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Summary

Microwave radiometric thermometry in layered tissue structures

Mark S Hawley

Non-invasive thermal imaging and temperature measurement by 

microwave radiometry is investigated for medical diagnostic 

applications and monitoring hyperthermia treatment of cancer, in 

the context of the heterogeneous body structure.

The temperature measured by a radiometer is a function of the 

emission and propagation of microwaves in tissue and the receiving 

characteristics of the radiometric probe. Propagation of 

microwaves in lossy media is analysed by a spectral diffraction 

approach. Extension of this technique via a cascade transmission 

line model provides an efficient algorithm for predicting the field 

patterns of aperture antennas contacting multi-layered tissue. 

Comparisons of computer simulations with field measurements in 

homogeneous and bi-layered tissue-equivalent media confirm the 

validity of the algorithm.

A coherent radiative transfer analysis is used to relate the 

field pattern of a radiating antenna to its receiving character­

istics when used as a radiometer probe, leading to a method for 
simulating radiometric data. The design and construction of a 

4.6 GHz radiometer is described and good agreement is found between 

computer simulations and radiometer measurements in tissue 
equivalent phantoms. Measurements and simulations are used to 

assess the effect of overlying fat layers upon radiometer response 

to temperature hot-spots in muscle-type media. It is shown that 

dielectric layering in tissue greatly influences measured 

temperatures and should be accounted for in the interpretation of
radiometric data.



The feasibility of employing microwave radiometry for 

tomographic mapping of differential temperature distributions 

induced by hyperthermia is examined. A suitable reconstruction 
algorithm is proposed; however the limited 'depth of view' in lossy 

tissue is shown to restrict the volume which can be imaged and thus 

its use for monitoring deep hyperthermia is doubtful. Alternative 

applications of this technique in medical diagnostics are 

proposed.
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Introduction

Temperature has always been an important diagnostic indicator 

for the medical clinician. Under normal conditions, the 
distribution of temperature within the human body is inherently 

stable and follows recognisable patterns. Abnormal variations, 

particularly local hot areas or left to right asymmetry, may 

signify general or local breakdown of body function. In the 

earliest manifestations of diagnosis by thermometry, fevers and 

inflammations were detected by touch. Subsequent development of 

the mercury-in-glass thermometer permitted quantification of 

general body temperature but gave no indication of local 

anomalies.

With the advent of infra-red thermography in the 1950s, the 

first thermal imaging of the body was realised by exploiting the 

radiative nature of matter. With infra-red cameras, variations in 

skin temperature are converted to optical images, thus allowing a 

doctor experienced in the interpretation of thermograms to pinpoint, 

any irregularities. However, such measurements are restricted to 
surface temperatures only by the penetration depth of infra-red 

radiation in tissue. The majority of Irregularities of interest 

occur in subcutaneous regions.

At microwave frequencies, the decreased opacity of tissue 
allows radiation emitted at greater depth within the body to reach 

the surface. Subcutaneous thermal distributions may therefore be 

detected. Microwave radiometry was developed as a technique for 
sensing thermal emissions in the 1940s, with applications in radio 

astronomy and remote sensing of the earth and its atmosphere. The 

application of this technique in medicine was first proposed by
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Barrett et al in the early 1970s [1], who employed a contacting

waveguide antenna to couple microwave radiation emitted by tissue 

into a comparison type or ’Dicke' radiometer working at a centre 

frequency of 3.3 GHz. In the same period Edrich et al [2] 

developed a millimetre wavelength scanning system employing a 

remote dish antenna to give images of thermal distributions. Since 

1974, developments of these basic radiometer designs have improved 

the capability of the technique and widened its applications.

Originally, the primary application envisaged was screening 

for breast cancer. The technique has since been applied 

experimentally to the detection of various types of cancers and to 

a wide range of pathologies with associated raised temperatures, 

such as inflammation of the joints and spinal nerve irritation. 

Another application, which has emerged more recently, is the 

monitoring of hyperthermia, a treatment for malignant disease which 

aims to destroy cancer cells by inducing elevated temperatures, 

either as a treatment by itself or through its synergistic effect 

with radiation or chemotherapy. Although the therapeutic value is 

now generally recognised, progress in clinical hyperthermia is 

limited by inadequate temperature monitoring. Microwave radiometry 

shows potential as a means of non-invasively monitoring the induced 
thermal distribution.

In both areas of diagnosis and treatment monitoring, 
quantitative temperature measurement or qualitative imaging 

procedures using microwave radiometry require careful 

interpretation of radiometric, data. This can only be achieved with 

an understanding of the emission and propagation of microwave 
radiation in tissue structures and the interaction with the 

radiometer antenna or probe. The object of this research is to

AbJ



3

study these factors in both homogeneous and layered tissue 

structures to facilitate improved interpretation of radiometric 
data from both single probe scanning and tomographic imaging in the 

context of the heterogeneous body.



Chapter 1

Microwave Radiometry

1.1 Principles of temperature measurement by microwave radioinetry

1.1.1 Thermal radiation

1.1.2 Propagation of radiation in lossy tissue

1.1.3 Microwave antennas

1.1.4 Microwave receivers

1.2 Applications of microwave radiometry

1.2.1 Applications of microwave radiometry in the control of 
hyperthermia treatment of malignant diseases

1.2.1.1 Hyperthermia treatment of malignant disease

1.2.1.2 The importance of temperature control in 
hyperthermia

1.2.1.3 Invasive temperature monitoring

1.2.1.4 The suitability of microwave radiometry for 
hyperthermia monitoring

1.2.2 Applications of microwave radiometry in medical 
diagnosis

1.2.2.1 Detection of thermal irregularities in the 
human body

1.2.2.2 Infra-red thermography

1.2.2.3 The suitability of microwave radiometry as a 
diagnostic tool

1.3 Principal investigators in microwave thermography

1.3.1 Radioinetry systems

1.3.2 Principal Centres of Research

1.4 The interpretation of radiometric measurements
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1.1 Principles of temperature measurement by microwave radiometry

1.1.1 Thermal Radiation

Radiated electromagnetic energy results from changes in the 

energy states of atoms and molecules, caused by interactions of 
charges with each other and with electromagnetic waves. Matter 

contains enormous numbers of particles which, if at a temperature 

above absolute zero, continuously interact absorbing and emitting 

electromagnetic energy at all frequencies. The intensity spectrum 

of this emitted radiation depends on its physical temperature. 

Figure 1.1 shows the power radiated versus frequency by a black- 

body at the temperature of the human body (37°C).

Fig. 1.1 Power radiated by a black 
body.versus frequency at 
310 °K (37 °C)
(reproduced from [33])

The highest emitted power occurs at infra red frequencies 
(X ~ 10 pm); at microwave frequencies the power is lower by a 
factor of around 108. The emission of radiation by a black body is 

described by Planck’s law which gives the power emitted by the body
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Fig. 1.2 1/e depth versus frequency for high
water content and low water content 
tissues (reproduced from [35])

the various tissue types is the total water content of the tissue. 

Those with high water content, eg muscle and skin, attenuate 
microwaves more strongly than those with low water content, eg bone 

and fat. The absorption rate also increases with increasing

frequency. This relationship determines the major advantages of 

microwave thermography over infra-red thermography. The 

penetration depth of infra-red radiation in tissue is of the order 
of 0.1 mm and only thermal radiation from the skin surface only is 
externally detectable. Microwave radiation has penetration depths 

varying from 1 mm at high frequencies to 10 cm from which 

information can be obtained concerning subcutaneous temperature 

distribution. The exponential attenuation results in temperatures 
measured by microwave radiometry which are an average of the 

temperature distribution with depth weighted by an exponential



be matched to a mean value of tissue impedance, say 75 Q, which 
diminishes the range of tissue emissivity values from 0.7 to 1.0 

[3], allowing more accurate temperature measurement. Other types 

of contacting antenna, for example coaxial and microstrip- 

microslot, have also been employed successfully for microwave 

radiometry.

1.1.4 Microwave receivers

The power coupled into a microwave receiver by a perfect 

antenna from a uniform temperature medium is;

P = kTB 1.1

where k is Boltzmann’s constant,

B is the measurement bandwidth, 

and T is the tissue temperature

for a typical receiver with a bandwidth of 500 MHz and for normal 

body temperature, this power is 2.6 x 10“*2 W. The temperature 

resolution necessary in medical microwave radiometry applications 

is generally considered to be 0.1°C [4]. The microwave receiver 

must, therefore, have the ability to distinguish power level 

changes of the order of 10“ 15 W.
The basic components necessary for a microwave receiver which 

can measure these low levels of power are a high amplification 

stage followed by a detector, converting the power level to a 
voltage which can be processed by low frequency electronic 

components. The microwave components, due to their physical 

temperature, add a significant amount of noise which is 
indistinguishable from the noise input from the antenna. 
Therefore, all components must be of high quality to minimize the 

system noise levels. The effect of system instabilities can also
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be reduced by selection of circuit design. The comparison 
radiometer [5] reduces the effect of gain fluctuations in the 

amplification stage by comparing the input temperature signal 

regularly with a known temperature signal.

1.2 Applications of microwave radiometry

1.2.1 Applications of microwave radiometry in the control of 

hyperthermia treatment of malignant disease

1.2.1.1 Hyperthermia treatment of malignant disease

Fig. 1.3 Cell survival versus time at indicated temperatures.

Hyperthermia means ’raised temperature' and in this context 
describes a treatment for malignant disease which aims to destroy 

cancer cells through elevated temperatures. Figure 1.3 shows the 

malignant cell survival versus time of heating for a range of 

temperatures above body temperature. There is a critical
temperature around A2.5°C above which the cell survival decreases 

dramatically. The aim of hyperthermia treatment is to heat the
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cancerous tissue to above this threshold for a given length of time 

but to minimise the heat damage caused to normal healthy tissue.

There is now general recognition that hyperthermia will become 

an important weapon in the fight against cancer. Clinical trials 
[6,7] indicate that radiation therapy when used in conjuction with 

hyperthermia, is more effective than using radiation therapy alone. 

The application of hyperthermia alone generally gives poorer 

results. However, the synergistic effect with radiation therapy is 

sufficiently important to warrant the large research effort.

Treatments can be divided into three groups:

- Whole body hyperthermia [8]:

Whole body hyperthermia consists of heating the whole body 

to hyperthermic temperatures between 41 and 42°C. The treatment 

relies on biological factors to enhance malignant cell kill over 

that of normal cells. Various methods of heating have been 

employed, including wax baths and hot air boxes. This technique 

must be monitored carefully to avoid cardiac and liver damage that 

may occur at these raised body temperatures.

- Hyperthermia treatment of superficial lesions
Superficial lesions are the most accessible tumours to treat

with hyperthermia. The primary methods of microwave heating are by 

single or multi-applicator systems [9]. The low penetration of 

microwave power limits the therapeutic depth to less than 4 cm 

below the skin. Overheating of the surface layers can be reduced 

by use of skin cooling.

- Hyperthermia treatment of deep-seated lesions
The most difficult problem still remaining in hyperthermia

i
is the treatment of deep-seated lesions. Two approaches to this 

problem have been termed ’regional’ and 'localised' hyperthermia.

<• .! i : f - V



11

Regional hyperthermia is the heating of a region of the body 

that encompasses the tumour to hyperthermic temperatures while 

minimizing systemic heating. This method again relies on the 

biological enhancement factors but also employs techniques that 
attempt to preferentially deposit power at the site of the tumour. 
The most common techniques employ radio frequency (RF) or low 

frequency current sources. Heating can be achieved by means of

inductive coils [10] or capacitive plates [11]. An alternative to 

these is to use aperture applicators, for example waveguides. 

Van Rhoon et al [12] used a water-filled ridged waveguide with a 

60 x 30 cm aperture for regional hyperthermia at 27 MHz. Some 

control of the heated volume can be achieved using an annular array 

of applicators. Theoretical and experimental studies [13,14] have 

shown that uniform power deposition can be achieved within a 

homogeneous body by selection of phase and amplitude for each of 

eight aperture applicators arranged in a hexagonal array.

Localised hyperthermia of deep lesions within the body 

attempts the deposition of power only in the tumour volume with 

minimum heating of surrounding tissue. Noil-invasive systems have 

yet to be assessed in a clinical situation. Research is

progressing in two main areas; microwave phased arrays and

ultrasound. The short wavelength of microwave radiation allows 

concentration of power in small volumes. It is expected [15] that 
by using a sufficient number of suitably phased radiators the 

enhancement of power deposition at the focus could overcome the 

problem of low penetration into tissue.

Ultrasound heating allows good localisation and good
penetration in soft tissue. Significant disadvantages have been 
experienced due to large reflections at bone/soft tissue and
gaa/tissue interfaces, and high absorption in bone [10].

i - U 1 >• '! i' i
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1.2.1.2 The importance of temperature control In 

hyperthermia

Extensive research has been carried out into different 

hyperthermia treatment methods [10]. However, the extent to which 

the temperature inside the body can be monitored sets a limit on 

the progress that is possible in this area. The efficacy of 

hyperthermia treatment relies on reaching and maintaining a 

sufficient temperature (Fig 1.3) throughout the treatment. 

Inhomogeneous power deposition in the tumour from the heating 

system will invariably cause cold or hot regions in the target 

volume. A cold region is an area which does not reach hyperthermic 

temperature, leading to deficient cell destruction in these areas 

and inevitably tumour recurrence. A hot region is an overheated 

area which may result in tissue necrosis. Cold and hot areas in a 

tumour may also occur due to the influence of blood flow. The 

centre of large tumours may have poor blood supplies and so heat is 

removed slowly compared with the peripheral areas which are usually 

highly vascularised and consequently difficult to heat.

Normal tissue cells are also damaged by heating to 

hyperthermic temperatures. Any heating which occurs outside the 

tumour volume is disadvantageous and may result in blistering, 

burns or irreparable tissue damage. All methods of producing 

hyperthermia inevitably deposit power outside the tumour volume. 
Although some success has been achieved in preferentially heating 

regions of the torso and abdomen, in general areas of normal 

tissues will often reach temperatures as high as those in the 
tumour. Using regional heating methods, standing waves may be 
induced due to inhomogeneities in the tissue, and high power 

deposition at muscle-bone interfaces have been measured. Higher
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frequency microwave radiation, as used for localised hyperthermia, 

may induce excessive heating in tissues with high water content and 

suffer from resonant conditions existing in subdermal fat layers. 

The small focal region found in ultrasonic induced hyperthermia may 
also result in poor thermal distribution unless the transducer is 

scanned over the surface to disperse the power deposition.

Computer and phantom modelling of many hyperthermia systems 

has been used to predict the heating patterns both prospectively 

and retrospective to treatment. These modelling procedures are 

often highly sophisticated; however, the situation inside the human 

body is extremely complex. Inhomogeneities in tissue and blood 

flow make successful prediction of temperature distributions 

difficult. It has been noted [16], from thermocouple measurements, 

that the temperature attained in different patients for similar 

treatment geometries are widely different. A modelling technique 

would in these cases have predicted similar temperature 

distributions.
The above arguments illustrate that application of 

hyperthermia techniques to the treatment of tumours requires 

detailed knowlege of the temperature distribution throughout the 

heated region. Although modelling techniques give some estimate of 

the likely heating pattern, in most cases the complexity of the 

local blood flow means that relating this to a temperature 
distribution is a major task. Therefore a system for measuring the 

actual temperature during heating is required.
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1.2.1.3 Invasive temperature monitoring 
The method used to monitor nearly all clinical hyperthermia 

treatments is by implantation of invasive temperature probes [17]. 

The use of invasive methods for this form of therapy is undesirable 

due to the excessive patient trauma involved. As outlined in the 

previous section, temperature monitoring throughout the heated 

region is necessary. Invasive probes, such as thermocouples, are 

only capable of measuring point temperatures. Large temperature 

gradients can be shown to exist within the tumour and within normal 

tissue during heating. Therefore, for successful treatment 

monitoring a large number of point measurements may be necessary. 

Invasive probes may also interfere with the treatment field. 

Implanted thermocouples interact with applied electromagnetic 

field, causing excess heating at the thermocouple site. 

Non-perturbing invasive probes are available, but are very 

expensive.

1.2.1.4 The suitability of microwave radiometry for 

hyperthermia monitoring
From the above discussion and by examining the collective 

experience of workers in hyperthermia, some desirable features of a 
practical temperature monitoring system can be listed:

The system should be non-invasive.
- The measurements should be insensitive to secondary changes 

which may occur due to the heating process; for example, 

changes in the dielectric properties of tissue due to changes 

in blood flow.
The system should be passive to the heating field.

The resolution of the system should be better than:-
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0.1°C temperature sensitivity 

1 sec response time 
1 cm spatial resolution.

The system should be capable of measuring temperatures at 

depth.

The ideal system for monitoring hyperthermia treatment would 

be tomographic, providing a temperature map throughout the 
heated volume.

Microwave radiometry is a non-invasive technique which directly 

measures noise temperature. Other proposed monitoring techniques 

[18, 19, 20] measure quantities (eg dielectric properties, proton 

spin relaxation time) which are a function of temperature, but

microwave radioraetry is less susceptible to changes in tissue 

properties and blood perfusion which occur during heating. 

However, since changes in blood flow and tissue dielectric

properties alter the local emissivity, attentuation and scattering 

characteristics of the medium, the technique cannot be totally 

immune to these factors. Microwave radiometry should be compatible 

with most heating systems, however, some RF hyperthermia systems 
will cause interaction with the metallic radiometer components.

This difficulty should not arise where microwave heating with

contacting applicators leads to minimal stray radiation effects. A 
temperature resolution of 0.1°C for a one second response time can 
be achieved for state-of-the-art radiometers. The spatial 

resolution depends on the receiving frequency, on the size of the 

antenna probe and on the tissue structure. The depth in tissue 

from which useful information can be received is also highly 
dependent on these factors.

. . . "  !: £ .. m m
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The idea of using microwave radiometry to control hyperthermia 

treatment has been under discussion for some time [21]. Systems 

have been designed to perform heating and temperature measurement 

at different frequencies to avoid intermodulation. An alternative 

method is to perform the heating at the centre frequency of the 
radiometer [22, 23], with the advantage that the same antenna may 

be used for both heating and monitoring. A system that employs 

microwave radiometers at two frequencies is available commercially 

[24]. Clinical results [24, 25] using this system have shown good 

correlation between radiometrically measured temperatures and those 

measured with implanted thermocouples. The conclusion is that 

microwave radiometry shows promise as a method of non-invasively 

controlling hyperthermia treatments.

1.2.2 Applications of microwave radiometry in medical 

diagnosis
1.2.2.1 Detection of thermal Irregularities in the 

human body

The body’s thermoregulatory system attempts to maintain the 

whole body at a constant temperature. Any local regions of high or 

low temperature, particularly asymmetry between left and right 

regions of the body, may be indicative of some pathological 

disorder; a region of abnormally high metabolic activity or a 
breakdown in the thermoregulatory system. Cancer is one of the 

causes of high metabolic activity in a localised area of the body. 

An active tumour growth is invariably hotter than the surrounding 
tissue [26] (Fig 1.4). Another cause may be inflammation of 
tissue, such as arthritis or appendicitis. Stenosis or blockage of 

vascular system may result in a localised raised temperature around

. ■ ' ' / - . . ■



the source of the obstruction, such as in deep vein thromboses [27] 

(a serious cause of pulmonary embolism), or large regions of lower 

temperature in the case of an arterial occlusion. Spinal disorders 

are often associated with abnormal temperature in peripheral areas 

of the body [28] resulting from entrapment of the nerve roots. A 
means of imaging temperature distributions and measuring local 

temperatures within the body could give valuable information to 

improve diagnosis of these conditions.

Fig. 1.4 Tumour and blood temperatures in breast 
carcinomas (reproduced from [26]).

1.2.2.2 Infra-red thermography

For nearly thirty years the technique of infra-red 
thermography has been applied extensively to the imaging of thermal 

distribution. The Infra-red region of the electromagnetic spectrum 

was popular for two reasons. Over most of the infra-red spectrum, 

as in the microwave region, emitted power is proportional to the 
body temperature. Also, at body temperature most power is emitted 

in the infra-red region, a factor of 108 times the power emitted at
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microwave frequencies. Infra-red thermography, however, has many 

disadvantages. The small depth (~ pm) from which detectable 

infra-red radiation is emitted from tissue means that only skin 

temperature may be measured. The source of these raised temper­

atures in the body is often located at depth. A consequence of 
this is that infra-red techniques only measure temperatures that 

are referred to the skin surface by non-radiative mechanisms. Two 

mechanisms chiefly responsible are thermal conduction in over-lying 

tissues and convection via blood flow. Consider the case of a

tumour buried deep within the breast. The capacity for heat

transfer by convection through large blood vessels is up to one 

hundred times higher than by tissue conduction and capillary

convection. Heat referred to the skin surface by conduction gives 

a raised temperature which is a reasonable indication as to the 

location of the tumour. However, a vein passing close to the 

tumour and then to the skin surface can produce a substantially 

hotter region at a position on the skin remote from the tumour 

site. The relative contributions of these transfer processes

depends on tissue vascularity which may be significantly different 
for varying breast tissues, particularly under malignant 

conditions. In addition, changes in ambient temperature severely 
affect skin temperatures and may result in erroneous infra-red 

measurements. In view of these problems, the interpretation of 

infra-red thermograms is difficult and contains many uncertainties. 

