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ABSTRACT

In the present climate of global competition, manufacturing organisations consider and 

seek strategies, means and tools to assist them to stay competitive. Computer Integrated 

Manufacturing (CIM) offers a number of potential opportunities for improving 

manufacturing systems. However, a number of researchers have reported the difficulties 

which arise during the analysis, design and implementation of CIM due to a lack of 

effective modelling methodologies and techniques and the complexity of the systems.

The work reported in this thesis is related to the development of an integrated modelling 

method to support the analysis and design of advanced manufacturing systems.

A survey of various modelling methods and techniques is carried out. The methods 

SSADM, IDEFO, IDEF1X, IDEF3, IDEF4, OOM, SADT, GRAI, PN, 10A  MERISE, 

GIM and SIMULATION are reviewed. The majorities of these contain graphical 

components and therefore, fulfil basic modelling requirements. In addition, these 

methods represent a comprehensive sample of manufacturing systems modelling 

methods. A manufacturing system comprises different sub-systems including physical, 

information and decisions sub-systems. These sub-systems can be modelled using a 

combination of the methods described i.e. GRAI for decision systems, IDEFO for 

physical systems, simulation for dynamic aspects, etc.

A novel framework for comparing the modelling methods selected is developed using a 

number of factors derived from CIM and modelling requirements. The study discovered 

that no single modelling method or technique could model all the different aspects of a 

manufacturing system or achieve integration between system domains at both static and 

dynamic levels. As a result, it was concluded that there was a need for an integrated 

modelling method for the analysis and design of complex manufacturing systems.

To overcome these problems, a novel integrated modelling method called GI-SIM has 

been developed. The method is composed of four modelling components GRAI grid, 

IDEFO, IDEF1X and SIMAN/ARENA. GI-SIM integrates these four tools to form a 

complete method, which combines the advantages of existing modelling methods and 

eliminates their shortcomings.
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The method developed is evaluated using a case study carried out in a UK company 

manufacturing electric motors. It is also tested for the design and specification of CIM 

system components (CAD, CAPP, CAM, etc.). The case studies demonstrate that GI- 

SIM achieves two important types of modelling integration; the first is a vertical 

integration between different levels of abstraction (conceptual, structural and dynamic) 

and the second is a horizontal integration between five modelling domains (decision, 

functional, information, physical and dynamic). In addition, the method is easy to learn 

and use, and sufficiently flexible to model any system function according to its related 

objectives.

The findings of this research and recommendation for future research are presented in 

the final chapter.
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Introduction

CHAPTER-1

INTRODUCTION

1.1. Background Of The Research

Industrial organisations must respond to their rapidly changing marketplace and to the 

new technologies being implemented by their competitors (Bray 1988). Manufacturing 

change can be an effective competitive weapon if it is well planned and supported by 

powerful modelling methods and technologies. Many factors such as reduced lead time, 

greater flexibility, improved communications and co-ordination with suppliers, 

increased productivity, improved design and greater manufacturing control, can make 

industrial organisations far more competitive in the future. Various authors and 

practitioners have suggested that Computer Integrated Manufacturing (CIM) will 

improve manufacturing, making it faster and more competitive (Bray 1988, Guetari and 

Nguyen 1997, Pleinevaux 1997, Vail 1988, Nicholson 1991, Weatherall 1992).

CIM has become a very important manufacturing strategy because of the enterprise

wide integration it supports. Rembold et al (1993) suggested that the manufacturing 

systems of the future would need to be flexible and programmable. Most manufacturing 

companies do not know how to design and implement CIM (Scoggins 1986) and it 

would be a disaster if they developed incorrect specifications for their advanced 

manufacturing technologies. CIM projects must be supported by effective modelling 

methods and techniques to assist the organisations to adopt and implement systems 

specifications which correspond to their needs (Doumeingts et al. 1995a). Rembold et al 

(1993) stated that “manufacturing systems of the last decade of this century and the first
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decade of the next century will be test-beds of the Computer Integrated Manufacturing 

(CIM) concepts of the future”.

From the above it is clear that the effective modelling, analysis and design of CIM is a 

key issue.

1,2. The Need For Modelling Methods

The previous section indicates that there is a need for new manufacturing systems that 

can achieve the business and manufacturing objectives of industrial organisations, and 

that CIM is a strategy that can achieve these objectives.

Brandimarte and Cantamessa (1995) reported that the need for a modelling method is 

particularly relevant with complex manufacturing systems such as CIM. They also 

indicated that many different modelling methods and techniques are being used, but 

nearly always within a specific cultural area and applied to a limited set of CIM 

problems. It has been found that the conception and design of modelling methodologies 

and techniques is one of the major challenges in analysing and designing CIM systems. 

Doumeingts et al. (1995b) concluded that the only way to design an adequate CIM 

system was to use a modelling method which involves and mobilises all the people 

concerned, and took into account decisions, functions, information and resources, as 

well as other factors such as economic and social aspects.

The limitations of current CIM modelling methods have been addressed by various 

researchers. Aguiar and Weston (1995) concluded that there has no single modelling 

method which provided a complete support for decisions along the integration 

manufacturing enterprise life cycle. They identified a number of gaps, such as the lack 

of a good formalism which must be filled.

Brandimarte and Cantamessa (1995) reported that current modelling methods do not 

pay sufficient attention to important aspects of CIM that need deep integration of many 

components and elements. Chadha et al (1991) also mentioned that existing modelling 

tools do not satisfy all the requirements of complex manufacturing systems.
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Many authors have agreed on the need for an integrated modelling method for the 

analysis and design of manufacturing systems. Pandya (1995) suggested that a 

combination of tools could be used to model a complete system environment because 

there was no modelling tool which could be used to give proper results. Colquhoun et al 

(1993) found that interfaces and integration between existing modelling methods such 

as IDEFO and dynamic modelling had not received sufficient attention.

It is clear that there is a need for an integrated method to support the analysis and design 

of CIM systems. An integrated modelling method can be created by selecting, 

developing and integrating existing modelling methods and techniques to support CIM 

(Aguiar and Weston 1995).

As a result of complex CIM requirements and the limitations of current modelling 

methods and techniques, a need has been identified for new modelling approaches 

which combine the advantages of existing methods and eliminate their shortcomings.

1.3. Aims And Objectives Of The Research

This research aims to develop a novel integrated modelling method to support the 

analysis and design of CIM systems. This integrated method is configured using 

existing methods and techniques to meet the modelling needs of CIM systems. 

Components of the modelling method developed use a number of factors identified from 

a review of CIM analysis and design requirements, and an evaluation of existing static 

and dynamic modelling methods and techniques.

The research develops uses a novel integration of modelling domains, according to 

levels of abstraction using a combination of static and dynamic modelling approaches. 

This is necessary to capture the different characteristics of manufacturing systems. The 

integrated method provides the main modelling concept as a formal method for 

conceptual, structural and analytical modelling. Figure 1.1 illustrates the main concept 

of the modelling method presented.
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This modelling concept will facilitate modelling procedures based upon user

requirements, related to different sub-systems, and the integration between selected

tools which serve different levels of abstraction.

To achieve the aims of the research, the following objectives were identified:

• Review basic manufacturing systems and identify basic system types investigating 

the needs of manufacturing organisations and the relevance of CIM.

• Review and evaluate existing modelling methods and techniques for the analysis 

and design of CIM systems.

• Develop a novel integrated modelling method capable of analysing and designing 

CIM systems.

• Develop a novel computerised tool to support aspects of the modelling method 

developed.

• Evaluate and validate the modelling method developed for the analysis of 

manufacturing systems in a case study company.

• Evaluate and validate the modelling method developed for the design of CIM 

system specifications.

• Contribute to the research literature on advanced manufacturing systems analysis 

and design.
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1.4. Thesis Structure

This thesis contains eight chapters which have been organised into four sections (Figure 

1.2), as follows:

Section-1
Section-1 gives a review of the research area and CIM components. It involves three 

chapters (chapters 1-3):

Chapter-1 provides an introduction to the thesis. This describes the background of the 

research undertaken and identifies the need for an integrated modelling method for CIM 

systems analysis and design. This chapter also describes the organisation of the thesis.

Chapter-2 briefly reviews the basic concept of manufacturing systems and existing 

classifications of manufacturing systems are reviewed. The needs of manufacturing 

organisations are discussed and the introduction of CIM as a new manufacturing 

strategy is reviewed. This chapter establishes three important points for the research:

• Current manufacturing systems are moving towards batch production;

• Changes in manufacturing industries are inevitable and strategies to support these 

changes should be developed;

• CIM is one option which can be used to meet the challenges of manufacturing 

systems.

This Chapter also reviews CIM and its components. The objective of this review is to 

consolidate the background to CIM, its definitions, benefits and the concept of 

integration between different system components. Computer-Aided Design (CAD), 

Computer-Aided Process Planning (CAPP), Computer-Aided Manufacturing (CAM), 

Production Planning and Control (PPC) and their related themes are described. The role 

of these sub-systems in the CIM environment is also presented in this chapter. In 

general, this chapter answers several important questions. These questions are:

• What is CIM?

• Why should CIM be implemented?

• What are child-strategies of CIM strategy?

• How can the concept of integration be understood?
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Figure l.ì. Thesis Structure.

Chapter-3 presents a detailed survey of manufacturers who have adopted CIM systems. 

The objective of this survey is to study the success and failure of CIM and to identify 

the barriers to success. The main aims of this chapter are to:

• Review past experience of implementation;

• Identify the reasons for the success and failure of CIM;

• Identify the main obstacles to CIM success.
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Section-2

Section -2 comprises two Chapters 4 and 5:

Chapter-4 presents a detailed survey of existing conceptual modelling methods and 

techniques, and simulation tools. It defines the modelling concept, classification and the 

reason for modelling. A variety of modelling methods and techniques are reviewed 

including SSADM, IDEFO, IDEF1X, IDEF3, IDEF4, OOM, SADT, GRAI, PN, IOA, 

MERISE and GIM. A number of comparison and evaluation issues related to modelling 

methods are reviewed. Dynamic modelling of manufacturing systems i.e. simulation 

modelling is also reviewed. The chapter illustrates the importance of simulation in 

analysing and designing different aspects of manufacturing systems, discussing various 

steps of the process of simulation and the attributes of different simulation languages. A 

number of manufacturing simulators are discussed, including SIMAN/ARENA, 

SIMFACTORY, SLAM II, PC Model and ProModel. This chapter also discusses the 

selection of simulation tools and the role of simulation in CIM system design. Finally, a 

framework for comparing the CIM modelling methods and techniques is developed 

using selected factors related to manufacturing systems and modelling requirements.

Chapter-5 describes the development of a novel integrated modelling method (GI- 

SIM). It argues the need for a new modelling method and discusses the components 

selected for inclusion in the method developed. Modelling procedures and the 

formulation of different method factors are also described. Finally, this chapter gives 

details of a novel computerised tool developed to support the modelling method 

developed.

Section-3

Section-3 comprises two chapters 6 and 7:

Chapter-6 describes a case study application of the new modelling method using 

information collected during industrial visits. The objective of this chapter it to give a 

background to the case study company and the different manufacturing activities 

currently operating. It aims to collate basic details for the analysis and design phases.

GI-SIM was applied for the analysis of operational manufacturing systems. It combines 

the static and dynamic concepts of modelling to consider the systems used in the 

company selected. The objectives of this chapter are to:
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• Identify and analyse problems in the existing manufacturing systems of the 

company.

• Evaluate and validate the use of the GI-SIM method for the analysis of 

manufacturing systems.

Chapter-7 describes the design of CIM components using the GI-SIM modelling 

method. A set of operational functions of CIM systems are selected for consideration in 

this chapter. These functions are ‘To Design’, ‘To Plan’, and ‘To Make’, which are 

supported by four different components of CIM: CAD, CAPP, PP&C and CAM. The 

main objectives of this chapter are to:

• Establish design specifications for CIM system components in the company 

selected.

• Evaluate and validate the use of the GI-SIM method for the design of CIM systems.

Section-4

This section comprises Chapter-8 which contains a discussion and outlines evaluation of 

the modelling method adopted. The thesis presents the link between case where static 

and dynamic modelling techniques have been integrated to produce a comprehensive 

method for analysing and designing manufacturing systems. The thesis ends with 

conclusion and recommendations for future work.
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CHAPTER-2

MANUFACTURING SYSTEMS AND CIM
DEFINITION

2.1. Introduction

This chapter discusses the basics of manufacturing systems. It presents the main terms 

related to manufacturing systems including system and manufacturing definitions. 

Several classifications of manufacturing systems are reviewed in this chapter. The 

chapter also includes a description of current trends in industrial change and identifies 

the need for new strategies which can assist manufacturing industry to survive in this 

competitive era. Computer Integrated Manufacturing (CIM) is suggested as a global 

strategy for manufacturing enterprises. The reasons supporting the selection of this 

strategy are discussed and CIM definitions and its main benefits are presented.

2.2. System Definition

Before describing manufacturing systems, it is necessary to consider the meaning of the 

word ‘system’. This term is widely used but as yet there is no generally agreed 

definition. The word ‘system’ is used in many disciplines and areas of research 

(McMillan and Gonzalez 1973). This term (system) appeared in 1619, meaning 

‘organised whole’ (Hitomi 1994). Hitomi (1996) suggested that a system could be 

characterised by four attributes:

1. Assemblage. A system involves a group of distinguishable units.
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2. Relationships. A system group should have relationships between these units.

3. Goal seeking. A system should perform determined functions or aim at a number of 

objectives.

4. Adaptability to environment. A system should adapt to its surroundings or external 

environments.

Beishon and Peter (1976) suggested that a major cause of difficulty in understanding the 

term (system) is the confusion between a system as existing ‘objectives’ in the real 

world and the idea of a system in people’s mind. However, there is semi-agreement 

about the system definition. Most definitions agree that a system is a set of components 

with relationships between them, operating as a whole, to reach a set of objectives.

2.3. System Classifications

Systems are classified in different ways depending upon several aspects which are 

different from one system to another. McMillan and Gonzalez (1973) classified systems 

using three perspectives: systems can be natural or man-made, systems can be open or 

closed, and systems can be adaptive or non adaptive. Systems have also been classified 

using their component relationships or environmental status (dynamic and static). A 

manufacturing system is an example of a complex system with many objectives and 

involving many internal sub-systems and components. This work will concentrate on 

the internal working of a manufacturing facility.

2.4. Manufacturing Systems

The original meaning of the word ‘manufacturing’ was ‘to make things by hand’ (manu 

factum) (Hitomi 1994). Nowadays, the meaning of manufacturing is different, the term 

means the transformation of raw materials into finished products. Table 2.1 illustrates a 

brief historical development of manufacturing.
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Date Manufacturing Development
Ancient times Wheel, lever, pulley, cutting implements, assemblies e.g. waterwheel, carts.
Middle ages Windmill, mechanical clock.
Pre 1800 Completely custom -  craftsman.
1800s English system -  Introduction of general purpose machines that could be used 

for a variety of products.
1900s Pre-specified worker motion -  moved the control totally to the hand of 

management.
1913 Moving assembly line for Ford Model T.
1924 Mechanised transfer line for machining automobile engine components in 

England
1946 First electronic digital computer (ENIAC).
1950s ■ Numerical Control (NC) machine developed at MIT.

■ Identical procedures produce different results on same machine at different 
times. Emphasised outliners instead of mean performance.

■ First industrial robot designed.
1960s ■ Solid state integrated circuit developed

■ First Unimate robot installed to unload parts in die-casting operations.
■ Automatically Programmed tooling (APT) Developed, a programming 

language for NC machines.
■ First flexible manufacturing system installed.

1970s ■ Combination of the versatility of general purpose machines with the 
precision and control of special purpose machines.

■ Microprocessor developed.
■ Computer language for programming industrial robots developed.

1980s ■ Computer Integrated Manufacturing developed
■ Cellular Manufacturing Systems appeared.

1990s ■ Agile Manufacturing /Mass Customisation
■ Virtual Manufacturing Systems

Table 2.1 Historical Development of Manufacturing

Three stages of manufacturing development can be observed from the above table. In 

the first stage, manufacturing was dependent upon the human hand and the human 

brain. In the second stage, the human hand was replaced by manufacturing machines but 

the human brain was still needed. Nowadays, in the third stage, the human brain has 

been replaced by programmable machines, integrated with operational machines 

(Goldharand Schlie 1991).

The Term ‘manufacturing systems’ can be defined as a number of tasks and components 

connected to each other to transform raw materials to semi-finished or finished 

products, using different strategies, techniques and processes. Hitomi (1994) suggested 

that manufacturing (or production) systems could be considered in three aspects 

structural, transformational and procedural aspects. The structural aspects are based 

upon the static definition of the system. According to this aspect a manufacturing 

system can be defined as a unified collection of hardware which involves workers, 

production facilities, materials and other supplementary devices. The transformation 

aspect of manufacturing systems is based upon the functional definition of the system.
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The manufacturing systems definition can be defined, based upon this aspect, as the 

transformation of the production factors such as raw materials into finished products. 

The procedural aspect of manufacturing systems refers to the procedural definition of 

the system, so based on this, manufacturing system can be defined as the operating 

procedures of production including planning, implementation and control. Based upon 

these three manufacturing system definitions, Figure 2.1 can be derived.

Figure 2.1. Basic aspects of manufacturing system definitions.

When Nicholson (1991) presented a simple input/output model of manufacturing 

systems as illustrated in Figure 2.2, he recognised that manufacturing composing 

complex, multidimensional systems, provides a rich source of challenging and 

systematic problems with common objectives but conflicts at all levels of decision 

making.

<:
Controlled 

Inputs

U n c o n tr o lle d / ■ 
Inputs ■

Raw
Material

Equipment
Etc.

Orders
Market forces 

Random disturbance 
Etc.

Manufacturing
system

Products
Performance measures 

^  Quality

Figure 2.2. Input/output representation o f manufacturing system (Nicholson 1991).
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2.5. Types of Manufacturing Systems

Manufacturing systems can be classified into several types based upon a variety of 

schemes identified in the supporting literature. Using these schemes, manufacturing 

systems can be classified according to:

1. Time function of manufacturing process output. In this scheme, manufacturing 

systems are categorised into two types, continuous and discrete. Continuous systems 

involve the continuous production of product. Continuous manufacturing is 

represented by chemicals, plastics, petroleum and food industries. Discrete 

manufacturing systems involve the production of individual items. Discrete 

manufacturing can be represented by cars, machine tools and computers. The focus 

of this research will be discrete manufacturing systems.

2. Transformation of natural resources (or manufacturing operations). Groover (1987) 

used this term to classify manufacturing into three categories namely, basic 

producer, converter and fabricator. The basic producer takes original resources and 

transforms them into raw materials which can be used by other manufacturers. For 

example, aluminium producers transform aluminium into ingots. The converter 

takes the output of a basic producer and transforms these materials into other 

products and some final components. For example, aluminium ingots are converted 

into bars or aluminium sheets. The fabricator produces and assembles final products. 

The aluminium bars or sheets are then converted into machined products. This 

scheme of manufacturing systems is shown in Figure 2.3.
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3. Types of transformation process. In this classification scheme, manufacturing 

systems can be categorised into assembly and non-assembly systems. The assembly 

system joins individual parts or components in sub-assemblies or final assemblies. 

In the non-assembly type, materials are processed to produce individual parts or 

components. This type includes machining, moulding, fabrication, etc.

4. Production volume. This scheme refers to the quantity of products made and 

classifies manufacturing systems into three types namely; mass, batch and jobbing 

systems. This classification is normally associated with discrete manufacturing 

systems. A mass production system produces a high volume of products and is 

characterised by its special purpose equipment. The batch manufacturing system is 

characterised by small batches produced. The goal of batch manufacturing is often 

to meet continuous customer demand on general purpose equipment. This type of 

manufacturing system is a very important part of manufacturing industry. It has 

been estimated that 75% of the UK and USA manufacturing products are produced 

using batch manufacturing systems (Papadopoulos et al. 1993). Jobbing 

manufacturing systems involves low production often to meet specific customer 

orders.

5. Production planning and inventory policies. In this scheme, the manufacturing 

classification is based upon policies such as Make-To-Stock and Make-To-Order as 

illustrated in Figure 2.4. Using the concept of this scheme, Bertrand and Muntslag 

(1993) identified four types of manufacturing Make-To-Stock (MTS), Make-To- 

Order (MTO), Engineer-To-Order (ETO) and Assemble-To-Order (ATO). The MTS 

type suggests that production is based upon calculated or well known demand. 

Customer orders are delivered from stock and production work is initiated by stock 

shortages. In MTO type, manufacturing begins with the receipt of a customer order. 

ETO is an extension of MTO with the design of the product based upon customer 

specifications. ATO involves core assembly operations that can be initiated on 

receipt of an order.
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Figure 2.4 MTS & MTO manufacturing systems

6. Workflow (or system structure). In this scheme, manufacturing systems are divided 

into four types: job shop, project shop, cellular system and flow line. The following 

section provides more details about these manufacturing systems.

2.5.1 Job Shop Manufacturing System

In a job shop, machines with the same function or similar material processing 

capabilities are grouped together in specialised work centres (El-rayah and Hollier 1970, 

Chryssolouris 1992). For example, all lathes represent a turning work centre, milling 

machines are grouped in another work centre (Chase and Aquilano 1985). Machines of 

this type are usually general-purpose machines which can produce a large variety of 

product types. A work piece travels from one work centre to another according to the 

production plan as shown in Figure 2.5. The job shop type is typically used in jobbing 

and batch production (El-rayah and Hollier 1970 and Groover 1987).

Work-centre
© ©
© ©

® ® ® ® 
®®@®

(d) ( d ) ( d ) ( d^

Figure 2.5. Job shop manufacturing system.
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2.5.2 Project Shop Manufacturing System

In the project shop manufacturing, a product remains fixed in a particular location due 

to product size and/or weight, during the manufacturing processes. Labour materials and 

equipment are brought to the product position as needed. This type of manufacturing 

systems can be found in aircraft and shipbuilding industries (Hicks 1994). Figure 2.6 
shows a typical project shop manufacturing system.

2.5.3 Cellular Manufacturing Systems

A cellular manufacturing system is based upon the philosophy of Group Technology 

(GT) (Gupta 1993 and Rajamani et al 1990). The concept involves grouping parts which 

have similar manufacturing requirements into families and grouping machines that 

produce these families into cells. Hence, every manufacturing cell contains a group of 

machines that can produce a certain family of parts (Logendran 1991). The aim of a 

cellular manufacturing system is to reduce set-up times, flow times, inventory levels and 

market response time (Salvendy and Wu 1993). Figure 2.7 illustrates a typical cellular 
manufacturing system.
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Figure 2.7. Cellular manufacturing system
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The cellular manufacturing system can produce medium -volume/medium variety parts 

more economically than other types of manufacturing systems (Choobineh 1988).

2.5.5. Flow line Manufacturing System

In flow line manufacturing, machines and other equipment are arranged according to the 

process sequences of the product to be produced e g. assembly lines. Flow line 

machines are often linked by an automated handling system, such as conveyors, which 

move the Work-In-Progress between workstations. (El-rahah and Hollier 1970). Figure 

2.8 illustrates atypical flow line manufacturing system.

Figure 2.8. Flow line manufacturing

2.6. Manufacturing Systems Review

It has been noticed that manufacturing systems are moving from mass to low volume 

production owing to market changes and special customer orders. Customers have 

become more sophisticated, ordering a wide variety of high quality goods at competitive 

prices. Moving towards a jobbing shop system requires the systems to be more flexible. 

In MTO systems, the manufacturer tries to interact more closely with the customer. In 

addition, a trend moving from MTS to MTO has been observed over the past two 

decades. Figure 2.9 illustrates a combination of manufacturing system types discussed.
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V Proj shop Iffif
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Figure 2.9. Types of manufacturing systems

MTS
Quantity

As illustrated in the figure above, the project shop manufacturing system can be 

characterised by a very high product mix and flexibility, high variety of task and high 

unit costs. The project shop system also shares some characteristics with a jobbing shop. 

Batch and cellular manufacturing systems are mid-volume, mid-variety production 

systems. Mid-volume and mid-variety systems represent about 75% of discrete part 

manufacturing; hence, flexibility is a very important factor in these systems. MTO and 

ATO are located in the area of batch and cellular manufacturing systems. This indicates 

that these systems should receive more attention and development. Mass production and 

flow line systems are characterised by high-volume and low-variety. These systems 

would satisfy with the MTS production. Table 2.2 illustrates a comparison of various 

manufacturing systems.
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Production type
Factor Project shop Jobbing Batch & 

Cellular
Mass & 

Flow line
Continuos
production

Variable
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High High Very high Low
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diversity
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Low
No
Yes

Fixed
position
layout

No
Yes

Process
layout

Some
Yes

Cell layout

Yes
Some

Product
layout

High
Yes
No

Product
layout

Flexibility of the process 
Number of set-ups 
Capacity 
Technology 
Dominant utilisation 
Control of operations

Operation times 
Capacity control 
Productivity control 
Bottlenecks 
Amount of capital 
investment
Finished part inventory 
WIP
Product/service range 

Order size
Volume of operations
MTS
MTO
Layout

Table 2.2. Comparison of manufacturing system types.

2.7. Manufacturing Strategy

This era, symbolises a new difficult reality, this is the impact of industrial competition 

(Hill 1993). Due to increasing competition and shorter product life cycles, 

manufacturing industries are forced to present and develop more and better products and 

seek means, strategies and tools that can be used to achieve their goals and consolidate 

their future. Manufacturing organisations must be able to adapt quickly to these new 

competitive conditions and take advantage of all the available strategies and 

technologies to help them stay competitive (Torkzadeh and Sharma 1991).

Numerous conferences, articles and groups have addressed issues related to the 

changing nature of manufacturing (Solberg 1988). Bessant (1994) reported that the 

1980s represented an increasingly problematic decade for manufacturing systems and 

evidence suggests that in the next decade the environment will become even more 

challenging. Ziarati (1991) suggested that a variety of factors conspire to force 

manufacturing organisations to become more agile, flexible and responsive if they wish
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to survive. This is the result of increasing competition and globalisation. Lim and Nee 

(1993) emphasised the reason forcing manufacturing enterprises to continue improving 

their strategic competitive advantage through increased flexibility and cost-effectiveness 

is to remain competitive in a changing world economy. Levary (1996) urged 

manufacturing organisations to change quickly to be successful in today’s competitive 

global environment.

There is a need to develop manufacturing strategies which can meet the demand of the 

current economic conditions, i.e. take significant market share, reduce lead times, 

increase profit, reduce costs, improve quality etc. (Barker and Powell 1989). To achieve 

these, organisations must believe in change and develop and select a suitable strategy. 

Several contributors define the term strategy such as: “ A strategy is a plan of attack, 

methodology, [procedure, process] or approach. A strategy is a series of steps defining a 

pattern of action to be followed by an individual or a group in achieving a purposeful 

activity.” (Nadler 1971). Staughton et al (1992) indicated a number of different 

contributions to understanding the role of manufacturing strategy. These contributions 

deal with the decision-making aspects, the presence of a specific plan and the 

orientation of the organisation. Carrie et al (1994) defined strategy as the plan to reach 

the goals.

Buffa (1984) (cited by Hitomi 1996) mentioned that manufacturing strategy consists 

basically of:

• The minimum-cost/ high-availability strategy and

• The highe st-quality/flexib i 1 ity strategy.

This cannot be achieved using traditional manufacturing strategies. To achieve 

manufacturing goals, new strategies that meet the challenges of contemporary 

manufacturing technologies and operations must be adopted.

As a result of renewed emphasis on manufacturing methods, a number of 

comprehensive strategies are receiving wide spread attention (Mellichamp et al. (1990). 

One possible way of producing a significant strategic performance improvement is the 

adoption and effective implementation of CIM. The CIM strategy opens up major 

opportunities not only for improving planned goals but also for more radical 

alternatives, doing things which have never been done before or doing them in ways
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which were hitherto not possible (Ziarati 1991). Thomas and Wainwright (1994) and 

Ngwenyama and Grant (1994) suggested that CIM has been identified as a key to 

meeting the challenges of manufacturing in the 1990s. They support their suggestion 

with the fact that manufacturing industries can provide competitive advantage through 

the achievement of strategic and operational objectives. Guetari and Nguyen (1997) 

emphasised that CIM implementation is a strategic choice.

2.8. CIM Strategy

CIM is the key to survival for many industries requiring to continue competitively by 

producing high quality products at the right time and at acceptable costs, to satisfy the 

fast changing market (Nicholson 1991). In 1988 Vail suggested that CIM was one of the 

fastest growing fields. It is not a single concept or tool but integration of the elements of 

the system as a whole. In the CIM system all the technology and strategies are based on 

an integration.

CIM is a strategy for economical production by effective utilisation of different data 

resources via computer-based methods. Without doubt CIM systems, with their long

term impact, require alignment of business and manufacturing strategy (Guetari and 

Nguyen 1997). Pleinevaux (1997) envisaged the current view of CIM as appearing to 

represent a strategic panacea for the organisation being studied.

It has been mentioned in previous sections that there is a global movement toward batch 

manufacturing. It has been estimated that over 70% of manufacturing industry is carried 

out on batch production. This requires a high level of manufacturing flexibility which 

plays a very important role in this type of production. Levary (1992) defined 

manufacturing flexibility as the efficiency with which a manufacturing system reacts 

effectively to changes in the organisation. He primarily divided manufacturing 

flexibility into product flexibility and volume flexibility. The product flexibility is the 

efficiency with which a manufacturing process can be effectively converted to produce 

another product and/or products having special features. Volume flexibility is the 

efficiency with which a manufacturing process can be converted from producing one lot 

size of a given product to producing larger or smaller lot sizes of the same product. 

Browne et al. (1988) identified eight types of manufacturing flexibility: machine 

flexibility, process flexibility, product flexibility, routing flexibility, volume flexibility,
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expansion flexibility, operation flexibility and production flexibility. It has been found 

that CEM has the widest potential applicability in manufacturing environment in 

producing products on a batch basis (Vail 1988).

However, developments in CIM systems are proceeding rapidly, and the general 

consensus is that they are essential for survival in highly competitive world markets, 

and for progress toward the fully automated 'factory of the future' (Nicholson 1991).

In fact, the strategies of CIM cover the basic areas of manufacturing systems through 

the different system components such as CAD, CAM, PPC, CAQ and CAPP. All these 

components represent child-strategies under a CIM system global strategy.

2.9. CIM Definition

Before moving into any discussion about CIM systems, it is necessary to define CIM. 

The phrase Computer Integrated Manufacturing was coined by Harrington in 1973 to be 

a logical direction for growth in manufacturing; others produced the abbreviation CIM 

(Mitchell 1991). CIM means different things to different people (Aletan 1991); hence, it 

would be very difficult to find a well established definition for this term. Boaden and 

Dale (1986a) reported that a definition of CIM in itself could be the subject of a 

complete paper. However, many definitions of CIM have been reported. The following 

are some examples of CIM definitions:

“Represents the integrated applications of computer technology to manufacturing in 

order to achieve the business objectives of the firm”.

Browne et al 1988.

“The process of using computers and communications networks to transform an island 

of automation into a highly interconnected manufacturing system that can co-operate in 

executing assigned tasks”.

Aletan 1991.

“The integration and co-ordination of design, manufacture and management using 

computer-based systems”.

Tie and Cilin 1992.
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“A computer integrated system involving the overall and systematic computerisation of 

the manufacturing process. Such systems will integrate computer aided design, 

computer aided manufacturing and computer aided engineering, testing, repair and 

assembly by means of a common database”.

ESPRIT definition 1982 (cited by Browne et al. 1988).

“A flexible market-adaptive strategic manufacturing system which integrates three 

different functions and systems - design, production and management - through the 

information network with computers”.

Hitomi 1996.

“The integration of the total manufacturing enterprise through the use of integrated 

systems and data communications coupled with new managerial philosophies that 

improve organisational and personal efficiency”.
Meabi and Singh 1997.

“A strategy consisting of physical components and the conceptual methodology to 

integrate the components”.
Ingerosoll Engineers 1985.

“CIM refers to a global approach in - an industrial environment - which aims at 

improving industrial performance. This approach is applied in an integrated way to all 

activities, from designing to delivery and after-sale, and uses various methods, means 

and techniques (computer and automatic techniques) in order to simultaneously improve 

productivity, decrease costs, meet due dates, increase product quality, secure flexibility 

at local or global level in a manufacturing system, and involve every actor. In such an 

approach, economic social, and human aspects are at least as important as technical 

aspects”.
Dumeingts et al. 1995a.

“The application of information and manufacturing technology, plans and resources to 

improve the efficiency and effectiveness of a manufacturing enterprise through 

horizontal, functional and external integration”.

McGaughey and Roach (1997).

23



M anufacturing System s and CIM Definition  

“The entire [manufacturing] system, from product definition and raw material 

acquisition to the disposition of the final product, is carefully analysed such that every 

operation and element can be designed to contribute in the most efficient and effective 

way to the achievement of the clearly enunciated goals of the enterprise”.

Mize and Palmer 1989 (cited by Bedworth et al. 1991).

2.9.1 A Discussion on CIM Definitions

The problem of defining CIM has been discussed by many contributors. Boaden and 

Dale (1986b) outlined this problem and allotted a complete paper entitled, ‘What is 

Computer Integrated Manufacturing?’ to this propose. According to their study, CIM 
definitions have been divided into ten categories:

1. The computerisation of the main functions of an organisation.

2. A philosophy or tool for strategic management.

3. Viewing the organisation as part of a total business unit.

4. An exercise in information management.

5. A computer system running from a single database.

6. A closed loop feedback system for an organisations.

7. A system to enable a better response by the organisation to market situations.
8. An integrated CAD/CAM system.

9. The use of the most advanced manufacturing technology.

10. A system with its biggest impact on people.

The authors classified these ten items into three main classes A, B and C:

(A) Total organisation definitions (1,2 and 3).

(B) Information systems definitions (4, 5, 6 and 7).

(C) Single fact definitions (8, 9 and 10).

As illustrated in Figure 2.10, the definitions of CIM have been broken-down by class 

and category. It can be noted that the largest class of definition is class ‘C’ and the 

largest category is category ‘9’. Categories 1, 3, 8 and 9 have been the most popular, as 

illustrated in Figure 2.10.
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2.9.2 Reasons for the Different Definitions of CIM

The main reasons for the existence of different CIM definitions fall into two main 

categories: the different viewpoints about the integration concept and the different 

perspectives of CIM within manufacturing enterprises.

1. The different viewpoints about the term ‘integration’. Platts’s article (1995) set out 

to identify different types of integration. He reviewed work by Das (1992) who 

classified integration into two types: resource-oriented integration and activity- 

oriented integration. The resource-oriented integration is concerned with physical 

entities and includes computer and network integration, equipment integration, 

facilities integration and material integration. Activity-oriented integration is 

concerned with the processes which occur in a business and includes process 

integration, information integration, decision-tool integration, control integration 

and product integration. Platts (1995) also reviewed O’Sullivan’s attempt in 1992 to 

classify integration. O’Sullivan broke down integration into two broad areas based 

upon the system designer’s viewpoint. These two areas are social integration and 

technical integration. Social integration includes the integration of people, their 

ideas and the decision-making process. Three elements have been identified for this: 

management integration, system designer integration and user integration. Technical
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integration is related to technical sub-systems and includes information integration, 

data integration and equipment integration. Platts himself categorised integration 

into two basic aspects: external integration and internal integration. External 

integration is concerned with manufacturing objectives and policies responding both 

to the needs of the market and the competitive needs of the organisation, taking into 

account any environmental constraints. Internal integration is concerned with the 

development of a set of manufacturing practices which are consistent and mutually 

supportive, and which support the manufacturing objectives addressed by external 

integration.

2. The different perspectives of CIM within a manufacturing enterprise. Forrester et al. 

(1995) considered the different implications of CIM and its wide range of 

perspectives. According to that study, the following perspectives have been 

reported:

• Strategic perspective. Depending upon this perspective, CIM is considered as 

strategically important as it contributes positively to the competitive edge of a 

company through reducing costs, improving quality, enabling variety production, 

reducing product introduction items, cutting delivery times and improving delivery 

reliability.

• Social perspective. From this perspective, CIM is considered to be a controversial 

issue when one considers the contradictory nature of the benefits. Hence, it has been 

shown that the development of advanced manufacturing technology and computer 

based systems for business and production is seen as a key influence in the 

development of contemporary manufacturing economies.

• Organisational development perspective. This considers CIM as a development 

concept to integrate and communicate different functional aspects of an 

organisation. Attempting to work together, more often than not, prompts conflicts.

• Technical perspective. From this perspective the CIM system is considered as the 

latest evolution of technology in the workplace in the areas of design engineering, 

production management systems and machine automation.

Kumara et al. (1992) suggested that manufacturing systems can be categorised from a

CIM perspective into a conjunction of three basic processes: the design process, the

implementation process and the integration process. They presented subdivisions for the

above processes, as follows:
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1. The design process 

a Product design

i. Conceptual design

ii. Product characteristics

iii. Design specifications

iv. Duality specifications

v. Concurrent design processes 

b Process design

i. Process characteristics

ii. Process design specifications

iii. Process and operation planning 

c Quality design

i. Characteristics of quality

ii. Tolerance analysis

iii. Quality control system design 

d System design

i. Optimisation

ii. Material management systems

iii. Production planning and control systems

iv. Inspection systems

v. Distribution and logistics systems

vi. Functional systems

vii. Integrative information systems

2. The implementation process

i. On-line real time diagnostics and control systems

ii. Off-line diagnostics and control systems

3. The integration process

i. Integration of monitoring and control

ii. Integration of planning and control

iii. Integration of design and implementation process

Many other definitions of CIM have been generated based upon the integration between 

system functions and computers. Scheer (1994) reported that until the start of 1980s a
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definition of CIM narrowly related to manufacturing and product development in which 

‘CIM=CAD+CAM’ in Japan and USA.

Because the strategic business level issues will drive the whole process, it must be 

remembered that the business is more than just the manufacturing function (Rogers et 

al. 1992).

The CIM definition adopted by this research is not restricted by the sophisticated 

computer hardware and software or limited to transfer of information between system 

functions, but incorporates these aspects within a wider concept embracing the 

integration of all manufacturing sub-systems. When the full flows of information, 

decisions, materials and processes are considered, it is clear that the wider system 

involving an organisation’s external aspects, such as customers and vendors, should be 

taken into account. Hence, CIM should be considered and defined in its widest sense by 

including relationships with these external factors. Such a definition may resemble that 

proposed by Dumeingts et al. (1995a) “CIM refers to a global approach in - an industrial 

environment - which aims at improving industrial performances. This approach is 

applied in an integrated way to all activities, from designing to delivery and after-sales, 

and uses various methods, means and techniques (computer and automatic techniques) 

to simultaneously improve productivity, decrease costs, meet due dates, increase 

product quality, secure flexibility at local and global level in a manufacturing system, 

and involve every actor. In such an approach, economic social and human aspects are at 

least as important as technical aspects”.

2.10. Why CIM?

CIM is needed to generate and support flexible strategies that are very required to meet 

rapid market changes. These changes involve a great variety of products coupled with 

shorter product life cycles. Hence, industrial organisations must learn how to shorten the 

lead time of products from order to delivery. Awareness of manufacturers about the 

integrated manufacturing systems contributes to the enhancement of manufacturing 

enterprise competitiveness and improves decision-making (Singh and Weston 1996).

A consensus of opinions about the CIM mission and benefits undoubtedly becomes very 

evident. Davis et al. (1990) reported that there has been a renewed interest in
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manufacturing research due to two main reasons: increasing global competition which 

needs improving manufacturing efficiencies and the advances of computer capabilities. 

They emphasised that to address these needs organisations are increasingly turning to 

the implementation of CIM.

Gaafar and Bedworth (1994) reported that the CIM and concurrent engineering were 

introduced to help companies remain competitive and better utilise their capabilities and 

resources. Utilisation is one of the full integration results and is the way with which 

enterprises can achieve responsiveness or become close to their customer (Youssef 

1992).

