
GENETIC PROGRAMMING FOR
MANUFACTURING OPTIMISATION

Thesis submitted for candidature for the degree of PhD

Christos Dimopoulos

August 2000

Department of Automatic Control and Systems Engineering
University of Sheffield

STATEMENT OF ORIGINALITY
Unless otherwise stated in the text, the work described in this thesis was carried out
solely by the candidate. None o f this work has already been accepted for any other
degree, nor is being concurrently submitted in candidature for any degree.

Candidate:______________ _________
Christos Dimopoulos

Supervisor:______ .
Neil Mort

To my mother

SUMMARY

A considerable number o f optimisation techniques have been proposed for the
solution o f problems associated with the manufacturing process. Evolutionary
computation methods, a group o f non-deterministic search algorithms that employ the
concept o f Darwinian strife for survival to guide the search for optimal solutions, have
been extensively used for this purpose.
Genetic programming is an evolutionary algorithm that evolves variable-length
solution representations in the form o f computer programs. While genetic
programming has produced successful applications in a variety o f optimisation fields,
genetic programming methodologies for the solution o f manufacturing optimisation
problems have rarely been reported. The applicability o f genetic programming in the
field o f manufacturing optimisation is investigated in this thesis. Three well-known
problems were used for this purpose: the one-machine total tardiness problem, the
cell-formation problem and the multiobjective process planning selection problem.
The main contribution o f this thesis is the introduction o f novel genetic programming
frameworks for the solution o f these problems.
In the case o f the one-machine total tardiness problem genetic programming
employed combinations o f dispatching rules for the indirect representation o f job
schedules. The hybridisation o f genetic programming with alternative search
algorithms was proposed for the solution o f more difficult problem instances. In
addition, genetic programming was used for the evolution o f new dispatching rules
that challenged the efficiency o f man-made dispatching rules for the solution o f the
problem.
An integrated genetic programming - hierarchical clustering approach was proposed
for the solution o f simple and advanced formulations o f the cell-formation problem.
The proposed framework produced competitive results to alternative methodologies
that have been proposed for the solution o f the same problem. The evolution o f

similarity coefficients that can be used in combination with clustering techniques for
the solution o f cell-formation problems was also investigated.
Finally, genetic programming was combined with a number o f evolutionary
multiobjective techniques for the solution o f the multiobjective process planning
selection problem. Results on test problems illustrated the ability o f the proposed
methodology to provide a wealth o f potential solutions to the decision-maker.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my supervisor Dr. Neil Mort for his
guidance and support throughout the period o f this research work and for accepting to
take over my supervision after my initial supervisor Dr. Ali Zalzala moved to a
different institution. I would also like to thank Dr. Zalzala for his guidance during the
initial stages o f this research and I would like to wish him the best in his new position.
I am grateful to Dr. D.I. Tseles o f the Technological Educational Institute (TEI) o f
Piraeus for his constant encouragement and support.
I am extremely thankful to the Greek State Fund for providing the main financial
support for this research. The same goes for the Department o f Automatic Control and
Systems Engineering for providing my tuition fees for the last year o f my research.
I am grateful to my family for supporting me throughout this period o f my studies and
to all my friends for being there when I needed them.
This thesis concludes a personal educational cycle that started 22 years ago. I would
like to take this opportunity to thank all my teachers during that period and I hope that
I would be able to put the acquired knowledge in good use.

TABLE OF CONTENTS

Chapter 1
INTRODUCTION__ 1

1.1 Background 1

1.2 O bjectives and contributions o f the research_______________________________________ 3

1.3 Outline o f this t h e s is ___5

Chapter 2
EVOLUTIONARY COMPUTATION FOR MANUFACTURING
OPTIMISATION___ 8

2.1 Introduction __________________ __ 8

2.2 The Job-Shop Scheduling Problem __ __ _ 9
2.2.1 Introduction and historical development __9
2.2.2 Formulation of the problem__ 10
2.2.3 Encoding__11

2.2.3.1 Direct representations __11
2.2.3.2 Indirect representations__12

2.2.3.2.1 Job-based representations ___12
2.2.3.2.2 Dispatching rule representations_______________________________________ 13
2.2.3.2.3 Preference-list representations__14
2.2.3.2.4 Alternative representations___ 14

2.2.4 Test problems and case studies___ 15

2.3 The Flowshop Scheduling Problem___17

2.3.1 Introduction__________ 17
2.3.2 Problem formulation __17
2.3.3 Encoding ______________ ___ 18
2.3.4 Test problems and case studies__ 19

2.4 The Dynamic Scheduling P rob lem ___ 19
2.4.1 Introduction________________ 19
2.4.2 Machine learning methods __ 20

2.4.3 Alternative methods___21
2.5 Process P lann ing___ 22

2.5.1 Introduction___ 22
2.5.2 Operation sequencing___22
2.5.3 The process planning selection problem_______________________________________ 23
2.5.4 Advanced process planning methodologies_____________________________________ 24

2.6 Cellular M anufacturing___ 25
2.6.1 Introduction___ 25
2.6.2 The cell-formation problem__ 26
2.6.3 Cell layout and machine layout optimisation methods___________________________ 28

2.6.3.1 Evolutionary computation methods for the solution of the facility layout problem _28
2.6.3.2 Special cases for the machine layout problem________________________________30

2.7 Optimisation o f Assem bly L in es__31

2.7.1 Introduction__ 31
2.7.2 The assembly sequence planning problem_____________________________________ 31
2.7.3 Sequencing in mixed model assembly lin es____________________________________ 31
2.7.4 The assembly line balancing problem___ 32

2.8 Manufacturing-related Optimisation Problem s___________________________________33

2.8.1 Introduction__ 33
2.8.2 Design Optimisation Problems___ 33
2.8.3 Process model identification___ 34
2.8.4 Machine failure and maintenance___ 34
2.8.5 Quality control___ 35
2.8.6 Advanced manufacturing optimisation problems________________________________36
2.8.7 Various applications__37

2.9 C onclusions___ 37

Chapter 3
INTRODUCTION TO GENETIC PROGRAMMING___________ 40

3.1 Introduction___ 40

3.2 O verview o f genetic programming ______ _________________________________41

3.3 Representation, initialisation and computer implementation o f genetic programs
__ 44

3.3.1 Basic program elements__ 44
3.3.2 Representation o f genetic programs ___45
3.3.3 Initialisation of genetic programs ___ 46
3.3.4 Computer implementation of genetic programs_________________________________47

3.4 Fitness assignment and selection methods_______________________________________ 47
3.4.1 Fitness functions__ 47
3.4.2 Selection methods__ 49

3.5 Genetic operators___ _ 50
3.5.1 Crossover__50

3.5.1.1 The schema theorem in genetic programming________________________________51
3.5.2 Mutation__53
3.5.3 Reproduction__ 54

3.6 D esign o f the genetic programming algorithm ___________________________________54

3.7 An illustration o f the genetic programming algorithm ___________________________ 55

3.8 C onclusions___60

Chapter 4
THE ONE-MACHINE TOTAL TARDINESS PROBLEM_______61

4.1 Introduction___ 61

4.2 M inim ising total tardiness in a single-machine environm ent_____________________ 62
4.2.1 Problem definition__ 62
4.2.2 Literature review___ ___ 63

4.2.2.1 Introduction 63
4.2.2.2 Early approaches_______________________________________ 64
4.2.2.3 Development o f implicit enumeration algorithms during the 70’s and 80’s _______ 65
4.2.2.4 Recent developments __ 68

4.3 A GP - heuristic for the solution of the one-machine total tardiness problem_______ 71
4.3.1 Introduction____________________ ___71
4.3.2 Design of the algorithm_____________ 72

4.3.2.1 Schedule representation___________________ 72
4.3.2.2 Function set_______________ 74
4.3.2.3 Terminal set_____________________________ 74

4.3.2.4 Fitness measure__ 76
4.3.2.5 Genetic operators___ 76
4.3.2.6 Additional parameters__ 76

4.3.3 Experimental basis__ 77
4.3.4 Results__79

4.3.4.1 GPC vs. other dispatching rules___ 79
4.3.4.2 M-NBR vs. GLS and GSA__ 81
4.3.4.3 SA vs. GSA___ 84

4.4 Evolving dispatching rules using Genetic Programming__________________________ 86
4.4.1 Introduction___ 86
4.4.2 Design of the algorithm__87

4.4.2.1 Schedule representation__ 87
4.4.2.2 Function set___ 88
4.4.2.3 Terminal S et__ 88
4.4.2.4 Fitness measure and fitness cases___89
4.4.2.5 Additional parameters__ 90

4.4.3 Results__90
4.5 C onclusions___ 94

Chapter 5
THE CELL-FORMATION PROBLEM______________________ 96

5.1 Introduction___96

5.2 Formulation o f the cell-formation problem ______________________________________ 97

5.2.1 Simple binary matrix formulation___ 97
5.2.2 Advanced formulations __ 100

5.3 Literature rev iew ___________ ___ 101

5.3.1 Introduction______________________ ______________________________________ 101
5.3.2 Array-based methods_____________ 103
5.3.3 Hierarchical clustering methods_____________ 106
5.3.4 Non - hierarchical clustering methods ____________________________________ 110
5.3.5 Graph-based approaches ______________ 112
5.3.6 Mathematical programming_________ 114
5.3.7 Meta-heuristics, fuzzy logic and neural networks 116

5.4 A genetic programming-based methodology for the solution o f binary cell-formation
problem s___ 117

5.4.1 Introduction___ 117
5.4.2 Design o f the algorithm___ 118

5.4.2.1 Generation o f machine-cells and part-families using the GP-SLCA algorithm__ 118
5.4.2.2 Allocation o f parts___ 120
5.4.2.3 Function set___ 120
5.4.2.4 Terminal set___ 120
5.4.2.5 Genetic operators__ 121
5.4.2.6 Objective function___ 121
5.1.1.7 Additional parameters__ 123
5.1.1.8 Illustration o f the GP-SLCA procedure using an example problem____________ 124

5.1.3 Experimental basis__ 127
5.1.4 Results__ 130
5.1.5 Discussion__ 132

5.5 Advanced formulations o f the cell-formation problem ___________________________ 135

5.5.1 Introduction___ 135
5.5.2 Operation sequences___ 136
5.5.3 Minimisation of opportunity costs under design constraints_____________________ 140
5.5.4 Balancing the workload within the ce lls_____________________________________ 144
5.5.5 Discussion__ 148

5.6 Evolution o f similarity coefficients for the solution binary cell-formation problems 148

5.6.1 Introduction___ 148
5.6.2 Design o f the algorithm___ 149
5.6.3 Results__ 151
5.6.4 Discussion__ 152

5.7 C onclusions__ 156

Chapter 6
MULTIOBJECTIVE MANUFACTURING OPTIMISATION__ 158

6.1 Introduction___ 158

6.2 Evolutionary multiobjective optim isation_______________________________________ 159

6.2.1 Introduction to multiobjective optimisation__________________________________ 159
6.3 Evolutionary computation for multiobjective optimisation_______________________ 161

6.3.1 Introduction___ 161
6.3.2 Review o f evolutionary multiobjective techniques_________________________ 162

6.4 The multiobjective process planning selection problem______________________166

6.5 A genetic programming-based methodology for the solution o f the multiobjective
process planning selection p rob lem ___ 167

6.5.1 Introduction___ 167
6.5.2 Design o f the algorithm___ 168

6.5.2.1 Representation of process plans__ 168
6.5.2.2 Function set___ 171
6.5.2.3 Terminal set___ 172
6.5.2.4 Genetic operators___ 172
6.5.2.5 Objective function___ 172
6.5.2.6 Additional parameters__ 173

6.5.3 Experimental basis__ 174
6.5.4 Results__ 175
6.5.5 Discussion__ 175

6.6 C onclusions___ 187

Chapter 7
CONCLUSIONS___ 189

7.1 The one-machine total tardiness problem_________________________________ 190

7.2 The cell-formation problem___191

7.3 The multiobjective process planning selection problem______________________193

7.4 Comments on the use of genetic programming for the solution of manufacturing
optimisation problems___ 194

7.5 Future work_______________________ 196

APPENDIX__________________ 198

REFERENCES__________________________ 202

LIST OF PUBLICATIONS

JOURNAL PUBLICATIONS
Dimopoulos, C., and Zalzala, A.M.S., “Recent developments in evolutionary
computation for manufacturing optimisation: problems, solutions and comparisons”,
IEEE Transactions in Evolutionary Computation, vol.4, no.2, pp.93-113,2000.
Dimopoulos, C., and Mort, N ., “A hierarchical clustering methodology based on
genetic programming for the solution o f simple cell-formation problems”,
International Journal o f Production Research, in press.
Dimopoulos, C. and Zalzala, A.M.S, "Investigating the use o f genetic programming
for a classic one-machine scheduling problem”, Advances in Engineering Software,
Elsevier Journal Special Edition - Evolutionary and Adaptive Computing in Design
and Manufacture 2000, in press.

CONFERENCE PUBLICATIONS
Dimopoulos, C. and Zalzala, A.M.S, "Evolutionary computation approaches to cell
optimisation", Adaptive Computing in Design and Manufacture (ACDM ’98), Parmee,
I.C., (ed.), pp. 69-83, Plymouth, April 1998. Springer.
Dimopoulos, C. and Zalzala, A.M.S, "Optimisation o f cell configuration and
comparisons using evolutionary computation approaches", in IEEE World Congress
on Evolutionary Computation (ICEC ‘99), pp.148-153, Anchorage, May 1998. IEEE.
Dimopoulos, C. and Zalzala, A.M.S., “A genetic programming heuristic for the one-
machine total tardiness problem”, Proceedings o f the Congress on Evolutionary
Computation (CEC ’99), vol.3, pages 2207-2214, Washington D.C., USA, July 1999.
IEEE Press.
Dimopoulos, C. and Zalzala, A.M.S., “Evolving scheduling policies through a genetic
programming framework”, in Proceedings o f the Genetic and Evolutionary
Computation Conference (GECCO ’99), Banzhaf, W., et al. (eds.), vol. 2, pp.1231,
Orlando, Florida, USA, July 1999. Morgan Kaufmann.
Dimopoulos, C. and Mort, N., “Genetic programming for cellular manufacturing”, in
Proceeding o f the 2nd Workshop on European Scientific and Industrial Collaboration
(WESIC ’99), Roberts, G.N., and Tubb, C.A.J., (eds.), Newport, Gwent, September
1999. Mechatronics Research Centre.
Dimopoulos, C. and Mort, N ., "A genetic programming-based hierarchical clustering
procedure for the solution o f the cell-formation problem ", Adaptive Computing in
Design and Manufacture (ACDM 2000), Parmee, I.C., (ed.), pp. 211-222, Plymouth,
April 2000. Springer.

Dimopoulos, C. and Mort, N., “Evolving similarity coefficients for the solution o f
cellular manufacturing problems”, in Proceedings o f the Congress on Evolutionary
Computation (CEC 2000), pp.617-624, San Diego, California, USA, July 2000. IEEE
Press.
Dimopoulos, C. and Mort, N ., “Solving cell-formation problems under alternative
quality criteria and constraints with a genetic programming-based hierarchical
clustering algorithm”, to be presented at the Sixth International Conference on
Control, Automation, Robotics and Vision, Singapore, 5-8 December, 2000.

Chapter 1

INTRODUCTION

1.1 Background
Manufacturing is the process o f transforming raw materials through labour into a
product o f greater value that meets the designer’s specifications (Singh, 1996).
The Industrial Revolution transformed the manufacturing process from a series o f
operations carried out collectively by a single man or few people, to a set o f
interrelated activities where each person involved is specialised in the completion o f a
certain task. As manufacturing processes grew rapidly in scale and complexity, the
need for efficient production lines emerged.
Modem manufacturing companies aim to continuously improve the efficiency o f their
production lines in an attempt to reduce overall costs, increase productivity and
address customer needs. The process o f continuous improvement is critical in today’s
competitive market environment, since even a small difference in the overall
production costs o f rival products could have an impact on their commercial success.
The need for efficient production lines has been addressed by scientific research,
which, especially the last fifty years, is continuously developing new optimisation
techniques and procedures. The term manufacturing optimisation is usually employed
for the description o f problems associated with the optimisation o f various stages o f
the manufacturing process. The scheduling o f part operations, the balancing o f
machine workloads and the sequencing o f assembly operations are some typical
manufacturing optimisation problems that require optimal solutions in the day-to-day
operation o f a modem manufacturing plant. Manufacturing optimisation also

\

Chapter 1: Introduction

considers problems from areas such as robot control, aggregate production planning
and inventory control.
The design o f modem manufacturing systems is usually based on philosophies that
aim to eliminate or ease the solution o f these optimisation problems. The principles o f
just-in-time production (JIT systems), flexibility (flexible manufacturing systems) and
groupability (cellular manufacturing systems) have been used successfully for this
purpose. However, the implementation o f such systems gives rise to optimisation
problems o f different nature that can be just as difficult to solve, like the cell-
formation problem, which is a subject o f research in this thesis.
Most o f the problems described above, when formulated mathematically, are
combinatorial in nature and NP-hard (Garey and Johnson, 1979), i.e. the time
complexity o f solution methodologies increases exponentially with the size o f the
problem. This means that exhaustive enumeration o f the solutions’ space is only
feasible for small problem instances with present computational resources.
The difficulty o f manufacturing optimisation problems has attracted considerable
research interest, not only for the practical issues associated with them on the
manufacturing process level, but also for their benchmarking potentials in relation to
solution methodologies. The main methodologies that have been used for the solution
o f manufacturing optimisation problems over the years are the following:
• Implicit enumeration algorithms (dynamic programming, branch and bound)

(Bellman and Dreyfus, 1962))
• Classic optimisation methods (steepest descent, gradient search) (Beveridge,

1970)
• Mathematical programming (linear programming, non-linear programming)

(Winston, 1995)
• Neural networks (Zurada, 1992)
• Fuzzy logic (Dubois and Prade, 1980)
• Meta-heuristics
Meta-heuristics is a group o f search algorithms that have been mainly developed
during the last two decades for the solution o f difficult multimodal and combinatorial

2

Chapter 1: Introduction

optimisation problems. The main feature o f these algorithms is their ability to escape
local optima by probabilistically accepting worse-performing solutions during an
optimisation run, in contrast to classic local search or gradient search procedures.
Evolutionary algorithms (EA’s) (Holland, 1975), (Michalewicz, 1992), simulated
annealing (Kirkpatrick et ah, 1985) and tabu search (Glover, 1990) are the most
notable members o f the meta-heuristics group. Meta-heuristics have been applied
successfully on a wide range o f optimisation problems where traditional solution
methodologies could either handle only small problem instances (mathematical
programming), or performed poorly due to the presence o f local optima (local search
or gradient search techniques).
Evolutionary computation methods proved to be particularly popular due to their
added characteristic o f being able to search the solutions’ space not from a single
point but from a population o f points in parallel. Their search procedure employs the
concept o f the Darwinian strife for survival, where solutions performing better on the
problem considered are given more chance o f surviving during an optimisation run.
There are several variants o f evolutionary algorithms that are mainly distinguished by
the type o f coding used for the representation o f solutions, and the type o f operators
employed for the generation o f new solutions in the search space. The optimisation
methodology used in this thesis is genetic programming (GP) (Koza, 1992), one o f the
newest and most popular members o f the evolutionary algorithms group. Genetic
programming evolves solutions in the form o f computer programs, i.e. structures that
can be compiled either directly or with slight modifications by a computer. In that
sense genetic programming is an automatic programming methodology. This efficient
combination o f evolutionary computation concepts with the principles o f program
induction has produced successful applications in a wide range o f optimisation fields
(Banzhaf et ah, 1998).

1.2 Objectives and contributions of the research
Manufacturing optimisation is one o f the main application fields o f evolutionary
computation algorithms. The use o f evolutionary computation techniques for the
solution o f manufacturing optimisation problems has grown rapidly during the last

3

Chapter 1: Introduction

decade both in terms o f number and range o f applications (Dimopoulos and Zalzala,
2000).

However, genetic programming has not followed the development o f the evolutionary
computation research in the field o f manufacturing optimisation. The applications o f
genetic programming in this field have been relatively few (McKay et al., 1996),
(Garces-Perez et a l , 1996), given the sharp rise in the popularity o f the method and
the number o f publications during the last decade.
Motivated by this noticeable imbalance, this thesis investigates the applicability o f
genetic programming for the solution o f manufacturing optimisation problems. It
attempts to explore the applicability o f genetic programming on a range o f problems
from various areas o f manufacturing optimisation rather than focus on a group o f
similar problems from the same field, such as scheduling. In addition, the
performance o f the proposed methodologies is compared with the best alternative
methodologies that have been reported so far for the problems considered.
This research aims to provide evidence on the benefits and disadvantages o f
employing genetic programming for the solution o f manufacturing optimisation
problems. At the same time it aims to produce quantitative arguments on the merits o f
using the proposed methodologies in relation to the state o f the art on manufacturing
optimisation.
The contributions o f this research can be summarised with the help o f the following
points:

• Development o f a genetic programming-based methodology for the solution o f
the one-machine total tardiness problem. The methodology employs
combinations o f dispatching rules for the indirect construction o f job schedules.
The same methodology is also combined with alternative search techniques such
as local search and simulated annealing for the generation o f near-optimal
solutions in large problem instances.

• Evolution o f a new dispatching rule for the solution o f the one-machine total
tardiness problem. The rule schedules jobs in a similar manner to ordinary
dispatching rules; however, its form is a product o f the evolutionary procedure
rather than a formula based on the human understanding o f the problem.

4

Chapter 1: Introduction

• Development o f a genetic programming-based methodology for the solution o f
the cell-formation problem. The proposed methodology is designed to consider
both simple and advanced formulations o f the cell-formation problem. The latter
refer to cases where information about design constraints, operation sequences
o f jobs, and machine workloads are explicitly considered in the formulation o f
the problem.

• Evolution o f a similarity coefficient to be used in combination with the Single
Linkage Cluster Analysis procedure (SLCA) (Sneath, 1957) for the solution o f
cell-formation problems. The coefficient employs identical inputs to the ones
used by man-made coefficients for the calculation o f similarity between
machines; however, the form o f the coefficient is determined by the
evolutionary procedure.

• Development o f a genetic programming-based methodology for the solution o f
the optimal process planning selection problem. The methodology uses the
network representation o f the problem to evolve a solution in the form o f a
network path. This path corresponds to a potential process plan for the product
considered.

• Combination o f genetic programming with various evolutionary multiobjective
optimisation approaches that are based on the concept o f Pareto optimality
(Goldberg, 1989) for the solution o f the multiple-objective version o f the
optimal process planning selection problem.

1.3 Outline of this thesis
The layout o f this thesis is described as follows:
Following the introductory chapter, chapter 2 presents a review o f evolutionary
computation research on the solution o f manufacturing optimisation problems. A
considerable number o f applications are surveyed from the fields o f scheduling,
process planning, cellular manufacturing, assembly lines and other related
manufacturing optimisation areas.
Chapter 3 introduces genetic programming, the optimisation method that is the focus
o f this thesis. After briefly examining the mechanics o f evolutionary computation, the

5

Chapter 1: Introduction

genetic programming approach to problem solving and the relevant structures evolved
are explained. A number o f issues related to the application o f genetic operators such
as crossover and mutation are discussed. The chapter finishes with an illustrative
example o f the use o f genetic programming on a symbolic regression problem.
Chapter 4 describes the application o f genetic programming to the solution o f the one-
machine total tardiness problem. Initially the problem is defined and a survey o f
solution methodologies that have been proposed for its solution is presented. The
genetic programming-based methodology for the solution o f the problem is explained
and compared with alternative solution methodologies on a wide range o f test
problems. The performance o f hybrid approaches based on combinations o f genetic
programming with local search and simulated annealing algorithms is also
investigated. Finally, genetic programming is employed for the evolution o f a new
dispatching rule for the solution o f the one-machine total tardiness problem. Rules
produced through the evolutionary procedure are compared with dispatching rules
devised by human intuition.
Chapter 5 introduces the genetic programming-based approach for the solution o f the
cell-formation problem. The formulation o f the problem and a literature survey o f
related solution methodologies are followed by the description o f the genetic
programming-based hierarchical clustering algorithm for the solution o f simple binary
cell-formation problems. The proposed approach is compared with alternative
solution methodologies on a wide range o f test problems taken from the literature.
Results are also presented for advanced formulations o f the cell-formation problem,
which explicitly consider the operation sequences o f jobs, constraints on the total
number o f cells and machines per cell, and machine workloads. Finally, genetic
programming is employed for the evolution o f a similarity coefficient that is used in
combination with a hierarchical clustering procedure for the solution o f cell-formation
problems.
Chapter 6 focuses on the development o f a genetic programming algorithm that
explicitly considers a multiobjective manufacturing optimisation problem. The
process planning selection problem is employed for this purpose. The principles o f
multiobjective optimisation are explained and a survey o f relevant evolutionary
computation techniques is presented. The application o f genetic programming on the

6

Chapter 1: Introduction

solution o f the process planning selection problem is illustrated using an example o f
its operation on a single-objective case. Finally, combinations o f genetic
programming with evolutionary multiobjective optimisation techniques are applied to
a group o f randomly generated process planning selection problems. The evolutionary
techniques that are employed in the experimentation are the Pareto-ranking approach
(Goldberg, 1989), the Multi-Objective Genetic Algorithm approach (MOGA)
(Fonseca and Fleming, 1993), and the Niched Pareto Genetic Algorithm (NPGA)
(Horn and Nafpliotis, 1993). Results are presented to illustrate the ability o f the
proposed framework to provide a variety o f potential solutions to the decision-maker.
Chapter 7 draws the conclusions o f this research and gives recommendations for
future work.
Finally, some reference data are provided in the Appendix o f the thesis.

7

Chapter 2

EVOLUTIONARY COMPUTATION FOR
MANUFACTURING OPTIMISATION

2.1 Introduction
From as early as the 1950’s researchers have been using concepts based on Darwin’s
evolution theory for the solution o f optimisation problems (Box, 1957). A
considerable number o f algorithms based on these concepts have been developed over
the last thirty years. They are usually described by the term ‘evolutionary computation
methods’. The most notable members o f this group are simple genetic algorithms
(GA’s) (Holland, 1975), evolution strategies (Rechenberg, 1973), evolutionary
programming (Fogel, 1966), and genetic programming (Koza, 1992).
The basic operation o f the algorithm is similar in all evolutionary computation
methods: Given a certain optimisation problem, an initial population o f appropriately
coded solutions (‘chromosomes’) is generated randomly. The performance o f each
solution is evaluated and assigned with a ‘fitness’ value. Chromosomes selected from
the ‘old’ population then create a ‘new’ population o f solutions. The higher the
‘fitness’ o f an individual solution, the better is its chance to be selected for the new
population. Chromosomes exchange or alter their genetic material using specially
designed genetic operators. The purpose o f this operation is the best possible
exploration o f the solutions’ search space. The procedure is repeated until desired
‘fitness’ values have been reached, or until a predefined number o f iterations have
been completed.
The use o f intelligent techniques in the manufacturing field has been growing rapidly
during the last two decades due to the fact that most o f manufacturing optimisation

&

Chapter 2: Evolutionary computation for manufacturing optimisation

problems are combinatorial and NP - hard, i.e. the time-complexity o f the solution
methodologies is not a polynomial function o f the size o f the problem.
Heuristic methods are often employed for the solution o f these problems. A growing
number o f researchers have adopted the use o f meta-heuristic techniques (‘smart-
heuristics’) for large combinatorial problems. As it has been discussed in the previous
chapter, evolutionary computation methods are meta-heuristics that are able to search
large regions o f the solutions’ space without being trapped in local optima.
The aim o f this chapter is to illustrate recent developments in the field o f evolutionary
computation for manufacturing optimisation. A wide range o f optimisation problems
is considered, from the classic job-shop and flow-shop scheduling problems, to
assembly line balancing and aggregate production planning. The focus o f this review
is mainly on recent publications, but there are pointers to significant earlier
approaches.
The terminology o f evolutionary computation methods has not been standardised;
thus the term ‘evolutionary algorithms’ (EAs) is used interchangeably to describe
different evolutionary computation methods. The same convention will be followed
throughout this chapter, unless otherwise stated.
The rest o f this chapter is organised as follows: Section 2.2 examines recent
evolutionary algorithms that have been proposed for the solution o f the job-shop
scheduling problem. The same procedure is followed in section 2.3 for the flowshop
scheduling problem, in section 2.4 for the dynamic scheduling problem, in section 2.5
for the process planning problem, in section 2.6 for cellular manufacturing
optimisation problems, and in section 2.7 for assembly optimisation problems. Section
2.8 overviews some recent developments in other manufacturing optimisation areas
and section 2.9 draws the conclusions o f this chapter.

2.2 The Job-Shop Scheduling Problem
2.2.1 Introduction and historical development
Considerable work in the field o f evolutionary computation has been devoted to the
solution o f the job-shop scheduling problem (JSSP). The first attempt to solve the
JSSP using evolutionary algorithms was made by Davis (1985), who employed the

9

Chapter 2: Evolutionary computation for manufacturing optimisation

concept o f preference lists for the coding o f solutions (a discussion on the subject o f
solution representation will follow later in this chapter). A few years later Yamada
and Nakano (1992) proposed a more natural representation, which was based on the
completion times o f operations. Since then, the number o f alternative evolutionary
computation approaches that have been proposed for the solution o f the problem has
been growing rapidly.

2.2.2 Formulation of the problem
The job-shop scheduling problem consists o f ordering n jobs to be processed in m
machines. Each job involves a number o f different machining operations. The
following conditions hold for the classic formulation o f the JSSP:

• Each machine can process only one job at a time
• The sequence o f operations for each job is predefined
• Two operations o f the same job cannot be processed at the same time
• Pre-emption is not allowed (an operation cannot be withdrawn from a machine

unless it is completed)
• Processing times are known in advance
• Transportation time between machines is zero

The quality criterion most often used for the JSSP is the minimisation o f makespan
(Cmax). Makespan is defined as the completion time o f the final job to leave the
system (Pinedo, 1995). Bierwirth et a/.(1996) describe JSSP as a ‘representative o f
constrained combinatorial problems’. Garey et al. (1976) have illustrated that it is NP-
hard in the strong sense (proof by transformation o f the 3-PARTITION problem to the
associated JSSP decision problem). In this section the static version o f the problem is
considered, in which unexpected events are not taken in account. The dynamic
version o f the JSSP will be discussed in a following section.
Cao et al. (1997) argued that the classic formulation o f the JSSP is unrealistic since it
does not take in account a number o f elements that are important in real-life
scheduling, like set-up times, due dates and machine off-line times. Academic

10

Chapter 2: Evolutionary computation for manufacturing optimisation

research has been criticised for considering scheduling problems that rarely appear in
practice. As a result, many researchers in the field o f evolutionary computation are
increasingly using a variety o f criteria for the evaluation o f schedules. Minimisation
o f makespan is still used as an objective in many cases (Bierwirth et al., 1996),
(Domdorf and Pesch, 1995), however, the trend in modem manufacturing
optimisation systems is the minimisation o f the overall production cost. Addressing
the over-dominance o f makespan-oriented work in the field, Fang et al. (1996)
employed seven quality criteria for the evaluation o f good schedules: maximum
tardiness, average tardiness, weighted flow time, weighted lateness, weighted
tardiness, weighted number o f tardy jobs, and weighted earliness plus weighted
tardiness. The last criterion is in accordance with the Just-In Time (JIT) principle o f
having a product made exactly when it is required, so that storage costs (earliness) and
lateness fines (tardiness) are kept to a minimum. Similar objectives were used in
(Croce et al., 1995), (Kumar and Srinivasan, 1996). Due-dates and ready times o f the
products were pre-specified in these cases.

2.2.3 Encoding
A number o f alternative representations for JSSP schedules have been proposed by
researchers in the field o f evolutionary computation. In the following paragraphs a
classification o f the most successful representations is attempted.

2.2.3.1 Direct representations
A natural representation for the solution o f the JSSP problem is a data structure that
can be used as a schedule itself. No decoding is needed to obtain the schedule; thus
this type o f representation is called ‘direct'. Bums (1993) was the first researcher to
employ an EA with direct representation for the solution o f a production scheduling
problem. His representation explicitly defined the process plan for each job, machine
assignment for each operation, and individual start-end times. Purpose-based genetic
operators ensured that solutions remained valid throughout the evolutionary
procedure.

An alternative approach is the use o f an w-partitioned permutation (where m is the
total number o f machines), with each partition representing the complete schedule o f

11

Chapter 2: Evolutionary computation for manufacturing optimisation

an independent machine. This representation is especially popular in sequencing
problems, where the solution is not partitioned, so a number o f genetic operators that
have been originally designed for the solution o f the travelling salesman problem
(Michalewicz (1992)) can be easily applied. Dagli and Sittisathancai (1995) employed
this type o f direct representation for the solution o f the JSSP. They overcame
feasibility problems by using legal schedules to initialise the population and an order-
based crossover operator to preserve the precedence constraints o f the problem. They
also used a back-propagation neural network for the evaluation o f schedules. Aizpuru
and Usunariz (1995) adopted the same representation for their hybrid scheduling
algorithm, which was based on evolutionary algorithms and tabu search. A
knowledge-based system was employed for the generation o f efficient scheduling
strategies. The hybrid algorithm helped the system to induce knowledge about the
scheduling procedure. Giffler and Thompson’s (1969) algorithm generated initial
actives schedules, and efficient operators maintained the precedence relations o f the
jobs.

2.23.2 Indirect representations
2.2.3.2.1 Job-based representations

This common type o f indirect representation does not explicitly state the number o f an
operation, but instead, the job number is defined. The chromosome:

[Ji> J2> Ji> J2 , Jj,...]
indicates that the first operation o f the first job should be scheduled first, followed by
the first operation o f the second job, the second operation o f the first job, etc. It is
obvious that a schedule builder is needed to transform this solution into a feasible
schedule (for a discussion about schedule builders, see Cheng et al. (1996c)).
Bierwirth et al. (1996) employed this method in their discussion o f permutation
representations for combinatorial problems. Their experimentation with various
crossover operators led to the conclusion that the preservation o f the absolute order o f
jobs and their associated operations was quite significant for the JSSP. They
introduced a new operator called PPX (precedence preservation operator) which
featured this useful characteristic. Fang et al. (1996) highlighted the superiority o f a
job-based GA over dispatching rules and stochastic hillclimbing on a variety o f

12

Chapter 2: Evolutionary computation for manufacturing optimisation

scheduling criteria. Shi (1997) built an EA scheduler that efficiently decoded the
strings into active schedules and utilised genetic operators optimised for speed.

2.23.2.2 Dispatching rule representations

The use o f dispatching rules for scheduling purposes is common manufacturing
practice. The following definition o f a dispatching rule is given by Blackstone et al.
(1982): ‘A dispatching rule is used to select the next job to be processed from a set o f
jobs awaiting service’. In the case o f static scheduling, this selection is based on
various job characteristics such as processing time, due date, etc.
Herrmann et al. (1995) proposed an efficient EA representation based on the concept
o f dispatching rules. The solution was encoded in the following form:

[ED D , SPT, FIFO,.........]

where: EDD : Earliest Due Date rule
SPT : Shortest Processing Time rule
FIFO : First In First out rule

Each element (gene) corresponded to a particular machine, and the value o f the
element defined the dispatching rule that this machine employed for the scheduling o f
operations awaiting service. This type o f representation did not suffer from feasibility
problems and the application o f conventional operators was straightforward. Fujimoto
et al. (1995) employed the same representation for the scheduling o f a flexible
manufacturing system. In this case, each gene represented a decision making point in
the plant, and the value o f the gene specified the dispatching rule that would be used
at this point. Kumar and Srinivasan (1996) used a circular string o f dispatching rules
as a scheduling policy, whenever a part was requested for processing.
Domdorf and Pesch (1995) proposed an alternative use o f the same representation for
the JSSP, where each rule determined the next job to be scheduled among the conflict
set o f jobs created by Giffler and Thompson's algorithm. However, this method
performed poorly in comparison with another algorithm presented in the same paper
based on the shifting bottleneck heuristic, a well-known method for the solution o f the
JSSP. An EA was employed to control the selection o f nodes in the enumeration tree
created by this heuristic.

