment have been presented in Table 5-8. 

Table 5-8 Summary of RMSE values generated during model calibration 
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 Min RMSE Model form RMSE 

Range 

Mean 

RMSE 

ER 21.1 4B 21.1 – 32.3 27.64 

GR 35.1 4B 35.1 – 78.1 41.58 

NW 63.4 3C 63.4 -79.2 68.5 

RCW 34.2 4B 34.2 - 69.8 60.1 

RICH 60.4 4B 60.4 -79.2 75.4 

SHEP 55.4 2C 55.4 – 68.6 60.9 

Following derivation of optimal parameters from calibration, model formulation 4B 

was found to be the most effective form of model across catchments ER, GR, 

RCW and RICH, yielding RMSE values of 21.1, 35.1, 34.2 and 60.4 respectively. 

Model formulations 3C and 2C yielded the RMSE values of 63.4 and 55.4 for 

catchments NW and SHEP respectively. Based on the results presented in Table 

5-2 - Table 5-7, model formulation 4B was judged to be the most effective at 

describing variations in TSS EMC’s across all catchments, thus the final model 

formulation (4B) is presented, with �� and � defined as: 

Equation 5-16 

�� = � ∗ ln(����) + � 

Where: 

�� = Initial TSS (mg L-1) concentration at time (0)  

���� = antecedent dry weather period (s) 

a and b = calibration parameters (mg L-1). 

 

 

 

 



159 

 

Equation 5-17 

� = � ∗ ��∗���� 

Where: 

� = decay coefficient (s-1) 

���5 = average rainfall intensity (mm/s) 

c = calibration parameter (s-1) 

d = calibration parameter (-). 

 

The model can be presented in its final form: 

Equation 5-18 

����� =
1

�
 
� ∗ ln(����) + �

� ∗ ��∗����
(���∗��∗����∗� − 1) 

Where: 

����� = TSS EMC (mg/l) 

T = duration of the wash-off event (s) 

���5 = average rainfall intensity (mm/hr) 

���� = antecedent dry weather period (hr) 

� = calibration parameter (mg/l) 

� = calibration parameter (mg/l)  

� = calibration parameter (s-1) 

� = calibration parameter (-) 

 

Optimized parameter values for the final model for each catchment are presented 

in Table 5-9. 

Table 5-9 Optimised catchment parameter values generated for calibration 

of model formulation 4B. 
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 a b c d RMSE 

ER 131 1.70 0.04 -0.34 21.1 

GR 37 1.95 0.0011 0.0298 35.1 

NW 53 11.69 0.0044 -0.4055 67.9 

RCW 172 1.54 0.054 -0.5101 34.2 

RICH 78 2.01 0.014 -1.17 60.4 

SHEP 45 2.03 0.0004 0.2542 64.3 

Calibration plots using the final model form and optimised parameter values for 

each respective catchment are presented in Figure 5-4, Figure 5-5, Figure 5-6, 

Figure 5-7, Figure 5-8 and Figure 5-9. 

 

Figure 5-4 Calibration plot for ER catchment showing difference in model 

calibration predictions (Cpred) and measured EMC’s (Cmeasured) 
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Figure 5-5 Calibration plot for GR catchment showing optimised model 

calibration predictions (Cpred) and measured EMC’s (Cmeasured) 

 

Figure 5-6 Calibration plot for NW catchment showing optimised model 

calibration prediction (Cpred) and measured EMC’s (Cmeasured) 
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Figure 5-7 Calibration plot for RCW catchment showing optimised model 

calibration predictions (Cpred) and measured EMC’s (Cmeasured) 

 

Figure 5-8 Calibration plot for RICH catchment showing optimised model 

calibration predictions (Cpred) and measured EMC’s (Cmeasured) 



163 

 

 

Figure 5-9 Calibration plot for SHEP catchment showing optimised model 

calibration predictions (Cpred) and measured EMC’s (Cmeasured) 

Following calibration of each catchment model, validation of the model was 

carried out on the remaining 20% of each respective data set; these results are 

discussed together at the end of this chapter, validation plots for each respective 

catchment (ER, GR, RCW, NW, RICH and SHEP) are presented in Figure 5-10, 

Figure 5-11, Figure 5-12, Figure 5-13, Figure 5-14 and, Figure 5-15.  
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Figure 5-10 Validation plot for ER catchment showing calibrated model 

predictionsTSS EMC’s (Cpred) and measured TSS EMC’s (Cmeasured) 

 

Figure 5-11 Validation plot for GR catchment showing calibrated model 

predictions (Cpred) and measured EMC’s (Cmeasured) 
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Figure 5-12 Validation plot for NW catchment showing calibrated model 

predictions (Cpred) and measured EMC’s (Cmeasured) 

 

Figure 5-13 Validation plot for RCW catchment showing calibrated model 

predictions (Cpred) and measured EMC’s (Cmeasured) 
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Figure 5-14 Validation plot for RICH catchment showing calibrated model 

predictions (Cpred) and measured EMC’s (Cmeasured) 

 

 

Figure 5-15 Validation plot for SHEP catchment showing calibrated model 

predictions (Cpred) and measured EMC’s (Cmeasured) 

The Nash-Sutcliffe coefficient was used to evaluate the calibration and validation 

model efficiencies E presented in Table 5-10. It is noted that the RMSE was 

previously used within the calibration algorithm presented to optimise parameter 

values, whilst both the RMSE and Nash-Sutcliffe coefficient can be used to 
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evaluate model efficiencies, it was concluded that the Nash-Sutcliffe efficiency 

value was required to adjudge the predictive performance of the model to allow 

comparison with other models cited within the literature (Dotto et al., 2011), this 

is presented in the discussion and conclusions section of this chapter.  

Table 5-10 Nash-Sutcliffe model efficiencies for calibration and validation  

 Calibration Validation 

 No of 

events 

Calibration 

(E) 

No of 

events 

Validation 

(E) 

ER 18 0.81 6 0.85 

GR 48 0.63 12 0.32 

NW 44 0.18 11 0.26 

RCW 27 0.68 7 0.66 

RICH 43 0.38 11 0.19 

SHEP 16 0.41 4 0.67 

Model validation E values were in the range 0.18 – 0.81, mean calibration and 

validation E values were 0.51 and 0.49 respectively. 

5.3 Model Sensitivity 

In this section, a review of sensitivity analysis techniques is presented, 

subsequently, a global sensitivity analysis methodology has been applied to allow 

for a sensitivity evaluation of the TSS EMC model developed in section 5.2, 

discussion of the results is presented in the discussion and conclusions section 

of this chapter 5.5. 

An evaluation of model output confidence is good practise following the 

development of any scientific model (Dotto et al., 2012). Sensitivity analyses 

allow for such evaluation by showing the relevance of model inputs in determining 



168 

 

variations in model outputs. The potential benefits of such an evaluation to model 

developers are as follows (Dotto et al., 2011; Vanrolleghem et al., 2015): 

 Increased understanding of the relationships between outputs and input 

variables. 

 Identification of model inputs that need attention should the modeller seek 

to increase model robustness. 

 To enable the simplification of model structure and the potential to fix or 

remove parts of the model which are redundant. 

 To improve calibration through the understanding of model parameters; 

often data collection for model calibration is limited, thus understanding of 

influential parameters (those which model outputs are sensitive too) is 

useful. 

Sensitivity analyses can be broadly categorized as either global or local. Local 

sensitivity analysis can be used to understand the effect of model input 

perturbations on model outputs; these types of analyses differ from global 

sensitivity analysis (GSA) techniques in that they are performed around a single 

point in the model parameter space. Global sensitivity analyses can be performed 

over the whole parameter space of model inputs, allowing for a greater 

understanding of how model input parameter sets impact model outputs. There 

exists a variety of possible methods to globally analyse model parameter 

sensitivity, the selection of which is linked to the objectives of the analysis, in this 

work, the objectives of the analysis are: 

 To detect the influence of model parameter on model outputs; allowing 

fixing or the utilisation of default values for parameters which are not 

influential on model outputs, subsequently, model simplification can be 

performed; 

 To understand the potential impact of model input uncertainty, allowing 

future calibration campaigns to be focussed on influential model inputs.  

 To understand the interactions between model inputs and parameters. 

Commonly used examples of GSA techniques cited within the literature are: 

 Standard Regression Co-efficient method (SRC) (Saltelli, 2002). 

 Extended-FAST method (Saltelli, 2002). 
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 Morris Screening method (Morris, 1991). 

 Sobol’ indices (Sobol, 2001). 

Several model attributes should be considered when selecting an appropriate 

GSA methodology, typically; the number of input and model parameters being 

assessed, the computation cost of running the model and the length of each 

model simulation (Vanrolleghem et al., 2015). With respect to the TSS EMC 

model the number of model variable and parameters is small (seven), the 

computational cost low and the model run time speed low; the model performs 

one simulation in less than a second in the numerical software package Matlab 

version R2013a (www.mathworks.com). The application of GSA techniques 

within the urban drainage modelling field is limited due to high computational 

costs of such procedures (Dotto et al., 2010). Vanrolleghem et al., (2015) 

suggested that when used to examine the sensitivity of a conceptual water quality 

simulation model, SRC, Extended-FAST and Morris screening methods 

produced similar results, subsequently, the Morris screening method has been 

selected for GSA in this work. 