Many benefits have been reported by CIM users and researchers as the result of 

successful implementation of CIM as a manufacturing strategy:

1. Greater flexibility (McGaughey and Roach, 1997, Ramesh et al., 1990, Groover, 

1994, Barad and Nof, 1997, Browne et al, 1988, Kosturiak and Gregor, 1995).

2. Reduced lead times (Rembold et al. ,1993, Groover, 1994, Gunasekaran et al. 1994, 

Dowlatshahi 1994, NEDO 1985, Kochan and Cowan 1986).

3. Reduced inventories (Kaltwasser 1990, Kochan and Cowan 1986, McGaughey and 

Roach 1997, Gunasekaram et al. 1994, Bedworth et al. 1991, Ingerssoll Engineer 

1985).
4. Increased Productivity (Rembold et al. 1993, Dowlatshahi 1994, Kosturiak and 

Gregor 1995, Sun and Riis 1994, Groover 1994).

5. Improved customer service (Bedworth et al. 1991, NEDO 1985, McGaughey and 

Roach 1997, Kaltwasser 1990).

6. Improved quality (Badiru 1990, Koshiba et al. 1993, Kaltwasser 1990, Kochan and 

Cowan 1985, Spur et al. 1990, Weissflog 1991, Ramesh et al. 1990).

7. Improved communications with suppliers (McGaughey and Roach 1997).

8. Better product design (Kochan and Cowan 1985, McGaughey and Roach 1997).

9. Greater manufacturing control (Kosturiak and Gregor 1995, Kochan and Cowan 

1985).

10. Supported integration (Altan 1991, Spur et al. 1990, Ingersoll Engineers 1985).

11. Reduced costs (Rembold et al. 1993, Badiru 1990, Bedworth et al. 1991, Groover 

1994, Wessflog 1991).

12. Increased utilisation (Dowlatshahi 1994, Kochan and Cowan 1986, Ramesh et al. 

1994).
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13. Reduction of machine tools (Gunasekaran et al. 1994),

14. Less floor space (Koshiba et al. 1993, Dowlatshahi 1994).

15. Improved competitiveness (Badiru 1990, Kaltwasser 1990, NEDO 1985, Sun and 
Riis 1994, Bedworth et al. 1991, Singh 1996, Hitiomi 1996).

CIM benefits are clearly related to each other, e.g. greater flexibility is directly related 

to reduced manufacturing lead time, improved quality and competitiveness. Spur et al. 

(1990) presented the role of integration in achieving enterprise goals and suggested that 

there are three categories of CIM goals in a hierarchical structure, as depicted in Figure 
2. 11.

Manufacturing Systems and CIM Definition

Guarantee of long-tcnn profit 
Increase share of the market 
Social and environment tolerance

Competition advantages by 
Shorter development time "i Flexibility &
Shorter production through-put time ^capability of 
Better meeting of schedules J delivery
Higher product quality 
Cost reduction

Integration of functions 
Integration of data
Introduction and integration of systems 
Integration of material flow

Figure 2.l l .  Hierarchy ot goals within the CIM-introduction (Spurctal. 1990).

2.11. CIM Components

CIM includes all the functional areas of manufacturing organisation. Each functional 

area should be integrated with the others. The major components of CIM are Computer 

Aided Design (CAD), Computer Aided Process Planning (CAPP), Computer Aided 

Manufacturing (CAM), Computer-Aided Quality Control (CAQ) and Production 

Planning and Control (PP&C). Figure 2.12 shows a simple representation of CIM 

components and a general logic of CIM integration. A brief description of the CIM 

system components is presented in Appendix-A.
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These components have a very important role in the CIM environment. In the CAD 

system, there are many requirements for a well integrated CAD, but no system on the 

market can achieve all the integration requirements. Building an integrated CAD system 

will certainly contribute to global integration. The integration between CAD systems 

can be achieved by interfacing different tools to form a more complete CAD package. 

Some CAD systems have high graphical capabilities and others have good engineering 

analysis facilities. Hence, the development of integration interfaces between CAD 

system will achieve many benefits.

In the CAM system, the evolution of the NC machine was the driving force after 

CAD/CAM developments. It should be noted that the integration of the organisation’s 

technical facilities such as CAD with CAM would not even be achieved without 

advanced CAM technologies such as CNC, DNC, robots, etc.

CAPP represents a link between the engineering and manufacturing activities and CIM 

cannot be achieved without CAPP in many industries. The CAPP system provides a 

means and procedure to close the gap between these activities using Group Technology 

concepts (GT). GT is a key element of different CIM components, because it provides a 

formal concept and procedure for dealing with information about parts and methods of 

classifications. CAPP has been found to be the application that makes most uses of GT 

concepts. Most current research in CAPP concentrates on the development of
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techniques that can be used to automate process planning activities and integrate CAPP 

with CAD/CAM.

CAQ consists of two important elements: software and hardware. CAQ software is used 

to analysis and control data received by CAQ hardware. There are many applications for 

CAQ, and it can be connected with other manufacturing databases and control systems 

such as CAD, CAM and PP&C databases. Hitomi (1996) emphasised the importance of 

CAQ, because of recent trends in high production speed, quick detection of defective 

products, high labour cost, on-line process control and so on.

PP&C is characterised by two main trends: the push and pull methods. The push method 

can be represented by MRP systems that are based upon the actual and future demands. 

The difference between MRP and MRP II is that MRP II includes the integrated PP&C 

activities. The pull approach can be represented by JIT/Kanban systems. These systems 

are used to produce parts as required “manufacture on call”. The system starts at the 

final stage of assembly and sends back a request to the preceding production stages. The 

integration of PP&C elements will eliminate many drawbacks of planning and control. 

For example, the integration of (Capacity Requirement Planning) CRP and MRP 

systems would solve the major problems of CRP. The major problem of CRP is that it 

lacks methods that can be used to optimise production throughout the factory. It is too 

difficult to calculate exactly when every job will finish and the load on each production 

stage. This integration can be achieved using feedback links between CRP and MRP. 

Without integration, the shop floor order due dates are calculated by the MRP system, 

using fixed lead-time. This is likely to be inaccurate because the actual lead times will 

be restricted by actual work on the shop floor.

Kosturiak and Goegor (1995) present a new concept TPC (Total Production Control) 

that contributes in achieving the new requirements of manufacturing system integration, 

as illustrated in Figure 2.13. The TPC integrates the following activities:

• Production planning and control.

• Production system analysis and continuous improvement process.

• Production system analysis, re-design and modernisation.
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Inputs Program modules Outputs

* Orders -proposed
-confirmed
-previous

* Products
-Structured BOM 
-Assembly plans 
-Process Plans 
-Material requirement 

standards
* Customers
* Suppliers
* Material -Warehouse

orders
* Warehouse, machines
* Employees
* Production archives
* Costing models
* Payroll
* Costs
* Accounting interface
* Quality data
* Maintenance data
*  Fixture and tooling 
data
* Simulation models

A. Production planning 
and control

* Customer order processing
* MRP -purchased parts

-raw material
* Capacity planning and scheduling
* Production order sequencing
* Production order release
* Inventory management
* Maintenance management
* Production monitoring and control
* Production performance measurement
* Cost flow monitoring
* Shop floor data capture

B. Production system 
analysis and improvement
Production and parts analysis

* Production process analysis 
(bottleneck analysis, inventories, 
production costs, etc.)
* Preventive maintenance

C, Production system 
designa  __________________________________
Production program planning 

♦Production quantities and lot sizes 
calculation
* Configuration and capacity planning
* Material flow analysis and layout 
planning
* Analytical modelling
* Simulation

* Due dates, price, 
quantity
* Material requirements
* Purchase lead times, 
quantity, price
* Capacity balance
* Production schedule
* Bottlenecks
* Cost flow
* Production rates
* 'ITiroughput times
* Inventories
* System utilisation

* ABC analysis
* Inventory analysis
* Representative 
products and parts
* Cost structure
* Quality analysis
* Maintenance costs

* Etc.

* Lot sizes
* Number of machines
* Number of workers
* Machining areas
* Material flow matrix
* Layout
* Simulation results

Figure 2.13. TPC - a simplified structure (Kosturiak and Gregor 1995)

2.12. Component Integration

Most of the current research in manufacturing system integration can be classified into 

four categorises (Sarin and Das 1994):

1. Integration o f  management with CAD, CAM and PP&C.

2. Integration o f  CAD with CAM.

3. Integration o f  CAM with PP&C.
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Integration of CAD, CAM, CAPP and PP&C is the first step in a CIM strategy. In CAD, 

a product can be designed on design workstations and using a suitable CAD package. 

The design information can be stored in general and local databases to be used for other 

CAD tasks such as finite element modelling, engineering analysis and performance 

evaluation. This information can also be used for other manufacturing elements such as, 

CAPP, CAM, CAQ and PP&C. CAPP can use design data to produce process plans and 

machine part programs. These programs can be transformed automatically to CAM 

elements (CNC machines) on the shop floor to start the manufacturing operations. Other 

elements of the CAM system such as industrial robots, handling systems, AGV systems 

and AS/RS should be able to communicate with one another or with their control system 

(Vernadat 1994). The PP&C elements such as MRP II, JIT, Kanban, scheduling 

systems, control systems and capacity planning should be included and integrated to 

other manufacturing sub-systems in the CIM environment. Ragowsky and Stern (1997) 

reported that CIM provides the information necessary for JIT, Kanban, OPT and other 

techniques that minimise inventories on-hand while maximising delivery performance 

and activity utilisation. Hasin and Pandey (1996) analysed the present characteristics of 

the integration between CAD and MRP II. They pointed out that the integration strategy 

for CIM can be based upon the determination of common features and characteristics of 

the sub-systems that can be shared to formulate an integrated solution, as illustrated in 

Figure 2.14.
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Harhalakis et al. (1990) presented a generic model for the integration of CAD, CAPP 

and MRP II. They pointed that the CIM should not be understood as integration of CAD 

and CAM but should include integration of the high level manufacturing functions. It is 

generally accepted that CIM aims to achieve an effective integration of the different 

activities of an organisation (Hassard and Forrerter 1997).

The CIM strategy has major child-strategies that should be understood and integrated. 

The misunderstanding of the basic concepts of CIM and its components leads to many 

technological and organisational problems.

2.13. Conclusion

In this Chapter the general concepts of manufacturing systems have been presented. 

These have included the basic definitions and types of a manufacturing system. It can be 

seen that the manufacturing system is not only the transformation of the raw material 

into saleable final products, but much broader and complex owing to the large number 

of interrelated activities. Manufacturing systems have been classified based upon their 

basic processes into three categories: basic producer, converter and fabricator. The 

problem of this classification is that some organisations possess a high degree of 

vertical integration, which means that their operations involve all three categories 

(Groover 1987). When describing the other classifications of manufacturing systems, it 

has been noted that the manufacturing systems are moving towards MTO and batch 

production. This tendency results in a wide variety of small batch production and the 

lead time from receipt of order to the shipment of the product is expected to be as small 

as possible (quick response) in order to where a competitive edge (Hitomi 1996). This 

also requires a high level of flexibility of all manufacturing activities. Other 

classification types have not been addressed in this chapter. This refers to the wide field 

of classification studies which is under current research development, e.g. see McCarthy 

1995.

To accompany the assessment of the current trend in the global market and 

manufacturing systems, the organisation’s needs have been described. This indicates 

that, the manufacturing organisation should be changed and seek effective strategies for 

survival. It has been found that new technologies play an important role in building 

these strategies. The general consensus is that these manufacturing enterprises should be
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changed and should adopt CIM strategy. The fact that CIM is a successful 

manufacturing strategy which could be the only possibility of consolidating 

manufacturing competitiveness has been discussed.

This Chapter has reviewed and discussed the global view of CIM and its major 

components to establish a good background and understanding. Unfortunately, it has 

been difficult to find a consensus definition for CIM; many contributions in the 

literature attest to this statement. In this Chapter, two main reasons have been suggested 

for the difficulty of identifying a CIM definition. The first reason refers to the different 

viewpoints about the term “integration”; and the second refers to the different 

perspectives of CIM concept and goals. It has been concluded that CIM should not be 

restricted to specific manufacturing functions. CIM is a direction, not a destination; it is 

an integrated strategy, not a set of technical aspects or systems; it is a concept, not a 

computer package; it should be designed and configured and not purchased or 

transferred.

Most of the published reports focus on the technological aspects at an early stage of the 

development of CIM (Gunasekaran 1997). Therefore, CIM could not be considered as 

an integrated manufacturing strategy when the role of the other factors such as 

organisational activities is ignored. It is generally accepted that CIM aims to achieve an 

effective integration of the different activities of an organisation (Hassard and Forrester 

1997).

After reviewing the various definitions of CIM, the definition proposed by Dumeingts et 

al (1995a) is accepted as the most appropriate definitionlt CIM  refers to a  g lobal approach in - 

an industrial environment - which aim s a t im proving industrial performance. This approach is  app lied  in 

an in tegrated way to a ll activities, from  designing to delivery and  after-sale, and uses various methods, 

m eans and  techniques (computer and  automatic techniques) in order to  simultaneously improve 

productivity, decrease costs, meet due dates, increase product quality, secure flex ib ility  a t local o r  g lobal 

leve l in a  manufacturing system, and involve every actor. In such an approach, economic social, and  

human aspects are a t lea st as im portant as technical aspects” . For the purpose of the Study the 

research will concentrate on the internal aspects of CIM.

In order to understand the nature and content of CIM, the next chapter will examine 

some real applications of CIM and investigate a number of problems and barriers 

associated with its design and implementation.
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CHAPTER-3

CIM: LEAKING FROM PRACTICE

3.1. Introduction

This chapter reviews and discusses a number of surveys which have been carried out to 

identify the current state of CIM implementation. The surveys are also analysed to 

identify the problems and obstacles to CIM implementation. Several case studies 

describing the successes and failures of CIM implementation are also reviewed. The 

objectives of this chapter are to:

• Assess the current tools of implementation;

• Identify the different industrial perceptions of CIM;

• Identify the problems and obstacles to successful CIM implementation.

3.2. CIM Applications

Many studies have been carried out on organisations who have adopted and 

implemented a CIM strategy. Several surveys concerned with the subject are evaluated 

in this section.

Fossum and Ettlie (1990) examined six organisations that have implemented computer 

systems for integration and control of factory operations. In their study, they
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concentrated on the relationships between management information systems and 

manufacturing. Table 3.1 summarises the results of the survey.

Cases Lessons learned Success/failure Derived proportion
PGAS Inc. Applying knowledge at 

the right time and good 
people communication 
are key success factors.

Success.
Meeting objectives, 
including 99.9 percent 
inventory accuracy. 
Less than one-year 
payback.

The management 
information system 
(MlS)-manufacturing 
relationship is improved 
when each function can 
contribute significantly to 
the implementation with 
the skills each have.

BAA Inc. Have management 
information system and 
manufacturing users do 
what they are best at 
doing

In process.
User satisfaction thus far. 
Less than one-year 
payback.

Using a pilot system 
development 
methodology accelerates 
the development of well- 
defined requirements and 
improves the MIS- 
manufacturing 
relationships.

Northrop Inc. Designer “expert” does 
not work.

Success.
Savings of over $20 
million.

Adopting a group 
requirement development 
process reduces conflict 
at MIS-manufacturing 
interface.

Integrated Paper 
Company

Everyone is a user Aspects of success and 
failure.
Something fails when it 
is not used.

MIS (new breed) is 
decentralised in the best 
development, with all 
manufacturing personal 
as users.

CCAS Inc. System requirements 
definition cannot be 
delegated to management 
information system 
(MIS). Even 
decentralised, 
“manufacturing” MIS.

Aspects of success and 
failure.
Meeting some, but not 
all, objectives.
System not used to full 
potential.

The system development 
process is extended when 
manufacturing users do 
not contribute equally 
(with MIS and the 
software supplier) to the 
requirements definition.

PWAS Inc. (Not applicable) Failure.
Management information 
systems-Manufacturing 
stand-off on system 
acquisition

The definition of system 
requirements in an 
integrated environment is 
a function which must be 
shared by those who 
understand computer 
technology and those 
who understand the many 
functions of 
manufacturing.

Table 3.1. Summary of MIS-Manufacturing case experiences (Fossum andEttlie 1990).

In the above study, it was found that all the manufacturing organisations considered had 

enjoyed the same degree of success with the implementation of factory management and 

control systems. The study recommended that the development of tools to promote the 

development of requirement specifications should be the focus of both users and 

technology vendors for prompting successful modernisation. The authors found that
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three of the cases provide examples of the use of methods and tools which supported the 

development of requirements.

Ingersoll Engineers (1985) studied sixteen company profiles which determine the level 

of progress various companies had made towards introducing CIM, the business 

approach each adopted and their future plans. The companies selected by Ingersoll 

Engineers were spread throughout Europe, USA and Japan. These companies were well 

known and active in advanced technology and reputedly active in CIM. This survey 

indicated that every company had a different image of CIM. Table 3.2 combines and 

presents the results of the Ingersoll study.
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Table 3.2 Results of Ingersoll Engineers study evaluating CIM implementation in several international organisations (derived from Ingersoll Engineers 1985).
In d u stry T echnology re co rd C IM

achievem ent
B usiness ap p ro ach C IM

p lan
M anufacturers CNC machines fo r FM S. 
M anufacturers FM S cells and FM S 
assem bly based on  robotics.

Skilled m anufacturers of:
-  C N C  m achines
• F lexible assem bly robots
-  FM S cells

None Company has concentrated on product 
development and its customer did not 
express an  interest in CIM. Customers 
wanted a bottom -up approach which the  
company also took.

To develop a  m ostly design and 
management-oriented C IM

Pow er turbine manufacturer.
H alf o f  business is  spares and rebuild.

N C  m achines fitted w ith  intelligent 
term inals.
G T  cells.
Engineering database using G T  codes 
(m ade up o f  parts families, shape sub
structure, gross properties, dimensional 
and notational data).
MRP.
I .OC AM process planning.
ORA CLE (Relational database). 
Database m anagem ent systems (HOMS).

2D and 3D  defining part families. Stored 
on mainframe. Input o f  part code 
autom atically produces an NC program  
which is downloaded a t CNC m achines. 
Link between mainframe and CA D  for 
stress analysis and NC data storage. O n
line factory management system  for 
handling material request, receipt and 
operation and labour monitoring using 
shop floor terminals.

$13m on CIM  system  over next tw o years 
but each part has to  be justified on ROL 
(CIM department in  support o f  company 
strategy).

Interactive graphics. 
CAE.

A gricultural com ponents m anufacturing G roup technology. 
FM S.
CAD/CAM .

Automated storage and material handling. 
Full logistic control o f  m aterials for 
tractor assembly. (Goods receiving > 
stores >  assem bly >  stores >  despatch). 
Shop floor data collection system  based 
on lighten identification o f  operators and 
work used to  monitor production 
inventory, cost and labour (tim e and 
attendance monitoring).

ROI will impede CIM development. 
Concerned with effects o f  CIM  on people 
and organisation.
W aiting for a  turnkey CIM  system.
Mini and micros to  be used.

Policy o f  buying technology rather than 
developing their own.

C om puter m anufacture and m anufacture 
o f  PC B s an d  electrical circuits.

CAD /CA M .
N C  machine.
FM S.
C om puterised process planning.

Very little but has established a  network 
betw een head office and rem ote factories.

Started using mainframes for accounts 
and payroll then extended use to  
inventory and production control.

Plan to  create a decentralised engineering 
database.

H eavy  electrical equipm ent m anufacture, 
consum er electronics and  industrial 
electronics.

CAD /CA M .
N C  m achines.
C om puterised process planning. 
M ainfram e.

Very little but achieved data transfer 
betw een CAD and the mainframe.

Integration is being pushed through for 
the heavy engineering division but will 
take 10-20 years to  finalise.

Plans to install a wide area network to 
connect head office to  regional offices. 
Set up a total information systems 
division to  establish standard for 
languages and methods for CIM.

M anufacture m achine too ls and related 
electron ic  eq u ip m en t

CAD /CA M .
N C  machines.
FM S.
C om puterised process planning.

M aking little headway but has established 
a database for business systems, i.e. 
production control, purchasing, stock 
control, etc.

Started with an  FMS and a CA D  system 
and then transm itted data between the two 
by the use o f  floppy disks.

Plans to transmit data directly from the 
CAD system to  the  FM S and intend to 
introduce more FM S cells.

E arth  m ov ing  equipm ent m anufacture. 
W orld  w id e  corporation  - catalogue 
products.

FM S.
A dvanced island o f  autom ation including: 
•  R obotic applications

Standardised on computer hardware 
m anufacture -  make CIM  achievem ent 
easier.

Strategic justification o f  projects based on 
overall plant, cost and delivery.

Following a policy o f  standardisation.
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•  CAD /CA M
•  Process planning
•  Simulation
•  MRP

Single corporate department to  set 
com pany standards.
Database philosophy -  no duplication o f  
data. Distributed databases but com m on 
libraries.

Dom estic appliance manufacture. C om pletely new product (rationalised 
replacem ent m odel range).
N ew  designs.
N ew  production methods.
Autom ated w ith  robots.

On-line programmable controllers w ith 
diagnostic and trouble-shooting 
capabilities linked to  a  central controller. 
Includes on-line quality control testing. 
In process inventory monitoring. 
Electronic order entry system.
Sub contract CAD/CAM for product 
design and tooling design.

Studying the m arket requirements, 
designing a product which m eets the  
requirements, finding the best w ay to  
manufacture and using technology as 
appropriate.
Emphasis on simplicity o f  product, o f  
approach, o f  factory layout

High sensitivity o f  m arket to price and 
quality is a limiting factor.

Tool and die p lant o f  m ajor car 
manufacturer.

C N C  machines.
Co-ordinate m easuring machines. 
N C  laser cutting. 
Electro-discharge m achining.

Data collected from a clay model using a 
co-ordinate measuring machine, smoothed 
by  a m ini computer which is passed to  a 
CAD. This produces an  NC program  
which is downloaded to  a supervisory 
m achine on the  shop floor. CAD 
integration o f  draw die geometry. CAD 
and co-ordinate measuring o f  finished die 
is linked in a feedback loop. DNC link to 
shop floor machines.

Investment justification is 30%  payback 
within the first year.

Growth is lim ited due by the business 
approach.

H eavy electrical industry including 
turbines, etc.

Robotic and autom ation cells.
600 CAD/CAM  workstations.
253 modules control software (MAAPICS 
and COPICS).
OPT.

CAD/C AM /CNC machine linking w ith 
automatic machine and production 
monitoring. Flexible sheet m etal profiling 
system  driven from CAD.
MIS (M anufacturing Information System, 
CAD/CAM  and CAE).

Productivity im provem ent 
No CIM  plans, but has corporate system s 
integration group. M ovement aw ay from 
mainframes to  distributed computing. 
Concerning in analysing the 
organisational structures, people 
activities, tim e and inventory 
management.

Size and complexity o f  organisation limits 
the growth o f  CIM.

Space products. CAE.
CAD/CAM .
Autom ated store.
G enerative part process planning. 
D istributed database.

Tried to establish a monolithic database 
but it became four divisional databases. It 
took four years to  create.
Building a  totally integrated system  for 
the engineering, manufacture and test o f  
printed circuit boards.

In th is industry, progress is driven by the 
technology, usually with an individual 
champion for each technology. 
Departments are elitist and preserve their 
independence. This creates 
incompatibilities o f  equipment w ith  
considerable communication barriers.

A  30 man team  been set up to  implement 
CIM.

PC B  m anufacture.
C om puter hardw are  m anufacture.

c p / í

V ri ■ -

A utom ated electronic assembly. 
Autom ated storage.
Production m onitoring and control.

CAD/CAM  link supplying part programs 
to  automatic electronic assem bly m/cs. 
AS/RS o f  parts with controlled m ake up 
and supply o f  parts to the shop floor to  
m eet the  schedule. In process production 
m onitoring and production control using 
presentation o f  current status.

Committed to CIM  both as a user and a 
supplier.

A  plan has been drawn up for long-term.



CIM: Learning from Practice

W orldw ide organisation supplying 
consum er products such as lighting and 
batteries, also equipm ent for industry.

Advanced in m ost areas o f  m anufacturing 
technology, in  particular robots and 
variable transport systems.

None. High costs technology difficulties lim its 
CIM progress.

Have concentrated on establishing 
equipment and communications standards 
for use throughout their corporation and 
will continue to  do so.

C ar body m anufacture and assem bly. Robotic applications.
FM S.
A G V  wire guided handling systems. 
CAD/CAM.
CAE.

Very little actual progress. Its 
interpretation o f  CIM includes only CAE, 
CAD/CAM , CNC and off-line robot 
programming, not business systems.

A  radical shortening o f  design lead tim es 
and setting up o f  the production facility. 
Integration o f  design and manufacturing 
facilities.

Plans include off-line programming and 
simulation o f  autom ated manufacturing 
cells incorporating the use  o f  robots. They 
will establish a  department for CIM 
development

Suppliers o f  assem bly robots and fully 
integrated assem bly systems. 
M anufacturers o f  NC co-ordinate 
m easuring machines.

N o advanced technology used although 
the  company m anufactures advanced 
technology systems.

None. Emphasis on product and systems 
engineering.

Just starting to  consider advanced 
technology such as CAD. Customers have 
little awareness o f  CIM  and this lack o f  
demand has impeded CIM  development 
by equipment suppliers.

Special m achine tool and  cutting too ls 
manufacturer. M ostly one-off build.

C N C  machines.
Q N C co-ordinate m easuring machines. 
FMS.
CAD/CAM.
Com pany wide database information 
system.

Pre-sale linked through CAD/CAM  as 
bases for routing N C  programming and 
QNC performance assurance including 
sim ulation for collision checking. 
Automatic link to  business systems 
through BOM. Master schedule drives 
engineering, purchasing and 
m anufacturing systems. It is the  m aster 
schedule and BOM which drive the 
machine shop, purchasing and  stock 
room.

Strong leadership, harsh rationalisation 
and simplification in pursuit o f  CIM.

To continue to  invest in CIM  to  enhance 
the current high level o f  integration.
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Sakakibara and Matsumoto (1991) described CIM implementation in a plant 

manufacturing electronic car components. These products include electronic fuel 

injection, automatic air conditioning, skid control, transmission control, suspension 

control, etc. They suggested that their plant (Kota plant) was required to meet customer 

needs quickly and produce satisfactory products in terms of quality, cost and delivery to 

overcome tough competition and maintain growth. Their products are produced under 

high variety and different batch sizes. The authors reported that one of the solutions to 

their requirements was to implement CIM in their plant.

The CIM project at Kota plant was started by developing the manufacturing systems 

from a point at the process level (spot). The level was upgraded to a line then to an 

entire process level (area) including parts manufacture, inventory and inspection. The 

last stage of the plant development was the introduction of CIM, to upgrade the 

production system at plant level (cubic) to keep up with modern trends such as product 

variety and frequent changes. Figure 3.1 illustrates the stages of CIM development 

stages in the Kota plant.

Kota would like to make their plant a global centre for their electronic business 

development; hence they have decided to complete a CIM plant for electronic car 

components under the concept of an Integrated electronics factory in pursuit of an ideal
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JIT system’. They have built a CIM plant called ‘UTOPIA KOT’ incorporating the 

following concepts:

1. Pursue an ideal JIT environment;

2. Make the most of the information network: co-operating with other functions such 

as sales, engineering and production departments and speeding information flow;

3. Build up known-how: develop and make active use of in-house products;

4. Make an easy-to-use system with sufficient reflection and feedback from the 

operational level;

5. Establish a production system of higher productivity and quality: develop an 

integrated automated line for electronic components.

Sakakibara and Matsumoto (1991) anticipated that the car-electronic business will be 

even tougher in the future; hence, they need to strengthen their plant more and more 

according to CIM concepts and implement the global integration step by step.

Pandya and Satyre (1996) presented the findings of a survey which investigated the 

decision-making process involved in the implementation of new technology within the 

UK manufacturing sector. The new technology in this study refers to manufacturing 

technology including software and hardware. The software includes spreadsheet, 

database packages and MRP II systems, and the hardware includes CNC machine tools 

and robots. The study emphasised the need for a strategy for the adoption of technology. 

Pandya and Satyra (1996) developed a questionnaire which considered five major 

categories:

• Industrial relations - manufacturing operations;

• Technical (relative to the manufacturing technology);

• Organisational (organisation of manufacturing work);

• Environmental and pollution;

• Financial.

They broke-down these categories into a number of factors in the questionnaire. The 

questionnaire was divided into three parts based upon the following:

• The reasons for implementing the new technology.

• The degree to which the factors (financial factors, background of organisation, 

image of the brand) would affect the organisation’s decisions to import new 

manufacturing technology.
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• The organisation’s priorities for the next two years.

CIM: Learning from Practice

They analysed the results of the questionnaire in different ways: analysis per group of 

factors and according to company size. Table 3.3 presents a summary of the results and 

ranks the factors identified in order of importance.

Factor Importance
Design flexibility Quite important
Improving product quality Quite important
Reduce the product price Quite important
Decrease scrap (environmental issues) Quite important
Standardise manufacturing Quite important
Reduce overheads and non-value adding costs Quite important
Reduce scrap Quite important
Enable skilled staff movement between machines Quite important
Reduce WIP and stocks Important
Delivery performance Important
Simplify/improve control over production process Important
Improve management control Important
Improve security Below average importance
Replace men by machines Below average importance
Support an automation policy Below average importance

Table 3.3. Important factors to AMT in industrial organisations
(Pandya and Satyra 1996).

By comparing the factors identified in the above study with CIM benefits presented in 

chapter-2, it can be concluded that the CIM strategy meets these organisational 

requirements.

Lay (1993) presented an analysis of how companies in Germany have planned and 

implemented their CIM structures. The findings of the study indicated that CIM projects 

were primarily intended to reduce lead times. Other objectives such as increased 

flexibility or improved quality were considered far less important. German 

organisations were predominantly trying to reach their goals by implementing new 

technologies, and the personnel and organisational dimensions of CIM appeared to play 

an important role.

Many other organisations are turning to CIM as a strategy for sustaining competitive 

advantage. Recent studies demonstrate practitioner recognition of the importance of 

CIM as a competitive weapon. McGaughey and Roach (1997) reported a number of 

surveys concerned with implementing CIM. Their review of these studies can be 

summarised in the following points:

45



• 81% of executive and manager in US manufacturing industries regarded CIM as 

essential or very important as a competitive weapon;

• 66% felt that CIM was an important cornerstone for world-class manufacturing;

• 134 IS (Information Systems) managers in manufacturing organisations identified 

system integration of operations with other areas of the organisation as their most 

pressing concern;

• 40% of American manufacturers have one or more elements of CIM in place;

• 75 American manufacturing vice-presidents ranked key strategic and tactical issues 

facing American manufacturers in the next three or five years, which included:

► Process technology (adopting new process technology and integrating it with 

other manufacturing systems);

► Inter-functional integration (integration of functional areas to achieve better co

ordination);

► Product planning (providing effective and efficient process capabilities);

► Manufacturing planning and control (matching methods with desired results);

In the UK, NEDO (1985) produced a study concerned with Advanced Manufacturing 

Technology. This study demonstrated that manufacturing companies who successfully 

implemented new technology decided on the change for a number of reasons; the most 

common reasons were:

• To survive increased competition;

• To increase their market share;

• To increase profitability;

• To replace old and inefficient equipment;

• To meet market demands for shorter lead times and better quality;

• To introduce new products faster.

In addition, many other studies stressed the importance of using state-of-art technology 

such as CIM to achieve organisational goals.

However, adopting CIM has been accompanied by many problems in many 

manufacturing organisations and led to sustained high costs (McGaughey and Roach, 

1997, Attran 1996). These poor experiences have made many organisations reluctant to 

implement CIM. Some CIM failures have also been reported, e.g. it has been estimated 

that the failure rate for AMT, such as CIM, may be 50% to 75% for US organisations

CIM: Learning from Practice
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(McGaughey and Roach 1997). Hence, many organisations are reluctant to develop and 

implement a CEM strategy. This may refer to two major factors: the high failure rates for 

CIM in organisations who have already implemented it and other obstacles and 

problems related to developing and implementing CIM systems. The next section 

describes the various obstacles to CIM and reviews recent studies of CIM 

implementation.

3.3. Obstacles to CIM Implementation

Researchers and practitioners of CIM strategy have identified many obstacles to 

successful CIM implementation. These factors have a direct or indirect impact on CIM 

progress. A great deal of research work is still required to investigate these problems 

and complexities and derive the appropriate solutions.

3.3.1 CIM Complexity

Complexity is often reported as one of several barriers to implementing a CIM strategy 

(Bessant 1985, Fossum and Ettlie 1990). Lin et al (1992) described CIM as a very broad 

and complex mix of concepts and strategy including the integration of many elements 

such as computers, machines and the management of the business. System complexity 

increases relative to the number of system activities and elements interrelated. 

Doumeingts et al. (1995a) reported that CIM is extremely complex, because it involves 

not only technical aspects but also economic, social and human aspects. CIM 

complexity may refer to the general difficulty of the interrelationship between several 

components and elements. Zeidner (1990) linked the size and complexity of CIM to that 

of the enterprise “...the size and complexity of a CIM system depends largely upon the 

size and complexity of the enterprise, its complexity is compounded by a variety of 

other factors. CIM systems consist of a collection of software package distributed across 

a network of computing hardware throughout the enterprise. The distributed nature of 

CIM software systems is a major source of complexity and inflexibility...”. Therefore, 

CIM complexity means different things to different people and there are many 

viewpoints of CIM complexity.
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3.3.2 The Integration Barrier

The development of viable technical interfaces which allow different control systems to 

communicate and talk to each other is one of the most critical problems of 

manufacturing system integration (Gupta 1996, Besant 1985). There is a relationship 

between concepts of the integration problem and incompatibilities between system 

components and elements. Therefore, system incompatibilities can be considered the 

main reason for the problem of integration. In addition, integration is not purely 

technical but includes other organisational aspects such as the integration of information 

systems. Weissflog (1991) considered the CIM data integration problem and identified a 

number of barriers to integration. These barriers included:

• Inadequate representation of data required for different elements of CIM;

• Informal expressing of the data interdepencies among the various fractions of CIM 

including data development process control;

• Incompatibility of data exists owing to individual and incompatible data definitions 

and formal representation of constructing common data to different system 

applications;

• Complexity of data structures such as BOM.

Schulte et al. (1992) also believed that the major problem of CAD and CAM lay in the 

representations and transformation of information among design and manufacturing 

activities.

Recently, Mejabi and Singh (1997) considered the problem of integration in CIM. This 

attempt tried to analyse the integration by dividing the integration concept into three 

categories: integration of control and decision making, information flow and data 

integration and action integration. That study also presented a framework for enterprise

wide integration to link manufacturing elements within complex and large-scale 

organisations.

CIM: Learning from Practice

3.3.3 Lack of Understanding of CIM and its Potential

The lack of manufacturing and CIM knowledge is one of the most significant obstacles 

to CIM success (Fossum and Ettlie 1990, McGaughey and Roach 1997). Shin (1996)
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reported that conflicting definitions of CIM within organisations, caused a lack of co

ordination among divisions. This was one of the problems identified as being commonly 

present in CIM projects in Korea. Lei and Sabol (1991) emphasised that the 

implementation of CIM in many US organisations stumbled because of difficulties in 

understanding the technology and organisational impediments.

3.3.4 Cost Justification Using Traditional Methods

The conventional methods of cost justification are considered to be a critical obstacle to 

CIM progress. Gunasekaran (1997) mentioned that traditional methods of cost 

justification generally fail to detect the many benefits of CIM strategy. Morris and 

Morris (1994) found in their survey that cost justification was a serious factor affecting 

the progress of CIM. Bolland and Goodwin (1988) reported that the inability to 

financially justify the investment dominated other concerns, such as, risk, lack of 

interest and a poor understanding of the benefits, as an explanation for not going a head 

to a head with CIM adoption.

3.3.5 Lack of Management Support and Commitment

Attran (1996) identified that ignorance and lack of management support as important 

obstacles to the success of CIM implementation. McGaughey and Roach (1997) divided 

the lack of management support into two obstacles: one related to top management and 

the other related to functional management. Other recent studies illustrate that the lack 

of management support and commitment is a significant barrier to CIM implementation 

(Fossum and Ettlte 1990, Moriss and Morris 1996). Thomas and Wainwright (1994) 

also suggested that the main obstacles to CIM success could be managerial or 

organisational and Ohsen (1992) emphasised that without complete management 

support and commitment the CIM project will fail.

3.3.6 Inadequate Planning

Lack of proper planning for C M  not only hampers its effectiveness when folly 

Implemented, but also does not provide adequate Insights Into the benefits which can be 

achieved (Sarkis and Lin 1994), Therefore, effective organisational plans must exist to
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achieve the desired business goals (Attran 1996). The planning step is important in 

traditional manufacturing system projects, so due to the higher investment and design 

complexity of CIM, it is essential to improve the planning aspects of the CIM at the 

early stages of design. Inadequate planning of CIM strategy causes critical problems in 

decision-making for CIM development and implementation. Fossum and Ettlie (1990) 

noted that a formal CIM plan is one of the factors ranked as important and of significant 

help to CIM implementation.

3.3.7 Inadequate System Design

Decision making about CIM design represents a critical factor inhibiting CIM progress. 

This may be due to the lack of proper design tools and methodologies that can be used 

to select and design new systems. Jones et al. (1989) suggested that the design barriers 

to CIM are related to decisions that are made external to the factory.

In CIM design, it is necessary to have the foresight to consider the changes that may 

occur to the system during its life cycle and provide for mechanisms that will enable the 

modification of the system without a complete re-design (Litt 1990). It has been 

reported recently (Gunasekaran 1997) that despite the arguments regarding CIM 

flexibility, the experience in practice is that automation is frequently too rigid to adapt 

to changing market needs and the manufacturing of the new products. This indicates the 

importance of introducing flexibility of during the building of new CIM systems.

3.3.8 Inadequate Analysis of Organisation’s Needs

Some manufacturing organisations inadequately analyse their needs. This problem may 

have many dimensions that impact on organisational growth and development 

strategies. Hence, organisation requirements must be described and analysed in detail 

when building functional specifications. Without these specifications the CIM vendors 

and builders will not be able to include the necessary features.
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3.3.9 Resistance to Change

The lack of understanding of CIM is closely related to the resistance of humans to 

change. The human factor is very important to the success or failure of the new 

technology and/or strategy. When CIM is introduced, every department, manager, 

supervisor, operator, designer, etc. is asked to give information, develop databases and 

change work systems. Many people understand that CIM eliminates humans and does 

not support them. Weatheral (1992) reported that it is necessary to build up an 

awareness of CIM and that the innovation must be communicated to all levels of the 

company. Recently, Mital (1997) considered the role of humans, and emphasised that 

they are essential to contemporary manufacturing and will remain so far for the 

foreseeable future. He also considered the role of humans in the CIM environment and 

outlined a systematic procedure for allocating functions to humans and 

machines/automated equipment. The study identified many roles and goals for human 

intervention.
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3.3.10 Lack of Proper Modelling methods and Techniques

It has been identified that CIM is very complex composed of many interrelated 

elements. Hence, the need for adequate modelling methods and tools to design and 

analyse CIM systems exists. Hassard and Forrester (1997) reported that the existing 

methods for the analysis, design and development of CIM bring with them a number of 

shortcomings such as:

• A failure to link the development and operation of CIM to other important strategies 

such as corporate and marketing strategies;

• A neglect of organisational aspects during designing and implementing CIM 

systems;

• Existing modelling methods are mainly designed to be used in large organisations, 

so little attention has been paid for modelling Small and Medium Sized Enterprises 

(SMEs);

•  Methods tend to be of a structural or architectural type: they are not process-oriented 

and so provide little by way of guiding principles for system design;

• Methods tend to prescribe a structure rather than providing the adopter of CIM with 

means of analysing and evaluating systems and strategies.
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Chen et al. (1990) reported that even the most sophisticated methods and techniques for 

CIM design and analysis are useless unless they are integrated with other supports. 

Therefore, CIM modelling methods are needed to describe the operations and activities 

that occur within the growing number of increasingly complex CIM components. These 

needs will be discussed in detail in the next chapter.