13

Chapter 2: Evolutionary computation for manufacturing optimisation

2 .2 .3 .23 Preference-list representations

A popular way o f encoding a solution o f the JSSP is the preference-list representation.
Preference lists are not actual schedules, but a preferable sequence o f operations on
each machine. Operations are scheduled according to this sequence unless they violate
a precedence constraint. In that case the next operation in the preference list is
scheduled. Croce et al. (1995) used the concept o f preference lists for the encoding o f
solutions, together with a look-ahead evaluation method that generated non-delay
schedules (a discussion on schedule types is given by Baker (1974)). Cao et al. (1997)
addressed a complex JSSP problem with multiple objectives utilising a Hierarchical
Evaluation (HE) model instead o f a look-ahead evaluation. Their framework was able
to generate feasible schedules and perform local optimisation at the same time,
resulting in slightly better performance than Croce's algorithm. Kobayashi et al.
(1995) and Ono et al. (1996) encoded the solution in the same preference-list form.
They additionally introduced two purpose-based crossover operators, the subsequent
exchange crossover (SSX) and job-order based crossover (JOX) respectively. JOX
used the traditional Giefler and Thompson (GT) algorithm for the decoding o f
solutions into active schedules. The result was a much better performance both in
terms o f optimal and average values for Fisher & Thompson's benchmark problems
(see section 2.2.4). Park and Park (1995a) (1995b) reported their preference list-based
GA with the introduction o f a crossover operator called active schedule constructive
crossover (ASCX), which was based on the active schedule generation algorithm
(Baker, 1974).

2 .23 .2 .4 Alternative representations

A number o f alternative schemes for the representation o f schedules have been
reported in the literature. The most successful o f them was proposed by Kim and Lee
(1995), (1996). Their schedule representation was a priority list o f operation-machine
assignment pairs, which corresponded to a certain priority rule. Schedules (and
consequently the corresponding priority rules) were constructed with the help o f a
genetic reinforcement learning (GRL) procedure. Their method showed the best
overall performance on Muth and Thompson's benchmark JSSP problems in
comparison with any other evolutionary method included in this survey.

14

Chapter 2: Evolutionary computation for manufacturing optimisation

Yamada and Nakano (1995) employed a disjunctive-graph representation for the
solution o f the JSSP. Following the trend o f enhancing the evolutionary process with
local search techniques, they introduced a crossover operator called multi-step
crossover (MSX), which was in effect a local search operator. Cho et ah (1996)
presented the Total Operation Order Method (TOOM), where a solution was given in
the form o f a job operation matrix that defined the absolute order o f all operations to
be processed. A dynamic data structure called “hierarchical linked list” was utilised
by Niemeyer and Shiroma (1996) in order to accommodate variable lengths o f jobs
and operations in a real manufacturing environment. Kim and Kim (1996) tackled the
problem o f infeasibility by using a random-keys (Bean, 1994) representation for the
solutions. Finally, Gohtoh et al. (1995) applied a special EA with neutral mutations to
some standard benchmark problems. An excellent analytical review o f EA
representations and hybrid methods that have been used for the solution o f the JSSP,
can be found in Cheng et al. (1996c), (1999).

2.2.4 Test problems and case studies
In recent years academic research has attempted to consider real-life scheduling
problems, since the use o f standard benchmark problems has not generated
considerable interest in industrial circles. However, the famous Fisher and
Thompson’s (1963) and Lawrence’s (1984) benchmark problems are still used by
many researchers. Table 2.1 gives a summary o f results that have been published
recently for the three Fisher & Thompson problems. The best and average (wherever
available) results o f each method in terms o f the total makespan are presented. Table
2.2 summarises the results published for some Lawrence’s benchmark problems. A
considerable number o f recently published papers address real-life scheduling cases.
Herrmann et al. (1995) described the development o f a global scheduling system for a
semiconductor test area. Niemeyer and Shiroma (1996) used EAs for the scheduling
o f factories o f a multinational company. Hamada et al. (1995) approached a complex
scheduling problem in a steel making company using a hybrid system based on EAs
and expert systems. Finally, Shaw and Fleming (1997) and Kumar and Srinivasan
(1996) proposed evolutionary computation methods for the solution o f scheduling
problems in companies that produce ready chill meals and defence products
respectively.

15

Chapter 2: Evolutionary computation for manufacturing optimisation

PAPERS
FT

Best
6 X 6

Aver.
FT

Best
0 X 1 0

Aver.
FT

Best.
2 0 X 5

Aver.
Aizpuru é ta l. (1995) - - 930 951 - -

Cao et al. (1997) - - 945 953.5 1176 1198.3
Cho é ta l. (1996) 55 - 943 - - -

Croce et al. (1995) 55 55 946 965.2 1178 1199
Dorndorf et al. (1995) 55 - 938 - 1178 -

Gen et al. (1994) 55 - 962 - 1175 -

Gohtoh é ta l. (1996) t ÿ ; ; 930 935.36 1165 1180.34
Kim et al. (1995) - - 930 931.57 1165 1165.97
Kim et al. (1996) - - 930 930 1165 1165.27

Kobayashi et al. (1995) - - 930 934.3 1165 1217.4
Ono et al. (1996) - 930 931.1 1165 1176.5
Park et al. (1995a) - - 936 949 1178 1185
Shi et al. (1997) - - 930 946.2 1165 -

Yamada e t al. (1995) - - 930 934.5 1165 1177.3

Table 2.1: Published results (makcspan) on Fisher & Thom pson’s benchmark
problems. Optimal values: FT 6X6: 55, FT 10X10: 930, FT 20X5: 1165

A izpu ru e t ah
(1995)

Cao
(19

et al.
97)

Kim et al.
(1995)

Croce et al.
(1995)

P ark et al.
(19956)

TEST
N O .

B e s t A v er. B est A v er. B est A ver. B est A ver. B est A v er.

LA01 666 * 666 666 * 666 666 * 666
LA06 926 * 926 926 * 926 926 * 926
L A I 1 1222* 1222 1222* 1222 1222* 1222
LA 16 956 980 945 * 945.4 979 989
LA21 1056 - 1061 1083.6 1055 1055.8 1097 1113.6
LA22 935 935.47 935 949
LA26 1227 1231.2 1218* 1218 1231 1248
LA 27 1255 - 1255 1264.9
L A 3 1 1784* 1784 1784* 1784 1784* 1784
LA36 1337 1348 1305 1330.4

Table 2.2: Published results on Lawrence’s benchmark problems (m akespan).(-)
denotes optimal value

16

Chapter 2: Evolutionary computation for manufacturing optimisation

2.3 The Flowshop Scheduling Problem
2.3.1 Introduction
The permutation flowshop scheduling problem, or the job sequencing problem as it is
often called, is another manufacturing optimisation problem that attracts particular
research interest. It is relatively easy to apply evolutionary computation methods to
this problem, since it can be formulated as a classic travelling salesman problem
(TSP) with path representation (Michalewicz, 1992). This latter problem has been a
subject o f research from the early days o f evolutionary computation. As a result, the
efficient operators that have been developed for the travelling salesman problem are
directly applicable to the flowshop scheduling problem.

2.3.2 Problem formulation
The permutation flowshop scheduling problem involves ordering n jobs to be
processed in m machines. The difference between the job shop and the flowshop
scheduling problem is that in the latter case each job undergoes the same machining
sequence, and the sequence o f operations is the same on each machine. This means
that the solution o f the problem can be represented as a permutation o f all jobs to be
processed:

[Ji, J2, J3,J/i]
where n is the total number o f jobs. The conditions that were introduced for the JSSP
hold for the flow shop scheduling problem as well. The minimisation o f makespan is
usually employed as the objective o f the scheduling algorithm (Braglia and Gentili,
1994), (Reeves, 1995), (Chen et al., 1996a), (Murata et al., 1996a). In the special case
o f m =\, the problem is described as the one-machine scheduling problem. Garey et a l
(1976) have shown that the flowshop scheduling problem is NP-hard in the strong
sense (proof by transformation o f the 3-PARTITION problem to the associated
flowshop scheduling decision problem).
In recent years, more complicated formulations o f the problem have been considered
with various alternative optimisation criteria included. Murata et al. (1996b) used
their multi-objective GA approach for a flowshop scheduling problem, aiming to

17

Chapter 2: Evolutionary computation for manufacturing optimisation

simultaneously minimise makespan, total tardiness, and total flowtime o f the
production. Minimisation o f total tardiness was also employed as an optimisation
criterion by Lam et al. (1996). Sikora (1996) attempted to minimise makespan,
holding costs (earliness), and overtime (tardiness), in a flow-line with limited buffer
capacity. Sannomiya and lima (1995) also tried to minimise makespan, keeping at the
same time the processing rate o f each product as constant as possible. Their
formulation o f the problem considered the existence o f a carrier that transferred
products between the machines. Lee and Choi (1995) assigned earliness and tardiness
penalty weights to schedules, for a one-machine scheduling problem. Lee et al.
(1997b) presented an interesting formulation o f the problem, introducing the concept
o f a flexible flow line with variable lot sizes. In this case jobs consisted o f lots that
could be split and an efficient EA was used to simultaneously optimise the ordering o f
jobs and the lot sizing. Gonzalez et al. (1995) considered the ‘no-wait’ version o f the
job sequencing problem, where once the processing o f a job has started in the first
machine o f the production line, there must be no time delay between the consequent
operations o f the job at the following machines. An EA combined with heuristic
methods was employed for the solution o f the problem. Herrman and Lee (1995)
described a class one-machine scheduling problem where jobs belonged to different
classes, with each class having sequence-dependent set-up times. Their evolutionary
algorithm generated different input conditions for a minimum waste heuristic
algorithm, which accomplished the task o f producing legal schedules. Finally,
Karabati and Kouvelis (1997) addressed the flowshop scheduling problem with
controllable processing times, i.e. the problem where the processing time o f a part is
not fixed, but can assume a number o f different values. An EA was employed for the
solution o f large-scale problems o f this type.

2.3.3 Encoding
The permutation representation is used in the majority o f evolutionary computation
approaches discussed in this section. A permutation is a natural representation for the
solution o f the problem, since there are many well-tested operators to ensure the
feasibility o f solutions and to enhance the evolutionary process.
There are, however, some exceptions to this rule. The most notable is that o f Lam et
al. (1996) who introduced a pigeon hole coding scheme. In this representation, the

18

Chapter 2: Evolutionary computation for manufacturing optimisation

value o f each gene corresponded to the index o f job selected for scheduling, out o f the
list o f unscheduled jobs. Each time a job was scheduled, the list o f unscheduled jobs
was re-indexed, and the value o f the next gene defined the job selected out o f the new
set. Their representation allowed the use o f traditional crossover and mutation
operators without producing infeasible solutions. Some slight modifications in the
encoding o f solutions were also present in Sikora (1996) and Lee et al. (1997b), in
order to accommodate the simultaneous lot sizing that was attempted by these
algorithms. Finally, Kebbe et al. (1996) adopted the vibrational-potential method
(VPM) for the solution o f sequencing problems. VPM is an evolutionary computation
method based on the concept o f information propagation in nature, which employs
different representation schemes.

2.3.4 Test problems and case studies
It is extremely difficult to compare the performance o f different evolutionary
algorithms in flowshop scheduling problems, since most researchers use their own
instances o f randomly generated test problems, i.e. problems where the processing
times and due dates o f jobs are selected randomly out o f a uniform distribution. A
comparison o f results taken from this type o f problems would not be valid.
Most o f the papers referenced in this section use their own problem instances, or test
problems not widely available. The only exceptions are Reeves (1995), and Ross and
Tuson (1997) who presented results on standard benchmark problems taken from
Tailard (1993). It is interesting to note that Lee et al. (1997b) and Sikora (1996)
considered the scheduling o f a manufacturing plant producing Printed Circuit Boards
(PCB’s) as a case study.

2.4 The Dynamic Scheduling Problem
2.4.1 Introduction
The cases discussed so far in job shop and flow shop scheduling were addressing
static scheduling problems, i.e. problems where the dynamic nature o f the scheduling
decision is not examined. However, in practice, a scheduler often has to react to
unexpected events. The main uncertainties encountered in a real manufacturing
system, are the following:

19

Chapter 2: Evolutionary computation for manufacturing optimisation

• machine breakdowns including uncertain repair times
• increased priority o f j obs
• change in due dates
• order cancellations

Whenever an unexpected event happens in a manufacturing plant, a scheduling
decision must be made in real-time about the possible reordering o f jobs. This process
is known as ‘rescheduling’. The main objective o f rescheduling is “to find immediate
solutions to problems resulting from disturbances in the production system” (Jain and
Elmaraghy, 1997).
Until recently, evolutionary computation methods have rarely been used for dynamic
scheduling, due to their inability to cope with real-time decision making. They were
developed and tested on static scheduling problems that did not require real-time
control. However, the last few years, EAs have been employed as parts o f hybrid
dynamic scheduling systems, which exploit their useful characteristics.

2.4.2 Machine learning methods
Machine learning is one o f the methods that have traditionally been used in
manufacturing environments to face uncertainties. Chiu and Yih (1995) proposed such
a learning-based methodology for dynamic scheduling. They divided the scheduling
process in a series o f ordered scheduling points. An evolutionary algorithm examined
which dispatching rules performed better for each o f these points, given a set o f plant
conditions (system status). The chromosome was formed by a series o f genes, each
one representing a respective scheduling point and taking as a value one o f the
available dispatching rules. The performance o f the algorithm was simulated under
different plant conditions, forming a knowledge base that described the scheduling
rules that were preferable in different cases. A binary decision tree was used to
describe the gained knowledge. This method had the advantage o f being able to
modify its existing knowledge (new system conditions), without having to reconstruct
the entire knowledge-base. Aytug et al. (1994) presented a different machine learning
approach for dynamic scheduling, based on classifier systems (Booker et al., 1989). In
this case, an initial knowledge base was given, and an EA modified it, using results

20

Chapter 2: Evolutionary computation for manufacturing optimisation

taken from the simulation o f the production line. In that way the system learned to
react to certain unexpected events. Jones et al. (1995) used a hybrid system based on
neural networks, EAs, and an inductive learning algorithm to infer knowledge about
the scheduling process. A back-propagation neural network selected a number o f
candidate dispatching rules out o f a larger set o f available rules. The schedules formed
by these dispatching rules were used as the initial population o f an EA that evolved an
optimal schedule. The results taken from the simulation o f the schedule helped the
learning algorithm to create a set o f rules that formed the knowledge - base. Lee et al.
(1997a) also proposed a hybrid scheduling framework that consisted o f an inductive
learning system for job releasing in the plant, and an EA-based system for the
dispatching o f jobs at the machines.

2.4.3 Alternative methods
Fang and Xi (1997) presented a different rescheduling strategy based o f the rolling
horizon optimisation method. Scheduling was performed periodically on a predefined
number o f jobs that formed the ‘job-window’. Rescheduling was initiated either by
the elapse o f a job-window or by the occurrence o f an unexpected event. An EA
evolved an optimal schedule for each planning horizon, considering the status o f the
system. Cartwright and Tuson (1994) employed the same concept o f job-windows, in
their attempt to dynamically control the scheduling o f a chemical flowshop using an
EA. Bierwirth et a l (1995) proposed a similar approach aiming to decompose a non-
deterministic job-shop problem in a series o f deterministic smaller ones. Each
subproblem was then solved with the help o f the static scheduling EA method that
was described in the JSSP section (Bierwirth et al., 1996).
Finally, Jain and Elmaraghy (1997) presented a steady-state EA-framework for the
scheduling o f an FMS system. Specially designed algorithms dealt with unexpected
events like machine breakdowns and order cancellations. A series o f test cases
indicated the validity o f the method for scheduling and rescheduling purposes.

21

Chapter 2: Evolutionary computation for manufacturing optimisation

2.5 Process Planning
2.5.1 Introduction
Process planning is one o f the most complex phases in the manufacturing process. It
comprises o f a series o f tasks that are heavily dependent on the type o f product that is
to be processed. Process planning takes as input the design characteristics o f a product
and gives as output its complete production plan. This plan determines the machining
processes needed, the tools that are going to be used, and the sequencing o f
operations. I f alternative plans exist, an optimal process plan should be selected in
relation to the optimisation objective(s). Process planning can be fine-grained or
course-grained, according to the processing requirements o f a particular part.
Process planning is the link between the design and the manufacturing phase o f a
product. The design phase is highly automated nowadays with the introduction o f
state-of-the-art Computer Aided Design (CAD) programs. Research interest in the
field o f Computer Aided Process Planning (CAPP) is growing rapidly.

2.5.2 Operation sequencing
Operation sequencing is an important task o f process planning. The planner must
determine the machining sequence o f parts, taking in account all the existing
precedence constraints for the machining o f features. These constraints are normally
given in the form o f a precedence graph. Usher and Bowden (1996) proposed an
evolutionary computation approach for the solution o f this problem, where the
number o f genes in the chromosome was equal to the number o f features that must be
machined. The authors introduced a special decoding procedure based on the feature
precedence graph, which transformed any string into a feasible sequence o f machining
operations. This type o f representation was first introduced by Yip-Hoi and Dutta
(1996). The total number o f set-ups, the continuity o f motion and the loose
precedence determined the quality o f solutions. Takatori et al. (1994) adopted a TSP
representation for the solution o f the same problem, using a repair mechanism to cope
with solutions that violated the constraints. The objectives o f their algorithm were the
minimisation o f the total change cost, the machining cost and the non-machining cost.
Kamhawi et al. (1996) developed an elaborate feature sequencing system based on

22

Chapter 2: Evolutionary computation for manufacturing optimisation

EAs. The representation scheme was the same as the one used by Takatori et al.
(1994), but the evaluation o f solutions was based on rules and constraints about
safety, quality, and minimisation o f tool changes and tool travel. The user assigned a
weight to each o f these objectives, according to his preferences.
Norman and Bean (1997) discussed the problem o f operation sequencing and tool
allocation in Parallel Machine Tools (PMT’s). A PMT is a machine capable o f
processing more than one part at a time, since it contains multiple spindles. A
random-keys coded EA was proposed for the solution o f the problem. The tool
allocation task was dealt with the introduction o f an integer part to the value o f the
genes. This part defined the machining unit (MU) that was responsible for a particular
operation. The decimal part o f the value determined the sequence o f operations. The
authors also proposed the enhancement o f the algorithm with a heuristic method,
presenting results that justified their decision. Yip-Hoi and Dutta (1996) tackled the
same problem using an efficient solution representation based on feature precedence
graphs, as was discussed earlier. The objective o f their algorithm was the
minimisation o f the part’s total processing time.

2.5.3 The process planning selection problem
The process planning selection problem is the task o f selecting an optimal process
plan out o f a population o f alternative plans. The problem is usually modelled with the
help o f flow-networks, i.e. constructions o f arcs and nodes that determine alternative
sequences o f machining for a given product (figure 2.1).

Figure 2.1: Flow network representation of the process planning selection
problem

Each stage o f this graph represents a machining operation and the nodes denote the
number o f alternative machines that are capable o f performing this operation. The
weighted arcs define the cost o f following a particular machining sequence.
Awadh et a l (1995) presented one o f the first evolutionary algorithms for the solution

23

Chapter 2: Evolutionary computation for manufacturing optimisation

o f the process planning selection problem. Each stage o f a process plan was
represented by a binary-coded matrix, where the occurrence o f a bit with positive
value denoted the presence o f a connection between the corresponding nodes o f the
matrix. The authors warned that this representation could sometimes lead to the
existence o f multiple processing plans for a single chromosome solution. A decoding
algorithm called ‘Path Modifier’ ensured that there was a ‘1 to 1’ relationship between
the genotype and the phenotype o f each solution. The objective o f their approach was
the minimisation o f the overall cost. Zhou and Gen (1997) noted that fast and efficient
algorithms like the shortest path method and dynamic programming were capable o f
producing good solutions for single-objective process planning problems like the
previous one. They argued that evolutionary computation methods would be ideal for
the multiobjective version o f the problem, which cannot be easily formulated as a
shortest path or dynamic programming problem. They constructed an EA that used the
same network flow model but employed an efficient integer solution representation
that did not require the existence o f additional operators like ‘Path Modifier’. A non-
aggregating approach facilitated the solution o f the multiobjective version o f the
problem.

2.5.4 Advanced process planning methodologies
Concurrent Engineering (Singh, 1996) has received a lot o f attention lately, as a
modem approach to manufacturing optimisation. It is a manufacturing philosophy
where the design and the related manufacturing processes o f a product are integrated
into one procedure. Process planning and scheduling are closely related
manufacturing processes. One o f the aspects o f concurrent engineering is the
integrated process planning (in terms o f the optimal selection o f a process plan) and
scheduling o f a product. Mcllhaga et al. (1996) proposed an EA-based method for the
simultaneous determination o f planning and scheduling in a vehicle manufacturing
company. They used parallel genetic algorithms with a diploid chromosome
representation, which defined both the sequencing o f operations and the use o f
alternative machines. A number o f different optimisation objectives were considered
by the algorithm, like the minimisation o f makespan, flowtime and tardiness.
Bowden and Bullington (1996) created a hybrid system called GUARDS, based on
unsupervised machine learning and EAs, in order to optimise the control o f a

24

Chapter 2: Evolutionary computation for manufacturing optimisation

manufacturing process. The system learned to select the optimal process plan
according to the status o f the plant. Horvath et al. (1996) described a complete
process planning procedure, from the input o f part specifications in the form o f CAD
files, to the optimisation o f the constructed process plan. They used an object-oriented
approach in the form o f ‘features’. A 'feature’ was an object that defined specific
operations and contained all the relative functional, geometrical and technological
data. Knowledge - based reasoning was used for the generation o f plans, which were
subsequently optimised with the help o f an evolutionary algorithm. Zhang et a l
(1998) developed a similar complete CAPP system for parts manufactured in job shop
environments. They adopted a direct solution representation originally introduced by
Bums (1993). Each chromosome defined the sequencing o f operations, machine-tool
assignments and Tool Approach Directions (TAD’s) for an individual process plan. In
this way, the procedures o f operation sequencing and process planning selection were
integrated.
Dereli and Filiz (1999) indicated that process planning methodologies usually
addressed specific parts o f the overall planning procedure, making their integration
with existing CAD and CAPP packages a difficult task. They introduced a framework
for the process planning optimisation o f prismatic parts that comprised o f three
evolutionary algorithms. Each o f these algorithms was responsible for the
optimisation o f a specific planning problem, namely operation sequencing, tool-
magazine positioning and cutting parameter selection. The advantage o f the proposed
methodology was its ability to be used both off-line and in combination with CAD
and CAPP packages, giving as output the ready-to-use process plan o f the part
considered.

2.6 Cellular Manufacturing
2.6.1 Introduction
Cellular Manufacturing is the application o f Group Technology (GT) in
manufacturing systems. GT was first introduced in the former USSR by Mitrofanov
(1966), and was popularised in the west by Burbidge (1975), who introduced
Production Flow Analysis (PFA), the first scientific method for creating
manufacturing cells. Cellular manufacturing is a philosophy that attempts to convert a

25

Chapter 2; Evolutionary computation for manufacturing optimisation

manufacturing system into a number o f cells. Each cell manufactures products with
similar processing characteristics. Ideally, all the processing operations o f a part
should be completed within a cell. However, in realistic cases, intercell movements o f
parts are always present. Cellular manufacturing offers certain advantages to mid
variety, mid-volume production lines like the reduction o f set-up and transfer costs,
the minimisation o f inventory, improved quality and significant savings in plant
space.
There are three main phases in the design o f a manufacturing cell: i) the grouping o f
machines into cells, better known as the cell-formation problem, ii) the layout o f cells
in the plant and iii) the layout o f machines within the cells. The implementation o f
each o f these stages is associated with difficult optimisation problems, where
traditional optimisation methods are incapable o f finding optimal solutions in
reasonable time. In the following paragraphs some evolutionary methods that have
recently been used to tackle optimisation problems associated with cellular
manufacturing will be examined.

2.6.2 The cell-formation problem
Venugopal and Narendran (1992) were the first researchers to approach the cell-
formation problem using EAs. Their objective was the minimisation o f the intercell
traffic and the balancing o f load in the cells. A different population o f solutions was
employed for each o f these objectives. The solution representation was simple and
efficient. Each machine in the plant corresponded to a gene in the chromosome. The
value o f the gene defined the cell o f the respective machine. The total number o f cells
in the plant was predefined, but the formulation o f the problem also considered the
processing time o f parts, which was an additional feature in relation to conventional
cell-formation methods. Gupta et al. (1996) enhanced this formulation by considering
the intracell moves o f parts and the intracell layout. Special care was taken to ensure
that no cell remained empty during the evolutionary process.
Billo et al. (1996) adopted a direct solution representation, based on a two-part
chromosome. The first part was a permutation o f all parts to be processed, while the
second part denoted the cut-off points o f the first part. Each segment between cut-off
points denoted a part-family. The objective o f their algorithm was the maximisation o f

26

Chapter 2: Evolutionary computation for manufacturing optimisation

machines’ similarity within the cells and the minimisation o f the total number o f cells.
The advantage o f this method was that the total number o f cells was not predefined,
however, the structure o f the chromosomes was quite complex and computationally
expensive. The algorithm performed well on a series o f test problems, including some
ill-structured machine-component matrices.
Joines et al. (1996) introduced a new efficient integer programming formulation o f the
problem, which reduced the search space significantly. An evolutionary algorithm
was employed for the solution o f the problem, with the variables o f the mathematical
formulation coded into the chromosome. Only the upper bound o f the total number o f
cells needed to be specified. The objective o f the algorithm was the minimisation o f
exceptional elements and voids (zero’s in the diagonal blocks) in the machine-
component matrix. The validity o f the method was depicted by results on test
problems taken from the literature. Su and Hsu (1996) used the classic Venugopal’s
solution representation, but their chromosome also accommodated the existence o f
multiple machines o f the same type.
Cheng et al. (1998) noted that the reorganisation o f rows and columns in a binary m/c
matrix could be described as a permutation problem equivalent to the TSP, where the
objective was the minimisation o f some type o f distance measure between columns or
rows. They employed a real-coded EA with path-representation for the solution o f the
problem. The Minkowski metric was used as an indication o f the distance between a
pair o f machines or parts. The performance o f the algorithm was compared with that
o f a non-hierarchical clustering solution methodology (ZODIAC) (Chandrasekharan
and Rajagopalan, 1987), on a wide range o f problems taken from the literature and
was found to be superior in most cases.
Gravel et al. (1998) considered a version o f the cell-formation problem that allows the
existence o f alternative process plans for the parts. A double-loop EA was employed
for the solution o f the problem with the objective o f minimising the volume o f
intercell moves and balancing the workload within cells. The external loop o f the EA
used Venugopal and Narendran’s coding for the assignment o f machine to cells. A
second internal loop that determined the allocation o f process plans to parts was used
for the evaluation o f solutions created in the external loop. Different multiobjective
optimisation approaches were tested, including the epsilon-constraint approach and

27

Chapter 2; Evolutionary computation for manufacturing optimisation

the weighted-sum approach.

2.6.3 Cell layout and machine layout optimisation methods
Once the configuration o f cells has been determined, the designer must define the
layout o f machines inside the cells, and the layout o f cells in the plant area. These
optimisation problems belong to the general category o f the Facility Layout Problem
(FLP). The FLP is a well-known combinatorial problem. It has been formulated as a
quadratic set covering problem, linear integer programming problem, mixed integer
programming problem and graph theoretic problem. However, the Quadratic
Assignment Problem (QAP) formulation is the most popular in the literature and since
QAP is known to be NP-complete for most problem instances, efficient algorithms
must be used for its solution.

2.63.1 Evolutionary computation methods for the solution o f the facility
layout problem

Several researchers have used evolutionary algorithms to tackle FLP problems in
manufacturing. Cohoon et al. (1991) and Tam (1992) were the first researchers to
approach the problem using evolutionary computation methods. In both cases, the
layout was represented by a Slicing Tree Structure (STS) that can be easily decoded
into a layout. A slicing tree is "a binary tree representing the recursive partitioning
process o f a rectangular area, through cuts. A cut specifies the relative position o f
departments through four distinguished branching operators" (Mavridou and Pardalos,
1997). Kado et al. (1995) investigated the combination o f STSs with different
clustering methods for the initialisation o f the population, and different decoding
methods for the creation o f layout. Some o f these combinations produced improved
results on previously published test problems. Garces-Perez et al. (1996) refined these
results by putting the slicing tree structures into a much more natural genetic
programming framework, and by employing a variation o f one o f Kado's most
successful decoding methods. The STS representation was also adopted by Cheng et
al. (1995) in their EA framework. The authors additionally addressed the issue o f the
uncertainty o f material flow between cells using a convex fuzzy number
representation. Gau and Meller (1999) illustrated the deficiencies o f the STS
representation and proposed a number o f modifications in order to improve the search

28

Chapter 2: Evolutionary computation for manufacturing optimisation

power o f the evolutionary algorithm. Their methodology allowed both the exchange
o f departments within the same tree structure and the change o f structure o f STSs by
the introduction o f ‘dummy’ departments. The methodology was tested on several test
problems taken from the literature, producing satisfactory results.
Tate and Smith (1995) adopted the QAP formulation o f the problem with the
objective o f minimising the sum o f products o f total material flow and rectilinear
distances between the departments. They proposed a flexible-bay layout structure that
accommodated unequal sizes for the departments. The plant was initially divided into
a number o f bays by end-to-end slices in one direction, which were subsequently split
into departments by perpendicular slices. A permutation representation o f the solution
was used, which determined both the allocation o f departments in the layout and the
place o f bay-divisions. Norman and Smith (1997) enhanced this representation by
using a random-keys EA - thus avoiding feasibility constraints - and by incorporating
uncertainty in the mathematical formulation o f the problem. Material handling costs
were expressed using expected values and standard deviations for the product volume
over time. Suresh et al. (1995) adopted the permutation representation but used a
much simpler grid-structure for the layout. Kazerooni et a l (1996) proposed an
integrated approach for the design o f manufacturing cells, which incorporated specific
stages for the simultaneous determination o f cell and machine layouts.
Baneijee et al. (1997) modelled the problem using a mixed-integer programming
formulation. They proposed a graph solution representation based on nodes and edges.
Nodes corresponded to input-output cell stations and edges corresponded to material
flows between the stations. The layout structure was continuous; thus much more
flexible than the grid and bay structures which restricted the shape o f cells. Genetic
search was employed as a part o f the overall algorithm, aiming to transform the
problem into a series o f iterative linear programming problems. The robustness o f this
method was illustrated in a number o f test cases taken from the literature, where it
was shown to outperform traditional methods.
Conway and Venkataramanan (1994) considered an interesting version o f the FLP,
the dynamic FLP. In this case, the facility layout changes with time, and the algorithm
must find the best allocation o f facilities over an entire planning horizon. The authors
introduced a multi-part chromosome representation for the layout, where each part

29

Chapter 2: Evolutionary computation for manufacturing optimisation

corresponded to a planning period. The position o f a gene corresponded to a fixed
place in the layout, and the value o f the gene denoted the facility that occupied this
place for a particular period. The objective o f the algorithm was the minimisation o f
layout rearrangements costs and materials flow costs over the entire planning horizon.

2.6.3.2 Special cases for the machine layout problem
The papers reviewed so far introduced methods that normally apply to the cell layout
problem. The machine layout problem is a special type o f FLP and it is usually
addressed individually, since various assumptions that are made for the FLP are not
valid for this problem, such as the equal-sized areas and the a-priori knowledge o f
facilities locations (Bazargan etal., 1997).
Manufacturing practice usually restricts the search for an optimal intracell layout to a
small number o f fixed configurations, like the single-row layout, the multi-row layout,
the semi-circled layout and the loop layout. Braglia and Stemieri (1996) utilised an
EA in order to find the machine layout in a pre-fixed single-row structure. The
objective o f the algorithm was the minimisation o f the distance travelled by the
material-handling device o f the cell. The solution was represented by a permutation o f
all machines in the row. This method performed well on large problem instances, in
comparison with heuristic approaches. Cheng et al. (1996b) addressed the loop
machine layout problem using two different objectives: the minimisation o f the total
number o f reloads for all products (minsum problem) and the minimisation o f the
maximum number o f reloads for all products (minmax problem). The layout was
considered to be unidirectional and there was a single loading-unloading station. The
solution was once again represented by a permutation o f the available machines. Gen
et al. (1995) introduced a hybrid fuzzy-GA approach for the solution o f complex
multi-row machine layout problems. The objective o f the algorithm was the
minimisation o f travel cost between the machines, and the solution was represented by
a multi-part chromosome that contained information about the total number o f rows,
the permutation o f machines in each row, and the clearances between the machines.
Fuzzy sets were used for the representation o f the uncertainty that existed in the value
o f clearances.

30

Chapter 2: Evolutionary computation for manufacturing optimisation

2.7 Optimisation of Assembly Lines
2.7.1 Introduction
Assembly lines are widespread in manufacturing plants. A number o f optimisation
problems are associated with assembly lines, like the assembly sequence planning
problem, the sequencing o f mixed model assembly lines and the assembly line
balancing problem. A variety o f evolutionary computation methods have been
proposed for the solution o f assembly line optimisation problems.

2.7.2 The assembly sequence planning problem
The Assembly Sequence Planning Problem (ASSP) is the problem o f finding an
optimal sequence o f assembling a product that consists o f N parts, given its design
characteristics. An assembly sequence is feasible i f it does not violate the assembly
rules and constraints that are defined by the designer. Sebaaly and Fujimoto (1996)
proposed an evolutionary approach for the solution o f this problem, where an
individual chromosome was a randomly constructed sequence o f parts. An efficient
mapping procedure transformed any random assembly sequence into a feasible one.
Gropetti and Muscia (1995) analysed the assembly planning procedure and used an
EA in order to obtain a clear contact relational graph.

2.7.3 Sequencing in mixed model assembly lines
It is often the case that several products with similar characteristics (models) are
assembled in a single line (mixed-model assembly lines). The sequencing o f models
in mixed-model assembly lines is an important task, especially i f the JIT principle is
to be applied in the production line. There are a number o f objectives associated with
this task, like the minimisation o f line’s length, the minimisation o f total utility work,
and the minimisation o f the variability o f parts’ consumption (vpc). This latter
objective is critical in JIT systems. Leu et al. (1996) addressed the problem o f
sequencing a mixed-model assembly line with the objective o f minimising vpc in a
JIT production system. An EA was used for the solution o f the problem, with each
chromosome representing a sequence o f models to be assembled. The sequence was
cyclic, and the number o f individual models in each sequence was fixed. This method

31

Chapter 2: Evolutionary computation for manufacturing optimisation

outperformed Toyota’s Goal Chasing Algorithm (GCA), which is often used in JIT
production systems, in a number o f test problems. Kim et al. (1996) adopted the same
representation for the sequencing o f a mixed model assembly line, where the objective
was the minimisation o f the total length o f the line.