Morris Screening 

In this work, the input and model parameters selected for sensitivity analysis are: 

Rainfall event duration (T); rainfall event Intensity (mm/hr); antecedent dry 

weather period (ADWP) and model parameters a,b,c and d for the build-up and 

wash-off components of the model. As the model is newly developed, model 

parameter ranges selected for the sensitivity analysis were taken to be the 

minimum and maximum values of each respective input and parameter sets 

recorded from the field data and during the process of model development 

respectively. Table 5-11 presents the ranges of input and model parameters 

considered for sensitivity analysis. Model input and parameter values were 

sampled from a uniform distribution within their respective ranges to achieve even 

and uniform representation within the parameter space. 
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Table 5-11 Input and Model Parameters and Ranges used in the Global 

Sensitivity Analysis 

Input and model Parameters  Unit Minimum Maximum 

Rainfall event duration mins 12 1409 

Antecedent dry weather period  Days 0.08 46 

Rainfall Intensity mm/hr 0.1 30.1 

a  - 45 172 

b  - 1.54 11.69 

c - 0.004 0.064 

d - -1.17 -0.25 

The Morris’ method samples large factoral spaces by following several 

trajectories, such trajectories are selected one-at-at-time (OAT) in a discretized 

manner within parameter levels. Initial trajectories start at a random point in the 

factoral space (defined by a combination of modalities of all factors points). In a 

step-wise manner, the trajectory of exploration is then determined by the OAT 

procedure involving successful variations of factor modalities, thus each 

trajectory can be defined as p+1 possible combination of factor modalities.  

For this study, the parameter space was partitioned into p discrete levels and 

random sampling performed to generate r Elementary Effects (EE). The number 

of simulations required for the screening procedure can be calculated by � ∗

(� + 1), where n is the number of model parameters considered for the analysis. 

Campolongo et al., (2005) proposed a modification to the Morris screening 

procedure via the use of an absolute mean (�∗) utilized as an improved measure 

of sensitivity. A similar approach to the use of the Morris screening approach and 

Campolongo et al., (2005) modification is presented in Sriwastava et al., (2018) 

to quantify the uncertainty in sewerage model variable and input parameters. In 

this application, for parameter sensitivity quantification, the absolute mean �∗and 

standard deviation � of EE’s need be defined. A high value of �∗ suggests that 

the model outputs are highly sensitive to a change in each parameter. A high 
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value of � indicates non- linearity and/or parameter interaction which affected 

model output variability. For this study, the parameter space was discretized into 

p=20 levels and the number of repetitions, r= 100, thus 800 simulations were 

required for the analysis. 

Morris Screening Results 

In this study, as presented in Vanrollegham, at al. (2015) and Sriwastava et al., 

(2018), convergence analysis has been performed by examining the percentage 

change in variability of a sensitivity index value ���, the sensitivity index value ��� 

is given by: 

Equation 5-19 

��� =
∑ ���

��
���

��
 

Where:  

��� = sensitivity index value  

�� = the number of input parameters 

��� = the sensitivity index of parameter �. 

 

The variability of the index (�) is given by: 

Equation 5-20 

� = �
∑ ���

��
��� ����

− ∑ ���
��
��� ��

��
� 

Where: 

��� = sensitivity index value  

�� = the number of input parameters 

��� = the sensitivity index of parameter � 

�� = the number of simulations. 

 

To determine the number of simulations required for different output variables 

Vanrollegham, at al. (2015) applied a precision threshold of the range 0.5% to 
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3.5%. In this study, a precision threshold of 0.1% was achieved after 300 or more 

simulation. Morris screening procedure results are presented in Table 5-12, 

inputs and parameters have been ranked according to their �∗ values. Discussion 

and conclusions associated with the results of the GSE are presented in section 

5.9. 

Table 5-12 Morris screening results and ranking of input/model 

parameters. 

Parameters Absolute mean 

(μ*) 

Rank 

c 0.1729 1 

Rainfall intensity 0.1711 2 

Rainfall event duration 0.1431 3 

a 0.0157 4 

Antecedent dry weather 

period 

0.0080 5 

d 0.0059 6 

b 0.0027 7 

5.4 Model Uncertainty 

Chapter 2 introduced the concept of uncertainty and some of the various methods 

which have been used to quantify uncertainty of urban drainage modelling 

predictions. This section uses the water quality data set presented in chapter 4 

and the final model formulations to quantify uncertainties associated with the 

predictions made by the newly developed TTS EMC, this was achieved by study 

of the errors associated with the model’s predictions (Cpredicted) and observed 

values (Cmeasured). The method assumes that the models input, calibration and 

structural uncertainties are described by the error between model predictions of 

TSS EMC’s (Cpredicted) and observed TSS EMC’s (Cmeasured), the study of these 

errors can be used to develop a simple uncertainty technique for use with the 
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newly developed model presented in section 5.2. The method is referred to in this 

work as the ‘factor-ratio’ uncertainty method utilising probability distributions 

associated with model prediction errors and a Monte Carlo simulation estimate 

the uncertainty associated with model predictions; a similar approach was utilised 

by Schellart (2008) to quantify the impact of uncertainty in sediment transport 

equations. Discussions regarding the implication of the assumptions made in the 

development and application of this method are presented in chapter 7.  

‘Factor Ratio’ Uncertainty Methodology 

The method predicts model output uncertainty by utilising probability distributions 

for the ratio of error (Cratio) of the newly developed model predictions (Cpredicted) 

and (Cmeasured).  

In probability theory, a probability distribution (pdf) is a mathematical function 

which provides the probabilities of occurrences of different possible outcomes 

associated with an experiment (Li and Hyman, 2004), a cumulative distribution 

function (cdf) of a random variable (x), evaluated at x, represents the probability 

that the random variable will take a value less than or equal to x (Pianosi and 

Wagener, 2015). 

All data fitting was performed using the software package Matlab version R2013a 

(www.mathworks.com). The software contains a built-in statistic toolbox for 

exploratory data and distribution analyses. The distribution fitting tool within this 

tool box (dfitool) was used within this work, the tool allows users to fit several 

distributions to their data; evaluate the ‘goodness of fit’ of such distributions 

through visual interpretation and descriptive statics (necessary for objective 

interpretation) and subsequently create distribution objects. The distribution tool 

uses maximum likelihood estimation to fit distributions to data (Matlab 

Documentation, 2013). 

The tool allows users to examine the following possible fits:  

 Beta (unit interval values) distribution, fit using the function betafit. 

 Binomial (nonnegative values) distribution, fit using the function binopdf. 

 Birnbaum-Saunders (positive values) distribution. 

 Burr Type XII (positive values) distribution. 
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 Exponential (nonnegative values) distribution, fit using the function 

expfit. 

 Extreme value (all values) distribution, fit using the function evfit. 

 Gamma (positive values) distribution, fit using the function gamfit. 

 Generalized extreme value (all values) distribution, fit using the function 

gevfit. 

 Generalized Pareto (all values) distribution, fit using the function gpfit. 

 Inverse Gaussian (positive values) distribution. 

 Logistic (all values) distribution. 

 Loglogistic (positive values) distribution. 

 Lognormal (positive values) distribution, fit using the function lognfit. 

 Nakagami (positive values) distribution. 

 Negative binomial (nonnegative values) distribution, fit using the 

function nbinpdf. 

 Nonparametric (all values) distribution, fit using the function ksdensity.  

 Normal (all values) distribution, fit using the function normfit. 

 Poisson (nonnegative integer values) distribution, fit using the function 

poisspdf. 

 Rayleigh (positive values) distribution using the function raylfit. 

 Rician (positive values) distribution. 

 t location-scale (all values) distribution. 

 Weibull (positive values) distribution using the function wblfit. 

Subsequently, the package allows users to perform Monte-Carlo sampling 

procedures from distribution objects necessary to derive confidence intervals (a 

range of values so defined that there is a specified probability that the value of a 

parameter lies within it) around each model prediction (Kreutz, Raue and Timmer, 

2012). The steps carried out to attain these intervals for the Factor Ratio method 

is presented: 

1. Calculate model residuals using Equation 5-21 

Equation 5-21 

�������� ������ = ����������� − ���������� 

Where: 
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 for the event i,  

�������� ����� = model residual error (mg/l) 

Cpredicted = the model prediction of TSS EMC (mg/l) 

Cmeasured = the measured TSS EMC (mg/l). 

2. Standardize model residuals to generate new variable Cratio using 

Equation 5-22 

 

Equation 5-22 

�����������

����������
= ������� 

Where: 

 for the event i,  

������ = ratio of error (-) 

Cpredicted = the model prediction of TSS EMC (mg/l) 

Cmeasured = the measured TSS EMC (mg/l). 

 

3. Fit probability distribution function to variable Cratio. 

4. Sample from Cratio using Monte-Carlo procedure to gain new vector of 

error (Verror). 

5. Multiply model prediction by Verror to generate new vector of possible 

EMC’s (PPossible). 

6. Fit probability distribution PPossible to generate new pdf (UPredicted) 

associated with specific model prediction.  

7. Compute specified confidence intervals from UPred to generate 

uncertainty bounds associated with model prediction.  

