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A B ST R A C T

In this work, I develop theories, and their implementations, for the
high-accuracy study of large molecular systems. Intermolecular inter-
actions are fundamental in nature, in particular in materials chemistry
and biological systems. They are difficult to study theoretically due to
the small energy differences and vast numbers of molecules involved.
Present high-accuracy methods can typically only deal with at most
a few molecules in a single calculation, limiting applications to the
gas phase. Using absolutely localised molecular orbitals (ALMOs, [1,
2]), I develop a new correlated method for intermolecular interactions
that is linear scaling in the number of molecules, with accuracy sim-
ilar to coupled-cluster with single and double excitations (CCSD). I
give details of an implementation that minimises the memory imprint
and processor time, as well as allowing for extensive parallelisation.
Results over benchmark databases of non-covalent interactions show
consistent agreement within 0.5 kcal/mol of the CCSD result, with
timings two orders of magnitude smaller. Subsequently, I derive an-
alytical derivatives for the total energy, allowing for rapid geometry
optimisations on large scale systems. Again, geometrical parameters
and vibrational frequencies are shown to agree well with CCSD re-
sults. Finally, I extend the ALMO approach to multi-configurational
systems, and in particular excited states, demonstrating how it can
then be used as an embedding-type method, where different subsys-
tems are treated to different levels of accuracy. This culminates in the
reproduction and elucidation of experimentally observed shifts in the
photoelectron spectrum of phenol when in water, compared to the
gas phase. The methods developed herein thus allow for the high-
accuracy treatment of much larger condensed-matter systems than
has previously been possible.
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P R E FA C E

They say a little knowledge is a dangerous thing, but it’s not one half so bad
as a lot of ignorance.

— Terry Pratchett

First, some housekeeping. Portions of Chapters 2 through 5 have
been published in the following paper:

R. A. Shaw and J. G. Hill, “A linear-scaling method for non-
covalent interactions”, J. Chem. Theory Comput., 2019, https://
doi.org/10.1021/acs.jctc.9b00615

However, the contents of the above is presented in this thesis entirely
rewritten and greatly expanded. The aforementioned chapters also
contain several not-yet-published developments. Secondly, the most
recent stable release of my quantum chemistry program, Gamma, in
which are the implementations described herein, can be found at:

https://www.github.com/robashaw/gamma

This PhD has been an eventful one. Completely separate to the
work in this thesis, I have published six papers, with several more in
the process of being written or submitted. I have helped supervise
almost a dozen undergraduates, becoming good friends with many
of them. I have attended conferences and given talks, developed tuto-
rials and workshops, and worked on (at great risk to my sanity) multi-
ple open-source software projects. The PhD environment has allowed
me to collaborate and work on topics ranging from pure mathematics,
to computational spectroscopy, to even the dreaded field of biochem-
istry. On that last note, I have learned to be very careful about the
number of hydrogens in any and all molecules.

It would be easy to leave it at that, reducing myself to the sum of
my productivity. But I am not a product. I have also suffered, been to
the very bottom of the darkest places, and scraped and screamed until
I found my way out again. In the last few years, I have: been isolated
from my friends, gotten married, had a mental breakdown, watched
my personal relationships break down, almost been financially crip-
pled, come out to my friends and family, suffered the consequences
of coming out while also finally learning how to be myself, and be
comfortable in who I am. I am now a proud advocate for diversity
and better mental health in science; I am more than just a cog in the
terrible, ineffable machine we call academia.
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A C R O N YM S

ABS Auxiliary basis set, used in density fitting.
ALMO Absolutely localised molecular orbitals, molecular orbitals re-

stricted to be expanded in the local AO basis of a fragment.
AO Atomic orbital, the atom-centred basis functions used in SCF cal-

culations.

BCH Baker-Campbell-Hausdorff expansion, used to expand similarity-
transformed operators in terms of commutators.

BSEE Basis-set extension effect, the BSIE term in an energy difference
that is not attributed to BSSE.

BSIE Basis-set incompleteness error, the error in the total energy due
to using a finite basis set.

BSSE Basis-set superposition error, the error in energy differences due
to mismatched basis set sizes between terms in the difference.

CBS Complete basis set, an in principle infinite set of functions which
can be linearly combined to exactly represent any function in
the function space.

CC Coupled cluster, a popular renormalised MBPT.
CCSD CC with the cluster operator truncated at single and double

excitations.
CCSD(T) CCSD with non-iterative (perturbative) triples.
CHA Chemical hamiltonian approach, a method where BSSE terms

are directly removed from the molecular Hamiltonian.
CI Configuration interaction, a method for expanding the wavefunc-

tion in terms of excitations from a reference determinant, so
as to calculate the correlation energy.

CP The counterpoise correction method of Boys and Bernardi, used
to correct for BSSEs.

CPU Central processing unit, the main processor on most computers.
CT Charge transfer, a non-local form of polarisation of the electron

density on a fragment due to the presence of other fragments.

DCBS Dimer-centred basis set, the combined basis set of the dimer,
i.e. the union of two MCBSs.

DF Density fitting, an approximation used to expand four-centre ERIs
in terms of three-centre ERIs.

DFT Density-functional theory, where the Schrödinger equation is
solved in terms of the electron density rather than the wave-
function.

ix



x Acronyms

DIIS Direct inversion of the iterative subspace, used to accelerate SCF
convergence.

dRPA Direct random phase approximation, RPA with the bare, non-
antisymmetrised Coulomb integrals.

dRPAd Direct random phase approximation decomposed into disper-
sive excitations.

EDA Energy decomposition analysis, a method for decomposing in-
teraction energies into physical components, such as electro-
statics and dispersion.

EOM Equation-of-motion, methods used (particularly in tandem with
CC) to solve the time-dependent quantum problem starting
from a time-independent solution. Useful for excited states.

ERI Electron repulsion integral, the two-electron integral over the
Coulomb operator.

FCI Full configuration interaction: CI with all possible excitations
included in the expansion.

FLOP Floating-point operation, the low-level commands executed on
floating point numbers on a computer processor.

GP-GPU General-purpose GPU, a GPU card typically designed for
consumer graphics applications, such as gaming, rather than
high-throughput scientific computation.

GPU Graphical processing unit, the processors typically used to ac-
celerate graphical rendering on a computer.

GWA The GW approximation, a method for calculating electron cor-
relation, related to RPA and rCCD.

HF Hartree-Fock, a mean-field theory where the wavefunction is de-
scribed using a single determinant.

MBE Many-body expansion, the expansion of an energy as a series in
the number of bodies (typically atoms or molecules) involved
in each energy term.

MBPT Many-body perturbation theory, used to expand the correla-
tion energy as a series in increasing orders of the electron-
electron potential.

MCBS Monomer-centred basis set, the basis set located strictly on a
monomer.

MCSCF Multi-configurational self-consistent field, a form of SCF where
the wavefunction is built from HF expansions of a linear com-
bination of determinants (or configurations).

MD Molecular dynamics, a method for propagating nuclear motion
through time using a forcefield.

MO Molecular orbital, the linear combination of atomic orbitals de-
termined in an SCF calculation.



Acronyms xi

MP2 Second-order Møller-Plesset perturbation theory, a second-order
form of MBPT used to calculate correlation energy from an HF
reference.

OBS Orbital basis set, the union of all AOs.

PES Photoelectron spectroscopy, a way to experimentally measure
electron ionisation potentials by detaching electrons using high-
energy radiation.

rCCD Ring coupled-cluster doubles theory, CCD with only ring-type
Goldstone diagrams included, closely related to dRPA.

RPA Random phrase approximation, an approximation to the time-
dependent expansion of the electron density, used when cal-
culating electron correlation energies.

RPAx Random phase approximation with the full exchange interac-
tion included.

RPAxd Random phase approximation including exchange decomposed
into dispersive excitations.

SAPT Symmetry-adapted perturbation theory, a perturbative method
for directly calculating supermolecular interaction energies.

SCF Self-consistent field, a fixed-point approach where a many-body
quantity is iteratively approximated by an effective one-body
field until self-consistency is achieved.

SOSEX Second-order screened exchange correction to the direct ran-
dom phase approximation.





1 I N T R O D U C T I O N

Chemistry relies on the ability to take results determined in one
context and apply them in entirely different situations. At the most
fundamental level, the very notion of molecules belies the assump-
tion that the properties of a system are mostly local in nature; there
is no physical distinction, for example, between the individual wa-
ter molecules in ice, but it is helpful, and undeniably successful, to
treat them as such. Thus, it is useful to categorise different systems
and types of interactions. A very important class is that of nonco-
valent interactions, generally defined to be the interactions between
molecules, where the inherent locality implies that these are weaker
than what chemists consider to be intramolecular, covalent bonds.
These are vitally and ubiquitously important - in molecular recog-
nition, van der Waals clusters, hydrogen-bonded systems, physisorp-
tion, self-assembly, and many more [3–9].

This entails such a broad class of interactions that it is natural to
decompose the classification further, based on the dominant physics
in each case. This leads to the intuitive ideas of electrostatics, polari-
sation, exchange, dispersion, and charge transfer [10]. The first two of
these describe the largely classical attraction and repulsion between
charge distributions, and the anisotropic response of these to each
other. Exchange and dispersion, on the other hand, are purely quan-
tum mechanical terms arising from the antisymmetry constraints on
the wavefunction and the instantaneous changes in the electron distri-
butions of each fragment in response to the presence of the other frag-
ments, respectively. The final term, charge transfer, is somewhat con-
troversial, suggesting a transferral of electron density between frag-
ments; it has been shown to be important in many intermolecular
interactions [11–16], but highlights the main problem with any such
energy decomposition: it is largely arbitrary. Again, this is a reflec-
tion of the fact that these classifications are entirely imagined, but
nonetheless very useful.

Within the context of quantum chemistry, noncovalent interactions
present an interesting and difficult problem. Experimentally, they are
very hard to study; in solution, it is virtually impossible to isolate spe-
cific interactions - although, recent experiments involving molecular
balances are attempting to do just that [17] - while in the gas phase
very low temperatures are required so that the thermal energy does
not overcome the weak binding [18]. As such, theoretical studies are
an invaluable tool, but the small energy differences involved mean

1



2 introduction

that only the highest accuracy methods yield quantitatively meaning-
ful results. This is further compounded by the fact that dispersion of-
ten makes up a substantial portion of the interaction energy, and this
term is entirely due to electron correlation. As a result, mean-field
methods, namely Hartree-Fock and density-functional theory (DFT),
are incapable of describing it adequately [19–23]. In fact, even the
cheaper correlated methods are unsuccesful: second-order perturba-
tion theory (MP2) overbinds some complexes, especially those with
significant delocalisation such as the benzene dimer [24], while un-
derbinding others, such as saturated systems. Coupled cluster with
single and double excitations (CCSD) performs better, but still under-
binds many complexes [25]. Only CCSD with a perturbative triples
correction [CCSD(T)] is sufficiently accurate across the majority of sys-
tems [25, 26]. This has led to it being referred to as the "gold standard"
method, although lower-order methods (particularly CCSD) have also
been categorised into "silver" and "bronze" standards, denoting their
relative usefulness when balancing accuracy and efficiency [27]. More-
over, the dispersion portion of the energy converges very slowly with
basis set size [28], such that very large bases are needed. The end re-
sult is that anything over roughly thirty atoms becomes unachievable
without using significant computational resources.

To make the problem worse, in real systems - e.g. biological and
supermolecular environments - sterics and competition between mul-
tiple interactions mean that complexes are not in their equilibrium
geometries. This necessitates the calculation of potential energy sur-
faces so as to understand the geometry dependence of the interactions,
greatly increasing the magnitude of the computations that must be
carried out. While there are several examples of such surfaces at the
CCSD(T) level [29–33], the unreasonable O(N7) scaling, where N is
a measure of system size, quickly makes such investigations unfea-
sible [34]. If we then extend the problem to that of clusters, which
are in general far more interesting and relevant than dimers, we must
contend with several additional difficulties [35–37]:

1. many-body effects become very important;

2. the number of local minima increases exponentially with system
size;

3. the inter- and intra-molecular degrees of freedom are strongly
coupled;

4. the gradients of post-HF methods are tainted with basis set su-
perposition errors.

The latter point in particular presents a difficulty, as it requires that
either a very large, near-complete basis is used, or several separate
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calculations are carried out on each fragment in the cluster basis (the
so-called counterpoise correction approach).

In this thesis, a method is presented that attempts to address many
of these problems. One of the biggest problems is the basis set su-
perposition error, which will be described in the next section. Meth-
ods to correct for this can be a priori or a posteriori. The most promi-
nent method is the counterpoise correction of Boys and Bernardi [38],
which falls into the latter category. It is desirable to avoid this from
the beginning, which leads to the absolutely-localised molecular or-
bital (ALMO) approach [1, 2, 39–42]. The requirement for a high-
accuracy description of dispersion but at a low-scaling cost necessi-
tates methods for the reduction of computational cost, and several
such approaches will be discussed. Finally, we will see how the en-
ergy from such calculations can be decomposed into physically mean-
ingful terms. The culmination of solving these issues is a method that
is capable of treating large supermolecular systems in an accurate
and highly efficient manner, yielding specific information about the
interactions of interest, including the oft-neglected many-body terms.

1.1 basis set superposition error
In the supermolecular approach, the interaction energy is calcu-

lated as the difference between the energy of the whole system, Et,
and the sum of the N fragment energies, En:

∆E = Et −

N∑
n=1

En (1.1)

As the fragments are brought together from infinity, the basis func-
tions on the adjacent fragments become available for each individual
fragment to use, improving the description of the overall wavefunc-
tion on that fragment. Thus, if the monomer energies were computed
only in the monomer basis, the difference in completeness between
the cluster and monomer bases leads to an unphysical lowering of
the interaction energy, i.e. overbinding. This error is termed the basis This assumes the energy

is variational, such that a
more complete basis
implies a lower energy.

set superposition error (BSSE). It is a purely mathematical artefact of
using a finite basis, and in the limit of a complete basis would not be
present. Most importantly, it has nothing to do with the physics of
the system, a point which is sometimes forgotten [43]. In the case of
very small bases, the BSSE can be substantial enough to result in a
false minimum on a repulsive curve; for instance, in the example of
the helium dimer at the HF/4-31G* level [44]. This particular error
can be avoided by simply using a sensible basis set, and in general,
BSSE could be made negligibly small by using near-saturated sets. As
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was noted above, however, this is impractical, such that corrections -
either before or after the fact - are necessary.

If we consider the simplest case of two fragments, A and B, each
would have a monomer-centred basis, {A} and {B}. These would span
some finite-dimensional spaces A and B, respectively, such that if N
is the total function space associated with the problem, A ∪B ⊂ N.
Defining K = N \ (A ∪ B) to be the orthogonal complement to the
space spanned by the union of the monomer bases, the complete basis
set (CBS) limit interaction energy is given by

∆ECBS
AB = EAB[ABK] − EA[ABK] − EB[BAK] (1.2)

where EA···M[A · · ·MN · · ·Z] indicates the energy of the subcluster
A · · ·M calculated in the basis formed from the union of the bases
in brackets. The overline implies that the functions are not located on
the subcluster, so-called ‘ghost functions’, as they have no particles
associated with them. In comparison, the uncorrected energy would
be

∆Eunc.
AB = EAB[AB] − EA[A] − EB[B] (1.3)

The difference between these values is then the basis set incomplete-
ness error (BSIE). We can split this into a basis set superposition error,
and an intrinsic basis set incompleteness error. The latter reflects the
fact that a more complete basis will give a better description of all
components, regardless of whether energy differences are being taken.
This leads to so-called basis set extension effects (BSEEs), which are
not erroneous but rather a necessary component of the energy [35,
43]. Clearly, the BSSE is closely entangled with these BSEEs, making
it very hard to determine whether a discrepancy is an artefact of tak-
ing differences, or simply due to the incomplete description of the
system. Brauer [45] noted that, as these terms are opposite in sign
- BSSE leads to overestimation of the interaction energy, intrinsic in-
completeness to underestimation - in the case of small basis sets, they
can cancel each other out, and in fact the latter term can become dom-
inant. This is why in some cases double zeta quality basis sets can
appear to perform better than much larger sets [45].

The situation only deteriorates as more fragments are added. The
many-body expansion (MBE), one of the most commonly used meth-
ods for considering large systems [35, 46], is entirely based around
energy differences, such that the superposition errors compound. If
the monomer basis is used, BSSE leads to slow and oscillating conver-
gence of the MBE [47]. If either the full cluster (monomers calculated
using all functions) or subcluster basis (Nth monomer calculated us-
ing functions of the N-cluster) is used, the MBE converges rapidly,
but to different values. The difference in these values, due to the dif-
fering quality of the descriptions of the wavefunction, is a BSEE - if
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it were purely a superposition error, we would not expect rapid con-
vergence [48]. This demonstrates the complications that arise in the
supermolecular scheme.

It should be noted that there may also be a matching error to BSSE
present at the level of the n-electron configuration set [49], termed the
configuration state superposition error. Unlike BSSE, this will not dis-
appear as the basis tends to completeness. Additionally, some have ar-
gued that intramolecular BSSE may also be possible [50, 51]; we stress,
however, that BSSE is only relevant when energy differences are be-
ing considered - in any other case, the errors are due to the intrinsic
basis set incompleteness. While it is possible to define the fragments
within a supermolecular scheme as the atoms, there is no need, or
indeed use, in most cases to try and determine the pairwise atom in-
teractions, rendering any attempt at correcting for an intramolecular
BSSE pointless.

1.2 counterpoise corrections
The most popular method of eliminating BSSE is the counterpoise

(CP) correction [38, 43]. In this scheme, the interaction energy is com-
puted as

∆ECP
AB = EAB[AB] − EA[AB] − EB[BA] = ∆E

unc.
AB + δCP (1.4)

where the CP correction is defined as

δCP =
(
EA[A] − EA[AB]

)
+
(
EB[B] − EB[BA]

)
(1.5)

In this way, all quantities are treated on an equal footing. Note that,
if the method used is variational, the more complete basis necessarily
gives a lower energy, such that δCP ⩾ 0.

The CP correction can significantly improve convergence of the in-
teraction energy to the complete basis set limit; for example, in the
case of the benzene dimer [52]. However, there has been considerable
debate in the literature about whether it is a valid procedure, and
whether it overcorrects for the BSSE [53, 54]. The majority of these
complaints stem from either a misunderstanding of the fact that the
finite basis is a completely mathematical construct or from a confla-
tion of BSSE with BSEEs [43, 45]. One point of contention is that,
as has been shown for several hydrogen-bonded [55] and dispersively
bound [52] dimers, the CP-corrected potential energy curves converge
from above, while the uncorrected curves come from below. This is
not indicative of an overcorrection, but rather the correct behaviour:
given an incomplete basis and a variational method, we fully antic-
ipate that the curve should converge from above. From a practical
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point of view, it does suggest that a half-half method, blending the cor-
rected and uncorrected results, might be a useful ad hoc approach [56,
57].

Possibly the biggest and most often repeated complaint was first
put forward by Mayer and coworkers [58], who claimed that there
is a hidden non-additivity assumption implicit in the counterpoise
method. At infinite separation, the dimer total energy can rigorously
be written as the sum of the monomer energies. As they are brought
together, mixing of the basis sets is allowed to occur, such that the
dimer energy becomes the sum of the monomer energies in the new
environment, plus a counterpoise correction. Thus, the total energy
is implicitly no longer additive. Of course, there is no reason why it
should be additive, as the complex itself is not some noninteracting
addition of unperturbed monomers.

Mayer highlighted the particular case of the relaxation energy [44],
the energy associated with the change in geometry of the fragments
that occurs in going from the noninteracting to the interacting sys-
tem. Take, for example, the water dimer, and allow one of the intra-
monomer OH bonds to relax in the dimer basis. If the intermonomer
O ···O distance is kept constant, the ghost orbitals do not move, but if
the O ···H distance is fixed, they do. As such, different relaxation en-
ergies are obtained along different paths. This implies that relaxation
should be determined in the monomer basis, such that each point on a
potential surface would require seven energies: the dimer and relaxed
monomers in the dimer basis, along with the relaxed and unrelaxed
monomer energies in the monomer basis. Certainly, this means that
arguments based around the point that CP is “exact due to the same
basis being used throughout” are not valid. However, this ambiguity
is not a problem with the counterpoise method, but rather with the
fact that basis sets are atom-centred. While this is very convenient for
most calculations, it means that different regions of space are treated
in unequal ways, such that significant changes in geometry such as
those above lead to an uneven description.

In a similar vein, it is often claimed [18, 44] that the counterpoise
method allows for the delocalisation of the monomer electrons into
orbitals on the partner that would, in the dimer, be occupied and thus
excluded from the available space. However, this is wrong in several
ways. Firstly, the basis functions are not themselves orbitals: all func-
tions are available to be used in the description of any given orbital,
and have absolutely no concept of whether that orbital will be occu-
pied. Expansion of the basis simply improves the description of the
function space within which the orbitals reside, and so can only be a
good thing. In addition, as was pointed out by van Duijneveldt [43],
the exclusion of electrons from monomer A in the region of the occu-
pied orbitals of monomer B, and vice versa, is an important part of
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the physics trying to be described - namely, it constitutes the exclu-
sion principle. These regions would categorically not be excluded if
the second fragment was not present.

Misunderstandings aside, the above does not mean that the CP ap-
proach is without issues. First and foremost is that it only accounts
for the error in the energy, and the wavefunction itself remains tainted
with BSSE. One particularly striking case was noted by Fowler and
Buckingham [59], where the neon atom in the Ne ···HF complex ac-
quires a dipole moment, which it clearly should not have. Unfortu-
nately, CP corrections for quantities other than the energy are hard to
define. Perhaps the biggest problem, however, is with the extension
to systems of more than two fragments. There is a great deal of am-
biguity in how such a scheme would be defined; for example, when
determining the interactions in a chain, is it best to calculate each ad-
ditional monomer in the whole basis up to that point, or should the
basis of the whole chain be used in all instances? Mathematically, the
answer is obvious: only using the full cluster basis rigorously removes
the BSSE. For instance, in the ‘one at a time’ scheme in the case of the
hydrogen fluoride chain, different energies would be obtained if the
next monomer was added at the hydrogen end or the fluorine end, a
situation that is clearly unphysical [60].

This means that for a complex of N fragments, N+ 1 calculations
need to be done in the full cluster basis. Clearly, this will rapidly
become very computationally expensive. In addition to this, the coun-
terpoise correction at the correlated level can be much larger than at
the mean-field level [37]; given that such methods in general scale as
at least O(N5) [34], the CP scheme is impractical. While methods have
been devised to try and alleviate this, in particular by using a many-
body expansion type decomposition of the correction terms [46, 60–
63], it seems that a posteriori schemes such as this are fundamentally
limited in their scale. Thus, it is necessary to attempt to eliminate
BSSE explicitly from the beginning.

1.3 a priori methods for eliminating bsse

There is a veritable zoo of methods that attempt to get around the
need for a counterpoise correction by removing BSSE from the calcula-
tion in some way. These include symmetry-adapted perturbation the-
ory [64, 65], block-localised wavefunctions [66], absolutely/extremely
localised molecular orbitals [2, 67–69], local correlation methods [70–
75], dual basis set methods [76–78], and the chemical Hamiltonian
approach [44, 79, 80], to name but a few. We will briefly discuss and
contrast the main facets of several of these in this section, before using
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the concept of ALMOs as the basis for our own approach in the rest
of this work.

1.3.1 Symmetry-adapted perturbation theory (SAPT)

By definition, noncovalent interactions are relatively weak compared
to the intramonomer interactions, making them ideal to be treated in a
perturbative manner. The most successful variant of this is SAPT [64,
65, 81, 82]. In SAPT, the dimer Hamiltonian is partitioned into contri-
butions from the Fock operator of each monomer, FX, the interaction,
V , and the fluctuation potential, W:

H = FA + FB + V +WA +WB

The fluctuation potential contains the monomer correlation energy
terms (the difference between the true monomer Hamiltonian, and the
monomer Fockian), while V̂ contains all the intermolecular interaction
terms. The interaction energy is then a triple perturbation series:

Eint. =

∞∑
n=1

∞∑
k=0

∞∑
l=0

(
E
(nkl)
pol. + E

(nkl)
exch.

)
where n is the order in V , while k, l, are the orders in WA and WB,
respectively. The polarisation and exchange terms are from the po-
larisation expansions and repulsive interactions due to the antisym-
metry of the wavefunction, respectively. The series is then truncated,
with this generally written as E(vw)label, with v being the order of V , and
w the order in WA +WB. The label divides the terms into physi-
cal contributions, which is usually the primary reason for using this
method. These terms are broadly split into four categories: electrostat-
ics, which is the interaction of the monomers’ charge distributions; ex-
change, due to the Pauli repulsion between electrons; induction, due
to the anisotropy of the monomer charge distributions in response
to the presence of the other monomers; and dispersion, the purely
quantum-mechanical interaction between electronic fluctuations on
different centres.

The zeroth-order wavefunction in SAPT is a product of monomer
wavefunctions, computed within either a monomer-centred (MCBS)
or dimer-centred (DCBS) basis, where the latter includes the basis
functions of the other monomer just as in the counterpoise procedure.
In practice, only a few parts of the calculations are affected by this,
not including the general improvement due to a larger basis [18]. In
particular, exchange terms are affected. In the DCBS, charge transfer
will be included in induction, whereas this cannot happen in a finite
MCBS as there is no possibility of delocalisation between monomers.
Therefore charge transfer can be defined as the difference between
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the sum of the second-order induction and exchange-induction con-
tributions, as calculated using the DCBS and MCBS [16]. This gives
a sensible prescription for a quantity that is otherwise hard to define,
removing some of the arbitrariness of the energy decomposition, al-
lowing for detailed studies into the importance of charge transfer in
weakly-bound systems [12, 14, 83–85]. It is this arbitrariness that is
usually quoted as the main flaw of SAPT, although it does suffer from
other problems; in particular, as it is perturbative it struggles to de-
scribe strongly correlated systems, especially in the case of anionic
complexes [18].

Computationally, the cost of SAPT is no better than traditional cor-
related methods, and in fact can be prohibitively worse. Recently [86],
density fitting has been used to write the three-index integrals in the Density fitting will be

described in the next
section.

molecular orbital basis, such that the four-index integrals need never
be computed, analogously with many-body perturbation theory meth-
ods. This has allowed SAPT to compete, with DF-SAPT0 being fea-
sible for systems with more than 2500 basis functions. In conjuction
with natural orbitals - a method of localising the molecular orbitals -
higher-order SAPT of near-CCSD(T) quality is possible for about 1200

basis functions on a single computer [18]. Additionally, DFT-SAPT
variants exist, but these suffer from the usual problems of inaccuracy
inherent to density functionals [22, 87].

1.3.2 Absolutely localised molecular orbitals (ALMO)

Empirical evidence suggests that electron distributions in complexes
are predominantly localised to each fragment, as is chemically intu-
itive. The canonical orbitals found through conventional SCF methods
are, however, highly delocalised due to the orthonormality constraint.
As the SCF energy is invariant to unitary transformations within the Unitary transformations

in this context correspond
to orbital rotations.

occupied and virtual spaces, it is possible to localise the molecular
orbitals after the fact [88–91]. This does not adequately get rid of
the orthogonalization tails, though, such that truncation is necessary,
leading to large errors in total energies on the order of 1.5 eV [92,
93]. The ALMO approach ensures that truly - absolutely - localized
orbitals are obtained by constraining the orbital coefficient matrix to
be block diagonal, with the blocks defined by the fragments. This is
done by expanding each fragment only in its own basis, and then cou-
pling the fragments through the supermolecular Fock matrix. Thus,
this is essentially an MCBS level of description. A much more detailed
exposition of the ALMO SCF procedure is given in Chapter 2.

The primary advantage of this formulation is that it necessarily
eliminates any possibility of BSSE. It was first suggested by Stoll [1],
then further developed by Cullen [39]. It is most often erroneously at-
tributed to Gianinetti et al. [40, 94], who rediscovered the approach al-
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most two decades later. The method has then been further expounded
upon by Iwata and coworkers [41, 95–98], and then later by the Head-
Gordon group, who have developed energy decomposition analyses
based on correlated extensions of the ALMO approach [2, 42, 99–104].
Several different names have been used for the same idea over the
years, most notably SCF-MI (where the MI stands for molecular inter-
actions) [40] and LP-SCF-MI (locally projected SCF-MI) [41]; it is my
belief that ALMO much better represents the nature of the method
(it is not necessarily constrained to noncovalent interactions) and is
truer to both the original nomenclature of Stoll and the most recent
developments.

Several studies have demonstrated that ALMO SCF methods greatly
underpredict the binding energies in all systems [39–41], doing partic-
ularly badly for strongly polar complexes. This is due to a necessary
lack of any charge transfer between fragments, as will be discussed
in more detail later. For example, Cullen found that in the hydrogen
fluoride dimer, charge transfer accounts for −0.9 kcal/mol of the in-
teraction, which is roughly a third of the total, while for the water
dimer, it is −0.62 kcal/mol or around a fifth [39]. These deviations
are therefore significant unless moderate to large separations are be-
ing considered; in that case, as charge transfer falls off exponentially
with distance, the localised method performs surprisingly well.

This flaw actually becomes an advantage, however. Nagata [41] sug-
gested a method for perturbatively accounting for the charge transfer,
which was then greatly refined by Khaliullin et al. [42] While this does
reintroduce some BSSE, the perturbation is small enough for this to be
insignificant, and the resulting ALMO plus charge transfer energies
are found to be almost indistinguishable from counterpoise corrected
HF energies [2, 99]. The advantages are then threefold: the need
for a counterpoise correction is avoided, representing a substantial
computational saving; only the fragment Fock matrices need be di-
agonalised, never the full Fock matrix, representing an O(N3) saving;
and the energy is immediately decomposed to give a rigorously de-
fined charge transfer term. The result is a method that is both more
efficient, and more readily extendable to traditional electron correla-
tion methods, than SAPT. Moreover, the absolute localisation of the
orbitals is beneficial in achieving linear scaling with system size, as
will be demonstrated later. It has also been shown that there is very lit-
tle dependence on basis set size [41], in stark contrast to CP-corrected
traditional methods and SAPT. Despite these advantages, however, it
is undeniable that the description of the wavefunction is lacking, due
to the severe constraint imposed on it.
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1.3.3 The chemical Hamiltonian approach (CHA)

An alternative approach is to try to identify the terms in the su-
permolecular Hamiltonian that introduce BSSE into the interaction
energy. In the free monomer case, one deals with intramolecular op-
erators. When the basis is extended by the introduction of a part-
ner molecule, these operators become contaminated with intermolec-
ular terms, which Mayer and coworkers [44, 79, 105] identify as be-
ing responsible for superposition errors. They suggested avoiding
this problem by projecting out the complementary space to that of
the monomer in question. That is, if ĥA acts on the orbital ψAi on
monomer A, then this can be decomposed as

ĥA |ψAi ⟩ = P̂AĥA |ψAi ⟩+
(
1̂− P̂A

)
ĥA |ψAi ⟩ (1.6)

where P̂A is a projection operator onto the space spanned by the
monomer A orbital basis, i.e.

P̂A = |µ⟩
(
S−1A

)
µν
⟨ν|

where |µ⟩ is an atomic orbital on monomer A, SA is the overlap matrix
of all such basis functions, and the summation convention is implicit.
It was argued that the second term on the right of equation 1.6, in the
complementary space, is what contains the BSSE, such that mapping
ĥA → P̂AĥA should result in a BSSE-free ansätz. This leads to the ma-
trix elements associated with the intramonomer operator, hA, becom-
ing SS−1

A hA, where S is the full overlap matrix. Clearly, when S = SA,
nothing has changed, and so the intramonomer terms are preserved.
The suggestion is then that, unlike in the ALMO approach, only the
spurious intermolecular terms have been removed, not the necessary
and physically relevant charge transfer terms.

It is possible to introduce this approximation throughout the stan-
dard SCF procedure by replacing the on-fragment Fock operator, F̂X,
by its projection P̂XF̂X, leading to the CHA/F method [44]. This does
result in a non-Hermitian Fock matrix, however, although supposedly
the only practical consequence of this is the need to orthogonalize the
occupied orbitals in each iteration before calculating the density. The
energy is calculated using the full Hamiltonian, such that the energy
is real - not including the omitted terms above leads to wildly er-
roneous results [106]. This might seem like a condemnation of the
choice to remove these terms in the first instance, but it is not dissim-
ilar to the approach taken in some variants of SAPT [107]. Indeed,
when the energy is calculated in this way, the results of CHA/F and
counterpoise-corrected SCF are virtually indistinguishable [79].

Mayer then argues [44] that any remaining differences between the
two are due to two extra contributions present in the CP scheme: the
electron affinity of the receiving molecule increases the delocalisation,
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and thus the BSSE; the ghost orbitals allow delocalisation into orbitals
that would otherwise be occupied. As has been noted above, both of
these are in fact physical and necessary, and it is the CHA method
that is approximate. Regardless, both CHA and CP energies converge
to essentially the same result far more quickly than the BSSE disap-
pears in the uncorrected case [44], suggesting that such quibbles are
immaterial. As with ALMOs, one of the primary advantages of CHA
is that it can be readily extended to include electron correlation, un-
like SAPT, and can be used to compute the interaction energy directly,
unlike supermolecular methods. Results have been reported for full
configuration interaction and second-order perturbation theory vari-
ants of the chemical Hamiltonian [108, 109], although these have not
found widespread use. Applications have been restricted to small sys-
tems, as the method offers no computational savings over traditional
methods, and actually introduces an overhead [44, 110–112].

The main flaw, however, is the non-Hermiticity of the resulting op-
erators within the approximation. Hamza et al. claim [79] that thisIt is possible to formulate

quantum mechanics with
the assumption of

parity-time symmetric
operators instead; these

are Hermitian, albeit with
respect to a different

sesquilinear form.

is a necessity, as the basis set superposition error is not a physical
observable. This is quite clearly a logical fallacy. While it is a gener-
ally accepted axiom of quantum mechanics that any physical observ-
able can only be represented by a Hermitian operator, the converse
is demonstrably not true; that is, not every Hermitian operator repre-
sents an observable. Given a quantum system embedded in a Hilbert
space, the set of all bounded (not to mention unbounded) Hermitian
operators on that space is uncountable. The real underlying structure
of such a system is in fact the C∗-algebra formed from all sum and
product combinations of operators that do represent observables, of
which the Hilbert space is only one possible representation. Moreover,
if the BSSE is the result of some non-Hermitian operator B̂, one could
form an equivalent Hermitian representation by taking the average
(B̂+ B̂†)/2 as the error is necessarily a real quantity. In fact, the same
group over a decade later realised that their method could easily be
made to be Hermitian by treating the bras and kets symmetrically in
this way, disproving their own argument without realising it [80].

1.4 scaling with system size

Other than BSSE, the biggest issue with calculations on noncovalent
interactions is the prohibitive scaling that accurate ab initio methods
show with system size. For MP2, CCSD, and CCSD(T), these go as
orderN5, N6, andN7, respectively [34], implying that just considering
a dimer will result in between 32 and 128 times more computational
cost compared to the monomer. The ‘cost’ in this context is both
in terms of time and resources, particularly memory. Even the SCF



1.4 scaling with system size 13

portion of a calculation scales formally as N4 due to the need to cal-
culate two-electron, four-centre integrals in the AO basis. In addition,
results often converge very slowly with basis size, in particular the
correlation contribution, such that very large basis sets are needed
for high accuracy results. We consider here the main approaches for
dealing with the major bottlenecks in correlated, wavefunction-based
methods.

1.4.1 Dual basis sets

In the self-consistent field methods that dominate electronic struc-
ture theory, there are two computationally significant steps in each
iteration: the building of the Fock matrix, and its subsequent diago-
nalisation. Low-scaling methods have been developed for the forma-
tion of the Coulomb [113–119] and exchange [120–123] contributions
of the Fock matrix, such that it is the second step that can become
the main bottleneck. Even the most efficient matrix diagonalisation
routines necessarily scale as O(N3) [124], and while decades of devel-
opments in the numerical analysis community have reduced the pref-
actor significantly, especially for symmetric matrices such as the Fock
matrix, the formal cubic scaling is unavoidable. The ALMO method
described above sidesteps this problem by only requiring diagonalisa-
tion of each fragment Fock matrix, such that effectively linear scaling
is achieved; the other approaches described above cannot claim this,
even SAPT when the δHF term is included.

An alternative is to use dual basis sets. This came from the ob-
servation that the requirements for a complete description of the oc-
cupied orbitals are drastically different to those for the virtual or-
bitals [76]. The root of this is that the former describe static corre-
lation, while the latter describe dynamical correlation. It is this dy-
namic, dispersive contribution that requires many nodal surfaces in
the orbital space, which do not contribute significantly in the occupied
space. The consequence is that the occupied orbitals converge fairly
rapidly with increasing basis dimension, whereas the electron corre-
lation does not [125, 126]. In fact, the latter goes as ℓ−4 in the large-ℓ
limit, where ℓ is the angular momentum of the functions used, reflect-
ing their nodal structure [127]. Summing over all such contributions
yields L−3 convergence, with L being the highest angular momentum
included. This is unreasonably slow, especially when one considers
that each additional ℓ gives 2ℓ+ 1 additional functions, and integrals
over these functions get progressively more expensive with increas-
ing ℓ. In addition to this, investigations with correlation consistent
basis sets show that the radial nodes should increase proportionally
to the angular nodes [128, 129], resulting in the need for around 300

correlating orbitals per atom if 0.1 kcal/mol accuracy is desired.
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The fundamental problem is that the strong, short-range correlation
requires nodal surfaces that effectively partition the relevant volume
of space into a fine grid of small cells, something that is very difficult
to achieve with an atom-centred Gaussian basis [130]. The natural so-
lution to this is to use dual basis sets, where a compact basis is used
for the initial SCF, avoiding large-N diagonalisation steps, before the
Fock matrix is then perturbatively expanded into a much larger, dual
basis that can then be used in the correlated portion of the calcula-
tion. This was first proposed several decades ago [131, 132], before
later being applied to MP2 [133]. In this way, speedups on the or-
der of 12 times were found for the water dimer using a 5Z quality
basis, with errors on the micro-Hartree scale compared to the full cal-
culation [76]. In fact, the dual basis calculation is both cheaper and
more accurate than the equivalent full QZ calculation, and the accu-
racy only improves when energy differences are considered, such as
in determining interaction energies.

This method has found several uses [78, 134–137], but of particu-
lar significance is the complementary auxiliary basis set singles cor-
rection used in explicitly correlated methods [138–143]. These ac-
count for the poor description of the Coulomb hole by explicitly in-
cluding terms in the wavefunction that are linear in the interelec-
tron separation, resulting in considerably faster convergence with re-
spect to basis [139, 144]. When combined with the dual basis ap-
proach, essentially complete basis set limit HF energies can routinely
be achieved [143]. This comes at minimal extra cost, as a large auxil-
iary basis is necessary for subsequent portions of the F12 calculations.
An analogous use is in perturbatively correcting for the lack of charge
transfer in the ALMO approach, where the monomer Fock matrices
are expanded into the full cluster basis. This will be described in more
detail in Chapter 3.

It is also possible to use this approach to determine counterpoise-
corrected energies without ever doing the calculation in the full ba-
sis [78]. In this context, it is natural to define the small basis as the
monomer-centred one, and the dual basis as that of the whole clus-
ter. As the energy is then calculated either as a single sum, iteratively,
or as a single diagonalisation, depending on the approximation used,
the cost is then significantly less than performing the full calculation.
This results in speedups on the order of five to ten times and recovers
more than 95% of the counterpoise correction, even for small initial
bases [78]. This can also be applied to DFT, where the resulting correc-
tions are larger [145], but the percentage recovered is broadly similar.
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1.4.2 Density fitting

After the initial SCF calculation, a set of orbital coefficients is gen-
erated, {C

p
µ}, describing the component of atomic orbital χµ in the

molecular orbital ϕp. As in general more basis functions are used
than there will be occupied orbitals, the molecular orbital space dis-
connects into occupied and virtual subspaces, usually denoted by the
letters i, j, k and a, b, c, respectively. All traditional post-HF meth-
ods that try to account for electron correlation require that the two
electron integrals, ⟨µν|r−112 |λτ⟩ be transformed from the AO to the MO
basis [34]:

(pq|rs) = CpµC
q
λ ⟨µν|r

−1
12 |λτ⟩C

r
νC

s
τ (1.7)

A naive consideration of the above suggests that this requires eight
nested loops to carry out, thus scaling as O(N8), where N here is
specifically the number of basis functions. In fact, if we instead fac-
torise equation 1.7 as follows

(pq|rs) = Cpµ

[
C
q
λ

[[
⟨µν|r−112 |λτ⟩C

r
ν

]
Csτ

]]
(1.8)

then the transformation splits into four quarter transforms, each of
which is over five indices, reducing the scaling to O(N5). In fact,
second-order perturbation theory only requires the elements connect-
ing occupied orbitals i, j with virtual orbitals a, b, of the form (ia|jb).
If we transform the occupied terms first, then the quarter transforms
scale as oN4, o2N3, o2vN2, and o2v2N, where o and v represent the
number of occupied and virtual orbitals, respectively. For any given
system, o is independent of basis size, meaning that oN4 can repre-
sent a substantial saving on N5.

Nevertheless, equation 1.8 represents a fundamental limitation for
the scaling of correlated methods. For this reason, the density fitting
approximation was introduced [146–152]. This rests on the fact that
the two-electron integrals can be rewritten in terms of the one-particle
orbital densities, ρpq(r), as

(pq|rs) =

∫
dr1

∫
dr2 ρpq(r1)r−112 ρrs(r2)

Introducing an auxiliary basis set, {χP(r)}, of dimension M, the densi-
ties can be expanded as

ρpq(r) ≈ ρpq(r) = d
pq
P χP(r) (1.9)

where the dpqP are fitting coefficients, hence the name density fitting.
As demonstrated by Dunlap et al. [147, 148], the difference between
the fitted and exact densities in the r−112 weighted norm is minimised
when the coefficients are

d
pq
P = (pq|Q)

[
G−1

]
QP

(1.10)
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where GQP = ⟨Q|r−112 |P⟩ and the three-centre integrals are given by

(pq|Q) =

∫
dr1

∫
dr2 ϕp(r1)ϕq(r1)r−112 χQ(r2) (1.11)

Equation 1.9 means that the integrals in equation 1.7 can be written
as

(pq|rs) ≈ (pq|P)
[
G−1

]
PQ

(Q|rs) = bQpqb
Q
rs (1.12)

where bQpq = (pq|P)
[
G−1/2

]
PQ

. This is sometimes conflated with the

resolution of the identity approximation, due to the similarity in form
of the above to the spectral representation of the identity operator in
a complete, nonorthogonal basis:

1̂ = |p⟩ ⟨p|q⟩−1 ⟨q|

This approach is used separately in explicitly correlated methods, us-
ing a different auxiliary basis, but it is not the same as density fit-
ting [140, 144, 153, 154].

The advantages of density fitting are that the four-index quanti-
ties have been reduced to three-index ones, and that the evaluation
and construction of the integrals may be carried out in the AO ba-
sis. This reduces the steep O(N4) storage requirements to O(N2M),
where M is the size of the auxiliary basis, and the transformation
to the MO basis reduces to two O(N2M) steps. While the fitting ba-
sis is necessarily four or five times as large as the orbital basis, the
savings in cost both in terms of speed and memory can be over an
order of magnitude, even for small systems [155]. The resulting error
is usually on the order of 0.01 kcal/mol in calculations on noncova-
lent interactions [156, 157]. Similar approaches to density fitting, such
as Cholesky decomposition of the integrals into three-index quanti-
ties [156, 158], or the pseudospectral approximation [159] could also
be used to achieve similar results. Most importantly, all of these ap-
proaches are not limited to one specific method. They have been ap-
plied successfully in the Fock-build portion of SCF calculations [122,
123], SAPT [86], DFT [160–162], and post-HF methods [152, 163, 164].
The primary disadvantage, however, is that different applications gen-
erally require very different auxiliary bases, so that several different
sets have to be used within a single calculation. For example, fitting
sets used for density fitting of the Coulomb and exchange integrals
(so-called ‘JK-fit’ sets) in HF and DFT calculations do not work well
in density-fitted MP2 [151, 162].

1.4.3 Local correlation

Even when the unreasonable scaling of the integral transformation
step has been accounted for, correlated methods at higher levels of the-
ory than MP2 still have an inherently unphysical scaling. For example,
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the configuration interaction with single and double excitations scales
as n2N4 [34], where n is the number of orbitals included in the corre-
lating space and N is the total number of orbitals. The n2 term is un- Core orbitals, i.e.

non-valence orbitals, are
often neglected in
correlated calculations, as
excitations from them will
usually have vanishingly
small amplitudes.

avoidable without neglecting distant pairs of orbitals, but the N4 por-
tion is unsatisfactory, and entirely due to the use of highly delocalised
canonical orbitals [70]. As has been noted above, orbitals should be
relatively well-localised, especially in the occupied subspace, and it
is only the requirement for orthogonality that gives substantial delo-
calisation. One way around this is fragmentation methods [165–168],
similar to in the ALMO approach, but where subsystems beyond a
distance cutoff are treated as multipoles [10]. This can lead to prob-
lematic discontinuities on the potential energy surface, however.

Alternatively, one could try to find a local representation for the
orbitals by optimising some localisation criterion. This was first sug-
gested by Lennard-Jones in 1949 [169], and since then many different
criteria have been devised. The most notable of these are those of
Boys [170, 171], Edmiston-Ruedenberg [171], and Pipek-Mezey [172].
The former minimizes the sum of the orbitals’ second moments (es-
sentially, their variances), while the latter minimizes the number of
atomic centres with which an orbital has significant overlap. The
Edmiston-Ruedenberg scheme instead maximises the sum of orbital
self-repulsion energies, which is somewhat more complicated. All lo-
cal correlation methods rely heavily on the use of these methods [173–
175], or more advanced variants proposed recently [88], to strongly lo-
calise the occupied orbitals.

Unfortunately, applying these procedures to truncate the virtual,
correlating space is not successful [70], so that truncation needs to
occur at the level of the atomic orbitals. Instead, the inherent locality
of the atom-centred basis is used. The virtual orbitals were origi-
nally chosen by Pulay [70] to be the set of AOs but with the occupied
space projected out - so-called ‘projected atomic orbitals’ - so as to
ensure strong orthogonality between the two subspaces. This basis
need not be the same as that used in the original SCF, but can be a
larger, auxiliary basis, in analogy to the dual basis methods described
earlier; in fact, it is not uncommon for a dual basis correction to the
SCF energy to be included in local correlation methods. Since then,
several different choices of orbitals have been proposed, such as pair
natural orbitals [142, 176, 177] and orbital-specific virtuals [178, 179],
each with different localisation characteristics [88]. The advantage of
forming the orbital spaces in this way are twofold [76]:

1. pair correlation between distant, localized orbitals is small and
so can be treated more cheaply, or not at all, i.e. the number of
configuration state functions drops from O(N4) to O(N2);

2. the steep and unphysical expansion of the virtual space avail-
able to each electron can be eliminated by restricting excitations
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to AOs spatially close to the occupied MOs, as the coupling
(ia|jb) disappears when the differential overlaps (ia) or (jb) are
small.

In this way, essentially linear scaling has been achieved for MP2 and
CCSD, and considerable reductions in scaling for their explicitly cor-
related variants [72, 73, 142, 174, 180, 181]. Such scaling is achieved
for surprisingly small systems, for example in the glycine chain [gly]n,
it begins at around n = 4 [77].

The primary disadvantages of this approach are the loss of simplic-
ity, and the somewhat arbitrary nature of choosing which terms to
neglect. In particular, there is always a danger that a given choice of
threshold will apply to one system but not others, and perhaps even
the same system but at different geometries. This would result in dis-
continuous potential surfaces. It should be noted that linear scaling
is also possible in MP2 by using Laplace transforms of the energy de-
nominators [133, 182, 183], but this requires an additional numerical
integration step and thus has a higher prefactor than local correlation
methods. However, the integration only requires very few quadrature
points, and it is possible to achieve arbitrary accuracy simply by in-
creasing the number of such points, a quality that local methods lack.
In practice, though, the potential loss of accuracy does not seem to be
a problem - the effects of using LMP2 as compared to canonical MP2

have been shown to be negligible for structures [72, 184, 185], frequen-
cies [185] and enthalpies [72]. An additional, accidental consequence
of the local approach is that the BSSE in the correlation energy can be
reduced substantially, as fragments cannot access functions outside
their local virtual space [37, 72]. Moreover, the local nature of the
excitations allows for a meaningful decomposition of the correlation
energy into physically distinct terms, such as dispersion [37].

1.5 energy decomposition analyses
This categorising, or energy decomposition analysis (EDA), is one

of the most appealing aspects of the non-counterpoise methods to
chemists. The first example of such a scheme was proposed by Mo-
rokuma [186, 187], and then improved upon by Frey [188], which
essentially separated contributions by zeroing different blocks of the
Fock matrix. This was unreliable, however, with the energies so ob-
tained often blowing up to infinity due to the loss of well-posednessA problem is well posed if

a unique solution exists
for any given parameters,
and the solution changes

continuously with respect
to those parameters.

in the eigenvalue problem [39]. Since then, several other schemes have
been suggested, such as the effective fragment potential method [189–
191], which is similar to but less computationally expensive than
SAPT. Another very popular approach is the natural EDA [192, 193],
which utilises natural bonding orbitals. These have been found to be
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excellent at elucidating qualitative trends, but are not quantitatively
valid [194, 195]. In particular, the definition of charge transfer within
the natural EDA can lead to very strange results, such as charge trans-
fer contributions far greater than the total interaction energy, even for
weakly-bound systems [2]. A recent analysis by Stone [195] has fur-
ther demonstrated how the definition is completely unphysical.

The natural EDA and SAPT both rely on a perturbative treatment
of the interaction energy, which fundamentally limits their applica-
bility to weak interactions. Instead, many methods calculate varia-
tionally optimised intermediate wavefunctions, such as the Ziegler-
Rauk approach for the Xα method [196]. The Kitaura-Morokuma
EDA [187], an extension of that of Morokuma described above but
with charge transfer explicitly defined, was the first of these, with
the block-localised wavefunction [66], Sadlej [197], and ALMO meth-
ods following as natural extensions [2, 42]. Recently, there have been
considerable efforts towards extending the latter EDA to correlated
methods [100, 101, 198]. Similarly, one could impose a grid-based
charge constraint, as proposed by Wu et al. [199], or proceed by par-
titioning the system [200, 201]. The latter in particular allows for the
analysis of the movement of charge within a complex. Using the CHA
ansätz, Mayer proposed a bond-order index [80, 110, 111], and then
later a ‘chemical energy component analysis’ [80, 112]. These have
the advantage of being able to be calculated either directly, or applied
after a conventional SCF calculation has been carried out.

The main complaint about all of these analyses is the level of ar-
bitrariness in defining the different components. Common to all of
these is usually some form of polarisation and dispersion. However,
other possibilities include (but are not limited to) frozen orbital con-
tributions, induction, exchange, and charge transfer. None of these
is strictly a physical observable, and so none has an associated op-
erator, which makes them impossible to rigorously define. Perhaps
the easiest to separate is the classical electrostatic terms, involving
interactions between multipoles; however, even for these, there will
necessarily be interactions with, in particular, exchange terms, as the
system is fundamentally quantum mechanical. While the bulk of the
energy is usually electrostatic in nature [10], arguments that the other
terms are unimportant have time and again been shown to be false [11,
12, 14, 15, 84, 99, 202]. Putting aside that some complexes, such as
those involving noble gases, are entirely dispersion bound [203], the
electrostatics are usually less sensitive to small changes in environ-
ment than other terms, such that the differences between two closely
related systems can only be described by consideration of these contri-
butions. Perhaps some of the clearest examples of this can be found in
halogen-bonded complexes, where unexpected changes in the mode
of binding can be almost entirely attributed to charge transfer [12, 14].
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As has already been noted, the importance of such dispersive and
charge transfer terms necessitates both a high level treatment of elec-
tron correlation, and a rigorous way of separating the relevant con-
tributions. There have recently been attempts to do this with local
coupled cluster methods [204], but the cost for multi-fragment sys-
tems is still prohibitive. It would therefore be very useful to have an
ab initio approach that is BSSE free, low-order scaling, and capable of
a meaningful energy decomposition for a broad variety of chemical
systems.

1.6 applications and summary

The ability to accurately study intermolecular interactions in larger-
scale systems, particularly in the condensed phases, is of wide inter-
est in a number of disciplines. For example: the atomistic study of
biomolecular systems [205, 206], which depend heavily on the solvent;
solvated reaction mechanisms and computational spectroscopy [207];
and materials and crystal design [208, 209].

Each of these offers unique challenges, which I aim to address
through the methods outlined in this thesis. The shared requirements
to all applications are that it be efficient and accurate. The exact def-
initions of either of these terms depend on context, but in general,
we wish to be able to routinely run calculations on systems of thou-
sands of molecules at a high level of theory, e.g. equivalent to coupled
cluster methods. The accuracy and efficiency should not be strongly
dependent on the type of system, other than being specialised to non-
covalent interactions in general. Chapters 2 and 3 outline the main
theoretical developments of the method, with an emphasis on phys-
ical justifications for the choices, so as to maintain accuracy and ro-
bustness. Chapter 4 then describes the technical implementation, and
the achievement of extreme efficiency, while chapter 5 demonstrates
and validates the method and implementation on a wide range of
benchmarking systems.

For the study of biomolecular systems, particularly in the context
of ab initio molecular dynamics, we have more stringent requirements
on the efficiency, but equally more leniency with the accuracy. For
these, we need to be able to calculate both energies and forces on the
order of minutes, as many thousands of timesteps will in general be
needed. Accurate forces are, in fact, a wider requirement, as compu-
tational spectroscopy and materials design applications rely on being
in optimal geometries. In general, the single-point calculations need
to be efficient enough to allow for routine geometry optimisations
to be carried out. Unlike the molecular dynamics, both these appli-
cations depend much more heavily on the accuracy of the method.
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Ideally, it should be flexible enough to be able to tune accuracy ver-
sus efficiency. Chapter 6 is concerned with the derivation of analytical
derivatives for each of the different theory levels of the method, and
their demonstration on the optimisation of solvated systems. Chap-
ter 8 gives a case study on the calculation of photoelectron spectra for
water-solvated phenol.

Reaction mechanisms offer an additional difficulty, in that bonds
are made and broken. The interactions with solvent are generally
as spectators, however, so that an ideal extension of any approach
would be to have a multiconfigurational subsytem, where the bonds
are broken, interacting non-covalently with solvent molecules. Chap-
ter 7 outlines the derivation of such a multiconfigurational variant of
the new method, and a prescription for how it can be implemented
effectively.

Finally, crystal design extends us from the solvated state, to the
solid state. In this regime, periodicity and defects become very impor-
tant. Of the applications listed in this section, this is the only possi-
bility not directly addressed in this thesis. However, I do outline (in
chapter 3) how our choice of correlated wavefunction method would
easily allow for future extensions to the solid state.





2 A B S O LU T E LY LO C A L I S E D
M O L E C U L A R O R B I TA L S
In this chapter, the theory of absolutely localised molecular or-

bitals is outlined, setting the base for the rest of the thesis. The
method was originally developed by Stoll et al. [1], then re-
formulated by several groups [2, 40–42]. Here, I present it for the
first time using the formalism of second quantisation. This facili-
tates the addition in later chapters of dynamic and static electron
correlation. After the theory is outlined, the problems inherent
with the approximation are discussed, in particular the lack of
charge transfer. Finally, the details of the new implementation
are given, as found in my electronic structure package Gamma.

2.1 background theory

The fundamental task in electronic structure theory is to solve the
electronic Schrödinger equation. Herein we will focus on the non-
relativistic Schrödinger equation for N electrons under the clamped
nucleus and Born-Oppenheimer approximations. In the following,
lowercase Latinate indices indicate electrons, while uppercase indi-
cates the NZ fixed nuclei (or, later on, spin orbitals) resulting in the
following Hamiltonian:

Ĥ = −
1

2

N∑
i=1

∇2i −
N∑
i=1

NZ∑
A=1

ZA

RiA
+

N∑
i=1

N∑
j=i+1

1

rij
(2.1)

where RiA and rij are the distances between electron i and nucleus
A or electron j, respectively, and ZA is the charge on nucleus A. We
suppress the nuclear-nuclear repulsion term, ZAZB/RAB, as it is a con-
stant within the clamped nucleus approximation. Atomic units will
be used throughout, such that the electron mass, elementary charge,
reduced Planck’s constant and Coulomb’s constant are all set to unity.
For simplicity, from now on summations over i and A will be implied
to be over the whole set of electrons or nuclei unless explicitly stated
otherwise. The aim is then to solve the time-independent equation
ĤΨ = EΨ to find both the energy E and electronic wavefunction Ψ.

23
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2.1.1 Fock space and second quantisation

In the usual formulation, the observable - e.g. the energy - is rep-
resented by an operator (Ĥ) and the state Ψ is considered to be a
function. However, this hides a key requirement on a fermionic state:
that of antisymmetry. It is possible to encode this through careful use
of determinants, something which is expounded on elsewhere [34,
210], but an alternative is the formalism of second quantisation. In
this, the state is represented in terms of creation and annihilation op-
erators acting on a vacuum state. The algebra of these operators then
encodes the antisymmetry of the wavefunction, simplifying much of
the exposition.