2.7.4 The assembly line balancing problem
Another well-known assembly line optimisation problem is the assembly line
balancing problem. Given n workstations and m parts to be assembled, the assignment
o f parts to workstations should be defined according to certain optimisation criteria.
Two versions o f the problem are usually considered: the first version aims to
minimise the total number o f workstations in the plant given a fixed cycle time, while
the second version aims to minimise the cycle time, given a fixed number o f
workstations. Secondary objectives like the minimisation o f balance delay and the
minimisation o f probability o f line stoppage are also considered. Suresh et al. (1996)
presented an excellent literature review on the assembly line balancing problem and
proposed an evolutionary algorithm for the solution o f a similar problem where the
objective was mainly the minimisation o f the smoothness index o f balance delay. The
solution was represented by a list o f sets with length equal to the total number o f
workstations. Each set contained one or more processing jobs. All the initial solutions
were feasible and special operators ensured the feasibility o f solutions throughout the
evolutionary procedure. The authors also presented an alternative version o f the
algorithm, where a number o f infeasible solutions were allowed in the population. The
latter version performed well on large problem instances. Rubinovitz and Levitin’s
(1995) representation was a permutation o f all parts, divided into a number o f sections
equal to the total number o f workstations. Random sequences were initially
constructed, and special mechanisms were employed to reorder them according to the
precedence constraints and to divide them in an appropriate number o f sections.
Tsujimura et al. (1995) presented an interesting EA-fuzzy logic method for the
solution o f the assembly line balancing problem, aiming to minimise the balance
delay. A conventional permutation representation was employed, which considered all
precedence constraints. The processing time o f each job was not deterministic, but
was defined by a fuzzy set. The allocation o f jobs to workstations was accomplished
using the EA sequence, the fuzzy sets, and a standard predefined maximum

32

Chapter 2: Evolutionary computation for manufacturing optimisation

completion time: starting with the first job in the sequence, the fuzzy sets o f
processing times were added, until the upper limit o f the sum o f fuzzy sets became
bigger than the predefined maximum completion time. The set o f jobs that comprised
the sum was assigned to the first workstation, and the procedure started again from the
next job after this set in the sequence. Special mechanisms and operators ensured the
feasibility o f solutions.

2.8 Manufacturing-related Optimisation Problems
2.8.1 Introduction
In the previous sections recent papers in the field o f evolutionary computation for
some standard manufacturing optimisation problems were reviewed. However, these
are not the only optimisation problems associated with the manufacturing process.
The purpose o f this section is to illustrate some recent evolutionary computation
approaches in various manufacturing areas.

2.8.2 Design Optimisation Problems
Design is a complicated and time-consuming phase in the development o f a product.
Every design must be properly optimised, otherwise the result will be huge redesign
costs. Enormous effort has been devoted to the development o f efficient CAD systems
in order to simplify and speed up the design process. Evolutionary computation
methods have been applied successfully to complex design optimisation problems.
Cao and Wu (1997) adopted an evolutionary programming approach for the solution
o f a mechanical design optimisation problem: a number o f design variables needed to
be optimised, subject to certain constraints. Continuous, binary, integer and discrete
variables were included in the mathematical model, a condition that made the
optimisation procedure even harder. The solution was represented by a string o f
design variables initialised within the constraints, while a special mutation procedure
was used for each type o f variable. Two design problems were used to illustrate the
method, the design o f a gear train and the design o f a pressure vessel. The algorithm
performed equally well or better in comparison with other optimisation methods like
the branch & bound algorithm and simulated annealing.

33

Chapter 2: Evolutionary computation for manufacturing optimisation

Rasheed et a l (1997) proposed an EA for the solution o f a similar parameter
optimisation problem that involved only continuous variables. The solution was a
string o f all parameters that needed to be optimised, initialised within their feasible
regions. Feasibility problems were accommodated using a penalty function. The
evolutionary process was enhanced with the introduction o f two crossover operators
namely line crossover and guided crossover, which produced an offspring on the line
connecting the parent chromosomes, considering the solutions’ search space. The
algorithm was tested on two complex design optimisation problems, the design o f a
supersonic transport aircraft and the design o f a supersonic missile inlet. The method
performed much better on these problems than a classic binary-coded GA and a
sequential quadratic programming method.
A discussion about the use o f evolutionary computation techniques in the wider field
o f engineering design can be found in (Parmee, 1998).

2.8.3 Process model identification
The identification o f process models is essential for the optimal control o f
manufacturing systems. Pohlheim and Marenback (1996) used genetic programming
in order to identify the model o f a manufacturing process. Common control
engineering tools, like transfer function blocks were used for the creation o f trees
(programmes). In this way, the algorithm provided structured process models, giving
the control engineer a useful insight on systems’ internal configuration. Test problems
validated the performance o f the method and especially its ability to generalise.
McCay et al. (1996) also employed genetic programming for system identification,
constructing the trees with common mathematical functions. Reeves et al. (1996)
proposed an interesting EA methodology where the solution was coded in terms o f the
radii and angles o f poles and zeros o f the transfer function. The values o f these
variables were constrained within the stability regions; thus the final solution was
guaranteed to be stable.

2.8.4 Machine failure and maintenance
Some failure o f machines in the plant is often inevitable. Shop-floor engineers aim to
diagnose the failure o f a machine as quickly as possible. They normally use a number

34

Chapter 2: Evolutionary computation for manufacturing optimisation

o f symptom parameters that are sensitive to changes o f specific signals from the plant.
Chen et al. (1996b) described some o f these parameters and proposed an evolutionary
approach for the determination o f an optimal sequence o f symptom parameters. Their
method resembled genetic programming, in terms o f the tree structures that were used
as individual chromosomes. Guzman and Kramer (1994) developed a hybrid Bayesian
networks - EAs system that performed on-line monitoring and failure diagnosis, based
on data taken from the plant.
Maintenance scheduling is another important task in the shop-floor, since the
disruption o f the production process must be as little as possible, but on the same time
the machines must work without failures for the longest time possible. Kim et al.
(1994) proposed an interesting hybrid o f EAs and simulated annealing for optimal
maintenance scheduling. The acceptance probability o f simulated annealing was used
for the survival o f the less fit offspring in the population.

2.8.5 Quality control
Quality control is an important aspect o f modem manufacturing. The optimal
allocation o f inspection stations in the plant ensures that products are manufactured
according to the quality criteria set by the management team. Viswanadham et al.
(1996) addressed this problem in a multi-stage manufacturing system and employed
an evolutionary algorithm to optimally allocate inspection stations. The solution was
binary coded, with each gene representing a manufacturing stage. The presence o f a
station at a particular stage was denoted by a positive value. Patro and Kolarik (1997)
designed a system that performed statistical processing control using neural networks
and evolutionary computation. The neural network identified the process model, and
the evolutionary algorithm adjusted the control parameters in order to obtain the
desired quality performance. Lu et al. (1995) presented an EA-based system that
optimised the motion o f a co-ordinate measuring machine used in inspection systems.
A permutation representation was employed for the solution o f the problem, with each
gene corresponding to a testing point that the measuring machine should visit. The
algorithm aimed to find the optimal sequence o f visiting points that minimised the
total length o f the inspection path.

35

Chapter 2: Evolutionary computation for manufacturing optimisation

2.8.6 Advanced manufacturing optimisation problems
In the following paragraphs, some advanced manufacturing optimisation problems
that have been the subject o f evolutionary computation research will be discussed.
Mak and Wong (1995) considered the problem o f designing an optimal integrated
production-inventory-distribution system, aiming to minimise the overall costs,
including inventory holding costs, delivery costs, manufacturing costs and shortage
costs. An evolutionary algorithm was employed for the solution o f the problem. An
integer programming formulation o f the problem was adopted, and the solution was
represented using the variables o f the model. Disney et al. (1997) addressed the
problem o f controlling a production and inventory system. Transfer functions were
used for the modelling o f the problem, illustrated in the form o f block diagrams. The
solution o f the problem was represented by the variables o f the transfer function, and
a fitness measure was designed based on stock reduction, production robustness and
inventory recovery.
A difficult decision that the marketing team often has to face is the location o f
inventory centres for the accommodation o f department stores, and the allocation o f
an inventory centre to each o f these stores. This difficult location-allocation problem
was formulated as a non-linear mixed-integer programming problem and solved by
Gong et al. (1996) using an evolutionary approach for the location task, and a
Lagrangian relaxation method for the allocation task.
Aggregate production planning is a high level decision making procedure that takes as
input product capacities and forecast demands, and produces aggregate production
plans. Stockton and Quinn (1995) addressed this problem using a binary-coded GA.
The algorithm determined the amount o f resources needed each month in order to
meet the demand. The resources were expressed in the form o f overtime, subcontracts
and stock. Wang and Fang (1997) formulated the same problem using a fuzzy linear
programming model. They employed Zimmerman’s tolerance approach to transform
the problem into a linear programming model. The variables o f the model formed the
chromosome o f an evolutionary algorithm that was used for the solution o f the
problem. Feng et al. (1997) addressed the problem o f joint marketing/production
decision making aiming to maximise the net profit o f a company. The decision
problem consisted o f the promotion problem for the marketing department and the

36

Chapter 2: Evolutionary computation for manufacturing optimisation

production problem for the manufacturing department. Each problem was formulated
mathematically and a respective number o f EAs were employed for their solution. The
decision variables o f the mathematical models were used for the representation o f
solutions. Garavelli et al. (1996) considered the production planning problem o f a
multinational company with multiple manufacturing plants around the world.
Parameters like local market demands and independent capacities were taken in
account in the formulation o f the problem. An EA defined which plants would be
activated for production and the timing o f their activation.
The dynamic lot-sizing problem in a multi-stage, multi-item production system was
described by Jinxing (1997). He proposed an evolutionary programming approach
with binary representation for the solution o f the problem. The objective was the
minimisation o f set-up, production and inventory costs.

2.8.7 Various applications
In a pull (JIT) production system, the demand must always be satisfied without the
help o f excessive stocks. The total number o f kanbans in the plant and the
corresponding production trigger values should be optimally defined in order to
achieve this objective. Bowden et al. (1996) addressed this problem using an
evolutionary algorithm seeded with the optimal solution o f the Toyota equation. Zhao
et al. (1996) addressed the problem o f robot selection and workstation assignment in a
Computer Integrated Manufacturing (CIM) system. A bin-packing formulation o f the
problem was proposed and an EA was employed for the solution o f the problem. A
diploid chromosome that accommodated both parts o f the problem represented the
solution. Finally, Mcllhaga (1997) designed a framework for solving generic
scheduling problems, i.e. scheduling problems o f non-specific form. This framework
was based on distributed genetic algorithms and was able to solve problems o f this
kind more efficiently than random search and dispatching rules. The parameters o f the
problem were defined by the user through a Scheduling Description Language (SDL).

2.9 Conclusions
It is obvious that the use o f evolutionary computation methods for manufacturing
optimisation is growing. The number o f papers published is increasing rapidly, and

37

Chapter 2: Evolutionary computation for manufacturing optimisation

research covers a wide range o f manufacturing problems. The amount o f work itself
indicates that evolutionary computation methods have established themselves as a
useful optimisation technique in the field.
Evolutionary computation research has been criticised for the consideration o f
artificial test problems that are much simpler than real-life manufacturing cases. This
review shows that researchers have reacted to this criticism by considering realistic
cases taken from manufacturing plants. This move has also been triggered by the low
response o f evolutionary computation in manufacturing practice. It is encouraging to
report recent projects where companies have adopted evolutionary computation
methods in their plants. The gap between academic research and manufacturing
practice is not a problem restricted to the field o f evolutionary computation. However,
for the optimisation field considered in this thesis, there are a number o f additional
reasons that make this approach harder:

• The terminology o f evolutionary computation is vague for the manufacturing
engineer. Despite the fact that the concept o f evolutionary algorithms is simple,
the terminology inherited from genetics predisposes manufacturing engineers to
think the opposite.

• Evolutionary computation is a relatively new technique, still in development.
There are no universally accepted methods for the determination o f technical
parameters like population size, probability o f applying operators etc. There is
also no guarantee that an algorithm will converge to an optimal or near-optimal
solution, except under specific problem conditions.

• There is no standard evolutionary computation toolkit that can be used easily by
manufacturing people who are not familiar with evolutionary concepts.

Despite the previous considerations, evolutionary computation methods offer
solutions that combine computational efficiency and good performance. This
significant feature will certainly continue to attract the interest o f engineers.
The robustness o f evolutionary algorithms is greatly enhanced when they are
hybridised with other optimisation methods like local search techniques, simulated
annealing, tabu search, neural networks and expert systems. The number o f papers
introducing hybrid systems is growing, indicating that there is a trend towards this

38

Chapter 2: Evolutionary computation for manufacturing optimisation

direction.
This review highlights the lack o f genetic programming applications in the field o f
manufacturing optimisation. In the remainder o f this thesis the possibility o f using
genetic programming for the solution o f some standard manufacturing optimisation
problems w ill be examined. An overview o f the genetic programming optimisation
method is presented in the following chapter.

39

Chapter 3

INTRODUCTION TO GENETIC
PROGRAMMING

3.1 Introduction
During the last decade genetic programming has emerged as an efficient methodology
for teaching computers how to program themselves.
Automatic programming algorithms have been proposed within the machine learning
community from as early as the late 1950’s (Friedberg, 1958). While a number o f
program induction techniques based on the principles o f evolution were introduced
during the 1980’s (Cramer, 1985), (Fujiki and Dickinson, 1987), genetic
programming was formally introduced by Koza (1992) as an extension o f the popular
genetic algorithm paradigm (Holland, 1975). The efficient integration o f the
evolutionary procedure with a simple scheme for the representation o f computer
programs proved to be successful in the solution o f a number o f alternative
optimisation problems.
The original genetic programming algorithm was soon subject to proposed
modifications both in its internal operations and the representation o f genetic
programs. Recently Banzhaf et al. (1998) argued that any search algorithm that
employs a population o f computer programs in its search and generates new variant
programs using any form o f non-deterministic procedure could be legitimately called
genetic programming. This extension o f the genetic programming definition was
necessitated by the controversy caused within the evolutionary computation
community about the optimality o f the original genetic programming algorithm and

Chapter 3: Introduction to Genetic Programming

more specifically the use o f the crossover operator. This subject will be discussed in
more detail in the following sections.
The focus o f this thesis is the usefulness o f the genetic programming model for the
solution o f manufacturing optimisation problems. The original form o f the genetic
programming algorithm, as introduced by Koza, was employed in the majority o f the
experiments.
The remainder o f this chapter is organised as follows: In section 3.2 an overview o f
the genetic programming paradigm is presented. Section 3.3 deals with the
representation, initialisation and computer implementation o f the programs. The
issues o f fitness assignment and fitness-based selection are discussed in section 3.4. In
section 3.5 the use o f genetic operators and their implication on the theoretical
foundations o f genetic programming is examined. The preparatory steps for the run o f
the genetic programming algorithm are described in section 3.6. Section 3.7 describes
the application o f genetic programming on an example symbolic regression problem.
The conclusions o f this chapter are drawn in section 3.8.

3.2 Overview of genetic programming
Genetic programming is an evolutionary algorithm that employs the principle o f
Darwinian strife for survival for the creation o f solutions in the form o f computer
programs. Koza (1992) claimed that there exists a large number o f problems that can
be re-formulated as program induction problems, i.e. their solution can be represented
by a computer program that uses a number o f problem-related input(s) to create the
necessary output(s) (figure 3.1).

INPUT(S)

Figure 3.1: Genetic programming approach to problem-solving

Depending on the coding used for the representation o f genetic programs (see section
3.3) and the particular optimisation problem considered, the search space for the

41

Chapter 3: Introduction to Genetic Programming

optimal computer program can be quite substantial. Genetic programming employs
the concept o f genetic evolution to guide its search within the space o f potential
computer programs.
The operation o f the genetic programming algorithm is presented in a pseudo-code
form in figure 3.2.

Generate population o f randomly created genetic programs
Evaluate performance o f genetic programs on the problem considered
Assign fitness values to genetic programs
While termination criterion has not been satisfied

While population size has not been exceeded
Probabilistically select genetic operation (crossover, mutation, or

reproduction)
Select genetic programs to participate in genetic operation based on

their fitness
Perform genetic operation
Insert offspring genetic programs in the new generation

end
Evaluate performance o f genetic programs on the problem considered
Assign fitness value to genetic programs

end
Report best solution found

Figure 3.2: Genetic programming algorithm in pseudo-code form

Initially, a population o f genetic programs is randomly generated and their
performance is evaluated on the solution o f the problem considered. A fitness value is
associated with each genetic program, as a measure o f its quality in solving the
problem. There is a possibility that the optimal solution o f the problem will be
generated form the initial population o f programs. However, this rarely happens in
practice, unless a problem is trivial or small-sized.
The next step o f the genetic programming procedure is the selection o f genetic
programs that will form the new population o f solutions. What makes the operation o f
genetic programming (and evolutionary computation algorithms in general) different
to a random search procedure is that these programs are selected probabilistically
according to their measured fitness. That is, genetic programming aims to exploit the
programs that perform better on the solution o f the problem. However, genetic
programming is not a deterministic hill-climbing procedure, since the probabilistic
selection step might favour the reproduction o f a program that is not as fit as other

42

Chapter 3: Introduction to Genetic Programming

individuals o f the same population. In that way, genetic programming is able to
escape from local-optima.
One o f the necessary conditions for evolution to occur, both in nature and in
algorithms that attempt to mimic its operation, is genetic diversity. While the
computer programs o f the initial generation are quite variable in their structure (in fact
the designer can enforce them to be different from each other), it is certain that i f only
simple reproduction o f fit programs was to be used as the method o f generating the
new population o f solutions, the best programs would overwhelmingly dominate the
population within few generations, and the search would stagnate (premature
convergence). Instead, genetic programming, in accordance with all other
evolutionary computation methods, employs specially designed genetic operators for
the creation o f genetic diversity. These operators are used to either force the exchange
o f genetic material between programs (crossover) or to introduce new pieces o f
genetic code in them (mutation). The operation o f genetic operators and the
controversy that surrounds their use is discussed in section 3.5.
The new population o f solutions is constructed through simple reproduction and
genetic modification. In both cases, probabilistic selection o f solutions according to
their measured fitness is required. Once the new population o f solutions has been
formed, their performance is evaluated once again and new fitness values are assigned
to them.
The same procedure is repeated until a user-defined termination criterion has been
reached. This criterion can be the generation o f a program with fitness equal to the
optimal value for the problem considered. However, since the optimal solution is not
always known in advance, genetic programming runs normally terminate after a
predefined number o f generations. The end product o f the evolutionary procedure
would ideally be a computer program that is able to adequately solve the problem
considered.
The form o f the program structures initialised, evolved and translated by a genetic
programming algorithm is discussed in the following section.

43

Chapter 3: Introduction to Genetic Programming

3.3 Representation, initialisation and computer
implementation of genetic programs

Koza (1992) defined genetic programs as variable-length structures that can be
compiled as they are, or with slight modifications by a computer. The shape and the
size o f these programs are not predefined and can change dynamically during the
course o f the evolutionary procedure.

3.3.1 Basic program elements
Genetic programs consist o f a set o f inputs that provide problem-specific information
and a set o f functions that manipulate these inputs. In genetic programming
linguistics, the terms ‘terminals’ and ‘functions’ are used to describe these elements
respectively.
The terminal set may contain variables, constants, or functions that require no
arguments. The function set may contain any function that the designer o f the
algorithm considers to be relevant to the solution o f the problem. This definition does
not only include standard functions (arithmetic, boolean, etc.) but user-defined
functions as well, i.e. functions that have been constructed by the designer and have a
specific meaning for the problem considered. This feature o f genetic programming is
a useful tool in the hands o f the designer, especially when standard functions are
unable to form a solution for the problem considered. Koza (1992) indicated that a
function set consisting o f the four basic arithmetic operations (addition, subtraction,
multiplication, and division) could solve a considerable number o f optimisation
problems.
The choice o f terminals and functions for the construction o f the respective sets is not
straightforward. The minimum requirement for the selected terminals and functions is
that they should be able to create a solution for the problem considered {sufficiency
property). A rule o f thumb states that the size o f these sets should be kept to the
minimum possible. The evolutionary procedure has the ability to disregard any
function that is irrelevant to the solution o f the problem, however, when extraneous
functions are included in the function set, the performance o f the system is generally
degraded. There are cases where the relevance o f specific inputs to the solution o f the

44

Chapter 3: Introduction to Genetic Programming

problem is not known in advance. Statistical methods (correlation coefficients etc.)
can provide some indication o f their importance. However, in the overwhelming
majority o f genetic programming applications that have been reported in the literature,
this decision is left to the evolutionary procedure (see for example Gilbert et al.
(1998)).
Another consideration during the construction o f the function and terminal sets is the
maintenance o f the closure property. This property states that each function included
in the set should be able to accept as argument any value that might be generated by
any other function or terminal in the system. The division function is a typical
example o f a potential violation o f the closure property. I f the denominator o f the
division function was to assume the value o f ‘O’, the computer would come to a halt
(although some modem programming languages prevent this from happening using
built-in protection procedures). In a genetic programming algorithm this situation is
usually contained by employing the protected division function, which returns the
value o f T , when the value o f the denominator is ‘O’. Similar precautions must be
taken for square-root and logarithmic functions, or functions that contain conditional
branches.

3.3.2 Representation of genetic programs
The representation o f genetic programs is mainly an issue o f convention (Banzhaf et
al., 1998). The way that the designer chooses to represent and interpret genetic
programs and the way that these programs are actually stored in the memory o f the
computer are not necessarily the same. The most popular form o f representation for
genetic programs is the parse-tree representation, originally suggested by Koza (1992)
in his pioneering book. The intuition behind Koza’s choice was that some computer
languages use this type o f representation to store and interpret programs. A parse-tree
is a collection o f terminal and function nodes interpreted in a depth-first, left-to-right
postfix manner. This practically means that the interpretation o f the program starts
with the leftmost function for which all inputs are available. The interpretation is
characterised as postfix since the operators appear after the operands. An example o f a
genetic program in a parse-tree form and its representation is presented in figure 3.3.

45

Chapter 3: Introduction to Genetic Programming

While the parse-tree coding and representation o f genetic programs has been
dominant among GP researchers, it is by no means the only one that has been
suggested. The register-based GP-machine o f Nordin (1994) and the graph-based
PADO GP-system (Teller and Veloso, 1996) are examples o f alternative
representations that have received considerable attention.

3.3.3 Initialisation of genetic programs
There are three main methods o f initialising parse-tree genetic programs, all o f them
originally introduced by Koza (1992).
When the ‘grow’ initialisation method is used, genetic programs are constructed by
randomly selecting functions and terminals from the union o f the respective sets. The
root o f the tree is always selected from the function set, ensuring that a single
terminal genetic program is never created. Every time a function is selected, a
corresponding number o f arguments are selected randomly from the union set. If one
o f these arguments turns out to be a terminal, the subtree terminates at this point. If
the selected argument is a function then the procedure continues in the same fashion.
There is a user predefined maximum depth o f genetic programs that should not be
exceeded (where depth is defined as the maximum non-backtracking distance from an
end node to the root o f the tree). When the maximum depth level for a tree has been
reached, selection o f nodes is restricted to the terminal set only. Trees initialised using
the ‘grow’ method are characterised by uneven depth since terminal nodes can be
selected at any initialisation stage.

46

Chapter 3: Introduction to Genetic Programming

The ‘full’ method proceeds by restricting the choice o f possible nodes, for depths less
than the prespecified maximum depth, from the function set only. Maximum depth
nodes can only be selected from the terminal set, as in the case o f the ‘grow’ method.
The ‘ramped half-and-half method combines efficiently the characteristics o f the
‘grow’ and ‘full’ methods constructing genetic programs that are structurally quite
dissimilar. Initially, the population o f genetic programs is divided into a number o f
depth levels according to the maximum depth constraint. If, for example, the
maximum depth allowed for a genetic program is equal to 6, then the population is
divided into equal sets o f programs for each depth level between 2 and 6. For a
population size o f 500 programs, 100 programs are assigned to each o f the levels 2, 3,
4, 5 and 6. Then, half o f the programs in each set are initialised using the ‘grow’
method, while the remaining half is initialised using the ‘full’ method. The ‘ramped
half-and-half method is used as the standard initialisation method in the genetic
programming applications presented in this thesis.

3.3.4 Computer implementation of genetic programs
Koza employed the LISP programming language for the computer implementation o f
genetic programs, mainly due to its unique interpretation o f computer code as both
program code and data. However, several alternative computer implementations o f the
genetic programming algorithm have been proposed. The genetic programming
system used in this thesis is based on a computer implementation that exploits the
pointer utility o f the C++ programming language. This implementation stores genetic
programs as collections o f node classes. Each node contains information about the
function or terminal that it represents. It also carries pointers to the addresses o f the
function and/or terminal nodes that are necessary for the evaluation, or follow the
evaluation o f the specific node.

3.4 Fitness assignment and selection methods
3.4.1 Fitness functions
As it has already been discussed the quality o f evolved genetic programs on the
solution o f the problem considered is mirrored in their fitness values. The form o f the

47

Chapter 3: Introduction to Genetic Programming

function used for the assignment o f fitness to genetic programs is problem-dependent.
In symbolic regression problems the fitness o f a genetic program will normally be
equal to the sum o f the squared differences between the predicted value o f the
dependent variable and its actual value, over the entire set o f input-output training
examples. Cost, time and parsimony are just some o f the alternative forms o f fitness
functions that have been used in genetic programming algorithms.
The measured value o f fitness is known as the raw fitness o f the genetic program. In
some cases it is preferable to express fitness in a form where lower values o f fitness
correspond to better performance than higher ones, with ‘zero’ being the fitness o f the
best possible individual program. This type o f fitness is usually referred to as the
standardised fitness o f the genetic program. The choice o f fitness representation is
critical for the operation o f the genetic programming algorithm, since even subtle
differences in the performance o f genetic programs should be reflected in their
assigned fitness values.
The calculation o f fitness requires in many problems the evaluation o f their
performance on a number o f test cases {fitness cases) representative o f the problem
considered. An important decision that the designer o f the genetic programming
algorithm has to face is the choice o f the number and type o f cases that will form the
training set. Large training sets generally produce better performance, but require
significant computational power. The type o f training cases is also important since
they must be representative o f as many instances o f the problem considered as
possible. The result o f employing an inappropriate set o f fitness cases for the
evaluation o f genetic programs is poor generalisation. A genetic program that fails to
perform satisfactory on problem instances that were not included in its training set has
failed to generalise, i.e. it has failed to capture information that is relevant to the
solution o f the problem. The cause o f poor generalisation is the overfitting o f data.
This phenomenon occurs when the algorithm, in its attempt to reduce the error
between the predicted input-output relationship and the actual relationship o f the data,
fits the noise that is inherent in the training set since only a sample o f all possible
fitness cases is employed. In the experiments presented in this thesis, a validation set
is used for the assessment o f the solution’s generalisation, wherever this is
appropriate. This set comprises o f problem instances that were not used for the
training o f the evolved program.

48

Chapter 3: Introduction to Genetic Programming

3.4.2 Selection methods
A significant step in the operation o f genetic programming is the selection o f
computer programs that will participate in genetic mating or will be used for
reproduction and mutation purposes. As has already been discussed, individual
programs are selected probabilistically based on their fitness values. The selection
operation ensures that fitter individuals have more chance o f surviving in the next
generation. At the same time, the non-deterministic nature o f the procedure allows the
potential survival o f less-fit individuals, a condition that makes the algorithm less
vulnerable to the existence o f local optima in the solutions' search space.

The selection procedure is independent o f the representation scheme employed in the
evolutionary procedure. As a result, genetic programming has inherited the selection
methods that were originally designed for alternative evolutionary algorithms. The
most popular o f these methods is the ‘fitness-proportionate’ or ‘roulette-wheel’
selection method. It is based on the calculation o f the relative fitness o f each
individual in respect to the fitness o f the entire population. The value o f the relative
fitness indicates the probability o f survival o f the individual into the next generation.
Specific individuals are then selected with the help o f a pseudo-random number
generator. The ‘roulette wheel’ selection method is simple but computationally
expensive since it requires a centralised calculation o f fitness. In addition, the
existence o f individuals with extremely high levels o f fitness (‘super individuals’),
leads to the premature convergence o f the algorithm since these individuals are
assigned with a very high probability o f survival.

The ‘ranking’ selection method addresses the shortcomings o f the ‘roulette-wheel’
selection method by assigning ranks to individual programs according to their fitness,
with the best individual receiving the highest rank and the worse individual having the
lowest rank. The probability o f survival for an individual is based on its ranking,
however, since the scale o f ranking is fixed, ‘super individuals’ do not overcrowd the
population and thus the evolutionary procedure does not easily stagnate.

During the last few years ‘tournament’ selection has become the standard choice o f
selection method, at least within the genetic programming community. Tournament
selection proceeds by randomly selecting a number o f individual programs from the

49

population. The exact number o f programs is predefined by the designer o f the
algorithm and is referred to as the tournament size. Selected individuals ‘compete’
with each other, i.e. their fitness values are compared and the best individual is
selected. Tournament selection owns its popularity to its computational efficiency and
simplicity. In addition, it provides the designer with the flexibility o f adjusting the
selective pressure o f the algorithm by changing the tournament size.
The importance o f stochastic steps in the operation o f evolutionary algorithms has
already been discussed (section 3.2). While this type o f non-determinism ensures that
these algorithms are not just parallel hill-climbing heuristics, the use o f the pseudo
random number generator is a controversial issue. The quality o f the generator has
been reported to affect the quality o f the results in genetic programming applications
(Daida et al., 1997). Moreover, researchers rarely provide detailed information about
the type o f generator used in their experiments, thus making the task o f comparing
published results less reliable.

3.5 Genetic operators
Genetic operators are assigned with the task o f preserving good genetic material for
future generations, exchanging genetic material between evolved genetic programs
and introducing diversity to the population o f programs. Researchers in the field o f
genetic programming have proposed several forms o f genetic operators. The operators
employed in the majority o f cases are crossover, mutation and reproduction.

3.5.1 Crossover
The crossover operator aims to emulate the process o f sexual recombination in nature.
In genetic programming terms, and for the parse-tree representation, the operation o f
the tree-based crossover is quite simple (figure 3.4). Initially, two genetic programs
are selected probabilistically according to their fitness. Then, a node is selected
randomly in each o f the programs and the subtrees defined by these nodes are
swapped. The resulting genetic programs are inserted to the new population.

Chapter 3: Introduction to Genetic Programming

50

Chapter 3: Introduction to Genetic Programming

Figure 3.4: Example of the crossover operation

3.5.1.1 The schema theorem in genetic programming
Koza considered crossover as both essential for the operation o f genetic programming
and responsible for its success. In fact, in his genetic programming implementation

51

Chapter 3: Introduction to Genetic Programming

90% (on average) o f the genetic programs in each generation were created using tree-
based crossover. However, the justification o f its use and its real contribution to the
evolutionary procedure is fiercely debated within the evolutionary computation and
machine learning communities. The theoretical foundations for the use o f the
crossover operator are based on the existence o f a theorem that would explain how its
application improves the fitness o f genetic programs during the evolutionary
procedure. Koza defined a genetic programming ‘schema’ as any tree or subtree
whose presence within a computer program improves its fitness. He claimed that
schemata increased exponentially during the evolutionary procedure with the help o f
the crossover operator, acting as building blocks for the construction o f increasingly
fit individuals {building block hypothesis). Koza’s ideas were an extension o f the
well-known schema theorem originally introduced by Holland, which explains the
operation o f simple genetic algorithms (Holland, 1975). Koza’s schema theorem was
not expressed in mathematical form, however, subsequent genetic programming
researchers have presented schema theorems for genetic programming algorithms that
use specific types o f crossover and mutation operators (O’Reily and Oppacher, 1995),
(Langdon and Poli, 1997). It has been indicated that all the above theorems do not
guarantee the exponential increase o f good schemata during a GP run, thus further
research is needed for the establishment o f sound mathematical foundations (Banzhaf
et al., 1998). Empirical results have not been able to clarify this issue any further. If
crossover was to be mathematically responsible for the success o f the GP algorithm,
then its omission should degrade the performance significantly. However, it has been
debated that the use o f alternative genetic operators yield results that are at least as
good or even better (Angeline, 1997). The assessment o f these studies is difficult,
since experiments are usually conducted on a limited number o f test problems, while
it is a known fact that the performance o f evolutionary algorithms is problem-
dependent and sensitive to the combination o f various parameters o f the experimental
run.

The operation and the performance o f the crossover operator are not a subject o f
research in this thesis. Unless otherwise stated, genetic programming experiments
were conducted using the tree-based crossover operator as introduced earlier.
However, the significance o f the crossover operator is still a controversial issue within
the evolutionary computation and machine learning communities.

52

Chapter 3: Introduction to Genetic Programming

PARENT RANDOMLY CREATED SUBTREE

Figure 3.5: Example o f the mutation operation

3.5.2 Mutation
Until recently, mutation was considered to be a minor operation in evolutionary
algorithms, with the exception o f evolutionary programming (Fogel et al., 1966) that
employs it as the sole genetic operator. A number o f researchers have published
results which indicate that the mutation operator might be more beneficial to a genetic
programming algorithm than originally thought, especially when small populations o f
genetic programs are used (Luke & Spector, 1997), (Fuchs, 1998).

The operation o f the tree-based mutation operator is described in figure 3.5. Initially,
a genetic program is selected probabilistically according to its fitness. Then, a node
within the tree is selected randomly and the corresponding subtree is deleted. In its

53

Chapter 3: Introduction to Genetic Programming

place a new subtree is generated, following the same procedure described in the
initialisation section (3.3.3). In the majority o f genetic programming experiments
conducted in this thesis the tree-based mutation operator was applied with a
probability o f 10% to individual computer programs.

3.5.3 Reproduction
Reproduction proceeds by copying into the new generation the genetic programs that
have been chosen through the selection algorithm, without any modification. While it
preserves fit individual programs without altering their structure and operation, it does
not introduce genetic diversity to the population, thus forcing the premature
convergence o f the algorithm. The reproduction operator was employed in a small
number o f experimental genetic programming runs that were conducted in this thesis.

3.6 Design of the genetic programming algorithm
The design o f a genetic programming algorithm for the solution o f an optimisation
problem, is a multi-step procedure that requires the determination o f various
parameters. Initially, the problem is redefined in a program induction form. Then, the
main preparatory steps for the run o f the algorithm are followed:

I. Definition o f the functions that will participate in the function set
II. Definition o f the terminals that will participate in the terminal set
III. Definition o f a fitness measure for the evaluation o f the performance o f

genetic programs
IV. Definition o f a number o f additional parameters that are necessary for a valid

genetic programming run
The first three preparatory steps have been discussed in detail in the previous sections.
The fourth preparatory step requires the determination o f the following parameters:

• Population size
• Number o f generations
• Initialisation method

54

Chapter 3: Introduction to Genetic Programming

• Maximum depth allowed for initial genetic programs
• Selection method

• Probability o f applying genetic operators (crossover, mutation, reproduction)
• Maximum depth allowed for genetic programs after the application o f operators
• Termination criterion

Once all preparatory steps have been completed, an experimental run o f the genetic
programming algorithm can be conducted. However, since genetic programming is a
non-deterministic search procedure, it is recommended that multiple runs (at least 20)
o f the algorithm should be conducted for each set of fitness cases.