Due to data scarcity, calibration and validation data sets were combined for the 

Factor-Ratio uncertainty method; the implications of this are discussed in chapter 

7. 

Residual errors were calculated using Equation 5-21. The method has been 

applied to the data for individual catchments (ER, GR, NW, RCW, RICH and 

SHEP) and to a collation of all six catchments data, the new data set is referred 
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to as ‘combined’. Plots of each catchments residual error (Including error for the 

combined data) are presented in Figure 5-16, Figure 5-17, Figure 5-18, Figure 

5-19, Figure 5-20, Figure 5-21 and, Figure 5-22. 

 

Figure 5-16 Residual error plot for ER catchment showing error between 

predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 

 

Figure 5-17 Residual error plot for GR catchment showing error between 

predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 
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Figure 5-18 Residual error plot for NW catchment showing error between 

predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 

 

Figure 5-19 Residual error plot for RCW catchment showing error between 

predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 
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Figure 5-20 Residual error plot for RICH catchment showing error between 

predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 

 

Figure 5-21 Residual error plot for SHEP catchment showing error 

between predicted TSS EMC’s (Cpredicted) and measured TSS EMC’s 

(Cmeasured). 
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Figure 5-22 Residual error plot for combined catchment data showing 

error between predicted TSS EMC’s (Cpredicted) and measured TSS 

EMC’s (Cmeasured). 

Cumulative probability density functions for all catchment and the combined 

catchment data set are presented in Figure 5-23 and Figure 5-24 respectively. 
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Figure 5-23 Cumulative density functions of residual error for ER, GR, 

RCW, NW, RICH and SHEP catchments.  
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Figure 5-24 Cumulative density functions of residual error for combined 

catchment data set. 

Table 5-13 shows the average model residual error (expressed at 50% 

cumulative probability) for each catchment and the combined data set. 

Table 5-13 Average error extracted from CDF’s 

 ER GR NW RCW RICH SHEP Combined 

Average error 8.9 8.5 10.3 -4.2 -4 28 9 

To standardize model residuals in accordance with the Factor Ratio uncertainty 

procedure described, a new variable (Cratio) was created using Equation 5-22. 

Normality plots of catchment Cratio(s) were created to determine whether the model 

residuals showed departures from normality. In a normal probability plot, 

deviations from the straight line imposed on the plot (representative of normally 

distributed data) show a departure from normality (Ryan and Joiner, 1976). Figure 

5-25, Figure 5-26, Figure 5-27, Figure 5-28, Figure 5-29 and, Figure 5-30 show 

normality plots of Cratio(s) for each respective catchment, Figure 5-31 shows the 

normality plot of combined Cratio values across all combined catchments. 
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Figure 5-25 Normality plot for the ER catchment, Cratio(s) values shown as 

‘Data’ on the x axis. 

 

Figure 5-26 Normality plot for the GR catchment, Cratio(s) shown as ‘Data’ 

on the x axis. 
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Figure 5-27 Normality plot for the NW catchment, Cratio(s) shown as ‘Data’ 

on the x axis. 

 

 

Figure 5-28 Normality plot for the RCW catchment, Cratio(s) shown as ‘Data’ 

on the x axis. 
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Figure 5-29 Normality plot for the RICH catchment, Cratio(s) shown as ‘Data’ 

on the x axis. 

 

 

Figure 5-30 Normality plot for the SHEP catchment, Cratio(s) shown as ‘Data’ 

on the x axis. 
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Figure 5-31 Normality plot for the combined catchments, Cratio(s) shown as 

‘Data’ on the x axis. 

A larger proportion of the model residuals fall in the negative range, this indicates 

that the model tends to under predict TSS EMC’s. The model residuals visually 

show a departure from normality; they do not form a straight line. Histograms of 

Cratio(s) were plotted using Matlab’s distribution fitting tool, bin sizes were 

calculated according to the Freedman Diaconsis rule (Equation 5-23): 

Equation 5-23 

��� ���� = 2 ∗
���(�)

√�
�  

Where: 

��� ���� = number of bins 

IQR = the Interquartile range of the data (�) 

n = the number of observations. 

 

Histograms of catchment Cratio(s) and all combined catchment Cratio(s) are 

presented in Figure 5-32. 
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Figure 5-32 Cratio(s) Histograms of catchments ER, GR, RC, NW, RICH, 

SHEP and, all catchments combined 

From visual inspection of histograms (Figure 5-32) it was apparent that the Cratio 

values followed a heavily tailed distribution, therefore continuous probability 

distributions available in the Matlab Distribution Fitting tool were tested to 

determine the appropriate probability distribution to describe the Cratio(s) for each 

catchment and the combined catchment dataset respectively. The Matlab 

distribution fitting tool uses maximum likelihood estimation method to fit 

distributions to data (Myung, 2003). The Anderson-Darling statistic can be used 

in Matlab for statistical testing of whether data is drawn from a given probability 

distribution (Anderson and Darling, 1952). It is commonly used to test in situations 

where families of distributions are being tested, the lower the Anderson Darling 

‘goodness-of-fit’ static (AD), the ‘better’ the selected probability distribution 

represents the data.  
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Table 5-14 Anderson Darling statistic for heavy tail distribution fits 

Probability 

Distribution(s) 

Anderson Darling Statistic (AD) 

ER GR NW RCW RICH SHEP 

Normal 1.72 0.86 0.50 2.74 0.37 1.26 

Log-normal 0.42 0.34 0.23 0.58 0.37 0.57 

Weibull 0.93 1.01 0.44 1.803 1.01 1.00 

Gamma 0.60 0.46 0.26 0.850 0.58 0.77 

Loglogistic 0.81 0.68 0.26 0.613 0.33 0.92 

Combined 0.78 0.51 0.36 1.16 0.48 0.84 

Table 5-14 shows that the ‘log-normal’ distribution was correctly selected as the 

most appropriate distribution to represent all Cratio(s). In probability theory, a log-

normal distribution is a continuous pdf of a random variable � whose logarithm is 

normally distributed. The probability density function � of the log normal 

distribution is given by: 

Equation 5-24 

 

Where: 

� = location parameter 

� = scale parameter 

� = Pi (~3.142) 

 

The two parameters µ and σ are not location and scale parameters for a 

lognormally distributed random variable �, they are location and scale 

parameters for the normally distributed logarithm ln(�).The lognormal distribution 

is applicable when the quantity of interest must be positive. The cumulative 
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distribution function (cdf) of the standard normal distribution may be expressed 

as follows: 

Equation 5-25 

 

Where: 

� = location parameter 

� = scale parameter 

� = Pi (~3.142). 

 

Matlab version R2013a (www.mathworks.com) can be used to compute 

confidence bounds associated with distribution pdf’s and cdf’s, these bounds 

represent lower and upper values of the associated interval, and define the width 

of the interval. The width of the interval indicates how uncertain a prediction is, 

the bounds represent a level of uncertainty. The level of uncertainty often used is 

95%, thus the 95% prediction interval is computed. The interval indicated that 

there is a 95% chance that a prediction is contained within the lower and upper 

prediction bounds. Confidence intervals associated with model predictions are 

computed using this method in chapter 6 but are shown here for continuity. 

Figures 5-32 to 5-38 show the histograms and fitted log-normal pdfs for 

catchments ER, GR, NW, RCW, RICH, SHEP and all catchment data combined 

respectively. 
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Figure 5-33 Histogram and fitted log-normal distribution of Cratio(s) for the 

ER catchment 

  

Figure 5-34 Histogram and fitted log-normal distribution of Cratio(s) for the 

GR catchment, Cratio(s) are shown as data on the x-axis. 
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Figure 5-35 Histogram and fitted log-normal distribution of Cratio(s) for the 

NW catchment, Cratio(s) are shown as data on the x-axis. 

 

Figure 5-36 Histogram and fitted log-normal distribution of Cratio(s) for the 

RCW catchment, Cratio(s) are shown as data on the x-axis. 
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Figure 5-37 Histogram and fitted log-normal distribution of Cratio(s) for RICH 

catchment, Cratio(s) are shown as data on the x-axis. 

 

Figure 5-38 Histogram and fitted log-normal distribution of Cratio(s) for the 

SHEP catchment, Cratio(s) are shown as data on the x-axis. 
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Figure 5-39 Log normal distributions of all combined catchment Cratio(s), 

shown as data on the x-axis. 

The characteristics (mu and sigma) of each catchments Cratio distribution and the 

pdf characteristics are presented in Table 5-15. 

Table 5-15 Cratio distribution fitting characteristics 

Catchment Sample size 

Cratio(s) Distribution fitting information 

Mean Variance 

 

Fitted Distribution 

Distribution parameters 

mu u sigma 

ER 24 0.79 0.34 Log-normal -0.43 0.65 0.65 

GR 60 1.41 0.86 Log-normal 0.16 1.17 0.60 

NW 55 1.55 1.40 Log-normal 0.20 1.22 0.68 

RCW 34 1.27 1.41 Log-normal -0.07 0.93 0.79 

RICH 54 1.43 1.43 Log-normal 0.15 1.16 0.69 

SHEP 20 2.24 4.86 Log-normal 0.47 1.59 0.82 
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Combined  247 1.42 1.42 Log-normal 0.08 1.08 0.73 

Following derivation of the Cratio pdfs for each and the combined catchments 

respectively, Monte-Carlo sampling from the distributions attained can performed 

to quantify the uncertainty associated with model predictions (this method is 

presented in chapter 6). 