3.4. Recent Studies of CIM Obstacles

Several articles and reports have investigated the obstacles, barriers or problems to CIM 

success such as Bessant (1985), Ingersoll Engineers (1985), NEDO (1985), Bolland and 

Goodwin (1985), Morris and Morris (1994), Attran (1996), and McGaughey and Snyder 

(1994).

Recently, problems and obstacles to CIM have been surveyed and analysed. Two major 

studies, which have been carried out by McGaughey and Roach (1997), and 

Gunasekaran (1997) are reviewed in this section.

McGaughey and Roach (1997) investigated practitioner perceptions of problems and 

complexities inhibiting CIM progress. In their survey, one hundred and one participants 

ranked the importance of barriers believed to influence CIM success. They used 

statistical methods to analyse their findings and grouped the results into four groups: 

commitment of resources, strategic concerns, organisational receptivity, and human 

resistance to change. Table 3.4 shows the results of the factor analysis of the obstacles 

perceived to have major impact on CIM success.
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Table 3.4. Findings of survey study identifying obstacles to CIM (McGaughey and Roach 1997).

Factor Obstacle
Commitment of resources 1. System incompatibility.

2. Inadequate equipment.
3. Unrealistic expectation.
4. Inadequate system design.
5. Key people are usually over committed.
6. Inadequate funding.
7. Inadequate communications.
8. Lack of people with technical experience.
9. Insufficient education and training of managers and workers.
10. Management averse to risk of investing in new technology.

Strategic concerns 11. Inadequate planning.
12. Inadequate leadership.
13. Lack of top management support and commitment.
14. Inadequate analysis of user needs.

Organisational receptivity 15. Inadequate organisation structure.
16. High cost of CIM.
17. Cost justifying with conventional methods.
18. Corporate cultures no right for CIM.

Human resistance to change 19. Human resistance to change.
Uninterpretable 20. Failure to understand CIM and its potential.

21. Lack of functional management support and commitment.

Gunasekaran (1997) reviewed the literature available on the implementation of CIM 

with the objective of gaining an insight into the integration and adaptability issues such 

as strategic perspectives, and technological, operational, behavioural and organisational 

issues. That review identified the most critical and pressing issues in the practical 

implementation of CIM. Table 3.5 summarises the results of the study carried out by 

Gunasekaran.

Table 3.5. Review of previous CIM research: factors affecting the implementation of 
CIM (Gunasekaran 1997). __________________________ _______________________

I u u e i M anufac tu ring
Industry

In tegra tion A dap tab ility
Problems Strategic/policies/

Technologies
Problems Strategic methods

S trateg ic
issues

General Absence o f  total 
management system

Top management 
support

Lack o f  knowledge 
about CIM

Highly skilled 
workforce

General Barrier to 
automation,
Lack o f  investment 
justification methods

New cost accounting 
systems (ABS).

Lack o f  co-operative 
supported w ork and 
justification methods

Activity based 
costing 
Training in 
sophisticated and 
proven functional 
analysis.

General Management o f  
information, 
Mechanical 
integration

Compatibility o f  
MIS, CAD/CAM, 
ISO 90001, logistics 
planning.

Information Building CIM teams, 
Common database, A 
time-based 
implementation, 
Computer supported 
collaboration.

FMS Alignment between 
business and 
manufacturing 
strategies, flexibility

Capital investments, 
CAD/CAM, FMS, 
top management 
support.

Top-down business 
oriented strategy.

Team  efforts, Human 
competence re
engineering

M anufacturing Lack o f  information 
technologies

Organisational 
system  design.

Handling variability Investment in flexible 
technologies

M anufacturing Lack o f  user 
involvement and 
tolerance

Innovation, Gradual
implementation
process

Organisational 
learning and change.

Implement enough o f  
the technology, users 
involvement and 
tolerance

53



CIM: Learning from Practice

O rgan isational
issues

General Absence o f  total 
management system

Top management
involvement.
Reorganisation

Lack o f  knowledge o f  
CIM, Discouraging 
measurement system

Highly skilled 
workforce, Training 
and education, ABC

M anufacturing Lack o f human 
machine interaction

Infrastructure
flexibility,
Compatibility,
Organisational
change.
Communication

Lack o f  business 
process
characteristics and 
quality o f  work life

Self-autonomous 
teamwork. Joint 
optimisation o f  
technology and 
organisation

Manufacturing Lack o f  integration 
technologies

Organisational 
system design

Handling variability 
and conflicts.

Investment in flexible 
technologies

Manufacturing Lack o f  user 
involvement and 
tolerance

Innovation Organisational 
learning and change

Implement enough o f  
the technology

B ehavioural
Issues

General Lack o f  flexibility 
and reduced work 
force

Manned control 
room. Employee 
participation

Lack o f  motivation Computer training 
and training in self 
management and 
conflict management

Manufacturing Safety requirements User participation, 
Use o f  sensors on the 
shop floor. Top 
management support, 
Organisational 
change

Difficulty in 
operation and 
maintaining the CIM 
system

Account for human 
factors in the early 
stage o f  planning 
CIM system. Proper 
training. Human 
machine interaction. 
Safety enablers

Manufacturing Lack o f  human 
involvement in the 
implementation o f 
CIM

Organisational 
change, team  work

Resistance to change 
efforts

Training with the 
help o f  suppliers. Job 
enrichment

Manufacturing Lack o f  co-operation Collective intensive 
scheme. Logistics re
engineering

Lack o f  action- 
oriented studies

W orkers’ pride and 
positive attitude, 
Evaluation and 
training

General Lack o f  top 
management support

Executive training on 
CIM

Risk o f  production 
loss

Gradual
implementation

Manufacturing Installing an 
integration business 
system

Management 
involvement, 
personality and 
strength o f  the project 
manager

MRP 11 system 
installation

Education and 
training.

Technological
Issues

Manufacturing Incompatible 
computer systems

Computers, Standards 
in data
communication, 
Robots, CAD/CAM, 
AG Vs

Insufficient internal 
skills

Education and 
training in new 
technologies

General Lack of-co-operation 
between and 
management 
information systems 
and manufacturing

Bottom-up approach 
to production 
operations by 
integrating systems 
and devices on the 
shop floor

Lack o f  management 
information system

Top management 
involvement in the 
process o f  selecting 
software and 
hardware

General Lack o f  integration
enterprise
engineering

Information 
engineering 
approach, FMS, 
Robot, AGVs, EDI, 
CE.

Inability to migrate to  
future technology

Top management 
commitment and 
worker involvement

Manufacturing Lack o f  infrastructure Build interfaced 
systems

Lack o f
understanding and 
co-operation

Global sharing o f  
data, Training and 
education

General Communication
systems

Radio, Frequency 
data communication 
system

IT  strategy must offer 
a  consistent approach

Reliable vendors 
Material handling 
systems

Lumber
industry

Short tool life, 
Frequent jo b  changes 
and long set-up times

Computerisation and 
communication 
quality improvements

Lack o f  co-operation 
from  employees

Empowerment, job 
enrichment, 
Incentives, Training 
and education
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O perational
issues

Manufacturing Lack of 
communication 
system and 
integration

Computers,
Automation,
Standardisation,
Protocols

Market needs, Quick 
response. 
Competitive price

Highest and fastest 
potential payoffs. 
Top management. 
Integration o f  all 
components

Service industry Integration o f  all 
functional areas, 
Total integration o f  
all functional 
technology.

Computer integration Lack o f  suitable 
information systems 
and technology

Global information 
technology, Single
source data entry, a 
sim ilar ‘look and 
feel' for all 
applications ‘user 
seductive’ interface, 
online education

General Integration o f  all 
functional areas

Functional 
integration by 
computers, 
Prototyping

Lack o f  infrastructure Program integration, 
Concurrent 
engineering, 
collaborative co
ordination

Manufacturing Integrated factory 
using various 
technologies

Networking,
Automation

Multiple vendors 
software security

Skilled workers in 
networking and 
software

General Environment
problems

Organisational
structuring,
computers

Systems development 
life cycle approach

3.5. Discussion and Conclusion

This chapter has reviewed previous research work concerned with CIM implementation

in industrial organisations. Different problems and obstacles to CIM progress have been

identified by many researchers and practitioners.

However, the following points can be concluded from this chapter:

❖  The introduction of new technology or adoption of new strategy should be preceded 

by a review of similar existing systems. This would be helpful and provide a 

valuable learning experience. In addition, the real cases give obvious examples of 

the advantages and disadvantages of the strategy being selected or planned. 

Learning from practice can be achieved through many resources such as survey 

studies, practitioner interviews and project proceedings and reports.

❖  Not all manufacturing organisations that have implemented CIM have enjoyed the 

same degree of success.

❖  All of the experience suggests that the process of developing a good manufacturing 

strategy is difficult in its own right and probably impossible without the 

involvement of several important factors such as knowledgeable users, management 

support and CIM experience.

❖  Despite the great advances made in recent years in manufacturing and computing 

technologies, CIM is still very complex and may get more complex in the future.
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❖  The CIM strategy should fully support the objectives of the business strategy. This 

may be achieved by an adequate analysis of the organisation’s needs, and the proper 

planning for CIM to use full the potential and benefits of this strategy.

❖  Implementing CIM requires basic foundations to be established in the organisation 

being considered. To put in place these basic foundations, several changes may be 

important such as redesigning and restructuring organisation functions before 

implementing or developing the new technology. Modelling methods and techniques 

play a very important role in redesigning and restructuring organisational systems, 

including information decision and physical systems, and defining functional 

specifications.

❖  Problems and obstacles to CIM success are closely related to each other. For 

example, lack of understanding of CIM leads to increased system complexity and 

integration problems. Judd et al. (1990) reported that much of the difficulty could be 

traced to the complexity involved in the integration of computers and manufacturing 

processes.
❖  A major study carried out by Ingersoll demonstrates that the lack of a detailed 

strategy was a major factor in the failure to implement CIM.

❖  The chapter demonstrates that modelling methods and techniques should be given 

more attention. Modelling methods have an obvious contribution to make in solving 

many obstacles to CIM implementation. Without appropriate modelling methods, 

analysing, designing and planning CIM and its components is a very complex task. 

The next chapter will review several modelling methods and methodologies which 

have been widely used for modelling manufacturing systems and computer 

integrated manufacturing.

CIM: Learning front Practice
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CHAPTER-4

CIM MODELLING METHODS AND 

TECHNIQUES

4.1. Introduction

This chapter discusses important themes related to CIM systems modelling. Several 

modelling terms such as method, tool, technique and a methodology have been used to 

denote the modelling concept. These terms are defined in this chapter. The modelling 

concept has been used for several purposes; therefore, this chapter presents some 

classifications of modelling and illustrates the role of modelling in CIM systems. The 

complexity of CIM modelling is also discussed.

During the review of previous work it was found that many modelling methods could be 

used for the analysis and design of CIM systems. This chapter reviews these methods 

and discusses their strengths and weakness.

Computer simulation plays an important role in modelling the dynamic aspects of 

manufacturing systems. Appendix-B reviews simulation modelling concepts, its 

importance as a modelling method, its advantages and disadvantages. Different types of 

simulation language and manufacturing simulators are discussed. The selection of the 

most appropriate simulation tool for a manufacturing application is a difficult problem 

which is discussed in detail in Appendix-B.
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4.2. Modelling

Savolainen et al. (1995) indicated that the term “modelling” means different things to 

different people - even within the context of CIM. Therefore, many different definitions 

for modelling are available. In general, modelling is the activity that concerns the 

construction of system models, either for analysis or design purpose. Hence, analysis 

models refer to a description of an existing system and design models refer to new 

system specifications and development.

Models of a system are representations with the specific purpose of helping to 

understand some aspects of the systems, by emphasising relevant features and de

emphasising irrelevant ones (Planche 1992). The Oxford Dictionary defines a model as 

“ a representation of something, usually smaller than the original; or a simple 

description of a system”. A model is an abstraction, a representation of a part or a whole 

of a real system which can be used to represent some aspects of a system such as the 

information sub-system, decision sub-system or physical sub-system.

Other terms such as methodology, method, technique and tool are widely used in 

modelling. Because of the problems and conflicts of understanding the basic concepts of 

these terms, and to use these terms correctly, it is necessary to define them in this 

section. Doumeingts et al. (1995) reported that the term “ methodology” means a set of 

methods which includes reference models, modelling formalisms and a structured 

approach. Czemik and Quint (1992) define a methodology as “theories about methods 

and their scientific applications”. The term “methodology” can be definied as a 

collection of procedures, techniques, tools and other supports such as rules and 

documentation aids which will help the system analyst and designer to implement 

system models.

A method can be understood as a problem solving process described as a system of 

rules or a collection of procedures (techniques) that support system analysis and/or 

design (Czemik and Quint 1992). A technique is a way of doing a particular activity in 

the system being modelled. A technique may use one or more tools. The distinction 

between a technique and a tool is that a tool is an ordinary problem solving procedure 

which usually exists as a software product. Both techniques and tools are means or 

features used in methodologies.
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4.2.1 Classification of Models

Models have been classified in different ways based upon different factors ranging from 

tangible to abstract, correspondence to the system being modelled or their static and 

dynamic behaviour.

McMillan and Gonzalez (1973) classified models into three main categories: physical, 

schematic, and mathematical models. A physical model retains some entities of the 

system being modelled and can be constructed from a set of physical objects. Schematic 

models are representations in pictorial form and include various degrees of abstraction 

such as flow diagrams. Elements such as lines, symbols, etc. are used in this type of 

model. Mathematical models consist of sets of equations that give solutions which 

explain or predict changes in the state of the system.

Planche (1992) divided models into three main types ranging from the more tangible to 

the more abstract. The three types are the physical model, the logical model and the 

conceptual model. Planche’s definitions of these are:

• The physical model also called the implementation model, describes the system: 

data flows, processes, automated components and manual components;

• The logical model also called the essential model, models data and the processes 

which manipulate them; this model can be used as the basis of the physical model 

and disregards any reference to material resources;

• The conceptual model also called the semantic model, describes the basic contents 

of the logical model, that is, information and how it is connected; this model 

disregards the data manipulation described at the logical level. Figure 4.1 illustrates 

each type of model with its own specific components.

Model TvDe D ata - ^ = > Processes Focus
Entities Business rules

Conceptual Relationships Data
Properties

DataLogical Data stores Data Processes
flows Processes

Physical DataAutomated data Screens Automated
• Automated Stores reports processes Processes
• Manual Manual flics Manual Manual ResourcesDocuments processes

Figure 4.1. Components of various types of models (Planche 1992).
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Askin and Sandridge (1993) classified models into two main groups: physical models 

and mathematical models. They classified mathematical models in two different ways 

based upon model output (descriptive such as simulation models or prescriptive such as 

linear programming models) and computational form (analytical such as queuing theory 

or experimental such as simulation models). Doumeingts et al (1995a) also 

distinguished between structured models and simulation models "... the structured 

models define the basic concepts, the elements and the relations between these elements 

from a static point of view. Simulation models, take the concept defined in the structural 

models and introduce the time factor: they take the dynamic evaluation of the model 

into account...”. Wang and Bell (1992) classified modelling methods along three main 

dimensions: modelling objective, abstraction levels and modelling formalisms. In the 

modelling objectives, models are classified according to the way they are used to deal 

with the system objectives (evaluative, evaluative/generative and generative). In the 

abstraction levels, modelling methods vary in terms of the logical details which can be 

contained within the corresponding models. The abstraction levels can be structural, 

approximate or detailed. In Modelling formalisms, the modelling method classification 

is based upon the way in which manufacturing knowledge is presented. Modelling 

formalisms can be algorithm, graph, Markov chain, simulation technique or artificial 

intelligence. Figure 4.2 illustrates that classification of modelling methods.

Modelling
objectives

Abstraction
level

Modelling
formalism

Evaluative

Hybrid

Generative

Structural

Approximate

Detailed

Algorithm

Graph

Markov chain

Discrete event

Artificial intelligence

Queuing networks

Perturbation analysis

Static analysis

GRAI approach

Queuing network

Emulation

Heuristics

Petri nets

Queuing networks

Emulation

K.B modelling

Figure 4.2. Classification of modelling methods (Wang and Bell 1992).
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4.2.2 Reasons for Modelling

The need for modelling methods is particularly relevant with complex systems such as 

CIM systems (Brandimarte and Cantamessa 1995). Salvolainen et al. (1995) reported 

that models are mainly used for two reasons:

1. Models are helpful to understand existing systems. Therefore, each time an analyst 

and designer start an action, they will need a formalised description of the problem 

domain.

2. During the different phases of a system development life-cycle, the target system is 

modelled at several levels of abstraction leading to a consolidated system 

implementation phase.

The above reasons for modelling are focused on understanding and simplification of the 

system being modelled. Askin and Sandridge (1993) reported five primary uses of 

modelling:
1. Optimisation: obtaining the best value for decision variables;

2. Performance prediction: examining and checking potential plans;

3. Control: aiding the selection of desired control rules;

4. Insight: providing a better understanding and representation of the system being 

modelled;

5. Justification: aiding selling decisions and supporting viewpoints.

In CIM, there are three important development stages, namely, analysis, design and 

implementation. Powerful modelling methodologies and techniques are requested to 

achieve the requirements of these development stages. To understand the concept of 

analysis, design and implementation, the question “what are systems analysis, design 

and implementation?” must be answered.

It should be noted that the system modelling, analysis and design are inseparable 

notions. Modelling is used to describe system means; therefore, a model is the analyst’s 

description of a system. A system analysis can be defined as a stage in development 

cycle in which a real-world problem is examined to understand its requirements without 

planning the implementation stage (Savolainen et al. 1995). The system analysis phase 

should consider several system aspects to determine why the problem exists and why 

certain methods of work were adopted. The results of the analysis phase are used for
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designing the new systems. During the design phase, decisions are made about how 

problems can be avoided or solved. The design phase should determine system inputs, 

outputs, process alternatives, etc., which are important for building the new system. The 

analysis and design phases can be divided into several sub-stages and carried out in 

several steps. An implementation phase can be carried out using various procedures 

based upon the system elements that have been prepared in the design phase.

CIM analysis and design are very complex tasks; therefore, modelling methods should 

be developed and adopted to contribute to solving the complexities of these systems. 

Manufacturing organisations need modelling methodologies and techniques to deal with 

the different stages and aspects of implementing new manufacturing strategies. 

Modelling methods are required due to several factors such as increasing analysis and 

design requirements, the growth of industrial organisation size and complexity, the need 

to consolidate an organisation’s future, the advent of new technology and strategies, and 

the increasing need for the development of integrated manufacturing systems.

4.3. Complexity of CIM Modelling

Modelling is the key to integrated manufacturing systems. However, the questions are 

how to select, develop and use modelling methodologies and techniques, and how to 

model, analyse and design CIM. The CIM modelling problem may refer to different 

CIM components and elements such as CAD, CAPP, CAM, CAPP, JIT, MRP, etc. 

Hence, it would be difficult to survey all these system models (Savolainen et al. 1995).

CIM modelling looks quite complex to analysts and designers because:

• The structuring and optimisation of CIM modelling requirements.

• Lack of understanding of CIM strategy.

• Different viewpoints about CIM objectives.

• Lack of proper modelling methods and techniques.

• Interaction between different CIM sub-systems such as information, decisional, and 

physical sub-systems.
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4.4. Review of Modelling Methodologies and Techniques Applicable 
to CIM

Many modelling methodologies, techniques and tools have been used for the analysis 

and design of CIM systems. Some of these methods originated from fields outside 

system analysis e.g. Entity Relationship diagrams (ER), Petri nets and mathematical 

programming models. Others have been specifically developed for system analysis and 

modelling such as Integrated Computer Aided Manufacturing (I-CAM) techniques 

(Brandimate and Cantamessa 1995). These modelling methods have different 

characteristics which are appropriate for systems analysis and design. On these other 

hand, the modelling methods have some drawbacks.

During the review of previous work, many modelling methodologies and techniques 

have been identified. For example, Two-Stage Entity Relationships (TSER) (Hsu et al. 

1995), Petri Net (PN) approaches (Desrochers and Al-Jaar 1995), Object-Oriented 

Methodologies (OOM) (Gaafar and Bedworth 1994), MERISE (Rochfeld and Tardieu 

1983), Input/Output Analysis (IOA) (Pandya 1995), Entity Relationship Diagram 

(ERD) (Planche 1992) and GRAI Integrated Methodology (GIM) (Doumeingts et al. 

1995b). Some of these modelling methods are still under development, completely new, 

or an integration of two or more methods. The modelling methodologies and techniques 

which are selected for this research are SSADM, IDEF methods (IDEFO, IDEFlx, 

IDEF3, IDEF4), SADT, OOM, GRAI and PN. Other methods are briefly described in 

this chapter including IOA, GIM and MERISE. Appendix-B also reviews simulation 

modelling methods relevant to CIM systems.

The reasons for the selection of these modelling methods are:

• The modelling methods have graphical components. It is generally agreed that 

graphical representation of systems is much more comprehensive than other 

representations (Chodari, 1997).

• The modelling methods show the hierarchical structure of complex systems and 

adopt the decomposition approach.

• The modelling methods adopt the partition hierarchy concept which is useful for 

manufacturing system analysis and design.

• The methods are flexible and provide a conceptual model to represent a general 

organisational view.
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• The modelling methods selected represent a comprehensive sample of modelling 

objectives i.e. they include data, decision, physical, process, dynamic, static, and 
information aspects of the systems.

•  The majority o f these modelling methods are widely used for modelling, analysing 

and designing manufacturing systems.

4.4.1 SSADM (Structured System Analysis and Design Method)

SSADM is the UK government’s standard method for carrying out systems analysis 

and design. This method was developed by CCTA (Central Computer and 

Telecommunications Agency) in the early 1980s (Anon 1994). Down et al. (1988), Eva 

(1992), and Weaver (1993) provide a more detailed description of SSADM. The latest 

version of this methodology, Version 4, has seven stages (numbered from 0 to 6) within 

five modules. Figure 4.3 illustrates a general structure of SSADM. This structure is 

derived from the references listed above which have described this methodology.

CIMModelling Methods and Techniques
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Steps
Prepare for the feasibility study

- Define the problem
- Select feasibility options 

Create feasibility report

Establish analysis framework
- Investigate and define requirements
- Investigate current data
- Derive logical view of current 
services
i- Assemble investigation results

Define business system options
- Select business system options
- Define requirements

Define required system processing 
Develop required data model 
Derive system functions 
Enhance required data model 
Develop specification prototypes 
Develop processing specification 
Confirm system objectives 
AssembJej^cjujrcmentsjigecdicafion

Define technical system options 
Select technical system option 
Define physical design module

- Define user dialogues
- Define update processes 

Define enquiry process 
Assemble logical design

Prepare for physical design 
Create physical data design

- Create function comp. imp. map
- Optimise physical data design
- Complete function specification
- Consolidate process data interface 

Assemble physical design-

Pigure 4.3. SSADM common structure.

Techniques

DFD, LDST, 
User options

DFD, LDST, 
RDA, User 

Option, RDA

DFD, LDST, 
User option, 

ELH, Dialogue D

FCPD,
PDC

RDA, CLDD

ELII, Dialogue 
D, POs

FCDD, FCPD, 
PDC

4.4.1.1 SSADM Modules

SSADM has five modules as shown in Figure 4.3:

1. Feasibility study.

2. Requirement analysis.

3. Requirements specification.

4. Logical system specification.

5. Physical design.

These modules cover the system life-cycle from feasibility study to design. The 

following sections give brief descriptions of the SSADM modules.
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a) Feasibility Study
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This module represents the first module of SSADM and consists of one stage (stage 0- 

feasibility). This stage is concerned with ensuring that the project, which has been 

proposed in the planning phase, is feasible. Stage-0 has four steps:

• Prepare for the feasibility study.

• Define the problem.

• Select feasibility options.

• Create feasibility support.

b) Requirements Analysis

A requirements analysis module is carried out to enable a full understanding of the 

requirements of the new system and establish the direction of the project. This module 

consists of two stages: stage-1 (investigation of the current system) and stage-2 

(business system options).

Stage-1, an investigation of the current system, gives more details o f the work done 

during the feasibility study (module 1) and repeats much of that work. Stage-1 has the 

following steps:

•  Establish analysis framework.

• Investigate and define requirements.

• Investigate current processing.

• Investigate current data.

• Derive logical view of current services.

•  Assemble investigation results.

Stage-2, business system options, is carried out to determine the functionality of the 

new system and compare different design options. Based upon specific requirements, a 

set of options are selected and presented to management so that one can be selected. 

This stage has the following steps:

• Define system business options.

• Select business system options.

• Define requirements.
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c) Requirements Specification

This module is used to identify the full requirement specifications and provide an 

obvious procedure for the system design stage, based upon the business option selected 

in stage-2. The requirement specification module consists of one stage (stage-3 - 

Definition of requirements which has the following steps:

• Define required system processing.

• Develop required data model.

• Derive system functions.

• Enhance required data model.

• Develop specification prototypes.

• Develop processing specification.

• Confirm system objectives.

• Assemble requirements specification.

CIMModelling Methods and Techniques

d) Logical System Specification

This module is used to define the environment in which the system will operate and 

develop a logical specification for the system being modelled. It consists of two stages: 

stage-4 - Technical system options and stage 5 - logical design. These two stages are 

carried out in parallel.

Stage-4 determines the different configurations of system environment in terms of 

software and hardware, system strategy and functionality. It mainly concentrates on the 

technical options. This stage has the following steps:

• Define technical system options.

• Select technical system options.

• Define physical design module.

Stage-5 is carried out to create the logical aspects needed in stage-4. It defines system 

dialogue and update processes. This stage has the following steps:

• Define user dialogue.

• Define update processes.

• Define enquiry process.
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• Assemble logical design.

e) Physical Design

This module is the last module in SSADM. It is carried out to translate the logical 

specifications into physical data design and programme specifications. This model 

consists of one stage (stage-6 - physical design). This stage has the following steps:

•  Prepare for physical design.

•  Create physical data design.

•  Create function component implementation map.

• Optimise physical data design.

• Complete functional specification.

4.4.1.2 SSADM Techniques

Downs et al. (1988) described the system analysis and design techniques used within 

SSADM, and also presented a narrative outline case study to demonstrate the use of 

these techniques. That study involved the techniques: Data Flow Diagrams (DFD), 

Logical Data Structuring Technique (LDST), User options, Entity Life Histories (ELH), 

Dialogue design, Relational Data Analysis (RDA), Composite Logical Data Design 

(CLDD), Process Outlines (POs), First Cut Data Design (FCDD), First Cut Program 

Design (FCPD) and Physical Design Control (PDC). Figure 4.3 illustrates these 

techniques within their related SSADM stages. In the following sections, some of the 

techniques widely used in SSADM projects will be described.

a) Data Flow Diagrams (DFD)

A DFD is an information system technique which is used to show data flow around a 

system. It is very simple and uses understandable graphical symbols. DFD modelling 

components are process, data flow, data store and external entity (Hsu 1994). Figure 4.4 

illustrates the graphical symbols of DFD components and demonstrates them in an 

example.
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Symbols 

External entity

Process

Data flow 
----------- ►

Data store

Example

Inventory

Inventory
information

Ordci^
General ledger

information

Customer
Orders

Date of 
delivery

Process
order

Demand
Date

Forecast
sales

Readied order and
shipping data

Distribution
network Outstanding

demand

Figure 4.4. Graphical symbols and an example of DFD Technique.

The DFD shows the relationships between system components. The highest level of 

DFD can be decomposed into several levels to describe the basic processing units. This 

technique is used within stages 0, 1 and 2 in SSADM. Downs et al. (1988) reported the 

following objectives of a DFD:

• It graphically documents the system boundaries.

• It illustrates the flow of data between the system and its environment.

• It provides a hierarchical functional decomposition of the system.

• It documents the intra-system information movements.

• It supports communication.

b) Logical Data Structure Technique (LDS)

A LDS is an entity modelling technique used to provide a logical representation of the 

data requirements of the system being modelled. The main objectives of this technique 

are: to identify system activities, to represent the relationships between data and to 

identify data requirements. The LDS model can be carried out in several steps. The first 

step is to define system entities. Then, the LDS grid can be constructed listing all the 

identified system entities. This grid is a two dimensional matrix that illustrates the 

relationships between system entities. Following this, the LDS grid is converted into an
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LDS model. Finally, the LDS model can be validated against the DFD. Figure 4.5 

illustrates a LDS model.

c) Entity Life Histories (ELH)

The main objectives of ELH are to validate DFD models, help to provide better 

understanding of system entities and clarify event interactions. The ELH model can be 

constructed using system entities identified in LDS and DFD models. Figure 4.6 

illustrates the general structure of the ELH model. The diagram reads from left to right 

and shows the system that will be modified in some way to create an occurrence of the 

entity (Downs et al. 1900).

Figure 4.6. Entity Life History (Downs ct al. 1988).
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4.4.1.3 Discussion of SSADM

SSADM is an effective modelling methodology which uses a structured approach and 

graphical tools to support the development of software systems. This modelling 

methodology is well defined and adopted in many UK university courses. It uses three 

techniques, entity models, DFD and ELHs. Wyatt and Al-Maliki (1990) indicated that 

the strength of SSADM lies not in any one of its techniques, but in their combined use, 

as recommend by the methodology. This integration between the method and techniques 

provides effective error checking and consolidates model consistency.

SSADM does not support the CIM system analysis and design because it does not 

consider system time scales. In addition, the decision and physical modelling aspects are 

not well defined. Further problem is that successful SSADM implementation requires a 

high level of personal skills. Avison and Fitzgerald (1996) reported that SSADM is 

classified as a specific problem-solving methodology, that is, it does not focus on 

identifying the systems required by the organisation but begins with the assumption that 

a specific problem is to be addressed.

4.4.2 IDEF Methods

During the 1970s, the US air force programme for ICAM (Integrated Computer Aided 

Manufacturing) sought to increase manufacturing productivity using computer 

technologies. The ICAM programme developed a series of modelling methods known 

as IDEF (ICAM Definition) methods. These modelling methods are used to perform 

modelling activities in support of manufacturing system integration. The original IDEF 

methods were developed to enhance the communications between system levels and 

components and to illustrate how system activities were integrated or related to each 

other.

The original IDEF methods used three techniques (Zgorzelki and Zgorzelsa 1994):

• IDEFO (functional modelling method) was designed to allow an expansion of the 

description of system activities through the process of activity decomposition and 

categorisation of activity data and relationships in terms of ICOM (inputs (I), 

controls (C), outputs (0) and mechanisms (M)).
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• DDEFl (information modelling method) was designed to allow the modelling of the 

information that an organisation deems important to accomplish its objectives.

• IDEF2 (Dynamic modelling method) was design to allow the modelling of the time- 

variety behavioural characteristics of the system activities. This modelling technique 

is not widely used and was replaced by modern simulation approaches (Zgorzelki 

and Zgorzelsa 1994).

IDEFO and IDEF1 (usually with its last extension becoming IDEF1X) are widely used 

in many applications. Other IDEF methods have been developed such as IDEF3 

(process flow and object state description capture method), IDEF4 (object-oriented 

design method) and IDEF5 (ontology description capture method). Table 4.1 illustrates 

the state of development of these techniques.

The following sections provide a more detailed description of the IDEFO, IDEF IX, 

IDEF3 and IDEF4 methods. The reason for the selection of these techniques is that they 

have demonstrated their usefulness as effective tools for functional, data and process 

modelling.

Methods Perspective

1. IDEFO Function Modelling
2. IDEF1 Information Modelling
3. IDEF IX Semantic Modelling
4. IDEF2 System Dynamic Modelling
5. IDEF3 Process Description Capture
6. IDEF4 Object State Description Capture
7. IDEF5 Ontology Description Capture
8. IDEF6 Design Rational Capture
9. IDEF7 Information System Audit Method
10. IDEF8 Human-System Interaction Modelling
11. IDEF9 Business Constraint Driven Design
12. IDEF 10 Implementation Architecture Modelling
13. IDEF11 Information Artefact Modelling
14. IDEF 12 Organisation Modelling
15. IDEF13 3-Schema Mapping
16. IDEF 14 Network Design

Table 4.1. The IDEF family of Methods (Zgorzelski and Zgorzelsa 1994)

4.4.2.1 IDEFO Method

a) General

IDEFO is based upon the Structured Analysis and Design Technique (SADT), a 

graphical approach to system description, developed by Ross in 1970s (Gay 1993) The
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main objectives of IDEFO is to perform system analysis and design, produce reference 

documentation to help in the development of the existing system, communicate different 

manufacturing entities during the analysis phase, present a better understanding of 

system, and present a graphical function representation for the organisation. An IDEFO 

model consists of a hierarchy of diagrams, text and glossary. The diagram mainly based 

upon two graphical components: boxes and arrows, all cross-referenced to each other 

(Kusiak et al. 1994). The box represents a system function that can be defined as an 

activity, process or transformation. The arrows in the diagram represent data and 

function relationships. Figure 4.7 illustrates the basic IDEFO concept.

Input
(I) '

Control
(C)

Function
AO

Mechanism
(M)

.Output
(O )

Figure 4.7. Basic IDEFO concept.

As illustrated in Figure 4.7, arrows entering the left side of function box are inputs (I), 

arrows entering the top of the box are controls (C), arrows leaving the right side of the 

box are outputs (O) and arrows entering the bottom side of the box are mechanisms (M). 

IDEFO model construction is based upon several design rules that define how the model 

components are used. Each box in the IDEF model should involve a function name and 

number.

b) IDEFO Decomposition

IDEFO boxes and arrows are combined in a diagram that represents a higher-level 

function (Arabshahi and Barton 1991). One of the most important features of the IDEF 

method is the hierarchy, as the top-level is decomposed into its basic sub-activities and 

elements. A model starts by presenting the whole system as a single function (a box 

with its arrow interfaces). This box is called the top box of the model and labelled AO. 

The top box can be decomposed into more child-diagrams until the system is described
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at the necessary level. The top-level diagram provides the most general or abstract 

description of the system being modelled. The series of child-diagrams provide more 

detail of the system. This feature restricts the amount of information that may be 

contained on the model on a single level. Figure 4.8 illustrates the IDEFO model 

structure. The model diagrams provide a hierarchy of information that can be 

summarised in an IDEFO node tree as illustrated in Figure 4.9. The node tree provides 

the relationships between all diagram levels.
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c) Discussion of IDEFO

IDEFO is a functional/structural modelling method that is useful in defining the scope of 

a system functional analysis. Its model is presented in a hierarchical structure to provide 

more details about activities performed at different levels. This modelling method is 

simple to use and understand. It describes system activities by their ICOMs. The top- 

down analysis approach is usually more appropriate for IDEFO than bottom-up 

construction.

IDEFO has some limitations such as:

• It does not address time scales associated with systems functions.

• It does not consider decision flow within its models.

• It does not distinguish between information and physical flows within its models.

• The static nature of IDEFO models may be considered as the greatest failing of the 

modelling method.

• IDEFO models are often too concise. This may contribute to difficulties of 

comprehension for model readers.

However, the IDEFO method alone is not sufficient to analyse and design CIM systems, 

and it must be integrated with other modelling methods.

4.4.2.2 IDEF1X Method

a) General

IDEF1 was extended to become IDEF1X which is a semantic data modelling technique. 

It is used to produce information models which represent the structure and semantics of 

information within an organisation. A principal objective of IDEF1X is to support the 

integration of information systems. This approach of integration focuses on the capture, 

management, and use of a single semantic definition of the data resource referred to as a 

“Conceptual Schema”. The “conceptual schema” provides a single integrated definition 

of the data within an enterprise which is unbiased toward any single application of data 

and is independent of how the data is physically stored or accessed. The primary 

objective of this conceptual schema is to provide a consistent definition of the meanings
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and interrelationship of data which can be used to integrate, share, and manage the 

integrity of data.

Each IDEF1X model must be accompanied by a statement of purpose (describing why 

the model was produced), a statement of scope (describing the general area covered by 

the model), and a description of any conventions that the authors have used during its 

construction. Author conventions must not violate any of the rules governing model 
syntax or semantics.

The components of an IDEF1X model are entities, relationships and attributes. An 

entity represents a set of real or abstract things (people, objects, places, events, ideas, 

combinations of things, etc.) An entity is represented as a box, as shown in Figure 4.10.

Entity name/ No
F n tity  ^ Attribute

Relationship

>
ame/No

w

<
Entity n

A ttrih iitr ^
Attribute

figure 4.10. Basic components of 1DEF1X model."

Each entity is assigned a label which is placed above the box. The relationships between 

entities are represented by lines with labels indicating the type of relationship. Each 

attribute is identified by a unique name expressed as a noun phrase which describes the 

characteristic represented by the attribute. Attributes can be defined by entering their 

names in a list inside the associated entity box.

b) Entity Type

An entity is a uniquely identified object of interest to the system about which 

information is collected. In IDEF1X, an entity can be “identifier-independent” or simply 

“independent”. It is “Identifier-independent” if each instance of the entity can be
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uniquely identified without determining its relationship to another entity. It is 

“identifier-dependent” or simply “dependent” if the unique identification of an instance 

of the entity depends upon its relationship to another entity. Figure 4.11 illustrates 
identifier dependent and independent entity classes.

Syntax Example
Entity name/ No Employee/ 12.1Key-Attribute Employee

Identifier-Independent Entity

Entity name/ No 
ey- Atlri but

M.D.Ilem/ M12 
Al.D . Item

^  J v y
Identifier-Dependent Entity

Figure 4.11 IDEF1X entity classes.

c) Relationship and Attributes

In an IDEF1X model, connection relationships are used to represent associations 

between various entities. Two types of specific relationship can be defined: connection 
relationship and categorisation relationship as shown in Figure 4.12.

Within an IDEF1X model, attributes are associated with specific entities. An “attribute” 

represents a type of characteristic or property associated with a set of real or abstract 

things (people, objects, places, events, ideas, combinations of things, etc.). An entity 

must have an attribute or combination of attributes whose values uniquely identify every 

instance of the entity. These attributes form the “primary-key” of the entity. Figure 4.12 

also illustrates attributes in an IDEF1X model. More details of the method can be found 
in Kusiak et al. (1997).
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CUSTOMER /1 ORDER 12
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pc-disk-size unix-media

d) Discussion of IDEF1X

IDEF1X is conceptually similar to the Entity Relationships (ER) method, but it is 

different graphically, and more complicated semantically, thus making it more difficult 

to use than ER (Chadha et al. 1995). IDEF1X models are often used informally to 

describe the physical database structure.

Pandya (1995) identified some limitations of IDEF1X including the following:

• It lacks support for composite entity types; hence it requires attributes to be single 

value of simple data types such as strings and numbers.

• Domain constraints describe the semantics associated with entity type. Other 

constraints cannot be expressed between entity types.

• Entity attributes are used to identify instances of entity types. This requires an 

attribute value to be assigned before an instance of entity type can exist.

IDEF1X is suitable for modelling information systems, but as CIM comprises other 

systems such as decision, physical and control systems. IDEF1X cannot be used alone 

for system modelling.



4.42.3 IDEF3 Method

a) General

The IDEF3 Process Description Capture Method was created specifically to capture 

descriptions of sequences of activities. The primary goal of IDEF3 is to provide a 

structured method by which a domain expert can express knowledge about the operation 

of a particular system or organisation. IDEF3 is used to assist those engaged in 

capturing and analysing the vital processes of existing or proposed systems. Guidelines 

and simple-to-use graphical language structures aid users in successfully capturing and 

organising process information for multiple downstream uses. IDEF3’s unique design 

includes the ability to capture and structure descriptions of how a system works from 

multiple viewpoints. This enables users to capture information conveyed by 

knowledgeable experts about the behaviour of a system, rather than directing user 

activity toward constructing engineering models to approximate system behaviour. This 

feature is among the central characteristics distinguishing IDEF3 from alternative 

offerings. As an integral member of the IDEF family of methods, IDEF3 works well in 

independent applications or in concert with other IDEF methods to identify and develop 

the vital business processes.

CIMModelling Methods and Techniques

b) IDEF3 Process Descriptions

The basic elements of the IDEF3 description language are shown in Figure 4.13. This 

figure displays alternative symbol conventions for first-order relations. There are two 

basic components of the IDEF3 process description language: the process flow 

description and the object state transition network description. These two components 

are cross-referenced to construct IDEF3 diagrams (Mayer et al. 1995).