It is conventional to represent a given system using a basis of M
orthonormal one-electron spin orbitals {ϕP} in some Hilbert space,
H, depending on the nuclear and spin coordinates, xi of an electron
i. For a system of N electrons, N such orbitals are combined into aThe Hilbert space is

usually taken to be
L2(X,d4x), where

X = R3 × Spin(1/2).

Slater determinant:

|ϕP1ϕP2 · · ·ϕPN | = Â
[
ϕP1(x1)ϕP2(x2) · · ·ϕPN(xN)

]
(2.2)

where the operator
Â = N−1/2

∑
π̂∈SN

π̂

is an antisymmetriser, permuting electron coordinates according to
the symmetric group SN. The total N-electron wavefunction can then
in principle be represented exactly by linear combinations of Slater
determinants in the limit that the spin orbital basis tends to comple-
tion [210]. The space spanned by these Slater determinants is thus an
antisymmetrised tensor product of N one-dimensional Hilbert spaces,
H⊗H⊗ · · · ⊗H = H⊗N, over which the direct sum over all possible N
forms an occupation space, known as Fock space:

F− =

∞⊕
N=0

ÂH⊗N (2.3)

In practice this is restricted to finite M, rather than taken to infinity.
Each point in Fock space is then given by the occupation numbers

of the spin orbitals, i.e. by a vector

|n⟩ = |n1,n2, . . . ,nM⟩ , nP =

{
1, ϕP occupied,
0, ϕP unoccupied.

(2.4)

In particular, there is a single zero-occupation state, |0⟩, called the vac-
uum state, from which all other states can be reached by ‘creating’
particles. To do so, we introduce creation operators, a†P, which pro-
duce an electron in orbital P. The inverse is the annihilation operator,
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aP. These operators satisfy a Lie algebra defined by the following
anticommutation relations:

{a
†
P,a†Q} = {aP,aQ} = 0

{a
†
P,aQ} = δPQ

(2.5)

where δPQ is the Kronecker delta. These ensure the antisymmetry of Note that
{x,y} = xy+ yxthe state with respect to exchange of electron coordinates - i.e. per-

muting electron positions in the occupation vector results in a change
of sign of the state.

As such, any point in Fock space can be written as

|n⟩ =

[∏
P

(
a
†
P

)nP]
|0⟩ (2.6)

In particular, attempting to add a second particle to an orbital, or
to remove a non-existent particle, will annihilate the state, such that
a
†
PaP |n⟩ = δnP ,1 |n⟩ = nP |n⟩. This implicitly defines a number opera-

tor for each orbital, n̂P = a
†
PaP. The number operator is a subset of

the more general class of elementary excitation operators:

XPQ = a†PaQ

which can be seen to destroy the electron in orbital Q, ‘exciting’ it
into orbital P. Clearly, if Q is empty or P already filled, this operator
annihilates the state. Otherwise, we arrive at a different, ‘excited’
state in the N-dimensional Hilbert space via a connecting state in the
(N− 1)-dimensional space.

Assuming normal ordering, where the orbitals are in cardinal num-
ber order, it follows from the relations in equations 2.5 that both the
annihilation and creation operators introduce a phase factor depend-
ing on where in the normal ordering the orbital they act on is placed.
Specifically, for an operator acting on orbital P, an even number of
permutations - i.e. an even number of electrons in spin orbitals Q < P
- results in no change, whereas an odd number flips the sign. This
phase can be written as

Γn
P =

P−1∏
Q=1

(−1)nQ (2.7)

Thus, the action of the excitation operator on a state can be formalised
as:

XPQ |n⟩ = ϵPQΓn
P Γ

n
Q(1−nP + δPQ)nQ |n : nP → 1, nQ → δPQ⟩ (2.8)

where ϵPQ = 1 if P ⩽ Q and −1 otherwise.



26 absolutely localised molecular orbitals

2.1.2 The molecular Hamiltonian revisited

An inner product on a vector space is necessarily invariant to the
representation of elements of that space. In quantum mechanics, this
translates to the expectation value of an operator being invariant. This
provides the key for translating operators to a second-quantised rep-
resentation. In a spin-orbital presentation, these expectation values
are given as a sum of matrix elements. The orthogonality of the spin
orbitals then means that a k-electron operator only gives non-zero
contributions between states that differ in the occupations of no more
than k electrons, leading to a natural second-quantised representation
in terms of k excitation operators. In particular, the molecular Hamil-
tonian of equation 2.1 comprises two one-electron operators and a
two-electron operator, and so becomes:

Ĥ =
∑
PQ

(
tPQ + vPQ

)
XPQ +

1

2

∑
PQRS

gPQRSa
†
Pa
†
RaSaQ

where t, v, and g are the kinetic, nuclear-electronic potential, and
electron-electron potential energy elements, respectively. These are
evaluated in the spin orbital basis as follows:

tPQ = −
1

2

∫
ϕ∗P(x)∇2ϕQ(x)dx

vPQ = −
∑
A

ZA

∫
ϕ∗P(x)ϕQ(x)
|x − RA|

dx

gPQRS =

∫ ∫
ϕ∗P(x1)ϕ

∗
R(x2)ϕQ(x1)ϕS(x2)
|x1 − x2|

dx1dx2

(2.9)

The two one-electron terms are normally combined into one, giving
the so-called core Hamiltonian, with matrix elements hPQ = tPQ+vPQ.
The final molecular Hamiltonian is then

Ĥ =
∑
PQ

hPQXPQ +
1

2

∑
PQRS

gPQRS
(
δRSXPQ −XPSXRQ

)
(2.10)

where we have expanded the two electron term in terms of one-electron
excitation operators using the anticommutation relations of equations 2.5.
Note that the Kronecker delta is itself an idempotent one-electron op-
erator, such that the two-electron character is maintained. The formu-
lation in equation 2.10 both makes the following theoretical exposition
simpler, and clarifies the meaning of the matrix elements: they are am-
plitudes connecting the various states in theN-electron segment of the
Fock space via excitations. For example, hPPXPP, where the excitation
operator is just the number operator, gives the on-site one-electron
energy, whilst hP ̸=QXPQ gives the one-electron energy difference be-
tween states after an excitation from orbital Q to orbital P. Roughly,
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this corresponds to a probability weighting of the new state as a com-
ponent in the superposition of states returned from the action of the
Hamiltonian on the original state.

2.1.3 Density matrices and spin

The energy of any given reference state, |ref⟩, is naturally given as
the expectation value of Ĥ over this state. From equation 2.10 this is
given by

Eref = ⟨ref|Ĥ|ref⟩ =
∑
PQ

hPQDPQ +
1

2

∑
PQRS

gPQRSΓPQRS

where we have defined the new matrix elements

DPQ = ⟨ref|XPQ|ref⟩
ΓPQRS = ⟨ref|δRSXPQ −XPSXRQ|ref⟩

(2.11)

For clarity, the overbars indicate these quantities are in the spin orbital
basis. More generally, these matrix elements will appear in expecta-
tion values of any one- or two-electron operator. They thus encode all
information about the state, i.e. the probability density, in the evalu-
ation of the expectation value. As such, D and ΓΓΓ are termed the one-
and two-electron density matrices, respectively.

As the density matrices encode the state, they also contain all infor-
mation about the electron spin. In our case, it is simpler to deal with
this explicitly now. The spin orbitals, ϕ, comprise a spatial part and
a spin part. As electrons are spin-1/2 particles, the spin part σ(ms)

is either α (spin up) or β (spin down). A general spin orbital is then In relativistic
Hamiltonians, we would
need to include both α
and β parts, as the
Hamiltonian may contain
spin operators.

succinctly written as

ϕP=pσ(r,ms) = ϕp(r)σ(ms)

where α(1/2) = β(−1/2) = 1 and α(−1/2) = β(1/2) = 0. This means
that, irrespective of the orthogonality of the spatial orbitals, spin or-
bitals of opposite spin are necessarily orthogonal. In general, this al-
lows for the same spatial orbital to be used twice, such that we include
the spin in a composite index, changing the relations in equations 2.5
to {

a†pσ,aqτ
}
= δpqδστ (2.12)

All the operators we will consider are spin free - that is, they operate
only on the spatial part of the orbital. Therefore we can simplify our
problem using the inherent orthogonality of the spin parts. Splitting
the summations in equation 2.10 over α and β spins, then re-coupling
based on equivalent spatial parts, the one-electron term can easily be
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seen to be equivalent to replacing the spin-agnostic excitation opera-
tor, X̂, with a spin-free, singlet excitation operator:

Epq = Xpα,qα +Xpβ,qβ (2.13)

The two-electron term is more complicated, as we need to collect
spins. We note that the matrix elements gPQRS in equations 2.9 clearly
disappear unless the spins are consistent for the two electron coor-
dinates. Thus we need to consider terms of the form a

†
pσa

†
rτasτaqσ.

Repeated applications of the anticommutation relations then yield∑
στ

a†pσa
†
rτasτaqσ =

∑
στ

Xpσ,qσXrτ,sτ − δrqδστXpσ,sτ = EpqErs − δrqEps

which we define as the two-electron spin-free excitation operator

Σpqrs = EpqErs − δrqEps (2.14)

Note that this is similar to, but subtly different from, its spin-agnostic
equivalent.

Using equations 2.13 and 2.14, we can find all necessary expectation
values in the orbital basis by introducing the spin-free, orbital density
matrices via equivalence with equations 2.11:

Dpq = ⟨ref|Epq|ref⟩
Γpqrs = ⟨ref|Σpqrs|ref⟩

(2.15)

2.1.4 Hartree-Fock theory and orbital rotations

As stated, the set of all N-electron determinants comprises a com-
plete basis for the exact wavefunction. If we restrict ourselves to a sin-
gle determinant, optimised with respect to the energy expectation in
the orbital subspace, we arrive at the Hartree-Fock wavefunction [211–
213]. We will not discuss the advantages and disadvantages of such
a wavefunction choice, other than to point out that it typically gives
electronic energies within a few percent of the exact energy; thus it is
often used as the zeroth-order reference for more accurate electronic
structure calculations. We restrict our attention to the closed-shell,
restricted case for simplicity - the extension to the spin-unrestricted
case is simple and given in detail elsewhere [210].

Starting with any initial guess determinant, |n⟩, from a given set of
orbitals, we can arrive at any other single determinant state by unitar-
ily rotating the orbitals. Any such operation can be represented usingEffectively, we are trying

to locate the optimal point
on the unit hypersphere in
the N-dimensional region

of Fock space.

the exponentiation of an anti-Hermitian one-electron operator κ̂; this
then preserves orthonormality and spin [34]. Thus, we parametrise
the desired determinant as

|n(κ̂)⟩ = exp(−κ̂) |n⟩ (2.16)
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with κ̂ given by
κ̂ =

∑
p>q

κpqE
−
pq (2.17)

For simplicity, we have defined antisymmetric singlet excitation oper-
ators E−pq = Epq− Eqp. The variational parameters are then the matrix
elements κpq.

Expanding the energy in terms of the rotation, we get

E(κ) = ⟨n(κ)|Ĥ|n(κ)⟩ = E(0) + κTE(1) +
1

2
κTE(2)κ+ · · · (2.18)

where E(1) and E(2) are the electronic gradient and Hessian, respec-
tively. By inserting equation 2.16 into the above and using the Baker-
Campbell-Hausdorff expansion, we can identify the gradient via

E(κ) = ⟨n| exp(κ̂)Ĥ exp(−κ̂)|n⟩ = ⟨n|Ĥ|n⟩+ ⟨n|
[
κ̂, Ĥ

]
|n⟩+ 1

2
⟨n|
[
κ̂,
[
κ̂, Ĥ

]]
|n⟩ · · ·

Then, using equation 2.17, we get that the elements of the electronic
gradient and Hessian are given by

E
(1)
pq = ⟨n|

[
E−pq, Ĥ

]
|n⟩

E
(2)
pqrs = (1+ π̂pq,rs) ⟨n|

[
E−pq,

[
Ers, Ĥ

]]
|n⟩

(2.19)

where π̂pq,rs is the projector swapping indices pq and rs.
The Hartree-Fock wavefunction is obtained by taking the variation

of the energy in equation 2.18, with the stationary point defined by
E = O

(
κ2
)
. With respect to the parameters, this variational condition The big-Oh notation,

M = O(N) implies that
asymptotically, M is less
than some fixed multiple
of N; a similar, little-oh
notation M = ≀(N) would
mean M is asymptotically
greater than a fixed
multiple of N.

is equivalent to
δE = 0 =⇒ E

(1)
pq = 0 ∀ p,q

There are many possible solutions to this, however, and not all are
necessarily minima. In particular, many of the κpq parameters are
redundant, which we here take the convention of defining as any pa-
rameter where the corresponding operator, E−pq annihilates the wave-
function; these are then redundant in the energy expression, as their
contribution to the expectation values is necessarily zero.

The operator κ̂ was by construction anti-symmmetric, to maintain
the anti-symmetry of the wavefunction; this automatically renders the
diagonal elements κpp = 0, making them trivially redundant. For all
other parameters, we designate them as corresponding to inactive (in-
dices i, j,k), active (indices u, v,w), or virtual (indices a,b, c) orbitals.
The latter refer to the unoccupied orbitals not contained in the state
|n⟩, inactive orbitals are doubly occupied, while active orbitals are
singly occupied, such that a closed-shell wavefunction only has in-
active and virtual orbitals. The excitation operators Eij necessarily
annihilate doubly-occupied orbitals unless i = j, as they try to create
an electron in the orbital, thus inactive-inactive parameters must be
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redundant; the same argument applies to virtual-virtual rotations, as
we try to destroy a non-existent electron. Consider the inactive-virtual
terms, E−ai: one of the terms destroys an occupied orbital’s electron
and excites it into a virtual orbital, which will in general be non-zero;
the other term destroys an electron in an unoccupied virtual orbital,
thus annihilating. As such, the inactive-virtual parameters are in gen-
eral non-redundant. In a later chapter, we will need to consider rota-
tions involving active orbitals, but for simplicity they can be ignored
for now. For a closed-shell state, the only non-redundant parameters
are of the form κai.

Using this information, we can write the variational conditions on
the gradient, using equation 2.19, as

E
(1)
ai = ⟨n|

[
Eai − Eia, Ĥ

]
|n⟩ = 2 ⟨n|

[
Eai, Ĥ

]
|n⟩ = 0 (2.20)

where we have expanded the commutator, used the Hermiticity of the
expectation value, and noted that

⟨n|Eai = Eia |n⟩ = 0

The interpretation of equation 2.20 is that the variational Hartree-Fock
wavefunction does not interact (through the Hamiltonian) with any
singly-excited states; this is know as the Brillouin theorem. In fact, it
is simple to demonstrate this applies to the redundant terms as well,
leading to the generalized Brillouin theorem [214], stating that the HF
state comprises a “perfect balance” of excitations and de-excitations.

2.1.5 The canonical solution

The construction of the HF wavefunction is through the variational
determination of a single Slater determinant. As such, it represents
N independent particles, where the only correlation present is that
between particles of the same spin, via the antisymmetry enforced on
the wavefunction; this correlation is referred to as exchange or Fermi
correlation. There is no dynamical correlation, implying that the prob-
lem should be identifiable with an effective one-electron problem, de-
scribed by an effective one-electron Hamiltonian called the Fock oper-
ator, or Fockian. As noted above, there are in general many possible
solutions; moreover the redundancy inherent in the parametrisation
means there are many different orbital representations of the same so-
lution. Our choice of Fock operator then determines the nature of our
solution. I will describe in some detail here the construction of the
canonical Fock operator, so as to clarify and inform the construction of
the absolutely localised Fockian later.

A one-electron Hamiltonian has some standard requirements: it
must be Hermitian and totally symmetric in spin, and must equal the
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true Hamiltonian in the non-interacting limit; these requirements are
necessary to ensure that the Fock operator connects analytically to
the Hamiltonian. These conditions can be ensured by requiring that
it take the form

F̂ = fpqEpq

where fpq = fqp, and fpq = hpq in the non-interacting limit. The
canonical choice is that the variational orbitals diagonalise the Fock
operator, i.e. the matrix elements take the form fpq = ϵpδpq, where
ϵp is called the orbital energy of orbital p. This requirement needs to
be equivalent to the variational conditions of equation 2.20, leading
to the natural mapping that

fai = fia ∝ ⟨n|
[
Eai, Ĥ

]
|n⟩

However, this identification will not work for the occupied-occupied
and virtual-virtual blocks, as they would not tend towards the core
hamiltonian in the non-interacting limit. We can make special use of
the structure of the wavefunction (that it is closed-shell and real) to
rearrange the above into a more suitable form, however:

fai ∝
∑
σ

⟨n|
[
a†aσaiσ, Ĥ

]
|n⟩ = −

∑
σ

⟨n|
{
a
†
iσ,
[
aaσ, Ĥ

]}
|n⟩

This form does not annihilate when generic indices are used, is sym-
metric, and, as will be shown shortly, reduces to the correct form
when two-electron terms vanish, such that we choose to identify the
Fock matrix elements as

fpq =
1

2

∑
σ

⟨n|
{
a†pσ,

[
aqσ, Ĥ

]}
|n⟩ (2.21)

with the normalisation factor of −1/2 chosen for convenience. Note
that this form shows the non-linearity of the HF equations: the Fock
elements are constructed from the orbitals, themselves defined as the
eigenvectors of the Fock operator.

The matrix element can be expanded by repeated use of the follow-
ing: A very useful identity:

[ab, c] = a[b, c] + [a, c]b
= a{b, c}− {a, c}b.[aqσ,Ers] =

∑
τ

[
aqσ,a†rτasτ

]
=

∑
τ

(
a†rτ {aqσ,asτ}−

{
aqσ,a†rτ

}
asτ

)
=

∑
τ

δqrδστasτ = δqrasσ

so that the anticommutator in equation 2.21 reduces to give:∑
σ

{
a†pσ,

[
aqσ, Ĥ

]}
= 2hpq +

∑
στ

gqsrt

{
a†pσ,a†rτatτasσ

}
= 2hpq + (2gpqrs − gpsrq)Ers.
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Thus, we arrive at the following result for equation 2.21:

fcan.
pq = hpq +

1

2
(2gpqrs − gpsrq)Drs = hpq + 2gpqii − gpiiq (2.22)

where we have used the fact that the one-electron density for the
canonical, closed-shell system is 2δij for occupied orbitals, and zero
otherwise.

Note that these canonical conditions, defined as such, are now over
the whole set of orbitals, removing the redundancy found in the vari-
ational conditions of equation 2.20. This is equivalent to saying the
degrees of freedom in the solution have been removed by choosing
orbitals that diagonalise the Fockian, thus the choice of Fock operator
has defined the solution. Finally, using this and the density-matrix
definition of the energy expectation and the above yields

Ecan. = hpqDpq +
1

2
gpqrs

(
DpqDrs −

1

2
DpsDrq

)
= 2hii + 2giijj − gijji = Tr {h + fcan.}

(2.23)

2.1.6 The Roothaan-Hall equations

So far, the problem has been treated as a continuous one - only a
finite number of molecular orbitals (MOs) are needed, but the form
of these orbitals is undefined. However, to solve the problem numer-
ically, we need to discretise it. This is done by expanding the molec-
ular orbitals in a known, finite basis, typically atom-centred and thus
known as the atomic orbital (AO) basis. The exact form of this ba-
sis only matters insofar as it affects the evaluation of integrals, which
does not concern us presently, and so will not be discussed at this
point. We will denote the atomic basis as {χµ}, using Greek indices to
distinguish atomic from molecular orbitals. The expansion is in terms
of linear coefficients, Cµi, as follows:

ϕp = C
†
pµχµ (2.24)

For a generic one-electron operator Ô, we thus have that

opq = ⟨ϕp|Ô|ϕq⟩ = C†pµ ⟨χµ|Ô|χν⟩Cνq =
[
C†OC

]
pq

(2.25)

Of particular interest are the overlap metric and the one-electron
density. In the canonical theory, the former is the identity as the MOs
are required to be orthonormal; the AOs, however, are in general
nonorthogonal, with overlap matrix S. The orthonormality condition
can then be written in the AO basis using equation 2.25 as

spq = C†pµSµνCνq = δpq (2.26)
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while the spin-free density operator from equation 2.15 yields

ρpq =

{
2δpq, if p occupied,
0, otherwise.

= C†pµPµνCνq

This latter equation implies the transformation matrix is unitary, al-
lowing us to conclude that the AO density matrix is given by

Pµν = 2CµiδijC
†
jν = 2CµiC

†
iν (2.27)

Using this in equation 2.23 gives the energy as

Ecan. = Tr
{

C† (H + Fcan.)C
}
=
1

2
Tr {(H + Fcan.)P} (2.28)

where we have used the permutational invariance of the trace.
As we have constructed the Fockian to satisfy the variational condi-

tions in equation 2.20, the numerical problem is to fit the atomic basis
to the variational MOs, subject to the condition that the MOs should
remain orthonormal (in the canonical case). To do this, we introduce
a Lagrangian using equations 2.26 and 2.28:

Lcan. =
1

2
Tr {[H + Fcan.(P)]P}− λpq

(
C†pµSµνCνq − δpq

)
(2.29)

We minimise this by requiring that it be stationary with respect to the
coefficients, ∂L/∂Cµi = 0, and the Lagrange multipliers, ∂L/∂λpq = 0,
with the latter reducing to equation 2.26.

To differentiate with respect to the coefficients, we substitute the
expansion in equation 2.24 into the integrals from equation 2.9, before
using these in to equation 2.22 to get the AO-basis canonical Fock
matrix:

Fcan.
µν = Hµν +

(
2Gµνλτ −Gµτλν

)
Pτλ (2.30)

With everything written in terms of the density, we simply note from
equation 2.27, assuming the coefficients are real, that

∂γkPµν = ∂γkCµiCνi = δγµCµk + δγνCνk (2.31)

such that, assuming the Lagrange multipliers are real and symmetric,

∂γkL
can. =

∂Ecan.

∂Pµν
∂γkPµν − λkqSγνCνq − λpkC

†
pµSµγ

=
1

2

{
Hµν + F

can.
µν +

∂Fcan.
ητ

∂Pµν
Pτη

}
∂γkPµν − 2SγµCµpλpk

=
(
Hγν + F

can.
γν

)
Cνk + (2Gητνγ −Gηγντ)PτηCνk − 2SγµCµpλpk

= 2 [Fcan.C − SCλ]γk
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Then setting this equal to zero to find the stationary point of the La-
grangian yields the Roothaan-Hall equations:

Fcan.C = SCλ (2.32)

This is a generalised eigenvalue equation, easily solved by diagonali-
sation of MO-basis Fock matrix; however, the Fockian itself depends
on the coefficients, such that the new eigenvectors must be substituted
back into the equation, continuing until self-consistency is reached.

2.2 absolutely localised approximation
As noted earlier, the canonical solution above is one of many pos-

sible forms of solution. In many ways it is the simplest in terms
of formalism, which is why I have described it fully. However, the
requirement for orthonormality of the molecular orbitals results in
MOs delocalised over the entire system; this leads to unfavourable
scaling of post-HF methods [70], and in the introduction of basis set
superposition errors in supermolecular calculations. The HF energy
is invariant to rotations within the occupied and virtual subspaces,
but localisation of the orbitals in this manner is difficult and arbi-
trary [88]. Instead, it would be useful to localise the orbitals from the
beginning. In this section, we will follow the exposition of the previ-
ous section, but relaxing the requirement for orthonormality, and in-
stead requiring absolutely localised molecular orbitals (ALMOs), where
each orbital is constrained to a single molecule in the supersystem [1,
42]. In principle, there is no need to restrict our choice of fragments
to molecules, and certainly coarser definitions could be used with
multiple molecules, but defining the fragments across covalent bonds
would result in unacceptable errors (see section 2.3). This approach
yields a succinct development of ALMOs in a formalism that for the
first time will allow the development of sophisticated post-HF treat-
ments of the correlation energy, both dynamical and static, as will be
described in Chapters 3 and 7, respectively.

The first step is to remove the need for orthonormality - that is, the
off-diagonal elements of the overlap metric, spq, p ̸= q, are not nec-
essarily zero. This requires new creation and annihilation operators,
b
†
pσ and bqτ, which follow the same rules as those in equation 2.5,

except the mixed anticommutation relation now reads{
b†pσ,bqτ

}
= spqδστ (2.33)

As discussed in section 2.1.4, however, we only require orthonormality
within the occupied subspace, and between the virtual and occupied



2.2 absolutely localised approximation 35

spaces. As such, we can immediately use the above formalism by in-
troducing a transformed set of operators. We let sOO be the occupied-
occupied block of the overlap metric, then define our creation and
annihilation operators such that

a
†
iσ =

[
s
−1/2
OO

]
ij
b
†
jσ (2.34)

The existence of the inverse square-root of sOO is implied by the fact
the overlap must be positive-definite.

Equation 2.34 clearly implies orthonormality within the occupied
subspace, as

⟨|aia†j |⟩ = ⟨|bk
[
s
−1/2
OO

]
ki

[
s
−1/2
OO

]
jl
b
†
l |⟩ =

[
s
−1/2
OO

]
jk
[sOO]kl

[
s
−1/2
OO

]
li
= δij

From this, we ascertain via equation 2.15 that the density operator, ρ̂,
is simply given by

ρ̂ =
∑
σ

a
†
iσaiσ =

∑
σ

b
†
j

[
s
−1/2
OO

]
ji

[
s
−1/2
OO

]
ik
bk =

∑
σ

b
†
j

[
s−1OO

]
jk
bk

(2.35)
We can then ensure separation of the occupied-virtual subspaces by
projecting the virtual subspace out:

a†aσ =
(
1̂− ρ̂

)
b†aσ = q̂b†aσ (2.36)

where we have defined the complementary projector, q̂ = 1̂− ρ̂.

2.2.1 Redundancy and the non-orthogonal solution

By introducing non-orthogonality, we have essentially mixed the
orbital rotation parameters of equation 2.17; by projecting out the vir-
tual subspace, we have returned to the instance where the occupied-
virtual parameters are non-redundant. More consideration should be
given to the virtual-virtual parameters, as these orbitals are not or-
thonormal any more, but these do not affect the HF solution, so will
be considered in the next chapter.

We thus can directly use the variational conditions from equation 2.20,
and in turn construct the Fockian in the same way. By the same logic,
the redundancy considerations on the transformation parameters are
the same. However, in general, both conditions in the non-orthogonal
basis are much more complicated, such that the Generalized Brillouin
Theorem is not satisfied if any approximations are introduced in this
basis. This is a key consideration when we introduce the absolutely
localised formalism in the AO basis shortly. We can see this by trans-
forming equation 2.20 back to the non-orthogonal basis; this is more
obvious if we cast it in terms of the individual MOs. For this purpose,
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we denote the untransformed orbitals as ϕp and the transformed ones
as ϕ̃p.

E
(1)
ai = 2 ⟨ϕ̃a|

∑
σ

[
a†aσaiσ, Ĥ

]
|ϕ̃i⟩

= 4 ⟨q̂ϕa|
[
q̂b†abi, Ĥ

]
|ϕk⟩

[
s
−1/2
OO

]
kj

[
s
−1/2
OO

]
ji

= 4 ⟨ϕa|q̂f̂|ϕk⟩
[
s−1OO

]
ki

= 0

(2.37)

where in the last line we have used the idempotency of the projector q̂,
and the definitions of the Fock operator. Similarly, we could convert
equations 2.22 and 2.23 into the non-orthogonal basis. The latter can
then be written in the particularly useful form

Enon-orthog. = ⟨ϕi|ĥ+ f̂|ϕj⟩
[
s−1OO

]
ji

(2.38)

2.2.2 Localisation via the atomic basis

The non-orthogonal treatment is only different from the canonical
one insofar as it affects the form that the molecular orbitals take in
the final HF wavefunction. As discussed, however, the HF energy
is invariant to such orbital rotations, such that physically nothing is
changing, only the abstract mathematical representation of the prob-
lem. The absolutely localised approximation is introduced by enforc-
ing these MOs to be formed exclusively from the AO basis on each
molecule. As these bases are strictly atom centred, the resulting MOs
are themselves absolutely localised.

Consider a system of F fragments. Each fragment, X, has an atomic
orbital basis, {χXµ}, associated with it, containing nX functions. From
these, oX occupied and vX virtual molecular orbitals, ϕXp, will be
formed. The total supermolecular basis then comprises the union of
all such fragment bases, with N =

∑
X nX AOs, O =

∑
X oX occupied

orbitals, and V =
∑
X vX virtual orbitals. Throughout the following,

we define

n/o/v = max
X=1,2,...,F

{nX/oX/vX} (2.39)

Tensor notation is used throughout, as is the Einstein summation con-
vention with the exception of sums over fragments, which will al-
ways be explicitly shown for clarity. As is usual, lowered (subscripted)
indices indicate covariant quantities, while raised (superscripted) in-
dices represent contravariant quantities. Dots are used as placeholder
indices given the need to use composite indices to denote the frag-
mentation; for example, Xi is a single index. A primer on tensors can
be found in Appendix A.
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Following the approach in equation 2.24, the covariant MOs are ex-
panded in the basis of AOs, but in this case with these being fragment-
localised:

|ϕXi⟩ = |χXµ⟩ TXµ··Xi
|ϕXa⟩ = |χXµ⟩VXµ··Xa

(2.40)

where the coefficient tensors, T and V , are constrained such that

T
Xµ·
·Yi = VYµ··Xi = 0 if X ̸= Y (2.41)

The overall coefficient matrix, C, is formed from the concatenation
of T and V. The above constraint can thus be seen to remove the
redundancy in the occupied-occupied (OO) and virtual-virtual (VV)
rotational parameters, but only between fragments. The on-fragment
OO and VV rotations are still redundant, by the same arguments as
in the previous section, thus allowing us to enforce orthonormality
within each fragment, i.e. ⟨ϕXi|ϕXj⟩ = δij.

In the language of tensors, we then recognise that the overlap, sOO,
acts as the metric for transformations between co- and contra-variant
tensors in the ALMO basis. We can also simplify notation surround-
ing the inverse transformation by whether the indices are raised or
lowered. For clarity, we write

σYj,Xi = [sOO]ij = ⟨ϕYj|ϕXi⟩ = T
·Yµ
Yj· SµνT

Xν·
·Xi

σYj,Xi =
[
s−1OO

]
ij

(2.42)

where S is the AO overlap matrix. As a result, the contravariant MOs
are given by |ϕXi⟩ =

∑
Y |ϕYj⟩σYj,Xi, such that

⟨ϕXi|ϕYj⟩ =
∑
Z

⟨ϕXi|ϕZk⟩σZk,Yj =
∑
Z

σXi,Zkσ
Zk,Yj = δYjXi

where δYjXi is the Kronecker delta. This then allows us to rewrite the
variational condition in equation 2.37 and energy expression in equa-
tion 2.38 as

E
(1)
ai = 4 ⟨ϕa|q̂f̂|ϕi⟩ = 0 (2.43)

EALMO =
∑
X

⟨ϕXi|ĥ+ f̂|ϕXi⟩ (2.44)

Finally, following the development of the canonical case, we can
cast this energy in the same form as equation 2.28 by first finding the
one-particle reduced density matrix, P, in the AO basis using equa-
tion 2.35: ∑

W

|ϕWi⟩ ⟨ϕWi| =
∑
W,Z

|χZτ⟩ TZτ··Zj σZj,WiT
·Wη
Wi· ⟨χWη|

whence using the locality condition from equation 2.41 and the or-
thonormality of orbitals within a fragment, we conclude that

PXµ,Yν = 2TXµ··Xi σ
Xi,YjT ·YνYj· (2.45)
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2.2.3 The modified Roothaan-Hall equations

We can now set up a Lagrangian equivalent to that of equation 2.29.
There are now two auxiliary conditions, however, requiring two sets
of Lagrange multipliers: we will use λXp,Xq for the on-fragment or-
thonormality condition, and γYp··Xµ for the localisation condition in equa-
tion 2.41. The Lagrangian is thus:

LALMO =
1

2
Tr {[H + F(P)]P}−

∑
X

∑
Y ̸=X

γ
Yp·
·XµC

Xµ·
·Yp

− 2
∑
X

λXp,Xq
(
C
·Xµ
Xp·SXµ,XνC

Xν·
·Xq − δpq

) (2.46)

The factor of two in the final term is for convenience later on, and
could be absorbed into the Lagrange multipliers. Notice that when
optimising for the occupied orbitals, which are fragment localised,
the second term is not relevant, and so appears redundant. However,
if we were to allow a full variational optimisation of all the orbitals
(arriving back at full Hartree-Fock), they would be applicable as we
would take the variation with respect to cross-fragment coefficients.
This highlights the missing part of the ALMO method compared to
canonical HF - that is, the lack of charge transfer.

Taking the variation with respect to a coefficient, TXµ··Xk , can be done
in much the same way as in the lead-up to equation 2.32. However,
there is the added complication that the density, equation 2.45, con-
tains the inverse metric, which itself depends upon the coefficients.
Therefore the variation of the density changes from equation 2.31, to

1

2
∂Xµ,XkP

Yκ,Zτ =δYκ,Xµσ
Xk,ZjT ·ZτZj· + δZτ,XµT

Yκ·
·Yi σ

Yi,Xk

+ TYκ··Yi ∂Xµ,Xkσ
Yi,ZjT ·ZτZj·

To calculate the variation in the inverse metric requires use of the
fact that, for any positive-definite operator S, δS−1 = −S−1(δS)S−1,
which can be proved using the Spectral Theorem [215]. Thus

δσ−1 = −σ−1(δσ)σ−1 = −σ−1
[
δT†ST + T†SδT

]
σ−1

Inserting this into the density variation and simplifying then yields

1

2
∂Xµ,XkP

Yκ,Zτ = δYκ,Xµσ
Xk,ZjT ·ZτZj· − T

Yκ·
·Yi σ

Yi,XkSXµ,WηT
Wη·
·Wmσ

Wm,ZjT ·ZτZj·

+δZτ,XµT
Yκ·
·Yi σ

Yi,Xk − TYκ··Yi σ
Yi,WmT

·Wη
Wm·SWη,Xµσ

Xk,ZjT ·ZτZj·
(2.47)

Upon taking the trace with any Hermitian matrix, M, this simplifies
considerably:

1

2

∑
Y,Z

MZτ,Yκ∂Xµ,XkP
Yκ,Zτ = 2

[
(I − SP)MTσ−1

]
Xµ,Xk
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From this we get, in exactly the same way we reached equation 2.32,
that

∂Xµ,XkL
ALMO = 4

[
(I − SP)FTσ−1 − STλ

]
Xµ,Xk

= 0 (2.48)

We could then right-multiply by σXk,Xl and sum over fragments, to
arrive at a generalised eigenproblem. However, the solution of this
would then scale exactly the same as canonical HF, and would pro-
vide no computational advantages. Instead, it is more useful to return
to equation 2.43 and make use of the fragment localisation. Equa-
tion 2.48 will still prove useful, however, in later chapters.

2.2.4 Fragment Fock operators

Returning to equation 2.35 in the ALMO notation, we get

ρ̂ =
∑
X

|ϕXi⟩ ⟨ϕXi| =
∑
X

ρ̂X (2.49)

implicitly defining fragment-localised density operators, ρ̂X. Consider
the action of this on any given co- or contra-variant occupied orbital:

ρ̂X |ϕYk⟩ = |ϕXi⟩ ⟨ϕXi|ϕYk⟩ = |ϕXi⟩σXi,Yk
ρ̂X |ϕ

Yk⟩ = |ϕXi⟩ ⟨ϕXi|ϕYk⟩ = δXY |ϕXk⟩

This means that we can use it to localise the variational conditions
to each fragment. If we also note that for any occupied orbital, q̂
annihilates it, equation 2.43 can be rewritten as

E
(1)
Ya,Xi = 4 ⟨ϕYa|q̂f̂ (q̂+ ρ̂X) |ϕ

Xi⟩ = 0

which we can make hold for all Ya by requiring that

q̂f̂ (q̂+ ρ̂X) |ϕ
Xi⟩ = 0

for all Xi. Noting that q̂ is Hermitian, we can symmetrise this to give

f̂X |ϕXi⟩ = (q̂+ ρ̂X)
†
f̂ (q̂+ ρ̂X) |ϕ

Xi⟩ = ρ̂†Xf̂ρ̂X |ϕ
Xi⟩ (2.50)

which defines fragment Fock operators, f̂X.
Casting equation 2.50 into the AO basis on that fragment then gives:

⟨χXµ|f̂X|ϕXi⟩ =
[
FXTσ−1

]
Xµ,Xi

⟨χXµ|ρ̂†Xf̂ρ̂X|ϕ
Xi⟩ =

[
SXXFXXTσ−1

]
Xµ,Xi

The inverse metric can be easily removed by right-multiplication with
σ, leaving something resembling an eigenvalue problem. Remember,
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however, that we require that the XX-block of the total Fockian is diag-
onal, as per in the Lagrangian. That is to say, defining [F]Xi,Xj = ϵXiδij,
we rewrite the variational optimisation as F fragmented Roothaan-
Hall equations:

FXCXX = SXXCXXϵX (2.51)

By construction, this solution then satisfies both equations 2.43 and
2.48. The solution method is not unique however, and we have built
f̂X specifically so as to be Hermitian here. Other choices are possible,
which while they will converge to the same solution in principle, may
do so at different rates. Previous studies have suggested our choice
to be the most robust [1, 2, 42].

2.3 problems

By construction, there can be no BSSE present in the solution to
the ALMO problem. Moreover, given that the diagonalisation of an
M×M matrix is an O(M3) process, the cost for diagonalising F frag-
ment Fock matrices is O(Fn3), as opposed to O(N3) = O(F3n3) for the
full matrix. Thus, we expect savings in this step on the order of F2,
but more importantly, this means that the overall step is linear scaling
in the system size. This comes at the expense of a more complicated
Fock build, and the need to compute the inverse metric. However,
as will be shown later, it is possible to make the former also linear
scaling, and the latter can be done very rapidly using Cholesky de-
composition [124]. In addition, information about all fragments is
only needed when forming the density and calculating the energy
from it, such that the rest of the procedure is readily parallellisable.

However, as was noted earlier, by restricting the orbitals in the
above way, mixing between fragments is disallowed. This removes
the basis set superposition error, but also any semblance of charge
transfer. This can be demonstrated explicitly by considering a Mul-
liken population analysis. The charge on fragment X, qX, according
to a Mulliken analysis is given by [216]:

qX = TrX {PS} (2.52)

where P is either the closed-shell density, or the total density (i.e. the
sum of the α- and β-densities), and the trace is over only the X block
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of the term in brackets. Expanding this out using equations 2.45 and
2.42, this becomes

qX =
∑
Y

T
Xµ·
·Xi σ

Xi,YjT ·YνYj· SYν,Xµ

=
∑
Y

σXi,Yj
(
T ·YνYj· ⟨νY |

)(
|µX⟩ TXµ··Xi

)
=

∑
Y

σXi,Yj ⟨ϕYj|ϕXi⟩ = TrX {I}

That is, the charge on X is exactly equal to the number of electrons on
X, such that no charge has been transferred.

This is only one choice of population analysis, however, so that
while it does suggest something fundamentally wrong with the method
on a qualitative level, it should not be taken to be quantitatively exact.
A different way to define the partial charges is a Löwdin analysis [217].
In this approach, the density is projected by the symmetric orthogo-
naliser S−1/2. This still gives the correct total electron density, by the
invariance of traces to permutations:

O = Tr {PS} = Tr
{

S1/2PS1/2
}
= Tr {X}

where we have defined X = MPM, with M = S1/2. If we consider a
system of just two fragments, X and Y, we can expand this block by
block as

O =Tr {MXXPXXMXX +MXXPXYMYX +MXYPYXMXX +MXYPYYMYX}

+ Tr {MYXPXXMXY +MYXPXYMYY +MYYPYXMXY +MYYPYYMYY}

=qLX + q
L
Y

Given that S = M2, SXX = MXXMXX +MXYMYX, which implies that,
after some permuting within the trace:

qLX =Tr {PXXSXX}
+ Tr {MYXMXXPXY +MXXMXYPYX +MYXMXYPYY −MXYMYXPXX}

However, we have that

Tr {PXXSXX} = Tr
{
SXXT

X
Xσ

−1
XXT

X
X

}
= Tr

{
σXXσ

−1
XX

}
= oX − Tr

{
σXYσ

−1
YX

}
= oX − Tr {SXYPYX} = oX − Tr {MXXMXYPYX +MXYMYYPYX}

Using this, the Löwdin population on X is given by

qLX =oX + Tr {MYXMXXPXY +MYXMXYPYY}

− Tr {MXYMYYPYX +MXYMYXPXX}
(2.53)

The remaining traces cannot be simplified, and do not necessarily can-
cel. That is to say in general qLX ̸= oX, meaning that some fraction of
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charge will have been transferred according to the Löwdin analysis.
The significance of this will become apparent later, when construct-
ing domains for the Fock build. Essentially, by using the Löwdin
populations, it is possible to estimate the importance of exchange be-
tween two fragments, whereas the Mulliken populations would give
no useful information; indeed, as shown above, they would result in
no exchange between fragments at all.

2.4 implementation

There are a number of differences between the traditional HF SCF
procedure and that with ALMO constraints. Firstly, the initial guess
at the molecular orbitals, from which the initial density is constructed,
needs to satisfy the block-diagonal constraints in equation 2.41. If a
fragment-basis full SCF calculation has been performed on each frag-
ment beforehand, this can easily be achieved by using the converged
coefficient tensors from these calculations and assigning them to be
the diagonal blocks for the ALMO procedure. This has two advan-
tages: monomer calculations will generally need to be performed any-
way, as the desired output is a BSSE-free interaction energy; and the
guess so generated is of a much higher quality than would typically
be obtained from, for example, a superposition of atomic densities, as
it is the result of a self-consistent calculation.

2.4.1 The SCF routine

The other major differences lie in the need to invert the overlap
metric in each iteration when forming the density via equation 2.45,
and that the diagonalisation of the full Fock matrix is replaced by
the construction and diagonalisation of F locally projected Fock ma-
trices. As the overlap metric is necessarily positive definite, the for-This assumes that there

are no linear dependencies
in the basis.

mer can be rapidly achieved using Cholesky decomposition. This is
formally O(O3) [124], but the number of occupied orbitals is usually
only a small fraction of N, and the prefactor for the decomposition is
very small, meaning this is not expected to become a bottleneck. The
fragment-localised diagonalisations are inherently linear with respect
to system size, but each Fock matrix needs to be constructed first.
From equation 2.50, we need the complementary projector Q̂ = 1̂− P̂,
with AO representation I−SP, which immediately gives the first term,
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[QFQ]XX. This projector can then be used to find the other contribu-
tions:

⟨ϕXµ|P̂†XF̂Q̂|ϕXν⟩ = ⟨ϕXµ|ϕXi⟩ ⟨ϕXi|F̂Q̂|ϕXν⟩ = SXµ,Xλ [PFQ]Xλ,Xν

⟨ϕXµ|P̂†XF̂P̂|ϕXν⟩ = ⟨ϕXµ|ϕXi⟩ ⟨ϕ
Xi|F̂|ϕXj⟩ ⟨ϕXj|ϕXν⟩

= SXµ,Xλ [PFP]Xλ,Xτ SXτ,Xν

Combined, these give the fragment Fock matrices as

FX = [QFQ]XX+ [QFP]XX SXX+SXX [PFQ]XX+SXX [PFP]XX SXX (2.54)

This therefore only requires the matrix-matrix multiplications QFQ,
QFP, and PFP in the full AO basis. These can then be scattered out to
each fragment.

Algorithm 2.1 The ALMO SCF routine

1: ϵ← convergence threshold
2: for each fragment X do
3: Perform HF SCF calculation, store energy and MO coefficients
4: end for
5: while not converged do
6: for each fragment pair XY do
7: Form σYX using equation 2.42

8: end for
9: Solve σσ−1 = I by Cholesky decomposition

10: for each fragment pair XY do
11: Form PXY using equation 2.45

12: end for
13: if first iteration then
14: Compute ERIs and initial P
15: end if
16: Build Fock matrix, F
17: Calculate energy, E, using equation 2.44

18: if ∆E, ∥∆P∥ < ϵ then
19: Converged
20: else
21: Form QFQ, QFP, and PFP
22: for each fragment X do
23: Form FX using equation 2.54

24: Diagonalise FX to get new MO coefficients
25: end for
26: end if
27: end while

The overall ALMO SCF algorithm is summarised in Algorithm 2.1.
The most expensive step remaining is line 16, the formation of the
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Figure 2.1: Equivalent energy-ordered (fourth occupied) molecular orbitals
for the water dimer at a fixed geometry, from canonical HF SCF
(left) versus ALMO SCF as implemented here. This shows clearly
how the former are highly delocalised, while the latter is abso-
lutely localised, as expected. These orbital depictions were cre-
ated using IBOView [218].

Fock matrix, which will be discussed later. Given the insignificant cost
of the Cholesky decomposition noted earlier, the next time-consuming
step is the matrix multiplication in line 21. As the standard proce-
dures for such multiplications are highly optimised, however, this is
not expected to become a bottleneck. Figure 2.1 compares a molecular
orbital given by the algorithm presented, as compared to the equiv-
alent canonical orbital; this succinctly demonstrates both the efficacy
of the implementation, and the main point of using ALMOs.

2.4.2 Convergence acceleration

The SCF equations are simply nonlinear, fixed-point iterations of a
functional (the Fock operator) of the density. As such, the problem
can be viewed as a constrained Newton-Raphson minimisation [34],
for which convergence is only guaranteed if the functional is well-
behaved and the starting guess is in a convex region around a min-
imum. This is not often the case, however, such that a rudimentaryA region R is convex if for

all x,y ∈ R and t ∈ [0, 1],
(1− t)x+ ty ∈ R.

algorithm will not converge in most instances [219, 220]. The con-
straints inherent to the ALMO approach can make this problem worse,
as noted in the original formulation by Stoll [1], leading him to sug-
gest that the variational approach be eschewed in favour of a direct,
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quadratic optimisation. Since then, however, methods for accelerat-
ing convergence of the Roothaan-Hall equations have been developed.
The most popular approach in conventional calculations is the direct
inversion of the iterative subspace (DIIS) method of Pulay [221].

Consider a set of trial orbital densities, {pi}, generated after each
iteration, i. Upon convergence, a final set of densities, {pf} will have
been found. Defining the residual at each step as

∆pi = pi+1 − pi

It should then be possible to approximate the true solution as a linear
combination of the previous densities

pm+1 =

m∑
i=0

cipi

where the ci are real coefficients and m is the number of steps. This
implies that

pm+1 =

m∑
i=0

ci

(
pi−1 +∆pi−1

)
=

m∑
i=0

cipi−1 +∆p

Then, pm+1 − pm vanishes if the total residual

∆p =

m∑
i=0

ci∆pi = 0

Similarly, writing each vector as pi = pf + ei, where ei is the error
from the true solution, we see that

pm+1 = pf
m∑
i=0

ci +

m∑
i=0

ciei

Thus the true solution is found by minimising the second term above,
subject to the constraint that

∑
i ci = 1 so that the first term equates

to pf.
The DIIS method approximates this by equating the minimisation

of the second term with the solution of ∆p = 0. This can be achieved
by minimising the residual norm, equivalent to finding the stationary
points of the Lagrangian

L = c†Bc − λ

(
1−

∑
i

ci

)

where λ is a Lagrange multiplier and Bjk = ⟨∆pj|∆pk⟩. Differentiation
leads to the set of m linear equations

∂L

∂cj
= 2Bjici − λ = 0 (2.55)
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which along with the constraint completely determine the system.
These can be solved by any number of standard algorithms, but it
should be noted that the problem is not positive definite, and the lin-
ear system may become rank degenerate due to numerical roundoff
errors when the residuals become very small. Therefore in the current
work an LU decomposition with a rank-preserving purification pro-
cedure is employed [124]. In practice, only the last few residuals are
stored and used to determine the update vector. Either the density it-
self can be extrapolated or the Fock matrix, with the latter often being
preferred. One important subtlety is that only the raw errors, never
the extrapolated errors, should be stored and reused at each step.

Algorithm 2.2 DIIS-accelerated ALMO procedure

for each fragment X do
Compute FX and eX using equations 2.54 and 2.56

end for
Solve the linear system, equation 2.55, for {ci}, using e = ∪eX
for each fragment X do

Extrapolate Fm+1
X ←

∑m
i ciFX

Diagonalise FX to get new MO coefficients
end for

The choice of residual vector to use is not uniquely defined, as
the true error cannot be known a priori. One approach is to choose
the energy gradient with respect to rotations among the orbitals [42],
such that convergence in the error implies convergence to the energy
minimum. The orbitals are rotated by applying a unitary operator Û,
which is usually parametrised as

Û = exp(−∆̂)

where the ∆̂ is some anti-Hermitian (necessary to ensure the unitarity
of Û) operator. Note that it must be constrained to only rotate or-
bitals within each fragment so as to maintain localisation. The same
approach can then be applied as was used to find the gradient with
respect to the coefficients, equation 2.19. This is somewhat involved,
and the full derivation is given in Appendix B. The resulting gradient
is given by

∂E

∂ (∆α)
Xζ,Xτ = SXτ,Xη [PFαQ]Xη··Xζ − [QFαP]·XπXτ· SXπ,Xζ (2.56)

such that the total residual vector is the concatenation of F local frag-
ment residuals. We note that the residual terms are identical to the
second and third terms of equation 2.54, albeit with different signs,
so that the error vector can be calculated at the same time as the frag-
ment Fock matrices are built, at no additional cost. Incorporation of
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Figure 2.2: Accelerated convergence in the energy and density using Algo-
rithm 2.2 with DIIS, compared to the original Algorithm 2.1 with-
out DIIS. The data is from a calculation on the water dimer using
the cc-pVDZ basis [128]; with the aug-cc-pVDZ basis [128], the
algorithm without DIIS does not converge.

the DIIS procedure in Algorithm 2.1 thus only requires that lines 20

to 23 be replaced with Algorithm 2.2.
As usually at most eight error vectors are stored, solving the linear

system incurs negligible computational effort, and the calculation and
extrapolation steps remain linear in the number of fragments. It has
been shown repeatedly that DIIS substantially reduces the number
of iterations required to achieve convergence [42, 219, 221], and is
considerably more robust than the simple fixed-point procedure. This
is demonstrated in Figure 2.2, where it can be seen that the ALMO
SCF calculation on the water dimer in a small basis converges both
more rapidly and with greater stability. In fact, increasing the basis to
the augmented version (equivalent to adding diffuse basis functions),
the DIIS-based algorithm converges in eight steps, while the basic
algorithm without DIIS does not converge at all.





3 E N E R GY D E C O M P O S I T I O N

In this chapter, I describe the new method based on ALMOs
in the context of the different terms in the interaction energy.
The electrostatic and polarisation terms are based on the work
of Head-Gordon and coworkers [2], after which I develop correc-
tions to their scheme so that it includes charge transfer, and in
particular, accurate dispersion and exchange-dispersion. The lat-
ter terms will be treated with the random phase approximation,
the choice of which will be justified, and I will show how it can
easily be systematically extended to include more accurate corre-
lation energies. A main focus here is setting up the terms in such
a way that they can be implemented to be linear-scaling with the
number of molecules, the details of which will be described in the
next chapter.

The absolutely localised molecular orbitals of the previous chapter
form the base for the new method, from which we can decompose in-
termolecular interaction energies in terms of physically distinct quan-
tities. This partitioning of the energy, and the motivation behind it,
can broadly be broken into four main components:

1. ‘frozen’ energy, describing the electrostatic interaction between
the unrelaxed, frozen monomer orbitals in their distorted ge-
ometries;

2. polarisation energy, resulting from the relaxation of the orbitals
within the absolutely localised constraint;

3. charge transfer, resulting from delocalisation between fragments;

4. dispersion, due to the correlated excitations between electrons
on separate fragments.

The last term can further be split into pure dispersion and exchange
dispersion terms, reflecting whether the excitations are on-fragment
or between two fragments. If the undistorted monomer energy is
available, for example in calculations where the supermolecular ge-
ometry is being optimised, then a further, ‘relaxation’ energy term
can be defined as the difference in energy between the distorted and
undistorted monomers. This therefore represents the steric penalty
associated with bringing the fragments into proximity with one an-
other.

49
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3.1 electrostatics and polarisation
After full monomer SCF calculations have been performed on the

monomers in the geometries they assume in the complex, each frag-
ment has a set of unperturbed occupied orbitals described by coeffi-
cients, Tγ

X,frz.. By forming the block-diagonal concatenation of all such
coefficients, we can define a supermolecular frozen density matrix for
each electron spin, Pγfrz., as

(
P
γ
frz.

)Xµ,Yν
=
(
T
γ
frz.

)Xµ·
·Xi (σ

γ)Xi,Yj
(
T
γ
frz.

)·Yν
Yj· (3.1)

which is analogous to equation 2.45 in the ALMO procedure. The in-
clusion of the inverse of the metric, formed exactly as in equation 2.42

but with the frozen coefficients, means that this density is not sim-
ply the sum of non-interacting fragment densities (assuming that the
metric is not simply the identity). That is, in general the fragment-
localised orbitals will not be mutually orthogonal. Thus the frozen
density represents the interactions between the unperturbed fragment
electron densities, represented by the occupied orbitals. This cor-
responds to multipole-multipole interactions [10], i.e. electrostatics,
which will be most favourable when the multipole moments of each
fragment align. The presence of the metric, however, ensures that
as fragments are brought closer together, these interactions include
Pauli repulsion. In the long-range regime, the former will dominate,
whereas the latter will become dominant at small separations.

The frozen energy is thus defined to be the difference between the
energy as determined using the frozen density, and the sum of the
fragment energies in their distorted geometries but at infinite separa-
tion, EX. That is, from equation 2.44:

∆E
γ
frz. =

1

2
Tr

{[
H + F(Pγfrz.)

]
Pγfrz.

}
−
∑
X

EX (3.2)

While the term ‘frozen’ energy makes sense in the context of the orig-
inal development, it is more convenient to refer to this as the electro-
static term with exchange included, as these are more standard de-
scriptions. The ALMO-EDA is unique in the sense that the exchange
is a priori included, whereas other methods like SAPT attempt to sep-
arate it out; this is due to antisymmetry being enforced on the wave-
function throughout, rather than being included in the perturbative
expansion.

During the ALMO SCF procedure, the frozen orbitals above are al-
lowed to relax. This therefore corresponds to the distortion of electron
density on each fragment due to the presence of the other fragments,
i.e. the polarisation of charge. If the ALMO densities are Pγ0 , then
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defining ∆Pγpol. = Pγ0 − Pγfrz., the polarisation contribution to the inter-
action energy is given by

∆E
γ
pol. =

1

2
Tr

{
[H + F(Pγ)]∆Pγpol.

}
(3.3)

The polarisation here is more rightly termed local polarisation, as it is
constrained to the individual molecules. The lack of extended polari-
sation - or charge transfer - is how it differs from a full Hartree-Fock
solution.

3.2 charge transfer
The ALMO SCF procedure leads to an energy for the complex that

is free of superposition error, but is necessarily higher than the true
solution without the localisation constraint. The only consequence of
the restriction, as demonstrated above, is the inability for fragments
to share electron density - rather, they are optimised in the effective
field of all the other fragments. The difference between the full solu-
tion and the ALMO solution can thus be chosen as the definition of
charge transfer. This could be calculated exactly by performing the
full complex calculation and observing the energy difference, but that
would negate any computational savings. As such, it is desirable to
be able to estimate what the energy would have been if each fragment
had access to the entire supermolecular basis. In doing so we neces-
sarily reintroduce some BSSE, but this is the only term in which this
is true.