Although some criteria for their interpretation can be established 

[29] the limitations of the technique have been recognised [30, 31] 

leading to reduced clinical use in the detection of tumours. The 
problems with detection of tumours are equally applicable to 

diagnosis of other conditions.
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1.2.2.3 The suitability of microwave radiometry as a
diagnostic Instrument

Considering the limitations of infra-red measurement, the

major requirements for a new technique for detecting thermal 

abnormalities are that temperatures at depth should be measurable 

directly by non-invasive means. Microwave radiometry should 

provide these desired features. The function of the radiometer,

and therefore the performance requirements, are similar to those 

for hyperthermia monitoring. However, some differences should be 

noted. A major consideration is the transient nature of 

hyperthermia induced hot-spots in comparison to a thermal 

irregularity which results in a constant temperature distribution. 

The fast data collection times which are required for treatment 

monitoring are therefore not fundamental to diagnostic 

applications. The only constraint imposed is the time during which 

a patient can remain relatively still and comfortable. Tumour
temperatures typically range from 1°C to 3°C above body temperature

[32, 33] compared to hot-spots of between 5°C and 10°C during

hyperthermia. In addition, the extent of the hot area is usually 

smaller. As a consequence, the differential signal which the 

radiometer is required to measure is substantially lower. However, 

accuracy in absolute terms is not essential; in order to detect a 

thermal abnormality, a temperature change only need be recognised.
The main application for microwave radiometry has been found 

in the detection of breast cancer. The technique could be 

particularly suitable for the screening of patients because of its

non--invasive and non-hazardous nature. Results, using a
non--contacting scanning radiometer system [34] at 30 GHz and

68 GHz, showed that the deeper detection potential at these



frequencies allowed diagnosis of breast disease which was not 
evident from infra-red measurements. A clinical study of over 5000 

women was carried out [35] by measuring with a 3.3 GHz contacting 

system, symmetrical points in the left and right breasts. Analysis 

of the results, by applying numerical criteria, determined whether 

the subject had cancer. The detection rate was compared to those 

of infra-red thermography and xeromammography and the conclusions 

drawn were that the detection rate by microwave radiometry was not 

significantly better than that by infra-red thermography, although 

the types of tumours which could be detected by the two methods 

were often different. Xeromammography gave the best results, but 

it was found that the combination of infra-red and microwave 

radioraetry, followed up in the case of positive results by 

xeromammography, gave equally good diagnostic results, and led to 

less women being exposed to X-rays. Other studies [36, 37]

concluded that microwave radiometry showed promise in the detection 

of primary and recurrent breast cancer and lymphoma. They also 

noted that several tumours were detected which could not be 

detected by xeromammography. Similar general conclusions have been 

reached [38, 39, 40] for the detection of brain, thyroid and bone 

tumours. Clinical assessment of microwave radiometry for medical 

diagnosis is continuing but fewer results have been published since 4 

1982.
In conclusion, microwave radiometry has a role to play in the 

detection of cancer and other disease with associated thermal 

changes in tissue. Further work is still required to assess and 

interpret results.
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1.3 Principal investigators in microwave thermography

In this section the work of the principal investigators in 

microwave radiometry is detailed. The discussion concentrates on 

the design of the radiometers that have been built at the different 

research centres and on variations on the basic design of microwave 

radioraetry systems.

1.3.1 Radiometry Systems

The five types of radiometry system which are in use (or have 

been proposed) at present are:-

(i) Comparison type with contacting antenna

(ii) Conparison type with non-contacting antenna

(iii) Multi-frequency radiometer

(iv) Two-probe correlation radiometer

(v) Aperture synthesis thermography system (proposed)

A brief description of each of these systems will now be presented, 

with an outline of their respective advantages. A more detailed 

description can be found under the appropriate Research Centre 

sub-section.

(i) Comparison type with contacting antenna

The comparison type radiometer is based on a design by Dicke 
[5]. This design is most common for medical applications and most 

other radiometer types are refinements of this basic system. 
Many recent radiometer designs therefore employ a feedback/noise 

injection method, known as a self-balancing or null-balancing 

circuit, to compensate for variations in tissue emlssivity. A 

comparison type radiometer and a feedback/noise injection system 
have been designed and built during the course of this work and a 

full description of both can be found in Chapter 5.
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(ii) The comparison type with non-contacting antenna

The comparison method of receiving is again incorporated but a 
non-contacting elliptical dish antenna is employed to collect the 

microwave signal. This design allows non-contacting scanning of 

the patient to produce a two dimensional map of the temperature 

distribution close to the surface.

(iii) The multi-frequency radiometer

Measurements by a multi-frequency radiometer are used to 

provide more data regarding the distribution of temperature with 

depth into tissue. With reference to figure 1.2, the depth of 

penetration of radiation into tissue and therefore the depth from 

which temperature information can be gathered decreases as the 

radiation frequency increases. By taking radiometric temperature 

measurements at several frequencies a proportional amount of depth 

information may be collated.

(iv) The two probe correlation radiometer
The technique of correlation radiometry allows greater lateral 

resolution in the location of the temperature gradients. The 

correlation radiometer measures the correlation function between 

signals received by two probes placed close to each other on the 

tissue surface. This correlation signal is a function not only of 

the signal amplitude but also of the phase. As such, the system is 

sensitive to signals which originate in the volume coupled to both 

probes and is insensitive to signals from volumes coupled to only 

one probe. Another interesting feature is that the technique is 
unable to detect changes in a uniform temperature but is highly 

sensitive to temperature gradients. This technique therefore

m m
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collects different, but complementary, information to that obtained 
by standard microwave radiometry.

(v) The aperture synthesis thermography system

Aperture synthesis is a technique which has been used in radio 

astronomy for some years. A system has been recently proposed 

whereby this technique can be applied to measurement of temperature 

distribution in tissue. In theory this system should allow much 

greater resolution and smaller measurement times for data 

acquisition over large areas of the body.

1.3.2 Principal centres of research
USA

Massachusetts Institute of Technology (MIT), Cambridge, MA

Workers at MIT were the first to apply the technique of 
microwave radiometry, which had been used for many years in radio 

astronomy, to the measurement of subcutaneous tissue temperature 

distributions [1]. The first radiometer to be built at MIT was a

3.3 GHz comparison type. The antennas were contacting open ended 

waveguide, filled with a low loss dielectric to reduce aperture 

dimensions. The radiometer had no means of compensating for 
changes in matching between the probe and tissue. Radiometers 

working at 1.3 GHz and 6 GHz were also constructed. The effects of 

penetration depth in different tissues, probe spatial resolution 

and tissue layers were analysed by simplified calculations (see 

#4.1). Much of their published work concerns the clinical 

application of the radiometer systems to the detection of breast 
cancer [41, 35].
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Radiometers developed in Denver, Colorado use remote 

elliptical dish antennas and operate at 30 GHz, 68 GHz [34], and 

10 GHz [42]. A comparison type radiometer is again used as a 

receiver. The radiometer systems were designed for non-contacting 

measurements from patients by scanning the dish in a series of 

horizontal lines over the body. This type of system, termed a

’millimeter wavelength scanner', would seem to be a compromise in 

terms of spatial resolution and penetration depth between the infra 

red systems and the more common centimetre wavelength microwave 

radiometers.

Microwave Associates, Burlington, MA

The Microwave Associates radiometer [36] uses the comparison 

design, with no compensation for emissivity variation, working at a 

centre frequency of 4.7 GHz. Instead of the common superhetrodyne 
system, involving a local oscillator and intermediate frequency 

(IF) amplification, the radiometer uses square law detection at 

radio frequencies (RF). The antenna is a dielectrically filled 

contacting waveguide.
Limited clinical studies were carried out on cancer patients 

and these detection rates compared with those for xeromammography. 

The radiometer can also be operated in conjunction with low power 
microwave heating at 1.6 GHz, which enhances the temperature 

difference of the tumour over that of the surrounding tissue, 

giving increased detection potential.

University of Colorado
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RCA Laboratories, Princeton, NJ

A radiometer developed at the RCA Laboratories has been 

designed with a feedback/noise injection control system, allowing 

conversion to a self-balancing type, working at a centre frequency 

of 2.45 GHz [23]. The radiometer usually employs a dielectrically 

filled contacting waveguide for the antenna but has also been used 

with both microstrip and coaxial line antennas, which were 

developed for use with a 2.45 GHz hyperthermia system. The

radiometer is used for the control of hyperthermia treatment by two 

methods. If hyperthermia at 2.45 GHz is induced a switching system 

allows the same antenna to be used for temperature sensing. When 

lower frequency hyperthermia is used, the applicator must be 

removed and the radiometer probe placed in contact with the heated 

volume.

A dual frequency radiometer system is also being developed at 

RCA. A suggested application for this equipment is the diagnosis 

of appendicitis. The system may also be used to control a scanning 

hyperthermia system [43].

Tufts University, Medford, MA
A correlation radiometer has been developed [44] which employs 

amplitude modulation and IF correlation. Experiments have been 

performed in free space using two open ended waveguides as antennas 

to measure the signal from a small heat source.

Great Britain 
University of Glasgow

Work at the University of Glasgow has concentrated upon 

designing a microwave radiometer suitable for clinical use.
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Different radiometer designs and individual components have been 
examined [45] in terms of performance, cost and portability to 

provide a system which is easy to use by staff in a hospital ward. 

A comparison radiometer, working at a centre frequency of 3.2 GHz, 
has been developed which uses a dielectrically filled circular 
contacting waveguide antenna. Analysis of the pre-amplification 

circuit specifications has been performed [46] to estimate and 

reduce resulting measurement errors and limited clinical tests have 

been carried out [4].

University of Leeds

A comparison radiometer utilising a non-contacting dish 
antenna and operating at a centre frequency of 10 GHz has been 

built in Leeds [47]. The spatial resolution of this device was 

examined in detail and signal processing techniques implemented to 

improve the final image. Thermographic scans of patients showed 

some success in diagnosing arterial obstructions in peripheral 

limbs.

University of Sheffield
Research reported in this thesis.

France
Université des Sciences et Techniques de Lille

One of the most prolific teams working in the field of 

microwave radiometry has been that based at the University of 
Lille. They have built self-balancing radiometers working at 
centre frequencies of 9 GHz and 3 GHz. The antennas are mainly 
rectangular dielectrically filled contacting waveguides but
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circular waveguide and microstrip microslot antennas [48] have also 

been used. Clinical studies carried out with these radiometers 

have included measurements of muscle heating during exercise [40] 

and detection of breast, thyroid, cerebral and bone tumours [39].

Any losses or reflections in the front end components of a 
radiometer seriously degrade the temperature resolution. Methods 

of optimising the transition between waveguide antenna and the 

coaxial cable feeding the radiometer [49], and minimising the 

reflection at the antenna/tissue interface [50] have been studied. 

Important work has also been reported [51] for modelling the 

radiation patterns of rectangular waveguide probes. This has led 

to a method for interpretation of radiometric scans and recognition 
of thermal patterns in homogeneous media (see # 1.4).

More recent developments have concentrated upon improvements 

in technology to widen the capabilities of microwave radioraetry. A 

new radiometric system has been developed [52] which consists of a 

set of six probes arranged in a block, sequentially switched to a 

radiometer receiver. An image processing technique, based on 

knowledge of the probe radiation pattern, allows some improvement 
of spatial resolution.

The technique of correlation radiometry was originally applied 

to medical thermography in 1981 [53]. The correlation system built 

at Lille has two filled waveguide probes and employs phase 

modulation to measure the correlation function [54] of signals from 

thermal structures in a lossy medium. It has been reported that 

correlation radioraetry gives improved spatial resolution and may 
also provide some depth information. However, the. signal 
amplitudes are significantly lower than those measured with 

standard microwave radioraetry.
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Microwave radioraetry systems have also been developed, by the 

group at Lille, for the non-invasive control of hyperthermia 

treatment. Early studies [22] proposed a heating system operating 

at the centre frequency of the radiometer, using the same antenna 

as applicator and radiometer probe. This idea has been further 

developed [24] by the use of two radiometers at 3 GHz and 1.2 GHz 

to form a commercial system named "Hylcar" produced by ODAM. Work 

is now in progress [48] to use temperature measurements at two 

frequencies, plus a surface thermocouple measurement, to 

reconstruct the temperature depth profile and provide improved 

control over hyperthermia treatment.

Germany

Philips GmbH, Hamburg

Work at Philips has concentrated upon improving the 

measurement accuracy of the single probe radiometer. The design

for a null-balancing radiometer [55] has been reported and its 

performance compared with other null-balancing circuits. The 

initial system has been improved [3] to allow independent 

measurement of 'true* temperature (accounting for reflection 

coefficient) and emissivity. Further improvements [56] of the 
design have improved the receiver’s accuracy by allowing for gain 

fluctuations.
Radiometers have been built to these specifications at centre 

frequencies of 2 GHz and 11.7 GHz using dielectrically filled 

contacting rectangular and circular waveguides as the receiving

probe.
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The University of Erlangen Nürnberg have also developed [57] a 

modified null-balancing radiometer working around 4 GHz which 

simultaneously measures the 'true’ temperatures and emissivity of 

the body. Some theoretical work [58] has also been carried out to 

invert multi-frequency data for reconstruction of temperature 

profiles in homogeneous media.

Max Planck Institut für Radioastronomie

A new system has been proposed [59, 60] that applies the 

technique of aperture synthesis, a technique widely used in 

radioastronomy, to measure thermal signals from the body. By this 

technique, a large single antenna is synthesised by many small 

antennas. The phase and amplitude received by each of these

antennas is measured relative to a reference antenna by measuring 

the appropriate correlation function. Increased spatial resolution 

and reduced measurement time, compared with other radiometric 

techniques, are claimed. However, many technical and mathematical 

problems must be solved before this system becomes practical.

University of Bochum
Theoretical work has been carried out to study the propagation 

of microwaves through layered tissue structures and to invert 
simulated data to reconstruct temperature profiles [61]. Near 

field characteristics of contacing and non-contacting radiometer 

antennas have also been calculated. Experimental scanning using a 
dish antenna and radiometric measurements at 32 GHz and 90 GHz have 
provided some two dimensional maps of skin temperature [62].

University of Erlangen-Nürnberg
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Italy

Work began recently in Rome [63] to study theoretically the 

problem of radiation from a layered biological structure and 

inversion of simulated multifrequency data by analytical means. 

They propose [64] to build a radiometer with five frequency bands 

to validate their results.

University of Rome

1*4 The interpretation of radiometric measurements

The problem of interpretation of results is one which arises 

in most areas of science and medicine. For microwave radioraetry, 

the final data in pictorial, graphical or numerical form must be 

explained in terms of the temperature distribution existing within 

the measurement volume. One approach is to interpret results by 

applying the measurement technique to a clinical situation. This 
method was followed by Barrett, Edrich and others (see # 1.2.2). 

The radiometer measurements were compared to biopsy results and to 

other diagnostic methods. Experience in interpretation of 

radiometric results, in terms of whether a temperature irregularity 

was present, was accumulated from experience with many patients.

Although this research is valuable, it requires a 
complementary analytical approach. Detailed interpretation 

requires the physical processes involved and the characteristics of 
the measuring apparatus to be thoroughly understood. The clinical 

approach has limited value, for instance, in the control of 

hyperthermia treatment by radlometry. To meet the design criteria 

for a monitoring system, inversion of radiometric data to give 
absolute temperature values is required. If this cannot be 

achieved, measurement by thermocouple will always be necessary as a
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supplementary check. Even where absolute values are not required, 

as in the use of microwave radiometers as feedback devices to 

maintain a constant temperature during treatment, the volume from 

which temperature information is being collected must be known. In 
diagnosis, less severe requirements upon accuracy of interpretation 
are imposed. However, there are dangers in interpretation of 

clinical results with only limited knowledge of the capabilities of 

the measurement method.

The ultimate aim of the analytical approach to the inter­

pretation of radiometer measurements is the inverse process of 

reconstructing the temperature distribution In the underlying 

tissue from data taken on or above the skin surface. As a first 

stage in this inverse process, it is important that the forward 

propagation process is understood; that is, given a known thermal 

structure we should be able to predict a radiometric data set. 

This is a very complex electromagnetic problem and in turn involves 

an understanding of:

(a) the process of emission of microwave radiation,

(b) diffraction in a complicated dielectric structure,

(c) absorption in lossy tissue,
(d) the interaction of the emergent radiation with the 

measuring system (in this case the radiometer probe).

These processes have been studied extensively in the remote 
sensing of the earth [65, 66]. The applicable theory is that of 

radiative transfer.

Various workers have considered radiative transfer theory as 
applied to the calculation of the radiation reaching a radiometer 
from a biological medium. A full account of these studies can be
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found in Chapter 4. In order to find solutions to this electro­

magnetic problem, simplifications as to the dielectric structure, 
the temperature distribution, and the radiometer probe receiving 

characteristics are made. A common assumption is that of a 
homogeneous medium, which tends to be an over simplification of the 
real situation. A more realistic model is one which contains 

planar layering. Some models employ incoherent radiative transfer 

theory with which the partial coherence of emergent radiation, due 

to multiple reflections within layers, cannot be taken into

account. Other workers assume a dielectric structure and

temperature distribution which varies only with depth, and a 

radiometer probe which essentially receives plane waves, reducing 

the problem to a one dimensional model.

In this thesis, a solution is sought for the noise temperature 

received from a contacting aperture antenna, through a medium 

containing any number of layers and which has a given three 

dimensional temperature distribution. The solution is formulated 

by using a coherent radiative transfer approach. In this

formulation, a number of approximations have been employed which 
will be discussed as they are introduced into the theory. The

first stage is to calculate the receiving characteristics of a 

contacting radiometer probe. The receiving pattern of an antenna 

can be related directly to its characteristic radiation pattern 
when excited by a monochromatic signal. A means of calculating the 

radiation pattern of an aperture antenna in contact with a lossy 

layered medium is given in Chapter 2. The method by which the

radiation pattern can be employed in calculating the measured
temperature from a radiometer is described in Chapter 4.



Chapter 2

An incremental spectral diffraction method for predicting field 

patterns of contacting aperture antennas radiating Into lossy 

layered media

2.1 Prediction of the field patterns of radiating aperture antennas in 
tissue

2.2 Spectral diffraction in homogeneous media

2.2.1 Theory for homogeneous media

2.2.2 Analysis of a wavefront as an angular spectrum of plane 
waves

2.2.3 The spectral filter

2.3 Incremental spectral diffraction in layered structures

2.4 Application of the incremental spectral diffraction method to the 
prediction of field patterns of tissue-contacting aperture 
antennas

2.5 Computer implementation of the field prediction method
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2.1 Prediction of the field patterns of radiating aperture antennas in
contact with tissue

Techniques for predicting field patterns of aperture antennas 

radiating into tissue have previously been developed both for the 

analysis of microwave radiometric measurements and to determine heating 
patterns for radio-frequency and microwave hyperthermia. Pioneering 

work was carried out by Guy [67], in the field of hyperthermia, who 

applied a Fourier transform solution [68, 69] to the problem of

waveguide apertures radiating into bi-layered biological media. The 

solution was validated by comparing predicted heating patterns with 

measurements on phantoms [70]. Turner and Kumar [71] considered an 

aperture as a set of dipole sources to calculate the power deposition 

rate in homogeneous tissue delivered by elements of an annular array 

applicator. Theoretical and experimental studies were carried out by 

Cheung et al [72] to determine the effect of varying waveguide aperture 

size on the heat deposition in a homogeneous tissue-simulating liquid.

For studies of microwave radiometric signals, Robillard [50] 

employed two different techniques to calculate approximately the field 

pattern of a rectangular waveguide radiating into a homogeneous medium. 
The first model approximated the rectangular waveguide as a parallel 

plate waveguide, the fields being calculated by a Green's function 
method. In the second solution, the homogeneous half-space medium was 

modelled by a second waveguide of much larger dimensions, allowing the 
problem to be reduced to that of a waveguide discontinuity.

Propagation into multi-layer structures presents a considerable 

challenge for theoretical modelling. An analysis employing the dyadic 
Green’s function has been suggested recently by Teodoridis et al [73]. 
In this chapter, a computationally efficient method employing a Fourier 

transform solution is proposed which enables the prediction of field
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patterns in multi-layer biological media produced by contacting 

waveguide apertures.

2.2 Spectral diffraction in homogeneous media

2.2.1 Theory for homogeneous media
The problem to be addressed in this section is that of describing 

the propagation of a scalar wavefront in an isotropic homogeneous 

medium with finite conductivity. The solution will eventually be 

applied to a planar aperture radiating into a layered lossy medium. 

Therefore the requirement is, given the field distribution on a plane, 

to determine the field on any parallel plane in the medium. The 

solution is formulated by employing scalar spectral diffraction theory 

[74, 75], and analysing the wavefront as an angular spectrum of plane 

waves [76].

Fig. 2.1 Co-ordinate system for plane to plane propagation 
of a wavefront .