The uncertainty procedure has been summarised below: 

1. Calibrate model using methodology presented in section 5.2.1.1 on the 

catchment under analysis to obtain optimal parameter sets for C0 and k. 

Alternatively use the parameters set derived in this work i.e. if catchment 

land-use is ‘mixed residential’, use ER parameter set. 

2. Input chosen rainfall characteristics into model (T, ADWP and AGI5) and 

run model to generate prediction of TSS EMC’s. 

3. Trial uncertainty methodology presented in this chapter to ‘estimate’ 

uncertainty surrounding model prediction. The estimation of uncertainty 

through the use of confidence bounds is presented in chapter 6. 

 

The application of this method is presented in chapter 6. 

5.5 Discussion and conclusions 

This aim of this chapter was to develop a new stochastic model capable of 

predicting storm water TSS EMC’s. In section 5.1 ‘selection of model variables’, 

a multivariate data analysis technique (PCA) was applied to TSS storm water 

quality data and possible corresponding climatic and rainfall variables to identify 

the explanatory variables which ‘best’ described variations in TSS EMC’s. Whilst 

the PCA technique is reliable on the user’s visual analysis of resulting bi-plots 

and is thus subject to human error when determining relationships between 

variables under analysis, the resulting bi-plot visual assessment suggested that 

variations in TSS EMC concentrations were best described by the rainfall 

characteristic variable AGI5.  

The only climatic variable measured in this study was antecedent dry weather 

period (ADWP), whilst the PCA analysis ‘did’ suggest that this variable showed 
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some capacity to describe catchment TSS EMC’s, it did not appear to describe 

as much variation in TSS EMC’s as AGI5, It is suggested in the literature that 

pollutant build-up is influenced by a wide array of factors such as the quantity of 

vehicular traffic in a catchment and catchment land use characteristics, however, 

with the literature suggesting that simple storm water quality models should 

conceptualize both build-up and wash-off processes and with no other climatic 

variables capable of describing the build-up phenomena available for study, the 

variable was included for further analysis prior to model development.  

In Section 5.2 ‘model development’ it was hypothesized that pollutant 

concentrations can be described by the exponential decay wash-off equation. 

The equation was mathematically derived to show a formulation capable of 

predicting TSS EMC’s via the inclusion of three parameters; Co; the initial 

pollutant concentration available to be washed; k, the rate at which this initial 

pollutant concentration is subsequently washed off and T; the duration of the 

event under analysis. It was hypothesized that the climatic variable ADWP could 

be used to estimate Co and that AGI5 could be used to estimate k.  

To investigate the use of different mathematical functions capable of predicting 

values of Co and k, a statistical procedure in the form of regression equations and 

least squares fitting of explanatory variables was utilised within a specific 

calibration algorithm. The procedure showed that one of 15 statistical model 

formulations (model formulation 4B) predicted TSS EMC’s more effectively on 

four of the six catchments analysed (ER, GR, RCW and RICH) with resulting 

RMSE values of 21.1, 35.1 34.2 and 60.4 mg/l obtained respectively. With regard 

to the two catchments where this model formulation was not the most effective at 

predicting TSS EMC’s (NW and SHEP) it is apparent that all model formulations 

tended to perform poorly with mean RMSE values of the range 68.5 and 60.9 

mg/l obtained respectively. This could be attributed to pollutant processes on 

these catchments poorly described by the exponential wash-off equation, this 

would concur with work by Bach (2010b), who noted that the catchment NW was 

subject to sewerage and storm water cross-connections, thus concentrations of 

TSS recorded on this catchment may be subject to inaccuracies. 

Calibration of the model was considered successful on all catchments with E 

values all positive in the range of 0.18-0.91 this would suggest that the model 
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structure is appropriate. Validation of the model was also deemed successful with 

E values in the positive range of 0.1-0.85. The E values attained for calibration 

and validation were distinctly variable across all catchments. The model 

performed well (E values above 0.5) when predicting TSS EMC’s from the ER, 

RCW and SHEP catchments, all these catchments were classified as ‘mixed 

residential’ suggesting that these catchments resulting TSS EMC’s are more 

heavily influenced by the explanatory variables described in this model (ADWP 

and AGI5),  

It is difficult to comparatively evaluate the performance of the newly developed 

model against other studies due to the scarcity of information regarding model 

efficiencies in the literature, especially because most many of these studies have 

been performed on models which predict pollutant fluxes and loads (Kanso, 

Chebbo and Tassin, 2005). Furthermore, of the studies which have tested 

different build-up and wash-off models, few events were calibrated (Dembélé et 

al., 2011). Regardless of the limited number of studies available for comparison, 

the performance of the model has been compared to the validation efficiencies 

presented in the literature and to the application of the model presented in 

Dembélé et al., (2011) model efficiencies obtained in chapter 4 (Table 5-16). 

Table 5-16 comparison of validation coefficients 

Catchment 

evaluated 

Validation Coefficients (E) 

Dembélé et 

al., 2011 

Dembélé et al., 

2011 chapter 4  

Dotto et al., 

2010 
Eq 5-20 

ER - 0.73 - 0.85 

GR - - 0.07 0.32 

NW - - 0.46 0.26 

RCW - 0.4 0.22 0.66 

RICH - 0.57 0.12 0.19 

SHEP - 0.79 0.06 0.67 
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ECULLY 0.78 - - - 

CHASAEIU 0.91 - - - 

The validation E values presented in Table 5-16 would suggest that the model 

shows an improvement on the build-up wash off approach previously evaluated 

on this data set (Dotto et al., 2010), this could be attributed to the model 

accounting for rainfall explanatory variables rather than catchment characteristic 

to estimate build up. The model presented in Dembélé et al., (2011) yielded 

higher E values on two of the six catchments evaluated; RICH and SHEP, lower 

E values on RCW and ER and showed negative E values (lower predictive 

capacity than the mean value of the data set) on catchments GR and NW. This 

variation in performance could be attributed to the fact that the model assumed 

two different distinct states which influence TSS EMC’s. It should be noted that 

water quality model calibration is widely regarded as a challenging process and 

that very low model efficiency coefficients are commonly attained (often in the 

negative range) (Dotto et al., 2010), thus the subsequently high model efficiency 

values presented in this chapter would suggest that the model does have a 

relatively high predictive capacity. 

The newly developed TSS EMC model sensitivity to model inputs and parameter 

values has been evaluated by performing a GSA. The analysis showed the model 

is particularly sensitive to model parameter c, model inputs variables AGI5 and 

the duration of the event under observation, this would concur with work reported 

by (Lee et al., 2011). The GSA suggested that model parameters a and d had 

little influence on the models predicted TSS EMC’s in this build-up component, 

however it is noted that the GSA was performed by sampling uniform input 

distribution ranges obtained the recorded field data. To improve this analysis, 

input distributions could be cited from the literature. Due to the structure of the 

function for Co, with decreasing values of variable ADWP, predicted TSS EMC’s 

would become increasingly sensitive to parameter b. In the wash-off component 

of the model, represented by k, predicted TSS EMC’s were most sensitive to 

changes in parameter d, model sensitivity to this parameter increases as the 

value of d decreases. The model was not sensitive to parameters d and b, it is 

therefore assumed that these parameters could be fixed. 
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The model assumes that TSS EMC’s are limited to the amount of pollutant 

available to be washed off, represented by model component Co. This initial 

component of the model assumes that there is no pollutant available to be 

washed off, thus ADWP = 0. This is the main weakness of the model in that its 

temporal resolution is on the event scale, thus it functions irrespective of 

accumulated pollutant levels that may remain on a catchment from the previous 

event. For example, if the previous event to the one under analysis had a 

significantly high build up period (ADWP) then the resulting potential for large 

pollutant loads to be washed off during this event would be high. If only a small 

fraction of pollutant is washed off, the capacity for pollutants to be washed off in 

the event under analysis would be high, regardless of the ADWP. The 

consequence of this is that if the model under analysis had a small ADWP, then 

the model would assume the amount available to be washed off would be low, 

when in fact this could be significantly large. It has been suggested that the 

amount of pollutant available to be washed off during a rainfall event reaches 

equilibrium at approximately 9 days, thus events with a higher ADWP would be 

less susceptible to errors caused by this model assumption (Deletic, 2005). 

The latter parts of this chapter described the development of a methodology for 

estimating uncertainty in the proposed model. As discussed in chapters 1 and 2, 

there is an inherent uncertainty associated with water quality predictions due to 

the inherent variability of water quality processes; specifically, build-up and wash-

off (Daly, 2014). To account for this natural variability, a Monte Carlo simulation 

approach utilizing residual model errors derived during calibration was utilized to 

produce uncertainty bounds associated with model prediction. This approach 

assumed that all the contributing sources of uncertainty are captured by the 

model residuals errors, however, it is highly unlikely that there were no data 

collection errors in the observed TSS data set. The mean residual error across 

all six catchments was 7.9 mg/l in the positive range, this would suggest that the 

model under predicts TSS EMC’s, this again could be attributed to the model’s 

inability to account for accumulated loads.  