3.2.1 Perturbative correction

This expansion from a smaller to a larger basis can be achieved
through a perturbative correction, directly analogous to that employed
in the dual basis methods described earlier [42]. Following the usual
Rayleigh-Schrödinger perturbation theory [222], we take the zeroth-
order Hamiltonian to be

2Ĥ0 = ĥ+ ρ̂0f̂(ρ̂0)ρ̂0 + q̂0f̂(ρ̂0)q̂0 (3.4)

where ρ̂0 is the ALMO density operator, the discrete representation
of which is given in equation 2.45, q̂0 = 1̂ − ρ̂0, and f̂ is the asso-
ciated Fock operator. This Hamiltonian contains the projections of
the Fock operator onto the occupied space and its orthogonal comple-
ment, with no mixing terms. Taking the full Hamiltonian to be the
converged ALMO Fock operator, as we have no way of knowing what
the full density would be, the perturbation is thus

V̂ =
1

2

{
ĥ+ f̂(ρ̂0)

}
− Ĥ0 = ρ̂0f̂(ρ̂0)q̂0 (3.5)
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It is possible to proceed from this point without enforcing strong
orthogonality between the occupied and virtual subspaces. Regard-
less of the approach, mixing the fragment subspaces will necessarily
reintroduce some of the BSSE that we are trying to avoid. However,
as the zeroth-order wavefunction is untainted by BSSE, and the per-
turbation is necessarily small, the error is expected to be very small.
Moreover, this term is available as a well-separated contribution, such
that the error can be clearly identified. As a result, there is no disad-
vantage in simplifying matters by first enforcing strong orthogonality,
then allowing the occupied and virtual orbitals to mix within their
respective subspaces, i.e. by finding orbital rotations such that the
occupied-occupied and virtual-virtual blocks of the Fock matrix are
(separately) diagonalised. The former is achieved by projecting the
virtual coefficients in the AO basis out of the occupied subspace, and
will be considered later. For the diagonalisation, we apply a unitary
transformation û to the orbitals:

⟨ϕi|Û†f̂Û|ϕj⟩ = ϵiδij and ⟨ϕa|Û†f̂Û|ϕb⟩ = ϵaδab
where we use a bar to denote a transformed quantity. In this way, the
resolvent operator is given by

R̂0 =
Û†q̂0Û

E0 − Û†Ĥ0Û

where E0 is the energy before transformation, i.e. the energy of the
zeroth-order, ALMO SCF wavefunction Φ0. The infinite-order wave-
function Φ and energy correction ∆E are thus as follows:

Φ =

∞∑
m=0

[
R̂0(V̂ −∆E)

]m
Φ0

∆E =

∞∑
m=0

⟨Φ0|V̂
[
R̂0(V̂ −∆E)

]m
|Φ0⟩

(3.6)

Writing ρ̂ = Û†ρ̂0Û, and similarly for q̂ with q̂0, the transformation
implies that ρ̂ projects orbitals onto the occupied space, and q̂ projects
them onto the virtual space. As such, the matrix elements of the
perturbation are

V ij = ⟨ϕi|ρ̂f̂q̂|ϕj⟩ = ⟨ϕi|f̂0|ϕj⟩ = 0
Vab = ⟨ϕa|ρ̂f̂q̂|ϕb⟩ = ⟨ϕa|0f̂|ϕb⟩ = 0
V ia = ⟨ϕi|ρ̂f̂q̂|ϕa⟩ = ⟨ϕi|f̂|ϕa⟩ = fia

(3.7)

Using equation 3.6, we thus get that the first- and second-order energy
corrections are

∆E(1) = ⟨Φ0|V̂ |Φ0⟩ = V ii = 0

∆E(2) = ⟨Φ0|V̂R̂0V̂ |Φ0⟩ =
⟨ϕi|V̂ |ϕa⟩ ⟨ϕa|V̂ |ϕi⟩

ϵi − ϵa
=

∣∣fia∣∣2
ϵi − ϵa

(3.8)
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It is possible, but tedious, to continue in this way to arbitrary order,
in particular finding that ∆E(3) = 0 and

∆E(4) =
∑
i,j ̸=i

∑
a,b

fiafajfjbfbi

(ϵi − ϵa)(ϵi − ϵj)(ϵi − ϵb)

−
∑
i

∑
ab

∣∣fia∣∣2 ∣∣fib∣∣2
(ϵi − ϵa)(ϵi − ϵb)2

(3.9)

where we have explicitly shown the summations for clarity.
The advantages of the above approach are that it is very simple to

implement to second- and fourth-order, and these usually give an
excellent estimate to the full correction, unless the system is very
strongly bound. Alternatively, a full diagonalisation of the untrans-
formed Fock matrix can be performed - equivalent to taking a single,
unconstrained Roothaan step - to determine the density ρ̂∞, and the
infinite-order correction calculated as

∆E = Tr
{
f̂(ρ̂0) [ρ̂∞ − ρ̂0]

}
(3.10)

It should be noted at this point that in the spin-unrestricted case, all
of the above should be applied separately to each of f̂α and f̂β and
the results summed, while in the restricted case, each energy correc-
tion gains a factor of two due to double occupation. The primary
disadvantage of this approach is that it requires an essentially O(N3)

diagonalisation step, even if only the second-order energy is required
(as V ∼ N asymptotically).

The need for diagonalisation can be circumvented by considering
directly the orbital rotation, Û. The energy lowering associated with
such a transformation is, using the invariance of the core Hamiltonian
and the unitarity of the transformation:

∆E = Tr
{
Ûρ̂0Û

†f̂Ûρ̂0Û
† − ρ̂0f̂ρ̂0

}
= Tr

{
ρ̂0

[
f̂− f̂

]
ρ̂0

}
(3.11)

where the transformed Fock operator is f̂ = Û†f̂Û. Applying Û to
the left, this becomes Ûf̂ = f̂Û, from which we take just the occupied-
occupied and virtual-occupied blocks. Switching to the discrete rep-
resentation with occupied and virtual blocks denoted by subscripts O
and V , this gives:

UOOfOO + UOVfVO = fOOUOO + fOVUVO (3.12)

UVOfOO + UVVfVO = fVOUOO + fVVUVO (3.13)

The energy functional for the transformation is minimised by requir-
ing that q̂0f̂ρ̂0 disappears [223], such that after applying U−1

OO from
the right, we get

fOO = UOOfOOU−1
OO − fOVUVOU−1

OO
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Inserting this into equation 3.11 then yields

∆E = Tr
{

fOO − UOOfOOU−1
OO + fOVUVOU−1

OO

}
= Tr {fOVxVO} (3.14)

where we have used the permutational invariance of the trace and
defined xVO = UVOU−1

OO.
Applying U−1

OO to the right of equations 3.13 and 3.12, and xVO to
the left in the latter, then results in

UVOfOOU−1
OO = fVO + fVVxVO

UVOfOOU−1
OO = xVOfOO + xVOfOVxVO

Subtracting one from the other then leads to the following quadratic
equation:

fVO + fVVxVO − xVOfOO − xVOfOVxVO = 0 (3.15)

This can be solved iteratively for xVO, from which the energy can be
determined by equation 3.14.

The main advantages of this approach are that the formulation is
invariant with respect to change of basis, and that the most expen-
sive step computationally is the matrix-matrix multiplications in the
quadratic term above; such multiplications scale as O(N2), as opposed
to O(N3), and in general involve far fewer floating point operations.
The disadvantage is, of course, that several iterations may be nec-
essary to converge the coefficients. As a result, if only the second-
order correction is needed, it is often cheaper to use the formulation
in equation 3.8, up to a certain system size where the asymptotics
take effect. As we will see shortly, however, there is a further ad-
vantage in the second method, which is that it allows for decomposi-
tion of the charge transfer into contributions between fragments. Fi-
nally, it should be noted that in the case where the virtual-virtual and
occupied-occupied blocks of the Fock matrix are constrained to be
diagonal, neglecting the quadratic term in equation 3.15 leads to

0 = fai + fabxbi − xajfji = fai + (ϵa − ϵi)xai

which rearranges to give xai = fai/(ϵi − ϵa). Inserting this in equa-
tion 3.14 yields

∆E = fiaxai =
|fia|

2

ϵi − ϵa
= ∆E(2)

That is, the dual basis correction reduces to the second-order pertur-
bation result. This means that the earlier scheme can be treated com-
putationally as a subset of the latter method, and that inclusion of the
quadratic term gives a measure of the difference between the second-
and infinite-order corrections.
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3.2.2 Directionality

Using equation 3.14, the closed-shell charge transfer contribution is

∆ECT = 2Tr {fOVxVO} (3.16)

where the rotation coefficients are either found by iterative solution
of equation 3.15, or by following the perturbative procedure outlined
in equations 3.8 and 3.9, depending on the truncation level desired.

Charge transfer by definition is a directional quantity, however, and
it would be at least qualitatively useful to have a way to analyse in
what manner charge is transferred, i.e. between which fragments and
to what extent. To do this, we introduce fragment partition operators
for each molecular orbital, p̂Xi for occupied orbital ϕi on fragment
X and q̂Xa for virtual orbital ϕa on fragment X. For simplicity, we
first project the virtual orbitals into the orthogonal complement of the
occupied subspace, i.e. replace ϕa with ϕa where

|ϕa⟩ = q̂0 |ϕa⟩

We then require that∑
Xi

p̂Xi = ρ̂0 and
∑
Xa

q̂Xa = q̂0

with each partition operator itself being a projection; that is, they must
be idempotent. Using these, the energy can be partitioned into contri-
butions from fragment Y onto fragment Z as follows:

∆EY→ZCT =
∑
i,a

Tr
{
p̂Yif̂q̂ZaX̂

}
(3.17)

Note that by summing over all unique Y,Z pairs, including where
Y = Z, the total energy from equation 3.16 is recovered.

The choice of partition operators is not unique, in exact analogy
with population analyses. This introduces a certain arbitrariness to
the procedure, meaning that while it appears to be quantitative, it
is only truly useful in a qualitative sense. The simplest choice of
partition would be that of Mulliken [216], in which the operators are
simply

p̂Xi = |ϕXi⟩ ⟨ϕXi| and q̂Xa = |ϕXa⟩ ⟨ϕ
Xa
| (3.18)

which clearly satisfy the required relations; in particular, idempotency
follows by the orthonormality of the co- and contra-variant orbitals.
The advantage of this choice is that the intrafragment charge transfer
terms would be rigorously zero if the virtuals had not been projected,
as shown earlier when considering the lack of charge transfer in the
ALMO scheme. As in practice the projection only slightly alters the
locality, these terms will still be negligibly small. Intuitively, it makes
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little sense to talk about transferring electron density to oneself. The
resulting energy contributions in the MO basis are then given by

∆EY→ZCT, M =
∑
W

⟨ϕWk|ϕYi⟩ ⟨ϕYi|f̂|ϕZa⟩ ⟨ϕ
Za
|x̂|ϕWk⟩

= Tr {(fOV)YZ (xVO)ZY}
(3.19)

In Appendix C, it is shown that one can also define partial charges
as

∆QY→ZCT, M = Tr {(ρρρOV)YZ (xVO)ZY} (3.20)

This is somewhat more complicated, as the transformed density, ρ̂ =

Ûρ̂0Û
† needs to be determined. However, the concept of a physical

charge moving from one fragment to another in this context - where
the molecules are fixed in time and cannot be considered to ionise -
is questionable at best. It implies two things: that the electron ‘be-
longs’ to some specific subsystem, and as such is labelled; and that
it is possible to follow the trajectory of the electron, so as to describe
it as moving between subsystems. Clearly, both assertions are phys-
ically absurd - electrons are indistinguishable and have no definite
position, and the partitioning into subsystems is itself arbitrary. In-
stead, it is more reasonable to consider charge transfer as the energy
lowering caused by the non-local response of the electron density on
each fragment when brought into proximity with the other fragments.
That is, we have simply split polarisation into local and non-local por-
tions. The first, ∆Epol., reflects the redistribution of electron density
constrained to a finite volume around the fragment, while ∆ECT en-This volume is effectively

defined by the extent of
the local atomic orbitals.

compasses the remaining relaxation outside that volume.

3.3 dispersion

The mean-field treatment presented thus far takes no account of
dynamical correlation, and therefore is incapable of describing disper-
sion interactions. In this section, we describe how an exact treatment
of dispersion can be formulated in terms of the frequency-dependent
electric polarisabilities of the system, and how this leads to the ran-
dom phase approximation (RPA) approach. As will be demonstrated,
this is intimately connected with coupled cluster theory, providing an
efficient method of calculating dispersion in such a way that the dif-
ferent interfragment contributions can be isolated. Neither method is
new, but the development in this context, and the approach to decom-
posing the excitations in such a way that they are free of BSSE and
able to be computed in a linear-scaling manner, are novel.
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3.3.1 Pair correlations

We define one- and two-particle density operators as

ρ̂pq = a†paq and ρ̂pqrs = a†pa
†
qasar (3.21)

which represent the number-conserving correlations between differ-
ent states in the underlying Fock space. The Hamiltonian, from equa-
tion 2.10, is thus

Ĥ = hpqρ̂pq +
1

2
gpqrsρ̂prqs (3.22)

highlighting the physical nature of the different couplings. In general
the density will fluctuate over time, and the response of the densities
to perturbations is by definition the electron correlation.

Consider the wavefunction at time t, |Ψ(t)⟩. In the interaction pic-
ture [224], this is propagated from an initial state at time t = 0 by the
unitary time evolution operator, Û(t):

|Ψ(t)⟩ = exp(−iĤ(t)) |Ψ(0)⟩ = Û(t) |Ψ(0)⟩

Ĥ(t) =

∫ t
−∞ dt ′ Ĥ(t ′)

(3.23)

Then in general the expectation of any operator, Â, at time t is given
by

A(t) = ⟨Ψ(t)|Â|Ψ(t)⟩ = ⟨Ψ(0)|Û†ÂÛ|Ψ(0)⟩ (3.24)

If we consider only the linear response by expanding the exponential
to first order, this becomes

A(t) = ⟨Ψ(0)|[1+ iĤ(t) +O(Ĥ2)]Â[1− iĤ(t) +O(Ĥ2)]|Ψ(0)⟩
≈ A(0) + i ⟨Ψ(0)|ĤÂ− ÂĤ|Ψ(0)⟩

Then the variation in expectation, δA, is simply

δA = i

∫ t
−∞ dt ′ ⟨

[
Ĥ(t ′), Â(t− t ′)

]
⟩ (3.25)

Next, we write the Hamiltonian as a time-independent, zeroth-order
part, and a one-electron perturbation, f̂(t):

Ĥ(t) = Ĥ0 − f̂(t) = Ĥ0 − fpq(t)ρ̂pq(0)

We wish to describe the response of the electron density to this per-
turbation, such that Â(t) = ρ̂rs(t) here. As this necessarily commutes
with Ĥ0, equation 3.25 becomes

δρrs = −

∫ t
−∞ dt ′ G−

pq,rs(t− t
′)fpq(t

′) (3.26)
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where we have extracted the two-particle retarded Green’s function,
or time propagator, for the density:

G−
pq,rs(τ) = i ⟨[ρ̂pq(0), ρ̂rs(τ)]⟩ (3.27)

As this describes the linear response in the density, it is also some-
times called the linear response function.

Making the time translation τ = t− t ′, equation 3.26 becomes

ρrs(t) − ρrs(0) =

∫∞
0

dτ G−
pq,rs(τ)fpq(t− τ)

Fourier-decomposing the perturbation then gives

ρrs(t) − ρrs(0) =

∫∞
0

dτ G−
pq,rs(τ)

∫∞
0

dω f̃pq(ω)eiω(t−τ)

=

∫∞
0

dω f̃pq(ω)eiωt
∫∞
0

dτ G−
pq,rs(τ)e

−iωτ

=

∫∞
0

dω f̃pq(ω)G−
pq,rs(ω)eiωt

where G−(ω) is the frequency- (or energy-) dependent Green’s func-
tion, i.e. the Fourier transformed time-dependent Green’s function.
The above implies that the Fourier transform of the density is related
as

ρ̃rs(ω) = G−
pq,rs(ω)f̃pq(ω) (3.28)

The Fourier-transformed Green’s function, G−
pq,rs, is simply the four-

point polarisability tensor, or the susceptibility of the electron density
to fluctuations in the electric field [225, 226]. Physically, it describes
the extent to which the density will polarise, or distort, when exposed
to small changes in the interactions, and therefore describes electron
correlation. Starting from equation 3.27, integration over a contour anDue to its many different

names, G− is often
written as α

(polarisability) or χ
(susceptibility).

infinitessimal η → 0+ below the real axis yields an explicit form for
the polarisability:

G−
pq,rs(ω) = ⟨ρ̂rs(0)[ω+ iη+ Ĥ]−1ρ̂pq(0)⟩− ⟨ρ̂pq(0)[ω+ iη− Ĥ]−1ρ̂rs(0)⟩

This can be split into real and imaginary parts describing dispersion
and absorption, respectively:

G−
pq,rs(ω) = χpq,rs(ω) + iΠpq,rs(ω) (3.29)

Expanding in the complete set of eigenstates of the Hamiltonian, {|n⟩},
gives the spectral resolution or Lehmann representation [227] of the
polarisability:

χpq,rs(ω) =
∑
n̸=0

[
(ρpq)0n(ρrs)n0
ωn −ω

+
(ρrs)0n(ρpq)n0
ωn +ω

]
Πpq,rs(ω) = π

∑
n̸=0

[(ρpq)0n(ρrs)n0δ(ω−ωn) − (ρrs)0n(ρpq)n0δ(ω+ωn)]

(3.30)



3.3 dispersion 59

where ωn are the poles of χ, or the resonance frequencies of the den-
sity response. In the neighbourhood of these frequencies, the value of
χ is taken in the principal value sense.

The delta functions in Π imply that, for any reasonably well-behaved
distribution z(ω ′,ω):

1

π

∫∞
−∞ dω ′ Πpq,rs(ω

′)z(ω ′,ω)

=
∑
n̸=0

[(ρpq)0n(ρrs)n0z(ωn,ω) − (ρrs)0n(ρpq)n0z(−ωn,ω)]

Choosing z(ω ′,ω) = (ω ′ −ω)−1 leads to one half of the Kramers-
Kronig (or Hilbert transform) relations [227]:

χpq,rs(ω) = −
1

π
P

∫∞
−∞ dω ′

Πpq,rs(ω
′)

ω ′ −ω
(3.31)

where P denotes the Cauchy principal value. Thus, knowledge of the
imaginary part completely determines the system. In particular, the
two-particle transition densities, dpq,rs, are given by choosing z to be
the Heaviside function [228]:

dpq,rs = (ρpq)0n(ρrs)n0 =

∫∞
0

dω ′
1

π
Πpq,rs(ω

′) (3.32)

This implies that 1
πΠ(ω) is the density of states, which describes the

availability of states that can absorb an incoming light wave of fre-
quency ω.

3.3.2 Correlation energy and the adiabatic connection

We now demonstrate how the correlation energy can be determined
from the polarisability. The correlation energy is defined to be the dif-
ference between the true energy of the system, E, and the mean-field
approximation E0 determined from an SCF calculation. Choosing the
Fock operator from this calculation as the zeroth-order Hamiltonian,
we slowly ‘switch on’ the perturbation V̂ , through a parameter λ:

Ĥ(λ) = f̂+ λV̂ (3.33)

where the Fock operator is defined by its matrix elements as

fpq = hpq + ⟨pi||qi⟩ (3.34)

Clearly, this gives E = E(λ = 1) and E0 = E(λ = 0), such that the
correlation energy is given by

∆E =

∫1
0

dλ
∂E

∂λ
=

∫1
0

dλ ⟨Ψ(λ)|V̂ |Ψ(λ)⟩ (3.35)



60 energy decomposition

This technique is called the ‘adiabatic connection’ [226, 229, 230], as
the interaction is slowly - or adiabatically - tuned from nothing to
fully interacting.

Consideration of equation 3.34 gives the interaction operator as

1

4
⟨pq||rs⟩ ρ̂pq,sr − ⟨pi||qi⟩ ρ̂pq +

1

2
⟨ij||ij⟩ (3.36)

Taking the expectation and inserting in equation 3.35 then yields

∆E =

∫1
0

dλ

[
1

4
⟨pq||rs⟩ ρrs,pq(λ) − ⟨pi||qi⟩ ρpq(λ)

]
(3.37)

Using the anticommutation relations for the creation and annihila-
tion operators, the two-particle density can be written in terms of the
one-particle density as

ρ̂rs,pq = a†ra
†
saqap = a

†
r

(
aqa

†
s − δsq

)
ap = ρ̂rqρ̂sp − δsqρ̂rp

This means that the two-particle density matrix is

ρrs,pq = ⟨ρ̂rqρ̂sp⟩− δspρrp = ρrqρsp + dpr,qs − δpsρqr (3.38)

Next, consider the change in this density as λ slowly increases from
zero:

δρrs,pq = (δρrq)ρsp + ρrq(δρsp) + (δρrq)(δρsp) + δdpr,qs − δpsδρqr

The terms involving δρ, when averaged over, are presumed to be neg-
ligibly small; in the words of Bohm and Pines [231]:

We distinguish between two kinds of response of the elec-
trons to a wave. One of these is in phase with the wave...
which contributes to the organized behaviour of the sys-
tem. The other response has a phase difference with the
wave... this tends to average out to zero when we consider
a large number of electrons. This procedure we call the
random phase approximation.

Using this in equation 3.37, the correlation energy in the RPA is thus
given by

∆ERPA =
1

2

∫1
0

dλ Tr {W∆d}

∆dpq,rs(λ) =
1

π

∫∞
0

[
Πλpq,rs(ω) −Π0pq,rs(ω)

] (3.39)

where we have defined an interaction tensor, W; in the above formal-
ism, this would be Wpqrs = 1

2 ⟨pq||rs⟩. Therefore, the RPA energy
is completely determined by knowledge of the polarisabilities. Note
that in special cases, such as the uniform gas [232], this energy is exact
as the δρ terms are rigorously zero.
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3.3.3 Determining the polarisabilities

The zeroth-order polarisability, i.e. that calculated from the SCF
wavefunction, is easily determined [229], but it is not possible to write
the full polarisability in closed form. Instead, it must be determined
in either a self-consistent or perturbative manner. Within the RPA, it is
possible to use the former approach, allowing inclusion of terms to in-
finite order. As a starting point, consider the relation in equation 3.28

as obtained from the Hamiltonian in equation 3.33. For clarity, we
write the full and zeroth-order Green’s functions as G and G0, drop-
ping the particle subscripts, so that this is ρ̃ = G0f̃. If instead the
Hamiltonian was partitioned as

Ĥ = f̂(0) + λWρ̂− f̂(t) = f̂(0) − ŵ(t)

where W contains the interaction contribution, then the equivalent to
equation 3.28 would be ρ̃ = Gw̃. Combined with the earlier relation,
this gives Gw̃ = G0f̃. Using the linearity of Fourier transforms,

w̃ = f̃− λWρ̃ = [1− λWG0]f̃

so that eliminating f̃ yields

G0 = G− λGWG0 (3.40)

This is simply the Dyson equation for the propagator [227]. Multi-
plying on the left by G−1 and on the right by G−1

0 , then inverting, this
becomes

G =
[
G−1
0 − λW

]−1
= G0 [1− λWG0]

−1 = G0 +G0

∞∑
n=1

λn(WG0)
n

(3.41)
Physically, at each order of λ the next order in the interaction is
included, screened by the zeroth-order density propagators. It is
this inclusion of the screening that makes the RPA such a significant
leap forward in solving the many-body problem. Earlier perturba-
tive attempts to determine the correlation energy could not include
screening [233, 234], and thus contained spurious divergences; in con-
trast, the above leads to a geometric series that is absolutely conver-
gent [232]. This can be related to the imaginary part via analytic
continuation onto the imaginary frequencies, whereby equation 3.31

results in ∫∞
0

dω G(iω) =

∫∞
0

dω Π(ω)

Using equation 3.39 and integrating over λ then gives the correlation
energy in terms of the known zeroth-order polarisability:

∆ERPA =
1

2π

∞∑
n=2

1

n

∫∞
0

dω Tr {[WG0(iω)]n} (3.42)
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•
(a) (b) (c)

Figure 3.1: Three components of Feynman diagrams. Each vertex (solid dot)
represents a term in the interaction Lagrangian, while incoming
and outgoing fermions, or more precisely their propagators, are
represented by the arrowed lines. The wavy line, or photon line,
shows the interaction between processes in the Lagrangian.

We note in passing that this form makes it clear that the RPA energy is
equivalent to that obtained in the GW approximation [235] (so-named
because of the repeating units of GW in the trace), where the self-
energy - the contribution to a particle’s energy from its interactions
with its environment - is truncated at first order.

It is enlightening in the context of noncovalent interactions to con-
sider the case where the interaction, W, is given by that of two electric
dipoles in a Coulombic field, separated by a distance R along the x-
axis:

Wij = (∇i ×∇j)|ri − rj|−1 =
1

R3

2 0 0

0 −1 0

0 0 −1


In this instance, the zeroth-order Green’s function is simply the diago-
nal matrix of point dipole polarizabilities, αi(ω), so that Tr

{
(WG0)

2
}
=

α1α2Tr
{
W2

}
. The remaining trace is simply (22+(−1)2+(−1)2)R−6 =

6R−6. The second-order interaction energy is therefore

∆E
(2)
dip. = −

1

6
· 6R−6 · 3

π

∫∞
0

dω α1(iω)α2(iω) = −
C6

R6
(3.43)

where we have extracted the Casimir-Polder integral to get the defini-
tion of the C6 coefficient [10, 236]. This is the familiar leading-order
contribution to the dispersion energy. Similarly, by going to third or-
der, one obtains the Axilrod-Teller-Muto term [10]. As such, the RPA
approach can be seen to lead directly to the dispersion terms of the
interaction energy that we wish to include in the new method.

3.3.4 Connection with coupled-cluster doubles

When the Hartree-Fock solution is taken as the reference for the
above, the result is often termed time-dependent Hartree-Fock [229].
This actually goes back as far as Dirac in 1930 [237], but it was the
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development of quantum field theory, and in particular the Feynman-
Dyson diagrammatic techniques developed for quantum electrody-
namics, that led to its application to condensed matter. The approx-
imation was first presented by Bohm and Pines [231, 238–240] in re-
sponse to attempts by Landsberg [241] and Wohlfarth [242] to describe
the high-density electron gas beyond the estimate of Wigner [233, 234].
It was then formulated diagrammatically by Gell-Mann and Brueck-
ner [243] based on Goldstone’s Feynman-like diagrams [244]. This
allowed for its use in the study of a much wider variety of problems.
More recently, it has found considerable renewed interest due to its
ability to include otherwise absent nonlocal correlation contributions
in density functional theory [226, 230, 236, 245–249], and its intimate
connection to coupled-cluster doubles (CCD) theory [250–255]. Not
only does the latter imply applicability of the RPA to molecular sys-
tems, but it also means that efficient algorithms can be devised util-
ising the usual CC framework. Additionally in the current context,
this will allow us to decompose the correlation energy into physically
distinct contributions, as will be described later.

To understand the connection with CCD, it is easiest to use the di-
agrammatic approach mentioned above. Essentially, these diagrams
are graph-theoretical descriptions of the underlying Lagrangian prob-
lem. It is easiest to start from the Feynman-type diagrams, the main
components of which are shown in Figure 3.1. Each vertex is a term
in the Lagrangian, through which particle lines pass - note that we
choose time to be the horizontal axis, as is conventional in quantum
chemistry. For example, Figure 3.1a shows incoming and outgoing
fermions, i.e. one-particle Green’s functions. Interactions between
terms are then introduced as shown in Figure 3.1b; in the current con-
text, these would represent W, and the subfigure would be read as
a fermionic pair ‘annihilating’ to produce a virtual photon mediated
by W, which in turn creates a new fermionic pair. Finally, the non-
interacting two-particle Green’s function, G0, is given as the closed
loop of two one-particle propagators, as shown in Figure 3.1c; the in-
teracting Green’s function G would in general be an infinite sum of
similar diagrams with interaction lines included.

Using this, the RPA energy in equation 3.42 can easily be repre-
sented as the following closed-loop, or ‘ring’, Feynman diagrams:

∆ERPA = −
1

4
−
1

6
−
1

8
+ . . .

Simple, systematic rules can then be used to translate each diagram
into algebraic form, and indeed to perform the summation, making
the value of the diagrammatic approach immediately apparent [256].
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In electronic structure, where only electrons need be considered, it is
simpler to instead use Goldstone diagrams [244], in which case the
RPA energy becomes

∆ERPA = + + + . . .

(3.44)
The interpretation of these, and thus also the rules for their evaluation,
are different [222]. In the Goldstone diagrams, the lower and upper
horizontals are taken to be, colloquially, the ground and excited states,
respectively. Upward, ‘particle’ lines denote an annihilation operator,
while downward, ‘hole’ lines denote a creation operator. The dashed
lines correspond to the interaction elements connecting particle-hole
pairs. Note that the prefactors from the Feynman diagrams have been
absorbed, and resolvent lines (energy denominators) are implied.

Assuming that W is the bare Coulomb interaction - leading to the
‘direct’ RPA result (dRPA) - and that a standard HF reference is used
with orbital energies ϵp, the first diagram in equation 3.44 is evaluated
as

=
1

4

∑
iajb

|Wiajb|
2

ϵi + ϵj − ϵa − ϵb
= ∆EdMP2

That is, the first term in the dRPA expansion corresponds to the direct
MP2 energy. Similarly, subsequent terms give higher-order perturba-
tive corrections, such that we have performed a (selective) summation
to infinite order, or ‘renormalised’ the perturbation series. The key to
why this is possible is that the topology of all the graphs in the series
is the same, i.e. they all have a ring structure [256].

However, evaluating each term in the series in the above way is
both impractical and prone to error, and as we have already seen
from equation 3.40, it should be possible to determine the energy
self-consistently, rather than perturbatively. This is achieved using
coupled-cluster theory. The HF SCF calculation gives the best possible
single determinant description of the system, |Φ⟩. In the limit of a
complete basis, the true wavefunction could be exactly expanded in a
linear combination of all possible excited determinants, |Φab···cij···k ⟩ - that
is, determinants where electrons are ‘excited’ from occupied orbitals
(ij · · · k) into virtual orbitals (ab · · · c). This is written as follows:

|Ψ⟩ = |Φ⟩+ tai |Φai ⟩+ tabij |Φabij ⟩+ . . . = |Φ⟩+
nel.∑
n=1

T̂n |Φ⟩ (3.45)
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where the t are amplitudes weighting the importance of each determi-
nant, and we have defined an excitation operator, T̂n, that generates
the weighted combination of all possible n-fold excited determinants:

T̂n = tab···cij···k a
†
aa
†
b · · ·a

†
cak · · ·ajai (3.46)

If the amplitudes in equation 3.45 were variationally optimised for
all n, the result would be the full configuration interaction solution,
which is exact within the space spanned by the basis set used [34];
problematically, doing so is computationally unfeasible for most sys-
tems. In the coupled-cluster approach [222], however, the wavefunc-
tion is written using an exponential ansätz, |Ψ⟩ = exp(T̂) |Φ⟩, where T̂
is the sum of all excitation operators. To linear order in the exponen-
tial, this clearly gives back the CI expansion. The advantage, though,
is that when the excitation series is truncated, higher-order excitations
are approximately included by virtue of the exponential. In the case
of CCD, this results in

|ΨCCD⟩ = exp(T̂2) |Φ⟩ =
[
1+ T̂2 +

1

2
T̂22 + . . .

]
|Φ⟩ (3.47)

Diagrammatically, the partitioned Hamiltonian of equation 3.33 can
be written as

Ĥ = fpqa
†
paq +Wpqrsa

†
pa
†
qasar = ⇥

+ (3.48)

where the cross represents a scalar, in this case the matrix element
fpq. Note that we suppress the arrows and vertices for simplicity,
but such a diagram implies all symmetrically unique combinations of
directions subject to the requirement that each vertex has exactly one
incoming and one outgoing edge. Vertices will be explicitly shown
when their presence would otherwise not be clear. Requiring that the
wavefunction satisfies the Schrödinger equation and projecting on the
left by either |Φ⟩ or all doubly-excited determinants gives the CCD
energy and amplitude equations, respectively: We use intermediate

normalisation,
i.e. ⟨Φab

ij |Φ⟩ = 1.ECCD = ⟨Φ|Ĥ exp(T̂2)|Φ⟩
⟨Φabij |Ĥ exp(T̂2)|Φ⟩ = ECCD ⟨Φabij | exp(T̂2)|Φ⟩

(3.49)

Assuming strong orthogonality between the occupied and virtual
subspaces, the matrix elements above will be nonzero if and only if
the operators result in either a net excitation of zero for the energy and
two for the amplitudes. Equation 3.48 demonstrates that the Hamil-
tonian will connect states separated by at most two differences in
occupations. Thus, in the energy equation, only the ŴT̂2 contribution
survives:

ECCD =Wiajbt
ab
ij = (3.50)
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where the amplitudes are represented by particle-hole pairs connected
with a solid line, as shown in Figure 3.2a.

For the amplitudes, only the linear term in the exponential is non-
zero on the right, while on the left, the Hamiltonian connects the dou-
bly excited determinant to the ground, doubly-excited, and quadruply-
excited states. Therefore, these simplify to give

⟨Φabij |Ĥ
[
1+ T̂2 +

1

2
T̂22

]
|Φ⟩ = ECCDt

ab
ij (3.51)

The left hand side can thus be split into three distinct contributions,
according to their order in T̂2. It is easy to see that the first term is
simply Wiajb, shown diagrammatically in Figure 3.2b. Similarly, the
first-order terms incorporate the whole Hamiltonian, and the second-
order terms can clearly only connect through Ŵ, leading to

⟨Φabij |Ĥ|Φcdkl ⟩ tcdkl and ⟨Φabij |Ŵ|Φcdefklmn⟩ tcdkl tefmn

respectively. These can be expanded by considering all topologically
distinct connections between the amplitude diagram, Figure 3.2a, and
the Hamiltonian diagrams in equation 3.48 such that two particle and
two hole lines are left disconnected; in the case of the second-order
terms, two amplitude diagrams are included.

There is only a single such graph for the one-electron term, shown
in Figure 3.2c. As we have only assumed orthogonality between the
virtual and occupied subspaces, not within each subspace, this contri-
bution is as follows:

⟨Φabij |f̂|Φcdkl ⟩ tcdkl =
[
fabδij − fijδab

]
tabij = ϵia,jbt

ab
ij (3.52)

such that the scalar represented in Figure 3.2c is ϵia,jb. For the two-
electron, first-order term, there are two topologically distinct graphs,
given in figures 3.2d and 3.2e, respectively. At second-order, there
are four diagrams, shown in figures 3.2f through 3.2i. Note that the
disconnected, unlinked diagram in Figure 3.2i is simply ECCDt

ab
ij , and

so cancels with the right hand side in equation 3.51. The remaining
diagrams can then be classified according to their topology.

Consider, for example, diagram 3.2d. This itself contains the ampli-
tude diagram, highlighting the recursive, self-consistent nature of the
CCD amplitude equations. This amplitude could then be expanded
using the same diagrams; the first such term, utilising diagram 3.2b,
then contracting with the interaction (diagram 3.2b) would lead to
the second diagram in the RPA expansion, equation 3.44. Clearly,
contracting diagram 3.2b with itself gives the first term in said expan-
sion, while performing the same procedure with diagram 3.2f gives
the fourth. In fact, it becomes apparent that by including only di-
agrams 3.2b, 3.2c, 3.2d, and 3.2f, the entire RPA series is recovered.
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Amplitudes and zeroth-order term

(a) (b)

First-order terms

•⇥

(c) (d)

••

(e)

Second-order terms

(f)

• •

(g)

•

(h) (i)

Figure 3.2: Skeleton diagrams for the contributions to the amplitude equa-
tions in coupled-cluster doubles theory, separated by order of
the excitation operator, T̂2.
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These diagrams have ‘ring’ topologies, as opposed to the remaining
ones which have ‘ladder’ topologies. Only including the ring con-Diagram 3.2e

demonstrates the ladder
analogy well.

tributions is called ring coupled-cluster doubles (rCCD), and can be
rigorously shown to be equivalent to RPA [252, 253]. This explains
why the series is only a selective summation to infinite order, as lad-
der terms are neglected.

The RPA amplitude equations are thus, from equation 3.51:

+ •⇥ + + = 0

Taking into account that there are two symmetry-distinct ways to label
the particle-hole lines in the second and third diagrams, this translates
into algebraic form as

W + [ϵt + tϵ] + [tW + Wt] + tWt = 0 (3.53)

where t is the amplitude tensor. In the case of dRPA [255] (or drCCD),
we will denote the bare Coulomb interaction as Kiajb = (ia|jb), and
define A = ϵ+ K. The direct RPA equations are thus

∆EdRPA =
1

2
Tr {Kt}

R = K + At + tA + tKt = 0
(3.54)

where R is the RPA residual. This is a Riccatti equation, for which
many simple and efficient methods exist [257], allowing iterative de-
termination of the RPA energy. In addition, explicitly computing the
amplitudes will allow us to decompose this energy into different con-
tributions.

3.3.5 Using ALMOs in RPA

In the above, we have assumed strong orthogonality between the
occupied and virtual subspaces, and orthonormality within those sub-
spaces. The bare ALMO creation and annihilation operators, of equa-
tion 2.33, do not satisfy this requirement. For the development of
the ALMO SCF routine, we half-orthogonalised these in the occupied
subspace, and for the charge transfer treatment earlier, we projected
the virtual subspace out of the occupied subspace. We do this again
here, then orthogonalise the resulting virtual subspace in the same
way. That is, we define our creation operators as follows, where the
first line is equivalent to equation 2.34:

a
†
iσ =

[
σ−1/2

]
ij
b
†
jσ

a†aσ = q̂b†bσ

[
π−1/2

]
ba

(3.55)
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We have defined the virtual-virtual block of the MO overlap matrix as
sVV = π.

Using the operators of equations 3.55 allows us to use all of the
results outlined in the previous section, but does not yield any of the
advantages that the localised orbitals would - the entire point of using
these orbitals is to exploit their locality to achieve a linear-scaling
algorithm later. As such, we need to back-transform the equations
to the ALMO basis. This is done by careful application of the above
relations to equations 3.54 in the case of dRPA. For clarity, we will
denote quantities in the transformed basis with a tilde, such that for
example the residual is

R̃ = K̃ + Ãt̃ + t̃Ã + t̃K̃t̃ = 0

Therefore, for example, the bare interaction tensor, K, would be re-
lated to K̃ as

K̃ = σ−1/2π−1/2Kπ−1/2σ−1/2

and similarly for the amplitudes and A tensor. The residual thus
becomes

R̃ =σ−1/2π−1/2{K + Aπ−1/2σ−1/2σ−1/2π−1/2t + tπ−1/2σ−1/2σ−1/2π−1/2A

+ tπ−1/2σ−1/2σ−1/2π−1/2Kπ−1/2σ−1/2σ−1/2π−1/2t}π−1/2σ−1/2 = 0

Upon switching to index notation, the residual can be greatly sim-
plified, as the metric terms combine. Also, as the metrics must be posi-
tive definite, the term in brackets must equivalently be zero. Therefore
the residual equation to be solved in the ALMO basis is

Riajb =Kiajb +Aiakcσ
klπcdtdblj + tacikπ

cdσklAldjb

+ tacikπ
cdσklKldmeσ

mnπeftfbnj = 0
(3.56)

Similarly, the energy becomes

EdRPA =
1

2

[
σikπacKkcldπ

dbσlj
]
tabij (3.57)

The simplicity of the derivation of these equations involving highly
nonorthogonal orbitals again demonstrates the utility of the second-
quantized approach we have used to develop the ALMO theory. It has
also led to the formulation in terms of localised amplitudes, which
will form the crux of our linearisation procedure in the next chapter.

3.3.6 Extension to higher orders

The RPA kernel is the simplest form of coupled cluster-type equa-
tion; apart from its physical justification for describing dispersion -
as was discussed earlier - its main advantage is in the relatively low
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Contribute to T̂2 amplitudes

⇥

(a) (b)

Contribute to T̂3 amplitudes

• •

(c)

• ⇥

(d) (e)

• ⇥

(f)

• •

(g)

• •

(h)

• ⇥

(i)

• •

(j)

••

(k)

Figure 3.3: All ring-type diagrams arising from the inclusion of the T̂3 exci-
tations in the coupled cluster formalism, categorised by whether
they contribute to the T̂2 or T̂3 amplitude equations. Of the latter,
only diagrams (c) and (d) appear up to second order in the wave-
function, so form the basis of an approximate triples correction.

computational cost. Standard CCD methods scale as the sixth-order of
the system size, whereas analysis of the dRPA residual equation 3.56,
when factored into separate matrix multiplications, merely shows a
fourth-order dependence. The full CCD has the advantage of explic-
itly including exchange, however, and in the next section we will see
how inclusion of this in RPA complicates matters slightly, leading to
O(N5) scaling. If accuracy were more important than efficiency, there
is nothing to prevent the extension of the above to include higher
orders, i.e. triples and above. The ALMO localisation could be ap-
plied in the same manner, but with additional amplitudes being in-
cluded. These could then be assigned to trios of fragments, similarly
to the doubles amplitudes, and decomposed to exploit the locality.
This would lead to a factorial increase in the number of interactions,
though, and so is not feasible to be done exactly. Investigations into
the possible use of stochastic approaches [258] to circumvent this
problem are ongoing - in principle, it would require no significant
changes to the theory or implementation of the overall method.

A different approach often used in coupled cluster theory is to ap-
proximately include the triple excitation terms by perturbation [222,
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259–261]. The associated diagrams are not of the ring type, however,
so the perturbative triples formalism cannot be directly applied to
RPA. Instead, here we will discuss diagrammatically how to system-
atically include higher-order effects in the RPA method; the present
form of correction, to the author’s knowledge, has not been attempted
before for any form of RPA.

The Goldstone diagrams of the ring type representing the full triples
(T̂3) terms in CCSDT are given in Figure 3.3, split by whether they con-
tribute to the T̂2 amplitudes or the T̂3 amplitudes; for the latter, the di-
rectionality of the particle-hole lines has been removed to save space,
and all valid combinations are implied. These form only a small sub-
set of the total number of diagrams, of which there are six of the first
type, and 47 of the second [222]. However, note that the generation of
these diagrams can be done systematically, as described earlier, and
rapidly truncated by whether they are ring-type diagrams or not. In
fact, packages exist that can automatically generate (admittedly some-
what inefficient) implementations of arbitrary-order coupled cluster
equations [262–265], which could in principle be modified via this
classification. We focus only on the third-order terms here as they are
likely to be the most significant [34].

As before, the full triples terms can be read off from the diagrams;
this is convoluted for the triples amplitude equations, but reasonably
simple for the triples corrections to the doubles amplitudes. From
Figures 3.3a and 3.3b, we see that when added to the RPA residual of
equation 3.53, we get

R = W + [ϵ(t2 + t3) + W(1+ t1)t2 + c.c.] + t2Wt2 = 0 (3.58)

where tn are the n-th order amplitudes, and c.c. stands for complex
conjugate. Note the inclusion of the singles and triples amplitudes,
which could be found exactly through solution of their respective
residual equations. This, however, necessarily couples each residual
equation, greatly increasing the complexity of the procedure. The
single excitations can be safely ignored in most cases, making negli-
gible contributions - they could even rigorously be avoided by trans-
forming to a Brueckner formulation if desired [222, 266]. The triples
could then be perturbatively approximated by careful analysis of the
triples residual. The resulting theory, RPA(T), could offer significant
improvements in the accuracy of the dispersion energy, similar to how
CCSD(T) outperforms CCSD [267–270].

In the standard CCSD perturbative triples correction, we eliminate
all diagrams that couple the triples amplitudes with the fluctuation
potential [271]. In our case, with only ring diagrams included, this
is equivalent to using only the diagrams in Figures 3.3c and 3.3d,
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remembering to take all combinations of the particle-hole lines. The
resulting equation is

ϵabcijk t
abc
ijk = P̂(k/ij|a/bc)

[
Wiadbt

dc
jk −Wiajlt

bc
lk

]
(3.59)

where the operator P̂(k/ij|a/bc) cyclically permutes the indices kij
and abc, e.g.

P̂(i/jk) = 1̂− π̂ik − π̂jk

with P̂(k/ij|a/bc) = P̂(k/ij)P̂(a/bc). The term ϵabcijk is the triples
equivalent of equation 3.52, which in the canonical scheme would
equate to the sum of energy differences between the occupied and
virtual orbitals, and in the non-canonical scheme is given by

ϵabcijk = P̂(k/ij|a/bc)ϵabij (3.60)

From this, given doubles amplitudes solved in the usual way via equa-
tion 3.53, equation 3.59 can easily be solved to give the approximate
triples amplitudes. These can then be used in the standard formula-
tion to compute a triples correction to the energy [271]. Alternatively,
they could be put back into equation 3.58 to solve for new doubles
amplitudes, a process which in principle could iteratively be used to
approximate the full triples term.

3.4 exchange
Direct RPA performs very well in the long range [232, 255, 272],

especially as it leads to the correct R−6 dependency, as demonstrated
in equation 3.43. In the short range, however, it provides a much
poorer description; for example, the pair-correlation function in the
high-density electron gas becomes negative at small separations [272].
This is due to the missing exchange terms in the Coulomb interac-
tion [273], i.e. the fact that antisymmetrised integrals are not used. At
short separations, exchange-repulsion dominates as the distributions
of electrons of the same spin attempt to overlap. Several different
schemes have been suggested to ameliorate this problem [232, 255,
273], one of the simplest and most successful of which is simply to
contract the energy with the antisymmetrised integrals:

Biajb = (ia|jb) − (ib|ja)

Note that these are in terms of spin-orbitals - in the spin-restricted
case, the Coulomb term gains a factor of two. This is called the second-
order screened exchange correction (SOSEX) [274], which is identical
to equation 3.54, but with the energy evaluated as

∆ERPA+SOSEX =
1

2
Tr {Bt} (3.61)
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This includes exchange to the lowest-order in perturbation. If we also
replace K with B in the amplitude terms, including in A = ϵ+B, then
we get RPA plus exchange, or RPAx [255]:

∆ERPAx =
1

4
Tr {Bt}

R = B + At + tA + tBt = 0
(3.62)

Note the additional factor of a half, necessary to avoid double count-
ing.

This is equivalent to including all contractions of the amplitudes
with the interaction that do not form ‘loops’, i.e. where one particle
and one hole line have been ‘exchanged’. That is, in analogy to equa-
tion 3.50:

ESOSEX = = + + . . .

This is true also for RPAx, but with exchange included in the Coulom-
bic screening when determining the amplitudes. The second-order
contribution in RPAx is thus

∆E
(2)
RPAx = + = ∆EMP2

and similarly for higher orders, although ladder terms are of course
missing. As such, this approach can be seen to lie somewhere between
perturbative methods and CCD.

The main problem with both the SOSEX and RPAx corrections, how-
ever, is that they only include higher-order diagrams inexactly, lead-
ing to a spurious self-interaction error in the short range [275, 276].
One solution to this would be to generate the relevant diagrams and
explicitly add these as a correction [277]; such an approach would
greatly increase the complexity of the equations to be solved, and
bring it into similar territory as a full CCD calculation. An alternative
that could offer lower scaling than either method would be to draw
an analogy with the GW approximation truncated at first order, as
noted after equation 3.42. An essentially exact second-order screened
exchange correction to the GW approximation can be developed by
analogy to the above [278].

In the GW approximation [279, 280], we deal with the self-energy,
Σ, defined as

Σ(r1, r2) = i
∫
dr3dr4G(r1, r3)W(r1, r4)Γ(r4, r2, r3) (3.63)
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where for clarity we have switched from a discrete to a continuous
representation - i.e. Gpq,rs = G(r1, r2) where pq are orbitals as func-
tions of r1 and rs as functions of r2. The function Γ is known as the
vertex function, and controls the order to which the GW approxima-
tion is taken [281]. At first order it is given by

Γ(r1, r2, r3) ≈ δ(r1 − r2)δ(r1 − r3)

which upon insertion into equation 3.63 yields

Σ(r1, r2) ≈ iG(r1, r2)W(r1, r2)

From this, the Dyson equation of equation 3.40 can be recast in terms
of the self energy by right-multiplying by the fluctuation W, to give

Σ0 = Σ+ iλΣΣ0

The derivation of the energy then follows to equation 3.42 as before;
however, we now have a procedure for arbitrary orders of the self en-
ergy, by including higher terms in the vertex function [282–284]. This
could lead to an alternative to the higher-order methods described
in the previous section, incorporating correlation beyond the random
phase approximation [285, 286].

Here, however, we are only concerned with including exchange. To
do so, we follow the approach of density functional theory [278], and
partition the self energy into Coulomb and exchange, rewriting in
terms of the screened fluctuation:

Σc =

∫
dr3dr4G(r1, r2)V(r1, r3)G(r3, r4)G(r4, r3)W(r4, r2)

Σx =

∫
dr3dr4G(r1, r4)V(r1, r3)G(r4, r3)G(r3, r2)W(r4, r2)

(3.64)

where V is the bare Coulomb potential, and the screened fluctuation
under the full vertex can be written iteratively as

W(r1, r2) = V(r1, r2) +
∫
dr3dr4V(r1, r3)χ0(r3, r4)W(r4, r2) (3.65)

where χ0 (the zeroth-order polarisability) is defined as a subset of
equation 3.31.

In principle it is possible to yield the exact second-order screened
exchange by iterative application of equations 3.64 and 3.65. In terms
of computational scaling, these are O(N5), and with suitable choice
of integration grids, this is with a very low prefactor; density fitting
could also reduce the cost greatly. The primary problem, however, is
relating the quantities calculated in this way to the amplitudes from
the rCCD-type methods. As will be seen in the next chapter, these
are necessary for the linear scaling with number of fragments that we
will achieve. An interesting avenue of further investigation would be
to derive, either approximately or analytically, the connection so that
we can completely correct for the problems with exchange in the RPA
formalism.
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3.5 implementation

3.5.1 ALMO with charge transfer

The final step of the ALMO routine is the perturbative correction
and optionally the decomposition into pairwise charge transfer terms.
To do this, we need to iteratively solve equation 3.15 for the ampli-
tudes, Xai. This is a particularly simple form of Riccati equation,
which has been studied extensively in the field of optimal control [257].
Perhaps the simplest approach utilises the fact that the Fock matrix
is diagonally dominant, so that we can guarantee convergence by ex-
tracting the diagonal elements as follows:

(faa − fii)x
(n+1)
ai = −fai −

∑
b ̸=a

fabx
(n)
bi −

∑
j ̸=i
xajfji −

∑
jb

x
(n)
aj fjbx

(n)
bi

(3.66)
This is repeated until

∥∥∥x(n+1) − x(n)
∥∥∥ is less than a given threshold -

typically, 10−4 in the Frobenius norm is sufficiently tight, usually re-
quiring fewer than ten iterations. Clearly, the most expensive part of
this is the quadratic term, which scales as O(O2V2), where O and V
are the total number of occupied and virtual orbitals in the system,
respectively . While this is formally quartic, in practice it is quadratic
as the number of occupied orbitals is only a small fraction of the ba-
sis size. As these are simply matrix multiplications the prefactor is
anticipated to be very small, such that this will only dominate the
SCF calculation in the limit of very large systems. Neglecting the
quadratic term, which as noted before leads to the second-order per-
turbative correction, would reduce the prefactor further, but would
not eliminate the O(V2) dependency. Regardless, the charge transfer
calculation is a much less significant contribution to the cost than the
calculation of the integrals.

As mentioned earlier, we enforce strong orthogonality between the
occupied and virtual subspaces by projecting the virtual coefficients
out of the occupied subspace. This is done in the atomic orbital basis
by the mapping Ṽ← QV. In the AO basis, the charge transfer energy
and residual then read as

ECT = 2Tr
{

T†FQVx
}

(3.67)

RCT = V†Q†FT + V†Q†FQVx − xT†FT − xT†FQVx = 0 (3.68)

3.5.2 Dispersion and exchange-dispersion

The dynamical electron correlation in this method is determined
using RPA, which encompasses to some extent infinite-order many-
body effects on the single particle level. In a naive treatment, the
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correlation energy would be determined for each fragment and the
complex separately, and the interaction taken as the difference. This
would of course reintroduce superposition errors, and would require
more expensive monomer calculations.

Here, I discuss two ways the former problem could be alleviated.
Firstly, by using range separation, as dispersion is inherently a long-
range effect. However, this introduces an arbitrary range-separation
parameter, and could possibly lead to discontinuities in the potential.
It also requires the evaluation and transformation of a second set of
two-electron integrals. A second, in many ways better, approach is to
try to classify the different excitation contributions in the RPA frame-
work.

Range separation to eliminate BSSE

The RPAx method, just as for any other correlated method, will
likely contain a large basis set superposition error due to the impor-
tance of interactions between occupied and virtual orbitals on sepa-
rate fragments. As these cross-fragment terms contain the very in-
teractions that we are trying to describe, it is not possible to try and
restrict contributions in a similar way to the ALMO approach. How-
ever, the ALMO reference does provide highly localised orbitals, even
after the virtual subspace is projected out of the occupied subspace.
This in itself somewhat minimises the error.

In the context of DFT, range-separated RPA has been exploited by
several different groups as a way of accounting for the long-range cor-
relation inherently missing from most density functionals [226, 245,
247, 255, 274, 287, 288], while avoiding double-counting of the short-
range contributions that are already well described. This is achieved
by attenuating the Coulomb interaction by the error function as fol-
lows:

V̂lr =
1

2

∑
ij

erf(µrij)
rij

(3.69)

The parameter µ controls the range-separation, by attenuating how
rapidly the error function monotonically increases from zero to unity
- it has units of reciprocal Bohr, and roughly speaking 1/µ corresponds
to the distance beyond which is considered to be long range. The pri-
mary advantage of separating in this manner is that the evaluation of
two-electron integrals in this potential requires only minor modifica-
tions to existing routines. Range-separation is one way to try and iso-
late only the interaction contributions, although it is not clear whether
this will help in eliminating BSSE. An alternative, perhaps more use-
ful approach will be given in the next section, where we consider how
to partition the correlation into physically distinct terms.
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Decomposing the excitations

As was demonstrated earlier, RPA entails finding a set of ampli-
tudes for all possible doubly-excited determinants, |Φabij ⟩. As a result,
such excitations can involve at most four fragments (one for each in-
dex). This implies that, while the method does include many-body
dispersion at the particle level, it cannot describe higher than four-
body terms at the fragment level. Diagrammatic representations of
all possible inter-fragment excitations are shown in Figure 3.4, classi-
fied by whether they involve two, three, or four bodies.

We identify five categories of excitation based on what they phys-
ically represent. The first, which is not shown in Figure 3.4 is in-
tramolecular, when all orbitals involved are on the same fragment.
As these will only be slightly perturbed by the presence of the rest
of the complex, it is reasonable to approximate that these do not
form part of the interaction energy. Dispersion is taken to be the re-
sponse of on-fragment excitations to simultaneous excitation within
a separate fragment, i.e. the dispersive coupling between the sepa-
rated fragment electron densities, as related through the adiabatic
connection fluctuation-dissipation relations outlined earlier. This cor-
responds to class a) in the figure, while class b) is exchange-dispersion.
This is again a number-conserving coupling of excitations involving
exchange between fragments. It should be noted that this is not
well-separated from the dispersion term, as the use of a fully anti-
symmetrised reference wavefunction means that a certain degree of
exchange-repulsion is already included in all of the terms. As such,
this is not directly comparable with the equivalent term in SAPT. The
dispersive energy contributions are therefore taken from equation 3.62

(in the case of RPAx) as

∆Edisp. =
∑
X

∑
Y>X

∑
(ia)∈X

∑
(jb)∈Y

tabij

[
σ−1π−1Bπ−1σ−1

]ab
ij

(3.70)

∆Eexch-disp. =
∑
X

∑
Y>X

∑
(ib)∈X

∑
(ja)∈Y

tabij

[
σ−1π−1Bπ−1σ−1

]ab
ij

(3.71)

The remaining classes in Figure 3.4 are labelled as ‘ionic’ and ‘BSSE’.
These are both excitations that involve excitation from X to Y, with-
out a corresponding excitation into X. It should be stressed that these
excitations categorically do not involve the transfer of electrons, they
are rather couplings between different states in Fock space. The term
ionic is simply denoting that the excitations are not particle number-
conserving within a fragment. These represent a long-range polarisa-
tion effect, i.e. a form of ‘charge transfer’ at the correlated level. In
particular, it is supposed that diagrams (e) and (i), which are dou-
ble excitations from the same fragment into distant virtual orbitals on
separate fragments, represent an attempt to improve the description
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Figure 3.4: Schematics of all unique classes of inter-fragment excitations.
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of intramolecular correlation using the extended basis, following a sim-
ilar suggestion by Schütz when developing local MP2 [37]. In reality,
while these may be the main contributors to BSSE, any term involv-
ing orbitals not on the same fragment will most likely contain some
amount of superposition error. This includes the exchange-dispersion
term above (but not the pure dispersion), although in practice this
turns out not to be the case. As the RPA is done using the ALMO
density, albeit with the virtual subspace projected out of the occupied
subspace, the ionic terms will not only contain some measure of BSSE,
but also a significant amount of the charge transfer effects that would
be encompassed at the mean-field level by ∆ECT. This means that
only one of the two contributions should be included. As BSSE is
known to be substantially larger at the correlated level, we choose to
use the latter as defined in equation 3.16, and neglect diagrams (c),
(d), (f)—(h), and (j) in Figure 3.4.





4 A L I N E A R S C A L I N G M E T H O D

The physical justification and theoretical description of the
method outlined so far is not the only aspect that needs to be con-
sidered. Equally important is the question of how to implement it
in such a way that computations are efficient and widely applica-
ble. In this chapter, I outline the practical considerations behind
this, paying particular attention to the scaling of the method with
system size. As our approach is specialised to fragmented, non-
covalent interactions, there are two scaling regimes: scaling with
fragment size, and with the number of fragments. The latter
magnifies the former considerably, and therefore is in general the
largest source of computational cost; effectively, it is a measure of
the entire system size. As such, this is the facet that I will focus
on improving, culminating in a novel, linear-scaling procedure.

There are essentially five portions of the calculation that incur sig-
nificant computational expense:

1. evaluation and storage of the two-electron integrals;

2. formation of the Fock matrix;

3. solution of the coupled on-fragment Roothaan-Hall equations;

4. transformation of the two-electron integrals into the molecular
orbital basis;

5. solution of the RPA amplitude equations.

The first of these indicates that scaling with processing cost, i.e. the
number of floating point operations (FLOPs), is not the only issue,
but also the requirements on memory or disk resources. In fact, the
latter is often the more pressing concern, as physical resources are
inherently finite, whereas time is in somewhat greater supply.