35

With reference to Fig 2.1, a scalar field distribution u(x,y;zL)) 
exists on the plane z = 0 and is to be propagated to a parallel plane z 

= z (where z >0). It is assumed that all sources of the field areJ j
in the region z < 0 so that, in the region z > 0, u satisfies the

homogeneous scalar wave equation

V2u + k2u = 0  (2.1)

where k is the wave number k = —  (e )1/2, X is the free space
X

wavelength and e is the complex permittivity of the mediumc
e - e* + je". c J

A general solution to equation 2.1 in the region z > 0 has the 

form of a linear combination of plane wave functions [69, 74]

u(x,y;z) = // A(p,q) exp[jk(px + qy + mz)] dp dq (2.2)
— CD

where ra = (1 - p2 - q2)l/2, and P> 9» ra are the direction cosines 

of the propagation constant or wave number k for each plane wave

2718 2itsX Vfunction. Making the substitution p » ----, q » ---
k k

(2.3)

2 +® 2ics 2 ns 2its x 2ns y
n(x,y;z) - // a (--------^)exp[jk(— —  + — + mz) ]dsxdBy (2.4)

k2

, 2 +°° 2ns 2ns
- j j a (---” ,---^)exp( jkraz)exp[ j2n(sxx + s y) ] dsx ds (2.5)

k2 k k ' y—CO
The two-dimensional Fourier transform pair for u over an x-y plane at z 
is

4*00

U(s ,s ;z) - If u(x,y;z)exp[-j2n(s x + s y)] dx dy (2.6) x y x y
4-00

u(x,y;z) = // U(sx ,sy;z)expf j2it(sxx + ] ds^ ds^ (2.7)



Comparing (2.7) with (2.5)

U(s ,s ;z) x* y
2 2-1X3 2ixs
A(----,---exp(jkmz) (2 .8 )

Using (2.8) and (2.6) for the plane z = 0
+00

A(p,q) = — “ // u0(x0,y0; z0) exp[-jk(pxQ + qy0)] dxQ dyQ (2.9) 
4-tx2

The field in the plane z = z^ is obtained by substituting for A(p,q)

into (2.2)

“j 4ix2

+ 0 0

u^(x4,y,; Z4) = // dp dq exp[jk(pXj + qy^ + raz ) ]

+oo
// dx0 dy0 u0(x0,y0) exp[-jk(pxQ + qy0)] (2.10)

Interchanging the order of integration and letting
+ 0 3,2 ^

h 1°^X j~ X °*y j“y ° ; z j )  = ~  / /  e x p { j k [ p ( X j - x0) + q ( y j - y 0)+tnZj]}dpdq (2 .11) 

gives

u / x ^ y j z p  = //u0(x0,y0;z0)-hl0(xJ-x0,yJ-y0,zJ) dx0 dyQ (2.12)j j’-j j
Thus the field u in the plane z is described in terms of the field u

j j
on the plane z = 0 by a convolution with the kernel h 0.J1

Taking the two-dimensional Fourier transform of (2.12) and using 

the convolution theorem [77],

Uj(sx>sy;zj) = U0(8x>sy;z0) H jO ^ V V V (2.13)

where
H 0(s ,s ,z ) » exp[jkmzjj x y j j (2.14)

2-1X8 o 27X8 2and m = [! *)" - (-- il) ]l/2.
k k

The field on zj >uj(xj ) *z j ̂ is obtaine<i by taking the inverse Fourier
transform of U,(s ,s ;z.).j x* y* y

■

'■
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2.2.2 Analysis of a wavefront as an angular spectrum of plane

waves
a) Lossless media

Initially, the analysis of the wavefront as an angular spectrum of

plane waves is carried out for a lossless medium where k » — , X is
X m m

the wavelength In the medium. With reference to equation 2.8, on the

plane z = 0, each Fourier coefficient U(s ,s ) can be associated with ax y
plane wave component A(p,q) propagating with direction cosines [74].

p = X s , q = X s , m = [l -(X s )2 ~(X s )2]1/2 (2.15)m x m y  L m x  m y  J
The plane wave spectrum contains two types of waves.

For the case ( X s ) 2 + ( X s ) 2 < l  the waves are homogeneous, m x m y
propagating without attenuation at angles to the z axis in the range 

( Tt/2 < 0 < tx/2) (see Fig 2.2a)

cosò = m = [l ~(X s )2 (X s )2]1/2m x m y
A homogeneous wave is defined as one in which the planes of constant 

amplitude (amplitude fronts) and the planes of constant phase (phase 
fronts) coincide. In addition, the electric and magnetic field vectors 

are perpendicular to the direction of propagation and so homogeneous 

plane waves are transverse electromagnetic (TEM). Each plane wave

propagates from the plane z = 0 to the plane z = z^, its phase and

amplitude being modified by the filter H^0 (equation 2.14).

exp j ~  z^ CO80
m

which describes a plane wave propagating in a lossless medium with 
, 2n for a distance z.cosQ.J

m
For the case (Xs )2 + ( X s  )2 > 1, the square root must be chosen m x m y

iuch that [l “(^msx)2 ~(\nsy)2l1/2 “ J[(Xm8x)2 +(\n8y)2 ~ X]U 2  * The

. V '■ .
PISSIS®
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Fig. 2.2a Co-ordinate system for plane to plane propagation 
of a homogeneous plane wave
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phase

Fig. 2.2b Planes of constant phase and constant amplitude 
for an inhomogeneous plane wave in a lossless 
medium



38

waves are inhomogeneous, with propagation vectors lying in all 
directions perpendicular to the z axis. Their behaviour in the z 

direction is given by

m
The waves are evanescent and strongly attentuated in the z 

direction. The planes of constant amplitude make an angle 4) = tc/2 with 

the planes of constant phase (see Fig 2.2b).

b) Lossy media

For a lossy medium, k is complex. The Fourier coefficients can 

again be associated with plane wave components A(p,q) propagating with 

complex direction cosines
2X8 2 It 8 2xs o 2xs o

p - X» yq - ---*t-, m - [i -(— *) ‘ - (:— *) i1/2 (2.16)
k k k k

Examining the propagation of plane waves in a lossy medium,

writing the plane wave function as exp(jk*_r), £ - (x,y,z) and

i  - JSi +jjs2>
exp( jk*_r) = exp( jkL*£ - k_2«r)

Both homogeneous and inhomogeneous plane waves can exist in a 

lossy medium. A homogeneous plane wave is defined when k.̂ and k2 have 

the same direction; that is the wave propagates and attenuates in the 

same direction. In this situation, the phase and amplitude fronts 

coincide and the wave is TEM to the direction of propagation. An 

inhomogeneous plane wave exists when _k̂  and Jk2 do not have the same 
direction. The planes of constant phase are at an angle <J> to the 

planes of constant amplitude where 0 < <t> < n/2 (Fig 2.2c) and the wave 

is non TEM to the direction of propagation.
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planes of constant 
phase

-1

Fig. 2.2c Planes of constant phase and constant amplitude
for an inhomogeneous plane wave in a lossy medium

For spectral diffraction, the plane wave components are, in 

general, inhomogeneous waves. The real part of the direction cosines 

(equation 2.16) is associated with the direction that the phase 

propagator makes with the z axis, and the imaginary part Ls

associated with the angle <J> between k^ and k2*
The propagation process is described by

11/0
exp

2xs 9 2xs 2
jk[i - H * ) 2 - (— *) ]l/a 

k k 'J
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2.2.3 The spectral filter
It has been established that a wavefront in a homogeneous medium 

can be analysed as an angular spectrum of plane waves. The propagation 

process in spectral diffraction theory, as given by equation (2.13), is 

equivalent to applying a spectral filter to this angular spectrum, the 

filter being given by exp[jkmz].

In the next section, a transmission line analogue for plane waves 

is applied to each plane wave component in order to describe 

propagation in heterogeneous lossy media. This analogue requires

that the waves are plane TEM waves, and therefore homogeneous. In 

order that the transmission line analogue can be applied in conjunction 

with lossy media, an approximation to the spectral filter has been 

formulated by combining the solutions for lossy and lossless media. 

The spectral filter becomes

H = exp[jk [l - U msx)2 - < V y>2F /2 z] <2.17)

where k = —  (l + j — )1/2 is complex. Assuming this form of the
X e*m

filter, the wavefront is decomposed into its plane wave components as 

If the medium were lossless, but each component is propagated taking 

into account the attenuating terra.
For the case (X s )2 + (X s )2 < 1, the direction cosines of the m x m y

propagation vector are real and therefore the plane waves can be
considered to be homogeneous and thus TEM. Attenuation Is included for

each component by using the complex propagation constant. Where

(X s )2 + (X s )2 > 1, iti a lossless medium this part of the spectrum m x m y
contains evanescent waves, the planes of constant phase forming an 
angle <f> = it/2 with the planes of constant amplitude. These waves 
cannot be represented in the transmission line analogue for plane waves 
and are therefore excluded from the spectrum when layers are present.
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2.3 Incremental spectral diffraction in layered structures

The spectral diffraction technique presented in the previous 

section describes the propagation of a scalar field in homogeneous 

lossy media. A realistic model for the human body must include 

multi-layered structuring. The problem of an aperture radiating into a 

bi-layered structure of fat overlying a muscle half-space has 

been investigated previously [67], but the complexity of the problem 

increases when more than one boundary is considered. In a structure 

consisting of three or more media, multiple reflections from boundaries 

leads to a situation where the field value at any point in the 

structure depends on the fields existing at every other point. This 

problem is now addressed by extending the incremental spectral 

diffraction approach for conducting scatterers [78, 79] to multilayer 

dielectrics. The assumption of the existence of a spectrum of 

homogeneous plane waves (// 2.1.3) forms the basis for this analysis.

Before generalisation to a medium containing many dielectric 

layers, the incremental diffraction method is ¿ipplied to a single 

boundary. Assuming, for the moment, that total transmission occurs at 

the boundary, propagation of the wavefront across the boundary can be 
implemented in the spectral diffraction process simply by altering the 

propagation filter to describe propagation in the new medium. The 

propagation filter in the media is

exp[jk1>2[l - (X 2SX>2 ' 2ay)2l1/2 2.|i

where A is the wavelength in the medium A ra
Each Fourier

(e ’)1/2
component can be associated with a plane wave propagating at an angle 0 
to the normal to the boundary (Fig 2.3) where

COS0 -  [ X -  (— ------)2 -  (—
l«2 1 (e’i 2)1/2 2>» *

211/2
1/2

)21
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Fig. 2.3 Refraction of a plane wave at a dielectric boundary

For each of these plane wave components, the ratio
sin01 (e'2)17 2

- - - =3 " -

sin0^ e *l>17 2
which is Snell* s law for lossless media and is applicable to any number 
of boundaries between dielectrics« The assumption of a set of plane 

wave components and the method of obtaining these components for a 

homogeneous medium as described in section 2.1.3 can therefore be 

applied to a structure containing dielectric layers. This allows 

propagation of a wavefront through a layered structure to be carried 

out by the simpler propagation of plane waves.
In reality, part of the wavefront is reflected and part is 

transmitted at each boundary. This problem can be considered in terras 

of reflection and transmission of the individual plane wave components. 

Associated with any boundary there are two sets of reflection and 
transmission coefficients, one set for parallel and the other for 
perpendicular polarisation of the plane wave. The terras perpendicular

i1 "v f-'i' ■
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and parallel refer to the orientation of the electric field vector with 

respect to the plane containing the propagation vectors of the incident 

and reflected waves and the normal to the boundary. The spectral 

diffraction technique is a scalar process which does not yield the 

necessary information concerning the vector nature of the spectral 

components. An assumption must therefore be made about the

polarisation of the plane wave components. With reference to the model 

with which this process is to be implemented, that of an aperture 

antenna radiating into a lossy medium, it is assumed in the remainder 

of this analysis that all of the plane wave components in the Fourier 

domain have perpendicular polarisation. Parallel polarisation and 

depolarisation effects are not considered. The reason for this

particular choice is discussed in section 2.fy.
Consider a plane z = zQ in the first medium parallel to the

boundary, upon which a wavefront exists, propagating towards the

boundary. The field distribution upon the plane due to this wavefront

is u (x,y;zn)• In a steady state, the total field on the plane is the

sum of this forward propagating field distribution plus a field

distribution u (x,y;zQ), due to a backward propagating wavefront b
reflected from the boundary. Beginning with the forward propagating

wavefront u the incremental spectral diffraction technique is applied 
fl

in the following manner. uf is decomposed into it's Fourier 

components. Each component is propagated to the boundary, multiplied 
by the aproprlate Fresnel expression for the reflection coefficient 

[80] and propagated back to zQ, where an Inverse Fourier transform Is 

applied to the spectrum to give V  The field ufj at a plane In the 
second medium Is obtained from the Fourier spectrum existing at the 
boundary just Inside the first medium. Each Fourier component la
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multiplied by the appropriate transmission coefficient and the 

propagation filter altered for the new medium.

In a dielectric medium containing three or more dielectric media, 

the solution becomes more complex due to multiple reflections and 
transmissions. Prediction of the field distribution on a plane using 

Fresnel expressions would involved propagating the wavefronts back and 

forth between boundaries, multiplying the plane wave spectrum by the 

appropriate reflection and transmission coefficients each time until 

the field contributions were attenuated enough to be negligible. 

However, as the field is decomposed into homogeneous plane wave 

components, it is possible to apply the cascade transmission line 
analogue. Appendix 1 explains the cascade technique for transmission 

lines and its application to the problem of plane wave propagation 

through layers. The cascade technique provides a rapid calculation of 

the steady state reflection and transmission coefficients at each 

boundary taking into account multiple reflections and transmissions due 

to all other boundaries in the system. As an example, consider a 

dielectric medium containing three layers, with the upper and lower 

dielectric media semi-infinite (Fig 2.4). The figure shows multiple 
reflections and transmission at the upper and lower boundaries for a 

single plane wave. For the first boundary the cascade technique 

calculates a reflection coefficient which takes into account the 

multiple reflections from the lower boundary including the effects and 

attenuation In the second medium. It should be noted that all of the 

reflected components from a single incident plane wave which finally 

travels upwards in the first medium all travel in the same direction, 
so a single reflection coefficient is appropriate. The transmission 

coefficient for the first boundary takes into account all the 

contributions which reflect from the second boundary and are



Fig. 2.4 Ray paths for a single plane wave in a three layer 
dielectric medium
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re-reflected from the underside of the first boundary. Reflection and 
transmission coefficients for the second boundary similarly take Into 

account multiple reflections from the first boundary. The cascade 

technique is equally applicable to any number of boundaries. The
steady state reflection and transmission coefficients for any boundary 

and for any angle of incidence of a plane wave component can be readily 

calculated. The calculation of field distribution on any plane in the 

medium (fig 2.5) is carried out in the same way as for a two layer

medium, by addition of the forward and backward propagating field 

distributions, but employs the steady state reflection and transmission 

coefficients.

2.4 Application of the incremental spectral diffraction methodto the

prediction of field patterns of tissue-contactingaperture

antennas
The incremental spectral diffraction method described in the 

previous sections may be applied to the problem of finding the field

distribution due to an aperture antenna contacting a layered, lossy

medium. Although this method is equally applicable to any type of

contacting aperture antenna, for the purposes of these studies the 

particular case of open-ended waveguide was examined.

Consider the medium to be a half-space consisting of any number of 

layers with varying dielectric properties. In contact with the upper 
layer of this half-space is an open-ended waveguide, the aperture 

surrounded by an infinite flange (Fig 2.6). The Initial field to he 

propagated is that existing just inside the medium. This field is 

considered to be that of the l&10 wavtBm  10
contains only one polarisation of electric field, Ky . so in equation 

2.12, u0 becomes Ey0. The distribution of the y-polarised electric
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Fig. 2.6 Model for predicting field pattern of a contacting 
waveguide

field on any plane in the half space parallel to the aperture plane can 
then be calculated by performing the propagation process. A Fourier 

transform of E n is performed and the Fourier coefficients analysed asyU
a spectrum of homogeneous plane waves. The spectrum is propagated 

through the medium, the effects of attenuation, refraction and 

reflection being taken into account as described in the previous 

sections for each plane wave component. Finally, an inverse Fourier 
transform is performed to give the distribution of E^ on the desired

plane (u^ becomes E^).
If the aperture distribution is assumed to contain Ey components 

only, this scalar propagation process is directly applicable for 
homogeneous media. Propagation in the presence of a boundary, however, 

forces the vector nature of the plane wave spectrum to be considered
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because different reflection and transmission coefficients apply to 

different polarisations. Since no information is available from the 

spectral decomposition as to the polarisation of each plane wave 

component, a choice must be made as to the polarisation which is to be 
considered. The plane of greatest interest is the y = 0 plane or 

H-plane because, in Chapter 3, the field predictions are compared to 

measurements on this plane. The plane wave components propagating in 

the y = 0 plane possesses a y polarisation at the aperture. It can be 

assumed that when they propagate to the boundary this polarisation is 

retained and the waves have perpendicular polarisation with respect to 

their plane of incidence. Plane wave components propagating at an 

angle to the y = 0 plane may have, in general, field components in both 

polarisations. Therefore, when layers are present, the field 

predictions will be most accurate in the y = 0 plane.

2.5 Computer implementation of the field predictionimetho^

The algorithm for prediction of fields in layered structures is 

designed for efficient computer implementation on a VAX 11/730 machine, 

utilising the one-dimensional fast Fourier transform (FFT) NAG routine. 

Recently, the processing time has been reduced by use of a two 

dimensional FFT routine implemented on an array processor. Use of the 

FFTs requires the sampling criterion to be observed; in this case 

sampling at intervals in the space domain of less than W 2 .  where Xm 
is the wavelength in the medium. In fact, the space domain was 

oversampled by this criterion due to the need to represent the aperture 

sufficiently. In most of the results presented here, the sample
. , /-v /7 water and X /24 in resin) giving, for aspacing was 1 mm (X /7 in waterm

16 mm x 8 mm aperture, 128 samples to represent the aperture.
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The maximum capability for the VAX 11/730 machine allowed 

256 x 256 point complex arrays. Under the constraints of the limit on 
the array size, finer sampling in the space domain led to coarsei 

sampling in the Fourier domain. A convolution process occurs Ln the 

Fourier domain, and therefore only the central 128 x 128 points are 

uncontarainated by cyclic convolution.

A flow diagram of the multilayer propagation programme is given In 

Fig 2.7. The forward Fourier transform is performed only once. 

Operation on the angular spectrum of plane waves allows the propagation 

process to be carried out totally in the Fourier domain. Inverse 

Fourier transforms operate on the forward and backward propagating 
Plane wave spectrum to give the required field distribution at each 

plane parallel to the aperture plane.
Use of Fast Fourier transforms and of the incremental approach to 

propagation through layers leads to a computationally efficient 

algorithm. The cascade technique allows field predictions in 

structures with any number of layers with only small increase in 
computing time over the homogeneous case. For experimental validation, 

in the following chapters the prediction algorithm will be compared 

with measured results in structures containing only two layers.





Chapter 3

Measurement of radiometer probe field patterns in homogeneous and 

layered tissue-equivalent phantoms and comparison with computer 

simulations

3.1 Measurement of aperture field patterns in phantoms

3.1.1 Microwave measurement apparatus

3.1.2 Tissue-simulating phantom materials

3.1.3 Computer controlled scanning and data logging system

3.1.4 Details of the measurement procedure

3.2 Comparison of simulations with measurements in homogeneous and 
bi-layered media
3.2.1 Comparison in a homogeneous medium

3.2.2 Comparison in bi-layered media

3.2.3 Correspondence of simulation to experimental models

3.2.4 Discussion of results

3.3 Simulated field patterns of rectangular apertures radiating 
into lossy media



3.1 Measurement of aperture field patterns in phantoms

Measurement of the field patterns of aperture antennas 

radiating into lossy media has previously been carried out for 

evaluation of hyperthermia applicator performance [81] and 

radiometer probe reception characteristics [50]. A description of 

apparatus for mapping the near-field pattern of a waveguide 

applicator in simulated biological tissue was given by Gajda et al 

[82]. A computer-controlled measurement system constructed for 

this study incorporates some aspects of these previously reported 

methods and takes advantage of automated scanning for mapping of 

aperture radiation patterns in liquid or layered liquid/solid 

phantoms. With reference to Fig 3.1 a single frequency signal from 

a microwave source was fed into the antenna which was submerged in 

the lossy liquid. A short monopole received the radiated field in 

the liquid and the signal was measured by a network analyser. The 

analogue output from the network analyser was sampled by a BBC 

micro computer which logged the data at every measurement point. 
Scanning the monopole in a raster using the computer-controlled 

scanning frame gave a two dimensional map of the field pattern. 

The apparatus can be divided by function into three parts:

- Microwave measurement apparatus

- Phantom materials
- Computer-controlled scanning and data logging system.

3.1.1 Mlcrowave measurement apparatus
The microwave measurement apparatus is shown in Fig 3.1. The 

signal source fed the radiating waveguide antenna and also provided 
the reference for the network analyser. The antenna was the 

radiometer probe, a rectangular (16 mm x 8 mm) waveguide filled



field probe

Fig. 3.1 Apparatus for measurement of waveguide field pattern
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with a low loss ceramic of dielectric constant e' = 9 (see # 5.2). 
A monopole probe received the radiated field, and the signal level 

was measured by a Hewlett Packard network analyser, with a dynamic 

range of 60 dB. The monopole probe was made to a design used by 

Gajda et al [82] and consisted of a length of 2 mm outer diameter 

coaxial cable. A length of the inner conductor was exposed and 

bent perpendicular to the cable axis. This design was used to 

produce a small probe with a minimal perturbational effect on the 

radiated fields which receives one polarization of electric field 

and has a receiving pattern in the plane perpendicular to the 

received polarization which is isotropic.

3.1.2 Tissue-simulating phantom materials

Effective assessment of the interaction of microwaves with 

tissue necessitates the fabrication of phantoms with similar 

dielectric properties at microwave frequencies to the various 

tissue types. Dielectric properties of tissue have been reported 

at selected frequencies [83, 84]. Empirical relationships for

calculating tissue properties in between these frequencies have 

been given in [85] for frequencies between 0.01 and 17 GHz and in 

[86] for frequencies between 0.1 GHz and 3 GHz. With respect to 

dielectric properties, tissue can be divided into low water content 

tissue (fat and bone) and high water content tissue (muscle, brain 
etc). Phantom materials for use at various frequencies have been 

described both for high water content tissue [70, 82, 87] and for 

low water content tissue [70, 82, 88]. These phantom materials 
were designed for use in hyperthermia experiments. As a result, 
the dielectric properties of these materials are reported at ISM
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frequencies and no documentation exists for frequencies around 

5 GHz.
The field pattern measurement method requires a liquid medium. 

Because of its availability and well documented dielectric 

properties, water was chosen to give a high permittivity, high 
medium simulating muscle-type tissue. The dielectric properties at 

5 GHz for a range of temperatures are reported In [89] and 

reproduced graphically in Fig 3.2. The large variation of e with 

temperature allows measurement in a range of different conditions. 