Following standardization of model residuals, Cratio(s) were obtained for each 

catchment and resultant distribution fitting data presented in table 5-15. The only 

catchments categorized as ‘commercial and industrial’ usage showed the least 

Cratio variance; ER and GR 0.34 and 0.86 respectively. All other catchments - 
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categorized as ‘residential’ - showed Cratio variances in the range 1.40 – 4.86, this 

could indicate that modelling uncertainties are more likely in areas in residential 

areas where anthropogenic activity takes place. Based on the results presented 

in Table 5-2 - Table 5-7, model formulation 4B was judged to be the most effective 

at describing variations in TSS EMC’s across all catchments, however, the SHEP 

catchments most effective formulation was 2C, the only model with differing 

components for both build-up and wash-off, this could explain why such a large 

Cratio variance (4.86) was obtained for this particular catchment. The variance 

could also be attributed to a small number of events being monitored on this 

catchment and subsequent lack of calibration data with which to capture the 

variation of TSS EMC’s within this catchment.  

Chapter 4 discussed the difficulty of transferring statistical stormwater models on 

catchments other than where they were originally calibrated. In this chapter, a 

new TSS EMC model has been developed which predicts TSS EMC’s for the 

catchments on which it was developed. To evaluate the transferability of this 

model, chapter 6 applies the model to the UK catchment data set presented in 

chapter 3.
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Chapter 6. Model Application and Transferability 

Chapter 4 discussed the difficulty of transferring simple storm water models to 

catchments other than where they were originally calibrated. In chapter 5, a 

model was developed which used explanatory climatic and rainfall event 

variables to predict TSS EMC’s and an associated methodology which could be 

used to quantify the levels of uncertainty model prediction. The aim of this chapter 

is to study the transferability potential of the model to a catchment other than 

where it was originally developed, more specifically, the chapter aims to: 

1. Use a complex deterministic model to generate a synthetic water quality 

data set for one of the UK catchments presented in chapter 3. 

2. Calibrate and validate the newly developed model presented in chapter 5 

to the synthetic water quality catchment data set generated in (1). 

3. Validate the model using the observed water quality catchment data 

presented in chapter 3. 

o Apply the Factor ratio uncertainty method developed in chapter 5. 

4. Show how the model could be utilized in a practical context to aid solution 

design within the ICM procedure. 

 

There are risks and problems associated with the approach presented in this 

chapter, in that the model developed in chapter 5 was developed using data 

collected from a separate stormwater collection system. The data used to test in 

chapter 3 were collected from combined stormwater and wastewater systems, 

therefore any objective evaluation of the model’s transferability could be 

considered ‘weak’. In respect of this weakness, the work in this chapter is 

focussed on presenting how the model and methodology presented in chapter 5 

could be utilised to aid the solution design component of the ICM procedure; by 

using calibrated complex deterministic models as ‘surrogates’ for simpler models 

with reduced computational costs. 

6.1 Development of a Synthetic Water Quality Data Set 

In chapter 5, 247 storm water quality events over a range of climatic and rainfall 

conditions were monitored on 6 different catchments to develop a simple TSS 
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EMC model with uncertainty quantification capabilities. It is hypothesized that the 

‘complex’ deterministic water quality model InfoWorks CS presented in chapter 3 

could be used to generate a synthetic water quality data set with which the model 

could be calibrated, subsequently, the model could be verified using a small 

number of observed water quality data available for the respective catchment 

under investigation, similar approaches to the use of complex models as 

‘surrogates’ to develop data sets with which simple models can be calibrated are 

presented in the literature (Freni et al., 2008).  

The InfoWorks CS models of the four sewer network catchments presented in 

chapter 3 and this chapter were assumed to sufficiently represent reality; their 

model, build and verification checked against regulatory and best practice 

modelling practices presented in chapter 2 by the EA and subsequently approved 

for the development of ICM solutions in AMP3. As this chapter’s focus is on the 

possible application of the model within the ICM procedure, its application has 

been performed with on one catchment and it’s respective InfoWorks CS sewer 

model; the Denton catchment. 

The synthetic water quality data set was created via the built-in InfoWorks CS UK 

rainfall generator. The model can be being used to create synthetic rainfall 

events, each event could then be characterized to obtain the necessary event 

model input variables; antecedent dry weather period (ADWP), rainfall event 

duration (T) and rainfall event average intensity (AGI5). The pre-calibrated 

catchment response to these synthetic rainfall events (InfoWorks CS predictions 

of TSS concentrations at a chosen CSO) were then analyzed to obtain respective 

TSS EMC’s for each event. 

Generation of Synthetic Rainfall Events 

The software InfoWorks CS (version 12.5) (www.innovyze.com) has a built-in 

rainfall generator which allows users to generate synthetic rainfall events. The 

synthetic events generated are based on research by the UK meteorological 

office, whereby statistical rainfall relationships have been derived from long term 

rainfall records across the UK. These statistical relationships allow users to 

generate a representative rainfall event for any location in the UK, duration and 

return period. Further information on this process can be found in The Wallingford 
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Procedure (DoE/NWC, 1982) and in the Flood Estimation Handbook (FEH) 

(Centre for Ecology & Hydrology (formerly the Institute of Hydrology), 1999).  

Rainfall Generator Parameters  

To create synthetic rainfall events time series events within InfoWorks CS, 

several parameters (rainfall event, catchment and catchment initial condition) 

must first be set within the rainfall generator model (Innovyze, 2011). These 

parameters are: 

 Rainfall event parameters: 

 Return period. 

 Duration. 

 Profile. 

 Multiplication factor. 

 Catchment parameters; 

 5-year 1-hour rainfall (20) 

 Rainfall ratio (0.4) 

 Catchment area (1151 Ha) 

 Initial conditions Parameters 

 Urban catchment wetness index (UCWI) (80) 

 Antecedent Depth (10mm) 

 Wetness Index (0) 

 Evaporation (mm/day) 

In the context of this study, the return period is an estimate used to indicate the 

likelihood of a rainfall event. These likelihoods are derived from historical rainfall 

records (HR Wallingford, 1981). They are often used in risk-based analyses to 

design of solutions which are able to ‘withstand’ an event of certain statistical 

likelihood. They assume that the probability of an event is independent of past 

events and does not vary over time. 

Equation 6-1 

� + 1

�
= ������ ������ 

Where 
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n = the number of years of data 

m = the number of occurrences of the event under study. 

 

Return periods are also expressed as ‘expected frequencies’, this expression of 

the return period is the inverse of the expected number of occurrences in a year 

i.e. a 10-year flood has a 10% chance of being exceeded in one year. 

In the InfoWorks CS model, the return period (years) indicates the period (years), 

between rainfall events of greater or the same intensity than the storm being 

generated. Because the winter and summer rainfall profiles are used for specific 

types of analyses, the return period must be between 1 and 100 years, if the 

synthetic rainfall profile is selected, rainfall events of less than 1-year return 

period can be defined. For example, a 1 in 1-week rainfall event can be defined 

as a ‘52 in 1-year’ rainfall event, thus the return period is defined in the software 

as -52. Furthermore, a ‘1 in 6-week’ rainfall event can be defined as a ‘2 in 1’ year 

rainfall event, thus the return period is defined as -2. To calibrate the model to 

‘realistic’ conditions, both short and long-term return periods are required, thus 

multiple ‘summer’ and ‘synthetic’ profiles were utilized to create rainfall events. 

Rainfall Event Duration and Profile  

The duration of the rainfall event must be defined within the rainfall generator. 

The rainfall duration used is often dependent on the size of the catchment; with 

short storms having higher peak intensities and long storms having a larger total 

rainfall depth (Robson and Reed, 1999). A summer, winter or synthetic profile 

must be defined in the rainfall generator. This profile defines how high the peak 

intensities are for a given rainfall depth, the Wallingford procedure recommends 

using the ’50th percentile summer profile; high peak intensities for urban areas, 

thus these were selected for rainfall events over the 1-year return period.  

Multiplying factor 

The multiplying factor allows for a percentage-based increase of design rainfall 

events. This parameter was not utilized in this study and so a value of 1 was used 

for all generated rainfall events. 
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Catchment Parameters  

The catchment parameters specify the initial conditions associated with the 

catchment. 

5-year 1-hour rainfall  

This is the rainfall depth (mm) for a 5-year return period rainfall event of 1-hour 

duration. Reference 5-year 1-hour values can be obtained with respect to the 

catchments location (Centre for Ecology & Hydrology (formerly the Institute of 

Hydrology), 1999). 

Rainfall ratio 

The rainfall ratio is the ratio of rainfall depths for a 5-year return period rainfall 

event of 1-hour duration and a 5-year return period rainfall event of 2 days 

duration. Typical values across the UK are in the range of 0.12 to 0.46. Ratios 

can be obtained can be obtained with respect to the catchments location (Centre 

for Ecology & Hydrology (formerly the Institute of Hydrology), 1999). 

Catchment Area 

This rainfall generator input parameter represents the total catchment area of the 

drainage system. This value determines the area reduction factor, a factor which 

considers the reduction in total rainfall intensity as the storm passes over a 

catchment, it accounts for the spatial variability of rainfall events (Centre for 

Ecology & Hydrology (formerly the Institute of Hydrology), 1999). 