The IDEF3 process flow description is represented by the graphical elements that 

comprise process schematics and include Unit of Behaviour (UOB) boxes, links and 

junctions. A UOB represents an activity occurring in the process e.g. assemble parts, 

perform inspection or evaluate proposal. The relationships between UOBs are 

represented by three types of links, precedence links, relational links and object flow 

links. A precedence link is used to express simple temporal precedence between UOBs. 

A relational link is used to highlight the existence of a relationship between two or more
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UOBs. An object flow link is used to provide a mechanism for capturing object related 

constraints between UOBs and carry the same temporal semantics as a precedence link. 

Junctions are used to model the logic branching within a process. Figure 4.13 illustrates 

different classes of junctions and an example of an IDEF3 process flow diagram is 
illustrated in Figure 4.14.

Object state transition network (OSTN) diagrams are used in IDEF3 to model object 

state changes relative to the process flow description. The basic components of OSTN 

diagrams are nodes (circles) and arcs. In IDEF3 models, each object may have a 

corresponding OSTN diagram. Nodes in the diagram represent different states of the 

object and arcs represents possible transitions that the object can make between model 

states, as illustrated in Figure 4.13. Figure 4.15 illustrates an example of an OSTN 
diagram.
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Process Schematic Symbols Object Schematic Symbols

UOB Symbols Object Symbols Individual Symbols

UOB

Node R ef# IDEF R ef#

Links
►- Simple Precedence Link

Links
-►Weak Transition Link

-►►-Strong Transition Link

---- ►- Constraint Precedence Link

— — - Relational Link

Junctions

Relation Label

Relation Label

&

o

-AND

-O R

&

o

X

_ Synchronous AND ( & )  - a n d

-  Synchronous OR ( o )  -O R

-X O R ®  -XOR

n - Place First-order 
Relation Symbol

2 - Place Second-order 
-Relation Symbol

>

o
Referents and Notes

Call and Continue Referent Call and Wait Referent

Referent Type/ 
Label

Locator

Referent Type/ 
Label

Locator

Note
Note ID

Figure 4 .1 3 . Symbols Used tor IDEF3 Process Description (Mayer ctal. 1995)
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c) Discussion on IDEF3

The IDEF3 melhod focuses on the abstraction and capture o f knowledge about a given 

real-world system. It is a relatively new method in the analysis o f manufacturing and 

design systems (Kusiak et al. 1994). In IDEF3 models many factors should be 

considered when describing what a complex system does, such as; What does a process 

require to perform its function? What objects participate in the process? What are the 

precedence and causality relationships between processes and events within the 

environment? (KBSI 1997). However, this method is difficult to use and understand and

must be integrated with other IDEF modelling methods to represent complex 

manufacturing systems.
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4.4.2.4 IDEF4 Method

a) General

IDEF4 is an object-oriented design method for developing component-based 

client/server systems. It has been developed to achieve the following objectives:

• Applying object-oriented design techniques within IDEF family of methods.

• Separating external and internal design specifications of an object.

• Designing systems which can interface to other systems.

• Using and updating the design during system use and maintenance.

• Reusing design objects in other system designs.

• Specifying object-oriented, distributed computing environments.

It has been designed to support smooth transition from the application domain and 

requirements analysis models to the design by specifying design objects with sufficient 

detail to enable source code generation.

In the JDEF4 method, the object-oriented design activity is divided into two sub

activities: discrete and manageable chunks. These sub-activities are supported by a 

graphical syntax. But IDEF4 is more than a graphical syntax. The graphical syntax 

provides a convenient framework for navigating an evolving object-oriented design that 

is ultimately specified on class invariant data sheets and method set contracts.

In the IDEF4 model, no single diagram shows all the information contained in the 

IDEF4 design model, thus limiting confusion and allowing rapid inspection of the 

desired information. Carefully designed overlap between diagram types serves to 

ensure compatibility between the different sub-models. The IDEF4 method allows the 

designer to easily make trade-offs between class composition, class inheritance, 

functional decomposition, and polymorphism in a design.

In general, an IDEF4 model is composed of two sub-models, the class sub-model and 

the method sub-model. These two sub-models are connected through dispatch mapping, 

as illustrated in Figure 4.16. All the information represented in a design model is 

captured by these two structures. Owing to the size of the class and method sub-models, 

the model designer never sees these structures in their entirety. Hence, the designer
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makes use of the collection of smaller diagrams and data sheets that effectively capture 

the information represented in both class and method sub-models.

b) IDEF4 Class Sub-model

The class sub-model consists of a number of diagram types including inheritance 

diagrams to specify class inheritance relations, type diagrams to specify class 

composition, protocol diagrams to specify method invocation protocols and instantiation 

diagrams to describe object instantiation scenarios which assist the designer in 

validating the design. This class sub-model shows class inheritance and class 

composition structure. Figures 4.17 and 4.18 illustrate examples for inheritance 

diagrams and protocol diagrams.

Fill closed object

Result

Polygon

Figure 4 .1 8 .  Protocol Diagram ( kb si 19 9 7 )
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c) The IDEF4 Method Sub-model

The method sub-model consists of two diagram types: method taxonomy diagrams that 

classify method types by behaviour similarity, and client diagrams that illustrate clients 

and suppliers of methods, to specify functional decomposition. Figure 4.19 illustrates a 

taxonomy diagram. The arrows indicate additional constraints placed on the method 

sets. The method sets in the taxonomy are grouped according to the additional contracts 

placed on the methods in each set. In Figure 4.19, the first method set, Print, has a 

contract that states that the object must be printable. The Print-text method set contract 

would have constraints such as 'the object to be printed must be text' (KBSI 1997).

CIM.Modelling Methods and Techniques

Print-Text

Print
Print-Graphics-Objcct

Figure 4.19. Method Taxonomy Diagram (KBSI 1997)

Figure 4.20 illustrates a client diagram. The Double-headed arrows point from the 

routine (called to the calling routine). In Figure 4.20, the Redisplay routine attached to 

the class Re-displayable-object calls the Erase routine of the Erasable-object class and 

the Draw routine on the Drawable-object.

Erasable-Object Dravvablc-Object
Erase Draw

Re-displayablc-objcct
Display

Figure 4 . 2 0 .  Client Diagram (K B SI 1997)

As IDEF4 is not only a graphical language, additional information about the inheritance 

diagrams, method taxonomy diagrams and type diagrams are presented in detailed data 

sheets.
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Class-invariant data sheets are related to inheritance diagrams and specify constraints 

that apply to every instance of a particular class of objects. In the method, there is one 

class-invariant data sheet for each class e.g. the constraint, 'Every triangle has three 

sides', is a class-invariant constraint on the class Triangle ( KBSI 1997).

Contract data sheets are related to the method sets in method taxonomy diagrams and 

specify contracts that the implemented methods must satisfy. In the IDEF4 model, there 

is one contract data sheet for each method set.
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d) Discussion of IDEF4

Wu (1994) reported that the most direct development in Object-Oriented (0 0 ) design in 

manufacturing was IDEF4, as it provided a comprehensive set of tools and procedures 

to help design and develop 0 0  software systems. He also found that the issues related 

to system analysis were not specifically addressed.

The specialised vocabulary that has evolved around the 0 0  method is one of the 

greatest barriers to object technology (KBSI 1995). There is a great deal of confusion 

centred on the use of different terminologies by different object-oriented languages. It is 

imperative to define IDEF4’s object-oriented terminology before proceeding.

However, IDEF4 is difficult to understand and depends upon system class definitions. 

Integration of IDEF4 and other IDEF methods requires high accuracy in selecting 

system activities and defining classes, objects and attributes. For example, users of the 

IDEF1X cardinality notation in IDEF4 should be careful not to confuse the semantics of 

object-oriented modelling with semantic data modelling (KBSI 1995).

4.4.3 SADT Approach

The SADT approach was developed in the early 1970s by D. Ross and SoftTech, Inc. It 

is a system analysis and design method which uses a number of graphical and textual 

tools including activity diagrams, data diagrams, node lists and data dictionaries to 

represent the structure of the system being modelled (Pandya 1995). The SADT 

provides a set of a disciplined approach to model complex physical and information
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systems. It must be noted that IDEFO is a sub-set of SADT. The SADT model 

construction is based upon seven concepts namely understanding via model building, 

top-down decomposition, dual aspects of system, functional modelling system versus 

implementation modelling, graphic format of model representation, support of 

disciplined teamwork, and all decisions and comments in written form (Ross 1985).

The SADT model is based upon two main structures: activity structure and data 

structure. These two structures are associated with two graphical tools: actigrams and 

datagrams which deal with system activities and data aspects respectively.

4.4.3.1 SADT Model Structure

The SADT model structure is represented by a diagram language (graphical and textual 

tools). It starts by representing the whole system in its context diagram (called top 

diagram) as one box. The top diagram is then decomposed into a number of child- 

diagrams to give more detailed modelling. These diagrams involve activity and data 

nodes. The nodes are related directly to the parent node in the higher diagram. The 

diagram contains at most six nodes; hence a model box or node can be decomposed into 

at most six nodes at a lower level. The aim of this hierarchical structure is to describe 

the activity or data nodes or boxes in more detail until a full system has been described. 

Figure 4.21 illustrates the SADT model hierarchy. The numbering of lower model 

diagrams are related to the parent node reference in the upper level diagram. Two types 

of numbering methods are used in the SADT model, which are related to both actigram 

and datagrams nodes. The reference of the actigrams begins with the letter ‘A’ and the 

reference of the datagrams begins with the letter ‘D’ as shown in Figure 4.21.

C1MModelling Methods and Techniques
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4 A .3 .2  SADT Diagrams

In both actigrams and datagrams, the SADT model can be constructed using boxes and 

arrows as illustrated in Figure 4.22.

C2

II
C3

Ml
&

Figure 4.22. SADT diagram.

The main components of actigram and datagram are boxes and arrows. A box should 

contain a text label and number. Arrows represent the relationships between diagram 

boxes SADT actigrams and datagrams are described in the following sections.
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4.4.3.3. SADT Actigrams

The basic concept of actigram is illustrated in Figure 4.23. The actigram box represents 

the activity performed. Arrows represent the flow of physical elements and data 

between activities. The attachment of arrows and activity box has a particular meaning:

• Arrows entering the left side of the actigram box are inputs.

• Arrows entering the upper side of the actigram box are control inputs.

• Arrows entering the lower side of actigram box are mechanisms.

• Arrows leaving the right side of actigram box are outputs.

In the SADT model, each actigram activity must have at least one output and one 

control.

4.4.3.3. SADT Datagrams

SADT datagrams are used to model data elements of a system. Figure 4.23 illustrates 

the main concept of datagrams. The datagram consists of boxes and arrows which 

represent the data and activities respectively. The Box ICOM of arrows around the 

datagram box have a particular semantic:

• Input to the right side = an activity which creates or modifies the data.

• Control to the upper side = an activity which may affect the way the data can be 

created or used.

• Output from the right side = an activity which uses the data.

• Mechanism into the lower side = data support.

Control Input Control Input

’ y

Activity _ Activity name
Actiyity Data Data name Data

Input Output Input ' Output
Node No. Node No.

y1
Mechanism Mechanism

Actigram Datagram

Figure 4 .23 . Basic concepts o f actigram and datagram.
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44.3.4 Discussion of SADT

SADT includes some good features such as the top-down decomposition approach and 

the ability to model both data and activities using simple graphical tools. Therefore, 

SADT is a good technique for system analysis and design.

However, This modelling method has some limitations including:

• Decision modelling is not included.

• System time scales are not considered.

• SADT models are static representations.

• Data modelling is not completely covered.

4.4.4 Object-Oriented Methodologies

Object-oriented methodologies request system components as objects (Gaafar and 

Bedworth 1994). An object-oriented model views the system as a collection of objects 

that contains both data and methods applied to data (Lefrancois and Montreuit 1994). 

Object-oriented (0 0 ) methodologies have been used in recent years in analysis and 

design of manufacturing systems e.g. Wu (1994), Lenart and Nof (1997), Wuwongse 

(1997), Luo et al. (1997) and Kwon and Jie (1996).

Several 0 0  analysis and design methodologies have been proposed such as 

OOA(Object-Oriented Analysis) (Coad and Yourdon 1991), BEBOOD (Petri-Net Based 

Object-Oriented Design method) (Chen and Lu 1997) and HOOMA (Hierarchical and 

Object-Oriented Manufacturing Systems Analysis) (Wu 1994). The major principle of 

all 0 0  methodologies is to bridge the gap between system analysis and design, and to 

bring together the functional and data approaches (Wu 1994).

4.4.4.2 Discussion of OOM

OOMs have some advantages for developing structured analysis models for 

manufacturing systems including: ease of representation, abstraction, polymorphism, 

separation of modelling from design and implementation, supporting modularity (where 

classes can be modelled, design and implemented as stand alone elements), providing
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the vehicle to model both data and knowledge, allowing the concept of method to be 

extended to include rule-based, supporting integration through the sharing of common 

classes and simplifying the incorporation of changes and modifications (Lefrancois and 

Montreuil 1994, Gaafar and Bedworth 1994). OOM models provide good graphical 

techniques, and have a hierarchical decomposition from general levels to a more 

detailed description. Wu (1995) reported that OOMs provide an excellent approach to 

managing and expressing complex entities through data abstraction, encapsulation and 

inheritance.

OOMs have some limitation such as:

• Not being easy to use and learn; in addition OOMs do not have the ability to 

maintain a history of versions of the model (Chadha et al. 1991).

• Being classified as a specific problem-solving methodology, it does not focus on 

identifying the system required by the organisation but begins by assuming that a 

specific problem is being addressed.
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4.4.5 GRAI Method

The GRAI method was developed by the GRAI laboratory at the University o f 

Bordeaux-I in France in the 1970s. The GRAI method now has many industrial 

applications (Doumeingts et al 1995b). This method examines the structure of 

decision/activity centres and the flow of decisions and information between these 

centres.

The GRAI method is based upon three basic elements (Doumeingts et al 1995a):

•  A conceptual reference model.

• A formalism associated with graphic tools.

• A structured approach allowing an efficient use of the method.

4.4.5.1 GRAI Reference Model

The conceptual reference model has been developed based on theories of complex 

systems, hierarchical system, and system control (Doumeingts et al 1993), as shown in 

Figure 4.24.
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The conceptual model gives the basic ideas for designing a manufacturing system 

(Doumeingts et al 1992). The conceptual model structure of manufacturing systems is 

decomposed into three subsystems (Doumeingts et al 1995a):

1. Physical system, which includes the human resources; the manufacturing 

equipment; the material and tools; the physical processing which are all used to 

convert raw material into products.

2. Information system, which is used to transfer data between the elements o f the 

system being modelled.

3. Decision system, which itself is decomposed into an upper system which is driven 

by periodic activities and an operating system which is event driven.

4.4.5.2 GRAI Formalisms

The GRAI formalism concentrates on the decision subsystem and consists of GRAI 

grids (to show the organisation decision making centres) and GRAI nets (to describe the 

detail of activities in a decision centre) (Chen et al, 1990). The GRAI formalism can be 

associated with other available methods such as IDEFO to model the physical system 

and MERISE to model the data system (Doumeingts et al. 1995) (Doumeingts et al. 

1993).
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4.4.5.2.1 GRAI Graphical Tools

I. GRAI Grid
The GRAI grid is represented by a table of rows and columns, as shown in Figure 4.25, 

and it is constructed using a top-down analysis approach. The columns of the grid 

represent the function and the rows contain the decision time scales (Wu, 1992).

The relationship between decision centres is represented on the grid by a simple arrow 

(an information link) and a double arrow (a decision link) (Chen et al., 1990
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►Decision flow ► Information flow

Figure 4.25. GRAI grid.

n . GRAI Net

The GRAI net describes the structure of the various activities in each of the decision 

centres identified in the GRAI grid and is constructed using a bottom-up approach 

(Chen et al, 1990). The activities are the fundamental elements in the net. Each activity 

has an initial and final status which requires a support of information, and produces 

results. An activity result can connect to a resource or input to another activity 

(Doumeingts et al 1995a). Figure 4.26 illustrates a sample GRAI net.
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4.4.5.3 GRAI Structured Approach

Doumeingts et al. (1995a) reported that the application of the GRAI method must 

follow set procedures, as illustrated in Figure 4.27. The construction of a GRAI model 

requires: a synthesis group, composed of the future users, and analysts/designers with 

expertise in GRAI techniques. As illustrated in Figure 4.27, the GRAI method involves 
two main phases: the analysis phase and the design phase.

In the analysis phase, the current system is considered and the necessary data are 

collected to construct system models. Top-down and bottom-up approaches are used in 

the analysis phase. In the top-down approach, GRAI grids, constructed to illustrate 

system decision centres are decomposed into several hierarchical grid models. In the 

bottom-up analysis, GRAI nets are used to describe decision centres in detail. This helps 

in the analysis of decisions made by decision centres and the variables and objectives 
used to carry out decisions.

In the design phase, the inconsistencies identified during the analysis phase are 
addressed. This phase can be carried out in two steps:

1. The construction o f  a frame using GRAI grids to model the proposed structure o f  the 

new system.
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2. The construction of the decisional frame for each decision centre using GRA1 nets 

to present more details of the basic activities carried out.

The GRAI structured approach gives a general specification of the system under 

consideration.

4.4.5.4 Discussion of GRAI Method

The GRAI method comprises good techniques and tools for modelling manufacturing 

systems (Chodari 1997). It generates a conceptual model that gives a generic view of an 

organisation. It provides a top-down decomposition approach using the GRAI grid and 

bottom-up design approach using GRAI nets. The GRAI method is the only modelling 

method discussed in this chapter which considers decision flow, addresses system time 

scales within its models, and offers good graphic interaction. Therefore, this modelling 

method is suitable for the analysis and design of manufacturing systems.

The GRAI method has some limitations such as:

• The rigid rules of GRAI grid and net construction.

• Modelling with GRAI net is not easy to learn and requires much practice (Czernik 

and Quint 1992).

• The information and physical flows are not well modelled within the GRAI method

• Identifying planning horizons and periods is difficult.
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• GRAI is a static modelling method, not suitable for modelling the dynamic 

behaviour of information and control systems (Harhalakis et al. 1995).

However, the strength of the GRAI method is its ability to focus on the system time 

scales and decision aspects.

4.4.6 Petri Net Approach

The Petri Net (PN) was developed by Carl Adam Petri in 1992 (Valvanis, 1990). The 

PN is a graphical and mathematical approach used for modelling asynchronous and 

concurrent system activities. The PN approach has been widely used in modelling, 

analysis, simulation and control of manufacturing systems (Desrochers and Al-Jaar, 

1995). The reasons for using the PN approach in manufacturing systems are:

• The graphical representations.

• The mathematical analysis tool is useful to verify the system.

• The ability to generate control codes (some approaches).

• PN models can be used to implement real-time control systems.

• PN models represent a hierarchical modelling tool.

4.4.6.1 PN Concept

Figure 4.28 illustrates a PN example. The basic components of a PN model are two 

types of nodes: places and transitions. The PN nodes are connected by direct arcs. 

Formally, the PN is defined as the four-tuple PN = (P, T, I, 0}.

Where: P={pl ,  p2 ,.......... , pn}.

T = {tl, t2.............. . tn}.

I = Input function.

O = Output function.

Input and output functions are related to model places and transistors. Hence, an input 

place is directed to a transition. A transition is directed to output places.

CIMModelling Methods and Techniques
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A model transition is enabled when all its input places are marked by tokens from each 

one of its input places by placing a token in each one of its output places. This basic 

token movement is used for describing and analysing the flow of information and 

control in the system being considered. The most important feature of PN is the ability 

to model the dynamical behaviour of a system by firing model transitions. The meaning 

of token movement is the challenging system state.

It should be noted that there are various extensions of the PN approach including Timed 

Petri Nets (TPN), Stochastic Timed Petri Nets (STPN), Generalised Stochastic Petri 

Nets (GSPN) and predicate/transition nets.

4 A .6 .2  Application of PN in Manufacturing Systems

In the last few years PN approaches have been widely used for manufacturing 

applications. Desrochers and Al-Jaar (1995) presented a book titled “Applications of 

Petri Nets in Manufacturing Systems”. The book illustrated that there are many aspects 

of manufacturing systems which can be modelled using PN approaches. The flexibility 

of the PN concept enables the analyst to form the suitable analysis and control models 

for the system being considered. D’Souza and Khator (1994) presented a survey paper 

of PN applications in control and modelling automated manufacturing systems. It was 

found that PNs are being increasingly used to model advanced manufacturing systems
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for analysis and performance evaluation. D’Souza and Khator (1994) indicated that this 

field still needs more research work.

The PN approach has been integrated with other modelling methods to increase its 

capabilities. For example, Cheng and Lu (1997) presented an integrated modelling 

methodology in which the PN approach performs the dynamic side of its models.

4.4.6.3 Discussion of Petri Nets

PN approaches have good modelling features such as the ability to represent systems 

graphically, the ability to provide a complete qualitative analysis and the ability to link 

directly structured properties. PNs can also describe a system model in a hierarchical 

structure.

Valvanis (1990) and Pandya (1995) reported some limitations to PN including:

• In a PN model, there is only one class of place used to present the conditions that 

exist in the system. System analysis and design require more than one type of 

places.

•  Only one class of token is used to represent information or control flows;

•  At any transitions o f multiple inputs and outputs, there is no indication to illustrate 

the flow of tokens.

• A general description of PN models is not available.

• Model diagrams become cluttered when complex systems are modelled.

•  General computerised tools are not available to support PN applications.

PN models are very difficult to build and implement. Therefore, PN is unable to model 

CIM systems unless supported by coded subroutines and integrated with other effective 

modelling methods.

4.4.7 Other Modelling Methods

This section presents other modelling methods that have been (or can be) used in 

manufacturing applications. These methods are not widely used but they present good 

modelling specifications and can be used for specific industrial cases, or integrated with
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other methods to develop new powerful modelling methodologies. The modelling 

methods and techniques selected are Input/Output Analysis (IOA), MERISE and GRAI 

Integrated Methodology (GIM).

IOA is an analysis method used to generate model component requirements to solve 

problems (Pandya 1995). The method procedure starts by identifying system 

requirements. Then outputs of the model are defined, taking into account the system 

requirements identified. Following this, system inputs are configured based upon system 

requirements and the outputs identified. The main components of the IOA model are the 

inputs and outputs. Hence, the IOA model connects the organisation sub-systems based 

upon their inputs and outputs. The inputs of one sub-system can be connected into the 

outputs of another sub-system. This method is very simple and gives an obvious 

representation of an organisation's sub-systems. On the other hand, this method has 

some limitations such as misinterpretation, sub-system details not being included, and 

the complexity of creating feedback or parallel activities within the model (Pandya 

1995, Wu 1992).

MERISE is a modelling method used for the analysis and design of information systems 

based upon the PN concept. It is composed of three levels; conceptual, logical and 

physical. A MERISE model involves static and dynamic diagram models. The basis of 

the modelling method essentially lies in its three cycles namely the decision cycle, the 

life cycle and the abstraction cycle, which cover data and process elements with equal 

emphasis (Avison and Fitzgerald 1996). MERISE provides graphical support tools and 

has been used in many applications. Chodari (1997) reported that this method is not 

suitable for analysing and designing manufacturing systems due to its weakness in 

supporting decision-making systems. Botta et al. (1997) reported that although the 

approach provides a good structure and optimisation of data and different abstraction 

levels are well separated but it is not easy to use and there is no good integration 

between the data model and functional model.

The GIM is an integrated methodology developed to support the system analysis and 

design phases. It is composed of three components framework, method formalisms and 

structured approach. GIM adopts three modelling methods in an integrated manner. The 

GRAI, MERISE and IDEFO methods are adopted to support different phases of 

manufacturing systems. In the GIM model, the GRAI method is used to model decision
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sub-systems, MERISE is used to model information sub-systems and IDEFO is used to 

model physical sub-systems. GIM lacks active integration between its methods; hence, 

it is not more than a theoretical representation for this integration. This methodology 

lacks a suitable computerised tool to support the integration of method elements and it 
does not consider dynamic aspects of manufacturing systems.

4.5. Assessment of Modelling Methods

There are two main reasons for comparing modelling methods, an academic reason and 

a practical reason (Avison and Fitzgerald 1996). In the academic field, modelling 

methods are compared in order to understand their characteristics such as tools, 

techniques, objectives and mechanisms. In practice, modelling method are compared to 

select a suitable method or technique for a specific application based upon specific 

requirements. However, these two reasons are related to each other. Academic studies 

are carried out to support modelling methods that are used in real applications and many 

academic studies have originated from real applications (Avison and Fitzgerald 1996).

In general, the modelling methodologies and techniques can be compared and evaluated 

based upon several requirements. The identification of modelling requirements is 

different from one perspective to another. Therefore, several sets of modelling 

requirements have been addressed by researchers and practitioners. Chadha et al. (1991) 

examined a number of modelling tools using the following list of requirements that an 

‘ideal’ modelling method should meet. They suggested a modelling method should be:
<=> Able to express different levels of abstraction.

Able to decompose from a high level to low level.

<=> Easy to learn, use and understand.

ci> Able to incorporate changes to real systems with a reasonable effort.

«=> Able to maintain a history of changes and versions.

O Rich in manufacturing/material handling language.

O Able to incorporate manufacturing and information constraints.

*=> Able to describe the resources needed to manufacture and support a product, 

o  Able to describe the resources needed for an information system

O Able to describe the movement and quantities of materials in manufacturing 
systems.

O Able to describe the movement and quantities of flow of information in the system.
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Able to describe movable resources.

Able to model exceptional and unexpected events.

<=> Able to manage the information of exceptional and unexpected events.

Able to describe sequences of data transactions and data operations and their 

interactions and relationships.

«=> Able to support a product description.

O Able to support data dictionary.

«=> Able to handle products/materials.

<=> Able to handle data.

*=> Able to describe data relationships.

& Able to handle multiple type of products/materials. 

c> Able to handle multiple type of data.

<=> Able to verify and test the model.

Able to implement as a CASE tool.

O Able to incorporate manufacturing quality and safety issues.

<=> Able to incorporate information security and integrity issues.

Using the above list of requirements, Chadha et al. (1991) compared a number of 

modelling methods including IDEFO, DFD, SAMM (Systematic Activity Modelling 

Method), IDEF2, IDEF3, ER/ERD, IDEF1X, NIAM (Nijssen’s Information Analysis 

Modelling), 0 0  and dependency diagrams, as illustrated in Table 4.2. The authors 

concluded that none of the modelling methods was comprehensive and none well 

developed for use in manufacturing design environments.

Although the comparison was based upon the requirements of the information systems 

in manufacturing. It gives good guidelines for evaluating modelling methods.
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Table 4.2. Modelling method requirements matrix (Chadha et al. 1991).

Brandimarte and Cantamessa (1995) presented a survey of various modelling methods 

used within CIM systems. The following questions were used in their survey:

Q 1. What is your particular field of interest in the context of CIM?

Q2. What do you use such language/ formalism for?

Q3. What may this language / formalism model?

Q4. If you have to communicate with this language / formalism, which people do you 

feel confident will understand you with ease?

Q5. At what point(s) of the CIM system life cycle is this language / formalism useful?

Q6. Do you think this language clips or deforms the object?

Q7. Do you think this language introduces a bias in the model?

Q8. Is there any software tool for supporting the use of the language / formalism? If 

so, which? Does it work well?

Q9. Please give a short list of references describing the language and its applications 

within the CIM domain.

Brandimarte and Cantamessa (1995) used their questionnaire to compare several 

modelling methods. Figure 4.29 illustrates six modelling methods selected from that 

study.
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IDEFO
Q l.  Virtually all CIM modelling areas 

and m any others where IDEFO has 
becom e a  popular m ean for 
manufacturing.

Q2. Describing functions, selecting 
software, validating.

Q3. Processes, activities and their 
behaviour with their relationship 
with data.

Q4. CIM  system  developers belonging 
to  different “cultures", and 
qualified end-users.

Q3. Requirem ent definition and design.
Q6. Tim e scale o f  activities, economic 

and organisational aspects o f  the 
system  are  left out.

Q7. IDEFO promotes hierarchical 
control systems.

Q8. There are a number o f  such tools.
GRAJ grids

Q l .  Enterprise m odelling area.
Q2. Describing, validating.
Q3. The CIM  system and business 

functions.
Q4. CIM  system  developer.
Q5. Analysis, design.
Q6. N ot known.
Q7. N ot known.
Q8. Not known.

ERD
Q l. Data modelling.
Q2. Validating and implementing 

databases.
Q3. Data connected with CIM systems, 

business activities and products.
Q4. CIM system developers and data 

base engineers.
Q3. Implementation and operation.
Q6. The MLF does not clip the object; 

the problem is rather than it tends 
to  promote redundancy in complex 
systems.

Q7. The MLF promotes a  tabular view 
o f  the  world. But tables are very 
well suited for some problems.

Q8. Many editors are also interfaceable 
to DBMS.

GRAJ nets
Q l. Enterprise modelling area. 
Q2. Describing, validating.
Q3. Business ftinctions.
Q4. CIM system developer. 
Q5. Analysis, design.
Q6. Not known.
Q7. N ot known.
Q8. N ot known.

DFD
Q l.  Software modelling.
Q2. M odelling o f  functions and data.
Q3. The CIM  system, or a  business 

function.
Q4. CIM  developers. Software 

analysts.
Q5. Analysis, design.
Q6. DFD s only describe data being 

transformed.
Q7. N ot known.
Q8. Graphic editor support structured 

DFD and som e CASE tools are 
interfaceable w ith them.

IDEFI/1DEF1X 
Q l. Data modelling area.
Q2. Validating and implementing 

databases.
Q3. Data connected with CIM systems, 

business activities and products. 
Q4. CIM system developers.
Q5. Requirement definition and design. 
Q6. As in ER diagrams.
Q7. Not known. Q8. There is---- —■---------  7-------------------— —-------- -— —----------- - — ------------------------ ---------- ■ ■ . . . . .  . . ... ... ...  i n c ic  ia aunic.

Figure 4.29. A survey findings of modelling methods (Brandimarte and Cantamessa 1995).

The author’s comparison gave an idea of the disparity of knowledge of modelling tools 

among CIM experts. The survey has highlighted the need for a deeper study of 
modelling methods used in modelling CIM.

Another study presented by Pandya (1995) compared various modelling methodologies 

and techniques. This comparison was based upon the relation to the timing horizons of 

the business processes and the conventional planning and control levels. Table 4.3 

shows the results of the study. The study compared modelling methods based on the 

business and planning and control requirements in manufacturing which are important 

for modelling organisational functions in CIM systems.
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Methotiology/
tool»

Applications in manufacturing/ Business processes
A B C D E

SSADM *** *«* ** « *

SADT * ** • * • *

IDEFO • *** *** *** *0

1DEF1X * ** *** *** 0 0 0

GRAI end •  • *** *** *• 0

GRAI nets ** *** •  ** ** 0

Neural nets * • • *** *

PN * ** * ** •

IOA ** ** *** *** **

Jackson’s • * • • ***

W am ier-Orr • • * ** 0 0 0

Key: *** m ost suitable 
** m ay be used

* not recommended
A- Traditional corporate-level planning and control (Business processes with planning horizons o f  > -  month, e.g. technology 

acquisition, forecasting, marketing functions, long-term planning).
B- Traditional factory-level planning and control (business processes with planning horizons o f  1 week to  1 year e.g. 

purchasing function production function).
C - Traditional shop-level planning and control (Business processes with planning horizon w ith one day to  one month e.g. tools 

managem ent, inventory control, schedules, maintenance, quality control).
D - Traditional cell-level planning and control (Business processes with planning horizons o f  1 day ti 2 weeks, e.g. short term 

scheduling (dynamic), process m onitoring unscheduled maintenance).
E- Developm ent o f  data for manufacturing/business process._____________________________________________________________

Table 4.3. Suitability of modelling tools and methodology in manufacturing 

management and business processes (Pandya 1995).

Pandya (1995) concluded that no modelling tool or methodology gave adequate results 

and reported that a combination of modelling tools must be used to model a complete 

business environment.

4.5.1 Framework for comparing the CIM Modelling Methods

Avison and Fitzgerald (1996) reported that comparing modelling methods is a very 

difficult task and the results of any such work are likely to be criticised. They referred to 

the different viewpoints of modelling methods such as the views of analysts, designers, 

users, researchers, etc.

Before starting a comparison and evaluation of any modelling method, some suitable 

requirements should be established and used in a framework for comparing modelling 

methods. Identifying these requirements is different from one perspective/ organisation/ 

person to another.

The framework suggested in this research for comparing and evaluating modelling 

methodologies and techniques is composed of five elements: Modelling objectives
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inputs, practice, models and outputs. The reasons for presenting a framework for 

comparing modelling methods are:

• There are no agreed general frameworks or procedures that can be used for 

comparing modelling methodologies and techniques.

• The comparison of modelling methods is based upon the modelling applications.

• The importance of modelling method factors is different from one model 

builder/practitioner/user to another.

Figure 4.30 illustrates the framework developed and its basic factors. Every element 

involves a set of factors. Ideally, any modelling method is developed or selected to meet 

various requirements. The requirements modelling method can be formulated based 

upon several factors such as those shown in Figure 4.30.

Framework elements

-Enterprise -Functions -Easy to use -Level of -Code generation
description -Data -Easy to abstraction •Database design
-Analysis -Decisions understand -Top-down -Performance
-Design -Time -Easy to leant stricture analysis

t2 -Automated -Spaces -Complexity level -Bottom-up -Simulation
system tool -Technologies -Method structure models.

<2 -Organisational -PP&C systems constraints -Ability to -Others
change -Product -Method rules decompose

o -Strategy -Materials -Computer-based -Graphical tools
>  flJ

U h

planning, design, 
implementation 
-Modelling sub
systems 
-Others

-Others -Others -Physical flow 
-Information flow 
-Process flow 
-Control flow 
-Decision flow 
-Time scales 
-Others

Figure 4.30. Framework for comparing modelling methods

Using a set of modelling requirements, the methods selected in this chapter are 

compared and evaluated, as illustrated in Table 4.4. The factors used in this comparison 

are those which have importance in computer integrated manufacturing applications.
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Modelling requirements

Modelling methods
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Enterprise modelling y y ✓ ✓ ✓ ✓ y
Ability to express different 
levels of abstractions

✓ y y y ✓ ✓ y

Top-down structure ✓ y ✓ y y y y ✓ ✓ ✓ ✓ y
Bottom-up structure ✓ y y y y y y y ✓ y
Easy to use, learn, understand y y y y y y
Ability to decompose from 
high level to low level

✓ y y y y y y y y y y

Modelling information flow y y y y y y y y
Modelling decision flow y y y
Modelling process flow y y y y
Modelling physical flow y y y y
Modelling control flow y y y y
Simulation y y
Checking consistency_______ y y y y y y
Time scales y y y y
Code generation y y
Graphical tools y y y y y y y y y y y
Describing data relationships / y y y y y
Computer-based method y y y y
Conceptual modelling y y y y y y y y
Functional modelling y y y y J y y y
Structural modelling y y / y y y y y y y y
Conflict detection y y

Table 4.4. Comparison of CIM modelling method

The comparisons of CIM modelling methods indicates that no single modelling method 

meets all modelling requirements of manufacturing system. SSADM does not support 

the analysis and design of manufacturing systems. It was developed for software 

engineering and it does not consider some important manufacturing factors such as 

decision flow, time scales and dynamic modelling.

IDEFO is a good functional/structured modelling method and is easy to learn, 

understand and use. It has some limitation such as lacking decision modelling, time 

scales and simulation aspects. However, IDEFO may be used to model functional 

aspects of manufacturing systems or can be integrated into another modelling 

methodology. The strength of IDEF1X is apparent in information modelling; hence it 

can be used for analysis and design of information sub-systems. This modelling method

106



does not support other manufacturing aspects such as physical and decisional systems. 

IDEF3 is designed to capture the knowledge of the area expert concerning the operation 

of a particular process. It is a good method for process description. It is difficult to use 

and to learn. IDEF4 is an OOM. These methods are dependent on the development 

requirements. Most of the exiting OOMs support information systems but do not 

support process and decision modelling. In addition, most OOMs are specifically for 

problem solving and require professional skills.

SADT is a good method to model functional and information aspects but it does not 

consider decision control and system time aspects. This method lacks a computer-based 

method and describes systems statically. Hence it is not a suitable modelling tool for 

effective analysis and design of CIM systems.

GRAI is a generic modelling method of manufacturing systems and has good graphical 

tools. This method is good for modelling decision flow based upon horizons and review 

periods. The GRAI method does not support information and physical systems. In 

addition, it has no meaningful rules for constructing its grids and nets. It also describes 

the static nature of manufacturing systems and does not consider any dynamic 

behaviour.

IOA can be used to give general descriptions of complex systems. A computer-based 

method is not available. This method supports the system design phase but is not very 

well known. Several important requirements such as decision modelling, simulation, 

time scales, and model consistency can not be achieved by the IOA.

The PN approach is very difficult to learn and use. PN is good for modelling control 

flow but it does not provide an adequate description for information and decision flows. 

In addition, PNs lack a general computerised tool and have limited graphical elements.

MERISE has limited ability to model CIM systems because it was developed to support 

information systems only.

GIM is composed of GRAI, MERISE and IDEFO; hence it is the most suitable method 

for the analysis and design of manufacturing systems. Unfortunately, this methodology 

is no more than a toolbox as it lacks true integration between the elements and data

CIMModelling Methods and Techniques
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sharing is not available. GIM needs computerised tools to achieve the conflict detection 

and model consistency of its models. In addition, this methodology does not support 

dynamic aspects of manufacturing systems.

Most existing modelling methods can only support particular aspects of CIM systems. 

Limitations and problems of current CIM modelling methodologies and techniques have 

been addressed by many researchers and authors. For example, Brandimarte and 

Cantamessa (1995) reported that the current modelling methods do not pay enough 

attention to many important aspects of CIM systems which need deep integration of 

many components and elements. Chadha et al. (1991) mentioned that the existing 

modelling tools and approaches do not satisfy all the requirements o f the complex 

manufacturing systems. Aguiar and Weston (1995) compared a number of modelling 

methods and concluded two important points. The first is that no single modelling 

method provides a complete support for decisions along the integration manufacturing 

enterprise life cycle. The second is that there are a number of gaps such as a lack of a 

good formalism which must be filled. It is clear that there is a need for new modelling 

methods to support the analysis and design of CIM systems.

4.6. Conclusion

This chapter has focused on the modelling methodologies and techniques applicable to 

CIM systems. Several modelling methods were selected including SSADM, IDEFO, 

IDEF1X, IDEF3, IDEF4, SADT, OOM, GRAI, PN, GIM, MERISE and IOA for this 

study. These modelling methods have been discussed and compared according to a 

number of established requirements. Several important points are concluded including:

❖  The term ‘modelling’ means different things to different people and the 

understanding of the modelling concept is very important during the analysis and 

design of complex systems.

❖  Modelling plays an important role for analysing and designing complex 

manufacturing system such as CIM systems.

❖  Before starting a comparison or evaluation of modelling methods some requirements 

should be established according to modelling objectives, inputs, practice, models, 

and outputs because there is no formal guideline for comparing and evaluating 

modelling methods.
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❖  Many authors have agreed on the need for an integrated modelling method for the 

analysis and design of manufacturing systems and confirmed that no single 

modelling method exists to support different aspects of a complex system (the 

physical, decisional, information and the dynamic aspects). It has been found that 

most existing modelling methods have been developed to support only particular 

aspects of a manufacturing organisation.

♦> The only guarantee to successfully analysing and designing CIM systems is to use a 

modelling methodology which involves and mobilises all the people concerned, and 

which takes into account function, information, decision, organisation resources, as 

well as economic, social and human aspects (Doumeingts et al. 1995).

❖  To solve the CIM modelling problems, it is evident that the need for an integrated 

method exists. This integrated method can be created by selecting potentially 

cognate groupings of modelling methods and techniques to seek a means of 

extending and unifying them to support different phases of CIM systems analysis 

and design creating software tools that support CIM systems (Aguiar and Weston

1995).
❖  There is a need to develop software tool to support CIM system analysis and design.