The scaling can be formally measured in terms of the number of
atomic basis functions, N, the number of fragments F, and the total
number of occupied and virtual molecular orbitals, O and V . In the
asymptotic limit, we can consider all fragments to have essentially the
same number of orbitals, such that N = Fn, O = Fo, and V = Fv. The
per-fragment cost is thus in terms of n, o, and v, whereas the order of

81
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F determines the scaling with overall system size. Description as an
O(f(N)) process, where f is some function, implies that asymptotically

resource→ αf(N) as N→∞ (4.1)

where α is termed the scaling prefactor. Note that in actual computa-
tions, the asymptotic limit is often not reached, such that the prefactor
can be as important as the formal scaling.

Now consider each of the above sections. The two-electron or elec-
tron repulsion integrals (ERIs) are four-centre quantities over the atomic
orbitals, thus formally scaling as O(N4) = O(F4n4). The most ex-
pensive part of the Fock build can be seen from equation 2.22 to be
the formation of the Coulomb and exchange matrices. Equation 2.30

demonstrates that this involves contraction of the ERIs with the den-
sity matrix, involving four distinct indices, making this also an O(N4)

process. In practice, the prefactor for the exchange contribution is
larger than that for the Coulomb matrix, as it involves contraction
over ‘mixed’ indices - that is, one contracted index lies in each of
the bra and ket parts of the ERI. The solution of the SCF equations
involves matrix diagonalisations, which scale as O(n3) per fragment,
giving overall O(Fn3), making this linear in total system size. This is
an improvement already implicit in the model, as in a full calculation
this would be expected to cost O(N3) = O(F3n3). As has been dis-
cussed earlier, the integral transformation is O(N5). However, as only
the (ia|jb) integrals are needed, the most expensive quarter transfor-
mation is O(ON4) = O(F5on4), such that the on-fragment scaling is
less severe than the cost with increasing number of fragments. Fi-
nally, equation 3.62 shows that the most expensive step in the RPA
amplitudes is the contraction of three four-index tensors:

[tBt]abij = tacikBkcldt
db
lj = tacik [Bt]cbkj

Naively, this appears to be O(O4V4), but factorising as shown results
in two O(O3V3) contractions. This is therefore O(F6) overall compared
to the less expensive O(o3v3) per fragment. Moreover, the residual
amplitude equations need to be performed over multiple iterations,
making this easily the most expensive part of the calculation.

4.1 density fitting
As mentioned earlier, the first and fourth points above can be ame-

liorated by using density fitting (DF). This requires the evaluation of
two- and three-centre Coulomb integrals, (P|Q) and (µν|P), the latter
being given in equation 1.11. We use capital letters to denote functions
in an auxiliary basis set (ABS), {χP}, while lowercase refers to either
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the atomic or molecular orbital bases (OBS) as per usual. A method
for the evaluation and subsequent transformation to the MO basis of
the DF ERIs, which makes full use of their inherent symmetries, is
given in Algorithm 4.1 below. In this way, we have that the necessary

Algorithm 4.1 Conventional density-fitting of two-electron integrals

1: for all µ, ν ⩽ µ in OBS, P, Q ⩽ P in ABS do
2: BPµν ← (µν|P)

3: GPQ ← (P|Q)

4: end for
5: Cholesky decompose G = LLT

6: Solve LL−1 = I
7: b← BL−1

8: for all i in occ., a in virt. do
9: k̃Piν ←

∑
µ b

P
µνC

i
µ

10: b̃Pia ←
∑
ν k̃

P
iνC

a
ν

11: end for

ERIs in the AO and MO bases can be formed via equation 1.12 as

(µν|λτ) =
[
bbT

]λτ
µν

and (ia|jb) =
[
b̃b̃T

]jb
ia

(4.2)

Inspection of the loop structure in Algorithm 4.1 shows that the
second line requires O(N2M) computations, while the third and sev-
enth are nominally O(M2), with the matrix-matrix multiplication be-
ing the cheaper of the two. The Cholesky decomposition and subse-
quent solution of the lower triangular matrix equation is O(M3) but
with a very small prefactor, while lines nine and ten are O(ON2) and
O(OVN), respectively. We therefore conclude that the overall scaling
is cubic, and for most systems will be dominated by the evaluation of
the three-centre integrals; note, however, that for very large systems,
the Cholesky decomposition will become the bottleneck. Regardless,
this is a sizeable improvement on the quartic and quintic evaluation
and transformation steps that would otherwise be required. This pro-
cedure can be used in both the ALMO and RPA portions of the cal-
culation, but in general different auxiliary bases will be needed for
each. The cost of using density fitting is therefore a minor increase in
programmatic complexity and the need to evaluate two such sets of in-
tegrals, although only one set needs to be transformed. An additional
advantage in the ALMO case, however, is that the decomposition b
can be used directly removing the need to ever form and store the
four-index integrals.

Another major advantage to using DF is the reduction in mem-
ory cost, from O(N4) to O(N2M). For example, in the case of water
dimer in the aug-cc-pVDZ basis [128] with the matched JK-fitting set
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of Weigend [151, 162, 289] (comprising 205 and 750 functions in the or-
bital and auxiliary sets, respectively), approximately 8 MB of storage
are needed for the density-fitted integrals compared to 88 MB for the
full set of ERIs. Moving to the water pentamer, this becomes 0.12 GB
versus 3.3 GB. However, the cubic scaling in both FLOPs and memory
still becomes problematic when larger complexes are considered - a
cluster of one hundred water molecules would require almost a ter-
abyte of memory, which is completely unfeasible. The usual solution
would then be to avoid storage in memory either by reevaluating the
integrals in each iteration and using them as needed (called the ‘direct
approach’ [290]), or to store the integrals on disk in batches [291], read-
ing them in each iteration (the ‘out-of-core’ approach). While efficient
screening can be achieved by neglecting shell-blocks that would not
make a significant contribution to the Fock matrix [34, 292], formation
of the Coulomb contribution to the Fock matrix would require two in-
tegral evaluations per iteration, as will be described later. Coupled
with the formally cubic processing cost, the direct approach quickly
becomes impractical. The out-of-core procedure on the other hand
removes the need for reevaluation of the integrals, but at the cost of
substantial communication between the processor and physical stor-
age. The associated overhead per iteration can often be several orders
of magnitude larger than the cost of the rest of the calculation.

4.1.1 Sparsity

It would seem that the severe cost with increasing system size is
unphysical, as intuitively one expects the overlap between the charge
distributions on each fragment to vanish rapidly with distance. The
electron repulsion integral between two one-particle densities ρp(r1)
and ρq(r2) is given by

Vpq =

∫
dr1

∫
dr2

ρp(r1)ρq(r2)
|r1 − r2|

(4.3)

Assuming these densities to be spherical Gaussians, with centres P, Q
and exponents p, q, it can be shown that (see Appendix D)

V0pq =

√
4α

π
F0(αR

2
PQ)

where α = pq/(p+ q) and RPQ = |P − Q|. This is written in terms of
a Boys function, which are more generally given as [34]:

Fn(x) =

∫1
0

dt t2n exp(−xt2) (4.4)

and Vnpq for arbitrary angular momenta Gaussians can be written in
terms of this.
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Clearly, the integrand in equation 4.4 vanishes as exp(−αR2PQ), such
that we expect a fairly rapid decay of the integral itself. For large RPQ,
we can use this to extend the region of integration to the whole real
line, allowing for analytical evaluation:

Vnpq ≈
√
4α

π

∫∞
0

dt t2n exp(−αR2PQt
2) ∼

2

αnR2n+1PQ

(4.5)

Thus, the worst case is for spherical Gaussians, where the integral
decays as R−1PQ, i.e. in line with the Coulombic potential itself. This
implies that ERIs will be nonvanishing over long distances, especially
for very diffuse (small) exponents. This is why the direct approach re-
mains costly for large systems despite prescreening the integrals, and
also explains why it is harder to reduce the scaling of the Coulomb
part of the Fock matrix compared to the exchange part, as will be
described later. Nonetheless, for reasonably large systems the inte-
gral tensors should become highly sparse, with each fragment having
an effectively fixed size domain over which integrals do not fall be-
low a given threshold. In this way, it should be possible to make the
evaluation and storage of the ERIs asymptotically linear scaling. One
possibility would be to directly use compressed sparse matrix for-
mats [124], such as the popular compressed row storage data struc-
ture, which can be very successfully used if only matrix multiplica-
tions and certain decompositions are needed. However, this is not
compatible with Fock-building implementations that require access
to individual integrals, as expensive binary searches need to be per-
formed to locate the integral.

4.1.2 Fragment-blocked storage and evaluation

To solve this problem, I have devised a custom data structure and
accompanying algorithm that makes full use of the fragmented struc-
ture of the system. Consider a slice of the three-index DF tensor B
along the ABS axis, P. A typical sparsity pattern for this matrix is
shown below:

. . .

. . ....

1 2 3 4 5

F + 1 F + 2 F + 3 F + 4

2F − 1 2F 2F + 1
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where the blocks are fragment by fragment, i.e. 1 ≡ BKXX, 2 ≡ BKXY , etc.
Note that the block indexing reflects the symmetry between the two
OBS indices, such that at most NBlocks = N(N+ 1)/2 blocks need be
considered. The gradation represents the maximum integral value in
that block: the diagonal, darker blocks contain mostly non-negligible
integrals, while the lighter, off-diagonal blocks contain mostly near-
zero integrals.

The new data structure comprises two arrays of size NBlocks: one
is an array of zero-sized matrices, the other a list of boolean values
reflecting whether the corresponding block is zero. For the first row
of blocks in the structure above, this would be as follows:

Blocks =
[
1 2 3 4 5 . . .

]
Zeros =

[
0 0 1 0 1 . . .

]
where one is true and zero is false. This approach can trivially be
expanded to include the ABS blocks by ‘z-marching’ along the index
P - this involves indexing as shown above within each P-slice, then
incrementing the ABS index and repeating. In this way, only the
non-vanishing blocks need be stored, but these can still be rapidly
accessed individually due to the redundant, zero-sized matrices. This
structure therefore does not reflect the true sparsity of the integrals as
zero elements within each nonzero block are explicitly stored, unlike
in sparse matrix structures where these would be discarded. How-
ever, as the number of significant blocks per fragment will eventually
reach a fixed size, the storage and evaluation will still reach linear
scaling. The data redundancy is then a small price to pay for the
greatly increased speed and compatibility with later routines.

All that remains is to determine a suitable screening criterion for
each block, BZXY . To do this, we use the fact that the electron repulsion
integral in equation 4.3 is simply the inner-product induced on the
Hilbert space by the Coulomb metric r−112 , allowing us to apply the
Cauchy-Schwarz inequality [34]:

|Vpq| ⩽ |Vpp|
1/2|Vqq|

1/2 (4.6)

Specialising to the building of the Fock matrix, the initial density, P,
can also be used coupled with the expected distance scaling from
equation 4.5. Taking the maximum values over each block then leads
to ∥∥∥BZXYPXY

∥∥∥∞ ⪅ 2 ∥gXYXY∥1/2∞ ∥GZZ∥1/2∞
∥∥∥PXY

∥∥∥∞ R−1(XY)Z (4.7)

where R(XY)Z is the distance from fragment Z to the midpoint of frag-
ments X and Y. The infinity norms for the ‘diagonal’ ERIs can veryThe initial density must

be of reasonable quality,
or screening may be

inaccurate.

efficiently be computed once at the beginning of the calculation, as is
done for conventional integral evaluation routines. The full G matrix
needs to be computed regardless, as shown in Algorithm 4.1, such
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that this screening has very little overhead. The fragment-blocked DF
integral algorithm is given in Algorithm 4.2. Comparing with Algo-

Algorithm 4.2 Fragment-blocked density-fitting of ERIs

1: ϵ← integral threshold
2: Blocks← array of integral blocks, BZXY
3: Zeros← array of booleans, all set to true
4: for each unique XY pair do
5: Compute gXYXY
6: gXY ← ∥gXYXY∥1/2∞
7: end for
8: for all P, Q ⩽ P in ABS do
9: GPQ ← (P|Q)

10: end for
11: Cholesky decompose G = LLT

12: Solve LL−1 = I and store L−1

13: for each unique XYZ triple do
14: R(XY)Z ← |(X − Y)/2− Z|
15: if 2gXY ∥GZZ∥1/2∞ ∥∥PXY

∥∥∞ R−1(XY)Z > ϵ then
16: Zeros[INDEX(X, Y, Z)]← false
17: Compute BZXY
18: Blocks[INDEX(X, Y, Z)]← BZXY
19: end if
20: end for

rithm 4.1, there are a number of additional steps, but far fewer integral
evaluations. Note that the Cholesky decomposition is still necessary,
and eventually the cubic scaling of this will dominate the otherwise
linear scaling algorithm. One slight difference is the need to store L−1

in line 12, instead of the symmetrising step in line 7 of the original
algorithm. The reason for this will become clear later.

4.2 the fock matrix
The ERIs and the density matrix at each iteration of the SCF pro-

cedure are used to form the Fock matrix, as given in equation 2.30.
The core Hamiltonian involves only two indices and does not change
throughout the procedure, so requires negligible computational ef-
fort. The expensive portions are the Coulomb and exchange matrices.
From equation 2.30 it can be seen that in the conventional approach
these would both entail quartic dependence on the number of basis
functions. We therefore describe methods to reduce the cost for each
of these in turn, starting with the more difficult exchange contribu-
tion.
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4.2.1 The exchange matrix

Within the density-fitting framework described in algorithm 4.1, the
exchange matrix can be rewritten as

KXµ,Yν =
∑
W,Z

⟨µXτW |r−112 |λ
ZνY⟩PWτ,Zλ ≈

∑
W,Z

b
Q
Xµ,Wτb

Q
Zλ,YνP

Wτ,Zλ

From this, it immediately becomes apparent why this term is more
expensive than the equivalent Coulomb one: the contraction with
the density occurs across the two three-index tensors, seemingly re-
sulting in an O(N4M) cost, which is a factor of M worse than the
conventional counterpart. This can be improved by using the MO co-
efficients directly instead of the density, although this is complicated
in the present instance by the nonorthogonality of the orbitals. We
can get around this by decomposing the metric as σ−1 = ssT , and
then half-transforming the coefficients so that equation 2.45 becomes

P = Tσ−1TT = Ts (Ts)T = T̃T̃T

Note that the resulting orbitals are no longer strictly localised, but in
practice are still well localised. Then, the density-fitted exchange can
be written as

KXµ,Yν ≈

(∑
W

b
Q
Xµ,WτT̃

Wτ·
·i

)(∑
Z

b
Q
Yν,ZλT̃

Zλ
·i

)T
= k̃i,QXµ·k̃

Q,i
·Yν (4.8)

This factorises the construction into an AO to MO half-transformation
step, followed by a contraction over the MO and auxiliary basis in-
dices, both of which are O(ON2M). Thus the cost is slightly worse
than cubic, but still substantially better than either quartic or quintic.

However, cubic scaling will still result in the exchange matrix be-
coming the bottleneck in the calculation, especially as it has to be
performed once per iteration. Exchange is an inherently short-range
effect [10], such that it seems sensible to try and use the inherent local-
isation of the ALMO orbitals to reduce the cost. A ‘local exchange’ ap-
proach was first proposed in the context of density-fitted calculations
by Polly et al. [122] and has more recently been improved by Köppl
and Werner [123]; we use their method as a starting point. The idea
is that each localised orbital only has significant overlap with other
orbitals within a fixed extent. Therefore, for each occupied molecu-
lar orbital, i, an orbital domain can be assigned, [i], comprising the
atomic orbitals that will give non-vanishing contributions. As the sys-
tem size increases, the domain sizes eventually become fixed (due to
the localisation), such that the calculation eventually becomes linear
scaling.
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The DF framework requires the definition of three such domains
per occupied MO, adding a substantial layer of complexity to the pro-
cedure. To see this, we split equation 4.8 into its two steps, and parti-
tion in terms of each i. The transformation step is

k̃
i,Q
Xµ· =

∑
Wτ∈[i]MO

b
Q
Xµ,WτT̃

Wτ·
·i , Xµ ∈ [i]AO, Q ∈ [i]ABS (4.9)

From this, it can be seen that to achieve linear scaling, it is necessary
to restrict the indices not only in the summation, but in the definition
of the tensor itself. This results in separate domains for: the atomic
orbitals associated with i in the tensor k̃, [i]AO; the auxiliary func-
tions in the same tensor, [i]ABS; and the atomic orbitals with which
the MO has significant overlap, implying non-negligible coefficients,
[i]MO. The definition of each of these will in general need to be differ-
ent, as will be discussed shortly. The exchange matrix is subsequently
constructed as

KXµ,Yν ≈
∑
i

∑
Q∈[i]ABS

k̃
i,Q
Xµ·k̃

Q,i
·Yν , Xµ, Yν ∈ [i]AO (4.10)

In this way only a fixed-sized sum is performed per orbital, resulting
in linear scaling.

Apart from the additional complexity noted above, a clear disad-
vantage of this approach is that the results so obtained are likely to
be highly sensitive to how the domains are defined. This is where the
fragment-localisation of the current method becomes particularly use-
ful. Instead of considering the significance of each individual atomic
orbital and auxiliary basis function with each MO, the contribution
of a fragment as a whole to each MO can be used as the criterion.
This will in general result in the inclusion of orbitals that are not nec-
essary, and thus a somewhat slower approach to the linear regime,
but the well-separated nature of the fragments precludes the exclu-
sion of important contributions, resolving the strong dependence on
whatever threshold is used. In the original local exchange methods,
it has been found that while the errors in the density from the lo-
cal approximation are small, it is necessary after self-consistency has
been achieved to recalculate the Fock matrix once in full in order to
determine an accurate energy [122, 123]. As will be shown later, the
current approach removes this necessity, thus alleviating the need for
an expensive quartic step in each calculation.

The atomic orbitals of a given fragment, X, are included in [i]MO
if they make a significant contribution to the density on i. That is,
defining

ρX→i =
∑
µ∈X

T̃ i··µT̃
·i
µ· (4.11)

we include {Xµ} ⊂ [i]MO if ρX→i > ϵMO. A reasonable threshold seems
to be ϵMO ≈ 10−6, determined by tests on small clusters, as described
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in the next chapter. It is then presumed that, almost by definition,
if the density of i has a significant contribution from {Xµ}, then this
will also be true in the k̃-vector. Therefore [i]MO ⊂ [i]AO. However,
as was noted previously, the Coulomb force decays slowly with sep-
aration, such that [i]AO will in general need to be considerably larger
than [i]MO, even for the short-range exchange term. To do this, it
is necessary to define the extent of the orbital. This can be done
by assigning spheres to each fragment, such that any orbital on that
fragment will have negligible overlap with any function outside the
sphere. This will clearly be controlled by the most diffuse basis func-
tion on each fragment, ϕµ. The maximum overlap with any given
function is by definition that with itself, i.e. its norm. For a spheri-
cal Gaussian (which we take to be a reasonable approximation in all
cases), this can be written as

∥ϕµ∥ = 4π

(∫ rµ
0

+

∫∞
rµ

)
dr r2 exp(−2µr2) = N(rµ) + e(rµ)

The extent, and thus the sphere, is defined to be the radius rX such
that e(rµ ⩾ rX) < ϵAO. The overlap with any function located outside
that extent will thus necessarily be less - and in general substantially
less - than this threshold. Then, for i located on fragment Y, we in-
clude all the atomic orbitals from fragment X in [i]AO if rX < |Y − X|.
The above integration can easily be performed, yielding

e(rµ) =

(
π

2µ

)3/2{
erfc

(√
2µrµ

)
+
4µ√
π

exp
(
−2µr2µ

)}
Assuming that rµ ≫ 1 Bohr, which will in general be true for any
basis with diffuse functions, the asymptotic expansion of the comple-
mentary error function, erfc(x) ≈ exp(−x2)/(x

√
π), leads to the above

condition becoming

rX ≈

[
ln(
√
2π) − ln(µϵAO)

2µ

]1/2
(4.12)

Again, a reasonable threshold is ϵAO ≈ 10−6.
Finally, the auxiliary set domains are found by a population anal-

ysis, as suggested originally by Polly and coworkers [122]. For i on
fragment Y, the auxiliary basis of fragment X is included in [i]ABS
if the partial charge associated with charge transfer from i to X is
greater than a threshold, ϵABS. However, it was shown earlier that
a Mulliken analysis, equation 2.52, would lead to no charge transfer
and thus the auxiliary domain would consist of only the functions on
that fragment. This would clearly lead to large errors in any system
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Algorithm 4.3 The selection of domains for each occupied molecular
orbital in the local exchange procedure.

1: Determine extent, rY , of each fragment Y (equation 4.12)
2: Compute S1/2T̃
3: for each occupied molecular orbital Yi do
4: Add all AOs on fragment X to [i]MO and [i]ABS
5: for each fragment X ̸= Y do
6: if ρX→i > ϵMO (equation 4.11) then
7: Add all AOs on fragment X to [i]MO
8: end if
9: if qi→X > ϵABS (equation 4.13) then

10: Add all auxiliary functions on fragment Y to [i]ABS
11: end if
12: end for
13: [i]AO = [i]MO
14: for each fragment X not included in [i]MO do
15: if |Y − X| < rY then
16: Add all AOs on fragment X to [i]AO
17: end if
18: end for
19: Form the inverse fitting metric for [i]ABS
20: end for

containing significant delocalisation. Therefore, it is necessary to use
a Löwdin analysis instead. Defining

qi→X =
∑
µ∈X

[
S1/2T̃

]2
µi

(4.13)

the condition becomes qi→X > ϵABS. In the original local exchange
method [122, 123], this domain would be further extended by includ-
ing either all functions within a distance cutoff, or from all atoms
connected to the atom of the current orbital. This is unnecessary here,
however, as the localisation is on a fragment-by-fragment rather than
atom-by-atom basis, and the fragments are by assumption not cova-
lently bound.

The domain fitting process is summarised in algorithm 4.3. In gen-
eral, the domains should need to change at each iteration as the quan-
tities in equations 4.11 and 4.13 will change, further complicating the
procedure. However, given a high quality initial guess to the den-
sity, as is obtained by using the converged fragment coefficients as
outlined in algorithm 2.1, it is sufficient to select the domains in the
first iteration and keep them fixed throughout. One additional com-
plication, however, is that the restriction of the fitting basis to [i]ABS
for each occupied orbital means that the fitting metric, G, from al-
gorithm 4.1 is no longer a valid metric in the restricted space. As



92 a linear scaling method

such, the relevant blocks from [i]ABS need to be formed into a smaller
matrix, Gi, which is then Cholesky decomposed in the usual way as
Gi = Li

(
Li
)T . The integrals used in the construction of the local ex-

change matrix are thus not bQµν, but rather equation 4.9 is rewritten
as

k
i,Q
Xµ· =

∑
Wτ∈[i]MO

(µXτW |Q)T̃Wτ··i , Xµ ∈ [i]AO, Q ∈ [i]ABS (4.14)

Then, an intermediate step between the transformation and the con-
traction is added, where the metric is included:

k̃i = ki
[
Li
]−1

(4.15)

4.2.2 The Coulomb matrix and the blocked ERIs

The density-fitted Coulomb matrix is in principal much simpler
than the exchange matrix. It is given by

Jµν = bQµν

[
bTP

]Q
(4.16)

That is, it can be formed by two O(N2M) matrix-matrix products,
if the µν indices are compressed into a single matrix index. This is
clearly far less expensive than the conventional exchange contribution,
although it is still cubic. It is thus tempting to try and apply the
local approximation here also, but as has been mentioned earlier, the
Coulomb term is not a short-range effect. This means that the orbital
domains that would be necessary to avoid substantial errors would
be prohibitively large, such that no savings in cost would be seen
even for large systems. The second issue is that, if the local exchange
method is being used, then it is necessary to store the raw three-centre
ERIs rather than those symmetrised with the metric; certainly, it is not
desirable to store both sets, given the cubic memory requirements.
This itself raises the problem of making efficient use of the fragment-
blocked ERIs in the Fock building procedure, as this precludes the
simple matrix multiplications in equation 4.16. Algorithm 4.4 outlines
how the majority of these problems can be alleviated; it assumes that
the ERIs have been computed via algorithm 4.2, and that the inverse
metric G−1 is available.

The integral blocking therefore not only reduces the memory im-
print, but also the computational cost of the Fock build, as large sec-
tions of the inner loops can be neglected in both the exchange and
Coulomb parts of the algorithm. In particular, the first and third steps
for the Coulomb matrix asymptotically scale linearly with system size
as the number of nonzero ERI blocks per fragment becomes constant.
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Algorithm 4.4 Fock build using blocked DF-ERIs and the local ex-
change approximation

1: F← h
2: for each occupied MO, Yi do
3: ki ← dim([i]AO)× dim([i]ABS)

4: for all ZQ ∈ [i]ABS, Xµ ∈ [i]AO do
5: if ERI block XYZ is not zero then
6: Add contribution from Xµ,ZQ to k (equation 4.14)
7: end if
8: end for
9: Compute k̃i by equation 4.15

10: Add k̃i
[
k̃i
]T to K

11: end for
12: for all nonzero ERI blocks, XYZ do
13: BZ ← BZ + PXY(XY|Z)
14: end for
15: B̃← G−1B
16: for all nonzero ERI blocks, XYZ do
17: Add (XY|Z)B̃Z to F
18: end for

This implies that the dominating step becomes the intermediate mul-
tiplication by G−1, which is formally O(M2), albeit with a very small
prefactor. This step is likely to be very rapid despite the quadratic
dependence. While G will become sparse in the macroscopic limit,
this in general does not imply that its inverse will be sparse - in fact, a
sparse matrix very often has a dense inverse [124]. Therefore it is not
clear how the expense of this step could be reduced if it were seen to
eventually become the bottleneck.

4.3 pairwise rpaxd
The calculation of the RPA dispersion energy requires integrals

transformed to the molecular orbital basis, which can be achieved us-
ing the density-fitting described in algorithm 4.1. The ERIs are then
given by equation 4.2. Specifically, for dRPA as described in equa-
tion 3.54, we have that K = b̃b̃T . This means that, as with the Fock
build above, we can avoid ever needing to form the full four-index in-
tegral tensor. Instead, we expand the amplitude equations as follows:

0 = K + At + tA + tKt = ϵt + tϵ+ (1+ t)K(1+ t)

Therefore, writing u = (1+ t)b̃ results in the much simpler

ϵt + tϵ = −uuT
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However, in the context of RPAx (equation 3.62), this is not possible
due to the exchange terms. Instead, we must directly form the tensor
B as

Biajb = b̃
P
iab̃

P
jb − b̃

P
jab̃

P
ib (4.17)

Note that in the spin-restricted case, the first term (the direct integral)
gains a factor of two.

Having to store the full tensor introduces a quartic memory require-
ment, although in practice it is essentially quadratic as it is O(O2V2).
It is not possible to use the blocking technique described in algo-
rithm 4.2, as the virtuals must be projected out of the occupied sub-
space before the integral transformation step, which will alter the
localisation. In addition, the requirements on the auxiliary basis to
minimise the density-fitting errors are completely different for the in-
tegral transformation as compared to the Fock build, meaning that a
separate ABS must be used. This both increases the program complex-
ity and means that a second set of integrals must be computed. The
advantage of this, however, is that it means there is no change in cost
if range separation is desired - we simply follow the same algorithm,
but with the two- and three-center integrals over the full Coulomb op-
erator replaced by integrals over the operator in equation 3.69. Thus
incorporating range separation is as simple as having a flag to switch
the potential used, noting that the algorithms to compute the different
integrals are essentially identical.

As noted earlier, the amplitude equations are Riccati equations,
which can be solved analogously to the charge transfer equations.
That is, we use the fact that ϵ is almost diagonal, such that the di-
agonal terms are dominant, guaranteeing convergence. For the directIn the canonical orbitals,

ϵ would be diagonal,
making the result simpler

to find.

RPA equations, this becomes(
ϵaaii + ϵbbjj

)
[t(n+1)]abij =−

∑
k ̸=i,c̸=a

ϵacik [t
(n)]cbkj −

∑
k ̸=j,c ̸=b

[t(n)]acik ϵ
cb
kj

−
[
u(n)(uT )(n)

]ab
ij

(4.18)

Similarly, in RPAx the tensor A is diagonally dominant, such that if
we define A ′ to be A with all diagonal elements set to zero, and let
W(n) = Bt(n), the amplitude equation becomes(

Aaaii +Abbjj

)
[t(n+1)]abij = −

[
B + A ′t(n) + t(n)A ′ − t(n)W(n)

]ab
ij

(4.19)

The most expensive computation in each is the final, quadratic term.
For dRPA, this is O(O2V2M), whereas for RPAx it is O(O3V3); the
reduction to quintic scaling in the former is a result of never having
to explicitly form the four-index integral tensor.

As several iterations will be necessary to achieve reasonable levels
of convergence, this sixth-order dependence is prohibitive for any-
thing except reasonably small systems, and will rapidly dominate
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Algorithm 4.5 Pairwise RPAxd procedure

1: ρ← distance cutoff
2: ϵ← amplitude convergence threshold
3: for each unique fragment pair XY do
4: if |X − Y| ⩽ ρ then
5: Form σXY , PXY from TXY using equations 2.42, 2.45

6: Project virtuals, Ṽ← (I − SXYPXY)VXY

7: Compute and transform integrals, using algorithm 4.1
8: if dRPA or SOSEX then
9: (t(0))abij ← (ϵaaii + ϵbbjj )

−1Kiajb
10: elseRPAx
11: (t(0))abij ← (Aaaii +Abbjj )

−1Biajb
12: end if
13: while

∥∥∥t(n+1) − t(n)
∥∥∥ > ϵ do

14: Update amplitudes using equation 4.18 or 4.19

15: end while
16: Calculate energies using equations 3.70 and 3.71

17: end if
18: end for

any calculation. The cost can be reduced to linear scaling, however, by
making use of the decomposition described in equations 3.70 and 3.71,
and figure 3.4. From these it can be seen that within the framework
of double excitations, to which rCCD (and therefore RPA) is by defini-
tion restricted, only dispersive terms between pairs of fragments can
be computed. This does not mean that only two-body contributions
are included, as RPA implicitly includes contributions to infinite or-
der at the orbital level. At the fragment level, however, the energies
are essentially pairwise. When coupled with the fact that the orbitals
are absolutely localised, a local correlation approach is natural, where
the orbital domains are restricted. This is logically achieved by per-
forming separate RPA calculations for each pair of fragments. If the
ALMO orbitals were used directly, this would be exact, as the inte-
gral transformation could essentially be done fragment by fragment.
However, the requirement for strong orthogonality between the occu-
pied and virtual subspaces - ensured by projecting the virtual orbitals
out of the occupied subspace - means that the pairwise approach is
an approximation. On the other hand, by projecting out of a smaller
occupied space (restricted to the pair of fragments under considera-
tion), the localisation of the virtual orbitals is better maintained. This
means that the decomposition in figure 3.4 is more accurate, as there
is less overlap between terms.

Moreover, as dispersion goes asymptotically as R−6 where R is the
separation between fragments, the procedure can be made to be linear
scaling by having a distance cutoff beyond which pairs are not consid-
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ered. The appropriate value for such a cutoff will in general depend
on the system, and in particular, on the degree of delocalisation in the
system. In addition, there is no fixed definition of distance between
two molecules. A simple choice would be centre-of-mass separations,
but these do not take into account the extent of a molecule. E.g. two
water molecules whose centres are 5 Å apart will only be very weakly
interacting if at all, but a water and an adenine residue at 5 Å may
have points of contact much closer together. Therefore, we approxi-
mate the molecules as spheres with a radius defined by half the maxi-
mum distance between atoms in the molecule. The separation is then
measured as the centre-of-mass distance, minus the radii of the two
fragments. Of course, this does not account for any anisotropy in
the molecules, but gives a good coarse indicator of when an interac-
tion will be negligible; tests in the next chapter suggest that a cutoff
of 15 Bohr leads to only excluding negligible dispersion terms. The
resulting ‘pairwise RPAxd’ procedure, where the ‘d’ denotes restric-
tion to the dispersion and exchange-dispersion excitations, is given in
algorithm 4.5

4.4 parallelisation

While the consideration thus far has been generating an algorithm
that scales linearly with the number of fragments, this has occasion-
ally been at the expense of the scaling prefactor; that is, while twice
as many fragments takes roughly twice as much resource, this is not
much use if a pair of fragments is prohibitively expensive. This is
particularly problematic when large fragments are used, especially
when using RPAx, which could scale as poorly as O(n5) within the
fragments. In this section, I detail how extensive use of parallel com-
puting can alleviate these problems in all but memory cost.

At all stages of the calculation, the per-fragment or fragment-pair
steps are independent except through the total electronic density. As
such, the method is particularly suited to large-scale distributed mem-
ory parallelism, with fragments farmed to separate processes. The in-
dividual calculations, requiring pooled memory, can then be treated
with shared memory - multithreaded - parallelism. Further to this, the
extensive linear algebra components can be accelerated using graph-
ical processing units (GPUs). Each form of parallelisation requires
separate technical considerations, which will be discussed in detail
here. The combined scheme, shown in Figure 4.1, allows for much
larger systems to be considered on a reasonable timescale, involving
many thousands of molecules, a feat which has not been achieved
before for a fully quantum, ab initio method.
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Figure 4.1: A combined scheme for the parallelisation of the ALMO+RPA
method, using shared- and distributed-memory parallelisation,
in tandem with GPU accelerators.

4.4.1 Multithreading

As shown in Figure 4.1, the primary idea is to perform the collec-
tion step (the construction of the total density) on the master node,
then farm out the individual fragment calculations to separate nodes.
These separate calculations can then be multithreaded, minimising
the need for data replication: only the total density and the data for
the fragments on any given node need to be stored on that node.
The fine-level multithreading could then be treated in two ways. The
simplest approach is to make use of existing, highly-optimised linear
algebra packages to thread the matrix multiplications and diagonali-
sations [293]. This does not, however, make any use of the underlying
structure of the algorithm, and would compete with the use of GPUs,
which are themselves attuned to such tasks [294–296]. Instead, we
adapt the algorithms presented in previous sections to maximise the
parallelism of the overall routine.

Two-electron integrals

For the two-electron repulsion integrals (ERIs), we have the added
complexity of there being three distinct kinds: two-, three-, and four-
index integrals. The threading for each follows a similar pattern, how-
ever, in that we balance over the blocks of the integral matrices. This is The one-electron integrals

can be threaded in exactly
the same manner,
although their cost is
negligible in comparison.

the division of labour with the lowest overhead; that is, the additional
cost associated with threading is minimised. It is not the best way
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to balance the parallelisation load, though, as integrals over functions
with high angular momenta can take considerably longer than those
with low angular momentum. In general, there are considerably more
of the latter, which is why we have chosen to balance in this way.

The general scheme is as follows: the basis sets are divided into
contracted angular momentum shells, and in the inner loop the shell
doublet, triplet, or quartet is computed depending on the thread ID.
This acts as a heuristic way to balance the load, as it avoids all the
shells of a particular angular momentum being placed on one thread.
The scheme is summarised in Algorithm 4.6.

Algorithm 4.6 The thread load balancing algorithm for the two-
electron integrals involving two, three, or four indices.

1: For each basis set, divide into angular momentum shells, sm

2: Create an integral engine and initialise counter for each thread
3: for each shell, smim , in the basis on index m = 1, . . . ,n do
4: if counter % Nthreads = thread ID then
5: Compute

(
s1i1 · · · s

n
in

)
6: end if
7: Increment the counter
8: end for

An alternative specific to the fragment-blocked integral method of
Algorithm 4.2, would be to parallelise directly by the blocking, chunk-
ing the integral domains up in to threads. The shell data for every
fragment is needed on every node in either scheme, so this requires
minimal extra data transfer. However, there are two problems: it
ignores the un-blocked algorithms, such as the two-centre integrals
and if density fitting is not used; and it requires communication be-
tween nodes to ensure that there is no duplicated effort in calculating
integrals between pairs of domains. The above approach instead par-
allelises at the lowest level, and is agnostic to the type of two-electron
integral required.

Fock build

The Fock build is the most resource-intensive part of the entire cal-
culation, and presents unique challenges to parallelise. This is fur-
ther complicated by savings made possible in the local Fock build
described earlier. As such, we present two separate multithreaded
routines, depending on whether the full or local exchange is required.

The full exchange algorithm is given in Algorithm 4.7, where equa-
tion 4.8 is split into two half transformations. The first transformation
must be completely collected before the second, which forms the main
bottleneck in the parallelisation; thus we have opted for the simplest
and most efficient scheme, whereby the first atomic orbital index is
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Algorithm 4.7 Multithreaded, density-fitted full exchange build.

1: Divide number of orbital basis functions on the first index of ERIs
into nthreads roughly equal chunks, {Ai}

2: for each thread i do
3: for first ERI index, µ, in {Ai} do
4: Half-transform 3-index ERIs as (µj|K) = (µν|K)Tνj .
5: end for
6: end for
7: Collect all half-transformed integrals, (µj|K).
8: for each thread i do
9: for first ERI index, µ, in {Ai} do

10: Form full exchange contributions as kµν = (µj|K)(νj|K)

11: end for
12: end for

chunked into roughly equal sizes. This strategy can then be used
in both halves. There is no particular problems with load balancing,
as we are essentially using a natural division of two matrix-matrix
multiplications. However, by doing it simply, rather than relying on
existing, complex threading algorithms for such tensor contractions,
we are allowing the use of further acceleration in the raw multiplica-
tions using GPUs later. The Coulomb portion of the Fock build is not
shown above as it is a simple, single step at the end, where the same
threading scheme can be used.

In the local Fock build algorithm, given in Algorithm 4.8 as a di-
rect adaptation of Algorithm 4.4, the complexity switches from the
exchange portion to the Coulomb portion. The former can be di-
rectly balanced over the occupied molecular orbitals, as each of these
dictates the orbital domains involved in the computation. This re-
quires shared memory access to all of the three-index integrals on
every node, which could in principle be a problematic communica-
tion issue; however, in reality, the fragment blocking minimises this
problem. The Coulomb matrix, on the other hand, requires splitting
into two distinct steps where the half-transformed B matrix needs to
be collected before the second transformation can take place. This is
only a one-index quantity, however, of dimension NABS, which again
minimises storage and communication requirements. An alternative
would be to thread at the level of the tensor contractions, but this
would require the storage and communication of multiple three-index
quantities, so is not desirable when used in tandem with distributed
parallelism.
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Algorithm 4.8 Multithreaded, density-fitted Fock build with local ex-
change.

1: F← h
2: for each occupied MO, Yi do
3: if i % nthreads = thread ID then
4: ki ← dim([i]AO)× dim([i]ABS)

5: for all ZQ ∈ [i]ABS, Xµ ∈ [i]AO do
6: if ERI block XYZ is not zero then
7: Add contribution from Xµ,ZQ to k (equation 4.14)
8: end if
9: end for

10: Compute k̃i by equation 4.15

11: Add k̃i
[
k̃i
]T to K

12: end if
13: end for
14: Chunk fragments on node into nthreads blocks
15: for each fragment, f1, in current thread’s chunk do
16: for each fragment f2 ⩽ f1 do
17: for all fragments fk do
18: if xyK block (f1f2|fk) is non-zero then
19: Bfk ← Bfk + Pf1f2(f1f2|fk)
20: end if
21: end for
22: end for
23: end for
24: B̃← G−1B
25: for each fragment, f1, in current thread’s chunk do
26: for each fragment f2 ⩽ f1 do
27: for all fragments fk do
28: if xyK block (f1f2|fk) is non-zero then
29: Add (f1f2|fk)B̃fk to F
30: end if
31: end for
32: end for
33: end for
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RPA

The pairwise RPA can primarily be parallelised by farming pairs of
fragments to separate nodes. Within each separate calculation, how-
ever, there are two resource-intensive portions: the transformation of
the AO integrals to the MO basis, and the the iterative calculation of
the amplitudes. The latter involves multiple tensor contractions that
are best handled by GPUs.

Algorithm 4.9 Multithreaded AO to MO density-fitted integral trans-
formation

1: for each ABS index P % nthreads = thread ID do
2: for each occupied orbital, i do
3: for each OBS function pair µ, ν do
4: (iν|P)← (iν|P) + Tµi (µν|P).
5: end for
6: for each virtual orbital, a, and OBS function ν do
7: (ia|P)← (ia|P) + Vνa (iν|P)

8: end for
9: end for

10: end for
11: Form biaQ = (ia|P)

[
G−1/2

]
PQ

The density-fitted integral transformation involves two half trans-
formations, as described in Algorithm 4.1. Consideration of the equa-
tions shows that these two transformations can be treated together
by threading over the ABS axis of the tensors, which also happens
to be the largest axis. In this way we arrive at Algorithm 4.9. After
this is completed, we need to form the excitation matrices, A, B, or
K, depending on which flavour of RPA is required. This can easily
be coarsely multithreaded by dividing the index quartets (iajb) into
nthreads chunks, as there is no codependency between terms. Lack of co-dependency

implies embarrassingly
parallel, as each
computation requires no
information about other
computations.

It is in principle possible to divide the computation of the ampli-
tudes into multiple tensor contractions, which could then be han-
dled by separate threads. However, there are serious memory con-
siderations in this approach, as each four-index tensor would require
O(o2v2) storage. For a large fragment this could become a serious is-
sue. The alternative is to have each thread accessing the same tensor
storage, but this introduces a race condition. Adding mutex blocks
to avoid any races slows down the parallelisation inexorably unless
the individual contractions are themselves large. Thus, the best way
to multithread the amplitude iterations would be to have a switch
where, for small molecules, separate storage is used for each step and
then brought together at the end, while for large systems, a single
storage source is accessed with mutex conditions to avoid a race. If
there is a GPU available, however, each separate thread would then be
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competing for that resource to compute the contraction, such that the
multithreading is useless. Overall, this section is the most complex sit-
uation to multithread, and requires considerably more consideration
in future.

4.4.2 Distributed processing

The distributed parallelisation, using the message passing interface
(MPI), is by comparison relatively simple, due to the fragmented na-
ture of the method. The ALMO+RPA method as a whole follows these
steps:

1. Perform Hartree-Fock calculation on each fragment;

2. Loop until convergence achieved:

2.1. Form the total density, P,

2.2. Build Fock matrix,

2.3. Form the fragment-localised Fock matrices,

2.4. Diagonalise the fragment-localised Fock matrices;

3. Compute perturbative correction;

4. Compute RPA dispersion for each pair of fragments.

The first step is distributed to separate processes by dividing the
total list of fragments into roughly equal-sized chunks and sending
each chunk to one node. The HF calculations are then themselves
multithreaded, in the manner described above for the Fock build and
integral routines. Typically, for a node with c cores, we attribute two
threads per core, such that if nthreads are desired per process, we can
run

nprocesses = floor (2c/nthreads)

fragment calculations at once. Ideally, each node would have suffi-
cient memory to deal with such a load, but in reality estimates would
need to be made as to the memory requirements so as to avoid com-
petition between processes. Another concern is that some fragments
will be larger and thus take proportionately longer than others; a
perfect load-balance would take this into account when chunking up
the fragments, so that one process is not left hanging after all the
others are complete. Unfortunately, the predicted cost of a calcula-
tion depends heavily on the architecture of the system and the exact
method (e.g. density-fitted or not) being used. One simple solution is
to order the list of fragments by number of electrons, then devise theNumber of electrons is a

much better measure of
system size than number

of atoms, as it dictates the
number of occupied

orbitals.

chunks to have similar total numbers of electrons. This is essentially
a bin packing problem [297], for which no closed solution exists (it
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is NP-complete), but good heuristic algorithms exist, such as the LPT
algorithm [298, 299].

The only step in the above that cannot reliably be distributed is the
inherently shared-memory one: the formation of the density. How-
ever, this comprises three matrix multiplications and a Cholesky de-
composition (to form the inverse metric), which will only become
the bottleneck in the asymptotic limit; moreover, these linear algebra
routines are readily parallelised using either multithreading or GPUs.
The more important point is that this shared memory needs to be
communicated to all processes in the subsequent calculation. An or-
der N2 communication could potentially be time consuming, but only
needs to happen once in each iteration.

For the Fock build and fragment diagonalisations, the same fragment-
based distribution of processes can be used. The latter are completely
independent of one another, but the Fock build needs to be collected
at the end from all processes. This is a further order N2 communi-
cation. At this point, the use of a global framework, such as Glob-
alArrays Toolkit [300], would be desirable. However, this is not yet
compatible with our choice of multithreading (C++11 threads) and
GPU distribution (CUDA [301]), the advantage from which is much
greater than the added communication cost, at least on any of the sys-
tems we have thus far considered. In future, this should be addressed,
as on truly huge systems (of the order of tens of thousands of atoms),
the interconnect used, and thus the communication rate, will have an
extreme effect on the efficiency of the parallelism.

The perturbative correction again comprises only a few order OV ∼

Nmatrix multiplications, and so the overhead involved with distribut-
ing it would be greater than the speedups from doing so. Instead,
we compute this on the master process, relying on the efficiency of
shared-memory parallelisation of the linear algebra. Finally, for the
pairwise RPA, each pair calculation is completely independent of each
other pair. As such, on the master process, we determine a list of all
pairs, then prune this list based on the distance cutoff. Of the remain-
ing pairs, we chunk the list into roughly equal sizes - again, this can
be done either coarsely by number of pairs, or with more precision by
total number of electrons - and distribute each chunk to a single node.
On that node, we can run nprocesses pairs simultaneously. The energies
from each calculation can then be sent back to the master process as
each completes, at essentially zero cost.

4.4.3 GPU acceleration

The explosion in popularity of computer gaming over the last few
decades has resulted in the rapid advancement of technologies capa-
ble of rapidly rendering high-quality graphics [302]. At their heart,
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Figure 4.2: A decomposition of equation 3.56 into the different tensor con-
tractions, ranked by the multiplicity (the number of appearances)
of that contraction in the equation.

such renderers rely on ultrafast matrix-matrix multiplications and
other common linear algebra operations [303]. The scientific commu-
nity quickly realised that these new technologies were therefore ide-
ally suited for accelerating many of the most computationally inten-
sive parts of scientific codes [304, 305]. Nowadays, graphical process-
ing units are routinely used in applications ranging from large-scale
molecular dynamics simulations [306–309], to the numerical solution
of partial differential equations [310–312].

A GPU generally comprises several thousand small processing cores
highly optimised for specific floating point operations [303]. There is
limited on-board random access memory directly connected to these
densely packed cores; this memory and processing is entirely sepa-
rate from that of the motherboard, or central processing units. At a
granular level, a matrix multiplication can be divided into a chain of
several floating point multiplications and additions, which can then
be collected into the local memory to form the result. Further, all
tensor contractions can be partitioned in the same manner, greatly
increasing the applicability of GPUs [313, 314]. This does however in-
troduce many unique complications in comparison to traditional pro-
gramming: the processor instruction set and architecture is entirely
different to that of the central processing; the memory is limited and
thus needs rapid and repeated communication with the central mem-
ory; and the efficiency of the GPU cores is due to fine-tuning towards
specific data types, particularly single-precision floats.

The first of these problems is addressed by the high-level libraries
provided by the GPU developers, in particular CUDA for nvidia
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units [301], and OpenCL more generally [315]. These can then be
wrapped in an architecture-agnostic manner into linear algebra pack-
ages. In this work, we focus on the Eigen library [316], which forms
a core part of Google’s TensorFlow environment for the parallelisa-
tion of tensor operations [317]. This only has limited support for
OpenCL, which unfortunately limits the usefulness to mainly nvidia

GPUs. The advantage is that the individual operations we require -
primarily tensor contractions - have already been optimised, and we
do not need to consider the finer details of instruction sets and assign-
ing tasks to individual cores on the GPU itself.

Our attentions instead lie on minimising the need for communica-
tion between the GPU and central memory, and on maintaining preci-
sion. The latter is difficult, in the sense that the accuracy of quantum-
chemical methods demands double precision, which is generally only
available on expensive, server-class GPUs. However, recent research
has demonstrated that there is no loss of accuracy in using single-
precision for the majority of the iterations in a coupled cluster rou-
tine, switching to double precision only at the very end [318–320].
This suggests that we can still envisage considerable speed-ups from
the use of general purpose (GP) GPUs so long as the final steps are
performed by conventional means when the double precision units
are not available.

Any order n2 matrix multiplication (n is the number of basis func-
tions on a single fragment) can easily be transferred fully onto the
GPU, so long as the individual fragments are not overly large. The
exact definition of ‘large’ of course depends on the basis set used,
and the GPU itself. On the assumption that most GP-GPUs have at
least 8 Gb of memory, however, and assuming single precision floats
(32 bits), we can estimate that the limiting size is roughly 93,000 ba-
sis functions. Even for a large basis, e.g. aug-cc-pVQZ, this equates
to 1,700 carbon atoms, which lies well beyond the type of fragments
this method is designed to consider. Therefore, we need only focus
on consideration of the order n4 quantities, specifically the tensors
associated with the pairwise RPA amplitude equations.

An analysis of equation 3.56 is shown in Figure 4.2. From this,
it becomes clear that the main speedup is to be gained from using
the GPU for the contraction of the effective integrals, Zadil , with the
amplitudes, tdblj , as this is used three times throughout the calculation.
It might appear that the fourth term, in purple, would benefit more as
it is ostensibly order o4v4, but in reality it is two separate order o3v3

contractions that only appear once each.
There is an added complexity, however, in that whichever of the

multiplicity two contractions goes on to be used in the multiplicity
three step could itself benefit, as it must be done first. Certainly in a
situation where there is one GPU per fragment pair in the RPA calcu-
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lation, it would be sensible to compute this on the GPU, retaining the
memory for the subsequent contraction with the amplitudes. In this
case, the multiplicity one step could then also be performed on the
GPU, as no further memory communication would be required. In
the case where multiple processes are sharing a GPU, there is greater
benefit in allowing each process to utilise the GPU for the single mul-
tiplicity three step. The first process to reach that point copies data
to the GPU and performs the contraction; meanwhile, if a second
process reaches the same point, it can divert to the next contraction
while waiting for the GPU, then a memory swap can occur. In an
ideal system where all fragments are of the same size, this will result
in perfect resource sharing. Of course, this will not be the case in
most instances, and will introduce a bottleneck. There is no perfect
solution to this problem, and the approach here is to ensure that the
GPU is being used maximally, i.e. to prefer that some process wait-
ing occurs so long as the GPU is always in use. The reason for this
choice is that the many thousands of cores on the GPU naturally offer
a greater speedup than any multithreading could provide, such that
the waiting time is deemed negligible.

The handling of the data transfer and contraction is performed
by the Eigen library internally. Unfortunately, this library does not
currently provide robust non-GPU tensor support, which creates a
programmatic problem. Purpose-built tensor contraction libraries,
such as the Cyclops Tensor Framework [321], significantly outperform
Eigen on traditional CPU-based systems. Therefore, the presence of a
GPU must be determined at compile-time, rather than runtime, so that
the appropriate library can be chosen; this means that certain portions
of the calculation not specialised to the GPU can actually suffer per-
formance issues when a GPU is present. This is a serious issue that
needs to be addressed in future, for the scheme in Figure 4.1 to be
fully realised.

4.5 summary

The scalings of the different components of the calculation, with
respect to both fragment and overall system size, are given in Ta-
ble 4.1. It demonstrates both the advantages and limitations of the
new method - all of the major steps have been reduced to essen-
tially linear scaling, with the exception of charge transfer and the
Coulomb part of the Fock matrix. The former could be made linear
in the same way as the RPA portion, by applying the procedure for
relevant pairs of fragments, but the associated prefactor is too small
to warrant doing so. The charge transfer contribution is only for-
mally quadratic due to a single matrix multiplication, but in reality is
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Table 4.1: Summary of the formal scaling of the different parts of the
ALMO+RPAxd calculation, along with their conventional coun-
terparts.

Procedure Overall Fragment Conventional

Full ERIs — n4 N4

DF ERIs Fn2m n2m N2M

Cholesky — — M3

Diagonalisation Fn3 n3 N3

Coulomb FMn2 — N4

Exchange Fn4 n4 N4

Charge transfer V2 v2 —
RPA Fo3v3 o3v3 O3V3

asymptotically linear due to the sparsity of the matrices and the block-
ing of the ERIs. The disadvantages, on the other hand, are twofold:
the density-fitting procedure requires the O(M3) Cholesky decompo-
sition of the Coulomb metric in the auxiliary basis; and the scaling
within a fragment is still dominated by the o3v3 dependence of the
RPA calculation. Despite the efficiency of standard algorithms for the
former, it will dominate for very large systems, although this may be
alleviated by the efficient use of parallelisation. The second problem
implies that the method is well-specialised for extended systems of
small to medium sized molecules - this is a design choice, as it is
intended to be applied to the rapid, BSSE-free calculation of nonco-
valent interactions in many-body systems. In principle, it would be
possible to apply existing local treatments to reduce the per-fragment
scaling as the methods used are adaptations of standard procedures,
but this would lose the unique advantage of starting from the ALMO
approximation. As such, this possibility is not investigated here.





5 T E ST S A N D B E N C H M A R K S

In this chapter, the methods and implementations of the previ-
ous three chapters are robustly tested and benchmarked. I demon-
strate that the described asymptotic scaling is in practice achieved
rapidly, and that the accuracy of the method over standard sets
of supermolecular complexes is similar to that of coupled cluster,
at a fraction of the cost. I also highlight and discuss some of
the shortcomings, with possible explanations and strategies for
iteratively improving the ALMO+RPA procedure in future.

The methods outlined have been implemented in gamma, a suite
of quantum chemistry programs developed solely by the author. The
density-fitted integrals were evaluated using a combination of cus-
tom routines and the libint package of Valeev and coworkers [322].
The Cyclops Tensor Framework [321] was used for the tensor con-
tractions in the RPA calculations, while the eigen library [316] was
used for all other linear algebra operations. Additional reference
calculations in the following were performed in gamma, and veri-
fied using the molpro 2015.1 package [323]. Unless noted otherwise,
all calculations were done using the aug-cc-pVDZ (aVDZ) orbital ba-
sis [128, 129, 324], with the associated JKFit [151, 162, 289, 325, 326]
and MP2Fit [325, 327] auxiliary bases for the Fock- and RPA-integrals,
respectively. Unless stated otherwise (c.f. parallelisation), all timing
and memory benchmarks were determined on a single processor on
the same desktop machine, with reference coupled-cluster timings
taken from the molpro calculations. In the following, we apply the
ALMO+RPAxd method to a variety of chemical systems, demonstrat-
ing and assessing the accuracy of the method, the errors associated
with the various approximations, and the scaling with fragment and
system size, including the use of parallelisation. Finally, the energy
decomposition analysis is used to probe the nature of the interactions,
and compared with existing results. The latter were determined us-
ing density-fitted SAPT2 [86] calculations performed in Psi4 version
1.1 [328].
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Figure 5.1: The total time taken to calculate the interaction energy for the
water dimer in basis sets of increasing size. The overall scaling
for ALMO+RPAxd is cubic, compared to the sixth-order scaling
of CCSD, leading to substantial speedups.

5.1 scaling

The scaling with number of basis functions per fragment is demon-
strated by the water dimer with the progression of orbital bases cc-
pVnZ and aug-cc-pVnZ, n =D, T, Q [128, 324]. This is shown in
Figure 5.1. The scaling with fragment size for the ALMO+RPAxd
method is approximately cubic, in agreement with Table 4.1; for frag-
ments with larger occupied spaces than water, the prefactor might be
expected to be more severe. Most importantly, the time required per
fragment quickly becomes multiple orders of magnitude smaller than
for CP-corrected CCSD, while achieving essentially the same accuracy,
as will be demonstrated later.

To study the scaling with overall system size, we consider two ex-
treme cases: a linear chain of hydrogen fluorides, and a series of
clusters of water molecules. The former is the best possible scenario,
with a single additional hydrogen bond being added with each new
fragment, and with interactions happening along a single axis. The
geometries for these chains were made by optimising the dimer at
the CCSD/aVDZ level, then replicating the intra- and inter-molecular
separations for each new monomer added to the chain. The water
clusters, on the other hand, are known to be particularly difficult [329],
as they are tightly bound, with each new fragment being close to and
interacting with multiple other fragments. The geometries for these
were optimised, for up to ten water molecules, using M06-2X [310]
with an aVDZ basis. The larger clusters were sampled from molec-
ular dynamics simulations of a 2.3 nm cubic box with a density of
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Figure 5.2: The peak amount of memory required during the
ALMO+RPAxd calculation on either the linear hydrogen
fluoride chains (left) or water clusters (right), showing the im-
provements resulting from using the blocked ERIs (Algorithm
4.2) as opposed to the full ERIs (Algorithm 4.1).

roughly 997 kg m−3, performed in GROMACS 2016.4 [330] using the
CHARMM36 [331] version of the TIP4P water model [332].

Firstly, the efficacy of the blocked DF ERI scheme outlined in Algo-
rithm 4.2 is shown in Figure 5.2. In the case of the HF chain, the mem-
ory dependence can be seen to become linear very rapidly. This al-
lowed for the largest system considered here - 108 HF molecules, cor-
responding to approximately 3,500 orbital basis functions and 12,000

auxiliary functions - to be computed on a desktop computer, using
just under 10 gigabytes, compared to the over 150 GB that would be
required for all the DF ERIs to be stored. The water clusters show
a much slower approach to the linear regime, only becoming sub-
quadratic for the largest system of 50 monomers. This is a reflection
of the denseness of the integral tensor for these systems, as all the
water molecules are very close together and the Coulomb interaction
decays slowly. Despite this, substantial memory savings become ap-
parent for the larger clusters.