Series 

If using ‘synthetic’ rainfall event profiles, the respective catchments yearly ratio 

(YR) can be calculated by: 

Equation 6-2 

�� = �
����

�5 − 60
 � ∗ � 

Where: 

SAAR is the annual average rainfall (mm) 
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M5-60 = the 5-year 60-minute rainfall event (mm) 

R = the rainfall ratio (-). 

 

InfoWorks CS allows users to choose a different ration for ‘east’ and ‘west’ 

locations, the YR closest to the predefined east (15.9) and west values (12.5) is 

then chosen. These ratios have little effect on storms over a 1-year return period 

(Centre for Ecology & Hydrology (formerly the Institute of Hydrology), 1999). 

The initial event conditions specify the initial conditions associated with the 

moisture content of the catchment surface before a storm event begins. 

The Urban Catchment Wetness Index  

The Urban Catchment Wetness index defines the antecedent wetness of the 

catchment for the runoff model; this was set to 0.8, the default parameter defined 

within the model (Centre for Ecology & Hydrology (formerly the Institute of 

Hydrology), 1999).  

Antecedent Depth 

The antecedent depth (quantity of rainfall (mm) to have fallen an hour prior to the 

storm under analysis) was set to 10mm (worst case scenario) to ensure that any 

initial loss volume is filled before a storm commences (Centre for Ecology & 

Hydrology (formerly the Institute of Hydrology), 1999). 

Wetness Index and evaporation  

The wetness index defines the catchment wetness (dry, average or wet) for use 

within the run-off model. The evaporation define the rate of evaporation from the 

catchment per day (mm/day), it was set to the corresponding model default 

parameter described in the description of the Denton catchment (Chapter 3) 

(Centre for Ecology & Hydrology (formerly the Institute of Hydrology), 1999). 

Selection of rainfall events 

30 events were selected for synthetic generation. As discussed in chapter 4, 

ADWP’s are assumed to influence the amount of pollutant ‘build-up’ and thus 

influence the quantity of TSS on the catchment surface available for wash off into 
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the combined sewer system. The InfoWorks CS model assumes that quantities 

of TSS on the catchment surface reach equilibrium at ADWP’s of 9 days 

(Innovyze, 2011). Synthetic rainfall events were created for simulation on the 

catchment at ADWP periods of 0.2; 1; 2.5 and 9 to simulate a ‘realistic’ range of 

build-up conditions. In respect of the experimental values presented in the 

Monash water quality monitoring campaign presented in chapter 4, rainfall events 

durations were created at following intervals; 30, 60, 120 and 720 minutes for 

return periods of -52, -26, -13, -2 and 5 respectively. A summary of synthetic 

rainfall characteristics and possible ADWP’s are presented in Table 6-1. 

Table 6-1 Summary of climatic and rainfall event characteristic used to 

generate synthetic data set. 

ADWP Rainfall Durations Return Periods 

0.2 30 -52 

1 60 -26 

2.5 120 -13 

5 720 -2 

9 - 5 

If all possible rainfall durations at the varying return periods were generated, it 

would require the simulation and corresponding analysis (calculation of TSS 

EMC’s for each of event from high temporal resolution data) of 96 events. To 

simplify this procedure and minimise the calibration data set whilst also capturing 

the range of possible ADWP and rainfall event conditions, all possible deviations 

of rainfall events at corresponding ADWP’s were created and 5 events selected 

at random ‘with non-replacement’ within MATLAB; none replacement meant that 

no event of the same characteristics was used twice to create the data set. As 

previously discussed, 30 events were created, 5 of these events were selected 

at random for model validation. The selected event conditions used for synthetic 

data generation are presented in Table 6-2 (events randomly selected for 

validation are greyed out). 
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Table 6-2 Summary of synthetic events used to generate synthetic data 

set. Events reserved for validation are presented in grey. 

ADWP 0.2 

(Days) 

ADWP 1 

(Days) 

ADWP 2 

(Days) 

ADWP 5 

(Days) 

ADWP 9 

(Days) 

RP 
DUR 

(mins) 
RP 

DUR 

(mins) 
RP 

DUR 

(mins) 
RP 

DUR 

(mins) 
RP 

DUR 

(mins) 

-26 60 -13 30 -13 30 -13 120 -13 120 

-2 30 -13 60 -26 30 -2 60 -2 30 

-52 30 -26 120 -2 720 -52 120 -2 60 

-52 120 -2 720 -52 30 1 60 -52 30 

1 120 -52 30 -52 60 5 30 1 720 

5 30 5 720 5 30 5 120 5 30 

6.2 Generation of Synthetic TSS EMC’s 

The catchment selected for analysis was Denton (catchment D), information on 

the network model build for this catchment is presented in chapter 3.  Spill water 

quality results for the CSO prior to the WWTW (Figure 3-2, CSO 15) was selected 

at random for analysis. 

Because the InfoWorks CS model representation is that of a combined system, 

to generate values of storm water TSS EMC’s without contributions from 

domestic and industrial wastewaters, the wastewater profile used to provide 

inputs of wastewater within the model was turned off.  

The InfoWorks CS software provides a complex representation of water quality 

processes within catchment sewer systems, this includes complex ‘in-pipe’ 

sediment behaviour which influence the concentrations of TSS spilled through a 

CSO. To account for the possibility that TSS concentrations could be significantly 

influenced by these behaviours, and the models predicted concentrations of TSS 

spilled out through the CSO under observation were homogenous for the rainfall 

simulation and subsequent ADWP being utilised, a stabilization procedure was 

created. To perform stabilization, ADWP’s were spliced into a continuous time-
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series; whereby the ADWP was repeated until TSS concentrations spilled out 

through the CSO under analysis reached equilibrium. Once equilibrium was 

achieved, time-series data of TSS concentrations were exported to MATLAB for 

calculation of each respective event TSS EMC calculation. An example of this 

stabilization procedure is presented in Figure 6-1. 

 

Figure 6-1 Plot of time series TSS concentration during simulation ADWP 

(0.2) for event RP(-26) DUR(60), convergence of stable concentrations can 

be seen in the last two CSO spill events for which equal values of TSS 

EMC were obtained. 

Following calculation of TSS EMC’s for each respective simulation, the newly 

developed model was calibrated to the synthetic TSS EMC data set via 

implementation of the calibration algorithm presented in section 5.2.1.1. Model 

calibration and validation results are presented in Figure 6-2 and Figure 6-3 

respectively.  
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Figure 6-2 Calibration plot for Denton catchment showing TSS EMC’s 

generated via InfoWorks CS (Cinfo) and calibrated model TSS EMC 

predictions (Cpred). 

 

 

Figure 6-3 Validation plot for Denton catchment showing calibrated model 

TSS EMC predictions vs InfoWorks CS generated TSS EMC’s. 

Model parameter values and respective Nash-Sutcliffe coefficients (E) for both 

calibration and validation to the InfoWorks CS synthetic data set are presented in 

Table 6-3. 
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Table 6-3 Denton Model Parameter, Calibration and Validation Nash-

Sutcliffe efficiencies 

 Model Parameters Calibration Validation 

 

a b c d 

No of 

events 

Calibration 

(E) 

No of 

events 

Validation 

(E) 

Denton 96.1 1.3 0.0048 -0.74 25 0.94 5 0.96 

6.3 Application of Factor-Ratio Uncertainty Method 

In this section, the ‘factor-ratio’ method presented in section 5.4 has been applied 

to quantify the uncertainty associated with model predictions. In chapter 5, pdf’s 

were generated for the Cratio(s) of all catchments analysed, the ‘combined’ log-

normal PDF has been utilised within the factor-ratio method to quantify the newly 

developed models uncertainty estimation on the Denton validation data; at the 

lower and upper 95% confidence intervals (Figure 6-4). 

 

Figure 6-4 Uncertainty bounds calculated at the lower and upper 95% 

confidence interval for model prediction on the Denton catchment. 
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Figure 6-5 shows that the model’s prediction becomes increasingly uncertain 

when predicting higher values of TSS EMC’s, i.e. for validation event 6, the new 

model predicts a TSS EMC of 204 (mg/l), lower and upper 95% confidence 

intervals in the range 152 – 236 (mg/l) respectively. 

Application of Model to observed values 

Chapter 3 of this study presented water quality data for two observed storms on 

the Denton catchment, on receipt of this data set, no climatic variables were 

provided. To further validate the new model on this catchment (past the use of 

the synthetic water quality data set) ADWP’s for these events were extracted from 

long-term rain-gauge data provided by United Utilities. Model parameter values 

derived from the initial model calibration in section 5.2.1.1, Table 5-2 Model inputs 

variable, models EMC predictions and associated uncertainty bands are 

presented in Table 6-4. 

Table 6-4 Model inputs for the two observed events recorded at CSO 15 

within the Denton catchment. 

 
Rainfall event 

characteristics 
TSS EMC’s (mg/l) 

95% 

Confidence 

Intervals 

Rainfall 

Event 

ADWP 

(days) 

AGI5 

(mm/hr) 

T 

(mins) 
Observed  Predicted Variance Upper Lower 

1 3.4 1.1 1650 30.4 24.3 6.21 47.6 23.4 

2 2.3 2.9 132 141.3 98.0 43.3 146.7 70.3 

The model under predicts observed values of TSS during both rainfall event 1 

and 2, the observed values do fall within the 95% confidence limits calculated by 

the factor-uncertainty method. 