♦> Simulation models need to be integrated into static models of manufacturing

systems (conceptual and structural models). This integration would provide a clear 

picture of modelling domains in manufacturing systems and support decision 

activity centres at every level of manufacturing management.

«$► The integration of static and dynamic modelling methods to produce a method for 

CIM system analysis and design is discussed in the next chapter.
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CHAPTERS

DEVELOPMENT OF AN INTEGRA TED 
MODELLING METHOD FOR CIM SYSTEMS 

ANALYSIS AND DESIGN

5.1. Introduction

It was concluded in the last chapters that there was a need for an integrated modelling 

method for the analysis and design of CIM systems. This chapter addresses the need for 

developing a modelling method which integrates different modelling aspects. Modelling 

CIM systems is very difficult due to the complex relationships between different 

components and sub-systems, and the shortcomings of modelling methodologies and 

techniques currently available. In this chapter, an integrated modelling method is 

proposed. This integrated method combines a number of existing modelling tools and 

employs them for modelling different system domains in the CIM environment. The 

method developed can be applied through a number of steps based upon different levels 

of abstraction in the organisation. This chapter also discusses these steps and illustrates 

the coupling methods between the tools selected. A tool to support the method 

developed is also presented in this chapter.
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5.2. Need for An Integrated Modelling Method

While recognising the potential benefits of a fully integrated manufacturing system, few 

organisations have achieved CIM implementation. Reasons include the lack of a clearly 

defined overall CIM strategy and effective methodologies and techniques for modelling 

and measuring specific implementations against the strategy. Modelling CIM systems is 

very complex due to the multitude of simultaneous activities carried out. These include 

design and development, manufacturing, distribution and marketing, and involve a wide 

variety of physical, decision and information relationships. Rapidly changing 

technologies and customer preferences necessitate frequent changes in the products 

manufactured and the strategies and facilities required by the organisation. 

Consequently, the models representing the CIM systems tend be long and complex. 

These models should be continuously evolving to represent the static and dynamic 

aspects of the manufacturing systems.

Decision, information and physical sub-systems represent the major components of a 

manufacturing system (Doumeingts et al. 1995b). These sub-systems need to be 

modelled efficiently to solve system analysis and design complexities. It is clear that 

one of the most important objectives of an organisation is to achieve quick response 

capability, flexibility and integration. To achieve these, the three sub-systems of the 

manufacturing systems should ensure the following:

• All main components of CIM should have access to integrated databases.

• The different flows of manufacturing sub-systems (decision, information and 

physical flows) are finely co-ordinated.

• The various functions involved in the working of the organisation are defined.

• The decisions and information needs of the function are effectively modelled.

• A dynamic interaction between system activities exists.

• All activities, data and resources of an organisation are correctly related to each 

other.

In Chapter-4, modelling methods which have been used for analysing and designing 

different aspects of CIM systems were identified. It was concluded that no single 

modelling method or technique could be used to model, analyse and design a complex 

manufacturing system completely, or indeed, model a significant number of components 

of these complex systems. Most existing modelling methods are no more than static
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graphical representations and are not well defined. Those modelling methods are open 

to misinterpretation and inconsistencies. Modelling needs a method which is simple and 

able to support different levels of abstraction.

The CIM analysts and designers need to model the basic manufacturing operations as 

well as management decision and information systems to produce an integration 

framework for the organisation. According to Colquhoun et al. (1993), most authors 

agree that no single method can model functions, information, decisions and dynamic 

behaviour of the system. It is surprising that the interfacing and integration between 

existing modelling techniques such as IDEFO and dynamic modelling has not received 

more attention. Gunasekaran et al. (1994) reported that there was a need to study 

carefully the development of CIM apart from simply automating the information 

systems and process control. This can be carried out by considering the CIM concept at 

each area of manufacturing to achieve the integration of various functional areas based 

upon integrated modelling methodologies. This is also evident from the comparison of 

modelling methods, as illustrated in Chapter-4. This combination of modelling 

approaches brought together in a CIM application offers many advantages.

5.3. Selecting Components of A modelling Method

The decision, information and physical sub-systems involve a set of activities and 

entities that are related to each other and form the complete system. Consequently, 

many researchers suggest that manufacturing systems need an integrated modelling 

method that can model the three sub-systems and simulate their dynamic aspects. The 

nature of information and material flows influence decision making in the whole 

organisation and enhance the design parameters of the CIM system (Gunasekaran et al. 

1994).

In this work, an integrated modelling method is configured and called GI-SIM 

(GRAI/IDEF-Simulation). This method is composed of the following components:

1. GRAIgrid.

2. IDEFO

3. IDEF1X

4. SIMAN (ARENA)
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These components are adopted from existing modelling methods and developed to meet 

the needs of CIM system modelling. The principle of this integrated method is to apply 

the most suitable tools to the particular problem within CIM systems, combine the 

strengths and eliminate the weakness of existing methods and tools.

The reasons for selecting the GRAI grid in GI-SIM are:

1. It relates to the analysis and design of decision systems, rather than the information 

and physical systems.

2. It has the ability to model within time based analysis (Wainwright 1993).

3. It has the ability to analyse the implications of “top-down” decisions.

4. It has the ability to give a generic view of an organisation.

5. It provides a good graphical representation.

IDEF0/1X are selected in GI-SIM for the following reasons:

1. They have demonstrated their usefulness as simple and effective communication 

tools, which encourage user involvement and co-operation with system builder 

(Maji 1988).

2. No other modelling methodology can provide the same functional analysis 

capability (Colquhoun et al. 1993).

3. They have the ability to model information and physical systems.

4. They have the ability to decompose from a high level to more details.

5. They offer the opportunity for enhancement, integration with each other and 

integration with other modelling tools (Colquhoun et al. 1993).

6. IDEF1X can be easily translated into a relational database system.

The reasons for the selection of SIMAN/ARENA in GI-SIM are:

1. It has the ability to model the dynamic aspects of manufacturing systems

2. The ARENA package was readily available.

3. It has the ability to represent performance measures.

4. It has the Ability to support decision making variables.

5. It has the ability to close the gap between conceptual/structural and simulation 

modelling.
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5.4. GI-SIM Framework

A good modelling method should include conceptual/structural and system relationships 

and classify their modelling objectives (decision, information and material flows). It 

should be able to handle complex systems and provide formal guidelines for method 

application. In modelling, it is important to differentiate between conceptual/structural, 

generative and evaluative models. The conceptual/ structural model is used to present a 

global view of the organisation and define the basic concepts, system sub-activities and 

the relationships between system functions and activities. The generative model is used 

to satisfy objectives using an optimal solution technique. The evaluative model is used 

to evaluate a set of decisions and provide the user with performance measures using 

simulation techniques. It is anticipated that the decomposition of general conceptual 

models into structural and dynamic views will be helpful when modelling complex 

manufacturing systems.

The GI-SIM modelling method has been developed to capture the characteristics of a 

manufacturing system completely. GI-SIM provides an integrated set of four modelling 

tools (GRAI grid, IDEFO, IDEF1X and ARENA) which have previously been used in 

existing different modelling methods. GI-SIM employs the strengths of each to include 

conceptual/functional and dynamic modelling concepts and provide a powerful tool.

Figure 5.1 illustrates the relationships between the method components. It provides the 

main purpose of the modelling concept as a formal method for conceptual, functional 

and analytical modelling. This is to facilitate modelling procedures, based upon user 

requirements related to different sub-systems, and demonstrate the integration between 

the GI-SIM components for different levels of system abstractions. A further feature of 

the GI-SIM common architecture is illustrating the importance of the effective transfer 

of the flow of any sub-system between different levels of abstractions and their relevant 

specification domains. It demonstrates that compatibility between modelling tools is 

very important to achieve adequate linking and integration.
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Figure 5.1. The GI-SIM general structure.

Figure 5.2 illustrates levels of abstraction, namely; conceptual, structural and detailed. 
These levels can be considered within five system modelling domains:
•  Decisional

• Functional.

•  Information.

• Physical.

•  Dynamic.

These modelling domains are closely related to each other; hence, the classification of 

modelling domains in some manufacturing application would be very difficult. For 

example, taking a decision need inputs (information, physical, etc.) because any 

decision should have objectives and variables. This decision can also be implemented 

functionally, based upon its inputs, and measured dynamically, based upon its timed 
outputs.
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As illustrated in Figure 5.2, GI-SIM covers the basic levels of abstraction and their 

associated modelling domains within an industrial organisation. The conceptual level 

represents the general concept of an organisation and can be modelled by conceptual 

modelling methods such as the GI-SIM grid. The conceptual model represents the 

fundamental functions which apply within the system. In manufacturing systems, the 

most important modelling domain for the conceptual level is the decisional domain. The 

other aspects of the system can be used to support the decision domain in system 

modelling. In some cases conceptual models can represent the physical views. The 

structural level represents the main structure of the system activities in several levels 

based upon specific relationships, identified at the conceptual level. This level is used to 

model the static relationships between system functions. At the conceptual level, these 

functions generally correspond closely to the objects in the real-world system. At a 

structural level of modelling, the type of dependency that links system functions is 

represented by various relationship forms. More details about these relationships can be 

modelled in three modelling domains (information, functional and physical domains) 

using IDEF0/1X tools. At a detailed level, the connection between events and time 

variables via dynamic modelling is carried out. Therefore, the detailed level represents 

the actual implementation of system activities and their dynamic behaviour. In the GI- 

SIM framework, dynamic modelling using SIMAN/ARENA is used as the method to 

describe the detailed level of system activities.
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This context of modelling is vital to provide the foundation for systems integration. The 

primary objective of this framework is to capture, at the highest level of abstraction the 

interaction between complex manufacturing systems. The conceptual context should 

illustrate the primary links between system functions and activities. These links 

represent the working or recommended systems flows.

5.5. GI-SIM Modelling Procedures

Using the method framework, it can be seen that the GI-SIM can be carried out in three 

main steps:
1. Conceptual modelling using the GI-SIM grid;

2. Functional/structural modelling using IDEF0/1X;

3. Simulation modelling using SIMAN/ARENA;

5.5.1 Conceptual Modelling - Step 1

When analysing and designing a manufacturing system one of the fundamental tasks is 

to define the general view of an organisation. This can be achieved during the first step 

of the GI-SIM method. A global structure of a manufacturing system can be developed 

using a single level of a modified GRAI grid to illustrate the main functions, decision 

centres and activity centres. The relationships between activity centres can be classified 

into three types of system flow: decisions, information and material. These system flows 

can be shown in the general grid using different arrow styles, as illustrated in Figure 5.3. 

The importance of the decision sub-system and time scales in manufacturing 

organisations is the main reason for adopting the GRAI grid in the GI-SIM method. 

This step defines system specifications that can be used in the subsequent modelling 

steps. These specifications involve decisions and activity centres, horizon/period times, 

activity inputs/outputs in terms of decisions, information and/or materials relationships. 

GI-SIM involves two types of decision links (vertical and horizontal decisions) 

depending on the hierarchical levels of decision sub-systems which are based upon the 

planning horizon and its review periods. In vertical decisions, the decision link source 

and destination can be found in the same manufacturing function, but the horizontal 

decision link connects two types of manufacturing functions.
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Figure 5.3. Representation of system flows.

The first step of this modelling method can be carried out by:

• Identifying the main functions of manufacturing systems (F10, F20, F30, etc.). 

These functions can be divided into two main categories; organisational and 

operational functions. The selection of GI-S1M grid functions is based upon the 

objective of the study.

• Identifying the decision/activity centres related to each function. These 

decision/activities can also be categorised into three main types; decisional, 

information and physical.

•  D e te r m in in g  th e  p la n n in g  h o r iz o n s  an d  r e v ie w  p e r io d s  fo r  ea ch  le v e l b a sed  u p o n  th e  

a c t iv ity  c e n tr e s  d e f in e d  and th eir  a c t iv ity  c y c le s .

• Constructing the main relationships between grid cells (AC (level no, Function no)) 

in terms of decisions, information and materials.

It should be noted that the GI-SIM grid concentrates on decision modelling. Ultimately, 

decision modelling seeks basic principles to help the decision-maker to develop 

effective decisions, define decision variables or choose between several alternatives of 

system elements and policies. This is very complex because the development or 

adoption of a manufacturing strategy involves many decision variables and alternatives. 

Therefore, the purpose of conceptual modelling is to rapidly arrive at a well-structured 

level which conforms to a common architecture.
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To facilitate the computerisation of the method, all elements should be formulated 

mathematically. The grid horizons and periods at different levels of the GI-SIM grid are 

related.

Let:
The grid functions = Fj, F2, F3> F , ....

The grid levels = Lj, L2, L3, L4.......

The grid cell (activity centre) = ACl f . Where / is the level number and /  is the 

function number. The constraint number of levels and functions can be represented as:

Where:

Mini and Maxi are the minimum and maximum number of levels involved in the grid, 

and Minf and Maxf are the minimum and maximum number of functions involved in 

the grid.

respectively.

Review periods = Pll5 P12, P13, P14, .... Pi„ for planning horizon Hj.

Hence;
The review period Py is the jth period of horizon 

Then;

M a x {;> /)S iMaX>,Ma*f)and

Planning horizons = Hj, H2, H3, H4, ....  for levels Lj, L2, L3, L4,

( 1)

and
n.

Hi=  ¿Py for Li. (2)

(3)

If Lh is the last level in the GI-SIM grid then:
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“h-1 “h-2
Hh-1 = ¿ P(h-1) and Hh-2 = ¿ p(h-2) • 

j=l j=l (4)

h-1
H h-2 = k { h - \ , h - l ) *  I  p(h-l) 

j=l (5)

Where k(h_l h_2) = 

H

= Hh.2
H h-i

If npi = then the relationship between Hi and H^.i can be represented by:

nh-l
H1 = \ k ( h - l , h - 2 )  x \ h - 2 , h - 3)x....x^(2,l)] x ¿ P(h-;

j=l
D (6).

These formulations can be represented graphically, as illustrated in Figure 5.4. The 

figure shows three levels of horizons and their associated periods. Figure 5.4 is an 

example of hierarchical production planning which can be decomposed into three levels 

based upon the three types of manufacturing management, namely, strategic, tactical 
and operational.

To check that every level has a unique planning horizon, the following BASIC 
algorithm can be applied:

FOR i = 1 TO n-1

FOR i'= 2 TO n

IF Hi = Hj- THEN Lj AND Lr HAVE THE EQUAL PLANNING 

HORIZONS.

RE-CONSTRUCT GI-SIM GRID 

NEXT i'

NEXT i

The hierarchical system in manufacturing uses decreasing planning horizons and 
periods, this can be formulated as:

Hi > H2 > H3 > H4 > .......

For every level, it should be noted that: H, >
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At each level of the GI-SIM grid and within defined horizons and review periods, 

decision strategy can be defined as a sequence of decisions, each one referring to an 

interval equivalent to an updating period and based upon information collected during 
the sampling period (Banerjee et al. 1994).

Every decision has a source and destination, as illustrated in Figure 5.3. As formulated 

in the previous section a decision/activity centre can be identified by kCj j .

Hence;

AC^ j  may be the source or destination of decision d.

Let:

AC i j  the source of decision d  and AC^, y , its destination.

Then:

The rule: “a decision frame should not go from a lower level to a higher level” 
can be formulated as:

For decision d. l’ -  / > 0

And the rule: “each decision activity must generate at least one decision frame”.

If kCj  y  is a decision activity then:

At least one {d source -  (If)}.

To avoid duplication of decision links between (Decision/Activity) D/A centres, 

decision links can be checked using one of the following methods:

1. If  more than one decision link have the same destination;

AC{ /  is destination of both d  and d\ AC,,f , and ACr / „ are sources of «/and d ’

respectively. Then; the following constraint must be considered,

/ '* / "  and / ' * / " .

2. If  more than one decision link have the same source;

A C /,/ is the source of both â and d\ AC,.f , and ACr / „ are destinations o f d and

d '  respectively. Then; the following constraint must be considered,
/ ' * l" or / '  * f " .

This can be extended for more than two decision links.
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5.5.1.3 Activity Formulation

A theory of activity formulation can be derived from the system flows during a specific 

planning horizon and review period. The activity formulation is very important to 

develop system utilisation based upon considerations of dynamic data exchange 

between different levels of conceptual modelling. This contributes also to reducing the 

substantial gap between theory and practice in hierarchical production planning. Figure 

5.5 illustrates the hierarchical relationships between system time scales. Figure 5.6 

illustrates the relationships between level time scales and activity cycles.

-*—----------- Hi ---------------- ►

Pii 1  Pi2 Pi3 ; Pi4 Pi5 I 1 Pin

■*—--------- rii+1
Pi+U - 1 :• Pl+U ! . Pi+u PH1.4 1 Pi+1,5 m  * Pi+'i.n

•4----------------------------m-t-z ^
PH-2,1 J Pi+2,2 Pi+2,3 PH-2,4 1 Pi+2,5 i Pi+2,n

Figure 5.5. Hierarchical representation of grid time scales.
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As shown in Figure 5.6, Ti = activity time. For each manufacturing activity,

Ti < Pi,

Let:
A D/A centre can be decomposed into several child-activities (A, A2 A3 A14

and every child-activity dedicated to complete jobs (J, J2 J3 J l4.... Jk ).

Using these assumptions, Figure 5.7 can be derived.

•Am. ),

Let: Pi in Hi.
Time: (0 to Pi)

Planning Jobs of Pi = G1 (Group 1)

Decision that is 
specifying planning 
strategy for the first 
period (Pi).

_____________________
Period = Pi+1

Time (0 to Pi+1) 
Planning Jobs =SG1 (sub

group 1)

Decision that is 
specifying planning 
strategy for the first 
period (Pi+1).

' l________,
Pi+2

(0toPi+2) . 
(SS G 1)

Information flow 
gives data to top 
decision centre 
c.g. total finished 
jobs at end of Pi.

Period = Pi+1 
Time (t to t+Pi+1) 

Planning Jobs =SGn (sub
group n)

Information flow 
gives data to top 
decision centre c.g. 
total finished jobs at 
end of Pi+1.

figure j . /./veuviiy uecumpusuiun ueivveen griu levels.

It should be noted that the formulation of manufacturing activities is a very complex 

task due to the random behaviour of systems and the variety of applications.

5.5.2 Structural Modelling - Step 2

The second step of GI-SIM is the construction of IDEF0/1X models for every activity 

centre identified, to analyse different sub-activities and their inputs, outputs, controls 

and mechanisms. This step is concerned with functional modelling and information 

modelling. In functional modelling, the model builder describes what the system does.
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This is a very difficult task particularly in the system design phase because of the 

complexity of generating system activities and sub-activities. The top activity of every 

IDEFO model represents the general activity centre to which jobs relate. The IDEFO 

model of every activity centre can be decomposed into more detailed diagrams until the 

activity centre is described in the necessary level of detail. Inputs and outputs of the 

IDEFO model are classified according to the inputs and outputs of the related activity 

centre, as shown in Figure 5.8. Because a conceptual model shows only important 

information and physical flows between D/A centres, more details about system flows 

appear at the structural and detailed modelling levels. The complete IDEFO model is a 

hierarchy of decagrams derived from the decomposition of the decision or activity 

centre obtained from the GI-SIM grid. The decomposition feature of this method can be 

completed using both top-down and bottom-up approaches.

Selecting IDEFO functions is very important, particularly for decision centres, because 

these functions involve basic elements and variables used for decision making. In 

manufacturing systems, decisions require effective representation and powerful 

modelling methods because decisional mistakes lead to large organisational and 

technical problems.

IDEFO models illustrate how information, decisions and material are used by each D/A 

centre and how they are exchanged between system functions. The models generated in 

this step establish characteristics which are required in the subsequent modelling steps. 

This helps the model builder to localise functionality as well as identify important 

elements in the GI-SIM model, such as information, decisions and material movements, 

and system operations, as shown in Figure 5.8.
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IDEF1X models are constructed using both conceptual and functional modelling results 

to model the information system in terms of entities and relationships. The 1DEF1X 

model is generated using information flows at both conceptual and structural levels to 

explore the relevant entities and attributes related to a specific information flow. For 

example, in GI-SIM the information flow ‘customerorder’ can be found. This can be 

considered as an input for the ‘order_processing’ activity, because the 1DEF0 model 

uses the general flows of information; hence the flow (customer_order) will be 

modelled using IDEF1X and its related system entities. The ‘customerorder’ entity has 

several attributes including ‘orderjiumber’, ‘customer_numbcr’, ‘customeraddress’, 

‘contact_name\ These attributes can be found only in IDEF1X models. Figure 5.9 

illustrates the modelling of information flow using IDEF1X.
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IDEF1X can be used to formulate a relational database because it describes the data 

structure at each level of functional modelling. It provides knowledge about the entity 

classes required by D/A centre, the relationships between them and the features which 

differentiate the unique elements amongst them. This assists the user to provide the 

essential structures of data domains. The database system generated using IDEF1X 

models can be accessed by different components requiring data. The main problem of 

this type of database is that it needs a logical model which is very different from the 

conceptual model. These modelling domains are needed to define the basic system 

specifications which will be described in the detailed level and based upon the activities 

dynamic behaviour.
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5.5.3 Dynamic Modelling - Step 3

The previous steps only represent the static behaviour of a system and they do not 

explicitly represent the condition and sequence of activities. The third step of GI-SIM 

involves the translation of functional/physical models into simulation models. Since 

D/A centres are modelled at both conceptual and structural levels, an additional 

mechanism is needed to identify the dynamic aspects of a D/A centre using its basic 

elements obtained by IDEF0/1X models.

To construct the simulation models, the lower levels o f the functional model of the D/A 

centre are used to define the basic blocks of ARENA model. Figure 5.10 illustrates the 

use of sub-activities of the IDEFO model to produce the simulation model.

SIMAN/ARENA is used in this step to model system activities. This step is also 

important during system design and assists decision-making by providing performance 

measures, presented in simple tables and charts, for each alternative solution. Many 

strategies and tasks in manufacturing organisations need to be simulated in order to 

understand the system behaviour before the implementation phase. The integration of 

simulation and conceptual modelling tools will solve many problems relating to the 

system analysis and design and reduce the inconsistencies which occurs during the 

representation of conceptual/functional models. The simulation results are used to 

provide and justify system specifications obtained from the first two steps of GI-SIM 

including the grid time scales and activity cycle time. The dynamic model is used to 

evaluate system specifications in the analysis phase or define new decision/activity 

variables in the design phase. Figure 5.11 illustrates the GI-SIM mechanism.

Simulation of manufacturing activities requires information such as details of process 

sequence and resource variables for the process. Most of these requirements will be 

typically contained in the previous modelling steps i.e. provided by different domains 

modelled by the grid and IDEF0/1X models. Constructing a simulation model for any 

D/A centre is only one part of a complete project. Once the model is built, the model is 

run and outputs are collected. By analysing these outputs several performance measures 

can be used to support different decision tasks. In the design phase, decision making can 

be taken based upon several modifications which can be measured statistically. This 

will be helpful for achieving organisation goals.

Development o f an Integrated Modelling Methodfor CIM Systems Analysis and Design
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Figure 5.11. The G(-S1M mechanism
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The difficulties involved in creating a software-based method have long been 

recognised (Budgen 1994). Computerised tools have been developed, using a visual 

programming language, to support the GI-SIM method and to demonstrate the linkage 

between its modelling tools (the grid, 1DEF0/1X and SIMAN tools). The computerised 

tools developed contain several user interfaces which aid the user. These interfaces 
include:

1. The initial interface.

2. The set-up interface.

3. The retrieving interface.

4. The drawing interface.

5. The activity interface.

6. The horizon/period interface.

7. The function interface.

8. The editing interface.

9. The rule reference interface.

10. The analysis (checking rules) interface.

Appendix-C presents selected computer codes used for constructing these interfaces. 
Figure 5.11 shows a flowchart of the GI-SIM computerised tools
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The initial interface operates at the start of program implementation and requires the 

user to determine the project type (new or existing project). The interface initiates the 

starting procedures for a new project, retrieves procedures for an existing project, or 

aborts access to the tool. Figure 5.12 shows the initial interface.

Figure 5.13. The initial interface.

5.6.2 T he set-up  In terface

The set-up interface is preceded by the new project procedures, which are initiated when 

a new project is selected. The running of the subsequent interface depends on the initial 

inputs to the set-up interface. The inputs relating to this interface produce details of the 

number of functions (columns of the grid), sub-functions (sub-columns of the grid), and 

levels (rows of the grid). Figure 5.13 shows the set-up interface.
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Figure 5.14. The set-up interface.

5.6.3 T he R etriev ing  In terface

The retrieving interface is designed using a common dialogue control, which is 

available in Windows for facilitating common features of programming such as file 

saving and retrieving, printing and colour facilities, in addition to special user 

subroutines. This interface is used to restore the existing project and convert text into 

graphical elements on the drawing interface. This interface is shown in Figure 5.14.

File name:

Lisi files of type:

Eolders:
*.qrd c:\bh

g rid i grd
grid? grd

_1 data
_ l  sim

T

Driyes:

OK

Cancel

Network..

r  Read only

|a II F i le s f  *) 3  f C MS DOS 6122 T ]

Figure 5.15. The retrieving interface.
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5.6.4 T he D raw ing In terface

After specifying the basic requirements of a new project using the set-up interface, or 

retrieving an existing project using the retrieving interface, the grid can be generated 

using the drawing interface. It is designed according to GRAI method procedures and 

rules (GRAI-1991 - cited by Wainwirght 1993). The table is designed as specified by 

the set-up interface. All elements in the drawing interface are integrated to enable the 

user to carry out and check the project easily. Figure 5.16 shows the drawing interface.

. GRAI Grid L=M*J
A rrange C olor------; i M i i '■ i i i - r ~ r  i i i i i i ■; i  | i ;  i | r T I I'M M 'T T ’T T  i
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P i
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A
T \

External
Information

Internal
Information

H -
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0
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0
0
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0
0

11=
P=

0
0

11=
P=

0
0

G rid Name: Grid Number:

[B b 3 . 500]

r r r f f f f i m i  111 u.i 11 u i
Figure 5.16. The Drawing interface.

5.6.5 T he A ctivity In terface

The activity interface is used to enter and modify activity names, activity types 

(information, physical, decisional) and activity description. A simple linking procedure 

with the IDEF0/1X and SIMAN tools is programmed through this interface, as shown in 

Figure 5.16.
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Activity Interface O

Enter A ctiv ity  name (Cell name)

Link IDEFO

Information activity 

C Physical activity 

C D ecision activity

Link SIMAN

Description of an activity

OK Cancel Help

Figure 5.17. The Activity Interface.

5.6.5 T he H orizon /P eriod  In te rface

The horizon/period interface contains two types of text data and option facilities which 

enable the user to enter or modify the horizons, review periods and the associated time 

units (year, month, week etc.), which are basic elements in the GI-SIM grid. Figure 5.17 

shows the horizons/periods interface

Figure 5.18. The horizon/period interface. 

5.6.6 T he F unction  In te rface

The function interface is used to produce or modify the function and sub-function 

names (column titles). It runs the associated subroutine, which transfers the new 

function names to their labels in the grid table. Figure 5.18 shows the function interface.
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Figure 5.19. The function interface.

This interface involves a number of predefined manufacturing functions such as To 

Design, To Manufacture, To Deliver, etc. which can be selected from a list constructed 

on this interface, as shown in Figure 5.18.

5.6.6 T he E d iting  In terface

The computerised tools must enable the user to insert new features or delete existing 

elements relating to the current work. The editing interface is used to perform such tasks 

as editing and making changes relating to the GI-SIM grid. The interface is capable of 

deleting or inserting any function, sub-function or level. Figure 5.19 shows the editing 

interface.

Figure 5.20. The editing Interface.
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The rule reference interface acts as a small database inside the GI-SIM computerised 

tool. This database contains the construction grid rules, which have been identified by 

previous researchers (GRAI-1991 cited by Wainwright 1993). The user can read the 

rules via the interface and gain an understanding of the construction of the grid model 

during the design and analysis phases. Figure 6.20 shows the rule reference interface.

Figure 5.21. The rule reference interface.

5.6.8 T he A nalysis In terface

The analysis interface represents the intelligent aspect of the tool. The construction of 

the grid model depends upon several rules which are defined in the rule reference 

interface. The analysis interface is used to verify the construction of the grid model. 

This will identify any mistakes made during the building and design stages according to 

the rules defined. Several messages and marks notify the user of any irregular factors in 

the model and assist the user in correcting as appropriate. The simple design of this 

interface enables users to check all the rules either together or individually. Figure 5.21 

shows the analysis interface.
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CRAI Grit! Rule Checker

Rule U2:

Horizon of Level #[10]must be longer than 
Horizon of level //[20]

QK Continue

Figure 5.22. The analysis interface.

5.7. C onclusion

Considering the complexity o f CIM systems, the diverse nature of modelling 

requirements, and the existing methods available for modelling CIM, it is believed that 

it is essential to develop an integrated modelling method to achieve effective and 

efficient analysis and design for different system domains. This chapter introduces an 

integrated modelling method (GI-SIM) which has the capability to analyse and design 

complex manufacturing systems. It presents a global view of the organisation in its grid, 

and describes the different activity centres using the IDEF0/1X modelling techniques. In 

this method, the lowest level of IDEFO models can be translated into simulation tools. 

These features make the GI-SIM method a powerful tool for analysing and designing 
the dynamic aspects of CIM systems.

GI-SIM is simple to implement and to learn, as discussed in this chapter. When 

compared with other modelling methods used for system analysis and design. GI-SIM 

has distinct advantages. GI-SIM is flexible and combines three important modelling 

concepts (conceptual, functional/structural and simulation) to describe the 

manufacturing system from its global view to its detailed specifications, and represents 

different modelling domains (functional, decisional, information, physical and dynamic 
aspects) of manufacturing systems.

Computerised tools supporting the GI-SIM method have been presented to develop the 

method and increase its capabilities. The object linking method has been used to
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enhance the various GI-SIM components (the GRAI grid, IDEFO/IX and SIMAN 

tools). This connection can be programmed through an activity interface constructed in 

the GI-SIM grid.

The goal of this work was to present an integrated modelling method incorporating the 

main modelling characteristics such as model conception, functionality and dynamic 

aspects; hence, GI-SIM can support manufacturing systems analysis and design phases. 

By using this method, important benefits are derived, including:

• Concise graphical expression of manufacturing system activity centres and the 

decision flows between them. This makes it easier to understand the general 

manufacturing strategies and the relationships between defined organisational 

functions;

• Structured functional expression of the decision centres defined in the first step, 

which provide a basic understanding of a system being modelled;

• Related data expression of information resources using IDEF1X. This can be used to 

build relational database systems for different components of CIM systems;

• Simulation o f sub-activity boxes designed in the method to develop modelling the 

real dynamic aspects of system sub-activities;

• The use of linking tools (the grid, IDEFO and SIMAN tools) facilitates user access 

and data exchange between the activity centres and functional/simulation models.

The GI-SIM modelling method has been developed for the analysis and design of 

manufacturing systems. A case study and evaluation of the modelling method developed 

are discussed in the following chapters.
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CHAPTER-6

AN EVALUATION OF GI-SIM FOR THE 
ANALYSIS OF MANUFACTURING SYSTEMS

6.1. Introduction

This chapter presents an analysis of manufacturing systems using a case study company 

at Brook Hansen Motors (Appendix-D), using the GI-SIM modelling method. Different 

functions of the manufacturing systems are defined and decomposed into their main 

D/A centres, and then into sub-activities which represent their basic elements. The main 

objectives of this chapter are to validate the modelling method (GI-SIM) presented in 

chapter-5 and to analyse the manufacturing systems of Brook Hansen Motors. A 

detailed description of Brook Hansen Motors is presented in Appendix-D. The main 

findings of this study are given in the last section of this chapter.

6.2. Introduction to The Enterprise Analysis Phase

The analysis phase of modelling is concerned with developing a global view of the 

organisation and gives appropriate levels of abstraction. This phase aims to understand 

how an existing manufacturing system works. A modelling method used for the analysis 

phase should be selected or developed to contain a common structure of abstraction 

levels and give an accurate description of the industrial enterprise.
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One of most serious problems facing the analyst is the generation of modelling entities 

from real-world systems and abstraction of the related functions from their complicated 

departments. Another difficulty is the classification of these fonctions and representing 

the relationships between their different activities while, at the same time, considering 

the dynamic aspects of system flows. Two approaches have been used to carry out 

system analysis, namely, top-down and bottom-up. Top-down analysis is carried out 

starting from the top level of the manufacturing system and going downwards to lower 

levels o f manufacturing fonctions. This approach is powerful enough to get an overall 

understanding of the manufacturing system structure. Bottom-up analysis is carried out 

starting from the basic functions and going upwards to top functions. This approach is 

used widely in the design phase.

6.3. Application of the GI-SIM Method To Brook Hansen 
Manufacturing Systems

This study is concentrated on the Huddersfield site where Brook Hansen Ltd. has its 

headquarters. The analysis is implemented in three phases according to the GI-SIM 

method, namely, conceptual, fonctional/structural and detailed, as presented in chapter- 

5. The analysis is performed on the basis of meetings and interviews involving 

managers, decision makers and supervisors.

6.3.1 Construction GI-SIM Grid

The GI-SIM grid is constructed in one level as shown in Figure 6.1. The grid illustrates 

the current system flows through the company. The relationship of D/A centres between 

manufacturing functions and their respective horizons and review periods are illustrated 

in Figure 6.1.

6.3.1.1 Identification of System Functions

The initial stage of the analysis is concerned with selection of operational 

manufacturing system functions performed within Make-To-Order (MTO) and Make- 

To-Stock (MTS) production. These functions are:

• To Process Orders.
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• To Design.

• To Plan.

• To Manufacture.

• To Make.

• To Assemble.

• To Purchase.

• To Store.

• To Distribute.

These functions play an important role in the operational level where most of 

manufacturing system problems and complexities occur. GI-SIM presents a general 

view of the company activity centres showing decisions, information and material flows 

between system functions. Most of these functions are still traditional although some 

have adopted new technologies.

As illustrated by the GI-SIM grid in Figure 6.1, Table 6.1 shows different D/A centres 

and their associated horizons and periods for every manufacturing function.
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Figure 6.2. Order Processing D/A centre.
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System function Sub-function D/A centre Horizon Period
To Process Order - Order Processing 6 Weeks 1 Week
To Design - Elec./Mech. Design 6 Week 1 Week
To Plan - MRP 6 Week 1 Week

Daily Schedule 5 Days 1 Day
Change of Priority 1 Day RT

To manufacture To Make Producing Components 1 Day RT
Shafts • m
Rotors m
Die casting parts • m

To Assembly Sub-assemblies 1 Day RT
Rotor assembly •
Winding assembly - •

Final Assembly 5 Days 1 Day
To Purchase - Purchase Order 5 Weeks 1 Week

Common parts 1 Day RT
To Store - Motor stock 1 Day RT
To Distribute - Testing & packing 5 Days 1 Day

Delivery 1 Day RT
Table 6.1. GI-SIM grid inputs.

To Process Orders

This function involves the documentation of incoming orders from customers directly or 

sales offices and agents. These orders include standard and non-standard motors. Order 

processing is the link between the customers and manufacturing department. Orders 

rules and configurations also can be defined by this function. The order processing 

function contains one D/A centre (Order Processing). This D/A centre carries out its 

tasks through four sub-activities:

• To categorise orders.

•  To perform order drafts.

•  To check and add prices.

• To configure orders.

• To address design specifications.

• To complete order processing.

Figures 6.3 and 6.4 illustrate the IDEFO model of the order processing activity centre. 

The main inputs o f the model are customer orders and motor prices. The main outputs 

o f this activity are motor design specifications related to non-standard orders, defined 

standard orders, acknowledgements of delivery dates and prices for customers, and the 

order due dates and customer information for the manufacturing department. The order
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processing sub-activities are controlled mainly by time and customer order constraints. 

C omputer systems and sales manuals are used to support order processing sub-activities 

In this function, most of the order processing tasks and statistics are carried out 

manually.

Before constructing the simulation model for order processing activities, the motor 

orders for the last few years need to be considered for the following reasons:

• Analysis of motor orders over the last years identifies the characteristics of trends 

and changes in demand.

• Motor orders can be related to a specific probability distribution using SI MAN tools 

in order to determine order data parameters.

Figure 6.4 illustrates the motor orders for period (1990 to 1997). Three types of curves 

are shown; STK (Stock Motors) represents the standard motor orders; Non-STK (Non- 

Stock Motors) represents the non-standard motor orders; and TOTAL represents the 

total motor orders through a week.

2500

2000

time

|---------S T K  ----------N O N S T K  ----------Total ]

Figure 6.4. Motor orders during period (1990-1997).

Figure 6.5 shows a general comparison between customer orders over the last few years 

and indicates order trends and amounts per year.
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Figure 6.5. Motor orders (Total) (1990-1996)

It can be concluded from the Figures that the total motor orders during 1990 represent 

the highest number of orders during period 1990-1996. The reduction of motor orders 

continued over 1991 and 1992, but the growth of orders started again to increase again 
over the next three years (1994,1995 and 1996).

I able 6.2 illustrates the statistical analysis for the motor orders during the period 1990- 

1997. It should be noted that the year 1997 is considered in seven week periods. The 

table illustrates the probability distribution, mean values and standard deviations.

n o n -st o c k
FPD MEAN STDD FPD MEAN1990

1991
Normal 388 104 Normal 245

222
218
228

1992
1993

Normal 715
374

145 Normal
85

333
Normal

86 Normal
1109
1048Normal 369 93 Normal

1995
1996

Normal 713 100
Normal
Normal

389 81
407

Normal
87

1110
Normal

206

Normal 419 97 Normal
162
180

Total Normal 735
202
144

Normal 380
Normal

110
383

Normal
94

1098
Normal

Table 6.2. Statistical functions of customer orders

The above figures indicate that motor orders are very varied over time; hence, it would 

be very difficult to predict customer demand using traditional forecasting methods. This 

problem should be considered from different perspectives such as market aspects, 

competition, product life cycle, etc. to integrate different information and support 
forecasting techniques.

Simulation modelling of motor orders is carried out using SIMAN /ARENA .„„Is a 

discussed in Chapter 5. The translation of the basic sub-activities of the functional 

model tn.o ARENA blocks is illustrated in Figure 6.6. SIMAN simulation and
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experiment models relating to order processing sub-activities are presented in detail in 

Appendix E. Figure 6.7 illustrates the output report of the first simulation run. Other 

simulation summary reports are given in Appendix-F. The SIMAN report involves the 

information for the model replication categorised by type. The first category in the 

report summarises the observations recorded at any TALLY blocks in the order 

processing model. The output report contains two tally variables corresponding to the 

time in system for each of the two orders in the model. The report contains the average, 

coefficient of variation, minimum observation, maximum observation and number of 

observations generated during the replication. The second category of output involves 

discrete-change variables. These values are recorded automatically by DSTATS element 

in the experiment and include statistics on the length of queues and utilisation of order 

processing activities. The statistics consists of the average, coefficient of variation, 

minimum observation, maximum observation, and final value. The next category of the 

output report displays counter summary statistics and includes the current count and the 

count limit for two counters in order processing model. The counters show how many 

standard and non-standard motor orders have been completed by the order processing 

decision centre during this replication.

Figures 6.8 and 6.9 illustrate other forms of performance analysis related to the order 

process. The cumulative number of orders processed is illustrated in Figure 6.8 and the 

average time in system is illustrated in Figure 6.9 for both types of orders. Utilisation of 

order processing centre is based upon the following factors:

1. Arrival rate of customer orders.

2. Number of people doing these tasks.

3. Number of motors per order and their types.

4. Modification range for every non-standard order.

Comments on Order Processing D/A Centre

Analysis of the order processing activity centre indicates that there is a need to adopt 

advanced technology to assist in carrying out order processing tasks and provide real 

time information for other resources. This would help to reduce the costs o f the order 

processing centre and eliminate the problem of order processing duplication. This 

problem generates other complexities in the manufacturing department because some
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customer orders produced are based upon manual cards and others are based upon the 

MRP schedule.