In contrast, the integrals for the HF chain reach a sparsity of 95%
for 108 fragments; in reality, the sparsity is higher than this due to
the coarseness of the blocking. This is reflected in the time taken to
build the Coulomb matrix, shown in Figure 5.3, which seems to be
increasing linearly with system size. In fact, it is roughly quadratic,
but with a very small prefactor - the construction is so rapid that
the O(M2) matrix multiplication is dominating. The one-dimensional,
linear system is ideally suited for the local exchange approach, with
the domains reaching a roughly fixed size for as few as 9 monomers,
as can be seen in Figure 5.4. As would be expected intuitively, the
core orbitals and those closer to the end of the chain have smaller
domains, while the more diffuse, higher-energy orbitals in the centre
extend further out. Notably, the MO and ABS domains stay localised
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Figure 5.3: The time taken to build the Coulomb and exchange portions of
the Fock matrix in each ALMO iteration for linear chains of hy-
drogen fluoride molecules. Both seem to have rapidly reached
the linear scaling regime, to the point that the matrix multipli-
cations (essentially the remainder) take up the majority of the
computation time per iteration.
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Figure 5.4: A visualisation of the orbital domains for the lowest (LOMO)
and highest (HOMO) occupied molecular orbitals on fragments
1, 3, and 5 (from left to right) in a linear chain of nine hydrogen
fluorides. The fragments are represented by the circles, where
red with a crosshatch pattern denotes that a fragment’s atomic
orbitals are in all three domains for that molecular orbital, yellow
with diagonal lines that they are in the AO and ABS domains,
and blue with dots implies they are only in the AO domain.
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Figure 5.5: The average domain sizes, in terms of number of fragments, for
clusters of water molecules, along with bars representing their
range in size. While the MO and ABS domains increase slowly,
the AO domains cover a large portion of the entire system, even
for larger clusters.

to only one to three fragments, while the AO domains extend much
further out. The result is true linear scaling in the construction of
the exchange matrix, also shown in Figure 5.3. This means that, even
for approximately 3500 orbital basis functions, the combined Fock
build takes less than five seconds per iteration. Again, the matrix
multiplications become the dominant contribution, in this case the
formation of the fragment Fock matrices (equation 2.54). At that point,
there is very little use in trying to find further savings.

The domains for the water clusters, however, do not reach a fixed
size so quickly. Figure 5.5 shows that in this case, while the av-
erage size of the MO and ABS increases slowly, becoming fixed at
around six fragments, the AO domains are essentially extended over
the whole system even for large cluster sizes. The variation in all do-
main sizes is also quite sizeable, with some MO domains covering a
third of the system. This suggests considerable density is being trans-
ferred between water molecules, as measured by equations 4.11 and
4.13. Nonetheless, the power scaling of the Fock build does steadily
decrease from cubic towards linear. This can be seen in Figure 5.6,
where the percentage of time taken on each part of the calculation is
shown for both the chain and the clusters. Whereas for the former, the
Fock build percentage steadily decreases reflecting its reduced scaling
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Figure 5.6: The percentage of total computation time spent in each part of
the ALMO+RPAxd calculation, for varying sizes of HF chains
(top) and water clusters (bottom). LLT is shorthand for Cholesky
decomposition.
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Table 5.1: The errors per fragment (in kcal/mol) associated with the density
fitting and local approximations for various lengths of linear hy-
drogen fluoride chains, along with the times (in seconds) for each
ALMO iteration using the full versus the local Fock build.

No. fragments DF error Local error tFull tLocal

3 0.0021 0.0069 0.08 0.03

6 0.0017 0.0065 2.8 0.11

9 0.0015 0.0064 18.9 0.18

12 0.0016 0.0064 68.8 0.26

in comparison to the dominating step, for the water clusters the Fock
build is consistently the most expensive part of the calculation, only
beginning to decrease at around twenty monomers. In both cases the
cost for the integrals can be seen to plateau, and then begin to de-
crease for the linear chain, demonstrating that this is becoming linear,
while the Cholesky decomposition and charge transfer - cubic and
quadratic, respectively - are the only contributions increasing in sig-
nificance. In particular, the pairwise RPA percentage is monotonically
decreasing, going from being one of the most expensive steps to one
of the least for both systems. Collectively, consideration of the two
limiting cases has shown that linear or near-linear scaling has been
achieved for all segments except the charge transfer and Cholesky de-
composition, as predicted by Table 4.1. In particular, it appears that
the latter will quickly become the bottleneck in very large systems. Ir-
respective of this, however, the 108 HF and 32 water calculations both
took under ten minutes on a single processor.

5.2 errors
While the density fitting, local Fock build, and pairwise RPA pro-

cedures have clearly been successful in reducing the cost of the calcu-
lation, they are approximations and thus have errors associated with
them. It is therefore important to calibrate the various thresholds used
so as to obtain the optimum balance of accuracy and cost. Table 5.1
summarises the average error in the interaction energy per fragment
due to the density fitting and local approximations, and the savings in
time taken per iteration by using the latter, for the first few HF chains.
This shows that the error due to both, when reasonable thresholds
are used, is minimal, totalling less than 0.1 kcal/mol in the final in-
teraction energy, which is well within the expected limits of accuracy
of the method. More importantly, this comes with savings of over
two orders of magnitude in the computation time, even for as few as
nine fragments. It has been observed in previous versions of the local
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Figure 5.7: The error per fragment in the different contributions to the in-
teraction energy caused by using the local approximation in the
Fock build and the pairwise approximation in the RPAxd calcu-
lation, for different sizes of hydrogen fluoride chains.

exchange approximation that when diffuse functions are included in
the basis set, as has been done here, relatively large errors are seen in
the correlation energy [123]. Additionally, as noted earlier, a full Fock
build was necessary to accurately reproduce the energies. Table 5.1
and Figure 5.7 demonstrate that for the more coarsely partitioned,
fragment-based approach used here, this is categorically not the case.
Essentially all of the error due to the local approximation is found in
the ALMO result, with a small amount in the perturbative correction,
but this error is less than 0.01 kcal/mol per fragment. A full Fock
build is therefore entirely unnecessary. We find this to hold gener-
ally true, for all but purely dispersively-bound systems; these will be
discussed in more detail in the benchmarking section of this chapter.
Also shown in Figure 5.7 is the error due to using the pairwise RPA
method as opposed to using the full orbital space; it is even smaller
than the local error, most likely due to the decomposition of the ex-
citations into essentially pairwise terms, and the inherent localisation
of the orbitals.

Finally, Figure 5.8 shows how the error depends on the ϵMO and
blocked DF thresholds. We note separately that the error due to the
ϵABS threshold was found to be negligibly small in all cases for values
of 0.05 or below. Both figures show that the largest error is always
in the ALMO energy, suggesting that the energy is more sensitive
than the density, in line with previous studies [122, 123]. The RPA
calculation, for which new integrals are computed but the ALMO
density used, shows the least dependence and sub 0.001 kcal/mol
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Figure 5.8: The error in the interaction as a function of the MO domain
threshold (left) and integral screening threshold (right), taken as
the average from calculations on a chain of 24 hydrogen fluorides
and a cluster of ten water molecules. The error per fragment is
in kcal/mol, while both thresholds have units of Hartree (as they
are energy thresholds).

errors. For the other contributions, the figures show a series of steps,
where decreasing the threshold allows for new fragments or integral
blocks to be included. From these, it appears that a choice of ϵMO
around 10−6 and an integral threshold of 10−9 essentially eliminates
the errors.

5.3 parallelisation
The parallelisation of the ALMO+RPA algorithm, as described in

section 4.4, is multi-faceted. It uses three distinct forms of parallelism
- multithreading, distributed processes, and GPU acceleration - ulti-
mately in tandem. In this section, I show the performance of these
approaches separately, and in tandem. We are somewhat limited by
hardware constraints, however, and so have not yet been able to re-
alise the combination of all three at once. In figure 5.9, the multi-
threading is demonstrated on the same systems that were used earlier
to show scaling with number of fragments: a chain of 54 hydrogen
fluorides, and a cluster of 32 water molecules. These are at the two
extremes of when the fragmented approximation works, and while
both comprise many small molecules, they clearly show the effects of
the threading.

Both systems show almost ideal speedups at two threads, with each
tailing off at different rates as the number of threads increase. In par-
ticular, the HF chain, which is dominated by the RPAx portion of the
calculation, shows only about a five-times speedup at 8 threads, com-
pared to slightly over six-times for the water cluster. As the latter
is dominated instead by the ALMO iterations, this suggests that the
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Figure 5.9: The combined speedup in computation time for the integral
evaluation, Fock build, and RPA portions of the calculation us-
ing multithreading. Results are given for the (HF)54 chain and
(H2O)32 cluster. The calculations were performed on the same
compute node, separately, with no other calculations running.
The timings for the serial calculations were 3.3 and 18.1 minutes
for the fluoride chain and water cluster, respectively.

threading is most effective in the integral and Fock-build portions of
the calculation. This is to be expected, as only the integral transforma-
tion of the RPA calculations has been multithreaded, and we would
expect to see greater speedups with the distributed parallelism.

To really test the MPI code across multiple nodes, however, we need
a much larger system than either of the above. To this end, we have
chosen the cluster of 202 water molecules, the geometry again taken
from the molecular dynamics simulations described earlier, shown inWe chose 202 molecules

as this was the maximum
size that would fit in each

node’s memory, at
roughly 62 GB.

figure 5.10. This has a high density of hydrogen bonds in a relatively
small volume, providing a complex Fock build and a large number of
non-zero pairwise RPA calculations.

Figure 5.11 shows how the timings for the ALMO iterations, density-
fitted integrals, and pairwise RPA calculations are affected by using
multiple processes across two nodes, and with variable numbers of
threads per process. The greatest total speedup is seen with 16 pro-
cesses at 4 threads each, reducing the total time for the calculation
from 2 hours 20 minutes to 10 minutes 11 seconds (approximately
14 times speedup). This is marginally better than 8 processes with 8

threads - the same overall number of threads - by about 61 seconds.
This can be explained by a more detailed study of the individual por-
tions of the calculation.

In contrast to figure 5.9, we see that the distributed parallelism
has less effect on the ALMO iterations, but a much greater effect on
the integrals, and particularly the RPA calculations. This is due to
the almost embarrassingly parallel nature of the latter. Almost ideal
speedups are maintained up to 8 processes (7.3 times). When com-
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Figure 5.10: A densely packed cluster of 202 water molecules as used in
the MPI benchmarking calculations. Hydrogen bonds between
water molecules are shown as dotted lines. Due to the density,
this is expected to be a worst-case scaling scenario.
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Figure 5.11: Time taken in different parts of the ALMO+RPAx calculation on
a cluster of 202 water molecules, using combined distributed-
and shared-memory parallelism. The x-axis shows the number
of separate processes (distributed), with each line showing the
number of threads-per-process (tpp). These calculations were
run on up to two compute nodes, with 16 cores and 64 GB
of memory each; at two threads per core, the 16 processes at
8 tpp was the only combination not possible. The total time
unparallelised is 8413 seconds (2 hours 20 minutes), reducing
to 611 seconds (10 minutes) with 16 processes at 4 tpp.
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bined with four threads per process this improves to a roughly 11

times speedup.
The balance of times however is roughly 4 : 1 : 1 ALMO : integrals

: RPA. While there is nowhere near the same level of improvement
in the ALMO iterations - largely due to the unavoidable collection
points where the density and total Fock matrices are constructed - we
still see a 3.2 times speedup going from 1 to 8 processes, improving
to 10.1 times when using 4 threads per process. Overall, this balance
of shared- and distributed-memory parallelism seems to work best,
allowing for calculations on very large systems - in this case with
over 8,000 orbital basis functions - in negligible time.

The final facet is the use of GPUs to accelerate the linear algebra
operations, in particular the tensor contractions in the integrals and
RPA calculations. In an ideal setup, we would have several nodes
with ultrafast interconnects, each with their own GPU accelerators.
We only had access to a desktop computer with a single GP-GPU,
however, so the validation done here is expected to be a lower bound
on the possible improvements. It should be noted that, despite the
nvidiaTitan Xp only allowing for single-precision floats, we saw no
reduction in the numerical stability of the algorithm, most likely as
only a subsection of the operations were actually performed on the
GPU.

Figure 5.12 shows the combined effects of multithreading and GPU
acceleration on two model systems: the benzene dimer, and a cluster
of 101 water molecules. The latter was chosen for similar reasons to
the larger water cluster used previously in the MPI study. The ben-
zene dimer, on the other hand, represents a small system of two fairly
large monomers (42 electrons, 192 basis functions), which would not
benefit at all from the distributed parallelisation outlined earlier. We
therefore expect this system to give the best indication of the improve-
ments possible in using GPUs in the RPA tensor contractions.

As can be seen in the figure, the benzene dimer benefits much more
from the GPU than the water cluster - a total speed up of slightly over
two times on one thread. The water cluster, on the other hand, has
much more pronounced improvements from the multithreading, with
the GPU only offering a modest speedup of about 1.3 times. Inspect-
ing further, we see this is due to the GPU having only a small effect on
the ALMO iterations while having a much greater impact on the RPA
calculations. As the latter dominate the benzene dimer computation
time, this sees greater improvement.

In all cases, there is little improvement in going from 4 to 8 threads.
This is in contrast to figure 5.9, where the change is below ideal, but
still significant. There are two possible explanations for this: firstly,
the computer on which the current calculations were performed only
possesses four cores, such that 8 threads is the maximum with hyper-
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Figure 5.12: Timings for parts of the ALMO+RPAx calculation on two model
systems: the benzene dimer (large monomer, small number
of fragments) and a cluster of 101 water molecules (small
monomer, large number of fragments). Comparisons are given
between multi-threading with and without the addition of a
GPU accelerator. All calculations were performed on the same
computer with 4 cores, 24 GB of memory, and an nvidia Titan
Xp.
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threading; the calculations in figure 5.9 were performed on a node
with 16 cores, so that hyperthreading was not required at 8 threads.
The second explanation is that the contribution from the ALMO iter-
ations is simply less significant, and as these benefit most from the
multithreading, a less pronounced effect is seen. This explanation
makes sense for the benzene dimer, but less so for the water clus-
ter, which one would expect to behave in a similar manner to the 32

molecule water cluster earlier.
In summary, the three-fold parallelisation scheme seems to be effec-

tive, with each part working cohesively together. There is still consid-
erable work that needs to be done, however, in refining the individual
parts to work on a wide range of systems. Of particular difficulty is
the messaging between nodes in the distributed parallelisation; there
was a noted decrease in efficiency when switching from only 8 pro-
cesses (requiring only a single node) to 16 processes. On top of this,
we are yet to test the interaction of the distributed processing with the
use of a GPU. As these both contribute significantly to the increased
efficiency of the RPA calculations, it is possible they will compete,
rather than work together. Moreover, we are limited by the use of
a third party library with limited architecture support for the GPU
acceleration. Future work would need to focus on fine-tuning the
distribution to work more effectively on any given hardware.

5.4 potential energy curves

‘Noncovalent interaction’ is a broad title covering many chemically
and physically distinct classes of system. To assess the new method,
it is therefore important to select a range of typical and difficult ex-
amples. In this regard, we consider: the water dimer, a widely stud-
ied example of hydrogen bonding; FCl···OH2, an unusually strong
halogen bond; the very weakly bound dispersive helium-helium and
helium-neon dimers. The natural points of comparison for the ALMO
and RPA approaches are counterpoise-corrected HF, MP2 and CCSD
calculations; the latter are equivalent in the sense of primarily treating
double excitations.

The potential energy curves for the first of these, the water dimer,
are shown in Figure 5.13. The upper figure demonstrates how the
charge transfer correction to the ALMO energy is necessary to redress
the large errors compared to CP-corrected HF. The ALMO+CT result
lies slightly below the HF curve, implying that the CT term contains
a small amount of BSSE. This is in line with expectations, and while
unfortunate, the error is on the order of 0.1 kcal/mol, which is only a
small percentage of the total interaction energy. Importantly, the over-
all shape of the curve is reproduced correctly, whereas the raw ALMO
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Figure 5.13: Potential energy curves for the water dimer in the aVDZ ba-
sis, as calculated with different methods. The upper figure
shows the mean-field results, and the importance of including
the charge transfer correction to the ALMO energy. The lower
figure shows the result of including correlation, and demon-
strates the large deviations caused by not removing the basis
set superposition error.
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Figure 5.14: Potential energy curves for the water dimer calculated using
the ALMO+RPAxd method with the series of orbital bases
aVnZ, n =D, T, Q. For comparison, the CCSD/aVQZ result
is also shown, to which the former appear to be converging.

curve leads to a significant overestimation of the equilibrium bond
distance. Upon including correlation, it can be seen that the RPAxd
approach leads to excellent agreement with the CP-corrected CCSD
result. In particular, it consistently performs better than MP2, giving
a root-mean-square error of 0.12 kcal/mol compared to CCSD as op-
posed to 0.27 kcal/mol for MP2. Finally, it appears that the BSSE has
been successfully eliminated, with the not CP-corrected CCSD curve
lying on average more than 0.8 kcal/mol below its corrected counter-
part. This demonstrates again that any BSSE present in the CT term
is minimal. The other possible approach to removing BSSE - namely
the range-separated integrals, lrRPAxd(µ), where µ is the range sepa-
ration parameter of equation 3.69 - is also shown, but performs worse
than the RPAxd variant, overcorrecting for the error and yielding an
incorrect shape. When combined with the arbitrariness in the choice
of range-separation parameter, it seems that this approach is not to be
preferred.

From Figure 5.13, it appears that the method performs worst in the
short-range region. It has been noted previously that RPAx overesti-
mates the exchange-repulsion [232, 255], and it is possible that this
effect is also being seen here. Figure 5.14 shows that the description
in this region is highly basis-set dependent, whereas the rest of the
curve is not, suggesting that a larger correlation space is necessary to
get a good description of the short-range exchange-dispersion terms.
Notably, however, the position of the minimum is fairly insensitive to
the quality of basis set, and the error compared to CCSD appears to
stay roughly constant at each level. This is promising with regards
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Figure 5.15: Potential energy curves for FCl ···OH2 using mean-field (top
left) and correlated (top right) methods, and for the helium-
helium (bottom left) and helium-neon (bottom right) com-
plexes. These again demonstrate the importance of including
charge transfer, and the excellent agreement of ALMO+RPAxd
with CCSD results.

to eventually using the method for rapid structure prediction of large
systems.

The curves for the halogen-bonded system and the noble gas dimers
are shown in Figure 5.15. The former corroborates the observations
for the water dimer, with the inclusion of charge transfer reproduc-
ing almost exactly the CP-corrected HF result, and RPAxd achieving
roughly 0.1 kcal/mol accuracy compared to CCSD. Interestingly, the
CP-corrected MP2 result overbinds this complex so severely that it
gives broadly similar results to the uncorrected CCSD curve; the lat-
ter again demonstrates the presence of substantial BSSE at this level,
and the successful avoidance of this in the new method. The dis-
persively bound noble gases present perhaps the toughest challenge.
Despite the interactions being on the micro-Hartree scale, however,
excellent agreement is still seen with the CCSD results, and in the
case of the helium dimer, this represents a significant improvement
on the MP2 curve. It should be noted that the dRPAd variant is used
in these calculations, as this eliminates the overestimation of exchange
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repulsion. The error is small enough to be well within chemical accu-
racy, as shown in the previous two systems, but on the minute energy
scales here, such errors can become significant. An additional rea-
son for using the direct RPA dispersion energy is that it will allow
us to compute directly dispersion coefficients later, as described in
equation 3.43.

5.5 benchmarks

Intermolecular interactions are many, varied, and ubiquitous. It
is therefore vital to benchmark thoroughly on as broad a range of
complexes as possible. This is not possible, in general, for com-
plexes involving more than two fragments, as accurate calculations on
these are too difficult; that is the primary motivation behind the new
method. High-accuracy benchmark sets do exist for two-fragment sys-
tems, though, and we will focus on two such sets: the S66 database
of biologically-relevant interactions [267], and the X40 set of halogen-
bonded systems [333]. The former are particularly interesting, as a
potential application of the ALMO+RPA method is in investigating
solvent effects in biological systems at an unprecedented level of ac-
curacy. The halogen bonds are equally very relevant in the fields of
crystal and material design [334, 335], primarily in the solid state -
with the connection of the RPA method to the GW approach as noted
in Chapter 3, it is easy to conceive of adaptations to the method that
would allow it to be used in the solid state.

I have calculated interaction energies for every system in both sets
using examples of all the standard quantum chemical methods, in
the first instance using aVDZ basis sets. Methods in which BSSE
would be present (HF, DFT, MP2) have been counterpoise corrected.
The geometries were optimised at the CCSD/aVDZ level, and errors
are calculated relative to this level, as ALMO+RPA is inherently a
double-excitation method. Neither it nor MP2 contain the physics of
triple excitations in the diagrammatic sense, and so comparisons to RPA does contain

three-body contributions,
as will be shown later, but
these are distinct from the
excitations, which refer to
the number of
particle-hole lines in the
diagrams.

CCSD(T) would make it impossible to distinguish errors due to the
triples correction, as opposed to errors inherent to the method. For
reference, the mean-absolute errors of CCSD relative to CCSD(T) on
the S66 set are 0.41 kcal/mol at the aVDZ level.

Figure 5.16 shows the error distributions for various methods over
the S66 set. From this, it is clear that of the ALMO methods, the SO-
SEX dispersion term gives the best overall results. In fact, it appears
to give the best in comparison to any of the other methods: its error
distribution is narrow, and roughly normally distributed around zero.
This suggests that it is not biased towards over- or under-estimation,
and gives consistently good results over the whole set. The mean
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Figure 5.16: Error distributions, relative to CCSD/aVDZ interaction ener-
gies, for the S66 database, as calculated using ALMO with three
variants of RPA. These are shown with errors for DF-MP2 and
DF-SAPT2, which both have second-order dispersion, and M06-
2X, a popular density functional for intermolecular interactions.
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Figure 5.17: The mean absolute errors for different methods with an aVDZ
basis, across the S66 database, relative to the CCSD/aVDZ re-
sults. The errors are further split by interaction type, as in
the original S66 paper [267]: hydrogen-bonded (H); dispersion
dominated (D); and other (O).

absolute error (MAE) is 0.51 kcal/mol. The dRPA variant does simi-
larly well, but the distribution is slightly broader, presumably due to
the lack of accurate exchange. The RPAx dispersion is significantly
shifted towards underestimation (positive errors) for a certain subset
of systems, reducing its success. In comparison, both DFT and MP2

significantly overestimate the interaction energies, and both have tails
extending to an absolute error of over 4 kcal/mol. Finally, SAPT2 has
a very broad distribution, again tending towards overestimation of
the interaction energies.

To investigate the performance of each method further, we note that
the S66 dataset was originally split into three categories [267], based
on the dominant physical contribution to the interaction. Alterna-
tively, they were split into three (related) ‘types’ of complex: hydro-
gen bonded, dispersively bound, and other (somewhere in between).
The errors for each method on each subcategory are shown in Fig-
ure 5.17. This more clearly shows that, overall, ALMO+RPA(SOSEX)d
significantly outperforms the other methods, halving the MAE of the
nearest competitor (MP2).
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Even more reassuringly, it performs consistently well on all three
types of system. In contrast, MP2 does as well for the hydrogen-
bonded complexes, but considerably worse for the dispersively-bound
ones; in fact, for the latter, it is outperformed by DFT. SAPT also does
poorly for these complexes, and looking at the decompositions (given
in Appendix E, it becomes clear this is due to the perturbative estima-
tion of the dispersion in both MP2 and SAPT2 resulting in a signifi-
cant overestimation of the interaction. RPA, particularly the SOSEX
variant, in contrast contains higher-order terms in the coupled cluster
expansion, and is determined self consistently.

Surprisingly, however, the RPAx variant does not perform as well,
despite this supposedly giving the best description of the exchange.
It does, in fact, give marginally better errors for the hydrogen-bonded
and mixed types, but in the dispersive systems, which generally have
larger separations between the fragments, it overcorrects the exchange.
This is a known problem with the RPAx variant: while it fixes the
short-range exchange problems of dRPA, it does not reach the same
long-distance limit as the latter, which we have already noted is exact.
This is due to missing terms in the diagrammatic expansion [275], and
as noted in Chapter 3, could be corrected for.

A further consideration is how much of the error is due to the
ALMO approximation, as opposed to that due to only including ring
diagrams in the dispersion energy. Comparison of the ALMO ener-
gies to counterpoise-corrected Hartree-Fock results shows an MAE of
0.95 kcal/mol, which reduces to 0.33 kcal/mol when the charge trans-
fer correction is included. Determination of the BSSE from the coun-
terpoise correction shows that the mean BSSE in the total energy at
the HF and CCSD levels is -0.69 and -1.39 kcal/mol, respectively. This
suggests we have successfully eliminated BSSE by using the ALMO
approximation.

The errors across the X40 database, shown in Figure 5.18, are much
the same again. The SOSEX variant once more outperforms all other
methods, albeit with a slightly more skewed distribution of errors
towards underestimation. SAPT2 performs much better on these sys-
tems than on the S66 set, perhaps due to there being far fewer dis-
persive complexes. There are still large, negative outliers for both it
and MP2, however. The overall MAEs are 0.45, 0.79, 0.86, and 0.97

kcal/mol for ALMO+SOSEX, MP2, SAPT2, and M06-2X, respectively.
In combination with the S66 data, this suggests that the ALMO+RPA
approach is robustly accurate, and within chemical accuracy of the
benchmark CCSD energies.

Of course, the argument for MP2 and DFT are that they are fairly
cheap methods to use, and they seem to perform well enough for
most systems. As these are all two fragments, we are not in the linear
scaling regime of the ALMO+RPA method, so it is not clear whether
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DF−MP2

M06−2X

DF−SAPT2

SOSEX

dRPA

RPAx

−2.5 0.0 2.5

Error compared to CCSD (kcal/mol)

Figure 5.18: Error distributions, relative to CCSD/aVDZ interaction ener-
gies, for the X40 database of halogen-bonded interactions. As
in Figure 5.16, a selection of methods are shown.

Table 5.2: Ratios of total wall time for various methods to that for
ALMO+RPAxd, with and without the local exchange correction.
Ratios are averaged across the S66 test set, with calculations
carried out on a single core (32 GB of memory). The average
ALMO+RPAxd computation time across the set was 447 seconds
with the exchange correction, and 354 seconds without.

DF-MP2 CCSD CCSD(T) M06-2X DF-SAPT2

With X-correct 2.2 21.7 76.5 2.0 4.9
Without X-correct 2.9 27.9 99.6 2.5 6.4



132 tests and benchmarks

there will be any significant savings, cost-wise, in using the current
method. However, timings over the S66 set, all performed in isolation
on the same compute node, with the same number of threads (one),
show that even ALMO+RPAx - the most expensive variant - is on
average 2 to 100 times faster than these other methods. The full set of
ratios are shown in Table 5.2.

In the table, timings are given as ratios to ALMO timings with and
without the X-correction. This is a correction to the exchange ma-
trix that can be made at the end of the ALMO iterations, using the
converged density, that does a full Fock build without the local ap-
proximation. The density is insensitive to the local correction, but
this is not always true for the energy. Our particular flavour of local
exchange is fairly robust, however, as it is coarsely divided over frag-
ments rather than individual orbitals. For all but the dispersion-type
systems, the X-correction makes up less than 3% of the total interac-
tion energy. However, as already noted, the dispersive systems have
larger separations, so either the distance threshold in the domain se-
lection needs to be increased (which will increase the compute time),
or an X-correction needs to be performed. In practice, the increase in
cost is similar between the two approaches. Even with the correction,
however, Table 5.2 shows that it is still better than twice as fast as
MP2.

It should also be noted that these speedups will only increase as
the number of fragments increases, and the linear scaling truly takes
effect. Similarly, increased basis set size will not greatly affect the Fock
build, and will affect RPA calculations on pairs of molecules far less
than it would affect a correlated calculation on the full system. We
have also performed calculations on the S66 set, using the benchmark
geometries from the original paper, at the aVTZ level. These yield
an MAE of 0.60 kcal/mol compared to complete basis set limit CCSD
results, showing that accuracy is systematically maintained.

The remaining question that we have not so far answered is how
well it performs when there are more than two bodies, and many-
body effects become important. These are particularly difficult, as
they are generally much smaller than two-body effects, and we are
taking energy differences. The advantage of RPA over MP2, though,
is that it does include three-body effects in the dispersion energy,
whereas MP2 cannot. However, the pairwise approximation may de-
tract from this slightly.

To investigate this, I calculated the three-body interaction energies
of a set of 9 conformers of the benzene trimer, taken from Refer-
ence [336]. These are shown in Figure 5.19, along with the corre-
sponding energies. Overall, we see that it does as well or better than
MP2 in all cases except conformer 7 (bottom left), and is usually closer
to the CCSD result. In fact, for two of the conformers (5 and 9), it is
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CCSD(T) -0.034 0.057 0.134

ALMO+RPAx -0.063 -0.039 0.088

MP2 -0.063 -0.042 0.065

CCSD -0.043 0.033 0.123

1 2 3

CCSD(T) 0.059 0.049 -0.046

ALMO+RPAx 0.030 0.047 -0.055

MP2 0.003 -0.0077 -0.064

CCSD 0.043 0.036 -0.051

4 5 6

CCSD(T) 0.060 0.017 -0.009

ALMO+RPAx 0.081 0.036 -0.009

MP2 0.067 0.040 -0.004

CCSD 0.068 0.020 0.008

7 8 9

Figure 5.19: The three-body contributions to the interaction energy, in kcal/-
mol, for 9 conformers of the benzene trimer. These were all
calculated with the aug-cc-pVDZ basis set.
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Figure 5.20: The ALMO+RPAxd energy decomposition analysis for the
FCl···OH2 complex. While electrostatics dominate at short
separations, the interaction around equilibrium (approximately
2.65 Å) is dominated by the charge transfer term.

closer to the CCSD(T) result than CCSD, although this is likely due
to fortunate error cancellation. The MAEs compared to CCSD(T) are
0.011, 0.025, and 0.036 kcal/mol, for CCSD, ALMO+RPAx, and MP2,
respectively. This demonstrates that the new method does seem to ac-
curately describe three-body interactions, with accuracy somewhere
between CCSD and MP2, as is to be expected.

5.6 energy decomposition

One of the reasons for choosing the FCl ···OH2 complex for testing
is that it has been demonstrated that MP2 and DFT perform poorly
for these types of halogen-bonded system [12]. It has been suggested
that this is due to the significant degree of charge transfer going from
the water to the chlorine [12, 14, 15], in contrast to the assertion made
by many that halogen bonds are predominantly electrostatic in na-
ture [202, 337]. The energy decomposition for this system is shown in
Figure 5.20. From this, it is clear that, while in the very short range
the interaction is dominated by electrostatic repulsion, it is the charge
transfer term that accounts for the majority of the interaction in the
vicinity of the minimum. This is reflected in the correct prediction of
the equilibrium bond distance, which from a sixth-order polynomial
fit to the curve in Figure 5.15 is found at 2.65 Å. It should be noted
that the CT and polarisation terms are not completely well-separated
due to the need to project the virtuals out of the occupied space when
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Figure 5.21: The ALMO charge transfer contribution, as a percentage of the
total interaction energy, for all systems in the X40 set of halogen
bonds [333], grouped by halogen bond donor.

calculating the former, and the fact that the two effects are physically
concomitant.

Halogen-bonded systems in general form a good test for the charge
transfer component. As well as the above system, in Figure 5.21, the
charge transfer terms for the X40 dataset of halogen bonds are shown
as a percentage of the total interaction energy. This shows a distinct
trend towards larger components in the heavier atoms (bromine and
iodine), with far smaller components in particular for fluorine. Of ad-
ditional note is the interactions of methane with each dihalogen show
a significant negative percentage. As the charge transfer energy is al-
ways negative, this is telling us that the total interaction is positive.
It therefore seems unlikely that significant charge transfer is occur-
ring. Inspection of the interaction energies, however, indicates that
the charge transfer terms are small in absolute energy terms, but that
the interaction is close to zero, hence the large percentage; these can
be seen in Table 5.3. Indeed, one expects the interaction between a
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Table 5.3: The charge transfer and dispersion contributions to the total inter-
action energy (all in kcal/mol) of three dihalogens with methane,
from the X40 database.

Cl2 Br2 I2

CT -0.266 -0.278 -0.291

Disp. -0.089 -0.261 -0.331

Total 0.088 0.049 0.058
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Figure 5.22: The correlation (dispersion) energy as calculated using direct
RPAd and CCSD, for the helium-helium (left) and helium-neon
(right) complexes, as a function of R−6, where R is the separa-
tion. The correct linear behaviour is seen.

neutral dihalogen and methane to be largely dispersive, as there are
no significant multipoles present. Again, there is some overlap be-
tween the dispersion and charge transfer terms, due to the projection
of the virtuals. While this is fairly small, the charge transfer energies
in these cases are small, leading to what seem like anomalies.

The dispersive contribution to the above, while vital to achieving
agreement with the CCSD result, is not dominant. In the noble gas
dimers, however, dispersion accounts for all of the attractive interac-
tion, with the electrostatic contributions giving an entirely repulsive
curve. The separations are large enough that the dominating factor
is the R−6 dependence arising from the Casimir-Polder integral [10].
Whether the correct behaviour is seen for these systems therefore
presents an excellent test of the validity of both the choice of RPA
as the correlated method, and the decomposition into dispersive exci-
tations described in Figure 3.4. Plots of the correlation energy versus
R−6 are shown in Figure 5.22. For both dimers, the trend is clearly lin-
ear, demonstrating the correct physical behaviour. The C6 coefficients
can be crudely estimated from the gradient of these lines, yielding
1.37 and 2.91 a.u. for He2 and He···Ne, respectively. This is in com-
parison to the CCSD results of 1.29 and 2.72 a.u. The accepted litera-
ture values [203] are 1.46 and 3.08 a.u. However, we have only used
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Figure 5.23: The ALMO+RPAxd energy decomposition analyses for chains
of hydrogen fluoride molecules (left) and water clusters (right).
The former demonstrates cooperativity between the hydrogen
bonds, due to increased polarisation. Note that there is a drastic
change in geometries going between water clusters of more or
less than ten monomers, with a corresponding change in the
energy composition.

very small basis sets here, so do not expect quantitative agreement.
The key point is that the qualitative behaviour is correct and there is
good agreement with the equivalent aVDZ coupled-cluster result; in
the limit of much larger basis sets, it is likely that better results would
be obtained, as per Figure 5.14.

Perhaps the most useful and novel facet of the new method, how-
ever, is the ability to perform an energy decomposition on large, many-
body systems. In particular, it is possible to see how the different
contributions vary with increasing system size. This is shown for the
HF chains and water clusters in Figure 5.23. For the former, the in-
teraction energy per hydrogen bond steadily decreases to a limiting
value, in agreement with previous studies [338, 339]. The decompo-
sition shows that this is primarily due to an increase in polarisation;
as a new fragment is added, this polarises the fragment next to it,
which in turn further polarises the next one along, and so on. This is
a well-known example of cooperative hydrogen bonding, and essen-
tially results in a molecular wire with an anode at the fluorine end
and a cathode at the terminating hydrogen end.

The shuttling of electron density along the chain results in an in-
creased cohesion. While for these calculations the separation between
fragments and geometry within each molecule has been fixed, this
suggests that if the system were allowed to relax, the monomers
would get slightly closer together, accompanied by an anisotropic dis-
tribution of HF bond lengths along the chain, with those at the centre
being the shortest.

The trend for the water clusters is less clear. This is in part due
to the unsystematic selection of cluster geometries, taken from DFT
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calculations for clusters up to ten fragments [340], and molecular dy-
namics simulations for those beyond [341]. The drastic change that
appears to happen between these two regimes is therefore most likely
an artefact of the different levels of description. Particularly notice-
able is that the frozen energy becomes highly repulsive, suggesting
that the water molecules in the larger clusters are too close together.
This is counteracted by a large increase in the polarisation, with the
interaction therefore being controlled by the charge transfer terms.
In contrast, the smaller clusters are dominated by a purely electro-
static attraction, suggesting that the water molecules are essentially
polarised dipoles. Overall, the two regions suggest that there are two
distinct regimes of interaction - one that is a classical, electrostatic de-
scription at slightly longer separations, and one that is charge-transfer
driven at shorter separations.

5.7 comparison with sapt

As discussed in the introduction, not many methods exist that elim-
inate BSSE a priori, and of those that do, only SAPT additionally
provides an energy decomposition. This in particular has led to its
widespread use in the computational chemistry community [85, 342],
although this is not without controversy. Moreover, the SAPT2 variant
contains a coupled cluster style correlation term for the dispersion, so
that it is a similar level of theory to ALMO+RPA. While the phys-
ical terms in the decomposition are not necessarily well separated,
we would expect that a comparison of decompositions should yield
qualitatively similar results. Certainly, in terms of validating relative
magnitudes of for example dispersion and charge transfer, we would
ideally want both methods to agree.

The components are not directly comparable, however, as we have
defined our decomposition slightly differently. Moreover, there are
several different ways to group SAPT terms - we choose ours to match
with Psi4 [328], the grouping of which is given in Appendix E. The
most significant differences with our approach are that we do not sep-
arate exchange as its own term, while SAPT does not separate charge
transfer from the induction. Thus, to compare sensibly, we look in-
stead at the SAPT induction minus the charge transfer, and term this
the polarisation in analogy to the ALMO EDA. Similarly, the frozen
energy of ALMO is inherently the sum of the electrostatic and ex-
change components of the SAPT decomposition - we cannot mean-
ingfully separate the two in our self-consistent scheme, as exchange
is included directly in the ALMO density.

To compare, I have calculated the energy decompositions at both
the ALMO+RPAx and DF-SAPT2 levels for the entire S66 and X40
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Figure 5.24: The ratio of dispersion to polarization contributions, rD/P, in
the interaction energies of the complexes in the S66 database.
Results are compared for the SAPT (red, left bar) and ALMO
(blue, right bar) energy decompositions, with the cutoffs for
classification shown as dashed lines. The molecule number is
as given in the original database[267].

datasets, using the aVTZ basis [343], or for bromine and iodine, the
aVTZ-PP basis with ECP10MDF and ECP28MDF effective core poten-
tials [344, 345], respectively, with matching auxiliary sets [151, 325,
346]. All the data from this, and from the earlier benchmark calcula-
tions, can be found in Appendix E.

The S66 set is particularly informative, as the original paper clas-
sified the complexes into three types based on the SAPT decomposi-
tion, specifically the ratio of dispersion to induction [267]. With our
definition of polarisation, we can recover these categories exactly by
considering instead the ratio of dispersion to polarisation, rD/P, yield-
ing: electrostatic if rD/P < 2; mixed if 2 ⩽ rD/P < 8; and dispersive if
rD/P ⩾ 8.

Figure 5.24 shows a side-by-side comparison of the two decompo-
sitions. This shows that, of the 66 systems, only four are not in qual-
itative agreement, and these systems are shown in Figure 5.25, along
with their respective ratios and energy contributions. For the first
two, there is clearly no real difference in classification; rather, the ra-
tios lie exactly on the borderline between mixed and dispersive. The
dispersion energies from SAPT are larger than those from the RPA,
as described earlier, but the polarisation terms are proportionately
larger too. For the second two systems, MeNH2 with pyridine and
peptide, the SAPT dispersion energy is so much larger that there is
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rD/P: 7.94 / 9.15 8.05 / 7.84

Disp: -5.12 / -3.57 kcal/mol -5.45 / -3.46 kcal/mol
Pol.: -0.65 / -0.39 kcal/mol -0.68 / -0.44 kcal/mol

rD/P: 3.05 / 1.66 5.76 / 1.86

Disp: -4.97 / -2.07 kcal/mol -5.26 / -1.10 kcal/mol
Pol.: -1.63 / -1.25 kcal/mol -0.91 / -0.59 kcal/mol

Figure 5.25: The four S66 systems for which the SAPT2 and ALMO+RPAx
dispersion to polarisation ratio classifications did not agree,
along with the ratios and energy values for each, given as
SAPT2/ALMO+RPAx.



5.7 comparison with sapt 141

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919y = 2.2 + 0.74 ⋅ x,  r2 = 0.919

0

10

20

30

40

0 10 20 30 40 50

ALMO Disp./Pol.

S
A

P
T

2 
D

is
p.

/P
ol

.

Figure 5.26: The ratio of dispersion to polarisation in the interaction ener-
gies of the X40 dataset, as calculated using both SAPT2 and
ALMO+RPAxd. There is qualitative agreement between the
two methods, lending confidence to the decomposition process.

a signficant difference in the ratios: ALMO classifies them as elec-
trostatic, whereas SAPT as mixed. Comparing the total interaction
energy to the complete basis set limit CCSD result, we see that SAPT
overestimates both by about 0.5 kcal/mol, while ALMO+RPAx under-
estimates by a similar amount. From the figure, it is clear that there
are cooperative interactions happening, in particular N to H hydrogen
bonds in combination with H···C or H···π dispersive interactions; the
balance between electrostatics and dispersion is thus very fine, and en-
tirely dependent on the weighting of the generally weaker dispersive
interaction.

The X40 database does not contain any equivalent classifications to
compare, but its systems in general contain greater polarisation contri-
butions than those of the S66 database. A similar comparison of rD/P
ratios is given in Figure 5.26, where once again we see good quali-
tative agreement. The error distributions from figures 5.16 and 5.18

suggest that, of the two methods, the ALMO+RPA dispersion contri-
butions are more accurate, and so the lack of quantitative agreement
is perhaps not surprising. As most of the points in Figure 5.26 lie
above the line, this agrees with the observation that SAPT2 tends to
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overestimate the dispersion, leading to larger rD/P values than those
from ALMO+RPA.



6 A N A LY T I C A L D E R I VAT I V E S

In this chapter, I derive analytical gradients for the ALMO-based
methods described in previous chapters. These are necessary for
the optimisation of molecular geometries, and for the calculation
of properties other than the energy. By formulating the problem in
terms of Lagrangians, we can systematically determine the deriva-
tives for each separate part of the calculation, taking into account,
for example, the different charge transfer and exchange terms. I
then show how to adapt these expressions to include the density-
fitting and local approximations, before finally demonstrating the
effectiveness of the method on optimisations of large systems.

Many of the most interesting chemical properties of molecular sys-
tems - including supermolecular systems - make the assumption that
the system is in a local minimum, or equilibrium. For example, to
calculate the normal mode vibrational frequencies, one takes an equi-
librium geometry and determines the second derivatives of the energy
at that point. Moreover, many of these properties, such as multipole
moments, follow directly from the forces [347]. As such, it is essential
to be able to accurately and rapidly optimise molecular structures.

It is possible in principle to optimise based on the energy from any
method simply by estimating the forces by numerical methods, in par-
ticular, finite differences [348]. This involves fractionally perturbing
the relevant parameters - in this case the nuclear coordinates, repre-
sented here as qi for the ith nucleus - then considering the difference
in energy this results in; essentially, it is approximating the poten-
tial energy curve along that coordinate by a small line segment. It is
possible to do this by forward (or backward) differences, where you
add (or subtract) a small quantity h to a coordinate, then estimate the
gradient at that point by, e.g. [E(q + h) − E(q)]/h. There are many
problems associated with this, however, in particular the choice of h.
A very large h will be inaccurate as the line segment is a poor approx-
imation to the true curve, whereas a very small h will result in both
a small ∆E and a large 1/h, causing numerical problems. Moreover,
the greater the curvature at the original point, the smaller h needs to
be to give accurate results, such that a fixed h can lead to variable
accuracy [348].

143
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Some of these problems can be mitigated by instead using central
differences:

∂E

∂qi
≈
E(qi + h; {qj ̸=i}) − E(qi − h; {qj ̸=i})

2h
(6.1)

The problem with this however is that each gradient then takes two
additional energy calculations. Thus for a system of N atoms, 6N
energies are needed on top of the original calculation. This means that
numerical optimisation very rapidly becomes unfeasible as the system
gets larger, or the method more expensive. As such it is essential to
be able to calculate the gradients directly. The finite differences in
practice are only useful for checking that the analytical gradients have
been calculated correctly.

When specifically looking at intermolecular interactions, we have
the additional problem that the gradient, like any quantity derived
from the energy, is tainted with basis set superposition errors. Coun-
terpoise correcting the gradients is considerably more difficult than
just the energy [349], by virtue of the sheer number of terms that need
to be computed. Combined with numerical differentiation as above,
the problem explodes to order N2 calculations needed at each step.
The ALMO+RPA energy, and therefore gradient, is inherently BSSE-
free, thus offering it an additional advantage over traditional meth-
ods. This comes at the expense of only being applicable to systems of
fragments, which will necessarily have large numbers of degrees of
freedom, making numerical differentiation impractical.

Analytically differentiating the energy with respect to a single pa-
rameter is difficult, however. For example, the canonical Hartree-Fock
energy depends both on the integral matrices and on the MO coeffi-
cients, all of which depend on the position. The latter have been
determined iteratively, with no closed functional form available, mak-
ing detailed analysis close to impossible. In this particular case, we
can make use of the variational nature of the method to circumvent
this method, as described by Pople in the early ’70s [350]. In general,
though, methods are not variational. In these cases, we can instead
use a Lagrangian formalism [347] as follows.

Consider an energy function which is a function of the nuclear co-
ordinates, q, parametrised with respect to some set of parameters {τp},
and some set of constraints {Zi = 0} which themselves may depend
on some subset of the set of coordinates and parameters. We then
form a Lagrangian by introducing a set of constants {λi} such that

L (q; {τp}, {λi}) = E (q; {τp}) −
∑
i

λiZi (q; {τp})

Minimising the Lagrangian then minimises the energy but with the
constraints maintained, as we have done in previous chapters.
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We assume in the following that the coordinates are uncoupled, as
would be the case in any orthogonal coordinate system. The total
derivative of the energy with respect to a given nuclear coordinate q
is then, by the chain rule:

dE

dq
=
∂L

∂q
+
∑
p

∂L

∂τp

dτp

dq
+
∑
i

∂L

∂λi

dλi

dq
+
d

dq

∑
i

λiZi (q; {τp}) (6.2)

Assuming that the constraints are strictly maintained, the last two All constraints in this
thesis are hard as opposed
to soft, thus are strictly
required to be everywhere
zero.

terms in the above disappear. If we then require that

∂L

∂τp
= 0 (6.3)

for all parameters τp, then we simply get that E(q) = ∂L/∂q. In the
case of a variational method, this condition will necessarily and au-
tomatically be true for any variationally optimised set of parameters.
In general, however, equation 6.3 leads to sets of coupled-perturbed
equations that need to be solved for the multipliers, λi. These can
then be substituted into equation 6.2 to give the analytical gradient.

In the rest of this chapter, I will use this approach to derive the
gradients of the electronic energy with respect to a nuclear coordi-
nate for all flavours of the ALMO+RPA method, before implement-
ing and testing the solutions. It should be noted that the gradients
of the SCF-MI variant of the ALMO SCF energy were previously de-
rived by Famulari et al. [94], using a different approach to ours. Fi-
nally, the total force in that coordinate also includes a term due to the
nuclear-nuclear repulsion, which is common to all methods under the
clamped-nucleus approximation:

Enuc. =
1

2

∑
A

∑
B̸=A

ZAZB

|qA − qB|

dEnuc.

dq
(i)
A

= −
1

2

∑
B̸=A

ZAZB

(
q
(i)
A − q

(i)
B

)
|qA − qB|

3

(6.4)

This easily calculated contribution is then added to the end of the
electronic gradient to give the total force.

6.1 almo
The Lagrangian for the ALMO SCF method is given in equation 2.46,

and the only parameters it depends on are the occupied MO coeffi-
cients and the Lagrange multipliers. However, the former are varia-
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tionally optimised, and as noted above, this means that no additional
calculations are required. That is, ∂EALMO/∂Tµi is zero and thus

∂LALMO

∂T
Xµ
Xi

=
∂EALMO

∂T
Xµ
Xi

− 4
[
λλλT†S

]
Xi,Xµ

= 0

implies that λλλ = 0, removing the need to consider this term.
Similarly, the constraint that the inter-fragment coefficients be zero

is maintained by the multipliers, γγγ, being held to zero. In fact, none of
the other terms throughout this derivation will involve inter-fragment
coefficients, such that these multipliers can always be assumed to be
zero; the Lagrangian constraint on them will however be relevant in
Chapter 7, hence the need to include it in equation 2.46. Therefore we
simply have that the gradient is given by

E
(q)
ALMO =

∂EALMO

∂q

=
∂

∂q

{
1

2
Tr {(H + F)P}

}
=
1

2
Tr

{(
H(q) + F(q)

)
P + (H + F)P(q)

}
The AO-basis matrices depend only on the nuclear position through

the basis functions themselves, and algorithms for the calculation of
these derivatives are well known and fairly easily calculated [351, 352].
As such, we wish to cast the gradient entirely in terms of these deriva-
tive matrices where possible. To do so, we need to see how both
the Fock and density matrices depend parametrically on the nuclear
coordinates. Using equations 2.45 and 2.30:

F(q) = H(q) + G(q) · P + G · P(q) (6.5)

P(q) = T
[
σ−1

](q)
T† = −T

[
σ−1σ(q)σ−1

]
T† = −PS(q)P (6.6)

where G is the tensor of antisymmetrised two-electron integrals, and
we have used the identity δσ−1 = −σ−1(δσ)σ−1.

Using these and collecting all the terms in the above gives

E
(q)
ALMO =

1

2
Tr

{
(2H(q) + G(q))P − (H + F + G · P)PS(q)P

}
Then, collecting the derivative matrices and using the permutational
invariance of traces, we get the final ALMO gradient:

E
(q)
ALMO = Tr

{(
H(q) +

1

2
G(q)

)
P − PFPS(q)

}
(6.7)
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6.2 charge transfer correction
The perturbative charge transfer correction to the ALMO energy

is not variational, such that the Lagrangian formulation is vital. We
will focus on the infinite-order correction of equation 3.14; as was
demonstrated in Chapter 3, this reduces to the second-order correc-
tion under certain conditions, such that its gradient is also a subset of
the infinite-order gradient.

There are two new considerations for this term: the virtual orbitals
have been projected out of the occupied subspace, and the parameters
xVO have been determined iteratively. The latter means that a new con-
straint must be added, namely that the residual of equation 3.15 must
remain zero. The former means we must expand both this residual
and the energy term in such a way that the virtual projection is ex-
plicit, and thus maintained. The set of parameters in the Lagrangian,
excluding the Lagrange multipliers, therefore expands from just the
occupied coefficients to the following:{

T
µ
i ,Vµa , xai

}
We introduce new Lagrange multipliers, ωia, which control the CT
residual, and thus we arrive at the ALMO+CT Lagrangian:

LALMO+CT =LALMO (q; T, V,λλλ) + ECT (q; T, V, x)
−ωia [RCT (q; T, V, x)]ai

(6.8)

where ECT and RCT are defined in equations 3.67 and 3.68, respec-
tively.

6.2.1 The residual amplitudes

The original ALMO energy does not depend upon the residual am-
plitudes, xai. Therefore, the partial derivative of the Lagrangian with
respect to these is just the partial derivative of the last two terms in
equation 6.8. These are quite simply found as follows:

∂ECT

∂xai
= 2

[
T†FṼ

]
ia

∂ [RCT]bj
∂xai

= δij

[(
Ṽ† − xT†

)
FṼ
]
ba

− δab

[
T†F

(
Ṽx + T

)]
ij

where
Ṽ = QV = (I − SP)V

are the projected virtual coefficients.
As per the variational condition, equation 6.3, the above combined

with the relevant Lagrange multipliers yields the requirement below.
∂LALMO+CT

∂xai
=
[
2T†FṼ +ωωω

(
Ṽ† − xT†

)
FṼ − T†F

(
Ṽx + T

)
ωωω
]
ia

= 0

(6.9)
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for all virtual-occupied pairs, ai. This is an equation of the form

ωωωA − Bωωω = −C

where the matrices A, B, and C, implicitly defined above, are known
quantities. Equation 6.9 can thus be solved for the multipliers ωia,
ensuring that the variational conditions are met.

6.2.2 The virtual coefficients

The ALMO energy necessarily only depends on the occupied co-
efficients. Every other part of the Lagrangian, however, now has a
dependence on the virtual coefficients that cannot be ignored. This
is complicated in the CT portions by the projection, Q, which itself
depends only on the occupied coefficients, which we will deal with
in the next section. The derivatives of the charge transfer terms are as
follows:

∂ECT

∂V
Xµ
Xa

=2
[
xT†FQ

]
Xa,Xµ

∂ [RCT]Yb,Zj

∂V
Xµ
Xa

=δXa,Yb

[
Q†F (T + QVx)

]
Xµ,Zj

+
[(

V†Q† − xT†
)

FQ
]
Yb,Xµ

xXa,Zj

For simplicity, we define the following two quantities, which will ap-
pear repeatedly throughout this chapter:

ΠΠΠ+ = T + QVx

ΠΠΠ− = V†Q† − xT†
(6.10)

We note that this turns the residual equation 3.68 into

RCT = ΠΠΠ−FΠΠΠ+ = 0

Combining the above with the orthonormality condition and the
multipliers ω, found from the solution of equation 6.9, we get the
following condition on the parameters λab:

∂LALMO+CT

∂V
Xµ
Xa

= −4
[
λλλV†S

]
Xa,Xµ

+ 2
[
xT†FQ

]
Xa,Xµ

+
[
Q†F

[
ΠΠΠ+ωωω+ΠΠΠ†−ωωω

†x†
]]
Xµ,Xa

= 0

(6.11)

This then rearranges into a simple equation for the virtual orbital
energies:

λλλVVV†S =
1

2
xT†FQ +

1

4

[[
ωωω†ΠΠΠ†+ + xωωωΠΠΠ−

]
FQ
]
= ΛΛΛCT

VV (6.12)

which is a linear equation that can be easily be solved by standard
methods.
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6.2.3 The occupied coefficients

All terms in equation 6.8 depend on the occupied coefficients. How-
ever, the ALMO energy is variationally optimised with respect to
them, so its partial derivative evaluates to zero. Thus, as with the
virtual coefficients, the only new terms are the charge transfer ones.
However, as noted earlier, the projector Q introduces a hidden depen-
dence. We have that

∂QYν,Zτ

∂T
Xµ
Xi

=
∂

∂T
Xµ
Xi

[I − SP]Yν,Zτ = −
∑
W

SYν,Wγ
∂PWγ,Zτ

∂T
Xµ
Xi

Using the result from equation 2.47 for the density variation, the
above then becomes

−
1

2

∂QYν,Zτ

∂T
Xµ
Xi

=
[
SQ†

]
Yν,Xµ

[
σσσ−1T

]
Xi,Zτ

+QXµ,Zτ

[
ST†σσσ−1

]
Yν,Xi

(6.13)

The above can now be used to determine the energy and residual
derivatives. We start with the former:

1

4

∂ECT

∂T
Xµ
Xi

=
1

2
[FQVx]Xµ,Xi +

1

2

∑
Y,Z

[
VxT†F

]
Zτ,Yν

∂QYν,Zτ

∂T
Xµ
Xi

=

[
1

2
FQVx − QSFTx†V†T†σσσ−1 − QVxT†FST†σσσ−1

]
Xµ,Xi

= AXµ,Xi

where we have defined the temporary matrix, A, for simplicity later.
The equivalent for the residuals is messy, so we jump straight to the
answer:

∂ [RCT]Yb,Zj

∂T
Xµ
Xi

=δXi,Zj [ΠΠΠ−F]Yb,Xµ − [FΠΠΠ+]Xµ,Zj xYb,Xi

+
∑
U,W

{
[ΠΠΠ−F]Yb,Uν [Vx]Wκ,Zj + [FΠΠΠ+]Uν,Zj V

·Wκ
Yb·

} ∂QUν,Wκ

∂T
Xµ
Xi

=δXi,Zj [ΠΠΠ−F]Yb,Xµ − [FΠΠΠ+]Xµ,Zj xYb,Xi

− 2
[
ΠΠΠ−FSQ†

]
Yb,Xµ

[
σσσ−1TVx

]
Xi,Zj

− 2
[
V†Q†

]
Yb,Xµ

[
σσσ−1TSFΠΠΠ+

]
Xi,Zj

Again, these are entirely in terms of known quantities. Combin-
ing all of the above with the Lagrange multipliers then gives us an
equation for the occupied orbital energies:

λλλOOT†S =2A +
1

2

(
ωΠωΠωΠ− − x†ωωω†ΠΠΠ†+

)
F

−σσσ−1T
(

VxωΠωΠωΠ−FS + SFΠΠΠ+ωωωV†
)

Q† = ΛΛΛCT
OO

(6.14)
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6.2.4 Total derivative

Assuming that equations 6.9, 6.12, and 6.14 have been solved for
the Lagrange multipliers, we can now construct the total derivative
with respect to the nuclear coordinates. The derivative with respect to
the ALMO Lagrangian is the same as in equation 6.7, except now the
term involving λλλ does not necessarily disappear, and instead provides
a contribution of

−2Tr
{(

TλλλOOT† + VλλλVVV†
)

S(q)
}

Both the charge transfer terms have non-parametric dependencies
on the nuclear coordinates through the AO Fock matrix, the deriva-
tive of which was already determined in equation 6.5. However, they
also depend on Q, which itself contains both the overlap and density
matrices. Its derivative is thus, using equation 6.6:

Q(q) = −S(q)P − SP(q) = −(I − SP)S(q)P = −QS(q)P (6.15)

Using this, we can find the derivatives of the charge transfer energy
and residual.