6.4 Discussion and conclusions 

The aim of this chapter was to investigate the transferability of the simple TSS 

EMC model developed in chapter 5, this was achieved through application of the 
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model and associated uncertainty methodology applied to the Denton catchment 

and presented in chapter 3.  

Due to data scarcity, calibration of the model was achieved by use of a synthetic 

water quality set generated by a previously calibrated and verified complex 

deterministic model. There are risks and weaknesses associated with this 

approach in that the new models predictive capacity is inherently linked to the 

complex models capacity to describe variations in TSS concentrations, an ‘ideal’ 

scenario would be to calibrate the model to a large number of water quality events 

which captured the maximum variation in catchment TSS catchment 

concentrations over a wide range of climatic and rainfall characteristics, however, 

in reality, water monitoring campaigns are expensive, climatic and rainfall 

conditions are uncertain and access to high quality water quality data is limited. 

Figure 6-4 shows the range of TSS EMC’s captured by the synthetic calibration 

data set (4 – 249 (mg/l), this shows the advantage of using the synthetic 

calibration technique; a very few number of synthetic events (25) can be 

generated which captures a catchment response over a wide range of climatic 

and rainfall conditions.  

Model calibration yielded high Nash-Sutcliffe values of 0.94 and 0.96 

respectively; this highlights the ability of the model to ‘mimic’ the water quality 

description techniques used within InfoWorks CS model. According to model 

calibration, the optimal parameter set derived for the Denton catchment 

(excluding parameter d; -0.75) was within the range of the parameter sets 

obtained from calibration of the six Australian catchments in chapter 5, 

consequently, this larger value of parameter d reflected that model’s predictions 

presented in this chapter were increasingly influenced by the wash-off component 

of the model. 

Following model validation to the synthetic validation data set, further validation 

of the model was performed on the observed TSS EMC data presented in chapter 

3. Whilst this data set consisted of just two monitored water quality events, 

following application of the Factor Ratio uncertainty method presented in chapter 

5, the observed values of TSS EMC’s for both rainfall events fell within the upper 

and lower 95% confidence intervals of the model for both events (Table 6-4). 

Application of this method involved sampling from the Cratio pdf presented in 
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chapter 5 for the ‘combined’ catchment data set. With random fluctuations likely 

to vary across catchments, it is recommended that recalculation of Cratio pdf’s for 

the catchment under observation be calculated; this approach is limited to the 

availability of observed catchment water quality data. The model was calibrated 

on a synthetic water quality data generated from a complex mode, the 

construction of the synthetic rainfall data as model inputs has little scientific 

foundation, therefore it is not possible to objectively evaluate the model’s 

transferability. This chapter does however illustrate how the model and 

methodology developed in this work could be applied to simplify the solution 

design process within the ICM approach. 
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Chapter 7. Conclusions and Further work 

The overarching aim of this work was to investigate and evaluate the potential of 

less computationally demanding water quality modelling technique to represent a 

specific component of the ICM process. Following an introduction to the urban 

drainage system and a review of the models used to support the ICM process 

(chapter 2); several specific research objectives regarding the development of a 

simple water quality modelling approach capable of providing a balance between 

model result accuracy and computational efficiency were presented. To meet 

these objectives, catchment water quality data sets collected across ten different 

catchments in the UK and Australia were analysed; a new stochastic water quality 

model and uncertainty methodology was developed from the analyses. After 

completing the study, the following conclusions have been made. 

7.1 Evaluating the Use of Simple Water Quality Models within 

Integrated Catchment Models 

Simple water quality models are less detailed representations of reality and 

operate at reduced temporal and spatial scales. This simplification means that 

these models require reduced computation cost when compared to their complex 

counterparts. Reduced model run times allows these models to be used more 

readily in scenario analyses and uncertainty assessment techniques. With the 

accuracy of complex water quality models often questioned within the literature, 

and a need to explicitly quantify the uncertainty associated with water quality 

predictions, chapter 4 aimed to establish whether there was a potential for simple 

water quality models to be used within the ICM approach. 

EMC’s are an inherently simplified approach to water quality modelling as the 

temporal variability of a spill event cannot be considered using a mean 

concentration value. Within respect to the integrated catchment modelling 

approach, EMC models may be used to provide inputs to river impact water 

quality models; the use of empirically based EMC’s is a common alternative to 

deterministic hydrodynamic water quality modelling approaches when predicting 

the impact of combined sewer spills on receiving waters. The chapter utilised a 
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previously conducted ICM study in the UK to explore the significance of the 

representation of dynamic pollution events as mean values within an ICM study.  

As simple water quality models generate water quality descriptions at reduced 

temporal scales, it was necessary to quantify what the impact of such a reduction 

would have on overall ICM accuracy; this impact was quantified as the variance 

between observed and modelled results generated from a river impact model. 

The variance between EMC and ‘dynamic’ observed values to rainfall characteristics 

showed that these variances, whilst noticeable, may not be significant in contrast to 

observed variances when using ICM models made up of industry standard 

deterministic sewer and river water quality models. It was evaluated that there is 

significant potential for more widespread use of EMCs within integrated modelling 

approaches if a reliable EMC prediction methodology could be found. 

The risks associated with the work presented in Chapter 3 are now discussed. 

The work used actual optimum EMC values derived from two observed water 

quality events, it must be noted that it is highly unlikely that an EMC water quality 

model would be able to consistently reproduce optimum EMC values; this 

likelihood is linked to the level of calibration of the complex model; the models 

ability to represent the sewer system accurately, in contrast, the complex models 

used in this study were calibrated to UPM and WaPUG regulatory criteria and 

were verified as suitable for use in ICM studies by the UK’S regulatory body; the 

EA.  

Only one deterministic complex model was presented in this work, there are other 

available complex models with alternate pollutant description techniques, the use 

of these models may produce different results. It is there for a recommended that 

the work in chapter 3 be repeated using different complex models calibrated with 

the same water quality calibration data. In the context of the ICM model, further 

work regarding the simple description of pollutant events should be performed, 

this would give a broader appreciation of the differences and implications 

associated with using complex and simple dynamic pollutant description 

techniques. The study could also be performed using simple EMC methodologies 

already published within the literature to gain a more accurate understanding 

regarding the implications associated with both methods. 
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7.2 Evaluating the performance of EMC models using case 

study data 

The objective of chapter 4 was to provide recommendations which could aid the 

development of a new water quality model. The use of previously developed EMC 

models to estimate pollutant concentrations has been achieved with mixed 

success, this success is inherently sensitive to the strength of available 

experimental data that can be used for calibration. It is generally agreed within 

the literature that TSS concentrations are the most important indicator of 

stormwater pollutant, thus the scope of the study was narrowed to the 

development of a new TSS EMC stormwater model.  

Following presentation of a literature review concerning storm water processes 

and EMC models which try to describe these processes, it was established that 

land use characteristics, climatic and rainfall characteristics have an important 

impact on resulting TSS EMC pollutant concentrations but that establishing any 

explicit relationships which allow transferability of default model parameter values 

across catchments had previously been achieved with little success. 

A new comprehensive water quality data set was presented in chapter 4, this data 

set was used to test a previously published EMC methodology presented within 

the literature to evaluate the transferability of this ‘simple’ approach to water 

quality modelling and establish the transferability of this approach. The study 

shows that a previously published empirical TSS model can be used to predict 

TSS event mean concentrations in catchments other than where it was first 

derived. The chapter concluded with the recommendation that simplified water 

quality techniques should include some explanatory variables which account for 

build-up and wash off processes. 

Only one previously published TSS EMC model was tested in this study, whilst 

the number of TSS EMC models presented within the literature is limited, it is 

recommended that other simple pollutant techniques be utilised in the study set 

to gain further understanding as to the transferability of these simplified model’s. 

Chapter 4 suggests that EMC’s are an adequate measure to assess pollution 

impact on a water course. The most important piece of legislation in this area is 

the Water Framework Directive (WFD) which aims to ensure all the EU’s surface 
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water bodies are improved to a ‘good’ ecological status. Currently, different 

approaches are used in the UK; described in Chapter 2 Section 2.5. These 

approaches do not use EMCs but concentration-duration-thresholds (CDT)’s, this 

would suggest that the EMC approach may not be compatible with the WFD 

approach. The WFD is primarily concerned with achieving an outcome, namely, 

‘Good’ status for all water bodies and describing what ‘Good’ status is e.g. for 

priority substances, there are concentration values that must not be exceeded 

(expressed as mean or maximum values). In general, the WFD is not very 

prescriptive about how the status objective is achieved, thus the extent to which 

the EMC approach proposed is compatible with the WFD is dependent on the 

extent to which it contributes to achieving ‘Good’ status? In essence; Is the EMC 

approach inferior to the CDT approach? In this regard, it can be argued that there 

are advantages and disadvantages associated with both the EMC and CDT 

approach. For example, although the CDT approach is more deterministic than 

the EMC approach, this doesn’t necessarily mean it is better since there are 

significant uncertainties on the extent to which the CDT approach might 

approximate reality. The EMC approach offers a less granular perspective but 

reduces the need to make assumptions that might be very difficult (or even 

impossible) to verify and test. The strength of the CDT approach is that it has 

been more strongly linked to observations of fish and invertebrate mortality, thus 

it can be argued to be more closely related to ecological status than EMC values. 