The measurements were performed in a large temperature-controlled 

bath, adjustable In the range from room temperature to 60 °C to a

stability of better than 0.1 °C.
Dielectric layering in the phantom was achieved by use of a

solid resin material to simulate the properties of fat. The use of 

a liquid for this purpose, as suggested in [82], was rejected due

to problems of turbulence when scanning the probe which leads to
. , a cnUrl resin layer allows greatermixing of the liquids. A solid resin y

measurement precision but precludes measurement of Internal field

distributions. The material employed was described in [70]. Its
4 Mi t-he mixture of ingredients and the dielectric properties vary with the mixrur
r *.ue computer simulation, the values frequency. For the purposes or t '

at 5 GHz were taken to be e' ® 6.0, e =0.8.
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3.1.3 Computer controlled scanning and data logging system

Fig. 3.3 Computer controlled scanning and data logging system.

Fig 3.3 shows the computer controlled scanning frame and data 

logging system. The scanning frame consists of two orthogonally 

mounted scanners with a 70 cm screw thread, allowing movement to 

any position in a 50 cm x 50 cm horizontal plane to a positional 

accuracy of 0.1 mm. The frame is supported on a gantry which 
allows vertical positioning. The scanners are moved by two 5 amp 

stepper motors which are driven by controllable power supplies 

Incorporated into the top rack of the radiometer box. Control of 
the power supplies is achieved by the BBC micro-computer via its 

user port. The BBC computer also logs data which is collected at 

each sample point via its analogue input, and can process and 

display this data in graphical or pictorial form.
The scanning system has been designed for use in the 

measurement of field patterns and also for radiometric linear and 
tomographic scanning of temperature irregularities (chapters 6 and 
7). General purpose software has been assembled for these

functions, which is described in Appendix 2.
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3.1.A Details of the measurement procedure
The procedure for the measurement of field patterns in water 

was as follows:
The waveguide probe was clamped securely to the side of the 

water tank with the aperture facing out into the tank, the short 

dimension of the waveguide vertical. The monopole probe, which was 

held in a perspex jig to the moveable platform of the scanning
seeframe, was positioned in the centre of the aperture face (

3.4a). The scanning frame was carefully positioned so that the 

monopole moved parallel to the aperture face. The tank was filled 

with water and allowed to reach the desired temperature. The 

microwave measurement equipment was then set up, the monopole was 

rooved to its starting position and the scanning routine on the BBC 

computer initiated. Scanning and data logging were then fully

autoraatic.
for measurement of fields in layered media the procedure was 

similar to that described above. When the waveguide and monopole 

Probe were set up, a sheet of the resin fat—simulatI.ng material was 

attached to the tank and placed with the centre of one of its faces 
flush with the aperture face. With this method, there was always a 

thin layer of water between the waveguide filler and the resin. A 

second method of attaching the resin layer was also used. The 
waveguide aperture was dipped into the liquid resin mixture which 
Waa then allowed to set, ensuring a perfect contact between 

waveguide filler and resin. Field scans with both methods were 

compared and no discrepancy was noted. The tank was filled with 
Water and a long period allowed for temperature stabilisation of 

resin. The monopole was then scanned in the water on the far

-* ■ " . " ' ■ ; 1. i .. T'_-" *. »- ■ -..-l ‘ ’1 .* "-'J" 1 * £ f *• A ’’v i 1 J '• C*"' - Î*?,
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dielectric water 
€' = 9

i Configuration of waveguide and field probe 
for scanning in homogeneous water, showing 
initial setting-up position.

Fig. 3.Ab Field measurement set-up for bi-layered media.
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side of the resin, thus measuring the field in the second layer

this two layer structure (Fig 3.4b).
Errors arose in this experimental procedure due to the 

positioning of the monopole field probe. The initial position of 

the monopole, just in front of the centre of the waveguide, was set 

manually, and checked by ensuring that a field maximum occurs at 

this point. This method allowed an error in initial position of 

±0.5 mm. Some of the results consequently show a small lateral 

offset. The scanning frame is accurate in its movement to ±0.1 mm, 

ensuring greater precision in the relative position of scan 

points.
Another source of error arose due to the Interaction of the 

raonopole with the source. In order to assess the Importance of 

this interaction, the reflection coefficient of the waveguide 

antenna was measured as a function of monopole position. Variation 

was noted only when the monopole was less than 1 mm from 

aperture. Field measurements are therefore reported on y 

distances of greater than 1 nun from the apertu

3.2 Comparison of simulations wjUf j ^ a s u r j ^ ^ ^  

bi-layered media
3.2.1 Comparison in a homogeneous medium

. thP field pattern of the filledMeasurements were made of t
„ of water temperatures. Forwaveguide antenna in water over a <■ b

the following results, the monopole field probe was always directed

in the y direction and the measurements are compared with
nf the electric field only issimulations in which the y compon

, «Fa c»lve field amplitude relative to aconsidered* All measurements gi
nHann the simulations in each reference point. For direct compariso ,
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figure are normalized to this same reference point, 
indicated in each figure. With reference to Fig 3.4 two types of 

linear measurement are presented in this section.
linear scan in the x-z plane parallel to the x axis at a given 

distance from the aperture and is referred to as an X scan, 

second is a scan along the z axis beginning directly in front of

the centre of the aperture (a X scan).
Fig 3.5a and b show X scans at 5 GHz in water at 17 *C

compared to the equivalent simulations. Both curves are normalized

to their maximum values. Fig 3.5c and d show similar scans at a

water temperature of 35 °C and a frequency of 4.6 GHz. Figa 3.6a
. Apreeraent between simulation andand b show Z scan comparisons. Ag
, . pva ct the simulations slightlymeasurement is reasonable but not »

over-estimating the on-axis attenuation.
4 unrer vary with temperature [89].The dielectric properties of water y

. «r-miffivitv varies little, the 
Although the real part of the p

r.rh rising temperature (Fig 3.2). 
imaginary part falls rapidly with

v j a Attenuation can be seen in 
The effect of this fall on the on-axis

7 scans in water at three
Fig 3.7a which compares measured,VAo 1 7b) successfully predict this temperatures. Simulations (Fig

effect.

3.2.2 Comparison in bi-layeredMmedia
£ . water of the field pattern of

Measurements were performed
. water bi-layered structures

the waveguide in contact with resin
« A 5 mm to 10 mm and temperatures 

for resin thicknesses in the range
, , , c /iii. Fig 3.8a shows a comparison

from 17 °C to 37 °C at 4.6 and 5 GHz.
a field values for 3 X scans at 

between simulated and measured t
• f0r a 10 mm resin

different distances from the resin/water oi
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Fig 3.8b shows a single X scan at 1 mm from a 4.5 mm resin 
All comparisons showed reasonable agreement between 

simulation and measurement; however, In all cases consldere , 

simulations overestimated the lateral spread or width of the field

. conn in Fig 3.8a. In general pattern. The best agreement is seen b

. c a larupr resin thicknesses. Fig 3.9abetter agreement was found for Larger

_ -i— I fir nesses of 9 mm and A. 5 mm,compares measured curves for resin thic

showing a decrease in curve width as resin thickness decreases. In 

the simulation (Fig 3.9b) this narrowing can again be seen 
lesser extent.

n » „<m„iaMon curves is the presence of A notable feature of the siraulat

. vn uhirh cannot be seen on the a low amplitude side lobe structur ,

, . - (v\a 3.1 O') of a measuredmeasured results. A logarithmic P

, loxmrl reveals that side lobes are curve (6 mm from a 5 mm resin laye )

indeed present but at a much lower amplitude

. , n£ the resin material used in theValues for the permittivity or
i nf a range of values quoted in simulations were average values

in the chosen values, a [70]. Because of the uncertainty in
, . lf. ro show the effects on X-scansimulation study was carried out
. rpol and imaginary parts of the curve shapes of varying the rea.

„f nosolble values. Fig 3.11a shows the permittivity over a range of possidj.
i nf the permittivity. The lower theeffect of varying the real part o

... .Id.v «
l.v„ „ „ . H o .  U  permittivity d... net, do...... Pted»« • W

.... Thl8 fact Is encouraging because Itvariation in curve widths. lots
, hetween simulation and measurement is means that the good agreement betw

. resin permittivity values,not due to a purely fortuitous cho c
u rved by varying the imaginaryNo effect on curve width can be
3 lib). increasing the loss term the permittivity (Fig 3.11b;

layer.

layer.

Part of
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does however increase the attenuation in the resin which does not. 
show up in this figure due to normalization.

Fig 3.12 compares simulated and measured results for a Z scan 
beginning 1 mm from a 10 mm thick resin layer.

3.2.3 Correspondence of slmulatJU ^ j g ^ ^

The correspondence between the experimental models and that 
employed for simulations is now examined and possible explanations 

for the discrepancies which arise in the comparisons are discussed. 

The details of the field prediction theory were given in Chapter 2
. nnrninvpd can be found there, and a discussion of the assumptions p

, . . . . fhe theory in modellingThis section concerns the applicat

the experimental situation.

In the simulation model it is assumed that the distribution of 

field in the medium Just in front of the aperture is that of the
_ Air-filled waveguide radiatingdominant waveguide mode. l°r a
drtmhle approximation [90], which has Into free space this is a reasonab PP

, lossy media [91] and layeredalso been applied to radiation in
« nf lavers, wavefronts are Plasmas [68, 92]. In the presence of laye

, and disturb the aperturereflected from the boundari
a red that the validity of the assumptiondistribution. It is expected that

i of the medium becomes thinner andwill decrease as the first layer
less lossy.

n infinite flange around theThe simulation model assumes
d in the experiments had noaperture whereas the waveguide use

attributions inevitably exist back flange. Radiating current distribute
i v n  of the waveguide, giving additional fieldalong the outer wall of the w 5

, «.id. The effects of flanges on contributions In the very near nej.
w e  been examined in [93]. The good waveguide radiation patterns hav
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agreement between simulation and experiment very close to the 

aperture (z < X/7 in Fig 3.5a) suggests that these additional 

contributions are negligible at a small distance fLora the aperture. 

However, this discrepancy may have some effect when the waveguide 

radiates into less attenuative resin.
In the presence of a resin layer an additional problem occurs 

because the layer has an upper surface (see Fig 3.4b) which is

ignored in the simulation model. Multiple reflections will take 

place between the upper and lower resin/water boundaries. In fact, 

this upper boundary is rather a complex one, consisting of the 
resin/waveguide interface surrounded by a resin/water interface. 

Experiments have been performed to assess the influence of this

upper boundary on the field measurements. Fig 3.13 compares the 

results of two X-scans, both measured 1 mm from the lower

resin/water boundary (5.5 ram from the aperture). In both 

waveguide mouth is set into the resin. For curve A, the upper

resin/water boundary is in the same plane as the waveguide
t Pnr « 1 1  the results of //3.2.2» Foraperture, which is the case for all t

_ . .. 4o aot. further into the resin, the uppercurve B, the waveguide is set rurcn
resin/water boundary being a further 5 mm behind the aperture

Plane. Moving back the upper boundary has the effect of broadening
,, 4«rrpasing most those field valuesthe field pattern very slightly, increasing

measured outside the area directly in front of the aperture. 

Although this experiment does not allow exact quantification 

effect of the upper boundary, it does show that its influence is 

relatively small for the least resin thickness considered.
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3.2.4 Discussion of results
The results show good agreement between simulation and

measurement, although generally better at greater distances from

the aperture, as can clearly be seen in the results for bi layered

structures. For small resin thicknesses, the simulations show a

wider field pattern spread with a more pronounced side lobe

structure when compared to measurement. The discrepancy may be

accounted for by considering the limitations of the spectral

propagation/cascade algorithm. With reference to // 2.2 ,

propagating spectrum is cut off for (^sx ) * ^ Sy^  ̂ 1 * when
layers are present. Since the aperture represents a relatively

, Trit-ii resin, this curtailmentwide bandwidth source when in contact w
, , , , jm nt&her snectral components. Applicationleads to the loss of some higher specL
of the inverse Fourier transform thus gives a broader distribution

with a more pronounced sidelobe structure. The discrepancy is

reduced at greater distances since propagation in a lossy medium

acts as a low pass filter on the angular spectrum, heavily

attenuating these higher spectral components.
. in order to simplify theAssumptions which were ma

r ,.hp near field effects (eg fields simulation model lead to many of th
being neglected. This problem is due to currents on the waveguide) b g

oa its high permittivity and high loss not serious in water because its &
very close to the aperture. The confine these effects to an area y

i « effects to extend to greater low loss of resin allows these
«aíar between simulation and distances. Additional discrepanci
fhe presence of boundariesexperimental models arise wit

a i for a homogeneous case is more (# 3.2.3). As a result, the model fo

accurate than that for the layered case.
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The results illustrate the influence of a low permittivity

overlying layer on the field pattern in water. The fat simulating

resin leads to greater lateral spreading of the field pattern.

This is due to the aperture being electrically smaller

(3\ /4 x 3\ /8 ) when in contact with resin rather than waterm m
(2\ x \ ). For bi-layered media it must be noted that comparison m m
r nnt in the second medium becauseof field patterns was only carried out m  me

of the difficulty of measuring field In the solid resin material.

Although good agreement In the second medium suggests that the

simulations are correctly predicting field, it Is not possible to
say that the method has been completely validated. In the next

.. . ia used to reproduce somesection, this prediction method
, it-o for extra validation, and in Chapter 6previously reported results, tor ext

field predictions are employed to simulate radiometric temperature

data. Successful comparison of temperature predictions with

aait-ional evidence of the method s experiment will provide additions

validity.

3.3 Simulated field patterns of recta_ngular apertures k

into lossy media
Comparison of simulation with measured results has established

that the computer algorithm can successfully predict field patterns
, a hi-layered media. In this section,in both homogeneous and bi lay

i taS to model a number of situations computer simulations are employe
4 „„rnllv. Previously, only a which were not considered experimentally
, In practice, any size ofaingle aperture size has been cons

„ „ ld distribution can be accommodated byaPerture and any aperture field a
h^litv for modelling any type ofthe programme, giving the capa
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contacting aperture antenna. In addition, the program is capable 

of modelling situations where any number of layers are present.
Figure 3.14 gives a two-dimensional plot of the field pattern 

for a 16 mm x 8 ram waveguide radiating into water at 28 °C. Fig 

3.14a is a cut through the y = 0 or x-z plane (see Fig 3.4a) and 

3.14b is a cut through the x - 0 or y-z plane. Fig 3.14c gives the 

half-amplitude width of the field in the x-z plane; in this figure 

each line of constant z (ie parallel to the x axis) is curtailed at 

the point where the field amplitude drops to half of the maximum 

value on that line (the maximum value in this case is always 
z axis). This representation allows the spreading of the emergent 

field to be seen. Fig 3.l4d shows the ha If-amplitude width in the 

y -z  plane. The field is quite directional in the x-z plane but 

spreads rapidly in the y-z  plane, a consequence of the aperture

being larger in the x dimension (2.4\m in water) than in the y
rhe> anerture becomes, the field dimension (1.2X ). The smaller the aperturem

pattern tends towards that of a point source; a large aperture 
gives a field distribution which tends towards that of a plane

wave. Further illustration of this fact is given in Figs 3.15
a 4 A+Uc in the x-z plane for a range which show the half-amplitude width

, ^  n n  x 0 .6 X ) to 32 mm x 16 ram of aperture sizes from 8 ram x 4 mm f m m
, m rprtionality of the field pattern (4.8X x 2.4X ). The increased direction y

m m  . .._ evident. As well as influencing as the aperture size increases it*
.i . «nurture size also affectsthe spreading of the field pattern,

, - fihow field patterns for the samethe penetration depth. Figs 3.16
i fipld values are terminated at the situation but in this case the fi

, on An down in the maximum field value point where they drop below dB
f aperture). This decrease in(just in front of the centre of t P

increases has also been noted in attenuation as the aperture size i
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[72] and [71]. Plots of field values on the z axis for a range of

aperture sizes are shown in Fig 3.17. Figs 3.18a and 3.18h show
the field patterns for a 16 ram x 8 ram aperture radiating into resin
material and Figs 3.18c and 3.18d show the half-amplitude width.

, /ri ¿cn v n aA\  ̂ leads to rapid divergenceThis size of aperture (0.68\m x xeaab 1

of the field in this low permittivity medium.

Experimental validation of the algorithm applied to bl-layered

media was only possible in the second medium of each structure. As

a means of checking the prediction method against a previously

reported method, simulations were performed using parameters quoted

by Guy [67] who also considered a bi-layered structure consisting

of fat overlying muscle and compared his predicted results with

experimental measurements on phantoms in both media. A comparison

of results predicted by the incremental diffraction algorithm with
o i q for fin aperture size ofthose of Guy is given in Fig

a lQa-i and 2.45 GHz (Fig 3.19b) for 12 cm x 16 cm at 919 MHz (Fig 3.19a) ana
« rood agreement is evident for bothfield values along the z axis. *

frequencies.
Of the incremental spectral diffraction The major advantage of trie

... fn Ke calculated in multi-layer technique is that it allows field
1 Of field prediction in a multi-layer structures. An example ot r K

... a 20 where the field pattern is structure is given in Fig 3. »
tAcmide in contact with a skin layer Predicted for a 1 6  mm x 8 ram waveguide m

overlying fat, muscle and lung.
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Chapter 4

Prediction of radiometer response to temperature distributions in 
layered tissue

4.1 Prediction of radiometric temperature by radiative transfer

4.1.1 Incoherent Radiative Transfer theory

4.1.2 Coherent Radiative Transfer theory

4.2 A method for predicting radiometric temperature

4.3 Practical implementation of the temperature prediction method
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4.1 The prediction of radiometric temperature by1
From knowledge of the dielectric structure of the medium, its 

temperature distribution and details of the radiometer probe, we wish 

to calculate the radiometric temperature, that is the temperature as 

measured by a radiometer. The radiometric temperature may be directly 

related to the power level received. In order to calculate the 

radiative power reaching the receiver, the emission, absorption and 

propagation of radiation in the lossy medium must be studied, together 

with the electromagnetic coupling of the medium to the receiving 

antenna or probe.
in this section, methods of solution to the above problem by 

radiative transfer theory are reviewed. Both incoherent and coherent
. Konn anolied in the field of medicalradiative transfer solutions have been appnea

n .ahlv in the prediction of multi-frequency microwave radiometry, most notably
, J L . nrncess of reconstructing temperature depthdata for use in the inverse process

* fVar» rheorv is given together with a profiles. A brief summary of the theory 8

review of its application by various authors.

4.1.1 Incoherent radiativeJtranBfe^^
r Aiotinn In a medium is regarded as a purely The propagation of radiati

, .j jn terms of radiative power flow, ^coherent process and is examined in
* 4 1 ve power through a small volume of theinitially, the flow of radiative p

. [941. The interaction betweenmedium in a given direction is *
, bv two processes; extinction and‘adiation and matter Is descr

, , .uced m  intensity by absorption In theemission. Radiation is reduce
r rhls analysis a non-scattering medium is 

tedium and by scattering. In c
, 4 nt>arisity is controlled by the power

tesumed, so that the loss in
. The radiation Intensity is augmented by
‘̂ sorption coefficient, a. The

mission, the emission coefficient is 8 iven by
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a F(T) (4.1)
where F(T) is a linear function of temperature.

Examining the relative levels of extinction and emission» an 

equation of transfer can be written down for radiation travelling in a 

given direction. The solution of this equation for a scatter-free

medium can be written in terms of the apparent brightness temperature, 
TAP

TAP(r> " T«<°) e-T<°-r> + / 0(r., T(r,, e-x(r',r)AP (4.2)

r
where T(r',r) = / a dr for radiation travelling in a direction jr,

r'
where r* is the location of the small volume and r is the point of 

observation.

This solution has been applied by several workers to the field of 

microwave radiometry. Myers, Sadowsky and Barrett [35] assume a planar 

skin, fat tumour and muscle model and calculate the excess brightness 

temperature incident on the skin surface due to a hot tumour buried in 
the fat layer. An estimate of the effect on the calculated temperature 

°F partial coherence of the emergent radiation, due to multiple 

reflections within the skin layer, is given and they conclude that 

Incoherent raditive transfer theory is a reasonable approach. A 

one-dimensional solution only is applied to the equation of transfer 

(equation 4 .2 ) giving the excess temperature at the surface but not 

blowing for the influence of the radiometer probe on the measured

temperature.
Edenhofer [61] applied this theory to a three layer planar model 

insisting of skin, fat and muscle* The transport of energy at a given 

angle to the boundaries is described by a transmission line model using 

Successive multiplication of transmission matrices* The model used for
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the simulation of radiometric data assumes that the temperature Is a

function of depth only (a feature which is common to most models) and

is constant within each tissue layer. The receiving properties of the

radiometric probe are included by considering the angular directivity

of the antenna's radiation pattern, a technique which is employed in

remote sensing of the earth by satellite [65]. In the case of an

aperture antenna in contact with tissue, the probe is receiving from

its near field and the concept of its radiation pattern being a

function of angle only simplifies the real situation.
Schaller [58] has chosen a homogeneous tissue model having a

U 4 ~u uqrles with depth only. A plane temperature distribution which var
parallel solution is again employed to calculate the temperatures 

measured by idealised radiometers working within a range of 

frequencies.
i  ̂ nvs a homogeneous tissue model.Robillard [50, 95] also employs a b

„ , attribution is allowed to vary laterally asHowever, the temperature dlstrlDUL
^  „tfarr of the radiometer probe is also well as with depth. The effec

radiation pattern and applying theincluded by considering lfs
* nnt-pnnas • The results from this principle of reciprocity of a

theoretical work have been validated experi

4.1.2 Coherent radiative Ĵ rang^^
frmn a lossy medium is essentially anThe emission of radiation
w a u s e  of the layered structure ofncoherent process. However,

fi^rt-ions between the layer boundariesiological tissue, multiple re
, - This in turn can lead to partialan result in interference effects.

nistion significantly affecting the oherence of the emergent radiation,
rtf t-he medium [6 6 ]«Pparent brightness temperature
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A three layer model similar to that in [35] has been considered by 

Miyakawa [96]. He presents a plane parallel solution to the equation 

of radiative transfer, considering only radiation travelling 

perpendicular to the boundaries and a temperature distribution varying 

only with depth. The power transmission coefficients across the 

boundaries are calculated by solving Maxwell’s equation In the medium 

with suitable boundary conditions. In this way, the multiple 

reflections between the layer boundaries are accounted for, leading to 

a more exact solution.