E
(q)
CT = 2Tr

{
T†
(

F(q)Q + FQ(q)
)

Vx
}

R(q)
CT = ΠΠΠ−F(q)ΠΠΠ+ + V†Q(q)†FΠΠΠ+ +ΠΠΠ−FQ(q)Vx

We can arrange the derivative into a more amenable form by first
collecting all terms involving F(q) and Q(q) and then inserting equa-
tions 6.5 and 6.15. This gives, respectively,

Tr
{(
2QVxT† −ΠΠΠ+ωωωΠΠΠ−

)
F(q)

}
=Tr

{
ΩΩΩ1

(
H(q) + G(q) · P

)}
− Tr

{
PΩΩΩ1 · G · PS(q)

}
Tr

{
V
(
2xT† −ωωω†ΠΠΠ†+ − xΠΠΠ−

)
FQ(q)

}
= Tr

{
PVΩΩΩ2FQS(q)

}
where we have repeatedly used the permutational invariance of traces,
and defined the auxiliary matrices:

ΩΩΩ1 = 2QVxT† −ΠΠΠ+ωωωΠΠΠ−

ΩΩΩ2 =ωωω
†ΠΠΠ†+ + xΠΠΠ− − 2xT†

(6.16)

All of the terms now divide into those involving three different sets
of integral derivatives: H(q), G(q), and S(q). These are termed the one-
body, two-body, and Pulay forces [353], respectively. We can expose
the form of the analytical gradients by defining three intermediate
quantities associated with each category of force.

P(1)
ALMO+CT = P +ΩΩΩ1 (6.17)

P(2)
ALMO+CT = P

(
1

2
+ΩΩΩ1

)
(6.18)

F(S)
ALMO+CT = 2CλλλC† + P (F +ΩΩΩ1 · G)P − PVΩΩΩ2FQ (6.19)
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The first two are effective one- and two-body densities, respectively,
while the final quantity is an effective Fockian. In the latter, with
units of energy, we have collected the multipliers λλλ into a single block-
diagonal matrix for convenience. The Pulay force is then the trace of
the effective Fockian with the overlap, i.e. density, derivative, S(q).

Similarly, by inspection of equation 6.7, we can define equivalent
quantities for the ALMO gradient as

P(1)
ALMO = 2P(2)

ALMO = P

F(S)
ALMO = PFP

Using these, the generalised gradient for both variants of the method
can be written as

E(q) = Tr
{

H(q)P(1) + G(q) · P(2) − S(q)F(S)
}

(6.20)

Writing the gradient in this manner not only simplifies computa-
tion, it also gives us effective densities for the non-variational meth-
ods. To see the significance of this, consider the gradient of the energy
from a variational method with respect to any given parameter, α, on
which the Hamiltonian depends explicitly. The wavefunction deter-
mined under this Hamiltonian will then depend implicitly on α and
satisfy

Ĥ(α)Ψα = E(α)Ψα

Taking the total derivative of the energy expectation with respect to
the parameter gives

dE

dα
=
d

dα
⟨Ĥ(α)⟩ =

⟨
dĤ(α)

dα

⟩
+

⟨
dΨα

dα
|Ĥ(α)Ψα

⟩
+

⟨
Ĥ(α)Ψα|

dΨα

dα

⟩
= ⟨ĥ(α)⟩+ ⟨ĝ(α)⟩+ E(α) d

dα
⟨Ψα|Ψα⟩

where in the last line we have inserted the form of the molecular
Hamiltonian. In the case where the wavefunction is variational, this
is the Hellmann-Feynman theorem [354, 355], and reduces to the total
derivative of the energy being the expectation value of the derivative
of the Hamiltonian. In the discretised version, the density matrix en-
codes the wavefunction, and expectation values comprise traces of
the Hamiltonian matrices over the density. The analogy between the
above and the effective densities and Fockian of equation 6.20 then
becomes clear. Most importantly, this is agnostic to the parameter, so
long as the wavefunction does not depend explicitly on it. That means
the same effective (sometimes called ‘relaxed’) density approach can
be used to calculate properties in the presence of, for example, elec-
tric or magnetic fields, given a suitable adaptation of the molecular
Hamiltonian [34].
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6.3 random phase approximation

The random phase approximation, like the charge transfer term, in-
volves the self-consistent calculation of amplitudes satisfying a resid-
ual, as in equation 3.56. These amplitudes are then used in the calcu-
lation of the energy, via equation 3.57. Once again, the virtuals have
been projected, and there is a complex dependence in both terms on
both the virtual and occupied orbital coefficients. This is in addition
to the amplitudes, a further parameter in the Lagrangian:

LALMO+RPA =LALMO+CT (q; T, V, x;λλλ,ωωω) + ERPA (q; T, V, t)

− τabij [RRPA (q; T, V, t)]abij
(6.21)

where we have introduced the new Lagrange multipliers, τabij for the
residual term. Fortunately, we note that the new term does not de-
pend on the CT amplitudes at all, so that the multipliers ωωω are deter-
mined via equation 6.9 exactly as before.

There are a number of additional complications. Firstly, the exact
form of both the energy and residual depend on the exchange vari-
ant chosen: direct, SOSEX, or RPAx. However, each of these have
the same functional form, and the same dependence on the relevant
parameters, all that changes is whether they use the bare Coulomb
integrals, K, or the antisymmetrised ones, B; we will remain agnostic
by using Z as a placeholder.

The second problem is that the method generally uses the pairwise
approximation with decomposed excitations, as outlined in chapter 3.
We could directly find the gradient of the interaction energy, but then
this neglects any dynamical correlation within the fragments them-
selves. In terms of geometry optimisations and the calculation of
molecular properties, this would be problematic. Within the RPA cal-
culation, the intramolecular terms are determined (and identified in
Figure 3.4), but excluded from the interaction energy. If we include
these in our Lagrangian, we are including the intramolecular forces in
the gradient, as required. However, if the pairwise approximation is
used, we will be counting those forces multiple times - once for each
pair they appear in, so in principle up to F− 1 times, where F is the
number of fragments.

In this section, we instead assume that the RPA calculation has been
carried out on the total supermolecular system. While this is unlikely
in most cases, it simplifies the derivation, and the form of the gradient
found in this way is identical to when the pairwise approximation is
included. The specific details of adapting it to include that approxi-
mation are deferred to the next section, as they are more a question
of technical implementation than theoretical development.
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6.3.1 RPA amplitudes

As we are not considering the projected coefficients at this point,
it is easier to work in the orthogonalised basis of equation 3.54, indi-
cated throughout the following by a tilde over a tensor. The results
can then be translated as before into the projected ALMO basis if nec-
essary. Under these conditions, the derivatives with respect to the
amplitudes are simply:

∂ERPA

∂t̃abij
= αZZ̃iajb

∂ [RdRPA]
cd
kl

∂t̃abij
= δkiδac

[
Ã + t̃ · Z̃

]
jbld

+ δljδbd
[
Ã + Z̃ · t̃

]
kcia

where αZ = 1/2 if Z̃ = K̃ and 1/4 for Z̃ = B̃. Combining these with
the relevant Lagrange multipliers gives

∂LALMO+RPA

∂t̃abij
=
[
αZZ̃ +τττ ·

(
Ã + t̃ · Z̃

)†
+
(
Ã + Z̃ · t̃

)† ·τττ]
iajb

= 0

(6.22)
which can be solved for the multipliers τττ in the same way that equa-
tion 6.9 was solved for ωωω. Moreover, it can be solved in the orthogo-
nalised basis, saving considerable computational effort.

6.3.2 Orbital coefficients

The RPA equations are written in the molecular orbital basis, and
transforming into the AO basis would involve three steps: projection
of the virtuals, transformation of the integrals to the orthogonalised
MOs, and transformation into the ALMO basis. These layers make
direct differentiation in terms of the orbital coefficients exceptionally
complicated. However, some simplifications can be made by working
in the orthogonalised basis and then using the chain rule. That is, for
any given quantity M, where a tilde overhead denotes the orthogo-
nalised coefficients, we have that

∂M

∂C
µ
p

=
∂M

∂C̃νq
·
∂C̃νq

∂C
µ
p

+
∂M

∂t̃abij
·
∂t̃abij

∂C
µ
p

We first find the partial derivatives with respect to the transforma-
tions. For the occupied orbitals we get

T̃ = Tσσσ−1/2 = T
[
T†ST

]−1/2
For the virtuals, however, we have the following relation:

Ṽ = QVπππ−1/2 = QV
[
Q†V†SVQ

]−1/2
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The expansions of the inverse square-root metrics then bely the com-
plexity of the transformation of the amplitudes:

t̃ = σσσ−1/2πππ−1/2tπππ−1/2σσσ−1/2

In all the derivatives that follow, we therefore need to insert the
partial derivatives of the above with respect to the relevant coefficient.
This is complicated by the presence of the inverse square-root met-
rics, and additionally by the projector Q introducing a dependence
on the occupied coefficients in the virtual transformation, so that non-
zero cross terms appear. The amplitude transformation is inherently
mixed. For clarity of development, we will give our results in the
transformed basis, and we will denote the additional partial deriva-
tive matrices as

Tµiνj =
∂T̃

µ
i

∂Tνj
, Vµaνp =

∂Ṽ
µ
a

∂Cνp
, and Zijabνp =

∂t̃abij

∂Cνp
(6.23)

Notice that the V derivative can be with respect to either an occupied
or virtual coefficient in the ALMO basis. The exact forms of these are
given in Appendix F.

The derivatives we need for equations 3.54 are then for the integral
tensor, Z, and for the Fock elements, ϵϵϵ. These, written explicitly in
terms of the coefficients, are as follows:

Z̃pqrs = C̃
µ·
·pC̃

ν·
·q [µν|ρσ] C̃

·ρ
r· C̃
·σ
s·

ϵia,jb = δijṼ
·µ
a·FµνṼ

ν·
·b − δabT̃

·µ
i· FµνT̃

ν·
·j

where [µν|ρσ] are the AO-basis two-electron integrals, bare if Z̃ =

K̃, and antisymmetrised appropriately if Z̃ = B̃. From these, the
derivatives are trivial:

∂τtZ̃pqrs =
∑

u∈{p,q,r,s}

δutr̂(u/τ)[p̃q|r̃s]

∂τkϵia,jb = −δab
(
δik + δjk

) [
FT̃
]
τk

∂τcϵia,jb = δij (δac + δbc)
[
FṼ
]
τc

where the operator r̂(u/τ) replaces the index uwith τ in the following
quantity. In this and the following, ∂τt is a shorthand for the partial
derivative with respect to the transformed coefficient, C̃τt .

We define the following intermediate for clarity:

βiajb = δijδab + t̃
ab
ij (6.24)
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From the above, the energy and residual derivatives are

∂τtERPA =αZ
(
∂τtZ̃iajb

)
t̃abij

= αZ
∑

u∈{i,a,j,b}

(
r̂(u/τ)[ ˜ia| ˜jb]

) (
r̂(u/t)t̃abij

)
= Yτt

(6.25)

∂τt [RRPA]iajb =βiakc (∂τtZkcld)βldjb

+ ∂τtϵiakct̃
cb
kj + t̃

ac
ik ∂τtϵkcjb = Yiajbτt

(6.26)

Clearly, the second of these, as a rank-six tensor, will be exceptionally
computationally intensive to determine. However, in the final expres-
sion, it is contracted with the multipliers τττ, reducing to a rank-two
tensor; thus it should never need to be stored in its six-index form.

Finally, we need the derivatives with respect to the transformed
amplitudes. These are much simpler:

∂ERPA

∂t̃abij
= αZZ̃iajb (6.27)

∂ [RRPA]kcld
∂t̃abij

=
[
Ã + t̃ · Z̃

]
kcia

δljδdb + δikδac
[
Ã + Z̃ · t̃

]
jbld

(6.28)

We can now combine these results with those of equations 6.12

and 6.14, to give equations for the multipliers λλλ. First we define an
auxiliary term common to both the occupied and virtual expressions:

ηµt =
(
αZZ̃kcld −

[
Ã + t̃ · Z̃

]
mekc

τedml − τ
cf
kn

[
Ã + Z̃ · t̃

]
meld

)
Zklcdµt

(6.29)
which leads to the expressions for λλλ:

4
[
λλλVVV†S

]
aµ

= 4
[
ΛΛΛCT
VV

]
aµ

+
(
Yτp − τ

cd
klYkcldτp

)
Vµaτp + ηµa (6.30)

4
[
λλλOOT†S

]
iµ

= 4
[
ΛΛΛCT
OO

]
iµ
+
(
Yτm − τcdklYkcldτm

)
Tµiτm + ηµi (6.31)

Note that while these are the same in form, the virtual expression
sums over all indices, p, due to the projection, while the occupied
expression only sums over all occupied indices, m.

6.3.3 Total derivative

Following the formulation of equation 6.20, we now need to collect
terms involving H(q), G(q), and S(q) from the RPA energy and residual
into new effective densities. The complication here arises from the fact
that Z̃ is different depending on the choice of exchange. As such we
introduce an antisymmetriser, ÂZ, which reduces to the identiy when
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Z̃ = K̃, and is the standard antisymmetriser when Z̃ = B̃. As such, we
have that

Z̃iajb = T̃
·µ
i· Ṽ

·ν
a· ÂZ ⟨µν|ρσ⟩ T̃

ρ·
·j Ṽ

σ·
·b

Of course the transformed coefficients also introduce terms involving
S(q) due to the presence of the inverse metrics. We follow the same
strategy as in the previous section:

Z̃(q) = T̃†Ṽ† · ÂZG(q) · T̃Ṽ +
∂Z̃
∂C̃
· ∂C̃
∂S
· S(q)

where we have slightly abused notation by writing the partial deriva-
tives in terms of the emboldened matrices to simplify matters; in re-
ality, these are derivatives with respect to elements of the tensor, and
the dots imply contractions over pairs of indices. We write

S
(1)
µpντ =

∂C̃
µ
p

∂Sντ

S
(2)
iajbντ =

∂t̃abij

∂Sντ

(6.32)

the derivation of which is given in Appendix F. The energy contribu-
tion to the derivative is then simply

E
(q)
RPA = αZZ̃

(q)
iajbt̃

ab
ij +αZZ̃iajb · S

(2)
iajbντS

(q)
τν

The residual introduces terms in the effective densities and effective
Fock matrix, due to the presence of the Fockian in the ϵϵϵ tensor:[

R(q)
RPA

]
iajb

=βiakcZ̃
(q)
kcldβldjb + ϵ

(q)
iakct̃

cb
kj + t̃

ac
ik ϵ

(q)
kcjb

+
([

Ã + Z̃ · t̃
]
ldjb

S
(2)
ialdντ +

[
Ã + t̃ · Z̃

]
iakc

S
(2)
kcjbντ

)
S
(q)
τν

where we have that

ϵ
(q)
iajb = E

(1)
ijabµνF

(q)
µν +

[
δij − δabP̂(i/a)P̂(j/b)

]
E
(2)
iajbµνS

(q)
µν

E
(1)
iajbµν = δijṼ

·µ
a· Ṽ

ν·
·b − δabT̃

·µ
i· T̃

ν·
·j

E
(2)
iajbµν =

[
1+ P̂(a/b)

] [
FC̃
]
τa

S
(1)
τbµν

(6.33)

where we recall that P̂(p/q) interchanges the indices p and q. A usefulThe permutation
operators, P̂, act on the

indices, but are not
indexed quantities,

therefore the summation
convention does not apply

to them.

compound of this is

P̂(ijk|abc) = 1+ P̂(i/k)P̂(a/c)P̂(k/j)P̂(c/b) (6.34)

which will be used repeatedly below to simplify expressions.
Collecting all like terms, the effective density and Fock matrices are

thus, in comparison to equations 6.17 through 6.19:[
P(1)

ALMO+RPA

]
µν

=
[
P(1)

ALMO+CT

]
µν

− τabij P̂(ijk|abc)
[
E
(1)
ikacµνt̃

cb
kj

]
(6.35)
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[
P(2)

ALMO+RPA

]
µνρσ

=
[
P(2)

ALMO+CT

]
µνρσ

+αZt̃
ab
ij T̃

·µ
i· Ṽ

·ν
a· T̃

ρ·
·j Ṽ

σ·
·b · ÂZ

−τabij βiakcβldjbT̃
·µ
k· Ṽ

·ν
c· T̃

ρ·
·l Ṽ

σ·
·d · ÂZ

−τabij P̂(ijk|abc)
[
E
(1)
ikacµνt̃

cb
kj

]
Pσρ

(6.36)

[
F(S)

ALMO+RPA

]
µν

=
[
F(S)

ALMO+CT

]
µν

−αZZ̃iajb · S
(2)
iajbµν

−αZt̃
ab
ij

∑
q∈{i,a,j,b}

(
r̂(q/τ)

[ ˜ia| ˜jb
])

S
(1)
τqµν

+τabij βiakcβldjb
∑

q∈{k,c,l,d}

(
r̂(q/τ)

[
k̃c| ˜ld

])
S
(1)
τqµν

+τabij

([
Ã + Z̃ · t̃

]
ldjb

S
(2)
ialdµν +

[
Ã + t̃ · Z̃

]
iakc

S
(2)
kcjbµν

)
+τabij [1+ p̂(ij|k)p̂(ab|c)]

(
t̃cbkj
[
δik − δacP̂(i/a)P̂(k/c)

]
E
(2)
iakcµν

)
−τabij [1+ p̂(ij|k)p̂(ab|c)]

(
t̃cbkj E

(1)
ikacστGστγηPηµPγν

)
(6.37)

where the conjugating-permutation operators, p̂(pq|r), have the fol-
lowing effect:

p̂(pq|r) (MprNrq) = NprMrq

The final ALMO+RPA gradient is then found by inserting the effec-
tive densities and Fockian of equations 6.35 through 6.37 into equa-
tion 6.20.

6.4 implementation
The basic implementation of the gradients is fairly simple. The

derivative integral matrices are either calculated on the fly or stored
in memory, then combined with the effective densities relevant to the
level of theory being used. To calculate these effective densities, we
need to solve sets of coupled-perturbed equations for the multipliers
ωωω and τττ; both of these are in the form of Riccatti equations, the so-
lution of which was detailed in earlier chapters. With these, and the
orbital energies λλλ, the effective densities are built according to their
energy expressions.

The evaluation of the various expressions in the preceding sections
is somewhat technically involved, as there are several high-rank in-
termediate tensors, particularly in the RPA gradient. It is impractical
and ill-advised to calculate and store these directly, as they would re-
quire up to O(O4V4) storage. The gradient for a given coordinate is a
single-valued, scalar quantity, such that in principle no intermediates
should need to be stored. In practice, a great deal of time can be saved
by storing the two-index intermediates, in particular the derivative in-
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tegral matrices H(q) and S(q), as these require negligible storage. All
other quantities can be computed on the fly through a series of at most
O(N5) contractions. In particular, the derivatives of the two-electron
integrals can be built in the same way as the two-electron integrals
themselves, by providing the four-index quantities they will contract
with. As such, the two-body density and the two-electron integral
derivatives should be computed in tandem and combined directly.

However, all of the above assumes that we have used none of the
approximations that make the method linear-scaling. Of these, the
ones that affect the gradient calculation are: the density-fitting of the
two-electron integrals; the local approximation in the Fock build; and
the pairwise RPA decomposition. In this section, I will outline how
the first and last of these change the results from the beginning of
this chapter, and how they can be used to give analytic gradients that
scale roughly on the same order as the energy calculations.

The second point listed above, the local Fock build, is an approx-
imation to the exact Fockian. If the derivatives are with respect to
the true Fockian, this is not a problem, although it will disagree with
numerical gradients. In fact, it removes the choice of domains from
the gradient, which would help avoid possible discontinuities. In the
derivative routine itself, the only place where a local approximation
could be employed is in the contraction of the two-electron integral
derivatives with the two-body effective density. We have not consid-
ered this yet due to the sheer complexity of the effective density in
the case of the RPA variants of the method. I will, however, comment
briefly on this contraction and how it can be made negligible for the
ALMO and ALMO+CT gradients at the end of the next section.

6.4.1 Density fitting

The density fitting of the two-electron integrals affects the calcula-
tion of G(q), only insofar as it is an approximation to the true integral
tensor G. In principle, one could use density fitting in the energy cal-
culation but not in the gradient [356–358], and the gradients would
be more accurate, although they would not necessarily agree with nu-
merical gradients due to the approximation. However, the gradient
calculation would then lose all of the savings and improved scaling
of the method, and would take an order of magnitude more effort.
There would then be no real computational advantage in using ana-
lytical versus numerical gradients.
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The derivative is fairly simple to determine, starting from equa-
tion 1.12:

⟨µν|ρσ⟩(q) ≈(µν|P)(q)
[
G−1

]
PQ

(Q|ρσ) + (µν|P)
[
G−1

]
PQ

(Q|ρσ)(q)

+ (µν|P)
[
G−1

](q)
PQ

(Q|ρσ)

As per Algorithm 4.1, we Cholesky-decompose G = LLT and write

bµνP = (µν|R)L−1RP

We can then similarly define

b
(q)
µνP = (µν|R)(q)L−1RP

where we note b(q) is not the total derivative of b. The ERI derivative
can then be written as

⟨µν|ρσ⟩(q) ≈ b(q)µνPb
T
Pρσ + bµνPb

(q)T
Pρσ + (µν|P)

[
G−1

](q)
PQ

(Q|ρσ)

The tensors b and L−1 are already computed and stored in the
course of the energy calculation, and can thus be reused here. All
that then needs computing for the first two terms is the three-index
derivative tensor elements (µν|P)(q), which is an order of magnitude
cheaper to compute and store than the full four-index derivative. The
final term in the above, involving the derivative of the inverse fitting
metric, appears to complicate things slightly. However, we can ex-
pand this as[

G−1
](q)

= −G−1G(q)G−1 = −L−1

([
L−1

]T
G(q)L−1

)[
L−1

]T
If we then define

G(q)
=
[
L−1

]T
G(q)L−1 (6.38)

the ERI derivative simplifies to give

⟨µν|ρσ⟩(q) ≈ b(q)µνPb
T
Pρσ + bµνPb

(q)T
Pρσ − bµνPG

(q)
PQb

T
Qρσ (6.39)

which only requires computation of the new two-index quantity from
equation 6.38.

A further consideration at this point is the integral blocking tech-
nique used to reduce the storage and computation cost in the energy
calculation, Algorithm 4.2. A negligible integral value does not im-
ply a negligible value of the integral derivative, such that we cannot
simply apply the same procedure. Again, this may seem like it will
result in erroneous gradients, however this is not the case - the inte-
gral blocking is an approximation to the true DF-ERI tensor, such that
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the true DF-ERI gradient will give correct results, although not neces-
sarily in agreement with numerical differentiation of the approximate
tensor.

If we wish to exploit the potential for linear scaling in the integral
calculation as per the original integrals, we need to block screen the
gradient integrals, b(q), directly; as before, there is no real value in
doing the same for the metric, as it is a negligible overall cost. Unfor-
tunately, the inequality of equation 4.7 no longer applies, so we need
to derive a new bound. The same algorithm as in Algorithm 4.2 can
then be applied but with this new bound replacing line 15.

Consider the derivative of the electron repulsion integral of equa-
tion 4.3 with respect to a coordinate, qP, on the atomic centre P. Using
the chain rule, we get

d

dqP
Vnpq =

√
4α

π
F ′n
(
αR2PQ

)
· d
dqP

(
αR2PQ

)
=
4α3/2√
π

(
qP − qQ

)
F ′n
(
αR2PQ

)
The Boys function derivative is, using equation 4.4:

F ′n(q) =
d

dq

∫1
0

dt t2n exp
(
−qt2

)
= −

∫1
0

dt t2n+2 exp
(
−qt2

)
= −Fn+1(q)

Therefore the derivative of the ERI is

d

dqP
Vnpq = −

4α3/2√
π

(
qP − qQ

)
Fn+1

(
αR2PQ

)
= −2α(qP − qQ)V

n+1
pq

(6.40)
From equation 6.40, we see that the derivative of the integral is

itself an ERI integral, but with higher angular momentum. As such,
all but the distance dependence of equation 4.7 can be reused, with
the derivatives of the ‘diagonal’ ERIs, and the two-particle effective
density instead of the one-particle reduced density. To determine the
distance dependence asymptotically, we go back to equation 4.5 but
with a higher order Boys function. This gives

d

dqP
Vnpq ∼ −2αRPQ ·

2

αn+1R2n+3PQ

= −
4

αnR2n+2PQ

(6.41)

Thus the worst case is again for spherical Gaussians, but now the
distance dependence is R−2 instead of R−1. As such, we can write
the screening criterion, using the notation of equation 4.7, for the ERI
derivatives as∥∥∥B(q)

XYZP(2)
XY

∥∥∥∞ ⪅ 4
∥∥∥g(q)
XYXY

∥∥∥1/2∞
∥∥∥G(q)

ZZ

∥∥∥1/2∞
∥∥∥P(2)

XY

∥∥∥∞ R−2(XY)Z (6.42)

As with the density fitting of the original ERIs, the only new quanti-
ties that need to be calculated here are the diagonal blocks of the ERI
derivative tensor and the fitting metric derivative matrix. The latter
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is needed anyway in the density fitting procedure of equation 6.39,
while the cost of the former is only O(N2).

Further savings in the computational cost, but not the scaling, can
be found through density fitting the gradient if we considered in de-
tail the contraction of equation 6.39 with the effective two-particle
density, P(2). For the ALMO+RPA expression of equation 6.36, this
is complicated, and would require considerable analysis and fine tun-
ing that is yet to be done. Similar considerations were needed in
the implementation of canonical RPA derivatives [359], and those for
the RPA variants used in range-separated DFT [360, 361], which we
could build from in future. For the ALMO gradient, however, it is
much simpler. The two-electron term in the gradient is simply

1

2
Tr

{
G(q) · P

}
≈ 1
2

Tr
{

b(q) [bP] + b
[
Pb(q)

]T
− bG(q)

[bP]T
}

=
1

2

{(
b(q) − bG(q)

)
· [bP] + b

[
Pb(q)

]T}
The contraction of b or b(q) with P is an O(N2) term resulting in a
rank-one tensor of dimension M, where M is the size of the auxil-
iary basis. The two-body force calculation is thus transformed from
an O(N3) trace over the four-index G to a series of two O(N2) and
two O(NM) traces, by partitioning the contractions as shown by the
brackets.

The ALMO+CT effective density of equation 6.18 can be handled in
exactly the same manner, with the only additional consideration being
the contraction of P with ΩΩΩ1. As can be seen from equation 6.16, this
corresponds to a series of matrix multiplications of order at most NV .
Thus the overall scaling is still reduced an order of magnitude overall.

6.4.2 Pairwise RPA

In the RPA portion of the calculation, a list, P, of fragment pairs is
created, culled by some cutoff distance between the fragments. The
total interaction energy is then determined as the sum of all the dis-
persion and exchange-dispersion terms for the pairs in this list, as
defined by equations 3.70 and 3.71.

However, in a geometry optimisation, using this as the contribution
to the forces is not sufficient, as it neglects the on-fragment correlation
energies, which will strongly affect the local geometry of each frag-
ment. One possibility is to include the total RPA contributions from
every pair, but there are two significant problems there: it would
re-introduce BSSE into the gradients, and we would count each frag-
ment’s correlation energy multiple times, in general. Instead, we com-
pute the averaged fragment correlation energies.
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There is one excitation diagram not shown in Figure 3.4, which is
where both excitations happen on the same fragment. Naturally, this
corresponds to on-fragment correlation, and is an important part of
the total energy of that fragment. Moreover, it is necessarily untainted
by BSSE. Of the other diagrams, it is impossible to say what part of
the ionic (or charge-transfer) contribution is necessary in the total en-
ergy of the system, but there is a plausibility argument for excluding
them. Such diagrams are necessarily not possible in a calculation on a
single fragment. Their availability does, however, expand the virtual
space available and thus a higher quality fragment correlation energy
could be computed. On the other hand, their removal does not partic-
ularly affect the quality of the interaction energy calculated; in fact, it
seems to improve it. The correlated part of the interaction energy is
equivalent to the total correlation energies of the system minus that
of the individual fragments. As such, we would expect minimal error
by reversing this and approximating the total correlation energy of
the system as the interaction energy plus the fragment energies.

In terms of implementation, this is also the simplest approach to
take, as it does not affect the overall form of the gradient. In particular,
it does not change the individual residual equations for each pair,
which must be satisfied. Thus all that changes is how the Lagrangian
is written, c.f. equation 6.21:

LALMO+RPAd =LALMO+CT +
∑
X,Y∈P

[
1+ P̂(a/b)

] ∑
(ia)∈X

∑
(jb)∈Y

t̃abij Z̃iajb

+
∑
X,Y∈P

n−1
X

∑
(iajb)∈X

+n−1
Y

∑
(iajb)∈Y

 t̃abij Z̃iajb
−

∑
X,Y∈P

[
τττXY
]ab
ij

[
RXYRPA

]ab
ij

(6.43)

where nX is the multiplicity of fragment X in P; that is, the fragment
X appears in nX non-negligible fragment pairs in the pairlist, P.

The effective densities of equations 6.35 through 6.37 only change in
that each of the RPA-based contributions must now be calculated for
each relevant pair, and their energy-derivative contributions summed
in the same way as equation 6.43. These energy contributions are only
found in the two-body and Pulay densities, equations 6.36 and 6.37,
and can be identified as they always include the prefactor αZ.

At first, it appears that having to perform dim(P) RPA gradient cal-
culations (and thus the solution of as many coupled-perturbed RPA
equations) will introduce an extreme overhead. However, the gradi-
ent calculation scales at roughly the same complexity as the energy
calculation, albeit with a larger prefactor. Therefore, we immediately
inherit asymptotic linear scaling of the RPA gradient calculations with
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number of fragments. That is to say dim(P) gradient calculations with
roughly 2NF basis functions is orders of magnitude less complex than
one such calculation with FNF basis functions.

6.5 tests
In this section, we validate the derivation and implementation of

the analytical gradients. We do this by comparing to both CCSD re-
sults, and to those from numerical differentiation. The latter were
all calculated using the central differences method with a step length
of 0.01 bohr in either direction, on the full 3N coordinates; Hessian
calculations used the same method, but on the analytical gradients.
The geometry optimisations were performed using a conjugate gra-
dients procedure [124], with a heuristic line search [362], again on
the full 3N coordinates. Considerable time savings, and improved
robustness, could be achieved by instead using a quasi-Newton Raph-
son method on the 3N − 6 independent degrees of freedom, in an
internal coordinate representation [363]; this has not yet been imple-
mented in Gamma, nor have effective symmetry constraints. All cal-
culations were performed using the aug-cc-pVDZ basis sets [324, 343,
364], and where applicable, the corresponding JKFit [151, 162, 325]
and MP2Fit [325, 327] sets. ALMO calculations used the RPAx ex-
change variant, with the full infinite-order charge transfer correction.
We did not use the local Fock build in the dimer calculations, as it is
unnecessary, but did in the larger cluster calculations.

6.5.1 Water dimer

We have already presented interaction energy curves for the water
dimer as a function of intermolecular separation in Figure 5.13. While
this showed good agreement, it does not demonstrate the efficacy of
the method on the overall geometry, where there are 12 degrees of
freedom in total. Figure 6.1 shows a comparison of the ALMO+RPAx
geometry with that calculated with CCSD, demonstrating that the
agreement is in fact good across all degrees. The largest errors are in
the HOH bond angles of the monomers, with a difference of around
1.8 degrees; the intermolecular separation on the other hand agrees
to within 0.01 angstrom. It is to be expected that a method focused
on providing accurate interaction energies would perform best for the
forces between monomers, and slightly less well for the forces within
monomers. Overall, though, these differences are small and of the
order of the differences between CCSD and MP2 geometries.

Figure 6.2 shows the forces on each atom as calculated numerically
versus analytically. This clearly demonstrates that the analytical gra-
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Figure 6.1: Optimised geometry of the water dimer at the ALMO+RPAxd
level (solid bonds) compared to the CCSD level (orange spheres),
both using the aug-cc-pVDZ basis set. The structures agree well,
with only minor deviations, mainly in the hydrogen positions.
Deviations of the centroids are given in bohr.
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Figure 6.2: Comparison of the total forces on each atom in the water dimer,
as calculated, from left to right: numerically using central differ-
ences; analytically with the full RPA calculation on the dimer; an-
alytically with the pairwise RPA approximation, where only the
dispersion and intramolecular terms are included. The dashed
line indicates going into the page, and there is a totally symmet-
ric line coming out of the page, reflected in the xz-plane, in all
cases. The preservation of this symmetry is an important indica-
tor that the method is robust.
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Figure 6.3: Harmonic frequency calculations for the water dimer at the
ALMO+RPAx (bottom) and CCSD (top) levels using the aug-cc-
pVDZ basis set. Intensities were calculated using electric dipole
moments. Overall, the two spectra show very good agreement,
with only slight deviations in the fingerprint region.

dients are correct, differing from the numerical results only in the
fourth decimal place, which given the step size of 0.01, is the limit of
precision for the central differences results. More interesting, however,
is the difference between using the full RPA term in the total energy
- i.e. the undecomposed energy - versus just including the dispersion
and intramolecular terms. There is again essentially no difference,
suggesting that we are valid in excluding the ionic and BSSE terms
from the RPA energy. We see the same order of deviations for the wa-
ter trimer and pentamer, i.e. negligible. It is difficult to validate this
for even larger complexes, however, as it becomes impossible to in-
clude the full RPA on the total system, and including the ionic terms
in the pairwise approximation raises a difficult question about how
to weight them in the total energy. Our ad-hoc weighting of the in-
tramolecular terms by how many times they appear, however, seems
to not affect the accuracy of the gradients.

Finally, we can further validate both the method and the accuracy
of the gradients by calculating the harmonic frequencies of the wa-
ter dimer. These are essentially the eigenvalues of the mass-weighted
Hessian, which can be calculated from the gradients using central
differences. Figure 6.3 shows the spectra from ALMO+RPAx versus
CCSD. Notably, the shape and position of the peaks is largely indistin-
guishable between the two, with the largest differences at around 615
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345 cm−1
615 cm−1

Figure 6.4: Forces corresponding to two of the normal modes of the water
dimer calculated at the CCSD/aVDZ level.

and 346 wavenumbers, where the RPAx results are roughly 10 wavenum-
bers lower than their CCSD counterparts. These two normal modes
can be seen in Figure 6.4, where it is clear that these are motions in-
volving rocking of the two water molecules, i.e. the predominantly in-
termolecular vibrations. This is perhaps to be expected, as the method
is providing an approximate treatment of the intermolecular interac-
tion. However, we note that the CCSD frequencies will contain some
BSSE, whereas the ALMO ones will not; as BSSE leads to an overesti-
mation of force constants (i.e. a higher frequency mode), it is difficult
to untangle the errors due to the approximation from those due to
BSSE.

6.5.2 S66 benchmark set

As with the energy calculations, it is not sufficient to consider only
select model complexes such as the water dimer. Therefore, we have
optimised geometries for the entire S66 database [267], and compared
these to the CCSD benchmarks. The root-mean-square deviations in
the total structure, and maximum absolute deviations in individual
parameters, are shown in Figure 6.5.

Overall, the structures show good agreement, performing particu-
larly well for bond lengths. The largest absolute deviations in bond
lengths are consistently in the intermolecular separation, but these are
also the longest bond lengths overall - thus the percentage deviation
is consistently low. The bigger differences are found in both the bond
and dihedral angles, with maximum deviations of up to four degrees.
This is not unlike the deviations that would be found comparing MP2

to CCSD [365], and suggest that our description of the monomers is
not as high quality as our description of the interaction. Again, this



6.5 tests 167

0

50

100

150

200

0.000 0.005 0.010 0.015 0.020 0.025

RMSD (Angstrom)

D
en

si
ty

0

20

40

60

0.00 0.02 0.04 0.06

Max. deviation in bond length (Angstrom)

D
en

si
ty

0.00

0.25

0.50

0.75

0 1 2 3 4

Max. deviation in bond angles (degrees)

D
en

si
ty

0.0

0.2

0.4

0.6

0 2 4

Max. deviation in dihedral angles (degrees)

D
en

si
ty

Figure 6.5: Geometric deviations in the ALMO+RPAxd/aVDZ optimised
geometries compared to CCSD/aVDZ geometries, for the S66

benchmark dataset.
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is to be expected, as the monomer description in the ALMO proce-
dure is effectively a monomer-centred basis quality, as opposed to
the dimer-centred basis quality of the full HF calculation. As noted
earlier, the errors do not seem to be due to how we handle the RPA
portion of the gradients.

There is no clear answer as to how to deal with the inherently
poorer description of the intramolecular forces. The charge trans-
fer correction to the interaction energy does achieve counterpoise-
corrected HF agreement, but this does not solve the problem. To see
why, consider the relation between the two:

EALMO+CT(AB) − EA(A) − EB(B) ≈ EHF(AB) − EA(AB) − EB(AB)

such that we rearrange to get

EALMO+CT ≈ EHF(AB) −
[
EA(AB) − EA(A)

]
−
[
EB(AB) − EB(B)

]
= EHF − EBSSE

That is, by removing the BSSE a priori from the interaction energy,
we are effectively reintroducing it into the total energy, and thus the
gradients. Specifically, as EBSSE is necessarily negative, we are raising
the total energy with respect to the HF result, which appears to result
in the change in bond angles within the monomers in particular, and
concomitantly shorter intermolecular separations.

Pragmatically, however, the geometrical deviations are small enough
as to be justifiable, especially when we consider the computational
savings. Figure 6.6 compares the timings using numerical differenta-
tion to using the analytical gradients with the implementation given
in the previous section. For the larger complexes, such as the benzene
dimer, we see decreases of two orders of magnitude; a single optimisa-
tion step took around 50 hours numerically, compared to 20 minutes
analytically. With effective parallelisation of the gradients, as done for
the energy calculations, we would expect this to reduce even further.

6.5.3 Larger clusters

Ideally, the gradients should scale on the same order as the energy
calculations, so that geometry optimisations are feasible. Numerically,
we need to do roughly 6N displacements, and thus for a method that
scales as O(N), central differences scales as O(N2) with a very large
prefactor. This can be seen in Figure 6.7 for a series of water clusters.

Strictly speaking, in the analytical gradients, we still need to calcu-
late O(N) integral derivative matrices, so even with the linear density-
fitting and integral blocking routine, we will asymptotically reach
O(N2) scaling. However, the prefactor is expected to be much smaller.
Additionally, the calculation of the integral derivatives with respect
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Figure 6.8: A cluster of 202 water molecules, geometry optimised at the
ALMO+RPAxd/aVDZ level. The unoptimised cluster, taken
from MD simulations, can be seen in Figure 5.10.

to each coordinate is not strictly order N, as the gradients between
different coordinates are coupled [363]. As such, we ideally expect
sub-quadratic (but still super-linear) scaling of the analytical gradi-
ents with the density fitting procedure. If we use the full ERI tensor,
however, the prefactor will still be much lower, but the asymptotic
O(N4) scaling will eventually make numerical differentiation cheaper.
Both of these scaling behaviours, and their scaling exponents, can be
found in Figure 6.7.

We finally demonstrate the efficacy of the analytical approach by
optimising the cluster of 202 water molecules from Figure 5.10. The
new, optimised structure can be found in Figure 6.8, where we can
see a clear move towards a more crystalline structure. As these calcu-
lations are effectively at absolute zero, this is to be expected. Further
evidence of this can be seen in the radial distribution function of a wa-
ter molecule at the centre of the cluster, as shown in Figure 6.9. The
geometry from the MD simulation is essentially a stochastic distribu-
tion, whereas there are clear peaks - solvation shells - in the optimised
structure.

It is essentially impossible to validate this cluster structure against
a known method, due to the sheer size. However, on the smaller clus-



6.5 tests 171

5

10

15

20

5 10 15 20

Distance (Angstrom)

C
ou

nt

colour

Optimised

Unoptimised

Figure 6.9: The change in the radial distribution function of a water
molecule in the centre of a cluster of 202 water molecules, going
from unoptimised geometry, taken from MD simulations, to the
optimised, ALMO+RPAxd geometry. The latter shows distinct
solvation shells appearing as peaks in the distribution.

ters considered in Figure 6.7, with up to 10 water molecules, we can
compare against known CCSD-level geometries [329]. The RMSDs for
these are on average 0.02 Angstrom, suggesting good agreement, and
on the same order of the dimer calculations in Figure 6.5. Moreover,
a single optimisation step on the 202-water cluster using the analyt-
ical gradients derived here took slightly under 20 hours on a single
CPU core (a single-point energy took around 3 hours). This opens
up the possibility of accurate, quantum-level optimisations of large
molecular systems at a reasonable cost.





7 M U LT I - C O N F I G U R AT I O N A L
A L M O S C F
The previous chapters have specialised in giving accurate de-

scriptions of non-covalent interactions in large systems, culmi-
nating in analytic gradients for optimising their geometries. In
this chapter, I extend this idea to classes of molecules for which
a single Slater determinant does not provide an adequate descrip-
tion, while maintaining the absolute localisation of the molecu-
lar orbitals. This will allow us to treat, in particular, chemical
reactions in explicit solvent. I begin by describing how the con-
figuration interaction method can be applied to ALMOs, before
giving a second-order method for the optimisation of the orbitals
themselves. These are then combined into a multiconfigurational
ALMO SCF procedure. Finally, I describe how this can be used
to create a theory where a multiconfigurational subsystem is em-
bedded in a much larger system of small molecules.

In a large proportion of chemical systems, a single Slater determi-
nant - and thus any HF and ALMO SCF-based method - gives a good
baseline description of the wavefunction [34]. This is equivalent to
saying that, in the wider Fock space, a single ‘point’ or configuration
contains by far the largest coefficient in the overall expansion of the
wavefunction in the basis of determinants. In principle, however, we
can only achieve the full solution in the limit of the full basis of con-
figurations. In particular, if there are strong couplings between points
in Fock space - that is strong static correlation [366] - ignoring these Static correlation can be

considered to be the
coupling between points
in Fock space, as opposed
to dynamical correlation
due to the
electron-electron
couplings.

other configurations can lead to qualitatively incorrect results. This
‘full expansion’ approach is the principle behind the full configura-
tion interaction (FCI) method.

Used alone, FCI typically still uses a single reference determinant -
normally the HF solution - as the starting point for an expansion in
terms of excitations [210]. Much as with the coupled-cluster type ap-
proaches described in chapter 3, this expansion is written in terms of
excitations between the occupied and virtual molecular orbitals. In a
truly multi-determinental wavefunction, however, the orbitals should
be able to relax within that expansion. The simultaneous optimisation
of both the FCI expansion and the orbitals would then yield a greatly
improved solution with the Fock space. Unfortunately, this is imprac-
tical for all but the smallest systems due to the factorial scaling of the
number of configurations.

173
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Nonetheless, so-called multiconfigurational (MC) SCF methods are
frequently used for any chemical problem with strong static correla-
tion [367]. Such problems typically include anything where a bond is
broken - so chemical reactions - or where a system has a number of
energetically close states, such as in transition metal chemistry [368,
369]. Moreover, MCSCF wavefunctions can then be used as systemat-
ically generated multi-reference wavefunctions for the purposes of cal-
culating dynamical correlation. Using each individual configuration
as a reference for, for example, a perturbation theory calculation, we
can in principle reach the exact solution to the quantum eigenvalue
problem.

As per equation 2.16, each Slater determinant can be written in
terms of a unitary transformation, described by the exponential of the
antisymmetrised operator κ̂, given in equation 2.17. This then dictates
the form of the molecular orbitals. We can then construct ‘excited’
determinants from this by replacing what in HF is an occupied orbital
with a virtual orbital, and expanding the wavefunction as a linear
combination of determinants, via linear parameters cI; note that in
this chapter, uppercase latinate indices indicate determinants. The
MCSCF wavefunction can thus be written as

|ΨMCSCF⟩ = exp(−κ̂)
∑
I

cI |I⟩ (7.1)

We then variationally optimise the energy expectation with respect to
both κκκ and c.

Generally, with canonical orthogonal orbitals, the two parameter
sets are strongly coupled, resulting in large CI expansions being nec-
essary, and a very difficult nonlinear optimisation problem [370, 371].
As a result, many restricted variants of MCSCF have been suggested,
the most popular of which is the complete active space (CAS) method [372,
373]. In this, we partition the orbitals into three domains: inactive,
doubly-occupied orbitals; active, ‘fractionally’ occupied orbitals; and
secondary, unoccupied orbitals. A further restriction of this is the re-In reality, the active

orbitals are singly
occupied within some
determinants, but are
‘fractionally’ occupied

overall due to not being
occupied in all

determinants in the CI
expansion.

stricted active space approach [374, 375], where we further partition
the active space into domains with fixed total occupation.

Interestingly, there has been a considerable amount of evidence
that using suitably optimised nonorthogonal orbitals can greatly re-
duce the lengths of the CI expansions [376–378]. Essentially, we are
changing the representation of Fock space in such a way that connec-
tions between determinants are minimised, reducing the complexity
and nonlinearity of the procedure. However, this is at the cost of
a much more complicated orbital optimisation procedure due to the
nonorthogonality. Therefore, using a priori localised orbitals, wherein
we get the best of both worlds, promises to increase the scope of
such calculations. Specifically by using ALMOs, we hope to provide
a more effective multiconfigurational method for systems involving
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many small molecules; this is particularly useful for chemical reac-
tions, where solvent can play a significant role. In the following sec-
tions, I will derive an MC-ALMO SCF method, and discuss how it
can be applied to study multiconfigurational systems embedded within
a larger environment.

7.1 non-orthogonal configuration interaction
In Chapters 2 and 3, we used a system of separately orthogonalised

occupied and virtual orbital subspaces, utilising the redundancy within
those subspaces. Now, however, we have a third subspace, namely
the active space. In principle we could also separate this and orthog-
onalise independently, but it is easier to instead use a global space of
bi-orthogonal orbitals. In this, we transform only the creation opera-
tors by the inverse metric:

a†pσ =
[
s−1
]
pq
b†qσ (7.2)

These, together with the original annihilation operators, then satisfy
the usual anticommutation relations, in particular that{

a†pσ,bqγ
}
= δpqδσγ

To distinguish quantities in the bi-orthogonal basis, we will use an
overbar. For example, the singlet excitation operators are given by

Epq =
∑
σ

a†pσbqσ

Σpqrs = EpqErs − δqrEps

and the molecular electronic Hamiltonian is simply

Ĥ = hpqEpq +
1

2
gpqrsΣpqrs

We can thus construct determinants in the Hilbert space in two
ways:

|I⟩ =
∏
p∈Iocc.

b†pσp |0⟩

|I⟩ =
∏
p∈Iocc.

a†pσp |0⟩
(7.3)

where Iocc. denotes the occupations of determinant |I⟩. The two repre-
sentations are then necessarily bi-orthogonal; that is, ⟨I|J⟩ = δIJ.

The fundamental premise of configuration interaction (CI) is very
simple. We expand the wavefunction as a linear combination of the
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determinants, then variationally optimise the expansion coefficients,
CI, by minimising the energy. In the bi-orthogonal representation,
this energy expression is given by

E =
CI ⟨I|Ĥ|J⟩CJ
CI ⟨I|J⟩CJ

=
CIσI

CICI
(7.4)

where we have used the bi-orthogonality of the determinants in the
denominator. In a naïve approach, one would calculate the full Hamil-
tonian matrix, then simply minimise the above expression. This is
very costly, however, as the number of such matrix elements scales
as the square of the number of determinants, which itself necessarily
scales factorially with the number of electrons. Instead, we have de-
fined in the second equality of equation 7.4 a sigma-vector, σI, where
the matrix elements are directly contracted with one set of coefficients.
This immediately reduces the storage requirements to the square root
of Ndet., but it also greatly improves the computational complexity, as
I will demonstrate presently.

7.1.1 Alpha and beta strings

To preface the following developments, we need to introduce string-
based CI, as first introduced in the ‘80s by Handy [379, 380], then later
developed by Olsen and coworkers [374]. The reasons for this are two-
fold: it informs how the calculations are performed in general, in such
a manner as to be efficient; it will allow us to easily use ALMOs to
reduce the scaling. The essence of the idea is to split the determi-
nants into separate “strings” for the alpha and beta (up and down
spin) electrons. Assuming that we wish to conserve the overall spin
quantum number, excitations are only allowed within the alpha and
beta subspaces, never between them. Then, we need only consider
interactions between string pairs.

Let Iα be the list of occupied alpha-spin orbital indices, {i, j, . . . ,k},
in a given determinant, |I⟩. The alpha string, α(Iα) is then the or-
dered product of creation operators corresponding to these spin or-
bitals; similarly, a beta string is such an ordered list but for the beta
subspace. The determinant is then represented by

|I⟩ = |α(Iα)β(Iβ)⟩ (7.5)

In direct CI methods, using the sigma-vector approach, we need
an efficient way to determine which determinants interact with each
other through the Hamiltonian. If we were to consider each determi-
nant pair directly, this would entail N2det. comparisons. With strings,
however, we only need consider which string pairs interact, reducing
the indexing to effectively at most 2Ndet.. We can then use these string
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Figure 7.1: All possible alpha/beta strings in the full CI space of ne = 2

electrons in 4 orbitals, p. Vertical and diagonal lines indicate
unoccupied and occupied orbitals, respectively.

indices to avoid calculating negligible matrix elements, and the coef-
ficients are simply a phase factor of +1 or −1, depending on whether
there are an even or odd number of permutations in normal ordering.

This scheme requires a simple and rapid way of addressing the
strings. The suggestion of Handy [379] was the graph-based ap-
proach, shown in Figure 7.1 for a simple system where we have ne = 2
electrons (horizontal axis) over np = 4 orbitals (vertical axis). All
strings are then enumerated, as shown, by finding all valid paths from
the (0, 0) vertex to the (ne,np) vertex. A further computational advan-
tage of this is that if we wish to restrict our active space, we simply
remove vertices or paths from this generation procedure. For exam-
ple, if in the above problem we wish to perform a restricted active
space (RAS) calculation where there must be at least one electron in
either orbital 1 or 2, we would remove the (0, 2) vertex, corresponding
to zero electrons in the first two orbitals. In this case, that would only
eliminate string (f) from Figure 7.1, but in general will greatly sim-
plify a problem. We will also use this when exploiting locality later
on.

The addresses of the strings are then determined using reverse-
lexical ordering [34] in the following manner. The vertices are as- Other orderings are

possible, but we choose
the convention of Olsen.

signed weights equal to the number of valid routes from the origin
to that vertex; the diagonal edge (occupation) weights are then as-
signed such that they join the vertex weights, with the vertical edges
weighted as zero. This is shown in Figure 7.2. For example, we can
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Figure 7.2: The network representation of the full CI space of ne = 2 elec-
trons in 4 orbitals, p, using reverse-lexical ordering. The vertex
weights indicate the number of valid paths that pass through that
vertex, and the arc weights connect these vertex weights; vertical
arcs are always zero. The address of a string (determinant) is
then calculated by summing the arc weights in the string path.

Table 7.1: The corresponding determinant and reverse-lexical address of
each string given in Figure 7.1, as determined using Figure 7.2.
The addresses of the connecting determinants - i.e. those that
differ through a single excitation - are given in the final column.

String Determinant Address Connections

(a) |Ψ0⟩ 0 1, 2, 3, 4
(b) |Ψ32⟩ 1 0, 2, 3, 5
(c) |Ψ42⟩ 3 0, 1, 4, 5
(d) |Ψ31⟩ 2 0, 1, 4, 5
(e) |Ψ41⟩ 4 0, 2, 3, 5
(f) |Ψ3412⟩ / |Ψ4312⟩ 5 1, 2, 3, 4

reach (1, 2) via (0, 1) or (1, 1), so its vertex weight is 2. The diagonal
edge joining it to (0, 1), which there is only one path to, is therefore
2− 1 = 1. Finally, the address of a string is calculated as the sum of
all edge weights in the graph of that string. For example, string (e) in
Figure 7.1 has diagonal edges with weights 1 and 3, so is assigned the
address 4.

The addresses for each string in Figure 7.1 are given in Table 7.1,
along with the addresses of the strings it connects to through a single
excitation. These can easily be read off the graphs by the positions
of the diagonal edges - e.g. string (b) does not connect to (e), as the
former has diagonals in rows 1 and 3, while the latter has them in
rows 2 and 4. In this toy problem, all of the strings are connected by
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double excitation, so we do not show them here. In general, however,
these connections can be enumerated in the same manner.

Further savings are then possible by considering the structure of
the sigma vector in terms of these strings. We rewrite it as follows:

σI = ⟨α(Iα)β(Iβ)|Ĥ|α(Jα)β(Jβ)⟩CJ (7.6)

The Hamiltonian is written in terms of singlet excitation operators,
either single excitations or doubles, which then allows us to split the
sigma vector into three parts: the first and second involving only
alpha and beta strings, respectively, and the third comprising the two-
electron terms where one excitation is of alpha and one of beta spin.
Thus, if each string is connected to on average k other strings, then
for Nσ strings each term needs approximately Nσk comparisons, as
opposed to N2det., which in larger active spaces is a considerable sav-
ing.

7.1.2 Evaluating the ALMO-CI sigma vector

Firstly, we follow the usual convention of creating an effective one-
electron Hamiltonian from the usual core Hamiltonian and the ex-
change term, which has matrix elements

opq = hpq −
1

2
gprrq (7.7)

such that the Hamiltonian in the bi-orthogonal basis becomes

Ĥ = opqEpq + gpqrsEpqErs

Equation 7.6 can thus be split into one- and two-excitation terms, with
the former only appearing in the like-spin case:

[σI]
(1)
α = ⟨α(Iα)|E

α
pq|α(Jα)⟩opqCJ (7.8)

[σI]
(2)
αα =

1

2
⟨α(Iα)|E

α
pqE

α
rs|α(Jα)⟩gpqrsCJ

=
1

2
⟨α(Iα)|E

α
pq|α(Kα)⟩ ⟨α(Kα)|E

α
rs|β(Jα)⟩gpqrsCJ

(7.9)

[σI]
(2)
αβ = ⟨α(Iα)|E

α
pq|α(Jα)⟩ ⟨β(Iβ)|E

β
rs|β(Jβ)⟩gpqrsCJ (7.10)

where in σσσ(2)αα we have inserted the resolution of the identity, assuming
the full CI space is being used for the problem. From these equations,
we clearly need only consider the effect of the excitation operators
of a given spin on strings of that same spin. We can considerably
simplify our calculations by doing so in turn for the inactive, active,
and secondary subspaces.

For the inactive orbitals, all strings necessarily contain the creation
operator for that orbital. Thus, bjα acting on any alpha string, by
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bi-orthogonality, gives a determinant with j now unoccupied plus a
phase determined by the parity of that orbital. If a†iα then acts on it,
the determinant will annihilate from double occupation of the spin-
orbital, unless i = j. The one-electron element involving the inactive-
inactive terms thus reduces to

⟨α(Iα)|α(Jα)⟩oiiCJ = oiiCI
The overlap element evaluates to zero unless I = J, as the bra and
ket are in bi-orthogonal representations. Thus, we can define a core
energy as the combination of the (equivalent) alpha and beta one-
electron sigma vector terms in the inactive-inactive subspace.

Ecore = 2hii + 2giijj − gijji (7.11)

Note that this does not include exchange contributions involving ac-
tive (or secondary) orbitals, despite these appearing in inactive-inactive
terms. These are not neglected in the final result, it is merely conve-
nient to group them with the other terms involving these orbitals.

Similarly, for the secondary orbitals, these are unnocupied in every
string, and thus automatically annihilate when in the de-excitation
index of the excitation operator. If the secondary orbital is in the
excitation index, then this generates a new string which is not in the
CI space, which will thus be orthogonal to whichever string is in the
bra. Thus, no secondary interactions are included in the sigma vector.

Therefore, the only non-constant and non-zero contribution to the
sigma vector is from inactive-active and active-active interactions. The
former appear only through the inactive-inactive excitations earlier:
if we create or destroy an inactive electron, without replacement, the
string will not be one in our CI space. An active-active excitation
operator will in general connect exactly one string at J to the given
string at I. Thus, in the string list where the addresses of all strings
connected to I are stored, we also store the active orbital pair that
connects them. When computing the sigma vector, we then only need
to match up the matrix element and phase to each term. We collect
the active-active terms from equation 7.8 and the inactive-active terms
from equations 7.9 and 7.10 into an effective Fock matrix as follows:

frs = hrs + 2grsii − griis (7.12)

Note that Ecore can then effectively be written as the trace over inactive
orbitals of equation 7.12; as only diagonal terms are needed though,
it is more convenient to only compute f for the active orbitals.