Providing information more effectively to the order processing unit will increase the 

accuracy of predicting customer lead times, taking into account special item 

requirements. Sales manual and paper catalogues should be replaced by a system that 

provides a means of altering order requirements electronically. This system should 

integrate all order processing sources (sales branches, offices, etc.) to achieves several 

goals such as:

•  Retraining and editing customer details using standard attributes.

• Providing customer order history to facilitate forecasting studies.

• Classifying customer orders based upon intelligent systems and central databases.

• Avoiding order duplications.

•  Carrying out long-term and short-term planning.

• Reducing order processing review periods.

• Having obvious decision links between order processing D/C centres and other 

manufacturing activities.

• Modelling data flows and defining its entity attributes.

To Design

The function ‘To design’ carries out two tasks; electrical and mechanical design but is 

represented by one decision centre (Elect. /Mech. Design) in the GI-SIM grid as 

illustrated in Figure 6.2. Design D/A centre is decomposed into four sub-activities 

which represent the basic tasks and elements of this D/A centre. These sub-activities 

are:

• To specify design tasks.

• To collect design requirements.

• To specify new design/improve existing design.

• To complete design tasks.

Figures 6.10 and 6.11 illustrate IDEFO models for the design D/A centre. The model 

categorises the design activity inputs into three types, namely, customer orders, order 

processing requirements and existing design data. The model outputs are engineering
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drawings, customer documentation and design specifications. The design function is 

supported by electrical/mechanicai designers and Computer Aided Design (CAD) 

systems for both 2D and 3D. Three types of constraints are illustrated by the model: 

order processing decisions, production planning and manufacturing constraints.

Comments on Elect/Mech. Design

The analysis study illustrates that the design department has several problems which are 

summarised in Table 6.3. These are categorised into three types, integration, data, and 
operational problems.

Problem Category Problem Description " ---------- —---------
Integration LacK oi integration with the other strongly related departments such as 

manufacturing systems, processing and production planning.
Lack the automatic transfer of new part details to systems.
Lack the automatic transfer of purchase requisitions to the related 
departments. w

- Lack product routing generation facilities
Data Lack the intelligent lacilities for transfer design data to other format 

Lack of integrated database to review and update design data 
Lack of techniques for parts grouping and group technology 

—— Lack the accessing to stock information during process chanpinp
Operating Lack of provision accurate information for times scales needed bv other 

departments 3

* Lack the ability to deal with BOM easily
'  ^ n » , s ProPer C0',S,n,cti0" of B0M f°r «w non-slandaid
- Lack of new technologies which can assist in design, engineering analysis 

___ an^ testing such as finite element systems and simniafinn m/v/uu:_
Table 6.3. Obstacles to design fimrtinnc

It has been found that the design department needs a long planning horizon and review 

period, particularly for detailed design. This means that the sequencing of design 

operations requires more modifications and computer support to increase utilisation of 

this function. The design function receives more and more customer specification 

requirements related to motor components; hence, using an effective solution to this 
problem will increase activity performance.

To Plan

‘To Plan’ is based upon the MRP system, as discussed in Appendix-D. The GI-SIM grid 

(Figure 6.1.) illustrates three D/A centres for this function. These D/A centres are: 

MRP Daily schedule and Change of priorities. As illustrated in the grid, the Daily
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schedule centre is mostly controlled by MRP centres orders, a change of priority is 

authorised by manufacturing supervisors or production controllers. MRP provides a 

weekly report and has a planning horizon of 5*6 weeks. This D/A centre receives 

motors orders from the order processing D/A centre and provides other manufacturing 

functions with several type of information, as mentioned in Appendix-D. Daily schedule 

D/A centre can be considered as a result of MRP system, because the scheduling system 

is generally a part of the MRP system for MTS production.

MRP D/A centre can be decomposed into four sub-activities:

•  To read input files.

•  To read current resources.

• To update system files.

•  To run MRP system.

As shown by the IDEFO models in Figures 6.12 and 6.13, the MRP model inputs are 

motor orders, safety stock level, current physical stock level, forecast information, lot 

sizes and product structures. The outputs are work schedules, future safety stock 

schedules, WIP situations and works documents. The MRP activity centre is controlled 

by the shop calendar, lot sizing rules, manufacturing lead times and component offsets, 

and supported by computer systems, programmers and controllers.

Daily schedule D/A centre can be broken down into four sub-activities:

• To check production plan.

•  To compute components due date.

•  To synchronise production flows.

• To produce daily schedule.

Figure 6.14 and 6.15 show the IDEFO model for this D/A centre. Producing the daily 

schedule requires the general work schedule produced by the MRP system and the other 

inputs o f MTO production. This D/A centre is controlled by capacity planning and time 

constrains, and supported by MRP computer systems. The daily schedule D/A centre 

has a review period for one day and can be applied for one week (5 days).

The 'change of priorities' D/A centre usually reschedules the output of the daily 

schedule D/A centre manually based upon several factors such as manufacturing

149



Time constraints
Capacity
planning
constraints

MRP (work schedules)

Non-standard orders

To  Plan
(Producing daily schedule)

0

Daily schedule

MRP system

NODE: AC.-O TITLE: To Plan (Producing daily schedule) NUMBER:

Figure 6.14. Daily schedule D/A centre.

NODE: AC:0 TITLE: To Plan (Producing daily schedule) NUMBER:

Figure 6.15. Sub-activities o f daily schedule D/A centre



___________________________ A n Evaluation o f  G l-S lM for the A n alysis o f  M anufacturing System s

constraints (set-ups, order similarities, breakdowns, etc.), manual orders, WIP levels, 

and so on. This D/A centre appears at the last level in the GI-SIM grid because its 

planning horizon is one day and its period is Real Time (RT). Figures 6.16 and 6.17 
illustrate the IDEFO models for the 'change of priority' D/A centre.

Comments on ‘To Plan’ Function

Analysis of the ‘To Plan’ centre indicates that there is a need to formulate and 

consolidate the new production planning function to involve all production planning 

activities. The absence of this important function affects the decision flow and the 

integration of manufacturing systems. It has been found that the MRP system is very 

weak and has several drawbacks. The MRP system is a cornerstone in production 

planning function and it should be capable of handling the production planning and 

control tasks efficiently. The current system has the following problems and barriers: 
e> MRP system is incapable of handling all types of motors.

MRP system is incapable of providing a scheduling system for other manufacturing 
strategies such as JIT and Kanban systems.

<=> The current system is very closely tailored to the needs of the area for which it is 

intended. For example, the screen details for cast iron machining are significantly 

different from those for the production of rotor assemblies, windings, etc.

=> Absence the integration between MRP and manufacturing control systems.

& The system is incapable of applying different types of control by product or 

manufacturing area. For example, Re-order point, Kanban.

ct> MRP system does not allow utilisation of supplier stock control systems, for 
example, bar coding on some purchased items.

d> The system is incapable of managing manufacturing of MTS, MTO, stock 
modifications, repairs, spares and motor interiors.

O Incapability of applying forecasting operations based upon marketing information 
and order history.

It is incapable of calculating Average Weekly Demand (AWD) based upon more 

accurate information and allowing it to be used as a calculated forecast. AWD is 

now calculated by modifying the old AWD with the present actual demand 
according to a smoothing factor.

For example, if the smoothing factor is 0.1 then the new:

AWD = 0.1 x new demand + 0.9 x old AWD.
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& It is incapable of applying various lot sizing rules such as make one-for-one, 

minimum lot size, multiples of lot size, etc.

& It is incapable of handling fixed safety stocks. The current method used is based 

upon the standard deviation of the last 12 weeks independent demand.

■=t> It is incapable of determining scrap percent and re-order points by part.

<=> Current system involves several units of measures such as Kilogram (KG), Ton 

(TN) and Meter (MT).

■=> It is unable to hold windings specification details.

<=> Details of wagon routes and times are ignored in the current production system;

<=> Adjustment of manufacturing requirement dates can not be done automatically.

<=> Lacking of data support of part specifications and parts matching. 

t=j> The MRP scheduling system is based upon weak rules, so the scheduling is one of 

the biggest problems in the production system because:

► The system could not allow scheduling rule definition and control at a macro 

level.

► Dealing with the current scheduling system is complicated.

► It is incapable of providing real time updates to other application modules.

► It is incapable of containing the real time production and order changing; hence, 

the change of priority is applied.

► It is incapable of scheduling and controlling other manufacturing units such as 

hand wound stator cores.

‘To Plan’ function is the backbone of any manufacturing organisation. This function 

should be concerned with long-term and short-term planning activities.

To Manufacture

In this case study, this function is divided into two sub-functions, ‘To Produce Parts’ 

and ‘To Assemble’, as illustrated in the GI-SIM grid in Figure 6.1. To understand this 

important function, the main manufacturing procedures are outlined below:

• Motor orders are taken from standard and non-standard motors as described in the 

order processing function. Stock availability of standard motors can be checked at 

this point.

151



• Delivery dates for both standard and non-standard motors are defined at the order 

entry stage based upon different stages.

• Special component requirements are identified at this stage and requisitions placed 

to manufacturing or purchasing.

• During an overnight MRP run, standard motor requirements are placed against 

stock, taking into account warehouse stocks, safety stocks, AWD etc. to produce 

motor launch requirements.

• Winding and assembly tickets are printed in advance during daily runs for 

production up to date determined by the ticket time fence.

• The resulting launch requirement for motors and components is presented in a 

variety of formats and sequences based upon the manufacturing area. These include 
on-line screens, reports and tickets.

•  In due course a launch decision is recorded, by keyed input or via bar coded input. 

This results in the issue being recorded, non-Kanban components being allocated 

and, if the issue point is the defined point of usage for any components, the down 

dating of component stocks.

•  For some standard components, batch cards are printed at issue time.

• Bar coded or keyed WIP movement transactions are recorded as items move 

between tracking zones. These transactions also include down dating component 

stocks at the point of usage and actioning any unrecorded earlier transactions.

• Store items are taken from line stock or from stores as required and booked out of 

stores at the point of issue from the store. Line stocks are not recorded.

• A daily stores run takes place prior to MRP, which incorporates a report control 

system for printing of daily, weekly or monthly reports. Using this system the user 

decides on the frequency and number of copies of the reports. Weekly reports can 

also be specified to arrive on a particular day of the week.

•  All store transactions are on-line, the system having standard facilities for raising 

and passing GRN, issuing work etc. A variety of user defined reports are produced 

such as recommended re-order action, shortage reports and outstanding orders.

• When standard motors pass the final inspection they are passed to the stock motor 

warehouse for booking in as described in warehouse and distribution section.

• When non-standard motors pass the final inspection, they are booked through final 

inspection as a WIP transaction and forwarded to distribution for despatch as 

described before.

An Evaluation ofG ISlM for the Analysis o f Manufacturing Systems
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Figure 6.18 illustrates the common process flow for electric motor production and 

associated departments. Figure 6.19 illustrates average WIP transactions per day for the 

Huddersfield manufacturing site.

Copper Wires
Laminations
Leads

Aluminium Ingots

Laminations - V Motor Rotor 
ProductionAluminium Ingots

Motor Shaft 
Production

Winding
A ssem bly

MMMIMBi 
Die Casting 
Components

Motor Rotor 
A ssem bly

Motor 
Small Parts

1

u

Final Motor 
Assembly

Completed 
Motors ^

Figure 6.18. Common process flow of motor production.

Figure 6.19. Average WIP transactions per day for Huddersfield site.

To Produce Parts

Function ‘To Produce Parts’ involves one D/A centre (components production). This 

D/A centre represents manufacturing departments that produce motor components 

(Rotor production, shaft production and die-casting production).
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Rotor Production

All motor rotor types are produced in the rotor production location at the Huddersfield 

site. This D/A centre feeds the rotor assembly department with rotors 160/180 and 132, 

and supplies assembly lines of motors 100, 112 in their production cells. Figure 6.20 

shows the general manufacturing processes for producing rotors.

As illustrated in Figure 6.20, rotor production depends on the following operations:

• Stagger operation.

•  Casting operation.

• Stripper operation.

• Stamping operation.

IDEF0 models have been developed for the rotor production activity as illustrated in 

Figures 6.21 and 6.22. The model represents activity controls by schedule, workforce 

constraints and design specifications. The mechanisms are operators and casting
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machines. The main inputs of this activity are aluminium and steel laminations, and the 

outputs are rotor production information, finished motor rotors and scrap.

Table 6.4 illustrates rotor production stations and their capacities based upon motor size.

Station No. Parts Produced
(Frame size)

Production Rate
(Unit/Hour)

Working Hours 
a day

1 100 28 7.55
112 28

2 132 18 16.8
3 132 20

160 10 16.8
4 160 7 16.8
5 160 6

180 6 7.55
C225 6

6 100 43
112 43 7.55
132 21

Table 6.4. Rotor stations and their different outputs.

Using SIMAN/ARENA a simulation model is constructed for rotor production. The 

modelling of a complete shop for rotor production has been attempted but there are 

some restrictions related to the capacity of educational version of ARENA. The 

simulation model of the large systems has been broken down into six small simulation 

models to provide output statistics for every particular workstation. These models and 

their associated experiments are illustrated in Appendix E. An integrated simulation 

model for these six workstations is also presented in Appendix E. Simulation results are 

summarised in Table 6.5. These results are produced from one simulation run based 

upon data collected from the rotor production department. Figures E-l to E-6 

(Appendix-F) give summary reports for rotor casting stations and Figures 6.23-25 

illustrate different statistical measures of these stations.
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Station Type of Simulation output Run Time Utilisation Batch Size
No. Production unit/week (min/week) % Min Avg. Max

1 too 588 2265 99 16 34 55
112 533

2 132 1495 5040 99 11 29 48
3 132 599 5040 99 1 19 38

160 541
4 160 569 5040 99 11 29 49
5 160 52 2265 99 3 19 40

180 96
C225 78

6 100 280 2265 99 62 79 100
112 96
132 567

Table 6.5. Simulation output for rotor production.

Figure 6.23. Rotor batches range

3000 n 2*63

2000

868

500

0

OZ3

— 1___ l________1___ ___1___

96----------78—
— c -  i r r . - i — i___ r.T=.Ti___ i

R100 R112 R132 R160 R180 Rc225

□ Q uantity

Figure 6.24. Finished rotors for a week.

Figure 6.25. Segment o f  generation batch size in simulation model.

C o m m e n ts  on R otor  Production

A n a ly s is  o f  ro to r  p r o d u c tio n  g iv e s  th e  fo l lo w in g  p o in ts:

•  Rotor production is based upon updated schedules generated by the MRP system. 

This causes problems in the selection o f  motor batches and keeps them permanently 

high. Changing o f  priorities is based upon conventional factors but requires
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sophisticated computer programs that take into account several internal and external 

factors.

•  Rotor production workstations are still very conventional manufacturing stations. 

Installing new production technologies would give more accuracy and increase 

production rate.

• Table 6.5 illustrates that rotor stations are fully utilised and operated manually.

•  Scrapped rotors cannot be reworked because reworking facilities do not exist.

•  The layout of the rotor production deportment would be not appropriate for using 

new manufacturing strategies such as JIT and Kanban systems.

• Rotor production needs to be fully integrated with shaft production and winding 

assembly.
• High variation of sizes of customer orders effects production rates in this department 

(Figure 6.25).

•  Production plans are changeable because of some rush orders and difficulties in 

predicting future demands.

• Selection of stations batches and estimation of time events are also performed 

depending on planner experience without using any production technique or 

philosophy such as group technology methods or cellular manufacturing techniques.

•  Delaying customer orders are probable because of a lack of computation in 

performing rotor production plans, scheduling and control. MRP feedback is 

generated weekly and has several limitations such as lacking batch details and daily 

production rates.

Motors Shaft Production

Motor shaft production involves a high variety of customer specifications. These

specifications include material type, machining specifications and design properties.

Hence, five production lines are used for producing motor shafts at the Huddersfield

manufacturing site. These five production lines are:

1. Shaft integrated production unit.

2. An automated line installed near the integrated production unit (as illustrated in 

Appendix-D).

3. Shaft production unit for celMOO.

4. Shaft production unit for cell>l 12.

5. Special shaft production shop (manually).
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In general, this D/A centre can be modelled functionally, as illustrated in Figures 6.26 

and 6.27. These IDEFO models illustrate the basic manufacturing operations used to 

produce motor shafts. The top activity is decomposed into five sub-activities:
• To store steel bars.

• To retrieve steel bars.

•  To perform sawing operation.

• To perform primarily machining.

• To perform final machining.

Shaft production operations are shown in Figure 6.28.

The classifications of manufacturing processes are different from one shaft production 

line to another; hence, the development of functional models would be different. To 

avoid these changes in functional/physical models, table 6.6 illustrates the model sub

functions and their associated manufacturing process for the first four shaft production 

lines. The last one will be ignored in this study because it uses very conventional 

manufacturing methods and is used to produce vety special types of motor shafts in 
small batch sizes.
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No Sub-activity
Manufacturing operations

Line 1 Line 2 Line 3 Line 4
AC1 To store bars Storing bars Storing bars Storing bars Storing bars
AC2 To retrieve bars Retrieving bars Retrieving bars Retrieving bars Retrieving bars
AC3 To saw Sawing

operation
Sawing
operation

Sawing
operation

Sawing
operation

AC4 To perform primarily 
machining

Facing,
Drilling,
Centring
Tapping.

Turning,
Milling,
Tapping,
Screwing,
Drilling.

Turning,
Milling,
Tapping,
Screwing,
Drilling.

Turning,
Milling,
Tapping,
Screwing,
Drilling.

AC5 To perform final 
machining

Turning,
Milling,
Drilling,
Grinding.

Grinding. Grinding. Grinding.

Table 6.6. Classification of shaft operations.

Four simulation models are constructed for shaft production lines. The simulation model 

and experiments are presented in Appendix-E. Production line-1 (shaft integrated unit 

production) involves four workstations for performing final machining. These are 

represented by cell-1 through cell-4. Figure F-7 illustrates simulation results for one 

replication. Figure 6.29 illustrates station availability and utilisation.

Figure 6.29. Shaft integrated production unit (availability and utilisation)

It is clear from Figure 6.29 that the EMAG machine represents the bottleneck stations in 

the production line. For this reason the EMAG machine works 20 hour each day. As 

illustrated by the simulation report, cell-1, cell2 and cell-3 produce 424, 379 and 241 

motor shafts/week respectively, using input data attributes. WIP level is approximately 

200 units for this shaft production line. Other analysis results are illustrated in Figure F-

7.

Shaft production line-2 is a new line for producing shafts for motors size (132) This 

production line is composed of two main workstations. The first one is an automated 

machine that carries out five different operations, namely, turning, milling, tapping,
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screwing and drilling, and the second is used to perform grinding operations. Figure F-8

illustrates the simulation report for this production line. The report shows that utilisation 
is:

O K U M A L T 1 5 M  utilisation = 97%

GRINDING utilisation = 55%

OPERATOR utilisation = 72%

The total output of this production line is approximately 870 motor shafts per week. 

Because the first part of this line is working automatically, the WIP level is very low.

Shaft production lines 3 and 4 are similar. Line-3 is used to produce cell-100 shafts and 

line-4 is used to produce cel-112 shafts. Simulation results are illustrated in Figures F-9 

and F-10. SIMAN models and experiments for shaft production are presented in 

Appendix-E. Figure 6.30 illustrates the utilisation of machines and operators for line-3 
and line-4. Simulation reports are presented in Appendix-F.

Figure 6.30. Utilisation of shaft production stations cell-100 and cel-112

Simulation results indicate about 690 shafts can be produced from cell-100 and cell-
112.

C o m m en ts  on M oto rs S h a ft P ro d u c tio n

Many varieties o f customer specifications are found in motor shafts. These 

specifications are related to length of shaft, machining, materials and designs. The MRP 

system is the main resource for shaft production and other special orders. Hundreds of 

shaft types are placed to shaft production from order processing through the MRP 

system. The related design diagrams are sent directly to the manufacturing department 

from the design department. The analysis of shaft production is very difficult because of
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the huge variety of customer orders and complexity of performing perfect scheduling 

for these order quantities. These lead to increasing production costs through increasing 

machine set-ups, overtime, order delay and WIP levels. This study indicates several 

important points related to shaft production lines, including:

• Grouping customer orders based upon design and manufacturing features is very 

important in shaft production to reduce set-up times and lead times. The existing 

method does not adopt any grouping or clustering techniques such as Group 
Technology to combine motor orders.

• Formulation of capacity planning is performed based upon quantities of orders not 

scheduling techniques and known resource capacities.

• Using MRP production for shaft production should be restricted to MRP parts and 

other equipment should be produced using other manufacturing techniques such as 

JIT and Kanbans.

• WIP is high for standard motors.

• Breakdowns of sawing tools specially in the automated lines (Line-2, Line-3 and 

Line-4) in OKUMA machines that perform several machining operations 

automatically using computer programs, cause the stopping of the other operations 

performed on the same machine.

• Writing machine programs by production planners and operators wasting time. 

These programs can be generated from the CAD system using CAPP methods.

Die Casting Motors Components

Motor components such as frame, drive end-shields, non-drive end-shields, flanges, 

terminal boxes and bearing caps are manufactured in the foundry department, as 

discussed in Appendix-D. The GI-SIM grid presents these activities under ‘To 

Manufacture’ function. This D/A centre has the same modelling factors as rotor and 

shaft production. Die-casting manufacturing operations can be represented by the 

following activities:

•  To melt Aluminium ingots.

•  To handle molten material.

•  To perform casting operation.

•  To collect/Inspect casting components.
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Figures 6.31 and 6.32 illustrate IDEFO models for die-casting production. The main 

inputs are orders and aluminium ingots and the outputs are casting information, finished 

casting components and scrap. Operations of this activity centre are controlled by 

operator, scheduling and machines constraints, and supported by operators, casting 

machines, handling tools and electrical furnaces. There are several types of casting 

machines: IDRA500, IDRA560, CAST MASTER500, CAST MASTER600, 

TRIULZI750-1, TRIULZI750-2, TR1ULZI480-1, TRIULZI480-2, TRIULZI750-1, 

TRIULZI800, TRIULZI950, WOTAN400-1, TRIULZI630, WOTAN400-2,

WOTAN700 and IDRA1200. These machines can produce more than one component, 

as discussed in Appendix-D. The current production system used in die-casting is mixed 

by MRP and is similar to Kanban. Die-casting machine set-ups take a long time and due 

to the variety of customer orders, machine utilisation is low. Figure 6.37 illustrates the 

average number of die-casting machines used for fourteen weeks. The litters D, L and N 

in Figure 6.33 indicates shift type Day, Link and Night respectively.

Figure 6.33. Die-casting machines availability.

Simulation models of die-casting production would be very complicated for the 
following reasons:

• There are no specific production plans which can be used for specific periods of 
time;

• No scheduling system is used for this production. Manual scheduling and 
conventional planning methods are used;

• Every machine can be used to produce different components.

Comments of Die-casting Production

The foundry department is one of the most complex departments at Brook Hansen as it 

feeds motor production facilities at both Huddersfield and Honley. Its performance is
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estimated to be about 65% based upon the history of production over several weeks.

Analysing die-casting production gives the following points:

• The department layout needs to be re-arranged to minimise molten aluminium 

movements between casting stations.

• There are high levels of WIP in the casting department.

• Scheduling casting operations is completed manually and several problems are 

associated with this method such as low machine utilisation and delayed orders.

• Die handling and installation takes a long time. This reduces utilisation and makes 

scheduling more difficult.

• Capacity planning modelling is implemented based upon order sizes. This makes 

using the Kanban system very difficult because Kanban has restrictions regarding 

number of containers and their capacities.

• Design time for new dies takes a long time. This increase lead times and design and 

manufacturing costs.

• Casting operations have high scrap rate.

To Assemble

This sub-fimction involves two D/A centres ‘sub-assembles’ and ‘final assembly’, as

illustrated by GI-SIM grid in Figure 6.1. Figure 6.34 illustrates the general architecture

o f ‘To Assemble’ sub-function.

An Evaluation o f GIS1Mfor the Analysis of Manufacturing Systems

Figure 6.34. ‘To Assemble’ sub-function.
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Sub-assembly D/A centre involves two types of sub-assemblies ‘rotors sub-assemblies’ 

and ‘windings sub-assemblies’. These two centres appear at the last level of the GI-SIM 

grid with planning horizon for one day and real time review period.

Rotor Assemblies

There are three locations where motor rotors are assembled. The first one is located at 

the rotor assembly department near the shaft production. This assembly line feeds the 

final assembles of motors 132, 160 and 180. The second rotor assembly line is located 

near cell-100 and it is used to assemble motors 100 only. The third rotor assembly line 

belongs to motors 112 and is located near that manufacturing cell.

Rotor assembly activity can be broken down into five sub-activities as illustrated in 

Figure 6.35.

To assemble motor rotors

—  To perform heating operation
—  To assemble shaft & rotor 

To cool sub-assembly
To perform machining operation:;

________To complete scaling operations
Figure 6.35. Sub-activities o f  rotor assembly D /A  centre.

Figures 6.36 and 6.37 illustrate IDEFO models o f the rotor assembly D/A centre. The 

top activity o f the model represents the general concept of motor rotor assembly. The 

model shows four main inputs: MRP orders, special orders, rotors and shafts. The 

operations of rotor assembly are controlled by a daily schedule, provided by the MRP 

system and rescheduled by the rotor production planner. In addition to this, the design 

specifications represent other constraints on production. The model develop«! indicates 

two types o f mechanisms, namely, machines/tools and operators. The outputs of this 

model are rotor assembly information and finished rotor assemblies. The model top 

activity has been decomposed into five sub-activities that are responsible for producing 

final rotor assembly and sending the relevant information to the planning centre

164



An Evaluation ofGI-SIMfor the Analysis o f  Manufacturing Systems 

Sub-activity AC1 represents heating operations for rotors to facilitate fitting the shaft 

which is represented by sub-activity AC2 in the IDEFO model. Sub-activity AC2 

transfers its outputs (rotor assembles) to the next sub-activity AC3 to cool the sub- 

assemblies. Machining operations are required for rotor assemblies; this can be done by 

sub-activity AC4. Final machining and balancing are carried out by sub-activity AC5 

which produces the final rotor assemblies. Figure 6.38 illustrates the rotor assembly 
drawing and assembly chart.

In the third phase of the GI-SIM analysis procedure, three simulation models are 

constructed for the rotor assembly lines. Complete simulation models and experiments 
are given in Appendix-E.

The rotor assembly line that feeds cell-132 and cell-160/180 combines two lines for 

both small and large motors. Figure F-l 1 (Appendix-F) presents a summary report for 

this assembly line. This assembly line works for approximately 47.75 hours per week 

Figure 6.39 shows the utilisation of rotor assembly stations. It is very clear that low 
utilisation is one of the rotor assembly problems.
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Figures 6.40 illustrates cumulative output and time in the system for rotor assembly 

line-1.

Figure 6.40. a) Cumulative production output and b) Cumulative time in system for

rotor assemblies (assembly line-1)

Figure 6.40 (b) illustrates the WIP situation for one week of production. This is a high 

level o f WIP because of the need for rotor assembly cooling using traditional methods 

(room temperature) or air fan coolers.

Rotor assembly lines 2 and 3 are used to feed final motor assemblies at manufacturing 

cells 100 and 112 respectively. Simulation models and experiments for these two lines 

are illustrated in Appendix-E. The run time is 47.75 hours. Figures F-12 and F-13 

(Appendix-F) illustrate the simulation output for cell-100 and cell-112 rotor assembly 

lines.
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The cumulative production rate and jobs time in system are given in Figures 6.41 and 

6.42.

Figure 6.41. Cumulative production output for rotor assembly 

Cell-1 00 and Cell-112.

Figure 6.42. Average time-in-system for rotor assembly Cell-100 and Cell-112

Utilisation of these two rotor assembly lines is illustrated in Figure 6.43.

□  RA100 □  RA112

Figure 6.43. Utilisation of rotor assembly lines for cells 100 & 112.
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Comments on Motor Rotor Assembly Lines

The rotor assembly operations lack advanced technologies and operate under traditional 

manufacturing methods. The analysis of these assembly lines gives the following 
points:

• Low utilisation of rotor assembly stations, as illustrated in the analysis figures.

• High levels of WIP between assembly stations (especially after water-cooling). This 

is the result of using conventional methods to reduce temperature of sub-assemblies.

• Long throughput time. Heating and cooling operations represent the bottlenecks.

• The production is based upon updated MRP orders. This makes using other 
manufacturing strategies (such as Kanban) more difficult.

•  Batch selection is based upon the production card and unit number attached to the 

component. This method increases cycle times and effects on some urgent customer 
orders.

• Using traditional manufacturing systems in rotor assemblies also reduces accuracy 
and quality.

Windings Assembly

Winding assemblies at Brook Hansen are carried out in four different locations, as 
illustrated in Figure 6.34:

1. Cell-160/180 windings assembly.

2. Cell-100 windings assembly.

3. Cell-112 windings assembly.

4. Cell-132 winding assembly.

Most outputs of these assembly lines are used for Aluminium motors. It should be noted 

that winding assembly lines are part of final motor assembly. The reason for considering 

them here is to analyse details of manufacturing activities for both windings and final 
assembles.

In this analysis a winding assembly D/A centre is regarded as an element of the motor 

sub-assemblies D/A centre with planning horizon of one day and real time review 

period, as shown by the first phase of GI-SIM analysis in Figure 6.1. In the second 

phase, IDEFO models are constructed for this D/A centre based upon sequences of
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Figure 6.46. Child-activities of motor windings assembly.



An Evaluation o f  G IS lM fo r  the A n alysis o f  M anufacturing Systems 

system flows between production sub-activities. Figure 6.44 illustrates child-activities 

of this D/A centre.

To assemble windings

— To balance and cleat laminations 
To inspect and insulate components

—  To wind and insert
— To finish off and connect
—  To press and term
—  To perform electric test

________ To perform dip-bake and wyvertic operations
Figure 6.44. Windings assembly sub-activities

Using the windings assembly sub-activities and IDEFO tool, a structural model Is 

constructed for the D/A centre, as illustrated in Figures 6.45 and 6.46. The IDEFO 

model summarises the different relationships between sub-activities o f winding 

assembly. Sub-activity-ACl represents collecting steel laminations and balancing them 

using an electronic scale based upon order specifications. The dealing operation is also 

involved in sub-activity-ACl. The output of this activity is the input o f Sub-activity 

AC2 which represents inspecting and insulating cleated laminations. Rejected 

components are returned to the steel lamination store and the accepted components are 

delivered to the insulating machine then to the subsequent operations which are 

represented by Sub-activity AC3. Sub-activity-AC3 represents the operations of 

winding, inserting and pressing copper wires into the stator pack. Following this, the 

finishing and connecting operations are completed. These two operations 'a re  

represented by Sub-activity AC4 in the IDEFO model. Sub-activity ADI delivers its 

output to its subsequent sub-activity-AC5 which represents pressing the wound pack 

and completing the terminal operations. Before performing dip and bake operations, 

components are tested electrically. Electrical testing is represented by Sub-activity AC6 

in the model. Finally, sub-activity-AC7 represents the dip-bake and wyvertic operations. 

The model inputs are orders, laminations, insulation materials, copper wires and small 

parts. The outputs are: the finished wound stator pack, production information and the 

rejected components. This D/A centre is supported by assembly labours, machines and 

tools, and controlled by time constraints and design specifications.
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Many types of wound pack can be produced based upon customer specifications. These 

specifications include number of poles, wire specifications, core length, insulation 
material and treatment features.

In the third phase of the GI-SIM modelling method, simulation models are constructed 

for the winding assembly lines. Simulation models and experiments are given in 

Appendix-E. Figure F-14 (Appendix-F) illustrates the simulation output for the winding 

assembly line of cell-160/180. There are three performance measures which are 

considered in this analysis, namely, utilisation, time-in-system and output rate. Figure 

6.47 illustrates the utilisation of the winding assembly stations based upon a particular 
simulation run for cell-160/180.

& v /  ÿ*
O8 ^

Resources

Figure 6.47. Utilisation of windings assembly stations (cell-160/180)

Figures 6.48 illustrates jobs time-in-system and production rate for this assembly line 

using simulation statistics results.
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Figure F-15 (Appendix-F) illustrates the summary report for winding assembly (cell- 

100). This report is the output of one of the simulation runs related to this assembly line. 

Utilisation of this assembly line is given in Figure 6.49.

Figure 6.49. Utilisation of winding assembly stations (cell-100).

Figure 6.50 illustrates the utilisation of windings assembly stations for cell-112 and cell- 

132.

Figure 6.50. Utilisation of windings assembly stations (cell-112 and cell-132)

Figures 6.51 and 6.52 illustrate jobs time-in-systems and production rates for windings 

produced by cell-100, cell-112 and cell-132.
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Figure 6.51. Plot for unit time-in-system for windings assemblies 100, 112 and 132.

Figure 6.52. Plots of cumulative output for windings assemblies 100. Il2and 132.

Summary reports for windings assembly lines 112 and 132 are given in Figures F-16 

and F-17 (Appendix-F) respectively.

Comments on Winding Assembly Production

Winding assembly lines receive a wide variety of customer specifications. Therefore, 

production planning and scheduling is very complex. The analysis indicates several 

points on the assembly of motor windings. These include low utilisation, high WIP and 

difficulties of scheduling. It has been found that although there are bottlenecks in these 

assembly lines. The bottleneck problem is moving from one station to another in the 

assembly line. This problem arises from the many changeovers and from stations that 

are not fully utilised. Another problem for these assembly lines is related to handling 

systems. Material handling systems of the winding assemblies are eonveyor systems
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which have failed segments in many locations. This problem increases WIP levels, lead 

time and decreases utilisation and production rates.

Final Assembly lines

Four assembly lines are used to complete the final assembly of Aluminium motors at the 

Huddersfield manufacturing site. These assembly lines are located in cell-100, cell-112, 

cell-132 and cell-160/180, as illustrated in Figure 6.34. Components production and 

sub-assemblies departments feed final assembly lines. Figure 6.53 illustrates the final 

motor assembly chart.

Appendix-D gives more details of the assembly cells and their layout. To start the 

second phase of analysis for this activity centre, the basic sub-activities should be 

identified. Final assembly sub-activities are slightly different from one cell to another. 

In general, Figure 6.54 shows the child-activities of a final assembly D/A centre.

To complete final assembly

— To assemble frame & Wound pack
— To perform machining operations
— To combine T.box & feet
— To fit rotors & motor ends
— To perform elect, test
— To perform painting operations
—  To assemble fan and cover

Figure 6.54. Sub-activities of motor final assembly.

173



Orders

Frames

Stator wound pack

Terminal boxes

Rotor sub-assembly

Endshields / Flanges

SmaH parts

Paints

Fan and covers

Time
constraints

Design
constraints

To  Manufacture -  (To assemble) 
Final assembly

Human
resource

Final assembly information

Finished electric motors

Rejected motors^

Assembly
machines/tods

N0DE: AC:-0 TITLE: To Manufacture - (To assemble) Final
assembly

NUMBER;

_______________  1

Figure 6.55. Top D/A centre for motor final assembly.

NOUE: A C : 0 TITLE: To Manufacture - (To assemble) Final NUMBER:

assembly 1
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The IDEFO model for final assembly is constructed using D/A centre sub-activities, as 

shown in Figures 6.55 and 6.56. Motor final assembly D/A centres receives decisions, 

information and material from other D/A centres, as illustrated in GI-StM Figure 6 1 

Production planning and control of final assembly launch assembly operations are based 

upon MRP orders after changing their priorities. Sub-activity-AC-1 is the first child- 

activity in this production line. It represents fitting stator wound packs into motor 

frames. Hence, it is fed by windings from the windings assembly line and motor frames 

from the die-casting department. The output of this D/A centre is the input for the 

subsequent sub-activity-AC-2 (machining operations). Following this, sub-activity-AC- 

3 represents combining terminal boxes and motor feet. Then, the sub-assembly is moved 

to another process for fitting rotors and end-shields and/or motor flanges. This process 

is represented by sub-activity AC-4 in the IDEFO model. The output of this sub-activity 

is used by sub-activity AC-5 that represents the performing of an electrical test. After 

this operation, motors access to the painting station to be painted with appropriate 

colours. This operation is represented by AC-6 in the IDEFO model. This sub-activity 

feeds the final sub-activity AC-7 which represents fitting motor fans and covers. These 

operations of the assembly line feed other D/A centres in the model such as motor stock 

and delivery D/A centres. Information obtained from this D/A centre is linked to 

relevant D/A centres, as given by the GI-SIM grid.

The third phase of modelling is to construct dynamic models for the motor assembly 

lines. Simulation modelling for electric motors final assemblies is divided into four 

models according to current assembly lines. SIMAN models and experiments are given 

in Appendix-E. Simulation modelling is implemented for one week. Figures F-18 to F- 

21 (Appendix-F) illustrate summary reports for final assembly lines of cell-100, cell- 

112, cell-132 and cell-160/180 respectively. The assembly line o f cell-160/180 involves 

both aluminium and cast Iron motors. Most of the assembly operations depend upon 

human resources, hence, it would be very difficult to measure system performance. 

Triangular distribution is used for time estimated of assembly stations. This distribution 

returns a value between Min and Max with the values tending to be centred around 

Mode (most likely value). The triangular distribution is used because the exact form of 

the distribution is not known. In addition, this distribution is easier to use and explain
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Activities of final assembly lines are analysed in terms of various performance

measures. Figure 6 .5 7  illustrates the utilisation o f  assembly line stations for each motor 

type.

ro

j □ M100 ■  M112 □ M132 DM160/180

Figure 6 .57 . Utilisation analysis o f  motor final assembly lines.

Olher statistical measures have been observed during the simulation run including 

production rate and cumulative time-in-system for all assembly lines. Figures 6 .5 8  and 

6 .5 9  show cumulative production through five days o f  production for cells-10 0 -1 1 2 -1 3 2  

and cell-16 0 /1 8 0  respectively. Figures 6 .6 0  and 6.61 illustrate the job time-in-system for 

all four assembly lines.
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------M100 ------ M112 M132 Time

Figure 6.60. Jobs time-in-system for cells-100, 112 and 132.

__T a l i 60/180  — C I160/180

F ig u re  6 .6 1 . Jo b s  t im e - in -s y s te m  fo r  c e l l - 1 6 0 /1 8 0 .
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C om m en ts on M oto r F inal Assem bly Lines

M otor final assembly lines receive sub-assemblies and components from other 

manufacturing departments and combine them to produce motors in different sizes and 

powers. Hence, final assembly lines are related to every function in the company. 

Technical functions feed the manufacturing processes on the assembly lines and 

organisational functions are used to control and plan loads o f customer orders on these 

lines.

A n a ly s is  o f  th e s e  a s s e m b ly  l in e s  g iv e s  th e  fo l lo w in g  c o m m e n ts :

•  There is a high level o f WIP for parts used in motor assembly such as rotors, ends, 

flanges, terminal boxes, frames and stator wound packs.

•  There is a low utilisation o f  assembly stations because o f the high number o f set

ups, bottlenecks and variations o f  order sizes.

•  Ineffective material handling systems are used. Role conveyors are broken down 

between stations o f  the assembly line. This reduces assembly production rates and 

increases lead times.

•  Balancing assembly lines is not well managed. Some stations are blocked and others 

are starved.

•  The planning system is not capable o f handling all types o f motors.

•  The assembly planning system is not capable o f  supporting various levels o f  

capacity planning.

•  The rate o f  rejected motors is high. Electric test sometimes fails all motors. This 

effects customer orders and planned production. Figure 6 .6 2  illustrates motor intake 

numbers, production and despatch. It is evident that there are variations between 

produced and dispatched motors.

Figure 6 .62 . Motors order, production and dispatching variations.
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To Purchase

This function involves two main D/A centres ‘purchase orders’ and ‘common 

production parts’. The first D/A centre (purchase orders) has planning horizon for one 

week and review period for one day, when the ‘common parts’ D/A centre has horizon 

for one day and real time period, as illustrated in Figure 6.2.

The second step in D/A centre analysis is construct models for functions being 

considered. Constructing IDEFO model for this D/A centre requires identification of 

basic activities related to purchasing operations. These activities are presented in Figure 

6.63.