Bardattl and Solimini [63] have approached the problem of 

radiation from a biological medium by the coherent method described by 

Stogryn [97]. This model consists of defining the radiation source as 

the second order moment of a fluctuating current. According to the 

fluctuation-dissipation theorem [98] this second order moment is 

dependent on the local temperature, on the imaginary part of the 

dielectric constant of the medium and, in fact, corresponds to the 

emission coefficient defined for Incoherent radiative transfer theory 

(Eqn 4.1). The electromagnetic field emerging from the medium is 

expressed as a function of the fluctuating current by a dyadic Green's 

function method of solution to Maxwell's equation with the appropriate 

boundary conditions.
, fn thiS problem is presented in [63] for aA closed form solution to tnis i

three layer biological medium with a temperature distribution varying 

with depth only. Results showing the variation of brightness
j uith the angle of emergence of the temperature with frequency and with

radiation are presented. For the simulations of radiometric data a 

fixed direction of observation, perpendicular to the surface is 

assumed. The effect of the radiometer probe on the measurements is not

considered.
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In the next section, a method of solving the radiative transfer 

problem in a structure containing any number of layers is suggested. 

The method follows the approach described in [50] but applies the 

spectral diffraction/ cascade algorithm of Chapter 2 to solve the 

coherent propagation of radiation through a layered structure and to 

account for the effect of the radiometer probe on measured 

temperature.

4.2 A method for predicting radiometric temperature
Consider the case of a radiometer probe In contact with a seml- 

infinite Isotropic lossy medium of uniform temperature T. The power 

received from the medium by the radiometer can be specified in two 

ways.
(1) If the antenna is perfectly matched to the medium, the medium can 

be replaced by a matched load of temperature T [5]. The power 

available at the receiver input is given by the expression for .Tohnson 

noise
P = kT Af 4 , 3

, - the definition for radiometricThis expression is equivalent
4 it. nmjer p; the radiometric temperature T temperature for a given input p

is therefore equal to T.
, . . _  fln infinite number of elementary(11) The medium can be divided into

. „ contribution to the total powersource volumes (AV ), each ma g
m  order to calculate the contribution received by the radiometer. «-

i . ^ * 1  nower received by the radiometer, that each element makes to the
, amil librium where the radiometer consider a system in thermodynamic q

k ,rh a uniform temperature (T) medium, withProbe is in contact with a
/. i \ For this discussion, the probeheterogeneous permittivity (riS
, . waveguide, but in practice thisIs considered to be an open-en

i- i-A Oi;'
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analysis is equally applicable to any type of probe. The waveguide and 

waveguide-to-coaxial line transition are considered lossless and a 

matched load terminates the coaxial line. The Load is at the same 

temperature (T) as the medium. A constant interchange of radiative 

power takes place between the matched load and the lossy medium and, 

since the system is in thermodynamic equilibrium, the power transfer
I

from the medium to the load is equal to the power flow from the load to 

the medium.

4 fr^miencv emission from the matched loadFirst, consider a single frequency em
. , nA ia absorbed by the medium. The which travels down the waveguide and is

Up ralculated by considering thedistribution of absorbed power can
. source and computing the radiationload as a monochromatic cohere«

i a into the medium. If the electric field Pattern of the waveguide into

: >  i : i.-i
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created in volume AV^ is ^^ » then the power absorbed in AV ̂

°i | E t i 2 Ay i where a is the conductivity of the elementary volume. The 

waveguide antenna is a reciprocal device and therefore exhibits the 

same radiation pattern for reception as for transmission [65]. This 

statement is also true for incoherent radiation. The flow of radiation 

between the matched load and any element of the medium is reciprocal 

[99]. Thus, for a constant temperature medium, the ratio of power

received by the matched load from two elementary volumes in the medium 
is

AV2  ̂ aliK l 2
AV 2 °2 !E2 | 2

._ rua nower received by the waveguide due tomererore, an expression for m e  powei j

an element AV̂ , can be written

” i r  -  Bt ‘ l K | 2 AVt <A- 4 )
where contains the element source function.

4 niompntal volume in local thermodynamicNow, considering a single elemental
an emission coefficient j is defined equilibrium with its surroundings, an emis

* i am pmits. in the frequency interval f such that an element of volume AV^

to f + Af, a radiant power
p  = jAV Af

Kirchhoff' s law states that older conditions of local then.odyna.nlc

equilibrium, thermal emission has to he equal to absorption. Therefore
.. written in terms of a power absorption the emission coefficient may be w

f ,rt.H n n which is a function of localfactor a^multiplying a source 

temperature
j =* a^F(T)

™rr,vimation to Planck's radiation where, assuming the R a y l e i g h - Jeans approximation

law
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F(T) = —  Af T

Taking Af to be small, X can be considered to be approximately 

constant. The power emitted by each elementary volume can thus be 

written

p = Cka.T AV Af (4-5)ie 1  i
where C is a constant.

Comparing equation 4.5 and equation 4.4, it can be seen that B^ in 

equation 4 . 4  must be linearly dependent upon the local temperature 

(B^ = D^T) and that the absorption factor ai can be directly related to 

the local conductivity a± . Combining the two equations, an expression 

can be written for the power received from a volume AVt by the matched 

load.
p = A kAfT CT |E j2

i  1 X I J- I

where At depends upon Che volume AVt and incorporates and C.
. , • f f-UA waveguide antenna, instead of beingThis analysis applies if the wavegu«.

, , 1c connected to a radiometer. Theconnected to a matching load, is connecceu
contribution to the total signal measured by the radiometer from each

elemental volume is proportional to its temperature, conductivity and
i t «  . , QtJ « coupling parameter between theto |e ± 12, which can be regarded as a coupn g

clement and the radiometer.
n frnm the elements received by the The individual signals from tne

x Kp uncorrelated. Therefore, the signalsradiometer can be assumed to be

can be summed to give the total power rec

p * )’ P 53 A kAf l 
i 1 1

)2t (4.6)

where A « .

A kAfT l a E 1  

i
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Two expressions for the power received by a radiometer from a 

constant temperature medium have now been formulated. Equating A . 6 and

4.3 gives an expression for the constant of proportionality A.

1

A constant temperature medium has been assumed up to now in this 

discussion. However, this constraint is not generally necessary. 

Although Kirchhoff's law is defined for conditions of strict 

thermodynamic equilibrium, it has also been found to hold with good 

accuracy where the spatial temperature gradient of the temperature 

within the medium are small [65). This practical limit on the theory 

corresponds to the conditions in which we are interested in the human 

body, where temperature gradients can never be large due to heat 

conduction and thermoregulation by blood flow.
For a medium with non-uniform temperature distribution, a local 

temperature can be defined in each of the elemental volumes (94).

Equation 4.6 becomes
P = A kAf 1 |Ei | 2 Ti 

i
(4.7)

Comparing 4 . 7  with 4.3, the radiometric temperature must now be 

viewed as an average temperature weighted by the receiving pattern of 

the antenna and the emitting characteristics of the elements within the

volume.

Tr - A l°i|Ei|2 Ti
. a Hnes not depend on temperature, aSince, to the first order, the term A does not i
i a t h e  the same as for a constant good approximation is to take A to be tne

temperature medium.
? « , K ! !  h

! " ,1 'il

(4.8)

• ■. . v
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4.3 Practical implementation of the temperature
The analysis of the previous section was formulated for the case 

of a radiometer connected to a waveguide in contact with a lossy 

medium. A method for predicting the field radiated into a lossy medium 

by a contacting waveguide antenna was given in Chapter By combining 

equation 4.8 and the field prediction algorithm, the temperature 

measured by a radiometer can be calculated. The necessary parameters 

for this calculation are the temperature distribution, the dielectric 

structure of the medium, the type and size of probe and the operating

frequency of radiometer.
An example serves to illustrate ho« this method can be Implemented 

to model a practical situation. One procedure, which has been used in

clinical diagnostics with microwave radioraetry, is scanning the 

radiometer probe across the skin surface and mapping the measured 

temperature at each position to locate subcutaneous temperature

abnormalities [68]. Consider a medium to be scanned, consisting of two
, „ i ,<„■ m  overlying muscle (m) with a raiseddielectric layers, a fat layer (f) overj.yj.ib
- .. „ /t\hurled in the muscle (Fig 4.2). The waveguidetemperature tumour (t) buried w

„ cpiia first step is to calculate theIs in contact with the fat layer. The first step
. fleid patterns for this situation wasfield pattern of the probe (the fleia pau

, Thia field prediction algorithm requires thatcalculated in #3.2.2). The rie p
. nresent• As a consequence, it isonly linear parallel boundaries a P

. „ f>mifltant as the probe is scanned assumed that the field pattern remains constant
,„nQi rPrtchin? the radiometer (T )along the surface. The temperature s

, f _ n v  relative position of the probe to the can now be calculated for any
„ For this example consider that the medium 

raised temperature tumour. -r
- t And that the tumour is at

(fat and muscle) has a uniform teraperat

a higher temperature T *



73

Fig. 4.2 Linear scanning over a bi-layered fat and muscle 
medium containing a raised temperature tumour 
using a contacting waveguide probe.

a T y t t " Eit
2 + o T l 

m im
Eiin

2 + °fTI 
h

E1f
2

T =
r M Eit 2 + °,n \ Eim 2 + af Jif Eif

2

. i pi nattern remains constant as theThe assumption that the field Paccen
__ nA »-he practical situation. Inprobe is scanned does not correspo

„ w  u fhP tumour modifies the field pattern. Atreality, the presence of the tumou
i .rj . u  will not consider boundaries present, the field prediction algorithm win

.. narallel to the aperture plane. Forwhich are either non-linear or not p
*■ 4 nn rhe raised temperature region is the purposes of field predictio ,

. aiplectric properties as that in which it isassumed to have the same dielectri i

m i. . „ „ . w .  » « • " » -  “  «*  “
.„„p„p ..... .»»» .‘.iur « . w r i .  ptopercies »  — >•

...... noo,.

2--*
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detection volume into the equation for measured temperature (Eqn 4.8) 

partially accounts for variations in dielectric properties.



Chapter 5

Design, construction and operation of a 4.6 GHz radiometer

5.1 Description of the radiometer

5.2 The design and construction of a contacting waveguide probe

5.2.1 Design considerations

5.2.2 Construction of the filled waveguide probe

5.3 Radiometer performance
5.3.1 Calibration of the radiometer

5.3.2 Temperature resolution and stability

5*4 The radiometer in a null~balancing mode
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5.1 Description of the radiometer
A microwave radiometer collects and measures emitted microwave 

power. An antenna or probe couples microwave radiation from the body 

into the radiometer receiver. The function of the radiometer receiver 

is to detect and measure the power levels delivered to it. The 

radiometer was designed for use In phantom experiments and for clinical 

applications, although the latter has not yet been realised [1. Jl].

Radiometer receivers Include active components (eg amplifiers) 

whose parameters may fluctuate. The effect of these variations was

reduced by the use of a comparison type radiometer [5], where the Input
, , ,  ̂ a matched load of known temperaturesignal is compared with that from a maccnea

.. t-hon the highest gain fluctuationat a switching frequency higher than tne nignes t,
„ fhe receiver following the switchfrequency. Three configurations of tne receive

.. framrnnev (RF) amplifier followed by RF were considered. A radio-freque y
detector [36] is the most costly configuration due to the high cost of

RF amplifiers compared to intermediate frequency (IF) amplifiers, but

gives the greatest temperature resolution. The single side-band (SSB)
and double side-band (DSB) superhetrodyne systems [34] are least

. ««ration for these studies was a super-expensive. The preferred configurati
, a H nn r45 351 , a compromise whichhetrodyne system with RF pre-amplificatio L - »

gives good signal to noise characteristics at reasonable
__ flrlson type double sideband superhetro-Figure 5.1 shows the corap

,  . A list of components and their dyne radiometer which was constructed.

specifications is given in Table 1*
, 2 ) couples radiation via a low

The contacting waveguide pro
,4 a« of a 3 pole solid state switch. The loss flexible cable into one s
•yon Hz clock frequency and alternately 

switch is modulated by a llK)
, . . w  signal from a temperature

switches between the input signal an
allow8 comparison of the input signal

controlled matched load. This



rig. 5.1a Schematic diagram of the 6 GHz comparison radiometer.



Component Make & Model Frequency
Range

Insertion 
Loss (dB)

Isolation
(dB)

Noise
Figure (dB)

Gain
(dB)

Comments

Cable
(5 ft length)

Goretex 
G3P01P01060.0

0.8 0.8 High quality, low loss cable.
Long and flexible for patient scanning.

Switch Microwave 
Associates 
ML 17430-12

4-8 GHz <1.15 >53 1.15 Lower loss ferrite switches now 
available.

Isolators Microwave 
Associates 
ML2G - 6100

4-8 GHz 0.4 20 0.4

RF Amplifier Amplica 
ACM 635301

4-8 GHz 3.0 45.6 A wide bandwidth amplifier for prototype 
radiometer. Lower noise figure amplifier.1- 
now available.

Mixer ANZAC
MDC-180

4-8 GHz 4.8 25 4.8

Local
Oscillator

Watkins - Johnson 
V402

4-6 GHz

I.F. Amplifier Araplica 
AVD 705301

5-250 MHz 1 .5 51 .5

Crystal
Detector

Texscan
CD-50

1-1000 MHz

Noise
Source

AIL 1-12.4 GHz 15.5

Fixed
attenuators

Marconi DC-12 GHz 20
+
6

Switched
attenuator

Microwave
Associates
MA-8437-354

4-8 GHz 2.4-45 Very high quality switched attenuator.

Circulator Microwave 
Associates 
ML3G-6100

4-8 GHz 0.4 20 0.4

Table 1 Component Specifications
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with an accurately known signal level every 4 ms. The modulated output 

from the switch is amplified by the high gain RF amplifier. The 

components up to this point (known as the radiometer 'front-end'), 

including the RF amplifier operate in the RF frequency band 4-8 GHz. 

The mixer and local oscillator convert the signal to an intermediate 

frequency (IF), the mixer output then being amplified again by an If 

amplifier. The bandwidth of the IF amplifier defines the total

bandwidth of the system. As the RF bandwidth is large, the IF signal 

band contains signals from two RF bands centred at frequencies fj and 

f2 where

fl = fL0 " fIF 

f2 “ fL0 + fIF
where f is the local oscillator frequency LO
and flF is the centre frequency of the IF amplifier.

, oldPband system with a bandwidth (B) Hence the system is a double sideband sy
..-_r This large ratio of RF bandwidth to IF twice that of the IF amplifier. This ±ar*,

. . jev, a variable frequency local oscillatorbandwidth (8:1) together with a variaD
_f the system to be set at any value allows the centre frequency of

„ the radiometer measurements
between 4.4 GHz and 5.6 GHz. 0 *

nrp nerformed at a centre frequency of reported in following chapters were p
, . matching around this frequency (Figure4.6 GHz due to superior probe matching

5.2b).
U ,m ,t of rhe if amplifier is converted to a The signal from the output

i , rrvstal diode detector, which gives a 
voltage signal by a square la Y

level input. The resulting
voltage out proportional to the po

. lafiad at the switching frequency and the 
square wave voltage is demodu

filter. The integration time constant <t > 
output fed into a low pass intei

aa filter decides the system response time 
°f this post detection low pas.

nrt is one factor in the temperature
to input temperature changes a



resolution of the radiometer (# 5.3.2). The time constant can be set 

to any value in the range 0.2 to 10 seconds. The final output of the 

radiometer is a dc voltage proportional to the difference in 

temperature between the tissue under investigation and the temperature 
controlled (tc) load f102]•

V = G C G kB (T - T ) dc d p  s c
T^ is the temperature of the tc load 

B is the system bandwidth

(5.1)

k is Boltzmann’s constant 

G is the pre-detection gain

C is the detector constant (in volts per watt) d
G is the post detection gainP
and T , the measured temperature, is given by s

T (1 “ p) 1 / c a \T = S ------------ + (1 -  ~)T ( 5 , 2 )G l ^
where T Is the physical temperature of the probe, cable and switch

p is the reflection coefficient of the probe/tissue Interface

L is the loss factor of the probe and cable
T is the radiometric temperature (see Chapter 4).IT

4a mnnected to the analogue input of The output from the radiometer i
D converter is sampled by the computerthe BBC microcomputer. The A to

, displayed on the VDU. Statisticalevery 20 ms and the voltage is P
h* parried out by running the BASIC analysis of the output can b
o Peculates the average, range and root Programme ’SAM’. This programme calc

ar, the sampled voltages over astandard deviation from the mean
, Tuts information, in conjuction with thespecified time interval. Thi

„ he used to calculate the temperature radiometer calibration curve can

resolution and stability of the radiom
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Figure 5.1b shows the radiometer. The pre-detection radiometer 

components are housed in the central rack together with the temperature 

control equipment. The lower rack contains the post-detection 

processing electronics.

5.2 The design and construction of a contacting waveg_u.tde_j>robe

5.2.1 Design considerations
The probe performs the function of coupling the required microwave 

signal emitted by the body Into the radiometer receiver. A successful 

design of probe Is very Important for optimisation of the radiometer 

performance. In designing the probe, the following points were

considered:
- The wave impedance of the tissues varies greatly over the body

surface (50-150 ohms [l03]). The probe should be matched to a
. . , ueeo the reflection coefficient at themean impedance value to Keep

An additional requirement probe/tissue Interface to a minimum. An a
, «.„K- Kp matched to water for use infor these studies is that the probe be matcneu

the phantom experiments.
„ uhirh the probe is matched can be a Hie range of frequencies over

. u -.atjiHth of the radiometer, and so should limiting factor on the bandwidth
be as broad as possible.

, nr it is desirable to have a small andIn a clinical environment it
robust probe for portability and ease of opera

nf the probe is highly dependent upon its The receiving pattern of the prou

design.
A** rectangular waveguide with A dielectric filled open-ended recta g

cff-ion was chosen as the probe. This waveguide to coaxial line transition
a r uldeiy used probe types for microwave
design is one of the most w I y

. , a given impedance over a bandwidth
thermography and can be tnatchec
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which Is limited but sufficient for radiometer operation. By fil.Un(; a 

waveguide with a dielectric of relative permittivity C  Its dimensions

can be reduced by a factor of /e' resulting in a probe which is small,
n ,  , „ i nee di electrics can be obtained, keepingUght and robust. Very low loss dieiecuii-»

probe losses to a minimum.

5.2.2 Construction of the fllledj^veguMl-£I^£
, „„impnfal work consisted of waveguideThe probe used in all the experiments

. n with Emerson and Cuming two partwith cross-section 16 mm x 8 mm fill©
H  r’ = 9 to give a cut-off(powder and resin) low loss dielec
fit-red to the waveguide and thefrequency of 3.5 GHz. A back plate was

H M n n  was achieved by inserting the waveguide to coaxial line transit
. 4 i line into the waveguide approximatelyinner conductor of the coaxial line
, , the guide wavelength. Filling the
Xg/4 from the back plate where Is tn g

. difficult to alter the geometry
wnveguide with a solid material made it

.,iAn to give Optimum matching. 
°f the waveguide to coaxial line transition 8
T, , ,1n„ a „umber of probee, each slightly
This problem was overcome by making
, o nf che coaxial inner conductor and
different. The insertion distance
. . . the total waveguide length were

distance from the back plate a

: ' . ■ ' - . ■' '■ p. ¿.feS '' ■ ■
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'

w M . 4 ,
Fig. 5.2b Power transmitted for radiometer probe in contact with water (-- ) and a muscular area

of the arm (-- ). Calculated from 1-p2 where p is the reflection coefficient.



80

varied. The voltage reflection coefficient (p) looking Into the 

transition when the open end of the waveguide was in contact with water 

was measured with a network analyser for each probe over a frequency 

range 4 - 6  GHz and the transmitted power calculated from (1 - P2) • 

The selected probe (Figure 5.2a) had the lowest reflection coefficient 

over the widest bandwidth when radiating into water (Figure 5.2b). The 

power transmitted by the probe when in contact with a muscular area on

the arm is also shown in Figure 5.2b.