Putting all the above together, the final sigma vector, with the split-
ting by spin left out for simplicity, is then given by

σI = EcoreCI +
∑

r,s∈active

frs ⟨I|Ers|J⟩+ 12 ∑
t,u∈active

grstu ⟨I|Σrstu|J⟩

CJ
(7.13)



7.1 non-orthogonal configuration interaction 181

7.1.3 Solving the CI equations

The core energy and effective Fock matrix of equations 7.11 and
7.12 can readily be evaluated in the atomic orbital basis. The trans-
formation can be written entirely in terms of the absolutely localised
orbital coefficients by first defining an effective density, in analogy to
that of equation 2.45:

[Peff.]µν = Tµ··i

[
s−1
]
ip
C·νp· (7.14)

Note that this differs from the original density by the extension of
the right-hand term over all coefficients, resulting in a non-symmetric
density. This is a side-effect of using the bi-orthogonal orbitals as
opposed to the symmetrically orthogonalised ones used in Chapter 2.
The effective Fock matrix (and thus also the core energy) can then be
written as

frs = C
r·
·µ {Hµν +Gµν(Peff.)}

[
Cs−1

]
νs

= Cr··µFµν(Peff.)
[
Cs−1

]
νs

(7.15)

That is, the AO Fock matrix can be constructed exactly as it was in
the standard ALMO SCF routine, using the same linear-scaling pro-
cedures, but with a different density. In particular, this means the
density-fitting and local exchange procedures can be used.

The most time consuming term in equation 7.13 then becomes the
transformation of the two-electron integrals for the active-active inter-
actions. However, the number of active electrons is in general con-
siderably less than the number of total orbitals, such that an integral-
direct procedure with the usual AO integral screening will be rapid.
This could also utilise density fitting in the usual manner. In addition,
we only need to calculate the transformed integrals for which there
are associated non-zero CI density elements to contract them with,
further reducing the cost. The formal scaling will still be O(N4) (or
N3 for density fitting), but with a very small pre-factor. In future, we
could try to reduce this scaling by more severe screening of the AO
integrals, as is done in multipole-based integration procedures [113,
116].

Solving the CI equations then follows the standard procedure for
canonical string-based CI. Instead of directly diagonalising the Hamil-
tonian, which would be very expensive, we instead form the sigma
vector directly and then iteratively find the lowest eigenvalues and
eigenvectors. The most popular approach is the Davidson-Liu itera-
tive subspace procedure, details of which can be found elsewhere [370,
381, 382].
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Table 7.2: The corresponding determinant and reverse-lexical address of
each string given in Figure 7.1, with the pruned excitations ac-
cording to localisation. In this example, each orbital is on a differ-
ent fragment, with fragments 1 and 3 well separated from 2 and
4.

String Determinant Address Connections

(a) |Ψ0⟩ 0 2, 3
(b) |Ψ32⟩ 1 —
(c) |Ψ42⟩ 3 0, 5
(d) |Ψ31⟩ 2 0, 5
(e) |Ψ41⟩ 4 —
(f) |Ψ3412⟩ / |Ψ4312⟩ 5 2, 3

7.1.4 String pruning using localisation

Apart from the construction of the effective Fock matrix in equa-
tion 7.15, we have not exploited the localisation of the original molec-
ular orbitals. The refactorisation of the non-orthogonal CI equations
we have presented is very efficient, but does not reduce the overall
size of the full CI space. In the canonical case, we cannot a priori de-
termine which orbitals will have negligible excitation amplitudes, due
to the delocalised nature of the orbitals. ALMOs on distant fragments,
on the other hand, are generally well separated, such that excitations
between them are likely to not contribute.

The string-based algorithm offers an efficient opportunity to exploit
this, reducing the size of the CI expansion. If the Hamiltonian element
between two strings can be neglected, then we can immediately use
this by pruning connections between strings with excitations between
these orbitals. Suppose that we have an active space comprising two
electrons between four orbitals, as in Figure 7.1, but this time each
orbital is located on a different fragment. Further, suppose fragments
1 and 3 are well separated from 2 and 4. So while strings (a) and (b)
only differ in one occupation line (rows 1 and 2, versus 1 and 3, re-
spectively), the difference consitutes an excitation from 2 to 3, which
is neglected; this connection can therefore also be ignored. In this
manner, Table 7.1 reduces to Table 7.2. The total number of connec-
tions has reduced from 20 to 8.

An alternative, computationally simple, way of generating the strings
that connect to any given string, is to use a pruned graph according
to whether certain orbitals are to be neglected. For example, all the
strings connecting to (a) in Figure 7.1 are generated from the grid
given in Figure 7.3. Following the rules outlined earlier, it is only pos-
sible to create strings (c) and (d) from this graph, which is in agree-
ment with Table 7.2. The addresses are then looked up by summing
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0
1
2
3
4

0 1 2nep

Figure 7.3: The pruned graph for generating strings connecting to string (a)
in Figure 7.1. The hollow vertex is unidirectional; that is, an edge
must leave in the same direction it enters.

the edge weights of the complete network, i.e. those in Figure 7.2. The
pruned graphs can be rapidly generated according to a hash table of
screened orbitals, in the same manner we would screen by acceptable
excitations described earlier.

All that remains is to determine the screening criterion. This is ef-
fectively an extension of the two-electron integral screening studied in
Chapter 4.1, but over the full Hamiltonian. To study the asymptotics
of the matrix elements, it is convenient to return to the determinental
representation and use the Slater-Condon rules [383, 384]. These are,
given some reference determinant |Φ⟩ and assuming p,q, r, s are all
active orbitals:

⟨Φ|Ĥ|Φqp⟩ = fpq
⟨Φ|Ĥ|Φrspq⟩ = gpqrs − gprqs

From equation 4.5, we know that the two electron integrals are
bounded by 2R−1, where R is the distance between the vectors from
centre one to centre two, and centre three to centre four. Similarly,
the effective Fockian of equation 7.12 contains these two-electron inte-
grals. If desired, the net contribution of this density can be estimated
by the infinity norm of the relevant block of the density, as per the
screening in equation 4.7. It is simpler however to just use the dis-
tance dependence.

The only remaining term then is the core Hamiltonian in the effec-
tive Fock term, and seeing how this depends on the orbital separation.
This contains two parts: the kinetic energy, and the nuclear-electronic
attraction. The latter term is of the same form as the two-electron in-
tegral, but with the distance being to the nuclear centre. The resulting
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asymptotic behaviour is thus as R−1 but where R is now the distance
between the atomic centres. The kinetic energy term is of the form

Tpq = −
1

2
⟨∇ϕp|∇ϕq⟩ ∼ −

1

2
Kspq

where K is some unknown constant. This is due to the derivative of
a Gaussian distribution being a linear combination of Gaussians [34],
such that the integral reduces to a linear combination of overlap inte-
grals. The product of two Gaussians results in a transformed Gaus-
sian as follows

ϕpϕq = exp
(
−µR2PQ

)
exp(−αr2)

where µ and α are determined as combinations of the exponents of
the original distributions. The r dependence then integrates out to
a constant depending only on α, leaving the distance dependence as
exp(−µR2PQ).

The exponential dependence of the kinetic energy will tail off much
more quickly than the 1/R dependence of the Coulombic terms, and
so can effectively be ignored, unless the atomic orbitals are very dif-
fuse. Thus, we screen connections by simply considering whether
the separation between centres is larger than some threshold value,
which we could estimate using the above, or determine by trial and
error. The extents of the atomic orbitals are determined as part of
the domain selection algorithm in the local exchange calculation, so
these could be checked against on a fragment to see if they are larger
than the distance threshold. If they are, the overlap element may be
non-negligible. Alternatively, as the overlap metric has already been
calculated, we could compare values directly, or more coarsely by con-
sidering the norm of fragment-fragment blocks of the overlap.

7.2 orbital optimisation
In MCSCF, we need to simultaneously optimise both the CI expan-

sion, and the orbitals. The latter is achieved through considering the
orbital rotations, using an antisymmetrised rotation operator

κ̂a = κapqEpq

with κaqp = −κapq. The rotation is then applied to a given creation
operator as

c†pσ = exp (−κ̂a)b†pσ exp (κ̂a)

such that the overlap metric is conserved:{
c†pσ, cqσ

}
= exp (−κ̂a)

{
b†pσ,bpσ

}
exp (κ̂a)

= exp (−κ̂a) spqδpq exp (κ̂a) = spqδpq
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where in the transformation of the anticommutator we note that suc-
cessive exponentials cancel, leaving the form given.

However, in the case of absolutely localised molecular orbitals, where
between-fragment redundancies will be removed later by constrain-
ing the AO coefficients, considering only metric-conserving transfor-
mations would not lead to the best result. In the context of other
non-orthogonal orbital optimisations, Olsen [371] introduced the idea
of combining the above with a symmetric rotation operator, κ̂s, with
the same form as κ̂a but with symmetric matrix elements. We may
still set diagonal elements to zero, though, as these change only the
norm of the orbitals. Our transformed creation operators are thus
now

c†pσ = exp (−κ̂a) exp (−κ̂s)b†pσ exp (κ̂s) exp (κ̂a) (7.16)

Let us consider each transformation in turn. The exponentiation
can be rewritten using the Baker-Campbell-Hausdorff (BCH) expan-
sion in terms of commutators:

exp(−κ̂)b†pσ exp(κ̂) = b†pσ +
[
b†pσ, κ̂

]
+
1

2

[[
b†pσ, κ̂

]
, κ̂
]
+ · · ·

The first commutator is evaluated as[
b†pσ, κ̂

]
= κrs

∑
γ

[
b†pσ,b†rγbsγ

]
= κrs

({
b†pσ,b†rσ

}
bsσ − b

†
rσ

{
b†pσ,bsσ

})
= −(κsκsκs)rp b

†
rσ

Inserting this result into each term of the expansion then yields

exp(−κ̂)b†pσ exp(κ̂) = b†pσ − (κsκsκs)rp b
†
rσ −

1

2
(κsκsκs)rp

[
b†rσ, κ̂

]
+ · · ·

= b†pσ − (κsκsκs)rp b
†
rσ +

1

2
(κsκsκs)2rp b

†
rσ

= b†rσ [exp (−κsκsκs)]rp

Doing this transformation twice then gives a more useful form of the
operators in equation 7.16:

c†pσ = b†rσ [exp (−κκκasss) exp (−κκκssss)]rp (7.17)

7.2.1 Redundancies

In other non-orthogonal orbital approaches [376–378], the inactive
and secondary orbitals can be constrained to be orthogonal without af-
fecting the resulting wavefunction. This results in the inactive-inactive
and secondary-secondary antisymmetric parameters being redundant.
In our case, however, this only applies to the on-fragment subspaces.
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Figure 7.4: The parameter matrices κκκa (left) and κκκs (right), partitioned first
by space (inactive, active, secondary), then by each of the three
fragments (X, Y, Z). Non-redundant blocks are orange, while re-
dundant blocks are white. The checkerboard blocks in the an-
tisymmetric matrix are redundant if the active orbitals remain
localised, but non-redundant if we wish to fully mix the active
orbitals as described in the main text.

If we wish to apply the absolutely localised constraint in the atomic-
orbital basis, we necessarily need all mixed-fragment blocks of both
sets of rotation parameters, all active-active on-fragment symmetric
parameters, and all on-fragment antisymmetric parameters involving
active orbitals, to be non-redundant. This is an inexorably large num-
ber of parameters.

The significance of the number of non-redundant parameters is that
the symmetric parameters lead to terms in the gradients that are of
higher rank than two - that is, higher than the rank of the Hamiltonian.
These terms are what lead to non-orthogonal orbital optimisations be-
ing much more computationally intensive than canonical ones [371].
We can alleviate the problem for the antisymmetric parameters by
moving the localisation constraint directly to the rotation parameters.
There is necessarily no mixing between orbitals on different fragments
- this automatically translates to the mixed-fragment blocks of the an-
tisymmetric parameters being fixed to be zero. The overlap between
these mixed-fragment orbitals will in general change, however; we
will instead have to try and use the localised orbitals to find savings
in the evaluations of the gradients. Figure 7.4 shows an example of
the redundancy structure of both sets of parameters for a system with
three fragments.

One additional possible consideration is that a more flexible, but
not absolutely localised throughout, solution could be found by al-
lowing the active orbitals between fragments to mix. In the context
of an embedding procedure, to be described in the next section, this
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is equivalent to considering a full calculation on whatever subspace
of fragments is defined to be ‘active’, in the mean field of other frag-
ments treated at the ALMO-SCF level. Doing this would only compli-
cate the problem insofar as adding the active-active parameters back
to κ̂a, which will typically be minimal additional cost, in comparison
to the aforementioned symmetric terms.

7.2.2 Second-order optimisation

The overall MC-ALMO wavefunction is given by equation 7.1, but
with the orbital rotation parameters as above, and the CI coefficients
in the bi-orthogonal basis as per the previous section. For conve-
nience, we rewrite the CI parameterisation as differences, δδδ, from an
initial guess, Ψ0. Thus, the wavefunction is written as

|Ψ (κκκa,κκκs,δδδ)⟩ = exp (−κ̂a) exp (−κ̂s) {|Ψ0⟩+ δI (|I⟩− |Ψ0⟩ ⟨Ψ0|I⟩)}
(7.18)

with energy

E (κκκa,κκκs,δδδ) =
⟨Ψ(δδδ)| exp(−κ̂s) exp(κ̂a)Ĥ exp(−κ̂s) exp(−κ̂a)|Ψ(δδδ)⟩

⟨Ψ(δδδ)| exp(−2κ̂s)|Ψ(δδδ)⟩
(7.19)

Note that the symmetric transformation, which is not metric-conserving,
changes the overall norm of the wavefunction.

We assume that the guess, Ψ0 = Ψ(0, 0, 0) is normalised, for con-
venience. The orbital optimisation procedure is typically performed
via a second-order expansion of the energy, requiring us to know
the orbital gradient and Hessian, which we will determine in the
next subsection. The MCSCF procedure then comprises uncoupled
macro-iterations, alternating between solving for the orbital param-
eters via a Newton-Raphson procedure, and solving for the CI vec-
tors using the Davidson-Liu algorithm (each of which are termed the
micro-iterations). The assumption that the different parameters are
uncoupled is not necessarily accurate, and can result in convergence
issues [385], but greatly simplifies the problem; specifically, it removes
any cross-terms from the gradients, and allows us to separate the two
micro-iteration procedures.

The orbital gradient

The gradient with respect to the antisymmetric parameters is sim-
pler than that of the symmetric parameters, for two reasons. Firstly,
it only appears in the numerator of equation 7.19; secondly, it can be
expanded using the BCH formula, as was used earlier for the creation
operators. The gradient is then necessarily the first-order term, i.e. the
first commutator, in this expansion, evaluated at the reference point -
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i.e. where the wavefunction is normalised such that the denominator
is irrelevant. Note that, as κqp = −κpq, there are two terms in the gra-
dient. Exchange of the indices in the excitation operator necessarily
changes the sign though, by the anticommutation relations, such that
the effect is simply to introduce a factor of two:

∂E

∂κapq
= 2 ⟨Ψ0|

[
Epq, Ĥ

]
|Ψ0⟩ (7.20)

For the symmetric parameters, we must directly expand the expo-
nential operators as follows (obfuscating the other parameters for clar-
ity):

E = ⟨Ψ0|
(
1− κ̂s +

1

2
[κ̂s]2 + · · ·

)
Ĥ

(
1− κ̂s +

1

2
[κ̂s]2 + · · ·

)
|Ψ0⟩

×

[
⟨Ψ0|

(
1− κ̂s +

1

2
[κ̂s]2 + · · ·

)2
|Ψ0⟩

]−1
=

[
E0 − ⟨Ψ0|

{
κ̂s, Ĥ

}
|Ψ0⟩+

1

2
⟨Ψ0|

{
κ̂s,

{
κ̂s, Ĥ

}}
|Ψ0⟩+O(κs)3

]
×
[
1− 2 ⟨Ψ0|κ̂s(1+ κ̂s)|Ψ0⟩+O(κs)3

]−1
=E0 − ⟨Ψ0|

{
κ̂s, Ĥ

}
− 2E0κ̂

s|Ψ0⟩+
1

2
⟨Ψ0|

{
κ̂s,

{
κ̂s, Ĥ

}}
+ 4E0 [κ̂

s]2 |Ψ0⟩

+ 2 ⟨Ψ0|
{
κ̂s, Ĥ

}
|Ψ0⟩ ⟨Ψ0|κ̂s|Ψ0⟩+ 4E0 ⟨Ψ0|κ̂s|Ψ0⟩2 +O(κs)3

where in the last line we have used the series [1− x]−1 = 1+ x+ x2 +

· · · . As the parameters are symmetric, and assuming the reference
wavefunction is real, the anticommutator reduces to 2κ̂sĤ. The sym-
metry also means that the gradient must contain the reverse-index
term; to encompass this, we define

E+pq = Epq + Eqp

such that the gradient is given by

∂E

∂κspq
= −2 ⟨Ψ0|E+pq

(
Ĥ− E01̂

)
|Ψ0⟩ (7.21)

We now return to the bi-orthogonal basis, where the antisymmetric
orbital gradient is simply the usual expression, as given previously
in equation 2.20. To fully exploit this, we thus define one- and two-
particle density matrices as

Dpq = ⟨Ψ0|Epq|Ψ0⟩
dpqrs = ⟨Ψ0|Σpqrs|Ψ0⟩

(7.22)

Using the commutation relations[
Epq,Ers

]
= δqrEps − δpsErq[

Epq,Σrstu
]
= δqrΣpstu + δqtΣrspu − δpsΣrqtu − δpuΣrstq
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we can thus rewrite the antisymmetric gradient as

∂E

∂κapq
=2spr ⟨Ψ0|

[
Erq, Ĥ

]
|Ψ0⟩

=2sprhtu
[
δqtDru − δruDtq

]
+ sprgtuvw

[
δqtdruvw + δqvdturw − δrudtqvw − δrwdtuvq

]
=2Fpq − 2Fqp

In the above, we have defined a second effective Fockian as

Fpq =
[
hDs

]
qp

+ sprgquvwdruvw (7.23)

where we have exploited the permutational symmetry of the two-
electron integrals and two-body density. By writing it in this form,
we can once again apply all the machinery developed for the standard
ALMO-SCF procedure, by expanding back into the ALMO basis and
exploiting the block constraints. This is a reflection of the constraints
being applied directly to the parameter matrix.

The symmetric gradient, equation 7.21, in principle looks much
more daunting. However, we rewrite it as follows:

∂E

∂κspq
= 2E0spr

(
Drq +Dqr

)
− 2 ⟨Ψ0|E+pqĤ|Ψ0|

= 2E0
{

s, D
}
pq

− 2 ⟨Ψ0|E+pq|σσσ⟩

The order of the micro-iterations thus becomes important. Specifically,
by performing the CI iterations first, we will have already generated
the sigma vector, and thus we only need to consider its connection
through single excitations to the reference wavefunction. This is still
somewhat problematic, however, as it extends the connections from
double to triple excitations in total. These connections are rapidly
generated using the string-based approaches noted earlier, with the
resulting matrix elements being readily screened using the locality
conditions outlined in the previous section. The transition density ma-
trix, ⟨Ψ0|E+pq|σσσ⟩, effectively corresponds to a three-body density matrix,
though, and so even with heavy screening will likely be the bottleneck
in the calculation. This quantity needs to be considered in more detail
in the future to try and alleviate this cost.

The orbital Hessian

The antisymmetric-antisymmetric Hessian terms are simply given
by the second-order commutator in the BCH expansion. This term is Recall that the

permutation operator
P̂(a,b) swaps the index
groups a and b.E(2) =

1

2
κapqκ

a
rs ⟨Ψ0|

[
E−pq,

[
E−rs, Ĥ

]]
|Ψ0⟩
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such that the derivatives are given by

∂2E

∂κapq∂κ
a
rs

=
1

2

(
1+ P̂(pq, rs)

)
⟨Ψ0|

[
E−pq,

[
E−rs, Ĥ

]]
|Ψ0⟩

=
1

2

(
1+ P̂(pq, rs)

)
sptsru ⟨Ψ0|

[
E
−
tq,
[
E
−
us, Ĥ

]]
|Ψ0⟩

=
1

2

(
1− P̂(pt,qu)

) (
1− P̂(rv, sw)

) (
1+ P̂(ptq, rvs)

)
× sptsru ⟨Ψ0|

[
Etq,

[
Eus, Ĥ

]]
|Ψ0⟩

We then need to make repeated use of the commutation relations for
the bi-orthogonal singlet excitation operators, as

sru
[
Eus, Ĥ

]
= sruhvw

[
Eus,Evw

]
+
1

2
srugvwxy

[
Eus,Σvwxy

]
= sru

(
hswEuw + gswxyΣuwxy − hvuEsv − gvuxyΣvsxy

)
Substituting this into the original expression then gives, after much
simplification,

∂2E

∂κapq∂κ
a
rs

=
[(
1− P̂(p,q)

) (
1− P̂(r, s)

) (
1− P̂(p,q)

)]2
× sruspt

[
2htuDqs − stu

(
Fqs + Fsq

)
+ G

−
tq,us

] (7.24)

G
±
pq,rs = ∓2gprtudqstu ∓ 2gtrpudtsqu + 2gpurtdqust (7.25)

The only new quantities required are thus G
±, which will also be

used in the symmetric Hessian elements. These necessarily scale as at
least fourth-order in the number of orbitals, as they are contractions
between two-electron integrals and the two-body density. We can
absorb the metric elements into these, transforming all but one index
back to the ALMO basis, then screen over the three ALMO indices
in the same manner as Chapter 4, effectively reducing the scaling
to quadratic. However, the effectiveness of this will depend on the
sparsity of the two-body density.

To calculate the mixed derivative, we directly use the BCH-type
expansion of the rotations in commutators and anticommutators, for
the antisymmetric and symmetric cases, respectively. Transferring the
transformation directly to the Hamiltonian, this is most simply writ-
ten as

Ĥ(κκκa,κκκs) = Ĥ0 −
{
κ̂s, Ĥ0

}
+
[
κ̂a, Ĥ0

]
+
{
κ̂s,
[
Ĥ0, κ̂a

]}
+O(κ2)

However, the energy denominator from equation 7.19 contains a first-
order term in κ̂s that needs to be combined with the first-order term
in κ̂a in the transformed Hamiltonian. The mixed second-order term
in the energy is thus in total

E(11) = ⟨Ψ0|
{
κ̂s,
[
Ĥ0, κ̂a

]}
|Ψ0⟩+ 2 ⟨Ψ0|

[
κ̂a, Ĥ0

]
|Ψ0⟩ ⟨Ψ0|κ̂s|Ψ0⟩
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Using the same considerations as per the orbital gradient with re-
spect to the (anti)symmetries of the rotation parameters, the deriva-
tives can then be written in terms of the symmetric and antisymmetric
singlet excitation operators. Moreover, the anticommutator evaluates
the same forwards and backwards, due to the matrix elements being
real, simply introducing a factor of two. The Hessian elements are
therefore

∂2E

∂κapq∂κ
s
rs

= 2 ⟨Ψ0|E+rs
[
Ĥ,E−pq

]
|Ψ0⟩+ 2 ⟨Ψ0|

[
E−pq, Ĥ

]
|Ψ0⟩ ⟨Ψ0|Ê+rs|Ψ0⟩

= 2sptsru

[
⟨Ψ0|E

+
usE

−
tq|σσσ⟩−Ftq,us

]
+ 2sru

∂E

∂κapq

(
Dus +Dsu

)
(7.26)

where we have defined the intermediate quantity

Fpqrs = ⟨Ψ0|E
−
rsĤEpq|Ψ0⟩

= htu ⟨Ψ0|E
−
rsEtuE

+
pq|Ψ0⟩+

1

2
gtuvw ⟨Ψ0|E

−
rsΣtuvwE

+
pq|Ψ0⟩

(7.27)

In equation 7.26, we again need to evaluate a transition density
through the sigma vector, this time up to fourth-order excitations.
Similarly, equation 7.27 contains terms in the three- and four-body
density matrices. While the transition densities, as already noted, can
be heavily screened based on localisation, I can devise no such scheme
for the pure densities. One possibility would be to try to rewrite all of
these in terms of the single- and double-excitation transition densities,
but it is not immediately obvious how to do so. Certainly, as it stands,
this step will be prohibitively restrictive on the size of active space
that can be considered. To make the method feasible, future efforts
need to focus on reducing this cost.

Finally, the symmetric-symmetric Hessian terms can be read from
the expansion that we performed when calculating the gradient. These
are, directly:

∂2E

∂κspq∂κ
s
rs

=2 ⟨Ψ0|E+pqE+rs
(
Ĥ+ 2E01̂

)
|Ψ0⟩+ 2 ⟨Ψ0|

{
E+pq, Ĥ

}
|Ψ0⟩ ⟨Ψ0|E+rs|Ψ0⟩

+ 4E0 ⟨Ψ0|E+pq|Ψ0⟩ ⟨Ψ0|E+rs|Ψ0⟩

This can then be rewritten in the same manner as the other terms, to
give

∂2E

∂κspq∂κ
s
rs

=2sptsru

[
⟨Ψ0|E

+
tqE

+
us|σσσ⟩+ E0 ⟨Ψ0|E

+
tqE

+
us|Ψ0⟩

]
+ 4sptsru ⟨Ψ0|E

+
tq|σσσ⟩

[
Dus +Dsu

]
+ 4E0sptsru

[
Dtq +Dqt

] [
Dus +Dsu

] (7.28)
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Note that equation 7.28 is written entirely in terms of the one- and
two-body densities, and the first- and second-order transition densi-
ties. As a result, it is considerably simpler than equation 7.26 to evalu-
ate, by virtue of the transition densities being easier to calculate than
the higher-body densities. This is particularly important, as the sym-
metric parameters are in general dense, as shown in Figure 7.4. The
symmetric-antisymmetric Hessian terms are much reduced in com-
parison, due to the sparsity of the antisymmetric parameters. Thus,
while the three- and four-body densities of equation 7.27 will be a
considerable bottleneck, the terms that need to be evaluated are at
least limited to only on-block terms in the two antisymmetric indices.

7.2.3 MC-ALMO SCF

We now have all the components required for a multiconfigura-
tional ALMO SCF procedure. In this section, we present in summary
the high-level overview of the algorithm. As already noted, we have
set up the problem in such a manner as to be able to borrow a great
deal of the machinery of the standard ALMO SCF procedure; in par-
ticular, the density fitting and Fock build algorithms. The computa-
tional details of building transition and higher-body densities require
thorough consideration in future, however, in order to make this algo-
rithm feasible for anything but small active spaces. These appear nec-
essarily due to the non-orthogonal nature of ALMOs, but we cannot
sacrifice this localisation without losing the benefits - benefits which
we will exploit to great effect in the embedding to be described in the
next section.

The optimisation procedure follows a second-order expansion of
the energy about some reference guess, λλλ0, in terms of the combined
parameter set

λλλ = {κκκa,κκκs,δδδ}

given as

E(λλλ0 +∆λλλ) ≈ E0 +∆λλλ ·
∂E

∂λλλ
+
1

2
∆λλλ · ∂

2E

∂λλλ2
·∆λλλ

We wish to variationally optimise the energy with respect to the
parameters. Assuming that the parameters are uncoupled, this isκκκa and κκκs are by

construction uncoupled
from one another, but in

general these can be
strongly coupled to the CI

deltas, so this is not an
assumption made lightly.

equivalent to finding ∆λλλ such that the gradients with respect to each
parameter are zero. We note from equation 7.19 that

∂E

∂δI
= 2 ⟨Ψ0|Ĥ|III⟩− 2E0 ⟨Ψ0|III⟩ (7.29)

Setting this to zero is equivalent to solving the CI eigenproblem, and
is approached as internal microiterations, as described in section 7.1.
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The orbital rotation parameters are then determined as a Newton
step in the usual manner. We solve for E− E0 = 0, yielding

∆λλλ = −2H−1g

where H and g are the orbital Hessian and gradient, respectively. The
problem with this is two-fold [362]: we need the step to remain in
a region where the quadratic expansion is valid, i.e. fairly close to
the reference point; and we need the Hessian to be positive definite.
These problems can be solved by using a line-search and level-shift,
respectively, for which we introduce two new parameters, α and µ.
The step, in terms of only non-redundant parameters, is then

∆λλλ = −α [H + µI]−1 g (7.30)

The parameter µ is determined such that the resulting Hessian is pos-
itive definite, which can be done by finding or approximating the low-
est eigenvalue, µ0, of H; shifting by this will guarantee a semi-positive
definite, while shifting by µ = (1+ δ)µ0 with δ > 0, guarantees posi-
tive definiteness.

The line-search parameter is found in the usual way by minimising
the energy with respect to it. Given that z = [H + µI]−1 g is a known
quantity, the quadratic energy expansion in terms of α is

E(α) ≈ E0 −αz · g +
1

2
α2z ·H · z

such that the optimum α is given by

α∗ = z · g [z ·H · z]−1 (7.31)

which can be calculated at very little extra cost. This is then finally
adjusted with a hard cutoff by maximum step size; that is, we choose
α closest to α∗ such that ∥∆λλλ∥ = α ∥zzz∥ is less than or equal to some
maximum allowed step size. This maximum is then updated accord-
ing to the ratio of the expected energy to the actual energy from the
last step - if we underestimate the energy change, the maximum step
is reduced, while if we overestimate, it is increased accordingly.

Finally, this is all summarised in Algorithm 7.1 below. We note
that Kreplin and coworkers [386] very recently gave improvements to
the standard second-order algorithm of Werner and Knowles [387],
which ours is based on; it is likely that these improvements can also
be applied here in future. Note that the convergence of the macroi-
terations is highly dependent on the microiterations converging to a
sufficiently tight threshold [370]. Given sensible thresholds, there are
therefore relatively few macroiterations, such that the construction of
the higher-order densities is minimised - they will still represent the
bottleneck, however.
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Algorithm 7.1 The multiconfigurational (MC) ALMO SCF routine.

1: Construct all valid strings for the active space
2: Macroiterations
3: while Energy and gradient norm are not below threshold do
4: Construct the one- and two-body densities
5: Transform the integrals from the AO to the ALMO basis
6: Use the transformed integrals to build the core energy (equa-

tion 7.11) and the effective Fock matrices with at least one active
orbital index (equations 7.12 and 7.23), half-transformed into the
bi-orthogonal basis

7: for Each alpha and beta string do
8: Prune the generating graph according to the ALMO dis-

tance criterion
9: Find all strings connecting through up to four excitations,

store addresses and phases
10: end for
11: CI microiterations (Davidson-Liu algorithm, ref. [381, 382])
12: Choose a set of L guess vectors {cI}, where L is the number of

desired roots
13: while CI gradient is higher than threshold do
14: Calculate the sigma vector in the active space for this guess,

via equation 7.6
15: Solve the reduced eigenproblem for the matrix with ele-

ments cI ·σσσJ, for eigenvalues and vectors µk and vvvk

16: Calculate the shifts, δkI for each root k, according to

δkI =
(
µk −HII

)−1  L∑
J=1

vkJ ·
(
σσσJ − µ

kcJ
)

I

17: Orthogonalise the shifts against the guess, appending them
to the guess if their norm is greater than some threshold

18: end while
19: Orbital microiterations (Werner-Knowles algorithm,

ref. [387])
20: while Orbital gradient norm is higher than threshold do
21: Use the sigma vector to generate first- and second-order

transition densities
22: Build the three- and four-body densities, and from this the

intermediates G± (equation 7.25) and F (equation 7.27)
23: Build the non-redundant orbital gradient (equations 7.20

and 7.21) and Hessian (equations 7.24, 7.26, and 7.28)
24: Diagonalise the Hessian or estimate the lowest eigenvalue,

to determine the shift µ
25: Calculate α∗ via equation 7.31

26: Apply the Newton step of equation 7.30

27: end while
28: end while
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7.3 embedded almo theory

The design of the methods in this thesis has up until this point fo-
cused primarily on interaction energies between well-separated molec-
ular fragments. In principle, however, there is no need to make such
a distinction - the absolutely localised ‘fragments’ can be defined to
be any collection of atomic centres. The lack of charge transfer means
that defining fragments across covalent bonds will result in a large
error, which is the main reason we have focused on non-covalent in-
teractions. However, there is no reason why we cannot go in the other
direction and choose a fragment of more than one molecule.

For example, non-covalent interactions in systems with strong static
correlation are of interest, particularly in the case of exciplexes found
in chromophoric systems [388, 389], where electrons are excited be-
tween molecules. However, reactive systems typically involve the
transfer of atoms between molecules, where a consistent description
essentially requires that the reactive molecules are considered together.
Another way of thinking about this is that the energies of these molecules
are strongly coupled, as opposed to the generally weaker coupling be-
tween, for example, a solvent molecule and a substrate.

If we define these ‘embedded’ subsystems as fragments, however,
the definition of an interaction or binding energy becomes less clear.
We are then almost arbitrarily decomposing the interaction energies
as being between supermolecular systems. This problem has actually
appeared in a different form earlier, when determining the analytic
gradient within the pairwise RPA approximation. The decomposition
into pairs of subsystems so as to determine interaction energies di-
rectly results in each monomer energy gaining a multiplicity, which
we then need to average over. As was demonstrated in Chapter 6,
this ad hoc procedure appears to be quite effective, but it alludes to a
greater underlying problem.

It would be more natural to determine the total energy and then
calculate a given property by calculating differences. The ALMO SCF
procedure does in fact give a total energy, not an interaction energy di-
rectly; we already do monomer-basis fragment calculations in order to
determine the interaction. This generates a consistent ALMO density
for the entire system, which then allows us to perform our pairwise
correlated calculations. By extension, we could instead perform cor-
related calculations using this density on any subsystem defined as a
collection of one or more fragments. If we are concerned with total
energies, the correlation energy for these subsystems does not need
to be decomposed as in the RPAxd approach developed in Chapter 3,
thus removing an approximation. It also opens up the possibility of
treating different subsystems with different correlated methods, de-
pending on their importance to the property of interest. Specifically
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in the context of MC-ALMO-SCF, this could be where the relevant
active space is in a reactive subsystem surrounded by spectators and
solvent molecules. These latter molecules can individually be treated
with a lower-level correlation if desired, or left at the mean-field level
by putting all their orbitals in the inactive and secondary spaces. Sim-
ilarly, if we wanted to calculate spectra of a molecule in solution, we
can treat the solvent with monomer RPA correlation, and the molecule
of interest with as high a level method as desired: CCSD(T) for exam-
ple, or for excitation energies, equation-of-motion CCSD; we will use
this approach in the next chapter.

The primary caveat, however, is that the ALMO energy is missing
all ‘charge transfer’ terms, and this is a representation of the ALMO
density (or wavefunction) not being the optimal Hartree-Fock wave-
function. Adding the perturbative charge transfer correction does not
fix this problem. We have shown in Chapter 5 that the ALMO+CT in-
teraction energy is fairly consistently equivalent to the counterpoise-
corrected HF interaction energy, thus, as noted at the end of Chapter 6,
the ALMO total energy is the HF energy minus the basis set superpo-
sition error. While the latter is an unphysical energy, it is a physically
relevant contribution to the density, due to the more complete, uncon-
strained basis used in the HF procedure.

We do know, however, from the consideration of the perturbative
charge transfer, that we can essentially recover the HF density by diag-
onalising the full Fock matrix rather than the fragment Fock matrices
separately. This is not exact, as we have not converged this full density,
but is a good approximation. Thus, if we wish for more accurate total
energies for a given subsystem or set of subsystems, we can take the
minor of the total ALMO Fock matrix corresponding to that subsys-
tem, diagonalise it, and from this generate a pseudo-HF density for
that subsystem. The advantages are then two-fold: the density is im-
proved, containing at least the charge transfer between the fragments
in the subsystem; the orbitals for that subsystem are now canonical,
and any canonical correlation method can be used. We therefore do
not need to develop non-orthogonal correlated higher-order methods.
Analytical gradients then follow naturally by using the ALMO+CT
gradients defined in Chapter 6, then adding in the canonical gradi-
ents for whichever correlated method was used on each subsystem.
Assuming that none of the subsystems overlap in definition, there is
no need to average gradient terms, thus avoiding any possibility of
discontinuities.

We have demonstrated proof-of-concept of this approach in Fig-
ure 7.5, by calculating the harmonic vibrational spectra of phenol,
chosen because it is the subject of the next chapter. It is not possible
to do this using the pair-based method, as phenol is only a single
molecule. With the embedded approach, we can instead surround
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Figure 7.5: Infrared spectrum of phenol in the gas phase (bottom, blue lines)
and solvated in a shell of 19 water molecules (top, red lines). The
optimised structure in each instance is insetted, with the three
closest waters shown in the latter. Calculations were performed
at the ALMO+CT//CCSD(T)/aVDZ level; this notation reads as
bath//embedded subsystem (phenol here)/basis set.

the phenol molecule with water solvent, perform an ALMO+CT cal-
culation, then canonicalise just the phenol density, before calculating
the CCSD(T) harmonic frequencies. In the figure, we show the results
of the canonical gas-phase CCSD(T) calculation, compared with that
from ALMO+CT/[CCSD(T)] with a 6 Å radius spherical shell of 19

water molecules. The geometries are slightly different, as both were
relaxed at their given level, as is necessary when calculating frequen-
cies from the electronic Hessian. Both calculations were performed
in Gamma with the aVDZ basis and matching auxiliary sets, on a
single node with 8 threads. For reference, the gas-phase calculation
took 3.5 hours, compared to 4.2 hours for the explicitly solvated cal-
culation; the difference was almost entirely due to the latter requiring
two more optimisation steps than the former. Interestingly, one can
clearly see that the solvent shifts the OH peak at around 3300 cm−1.
I could not find an experimental water-solvated IR spectrum of phe-
nol to confirm this, but it makes intuitive sense: the hydroxyl bond is
weakened by hydrogen bonds with water, lowering the force constant
of the vibrational mode.

The method of canonicalising the subsytem will not work, however,
for multiconfigurational (and therefore usually also multi-reference)
methods, wherein the density is determined as part of the proce-
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dure. If we take the canonicalised subsystem density as described
above, and use this to seed a standard MCSCF procedure, the total
density will change, and will no longer be embedded correctly. In
other words, there will be an incongruous, discontinuous description
of the electron density between layers in the embedding. Instead, we
perform the MC-ALMO-SCF described in this chapter on the whole
system, but constrain the active space to be in the subsystem of inter-
est. As noted earlier, we can then still relax the ALMO approximation
for that subsystem by allowing mixing between the active orbitals in
the antisymmetric orbital rotation parameters. Further dynamic corre-
lation can then also be added in the usual manner (e.g. CASPT2 [390,
391]) for just that subsystem, by virtue of the definition of the active
space.

The main concern with this approach, however, is sheer cost. In
the exposition of the theory, I have tried to make as much use of the
inherent localisation as possible, but as was already noted, the higher-
order density matrices are a serious bottleneck. Even extending only
over the inactive-active and active-active spaces, this can be very large
when the inactive space contains many fragments, even with all the
usual speed-ups when building the effective Fock matrices. Future
work in this area therefore needs to focus not on improving the de-
scription of dynamic correlation, but rather on finding new ways to
either evaluate or approximate the costly density matrices. One ad-
vantage of this is that the transition densities are very useful [392,
393], and used to determine properties of excited states [394], which
would also extend the applicability of the embedded ALMO method.



8 T H E P H OTO E L E C T R O N
S P E C T R U M O F P H E N O L
In this chapter, I apply the culmination of the methods devel-

oped so far in this thesis to the task of simulating the photoelec-
tron spectrum of phenol in water. Solvent has been shown ex-
perimentally to have a significant effect on the excited states of
molecules, and this poses a difficult problem for quantum chem-
istry to address accurately. I briefly outline the theory behind
excited state calculations, and implement them as a direct contin-
uation of the embedding theory outlined at the end of the previous
chapter. Using molecular dynamics simulations, we can sample
the conformational distribution of phenol in water. These samples
are then used to calculate the ultra-violet absorption and photo-
electron spectra. Through these calculations, I demonstrate the
utility of the new methods via comparison with experiment, and
in particular the need for the inclusion of a large shell of explicit
solvent to give accurate results.

Most of the work so far in this thesis has been concerned with the
ground state electronic structure and properties of molecules. The
ground state is often the focus of such work as typically, at room
temperature, the electronic ground state is the predominant form
of a molecule. When determining, for example, reaction dynamics,
we thus want a detailed description of that state. However, as was
touched on in the previous chapter, many interesting systems are
multi-reference in character, whereby multiple states lying close to
one another collectively determine the behaviour of a molecular sys-
tem.

On a more fundamental level, even energetically well-separated ex-
cited states are of interest. Experiments ranging from Förster res-
onance energy transfer (used to investigate the dynamics of large
biomolecules [395, 396]) to ultrafast laser spectroscopy (used in the
study of, for example, light-harvesting proteins [397]) use the excita-
tions between electronic states in chromophores. Using computation
to guide and interpret such experiments therefore requires methods
to treat these excited electronic states.

The separation between electronic energy levels in chromophores is
typically on the order of 1 to 100 eV, placing it firmly in the UV-visible
portion of the electromagnetic spectrum. The most common experi-
ments to probe electronic structure are thus UV-visible absorption
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and emission spectroscopy, and photoelectron spectroscopy (PES). In
the former, light excites an electron, usually from the ground to some
excited state. By scanning over wavelengths and monitoring either
the intensity of light absorbed or emitted, we can see the energy
separations between electronic states; within this, there is also finer,
rovibronic structure, but we ignore this here for simplicity. PES, in
contrast, determines the binding, or ionisation, energies of electrons.
The kinetic energy of emitted electrons is measured in comparison
to the energy of incoming light, with the difference being the energy
required to detach that electron.

A recent study by Riley and coworkers considered the photoelec-
tron spectra of phenol in water using liquid-microjet PES [398]. As
they state, ‘electronically excited states can be very sensitive to their
microenvironment, and the extent to which dynamical insights ob-
tained from gas-phase studies can be used to inform our understand-
ing of the dynamics in chemically biologically relevant environments
is a subject of considerable discussion’. Polar solvents in particular
have been shown to greatly influence these dynamics [399]. Water,
unarguably the most prevalent solvent, is highly polar, so that un-
derstanding its effect on electronically excited states is vital. They
chose phenol as a small molecule representative of the aromatic moi-
eties commonly found in biologically-relevant chromophores. In the
present chapter, I will reproduce the experimental shifts from the gas
phase to solvated UV absorption and photoelectron spectra computa-
tionally, demonstrating the utility of the embedded ALMO approach.

8.1 theory of excited states
The principle behind determining excited states is identical to that

of the ground state: we wish to solve the Hamiltonian eigenvalue
problem, but for the k-th eigenvalue instead of the zeroth. This eigen-
value, Ek, has a wavefunction Ψk associated with it, satisfying the
usual Schrödinger equation:

ĤΨk = EkΨk (8.1)

We have already seen one typical treatment for this problem, the con-
figuration interaction method, in the previous chapter, directly in the
context of absolutely localised molecular orbitals. Truncated CI has
considerable limitations, however, as it scales factorially with the trun-
cation space, and is not size consistent [34, 210].

In the ground-state problem, we typically circumvent this by using
an exponential ansätz, leading to the coupled-cluster (CC) type ap-
proaches described in Chapter 3. As already noted, though, excited
states are usually open-shell systems dominated by more than a sin-
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gle determinant, such that single-reference CC will not suffice. Mul-
tireference CC is possible [400], but computationally very demanding.
Instead, we propose to use equation-of-motion (EOM) CC [401], em-
bedded in an unrestricted ALMO-SCF density, as described at the end
of the last chapter. In this section, I will briefly outline the method,
before discussing how it can be related to the ring and GW approxima-
tions previously described for the ground state case. The primary ad-
vantage of this is that we can start from the already-implemented sin-
gle reference rCCD wavefunction and obtain the excited states from
there.

8.1.1 Equation-of-motion coupled cluster

By considering the change from the reference state, Ψ0, we can
rewrite the excited state problem directly in terms of the excitation
energies

ωk = Ek − E0

However, we have not solved for the reference state, but rather for the
reference determinant, |n⟩, with energy Eref.. As per the CI equations,
the reference state will be expanded in terms of excited determinants,
|I⟩. We can project out the reference determinant from the eigenprob-
lem by writing a normal-ordered Hamiltonian, ĤN, as

ĤN = F̂+ Ŵ − ⟨n|Ĥ|n⟩ = Ĥ− Eref. (8.2)

where F̂ is the usual Fock operator, and Ŵ is the fluctuation potential
described in Chapter 3.3. The action of this on a state is then

ĤNΨk = (Ek − Eref.)Ψk = ∆EkΨk

Note that ∆Ek −∆E0 = ωk, which is directly the excitation energy.
The initial CC wavefunction is expanded as usual as

|Ψ0⟩ = exp(T̂) |n⟩

where the cluster operator T̂ is typically truncated; if not truncated,
this is equivalent to the full CI expansion. From this reference state,
we can generate the excited states through an exictation operator, R̂k,
which in analogy to CI is a string of singlet excitation operators:

R̂k = r0 + r
a
i Eai +

1

2
rabij EaiEbj + · · · (8.3)

where the r values are the amplitudes, effectively equivalent to the CI
coefficients. Note that this necessarily commutes with the cluster op-
erator, which follows the same expansion with different amplitudes,
but whereas the latter is exponential, R̂k is linear.
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Combining equations 8.2 and 8.3, and left-multiplying by exp(−T̂),
the eigenvalue problem to be solved can be written as

HR̂k |n⟩ = exp(−T̂)ĤN exp(T̂)R̂k |n⟩ = ∆EkR̂k |n⟩ (8.4)

where we have defined a similarity-transformed Hamiltonian, H. Note
that equation 8.4 is now in the same form as the CI eigenvalue equa-
tion, except H is non-Hermitian. This means that there are both right
eigenfunctions, R̂k |n⟩, and left eigenfunctions, L̂k |n⟩, with the same
(real) eigenvalues. The operator L̂k is a de-excitation operator:

L̂k = l0 + l
i
aEia +

1

2
l
ij
abEiaEjb + · · · (8.5)

The left and right eigenfunctions are necessarily bi-orthogonal, and
thus provide a resolution of the identity. This will allow us to remove
terms from the excited state common to the reference state, simplify-
ing the problem.

For the reference state, R̂0 is easily seen to be the identity, such that
equation 8.4 simply becomes

H |n⟩ = ∆E0 |n⟩

Subtracting this from the same equation for state k yields

H
(
R̂k − 1̂

)
|n⟩ =

(
∆EkR̂k −∆E0

)
|n⟩

Inserting the excitation operator to the left of the reference problem,
this can be rewritten to give the core EOM-CC equation:[

H, R̂k
]
|n⟩ = ωkR̂k |n⟩ (8.6)

The computational solution of these equations is somewhat compli-
cated, due to the non-Hermiticity of the similarity-transformed Hamil-
tonian, but is described in detail elsewhere [222]. The starting point
is constructing a density from the ground-state amplitude equations
solved as described in Chapters 3 and 4, then iteratively solving the
linear-response (or lambda) equations for the left and right eigenfunc-
tions [402]. As with CI, this is typically only done for a select few of
the lowest excited states using a Davidson-type procedure.

8.1.2 Diagrammatic EOM-CC, ring diagrams, and the GW approx-
imation

As with the ground-state CC theory, we can gain a great deal of
insight into the EOM equations, and in particular their link to other
theories, by writing them diagrammatically. The approach is exactly
the same as that given in Figure 3.2, but instead of describing the
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Fig. 13.1. Diagrammatic representation of the EE–EOM–CCSDT equations.

In analogy with the case of the Λ equations in Section 11.6, in order to
generate diagrams describing the contributions of R̂m vertices to the R̂n

equation we need to use H vertices with n∨−n∧ = 2(n−m), where n∨ and
n∧ are the number of lines connecting to the H vertex from above and from
below, respectively.

The diagrams for the R̂ equations are not identical to the upside-down
images of the Λ-equation diagrams seen in Fig. 11.10, because of the unsym-
metrical nature of the H vertices with respect to up–down reflection. This
asymmetry, which reflects the non-Hermiticity of H, is manifested by the
limitation n∧ < 4 (except for the two-body vertex, for which n∧ = 4 is also
possible), without such limitation for n∨.
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Fig. 13.1. Diagrammatic representation of the EE–EOM–CCSDT equations.

In analogy with the case of the Λ equations in Section 11.6, in order to
generate diagrams describing the contributions of R̂m vertices to the R̂n

equation we need to use H vertices with n∨−n∧ = 2(n−m), where n∨ and
n∧ are the number of lines connecting to the H vertex from above and from
below, respectively.

The diagrams for the R̂ equations are not identical to the upside-down
images of the Λ-equation diagrams seen in Fig. 11.10, because of the unsym-
metrical nature of the H vertices with respect to up–down reflection. This
asymmetry, which reflects the non-Hermiticity of H, is manifested by the
limitation n∧ < 4 (except for the two-body vertex, for which n∧ = 4 is also
possible), without such limitation for n∨.

Figure 8.1: The diagrammatic amplitude equations for the right eigenfunc-
tions in EOM-CCSD. The interaction lines are in terms of the
similarity-transformed Hamiltonian. Ring terms are highlighted
with a grey background.

cluster operator, T̂ , the amplitudes are describing the excitation oper-
ator, R̂k. We distinguish the latter by giving the amplitude diagrams
a thick vacuum line. The dashed interaction lines are still taken to be
the fluctuation potential Ŵ, which as per the RPA theory can be taken
to be the bare Coulomb potential, or the antisymmetrised variant. We
then generate all amplitude diagrams up to second order in exactly
the same manner as Figure 3.2, and these are shown in Figure 8.1. As
before, these can be generated up to arbitrary orders and the alge-
braic equations read off directly from the diagrams. For example, the
single excitation equations in the EOM-CCSD truncation are

χadr
d
i − χlir

a
l + χladir

d
l + χldr

ad
il +

1

2
χalder

de
il −

1

2
χlmidr

ad
lm = ωrai

where χpq and χpqrs are the one- and two-electron matrix elements of
the similarity-transformed Hamiltonian, respectively.

We note that for the right eigenfunctions, only the connected dia-
grams need to be included, as per canonical CC [222]. In EOM meth-
ods, however, we have the added complication of needing to solve for
the left eigenfunctions as well. These de-excitation amplitudes, given
in Figure 8.2, have no such connectivity condition, and are somewhat
more problematic. The simultaneous solution of these two problems
is the primary source of complexity in the EOM-CC method. Our em-
bedding approach greatly reduces the cost of performing the calcula-
tion in the mean field of some macro-environment, but does nothing
to reduce the cost of the core EOM calculation. It is therefore useful
to try and consider approximations that simplify the calculation.
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Fig. 11.10. The Λ-equation diagrams for CCSDT in terms of effective-Hamiltonian
vertices without explicit T̂ vertices. The last three diagrams of the Λ1 equation
each contain a T̂4 contribution.
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Fig. 11.10. The Λ-equation diagrams for CCSDT in terms of effective-Hamiltonian
vertices without explicit T̂ vertices. The last three diagrams of the Λ1 equation
each contain a T̂4 contribution.

Figure 8.2: The diagrams for the de-excitation (or Λ) amplitudes, required
to solve for the left eigenfunctions in the EOM-CCSD problem.
Interactions are in terms of the similarity-transformed Hamilto-
nian, with ring terms highlighted in grey.

In Figures 8.1 and 8.2, I have highlighted the terms that generate
ring diagrams. Note, however, that in theΛ-equations, there are a pair
of disconnected ring diagrams that must be included. The right-side
amplitude equations in the EOM-rCCD approximation described by
only including the highlighted diagrams, corresponds to a very sim-
ilar Riccatti-type equation to that of equation 3.53. The left-side am-
plitude equations are much more similar to a full CCSD calculation,
and will in general result in the largest expense. Both sets of ampli-
tude equations can readily be generated from the diagrams directly,
or equivalently by excluding the neglected terms from the standard
EOM-CCSD equations, which can be found elsewhere [222]. We do
not present these here, as there are no special considerations given we
will be canonicalising the ALMO density on the embedded fragment.

Finally, we note that the EOM-rCCD approximation described is
essentially an extension of the solution of the RPA excitation problem,
as described in a paper by Berkelbach [403]. This approach is thus the
natural extension from our RPA-based ground state theory, and most
closely related to the RPAx variant for the correlation energy. In a
similar manner to that discussed in Chapter 3.4, this is in turn related
to the GW approximation [279, 404]. It is worth being somewhat more
explicit here, as this could lead to potential expansion of the approach
to higher-order approximations, and to applications in the solid state,
where GW-type methods are routinely used.

As noted in the detailed analysis by Lange and Berkelbach [404],
the primary difference in the EOM-CCSD and GW Green’s functions
is that the former is exact through second-order in the exchange di-
agrams, while the latter is not. However, at higher orders, the GW
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Green’s function actually includes more terms than the truncated cou-
pled cluster Green’s function; to include these exactly through higher
orders, we would need to truncate the CC excitation operator at the
relevant excitation level. Thus, through iterative expansion of the ver-
tex function, as described in Chapter 3.4, we can once again include
approximate triples (and higher) corrections to either the EOM-CCSD
or EOM-rCCD equations by collecting these terms from the GW ap-
proximation. These effectively perturbative corrections are consider-
ably cheaper to calculate than the full triples and higher CC ampli-
tudes. More details can be found in refs. [403, 404].

8.1.3 Dyson orbitals

For the calculation of photoelectron spectra, we need theN-electron
neutral ground state and the (N− 1)-electron cationic ground and ex-
cited states. These can then be used to compute the ionisation po-
tentials that correspond to the peaks in the spectra [405]. The typical
representation of the orbitals involved in these excitations are thus
the overlaps between the neutral and cationic states, known as Dyson
orbitals [406]. These are written as

ϕkD(r) =
√
N

∫
dr2 . . . drN ΨN0 (r1, . . . , rN)ΨN−1

k (r2, . . . , rN) (8.7)

and are thus a function of the ionised electron.
The orbitals of equation 8.7 can then be used to give the photo-

electron matrix element - or transition dipole moment - between the
initial and final states as

Dk = ⟨ϕkD|µ̂|Ψk⟩r

where µ̂ is the electric dipole operator, and the subscript r denotes that
the expectation is spherically averaged. Calculation of these moments
requires the densities of the initial and final states, and the dipole
moment matrix elements between orbitals. Details of how these are
then used to calculate the photoionisation cross sections can be found
elsewhere [405].

8.2 molecular dynamics simulations
Molecules in solution cannot typically be assumed to exist in a sin-

gle, energetically-optimal configuration. Instead, to get meaningful
results, we need to sample several different conformations, as dic-
tated by the interaction of the small molecule with the surrounding
solvent, and the general thermal variations in the molecule itself. To



206 the photoelectron spectrum of phenol

CG2R61
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CG2R61
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CG2R61
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CG2R61
—0.116

OG311
—0.53

HGP1
+0.42

Figure 8.3: The CGenFF atom types and partial charges (in reduced units)
for phenol used in the MD simulations described herein. All un-
labelled hydrogens are of the aromatic hydrogen (HGR61) type,
with charge +0.115 reduced units, as prescribed by the CGenFF
standard procedure [331].

do this, we use classical molecular dynamics simulations to generate
an ensemble of configurations. While these will not give an accu-
rate representation of the true dynamics of the molecule, in the limit
of infinite such samples (assuming ergodicity), we would expect to
tend towards the correct distribution for any given ensemble prop-
erty [407]. In this case, the spectroscopy we are interested in is not
performed on single molecules, but rather on low-concentration sam-
ples in solution, such that the spectra are indeed such an ensemble
property.

There are several different forcefields that we could use, ranging in
accuracy for different applications. We choose the CHARMM general
forcefield (CGenFF [331]), because its atomic charges are determined
so as to reproduce quantum-mechanical interaction curves with wa-
ter. The most important element of the simulation for our conforma-
tional generation is the interactions with the solvent, such that this
seems a sensible choice. As with any point-charge-based forcefield,
the molecules are parametrised in terms of harmonic bond-stretching,
bond-angle, and torsional terms (the latter typically expanded as a
truncated Fourier series), coupled with non-bonded Lennard-Jones
and Coulomb terms. For phenol, which is a standard organic moi-
ety, we can accurately assign all these parameters by analogy with
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existing parameters in CGenFF. We have thus used the ParamChem
server [408, 409] to generate these parameters, noting that the heuris-
tic measure of suitability in all cases was approximately zero, indicat-
ing a low likelihood of inaccuracy. The atom types and charges are
shown in Figure 8.3.

Simulations were performed in GROMACS version 2016.4 [330]
with the CHARMM 36 (June 2019) forcefield [331], including the rel-
evant TIP4P four-point water model parameters [332]. The latter was
selected for its balance between accuracy and efficiency when com-
pared to the TIP3P [332] and TIP5P [410] models, respectively. The
temperature was held to 298.15 K using a Nosé-Hoover thermostat
on the whole system, with a damping parameter of 2.0 reduced units.
Pressure was fixed at 1 bar using a Parrinello-Rahman barostat with
time constant 2.0 ps and compressibility 4.46×10−5 bar−1. A standard
time-step of 2 fs is used throughout, along with a short-range van der
Waals cutoff of 1.0 nm, and particle-mesh Ewald for long-range elec-
trostatic interactions, also with a cutoff of 1.0 nm. We performed five
independent 25 ns simulations of phenol in a cubic box of water, with
side-length 2.3 nm. In each simulation, we energy-minimised the phe-
nol, then equilibrated the temperature and pressure, in that order,
with short simulations of 500 ps.