3.7 An illustration of the genetic programming algorithm
The genetic programming approach to the solution o f optimisation problems will be
described in this section with the help o f a symbolic regression problem taken from
Banzhaf et. al (1998). In symbolic regression problems the algorithm aims to uncover
the function that describes the behaviour o f a system using a set o f input-output
numeric values as the learning domain. In the example problem this set corresponds to
the function described in equation 3.1.

y=T 0 -D

Initially, a redefinition o f the problem in a program induction form is required. In this
case the solution o f the problem is expressed as a computer program that takes as
input the value(s) o f the independent variable(s), and produces as output(s) the
value(s) o f the dependent variable(s). The quality o f the evolved computer program is
determined by its performance on the set o f fitness cases.

The design o f the genetic programming algorithm is based on the preparatory steps
described in the previous section:

55

Chapter 3: Introduction to Genetic Programming

/. Definition o f the functions that will participate in the function set
The function set comprises o f the four main arithmetic operations (addition,
subtraction, multiplication, and division). The set o f functions that is sufficient
for the solution o f the problem is not always known in advance. The designer
o f the algorithm needs to examine the problem carefully and experiment with
alternative configurations in order to find a set with satisfactory performance.
Note that a protected form o f the division function was always used in the
experiments conducted in this thesis, for reasons explained in section 3.3.1.

II. Definition o f the terminals that will participate in the terminal set

The terminal set comprises o f the independent variable x , and a set o f integer
constants with values ranging from (-5) to (5). These particular constants were
included for reasons o f consistency with the experimental approach followed
in Banzhaf et. al (1998). However, a solution to the problem can be created
without including any constant in the terminal set.

III. Definition o f a fitness measure for the evaluation o f the performance o f
genetic programs
The fitness o f evolved computer programs is calculated using the root mean
squared error between the predicted output and the actual output on the set o f
fitness cases described in table 3.1. Then, the fitness value is adjusted using
the formula presented in equation 3.2, so that a higher fitness value will
correspond to a better individual.

1
1 + raw fitnessadjusted fitness = (3.2)

Chapter 3: Introduction to Genetic Programming

INPUT OUTPUT
Fitness case 1 0.000 0.000
Fitness case 2 0.100 0.005
Fitness case 3 0.200 0.020
Fitness case 4 0.300 0.045
Fitness case 5 0.400 0.080
Fitness case 6 0.500 0.125
Fitness case 7 0.600 0.180
Fitness case 8 0.700 0.245
Fitness case 9 0.800 0.320

Fitness case 10 0.900 0.405
Table 3.1: Fitness cases for the example problem

IV. Definition o f a number o f additional parameters that are necessary for a valid
genetic programming run

Parameters 1 Values —
Objective: identification o f the function that corresponds to the data

o f fitness cases
Terminal set: * » (integer constants from -5 to 5)
Function set: ■ > x, % (protected division function)
Population size: 600
Subtree crossover probability: 0.9
Subtree mutation probability: 0.05
Reproduction probability: 0.05
Selection: Tournament selection, size 4
Number o f generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Table 3.2: Koza tableau for the GP methodology
The set o f additional parameters that need to be defined for the valid run o f the
genetic programming algorithm is described in table 3.2.

57

Chapter 3: Introduction to Genetic Programming

As it has already been discussed, genetic programming is a non-deterministic
procedure, thus multiple runs are required for a valid estimation o f the performance o f
the algorithm on the problem considered. 20 runs were conducted in total for the
problem discussed in this section. Genetic programming was able to correctly identify
the required function in 12 o f them. In the following paragraphs a successful genetic
programming run will be presented, describing the general performance o f the
algorithm and the structures evolved.

The best program from the initial generation o f randomly created individuals is
depicted in figure 3.6. This program corresponds to the function described in equation
3.3.

y = a 4- • x 2+ — -x2
5 25 (3.3)

Figure 3.6: Best individual of initial generation

In generations 1, 2 and 3 the evolutionary procedure began to take effect, however,
the algorithm did not manage to find the 100% correct solution. The best individuals
o f these generations and the corresponding functions are presented in figures 3.7, 3.8
and equations 3.4, 3.5 respectively.

58

Chapter 3: Introduction to Genetic Programming

%

x 3

Figure 3.8: Best individual of generations 2 and 3

In generation 4, the algorithm was able to find the 100% correct individual, i.e. the
computer program that produces a root mean squared error o f ‘O’ between the
predicted and the actual output value. The evolved program (figure 3.9) corresponds
to the test function from which the fitness cases had been sampled (equation 3.1).

Figure 3.9: Best individual of generation 4 (100% correct)

59

Chapter 3: Introduction to Genetic Programming

Figure 3.10 illustrates the dynamic characteristics of this particular run in terms of the
mean adjusted fitness of the population, the mean complexity (length) of the
population and the adjusted fitness of the best individual over the course of 50
generations.

Mean fitness/100 Mean complexity________ Best fitness

L811.6 J

0.4
0.2

0 ------------------------------- T ------------------------ , --------------------------------- r - ------------------------ , ----------------- r -

1 6 11 16 21 26 31 36 41 46 51

Figure 3.10: Dynamic characteristics of the run

3.8 Conclusions
Genetic programming is a non-deterministic algorithm that combines efficiently the
concepts of evolutionary computation and automatic programming. It requires the
redefinition of problems in program induction form. An evolutionary procedure is
then assigned with the task of finding a satisfactory solution within the space of
potential computer programs. Research interest in genetic programming has
developed rapidly since its introduction in the early 1990’s. In the next chapters the
use of genetic programming for the solution of manufacturing optimisation problems
will be investigated, starting with the one-machine total tardiness scheduling problem.

60

Chapter 4

THE ONE-MACHINE TOTAL
TARDINESS PROBLEM

4.1 Introduction
One o f the possible reasons for the lack o f genetic programming applications in the
field o f manufacturing optimisation is the difficulty o f evolving a direct permutation
through a GP algorithm. Most solutions o f manufacturing optimisation problems -
especially in scheduling - can be represented by permutations. While in a classic
evolutionary algorithm a permutation can be easily coded as a fixed-size string
chromosome and the feasibility o f solutions is guaranteed by the application o f
specially designed operators, a similar GP structure would suffer feasibility problems
from the application o f subtree-crossover and mutation operators.
In this chapter, the potential use o f traditional and modified-GP algorithms for the
solution o f a well-researched scheduling problem, the one-machine total tardiness
problem, is investigated. The proposed algorithms use the traditional manufacturing
concept o f dispatching rules for the indirect construction o f job schedules, thus
avoiding feasibility problems.
Dispatching rules are employed in two alternative forms. First, combinations o f
existing dispatching rules are evolved for the solution o f individual tardiness
problems. Then, a genetic programming framework is employed for the construction
o f a new formula o f a dispatching rule that challenges man-made dispatching rules on
the problem considered.

Chapter 4; The one-machine total tardiness problem

Potts and Van Wassenhove (1982) created an algorithm that is able to find optimal
solutions for one-machine total tardiness problems within acceptable computational
times. This algorithm allows the realistic evaluation o f the performance o f all GP-
generated methods introduced in this chapter. However, while Potts and Van
Wassenhove’s algorithm has no other known applicability apart from the one-machine
total tardiness problem, all the methods described in the following sections can be
used - in principle - for the solution o f any other one-machine scheduling problem.
The rest o f this chapter is organised as follows: In section 4.2 the one-machine total
tardiness problem is defined and a review o f the solution methodologies that have
been proposed for its solution is presented. Section 4.3 introduces the GP-based
methodology for the solution o f individual one-machine total tardiness problems. In
section 4.4 genetic programming is employed for the evolution o f new dispatching
rules that can be used for the solution o f all instances o f the problem. The conclusions
o f this chapter are drawn in section 4.5.

4.2 Minimising total tardiness in a single-machine
environment

4.2.1 Problem definition
One o f the main objectives o f the scheduling procedure is the completion o f all jobs
before their agreed due dates. Failure to keep that promise has negative effects on the
credibility o f the company.
If lateness o f job i is defined as the difference between its completion time C/ and the
corresponding due date dh then the tardiness o f the job is calculated from equation
(4.1).

T, = max(0,C, - d,) (4.1)

In other words, tardiness represents the positive lateness o f a job. In a single-machine
environment, the total tardiness problem is defined as follows:
A number o f jobs Jb J2....,Jn are to be processed in a single facility. Each job is
available for processing at time zero, and its processing time p t and due date di are

62

Chapter 4: The one-machine total tardiness problem

known in advance. The aim is to find the processing sequence that minimises the sum
o f tardiness o f all jobs (4.2).

2 max(0,C, - d)
<=l

(4.2)

where C, is the completion time o f job i. If for each job i, an associated weight
(penalty) w* exists, the total tardiness is calculated using (4.3).

2 w;{max(0,C,-</,)} (4.3)M

The objective o f the weighted total tardiness problem is the minimisation o f (4.3). I f
(4.2) or (4.3) was to be divided by the total number o f jobs «, the objective would
become the minimisation o f mean tardiness. However, since a division by a constant
does not alter the nature o f the objective, the problems are essentially the same.
The total tardiness problem is a special case o f the weighted total tardiness problem.
Both problems are not easy to solve, especially for large values o f« . The complexity
o f the weighted total tardiness problem has been established by Lawer (1977), He
proved that the associated decision problem is NP-complete by reduction from the 3-
partition problem. The complexity o f the unweighted total tardiness problem remained
unestablished until 1989, when Du and Leng (1989) proved that the associated
decision problem is NP-complete by reduction from a restricted version o f the Even-
Odd Partition problem.
In the following paragraph the solution methodologies that have been proposed for the
solution o f the one-machine total tardiness problem will be discussed.

4.2.2 Literature review
4.2.2.1 Introduction
The research for the solution o f both versions o f the one-machine total tardiness
problem spans a period o f four decades. From the early stages it became apparent that
complete enumeration o f all permutations o f jobs was not practical, since the total
number o f all possible schedules is («!), where « is the total number o f jobs in the

63

Chapter 4: The one-machine total tardiness problem

problem. Two main lines o f research were followed during these forty years. In the
early stages researchers focused on the development o f efficient implicit enumeration
algorithms, mainly dynamic programming and branch and bound. While these
algorithms are analytical, their application is restricted to relatively small-sized
problems due to computational and memory requirements.
Dynamic Programming (DP) (Bellman and Dreyfus, 1962) is much faster than
complete enumeration. However, it has obvious limitations in terms o f memory
requirements (2” values must be stored before the construction o f an optimal
schedule). Branch and bound methods are quite unpredictable in their computational
requirements. Their success depends heavily on the calculation o f sharp lower bounds,
which result on the quick elimination o f subtrees, speeding up the procedure
considerably.
In recent years, researchers have focused on the development o f fast and efficient
heuristic algorithms. While these algorithms perform much better than implicit
enumeration techniques in terms o f computational requirements, the optimality o f
their solutions is not guaranteed. In the following paragraphs the research on the one-
machine total tardiness problem as it has evolved during the last forty years will be
presented.

4.2.2.2 Early approaches
The earliest investigation o f the total tardiness problem was given by McNaughton
(1959), who presented some theorems for scheduling independent tasks in a single
machine, with associated penalties for missing the deadlines. McNaughton showed
that the set o f permutation schedules is dominant for this objective, and that the
Weighted Shortest Processing Time (WSPT) rule produces optimal schedules when
no job can be finished on time. Schild and Fredman (1961) extended the use o f
dispatching rules on some other cases and proposed a general methodology for the
solution o f the problem with no guaranteed optimality.
Held and Karp (1962) were the first researchers to propose the use o f dynamic
programming for the solution o f sequencing problems. The principle o f optimality for
a scheduling problem o f this type stated that “in an optimal schedule, the first k jobs
must form an optimal schedule for the reduced problem based on these k jobs alone”.

64

Chapter 4: The one-machine total tardiness problem

The recursive equations o f DP were formed based on this principle. Lawler (1964)
utilised dynamic programming for the solution o f the weighted total tardiness
problem. No results were presented, however the author indicated the computational
drawbacks o f his method.
Emmons (1968) published a breakthrough paper on the one-machine total tardiness
problem without associated weights. He proved a series o f theorems that established
relations between jobs in an optimal sequence. Emmons also proposed an algorithm
that utilised these theorems in order to reduce the size o f the problem and employed
branching when no further relations between jobs could be found. These theorems
formed the basis o f a number o f solution methodologies over the years. Emmons also
generalised the cases where EDD or SPT sequencing yielded optimal schedules.
A few years later Srinivasan (1971) introduced a hybrid method based on Emmons’
theorems and dynamic programming. In this three-step algorithm, Emmons’ theorems
were initially used to reduce the size o f the problem and to introduce precedence
relations between jobs. Dynamic programming was then employed to solve the
reduced problem. Results from randomly generated test problems showed that his
method exhibited substantial gain on computational efficiency in comparison with
complete enumeration and conventional DP. Srinivasan also investigated the effect
that the change o f the parameters o f the problem had on the computational
requirements. He reported that problems representing shops 60% tardy on average
were computationally hard. This observation was later confirmed by alternative
researchers (Russel and Holsenback, 1992).
The same year Wilkerson and Irwin (1971) presented the first heuristic technique for
the solution o f the total tardiness problem. Their algorithm employed a decision rule
and adjacent pairwise interchanges for the construction o f schedules. Their method
was substantially faster than complete enumeration, however, the optimality o f
solutions was not guaranteed.

4.2.2.3 Development o f implicit enumeration algorithms during the 70 ’s
and 80’s

Rinnooy Kan et al. (1975) proposed an improved brand and bound approach for the
solution o f the weighted version o f the problem. They focused their research on the

65

Chapter 4: The one-machine total tardiness problem

development o f dominance theorems and the calculation o f strong lower bounds. The
authors warned that the implementation o f their theorems could lead to the creation o f
precedence cycles and proposed a method for avoiding this deadlock situation.
Despite the fact that their algorithm was faster than previous algorithms for problems
with 15<«<20, they underlined the need for sharper lower bounds, and even better
dominance theorems.
Fisher (1976) recognised this need and produced an algorithm that was able to find
extremely sharp lower bounds for branch and bound algorithms. His method was
based on a dual formulation o f the problem. He introduced a subalgorithm that solved
efficiently the Langrangian problem formed by the dual variables. The solution o f this
problem provided both sharp lower bounds and good feasible solutions. In this latter
way the algorithm could be utilised as an efficient heuristic procedure. The extremely
sharp lower bounds allowed the solution o f large sized problems («=50) in moderate
computational times. Fisher’s method presented considerable advantages over the
alternative methods that had been proposed until that time for the same problem.
Lawler (1977) presented a ‘pseudopolynomial’ algorithm for the solution o f the total
tardiness problem with agreeable weights (o f which the unweighted total tardiness
problem is a special case). Lawler’s algorithm, based on dynamic programming, had a
worst case running time o f complexity O(n4P), where

p - ± p ,/=]

and pi is the processing time o f job i. The existence o f Lawler’s ‘pseudopolynomial’
algorithm meant that the unweighted total tardiness problem is NP-hard in the
ordinary sense.
It has already been pointed out that dynamic programming approaches to the total
tardiness problem had limited applicability due to the extensive computer memory
requirements. However, Baker and Shrage presented two dynamic programming -
based methods that were able to solve large-sized problems («=50) faster than branch
and bound algorithms. The first method (Baker and Shrage, 1978) was an
investigation into the application o f dynamic programming to sequencing problems
with precedence constraints. The authors argued that when chain-like relations

66

Chapter 4; The one-machine total tardiness problem

between jobs existed (jobs with only one direct predecessor and only one direct
successor), the number o f feasible subsets that needed to be enumerated was reduced,
making the DP procedure much faster. In the case o f the total tardiness problem,
where no precedence relations exist a priori, Emmon’s theorems could be utilised to
create them a posteriori. A few months later Shrage and Baker (1978) introduced a
powerful dynamic programming implementation for problems o f the same type. Their
method involved an enumerative procedure for all feasible subsets, and a labelling
procedure for storing and retrieving efficiently the values o f these subsets. Depending
on the precedence constraints o f the problem, the labelling procedure could reduce
considerably the storage requirements o f the algorithm, allowing the application o f
dynamic programming in large sized problems. Indeed, Shrage and Baker showed that
their method could solve 50-job test problems much faster than the algorithms o f
Fisher and Rinnoy Kan et al.
In the early 80’s Potts and Van Wassenhove (1982) presented a new methodology for
the solution o f the total tardiness problem, which combined features from earlier
approaches. The algorithm started by constructing a precedence relations graph based
on Emmons’ theorems. The labelling scheme o f Shrage and Baker was then employed
to address all feasible subsets. In the case o f a very large number o f labels (>35000),
the decomposition algorithm o f Lawer (1977) was utilised to break up the problem in
a number o f smaller and easily tackled subproblems. Each o f these subproblems was
solved optimally by the dynamic programming approach o f Shrage and Baker. The
efficiency and the speed o f this algorithm enabled the solution o f medium to large
problems (50<«£100) in reasonable computational times. Especially for problems
with «<70, the performance o f the algorithm was impressive. In larger problems the
algorithm was slightly slower, but still no optimal results on problems o f this size had
been reported from any researcher until that time. The authors indicated that their
method did not generalise for the case o f the weighted total tardiness problem. A few
years later, they proposed an alternative branch and bound method for the solution o f
the latter problem (Potts and Van Wassenhove, 1985). The lower bounds were
obtained using Langrangian relaxation. The multiplier adjustment method was
employed for the calculation o f Langrangian multipliers. Some dominance features o f
dynamic programming were also utilised for the elimination o f as many nodes o f the
solution tree as possible. Potts and Van Wassenhove’s method was able to solve

67

Chapter 4: The one-machine total tardiness problem

problems much larger than those reported in earlier branch and bound approaches.
The authors concluded that the existence o f a very sharp lower bound was not as
important as it was considered to be by previous researchers. They claimed that a
feature o f quick enumeration o f feasible subsets - like the one that they used in their
algorithm - could enhance the search for an optimal schedule considerably.
Another implicit enumeration algorithm was proposed by Sen et a l (1983) who
utilised Emmon’s theorems and corollaries in order to establish precedence relations
between jobs. They reported that their seven-step algorithm outperformed Shrage and
Baker’s (1978) dynamic programming algorithm in terms o f computational efficiency
for large-sized problems («>50).

4.2.2.4 Recent developments
In the last decade, researchers have turned their attention to the implementation o f
efficient heuristic methods, which are generally faster and much easier to implement.
The optimality o f a heuristic solution is not guaranteed, however, it is easy to test its
efficiency by calculating the optimal values using an implicit enumeration algorithm.
A typical local search procedure for permutation problems such as the one-machine
total tardiness problem incorporates Adjacent Pairwise Interchanges (API’s) o f jobs in
order to find optimal or near optimal sequences. The quality o f an API depends both
on the initial sequence o f the algorithm (‘seed’), as well on the search strategy that is
employed. Fry et al. (1989) presented a heuristic approach that utilised the best o f
nine Adjacent Pairwise Interchange (API) strategies. These strategies were produced
by the combination o f three different initialising procedures (EDD, SPT and
Minimum Slack Time (MST)), with a same number o f search strategies (front to back
- restart when local optimum found, back to front - restart when local optimum found,
all adjacent pairwise interchanges - restart from the best found). A comparison o f
their method with Wilkerson and Irwin’s algorithm showed that API’s constituted a
very fast and reliable optimisation technique for the one-machine total tardiness
problem.
Some years later, Holsenback and Russel (1992) introduced their powerful Net
Benefit O f Relocation (NBR) heuristic procedure. Emmons stated in one o f the
corollaries o f his theorems that an EDD sequence is optimal i f the tardiness o f each

68

Chapter 4: The one-machine total tardiness problem

job is less or equal than its processing time. The NBR heuristic was based on this
observation. Starting from the last job o f the EDD sequence the algorithm found the
first job which possessed ‘reducible’ tardiness (i.e. T^p,). For each job preceding job
i in the sequence and having largest processing time, the Net Benefit o f Relocation
was calculated, i.e. the benefit in tardiness units o f exchanging the positions o f these
jobs. The job with the higher NBR (subject to NBR>0) exchanged its position with
job i. The same procedure was repeated on the remaining i-1 jobs. NBR produced
high quality results even for large problem instances («=100). The deviations from the
optimal values - obtained using Potts and Wassenhove’s method - were relatively
small, while the computational times where excellent (around one second o f CPU
time for problems with «=100).

A year later Panwalkar et al. (1993) introduced the PSK heuristic, which performed
impressively on a number o f different cases. PSK was a simple, effective procedure
that started from an SPT sequence and constructed a schedule by making «-passes,
one for each job. The algorithm used two sets o f jobs, the SPT set o f unscheduled jobs
{U }, and the set o f the o f jobs that had already been scheduled {S}. In each pass, a

job from {U} was considered to be active, starting from the leftmost one. If the
scheduling o f this job was considered necessary since it was already tardy or on time,
or because the successive job would make it tardy, then it was removed from {Ujand
it was placed on {S}. Otherwise the next job in {U} became active and the same set o f
comparisons was performed. The algorithm was tested on a wide range o f test
problems producing satisfactory results. However, Russel and Holsenback (1996)
questioned the validity o f these results, claiming that in their own experimentation
with the same problems used in (Panwalkar et al., 1993), the NBR was generally
superior to PSK. In any case, they noted that PSK was particularly suitable for a
specific set o f problems characterised by high values o f tardiness factor and range o f
due dates.

Recently, Russel and Holsenback (1997) introduced some modifications to the NBR
heuristic, which improved the performance significantly, especially in the case o f
large - sized problems («=100). They also proposed the composite use o f the modified
NBR and PSK heuristics, since both methods were extremely fast, easy to implement
and complementary in nature.

69

Chapter 4: The one-machine total tardiness problem

Meta-heuristics (simulated annealing, tabu search, genetic algorithms etc.) have
gained a considerable research interest during the last decade. All o f these techniques
have been applied to a wide range o f scheduling problems. Simulated annealing (SA)
is a non-deterministic heuristic algorithm developed by Kirkpatrick et al. (1983). The
main operation o f SA is similar to a hill-climbing local search procedure. SA
however, allows probabilistic jumps to neighbourhood solutions that perform worse
than the starting solution. In that way the algorithm has the ability to escape local
optima. The probability o f selecting a worse solution depends on a ‘temperature’
value T, in a procedure that resembles the annealing o f metals to a minimum energy
state. Temperature is initially high, but its value drops exponentially with the number
o f iterations. Thus, selection o f a worse individual is more likely during the initial
phases o f the algorithm.
Matsuo et al. (1989) were the first researchers to employ simulated annealing for the
solution o f the weighted total tardiness problem. A few years later Potts and Van
Wassenhove (1991) presented a simulated annealing algorithm for the unweighted
case o f the same problem, adopting the adjacent pairwise interchange strategy for the
creation o f neighbourhood schedules, and a special interweaving procedure which
performed local search at certain stages o f the algorithm. A much simpler simulated
annealing method was proposed a few years later by Ben-Daya and Al-Fawzan
(1996). Random job interchanges were used for the creation o f neighbourhood
schedules and no form o f local search was employed. Their method outperformed the
heuristic approaches o f Fry et al. (1989) and Holsenback and Russel (1992) in a wide
range o f test problems. However, while Holsenback’s heuristic was extremely fast,
Ben-Daya’s algorithm suffered from slow convergence, a well-known disadvantage o f
simulated annealing.
Ibaraki and Nakamura (1994) presented another dynamic programming - based
approach for the solution o f the weighted total tardiness problem called Successive
Sublimination Dynamic Programming (SSDP). It aimed to reduce the number o f
subsets that need to be enumerated in a dynamic programming procedure. The
algorithm utilised upper and lower bounds to eliminate as many states o f the
scheduling tree as possible. Experimentation showed that Ibaraki’s approach was
much faster than conventional dynamic programming. However, as the authors

70

Chapter 4: The one-machine total tardiness problem

indicated, the method had limited applicability to problems characterised by certain
levels o f tardiness.
Finally, Tansel and Sabuncuoglu (1997) have recently presented an interesting
investigation on the total tardiness problem, utilising geometric representations in
order to analyse and prove Emmons’ theorems. Their research introduced a number o f
theorems that identified ‘easy’ or ‘hard’ problem instances based on the graphic
representation o f the problem’s data. They noted that a particularly ‘hard’ family o f
problems (the one where Emmons’ theorems cannot be initiated), is difficult to be
created using a random number generator, thus the reliability o f the randomly
generated test problems is not guaranteed.

4.3 A GP - heuristic for the solution of the one-
machine total tardiness problem

4.3.1 Introduction
This section describes the design o f a genetic programming algorithm for the solution
o f individual one-machine total tardiness problems. The aim o f the algorithm is the
generation o f schedules for specific instances o f the problem rather than the evolution
o f scheduling policies for the general total tardiness problem. This is achieved by
employing the instance o f the problem considered as the only fitness case during the
training phase o f the algorithm. The first step for the design o f the genetic
programming algorithm is the redefinition o f the problem in a program induction
form: “Find a computer program that takes as input information about the
characteristics o f the unscheduled jobs, and produces as output a complete schedule
that minimises the total tardiness o f all jobs in the system”.

COMPLETE
SCHEDULE

Figure 4.1: Genetic programming approach to schedule generation

71

Chapter 4: The one-machine total tardiness problem

4.3.2 Design of the algorithm
4.3.2.1 Schedule representation
A natural representation for the solution o f the one-machine total tardiness problem is
a permutation o f all jobs to be scheduled. Evolutionary computation researchers have
extensively used permutation representations for flowshop and one-machine
scheduling problems like the one discussed in this chapter. Specially designed genetic
operators (originally created for the solution o f the travelling salesman problem)
ensure the feasibilty o f solutions throughout the evolutionary procedure
The representation o f a permutation within a conventional GP framework is not
straightforward due to the variable length o f the structures evolved. A direct
representation o f a schedule through a tree-like program structure would suffer from
feasibility problems by the application o f subtree crossover and mutation operators.
In the implementation proposed in this section, common manufacturing dispatching
rules are employed as an indirect way o f representing a permutation through a genetic
programming framework. A dispatching or priority rule is a method o f determining
the next job to be scheduled out o f a set o f unscheduled jobs (section 2.23.2.2). The
decision is based on certain job characteristics like processing times, due dates etc
There is a wide variety o f dispatching rules available, especially for dynamic
scheduling problems (Blackstone et al., 1982).
The idea o f using combinations o f dispatching rules for the solution o f scheduling
problems is not new. In a well-known scheduling textbook, Fisher and Thompson
(1963) proposed the probabilistic learning o f scheduling rules as a method for tackling
job-shop scheduling problems. A number o f researchers have employed combinations
o f dispatching rules for the solution o f similar problems (section 2.2.3.2.2) The
majority o f these approaches were based on the idea o f utilising different dispatching
rules on individual machines or alternative scheduling points in the plant
In the algorithm presented in this section, a sequence o f jobs is constructed indirectly
through an associated sequence o f dispatching rules. While dispatching rules can be
easily represented in a GP framework as terminal nodes, there are still a number o f
issues that need to be addressed before a GP run can take place. First, a connection
mechanism between the dispatching rules within the genetic program needs to be

72

Chapter 4: The one-machine total tardiness problem

defined. Koza has already suggested a way o f sequencing two or more functions or
terminals by employing the function PROGN (the notation is taken from the LISP -
equivalent function). PROGN takes as arguments two or more function or terminal
nodes and operates as a connection point between these arguments. Figure 4.2
portrays the operation o f PROGN function and its role in the indirect generation o f
schedules.

Equivalent code:
schedule a job according to EDD rule
then,
schedule a job according to SPT rule

Figure 4.2: Operation o f the PROGN function

The number o f jobs in the tardiness problems considered in the experimentation is
always fixed. However, the application o f operators creates offspring o f unequal size.
The standard GP algorithm has to be modified in order to take in account the
following cases: (i) the case where evolved individuals contain more dispatching rules
than the number needed to generate a schedule and (ii) the case where programs
contain fewer dispatching rules than the number needed for the creation o f a complete
schedule. The former case is easily accommodated by considering only the first n
dispatching rules (where n is the total number o f jobs in the problem) during the
evaluation phase o f the algorithm. The latter case is accommodated using a function
that penalises any program that produces an incomplete schedule with a very high
value o f tardiness.
Figure 4.3 illustrates the translation o f an evolved computer program to a valid job
schedule. The data o f the example problem (table 4.1) have been taken from Baker
(1974). A description o f the dispatching rules used in this example program is given
in section 4.3.2.3.

Job no. 1 2 3 4 5 6 7 8
P i 121 147 102 79 130 83 96 88
d , 260 269 400 266 337 336 683 719

Table 4.1: Data of the example problem for the illustration of schedule
representation

73

Chapter 4: The one-machine total tardiness problem

Dispatching rules sequence: EDD-SPT-MON-EDD-SPT-SPT-EDD-EDD
Corresponding job sequence: 1 - 4 - 6 - 2 - 8 - 7 - 5 - 3
Total Tardiness: 1014

Figure 4.3: Illustration o f schedule representation using the GP-heuristic

4.3.2.2 Function set
Two variations o f the PROGN function were employed in the experimentation, the
PROGN2 and PROGN3 functions that require two and three arguments for their
execution respectively. While the PROGN2 function was sufficient for small sized
problems, PROGN3 enhanced the performance o f the algorithm in large-sized
problems. Tests were also made with PROGN4 and PROGN5 functions without any
significant change on the performance o f the algorithm. As a result, the function set o f
the algorithm contained only the connecting functions PROGN2 and PROGN3.

4.3.2.3 Terminal set
The terminal set comprised a number o f dispatching rules that can be considered as
good building blocks for the generation o f fit schedules. Three rules were selected to
take part in the terminal set. The first was the Earliest Due Date rule (EDD), which
sequences jobs in non-decreasing order o f their due date. The second was the Shortest
Processing Time rule (SPT), which sequences jobs in non-decreasing order o f their
processing time. Both these rules are known to perform optimally or near-optimally in
specific cases; the SPT rule produces an optimal schedule when no job in the resulting
schedule can be completed on time, while the EDD rule is optimal when at most one
job in the resulting schedule is tardy. More general cases for the optimality o f EDD

74

Chapter 4: The one-machine total tardiness problem

and SPT scheduling are given by Emmons (1968). Based on these theorems the SPT
rule is expected to perform better at problems with high levels o f tardiness, and the
EDD rule to be ideal for the inverse case. The last rule o f the terminal set was
originally introduced by Montagne (1969) for the solution o f the weighted total
tardiness problem. This rule (which will be identified as ‘MON’ from this point
onwards) sequences jobs in non-decreasing order o f the following ratio:

Pt_______ 1
f >

1-
2>

_ _

where: pt is the processing time o f job i
di is the due date o f job i
Wi is the associated penalty for job i

(4.4)

By setting all weights equal to one, the ratio used for the unweighted version o f the
problem is obtained:

____ Pi(r, > (4.5)

(the summation term missing from the numerator o f the ratio has no effect on the
operation o f the rule). The fact that the MON rule has been designed specifically for
the solution o f the one-machine total tardiness problem, means that it produces a good
overall performance. If, for example, a due date o f a job is close to the makespan o f
all jobs, then the ratio becomes larger, thus the job is likely to be scheduled on a later
stage. Conversely, jobs with early due dates are given extra priority.
For this particular terminal set, there are 3" possible combinations o f dispatching
rules. In principle, GP should be able to find a combination that performs at least as
good as the best dispatching rule o f the terminal set. Unless a combination o f
dispatching rules is able to produce a better result, the algorithm should be able to

75

Chapter 4: The one-machine total tardiness problem

create an individual that is constructed only from terminals o f the best dispatching
rule for the problem considered.

4.3.2.4 Fitness measure
The fitness measure used for the evaluation o f solutions was the level o f tardiness
produced by the resulting schedules on the problem considered. The higher the level
o f tardiness, the lower was the chance o f individual combinations o f dispatching rules
o f surviving into the next generation. The raw and stanardised fitness o f the programs
was the same, since a smaller value o f fitness corresponded to better individuals. Note
that since only one problem was considered as fitness case during the evaluation
phase o f the algorithm, the proposed algorithm acted as an optimiser for specific
problem instances.

4.3.2.5 Genetic operators
The traditional crossover and mutation operators were employed in the
experimentation described in this section together with a point-mutation operator,
which, within the context o f this problem, operated as a conventional EA mutation
operator. Whenever an individual genetic program was probabilistically selected for
the point-mutation operation, a terminal point o f the program was selected randomly,
and was replaced by another terminal selected randomly from the terminal set.
Different combinations o f these operators were tested during the experimentation
phase, and results indicated that the best performance was given by a combination o f
the tree-mutation and point-mutation operators. Configurations involving the
crossover operator performed slightly worse than the proposed setting. However,
since this is a modified version o f a genetic programming algorithm, there is nothing
to suggest a generalisation o f this statement.

4.3.2.6 Additional parameters
The values o f additional parameters that need to be defined for the valid run o f the GP
algorithm together with a summary o f the proposed methodology are described in
figure 4.4.

76

Chapter 4: The one-machine total tardiness problem

Parameters V alues
Objective: Evolve a combination o f dispatching

rules for the solution o f individual total
tardiness problems

Terminal set: EDD, SPT, MON
Function set: PROGN2, PROGN3Population size: 200
Tree mutation probability: .8
Point mutation probability: .2
Selection: Tournament selection, size 4Number o f generations: 50
Maximum depth for crossover:
Maximum depth for individual

17
generatedfor mutation: 2 (h= 12), 3 («=25), 4 (n=50,n=100)
Initialisation method: Ramped half and half

Figure 4.4: Koza tableau for GPC heuristic

4.3.3 Experimental basis
The experimental basis employed in this section followed the guidelines suggested by
the majority o f researchers investigating the one-machine total tardiness problem. A
number o f test problems were generated randomly for particular settings o f n. The
processing times for each job were drawn out o f the uniform distribution [1..100].
Due dates were drawn out o f a uniform distribution defined as follows:

[P(l-T -(R /2)), P(l-T +(R /2))]
where:
P: is equal to the sum o f processing times o f all jobs.
T. is the tardiness factor. It defines the percentage o f jobs that are expected to be tardy
on average. If, for example, T =0.2,20% o f jobs are expected to be tardy.
R: is the range o f due dates. It defines the tightness o f due dates around the makespan
o f all jobs. Generally speaking problems with tight due dates are more difficult to
solve.
Table 4.2 describes the combinations o f R and T that were used in the
experimentation and the number o f replications for each o f these combinations:

77

Chapter 4: The one-machine total tardiness problem

T=0.2 T=0.4 T=0.6 T=0.8
R=0.2 5 problems 5 problems 5 problems 5 problems
R=0.4 5 problems 5 problems 5 problems 5 problems
R=0.6 0 5 problems 5 problems 5 problems
R=0.8 0 5 problems 5 problems 5 problems
R=1.0 0 0 5 problems 5 problems

Table 4.2: Configuration settings for the test problems

Problems with T=1.0 were not included in the experimental setup since the levels o f
tardiness in this case are unacceptable in practice. The remaining combinations o f T
and R that were not included in the set are considered to represent trivial cases.
This set o f combinations was tested on four different settings o f « (12, 25, 50 and
100). The GP heuristic was tested on 320 problems in total, a fairly representative set
o f benchmark problems. The optimal values for these problems were generated using
Potts and Van Wassenhove’s algorithm, which has already been described in section
4.2.2.3. The modified version o f Holsenback and Russel’s NBR heuristic (Russel and
Holsenback, 1997) was employed as a comparison heuristic. This method has shown
outstanding performance in published results. In addition, a simulated annealing
algorithm was designed and tested on the same benchmark problems. This
implementation o f the SA algorithm was based on two previous successful approaches
o f Potts and Van Wassenhove (1991) and Ben-Daya and Al-Fawzan (1996). Table 1A
in the Appendix describes the characteristics o f the SA approach that was used in this
section. The search strategy o f the algorithm was systematic in the form o f adjacent
pairwise interchanges, but temperature was decreased according to the schedule
proposed by Ben-Daya and Al-Fawzan.
Three versions o f the GP-heuristic described in this section were tested during the
experimental phase. Apart from the simple version (which will be identified as GPC
from now on), two local search methods were employed as optimisers for the best
individual evolved by the GP algorithm. The first method used the best individual
schedule found as the starting sequence o f a local adjacent pairwise procedure (GLS).
In the second method, the GP-heuristic ran for a small number o f generations (five),
and the best evolved individual program provided the initialising sequence o f the SA

78

Chapter 4: The one-machine total tardiness problem

algorithm already described (GSA). There are several reasons for hybridising GP with
other local search techniques in this particular problem:

• Local search has been used successfully to enhance the evolutionary procedure
in sequencing problems (Murata et al., 1996a).