5.3 Radiometer performance

5.3.1 Calibration of the radiometer
Two methods of calibration were employed:-

Method 1: The radiometer was calibrated by placing the probe In

contact with the water In a temperature controlled water bath. Figure
c rhe radiometer plotted against water 5.3a shows the output voltage of the racuome

, ra nrovided a direct calibration of the temperature. This procedure provide
for experiments in homogeneous water, radiometer when it was used tor exp

, . t water and into muscle tissue areSince the matching of the probe
j rp also provided a useful calibration similar (Figure 5.2b), the procedure a P

for temperature measurements of the bo y
f PiHibration was to use a temperature

Method 2: An easier method o
nf the probe. This did not give ancontrolled matched load in place

 ̂ pffect of the probe was not taken into absolute calibration as the eftec
'ilibration curve was needed. Figure 5.3b 

account. Therefore an extra cal
rature as measured by the radiometer 

Shows a graph of the water temperature
. ugln„ method 2 against true water 

when It has been calibrated using
, thls curve 1« less than unity due to 

temperature. The gradient or
,rtf.prface and probe losses, reflections at the prohe/tissue interface
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Wafer Temperature °C

pig. 5.3a Calibration curve for radiometer with the probe in 
contact with a heated water bath. (Method 1)

■m--- ,--- ■-- ---- (--... i i i i--- »
24 28 32 36 40 44

Water Temperature °C

PiK- 5.3b Temperature an measured by the radiometer with the probe 
in contact with a heated water bath against true water 
temperature. Tm is read rrom the calibration curve with 
a heated load in place of the probe (Method 2).
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Calibration was essential to ensure the accuracy and

reproducibility of the radiometer measurements. It was found that

although the gradient of the calibration curve was constant, the 

absolute calibration could be different each time the radiometer was 

switched on. The output voltage for a given input noise power depends 

on a number of factors which vary from day to day Including the 

temperature of the components (which Is dependent upon the ambient 

temperature), and the level of background radio-frequency noise. 

Therefore, If measurement of absolute temperature values was required, 

It was necessary to re-callbrate the radiometer each time It was used.

However, the majority of the measurements for these studies only

involved the measurement of temperature differences for which

recalibration was not required.

5.3.2 Temperature resolutjgnj*^^
, , n„f the radiometer performanceOnce calibration has been carried out, the

ion and stability. Thei 8 characterized by its temperature
iR defined as the minimumtemperature resolution of a radiome

v n r a comparison type radiometerdetectable temperature difference.
1 Hnn is Riven by the root mean square the theoretical temperature resolu

measurement uncertainty in T [ 10̂ - J •
s <r — T

rl /'AG'i2/'
AT » (T + T + 2Tcvq) '■s c SYS G

-)Y/2 (5.3)

+ Tc + 2Tsys

where T is the system noise teraperat 
SYS

B is the radiometer bandwidth 

x is the integration time const'

AG is the gain fluctuation.
, is governed by those noise factors 

The temperature resolution it b

. . Bhotter than the Integration time.
which fluctuate with a period

■u ir--.;.
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stability of the radiometer is defined by the stability of its output 

for a constant noise power input over periods longer than the 

integration time constant. A number of factors which influence the 

temperature resolution (equation 5.3) and also the stability are now 

examined.

(i) The system noise temperature

The system noise temperature is a measure of the degradation in 

signal to noise ratio between the system input and output. The 

components of the radiometer add noise due to their own physical 

temperature. The noise temperature of a component is given by

T = (F - 1)T n n
where Fn Is the noise figure and T is the component temperature.

The noise figure of an active component (eg an amplifier) is usually 

stated in the component specifications. The noise figure of a passive

component (eg a cable) is equal to its loss fact
mav be found from the general The system noise temperature y

definition of noise temperature of a cascade [ ]

'S Y S  '  <1»C" ‘ " I *  * " W V  ” ’ C * ,'“ ‘ 'C<' ‘ S" ’

* V . W  I1T»  * ‘' » b W V '  1>,“ ’
, .a r denotes cable, SW denotes switch, ISwhere WG denotes waveguide, C den

. «  „mnlifier. The series is terminated denotes isolator and RF denotes R P
eain is so high as to render at the RF amplifier because its g

4 nf anv components which follow, unimportant the contributions of y

(ii) Radiometer bandwidth
of the radiometer measured as aFigure 5.A shows the output

, „„4^  a coherent signal of constantction of frequency by inputti g
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amplitude from a Hewlett Packard synthesised signal source. The graph 

shows the double sideband nature of the system, the frequency 

characteristic being symmetrical about the local oscillator frequency 

(4.6 GHz). The 3 dB bandwidth (B) of the output is 550 MHz.

(iii) Gain fluctuations

Gain fluctuations are inevitable when a system contains active

components. The higher the quality of an active component, the smaller

the gain fluctuations. The effects of gain fluctuations and gain

drifts can be kept to a minimum by controlling the reference load at a

temperature (T ) close to that of the signal temperature (T ) (see c s
equation 5.3). Total suppression of gain fluctuation can be achieved 

by operating the radiometer in a null-balancing mode (# 5.4).

(iv) Temperature stability

The noise temperature of a component depends on its physical 

temperature. A fluctuation in the physical temperature of any of the 

front-end components will cause a change in output which is 

indistinguishable from a change in output caused by a varying tissue 
temperature.

The waveguide probe is subject to the greatest temperature changes 

as it is placed in contact with tissue which is a number of degrees 

above ambient, and is also handled by the operator [ 104 ]. The 

waveguide probe is therefore heavily insulated and heated allowing 

control of its temperature close to that of the body. Figure 5.5a 

shows the temperature control system. The temperature stability of the 

reference load is a limiting factor on the temperature resolution of 

the whole system. The load is therefore thermally insulated and 

temperature controlled to an accuracy of better than 0.1 °C (Figure 

5.5b). The calibration load (#5.3.1) is identical to the reference 

load. The temperature of all three components are controlled by means



heater
patch

platinum
resistance

thermometer

*-

■+

temperature

controller

----->-----
femperature

----->----- display

Fig. 5.5a Temperature control system for waveguide probe

Fig. 5.5b Temperature control system for reference load and 
calibration load
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of a small heater and thermistor affixed to their outer surfaces and 

connected to proportional temperature controllers within the receiver 

cabinet. The temperature can be varied over the range 25 °C to 45 °C, 

controlled to an accuracy of 0.05 °C (manufacturer’s specification), 

and is independently measured by a platinum resistance thermometer 

connected to a digital thermometer. The LED display of the digital 

thermometer on the front of the radiometer housing can be switched to 

show the temperature of any of these components.

The receiver components are not temperature controlled; however, 

the radiometer must be switched on at least one hour before use to 

allow the active components to attain their operating temperature. 

These components are secured to a heat sinking aluminium plate to help 

prevent further temperature fluctuation.

The temperature resolution was measured with the probe in contact 

with water at a constant temperature, and was given by the standard 

deviation from the mean of the radiometer output as sampled by the BBC 

micro over a given time period (BASIC program "SAM"), expressed in 
terms of temperature by reference to the calibration curve (Figure 

5.3a) .

The temperature resolution is variable by altering the integration 

time constant (x) of the post detection low pass filter. A compromise 

must be sought between improved resolution and extended Integration 

times. With a time constant of five seconds, the measured temperature 

resolution was AT * 0.17 K. This figure varied very little as the 

centre frequency was swept over the range 4.4 -*• 5.6 GHz enabling the 

use of the radiometer at any frequency in this range.

The uncertainty in a radiometric measurement is also affected by 

the radiometer's stability. The stability of the radiometer was 

Measured by analysing its output over longer time periods. The
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standard deviation of the output voltage was 15% greater after 30

minutes (the period of a typical phantom experiment) than after 15 secs

(the time for a single point measurement) indicating acceptable long

term stability. The total radiometric measurement uncertainty is

AT = ±0.2°C. u

5.4 The radiometer in a null-balancing mode

The signal measured by the radiometer depends not only upon the 

temperature of the tissue but also upon its emisslvity and hence upon 

the power reflection coefficient at the probe-tissue interface 

(equation 5.2). In order to achieve true temperature measurements and 

to compensate for changes in tissue emissivity a null-balancing 

feedback circuit [105] has been incorporated.

Figure 5.6 shows the design for the null-balancing radiometer. 

The output voltage acts on a feedback circuit to control the level of 

noise injected into the front end via a circulator. A simple analysis 

of the various power levels involved shows how a balance may be 

achieved. In this analysis, all components are assumed to be 

lossless.

When the switch is connected to the probe, the noise temperature 

at the input to the RF amplifier is

T (1 - p) + pT (1)r N
where T is the radiometric temperature r

T is the injected noise N
p is the power reflection coefficient at the probe/medium 

interface.
When the switch is connected to the short circuit there is complete 

reflection, giving a temperature

( 2)

:v;:c I



Fig, 5.6 Schematic diagram of the



radiometer in a null-balancing mode.
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The radiometer measures the difference between the two signals (1) -

( 2 )

- V 1 - P> + - t n

■ <Tr - V (1 - P>
if the injected noise T is controlled so that T = T then the effectN N r
of the reflection coefficient on the signal is suppressed. This 

calculation is not exact as it does not take into account losses in the 

front end components, and consequently this system design cannot 

entirely compensate for fluctuations in reflected power. A more 

thorough analysis of this design of null-balancing radiometer can be 

found in [49] and a comparison of this design with another null­

balancing-design in [55 ].

A feedback circuit and noise injection system has been constructed 

which allows easy conversion of the comparison radiometer to a null­

balancing configuration. Use of a high quality switched attenuator to 

control the injected noise provides a very accurate and stable balance 

condition. The radiometer in a null-balancing mode has yet to be fully 
evaluated and has not been used in the experimental measurements.

The noise injected into the circulator is provided by a constant 

noise source which produces noise at 15.5 dB above ambient. A PIN 

diode variable attenuator plus 26 dB fixed attenuation reduces the

noise to the desired level for injection (T = T ) which is given byN r

- —  + (i - -) T 
L L

where T is the noise temperature of the noise source,NS
L is the total attentuation of the attenuators,

T is the physical temperature of the attenuators.

The PIN diode attenuator is most stable in its OFF and fully ON states. 
The desired attentuation is therefore achieved by switching the
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attenuator between the two states with a TTL pulse of fixed width t ,P
control of the attenuation being achieved by varying the repetition
frequency, f . L is given by F1021:P

L = t f L + (1 - t f )L + L (5.4)p p ON p p' OFF Fixed v '
where L is the insertion loss of the attenuator,

and L is the maximum attenuation.ON
The integrator is followed by a voltage controlled oscillator (VCO)

which produces a square wave whose frequency is proportional to the

input voltage. This is followed by a monostable oscillator which

produces a constant width ON pulse.

An example of the operation of the radiometer in its null-

balancing mode illustrates the function of the feedback system. If the

probe is moved to a position where the body temperature is higher, the

input signal will increase and lead to a positive voltage at the

integrator input, causing its output voltage to fall at a constant

rate. This will cause the output frequency of the VCO to drop and so

decrease the attenuation (equation 5.4). As a result, T^ will increase
until T = T once more. The condition necessary to compensate for the N r
reflection coefficient is therefore maintained. The output signal of 

the radiometer is the voltage at the output of the integrator. If the

probe is moved to a position where the temperature is the same but the

reflection coefficient is different, the balance condition at the 

radiometer front end ensures that the output signal does not change.



Chapter 6

Radiometric measurement of raised temperature regions in 

homogeneous and bi-layered tissue-equivalent phantoms and 

comparison with simulations

6.1 Radiometric measurements in a homogeneous water phantom

6.1.1 Radiometric linear scanning of a raised temperature 
region within a constant temperature water bath

6.1.2 Sources of measurement uncertainty

6.1.3 Comparison of simulated with measured results

6.2 The influence of tissue layers on radiometric measurements

6.2.1 Comparison of radiometric scans in homogeneous and 
bi-layered structures

6.2.2 Discussion
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6.1 Radiometric measurements in a homogeneous water phantom

6.1.1 Radiometric linear scanning of_a raised temperature

region within a constant temperature water bath

The procedure for scanning of raised temperature regions in a 

lossy medium employed similar set-up to that used for the 

measurement of probe field patterns. The measurement media in 

these two cases were identical. The experiments were designed to 

allow temperature data to be collected immediately following field 

measurements, ensuring the same conditions for both sets of 

measurements. This was important as the field data could be used 

in the predictions of radiometer response (# 6.1.3). Much of the 

experimental equipment has been described previously. Details of 

the computer controlled scanning and data logging system were given 

in // 3.1.3 and of the tissue-simulating phantoms in # 3.1.2. 

Additional apparatus required for temperature measurement were: the 

microwave radiometer, a full description of which can be found in 

Chapter 5, and the temperature hot-spot. The single temperature 

hot-spot consisted of a 10 cm length of perspex tube (inside 

diameter 12.8 mm, and outside diameter 14 tun) through which water 

was pumped at a controlled temperature via a water circulator 

(Grant Instruments). The water temperature could be maintained at 

any level from fractionally above ambient with a stability of 

± 0.1 °C up to 60 °C ± 0.5 °C. Twin hot-spots were also produced 

consisting two 12 cm polyethylene tubes, inside diameter 9 mm and 

outside diameter 9.6 mm, held parallel to each other at a given 

separation by perspex collars.

Figure 6.1 shows the experimental set-up. The waveguide probe 

was clamped to the side of the water tank, with the aperture facing 

outwards into the tank and the small aperture dimension vertical.

; '•
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The tube was attached with its axis vertical» to the moveable 

platform of the scanning frame by a perspex clamp, and was fed with 

water from the circulator via flexible rubber tubing. The scanning 

frame and probe clamping device could be individually adjusted to 

ensure that the tube was parallel to the waveguide face in a 

vertical plane and that the tube moved parallel to the face when 

scanned. All measurements of distance were taken relative to a 

tube position touching the centre of the probe face. The reference 

position was checked before each scan. The tube was then

positioned at the scan start position. Automatic scanning and data 

logging was effected by running the program "SCANNER" on the BBC 

microcomputer (Appendix 2). For a radiometer time constant of five 

seconds, settling times were set to ten seconds and sampling times 

to five seconds. Water temperature stability was critical for 

accurate data measurement. The temperature controlled water bath 

and the tube's water circulator had to be left running for at least 

24 hours before a scanning session.
Figure 6.2b shows the result of scanning the hot tube across

the large dimension of the aperture (X scan) at a distance of

z = 8 mm between the aperture plane and the nearest point of the

tube (see Figure 6.2a). All results represent a number of

identical scans averaged in order to reduce the noise level. The

base level (AT * 0) was obtained from a mean of the first three m
and last three points in the final data set, where the tube was 

remote from the probe’s field of view. Figure 6.2c shows the 

result of scanning the tube, in increments of 1 mm, along the 

probe's z-axis away from the aperture (ie x: ■ 0, z * 1 + 20 mm). 

These scans were performed with a difference of AT * 10 °C between 

the tube temperature (T^ and the bath temperature (T0).
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6.1.2 Sources of measurement uncertainty

The most significant source of possible error in radiometric 

measurements is the system noise. The temperature resolution and 

stability of the radiometer were examined in section 5.3.2. The 

uncertainty in each radiometric measurement, taking into account 

both of these factors, is ± 0.2 °C. The temperature of the water 

in the water tank fluctuated by ± 0.05 °C, giving an additional 

uncertainty of ± 0.05 °C in the radiometer measurements. The tube 

water temperature varied by ± 0.1 °C at 20 °C up to ±0.5 °C at 

60 °C. This source of error was particularly significant when the 

signal from the tube gave maximum contribution to the measured 

temperature, causing errors ranging from 0.05 °C to 0.25 °C; 

however, typical error figures for those measurements reported here 

were 0.01 °C to 0.05 °C. All of these sources of error were 

randomly fluctuating or noise errors. In order to reduce their 

magnitude the reported measurements were the result of averaging 

several scans (typically six) performed under identical conditions. 

Averaging n measurements leads to a reduction in noise by a factor 

l//n.

Systematic errors were also present which could not be reduced 

by averaging. Changes in the matching of the probe Into the medium 

led to errors in measured temperature. The dielectric properties 

of water vary with temperature [89]. Therefore the increased water 

temperature in the tube, together with the influence of the tube 

itself, may lead to a change in the match of the probe to the 

medium when close to the aperture. The error in measured 

temperature due to matching changes increases with the difference 

between the water temperature and the radiometer’s physical 

temperature. In the reported results the water temperature was set
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equal to the radiometer’s physical temperature (= 28 °C) . This 

temperature was measured by placing the radiometer probe in the 

constant temperature water bath and introducing a mismatching 

medium (at the same temperature as the water) in front of the 

probe. At 28 °C no change in radiometer output was noted when the 

mismatch was introduced, indicating a noise power balance condition 

at the probe/medium interface. Measurement error was thus 

proportional to the temperature change measured by the radiometer 

only. An estimate of the maximum error due to matching can be 

gained by examining the case where the tube is placed directly in 

front of the aperture. The matching change, averaged over the 

radiometer bandwidth, is + 0.03, leading to an increase in power 

transmission to the radiometer of 3%.

The accuracy in location of the tube relative to the aperture 

is dependent on the precision of setting the reference position. 

This error is estimated to be ± 0.25 ram, giving a possible error in 

all distance measurements of 0.5 mm. Examination of curve 
gradients in Figs 6.2b and 6.2c indicate a consequent maximum error 

in radiometric temperature of about 10%.

Comparison of simulated with measured results

Before comparing the results of the simulations and 

measurements, the correspondence between the simulation model and 

the experimental situation will be discussed. The simulations 

employ field predictions described in Chapters 2 and 3. Many of 

the discrepancies between model and experiment have already been 

studied in // 3.2 and need no elaboration. However, some further 

differences arise due to experimental techniques and simplifying 

assumptions for the model which must be examined.
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In the experimental situation, the raised temperature region 

is enclosed within a perspex tube (see Fig 6.2a). Perspex has a 

permittivity of approximately 2 whereas water has a permittivity 

(at 28 °C) of 73. Therefore, the perspex forms a double dielectric 

boundary to the propagating microwaves emitted within the enclosed 

hot water. The transmission function across this double, curved 

boundary cannot be estimated but inevitably reflections at the 

interface will lower the effective emissivity of the raised 

temperature region and thus reduce the signal measured by the 

radiometer due to the hot-spot.

In employing field predictions for the radiometric model, an 

implicit assumption is made that the hot-spot has the same 

dielectric properties as the surrounding medium. Fig 3.2 shows 

that, although the real part of the permittivity of water changes 

little with temperature, the imaginary part falls considerably as 

temperature increases. The values for field predicted within the 

hot spot are therefore incorrect, although the error should be 

small. The effect of the different dielectric properties of the 

raised temperature water is partly taken into account in the model 

by including the lower conductivity in the emissivity calculation 

(see # 4.3). Extension of the field prediction algorithm in the 

future to include non-planar boundaries should account for these 

effects.

The analysis of Chapter 4 was based on Kirchhoff’s Law. The 

conditions existing in the model break one of the assumptions upon 

which this law is based, namely that no high temperatue gradients 

exist within the medium. The failure to meet this condition and 

Its effect on the simulations cannot be assessed within the scope

of this thesis.
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The simulation model is shown in Fig 6.3a. Simulations are 

calculated from three dimensional field pattern predictions, and 

assume a circularly cylindrical hot-spot which is infinitely long 

in the y direction. This assumption is appropriate for these 

comparisons as the hot-water tube used in the experiments was long 

compared to the y dimension of the aperture.

In Fig 6.3b, an X scan is simulated. The hot tube is scanned 

across the large dimension of the aperture in increments of 2 mm at 

a distance z = 8.3 mm from the aperture. This is compared with the 

measured scan which is reproduced from Fig 6.2b. The outer edge of 

the tube is z = 8 mm from the aperture but the finite perspex tube 

thickness places the hot water at z = 8.3 mm. This compensation 

for tube thickness is carried out in all of the other comparisons. 

The z distance quoted in the figures are from the aperture to the 

outer edge of the perspex tube. Fig 6.3c shows a comparison 

between simulation and measurement for a Z scan. The agreement is 

satisfactory at distances greater than 2 mm from the aperture. 

Closer to the aperture the prediction over-estimates radiometric 

temperature. A possible explanation for this lies in the 

discrepancies between simulation model and experimental situation. 

These are more important, in absolute terms, when the hot area 

makes a greater contribution to the measured temperature. Close to 

the aperture the dielectric structure of the tube may distort the 

field pattern greatly compared to the situation for a homogeneous 

medium.

These simulations were carried out using a three dimensional 

simulation routine and employing three dimensional field 

predictions. To illustrate the historical development of this 

work, some more results are included for comparison. Fig 6.4a and
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Fig. 6.3a Simulation model for linear scanning in 
homogeneous water medium
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b show predicted temperature scans for a number of different cases. 

Initially, a two dimensional model which did not inlcude the 

dimension parallel to the short side of the aperture (the y 

dimension) was used. Calculations were based on two dimensional 

field measurements, carried out as described in Chapter 3. A 

Z scan simulation with this method is given in Fig 6.4a, curve A. 

Development of a two dimensional field prediction method allowed 

the temperature predictions to be carried out solely by computer 

(curve B). Comparison of these curves illustrates the sensitivity 

in dependence of the radiometric temperature on the field 

distribution when a two-dimensional routine is employed. A small 

discrepancy between fields measured and predicted in Fig 3.6, 

result in a large difference in the predicted temperature depth 

curve. Extension of the field prediction method to three 

dimensions led to a three dimensional temperature simulation 

routine (curve C). An equivalent comparison between results 

employing measured and simulated field distributions is not 
possible for three dimensions due to the impractical measurement 

time required (300 hours for 60 x 60 x 30 points). However, curve 

D shows a simulated Z scan using a three dimensional field 

extrapolated from the two dimensional field measurement. 