Importantly, this work is not focussed on replacing deterministic modelling with a 

simple modelling, the benefits associated with the EMC approach are that it can 

be used more readily as part of solution design testing analyses, thus It is 

concluded that if the EMC method doesn't fully comply with WFD requirements, 

the method can still be used to add to the pool of knowledge regarding the 

application of the ICM approach. 

7.3 Development of a new stochastic TSS EMC model  

This objective of chapter 5 was to develop a new model capable of predicting 

storm water TSS EMC’s, the structure of which incorporated build-up and wash-

off components by utilizing explanatory variables which best described variations 

in TSS EMC’s.  
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A multivariate analysis technique was used on the new water quality data set 

presented in chapter 4 to explore build-up and wash-off explanatory variables that 

‘best’ described the variations in TSS EMC’s. Mathematical derivation of the 

commonly used exponential decay function, often used to describe the behavior 

of catchment TSS storm water pollutants was carried out to develop a new TSS 

EMC model. After model development, a specific calibration algorithm was 

developed to explore different mathematical functions which ‘best’ describe the 

build-up and wash-off functions within the model. Following derivation of the 

optimal model structure and optimized parameter values, to gain understanding 

of model inputs and model parameters, a GSA analysis was performed using 

hypothetical input variables experienced during the study, the analyses revealed 

the importance of focusing water quality calibration campaigns on specified input 

variables and the extent to which parameters within the model impact model 

output results. An approach to evaluating the uncertainty was presented based 

upon model prediction and observed errors which could be used in conjunction 

with the model to quantity the uncertainty associated with model prediction. 

In accordance with the literature, following visual analysis of the multi-variate 

analysis results, it was determined that the variable rainfall intensity (AGI5) 

described the largest variation in TSS EMC’s, furthermore, as the ADWP 

(antecedent dry weather period) was the only climatic variable available for 

analysis in the study, ADWP and AGI5 were selected for use in the development 

of a new TSS EMC model. Manipulation of the exponential wash-off equation was 

presented to develop a model structure capable of generating TSS EMC’s. 

Following application of the calibration algorithm to six different catchment data 

sets, results suggested that one of the seven different model forms described 

variations in TSS EMC’s significantly better than all other model formulations 

examined. In comparison to model efficiencies presented within the literature, the 

model had relatively ‘good’ predictive power in three of the six catchments to 

which is was applied (ER, RCW and SHEP), model performance on the remaining 

three catchments was considered ‘satisfactory’; showing significantly more 

predictive power than when using a mean of the observed water quality values 

recorded in these catchments. The relatively poor performance of the model in 

one catchment was attributed to the possibility of cross connections between 

surface and sewerage system. It of note, that limited information regarding the 
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application of similar models is available within the literature, therefore any 

comparative evaluation regarding model performance is limited. Optimal model 

parameter values were relatively stable across all catchments, furthermore, 

model sensitivity analysis indicated that the model is sensitive to model 

parameter value C (associated with the wash-off component of the model), the 

model showed little sensitivity to parameter values b and d, suggesting that these 

could be fixed, however, it was concluded that as the GSA model inputs and 

parameter distributions were obtained through analysis of the water quality 

monitoring campaign and model development respectively, these distributions 

may not fully reveal the true sensitivity of the model, it is therefore recommended 

that alternate model and input distributions be used in future GSA studies 

associated with the model. 

Analysis of model residuals (observed TSS EMC’s versus model predicted TSS 

EMC’s) suggested that the model tended to under predict catchment TSS EMC’s, 

the resulting probability density functions for each catchment associated with the 

ratios of each catchments residual errors were found to be log normally 

distributed, whilst this could indicate a problem with the model structure, this was 

not investigated further, however, it has been stated in the literature that 

modelling error residuals could be log-normally distributed. A new TSS EMC 

model was successfully developed in chapter 5, the accuracy of the model 

outputs (related to its prediction performance) was relatively good in comparison 

to other studies, thus it was concluded that the objectives of chapter 5 were 

achieved. 

The model development phase of chapter 5 could be improved by investigation 

into other possible climatic variables which could be used within the build-up 

component of the model. The land use characteristics in this study were broadly 

defined and ultimately showed no relationship with resultant TSS EMC’s. A 

significant weakness in the model is the lack of accountability for accumulated 

loads on the catchment surface, this could have been a major source of residual 

error, however, the fact the model operates at the temporal event scale, is what 

provides inherent benefits associated with simple models of this kind, thus if an 

explanatory variable could be incorporated which reflected the amount of TSS 

remaining on the catchment surface following the event preliminary to the one 

under analysis, model performance could be improved.  
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7.4 Model transferability 

The objective of chapter 6 was to study the implications associated with the 

application of the new model to catchments other than where it was initially 

developed, such that its application to new catchments in a practical context could 

be evaluated.  

Due to a lack of water quality data available for model calibration in the UK 

catchments, a verified complex deterministic model was utilised to generate a 

synthetic water quality data with which the newly developed model could be 

calibrated and validated against. The model was then validated using data from 

the two-monitored water quality presented in chapter 3.  

The model was applied to a catchment where water quality was available for only 

two water quality events, thus limited conclusions can be drawn as to the 

predictive capabilities of the model. However, the resultant TSS ECM’s calculated 

from observed data were shown to fall between the upper and lower 95% 

confidence intervals through application of the Factor Ratio uncertainty technique 

developed in chapter 5. The high model efficiency values obtained for calibration 

and validation of the model to the synthetic water quality data set show that the 

model can successfully ‘mimic’ the complex description of water quality, 

furthermore, it does this at significantly reduced computation cost.  

The work in chapter 6 could be improved by validating the model to more 

observed water quality events, offering further information regarding its 

transferability and predictive capabilities. The model is also dependent on 

hydraulic information provided by a complex model, due to its representation of 

TSS as EMC’s, thus it could never be used as a standalone package. 

The model was derived to predict stormwater TSS EMC’s, this limits its 

application to combined sewer network catchments, whereby an inclusion of the 

wastewater component present and the impacts of in-sewer processes need be 

accounted for. It could be arguing that the models ‘under’ prediction of the two 

observed events on the Denton catchment which is combined could show that 

these if wastewater inputs and in-sewer processes were added to the model, 

application to combined systems could be achieved. Conversely, wastewater 

inputs tend to be more predictable and less susceptible to random fluctuations 
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thus the inclusion of a wastewater input component could be achieved, however, 

incorporating a model component which accounts for how in-sewer processes 

affect final water quality predictions would be difficult as these in-sewer processes 

and interactions are not yet fully understood. It is there recommended that 

investigation into the model’s application to a combined sewer water quality data 

and incorporation of model structure components representing wastewater 

generation and in-sewer model processes need be further explored, further 

implication of this would be that modelling complexity begin to increase.  

 Whilst the literature suggests that TSS is the most important indicator or urban 

pollution, the applicability of the model in a practical environment could be 

improved if the model had the capability to predict BOD, COD and NH4 EMC’s. 

Whilst it is hypothesized that some empirical relationship could be developed 

between TSS, BOD and COD, at present, the model is unlikely to be able to 

predict NH4 due its association with inherent association with wastewater. 

The model was developed on a water quality data set collected in Melbourne 

Australia, whilst the rainfall characteristics in Melbourne are similar to those 

experienced in the UK, collection of a comprehensive UK water quality data set 

similar to the monitoring campaign presented in chapter 4 would certainly offer 

more information as to the applicability of the model to new catchments.  

Following calibration to the UK catchment, further work could be done which 

would significantly benefit chapter 3, whereby the potential of EMC pollutant 

description techniques could be evaluated using the newly developed model as 

oppose to the optimum EMC values recorded at each CSO, this would offer 

further information as to the potential of these EMC based techniques in the 

integrated context. 

With many utilities currently in possession of verified complex sewerage network 

models, the potential for simple model to ‘mimic’ their complex description 

techniques could offer cost efficiencies in the practical environment. Subject to 

the efforts required to calibrate the model, the ability to quantity the uncertainty 

associated with its prediction allows for interpretation of probabilistic results, this 

offers decision makers using ICM approaches the opportunity to test, plan and 

develop solutions to urban drainage problems with increased information 

regarding the probability of success, furthermore, the opportunity to value 
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solutions on the probability of their success provides information which could be 

considered valuable to numerous different stakeholders involved in the ICM 

process. 

7.5 Summary of conclusions 

To conclude, the main findings of this thesis are: 

 There is potential for EMC pollutant description techniques to be used in 

ICM studies. 

 Storm water EMC models should account for build-up and wash-off 

processes of pollutants within a catchment, preferably using an 

explanatory variable with respect to rainfall to describe variations in TSS 

EMC pollutant concentrations. 

 There is a potential for EMC models to mimic their deterministic complex 

water quality, with respect to computation costs and uncertainty 

quantification, this potential offers increased efficiencies and opens up the 

interpretation of probabilistic results which could be used to aid the 

development of solutions in the ICM process. 
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