Figure 8.4 shows two validation plots for a representative simula-
tion - the same plots for the other simulations are essentially indis-
tinguishable. In the first of these, the root-mean-square deviations of
the atomic positions in the phenol molecule are given as a function
of simulation time. In a truly ergodic simulation, we would expect
this to show no correlation, with mean equal to the average confor-
mational flexibility of the molecule. That is exactly what we see in
the plot, with mean RMSD of around 3 Å, typical for small aromatic
molecules [411]. The velocity autocorrelation is particularly impor-
tant, as it dictates the time intervals on which we can take indepen-
dent samples. The autocorrelation function tells us the probability
that a property at time t0 can be used to predict the same property at
time t0 + t. Truly independent observations should show no correla-
tion. We see that the velocities of the phenol atoms become essentially
uncorrelated within very short timescales. This is to be expected for
a small molecule free to diffuse in water, where there is relatively lit-
tle rigidity in the structure, when compared to, for example, large
proteins.

The plots in figure 8.4 suggest that we can sample independent
snapshots of the solvated phenol from any point in the simulations
(there is no additional equilibration period in the RMSD plot) with
essentially any time separation. We are fundamentally limited, how-
ever, by the frequency at which the positions and velocities were out-
putted, and in the time it would take to run the subsequent quantum-
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Figure 8.4: Root-mean-square deviation (top) and velocity autocorrelation
(bottom) plots for phenol over the course of a single 25 ns sim-
ulation. Both show that the simulations are satisfactorily equili-
brated, and that independent samples can readily be drawn from
the simulations.
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Figure 8.5: The radial distribution function (RDF) between phenol and the
water molecules averaged over a single 25 ns simulation. On the
left is the raw RDF, and on the right is the RDF fitted as a sum
of three Gaussians, showing the peaks in the distribution.

mechanical calculations. Therefore, we choose to take samples at 1 ns
intervals, starting at 0.5 ns, from each simulation. This gives us an
ensemble of 105 configurations in total.

Figure 8.5 shows the radial distribution function between the phe-
nol and the waters, averaged across an entire simulation. One of the
biggest questions when seeing how explicit solvent affects results is
how many solvent molecules need to be included to capture all of the
effects. This will largely depend on the length scales of both the prop-
erty to be calculated, and the interactions between the solute and the
solvent. As can be seen in the figure, the waters roughly divide into
three shells at around 2, 5, and 9 Å. Such peaks imply order, and thus
interactions, on fairly long distances - the water molecules beyond
the 9 Å mark are essentially randomly distributed in relation to the
phenol. In Figure 8.6, we can see explicitly how these shells rapidly
expand to include well over a hundred waters.

Investigating this further across all 105 samples, we see in Figure 8.7
that the number of water molecules follows a sigmoid centred around
12 Å. Using this, we can label the shells as the intervals between the
sets of points given: the first shell at 2 to 5 Å; second shell between
5 and 7.5 Å; and the third shell from 7.5 to 11 Å. The biggest jump
is between the second and third shells. Electronic energy levels are
strongly coupled to the conformation of a molecule, and to the in-
teractions between molecules, but the excitations between such levels
are not generally thought to be particularly sensitive to long range
interactions [412].

In the next section, I will demonstrate how there is a substantial dif-
ference between results only using up to the first shell and up to the
second shell, but fortunately not such a difference between the sec-
ond and third. This is perhaps not surprising in consideration of Fig-
ure 8.8, which shows the number of hydrogen bonds between phenol
and water molecules across the course of a simulation. This averages



210 the photoelectron spectrum of phenol

Cutoff 3.3 Å 4.3 Å
No. of waters 4 13

Cutoff 6.3 Å 9.3 Å
No. of waters 48 133

Figure 8.6: Visualisations of the density of water molecules (represented as
spheres) surrounding a particular conformation of phenol taken
from one MD snapshot, for a variety of cutoff distances from the
centre of mass of the phenol. These range from 4 waters in the
smallest sphere, to 133 in the largest.
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Figure 8.7: The number of water molecules contained in a spherical shell of
a given radius with centre at the centre of mass of the phenol
molecule, shown for all 105 samples.
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Figure 8.8: The number of hydrogen bonds between the phenol and water
molecules over the course of a single 25 ns simulation. Hydrogen
bonds were defined to be interactions with a cutoff of 3 Å and
bond angles of less than 60 degrees.
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to around three such hydrogen bonds, which suggests the strongest
effect will always be with the first, and by proxy, second shells. This
equates to needing 30 – 50 water molecules in each quantum calcula-
tion, as opposed to around 130. Note that even the former would not
be remotely possible with traditional excited-state quantum methods.
Even with the new linear-scaling method, the difference in computa-
tional expense between 50 and 130 solvent molecules is substantial, so
it is very useful to know that the spectra converge before this point.

8.3 simulated spectra

All excited state calculations performed in this section were done
using gamma at either the EOM-CCSD or EOM-rCCD level of theory,
with aVDZ basis sets on all atoms [343]. Density fitting was used
throughout in both the Fock build and integral transformation steps,
with the matching aVDZ auxiliary basis sets [151, 162, 325, 327]. Em-
bedded calculations were calculated using the local ALMO approach
with the infinite-order charge-transfer correction; ground-state corre-
lation energies were calculated using the RPAx variant, summed over
all excitations. For the ground-state UV absorption spectra, the gas-
phase results were validated using the molpro suite of programs [323],
and transition dipole moments taken from EOM-CCSD calculations
for the lowest five excited states. The peak intensities in the sol-
vated, embedded calculations were estimated from transition dipole
moments of the phenol density, averaged over all 105 conformational
samples.

For the photoelectron spectra, the vertical ionisation energies were
calculated by performing spin-unrestricted ALMO+RPAx calculations
on the neutral, singlet ground state, and the cationic, doublet ground
state. The summed difference in the HF monomer and RPAx cor-
relation energy was then taken to be the first ionisation energy. The
higher-order ionisations were estimated from EOM-rCCD calculations
on the cationic state. All spectra were averaged over the entire ensem-
ble of conformations, with the cationic state not allowed to relax.This is equivalent to

assuming we are in the
Franck-Condon regime.

To calculate the Dyson orbitals, and thus PES cross-sections, we
passed the EOM-rCCD density to the NewtonX program [413]. The
Dyson orbitals were calculated directly from equation 8.7, not approx-
imated using Koopman’s theorem. NewtonX then estimates transi-
tion moments by performing CI singles calculations using the refer-
ence density provided; the coefficient and overlap cutoffs were set at
0.01 and 0.1, respectively. Finally, the ionisation cross-sections were
determined using the Dyson orbital norms, with the electron kinetic
energy, eKE, allowed to vary, and the photon energy fixed at two pho-
tons of wavelength: 235.5 nm, 253 nm, 265.5 nm, or 275 nm. These
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Figure 8.9: The RPAx/aVDZ correlation energy (left), and the first EOM-
rCCD/aVDZ vertical excitation energy (right), for phenol as a
function of the number of waters, for all 105 samples. The cor-
relation energy in the gas phase calculations is slightly larger
due to the full canonical density being used, as opposed to the
canonicalised ALMO density in the solvated simulations. Red
dots show the mean value at each separation cutoff.

were selected to match with 1+1 UV PES in the reference experiments.
The binding energy, eBE, is then eBE = 2hν − eKE, where ν is the
frequency of light. Gas phase calculations were performed on the op-
timised geometry, while the solvated results were averaged over the
ensemble.

8.3.1 Convergence with number of waters

Calculating the PE spectra is expensive, whereas individual corre-
lated calculations are cheap. As such, we wish to determine the num-
ber of solvent molecules that need to be included for convergence in
the properties of interest to occur. In the current calculations those
properties are: the total energy of phenol, in particular the correlation
energy contribution; the excitation energies of the neutral and cationic
states; and the densities of the neutral and cationic states. The last of
these is difficult to quantify, but directly influences the correlation
and excitation energies. Therefore, to a good approximation, we can
consider the density converged if these energy metrics are converged.

Figure 8.9 shows the full ensemble results for the RPAx correlation
energy of the phenol, and the EOM-rCCD first excitation energy. In
the former, we see that the correlation energy is largely insensitive to
the number of water molecules. This is perhaps unsurprising, as it
is dominated by the intramolecular terms involving excitations only
within the molecule. The most noticeable difference is between the
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Table 8.1: Mean values (across the ensemble) in nm for the first four vertical
excitations of phenol in varying amounts of water, as calculated
at the EOM-rCCD/aVDZ//ALMO+CT level.

Gas phase 1st shell 2nd shell 3rd shell

257.8 260.5 279.9 280.1
212.9 216.9 225.4 227.0
200.3 204.1 214.8 216.2
196.5 199.3 207.1 209.3

gas-phase fully canonical density calculation and the solvated, canon-
icalised ALMO density. There is a decrease of about 20 mHa in the
correlation energy, which is surprisingly substantial. Redressing this
difference is something that needs to be looked at in future work.

More interesting, however, is the marked change in the first excita-
tion energy upon inclusion of the solvent. The difference between the
gas-phase and first solvation shell results is not huge, although the
excitation energy does decrease by on average 0.2 eV. Upon includ-
ing the second shell of waters, however, there is a decrease of around
0.6 eV, which is substantial. Moreover, the overall delta of around
0.8 eV between the gas and solvated phases is in almost exact agree-
ment with the experimental results (Figure 1 in ref. [398]). Finally, we
note that including the next shell does not significantly affect the ex-
citation energy. Similar results were found for the first four excitation
energies, shown in Table 8.1, although there is a slightly greater differ-
ence of around 0.05 eV on average upon inclusion of the third shell of
waters. We do not expect this to make a quantitative difference to the
spectra, however, as the broadening from the ensemble average will
be at least an order of magnitude larger than this difference, as can
be seen from the spread of points in Figure 8.9. As such, we will sim-
ulate all solvated spectra herein with the entire second shell of water
molecules included explicitly.

A similar shift is then seen when calculating the first ionisation po-
tential as the difference in the phenol total energy of the neutral sin-
glet ground state and the cationic doublet ground state. Figure 8.10

shows the distribution over the ensemble for both the gas-phase and
solvated calculations. Overall, the latter is more broadly distributed
and shifted to around 0.8 eV lower energy, once more agreeing with
experimental observation [398]. We note, however, that the mean ioni-
sation energies of both are approximately 0.2 eV lower than the exper-
imental values, which suggests that either the basis set or truncated
level of theory may not be sufficient to give quantitative agreement.
As can be seen in the lower panel of Figure 8.10, increasing the basis
set size to a triple-zeta level successfully eliminates this shift. How-
ever, the associated increase in compute time is severe, such that we
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Figure 8.10: The first ionisation potential calculated at the EOM-
rCCD/aVDZ level (top) and aVTZ level (bottom) for phenol, as
the difference between the neutral and cationic total energies.
The distribution over all 105 samples is shown, with the sol-
vated results (blue, embedded in an ALMO+CT density) show-
ing a significant shift to lower energies compared to the gas
phase (red) results.
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Figure 8.11: The lowest energy band of the UV absorption spectrum of phe-
nol calculated at the EOM-CCSD/aVDZ level in the gas phase,
and with the first and second solvation shells. The solvated
spectrum is averaged over the entire ensemble of conforma-
tional samples. Again, there is a significant shift to lower en-
ergies upon inclusion of solvent, in good agreement with the
experimental result.

proceed in the following with the smaller basis set. We also note that,
while the ionisation potentials shift, the vertical excitation energies do
not change upon using the larger basis; the average shift was found
to be on the order of 0.5 mEh.

8.3.2 UV spectra

An easier but equally interesting problem to simulating the PE spec-
trum - which depends on the excited states of the cation - is simulating
the UV absorption spectrum, dependent on the excited states of the
neutral ground state. As in this case we can use a spin-restricted wave-
function, the calculations are much more stable and less computation-
ally expensive, allowing us to use the full EOM-CCSD calculation on
the entire ensemble up to the third solvation shell. We calculated the
first excitation energy and transition dipole moment, estimating the
latter in the solvated case from the canonicalised ALMO density, then
ensemble-averaged these to give the simulated UV spectrum. The
resulting spectra are shown in Figure 8.11.

As per Figures 8.9 and 8.10, we see a significant shift to lower en-
ergies upon explicitly including water. There is a concomitant broad-
ening and lowering of the peaks, corresponding to the greater confor-
mational variation in solution. The peak centres at around 260 and
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Gas phase With second solvation shell

Figure 8.12: The Dyson orbital for the lowest energy transition in the photo-
electron spectrum of phenol, calculated at the EOM-rCCD level
in both the gas phase (left) and with the second solvation shell
(right), for one particular conformational sample. The solvated
result shows increased density over the ring and around the
hydroxyl group, corresponding to the energy lowering due to
interactions with surrounding water molecules. Plotted using
IBOView [218].

280 nm for the gas-phase and ‘second shell’ peaks agrees fairly well
with the experimental results in Figure 1 of ref. [398]. This is in con-
trast to the systematic shift noted for the ionisation potential above,
perhaps suggesting that the lack of ladder diagrams in EOM-rCCD is
a significant source of error.

8.3.3 Dyson orbitals and photoelectron spectra

Phenol is an organic, aromatic compound, with a slightly polar hy-
droxyl group. Therefore, it is not expected to be strongly hydrophilic,
nor strongly hydrophobic. However, there are clearly significant elec-
tronic and structural changes caused by the interaction with the sur-
rounding water molecules. The structural difference is largely due
to a lengthening of the O – H bond due to hydrogen bonding with
water molecules - averaged over the entire ensemble, this bond is
0.015 Å longer in the solvated structures compared to the gas phase.
The electronic changes are then largely due to the subsequent move-
ment in the π-electron density as the oxygen lone pair becomes less
available. It is interesting to inspect the energy-equivalent Dyson or-
bitals with and without solvent, to directly see these electronic effects.
These are shown for one sample conformation in Figure 8.12.

From the figure, we can see that the excitation does indeed involve
considerably more density over the ring and the hydroxyl group in
the solvated case, suggesting more availability of the electron density
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Figure 8.13: The gas-phase (black lines) and solvated (blue lines) photoelec-
tron spectra in terms of electron kinetic energy for the two low-
est energy transitions in phenol. The loss of fine structure in
the solvated spectrum is due to ensemble averaging, resulting
in a Gaussian-like distribution. There is once more a significant
energy shift, in good agreement with experiment.

in these regions for excitation. The gas-phase Dyson orbital, in con-
trast, is much more localised to the carbons adjacent to the oxygen
atom. The combination of this and the UV results of Figure 8.11 thus
suggest that we will likely see significant changes in the photoelectron
spectra when calculated in solvent.

As can be seen in Figures 8.13 and 8.14, there is indeed a substan-
tial difference. There are two modes of plotting the spectra - in terms
of electron kinetic or binding energy - which are essentially equiv-
alent but can be read slightly differently. Figure 8.13 shows the ex-
cess electron kinetic energy when ionised with two photons of wave-
length 265.5 or 275 nm. In the gas-phase case, calculated on the single
optimised structure, there is considerable fine structure, not reach-
ing above roughly 1 eV. The solvated results are broadened into a
Gaussian, due to ensemble averaging, centred around 0.7 to 0.8 eV
higher. This corresponds to the ionisation potential being lower, as
the electrons have more residual kinetic energy. Comparing with the
left-hand panels of Figure 2 of the experimental reference [398], we
see that the qualitative agreement is excellent, but with a systematic
downshift of around 0.2 eV, probably again due to the use of the ring
approximation.

The other view, given in Figure 8.14 for the higher energy photons,
is in terms of the amount of energy required to detach the electron
from phenol. In these we once again see a loss in fine structure, and
an energetic downward shift of around 0.8 eV. Particularly striking is
the anisotropy in the 235.5 nm spectrum, which matches that found
in experiment [398]. We do once more see a systematic difference of
around 0.2 eV, however.
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Figure 8.14: The gas-phase (black lines) and solvated (blue lines) photoelec-
tron spectra in terms of electron binding energy for the third-
and fourth-lowest energy transitions in phenol. We see a par-
ticular anisotropy in the 235 nm solvated spectrum (agreeing
with experiment, ref. [398]), although the exact energy transi-
tions are in error compared to experiment by about 0.3 eV.

In summary, we have successfully used our embedded ALMO ap-
proach on an ensemble of conformers to calculate electronic excited
state spectra. Firstly, we have found that the use of a molecular–
dynamics-generated ensemble reproduces the peak broadening seen
in experiment. Secondly, the addition of explicit solvent in the equation-
of-motion calculations yields significant shifts in the vertical excita-
tion energies in both the neutral and cationic states, again in agree-
ment with experiment; quantitative agreement of the energies, how-
ever, seems to be quite sensitive to the level of theory used. Finally,
we have seen that the effects of the solvent are fairly long range, only
converging between the second and third solvation shells.

Overall, this work highlights the importance of including explicit
solvent in the simulation of these spectra, and the determination of
electronically excited states. It should be noted that, while several
high-level quantum calculations needed to be performed to deter-
mine these over an ensemble of 105 conformations, the time spent
on these calculations was considerably less than that from calculat-
ing the Dyson orbitals and generating the photoelectron spectra. This
is largely due to the use of an external package, involving a large
amount of writing to and reading from disk. To make these calcu-
lations routinely manageable, it would be desirable to reimplement
the Dyson orbital calculations directly in gamma. The other point of
interest is that, a restricted EOM-CCSD calculation on phenol takes
roughly 5 times as long as the unrestricted EOM-rCCD equivalent;
the unrestricted full EOM-CCSD calculation will thus be even more
time consuming. As we have noticed a systematic error that appears
to be due to the ring approximation, future work should focus on ap-
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proximating this using GW-type approaches, in an effort to improve
the accuracy.



9 C O N C LU S I O N S A N D F U T U R E
W O R K

In this thesis, I have described new methods for the computational
study of systems comprising a large number of small fragments
- for example, clusters of hundreds of water molecules. The de-
velopments can be broadly divided into three areas: theory, imple-
mentation, and application. In the following, I briefly summarise
the findings presented in this thesis that are pertinent to each of
these, and give a perspective on where future work should focus.

Theory

In Chapters 2 and 3, we have presented a novel, correlated method
for the treatment of non-covalent interactions, based on absolutely
localised molecular orbitals. This method directly gives interaction
energies devoid of basis set superposition errors. Furthermore, it au-
tomatically yields an energy decomposition analysis in terms of elec-
trostatics, polarisation, charge transfer, and dispersion. The last term
is provided by a new, local random phase approximation-based ap-
proach, where the double excitations are categorised based on their
physical interpretation. Benchmarks, in Chapter 5, have shown the
ALMO+RPAxd results to be in good agreement with those obtained
using CCSD, across a wide range of systems. In Chapter 6, the theory
was extended by the addition of analytical gradients, derived using
a Lagrangian approach, allowing for rapid geometry optimisations to
be carried out. Then, in Chapter 7, we described how the method can
be expanded to include systems with multiconfigurational character.
This involved the development of a local, non-orthogonal configura-
tion interaction theory, alongside a second-order orbital optimisation
directly including the absolutely localised orbital constraint. Finally,
all of the above culminated in an embedding method for the total
energy of any given system, based on a definition of the ALMO (or
MC-ALMO) SCF fragments in terms of larger groups of molecules.

Given the promising initial results, there are numerous opportu-
nities for future theoretical developments. Most pressing is the con-
tribution of higher-order excitations to energy differences (and thus
particularly to interaction energies). It is well-known that the pertur-
bative triples correction used in CCSD(T) is a significant part of the
total interaction energy of a system [267, 333], and specifically makes
a large difference in dispersion-bound systems. In Chapter 3, we
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briefly discussed how such a contribution could be included through
exploitation of the connection of CC-type methods with the GW ap-
proximation; in particular, by systematic expansion of the vertex func-
tion. Attempts could also be based on similar work in local CC theo-
ries [414, 415] or higher-order RPA [275]. Further theoretical develop-
ments could focus on the extension of the embedding approach to a
wider range of theories. As noted at the end of Chapter 7, by canoni-
calising the embdedded density, any SCF-based theory could readily
be inserted into both the energy and gradient calculations. Finally,
while we have mostly focused on the liquid condensed phase, the ap-
proach could instead be applied to the solid state. This would require
careful consideration of periodicity, but would open up the possibil-
ity of accurate calculations on surfaces and crystals, using larger unit
cells than has previously been possible.

Implementation

The primary intention with the ALMO-based approach was to yield
a linear-scaling implementation, which could then be applied to sys-
tems containing many hundreds of small molecules. In Chapter 4, we
described how this could be achieved for the correlated, BSSE-free in-
teraction energies. In the first instance, density fitting was applied to
reduce both the scaling and prefactor of the two-electron integral cal-
culation and transformation steps. In order to reduce the memory im-
print, a new fragment-blocked data structure and density fitting algo-
rithm were introduced. This was then coupled with a fragment-based
local Fock build procedure. Finally, we devised a pairwise approxi-
mation for the RPA dispersion calculations. This latter approximation
is fairly severe, in that some fraction of the higher-order many-body
terms are necessarily lost, but in Chapter 5 we demonstrated that a
substantial amount of the three-body terms at least are retained. In
Chapter 6, the same approximations were then able to be applied to
the analytical gradients, directly giving a sub-quadratic scaling im-
plementation of these gradients. Similarly, the heterogeneous paral-
lelisation considered in Chapter 4 can be applied to both the energy
and force calculations equally. This comprised a coarse, distributed-
memory parallelism divided over fragments and fragment pairs, in
tandem with shared-memory parallelism of the Fock-build and inte-
gration algorithms. GPUs, if available, can then be used to accelerate
the most time-consuming linear algebra operations.

The main focus of future work in this area should be on tuning
the parallelisation, and in particular expanding the GPU capabilities
such that they can be used efficiently, without affecting the non-GPU
implementation. Dependencies on external libraries make this a diffi-
cult problem to address, and other tensor-contraction libraries should
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be considered. Of the algorithms described in Chapter 4, the only
significant remaining non-linear term is the Cholesky decomposition
of the density fitting metric. It is not clear how this could be lin-
earised without exploiting sparsity, although the work of Schweizer
et al. [416] could be used as a starting point. A more significant imple-
mentation challenge comes from Chapter 7, where only the theory for
MC-ALMO SCF was presented. As noted in the chapter, many of the
individual parts - especially the effective Fock matrices and integral
transformations - can borrow from the single-determinant algorithms.
However, the calculation of three- and four-body densities will need
to be addressed. One approach would be to expand these approxi-
mately in terms of lower-order densities, or transition densities. This
is a difficult problem that has received only limited attention in the
literature [417]. Finally, the embedding proposed in Chapter 7, imple-
mented in Chapter 8 for equation-of-motion coupled cluster, could be
expanded to a wider variety of correlated methods, offering an alter-
native route to higher-order correlation energies than that described
in the previous section.

Application

Any theory is only as good as the results it gives, and how useful
those results are in real-world applications. The methods described
in this thesis are specialised to large clusters, or extended systems,
of small molecules. This was exploited in Chapter 5, where the ac-
curacy of ALMO+RPAxd was demonstrated across a wide range of
bimolecular systems, ranging from halogen and hydrogen bonds, to
purely dispersive interactions. We also showed the utility on much
larger clusters of water molecules (up to 202 monomers) and hydro-
gen fluoride chains. The ability to perform an energy decomposition
on these allows for the investigation of how the physics of systems
changes going from the gas to condensed phases. Furthermore, in
Chapter 6, we used the analytical gradients to optimise the geome-
tries of the same systems, and calculated the infrared spectrum of the
water dimer. The effective densities calculated as part of the gradients
could also be used to determine other molecular properties, such as
the response to an electromagnetic field. Finally, in Chapter 8, we ap-
plied the embedded ALMO method to simulating the UV absorption
and photoelectron spectra of phenol in water, reproducing the effects
seen in experiment. In future, we hope that these demonstrations of
the utility of the theory, and its implementation in gamma, will lead
to it being applied to a much wider range of real, physical problems.
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A P R I M E R O N T E N S O R
N OTAT I O N

This appendix is intended to be a brief introduction to tensors and
in particular the notation used to represent and manipulate them, nec-
essary for understanding certain developments in the main text. It is
by no means comprehensive, and for a more detailed introduction,
the reader is directed to any number of textbooks, for example refs.
[418, 419].

A tensor is a mathematical object representing a multilinear trans-
formation of some kind. More precisely, given a finite, n-dimensional
linear space V that can be written as the direct product of n vector
spaces, Vi, a tensor, T , is a mapping from V into some other vector
space, W. The multilinearity implies it must satisfy the property that

T(v1, . . . ,αvk+u, . . . , vn) = αT(v1, . . . , vk, . . . , vn)+T(v1, . . . ,u, . . . , vn)

for all scalars α in the underlying ring of V, for all u ∈ V, and for each
axis, vi. This condition essentially means that tensors represent well-
behaved transformations, such that tensor equations are valid in any
coordinate system; this is why they are so useful, and why tensors
are the preferred representation of many problems in physics.

It is conventional not to use functional or operator notation for ten-
sors, but rather to choose a particular representation and use index
notation. Given a choice of basis {ei} for V, an element of the overall
tensor, T, in this representation is denoted Tijk···n; note that boldface
is used to distinguish the tensor from its elements. The number of
indices thus corresponds to the rank of the tensor. The most com-
mon examples of tensors are vectors (rank one) and matrices (rank
two). In the index, or suffix, notation, familiar operations over these
objects can be more succinctly written. For example, a matrix-vector
multiplication can be written as

(Ab)i =
∑
j

Aijbj

This is an example of reduction, so-called as it reduces the rank of
the matrix A from two to one. More generally, we can consider con-
traction over an index, where a pair of indices are iterated over (not
necessarily in a multiplication) to contract two tensors together:

(AB)ij...mn =
∑
k

Aij...kBk...mn

xiii
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Clearly, explicitly writing out the summations would become nota-
tionally burdensome, especially when multiple indices are contracted
over at once. As such, we introduce the Einstein summation conven-
tion, where it is assumed that - unless explictly stated otherwise - the
appearance of two identical indices implies contraction over those in-
dices. That is, for a general scalar operation •, we write∑

kl

Aij...kl •Bkl...mn ≡ Aij...kl •Bkl...mn

An important point about this convention is that it only applies when
the index in question appears precisely twice in the operation; if sum-
mation occurs over the same dummy index in more than two places,
e.g.

∑
jAijBjj, then this needs to be written explicitly.

While the index notation is useful, it does not bely anything about
the transformation properties of the objects in question, and therefore
does not convey the invariance of tensorial equations. To see how this
can be achieved, consider a general affine transformation, A, of the
basis to a new representation:

ẽi = Aijej ∀i

The elements Aij thus represent the projection of ẽi onto ej. A general
point v ∈ V can by definition be written as a linear combination of
either set of basis vectors. In the initial representation, it is given by

v = viei

such that to determine the new representation, we need the projection
of ei onto ẽj, the inverse of the above:

ṽi = vj

(
A−1

)
ji

A quantity that transforms in this way - in the opposite sense to how
the basis transforms - is termed contravariant. It is conventional to de-
note this property by superscripting the indices, e.g the above would
become

ṽi = v
j
(
A−1

)
ji

Instead, suppose we consider any mapping f : V → W, and in
particular its gradient, w = ∇f, at some point in V. By the chain rule,
in the new representation this becomes

w̃i =

(
∂vj

∂ṽi

)
wj

Given that vi = Aijṽj and A does not depend on the vi, the partial
derivative is simply the transformation element, Aij. That is, the gra-
dient transforms in the same sense as the basis, and is termed covari-
ant; such quantities are denoted by subscripting their indices. More
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generally, different axes of a tensor may transform differently. For ex-
ample, many rank-2 tensors (matrices) will be mixed, with their rows
and columns transforming in opposite senses. Taking the transpose
of such an object then leads to ambiguities unless placeholder indices
are introduced - this is done by using dots:

A
j
i ≡ A

·j
i· and

(
AT
)j
i
≡ Aj··i

The reduction of two tensors to form a scalar is of vital importance
in physical applications. In particular, we require the inner product of
two tensors to be invariant to changes in coordinate system - physical
quantities, i.e. scalar values, should not depend on the particular
choice of representation for the system. Clearly, this is not true for the
usual inner product between two vectors, s = uivi, as this transforms
as

s̃ = ãib̃i = a
j
(
A−1

)
ji
bk
(
A−1

)
ki

= aj
[
A−1

(
A−1

)T]
jk

bk

which only equates to s in an orthogonal transformation (i.e. where
AAT = I, with I the identity). Similarly, the inner product between
two covariant quantities will not be invariant when defined in this
way. However, the product between a co- and contra-variant quantity
will be: if s = aibi, then

s̃ = ãib̃i = a
j
(
A−1A

)
jk
bk = a

jbj = s

We can solve the problem for a pair of contravariant quantities by
taking the inner product with respect to a covariant weight. That
is, we weight each ai by wi such that the new inner product is s =

aiwiwjb
j, transforming to

s̃ = ãiw̃iw̃jb̃
j = ak

(
A−1A

)
kl
wlwm

(
AA−1

)
mn
bn = akwkwmb

m = s

From this, we see that only the products of the weights are needed,
and so we collect these as gij = wiwj. In an orthonormal system,
this would simply be the identity. Note that both indices are suffixed,
implying that both axes transform covariantly.

The quantity g therefore serves as a means of converting between
the covariant space and its dual. That is, we clearly have that

ai = gija
j and ai = ajgji

In particular, this means that ai = gijg
jiai, such that we must have

that the contravariant form of g is the inverse of the covariant form.
The co- and contra-variant dual pair thus represent a means of raising
or lowering an index. Essentially, on the curved manifold described by
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the nonorthogonal basis, g represents the distance between co- and
contra-variant quantities, and thus encodes the information required
to transform these quantities correctly. As such, it is called the metric
tensor, or usually just the metric. The contravariant equivalent is
then, by the above, the inverse metric. For a tensorial equation to be
invariant to transformations, we therefore require that all contractions
imply the presence of this metric; this is equivalent to requiring that
contractions only occur over dual pairs of indices. Thus

s = AjkBjk

would be invalid (that is, would not be invariant to the choice of
coordinate system), as j is contravariant in both A and B. A correct
form could instead be either of the following:

s = A·jk·B
j·
·k or s = AjkBkj

When the manifold is orthogonal, as is often tacitly assumed to be the
case (for example in Cartesian or spherical coordinates), the metric is
the identity, such that none of these considerations matter. However,
for essentially all of modern physics - electromagnetism, relativity,
quantum field theory, and so on - it is cumbersome or impossible
to impose such orthonormality, and the correct formulation of these
theories necessitates the use of tensors. In particular, they provide a
natural description for nonorthogonal orbital-based theories in quan-
tum chemistry, where imposition of an orthogonality constraint on
the underlying function space introduces several computational prob-
lems.



B T H E A L M O E R R O R V E C TO R
F O R D I I S

The ALMO orbitals can be rotated by applying a unitary operator
Û, parametrised as

Û = exp(−∆̂)

where the ∆̂ is some anti-Hermitian (necessary to ensure the unitarity
of Û) operator, constrained to only rotate orbitals within each frag-
ment so as to maintain localisation. This means that it splits into
disjoint operators ∆̂X. To first order, the transformed orbitals {|ϕ̃⟩} are
thus given by

|ϕ̃⟩ = Û |ϕ⟩ ≈ (1− ∆̂) |ϕ⟩

From equation 2.49, the density operator therefore transforms as

P̃ ≈
∑
X,Y

(1− ∆̂X) |ϕXi⟩ σ̃Xi,Yj ⟨ϕYj| (1+∆†Y)

Taking expectations in the AO basis, the linear response in the density
is then given by

∆PXµ,Yν ≈ rXµ,Yν
1 − rXµ,Yν

2 +
(
r
†
2

)Xµ,Yν

r
Xµ,Yν
1 = TXµ··Xi σ̃

Xi,YjT ·YνYj·

r
Xµ,Yν
2 =

(
∆X
)Xµ,Xλ

SXλ,XγT
Xγ·
·Xi σ̃

Xi,YjT ·YνYj·

(B.1)

where we have used the fact that ∆ is block-diagonal to eliminate the
summation over fragments. This is in terms of the transformed metric,
which from equation 2.42 becomes

σ̃Xi,Yj ≈ σXi,Yj + ⟨ϕXi|∆̂X†|ϕYj⟩− ⟨ϕXi|∆̂Y |ϕYj⟩

=

[
TXX

(
SXY + SXX

(
∆X
)†

SXY − SXY∆YSYY

)
TYY

]
Xi,Yj

(B.2)

By the chain rule, and the results for the ALMO energy gradient
with respect to the coefficients, we have that

∂E

∂∆Xµ,Xν =
∑
W,Z

FWγ,Zκ
∂PWγ,Zκ

∂∆Xµ,Xν
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Equation B.1 then leads to

∂ (Pα)
Aγ,Bκ

∂ (∆α)
Xζ,Xτ = TAγ··Ai

∂σ̃Ai,Bj

∂ (∆α)
Xζ,XτT

·Bκ
Bj· − δ

Aγ
Xζ δ

Aλ
XτSAλ,AµT

Aµ·
·Ai σ̃

Ai,BjT ·BκBj·

−
(
∆A
)Aγ,Aλ

SAλ,AµT
Aµ·
·Ai

∂σ̃Ai,Bj

∂ (∆α)
Xζ,XτT

·Bκ
Bj·

−TAγ··Ai σ̃
Ai,BjT ·BνBj· SBν,Bλδ

Bλ
Xτδ

Bκ
Xζ

− TAγ··Ai
∂σ̃Ai,Bj

∂ (∆α)
Xζ,XτT

·Bν
Bj· SBν,Bλ

(
∆B
)Bκ,Bλ

Then from equation B.2

∂σ̃Ai,Bj

∂ (∆α)
Xζ,Xτ =−

∑
M,N

σ̃Ai,Mm
∂σ̃Mm,Nn

∂ (∆α)
Xζ,Xτ σ̃

Nn,Bj

=
∑
M

σ̃Ai,MmT
·Mγ
Mm·SMγ,XζSXτ,XκT

Xκ·
·Xnσ̃

Xn,Bj

−
∑
N

σ̃Ai,XmT
·Xγ
Xm·SXγ,XζSXτ,NκT

Nκ·
·Nnσ̃

Nn,Bj

which when put in the above, using the fact that PAγ,Xπ = TAγ··Ai σ̃
Ai,MmT ·XπMm·,

implies that

T
Aγ·
·Ai

∂σ̃Ai,Bj

∂ (∆α)
Xζ,XτT

·Bκ
Bj· = −

∑
N

PAγ,XπSXπ,XζSXτ,NηP
Nη,Bκ

+
∑
M

PAγ,MπSMπ,XζSXτ,XηP
Xη,Bκ

= −PAγ,XπSXπ,Xζ[SP]·BκXτ· + [PS]Aγ··Xζ SXτ,XηP
Xη,Bκ

Therefore, we have that (using the symmetry of the Fock and overlap
matrices):∑
A,B

(Fα)Aγ,BκT
Aγ·
·Ai

∂σ̃Ai,Bj

∂ (∆α)
Xζ,XτT

·Bκ
Bj· =∑

A,B

(Fα)Aγ,Bκ

[
−PAγ,XπSXπ,Xζ[SP]·BκXτ· + [PS]Aγ··Xζ SXτ,XηP

Xη,Bκ
]

= − [SPFαP]·XπXτ· SXπ,Xζ + SXτ,Xη [PFαPS]Xη··Xζ

Inserting the derivative of the inverse metric into the other terms
of the derivative of the density that need it results in those terms
cancelling, so that all that is left to add to the energy derivative are
terms of the form∑
A,B

δ
Aγ
Xζ δ

Aλ
Xτ (Fα)Aγ,BκSAλ,AµT

Aµ·
·Ai σ̃

Ai,BjT ·BκBj· =

SXτ,Xµ
∑
B

(Fα)Xζ,BκP
Xµ,Bκ = SXτ,Xµ [PFα]

Xµ·
·Xζ
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Thus, the energy derivative is overall given by

∂E

∂ (∆α)
Xζ,Xτ = SXτ,Xη [PFαPS − PFα]

Xη·
·Xζ − [SPFαP − FαP]·XπXτ· SXπ,Xζ

so that the stationarity condition is:

∂E

∂ (∆α)
Xζ,Xτ = SXτ,Xη [PFα(PS − 1)]Xη··Xζ − [(SP − 1)FαP]·XπXτ· SXπ,Xζ = 0

(B.3)





C C H A R G E D E C O M P O S I T I O N
A N A LYS I S

The charge transferred from occupied orbital ϕXi into virtual orbital
ϕYa is the difference between the electron density before and after
relaxation from the ALMO solution. That is, if the transformed total
density is P̂ = ÛP̂0Û

†, then the amount of charge transferred is this
density projected onto the original occupied space, minus the original
density. The total charge transferred would thus be given by

∆Q = Tr
{
P̂0P̂P̂0 − P̂0

}
This is not very useful, as solving equation 3.15 gives X̂, rather than Û,
such that P̂ cannot be directly formed. Following the same procedure
as was used to reach equation 3.15, we rewrite the density transforma-
tion as P̂Û = ÛP̂0, then take just the occupied-occupied block. Note,
however, that the idempotency of the density simplifies matters. In
the discrete representation, this leads to

POOUOO + POVUVO = UOO

which upon multiplying through on the right by U−1
OO gives

POO + POVXVO = IOO

Given that Tr{P0} = Tr{IOO}, this means the total charge transferred is

∆Q = Tr {POVXVO} (C.1)

While this does not remove the need to form the full density, it does
simplify the problem somewhat.

It is customary to represent the rotation operator, Û, as an exponen-
tial of an antihermitian operator. In the current instance, this would
be taken to be X̂ − X̂†, which is antihermitian by construction. Al-
ternatively, and entirely equivalently, we can use this as the Cayley
generator for the unitary transformation:

Û =
(
1̂+ X̂− X̂†

)(
1̂+ X̂†X̂+ X̂X̂†

)−1/2
(C.2)

This or the exponential form can then be approximated to first order
as

Û = 1+ X̂− X̂† +O
(
X̂2
)

allowing the density to be formed as

P̂ ≈
(
1+ X̂− X̂†

)
P̂0

(
1+ X̂† − X̂

)
(C.3)
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Using the fact that X̂ = Q̂0X̂P̂0, this means that equation C.1 to first
order in X̂ is given by

∆Q ≈ Tr
{

XTX
}

(C.4)

Finally, we introduce the partition operators of equations 3.17 and
3.18, allowing the separation of charge transfer into terms between
fragments. This yields, directly from equation C.1

∆QY→ZCT, M =
∑
i,a

Tr
{
p̂YiP̂q̂ZaX̂

}
=

∑
W

⟨ϕWk|ϕYi⟩ ⟨ϕYi|P̂|ϕZa⟩ ⟨ϕ
Xa
|X̂|ϕWk⟩

= Tr {(POV)YZ (XVO)ZY}

which is equation 3.20. This requires that the transform matrix U be
explicitly formed from equation C.2, however, which in turn necessi-
tates a singular value decomposition. If such a charge decomposition
is required, it is therefore simpler to use equation C.4, resulting in

∆QY→Z ≈ Tr
{(

XTOV
)
YZ

(XVO)ZY
}

(C.5)



D E L E C T R O N R E P U L S I O N
I N T E G R A L S

Consider a spherical Gaussian charge distribution, ρp, centred at P
and with exponent p:

ρp(rP) =
(p
π

)3/2
exp(−pr2P)

This is normalised to unity, as it represents a probability density. The
repulsion energy between two such distributions in a Coulombic po-
tential is given by

Vpq =

∫ ∫
ρp(r1)ρq(r2)

r12
dr1 dr2 (D.1)

This can be evaluated explicitly by introducing the integral repre-
sentation of the potential:

1

r
=

1√
π

∫∞
−∞ exp(−r2t2)dt

The electrostatic potential at a point s due to the charge distribution,
ρp, is thus given by

Vp(s) =
∫
ρp(r)
|r − s|

=
p3/2

π2

∫ ∫∞
−∞ exp

(
−pr2 − t2|r − s|2

)
dt dr

where we have fixed P to be the origin for clarity. Using the Gaussian
product rule, and defining S = t2s/(p+ t2), this becomes

Vp(s) =
4p3/2

π

∫∞
−∞ exp

(
−
pt2

p+ t2
s2
) ∫∞

0

r2 exp[−(p+ t2)r2]dr dt

Evaluating the inner integral simply gives

Vp(s) =
p3/2√
π

∫∞
−∞(p+ t2)−3/2 exp

(
−ps2t2

p+ t2

)
As the integrand is even, we may restrict the region of integration
to the positive half of the real line. Making the substitution τ2 =

t2/(p+ t2) then reduces these limits to the interval [0, 1], giving the
final form below:

Vp(s) =

√
4p

π

∫1
0

exp(−ps2τ2)dτ (D.2)
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We then define the n-th Boys function, Fn, to be

Fn(τ) =

∫1
0

τ2n exp(−xτ2)dτ (D.3)

such that equation D.2 is clearly just a rescaled Boys function, F0(ps2).
We can then replace one of the integrals in equation D.1 with this
electrostatic potential:

Vpq =

√
4p

π

(q
π

)3/2 ∫
F0(p|r − P|2) exp(−q|r − Q|2)dr

Applying equation D.3 and using the Gaussian product rule once
more, this becomes

Vpq =

√
4p

π

(q
π

)3/2 ∫1
0

∫
exp

{
−
pqt2R2PQ

pt2 + q
− (pt2 + q)r2

}
dr dt

where RPQ = |P−Q| is the separation between the two centres. Again,
this allows the spatial integration to be performed, leaving

Vpq =

√
4pq

π

∫1
0

q

(pt2 + q)3/2
exp

(
−
pqt2R2PQ

pt2 + q

)

Substituting τ2 = (p+ q)t2/(pt2 + q) and defining the reduced expo-
nent α = pq/(p+ q) then leads to the final result:

Vpq =

√
4α

π

∫1
0

exp(−αR2PQτ
2)dτ =

√
4α

π
F0(αR

2
PQ) (D.4)

Note that this is also in terms of the zeroth Boys function; for the
general case where the Gaussian distributions have factors of rn (i.e.
higher angular momentum), it can be shown in much the same way
as above that the integral follows Fn(βR2PQ), leading to equation 4.5.



E B E N C H M A R K DATA

This appendix contains the benchmark data calculated in Chapter 5 for
the S66 [267] and X40 [333] datasets. We give results for the following meth-
ods: HF, ALMO, ALMO+CT, DF-MP2, DF-SAPT2, M06-2X, CCSD, and the
dRPA, SOSEX, and RPAx versions of ALMO+RPA. The SAPT energy decom-
position was grouped according to the following scheme, as used by default
in Psi4 [328]:

Eelst. = E
(10)
elst. + E

(12)
elst., r + E

(13)
elst., r

Eex. = E
(10)
ex. + E

(11)
ex. + E

(12)
ex.

Eind. = E
(20)
ind., r + E

(20)
ex., ind., r + E

(30)
ind. + E

(30)
ex., ind. + E

(22)
ind. + E

(22)
ex., ind. + δ

3
HF

Edisp. = E
(20)
disp. + E

(21)
disp. + E

(22)
disp. + E

(20)
ex., disp. + E

(20)
ind., disp. + E

(30)
disp.

+ E
(30)
ex., disp. + E

(30)
ex., ind., disp.

s66 benchmarks
The following shorthands are used for the S66 molecule names to save

space in tables: benzene, Bz.; uracil, Ur.; peptide, Pep.; pyridine, Pyr.; pen-
tane, Pent.
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Table E.4: The ratio of dispersion to polarisation, rD/P for the complexes
in the S66 database, calculated at the aVTZ level using DF-SAPT2

and ALMO+RPAxd. These are used to classify the systems as one
of: electrostatically dominated (E, rD/P < 2); dispersive (D, rD/P ⩾
8); or mixed (M, 2 ⩽ rD/P < 8). Note the SAPT polarisation term
is calculated as EInd. − ECT.

rD/P Classification
Donor Acceptor SAPT ALMO SAPT ALMO

H2O H2O 1.0996 1.1363 E E
H2O MeOH 1.1895 0.7290 E E
H2O MeNH2 0.9225 0.5320 E E
H2O Pep. 1.1286 0.0652 E E
MeOH MeOH 1.2861 1.2525 E E
MeOH MeNH2 1.1180 1.0529 E E
MeOH Pep. 1.2441 0.5944 E E
MeOH H2O 1.1889 1.2113 E E
MeNH2 MeOH 2.9022 2.9504 M M
MeNH2 MeNH2 2.7331 2.7504 M M
MeNH2 Pep. 3.0486 1.6564 M E
MeNH2 H2O 1.0336 1.0656 E E
Pep. MeOH 1.9626 1.9777 E E
Pep. MeNH2 1.5598 1.5885 E E
Pep. Pep. 1.7348 1.3800 E E
Pep. H2O 1.6348 1.6477 E E
Ur. Ur. BP 0.7991 0.6272 E E
H2O Pyr. 1.0165 0.0375 E E
MeOH Pyr. 1.1486 0.3009 E E
AcOH AcOH 0.5899 0.4789 E E
AcNH2 AcNH2 0.7992 0.6795 E E
AcOH Ur. 0.6553 0.3490 E E
AcNH2 Ur. 0.7291 0.3304 E E
Bz. Bz. pipi 14.2983 14.0566 D D
Pyr. Pyr. pipi 12.6527 14.2959 D D
Ur. Ur. pipi 7.8886 6.6198 M M
Bz. Pyr. pipi 13.2797 14.1122 D D
Bz. Ur. pipi 10.9757 9.3313 D D
Pyr. Ur. pipi 10.2527 8.7565 D D
Bz. Ethene 12.2746 15.7291 D D
Ur. Ethene 11.6850 12.4449 D D
Ur. Ethyne 10.4475 9.7863 D D
Pyr. Ethene 11.9918 17.8708 D D
Pent. Pent. 20.9825 40.7263 D D
Neopent. Pent. 18.8088 35.1521 D D
Neopent. Neopent. 18.1156 35.6381 D D
Cyclopent. Neopent. 18.0419 32.4876 D D
Cyclopent. Cyclopent. 18.9463 39.0147 D D
Bz. Cyclopent. 14.1383 16.6807 D D
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rD/P Classification
Donor Acceptor SAPT ALMO SAPT ALMO

Bz. Neopent. 13.2838 15.9362 D D
Ur. Pent. 12.3377 12.4501 D D
Ur. Cyclopent. 14.9510 16.5343 D D
Ur. Neopent. 14.3679 16.0482 D D
Ethene Pent. 14.7407 10.4116 D D
Ethyne Pent. 12.8984 10.8721 D D
Pep. Pent. 9.3676 8.9429 D D
Bz. Bz. TS 10.1721 10.8393 D D
Pyr. Pyr. TS 8.2129 8.1578 D D
Bz. Pyr. TS 8.0469 7.8367 D M
Bz. Ethyne CH-pi 4.5897 4.5801 M M
Ethyne Ethyne TS 3.0189 3.4605 M M
Bz. AcOHOH-pi 2.8023 2.8262 M M
Bz. AcNH2NH-pi 3.1488 2.9239 M M
Bz. H2OOH-pi 3.2660 3.5820 M M
Bz. MeOHOH-pi 4.4019 4.7884 M M
Bz. MeNH2NH-pi 7.9365 9.1545 M D
Bz. Pep. NH-pi 5.3659 5.0200 M M
Pyr. Pyr. CH-N 3.1774 2.7165 M M
Ethyne H2OCH-O 1.6967 1.8127 E E
Ethyne AcOHOH-pi 1.6756 0.5967 E E
Pent. AcOH 11.2297 13.4529 D D
Pent. AcNH2 7.0208 6.7911 M M
Bz. AcOH 8.2846 8.2215 D D
Pep. Ethene 5.9684 5.4634 M M
Pyr. Ethyne 1.5647 1.5099 E E
MeNH2 Pyr. 5.7620 1.8582 M E
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x40 benchmarks
The following IDs are used to shorthand the X40 donors and acceptors:

ID Donor Acceptor

1 C6H5Br Acetone
2 C6H5Cl CH3SH
3 C6H3F3 Trimethylamine
4 C6F6 Benzene
5 C6H5I Formaldehyde
6 CH3Br CH3Cl
7 CF3Br CH3F
8 CF3I Methane
9 CH3I Methanol

10 CH3Cl Methylamine
11 CF3OH Br2

12 CF3Cl Cl2
13 CH3F F2

14 HBr I2

15 HCl Water
16 HF —
17 HI —
18 Methane —
19 Methanol —
20 CHCl3 —
21 CHF3 —
22 CCl3OH —

Table E.6: Uncorrelated interaction energies in kcal mol−1 for the molecules
in the X40 database using aVDZ basis sets. Counterpoise-
corrected Hartree-Fock (HF) is compared with the ALMO +
infinite-order charge transfer (CT) energies, along with the three
different orders of charge transfer: CT1 (2nd order), CT2 (2nd +
4th order), and CT3 (infinite order).

Donor Acceptor HF ALMO+CT3 CT1 CT2 CT3

1 1 0.2437 0.0320 -0.6210 -0.6200 -0.4620

1 2 0.5782 0.4170 -0.5750 -0.5750 -0.4900

1 3 0.6809 0.4170 -1.3460 -1.3450 -1.0810

2 1 0.5993 0.4040 -0.3640 -0.3640 -0.2540

2 3 0.8524 0.5640 -0.7390 -0.7390 -0.5270

3 4 4.4722 2.8150 -1.9150 -1.9150 -1.3010

4 4 -0.6358 -0.9070 -0.9100 -0.9090 -0.6770

5 1 0.4848 0.2870 -1.0240 -1.0230 -0.8710

5 2 -0.0227 -0.3180 -2.1280 -2.1260 -1.6900



xliv benchmark data

Donor Acceptor HF ALMO+CT3 CT1 CT2 CT3

5 3 0.2869 0.1910 -0.4010 -0.4010 -0.3300

6 5 0.6242 0.1840 -0.8440 -0.8430 -0.6510

7 4 0.7078 0.1580 -1.3130 -1.3120 -1.0010

8 4 1.9577 1.6820 -0.5600 -0.5600 -0.4440

6 4 2.1920 1.7910 -0.8670 -0.8660 -0.6960

9 4 -0.0912 -0.2660 -0.2190 -0.2190 -0.1380

10 6 0.3546 0.2200 -0.2640 -0.2640 -0.1970

10 5 0.4297 0.2160 -0.2230 -0.2230 -0.1560

10 8 -1.4697 -1.5820 -0.6910 -0.6910 -0.5690

7 5 -0.8067 -0.9660 -0.4800 -0.4800 -0.3670

12 5 -2.4054 -2.5740 -1.0470 -1.0470 -0.8250

8 5 -0.9443 -1.2150 -0.3320 -0.3320 -0.1700

13 7 0.2828 0.0600 -0.2180 -0.2180 -0.1420

13 8 -2.8177 -2.5060 -1.7710 -1.7700 -1.6420

14 9 -4.0203 -3.7720 -1.8610 -1.8590 -1.6940

15 10 -11.8829 -11.3750 -4.0140 -4.0080 -3.4560

15 9 -8.1716 -8.0080 -2.0110 -2.0090 -1.7800

16 10 -1.4034 -1.2110 -1.3500 -1.3490 -1.2460

16 9 -0.1555 -0.3070 -0.6580 -0.6580 -0.5240

17 9 0.4862 0.3100 -0.2780 -0.2780 -0.2260

9 5 0.3910 0.1770 -0.2660 -0.2660 -0.1960

18 11 0.2081 0.0860 -0.1860 -0.1860 -0.0990

18 12 0.4853 0.2780 -0.2910 -0.2910 -0.2350

18 13 -1.3830 -1.6920 -0.7410 -0.7410 -0.5680

18 14 -2.3436 -2.5680 -0.7010 -0.7010 -0.5570

19 6 0.6513 0.3890 -0.2760 -0.2760 -0.1880

19 7 -7.1755 -7.1670 -2.5940 -2.5920 -2.2960

20 8 0.2157 -0.0340 -0.2360 -0.2360 -0.1570

22 15 -7.6370 -7.6610 -2.1030 -2.1020 -1.8740
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F A D D I T I O N A L D E R I VAT I O N S
F O R G R A D I E N T S

To determine the analytical derivatives in Chapter 6, a number of
intermediate derivatives of the transformed quantities in the orthogo-
nalised basis are needed in terms of the same quantities in the ALMO
basis. We start by considering those intermediates in equations 6.23,
which are for the transformed orbital coefficients and amplitudes in
terms of the ALMO orbital coefficients. Common to all of these is
the need for derivatives of the square-root inverse metrics, σσσ−1/2 and
πππ−1/2. We will use a common notation as follows:

γoikjµ =
∂

∂T
µ
j

[
σσσ−1/2

]
ik

γvacbµ =
∂

∂V
µ
b

[
πππ−1/2

]
ac

(F.1)

These derivatives are complicated due to the square root, and re-
quire the solution of sets of linear equations as follows. We note the
result from functional analysis that

δs−1 = −s−1 (δs) s−1

and thus write that, for example for the occupied inverse metric (the
result for the virtual metric is equivalent):

∂σil

∂Tjν
= −σij

[
STσσσ−1

]
νl
−
[
σσσ−1T†S

]
iν
σjl

The inverse can of course be expanded in terms of its square root as

σil =
[
σσσ−1/2

]
ik

[
σσσ−1/2

]
kl

The linear equations for the occupied γ are thus

γoikjν

[
σσσ−1/2

]
kl
+
[
σσσ−1/2

]
ik
γokljν = −σij

[
STσσσ−1

]
νl
−
[
σσσ−1T†S

]
iν
σjl

(F.2)
and equivalently for γv, but with the virtual indices and metric.

The transformed coefficients can be written as follows:

T̃ = σσσ−1/2T and Ṽ = πππ−1/2VQ

For the occupied transformation, we thus have the simple result that

Tµiνj = δµν

[
σσσ−1/2

]
ij
+ Tµk γ

o
ikjν (F.3)
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l additional derivations for gradients

For the virtual transformation, however, we have the added complica-
tion of the projector, Q, which itself depends on the occupied coeffi-
cents. We thus split it into two parts. The first, in terms of the virtual
ALMO coefficients, is equivalent to equation F.3 above:

Vµaνb =
[
πππ−1/2

]
ab
Qµν + [VQ]cµ γ

v
acbν (F.4)

In terms of the occupied coefficients, however, we have the problem
that πππ also depends on Q, as

πππ = V†Q†SQV = V†SV − V†PSSV − V†SSPV + V†PSSSPV (F.5)

Therefore we need to form a further γ tensor, γvo, where the right
hand side of equation F.2 changes to now give

∂πac

∂Tjν
= πad

{
Vdτ [SSQV]ρe +

[
V†Q†SS

]
dτ
Veρ

} ∂Pτρ
∂Tjν

πec (F.6)

where the density derivative is known from equation 2.47. This means
we have a third set of linear equations:

γvoacjν

[
πππ−1/2

]
cb

+
[
πππ−1/2

]
ac
γocbjν =

∂πac

∂Tjν
(F.7)

The occupied-virtual transformation tensor is then

Vµaνj = −
[
πππ−1/2

]
ab

[
V†S

]
bτ

∂Pτµ

∂Tνj
+ [QV]µb γ

vo
abjν (F.8)

The final intermediate from equations 6.23 is that of the transformed
residual amplitudes. These are expanded as

t̃abij =
[
σσσ−1/2

]
ik

[
πππ−1/2

]
ac
tcdkl

[
πππ−1/2

]
db

[
σσσ−1/2

]
lj

Thus the derivatives are simply expanded in terms of the same γ
tensors above, as an exercise in the product rule of differentiation:

Zijabνk =γ
o
imkν

[
σσσ1/2

]
mn
t̃abnj + t̃

ab
im

[
σσσ1/2

]
mn
γonjkν

+ γvoadkν

[
πππ1/2

]
de
t̃ebij + t̃adij

[
πππ1/2

]
de
γvoebkν

Zijabνc =γ
v
adcν

[
πππ1/2

]
de
t̃ecij + t̃

ad
ij

[
πππ1/2

]
de
γvebcν

(F.9)

The second set of intermediates we need are those of equations 6.32,
concerning the derivatives of the transformed orbital coefficients and
residual amplitudes with respect to the AO overlap matrix. The for-
mer are reasonably simple, although again the projector in the virtual
coefficients adds complexity. We once more need derivatives of the
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square-root inverse metrics, which again leads to sets of linear equa-
tions. We have very simply that σσσ = T†ST, such that

∂σij

∂Sµν
= Tµi T

ν
j

while for the virtuals, we need to work from equation F.5, also contain-
ing the density, which itself depends on the AO overlap. The result is
messy:

∂πab

∂Sµν
= VµaV

ν
b −

[
V†P

]
aµ

[SV]νb −
[
V†PS

]
aµ
Vνb − Vτa

∂Pτρ

∂Sµν
[SSV]ρb

−Vµa [SPV]νb −
[
V†S

]
aµ

[PV]νb −
[
V†SS

]
aτ

∂Pτρ

∂Sµν
V
ρ
b

+
[
V†P

]
aµ

[SSPV]νb +
[
V†PS

]
aµ

[SPV]νb +
[
V†PSS

]
aµ

[PV]νb

+Vτa
∂Pτρ

∂Sµν
[SSSPV]ρb +

[
V†PSSS

]
aτ

∂Pτρ

∂Sµν
V
ρ
b

From these, however, we can deduce the derivatives of the square-
root inverse metrics in exactly the same manner as equation F.2. With
these determined, we directly get the derivatives of the transformed
coefficients by multiplying the aforementioned derivatives by the un-
transformed coefficients. Similarly, the derivatives of the transformed
residual amplitude are then just a series of linear combinations of the
square-root inverse metric derivatives with the untransformed ampli-
tudes. The desired results then follow immediately.
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