Comparison of curves C and D show that the results are less 

sensitive to field distribution when a three dimensional routine is 

employed. Fig 6.4b compares X scans using the different routines 

and field patterns. All curves in this figure are normalized to

their maximum values
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6.2 The influence of tissue layers on radiometric measurements

6.2.1 Comparison of radiometric scans In homogeneous and 
bi-layered structures

Fig. 6.5 Plan view of the experimental configuration of 
waveguide and hot-spot for a bi-layered medium

In this section, the effect of stratification of tissue on the 

temperature measured by radiometry is examined. Fatty tissue

always overlays muscle tissue in the human body. Measurements and 

simulations were carried out to quantify the influence of this fat 

layer on radiometric measurements. The experimental work consisted 

of studying the influence of different thicknesses of a 

fat-simulating resin layer on the radiometric response to a 

temperature hot-spot buried in muscle-simulating water. This was
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achieved by comparing scans of a hot water tube in a water medium 

with scans when the resin layer was present between the water and 

the aperture. Both measurements were carried out with the same 

separation between hot-spot and aperture. By employing this 

comparison method the influence of the perspex tube wall was 

eliminated. Fig 6.5 shows the experimental set-up with a 

fat-simulating resin layer present.

Two different procedures were used. In the first, scanning in 

water was carried out as described in section 6.1.1. The resin 

layer was then introduced into the water tank, placed flush with 

the aperture face and held in position by clamps attached to the 

tank. The tube was aligned parallel to the resin layer in a 

vertical plane and care was taken to ensure that the tube moved 

parallel to the layer when scanned in the x dimension. 

Experimental reproducibility was poor for these experiments due to 

problems with contact between the layer and the aperture face. Low 

tolerance in the flatness of both surfaces allowed a thin layer of 

water of variable thickness to form. Contact conditions therefore 

changed between each experiment. This was highlighted by 

measuring the probe matching by a network analyser before each 

scan, which showed that the reflection coefficient looking into the 

coaxial connector of the probe could vary between 0.2 and 0.6 at 

4.6 GHz.

A more reproducible configuration was achieved by setting the 

probe aperture into the resin layer. The aperture face of the 

waveguide was introduced into the resin in its liquid state which 

was then allowed to harden, giving perfect contact conditions. The 

probe and layer were positioned in the water tank with the edge of 

the hot water tube 1 mm from the face of the layer, this being
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measured relative to a reference point on the probe. A scan in the 

bi-layered structure was then performed. The layer could then be 

removed carefully from the probe which was replaced in the tank 

with the tube set up in the same relative position, and a scan in 

homogeneous water performed. A disadvantage of this technique was 

that damage could occur to the probe when removing the resin layer. 

Only a few results using this technique are therefore available. 

Additional sources of experimental error to those described in 

section 6.1.2 were present. Removal and replacement of the probe 

between measurements increased the inaccuracy in setting the 

reference position to the required ± 0.5 mm in both the x and z 

dimensions. Reproducibility of measurements was worse due to 

differences between the fabrication thickness of the resin layers; 

tolerance in measured thickness was estimated to be 0.4 mm. Also, 

errors arose because the fabrication method sometimes resulted in 

the layer face not being perfectly parallel to the aperture.

Network analyser measurements showed that probe reflection 

coefficient and thus radiometer calibration was a function of resin 

layer thickness. For each resin layer the radiometer was 

re-calibrated by placing the layer and the face of the waveguide in 

the calibration water bath (// 5.3.1) and measuring radiometer 
output as a function of water and resin temperature. The long time 

period necessary for the resin layer to attain the temperature of 

the bath also resulted in heating of the probe and cable. To allow 

direct comparison of scan results the calibration of the radiometer 

and probe without the resin layer was carried out over an 

equivalent time period. Since this does not give a true 

calibration of the radiometer in terms of temperature, all the 

following results are presented with a normalized ordinate.
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Fig 6.6a shows a scan taken at a tube to aperture distance of 

z = 5.5 ram in water compared with an identical scan hut with 4.5 mm 

resin and 1 ram water as the intervening medium. Fig 6.6b shows the 

same situation with the hot-spot at a higher temperature of 30 °C 

above the surrounding water temperature, this maximizes the data 

accuracy by increasing the signal to noise ratio. Since all the 

data is normalized, scans at different temperatures are equivalent 

and any discrepancy is due to noise. A simulation of these 

measurements is given in Fig 6.6c; the model for the bi-layered 

structure is shown in Fig 6.7. A similar situation is presented 

in Fig 6.8 for a tube depth of z = 4.5 mm and a resin thickness of 

3.5 mm. . Fig 6.9 shows a comparison of three scans at a distance of 

z = 10 mm with three differing intervening structures (9 mm resin 

and 1 mm water, 4.5 mm resin and 5.5 mm water, no resin and 10 mm 

water). These scans were carried out by first fabricating a 9 mm 

resin layer then machining this down to 4.5 mm thick and finally 

removing the layer completely.

The influence of the resin layer on the spatial resolution of 

the scanning procedure was studied by scanning two parallel hot 

water tubes fixed a small distance apart. Fig 6.10a shows an X 

scan of two 9 mm diameter tubes separated by 3 mm, in water. The 

tubes are easily resolved. When a layer of resin is present, the 

spatial resolution is reduced. Fig 6.11a indicates that the two 

tubes may be just resolvable, although the variation is well within 

the measurement noise level. The simulation (Fig 6.11b) suggests 

that the tubes cannot be resolved when the resin layer is present.

6.2.2 Discussion

These results indicate that an intervening fat-simulating 
resin layer has a two-fold effect. Firstly, the resin layer tends
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to produce a broader scan pattern and secondly, the amplitude of 

measured temperature difference is changed by an amount which 

depends on the resin thickness. The temperature prediction method 

produces simulations which show good agreement with the measured 

results. An explanation for these effects may therefore be found 

by examining this prediction method in which the received 

temperature is a function of the field pattern. The broad response 

pattern and lower spatial resolution is a direct result of the 

broad field pattern; this occurs because the aperture size is 

electrically smaller (ie smaller in terms of wavelength in the 

medium) when in contact with resin (fat) than when contacting the 

water (muscle). Figures 6.6, 6.8 and 6.9 demonstrate that resin

layers of 3.5 mm and 4.5 mm thick have only a slight effect on 

absolute values of measured temperature. However, a thicker resin 

layer (Fig 6.9) leads to a measurement which is almost double that 

obtained for the case of water alone. The field patterns in a 

bi-layered structure and the propagation process used to derive 

them again hold an explanation. The signal reaching the aperture 

from the hot-spot depends on three factors; the gain of the 

aperture in the direction of the hot-spot, the attenuation in the 

intervening dielectric and the reflection at the resin-water 

boundary. For a thin resin layer, the lower forward gain of the 

aperture into resin and the reflection at the resin-water boundary 

compensate for the lower attentuation in resin (compared to that in 

water) leading to a similar radiometric temperature to that 

measured in homogeneous water. The forward gain and reflected 

field component amplitude vary more slowly with resin thickness 

compared to the decrease in forward attenuation for every 

millimetre of water replaced with resin. Consequently, for large
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resin thicknesses the lower attenuation leads to a higher 

radiometric temperature measurement compared to that found in 

homogeneous water.

The implications of these effects for clinical application of 

microwave radiometry are great. Simulation models for radiometric

results have often, in the past, involved the assumption of
homogeneous tissue. Results presented here show that such an
assumption can lead to errors in measurement interpretation. An

overlying layer of fat can lead to a hot volume below the fat 

appearing hotter and larger to the radiometer. The gain of the 

probe into the medium has also been shown to be important, 

influencing both the spatial resolution of the measurement 

procedure and the absolute value of temperature measured. Many 

temperature prediction models do not consider the effects of the 

measuring probe. In conclusion, the size, temperature and depth of 

a hot area cannot be estimated without knowledge of the intervening 

tissue structure and its electromagnetic interaction with the 

radiometric probe. Interpretation of radiometric results must take

these factors into account.
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radiometric data for thermal mapping during hyperthermia treatment

7.1 Proposal for a radiometric measurement system to monitor 
hyperthermia treatment

7.2 Back-projection algorithm for tomographic reconstruction of 
temperature difference data

7.2.1 Tomographic reconstruction by back-projection

7.2.2 An algorithm for reconstruction of radiometric data

7.2.3 Tomographic computer model

7.3 Measurement and reconstruction of experimental tomographic 
data

7.3.1 Measurement and reconstruction of elliptical scan data

7.3.2 Measurement and reconstruction of linear scan data

7.4 The feasibility of tomographic reconstruction of temperature 
distributions in the body
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7.1 Proposal for a radiometric measurement system to monitor
hyperthermia treatment

The safe and successful application of hyperthermia in the 

treatment of cancer relies on adequate monitoring of temperature 

throughout the heated volume. An ideal temperature monitoring 

system would combine non-invasive measurement with a tomographic 

thermal imaging capability. This chapter describes research into 

the feasibility of tomographic reconstruction of microwave 

radiometric data for thermal mapping during hyperthermia treatment 

[101] and also considers possible diagnostic applications.

The radiometric imaging system was proposed for use with a 

2.45 GHz phased array deep hyperthermia system being developed at 

Sheffield University. Implementation of a tomographic monitoring 

system required consideration of certain aspects of the imaging 

method, and a number of initial system design features were 

established.

Hie imaging requirement was for only low spatial resolution; 
the purpose of the monitoring system was to confirm the correct 

location of the heated volume and check for unwanted hot-spots. 

Maximising the coupling of microwave power to the radiometer 

receiver required contacting probes. The number of probes which 

could be employed was therefore limited by their size. The 

sensitivity of radiometers to stray microwave radiation precludes 

simultaneous heating and radiometric measurement, as has been noted 

for other hyperthermia systems controlled by radiometry [24]. The 

applicator must therefore be switched off during the collection of 

temperature data. Consequently, minimising the duration of the 

measurement cycle was a requirement to maintain therapeutic 

temperatures within the treatment volume. High microwave component
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costs limited the number of radiometric receivers which could be 

employed. Switching between a number of probes connected to one 

receiver was considered. As a consequence the theoretical 

measurement time increased by a factor equal to the number of 

probes per receiver, plus an additional factor to compensate for 

the increase in system noise incurred by the inclusion of an extra 

lossy component (the multi-port switch) in the receiver front end.

These considerations led to a design for a system to monitor 

hyperthermia induced within the human lung, initially by a non­

contacting phased array applicator. Fig 7.1a shows the system 

envisaged. The applicator consists of a remote array of dipole 

elements, each individually phase and amplitude controlled [15, 

106]. To ensure minimum interaction between the applied microwave 

field and the radiometer probes, the latter were placed on the 

opposite side of the body from the applicator. The possible 

angular spread of radiometric data was thus restricted to less than 

180°. The new version of the phased array system [107] employs 
contacting waveguide applicator elements. Placing of the 

radiometer probes was less restricted in this case due to reduced 

stray microwave fields. Fig 7.1b shows a possible arrangement for 

use with this contacting applicator system. The radiometer probes 

could be placed between the applicator elements, allowing data 

retrieval around the entire body section.

The monitoring process is intended to be carried out during 

pauses in the hyperthermia treatment, when the signal from each of 

the radiometer probes is sampled by switching to a radiometer 

receiver. The measured data is then computer processed using a 

tomographic algorithm to reconstruct a low resolution map of the 

temperature distribution within the image slice. The temperature



applicator

Fig. 7.1a Section through envisaged hyperthermia monitoring 
system showing configuration of radiometer probes 
and non-contacting applicator.

applicator
elements

Fig. 7.1b Configuration for hyperthermia monitoring with contacting 
applicator elements.
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map can then be used as feedback to correct the phase and amplitude 

settings of the applicator elements.

7.2 Back-projection algorithm for tomographic reconstruction of

temperature difference data

7.2.1 Tomographic reconstruction by back-projection

The problem addressed in this section is that of the 

reconstruction of an internal distribution from a set of externally 

measured signals. This problem was first considered mathematically 

for straight line projections by Radon [108], and the first 

practical reconstructions were performed by Bracewell [109] in the 

field of radioastronomy. Medical applications include X-ray CT 

[110], Isotope y-ray emissions [111], and NMR [112]. Tomographic 

techniques have also been applied to active microwave imaging using 

diffraction theory [113]. For these methods the problem is usually 

reduced to the two dimensional one whereby the reconstruction of a 

cross-section of an object is from straight line projections of 
this section onto an image plane. For the sake of simplicity, and 

to correspond to the proposed measurement system described in the 

// 7.1, the back projection method is considered for this two

dimensional case only.

Fig 7.2a is a schematic representation of the process of data 

collection for a point object. The point object represents a 

scatterer or absorber for the case of active imaging (eg differ­

ential density for X-ray CT) or an emissive source for passive 

imaging (eg a concentration of a radio-isotope in gamma camera 

tomography). A number of views are taken to obtain projections 

from a full range of angles around the object. For a point object 

each projection consists of a delta function if infinitely narrow



view 3

Fig. 7.2a

Fig. 7.2b

view 1

view 2

■>

view 4

Data collection process for four projections of a 
point object.

Back projection of each view followed by summation to 
generate ’star-like1 point spread function.
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interrogating rays (active mode) and infinitely small detectors are 

assumed.

The process of hack projection is shown in Fig 7.2b. Each 

projection is simply spread back across the object space in a 

direction orthogonal to the projections and summed with all the 

other back-projected views. The object is not reconstructed 

perfectly by this method, but a star-like image is formed centred 

on the object position, known as the point spread function. In the 

limit of an infinite number of views, this star-like image will 

tend to a 1/r function, where r is the distance from the object 

centre. In a reconstruction of a complex object, which can be 

considered to be formed from many point sources, this function will 

act to blur the final image.

7.2.2 An algorithm for reconstruction of radiometric data

The concept of tomographic reconstruction by back projection 

forms a starting point for the design of a reconstruction algorithm 
for radiometric data. The evisaged system for monitoring 

hyperthermia treatment and the nature of information collection by 

microwave radiometry impose certain features which are different to 

standard tomographic algorithms. An algorithm for radiometric data 

must allow reconstruction from a small number of data points, due 

to the physical restrictions on the number of radiometric probes 

discussed in section 7.1. X-ray CT uses typically 300 detectors 

and 300 views resulting In around lQb data points. The number of 

pixels displayed is limited by (and usually equal to) the number of 

Independent measurements, giving a spatial resolution of 
approximately 2 mm. It is estimated that approximately sixty
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radiometric probes would fit around the human thorax and so a 

spatial resolution of no better than 5 cm can be expected.

Because of the requirement for contacting probes the scanning 

method of data collection cannot be employed. The data must be 

reconstructed from a number of individual point measurements 

sampled from locations on the outer contour of the slice to be 

imaged. This arrangement cannot be constrained to a circular 

geometry which is the usual practice for tomographic 

reconstruction, but must take on the geometry of the particular 

body shape under Investigation. The algorithm must therefore be 

able to deal with random positioning and orientation of the 

detectors. In addition, the detection beam area (ie the area from 

which information is gathered) of the probes cannot be specified as 

precisely as for X-ray CT, so the algorithm must cope with a 

variety of beam shapes. Successful monitoring of hyperthermia 

treatment entails measurement of temperature change as the therapy 

progresses. The reconstruction algorithm must therefore have the 

ability to image the change in temperature between the present 

distribution and a previously measured distribution.

With reference to Fig 7.1, initially, each probe is sampled to 

give a data set for the natural temperature distribution of the 

body. A second data set for the new temperature distribution is 

taken after the application of hyperthermia treatment. Both sets 

of data are utilized by the computer algorithm, together with the 

positions, orientations and beam shapes of each probe. The 

measured data is processed by the method described below.

For each data point, the initial measured value is subtracted 
from the second measured value to give the radiometric temperature 

change as measured by each probe. This temperature difference is
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then back-projected into a beam shape which approximates the probe 

detection area. The reconstructed value at each pixel is given by 

the sum of the back projected difference data of all probes that 

are capable of ’seeing' that pixel. To reduce the point spread 

function, a secondary procedure is carried out. Each data point is 

checked for a ’no change' condition. This occurs if the probe has 

been unable to detect a temperature increase within its detection 

area, that is if the measured temperature difference is lower than 

the uncertainty in the radiometer measurement (// 5.3.2). If this 

'no change' condition has occurred for a particular probe, each 

pixel within its back-projected beam area is reassigned a zero 

value. The blurring of the image due to the back projection 

process is reduced. In addition, making use of temperature 

difference data gives a reconstructed distribution which is a 

picture of temperature change.

7.2.3 Tomographic computer model
A computer simulation of the data collection and 

reconstruction procedures was carried out in order to test and 

refine the reconstruction algorithm. The programme initially 

requests the contour shape of a two-dimensional slice through the 

body, the number of probes to be considered, and the beam shape. 

All examples given here consider the body contour as an ellipse 

with dimensions 40 cm by 20 cm, which is an approximation to a 

transverse slice through the human torso. The position and 

orientation of each probe is then calculated. For the purpose of 

simplifying the model, a homogeneous tissue medium was assumed. 

Two different representations of beam shape were used. Firstly, 

the probe was assumed to have a fan beam detection area with a
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field of view limited by an angle 9, the probe only receiving from 

the area subtended by this angle (Fig 7.3). The second beam shape 

considered was a rectangular one (Fig 7.A).

The first phase of the programme simulates the data collection 

process. Matrix points within the body are assigned an initial 

temperature value T^ . The temperature measured (T ̂ ) at each 

radiometer probe j is then given by

J’i(Tll exp(-aZ^) cos2x*— )

^i(exp (“aZi) cos2tc — )
w

where the summation is performed for those matrix points within the 

beam.

and w are shown in Fig 7.3 and 7.4 and a is a power 

attenuation coefficient. This equation gives a good approximation 

to the radiometric temperature measured by a waveguide probe 

contacting a high loss homogeneous medium for an appropriate value 

of a, especially for a rectangular beam shape [50]. The matrix 

points are then assigned a new temperature distribution which 

includes a hot-spot and the process is repeated to calculate the 

data set T^2 •
The second phase of the programme is the reconstruction 

algorithm. The temperature change measured at each probe 

(Tj2 “ T ]_) kack projected into each probe’s beam shaped and 

summed to give a reconstruction of the heated region. The value 

reconstructed at each pixel (R^) is given by

R.
Vv - v if v - 'j1 >AT..

if T.o - T.i < AT for any j0



Fig. 7.3 Computer model geometry with fan beam 
detection area.

Fig. 7.A Computer model geometry with rectangular 
detection area.



where the summation is carried out over those probes for which the

pixel i is inside the beam and AT is the uncertainty in theu
measured radiometric temperature.

Reconstructions were performed, using a fan beam shape, for a 

number of different situations. In each of the following sets of 

reconstructions, Figs 7.5 to 7.9, the effect on the quality of 

reconstructed image for a single hot-spot, caused by varying a 

measurement parameter, is investigated. Fig 7.5a shows the input 

distribution and Fig 7.5b is an image produced using the default 

measurement parameters. Fig 7.6 shows the effect of varying the 

view angle. A small view angle (9 = 10°) produces some noise 

outside the reconstruction area. This is because the probe views 

do not cover the full reconstruction area and so the secondary 

procedure designed to reduce the point spread function cannot 

operate efficiently. At the other extreme, with a probe view of 

60°, the secondary procedure again cannot work efficiently because 

the majority of the probes see the hot spot resulting in only few 

data points with a 'no change' condition being utilized to reduce 

the point spread function. A view angle of approximately 20° (Fig 

7.5b) gives a compromise between these extreme cases. Fig 7.7 

shows the effect of reducing the number of probes. In general, 

decreasing the number of probes reduces the resolution of the 

reconstructions. Fig 7.7b indicates that ten probes is too few to 

give adequate results. Fig 7.8 shows how the reconstruction of the 

hot-spot deteriorates as the attenuation of the medium increases. 

The reason for this is that as the attenuation is increased, more 

of the measurement points fall within the 'no change' condition and 

the points within their beams are set to zero. In Fig 7.9, the 

attenuation remains constant and the theoretical temperature



Fig 7.5a in p u t d istrib ution  for Figs 7.5b to 7.9

Fig 7.5b R econstru ction  using th e d efau lt parameters
The parameters foi th is  figure and ail other  figu res are, u n less otherw ise stated

View angle (theta) = 20 degrees 
Number of probes * 60

A ttenu ation  factor (alpha) - 12 Np/ra = l!0dB/m
Radiometer measurementu n c e r ta in ty  (delta Tu) = 8.00t

Fach g rey  lev e l rep resen ts  a drop o f 18% from max. va lu e



Fig 7.6 In fluence o f the view angle

a. 3 0  p r o b e s b. 10 p r o b e s

Fig 7.7 In fluence o f th e number o f radiometer probes



Fig 7.8 Influence of a tte n u a tio n  of medium

Fig 7.9 In fluence of th e  radiom eter’s measurement u n c e rta in ty , 
delta  Tu
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resolution of the radiometer is reduced. The same deterioration of 

image can be seen. Fig 7.10 shows the sensitivity of the 

reconstruction algorithm to the position of the hot spot within the 

body contour. A central position within the body gives optimum 

reconstructions. Moving the hot-spot closer to the surface of the 

body leads to varying degrees of deterioration in the image 

quality. Fig 7.11 gives reconstructions of two hot-spots in 

differing relative position and at different separation distances.

Fig 7.12a is reconstructed from 30 data points confined to the 

underside of the body only. Fig 7.12b is reconstructed assuming a 

rectangular beam shape.

Some general observations may be deduced from these figures. 

Due to the small number of measurement points, the probe receiving 

pattern must not be too directive otherwise the whole 

reconstruction volume is not sampled. Too broad a receiving 

pattern leads to deterioration of image resolution. The ideal beam 

width is that for which the whole reconstruction area is just 

covered for a given detector separation (about 0 * 20° for a fan 

beam or w = 3 cm for a rectangular beam for 60 detectors). The 

quality of the reconstructions depends on the position of the 

hot-spot within the body contour and the presence of more than one 

hot area leads to a deterioration of the imaging capability. The 

attenuation values considered give an estimated range of plane wave 

attenuation values for inflated lung. Even the lowest attenuation 

shows some breakdown of the image of a central hot-spot when a 

realistic value for radiometer temperature resolution is 

considered. From these results it was concluded that experimental 
verification of the imaging techniques for a realistic situation

was necessary.