An Evaluation o f GI-SIMfor the Analysis o f Manufacturing Systems

To purchase

—  To receive requisitions
—  To approve requisitions
—  To convert requisition into orders
—  To add supplier inform ation
—  To inspect orders
—  To send orders to  supplier
—  To receive goods_______________

Figure 6.63. Sub-activities ofpurchasing D/A centre.

Figures 6.64 and 6.65 illustrate IDEFO model for the purchase D/A centre. This D/A 

centre receives three main inputs, namely, requisitions, supplier information and goods. 

The outputs are rejected orders, orders to suppliers, copies of orders to who raised 

orders, good receiving notes (GRN), invoices and goods. These outputs are the result of 

interacting sub-activities of purchasing D/A centre. The models illustrate three types of 

controls: requisition constraints, budget constraints and supplier constraints. Computer 

systems, purchasing staff and communication tools support D/C sub-activities. This D/A 

centre deals with approximately 1500 requisitions, 2000 orders, 3000 GRNs and 3000 

invoices per month.

Comments on the Purchasing Function

The analysis o f the purchasing activity indicates that o f  the purchasing system  is 

incapable o f producing accurate information on prices, products, suppliers and orders
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across all sites to increase purchasing performance. Absence of integration with 

manufacturing systems and other related systems is another major problem for this D/A 

centre. The integration with other related systems also allows purchasing to provide a 

better stock management. The current purchasing system is also incapable of 

categorising requisitions based upon motor orders or sizes. This also creates problems in 

sorting approved requisitions by product groups or suppliers.

‘To Store’ Function

‘To store’ function involves one D/A centre (motor stock), as given by GI-SIM grid in 

Figure 6.1. Describing this D/A centre requires the identification of function sub

activities. Motor stock D/A centre can be decomposed into three sub-activities:

• To control warehouse.

• To stock motors.

• To retrieve motors.

Figures 6.66 an 6.67 illustrate functional model of motor stock D/A centre. Sub-activity 

AC-1 controls sub-activities AC-2 and AC-3. Storing motor operations are represented 

by sub-activity AC-2 in the model. The retrieving operations are represented by sub

activity AC-3 in the model. These sub-activities are related to each other in terms of 

inputs and controls. The inputs of the model are finished motors, pallets and requisition 

for retrieving motors. The outputs are stock tickets, warehouse information and 

retrieved motors. The model illustrates two types of controls (stock control features and 

picking rules) and mechanisms (human resource, bar code technology, truck systems, 

and system terminals).

Comments on ‘To Sore’ Function

The analysis of the ‘To Store’ function indicates several comments including:

• The motor stock system lacks the integration with other manufacturing system 

functions such as production systems.

•  The conventional methods of classification are used in stock system. Hence, picking 

restriction exists because of different weights and sizes of motors.

• Shortages problems.
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•  The current system is incapable of calculating the best picking route for the truck, 

being in mind the aisle the truck currently occupies.

• No sequencing rules are employed for retrieving motors such as FIFO.

• Control of pallets is not considered. This causes shortages in pallets.

• Updating despatching details should be started from stock system when order is 

retrieved from stock.

• Information of stock orders is not well maintained to be used in forecasting and 

future company plans.
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To Distribute

The ‘To Distribute’ function involves two D/A centres testing/packing and delivery. 

The first D/A centres have planning horizon for one week and a review period for one 

day, when the second has a planning horizon for one day and a real time review period.

To complete the second phase of analysis for this function, it is necessary to identify 

basic sub-activities of these D/C centres. Figure 6.68 illustrates a decomposition of the 

‘To Distribute’ function.

b  d istr ib u te

b test/pack

- To perform final test

ET o m o d ify  m o to rs

To complete nameplate operations 
To perform packing operations 

o Deliver

— To control motor delivery
— To prepare motor delivery
— To update system information
— To deliver customer orders

Figure 6.68. Basic sub-function o f ‘To Distribute’ function

Figures 6.69 and 6.70 illustrate the IDEFO model for the testing/packing D/A centre. 

The model illustrates functional sequence of this D/A centre. Sub-activity AC-1
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represents final test operations which are carried out before delivery of motors. This 

sub-activity is followed by sub-activity AC-2 which represents modification operations. 

Some motors require testing after completing modifications. Hence, one output of sub

activity AC-2 is used by sub-activity AC-1. Following this, nameplate fitting operation 

is represented by sub-activity AC-3. Finally, sub-activity AC-4 represents packing 

operations for electric motors. In general, operations o f testing/packing D/A centre are 

controlled by time and customer constraints, and supported by human resources and 

testing/packing facilities. The inputs used in this model are finished motors, nameplates, 

order tickets and packing materials. Outputs are packed motors, order tickets and order 

constraints.

Figures 6.71 and 6.72 show the IDEFO model for the delivery D/A centre. The model 

represents delivery operations using four sub-activities. Controlling of delivery 

operations is represented by sub-activity AC-1; preparing delivery operations are 

modelled by sub-activity AC-2; operations of updating system are emulated by sub

activity AC-3; and final delivery operations are represented by sub-activity AC-4. 

Outputs of this D/A centre are the delivery information and motor shipments. The inputs 

are consignment/deliver notes, production tickets and motors. The main constraints of 

these tasks are customer locations and order constraints. The model illustrates three 

types o f mechanisms (controller/operators, computer terminals and delivery vehicles).

Comments on ‘To Distribute' Function

The ‘To Distribute’ function represents the connection point between the physical 

output of the manufacturing systems and customers. This study provides several points 

related to this fonction including:

•  Systems used by this function cannot differentiate between customer orders for 

different packing methods. Neither can they identify customer packing method 

requirements.

•  Complexities of controlling motor pallets.

•  Problems of scheduling deliveries.

•  Different customer requirements for packing methods and materials.

• Problems of different weights and dimensions of motors.

.  Lack of proper integration with other manufacturing functions increases lead times 
of sub-activities of these functions.
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6.4. An Evaluation of GI-SIM for The Analysis of Manufacturing 
Systems b

In this chapter the manufacturing systems of Brook Hansen Motors have been analysed 

using the modelling method developed in this research (chapter-5). Through the use of 

GI-SIM in a major study undertaken in a large manufacturing company, it can be seen 

that the method is an effective analysis tool for examining and modelling complex 
manufacturing systems.

The research clearly demonstrates that GI-SIM provides supporting tools and 

procedures to support systems analysis. Its main contribution is its ability to provide an 

excellent vertical and horizontal integration. A vertical integration links levels of 

abstractions and a horizontal integration links modelling domains. These domains are 

configured based upon systems specifications and modelling objectives.

The GRAI method or IDEFO cannot model adequately other aspects in the 

manufacturing environment because of their limited modelling structure. Figure 6.73 

illustrates the GI-SIM method comparing it with the scope of GRAI and IDEFO.

Decision Functional Information Physical Detailed

Conceptual _____

Structural A✓/
r

-r-I_________z___ y
Dynamic / ✓

y**
/ y

/  7T  7, 
GRAk' /
GI-SIM»''
IDEF0/1X»''
Simulation»

Figure 6.73. Integration of systems levels and domains in modelling methods.

In this research, interviews, observations and questionnaires were used to produce the 

detailed specifications of the existing systems. The method presents the global view of 

operational manufacturing systems using its grid showing the main functions of 

manufacturing. This step considers the time scales and different D/A centres derived 

from the basic functions of the company. Thirteen D/A centres are considered and 

modelled using suitable GI-SIM tools. These investigate the basic elements and child
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activities of each centre using a top-down analysis approach. Simulation tool is used for 

physical D/A centres to obtain performance measures for dynamic aspects of the 

manufacturing system. Figure 6.74 illustrates the modelling objectives for various D/A 

centres considered.
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Figure 6.74. Modelling D/A centres of the case study selected.
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The analysis objective for every D/A centre should be clear to provide relevant 

modelling results. The method used has formal guidelines for its three phases. It is 

simple to implement, as demonstrated in this study. The use of this method enables 

models to be understood by people at all levels of the organisation. The D/A centres are 

modelled and summarised in a common format. This gives solid ground for the next 

phase of the modelling studies which are design and implementation.

6.5. Discussion and Conclusion

This study was carried out to validate the modelling method developed and to identify 

the sources of complexities and the origins of the problems in the company selected 

Manufacturing systems functions have been identified based upon operational concepts
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and sub-system flows through company facilities. This identification of operational 

functions is used to explore the basic elements and sub-activities related to every 

decision/activity centre. Most of the decision making problems should not refer to the 

decision flow or time aspects found in the top level of modelling, because these 

problems are related to one or more of the child-activities belonging to that decision 

centre.

Testing GI-SIM has proved that the flexibility and inconsistency of static modelling 

methods has a direct effect on the quality of the analysis. Dynamic systems cannot be 

measured using static modelling techniques. Static modelling methods have achieved 

good results in understanding organisation structures and providing simple 

representations of systems activities, but analysing dynamic aspects of these activities 

presents a clear picture of manufacturing function behaviour. Simulation modelling is 

very important for analysing physical systems. There is no doubt that statistical 

measures obtained from simulation models are helpful in developing decision-making 

procedures.

It can be concluded that GI-SIM is a powerful modelling method for system analysis. It 

supports most aspects of manufacturing systems and has a wide range of applications 

for detailed system analysis.

The analysis of manufacturing systems of Brook Hansen Motors offers some important 

findings on every manufacturing function. The following points summarise the main 

findings of this study:

•  It was noted during the study that some departments were independent in their 

decisions, information and tasks (see GI-SIM grid-Figure 6.1). This independence 

caused several problems for system analysis studies and dispossessed roles and data 

o f some important manufacturing functions (such as production planning function) 

in the other functions, as demonstrated by structural models.

•  Lack of integration between system functions makes information systems very 

complex and useless in several D/A centres such as scheduling and manufacturing.

•  Using conventional methods in selecting orders and grouping parts increases lead 

times and reduces function utilisation.

•  High levels of WIP were evident, as illustrated by GI-SIM dynamic modelling.
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• Keeping traditional manufacturing methods effects accuracy, quality and increases 

customer lead-times, as shown in Figures of simulation results.

• Scrap rates are high especially in final motor assemblies and die-casting department, 

as illustrated by GI-SIM during the analysis of physical systems.

•  Planning and control manufacturing operations do not depend on new sophisticated 

methods.

•  Trend of customer orders has not changed over the last few years.

•  GI-SIM grid observes inconsistencies of decision sub-system, as shown in Figure

6.1.

Brook Hansen Motors should adopt a new manufacturing strategy and sophisticated

integrated systems to achieve their plans and consolidate their future.

An Evaluation o f GI-SIM fo r the Analysis o f Manufacturing Systems
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CHAPTER-7

AN EVALUATION OF GI-SIM FOR THE 
DESIGN OF CIM COMPONENTS

7.1. Introduction

This chapter describes the strategic configuration based upon CIM and the role of 

integration in achieving business and manufacturing goals. It defines the macro 

structure of CIM using the GI-SIM concept. The GI-SIM modelling method is used for 

the design of selected CIM activities. The study is concerned with operational CIM 

systems which still require more research work. The main objectives of this chapter are 

to evaluate and demonstrate the modelling method developed (GI-SIM) for the design 

of complex manufacturing systems, and to give guidelines for designing the operational 

specifications of CIM components which are relevant to company strategy.

7.2. Design phase of CIM

CIM has been widely recognised as a manufacturing strategy which can reduce costs 

and lead times, and increase manufacturing flexibility and quality. The benefits of CIM 
are discussed in chapters 2 and 3.

The problem of designing CIM is still a subject of conflict and it is not widely 

considered, especially when it relates to large manufacturing organisations. Exploiting 

the strength of CIM in competitiveness is based upon modelling methods and
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implementation mechanisms which should have characteristics compatible with C M  
design requirements.

In the CIM design phase, the overall structure and operations of the manufacturing 

organisation must be evaluated and efficiently restructured. Chapter-6 has presented the 

analysis phase o f manufacturing systems of Brook Hansen Motors and this chapter will 

try to identify opportunities for modernisation and automation of the most critical 

environments in the manufacturing systems. Proposal will be made to restructure the 
existing systems to achieve organisation goals.

This design framework of the CIM strategy selected is based upon a review of 

organisational needs (Chapter-2), modelling method considerations (Chapters 4 and 5) 

and results obtained from the analysis phase (Chapter-6). The formulation of CIM 

should also be based upon the identification and analysis of manufacturing system 

requirements from which decisions, data structure and functional interact and work 

These supports of the design phase should be the results of analysing system functions 
in depth for both static and dynamic tasks.

The design phase is based upon a bottom-up analysis approach, starting from basic 

components in which, simple concepts are modelled first, and more complex concepts 

are built (at increasing levels of abstraction) (Berio et al. 1995). This approach to design 

is used to take full advantage of analysis results and considers the technical and 

problematic details. Gunasekaran et al. (1994) reported that because of the higher 

investment and design complexity of CIM, it becomes essential to improve the 

development aspects at an early stage of design, because the performance of the system 

depends upon the design as well as the operation of the system being considered.

Business and manufacturing goals must be identified before adopting CIM and the 

competitors must be known within the global market perspective. It is also important to 

know how good competitors are. A business plan of manufacturing organisation should 

be developed using different information sources i.e. analysis results, customers, 

competitors, etc. to achieve business goals. These objectives which must be specific and 

measurable are very important to consolidate the future of the organisation. Typical 

examples include reduced lead times and increased system flexibility, as discussed in 

Chapter-2. A lack of clear objectives about several aspects of manufacturing systems
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leads to difficult problems in introducing new strategies. Manufacturing objectives must 

be derived from the overall business plan, because the business plan represents the 

strategic direction of the organisation and aims to achieve planned business goals 

(Danzyger 1990). All other low level programs such as tactical and operational 

programs need to be restructured and considered in terms of their functional objectives 

and operations, because these two programs are the key to manufacturing 

competitiveness to meet the planned business goals and improve manufacturing 

activities, as illustrated in Figure 7.1.

Therefore, manufacturing objectives are used to develop a new manufacturing strategy 

for different organisational aspects such as product, facility, design, information, etc. 

All these things contribute to the attainment of manufacturing and business objectives. 

The plan of this strategy is derived from the manufacturing objectives. Hence, 

depending on the CIM concept, the manufacturing plan can be implemented by 

considering and integrating new production programs and technical manufacturing 

activities. The production programs are related to the organisational activities such as 

JIT, Kanban, OPT, etc. Technical activities are more concentrated on the operational 

level of manufacturing systems, including design and manufacturing operations. All 

these activities should work together to achieve manufacturing and business goals.

In the case study, it is very clear that manufacturing flexibility would be the key to deal 

successfully with the uncertainty of customer orders and motor specifications The 

quick response for changing and developing manufacturing environment is facilitated 

by incorporating production planning programs and technical functions in the 

manufacturing systems to achieve system flexibility.

Chapter-2 gives more details about manufacturing flexibility and its classification. To 

achieve these flexibility aspects in Brook Hansen Motors, several manufacturing 

functions including production programs and the technical aspects can be automated 

and integrated based upon the powerful concept of CIM. Figure 7.1 illustrates the 

relationships between strategies and objectives.
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These objectives (business and manufacturing objectives) cannot be achieved within a 

day; they require to be considered and planned over time. Many questions were raised 

during the analysis phase when changing and developing exiting system. These 

questions have a direct effect on business and manufacturing objectives. In Brook 

Hansen several questions have been raised such as; Why are WIP levels high? Why are 

dispatched motors less than planned and taken in? Why is utilisation of production 

stations low? Why do some manufacturing operations require long and multiple set

ups? Why is capacity planning and scheduling systems not working effectively? Why 

are scrap rates high? Why is controlling manufacturing information systems still very 
difficult? etc.

Once the CIM has been selected as a manufacturing strategy for Brook Hansen Motors, 

the manufacturing strategy should be translated into specific strategies and subsequent 

activities based upon the hierarchical structure of the organisation in terms of expected 

decision, information, material and process flows. Specific strategies and activities are 

related to CIM basic regions (CAD, CAM, CAPP) (Hitomi 1996). These are considered 

as child-strategies which include basic elements and sub-activities that need to be tested 
and modelled before system implementation.
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The computer activities of Brook Hansen Motors should be guided by a rather strong 

and well-structured CIM philosophy. Data should be processed and used in 

manufacturing functions in an efficient way. It should be noted that CIM strategy to 

Brook Hansen and any other manufacturing organisation is not a ready product, but a 

concept and strategy for the attainment of their organisational goals.

7.3. Macro Structure of CIM

Chapter-6 has presents a detailed analysis of Brook Hansen manufacturing systems 

using the GI-SIM modelling method. The analysis illustrated the strengths and 

weakness of existing manufacturing functions. This provides a good basis for 

developing some existing aspects into new components for the new manufacturing 

strategies which consider several alternatives for both production programs and 

manufacturing technologies. To design CIM as a new manufacturing strategy, the GI- 

SIM modelling method can be used to reconstruct and simulate strategic components 

and their relationships in terms of decision, information and material flows. This will 

give an integrated model for CIM systems and illustrate changes from traditional 

manufacturing to advanced manufacturing concepts. The GI-SIM method can be used to 

process the design phase using both top-down and bottom-up analysis (see Chapter-5) 

It would be most advantageous to employ this integrated modelling method, because it 

is a well-structured modelling method which defines all manufacturing system functions 

and interfaces and verifies the consistency of all decisions, information, entities and 

dynamic aspects. In addition, the use of GI-SIM for CIM design will also illustrate how 

a complex and advanced manufacturing system can be systematically modelled using 

the method developed. Figure 7.2 illustrates how the GI-SIM method is structured for 

the CIM strategy.
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It is necessary to understand the macro structure of CIM to gain understanding of the 

complex interactions between different system components and to show the necessity of 

using a modelling method for analysing these complex domains.

7.4. M odelling  C IM  a t B rook H ansen  M otors

In the modelling of CIM, static models (at conceptual and functional levels) are used for 

system definition and a framework around which dynamic models can be constructed. 

System functions used in conventional manufacturing systems can be modified and 

supported by child strategies to attain planned goals. Classification of system functions 

and their associated decision activity (D/A) centres using CIM concepts is a very 

complex task. This requires clear definitions of computer-aided components (CAD, 

CAM, CAPP, CAQ, PP&C, etc.) which are considered the main components of the CIM 

strategy. Figure 7.3 illustrates the main concept of CIM for Brook Hansen Motors. It 

can be noted from Figure 7.3 that CIM comprises the main functions of design 

planning, manufacturing, sales, etc. The CIM components play an important role in 

interconnecting and integrating the manufacturing system functions using an intensive 

information flow and general database system. This model is well suited for introducing
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manufacturing systems into the general concept of CIM, as well as into the GI-SIM 

modelling method. To construct the GI-SIM grid, the main objectives of the 

manufacturing system functions and the CIM component should be integrated and 

tested. \
j

To evaluate the GI-SIM modelling method for the design of a CIM strategy, three main 

manufacturing functions are selected. The complete re-design of Brook Hansen would 

be an extensive piece work outside the scope of this research. The selected functions are 

‘To Design’, ‘To Plan’ and ‘To Make’. These three functions are supported by CAD, 

CAPP, PP&C and CAM systems in the CIM environment.

7.4.1 GI-SIM Grid for CIM

Constructing the GI-SIM grid for CIM requires a definition of the system functions, 

sub-functions, levels, time scales and D/A centres. The systems functions should be 

defined using the operational specifications of Brook Hansen Motors and the CIM 

concepts, as illustrated in Figure 7.3. The derivation of the D/A centre will be based 

upon system activities considered in Chapter-6 and the manufacturing objectives to be 

achieved using the CIM strategy. The level time scale will be fixed using planning 

horizons and review periods of the CIM D/A centres. Flexibility of time scale depends 

on production plans and the complexity of data flow between the upper and lower levels 

of the GI-SIM grid. It is very clear from the main objectives of systems integration that 

lead times become short because cycle times of activities are developed using new 

manufacturing strategies. For example, using the CAD system reduces the cycle time of 

design activities; hence, this contributes to a reduction in lead-time and an increase in 

system flexibility. Figure 7.4 illustrates the GI-SIM grid for the CIM operational 

activities. Typical D/A centres will be considered in the next sections based upon the 

computer based systems and manufacturing system functions presented in the GI-SIM

grid.

7.4.2 To Design

As presented in Chapter-6, there are several design problems related to both electrical 

and mechanical motor design. To overcome these problems the CAD system should be
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developed to handle design tasks and integrated into other manufacturing functions. ‘To 

design’ is a key function in Brook Hansen Motors. It determines the function and design 

o f  the motors using customer specifications. The design function has a major influence 

o f the manufacturing processes selected for producing different components o f the 

electric motors. This D/A centres and sub-activities are illustrated in Figure 7.5.

r
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|----  To finalise
product design
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Figure 7.5 . CAD concept/1 To design’ D/A centres and sub-activities

‘To design’ involves three main D/A centres (conceptual design, engineering design and 

detailed design) based upon the CAD concept, as shown in Figure 7.5.
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The conceptual design D/A centre is concerned primarily with establishing the basic 

elements such as shape and appearance of the electric motors based upon a business 

decision. It also represents the broad evaluation of different ways in which 

specifications of the electric motors could be satisfied. This requires graphic systems to 

create complex motor shapes using CAD capabilities. Different motor colours can be 

applied to enable motor designers to visualise the final appearance of the electric motor. 

The CAD system database will provide more facilities to this D/A centre such as 

geometric data. Figures 7.6 and 7.7 show the IDEFO model for this D/A centre. As 

discussed in the previous chapters, the electric motor functional specifications consists 

o f a statement of the parameters relating to the motor appearance, performance, weight, 

size, time, etc. This wide range of motor specifications comes from other functions such 

as ’To sell’. Sub-activity AC1 represents evaluation motor functional specifications. 

The designer at the CAD system will provide the majority of the design and the original 

work, through which it contributes to the formulation of the electric motor 

specifications. Once the electric motor functional specifications have been satisfied the 

production and selection of motor design concepts can begin. This is represented by 

sub-activity AC2 in the IDEFO model. This sub-activity is very important for 

establishing alternative approaches to designing the basic shape and appearance of the 

electric motors rather than component details. The design concepts obtained from sub

activity AC2 are used as input for subsequent activities in the conceptual design D/A 

centre. Sub-activity AC3 represents the determination of new technology or changing 

current technology for motor part or assembly operations, if any, to evaluate these 

changes at an early stage of design. The analysis and testing of identified new 

technologies, if any, and motors design concepts will be carried out by sub-activity 

AC4. Analysis results obtained from AC4 are used by sub-activity AC5 where 

determining preliminary materials and processes are represented. Finally, sub-activity 

AC6 represents the evaluation and issuing of the conceptual design proposal for motor 

orders which include sketches and motor models carried out by this D/A centre 

Conceptual design sub-activities are supported by the CAD system which involves 

human and computer-aided resources.
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1 A .2 .2  Engineering Design

The engineering design D/A centre is concerned with the identification and design of 

motor components, sub-assemblies and final assemblies. The nominal geometric motor 

design will be carried out based upon design analysis and engineering test. This requires 

the development of existing motor designs or development of new designs according to 

order constraints and the design proposals. Materials used in different motor 

components will be identified; the BOM of motors will be initiated at this D/A centre. 

These operations of design can be applied to different types of electric motors and the 

more complex parts, such as windings, can be simulated at this stage of design. Figures 

7.8-7.10 illustrate the IDEFO models for the engineering design D/A centre. The model 

shows two inputs, namely, conceptual design proposal and existing designs, and one 

control, design constrains. Once the conceptual design proposal has been accepted, 

engineering design will start to identify motor assemblies and sub-assemblies (this is 

represented by sub-activity AC1). Motor sub-assemblies and parts should be defined 

using a unique identification code to enable this definition to be used in subsequent 

design and manufacturing activities. This is also important to initiate the BOM for 

different types of electric motors. Using identified parts and subassemblies, and the 

existing design database, it may be possible to reuse some motor components or sub- 

assembly designs produced for previous customers, taking into account the new design 

constraints, as represented by sub-activity AC2. Information about previous designs 

should be provided and classified by the CAD system using reference numbers, key 

attributes or coding and classification techniques such as Group Technology. Sub

activity AC3 represents the operation of identifying existing design to meet new 

specifications. If no existing design can be modified, then it would be necessary to 

produce new designs for the whole motor sub-assemblies or parts; this is represented by 

sub-activity AC4 in the model. The sub-activity of constructing new designs for whole 

or parts of the motors can be broken down into six sub-activities (AC41-AC46) as 

shown in Figure 7.10. These sub-activities represent the logical procedures for the 

development of new designs. Sub-activity AC41 represents the preparation of new 

design alternatives based upon identified motor assemblies taking into account design 

specifications involved in the new design requisitions. The CAD system will be used to 

test new alternatives for preparing engineering factors. Sub-activity AC42 represents 

selecting a suitable design from the prepared alternative motor designs. The selection of 

design is supported by the CAD system which has static and dynamic means of
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evaluating design. The design selected will be used for specifying materials and 

geometrical features of the product; this operation is represented by AC43. Sub-activity 

AC44 represents a definition of product specifications based upon design parameters 

and constraints obtained from sub-activity AC42 and material specifications obtained 

from AC43. Following this, sub-activity AC45 represents the finalisation of motor 

design using product specifications given by sub-activity AC44. Any missing 

information for design must be checked and provided at this sub-activity. Finally sub

activity AC46 represents the last step for engineering design where the detailed design 

will be initiated. The motor design at this stage may be referred to as the ‘pre released 

motor design’. However, outputs of the engineering design D/A centre are initial 

detailed design, pre-released design, motor specifications and professional BOM. These 

outputs should include each motor part being considered for manufacture, the 

description for building BOM and design reference numbers. In addition, other 

information relating to design data should be provided such as geometric data, 

geometric elements, design description and 3D views.

7.4.2.3 Detailed Design

The detailed design D/A centre is concerned with identifying complete lists of all parts 

to be incorporated in the electric motor and providing a complete specification of each 

part to enable motor components to be manufactured. These specifications of motor 

components include sets of detailed mechanical drawings together with build and 

assembly instructions. Detailed drawings are generated by the CAD system. In some 

cases the drawings can be read directly from the CAD systems using integration 

interfaces between manufacturing system functions. This D/A centre commences its 

tasks with the pre-released designs which are generated by the engineering design D/A 

centre, as discussed in the previous section. Using the pre-released design, standard part 

library, initial detailed design and the provisional BOM, the D/A centre of detailed 

design can produce the fully released design, final BOM, engineering drawings, NC 

cutter path and other special facilities. All these tasks are completed, taking into account 

CAD system rules, manufacturing constraints and design specifications. Figures 7.11 

and 7.12 show the IDEFO model for the detailed design D/A centre. Sub-activity AC1 

represents calling up motor components and sub-assemblies to be designed. This sub

activity is repeated until all components have been called up; then it will be possible to 

use common standard parts in design, which are retrieved from the CAD database and
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incorporated in the current design in order to reduce design time and costs The 

operation of retrieving library items is represented by sub-activity AC2. Sub-activity 

AC3 represents completing design dimensions and tolerances. The engineering design 

D/A centre provides full details of dimensions and tolerances of motor components. 

Sub-activity AC4 represents generating simulation for components and sub-assemblies 

if  required using some CAD functions to validate design tasks and engineering tests. 

Detailed design usually requires some other facilities such as the inclusion of textual 

information to describe special features specified by the customer. This operation is 

represented in the model by AC5. When all motor components have been designed in 

detail, motor assemblies should be validated to be ready for generating schedule of 

component combinations based upon the motor BOM. Validation of motor assembles is 

represented by sub-activity AC6. The BOMs should be tested and simulated to predict 

manufacturing features such as expected cycle times for other manufacturing functions, 

as represented by AC7. Finally, sub-activity AC8 will issue the final released design 

and relevant engineering drawings.

7.4.2.4 Data Modelling for the CAD System

The GI-SIM modelling method uses the IDEF1X technique to model information 

relationships between system entities. IDEF1X has been discussed in detail in Chapter- 

4. To model data for the CAD system using IDEF1X, model entities must be defined. 

CAD system entities can be defined using information flows presented by the GI-SIM 

grid and related functional models. Table 7.1 illustrates common entities used in the 

design function. These entities have a common set of attributes and characteristics.

Entity number Entity name Entity number Entity name

E-l CUSTOMER E-9 STANDARD PART
E-2 ORDER E-10 DESIGNER
E-3 PRODUCT E-ll CUTTER PATCH
E-4 CUSTOMER SPECI. E-12 MFG. FACILITY
E-5 DESIGN E-13 CONCEPTUAL DESIGN
E-6 CAD SYSTEM E-14 DETAILED DESIGN
E-7 EXISTING DESIGN E-15 DRAWINGS
E-8- DESIGN TOOL E-16 BOM

Table 7.1. Design entity pool.

The relationship between entities are identified and defined. The initial form of 

modelling relationships between entities is illustrated in Table 7 2 This ma t '
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Figure 7.13. IDEF1X model for deign activities.
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illustrated in Table 7.2 identifies the relationships between entities. The sign (✓ ) placed 

in location (E-l,E-2) indicates that there is a relationships between entity E-l and entity 

E-2.

E-l E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 F.-10 E-l 1 E-12 E-13 E-14 E15 E-16
F.-l J
F,-2 % mm J
E-3 * J
F.-4 Hi
E-5 J J
E-6 ÜW ~7~~ J J J
E-7 ®&S5Sj33
E-8
E-9
E-10 ~7~~
E-l 1 J
E-12 ✓ J y
E-13 J
E-14 y y
F-15 SJWWMWC
E-16

Table 7.2. Relationship matrix

Key attributes of design entities are defined; non-specific relationships are refined; 

primary keys are derived to represent foreign keys in child-entities. Figure 7.13 

illustrates the final IDEF1X model for design activities. This model represents and 

documents information flow between D/C centres of the design function. Design data is 

important for other manufacturing functions and represents a cornerstone for the 

integration of different CIM sub-systems. Hence, the unique identity of each part in a 

new motor order considered for manufacturing is derived by the design function. BOM 

details are also created by design activities. These details represent the complete 

construction of the final motor in sufficient detail to enable manufacturing and 

production planning functions to plan and produce motors. The shapes of motor parts 

are identified and the design is based upon both customer requirements and 

manufacturing resource capabilities. In general, the information provided by the design 

function should be validated based upon entity type and the associated attributes. For 

example, BOM and detailed design represent the most important outputs of the design 

activities. These entities must clarify sufficient design data, for example, motor part 

description, quantities, identification, geometric data, view data, text data and attribute

data.
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7.4.3 To Plan Process

This Function (‘To Plan’) is divided into two main sub-functions ‘To Plan process’ and 

‘To Plan Production’, as illustrated in Figure 7.4. There are three main reasons for 

dividing the function ‘To Plan’:

• To obtain more details about these important functions;

• To separate the D/A centres related to design and manufacturing processes from 
those which are related to production planning and manufacturing;

•  To illustrate that there are two computer-aided systems supporting the planning 

function; the Computer Aided Process Planning (CAPP) system and Production 

Planning and Control (PP&C) system.

In motor manufacture, process planning involves the act of preparing a plan which 

outlines the operations, routes, machines, tools and parameters required to transform a 

motor part or sub-assembly into a finished motor. Most process planning activities in 

Brook Hansen Motors still involve either manual preparation of the process plans or 

semi-automated process planning. Appendix-A discusses process planning and the 

CAPP system in detail.

The process planning system normally uses the information presented on function ‘To 

Design’. Hence, the CAPP system is the process of deciding how to produce a motor 

component that has been designed and specified by the CAD system - design function. 

The function ‘To plan process’ can be represented in three D/A centres. Figure 7.14 

illustrates the process planning function and its associated D/A centres. Sub-activities of 

the D/A centres are also shown in Figure 7.14.
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Figure 7.14. CAPP system and T o  plan process’.

Following sections discuss the D/A centres of the process planning function and their 

related sub-activities.

7.4.3.1 E v alu a tin g  Design fo r M an u fac tu rin g  (D FM )

Once a decision is taken to design and produce a new motor order, recognised by the 

marketing function, it becomes necessary to design the new motors and determine how 

it should be produced. However, the costs of producing new motors or new components 

can be greatly influenced by the detailed design generated by the D/A centres described 

in the design function; to ensure that the optimal manufacturing is selected by the 

integrated manufacturing functions, it is necessary for ‘To Design’ function (CAD 

system) and ‘To Plan Process’ function (CAPP system) to apply DFM concepts to the 

conceptual design proposal and produce a detailed design of new motor component or 

assembly.

With completion of the conceptual design, the design now enters an analysis stage, in 

which the design is evaluated for a specific type of manufacturing with the objective of 

minimising the cost while retaining the functionality and high quality of the product 

(Anjanappa and Wang 1994), as illustrated in Figure 7.15
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and Wang 1994)

This D/A centre is concerned with the forma! evaluation of the costs of alternative 

manufacturing technologies which might be considered. It will keep the integration of 

design and manufacturing through requisitions for design modifications by the 

manufacturing function. The successful electrical and mechanical design modifications 

will be fed back to provide the design principles for design department. If the 

conceptual design is satisfactory, the D/A centre will give estimates of the times 

required to manufacture the design, based upon the different technologies being 

considered by the process planning function, using the CAPP system. These time 

estimates from the DFM D/A centre, together with a knowledge of the order quantities 

for different sizes of motors, will allow estimates to be made of capacity requirement 

which will be compared to the available manufacturing capacity over the planning time 
horizon determined.

Figures 7.16 and 7.17 illustrate the IDEFO model for the D/A centre of evaluating DFM. 

The top function of the model is decomposed into four sub-activities (AC1 - AC4) The 

main inputs of this D/A centres are the conceptual design proposal received from J  

design function, sales forecast from market research; alternative manufacturing 

technologies and available facilities from the manufacturing function; and available
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machine capacities from the production planning function. Sub-activity AC1 considers 

the suitability of the design for the proposed manufacturing technologies. The 

conceptual design should be considered and evaluated by the manufacturing function to 

review alternative technologies that may be used for producing component designs and 

to validate design requirements for simplifying manufacturing. This D/A centre sends a 

requisition for redesigning to the design function if it is found that the design needs to 

be modified. On the other hand, if a motor part or assembly design is suitable for DFM 

then the optimised design and manufacturing information will be sent to the subsequent 

sub-activity AC2 which represents an evaluation of company implications. This 

evaluation of the effect upon the company of adopting the method must be made in any 

manufacturing plant. This considers several factors such as the cost of a new station or 

modifications, or the time required to start the production of the order. Sub-activity AC3 

represents the outlining of alternative manufacturing technologies and reporting the 

findings for comparison and to help managers to decide which manufacturing facilities 

should be adopted and introduced. Sub-activity AC4 represents the selection of the best 

option of manufacturing the alternative for design. This will support the decision criteria 

to requisite for final design details and to report manufacturing options for design.

This D/A centre is considered as a part of the CAPP system and must provide a 

mechanism for evaluation of design factors which effect the decision-making process. 

Other factors can be considered in this D/A centre related to manufacturing alternatives, 
human factors, etc.

7.4.3.2 C oding/C lassification  and  P rocess Selection

It is an important step, after designing and taking the decision on producing the new 

motor, to determine how the new motor specifications ordered by the customer should 

be manufactured. This step is commenced in the last D/A centre. In this D/A centre 

(coding/classification of products and process selection) the coding of characteristics of 

a motor part can be determined or created to retrieve motor information relating to the 

existing parts that will help in the design and manufacture of the new motor This 

information will be different for the design information. Both design information and 

manufacturing data will be used to meet specific requirements related to this D/A 

centre. The CAD system can provide design data automatically. The CAPP system will 

use this data to generate more product characteristics. All this will be used to retrieve
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mo,or part information from a CAPP database. The CAPP system should interact with 

existing parts to find a part family that includes the new motor part defined. If there is

no similar part family for the new product, then a new part family will be created and 
coded.

This D/A centre also carries out the process selection for the new motor part. This can 

be completed by examining the motor component details and conversion into finished 

product. More details about coding systems and process planning types are presented in 
Appendix-A.

Figure 7.18 and 7.19 illustrate the IDEFO model for this D/A centre. The top activity of 

this D/A centre (Figure 7.18) is decomposed into four sub-activities, as shown in Figure 

7.19. The model illustrates four types of inputs, namely, group technology data, material 

data, detailed design information and process capability data. It is controlled by coding 

system rules and design specifications. The CAPP system represents the main support 

of this D/A centre and the outputs are part families, process data and operation 

conditions. Sub-activity AC1 represents the process of grouping parts into families to 

use the existing methods in planning the manufacture and assembly of motor parts that 

are similar to the detail. This can be achieved using part numbers or any other unique 

attributes to describe the new item or retrieve the existing one. Sub-activity AC2 

represents using existing manufacturing plans. The existing plans normally require 

some modification to achieve the new part characteristics; this is represented by sub

activity AC3 in the model. The existing plans may not achieve the requirements of the 

new part; hence, a new plan should be generated. Generating a new plan is represented 

by sub-activity AC4. This sub-activity identifies the feature groups that are to be 

manufactured or assembled. Following this, a process option will be selected based 

upon these features, as modelled by sub-activity AC5. Finally, sub-activity AC6 

represents the process of identification of process conditions, using process options 
defined by the preceding sub-activity.

7.4.3.3 Machine and Tool Selection

After a new motor component has been analysed and referred to a similar group or new 

part family and the process has been selected for achieving production operations to 
produce or assemble the electric motor components, i, is necessary t0 se|ec(
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tools and operation sequences. It is also necessary to determine tools, fixtures and dies 

to be used in these manufacturing operations.

The D/A centre of machine and tool selection is concerned with selection of machines 

and tools based upon information obtained from the previous D/A centre, together with 

additional data obtained from manufacturing function. This D/A centre considers each 

manufacturing operation based upon the availability of resources that satisfy the process 

requirements o f the motor component. Following this, combinations of manufacturing 

stations and operations will be used to generate possible routes for the motor component 

considered. The product routings are used for computing other manufacturing factors 

such as operation time, set-ups, etc., to predict production station utilisation and 

capacities using CAPP system capabilities. These calculations can be used for other 

purposes such as comparison of several routings and current station capacities. A 

decision should be taken by this D/A centre concerning the feasibility of the product 

routing generated and the preferred alternative manufacturing resources. All these tasks 

are supported by the CAPP system.

Figures 7.20 to 7.21 illustrate the top level of the IDEFO model for the machine and tool 

selection D/A centre. The selecting machine and tools D/A centre is broken down into 

two activities ‘to select production machine-ACl’ and ‘to select too!s-AC2\ as 

illustrated in Figure 7.21. Activity AC1 is decomposed into six sub-activities (AC11- 

AC16), as illustrated in Figure 7.22. The model illustrates four inputs; process plan 

selected, machine availability, machine library and operation condition. The controls are 

machine capacities and machine/tool specifications. The outputs are tool specifications 

and optimised process. Sub-activity AC11 represents the selection of machine for every 

operation related to the motor component. The machine operations identified are used to 

perform machine/operation combinations (sub-activity AC 12) to identify possible 

machine and operation groups (sub-activity AC13). The machine and operation groups 

are delivered to the next sub-activity ACI4 to determine the station or machine capacity 

for each combination. The result of this sub-activity will be used to check machine 

availability as represented by sub-activity AC 15. Finally, sub-activity AC 16 represents 

the selecting of optimal alternatives, which gives the optimal process.

Activity AC2 - ‘to select tools’ - is decomposed in to five sub-activities (A21-A25) as 

illustrated in Figure 7.23. The main Inputs are the tool library and operation condition.
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The controls are optimal process and machine/tool specifications. The outputs are 

requisitions to management, selected tools and tool specifications. The model sub

activities are supported by the CAPP system. Sub-activity AC21 represents the process 

of checking existing tools and getting tool specifications or report requisition for some 

modification, if any, in sub-activity AC22. The type of tool or die required for an 

operation will be compared with the library of standard tools available. If a tool that 

satisfies the manufacturing requirements exists, this will be used or modified to reduce 

the cost of purchasing new tools. If a die or tool cannot be modified, then tools have to 

be purchased, as modelled by AC23. The new tools or dies will be added to the tool 

library and the database will be updated. Information about new tools will be used to get 

tool holders, as modelled by sub-activity AC24. Finally, Sub-activity AC25 represents 

the process of reporting requirements for tools and dies related to new motor orders. It 

should be noted that machine and tool selection problems can be formulated using 

several methods such as knowledge-based systems, mathematical models, leaner 

programming, etc. to get the optimal solutions and support the decision making 

processes. These techniques can be programmed and implemented using the CAPP 

system to deal with different process planning problems related to electric motor

components.