• The function and terminal sets employed by GPC are not always sufficient for
the creation o f an optimal schedule. The introduction o f a local search algorithm
at the end o f the evolutionary procedure increases the probability o f reaching an
optimal solution.

• A number o f researchers have reported that dispatching rules provide good
initial schedules for local search techniques (Panwalkar et al., 1993). A
combination evolved by GPC should provide, in principle, a better starting point
than individual dispatching rules for a local search procedure.

A number o f student’s t-tests were used in many cases for the calculation o f a
statistical measure o f the difference between the algorithms compared. Note that these
tests were performed on the sets o f penalties produced by each method in relation to
the optimal values, as was suggested in the experimental approach o f Russel and
Holsenback (1997).

4.3.4 Results
4.3.4.1 GPC v i. other dispatching rules
The hypothesis for the introduction o f combinations o f dispatching rules (4.3.2.3)
suggested that they would perform at least as good or better than individual
dispatching rules on the problems considered. Tables 4.3-4.6 support this hypothesis
by highlighting the superiority o f GPC on a variety o f cases. Table 2A in the
Appendix explains in detail the statistical terms used in the tables.

79

Chapter 4: The one-machine total tardiness problem

O PTIM A L
SO LU TIO N S

M A D O
(U N IT S)

M R D O
(%)

M A X (R D O)
(V.)

E D D 10 357.4 39.12811 126.75
S P T 1 215.7875 410.7046 14200

M O N s 97.2625 22.68682 169.44444
G P C 33 25.275 2.250583 15.562565

Table 4.3: GPC vs. EDD, SPT and MON
(«=12)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S)

MRDO
(%)

MAX(RDO)
<%)

E D D 4 1775.538 52.57428 131.42857
S P T 0 994.45 413.1591 19483.333
MON 3 502.05 29.03441 203.125
G P C 9 230.275 7.039146 23.329558

Table 4.4: GPC vs. EDD, SPT and MON
(«=25)

O PTIM A L
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO)
(%)

E D D 6 6668.163 55.095 124.15254
S P T 0 4372.938 1035.89 30030
MON 4 2197.275 54.53038 1129.5238
G P C 5 1254.25 12.0713 43.808651

Table 4.5: GPC vs. EDD, SPT and MON
(«=50)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S)

MRDO
(%)

MAX(RDO)
(%)

E D D 5 28229.94 57.86391 92.885164
S P T 0 17231.99 9109.769 318066.66

M O N 5 8689.35 49.79771 1126.8691
G P C 6 6418.888 18.4861 140.47619

Table 4.6: GPC vs. EDD, SPT and M ON
(«=100)

In comparison with EDD the difference o f GPC in terms o f MADO started from
1314% for «=12, fell to 671% for «=25, and further decreased to 431% and 339% for
«=50 and «=100 respectively. GPC performed better than SPT as well, especially in
problems with small levels o f tardiness, as expected from the theory o f the problem.

80

Chapter 4: The one-machine total tardiness problem

The best performance o f individual dispatching rules was achieved by MON, the only
purpose-based dispatching rule included in this report. The penalties imposed by
MON in terms o f MADO were 284% higher than GPC for «=12, 212% higher for
«=25 and 175% higher for «=50. The difference in penalties dropped significantly for
«=100 (only 35% higher), showing that as the size o f the problem increased and the
algorithm struggled to find a suboptimal solution in the enormous search space (3100),
the MON rule became dominant in the combination o f dispatching rules o f the GPC
solutions. In terms o f optimal values GPC had a significant advantage only in very
small problem instances. EDD outperformed GPC for «=50 due to its strength in
problems with low levels o f tardiness (as discussed earlier, an EDD sequence is
optimal i f it produces schedules where at most one job is tardy). However, Table 4.7
illustrates that when GPC was compared with the cumulative performance o f the three
individual dispatching rules, it outperformed them in all problem sizes.

Number of times
GPC was better than

individual
dispatching rules

Number of times
individual

dispatching rules
were better than

GPC

Number of times
GPC had the same
performance with

individual
dispatching rules

«=12 64 0 16
«=25 77 0 4
«=50 69 5 6

«=100 64 11 5
Table 4.7: GPC vs. dispatching rules in terms of non-dominated solutions

43.4.2 M-NBR vs. GLS and GSA
The fact that GPC employs dispatching rules for the scheduling o f jobs, indicates that
there are only a limited number o f schedules that can be generated. The combination
o f GP with local search procedures allows the exploration o f regions o f the solutions’
space that the GPC algorithm is unable to reach. In this section the performance o f
these methods is compared with the M-NBR heuristic, which is a well-tested and
well-documented optimisation method for the one-machine total tardiness problem.
Tables 4.8-4.11 illustrate the statistical performance o f these three algorithms on the
same experimental basis that was used in the previous section.

81

Chapter 4; The one-machine total tardiness problem

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO>
(%)

M-NBR 75 0.8 0,11705 5.1136363
GLS 63 2.425 0.246131 5.9431524
GSA 64 1.7125 0.509119 19.277108

Table 4.8: M-NBR vs. GLS and GSA
(«=12)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO)
(%)

M -N B R 61 9.75 0.352129 8.3456790
GLS 25 22.375 1.201713 11.059907
GSA 57 5.1375 0.988265 29.761904

Table 4.9: M-NBR vs. GLS and GSA
(«=25)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%>

MAX(RDO)
(%)

M -N B R 32 65.675 1.012977 9.2341356
GLS 9 78.575 1.682691 23.728813
GSA 53 9.3125 0.286414 4.2517006

Table 4.10: M-NBR vs. GLS and GSA
(n=50)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

M R D O
(%)

MAX(RDO)
(%)

M-NBR 13 494.8625 2.438429 19.846647
GLS 8 454.8125 3.543847 78.971962
GSA 42 67.8 0.571563 23.809523

Table 4.11: M-NBR vs. GLS and GSA
(« = 100)

GLS performed significantly better than its parent method GPC. However, GLS could
not reach the level o f M-NBR performance in small and moderate problem sizes. GLS
imposed 203% higher penalties for «=12, 129% for «=25 and 19% for «=50.
However, the performance o f GLS seemed to drop slower than M-NBR as the
problem-size increased. For «=100 M-NBR had a slightly worse MADO than GLS. In
addition, while t-tests for «=12 and «=25 suggested a difference between the two
methods, (t=1.75, p<0.0417 and t=2.53, p<0.006 respectively), the same test on larger
problem instances resulted in different conclusions (t=0.97, p<0.16 for «=50 and
t=0.61, p<0.27 for «=100). On the other hand, Table 4.12 shows that M-NBR
consistently found better solutions than GLS over the whole range o f problems. In

82

Chapter 4: The one-machine total tardiness problem

addition, M-NBR produced a considerably larger number o f optimal solutions
especially for n=25 and «=50. The consideration o f these data leads to the conclusion
that M-NBR performed better than GLS on the set o f one-machine total tardiness
problems considered in the experimentation. I f computational efficiency was also to
be considered, the result would significantly favour M-NBR since it required at worst
(«=100) a few milliseconds o f CPU time for the generation o f schedules.

Number of times
GLS was better

than M-NBR
Number o f times
GLS was worse

than M-NBR
Number o f times
GLS was equal to

M -NBR
« = 1 2 5 13 62
«=25 11 46 23

oIIR 25 46 9
« = 1 0 0 29 45 6

Table 4.12: M -NBR vs. GLS in terms o f non-dominated solutions

The superiority o f M-NBR over GLS was not replicated with the other stochastic
optimiser, GSA. In the smallest problem size considered («=12), M-NBR had the
advantage since GSA produced on average 114% higher penalties. As the problem
size increased, the performance o f M-NBR dropped significantly faster than GSA. For
«=25 M-NBR imposed 89% higher penalties than GSA on average. Tables 4.8-4.11
illustrate the increasing difference in performance for increasing values o f «. Table
4.13 contains t-test results on the null hypothesis for GSA and M-NBR. From these
data it can be concluded with high confidence that GSA was significantly different
from M -NBR for large values o f «.

(M-NBR) - USA
n i t p (T i t)
12 1.26 0.105
25 1.25 0.106
50 5.03 1.48*1 O'6
100 6.34 6.44*1 O'9

Table 4.13: t-test results between M -NBR and GSA

83

Chapter 4: The one-machine total tardiness problem

In addition, the data in table 4.14 highlight the superiority o f GSA in moderate and
large problem instances in terms o f non-dominated solutions.

Number o f times
GSA was better

than M-NBR
Number of times
GSA was worse

than M-NBR
Number o f times
GSA was equal to

M -NBR
«=12 5 15 60
«=25 16 21 43

oIIK 10 43 27
«=100 66 7 7
Table 4.14: M -NBR vs. GSA in terms o f non-dominated solutions

4.3.4.3 SA versus GSA
From the results presented in the previous paragraph, it can be concluded that GSA
had the best overall performance on the set o f benchmark problems used in the
experimentation. While its superiority from the other methods was evident, a
comparison between GSA and the simple SA algorithm, i.e. the GSA procedure
without the GP seed, could not bring any safe conclusions.

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
C/o)

MAX(RDO)
(V.)

SA 68 2.325 0.735869 15.286624
GSA 64 1.7125 0.509119 19.277108

Table 4.15: SA vs. GSA
(n=12)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(Vo)

MAX(RDO)
(%)

SA 60 3.1875 0.401984 9.7142857
GSA 57 5.1375 0.988265 29.761904

Table 4.16: S A vs. GSA
(«=25)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S)

MRDO
(%)

MAX(RDO)
(%)

SA 45 21.675 0.765335 25
G S A 53 9.3125 0.286414 4.2517006

Table 4.17: SA vs. GSA
(«=50)

84

Chapter 4: The one-machine total tardiness problem

O PTIM A L
SO LU TIO N S

M A D O
(U N IT S)

M R D O
(%> M A X (R D O)(%)

SA 36 86.52S 0.298231 4.3756145
G S A 42 67.8 0.571563 23,809523

Table 4.18: SA vs. GSA
(«=100)

Differences in terms o f MADO were relatively small as tables 4.15-4.18 indicate. SA
seemed to perform slightly better in small problem instances, while GSA had an
advantage for large values o f n. Pairwise t-tests suggested that the null testing
hypothesis should not be easily rejected (Table 4.19).

Table 4.19: t-test results between SA and GSA

The comparison o f performance between SA and GSA in terms o f non-dominated
solutions (Table 4.20) showed that the number o f equal solutions remained close to
50% o f the total number o f problems even for «=100. This figure suggests that there
was a high correlation on the performance o f SA and GSA. In other words there was
not enough evidence to suggest that the introduction o f a five-generation evolved
GPC-seed significantly improved the performance o f SA.

Number o f times
GSA was better

than SA
Number o f times
GSA was worse

than SA
Number o f times
GSA was equal to

SA
«=12 8 13 59
«=25 11 17 52
«=50 25 9 46

«=100 26 18 36
Table 4.20: SA vs. GSA terms of non-dominated solutions

85

Chapter 4: The one-machine total tardiness problem

A different point o f view can be established i f the computational requirements o f the
algorithms are to be considered. Despite the fact that the SA algorithm used in this
report was not as slow as GP, it was still much slower than M-NBR. The combination
o f GPC and SA resulted in small improvements in terms o f computational efficiency.
This was due to the initialisation o f the SA procedure from a better starting point in
the solutions’ search space. However, the running time o f the algorithm was very
much problem-dependent and unpredictable.

4.4 Evolving dispatching rules using Genetic
Programming

4.4.1 Introduction
Results presented in section 4.3.4.1 suggest that MON dispatching rule produces a
good overall performance in a variety o f one-machine scheduling problems, due to its
unique design that takes in account both the processing time and due dates o f
individual jobs, as well as the makespan o f all jobs. These three parameters are
combined in Montagne’s formula (see section 4.3.2.3) and create a ratio that defines
the scheduling urgency o f each job. Montagne constructed this formula based on his
understanding o f the problem. However, there is a possibility that another formula
exists - perhaps more complex - that is able to utilise a priori knowledge o f the
problem in a way that creates better scheduling ratios than the MON dispatching rule.
In this section the possibility o f evolving a dispatching rule formula through a GP-
framework for the solution o f the one-machine total tardiness scheduling problem is
investigated. The algorithm is supplied with problem-specific information and trained
on various sets o f tardiness problems, aiming to evolve a dispatching rule that will
perform at least as good as dispatching rules produced by human intuition.
The problem can be described in the same program induction form that was presented
in paragraph 4.3.1. However, while in the algorithm described in the previous section
scheduling information was used indirectly through the combination o f dispatching
rules, in this case the algorithm directly processes raw scheduling data through the
formula o f the evolved dispatching rule.

86

Chapter 4: The one-machine total tardiness problem

4.4.2 Design of the algorithm
4.4.2.1 Schedule representatio n
The proposed algorithm employs the same procedure for the generation o f job
schedules as the one used by dispatching rules designed by human intuition. Evolved
dispatching rules comprise o f combinations o f variables and constants that provide
scheduling information. For each job in the system, the respective scheduling data are
fed in the formula o f the dispatching rule, which calculates an urgency value. When
all jobs have been considered, the job schedule is generated by ordering jobs in a non
decreasing order o f their urgency values. Note that since the formula o f the
dispatching rule is decided by the evolutionary procedure, the choice o f increasing or
decreasing order o f the urgency values is purely an issue o f designer’s choice and
does not affect the operation o f the algorithm.
In the algorithm presented in this section the traditional subtree crossover and
mutation operators can be employed without the danger o f producing infeasible
solutions. At the same time, the size o f tardiness problems that can be considered is
unlimited since, once evolved, the dispatching rule operates independently o f the
number o f jobs included in the problem.
Figure 4.5 and table 4.21 illustrate the scheduling o f jobs by a potentially evolved
dispatching rule on the example problem described in section 4.3.2.1. A description o f
the terminals used in the example program is given in section 4.4.2.3.

p l + (dr N) + ...SP
P i+ d ,

Figure 4.5: An example of an evolved dispatching rule

87

Chapter 4: The one-machine total tardiness problem

Job no. 1 2 3 4 5 6 7 8
2203.22 2301.03 3303.68 2209.45 2827.81 2773.01 5561.08 5841.04

Corresponding job sequence: 1 - 4 - 2 - 6 - 5 - 3 - 7 - 8
Total Tardiness: 859

Table 4.21: Priority values of jobs for the example dispatching rule and
corresponding schedule

4.4.2.2 Function set
The function set comprises o f the four main mathematical operations: addition,
subtraction, multiplication and division (+, -, *, %). The symbol corresponds to
the protected division function that returns the value o f ‘ 1’ when the value o f the
denominator is equal to ‘O’. These functions help the algorithm to create a formula o f
a dispatching rule for the scheduling o f jobs.

4.4.23 Terminal Set
The terminal set o f the algorithm is mainly constructed from the parameters that form
Montagne’s dispatching rule:

• pc. processing time o f job i
• d,\ due date o f job i
• SP\ sum o f the processing time o f all jobs in the problem (‘makespan’)

Two additional parameters were included in the terminal set:

• SD: sum o f the due dates o f all jobs in the problem

• n. total number o f jobs in the problem

There was no a priori knowledge about the suitability o f the additional terminals for
the evolution o f an optimal formula. As has already been discussed (section 4.3.2.3),
the GP algorithm should, in principle, be able to disregard any terminal that is not
related to the solution o f the problem and create a fit program using only the relative

88

Chapter 4: The one-machine total tardiness problem

terminals. In this case, the algorithm should be able to converge at least to the formula
o f MON rule, since all its elements are included in the function and terminal sets.

4.4.2.4 Fitness measure and fitness cases
The quality o f evolved programs is once again measured by the amount o f tardiness
produced by the resulting schedules. However, since the aim o f the algorithm is the
evolution o f a generic dispatching rule for all problem instances, a variety o f test
problems are used for the training o f the programs. Thus, the objective o f the
algorithm becomes the minimisation o f the sum o f tardiness over the entire set o f test
problems that are used as fitness cases. Tardiness is measured by scheduling jobs in
non-decreasing order o f their priority value, as this is calculated using the formula o f
the evolved dispatching rule.
A set o f twenty tardiness problems was employed for the training o f dispatching rules
in each individual GP run. Nine different sets o f test problems (table 4.22) were used
in the experimentation. In the first four o f them the value o f n in the training set was
kept fixed («=12, «=25, «=50 and «=100). The remaining sets comprised o f twenty
problems, five for each value o f «. All problems in training sets were generated using
the method described in section 4.3.3. Careful consideration was given so that
different levels o f tardiness (T) and tightness o f due dates (R) were included in each
experimental set.

N am e n F IT N E S S C A S E S (P R O B L E M S)
P E R S E T -U P

SE T U P 12 12 ________ 20
SET U P25 25 «1

S E T U P 50 50 II

S E T U P 100 100 It

SETV A R 1 5x(n= 12)+ 5x(n= 25)+ 5x(/j=50)+ 5x(«=100) M

S E T V A R 2 M “

S ET V A R 3 <(It

S E T V A R 4 (I M

S E T V A R 5 M II

Table 4.22: Training sets

89

Chapter 4: The one-machine total tardiness problem

4.4.2.5 Additional parameters
The values o f additional parameters needed for the run o f the GP algorithm and a
summary o f the proposed methodology are described in figure 4.6.

Parameters Values
Objective: Evolve a formula o f a dispatching rule for

the solution o f total tardiness problems
Terminal set: P i, db SP, SD, n
Function set: +, ♦ , %
Population size: 200
Mutation probability: .5
Crossover probability: .5
Selection: Tournament selection, size 4
Number o f generations: 50
Maximum depth for crossover:
Maximum depth for individual

17
generatedfor mutation: 4
Initialisation method: Ramped half and half

Figure 4.6: Koza tableau for evolution of dispatching rules

4.4.3 Results
The GP framework evolved different dispatching rules for each training set that was
used. The individual and cumulative performance o f each rule is illustrated in table
4.23. The outlined cells in this table indicate the performance o f the corresponding
dispatching rule on the set o f test problems that was used for its training. The rest o f
the cells in the same column illustrate the performance o f the dispatching rule on the
previously unseen test problems (validation set). The results on the latter set o f
problems allow us to assess the generalisation o f the evolved dispatching rule since
these problems were not used for its training. From table 4.23 it can be concluded that
in most cases the algorithm was able to evolve dispatching rules with better overall
performance than MON rule and much better performance than the EDD and SPT
rules. Most evolved rules performed quite well in a very large set o f validation
problems (160 in total). Based on this observation it can safely be concluded that
these rules did not just fit the data o f the fitness cases but they contained information
that was relevant to the solution o f the problem.

90

Chapter 4: The one-machine total tardiness problem

DI
SP

.R
UL

E
SE

TU
P

12
i g
v i u i 2 «

n0*' H£ U g « DI
SP

.R
UL

E
1

SE
TU

P
10

«
1

DI
SP

.R
UL

E
B

SE
TV

AR
1

I

jjs
:

3 “ DI
SP

.R
UL

E
SE

TV
AR

3

£ 3

I f) U]
3 ®

s!
<5 U
B “

ED
D

SP
T Z

o
2

SE T U P12 13189 20094 16357 17073 17068 13858 14812 13795 15676 17598 17044 14916

S E T U P 25 68440 54380 58734 68101 69135 56292 57228 57101 57915 77523 69698 60657

S E T U P 50 263231 242878 200935 227332 245993 202102 203149 213328 206380 286042 264225 226565

SE T U P100 1047471 1128759 868513 790374 779475 808824 806609 828507 852978 1158371 1093840 886600

SE T V A R 1 596043 613494 48948$ 452603 440238 457345 452723 453549 490575 643558 501370 472004

S E T V A R 2 295745 317238 248306 250549 262970 238507 239999 253411 245431 336645 355541 263629

SE T V A R 3 47 86 3 6 493293 399584 384416 380885 380406 377472 383781 396611 522807 449199 420317

SE T V A R 4 487201 495474 392716 377739 377760 377886 378137 377781 397891 526316 427636 393561

SE T V A R S 219631 235816 188116 184426 190791 180388 182291 193274 183361 248575 266219 204599

T O T A L 34 69 5 9 9 3601451 2862796 2752713 2764315 2715608 2 712420 2774527 2846818 3817435 3444772 2942848

Table 4.23: Tardiness results for all evolved dispatching rules and comparison
with dispatching rules produced by human intuition

However, the formulas o f these dispatching rules were not as simple as the formula o f
the MON rule. Table 3 A in Appendix presents the mathematical formulas o f the nine
evolved dispatching rules. All these formulas were cleared from introns (segments o f
code that have no effect on the outcome o f the problem) and were also simplified
wherever that was possible.
In order to compare the performance o f a GP-evolved rule with the traditional
dispatching rules used in this chapter, the rule evolved from the experimental set-up
SETVAR3 (figure 4.7), which produced the best overall performance, was selected.

Figure 4.7: Dispatching rule evolved from set-up SETVAR3

91

Chapter 4: The one-machine total tardiness problem

This particular rule was constructed from three main terms. The first and the third
term operated in favour o f EDD and SPT scheduling respectively. The second term
acted as a control segment that shifted the operation o f the rule towards EDD or SPT
scheduling according to the values o f the parameters o f the problem. When, for
example, the due date o f a job was small in comparison with the makespan, the
second term o f the formula produced a significant negative result that decreased the
value o f the ratio and therefore assigned urgency to the job. In the inverse case the
value o f the term was becoming less significant, thus the two big positive terms
controlled the ratio.

In table 4.24 SETVAR3 is compared with EDD, SPT and MON dispatching rules in
all test problems used in this section. The improvement in overall performance by
using SETVAR3 was significant. MON imposed 81% higher penalties in terms o f
MADO, while the t-test between the two rules rejected the null hypothesis with a very
high probability (t=5.62, p<3.49x10'8).

O PT ED D SPT M ON SETV A R 3
TARD1NES

(UNITS)
2430198 38I7 4 3J 3444772 2942848 2712420

(UNITS) 7706.872 5636.522 2848.056 1567.9
SOLUTIONS 39 0 4 25

Table 4.24: Comparative performance of SETVAR3 for all test problems

At least 77% o f the solutions produced by SETVAR3 were better or equal than those
produced by alternative dispatching rules (Table 4.25).

Number of times
SETVAR3 was better Number of times

SETVAR3 was worse Number of times
SETVAR3 was

equal
EDD 115 40 25
SPT 16 4 8 8

MON 1 4 7 30 3
Table 4.25: Performance of SETVAR3 on non-dominated solutions (all test

problems)

A s expected, EDD performed well in the set o f problems identified by small levels o f
tardiness and wide range o f due dates. However, when the scheduling problems in the

92

Chapter 4; The one-machine total tardiness problem

plant were evenly distributed in terms o f T and R, EDD scheduling produced the
worst performance over the available dispatching rules.
The dispatching rule evolved using the experimental set-up SETVAR2, which
performed almost identical to SETVAR3, is illustrated in figure 4.8.

While there were terms with similar operation between the two rules (the second one
favouring EDD scheduling and the first, third and fourth favouring SPT scheduling),
there were no other easily observed similarities. An interesting feature in the operation
o f SETVAR2 was the control nature o f the SD value in the second term. When the
sum o f due dates was large in comparison with the sum o f the processing times, EDD
scheduling was favoured, since the problem was likely to be less tardy. In the inverse
case, the SPT terms became more significant, thus SPT scheduling was favoured.
The examples presented in the previous paragraphs illustrate the potential o f
employing genetic programming for the evolution o f dispatching rules in scheduling
problems. The fact that genetic programming evolves solution representations in the
form o f computer programs means that it is possible to understand the operation o f
their solution mechanism. This feature can be exploited by human experts, who may
be able to identify the underlying relationships o f the data and thus get significant
insights on the theory o f the problem. Efficient solution algorithms can be constructed
as a result o f this process.
A s Banzhaf et a l (1998) indicated, it is not always possible to explain the operation o f
a genetic program on the problem considered. The methodology described in this
chapter was able to find individual programs that outperformed conventional
dispatching rules on a wide range o f test problems, however, the analysis o f their
operation was not a straightforward task, as the previous examples have illustrated.
This phenomenon raises the issue o f transparency o f evolved genetic programs, i.e.

Figure 4.8: Dispatching rule evolved from set-up SETVAR2

93

Chapter 4: The one-machine total tardiness problem

the understanding o f their operation in solving the problem considered. The
conventional subtree crossover operator that was used in the previous experiments
causes the semantic disruption o f evolved genetic programs since it does not consider
either the length o f the exchanged subtrees or their usefulness in solving the problem
considered (Watson and Parmee (1996), (1998)). As a result, subtrees that contribute
highly to the fitness o f a genetic program can easily be disrupted. At the same time,
evolved programs can grow either so large that their evaluation process is slowed
down considerably, or so small that their efficiency in solving the problem considered
is limited. Watson and Parmee (1998), proposed the use o f the Constrained
Complexity Crossover (CCC) operator within their Distributed, Rapid, Attenuated
Memory Genetic Programming (DRAM-GP) framework, which only allowed the
exchange o f genetic material between subtrees o f similar complexity, thus restricting
the length o f evolved genetic programs. While their method produced more
parsimonious structures, it did not have any significant effect on the transparency o f
evolved programs, as indicated in (Parmee and Watson (2000)).

4.5 Conclusions
In this chapter the potential use o f genetic programming for the solution o f the one-
machine total tardiness problem was investigated. To the best o f the author’s
knowledge, no previous effort has been made to solve static scheduling problems in a
GP-framework, in contrast with alternative evolutionary computation techniques that
have been extensively used for the solution o f similar problems. It is difficult to
evolve a permutation representation without producing infeasible solutions when
subtree crossover and mutation are utilised. The variable length o f genetic programs is
an additional disadvantage for the evolution o f a fixed-size schedule.
Two alternative ways o f approaching the problem were tested during the experimental
stage. First, a combination o f dispatching rules was utilised as an indirect way o f
representing a permutation through a GP-framework. The problem o f variable length
was dealt by considering only the part o f the program that was significant for the
solution o f the problem. This configuration was employed as a heuristic procedure for
the solution o f individual problems. While it outperformed conventional dispatching
rules, near-optimal solutions were only reached when alternative heuristic procedures

94

Chapter 4: The one-machine total tardiness problem

were employed to enhance the outcome o f the GP algorithm. A particular combination
o f a few generations evolved GP individual and SA produced high quality solutions
over the entire range o f problem parameters and sizes.
In the second approach, a conventional GP-framework was employed for the
evolution o f a dispatching rule for the solution o f the one machine total tardiness
problem. A number o f the evolved dispatching rules outperformed Montagne’s
dispatching rule in the experimental basis used in this chapter. The conclusions o f this
investigation can be summarised in the form o f the following points:
• While the evolution o f a direct permutation representation through a GP-

framework is not a straightforward task, an indirect representation can be
sometimes constructed based on the problem considered.

• Evolved combinations o f dispatching rules can outperform individual dispatching
rules in the solution o f one-machine total tardiness problems.

• The hybridisation o f GP with alternative search techniques can yield significant
improvements in the performance o f the algorithm.

• While it is possible to employ GP as a heuristic procedure for the solution o f the
one-machine total tardiness problem, the algorithm is quite slow in comparison
with alternative search methods.

• The evolution o f dispatching rule formulas is a procedure much more natural to
the GP-framework. While high quality results can be achieved, the evolved
individuals might be able to provide human experts with significant insights to the
nature o f the problem. This process can lead to the development o f improved
solution algorithms for individual scheduling problems.

In the following chapter, genetic programming will be employed for the solution o f
another difficult manufacturing optimisation problem that has received considerable
research attention, the cell-formation problem.

95

Chapter 5

THE CELL-FORMATION PROBLEM

5.1 Introduction
A modem manufacturing system should be cost-effective, easily controllable and
human friendly. Group Technology (GT) (Mitrovanov, 1966) addresses these issues
comprehensively by grouping together objects that are bound by some form o f
similarity on all levels o f the corporate structure. The implementation o f GT at shop-
floor level is traditionally referred to as cellular manufacturing.
Cellular manufacturing targets mid-volume, mid-variety production lines which are
widespread in today’s versatile market environment. The intuition behind cellular
manufacturing is an attempt to bring the benefits o f the mass-production flow-line
manufacturing to batch production lines. The implementation o f cellular
manufacturing has been reported to result in significant benefits for the manufacturing
process (Singh, 1993). Some o f these benefits are:

• reduced set-up times
• reduced work-in-progress inventory
• reduced throughput times
• reduced material handling costs
• simplified scheduling
• simplified flow o f products
• improved quality

Chapter 5: The cell-formation problem

The implementation o f a cellular manufacturing system is a multi-stage procedure that
requires the analysis o f material flow in the plant (Burbidge, 1975). A specific part o f
this procedure, the problem o f forming machine cells and part families, has attracted
considerable research attention. Numerous methodologies have been proposed for its
solution over the last thirty years. Many o f these approaches have been successful in
handling particular versions o f the problem. However, the trade-off between
modelling an accurate version o f the manufacturing process and the resulting
computational complexity o f the algorithm, means that there is always a research
interest in finding more efficient solution methodologies.
In this chapter, a novel genetic programming approach for the solution o f simple and
advanced formulations o f the cell-formation problem is introduced. In addition, the
possibility o f evolving new similarity coefficients, which - in combination with
hierarchical clustering procedures - can be used for the solution o f cell-formation
problems, is investigated.
The remainder o f this chapter is organised as follows: In section 5.2 the cell-formation
problem is defined, and some o f the issues involved in its solution are discussed. A
literature survey o f the problem is given in section 5.3. The genetic programming
approach for the solution o f binary cell-formation problems is illustrated in section
5.4. An extension o f the proposed methodology for the solution o f advanced
formulations o f the cell-formation problem is presented in section 5.5. Genetic
programming is employed for the evolution o f new similarity coefficients in section
5.6. The conclusions are summarised in section 5.7.

5.2 Formulation of the cell-formation problem
5.2.1 Simple binary matrix formulation
The most important step in the development o f a cellular manufacturing system is the
creation o f machine cells and associated part families. There are numerous alternative
problem formulations depending on the objective o f optimisation and the level o f
manufacturing data incorporated in the solution procedure.

97

Chapter 5 : The cell-formation problem

In this chapter the simplest version o f the cell-formation problem is mainly
considered, which is usually illustrated with the help o f the machine-component (m/c)
matrix, A[n x m\ , where:

n: total number o f machines in the plant
m: total number o f parts in the plant

Each position in the matrix can assume two values, ‘0 ’ and ‘1’. An entry, ‘1’,
indicates that the part o f the corresponding column has an operation on the machine o f
the corresponding row. A ‘O’ entry indicates the opposite (‘O’ entries are mostly
omitted from the matrix for ease o f illustration). The information provided by the m/c
matrix is illustrated with the help o f the following example:
It is assumed that a plant produces 5 parts using 3 machines. By analysing information
from the route cards o f parts, the m/c matrix illustrated in figure 5.1 is obtained.

Pi p2 p3 p4 p5
ml 0 1 1 0 1
m2 1 0 0 1 0
m3 0 1 1 0 1

Figure 5.1: An example of a m/c matrix

The value o f A2A is equal to ‘1’, thus part 4 needs an operation on machine 2. In
contrast, part 4 does not need an operation in machine 1 since Ai 4 is equal to ‘O’.
Once the m/c matrix has been obtained, the cell-formation problem is transformed to
the problem o f finding a configuration with all positive entries arranged inside blocks
along the main diagonal o f the m/c matrix. A diagonalised matrix allows the easy
identification o f machine cells and corresponding part families. Figure 5.2 shows the
diagonalised version o f the example matrix that resulted by rearranging its rows and
columns.

98

Chapter 5: The cell-formation problem

p4 Pi p5 p3 P2
m2 1 1 0 0 0
ml 0 0 1 1 1
m3 0 0 1 1 1

Figure 5.2: The diagonalised m/c matrix

By observing the matrix it is easy to identify two independent cells, the first one
comprising o f machine 2 and parts 1 and 4, and the second one comprising o f
machines 1 and 3 and parts 2, 3 and 5. The main objective o f a cell-formation
algorithm in this simple version o f the problem is the construction o f completely
independent cells, i.e. cells where the parts included in a part family are processed
only within the corresponding machine cell. However, this is a case rarely
encountered in practice. Figure 5.3 illustrates a situation on a different m/c matrix
where the cells that have been formed are not independent.

p4 Pi p5 p3 p2
m2 1 1 0 1 0
ml 0 0 0 1 1
m3 0 0 1 1 1

Figure 5.3: m/c matrix with intercell moves

The reason for this inefficiency is part 3. which requires an operation on a machine
that belongs to a different cell (machine 2). It is customary in cellular manufacturing
terminology to describe part 3 as an ‘exceptionalpan' and machine 2 as a ‘bottleneck
machine’. The handling o f bottleneck machines and exceptional parts is a significant
consideration in cellular manufacturing research. Some o f the approaches that have
been proposed for its solution over the years are described in the following section.
When completely independent cells cannot be formed, the objective o f the solution
methodologies is usually expressed in terms o f the minimisation o f intercell moves or
the minimisation o f material handling costs in general. However, in the case o f binary
m /c matrices it is common to employ a grouping measure to assess the quality o f
block diagonalisation. Several grouping measures have been introduced over the
years, with grouping efficiency and grouping efficacy being the ones that have been

99

Chapter 5: The cell-formation problem

used by the majority o f researchers. A detailed explanation o f these measures is given
in section 5A 2.6.
The binary m/c matrix representation o f the cell-formation problem is a simple and
efficient representation but captures only a limited amount o f manufacturing data.
However, even in its simplest form, the cell-formation problem is a difficult
combinatorial problem. Lee and Garcia-Diaz (1993) indicate that the number o f p-
sized non-empty partitions o f n objects is:

S (n ,p) * £ - (5 1)

where S(n,p) is the Stirling number o f the second kind. For n=20 the number o f non
empty subsets o f size 5 is approximately 7.94 x io " . I f the number o f clusters is not
pre-specified, the total number o f partitions becomes equal to:

i s h j)j-1
This formula rules out the complete enumeration o f solutions. The manual
manipulation o f rows and columns as a method o f diagonalising the m/c matrix is
only feasible in small problem instances.