Fig 7.10 R econstruc tions for d iffe re n t positions within 
body con to ur



I n p u t  d i s t r i b u t i o n R e o o n s t r j e t i o n

Fig 7.11 R econstruc tions of two h o t-sp o ts



Fig.7.12a R econstruction  from semi-eiUptxcai data se t 
<see Fig.7.la)

Fig,7.12b R econstruction  assuming rec tangu la r beam shape 
(see Fig.7,4>

, IC : iCi ■:
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7.3 Measurement and reconstruction of experimental tomographic

data

7.3.1 Measurement and reconstruction of elliptical scan data

An experimental system was constructed to collect radiometric 

data for tomographic reconstruction. The first system was designed 

to reproduce the simulation model. The hot area buried in a lossy 

medium was modelled experimentally by a 10 mm inside diameter 

perspex tube, through which heated water was pumped, fixed 

vertically in a constant temperature water bath. A large

temperature difference (Tj - Tq = 40 °C) between the hot-spot and 

the surrounding medium was maintained to maximise data accuracy. 

The measurements were performed by moving a single radiometer probe 

within .the water bath, around the circumference of an ellipse with 

the hot tube at its centre by means of a scanning frame. The probe 

was attached to the scanning frame by a rotatable arm designed to 

allow precise positioning and orientation of the probe aperture 

(Fig 7.13a). The movement of the scanning frame was effected by 

computer-controlled stepper motors; the programme used for 

tomographic scanning was the 'pre-set position' scanning routine 

(see Appendix 2). A set of coordinates for sixty locations around 

the circumference of an ellipse were entered into the BBC 

microcomputer. At each of these pre-set positions, the appropriate 

orientation of the probe was calculated, such that the aperture 

plane lay along the tangent to the circumference of the ellipse 

(see Fig 7.13b). The orientation angle was set manually, by means 

of the rotating arm. The radiometric temperature was measured and 

the probe was then moved to the next position. With this method it 

was possible to model experimentally the situation where a maximum 

of sixty probes were arranged around the outer contour of an



Fig-
Set-up for elUPticai

scan
measurements-

raised temperature
tube

Fig- 7

the elliptical scan 
Iso snowing approxim

experiment
ation f°r
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elliptical body of homogeneous lossy tissue by scanning a single 

probe. Results from initial scans indicated the limitations, set 

by the high attenuation of microwave signals in water, on the 

maximum scan area. The largest size of ellipse considered had a 

semi-major axis of 2 cm.

Before reconstruction could be carried out, an estimate of the 

reconstruction beam shape was required. Linear scan measurements 

of the hot tube in water (a procedure which was described in 

Chapter 6) showed that the detection area (and thus the beam shape) 

could be approximated by a rectangular shape (Fig 7.13b) with a 

width w = 10 mm. Reconstruction of the measured data failed to 

retrieve a recognisable hot-spot for any size of ellipse 

considered. An explanation for this can be found by comparing 

Fig 7.13b with 7.4. The success of the simulated reconstructions 

relied on a narrow beam shape, compared to the dimensions of the 

reconstruction area. For the experimental case, the high 

attenuation of water restricts the size of the reconstruction area 

and the beam width is of the same order as the dimensions of the 

ellipse. The spatial resolution of the imaging process is not 

sufficient for successful reconstruction. These results led to the 

initiation of a second experimental procedure.

7.3.2 Measurement and reconstruction of linear scan data

A second experimental system for collecting tomographic data 

consisted of performing a series of linear scans around the hot 

tube, a procedure which bears more similarity to conventional 
tomographic techniques. Water was again used as the measurement 

medium. Fig 7.14 shows a diagram of the scan geometry. Eight 

linear scans were performed with fifteen measurement points per



Fig. 7.14 Geometry of the tomographic linear scan experiment 
in water, also showing effective detection area of 
waveguide probe.

iSSSili
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scan with a point separation of 2 ram. The measurements were taken 

in two stages. Firstly, the scans were performed with the hot-spot 

at the same temperature as the surrounding medium. The constant 

temperature reference scan served to check that no matching changes 

occurred due to the plastic tube. A large temperature difference 

(Tj - T0 = 40 °C) between the hot-spot and the surrounding medium 

was again maintained to maximise data accuracy. A smaller 

temperature difference, closer to those found in the body during 

hyperthermia treatment, would give similar results but with a 

reduction in the possible scan area and decrease in signal to noise 

ratio.

Initially, reconstruction was performed by simple back 

projection of each linear scan across the object space, as 

described in # 7.2.1. Fig 7.15a shows a reconstruction of a hot 

tube of 10 ram internal diameter placed at the centre of the 

scanning area. Fig 7.15b shows a reconstruction of the same tube 

offset 3 mm from the centre. The high attenuation in water again 

limited the measurable scan area. The largest tube to aperture 

distance at which the hot area could be distinguished was 14 mm, 

giving a maximum scan area of 27 mm in any direction. The 

reconstructions show the back projection point spread function. 

In order to reduce this effect, the reconstruction algorithm for 

radiometric data described in // 7.2.2 was applied in a modified 

form.

Two different beam shapes were defined, depending on whether 

the hot-spot was detectable at a given scan position. The basis of 

these beam shapes was the effective detection area, defined as the 

area in front of the probe within which a hot-spot would give a 

detectable response (ie a response greater than the measurement



Fig.?. 15a R econstru ction  of tu b e at cen tre
by simple back projection

Fig.7.15b Recon s i  * ac tion  of tu b e  o ffse t to  le ft
by simple back p ro je c tio n
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3.7. 6 a R econstruction  of tubo  a t c e n tre  
using modified algorithm

.16b R econstruction  of tu b e  o ffse t to  le f t 
using modified algorithm
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uncertainty (see # 6.1.2)). The primary factors which determine 

the detection area are the permittivity of the measurement medium, 

the probe aperture dimensions and the frequency of operation. 

However, definition of this detection area assumes some a priori 

knowledge of hot-spot size and temperature. For this case, the 

detection area was estimated from linear radiometric scans of the 

hot tube which gave, for an aperture size of 16 mm x 8 mm in water, 

an effective detection area which could be approximated by a 

rectangular beam shape of width 10 mm (w = 10 mm) and depth 14 mm 

(d = 14 mm).

The reconstruction process was equivalent to that used in the 

computer simulations but employed two beam shapes. The measured 

temperature difference (T - TQ) at each data point was back- 

projected into a strip of width w which extended across the image 

plane (Fig 7.14). If the 'no change' condition (T. - TQ < AT )j *
existed at a data point, the matrix points inside the beam area of 

width w and depth d were reassigned a zero value.

Figs 7.16a and 7.16b show reconstructions of the same measured 

data as was used in Figs 7.15a and 7.15b. The modified algorithm 

has successfully suppressed the point spread function, giving a 

good representation of the hot tube. The assyraetrical shape of the 

reconstructed hot spots reveals the sensitivity of this algorithm 

to noise.

The success of these reconstructions depends largely on the 

appropriate assignment of the parameters d and w. Altering these 

parameters would adversely affect the image, giving the correct 

position for the hot-spot but incorrectly estimating its size. 

Calculation of these parameters is possible by employing the 

temperature prediction method, applicable for homogeneous or
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layered media, although a priori knowledge of the hot-spot 

temperature and size is necessary. However, estimating these

factors for a given situation should allow reasonable estimates of 

d and w to be obtained.

7.4 The feasibility of tomographic reconstruction of temperature

distributions in the body

The ability to reconstruct both body contour geometry and 

linear scan data is predominantly influenced by the receiving 

pattern of the radiometric probe. Experimental measurements

illustrate the importance associated with the depth of maximum 

sight ('view depth') of the probe in a lossy medium. In practice, 

tomographic data is available from small areas only; the view depth 

places an upper limit on the area which can be reconstructed.

Simulation of tomographic reconstruction for a body contour 

geometry have established that the computer algorithm is capable of 

providing a low resolution map of internal differential 

temperature from a relatively small number of external radiometric 

measurements. The relationship between detection area and image 

resolution is complex. Although image resolution improves with 

decreasing beam width, reduced area coverage can lead to higher 

background noise (Fig 7.6). Experimental elliptical scans have 

shown, however, that the beam width is of the same order as the 

maximum scan dimensions giving a spatial resolution which is too 

poor to allow successful reconstruction. Although a lower 

radiometric operating frequency or larger aperture size would allow 
data to be collected from greater depth, the spatial image 
resolution would also diminish, giving no advantage over the 

present case. In conclusion, due to the unsuitability of the
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detection area found for apertures contacting lossy media, 

reconstruction from body contour measurements does not appear to be 

feasible for temperature mapping in the human body.

Tomographic measurement by linear scanning allowed 

reconstruction of a hot tube for small scan areas. The number of 

measurements required, however, was twice the maximum considered 

for body contour measurements, leading to a data collection time 

with the present radiometer of at least fifteen minutes. These

factors, together wi th the requirement for a complete

circumferential data set, would seem to preclude use of this

technique for hyperthermia monitoring.

An alternative application may be in diagnostic radiometry. 

Reconstruction of larger scan volumes is feasible by employing 

lower frequency measurements, although at the cost of poor spatial 

resolution. Additional problems are inevitable in a clinical 

situation. A matching medium would be required in which to move 

the probe, further attenuating the emitted signal. Linear scanning 

over a curved body surface would no longer allow the simplifying 

assumption of a homogeneous medium, or even parallel dielectric 

boundaries. Assignment of reconstruction beam shape to each scan 

point would be a formidable task. Simple back projection 

algorithms may be more appropriate. Despite these problems, linear 

radiometric scanning for tomographic imaging cannot be ruled out as 

a diagnostic technique. A possible clinical application, due to 

the small scan area involved, is the imaging of a limb submerged in 

a matching medium to locate, for example, the site of a thrombosis.
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Chapter 8

Conclusions

Non-invasive temperature measurement, both absolute and 

differential is recognised as an important objective in medicine 

for diagnostic applications and for monitoring of hyperthermia 

treatment. This study has assessed the capability of microwave 

radiometry for imaging subcutaneous thermal structures and has 

provided a means for interpretation of radiometric data in terms of 

internal temperature distribution.

Interpretation of radiometric signals via the propagation of 

microwave radiation through lossy tissue has been achieved by 

developing a spectral diffraction algorithm employing the 

computationally efficient fast Fourier transform. Application of 

the spectral technique to layered media has been effected by 

applying the cascade transmission line analogue to the plane wave 

spectrum, allowing reflection and transmission at each boundary 

between different dielectric media, taking into account all 

subsequent boundaries, to be rapidly computed. A consequent 

requirement for TEM plane waves necessitated the formulation of an 

approximate form for the spectral filter. An incremental approach 

was employed to calculate the field at any plane in the medium by 

addition of the forward propagating wavefront to the backward 

propagating (reflected) wavefront. This technique was applied to 

predict the field radiated into lossy, layered dielectric media by 

contacting aperture antennas.

Measurement of the field pattern of a waveguide antenna 

contacting tissue-simulating phantoms was carried out, validating 

the field prediction method in both homogeneous water and
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bi-layered resin/water structures. Further validation was achieved 

by comparing results with those of previously reported simulation 

methods for bi-layered structures.

The field measurements also served to illuminate the effect of 

employing this approximate form of the spectral filter. Band- 

limiting the propagating spectrum when layers are present leads to 

inaccuracies when the aperture distribution represents a wide 

spectral bandwidth source. This effect is negligible in high 

permittivity media but may become significant for very low 

permittivity media and small aperture sources. The spectral 

diffraction/cascade algorithm has provided good agreement with 

measurements in the situations considered.

The field prediction method has enabled the development of a 

theoretical model for calculating the radiometric temperature of 

layered tissue structures having any given temperature 

distribution. The model was formulated by analysing coherent 

radiative transfer within a system consisting of a radiometer probe 

in contact with a dielectric half space. A microwave radiometer 

operating at a centre fequency of 4.6 GHz has been constructed and 

evaluated during this study and was used to collect radiometric 

data in tissue-equivalent phantoms. Good agreement was found 

between these measurements and simulations using the temperature 

prediction model, thus validating this model and providing further 

validation of the field prediction algorithm.

This research has shown the capability of microwave radioraetry 

for sensing temperature at depth in tissue. A radiometer frequency 

of 4.6 GHz gave a compromise between radiation penetration depth 

and spatial resolution. It was found that the depth of view Is the 

factor which predominantly restricts the usefulness of radiometry.
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In a future system, a lower frequency of, perhaps, 2 GHz should be 

employed; even so, the depth of view of microwave radiometers is 

fundamentally restricted by low signal to noise and high microwave 

attenuation in tissue. The prediction methods described here could 

be used to deduce the optimum frequency for a particular 

application.

The primary criterion for a successful thermometry system, 

both for diagnostic applications and for monitoring hyperthermia 

treatment, is the ability to provide reconstruction of internal 

temperature distributions. A common simplification used in the 

past by many workers when interpreting results has been to assume 

homogeneous tissue. It has been shown here that tissue layers 

greatly influence both the absolute values of measured temperature 

and the spatial resolution of scanning techniques. Correct 

interpretation of radiometric data in terms of internal temperature 

distribution cannot be achieved without knowledge of the dielectric 

structure of the medium under investigation. The probe type and 

its dimensions also influence radiometric measurements. Employing 

these prediction methods would allow more accurate interpretation 

of radiometric data by allowing for the effects of tissue layers 

and probe type in thermal imaging and absolute temperature 

measurement. Reconstruction of temperature profiles from multi­
frequency data [58, 61, 63] could also be improved by application 

of these techniques.

One of the aims of the project was to assess the feasibility 

of using tomographic reconstruction of radiometric data as a means 

of mapping the thermal distibution induced during deep 

hyperthermia. The computer model developed for this purpose 

indicated that tomographic reconstruction would give a low
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resolution map of differential temperature with relatively few 

measurements compared to the number available in X-ray tomography. 

This small number of data points, however, led to the 

reconstructions being dependent on the receiving area, positioning 

and the number of probes, and the position of the raised 

temperature region within the body contour.

Experimental verification of the computer results showed the 

assumed probe receiving patterns to be unrealistic for measurement 

in a very lossy medium. Elliptical scanning around a raised 

temperature region failed to produce an image. Performing linear 

scans around the same hot-spot produced a successful image; 

however, the small depth of view restricted the maximum dimension 

of the area which could be reconstructed. Because of this, and the 

relatively long measurement times needed, radiometric tomography 

was found not to be promising as a means of monitoring deep 

hyperthermia. Diagnostic applications, employing reconstruction of 

linear scan data may, however, be feasible but with low spatial

resolution.
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APPENDIX I

The Cascade Technique
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Fig. A1.1 Model for plane wave propagation in layered media
ei is the complex permittivity (e| + je”) of each medium

Hi is the intrinsic wave impedence of each material

Consider Figure Al.l, where n parallel boundaries between 

different media are shown. Homogeneous plane waves have electric 

and magnetic field vectors which are transverse to the direction of 

propagation and therefore have similarities to the classical TEM 

waves that propagate on transmission lines. Indeed the propagation 

is similar. Consider forward and backward propagating waves exist 

throughout the structure shown in Figure Al.l, and that the complex 

wave amplitudes are represented by f(z) and b(z) respectively. Two 

important points should be noted; firstly the x,y,z field 

components of the plane waves propagating in the media are always 

determinable if the complex wave amplitude is known. Secondly, 

that to satisfy boundary conditions (and obtain a solution) all 

that is necessary is that the tangential field components across 

the boundary are continuous across it [114].

If e  ̂ = e q for all i then f(zQ), b(zQ) are related to f(Zj) and

bCz^) as follows:



’f(z0)’
b( 2 (J )_

ej0o 0

0 -je.
f(zx)

_b( Z 1 )
where 0O = k(z^ - zQ)/cos v0 (electrical length), 

k0 is the propagation constant,

0 is the angle of incidence (angle between direction of

propagation of waves and z)
This can be equated to the transmission line case shown in 

figure A1.2, for this equivalent system it can be imagined that the

%
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Fig. A1.2 Transmission line equivalent
Zc is the characteristic wave impedence 
of the transmission line

y and x components of the incident wave fields are being

propagated. This choice of Z^ is only appropriate for TEM plane

waves, consequently in general is not applicable for inhomogeneous

plane waves. Z^ could be chosen in figure A1.2 to be r)Q, in which

case the transverse field components of the incident wave would be
propagating on the transmission line; this choice of Z however,c
would not work for propagation from one medium to another of

different dielectric properties.

The analogy can be extended to model propagation through

layered media; as a first step consider Go * Ei, £ “ £i for alli 1



i > 1. Let f(z^-) and b(z^-) represent the complex wave amplitudes 

at ẑ  but still in medium i-1. In general, any wave incident on 

the boundary z = ẑ  will create a reflected and transmitted wave; 
the proportion of the incident wave given to each is governed by 

the reflection and transmission associated with that boundary and 

the angle of incidence vQ. if the waves f(z) and b(z) are 

propagating at an angle vQ at z = z p  then by Snell’s law at 
z = z t h e y  will be propagating at an angle given by

/eQ sin vQ = /e 1 sin 

where NQ = /¡TJJFq , H0 = 1

Nj. = /^1e1, \il » 1
= refractive index.

The reflection and transmission coefficients for the forward 

propagating case are well known and are given by the following 

expressions:

R1

T1

P jCOSVq - T|0cosv1 

T^COSVq 4- n0cosv2 

2t)1c o s v q

P^COSVq + p0cosv2
Note that conservation of energy is maintained, ie 1 + R s T and

that the backward propagating wave has R =* -R. and T - 1 - R, .b 1 b 1
The above expressions for R^ and T^ are determined from the 

boundary conditions. For the transmission line analogue choice of 

value for the characteristic impedances is now important, the 

equivalent is shown in figure A1.3.
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Fig. A1.3 Two media equivalent transmission line



Z - Z ci c0
where Ri = ---------  and Ti =

Z + Z ci c0

2 Z
C1

Z + Z 
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The relationship between f(zi~), b(zi~) and f(z2"), b(z2~) is 
given by the following compression:
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_b( z 2“)

f(zx--) _ 1_ 1 R 1
_b(zr T1 _ R1 1 _

0

0 -je

where 0̂  = k^(z2 - z^/cos Vp

ki is the propagation constant for media 1 (line 1),

Vi is the angle of propagation (with respect to z).
If e # e for all i and R , T denote the reflection and i i+1 i i

transmission coefficients appropriate to the ith boundary (when 

considered in the simple situation of two media as above) then

f(Zl-) 

_h( zi ~)_
i*l

j©. -je.
R e 
i
-je.

, R. je e 1—  ie i
b(z -) n+1

To apply the cascade technique to plane wave propagation

through layered media and to determine the field values throughout

the layers it is necessary to find the steady state reflection (F )1
and transmission (11^) coefficients for each boundary, ie

i = 1 to n. The expressions for T and n are as follows:K. K

rK -

nK =

f(y >

f ( z K + )

f(zK~)
where b(z), f(z) functions have been described from the previous
expression. K indicates the Kth boundary and K * 1 to n. z+ isK
'just past' z in the Kth medium. K

T and II can be determined by evaluating K K
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Since the nth and nflth media are the same, b(z -) = 0.n+l
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APPENDIX 2

The software for 

automatic data logging

computer control of the scanning frame and 

is divided into two programs.

1) Scanning frame control and data logging: Program "SCANNER"

This program is divided into subroutines which can be called 

automatically by the function keys on the BBC.

(i) General scanner movement: allows movement of the object by a 

specified distance in a specified direction.

Inputs: distance required (in mm), direction (x or y, left

or right).

(ii) Raster scan: this programme is used in measurement of field 

distributions and in linear scanning of temperature 

anomalies.

Inputs: Number of points, point separation 

Number of lines, line separation 

Settling time, sampling time.

The program performs a raster scan of a specified number of 

points in the x direction by a specified number of points in 

the y direction, each of a given separation. At a sample 

point, the system is allowed to settle and then the A to D 

input is sampled for a given time to collect the data. For 

use in field measurement, the settling and sampling time are 

set to a minimum (0.1 second); however, for use in 

radiometric scanning, the long time constant associated with 

the radiometer necessitates a settling time of ten seconds

SiM <’V : Sii ' : ;! m  '■ i . •



and a sampling time of five seconds. The data from the scan 

is then dumped to disk.

(iii) Pre-set position scan: for use in radiometric tomographic 

scanning (see Chapter 7).

Inputs: number of sample points

coordinates and angular setting of each sample point 

sampling time

This program moves the scanning frame to a given number of 

positions whose coordinates have been input previously. The 

system will wait at a sample point until the required angular 

setting has been set manually and then sample its A to D for 

a given time, before moving to the next sample point. At

the end of the scan the data, positional information and 

angular settings are dumped to disk. This data can then be 

processed using the VAX computer. In its present form the 

program will move the frame in a 60 point ellipse of any 

specified size.

2) Data processing and graphical output: Program "GRAPH"

This program is used with data collected in the Raster scan 

routine. The "GRAPH" program displays the input data to the raster 

program (number of points etc) and gives a choice of grey scale or 

line graph display on the VDU. A screen dump facility allows hard 

copies of these displays at the attached printer.

Additional processing and display facilities are available on 

the VAX 11/730 computer. The data from disk can be dumped to the 

VAX and displayed in grey-scale or colour two-dimensional pictorial 

form, or as line graphs.
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