7.4.3.4 Data Modelling for CAPP System

The CAPP system can support several steps of process planning in Brook Hansen 

Motors. It involves a number of activities that are essential in generating process plans: 

Analysis of conceptual design; selection of process; determining manufacturing 

operations and their routings; selection of machines and tools; determining 

manufacturing conditions (cutting speed, feed, etc.) and manufacturing times (set-ups, 

cycle times and lead times). The CAPP system is discussed in Appendix-A.

To construct a generic data model for the CAPP system it is necessary to identify the 

main entities related to the process planning function. It is very difficult to specify all 

entities o f the CAPP systems because the integration concept means everything is inter

related in the CIM sub-systems. Hence, the general entities represent the common data 

support process planning D/A centres are modelled. Table 7.3 illustrates the entities 

used in the data model of the CAPP system.
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Entity number Entity name Entity number Entity name
fc-1
E-2
E-3
E-4
E-5
E-6
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DETAILED DESIGN 
CAPP SYSTEM 
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MFG FACILITY 
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E-l 1
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MACHINE 
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PROCESS 
DIFFIC PROCESS 
TOOL
MANAG REPORT

In general, the CAPP system should be capable of evaluating the set of factors and their 

alternative values for a particular motor design using internal and external information. 

This data will be considered using decision-making tools to allow re-evaluation and 

comparison of alternative specifications involving a variation of parameters and 
algorithms.

Figure 7.24 illustrates the IDEF1X model for the process planning function. Conceptual 

design data should be accessible by the CAPP system to evaluate design proposals in 

the early stage of design. This will reduce design time and optimise design and 

manufacturing activities. Other information resources must be integrated with the CAPP 

system such as manufacturing facilities, process specifications, machines, tools and 

materials. Information can be obtained from the internal and external system databases

7.4.4 To Plan Production

The production planning function is supported by the PP&C system. This function 

includes several activities and tools for forecasting long term motor demands MRP 

based upon demands for standard and non-standard motors and scheduling orders for 

manufacturing using associated resource profiles. This function provides ke
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information and links top management to the shop floor manufacturing systems. It is not 

possible to adopt the CIM strategy without a thoroughly effective PP&C system 

(Maisch 1993).

Forecasting of motor orders for a long period involves the simulation of manufacturing 

and assembly processes using data on forecast order profiles for both MTS and MTO 

productions. This requires mathematical modelling and effective data communication 

between system functions. The potential of different manufacturing systems resources 

should be identified within sufficient time scales to permit the advance planning of 

changes or development. Actual customer orders for electric motors and the orders 

resulting from weekly or daily statistical forecasting techniques provide the basis for 

planning production.

The production planning function involves four main D/A centres; a long term planning, 

order planning, medium term planning and short term planning, as illustrated in Figure

7.4. The following sections discuss these D/A centres in detail.

7.4.4.1 Long Term Planning

The electric motor involves many specifications that are changed and developed from 

time to time. The long term planning D/A centre plans and assesses the viability and 

effect of future product strategy and plans, including the introduction of new motor 

ranges, changes in volumes, etc. This D/A centre should provide effective results that 

enable production and product strategy to be assessed in terms of their effect on current 

manufacturing resources. These results can be used for other functions such as financial 

and marketing functions to evaluate any new or developing strategy in terms of cost and 

profit. Evaluation of strategies should be supported by powerful tools that enable the 

planner to examine the results using meaningful performance measures.

Figure 7.25 illustrates the D/A centre of long term planning as the top activity o f the 

IDEFO model. The model shows several inputs including product plans, production 

operation data, handling data, manufacturing capacities, supplier information, storage/ 

transport information, BOMS and manpower profiles. The controls are design 

specifications, manufacturing constraints, time constraints and resources constraints 

This D/A centre is supported by the PP&C system. The outputs are proposed product

207





_________________ ___________  An Evaluation ofG I-S IM for the Design o f  C M  Components

strategy and validated product strategy. The top activity is decomposed into several sub- 

activities as illustrated in Figure 7.26. Sub-activity AC1 represents formulating the 

product strategy and proposing different attributes related to specifications, volumes, 

powers, quantities, etc. The product strategy proposed in sub-activity AC1 provides 

general identification of products (motors). These new products proposed must be 

considered in more detail to modify the product strategy according to manufacturing 

and assembling operations using BOMs, as modelled by sub-activity AC2. It is 

important of this stage to identify the manufacturing facilities needed to produce the 

new product. Data related to manufacturing facilities should also specified. Sub-activity 

AC3 represents testing the manufacturing strategy based upon results obtained from 

preceding sub-activities. The manufacturing strategy can be tested using resource 

capacities during a specific time period. Manufacturing facilities can be compared and 

identified using different evaluation factors and attributes. New technologies can be also 

specified or requested at this stage. A comparison of existing technologies and planned 

technologies should also be prepared using capacity factors over the time period. Other 

factors such as adopting new manufacturing technologies and the removal facilities 

should be taken into account during testing and modifying manufacturing facilities. 

Sub-activity AC4 is carried out to modify the current manufacturing facilities based 

upon the proposed product strategy requirements. The modifications of manufacturing 

facilities are carried out based upon management decisions. Facilities capacities are very 

important factors in this D/A centre; hence, the removal of redundant facilities or 

introducing any facility modifications should be considered, if it is possible, to increase 

the manufactured volumes. These modifications will be tested again by sub-activity 

AC3 to optimise the capacities and requirements of the proposed product strategy. The 

proposed product strategy can also be considered and modified using results obtained 

from manufacturing facility considerations and other related resources. This is carried 

out by sub-activity AC5 in the model. Sub-activity AC6 represents other related 

components of the D/A centre that should be tested and modified. This sub-activity is 

broken down into seven sub-activities (AC61 - AC67), as shown in Figure 7.27. This 

child-model is regarded as part of the model illustrated in Figure 7.26 and its sub

activities carry out the same procedures as sub-activities AC3 and AC4 using different 

factors effecting the proposed product strategy. Sub-activities AC61 and AC62 are 

carried out to test and modify purchased items and supplier strategy according to the 

proposed product strategy. Testing purchased items and modifying this strategy and the 

product strategy will continue until satisfaction results are obtained. Sub-activities
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AC63 and AC64 consider storage and transportation facilities and carry out any 

modification required. Sub-activities AC65 and AC66 are carried out to test and modify 

manpower profiles according to the proposed product strategy. Finally, Sub-activity 

AC67 is carried out to issue the product strategy as the basis for future planning in all 
company functions.

7.4.4.2 Order Planning

The order planning D/A centre is concerned with collecting orders together prior to 

manufacturing so that forward manufacturing requirements can be dealt with. The 

requirements of end motors may be to satisfy the known need of a customer, or it may 

be an internally generated speculative requirement to have finished motors available to 

meet customer specifications which are forecast for the future.

Figures 7.28 and 7.29 illustrate the IDEFO model for the D/A centre of planning orders. 

Four inputs are illustrated by the model; they are orders and plans, manufacturing plans, 

production status and the validated product strategy. The controls are re-planning 

requisitions and time constraints, and the outputs are planned production rates and 

production orders by date. This D/A centre is decomposed into four sub-activities (AC1 

- AC4) and supported by PP&C systems, as shown in Figure 7.29. Sub-activity AC1 is 

carried out to establish the requirements from production functions; it is necessary to 

compile motor orders to be produced with required lead times and quantities. There are 

several sources of orders such as customer orders, stock orders, special orders, re-order 

levels, etc. Sub-activity AC2 is carried out to retrieve production rates derived from the 

upper D/A centre. Both planned rates and order rates are combined in sub-activity AC3 

to make changes to the manufacturing facilities or resource levels. Finally, sub-activity 

AC4 is carried out to issue a production order, by date, for manufacturing.

7.4.4.3 Medium Term Planning (MTP)

The MTP D/A centre is concerned with generating manufacturing programs based upon 

identified requirements. These programs are supported by sophisticated tools such as 

MRP systems and fed by relevant data from other manufacturing and design functions 

This D/A centre is very important to forward planning for the next manufacturing
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system activities. This level is very difficult because all requirements need to checked 

within a particular time period. Figure 7.30 illustrates the MTP D/A centre as a top 

activity of the IDEFO model. The model shows several inputs that are considered to 

produce manufacturing programs and/or requisitions for re-planning. The top activity of 

the model is decomposed into sets of child-activities which are grouped into three main 

groups for the purpose of simplification, as illustrated in Figure 7.31. Figures 7 32-7 34 

illustrate the basic sub-activities of this D/A centre. Sub-activity AC11 is carried out to 

derive all parts requirements by time period. This requires motor BOMs and production 

orders by date. All manufacturing levels should be listed and timed from basic items 

and raw materials to finished motors. All production time can be considered period by 

period. Hence, the subsequent time period is modelled using results obtained from the 

preceding time period, as presented by sub-activity AC12. Sub-activity AC13 computes 

component or motor stocks levels at the beginning of each time period, using different 

data resources such as stock data, order for purchased parts and motor production for 

the previous period. Sub-activities ACM and AC15 are carried out to deal with stock 

status according to stock obtained and supplier information. The company should 

consider the material or purchased parts for motors to be supplied from outside using 

computerised tools in order to utilise manufacturing facilities that meet customer lead 

times and eliminate supply problems. After examining the production requirement for 

each motor order, the production time required from each manufacturing element is 

derived. The manufacturing elements include assembly cells, part production stations, 

etc.; this is carried out by sub-activity AC21. The results obtained from AC21 are used 

by sub-activity AC22 which compares manufacturing requirements with capacity 

available. Sub-activities AC23 and AC24 are carried out to test existing 

storage/transport and manpower respectively. Sub-activity AC31 represents the 

generation of tooling, die, and fixtures associated with the motor parts or assemblies to 

be produced. The results obtained from AC31 can be used by sub-activity AC32 which 

checks existing tools, dies, and fixtures. When the plan for the period of motor 

production has been totally evaluated, plans should be recorded for the time period, as 

modelled by sub-activity AC33. Finally, sub-activity AC34 is carried out to issue a 

complete manufacturing programme for the time period. If all time periods of planning

horizon have been evaluated and tested, final information can be delivered to other 
relevant manufacturing activities.
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The STP D/A centre is concerned with actual scheduling and sequencing of production 

operations and the related facilities and functions. It achieves this by releasing orders for 

production in required volumes and frequencies. This is carried out for a short horizon; 

hence, it is important to consider the planned orders and compare them with current 

sources and facilities. The previous D/A centre (MTP) formulates the manufacturing 

programmes for a set of time periods. The STP D/A centre is very close to shop-floor 

activities; hence, several tasks can be changed and re-programmed at this level of 

decision based upon management decisions and manufacturing data. It considers only 

one time period according to the time scales identified.

Figure 7.35 illustrates the top activity of the IDEFO model for the STP D/A centre. The 

model has several inputs; they are manufacturing programmes, production data, and 

time and attendance records. The controls are mix balance and sequence rules, time 

constraints and CAM restrictions. The main output of this model are re-planning 

requisitions and prioritised production schedules. The PPC systems support this D/A 

centre as well as other planning D/A centres. The top activity of the IDEFO model is 

decomposed into eight basic sub-activities (AC1 to AC8), as illustrated in Figure 7.36. 

Sub-activity AC1 is carried out to determine the time period that needs to be considered 

for the current manufacturing programme. At the same time, sub-activity AC2 is carried 

out to check and identify finished motors and WIP levels using information provided 

from completed production files. Sub-activity AC3 inserts any modifications required to 

current programme based upon the current manufacturing environment. Using the 

output of sub-activities AC2 and AC3, the new production requirements are completed, 

as represented by sub-activity AC4. The results obtained from sub-activity AC4 are 

compared with the original requirements. This can be done using simulation tools, as 

modelled by sub-activity AC5. Following this, if the balance is different, a decision 

should be taken to re-plan production requirements (sub-activity AC6). Otherwise, the 

process can continue to start sub-activity AC7 which re-prioritises requirements. Many 

rules can be used for setting priorities based upon the computerised tools and scheduling 

techniques used. Finally, sub-activity AC8 is carried out to produce the prioritised 

current production requirements.
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7.4.4.5 Data Modelling for PPC

The planning function represents the cornerstone for the manufacturing system of any 

industrial organisation. It involves important D/A centres that consider a variety of 

planning and control problems. It is be necessary to provide these D/A centres with the 

information required for decision-mating. The PPC systems use many policies and 

philosophies such as MRP II, JIT, Kanban, OPT, etc. that can be employed for

modelling planning activities based upon data collected from both internal and external 
resources.

The PPC systems have been developed considerably in recent years. The PPC 

philosophies, methodologies and techniques have been promoted as important supports 

for planning function. This function is totally different from one organisation to another; 

hence, no particular common structure can be derived for all D/A centres. Each 

manufacturing organisation should develop their own structure based upon new 

manufacturing strategies and their business and manufacturing objectives. For this case 

study, Brook Hansen must develop systems that support their planning and control 

functions, because most of the new software packages that are being brought into the 

market combine different functions in different ways. All this requires effective data 
modelling for all manufacturing activities.

Constructing data models for production planning function requires the identification of 

all the system entities relating to product strategy, structure of motors, existing 

capacities and capacity requirements. Because of the complexity of the production 

planning function and its direct and indirect relationships with other organisation 

functions, the data model is constructed to reflect the common subjects in planning 

function and to illustrate the main system entities related to the D/A centres of this 

function. Table 7.5 illustrates the D/A centres entities used for data modelling and Table

7.6 illustrates the initial relationships between the entities selected. These two tables are 
used to construct the IDEF1X model for the planning function.
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Entity number Entity name Entity number Entity name

E-l PRODUCT PLAN E-12 TRANSPORTER
E-2 BOM E-13 PLANNED PRODUCTION
E-3 PRODUCT E-14 PRODUCTION ORDERS
E-4 PRODUCT STRATEGY E-15 ORDER
E-5 MFG FACILITY E-16 CURRENT PRODUCTION
E-6 STORAGE E-17 COMMON PART
E-7 PART E-18 MFG PROGRAM
E-8 HANDLING SYS E-19 MFG CALENDAR
E-9 SUPPLIER E-20 MFG TIME PERIOD
E-10 MANPOWER E-21 SEQUENCE TECH
E-l 1 OPERATION E-22

E-23
ATTENDANCE RECORD 
PRIORITISED PRODUCTION

Table 7.5. The main entities of data model.

■
E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 fi

lo
E-
11

E-
12

E-
13

E-
14

E-
15

E-
16

E-
17

E-
18

E-
19

E-
20

E-
21

E-
22

E-
23

E-l
■

' n r
E-2 m n r y
E-3 ■ y j y
E-4 n r J J y y J
E-5 y m y y y
E-6 n r n r

■
J

E-7 j
E-8 y
E-9 y J
E-10 J J y
E-l 1 n r J
E-12 y y
E-13 y y
E-14 y y y
E-15 ~7~
E-16 y
E-17 y y y
E-18 ~7~~ y J y J
E-19
E-20 y
E-21 y
E-22 y
E23 / J y 1 y

Table 7.6. rimarily relationships of production planning entities.

Figures 7.37 and 7.38 illustrate the final IDEF1X models for the planning function. This 

model provides the basic data needed by the D/A centres of planning functions. This 

data should be in a form which will facilitate reformatting and reuse by different 

manufacturing activities. Production orders, priorities, date, quantities and other related 

data are associated by decision links from planning D/A centres to decision destinations.

7.4.5 To Make

The ‘To Make’ function in this model involves two main sub-functions ‘To 

manufacture’ and ‘To assemble’. This function is supported by the CAM system which
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controls and operates the production process according to the CIM concept. It should be 

noted that the manufacturing function is one of the most complex functions in any 

industrial organisation because it represents the basic environment for implementing 

management decisions and involves the interaction point between different sub systems 

(information, physical, and decisional sub-systems).

Modelling manufacturing functions is based upon the objective of the study. For 

example, the introducing of new manufacturing technology is based upon a 
management decision, but this decision should be supported by an effective analysis of 

the new facility suggested. This leads to the modelling of the new system using new 

manufacturing technologies obtained from facility suppliers. GI-SIM supplies the 

decision-makers with the required performance measures concerning the new 

technologies. On the other hand, modelling may be carried out to test manufacturing 

strategies or production programs using existing manufacturing technologies. This can 

be modelled according to data collected from other functions and management 

decisions. For example, implementing JIT, MRP II, Kanban, OPT, etc. can be tested to 

develop system performance levels and achieve planned objectives.

As previously described, this function involves two D/A centres; part production and 

assembly. Part production includes rotor, shaft and die-casting components. The 

assembly D/A centre involves motor assemblies and sub-assemblies, as discussed in the 

previous chapters. The final assembly line in Cell-100 is selected for demonstration in 

this research (assembly D/A centre).

7.4.5.1 M o to r  A ssem bly

Assembly lines are controlled and operated using components, data and decisions 

received from the related D/A centres. The GI-SIM modelling method can be used to 

design a JIT-Kanban system for the Cell-100 assembly line. According to the GI-SIM 

steps, the IDEFO model is constructed for the assembly line selected. Figure 7.39 

illustrates the top activity of this D/A centre. The model represents motor production 

procedures using data, material, and decisions obtained from other system functions. 

The top activity is decomposed into several sub-activities (AC1-AC6), as shown in 

Figure 7.40. Sub-activities AC1 and AC2 represent shaft and rotor production based 

upon JIT-Kanban orders received from the rotor assembly box. Rotor assembly is
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represented by sub-activity AC4, as illustrated by the IDEFO model in Figure 7.40. Die

casting production is activated by assembly orders based upon production programs 

represented by sub-activity AC3. Sub-activity AC5 represents assembling windings 

which are controlled by the final assembly sub-model. Finally, all components and sub- 

assemblies are transferred to the final assembly line using a pull system, as represented 

by sub-activity AC6.

The final assembly line is fed by motor components based upon production orders. This 

is modelled by sub-activity AC6 which is decomposed into seven child-activities 

(AC61-AC67), as illustrated in Figure 7.41. Sub-activity AC61 represents the operation 

of the motor frame and wound pack assembly. Following this, machining operations are 

completed, as represented by sub-activity AC62. Then Terminal box, rotors and motor 

ends are assembled, as represented by sub-activities AC63 and AC64 respectively. The 

electric test is carried out by sub-activity AC65. If the motor meets the specification 

requirements, it is conveyed to a painting station which is represented by AC66. Finally, 

sub-activity AC67 represents fitting the motor fans and covers.

Figure 7.40. Assembly sub-activity and its control relationships.

Cell-100 is operated using MRP orders. It has been found that the W1P levels are very 

high, as discussed in chapter-6. Figure 7.42 shown the general layout of the final 

assembly for Cell-100 (existing system). Using the GI-SIM concept discussed in 

chapter-5 and CIM strategy, this assembly line can be re-designed using a new
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production program (JIT-Kanban) as well as other production models. This new 

production programme can be tested and simulated to reduce WIP levels and increase 

system flexibility. The proposed system is illustrated in Figure 7.43.

B 3

B B

1. Frame &winding assembly.
2. Machining operations.
3. Fitting terminal box.
4. Rotor assembly.
3. Fitting end and flanges.
6. Electric test
7. Painting.
8. Fitting fans & covers.
B. BulTer.

Coinplctcd|
motors

Figure 7.43. Pull system layout for Cell-100 - final assembly.

7.4.5.2 D ata  M odelling fo r Pull System

Data modelling for JIT-Kanban is requiring to simplify production management and 

make control more effective. To construct a data model for this D/A centres, basic 

entities should be identified. Many entities can be involved in this information model. 

An example for simple data model for this D/A centre is presented in Figure 7.44.

Figure 7.44. IDEF1X data model.
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7.5. An Evaluation of GI-SIM for CIM Design

In this chapter, the GI-SIM method is demonstrated for the design of systems 

specifications for CIM components. The method has proved to be useful in the 

development of the complex manufacturing systems designs. By providing a well 

defined conceptual model o f the CIM strategy, child-models of GI-SIM can be derived 

using functional objectives and modelling domains. Both top-down and bottom-up 

analysis approaches are used to integrate data modelling with functional modelling in 

the second phase of method procedure. CIM system design is a very complex task and 

still the subject of conflict, particularly in large manufacturing organisations. GI-SIM is 

a flexible method which can be used to model advanced manufacturing technologies 

and production programmes using its static and dynamic capabilities.

The D/A centres identified for CIM components can be specified the necessary level 

using the integrated concept of conceptual model and specifications of modelling 

domains.

Manufacturing objectives should be tested and measured for every function before 

adopting and implementing strategies. Decomposing manufacturing functions into their 

basic elements is not a difficult task but the most important thing is to determine how 

modelling outputs can be used to develop new systems.

Using GI-SIM for CIM design proves that:

• The method is comprehensive, expressive and capable of designing complex 

manufacturing systems;

• It is a coherent simple concept that provides a meaningful representation for 

different manufacturing functions;

• It enhances communication between different sub-systems in complex 

manufacturing systems and bridges the gap between static and dynamic aspects;

• It is flexible; hence, it can be generated using modelling goals for each D/A centre 

being considered.

Data linking between GI-SIM tools need to be considered to achieve a high level of 

accuracy and consistency when designing new manufacturing systems. This phase can

An Evaluation ofGl-SIMfor the Design o f  CIM Components
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be solved by supporting the method with sophisticated computerised interfaces which 

link the framework tools.

7.6. Conclusion

This chapter discusses CIM system design and illustrates how the organisation 

integration can be derived based upon business goals and manufacturing objectives. The 

importance of low level production programs i.e. tactical and operational programs is 
considered as basic and essential elements in business strategy.

The method introduces the design phase using a generic grid, combining the operational 

D/A centres of CIM and their associated control sub-systems, to demonstrate the benefit 

of integration by conceptual modelling. Every D/A centre is fed with the required data 

by linking different D/A centres using database systems as an internal information 

resource. Following this, the D/A centre is decomposed into its basic elements using GI- 

SIM tools. The method adopts both bottom-up and top-down analysis approaches during 

the design phase. Flexibility of the modelling method and the objectives of study control 

the size and complexity of design models for every D/A centre.

This chapter evaluates the modelling method developed in this research and 

demonstrates its capability for the analysis of complex manufacturing systems. GI-SIM 

is a comprehensive, expressive, flexible and simple modelling method suitable for 

system design. However, the method requires sophisticated computerised interfaces 

linking its tools to increase its capability and to eliminate data inconsistencies during 

model construction.
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CHAPTERS

DISCUSSION, CONCLUSIONS AND 
RECOMMENDA TIONS

8.1. Introduction

Throughout this thesis, specific conclusions related to the findings are presented at the 

end of each chapter. Therefore, this chapter presents a general discussion, conclusions, 

recommendations and the main findings o f the research. This includes details of the 
work carried out, achievements and directions of future work.

8.2. Discussion

The need to develop an integrated modelling method for the analysis and design of 

complex manufacturing systems was the driving force behind this research. The initial 

motivation was obtained from a review of CIM systems and its modelling methods and 

techniques. Many authors have emphasised that the adapting a CIM strategy offers 

major opportunities for manufacturing and is a key to meet the challenges of future. It 

was discovered the lack of a modelling method to support the CIM analysis and design 
phases was a fundamental obstacle to CIM success.

To achieve business and manufacturing objectives by adopting a CIM strategy, a 

modelling method was required to support the analysis and design the advanced 

manufacturing systems. A modelling method should meet the requirements of complex
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manufacturing systems and avoid the limitations of existing methods. This provides an 

effective support to identify the shortcomings of systems and suggesting solutions to 

system complexities and problems.

8.3. Achievements of the Research Aims and Objectives

To achieve the objectives o f this research, it was necessary to review the basic concepts 

of manufacturing systems. This review provided good background knowledge about the 

mission of manufacturing systems and their different classification methods. Several 

types of manufacturing systems were considered and compared, based upon a set of 

factors related to product type, quantities, sizes and layouts. It was found that 
manufacturing systems were moving towards low volume and high variety. This is 

because the consumer is becoming sophisticated and the market is becoming highly 

competitive. Therefore, flexibility is a very important factor in meeting customer 

requirements. To achieve an organisation’s objectives such as systems flexibility, the 

general consensus agrees that manufacturing should be changed and a C1M strategy 

adopted (see Chapter-2). In Chapter-2 and Appendix-A, a review of CIM systems was 

carried out to consolidate the knowledge about this important strategy because the lack 

of a clear definition of CIM strategy affects its application and implementation. It was 

concluded that CIM should not be restricted to a specific definition; it is a direction, not 

a destination; it is an integrated manufacturing strategy not a set of technical 

organisational aspects; it is a concept not a computer programme; hence, it should be 

designed and configured and not purchased or transferred. The identification of CIM 

components and the method of integration are very important factors in CIM design. 

According to several studies reviewed in Chapter-3, there are different reasons for the 

success and failure of a CIM strategy. There have been frequent reports about the 

complexities and problems of CIM. Attran (1996) reported that the difference between 

success and failure of this manufacturing strategy depends on appropriate planning and 

the avoidance of pitfalls. Several problems and barriers to CIM success have been 

considered. These barriers can guide efforts to define and diagnose problems that occur 

during designing and implementing a CIM strategy. It was concluded that the effective 

modelling methods have an obvious contribution in solving many CIM problems. 

Without proper modelling methods, the analysis and design of CIM systems would be a 

very complex tasks. Based upon this, it is believed that the development of a new 

modelling method would benefit all CIM analysis and design aspects and assist analysts
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and designers to improve different manufacturing fonctions and sub-systems of this 

strategy. To achieve this, the objectives were established and approached, and 
completed as following:

1. Review of CIM Modelling Methods And Techniques

A modelling method can be defined as a set of principles which guide the analyst 

towards the solution of a problem (Chodari 1997). Modelling is the activity that is 

concerned with constructing system models, either for analysis or design purposes. 

Analysis models refer to an existing system and design models refer to the development 

of new system specifications. Several terms such as methodology, method, tool and 
technique have been widely used in modelling.

Models have been classified in different ways based upon different factors such as their 

ranging from the tangible to the abstract, corresponding to their application or according 

to their static and dynamic features. A literature survey identified several conceptual 

and structural modelling methods and techniques available for the analysis and design 

of CIM systems (Chapter-4). The conceptual structural methods selected were SSADM 

IDEF techniques (IDEFO, IDEF1X, IDEF3 and IDEF4), SADT, OOM, GRAI, PN, IOA, 

GIM and MERISE. The reasons for selecting these modelling methods were: these 

methods have graphical components, show the hierarchical structure of complex 

systems, adopt the partition hierarchy and represent a comprehensive sample that covers 
most modelling objectives and system requirements.

2. Comparison and Evaluation of Modelling Methods

The methods and techniques selected were reviewed in detail. Several issues comparing 

and evaluating modelling methods were also presented (Chapter-4). These issues have 

been carried out based upon factors identified by the authors. It has been found that the 

evaluations and comparisons of modelling methods were very complex and that the 

results of any such work is likely to be criticised. However, a framework was developed 

for comparing and evaluating the modelling methods. This framework is composed of 

five elements; modelling objectives, inputs, practice, models and outputs. Each element
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in this framework involves several factors to test specific details of the modelling 

methods. The reasons for constructing the frameworks for comparison were that there is 

no general method known for the evaluation and comparison of modelling method. 

Most existing evaluation issues were developed for specific applications. Derivation of 

the framework factors was dependent on the modelling objectives and the complex 

manufacturing systems requirements. The framework developed was used to compare 

the modelling methods and techniques selected in this research, as illustrated in Table

4.4 (Chapter-4). It was concluded that no single modelling method or technique meets 

all the requirements necessary for the analysis and design of CIM systems. Most 

existing modelling approaches can only support particular aspects of manufacturing 

systems. Several researchers attested to this result e.g. Brandimarte and Cantamessa 

(1995), Chadha et al. (1991), and Aguiar and Weston (1995).

It was concluded that there was a need for an integrated modelling method that could be 

created by selecting potentially cognate groupings of existing modelling methods and 

techniques and extending and unifying them to support different aspects of CIM 

systems. The combination of systems methods brought together in CIM offers many 

advantages for modelling this complex system.

3 . Simulation Modelling

CIM is a dynamic system thus it was necessary to review and discuss simulation 

modelling in CIM (Appendix-B). Simulation is one of the most important tools for the 

analysis and design of manufacturing systems. Its concepts, languages, advantages and 

disadvantages were discussed in this research. It has been found that the selection of the 

simulation language is a very complex decision because it is dependent on several 

factors. It has been concluded that simulation modelling needs to be integrated with 

static modelling approaches to achieve the vertical integration of abstraction levels and 

the horizontal integration of specification domains in manufacturing systems.

4. Development of an Integrated Modelling Method

An integrated modelling method (GI-SIM) was developed to support the analysis and 

design phases of CIM systems (Chapter-5). This modelling method was developed as a
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result of the CIM analysis and design requirements, and the limitations of existing 

methods and techniques. The method combines the advantages of existing methods and 

eliminates their drawbacks. It was formulated to integrate four modelling tools (GRAI 

grid, IDEFO, IDEF1X and SIMAN/ARENA). Several authors suggested that the 

integration between existing modelling methods and techniques would offer advantages 

for the analysis and design of complex manufacturing systems Colquhoun et al (1993), 

Hsu et al. (1995), Aguiar and Weston (1995), and Brandimarte and Cantamessa (1995). 

Therefore, GI-SIM was designed using a set of existing modelling tools and employs 

the strength of each to cover the systems modelling needs. The method achieved two 

types of integration; the first is a vertical one that links the levels of abstraction 

(conceptual, structural and dynamic) and the second integrates five system domains 

(decision, functional, information, physical and detailed) (chapter-5), as illustrated in 

Table 8.1.

GI-SIM tools Abstraction level Domains
GI-SIM grid Conceptual Decision
IDEFO Structural Functional

Physical
IDEF1X Structural Information
SIMAN/ARENA Dynamic Detailed

Table SÎ. 1. Matrix of GI-SIM structure.

GI-SIM was constructed to be simple to implement and to use. It also provided concise 

graphical representation for complex systems in order to understand the general 

behaviour of the sub-system environments using its first phase. In the second phase, 

IDEF0/1X were used in GI-SIM to assist in generating structured functional and 

information models for the D/A centres specified in the first phase of the method. 

Finally, the method adopted SIMAN/ARENA to develop its static model to include the 

dynamic model.

A computerised tool was developed to support GI-SIM and to increase its capabilities 

(Chapter-5). It assists in designing the conceptual level of the method developed by 

using several user interfaces. These were constructed using a visual computer language. 

The tool developed represents a key to defining the specifications of method for the 

future development.
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5. An Evaluation The Method Developed For The Analysis of 

Manufacturing Systems

The GI-SEM modelling method was tested and demonstrated by the analysis of 

manufacturing systems. For this research, the manufacturing organisation selected was 

Brook Hansen Motors. A background of the company selected was presented in 

Appendix-D. The GI-SIM was applied to the existing manufacturing systems of the 

company selected (Chapter-6).

It was found that the GI-SIM was an effective modelling method for manufacturing 

systems analysis. It identified the main functions of Brook Hansen Motors in one level 

of grid and decomposed every decision/activity centre into its basic sub-activities and 

elements using IDEFO. The physical sub-system in the company was modelled 

dynamically using the third step of the method. This analysis proved the flexibility of 

the method and its simple procedures for considering existing systems. Modelling 

details are related to the study objectives and are different from one D/A centre to 

another. The objectives of the validation of GI-SIM using a case study were to validate 

the method and to help in intensifying any shortcomings within the manufacturing 

systems of the company selected. The analysis identified several problems within the 

system. The lack of effective interfacing between the GI-SIM tools caused difficulties in 

data exchange between the modelling levels and domains. Recommendations for the 

future improvements were suggested to the company in light of this analysis.

6. An Evaluation of The Method Developed For The Design of CIM 

Systems

The GI-SIM was also tested for the design of CIM components (CAD, CAM, CAPP, 

etc.). The objectives of this were to evaluate the method for the design of CIM systems 

and to construct a well-defined base for the design system specifications of CIM 

components. Designing of CIM components was established based upon the objectives 

of the D/A centre. It was suggested that CIM was a convenient manufacturing strategy 

for the company selected. General formulation of this strategy was presented and 

structured in Chapter-7. It was proved that GI-SIM was an excellent modelling method
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for the design of advanced manufacturing systems. The method lacks the computerised 

interfaces which support tool linking and data exchange between its models.

8.4. Directions for Future Research

This research is one step in the continuing process of building and developing 

modelling methods and techniques for the analysis and design of complex 

manufacturing systems. The following topics need to be investigated in future research:

• Linking business strategy and CIM strategy.

• Configuration of design specifications for operational CIM.

• Future developments of the GI-SIM method, include:

► Interfacing the GI-SIM Method.

► Linking its modelling procedures with a data dictionary.

► Generating IDEFO models.

► Generating data modelling by identifying conceptual and functional models.

► Generating simulation models and experiments using functional and physical 

models automatically.

8.4.1 Linking Business and CIM Strategies

The application of CIM strategy in the majority of manufacturing companies is 

currently incorrect. Most authors deal with specific aspects of CIM components 

(Gunasekaran et al. 1994). The strategic issues for linking the business and CIM 

strategy have not been considered properly. CIM impacts the strategic issues, and also 

affects detailed operational issues (Weatherall 1992).

The initial investigation within this research indicated the need for a new manufacturing 

strategy and highlighted the importance of CIM as a manufacturing strategy. The 

adoption of this strategy is not a day trip but needs established long-term plans, 

constructed and based upon identified business needs and low level production 

programs towards the attainment of business and manufacturing goals. Therefore, there 

is a need to develop a strategic framework for the development of CIM. This requires a 

clear understanding of the integration of different areas of the organisation. The
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suggested strategy should fully support the objectives of the business strategy and 
bridge gaps at an operational level.

8.4.2 Configuration of design specifications for the operational CIM

Suitable configurations of operational CIM should be designed according to established 

business and manufacturing objectives. This will help identification of the sub-activities 

and elements of the manufacturing system under consideration. This will also contribute 

to the definition of features of the new systems required by the new strategy to improve 

computability of manufacturing functions. To complete this work, an effective 
modelling is required such as GI-SIM.

8.4.3 Future Development on GI-SIM

This research established a very important concept and framework for the GI-SIM 

modelling method. To develop this modelling method and to increase its capabilities, 

the future development of the following is suggested:

1) Interfacing GI-SIM Method

The translation of modelling information between the method tools is very important. 

This requires sophisticated computerised interfaces that help the model builder to 

explore and use the same identifications of D/A centres on all modelling levels and 

domains. These interfaces should be designed to filter sub-system flows at a conceptual 

level and be defined according to IDEFO rules at the structural level. Many decision and 

information links cannot be represented during construction of the GI-SIM grid. Using 

tool interfaces, the grid links should be classified according to modelling domains 

according to ICOM definitions. This step would be very important to eliminate 
inconsistencies in the inputs and outputs of modelling tools.

Translating structural models into simulation models also requires effective interfacing 

to obtain specific definitions for the lower levels of D/A centres. This interface should 

be flexible enough to transfer simulation modelling requirements based upon the
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objectives o f the study. The definition of system entities for data modelling should also 

be derived from functional models. Then, the identification of IDEF1X elements can be 
generated using IDEF0/1X interface.

2) Linking GI-SIM Tools with Data Dictionary

It is suggested that the GI-SIM tools are supported by a data dictionary. This aims to 

provide the modelling method with the required information to define common features. 

This occurs gradually as an additional service across application systems. A data 

dictionary helps to produce models faster and with higher quality. It eliminates the 
problem of communicating data among specialised system models.

Identification of information enables the different levels and views of the modelling 

methods to share information. The data dictionary, imported from specific applications, 
can also be used to construct system models based upon high data accuracy.

Information identified by the data dictionary can be classified according to modelling 

domains and abstraction levels or according to the D/A centre type and its related 

system flows. This research will also contribute to solving data integration problems.

4) Generating IDEFO Models

To improve timeliness and method consistency, the automatic generation of IDEFO 

models in GI-SIM is proposed. This will reduce the construction time of the GI-SIM 

model and eliminate the inconsistencies problems of the current procedures. The 

generation of IDEFO Models can be achieved using the GI-SIM grid data, data 

dictionary and knowledge-based system. The knowledge-based system involves rules 

that are used to translate the description of D/A centre and its related information into 
functional or physical models.
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GI-SIM adopted the IDEF1X technique to support information modelling in 

manufacturing systems. The method used the main information links presented at the 

conceptual and structural levels to construct data models in one or more views for each 

D/A centre. The automatic generation of data models is a key issue. All information 

presented by the GI-SIM grid and IDEFO should be captured using a computerised tool 

that can be developed to generate data models in IDEF1X format. This research will 

classify entities received based upon their dependencies and use a data dictionary to 

generate entity attributes. Existing IDEF1X software can be used to translate formatted 

data into graphical models according to the rules of the technique.

6) Generating Simulation Models and Experiments

Generation of SIMAN models and experiments for static models is a very complicated 

task owing to the large number of variables that need to be defined during the automatic 

generation. The dynamic behaviour of the system activities can be specified using a set 

of rules and conditions. This can be achieved for limited applications in manufacturing. 

It would be very difficult to use these rules and conditions for complex manufacturing 

applications because the identification of activities using static model tools would be 

more difficult than constructing SIMAN models and experiments directly. However, 

computability of static model tools and simulation packages may be achieved in the 

future. Hence, the development of computerised tools for the automatic generation of 

simulation models will be effective for limited applications but can also contribute to 

solving the problems of system inconsistency in the age of computability.

8.5. Concluding Remarks

The work described in this research had several initial objectives. The first was to 

review the main concepts of manufacturing systems. The thesis reviews several 

classification schemes of manufacturing systems. It has been found that there is a move 

towards patching production systems because of customer requirements and increasing
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competitiveness. It has been concluded that manufacturing organisations are looking for 

strategies and tools to develop their systems and to stay competitive. The literature 

review indicated that the CIM strategy was one possibility for the development of 

manufacturing.

The second objective was to review CIM systems in details. It was found that the 

difficulty in understanding CIM strategy and the difference between the success and 

failure of this manufacturing strategy depended on appropriate planning. Moreover, the 

lack of proper modelling methods for CIM analysis and design represented a 

fundamental obstacle to CIM success.

The third objective was to review existing CIM modelling methods and techniques. 

Several methods and techniques were reviewed and compared according to a set of 

factors related to the modelling objectives and systems requirements. It was concluded 

that no single modelling method or technique could support the different aspects of 

complex manufacturing systems: decision, functional, information, physical and 

dynamic aspects. This research found that the combination of modelling methods and 

tools to model CIM offers many advantages for the analysis and design of this complex 

manufacturing strategy.

The fourth objective was to develop an integrated modelling method for the analysis 

and design of CIM systems. This method has been developed in this thesis, based upon 

the establishment of a number of factors. The method developed combines four 

modelling components: the GRAI grid, IDEFO, IDEF1X and SIMAN/ARTENA to 

achieve vertical integration between levels of abstractions and horizontal integration 

between modelling domains. A computerisation of the method has been developed to 

support conceptual modelling and to identify tool specifications for more research work.

The fifth and the sixth objectives were to evaluate GI-SIM for the analysis of 

manufacturing systems and for the design of CIM. A case study was carried out using 

the method developed. It has been found that the method is simple and flexible to use in 

the analysis phases. The method was also used for the specifications of CIM 

components. It can be concluded that the method is an excellent and effective 

manufacturing modelling method. The main limitation of the method was found to be a
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lack of proper computerised interfaces to reduce model-building time and eliminate the 

inconsistencies of its models.

The directions of future research presented in this chapter will improve the method 

presented in this thesis and increase its applications in manufacturing.
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