5.2.2 Advanced formulations
The binaiy m /c matrix representation o f the problem has been extensively used in
cell-formation research, mainly because it was introduced and utilised by Burbidge in
the first scientific method for creating manufacturing cells, namely Production Flow
Analysis (Burbidge, 1971). This representation suffers from serious deficiencies that
limit its ability to represent realistic manufacturing environments. More specifically, a
binaiy m/c matrix can capture only a limited amount o f manufacturing data, ignoring
in that way information that can be critical in creating the appropriate cell
configuration. Advanced formulations o f the problem (mainly mathematical
programming and graph-based models) are capable o f incorporating a wide range o f
production data like:

• processing times
• product demands

~~Joo —------------------------- --

Chapter 5: The cell-formation problem
• machine capacities
• alternative process plans for parts
• batch sizes
• limits on cell sizes and total number o f cells
• operation sequences
• multiple machines o f the same type
• tooling considerations

The larger the amount o f data included in a formulation o f the cell-formation problem,
the more computationally intractable the model becomes. The objective o f an
advanced formulation can be as simple as the minimisation o f intercell moves and as
complex as the minimisation o f the total costs associated with the production process
over a specified period o f time. The application o f the GP-based methodology in a
number o f advanced formulations o f the cell-formation problem is illustrated in
section 5.5.

5.3 Literature review
5.3.1 Introduction
Research effort for the solution o f the cell-formation problem spans a period o f thirty
years. A considerable number o f papers have been published during this time making
the task o f surveying the field and classifying the solution approaches extremely
difficult.

In this section a number o f solution methodologies that are considered to be important
in cellular manufacturing literature will be examined. The list o f publications is by no
means complete. The aim o f this survey to illustrate the state-of-the-art in cell-
formation research so that meaningful comparisons can be made in later sections.
There is no standard way o f classifying cell-formation methods. A coarse-grained
classification would result in the following categories:
• Visual inspection methods
• Coding and classification methods
• Production-based methods
-------------- ■ - 101 "

Chapter 5: The cell-formation problem

Visual inspection methods or simply ‘eye-balling’ methods rely on the visual
identification o f machine cells and part families. Considerable experience is required
in this process even in small problem cases. However, as the size o f the problem
increases the task becomes almost impossible.
In coding and classification methods the design characteristics o f the parts are used
for the formation o f part families. Each part is assigned a multi-digit code according
to its shape, size, or production requirements, and a classification system is used to
group parts according to their code. While coding systems are widely used by
companies, very few cell-formation methods are based on them.
The core o f the cell-formation methodologies belongs to the category o f production-
based methods. In general, production based methods analyse the information found
on the route cards o f parts and bring together parts with similar processing
requirements and/or machines that process similar parts. The genetic programming
methodology presented in this chapter belongs to the family o f production-based
methods. A fine-grained classification o f these methods result in the following
categories:
• Array-based methods
• Hierarchical clustering methods
• Non-hierarchical clustering methods
• Graph-based methods
• Mathematical programming methods
• Meta-heuristics, fuzzy logic and neural networks

In the following paragraphs a number o f important papers in each category will be
discussed. The classification system used in this section is illustrated in figure 5.4.

102

Visual Coding & Production'
inspection classification based m ethods

Chapter 5: The cell-formation problem

Array- Hierarchical Non- Graph- M athematical M eta-heuristics,
based clustering hierarchical based programming fuzzy logic &

clustering neural networks

Figure 5.4: Classification of cell-formation approaches
5.3.2 Array-based methods
Array-based methods manipulate the rows and the columns o f the m/c matrix aiming
to obtain visible groupings o f machines and components. This is usually achieved by
constructing group diagonals that include as many positive entries as possible.
The first array-based method for obtaining machine-component groups was part o f the
Production Flow Analysis (PFA) procedure for the implementation o f a cellular
manufacturing system (Burbidge, 1971,1975). PFA comprised four main steps:
• Factory flow analysis

This step was necessary in large industries and aimed to decompose the factory in
a number o f independent ‘major’ departmental groups, making the
implementation o f the group analysis step easier.

• Group analysis
This step started with the construction o f the m/c matrix using information
obtained from the route cards. A manual manipulation o f rows and columns
created machine-component groups. Burbidge believed that these groups existed
naturally and it was up to the designer to unveil them. He also claimed that groups
could be obtained manually even in large m/c matrices. Burbidge later presented a
seven-step method for obtaining cells that was based on the concept o f ‘nucleus’
machines. The algorithm started by eliminating ‘immaterial’ machines from
consideration, i.e. machines that performed secondary operations, such as washing
etc. Then, the machines processing the smallest number o f parts were identified as
‘nucleus’ machines and primitive ‘modules’ were built around them. In the latter

103

Chapter 5: The cell-formation problem

stages o f the algorithm, final groups were identified by combining or dividing
primitive modules. Burbidge proposed a number o f alternative methods for the
elimination o f exceptional elements and the balancing o f workload between the
cells.

• Line analysis
After the grouping o f machines and components, the layout o f machines within
the cells was chosen based on the flow o f parts between machines.

• Tool analysis
During this step families o f tools that processed similar parts were identified and
the optimal loading sequence o f tools in the machines was decided.

Group analysis received considerable research interest. Subsequently many
researchers attempted to improve the efficiency o f diagonalisation by introducing
algorithms that were able to manipulate the rows and columns o f the m/c matrix using
a pre-programmed logic.
King (1980) devised a diagonalisation method called Rank Order Clustering (ROC).
ROC was based on the ranking o f rows and columns according to the binary word
represented by the ‘0 ’ and T entries for each o f them. Rows and columns were
rearranged in decreasing order o f their ranking. The process was iterative and
continued until no further change could be achieved. Chandrasekharan and
Rajagopalan (1986) argued that the algorithm tended to gather as many positive
entries as possible in the top-left hand comer o f the m/c matrix, while the rest o f the
matrix was left highly disorganised. This tendency resulted in the erroneous
identification o f bottleneck machines. King and Nakomchai (1982) introduced a
modified version o f ROC, called ROC2. ROC2 utilised linked lists to store the data o f
the matrix. Linked lists enabled the use o f fast and efficient sorting procedures, which
resulted in an overall algorithm with linear time complexity. They also presented an
interactive algorithm that combined ROC2 with specialised procedures for dealing
with exceptional elements and bottleneck machines.
Chandrasekharan and Rajagopalan (1986) noted that the application o f ROC always
resulted in one clear-cut machine-component group that was located on the top left-
hand comer o f the m/c matrix. They proposed an extension o f ROC called MODROC
which took advantage o f this characteristic. MODROC started with the execution o f

104

Chapter 5: The cell-formation problem

two iterations o f the ROC algorithm. Then, the group o f machines and components
that had been formed on the top left-hand comer o f the matrix was recorded and the
components were removed from the matrix. The procedure was repeated until no
more components were left. This algorithm created mutually independent part
families, but the identified machine cells intersected most o f the time. The authors
employed a hierarchical clustering procedure to create the final plant configuration.
Chan and Milner (1982) introduced the Direct Clustering Algorithm (DCA), a fast and
efficient method for diagonalising m/c matrices. DCA employed a systematic
procedure for the manipulation o f rows and columns o f the matrix. The aim o f the
procedure was to move the rows with the ‘left-most’ positive entries to the top o f the
matrix and the columns with the ‘top-most’ positive entries to the left o f the matrix.
The procedure was iterative and continued until no further improvement could be
achieved. The main advantage o f this method over ROC was that the initial
configuration o f the matrix did not affect the resulting partition. This was achieved by
a pre-processing stage where the columns and rows were ranked according to the
number o f their positive entries. In this way, the input to the main phase o f the
algorithm was always the same.
A cell-formation approach that attracted considerable attention is the Cluster
Identification Algorithm (CIA) o f Kusiak and Chow (1987). CIA was based on a
cutting algorithm, originally introduced by Iri (1968). CIA was able to identify
machine cells and part families by drawing vertical and horizontal lines on the m/c
matrix. The authors also introduced the Cost Analysis Algorithm (CAA), an extension
o f CIA that explicitly considered the cost o f subcontracting parts that caused
intercellular moves.
B oe and Cheng (1991) presented the Close Neighbour Algorithm, a simple but
efficient heuristic procedure for the clustering o f machines and parts in a binary m/c
matrix. A measure o f similarity for each pair o f machines in the plant was calculated
based on the ‘closeness’ o f their part routings. The rows o f the m/c matrix were then
reorganised by bringing ‘similar’ machines closer together. The rearrangement o f
columns through a simple heuristic procedure resulted in the diagonalisation o f the
intermediate matrix. The authors compared the performance o f the algorithm with
some well-known clustering procedures on a number o f test problems taken from the

105

Chapter 5: The cell-formation problem

literature and concluded that its performance was always equal or better in terms o f
the grouping efficiency measure (Chandrasekharan and Rajagopalan, 1986b).
In a recent paper Da Silveira (1999) presented a methodology for the practical
implementation o f a cellular manufacturing system. The procedure was illustrated for
the case o f a toy manufacturing plant in Brazil. The benefits o f the implementation in
terms o f reduction in scrap, rework, work-in-progress, stock, and delivery times were
quite significant. Boe and Cheng’s Close Neighbour Algorithm was used for the
creation o f machine cells and part families.

5.3.3 Hierarchical clustering methods
Hierarchical clustering methods employ some form o f similarity or dissimilarity
measure between machines or parts in order to create machine cells or part families.
Solutions are generated by either progressively breaking down a single cell or part
family to individual machines or parts (divisive methods) or by progressively merging
individual machines or parts until a single cell or family has been formed
(agglomerative methods).
The first author to introduce hierarchical clustering for the solution o f the cell-
formation problem was McAuley (1972). Since his methodology formed the basis o f
the genetic programming approaches introduced later in this chapter, it will be
described in more detail with the help o f the example problem presented in figure 5.5.

pl p2 p3 p4 p5
ml 1 1
m2 1 1 1
m3 1 1
m4 1 1 1

Figure 5.5: Example m/c matrix for the illustration of McAuley’s algorithm

The algorithm comprised o f two main stages. Initially, a similarity coefficient was
calculated for each pair o f machines that were available in the plant. The value o f the
coefficient represented the similarity o f machines in terms o f the common operations

106

Chapter 5: The cell-formation problem

performed. McAuley employed Jaccard’s (1908) similarity coefficient which, for this
particular problem, was defined as follows:

S ,= ____
O y + b y + C y

(5.2)
where: Sÿ : similarity between machines i and j

ciy : number o f parts processed by both machines i and j
by : number o f parts processed by machine i but not by machine j
Cy : number o f parts processed by machine j but not by machine i

The value o f the similarity coefficient ranged from 0 to 1. For the above example the
similarities were calculated as follows:

4.3 =
2

2 + 0 + 0
2

2 + 1 + 1

= 1

= 0.5

4.4 = 1
1 + 1 + 2

1
1 + 1 + 2

0.25

0.25

4.2 =

4.3 =

o
0 + 2 + 3

0
0 + 3 + 2

= 0

= 0
Thus, there is total similarity between machines 1 and 3, and no similarity between
machines 1 and 2. The above values were used for the construction o f the similarity
matrix (figure 5.6).

m l m2 m3
m2 0 * *
m3 1 0 *
m4 0.25 0.5 0.25

Figure 5.6: Similarity matrix for the example problem

In the second stage, the calculated similarity matrix was used for the creation o f a
pictorial representation o f solutions, known as ‘dendrogram’. Single Linkage Cluster
Analysis (Sneath, 1957) was employed for the construction o f the dendrogram. SLCA
assumed that all machines were initially ungrouped. Then, the pair o f machines
having the highest value in the similarity matrix was recorded and grouped at this
level o f similarity. In the previous example, machines 1 and 3 were grouped at the
similarity level o f 1. The next highest similarity level was then found and the
associated machines were merged at this level. In this case, machines 2 and 4 were

107

Chapter 5: The cell-formation problem

merged at the similarity level o f 0.5. At this point the highest similarity level was 0.25
between machines 1 and 4. Since both machines had already been grouped, their
associated groups were merged as well. Thus, at the similarity level o f 0.25 all
machines had formed a single cell and consequently there was no reason to examine
the remaining similarity coefficient values. The constructed dendrogram is illustrated
in figure 5.7:

m l m3 m2 m 41 ------------
0.75 -

0.5 - --------------

0.25 - -----------------------------

0 -

Figure 5.7: Dendrogram of solutions for the example problem

The above dendrogram contains a number o f alternative solutions, depending on the
choice o f the threshold level (T). More specifically:
• Solution 1 (initial)

• Solution 2 (T =l)

• Solution 3 (T=0.5)

• Solution 4 (T=0.25)

cell 1: raj

cell 2: m2
cell 3: m3
cell 4: m̂
cell 1: mj, m3

cell 2: m2

cell 3: m4
cell 1: m/, m3

cell 2: m2, mu

cell 1: m/, m2, m3, m.4

The objective o f M cAuley’s algorithm was the minimisation o f the sum o f material
handling costs, which was calculated by adding the intercellular and intracellular
handling costs under a pre-specified layout. However, since the output o f the
algorithm was a partition o f machines into a number o f cells, the algorithm could be
used in conjunction with any desired objective.

108

Chapter 5: The cell-formation problem

The main disadvantage o f SLCA was the occurrence o f the ‘chaining’ phenomenon
during the grouping procedure. Since the existence o f a single linkage between
machines or groups o f machines was enough for the approval o f merging, the
algorithm could bring together machines with low similarity. In our example problem,
machines 1 and 2 were grouped together at the similarity level o f 0.25, while their
similarity coefficient was 0. McAuley, as well as other researchers (Gupta and
Seifoddini, 1990) suggested the use o f alternative clustering methods like Average
Linkage Cluster Analysis (ALCA) and Complete Linkage Cluster Analysis (CLCA)
in order to overcome this problem. ALCA calculated the average o f similarity
coefficients between groups o f machines. CLCA worked in the opposite way o f
SLCA by assigning the lowest and not the highest similarity coefficient between
groups o f machines. However, both ALCA and CLCA required the recalculation o f
the similarity matrix after each individual merging step, resulting in greater
computational complexity.
Gupta and Seifoddini (1990) extended the applicability o f the coefficient-based
hierarchical clustering methods by introducing an enhanced version o f M cAuley’s
similarity coefficient. The authors argued that the main disadvantage o f the simple
similarity coefficient was the limited amount o f manufacturing information
considered by it. They introduced the production-based similarity coefficient that
explicitly considered the production volume o f parts, the part routing sequences and
the processing times. The superiority o f the production-based similarity coefficient
over Jaccard’s similarity coefficient was illustrated on test problems taken from the
literature. Gupta (1993) later introduced an improved version o f the coefficient that
explicitly considered the existence o f alternative process plans for the parts produced.
Seifoddini and Djassemi (1995) also compared the performance o f these two
coefficients and concluded that the production-based similarity coefficient was able to
reduce total material handling costs more efficiently than Jaccard’s coefficient.
Vakharia and Wemmerlov (1990) presented a methodology for the creation o f
manufacturing cells, which was based on the identification o f part families rather than
machine cells. A similarity measure for parts was introduced, which considered not
only the machines visited by each part, but the operation sequences as well. The
merging procedure was interactive, with the designer having the power to approve or
object to merging, based on the information about the resulted skip moves,

109

Chapter 5: The cell-formation problem

backtracking moves, etc. After the part families had been created, the designer dealt
with backtracking and single-operation parts that had been initially removed from
consideration, and decided where to allocate ‘key’ equipment (equipment required by
many parts in the plant). At the final stage o f the procedure more general objectives
were considered, like the minimisation o f investment and the respect o f cell-size
constraints. The procedure was highly interactive since it required decisions from an
experienced human operator.
The hierarchical clustering methods described so far employed agglomerative
procedures for the creation o f machine cells or part families: individual machines or
parts were merged into progressively larger cells or families until a single cell or
family was obtained or until a size constraint had been reached. Stanfel (1985)
proposed a simple divisive hierarchical procedure for the creation o f machine cells
that was not based on the calculation o f similarity coefficients. The algorithm started
with an initial cell comprised o f all available machines. An iterative procedure
followed with each machine leaving the cell to either form a new cell or to join one
that had already been formed. All the solutions were evaluated in terms o f the
resulting intercell moves and the number o f extraneous transitions caused by the
presence o f machines within a cell that were not processing all the family parts.

5.3.4 Non - hierarchical clustering methods
Non-hierarchical clustering methods also employ a measure o f similarity or
dissimilarity for the grouping o f machines or parts. However, machine cells or part
families are formed around a number o f seed points that are selected by a pre
specified procedure. The main drawback o f these methods is that they usually require
the specification o f the total number o f manufacturing cells in advance.
Chandrasekharan and Rajagopalan (1986b) introduced the first non-hierarchical
clustering algorithm for the solution o f the cell-formation problem. A modified
version o f MacQueen’s k-means method (MacQueen, 1967) was employed for the
initial clustering o f machines and components. Since the k-means method required the
pre-specification o f the total number o f clusters, a formula was derived for the
calculation o f the maximum number o f independent cells that could be formed for a
specific problem. During the second stage o f the algorithm, part families were

110

Chapter 5: The cell-formation problem

allocated to machine groups according to their efficiency factor, an indicator o f the
within-cell utilisation for each part family. The output o f this stage was used for the
determination o f ideal-seed clustering points in a perfectly diagonalised matrix. These
points initialised a new run o f the k-means clustering algorithm that resulted in the
elimination o f singleton clusters. In the same paper Chandrasekharan and Rajagopalan
introduced grouping efficiency,, a qualitative measure o f matrix diagonalisation. While
grouping efficiency has been criticised as being inadequate to assess the performance
o f cell-formation algorithms, it has been used by a considerable number o f researchers
over the years.
The same authors (Chandrasekharan and Rajagopalan, 1987) introduced an extension
o f the ideal-seed clustering algorithm called ZODIAC (Zero-One Data: Ideal-seed
Algorithm for Clustering). The algorithms were quite similar with the exception o f the
initialisation phase where ZODIAC considered a choice o f different seeding
procedures.
Srinivasan and Narendran (1991) illustrated some o f the deficiencies o f ZODIAC in
terms o f the choice o f initial seeds and the use o f the city block distance measure as
the clustering criterion. They introduced a new non-hierarchical clustering procedure
called GRAFICS (GRouping using Assignment method For Initial Cluster Seeds).
GRAFICS identified initial machines for seeding by solving the assignment problem
as introduced by Srinivasan et a l (1990). The maximum density rule was employed as
the clustering criterion. The main algorithm progressed by alternatively clustering
machines and parts until no improvement could be made in terms o f the number o f
exceptional elements and voids (zeros inside the block diagonal matrices). GRAFICS
did not allow the existence o f singleton clusters. GRAFICS was tested against
ZODIAC on a considerable number o f problems taken from the literature and was
found to be superior in most cases. Srinivasan (1994) later extended GRAFICS by
using a minimum-spanning tree algorithm for the creation o f initial seeds. The
modified GRAFICS algorithm performed better than simple GRAFICS and ZODIAC
on a wide range o f problems.
Nair and Narendran (1998) presented a non-hierarchical clustering method for the
creation o f manufacturing cells called CASE (Clustering Algorithm for SEquence
Data). They introduced a new similarity metric that explicitly considered the sequence

111

Chapter 5: The cell-formation problem

o f operations for each part, multiple visits to machines, and part demands. The metric
was used for the identification o f initial seeds in a non-hierarchical clustering
algorithm. Nair and Narendran (1999) later presented an enhanced version o f CASE
called ACCORD (A bicriterion Clustering algorithm for Cell-formation using Ordinal
and Ratio-level Data). ACCORD combined the similarity coefficient used in CASE
with a new similarity coefficient that captured the workload similarity between any
pair o f machines in the plant.

5.3.5 Graph-based approaches
Graph-based methods employ a graph or network representation o f the cell-formation
problem and use corresponding techniques for the creation o f manufacturing cells.
One o f the first graph-based approaches for the solution o f the cell-formation problem
was introduced by Rajagopalan and Batra (1975). Their method combined graph
theory and similarity coefficients. The problem was modelled with the help o f a
vertex-edge map. Vertices represented machines in the plant. Jaccard’s similarity
coefficients were calculated for each pair o f machines. A pair o f vertices was
connected by an edge i f the value o f the similarity coefficient for the corresponding
pair o f machines was larger than a pre-specified threshold level. All the cliques
(complete maximal sub-graphs) o f the graphs were identified and subsequently used
for the formation o f hybrid machine cells. At this point machines could be present in
more than one cell, thus a procedure was needed for the creation o f mutually
independent cells. A new graph was constructed with each vertex representing a cell
and each connecting edge representing intercellular moves between the hybrid cells.
The graph was partitioned with the help o f a standard graph-partitioning procedure
introduced by Kemighan and Lin (1970). The objective o f the algorithm was the
minimisation o f the total number o f intercell moves. The resulted partitions
corresponded to the final configuration o f cells in the plant.
(De Witte, 1980) combined the same combination o f the hierarchical clustering
procedure o f McAuley with the graph-partitioning approach o f Rajagopalan and Batra
(1975). The machines in the plant were initially divided in three main types: primary
machines (machine types o f which only one unit was available), secondary machines
(machine types o f which multiple units were available) and tertiary machines

112

Chapter 5: The cell-formation problem

(machine types o f which enough units were available to cover eveiy cell in the plant).
A machine-to-machine combination matrix was then created based on the routings o f
parts and their required quantity. This matrix was utilised for the calculation o f three
different similarity coefficients that were fed as input to Rajagopalan and Batra’s
graph partitioning procedure for the creation o f manufacturing cells. Primary,
secondary and tertiary cells were created in a sequential manner. Finally, secondary
and tertiary cells were added to primary cells to obtain the final design.
Vannelli and Kumar (1986) focused on the development o f a method for finding the
minimal number o f bottleneck machines or parts when creating manufacturing cells.
They showed that the problem was equivalent to finding the minimal cut-nodes o f a
bipartite graph while disconnecting it to a number o f subgraphs. Since the problem
was NP-complete, a heuristic procedure (Lee et a/., 1979) was employed for its
solution. The same authors later extended their methodology by introducing the
concept o f weighted graphs (Kumar and Vannelli, 1987). The improved model was
able to tackle cost-based problems by simply assigning costs as weights for each part
in the graph.
Askin et al. (1991) proposed a diagonalisation method based on the Hamiltonian path
representation o f the problem. Initially, the distance matrix for all machine and parts
in the plant was calculated. A suitably modified version o f Jaccard’s similarity
coefficient was employed as the distance metric. The problem o f rearranging the rows
and columns o f the m/c matrix was modelled as a graph-based Travelling Salesman
Problem (TSP) with the objective o f finding the shortest tour o f all vertices. TSP
required a cyclic solution, thus the associated Hamiltonian Path Problem (HPP) had to
be considered since it did not require a return tour to the starting vertex. Graph
heuristic procedures where used for the solution o f both problems.

N g (1993) introduced a minimum spanning tree methodology for the solution o f the
binary version o f the problem. The nodes o f the tree represented the rows o f the
matrix and the connecting arcs denoted the distance between them, i.e. the level o f
their dissimilarity. K machine cells were obtained by deleting the (k-1) largest arcs
from the tree. A procedure was also presented for the re-assignment o f parts to
machine cells aiming to improve the derived partitions. A worst-case analysis o f the
algorithm was performed in terms o f the grouping efficiency and grouping efficacy

113

Chapter 5: The cell-formation problem

(Kumar and Chandrasekhara!!, 1990) measures. N g illustrated the deficiencies o f
these grouping measures and proposed the weighted grouping efficacy measure for the
evaluation o f cell-formation solutions.
The concept o f minimum spanning trees was also employed by Lin et al. (1996) in an
attempt to solve a more complex version o f the cell-formation problem. The objective
o f their cost-based mathematical model was the minimisation o f the sum o f intercell
processing costs, intracell processing costs and total cell-balance delay costs. Since
the formulation was computationally intractable, a minimum spanning tree heuristic
was employed for its solution. Disconnected subgraphs were created by progressively
deleting arcs until no configuration could be found that resulted in lower overall costs.
The method was compared with some conventional array-based methods on test
problems taken from the literature and produced excellent results. In addition, a case-
study application o f the method was presented for a company that manufactured
irrigation products.

5.3.6 Mathematical programming
Mathematical programming formulations o f the cell-formation problem are capable o f
considering a wide range o f manufacturing data. Several types o f integer
programming formulations have been proposed over the years, especially the last
decade. Most o f these models suffer from computational intractability and require the
a priori specification o f the total number o f manufacturing cells.
Kusiak (1987) was one o f the first researchers to propose the use o f mathematical
programming for the solution o f the cell-formation problem. He introduced a p-
median zero-one integer programming model for the formation o f part families. The
objective o f the model was the maximisation o f similarity o f parts within the part
families in terms o f the common machines used. A standard integer programming
package (LINDO) was employed for the solution o f the problem. Kusiak additionally
presented a generalised zero-one integer programming formulation that considered the
existence o f alternative process plans for each part. Shtub (1989) proposed a
Generalised Assignment Problem (GAP) formulation that was equivalent to Kusiak’s
p-median formulation.

114

Chapter 5: The cell-formation problem

Choobineh (1988) presented a two-stage procedure for the design o f a cellular
manufacturing system. First, a hierarchical clustering algorithm was employed for the
creation o f part families. The similarity between parts was calculated through an
enhanced version o f Jaccard's similarity coefficient. The existence o f alternative
process plans was also addressed during this stage o f the procedure. After the creation
o f part families, a linear integer programming formulation o f the problem was
presented. The objective o f the model was the minimisation o f the sum o f production
costs and the costs o f acquiring and maintaining machine tools.
Wei and Gaither (1990) introduced a zero-one integer programming formulation that
explicitly considered the available capacity o f machines. The objective o f the model
was the minimisation o f opportunity costs in the fonn o f subcontracting costs for
exceptional parts. The authors indicated a number o f alternative objectives that could
be used in conjunction with the proposed mathematical formulation.
Boctor (1991) presented a simple zero-one integer programming formulation o f the
problem that considered only the data available from the binary m/c matrix. The
objective was the minimisation o f the total number o f exceptional elements. An
efficient procedure for the linearisation o f the objective function was proposed. In
addition, Boctor showed that a large number o f integrality constraints could be
relaxed without affecting the binary outcome o f the solution. Even with these
modifications the model was computationally intractable for large problem instances.
Boctor proposed the use o f simulated annealing for these cases.

Zhu et al. (1995) introduced a zero-one integer programming formulation o f the
problem with the objective o f maximising the opportunity costs associated with all the
parts manufactured within the system, i.e. the parts that do not need to be
subcontracted. The authors showed that their formulation resulted in a smaller number
o f variables and constraints and in faster computational times than the corresponding
formulation o f Wei and Gaither (1990).

Finally, Cheng et al. (1996a) proposed a simple zero-one quadratic assignment
formulation o f the problem based on the information available from the binary m)c
matrix. The objective o f the model was the minimisation o f the sum o f Hamming
distances between machines within the ceils. A truncated-tree heuristic algorithm was

115

Chapter 5: The cell-formation problem

employed for the solution o f the problem. The authors extended their formulation to
allow for the existence o f multiple machines o f the same type.

5.3.7 Meta-heuristics, fuzzy logic and neural networks
The evolutionary computation research for the solution o f the cell-formation problem
has been described in detail in section 2.6.2. In this section a number o f solution
methodologies that are based on alternative forms o f meta-heuristics, fuzzy logic and
neural networks will be described.
Soflanopoulou (1997) introduced an efficient mathematical programming formulation
o f the problem that did not require the pre-specification o f the total number o f cells in
the plant. The objective o f the model was the minimisation o f the total intercell traffic
A simulated annealing algorithm was employed for the solution o f the problem.
Sofianopoulou (1999) later extended the use o f simulated annealing to cell-formation
problems with alternative process plans and duplicate machines. She presented non
linear mathematical programming formulations for the machine allocation and part
allocation problems respectively. Since the models were computationally intractable,
a novel simulated annealing procedure was proposed for their solution. The procedure
had the ability to move simultaneously in two different search dimensions. The
algorithm started with a random allocation o f parts to process plans. Then, the
algorithm searched for the machine-cell configuration that minimised the number o f
intercell m oves, given the part-process allocation. Once the termination criterion had
been reached, a new part-process allocation was randomly created and the same
procedure was repeated until a global termination criterion was reached. The
efficiency o f the proposed methodology was illustrated on several test problems taken
from the literature.
Aljaber et al. (1997) modelled the cell-formation problem using a pair o f shortest
spanning path problems, one for the machines (rows) and one for the parts (columns)
o f the m/c matrix. A modified version o f Jaccard’s similarity coefficient was
employed for the calculation o f distances between pairs o f machines or parts. The
authors introduced a tabu search methodology for the solution o f both problems. The
algorithm was able to accommodate the consideration o f additional manufacturing
data with a suitable modification o f the distance measure used.

116

Chapter 5: The cell-formation problem

Vakharia and Chang (1997) presented both a simulated annealing and a tabu search
methodology for the solution o f a detailed version o f the cell-formation problem. A
considearble amount o f manufacturing data were included in the formulation o f the
problem, such as transportation costs and processing times. The objective was the
minimisation o f machine investment and material handling costs. A comparison o f the
proposed algorithms on a number o f problems showed that simulated annealing
outperformed tabu search both in terms o f solution quality and computational
complexity.
Chu and Hayya (1991) indicated that there was a degree o f uncertainty in the
allocation o f a part to a specific part family. This uncertainty could be expressed with
the help o f fuzzy sets. For each part processed a degree o f membership was defined in
relation to each part family. The authors employed the generalised fuzzy c-means
algorithm for the clustering o f parts. The advantage o f this methodology was that it
provided the designer with a number o f alternative solutions.
Kao and Moon (1998) employed the concept o f memory association for the solution
o f the cell-formation problem. The intuition behind their approach was to simulate the
association procedure that takes part in the memory o f a production engineer who is
faced with the task o f creating manufacturing cells. The methodology was comprised
o f two main stages: First, an autoassociative neural network formed part families by
considering the characteristics (features) o f the parts. Then, a heteroassociative neural
network created machine cells by considering the relation between machines and part
features. In addition, an extension o f the latter network was introduced that was able
to create groups for other important GT domains, like tool sets, canned cycles etc.

5.4 A genetic programming-based methodology for
the solution of binary cell-formation problems

5.4.1 Introduction
In this section a novel methodology for the solution o f binary cell-formation problems
is presented. The methodology is based on the combination o f genetic programming
and the Single Linkage Cluster Analysis algorithm described in section 5.3.3 (the
proposed framework will be identified as ‘GP-SLCA’ from this point onwards). GP-

117

Chapter 5: The cell-formation problem

SLCA acts as an optimiscr for specific ccl 1 -formation problems, i.e. only one fitness
case is considered during the evaluation phase o f the algorithm.
The application o f genetic programming for the solution o f any optimisation problem
requires the restatement o f the problem in a program induction form. In the cell-
formation case, the problem can be restated in the following form: “Find a computer
program that takes as input information about the similarity o f processing operations
between machines and produces as output a grouping o f machines and parts that
minimises a pre-specified objective” (figure 5.8).

S IM IL A R IT Y O F
PROCESSING
O P E R A T IO N S

Figure 5.8: Genetic programming approach to cell-formation

This definition forms the basis o f the solution methodology presented in the following
paragraphs.

5.4.2 Design of the algorithm
5.4.2.1 Generation o f machine-cells and part-families using the GP-

SLCA algorithm
The application o f McAuley’s SLCA procedure for the solution o f cell-formation
problems is inflexible since the same dendrogram o f solutions is always produced
irrespective o f the optimisation objective. In addition, as Sarker (1996) has indicated,
the performance o f similarity coefficients varies significantly with both the problem
domain and the optimisation objective.
The proposed methodology replaces Jaccard’s coefficient with a GP algorithm that
generates a variety o f similarity coefficients and consequently a variety o f potential
solutions. The evolutionary part o f GP ensures that this procedure is not just a random
search through the population o f potential coefficients, since coefficients that produce
promising machine groupings (in relation to the optimisation objective) are more
likely to survive in subsequent generations. Genetic programming evolves similarity

118

Chapter 5: The cell-formation problem

coefficients in the form o f computer programs that take as input similarity information
for the problem considered and output similarity values for pairs o f machines to the
SLCA procedure. A detailed description o f the interaction between GP and the SLCA
algorithm is presented in figure 5.9.

SLCA
s im ila r ity I Genetic
information-W Program

I (coefficient)

Calculation of Construction> the similarity - > of thematrix dendrogram
Evaluation of
each potential
solution

Assign best
solution
found as
program
fitness

Figure 5.9:Illustration of the GP-SLCA procedure

The operation o f the GP-SLCA procedure in pseudo-code form is presented in figure
5.10.

Procedure Main
initialise population o f randomly created similarity coefficients
run procedure SLCA for each coefficient
loop

loop
select individuals for crossover or mutation
apply genetic operators and form new coefficients

until a new generation has been formed
run procedure SLCA for each coefficient

until termination criterion is true
Procedure SLCA
compute similarity matrix
construct dendrogram
loop

create machine cells for the highest level o f similarity coefficient assign parts to machine cells
calculate the fitness value o f the cell configuration
i f solution is the best recorded so far, best=current solution

until a single cell has been formed
assign the best solution found as fitness o f the individual

Figure 5.10 : GP-SLCA procedure in pseudo-code form

Chapter 5: The cell-formation problem

5.4.2.2 Allocation o f parts
The methodology described in this section belongs to the category o f cell-formation
methods that group machines into cells and not parts into families. Thus, for each
machine-cell configuration created from the dendrogram o f potential solutions, the
corresponding part families must be formed in order to be able to calculate the value
o f the objective function. Since no information is available about the sequencing o f
operations (backtracking, skips, etc.), parts are assigned to the cell where the majority
o f their operations take place. In case o f a tie, the part is assigned to the smallest o f
the candidate cells. In that way, the number o f voids created by the assignment
procedure is always minimal. If there is still a tie, the part is assigned randomly to one
o f the candidate cells. If the allocation o f parts to machine cells results in the creation
o f an empty cell (a cell that processes no parts), then the fitness o f the solution is set
to zero. However, there is no limit on the size o f machine cells, and consequently no
limit on the total number o f cells in the plant. If required, the algorithm has the ability
to explicitly consider size constraints, as it will be illustrated in section 5.5.

5.4.2.S Function set
The set o f the four standard arithmetic operations {+, x, o/0} ¡s sufficient for the
production o f a wide range o f formulas o f similarity coefficients. Note that the
division operator ‘%’ corresponds once again to the protected division function that
returns the value o f ‘1’ i f the denominator o f the division is equal to ‘O’. In that way
the closure property o f the set is not violated.

5.4.2.4 Terminal set
The following four terminals were used for the construction o f potential similarity
coefficients:

au : number o f parts processed by both machines / andy
by . number o f parts processed by machine i but not by machine y
cv : number o f parts processed by machine J but not by machine i
dy . number o f parts processed by neither machine i nor machine y

120

Chapter 5: The cell-formation problem

With the exception o f dtJ the same variables are present in the formula o f Jaccard’s
similarity coefficient. McAuley did not include this independent variable in his SLCA
algorithm since its value is usually quite high, thus it created very small values o f the
coefficient. In the GP-SLCA case, the structure o f evolved similarity coefficients is
not known in advance and neither is the significance o f dtJ in the construction o f a fit
partition. In principle, the evolutionary procedure should be robust enough to leave
out o f the final solution any terminal (variable) that is irrelevant to the solution o f the
problem. The range o f values for the evolved similarity coefficient is not known in
advance. However, this does not change the operation o f the SLCA procedure, since
the latter does not require a specific range o f similarity values. For ease o f illustration
a function that normalises the values o f the similarity matrix within the region [0, 1]
was included in the algorithm. The operation o f SLCA on either matrix yields the
same result.

5.4.2.5 Genetic operators
The subtree crossover and subtree mutation operators were employed for the creation
o f genetic diversity in the population o f coefficients. These operators were applied
with a probability o f 90% and 10% respectively in each generation.

5.4.2.6 Objective function
Two different fitness measures were used for the evaluation o f the similarity
coefficients. Both measures assess the quality o f block diagonalisation and have been
extensively used by researchers to illustrate the performance o f cell-formation
algorithms. The following notation is essential for understanding the calculation o f the
fitness measure (notation taken from N g (1993)):

n: total number o f columns (parts)
m: total number o f rows (machines)
e: total number o f non-zero entries in the mJc matrix
<?/: total number o f non-zero entries inside the diagonal blocks
e0: total number o f non-zero entries outside the diagonal blocks

(exceptional elements)
ev: total number o f zero entries inside the diagonal blocks (voids)

121

Chapter 5: The cell-formation problem

dj: total number o f elements inside the diagonal blocks
do' total number o f elements outside the diagonal blocks

The grouping efficiency, t / ,o f a diagonalised matrix is calculated using formula (5.3)
(Chandrasekharan and Rajagopalan, 1986b).

where: 0 < g < 1
In the case o f a single cell configuration d0 is equal to 0, thus (5.4) should be used
instead.

r w
1 - eQUJ (5.3)

TJ = 0 - i) (5.4)

Grouping efficiency has two main drawbacks:
• I f the value o f the weight q used in the calculation o f (5.3) and (5.4) is set to 0.5, it

can be shown that the elimination o f voids becomes much more important than the
elimination o f exceptional elements (Ng, 1993). However, in practical situations,
exceptional elements are more costly to handle. A remedy that has been suggested
is to set the value o f the weight to 0.2, however, the majority o f reported results
have been calculated with q=0.5. For this reason the same value was employed in
our experimental set-up.

• The value o f grouping efficiency is always greater than 75%, independent o f the
structure o f the diagonalised matrix. It is thus not a good reflection o f the real
quality o f diagonalisation.

The grouping efficacy measure, T , is calculated using the formula (5.5) (Kumar and
Chandrasekharan, 1990).

e + ev e + ev ' ’
Grouping efficacy has been used by a considerable number o f researchers, since it is
considered to be a better grouping measure than grouping efficiency. However, as Ng
(1993) proved, it assigns excessive importance to the elimination o f exceptional

122

Chapter 5: The cell-formation problem

elements. He suggested a weighted version o f the measure (weighted grouping
efficiency, y), which is calculated using formula (5.6).

I f q is set to 0.5, then y = T . N g showed that if q is set to 0.2, y assigns realistic
importance to the existence o f exceptional elements and voids in the m/c matrix.
The proposed methodology is flexible enough to work with any objective function
chosen by the user (for a review o f the grouping measures in cellular manufacturing,
see (Sarker and Mondal, 1999)). The only consideration should be that the available
information is sufficient for the calculation o f the objective value.

5.4.2.7 Additional parameters
The values o f the additional genetic programming parameters and a summary o f the
proposed methodology are presented in the Koza-tableau o f figure 5.11.

(5.6)
q-{e + ev-e0)+{[-q)-e{

where: 0 <, q <, 1

Parameters Values

Terminal set:
Function set:
Population size:
Subtree crossover probability:
Subtree mutation probability:
Selection:
Number of generations:
Maximum depth for crossover:
Initialisation method:

Objective: maximisation o f the grouping efficiency or
grouping efficacy o f a diagonalised matrix
a, b, c, d (defined earlier)
+, -, x, %
500
.9
.1
Tournament selection, size 7
50
17
Ramped half and half

Figure 5.11: Koza tableau for the GP-SLCA methodology

123

Chapter 5: The cell-formation problem

5.4.2.8 Illustration o f the GP-SLCA procedure using an example
problem

The purpose of this section is to illustrate the operation of the methodology with the
help of a well-known binary cell-formation problem, the (16x43) m/c component
matrix, originally introduced by Burbidge (1975), which is presented in figure 5.12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

1 1
2 1
3

4

5
6 1 1

7 18 111
9 1 1

10 1
11 1
12

13 1

14 1

15
16 1

1

1
1 1

1 1 1
1 1 1

1 1 1

11 11
1

1 1 1

1 1 1 11

1 1 1 1

1 11 11 11
11 1 1
1 1 1 1

1

1 1
1

Figure 5.12: 16x43 example cell-formation problem

Almost every algorithm for the solution of binary cell-formation problems has been
applied to this test problem.
20 runs of the GP-SLCA methodology were performed on the problem for each of the
objectives. The results of the experiments are summarised in tables 5.1 and 5.2:

" B e s t v a lu e o f e f f ic ie n c y r e c o r d e d 0.935761
N u m b e r o f t im e s th is v a lu e w a s f o u n d 2
M e a n b e s t v a lu e o f e f f ic ie n c y p e r ru n 0.932657

S ta n d a r d d e v ia tio n 0.003324
Table 5.1: GP-SLCA grouping efficiency results for Burbidge’s (16x43) test

problem

" B e s t v a lu e o f e f f ic a c y r e c o r d e d 0.567901
------------ N u m b e r o f t im e s th is v a lu e w a s f o u n d 5

M e a n b e s t v a lu e o f e f f ic a c y p e r ru n 0.566063
S ta n d a r d d e v ia tio n 0.003658

Table 5.2: GP-SLCA grouping efficacy results for Burbidge’s (16x43) test
problem

124

Chapter 5: The cell-formation problem

The similarity coefficient that produced the best value o f grouping efficacy (when fed
into the SLCA algorithm), was evolved in the form presented in figure 5.13 (in LISP
symbolic language with prefix order o f execution). The equivalent formula for the
similarity coefficient is illustrated in figure 5.14.

((-(+(/(d)(b))(-(+(d)(a))(/(a)(b))))(-(-C(+(a)(a))(-
(b)(a)))(/(*(a)(d))(+(b)(c))))(/(*(+(a)(a))(-(b)(a)))(-(+(*(-

(+(a)(a))(*(c)(/(+(/(*(a)(b))(/(d)(b)))(d))C*(a)(a)))))(d))(/(+(/(-
(+(d)(a))(/(/(a)(b))(-

(d)(b))))(/(+(a)(b))(d)))(a))(a)))(/(+(+(d)(c))(d)X*(a)(a))))))))

Figure 5.13: Similarity coefficient that produced the best value of grouping
efficacy (in computer program form)

Figure 5.14: Formula of the similarity coefficient that produced the best value of
grouping efficacy

It is not expected that genetic programming will evolve programs which human
operators w ill find easy to understand how and why they work. However, in the case
presented in figure 5.14 it can be seen that the values o f a and d, which indicate a
similarity o f processing operations between a pair o f machines, dominate the outcome
o f the formula. High values o f a and d w ill result in high values for the similarity
coefficient. It should be noted that the evolved coefficient is not necessarily ideal for
the solution o f any other cell-formation problem, since its evolution was based solely
on its performance on the particular Burbidge’s test problem.
The diagonalised matrix is derived from the evolved coefficient through the Single
Linkage Clustering Analysis procedure, which proceeds as follows: The formula o f
figure 5.14 is used for the calculation o f similarities for each pair o f machines in the
plant, resulting in the similarity matrix o f figure 5.15. The corresponding normalised

a

125

Chapter 5: The cell-formation problem

similarity matrix, in which all similarity values have been scaled to the region [0, 1],
is presented in figure 5.16.

\m 1 m 2 m 3 m 4 m S m l m 7 m l m 3 m 1 0 m 1 1 m 1 2

m 2 5 6 .6 7 2 4

m 3 5 4 .0 0 0 0 3 3 .7 5 0 0

m 4 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0

m S 4 2 .0 0 0 0 2 4 .7 5 0 0 3 0 .0 0 0 0 1 6 9 .7 0 4 9

m l 3 6 .8 2 7 1 5 7 .9 1 1 4 4 4 .1 7 5 0 2 4 .2 4 0 9 1 1 .1 4 6 8

m l 5 7 .0 0 0 0 3 6 .0 0 0 0 4 2 .0 0 0 0 3 7 .7 1 4 3 2 9 .0 7 6 9 -3 1 .5 4 1 8

m 8 4 5 .1 0 0 0 3 0 . 5 5 0 0 2 1 .6 0 0 0 4 1 .5 7 4 5 6 4 .2 2 3 8 -2 6 .7 6 3 5 3 0 .9 9 9 6

m fl 5 1 .2 5 4 5 3 0 0 .7 5 1 5 3 3 .6 0 0 0 2 9 .7 1 4 3 2 1 .5 3 8 5 ■ 61.2140 4 0 .0 0 0 0 -7 1 .3 6 8 2

m i o 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0 3 3 .1 4 2 9 2 4 .7 6 9 2 -5 8 .3 2 3 1 8 4 .0 8 51 -5 8 .5 4 0 6 2 8 .6 0 0 0

m i l 5 2 .5 0 0 0 3 2 .6 2 5 0 3 8 .4 0 0 0 2 9 .8 1 6 1 7 .4 6 4 8 1 8 .9 4 7 4 4 5 .3 3 3 3 ■ 64.3697 2 9 .7 0 0 0 3 4 .2 8 5 7
m 1 2 5 4 .0 0 0 0 3 3 .7 5 0 0 3 9 .6 0 0 0 3 5 .4 2 8 6 2 6 .9 2 3 1 2 0 .0 0 0 0 4 6 6 6 6 7 6 6 .1 4 9 8 3 0 .8 0 0 0 3 5 .4 2 8 6 6 9 .6 6 6 7

m 1 3 5 8 .5 0 0 0 3 7 .1 2 5 0 4 3 .2 0 0 0 3 8 .8 5 7 1 3 0 .1 5 3 8 2 3 .1 5 7 9 5 0 .6 6 6 7 -34 .6 1 0 1 3 4 .1 0 0 0 3 8 .8 5 7 1 5 8 .2 8 1 9 4 8 .3 9 4 6
m 1 4 5 5 .5 0 0 0 2 8 .6 2 4 7 5 9 .7 2 3 2 3 6 .5 7 1 4 2 8 .0 0 0 0 4 6 3 .5 9 6 6 4 8 0 0 0 0 -1 3 .1 0 6 8 2 0 .7 1 6 6 3 6 .5 7 1 4 3 8 .5 0 0 0 4 0 8 0 0 0
m 1 9 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0 7 6 .5 8 0 9 8 9 8 0 0 9 6 8 .3 2 3 1 4 4 0 0 0 0 6 7 .7 2 4 2 2 8 .6 0 0 0 3 3 .1 4 2 9 3 5 .0 0 0 0 3 7 .2 0 0 0
m 1 0 5 6 .6 7 2 4 1 4 9 .8 6 6 7 3 6 .3 1 7 3 3 2 .0 0 0 0 2 3 .6 9 2 3 6 4 .6 5 4 4 4 2 .6 6 6 7 6 9 .8 1 5 6 1 5 9 2 0 7 0 3 2 .0 0 0 0 3 3 .8 3 3 3 3 6 .0 0 0 0

m13 m14 m is

5 5 .5 0 0 0

5 1 .0 0 0 0 4 0 .0 0 0 0

4 9 .5 0 0 0 4 2 .5 3 2 8 3 2 .0 0 0

Figure 5.15: Similarity coefficient matrix

m l m 2 m 3 m 4 m S m 6 m 7 m l m 0 m 1 0 m i l M 2 i» 1 3 m 1 4
m 2 0 .2 3 0 7

m 3 0 .2 2 5 9 0 .1 8 9 4

m 4 0 .2 2 0 5 0 .1 6 5 4 0 .1 9 5 6

m S 0 .2 0 4 3 0 .1 7 3 2 0 .1 8 2 7 0 .4 3 4 4

m 6 0 .1 9 5 0 0 .2 3 3 0 0 .2 0 8 2 0 .1 7 2 3 0 .1 4 8 7

m 7 0 .2 3 1 3 0 .1 9 3 5 0 .2 0 4 3 0 ,1 9 6 6 0 .1 8 1 0 0 .0 7 1 8

m 3 0 .2 0 9 9 0 .1 8 3 6 0 .1 6 7 5 0 .2 0 3 5 0 .2804 0 .0 8 0 4 0 .1 8 4 5

m 9 0 2 2 1 0 0 .8 7 0 5 0 .1 8 9 1 0 .1821 0 .1 6 7 4 0 .0 1 8 3 0 .2 0 0 7 0 .0 0 0 0

m i o 0 .2 2 0 5 0 .1 6 5 4 0 .1 9 5 0 0 .1 8 8 3 0 .1 7 3 2 0 .0 2 3 5 0 .2801 0 .0231 0 .1801

m i l 0 .2 2 3 2 0 .1 8 7 4 0 .1 9 7 8 0 .1 8 2 3 0 .1421 0 .1 6 2 7 0 .2 1 0 3 0 .0 1 2 6 0 .1 8 2 1 0 .1 9 0 4

m 1 2 0 .2 2 5 9 0 .1 8 9 4 0.2000 0 .1 9 2 4 0.1771 0 .1 6 4 8 0 .2 1 2 7 0 .0 2 7 4 0 .1841 0 .1 9 2 4 0 .2541
m 1 3 0 .2 3 4 0 0 .1 9 5 5 0 .2 0 6 4 0 .1 9 8 6 0 .1 8 2 9 0 .1 7 0 3 0 .2 1 9 9 0 .0 6 6 2 0 .1 9 0 0 0 .1 9 8 6 0 .2 3 3 6 0 2 1 5 8
m 1 4 0 .2 2 8 0 0 .1 8 0 2 0 .2 3 6 2 0 .1 9 4 5 0 .1791 1.0000 0 .2151 0 .1 0 5 0 0 .1 6 5 9 0 .1 9 4 5 0 .1 9 8 0 0.2021 0 .2 2 8 6
m 1 S 0 .2 2 0 5 0 .1 8 5 4 0 .1 9 5 6 0 .2 5 6 6 0 .2 9 0 4 0 .0 2 3 5 0 .2 0 7 9 0 .0 0 6 6 0.1001 0 .1 8 8 3 0 .1 9 1 7 0 .1 9 5 6 0 .2 2 0 5 0 .2 0 0 7
m i l 0 .2 3 0 7 0 .3 9 8 6 0 .1 9 4 0 0 .1 8 6 3 0 .1 7 1 3 0 .0301 0 .2 0 5 5 0 .0 2 0 8 0 .4 1 5 5 0 .1 8 6 3 0 .1 8 9 8 0 .1 9 3 5 0 .2 1 7 8 0 .2 0 5 2

Figure 5.16: Normalised similarity coefficient matrix
Either o f these matrices can be used as input to the SLCA algorithm, since they
produce the same dendrogram o f potential solutions. Figure 5.17 illustrates the
resulting dendrogram, which has been cut at the similarity level o f 0.2340. The cell
configuration for this instance o f the dendrogram (after the allocation o f parts to
families through the procedure described in 5.4.2.2.), corresponds to the diagonalised
matrix o f figure 5.18, which has a grouping efficacy value o f 0.5679.

126

Chapter 5: The cell-formation problem

Figure 5.17: Dendrogram cut at the similarity level 0.2340

3 2 4 10 18 28 32 37 38 40 42 6 7 17 34 35 36 5 8 9 14 15 16 19 21 23 29 33 41 43 1 12 13 25 26 31 39 11 20 22 24 27 30

Figure 5.18: Diagonalised matrix (grouping efficacy)

C o m p a ra t iv e re su lts p re se n te d in sec tio n 5 .4 .4 in d ica te th a t th is v a lu e o f g ro u p in g
e f f ic a c y is o n e o f th e b e s t th a t h a v e b een re p o rte d in th e lite ra tu re fo r th e p a r tic u la r
p r o b le m c o n s id e re d .

I n th e fo l lo w in g p a ra g ra p h s th e p e rfo rm a n c e o f th e p ro p o se d m e th o d o lo g y is
i l lu s t r a te d o n a c o n s id e ra b le n u m b e r o f te s t p ro b le m s ta k e n fro m th e lite ra tu re .

5 .4 .3 E x p e r im e n t a l b a s is

F in d in g a se t o f su ita b le p ro b le m s fo r th e ev a lu a tio n o f th e p e rfo rm a n c e o f an
o p t im is a t io n m e th o d is a lw ay s a d iff ic u lt ta sk . T h e m a in re q u ire m e n ts th a t a
r e p re s e n ta t iv e se t o f te s t p ro b le m s sh o u ld fu lfil a re th e fo llo w in g :

127

Chapter 5 ; The cell-formation problem

• Different instances of the problem should be included in terms o f size, difficulty
or any other parameter that can be varied

• Results from alternative solution methods should be available, so that meaningful
comparisons can be made.

In the case o f the cell-formation problem, there is no formal definition o f the difficulty
for a particular instance o f the problem. The only attempt to express the difficulty o f
binary cell-formation problems has been made by Chandrasekharan and Rajagopalan
(1989). In their investigation, they employed ZODIAC (Chandrasekharan and
Rajagopalan, 1987) for the solution o f a set o f progressively more difficult test
problems. The value o f grouping efficiency for each o f these problems was recorded
and associated to the parameters o f the matrices. The mean value and the standard
deviation o f the pairwise similarities o f rows and columns as measured by Jaccard’s
similarity coefficient were used as the discriminating characteristics o f the matrices.
The authors concluded that the value o f standard deviation was a good indication o f
the groupability o f the matrix. However, since other discriminating parameters, like
the number o f rows and columns, were not included in the study, it was suggested that
this conclusion should not be regarded as nothing more than an indication o f the
actual relationship between the structure o f the matrix and its groupability.
27 problems were employed for the testing o f the GP-SLCA methodology. AH the
problems were taken from the cellular manufacturing literature and results from
alternative cell-formation methods were available. The size o f the problems ranged
from 10x15 to 40x100. All these problems along with their characteristics and their
corresponding references are described in table 5.3. The number located in the first
column o f the table will be used for the identification o f these problems from this
point onwards. For readers interested in using the same test problems for their own
comparisons, it should be noted that problems 1-8 correspond to problems 1-6, 8, 9 in
the order presented by Boctor (1991), and problems 16-21 correspond to problems 1-
3, 5-7 in the order presented by Chandrasekharan and Rajagopalan (1989).

128

Chapter 5: The cell-formation problem

1 Boctor(1991)
Size

16x30
e

1212 99

16x30 1063 16x30 924 99

16x30 1115 99

16x30 1076 99

16x30 1017 99

16x30 1148 99

16x30 1189 Boe and Cheng (1991) 20x35 15310 Burbidge (1975) 16x43 12611 Carrie (1973) 20x35 13612 Chan and Milner (1982) 10x15 4613 Chandrasekharan and Rajagopalan (1987) 40x100 42014 Chandrasekharan and Rajagopalan (1986) 8x20 91
15 99

8x20 61
16 Chandrasekharan and Rajagopalan (1989) 24x40 13117 99

24x40 13018 99

24x40 13119 99

24x40 13120 99

24x40 131
21 99

24x40 13022 Kumar et al. (1986) 23x20 11323 Kumar and Vannelli (1987) 30x41 12824 Seifoddini (1989) 11x22 7825 Stanfel (1985) 14x24 6126 99

30x50 15427 99

30x50 167
Table 5.3: Test problems used for the evaluation of the GP-SLCA methodology

The GP-SLCA framework was applied to all test problems using each o f them as an
individual fitness case. Two different optimisation objectives were utilised, grouping
efficiency and grouping efficacy. Twenty runs o f GP-SLCA were conducted for each
problem and each individual objective.

Chapter 5: The cell-formation problem

5.4.4 Results
Cumulative results are presented in two parts. First, in table 5.4, detailed results o f the
GP-SLCA procedure are illustrated. Then, in tables 5.5 and 5.6, the best solution
evolved by GP-SLCA is compared with a number o f solutions that have been
produced by alternative cell-formation methodologies for the same test problems.

Pr.
No.

max
, J 7 ___

n CT
(s.dev)

eo ev No. of
cells

max
r

r o
(s.dev)

©0 ev No. of
cells

1 0.917 0.909 0.0051 71 0 10 0.509 0.503 0.0063 40 38 5
2 0.935 0.903 0.0146 56 0 10 0.618 0.618 0 22 30 6
3 0.952 0.949 0.0024 44 0 10 0.7 0.7 0 8 28 4
4 0.926 0.924 0.0007 64 0 10 0.496 0.493 0.0029 31 40 6
5 0.930 0.926 0.0032 52 1 9 0.727 0.727 0 11 25 4
6 0.938 0.933 0.0023 54 0 11 0.782 0.782 0 18 18 5
7 0.930 0.926 0.0020 60 0 10 0.595 0.590 0.0063 23 39 4
8 0.927 0.913 0.0058 54 1 9 0.774 0.774 0 12 19 4
9 0.930 0.915 0.0107 90 0 13 0.568 0.568 0 40 46 5
10 0.940 0.933 0.0033 77 0 13 0.568 0.566 0.0037 34 36 6
11 0.944 0.916 0.0133 62 1 11 0.767 0.766 0.0016 11 27 6
12 0.96 0.96 0 0 4 3 0.92 0.92 0 0 4 3
13 0.964 0.956 0.0029 88 17 13 0.840 0.840 0 36 37 10
14 0.788 0.788 0 51 0 4 0.587 0.587 0 27 18 2
15 0.958 0.958 0 9 0 3 0.852 0.852 0 9 0 3
16 1 1 0 0 0 7 1 1 0 0 0 7
17 0.967 0.964 0.0040 31 3 10 0.851 0.851 0 10 11 7
18 0.953 0.940 0.0067 51 3 12 0.735 0.735 0 20 20 7
19 0.961 0.960 0.0011 70 0 16 0.533 0.531 0.0029 50 21 11
20 0.961 0.957 0.0042 70 0 16 0.479 0.476 0.0020 63 11 13
21 0.930 0.919 0.0045 78 3 18 0.437 0.435 0.0016 61 28 11
22 0.846 0.784 0.0291 66 8 9 0.490 0.453 0.0179 43 30 5
23 0.975 0.968 0.0079 59 0 19 0.607 0.607 0.0011 46 7 16
24 0.917 0.917 0 28 1 6 0.731 0.731 0 10 15 3
25 0.957 0.954 0.0008 26 0 10 0.718 0.718 0.0010 10 10 7
26 0.963 0.960 0.0063 70 2 20 0.594 0.583 0.0063 53 16 14
27 0.966 0.944 0.0205 96 0 22 0.5 0.488 0.0044 75 17 15

Table 5.4: Performance of GP-SLCA on individual test problems
130

Chapter 5: The cell-formation problem

P r.N o . G P -S L C A Z O D IA C
(Chandr. & Raj.,

1987)
G R A F IC S

(Sriniv.A Naren.,
1991)

M S T -G R A F IC S
(Srinivasan et at.,

1994)
M S T

(Ng, 1993)
G A IS P

(Cheng el al.,
1998)

1 0 .917 0 .643 0.772 0.846 - -

2 0 .935 0.795 0.816 0.810 - -

3 0 .952 0.858 0 .869 0.858 - -

4 0 .926 0.586 0 .764 0.730 - -

S 0 .930 0.881 0.901 0.881 - -

6 0 .938 0.896 0.908 0.891 - -

7 0 .9 30 0.636 0.791 0.799 - -

8 0 .927 0 .907 0 .907 0.907 - -

9 0 .930 0.776 “ - 0.796
10 0 .940 0.802 0.794 0.776 * 0.794
11 " 0 .944 0.878 0.878 - 0 .945 0 .878
12 “ " 0.96* 0.96 0.96 - 0.96 0.96
13 0.964* 0.951 0.951 - 0 .974 0.951
14 0.788* 0 .719 0.763 “ - 0 .719
15 0.958* 0.958 0.958 * 0.958 0.958
16 T 1 1 - 1 1
17 0 .967 0.952 0.952 - 0.975 0.952
18 " 0 .953 0.908 0.912 - - 0.908
19 0 .961 0 .773 0.789 0.856 - 0.836
20 0.961 0.724 0.791 0.833 - 0 .853
21 0 .930 0.693 0.791 0.761 - 0.811
22 0 .846 0.670 0.762 0.721 - 0.814
23 0 .975 0.681 0.823 0.865 - 0.824
24 0 .917 0.878 0.878 - - -

25 0 .957 0.839 0 .839 - - 0.841
26 0 .963 0 .754 0 .852 - - 0 .860
27 6 .966 0 .629 0 .856 • 0.822

Table 5.5: Comparison with alternative cell-formation methods (grouping
efficiency) (* indicates that the evolved GP-SLCA solution contained no singleton

clusters)

P r .N o . G P -S L C A Z O D IA C
(Chandr. & Raj.,

1987)
G R A F IC S

(Sriniv.it Naren.,
1991)

M S T -G R A F IC S
(Srinivasan et al.,

1994)
M S T

(Ng, 1993)
G A -IS P

(Cheng et al.,
1998)

1 0 .509 0.349 0.481 0.447 - -
2 0 .618 0 .586 0 .534 0.508 • -
3 0.7* 0.686 0.675 0.644 - -
4 0 .496 0 .267 0.449 0.407 - -
5 0.727* 0.727 0.691 0.727 - -
6 0 .782 0 .764 0.771 0 .760 - -
7 0.595* 0 .320 0.579 0.530 - -
8 0.774* 0.774 0.774 0.774 - -
9 0 .568 0.511 - - - 0.551

10 0.568* 0 .538 0.544 0.471 - 0 .539
11 ” 0 .767 0.751 0.751 “ 0 .767 0 .753
12 “ 0.92* 0.92 0.92 0.92 0 .92
13 0.840* 0 .839 0.839 “ 0.831 0 .840
14 0 .5 87 ’ 0 .583 0.581 - - 0 .583
15 0.852* 0 .852 0.852 0 .852 0 .852
16

.. .-T .~ 1 1 - 1 1
17 0 .8 5 1 ' 0.851 0.851 * 0.851 0.851
18 0.735* 0 .730 0.735 - - 0 .730
19 0 .533 0.204 0 .433 0 .446 - 0 .494
20 6 .479 0 .182 0 .445 0 .439 - 0 .447
21 0 .437 ' ~ 0 .176 0.417 0 .335 - 0 .425
22 6.490* 0 .387 0 .494 0 .436 - 0 .466
23 ------- 0 .607 ' 0 .337 0 .554 0 .559 - 0 .538
2 4 6.731* 0.731 0.731 - - -
25 67718 0.656 0 .656 - - 0 .674
26 0 .594 0.461 0.563 - - 0 .566
27 0 .5 0.211 0.480 “ 0 .459

Table 5.6: Comparison with alternative cell-formation methods (grouping
efficacy) (* indicates that the evolved GP-SLCA solution contained no singletonclusters)

131

Chapter 5: The cell-formation problem

5.4.5 Discussion
Results from tables 5.4, 5.5 and 5.6 indicate that GP-SLCA is an efficient algorithm
for the solution o f binary cell-formation problems. More specifically, for the grouping
efficiency measure GP-SLCA dominated the performance o f ZODIAC, GRAFICS,
MST-GRAFICS and the GA-TSP heuristic. However, while the value o f grouping
efficiency was always higher than 0.9, the resulting diagonalised matrices were not
ideal for the implementation o f a cellular manufacturing system. Figure 5.19
illustrates the diagonalised matrix for problem 9, which had a grouping efficiency
value o f 0.944.

34 10 18 27 31 3 29 2 12 13 24 23 28 22 1 5 15 17 20 25 8 14 19 18 35 33 4 9 11 21 28 30 6 32 7

Figure 5.19: Diagonalised matrix for test problem 9 (Boe and Cheng, 1991)

The proposed grouping o f machines and parts illustrated in figure 5.19 is not a
practical cell-formation solution since its implementation would rather disrupt the
manufacturing process. However, this is not due to the inefficiency o f GP-SLCA,
since the aim o f the algorithm was to maximise the desired objective. It is the
maximisation o f grouping efficiency that does not necessarily correspond to suitable
solutions for the implementation o f a cellular manufacturing system.
The deficiencies o f the grouping efficiency measure have been discussed in detail in
section 4.2.5.2. Figure 5.19 illustrates the result o f assigning excessive importance to
the minimisation o f voids in comparison to the minimisation o f exceptional elements.

132

Chapter 5: The cell-formation problem

It is obvious that the algorithm attempted to minimise the number o f voids by creating
small compact matrices o f positive elements along the main diagonal o f the m/c
matrix. Table 5.4 provides numerical evidence that all evolved solutions focused
mainly on the elimination o f voids from the diagonalised matrix. The GP-SLCA
solutions that did not include singleton clusters for both the grouping efficiency and
efficacy measures are illustrated in tables 5.5 and 5.6.
The unusual configuration o f the diagonalised matrices could be the reason for the
slightly worse performance o f GP-SLCA over the MST algorithm in some test
problems. When a large number o f small-sized cells is foiroed, the optimal
assignment o f parts to machines becomes almost a random search procedure since
there are many candidate cells that satisfy both allocation criteria. As it was discussed
in section 5.4.2.2, double ties in the part-assignment algorithm o f GP-SLCA are
broken randomly. In contrast, MST uses a special procedure for maximising the
grouping measure by reassigning parts and machines after the initial machine cell -
part family configuration has been created (section 5.3.5). This procedure is
particularly useful in this situation where the assignment o f parts to cells is not a
straightforward task. However, partitions resulting from the MST algorithm are even
more impractical than the ones already described. N g (1993) reports a final solution
containing 15 cells in a 20-machine problem (problem 9). An increase in the
population size o f GP-SLCA could result in similar solutions, simply because more
random assignments o f parts to machines would be generated. In any case, it is
obvious that the grouping efficiency measure is inadequate for judging the quality o f
cell-formation solutions.

The inefficiency o f the grouping efficiency measure should also be blamed for the
poor performance o f all non-hierarchical clustering methods in comparison to the
evolutionary algorithms and the MST algorithm. The former methods do not allow the
formation o f singleton clusters (cells containing only one machine) in the potential
cell configuration. However, as the previous results indicate, an optimal cell
configuration in terms o f the grouping efficiency measure will almost certainly
involve singleton cells, thus the solutions o f these algorithms are mostly sub-optimal.
The performance o f the GP-SLCA procedure was even better when the maximisation

o f grouping efficacy measure was used as the objective o f optimisation. Evolved

133

Chapter 5: The cell-formation problem

solutions were always equal or better than those reported for all the comparing cell-
formation methodologies (with the exception o f problem 22, where GRAFICS
produced a marginally better result). In addition, a considerable number o f the
evolved solutions did not include singleton clusters, so in these cases the algorithm
exhibited a genuinely equal or better performance than the non-hierarchical clustering
algorithms (ZODIAC, GRAFICS and the Assignment Algorithm).
Tables 5.5 and 5.6 indicate that GP-SLCA and MST produced the best overall
performance for the specific grouping objectives used in the experimentation. The
algorithms were further compared using the maximisation o f the weighted grouping
efficacy as the optimisation objective. As suggested by Ng (1993), the weight value o f
0.2 was used for the calculation o f the objective function. Cumulative results are
presented in table 5.8. The weighted grouping efficiency value reported for GP-
SLCA, was the best value found in twenty runs o f the algorithm.

Problem
number

GP-SLCA M ST

11 0.732 0.732
12 0.92 0.92
13 0.680 0.680
15 0.591 0.591
16 1 1
17 0.702 0.702

Table 5.8: Comparison of GP-SLCA for the MST method (weighted groupingefficacy, ̂ =0.2)
As can be seen, both algorithms produced identical results. However, a more thorough
investigation on the relative performance o f the algorithms is required, since only a
limited number o f published results were available for comparison. Irrespective o f the
above results, it can be argued that an increase in the population size and the number
o f generations per run could further enhance the performance o f GP-SLCA. Fine-
tuning o f the parameters could also result in better solutions. MST cannot be further
improved in that way since there are no variable parameters that could determine the
outcome o f the run.

134

Chapter 5: The cell-formation problem

5.5 Advanced formulations of the cell-formation problem
5.5.1 Introduction
In the previous section the application o f genetic programming for the solution o f
simple binary cell-formation problems was described. This formulation o f the
problem is considered to be insufficient, since only a limited amount o f production-
related information can be included in a binary machine-component matrix (see
section 5.2.2). Information such as operation sequences o f parts, processing times,
machine capacities and opportunity costs is essential for the practical implementation
o f a cellular manufacturing system. The designer o f the system might also impose
constraints on the size o f the machine cells and part families formed by the algorithm.
Ideally, a solution methodology should be able to simultaneously consider all these
factors and produce an optimal configuration according to the desired settings.
However, while a number o f detailed models o f cellular manufacturing systems have
been developed, these are usually computationally intractable (see for example Selim
et al. (1998)). In most cases cell-formation methodologies focus on the optimisation
o f models that are balanced between an accurate description o f a manufacturing
system and computational efficiency.
While the majority o f binary cell-formation methods are either incapable o f solving
advanced formulations o f the problem, or exhibit poor perfomrance on them, the
genetic programming methodology introduced in the previous section is capable o f
considering a variety o f additional production-based information. GP-SLCA employs
the following methods (individually or combined) for dealing with advanced
formulations o f the cell-formation problem:

• Modification o f the terminal set

• Use o f penalty function for solutions that violate designer’s constraints
• Modification o f the objective function

In the following paragraphs it will be shown how GP-SLCA can be modified to
explicitly consider realistic formulations o f the cell-formation problem. Three

135

Chapter 5: The cell-formation problem

example problems taken from the literature will be used for the illustration o f the
proposed methodology. Note that results presented in the following paragraphs are
only indicative o f the performance o f the algorithm in comparison with alternative
solution methodologies that have been proposed for the same version o f the problem.
A comparative analysis requires performance results o f the competing methodologies
on a large number o f test problems. However, unlike the case o f the binary cell-
formation problem described in the previous section, there are only a limited number
o f test problems and published results for each o f the advanced formulations o f the
problem. Thus, the main aim o f this section is to illustrate the application o f GP-
SLCA on advanced cell-formation problems and at the same time give an
approximate indication o f its performance in comparison with other solution
methodologies for the version o f the problem considered.

5.5.2 Operation sequences
The simple binary formulation o f the cell-formation problem does not contain any
information about the operation sequences o f parts. However, this information is
essential for the determination o f the real cost o f a cellular manufacturing
configuration. Figure 5.20 illustrates the machine cells and part families produced by
a potential solution algorithm.

p2 P i p5 p4 p3
m3 1 1 0 0 1
m l 0 0 1 1 1
m2 0 0 1 1 1

Figure 5.20: Potential cell-formation solution

Part 3 in this configuration is identified as the exceptional part, and machine 3 as the
bottleneck machine. This simple interpretation o f the proposed solution can be
enhanced by replacing the positive entries in the m/c matrix with integer values
indicating the operation sequence o f a part on a particular machine, as shown in figure
5.21.

136

Chapter 5: The cell-formation problem

p2 Pi p5 p4 p3
m3 1 1 0 0 2
ml 0 0 2 1 3
m2 0 0 1 2 1

Figure 5.21: m/c matrix indicating operation sequences

From this figure it can be deduced that the proposed configuration results in 2
intercell moves, since the operation required outside the block diagonals is neither the
first nor the last o f the processing sequence. This configuration leads to increased
material handling costs and more complicated flow o f parts within the system.
The consideration o f the operation sequences o f parts is therefore essential for the
realistic evaluation o f a cell-formation configuration. The simple GP-SLCA algorithm
can be modified to explicitly consider the sequencing o f parts during the evaluation
phase o f the algorithm.
The original GP-SLCA can be used unchanged for the solution o f the advanced
version o f the problem, as it will be illustrated later in this section. However, it is clear
that the similarity information fed to the algorithm through terminal o is mrisy, since
no distinction can be made between consecutive and non-consecutive operations o f
parts on pairs o f machines. Thus, this terminal has to be modified accordingly, i„
order to explicitly consider the additional sequencing information. The value o f the
new terminal, as, is calculated as follows:

asÿ ~ 1 i f part has non-consecutive operations on machines i and j
= 2 i f part has consecutive operations on machines i and j

In this way, the similarity value o f machines that processed parts in sequence is
increased.
The objective o f the optimisation algorithm should also be modified to reflect the
quality o f the optimisation in relation to the additional information that is now
available. Nair and Narendran (1998) proposed bond efficiency, p , as a quality
measure for the evaluation o f cell-formation methodologies. Bond efficiency is able to
consider both the compactness and the number o f intercell moves produced by the

137

Chapter 5: The cell-formation problem

proposed cell configuration. Equation (5.7) is used for the calculation o f the bond
efficiency o f a diagonalised matrix.

P (I - U) + (i - q) -
Y jO T O P k
k-1_____________

Ÿ ftv ro P i+ N O P Ù*-1
(5.7)

where:

/ = S (o - i)j -i
n (o-1)

u = 2
7 -1 * - l

: Group technology efficiency (Harhalakis et al., 1990)

(5.8)

(5.9)

Y jO T O P k
—— —-------------------: Compactness measure
ff iO T O P , +NOP„)

1
I : Possible number o f intercell moves in the system
U : Number o f intercell moves generated by the potential solution
r j : Number o f operations on part j
xlJk = 0 if operations k, £+1 are performed in the same cell
xlJk = 1 i f operations k, k+ 1 are not performed in the same cell
TOTOPk : Number o f operations within cell k
NOPk : Number o f non-operations within cell k
TOTOPk + NOPk : Possible number o f operations within cell k
n : Total number o f parts in the system
c : Total number o f cells in the system
q : Weighting factor (0 < g < 1)

There are no other changes in the operation o f the GP-SLCA algorithm. A summary
o f the proposed implementation is presented in the Koza tableau o f figure 5.22:

138

Chapter 5: The cell-formation problem

Parameters Values
O b jec tiv e : maximisation of the bond efficiency of the cell

configuration
T erm in a l se t: a s, b, c, d (defined earlier)
F u n ction se t: +, x, %
P o p u la tio n size : 500
S u b tree c ro s so v e r p ro b a b ility : .9
S u b tree m u ta tio n p ro b a b ility : .1
S e lec tio n : Tournament selection, size 7
N u m b er o f g en era tio n s: 50
M axim u m d ep th f o r c ro sso ver: 17
In itia lisa tio n m eth od: Ramped half and half

Figure 5.22: Koza tableau for the GP-SLCA methodology that explicitly
considers operation sequences

The proposed GP-SLCA algorithm was tested on the example problem introduced by
Nair and Narendran (1998) and illustrated in figure 5.23. Initially, 20 runs of the
original GP-SLCA algorithm were conducted and the results are summarised in table
5.9. The value of the maximum bond efficiency produced was lower than the one
reported by Nair and Narendran (/? = 0.7163).

1 2 3 4
1 2
2 3
3 2
4 5
5
6
7 3
8

10 1
11
12
13
14
15
18 4
17
18 2
19
20
21
22 6
23
24
25

5 6 7 8 9 1 0 11 12 1 3 1 4 1 5 18 1 7 1 8 1 9 2 0 21 22 23 24 2 5 28 27 28 2 9 30 31 32 33 34 3 5 36 37 38 39 40

2 2
1

1 1 4
3 3 2

5 3 2 2

2 4 3

1 1

1 2
4 2

2 2
1 1 3

1

3 2
2

2
2 2

3
2
3

1 4
2 2 1

2 3 1
2

1 4 3 11 1
3

2

Figure 5.23: Nair and Narendran’s (25x40) test problem

B e s t v a lu e o f b o n d e f f ic ie n c y r e c o r d e d 0.701984
N u m b e r o f t im e s th is v a lu e w a s f o u n d 3

M e a n b e s t v a lu e o f b o n d e f f ic ie n c y p e r ru n 0.690819
S ta n d a r d d e v ia t io n 0.006823

Table 5.9: Bond efficiency results for the original GP-SLCA algorithm

139

Chapter 5: The cell-formation problem

In contrast, the modified GP-SLCA algorithm that explicitly considered the operation
sequences of parts was able to find the best reported value of bond efficiency in 7 out
of the 20 runs (table 5.10).

B e s t v a lu e o f b o n d e f f ic ie n c y r e c o r d e d 0.71633
N u m b e r o f t im e s th is v a lu e w a s f o u n d 7

M e a n b e s t v a lu e o f b o n d e f f ic ie n c y p e r ru n 0.708852
S ta n d a r d d e v ia t io n 0.007145

T a b le 5 .1 0 : B o n d e ffic ien cy resu lts fo r th e m o d ified G P -S L C A a lg o r ith m

The cell configuration that corresponds to this particular value of bond efficiency is
illustrated in figure 5.24.

2 12 36 1 5 7 16 17 30 8 15 23 24 31 11 25 27 29 35 40 10 19 21 22 28 38 3 g 13 14 33 4 g 20 26 34 37 39 18 32

F ig u r e 5 .2 4 : B e s t so lu tio n fo u n d b y th e m o d ified G P -S L C A a lg o r ith m
(£ = 0 .7 1 6 3 3)

The previous example demonstrates the ability of GP-SLCA to consider cell-
formation problems where information about the operation sequences of parts is
included in the formulation of the problem.

5.5.3 Minimisation of opportunity costs under design
constraints

Any part not totally processed within its corresponding cell Is identified as an
exceptional part. Generally speaking, there are two alternative ways of dealing with
the presence of exceptional parts within a cellular manufacturing system:

140

Chapter 5: The celt-formation problem

• Exceptional parts are subcontracted to a third party

• Bottleneck machines associated with exceptional parts are duplicated

It is obvious that there are specific costs associated with each o f these decisions. The
minimisation o f opportunity costs o f exceptional parts is the objective in a number o f
cell-formation solution methodologies (Kumar and Vanelli, 1987), (Wei and Gaither
1990), (Zhu et al., 1995). The problem becomes more complex in the case o f imposed
constraints by the designer o f the system on the total number o f cells allowed in the
plant and the maximum number o f machines allowed within a cell. These constraints
might be introduced due to practical considerations about the size o f the plant and the
existing layout o f machines.

The original GP-SLCA methodology is able to consider the objective o f the
minimisation o f opportunity costs for the exceptional parts, without any modification
o f the terminal set o f the system. However, special care should be taken for the
satisfaction o f the constraints imposed by the designer o f the system. A penalty
function is introduced, which assigns zero fitness value to any solution o f the GP-
SLCA algorithm that violates the constraints. Note that since there is a dendrogram o f
potential solutions corresponding to each similarity coefficient evolved by the GP
evolutionary procedure, a considerable number o f feasible solutions will be produced
in every generation o f the algorithm. However, the search power o f the algorithm is
certainly degraded by the fact that there is a substantial amount o f genetic material
that is ignored by the evolutionary procedure because it produces infeasible solutions.
The GP methodology employed for the solution o f cell-formation problems with
associated opportunity costs for the exceptional parts and/or design constraints is
presented in the Koza tableau o f figure 5.25.

141

Chapter 5: The cell-formation problem

Parameters Values
O b jec tiv e : minimisation of the opportunity costs of the

exceptional parts in the system under specific
constraints

T erm in a l se t: a, b, c, d (defined earlier)
F u n ction se t: +, x, %
P o p u la tio n s ize : 500
S u b tree c ro s so v e r p ro b a b ility : .9
S u b tree m u ta tio n p ro b a b ility : .1
S e lec tio n : Tournament selection, size 7
N u m b er o f g en era tio n s: 50
M axim u m d e p th f o r c ro sso ver: 17
In itia lisa tio n m eth od: Ramped half and half

Figure 5.25: Koza tableau for the GP-SLCA methodology which explicitly
considers opportunity costs of exceptional parts and design constraints

Kumar and Vanelli’s (30x41) test problem (figure 5.26) was employed for the testing
of the proposed methodology. The total number of cells in the proposed configuration
was equal to 2, with no more than 20 machines allowed within each cell. Note that the
last row in figure 5.26 denotes the opportunity cost associated with the part of the
corresponding column. The cumulative results of the 20 runs of the algorithm
conducted on the example problem are presented in table 5.11.

1
2

3
45 0
7
8 0 10
11
12
13

14

15

18

17

18

19

20

21
22
23

24

25 20
27

28

29

30

10 11
1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

47 MO 2« 165 232 22« 22 33 121 132 34 30 40 164 21 24 44 114 44 42

Figure 5.26: Kumar and Vanelli’s (30x41) test problem

142

Chapter 5: The celt-formation problem

B e s t v a lu e o f c o s t r e c o r d e d $210
N u m b e r o f t im e s th is v a lu e w a s fo u n d 19

M e a n b e s t v a lu e o f c o s t p e r ru n $210.9
S ta n d a r d d e v ia t io n $4.024922

Tabic 5.11: Opportunity cost results for the GP-SLCA algorithm

The best solution found by the GP-SLCA procedure corresponds to a total cost of
$210, and is illustrated in figure 5.27. While the evolved solution was better than the
one reported by Kumar and Vanelli ($217), Wei and Gaither’s analytical
mathematical programming approach was able to produce a cell configuration where
the opportunity cost associated with the exceptional parts was equal to $146.

1 3 7 8 9 13 14 15 16 21 2 2 26 2 7 2 9 30 3 4 35 36
— r \

1

\
1 1 1

1

1

1

1 1

1

1

1

1

1

1

1 1

1 1 1 1

1 1 1 1 1

1 1

1 1

1

1

1

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1

2 4 5 6 10 11 12 17 18 19 2 0 2 3 2 4 2 5 2 8 31 32 3 3 37 3 8 3 9 4 0 41
1

310 26 22 33 121 132 21 28 45 6» 47 42 44 60 41 50 71 61 41 166 232 22# 34 3# 41

Figure 5.27: Best solution found by the GP-SLCA algorithm (cost=$210)

The cell-formation problem examined in this section illustrates the ability 0f the
simple GP-SLCA methodology to deal with constraints imposed by the designer of
the system. While penalising infeasible solutions clearly degrades the performance of
the system, GP-SLCA is still able to produce high-quality cell configurations that
meet the specifications of the designer.

143

Chapter 5: The cell-formation problem

5.5.4 Balancing the workload within the cells
The binary cell-formation formulation does not take into account the balancing o f
workload within the designed cells. This is because the calculation o f workload
requires information about the processing times and demand rates o f parts in
particular machines. This type o f information is not available through the binary m/c
matrix representation o f the problem.
Balancing the workload within machine cells results in significant benefits both from
the production and the operator’s point o f view. It means that the flow o f parts within
the cells is smooth and the work-in-progress inventory (WIP) is reduced. It also
means that the operators will work at a steadier pace, a condition that, generally
speaking, increases job satisfaction.
GP-SLCA is capable o f solving cell-formation problems where the balancing o f
workload is explicitly considered, without any alteration on the basic structure o f the
algorithm. However, the optimisation objective should be suitably modified to
incorporate additional information that is available. In the example problem presented
in this section (which was adopted from Lin et a l (1996)), the fitness measure takes a
multiobjective form, aiming to simultaneously minimise intercell and intracell
processing costs, as well as costs associated with unbalanced workload within the
cells. The information needed for the calculation o f the objective is taken from a
modified version o f the binary m/c matrix, where positive binary values are replaced
by integer weights. These weights represent the workload induced by parts on
particular machines as calculated by the product o f the demand rate o f a part by its
processing time on the respective machine. Formally, the problem can be described
with the following non-linear integer programming formulation (Lin et al., 1996):

Min Z = aWa + eWe + dWd (5.10)

K m n

(5.11)
A =1 i = 1 7 = 1

1II

fcT (5.12)
K tti n

A=1 i = l 7=1 ' (5.13)

144

Chapter 5: The cell-formation problem

____ K m

* o = z > * 2 ;
h = \ /=1 / ¿-1

» j = 1, • . . ,n (5.14)

II * = 1 , . . . ,m (5.15)

CII•*»»II£ (5.16)
K f

(5.17)

K < K J (5.18)

o o »■i «N
, II . . . ,m, h = 1................. £

y Jh= 0 or 1, y = 1 , . . . ,n, h = l , . . . , K

Wa >: 0 , We > 0, Wd Z 0 , K Z 0

where:
a : unit time intracell processing cost
e : unit time intercell processing cost
d : unit time balance delay cost
W : sum o f weights in matrix

: maximum number o f cells specified by the designer

w,y : workload (demand rate x standard processing time) o f part y o n
machine i

K : total number o f machine cells

Wa : sum o f intracell weights

We : sum o f intercell weights

Wd •’ sum o f balance delay weights

Wj ¡average intracell workload for party

xih= 1 if machiney is assigned to cell h, 0 otherwise

yjh= 1 if party is assigned to family h, 0 otherwise
145

Lin et al. (1996) applied their minimum spanning tree solution methodology (section
5.3.5) on a number of binary test problems taken from the literature, with part weights
generated randomly from a uniform distribution. Since these data were not published
in detail, comparison with the GP-SLCA procedure was not possible. However, the
authors also presented an application of their methodology on a case study of a
company that manufactured irrigation products. The company decided to transform
their functional layout into a cellular manufacturing layout. After the collection of the
necessary data, the resulted cell-formation problem was summarised with the help of a
(22x62) machine/component matrix (figure 5.28). The heuristic procedure of Lin e t
al. was applied on this cell-formation problem, and resulted in an overall cost of 617
units (note that the multiobjective function was calculated with the cost weights set at
the following values: a - 1, e=3, d = 0.5).

Chapter 5: The cell-formation problem

1 2 3 4 5

1 3 3 3 2 2

2 3 3 3 2 2

10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 75 28 27 28 29 30 31 32 M 34 55 38 37 38 S9 40 41 43 43 44 45
48 47 45 48 50 61 52 53 54 55 58 5 7 68 59 80 81 82

4 4 4 4 2 2

4 4

4 4 4 4 2 2

3 3 3 3
5 5

3 3 3 3 3 3 2 2

• B fl 5 6 9 B
» 8 5 5 6 9 9

3 3 3 3 3 3 3 3 3 3

4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3]

10 3 3 3 2 2 3 3 2 2 2 3 3
10 2 2 2 1 1 3 2 1112 2
21 2 2 2 1

Figure 5.28: (22x62) test problem (Lin ct al., 1996)

The GP-SLCA methodology was applied to the same problem without any
modification on the basic structure of the algorithm. The optimisation objective used
was the minimisation of the sum of material handling costs and balanced delay costs,
as calculated by equation (5.10). The same set of weights was employed for the
scaling of each cost factor (a = 1, e= 3 , d = 0.5).
A summary of the proposed methodology is presented in the Koza tableau of figure

5.29.

146

Chapter 5: The cell-formation problem

Parameters Values
O b jec tiv e : minimisation of the sum of intercell, intracell,

and balance delay costs
T erm in a l se t: a, b, c, d (defined earlier)
F u n ction se t: +, x, %
P o p u la tio n size : 500
S u b tree c ro sso v e r p ro b a b ility : .9
S u b tree m u ta tion p ro b a b ility : .1
S elec tio n : Tournament selection, size 7
N u m b er o f g en era tio n s: 50
M axim um d ep th f o r c ro sso ver: 17
In itia lisa tio n m eth od: Ramped half and half

Figure 5.29: Koza tableau for the GP-SLCA methodology that explicitly
considers balance delay costs

The cumulative results of 20 runs of the algorithm are presented in table 5.12.
B e s t v a lu e o f c o s t r e c o r d e d 606.601

N u m b e r o j t im e s th is v a lu e w a s f o u n d 20
M e a n b e s t v a lu e o f c o s t p e r ru n 606.601

S ta n d a r d d e v ia t io n 0

Table 5.12: Total cost results for the GP-SLCA algorithm

G P -S L C A w a s a b le to fin d a so lu tio n th a t h ad a lo w e r c o s t v a lu e th an th e o n e re p o rte d
b y L in e t al. (6 1 7) in a ll ex p e rim en ta l runs. T h is so lu tio n is il lu s tra te d in f ig u re 5 .30 .

B 8 10 11 12 13 59 60 61 62 33 36 35 45 <6 47 48 49 50 51 24 25 26 27 28 29 30 31 32 36 37 38 39 40 41 42 43 44 52 53 54 55 56 67 68 14 15 18 17 18 16 20 21 22 23

Figure 5.30: Best solution found by the GP-SLCA algorithm (cost=606.6 units)

The previous example illustrates the ability of the GP-SLCA algorithm to consider
c e l l -formation problems where the balancing of workload is explicitly defined in the
formulation of the problem.

147

Chapter 5: The cell-formation problem

5.5.5 Discussion
Results presented in sections 5.5.2, 5.5.3 and 5.5.4, suggest that GP-SLCA has the
ability to consider advanced formulations o f the cell-formation problem with only a
limited number o f modifications in the basic structure o f the algorithm.
These results are only indicative o f the performance o f the GP-SLCA on advanced
formulations o f the cell-formation problem. While GP-SLCA produced competitive
results to alternative solution techniques on the problems considered, a larger
experimental basis is needed in order to establish a statistical performance measure o f
the efficiency o f the algorithm. However, this experimental basis only exists for
binary cell-formation problems, since published results for advanced formulations o f
the problem are usually restricted to a single illustrative example for each proposed
methodology.

5.6 Evolution of similarity coefficients for the solution
binary cell-formation problems

5.6.1 Introduction
A variety o f similarity coefficients have been used in clustering algorithms for the
solution o f cell-formation problems (Sarker, 1996). In this section genetic
programming is used in combination with the SLCA algorithm for the evolution o f
new similarity coefficients for the solution o f cell-formation problems. Instead o f
having a predefined coefficient (like Jaccard’s similarity coefficient) providing
information to the SLCA procedure, a genetic programming evolutionary machine
proposes a variety o f similarity information through a population o f potential
coefficients, in the same way that was described in sections 5.4 and 5.5. However, in
this case, the performance o f evolved coefficients is not evaluated only on a specific
instance o f the problem, but on a set o f test cases instead. The end product o f this
procedure is hoped to be a similarity coefficient that is at least as good as man-made
coefficients in the solution o f simple cell-formation problems, when used in
combination with a hierarchical clustering procedure like SLCA
In genetic programming terms, the problem is stated as follows: “Find a program that
takes as input similarity information between machines and produces as output a

148

Chapter 5: The cell-formation problem

similarity coefficient that maximises a pre-specified grouping measure o f any binary
cell-formation problem, when used in combination with a hierarchical clustering
procedure” (figure 5.31).

S IM IL A R IT Y O F
P R O C E S S IN G —
O P E R A T IO N S

SIMILARITY
COEFFICIENT
THAT
MAXIMISES
OBJECTIVE

Figure 5.31: Genetic programming approach to the evolution of similarity
coefficients for the solution of binary cell-formation problems

5.6.2 Design of the algorithm
In the previous sections GP-SLCA was employed for the evolution o f similarity
coefficients that were specific to the problem considered, i.e. the test problem was
used as the only fitness case o f the evolutionary procedure. The method was not
focused in the evolution o f similarity coefficients as such, but rather exploited this
procedure for the diagonalisation o f binary m/c matrices.
In this section the possibility o f evolving a similarity coefficient that can be used for
the solution o f any binary cell-formation problem, in a similar way to Jaccard’s
similarity coefficient, is examined. Evolved coefficients are evaluated through the
SLCA algorithm on a pre-specified number o f test problems that are used as fitness
cases. The fitness o f a solution is calculated by adding the value o f the objective
function from each individual test problem. In that way similarity coefficients that
produce good overall performance will prevail during the evolutionary procedure. The
proposed methodology is illustrated in figure 5.32.

similarity inputs

sum of best solutions
found assigned as
fitness of the
coefficient

Figure 5.32: Illustration of the GP-SLCA procedure for the evolution of
similarity coefficients

The basic operation o f the GP-SLCA algorithm in terma o f the function and terminal
sets employed remains the same. The maximisation o f grouping efficacy was used as
the objective o f the evolutionary procedure.

149

Chapter 5: The cell-formation problem

Selecting the test problems for the construction o f the set o f fitness cases was not a
straightforward procedure. A representative set o f fitness cases should include
different instances o f the problem in terms o f size, difficulty or any other parameter
that can be varied. In this way the outcome o f the evolutionaiy procedure would be
more likely to generalise to previously unseen problems. However, in the case o f cell-
formation problems, grouping difficulty cannot be easily described in terms o f
parameters (see section 5.4.3). At the same time the evaluation function o f the
algorithm is computationally expensive, especially for large-sized problems, thus the
number o f test cases must be kept within certain limits depending on the available
computational power.
In the experimental set-up o f this section, ten different combinations o f test problems
were employed, all taken from the batch o f 27 test problems described in table 5.3.
A ll sets comprised different problems in terms o f their characteristics (size, grouping
difficulty as it has been reported in published results, etc.) in an attempt to fulfil the
requirements described earlier. Table 4A in the Appendix, illustrates the configuration
o f these sets. The additional parameters that were necessaiy for the valid run o f the
genetic programming algorithm and a summary o f the proposed methodology are
presented in the Koza tableau o f figure 5.33.

Parameters Values
Objective: Evolution o f a similarity coefficient that

maximises grouping efficacy in binary cell-
formation problems when SLCA is used as the
clustering procedure

Terminal set: a, b, c, d (defined earlier)
Function set: +, -, x, %
Population size: 500
Subtree crossover probability: .9
Subtree mutation probability : .1
Selection: Tournament selection, size 7Number o f generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Figure 5.33: Koza tableau of the GP-SLCA methodology for the evolution of new
similarity coefficients for the solution binary cell-formation problems

150

Chapter S: The cell-formation problem

5.6.3 Results
Twenty runs o f the GP-SLCA algorithm were conducted for each experimental set-up,
as the probabilistic nature o f genetic programming requires. The cumulative results o f
the best coefficients evolved for each set-up are presented in table 5.13. The outlined
problems in each column denote the test problems that were used as training (fitness)
cases for the evolution o f the corresponding similarity coefficient. The rest o f the test
problems in each column comprised the validation set for the evolved coefficient.
For comparison reasons, the performance o f eleven different similarity coefficients
(table 5A in Appendix) in combination with the SLCA algorithm was measured on the
same set o f test problems (table 5.14). The list o f coefficients was retrieved from the
review paper o f Sarker (1996).

Pr.
no

.

SE
TI

SE
T2

SE
T3

SE
T4

SE
T5

SE
T6

SE
T7

SE
T8

SE
T9

SE
T1

0

1 0.5 0.471 0.451 0.471 0.5 0.467 0.438 0.438 0.490 0.467
2 0.615 0583 0.586 0.586 0.618 0.571 0.588 0.586 0.611 0.601
3 0.7 0.698 0.698 0.7 0.7 0.7 0.7 0.7 0.7 0.7
4 0.474 0.459 0.240 0.455 0.489 0.470 0.409 0.231 0.467 0.475
5 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727
6 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.742
7 0.579 0.579 0.579 0.579 0.570 0.579 0.579 0.238 0.579 0.568
8 0.773 0.773 0.773 0.773 0.773 0.773 0.748 0.748 0.774 0.774
9 0.568 0.412 0.554 0.568 0.520 0.562 0.568 0.568 0.568 0.568
10 0.544 0.556 0.367 0.568 0.545 0.383 0.543 0.552 0.568 0.545
11 0.760 0.757 0.760 0.760 0.757 0.757 0.760 0.760 0.767 0.75712 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
13 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.84
14 0.569 0.569 0.569 0.587 0.569 0.587 0.587 0.569 0.587 0.587
15 0.852 0.852 0.852 0.852 0.639 0.852 0.852 0.852 0.852 0.852
16 1 1 1 1 1 1 1 1 1 1
17 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.581 0.851 0.851
18 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735
19 0.443 0.532 0.149 0.465 0.503 0.523 0.522 0.136 0.513 0.507
20 0.454 0.472 0.194 0.466 0.458 0.477 0.309 0.136 0.295 0.453
21 0.410 0.429 0.330 0.429 0.41 0.431 0.203 0.41 0.203 0.429
22 0.283 0.246 0.430 0.246 0.246 0.246 0.479 0.246 0.385 0.337
23 0.520 0.525 0.6 0.528 0.558 0.530 0.6 0.543 0.516 0.585
24 0.709 0.677 0.731 0.682 0.682 0.650 0.731 0.731 0.720 0.682
25 0.671 0.7 0.718 0.671 0.699 0.710 0.710 0.706 0.666 0.696
26 0.558 0.570 0.571 0.567 0.558 0.482 0.468 0.573 0.521 0.561
27 0.176 0.298 0.484 0.244 0.161 0.224 0.165 0.479 0.147 0.479

Table 5.13: Cumulative results of evolved coefficients on test problems
151

Chapter S: The cell-formation problem

Pr.no
CO

EF
1

CO
EF

2

CO
EF

3

CO
EF

4

CO
EF

5

CO
EF

6

CO
EF

7

CO
EF

8

CO
EF

9

CO
EF

10

CO
EF

11

1 0.471 0.467 0.471 0.393 0.393 0.393 0.438 0.471 0.393 0.438 0.4712 0.571 0.571 0.571 0.585 0.585 0.585 0.571 0.571 0.585 0.571 0.571
3 0.7 0.7 0.7 0.688 0.688 0.688 0.471 0.7 0.688 0.471 0.74 0.474 0.453 0.474 0.394 0.394 0.394 0.231 0.453 0.394 0.434 0.468
5 0.727 0.727 0.727 0.71 0.71 0.71 0.727 0.727 0.71 0.727 0.7276 0.752 0.752 0.752 0.738 0.738 0.738 0.738 0.752 0.738 0.738 0.752
7 0.579 0.579 0.579 0.568 0.568 0.568 0.47 0.579 0.568 0.579 0.579
8 0.774 0.774 0.744 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774
9 0.568 0.568 0.568 0.519 0.519 0.519 0.24 0.541 0.519 0.556 0.568
10 0.544 0.54 0.544 0.257 0.257 0.257 0.183 0.548 0.257 0.183 0.546
11 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757
12 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
13 0.840 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
14 0.569 0.587 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.587
15 0.852 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.852 0.852
16 1 1 1 1 1 1 1 1 1 1 1
17 0.851 0.851 0.851 0.851 0.851 0.851 0.667 0.851 0.851 0.851 0.851
18 0.735 0.735 0.735 0.735 0.735 0.735 0.585 0.735 0.735 0.735 0.735
19 0.517 0.501 0.517 0.167 0.167 0.167 0.167 0.516 0.167 0.491 0.517
20 0.199 0.392 0.199 0.382 0.382 0.382 0.28 0.461 0.382 0.34 0.199
21 0.232 0.429 0.232 0.208 0.208 0.208 0.242 0.429 0.208 0.203 0.24
22 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.272 0.417
23 0.552 0.587 0.552 0.414 0.414 0.414 0.121 0.556 0.414 0.525 0.533
24 0.682 0.682 0.682 0.682 0.682 0.682 0.667 0.682 0.682 0.667 0.682
25 0.671 0.697 0.671 0.699 0.699 0.699 0.679 0.693 0.699 0.679 0.694
26 0.565 0.509 0.565 0.511 0.511 0.511 0.5 0.509 0.511 0.53 0.565
27 0.389 0.426 0.389 0.119 0.119 0.119 0.111 0.163 0.119 0.42 0.393
Table 5.14: Performance of similarity coefficients produced by human intuition

5.6.4 Discussion
Results front tables 5.13 and 5.14 Indicate that the GP-SLCA framework was able to
evolve coefficients that generalised over the entire set o f problems.

N fO VI VO 00 oH H H H H H H H H
w W W W W W W u u H
CA CA 1/3 (A (A (A (A CA tA id

X

r 0.629 0.629 0.610 0.630 0.621 0.622 0.622 0.584 0.621 0.646

2 fO
tfa

''T
U. u.

VO
U- 2 00

Urn
O s
u *

Q

id w w w u w w u U i u *o O o o o O o O o id id
u U u u u U u U u W

Ü
o
u

r 0.620 0.635 0.619 0.577 0.577 0.577 0.520 0.626 0.577 0.597 0.627
Table 5.15: Mean value of grouping efficacy for evolved and man-made

coefficients
152

Chapter 5: The cell-formation problem

Table 5.15 illustrates that the mean value o f grouping efficacy produced by all
evolved coefficients was similar to the one produced by man-made coefficients.
Coefficients SET4 and SET10 performed particularly well on the entire set o f
problems, producing an increase o f 1% and 2.6% respectively on average grouping
efficacy in comparison to Jaccard’s similarity coefficient (COEFF1). Since the
difference in performance was relatively small, further research was needed in order
to establish i f SET10 could be distinguished from Jaccard’s coefficient. A winner-
takes-all comparison o f their relative performance on the test problems is presented in
table 5.16.

Jaccard’s coefficient
better

Jaccard’s coefficient
worse

Jaccard’s coefficient
equal

SET10 5 10 12
Table 5.16. Jaccard’s coefficient vs. SET10 in terms of non-dominated solutions

It is obvious that there are a large number o f problems where the same level o f
grouping efficacy was achieved by both coefficients, thus we cannot safely reject the
hypothesis that the coefficients are actually the same (null hypothesis). The Analysis
O f Variance (ANOVA) between the two sets o f values confirms this statement (table
5.17).

SUMMARY
Groups Count Sum Average VarianceSET10 27 17.438 0.645852 0.027259JACCARD 27 16.737 0.619889 0.041745

ANOVA
F P-value F crit

0.263753 0.609729 4.026631
Table 5.17: ANOVA for SET10 and Jaccard’s coefficient (a=0.05)

The man-made similarity coefficient that produced the best performance in terms o f
the mean value o f grouping efficiency was Yule’s coefficient (COEFF2), a coefficient
employed in psychological research. The winner-takes-all comparison between
SET10 and Yule’s coefficient produced a significant number o f equal solutions (table

153

Chapter 5: The cell-formation problem
5.18). In addition, the ANOVA test indicated that the
rejected (tables 5.19).

null hypothesis could not be

truies coemcient
better Yule’s coefficient

worse Yule’s coefficient equal
SET10 5 8 14

Table 5.18. Yule’s coefficient vs. SET10 in terms o f non-dominated solutions

SUMMARY
Groups Count Sum Average Variance
YULE 27 17.143 0.634926 0.032474
SET10 27 17.438 0.645852 0.027259

_________ ANOVA_________
F_____ P-value F crit

0.05396 0.817223 4.026631

Table 5.19: ANOVA for SET10 and Yule’s coefficient (a=0.05)

It is interesting to take a closer look at the structure o f the evolved similarity
coefficients. Coefficient SET4 is illustrated in figure 5.34:

<(./«+£+A
— a

\ c

Figure 5.34: Similarity coefficient SET4

Notice that genetic programming evolved structures that did not follow the elegant
form o f Jaccard’s coefficient, but were just as effective in the solution o f the test
problems. From the above fonnula it is clear that the value o f the coefficient is
proportional to the values o f a and d. This is expected since these values are indicative
o f the similarity o f parts processed between a pair of machines.

The structure o f coefficient SET10 is much more complicated than SET4, as figure
5.35 depicts:

154

Chapter 5: The cell-formation problem

4 d + 3 b - b 2 - a b + a d + ' F A C TO R - d - b - (d + b)cb + b c + ab
~ d (a + b)

c - c ' j (a d + d + b }
d + b) \ b 2c 2 - a - b 2)

where F A C T O R -

- a + {be - d b - c d - 2 a + b \ d -w_
f

(2a - 3 b \ a - é)+ ab + d b - d e - a + c + M i f y
a d

a
\ J [U J / H J

Figure 5.35: Similarity coefficient SET10

The size and complexity o f the evolved coefficient makes the task o f explaining its
operation quite difficult. This is not an unusual situation in GP, since the application
o f genetic operators leads to quick growth o f programs up to the pre-specified
maximum depth constraint (the ‘bloat’ effect). However, there is still the issue o f the
transparency o f evolved genetic programs, as was discussed in section 4.4.3. It is
evident that the value o f the coefficient is proportional to the values o f a and d,
however, a number o f control terms are also present which seem to fine tune its value
in particular fitness cases. Note, that there are two terms that according to common
algebra should have been simplified:

c - c
d + b

However, due to the operation o f the protected division function and the postfix order
o f program execution, these expressions will evaluate to ‘1’ if the denominator is
equal to ‘O’, which is not an unlikely case. Thus, they should be considered in this
form during the calculation o f the coefficient value.
The generalisation o f this coefficient was quite good. SET 10 appeared to have
captured information that is relevant to the solution o f the problem. In problems 19-
21 where the m/c matrices have been custom designed to be difficult for grouping,
Jaccard’s coefficient failed to find fit partitions. On the same problems SET 10 created
cell configurations with much higher levels o f grouping efficacy. On problem 27,
where alternative evolved coefficients either produced poor results, or their good
performance was not mirrored in the set o f validation problems, SET 10 produced an
excellent level o f grouping efficacy. While the difference in performance between
SET10 and man-made coefficients could not be mathematically confirmed, results on

155

Chapter 5: The cell-formation problem

specific test problems indicated that SET10 might be able to handle ill-structured
matrices in a more efficient way.
From the above results it can be safely concluded that the GP-SLCA algorithm was
able to evolve similarity coefficients that performed at least as good as the similarity
coefficients that have been devised by human intuition. The advantage o f the
proposed methodology is that while man-made coefficients produce the same
clustering outcome independent o f the clustering objective, the proposed framework
can be used to evolve purpose-based coefficients by simply altering the objective
function, or introducing constraints in the evolutionary procedure.
The main disadvantage o f evolved coefficients is their non-parsimonious structure. A
solution to this problem could be the explicit consideration o f parsimony in the
objective function o f the evolutionary procedure by the penalisation o f long programs,
as it has been suggested in genetic programming literature (Koza, 1992). However,'
this modification would lead to greater computational costs. Another disadvantage o f
the proposed methodology was the use o f the SLCA clustering procedure, which has
been reported to result in suboptimal groupings in comparison to the Average 1 inWo»
Clustering procedure, or the Complete Linkage Clustering procedure (Gupta and
Seifoddini, 1990). The choice o f SLCA was again necessitated by computational
requirements, since it did not require the recalculation o f the similarity matrix for
every similarity level in the dendrogram.

5.7 Conclusions
In this chapter the use o f genetic programming for the solution o f simple and
advanced formulations o f the cell-formation problem was investigated. M cAuley’
Single Linkage Cluster Analysis (SLCA) algorithm was used as basis for the
development o f the proposed methodology. SLCA employs Jaccard’s similarity
coefficient for the creation o f a pictorial representation o f solutions in the form o f a
‘dendrogram’. Choosing a particular similarity level in the dendrogram can create a
variety o f cell configurations.
Genetic programming was utilised in two different ways. First, similarity coefficients
were evolved for the solution o f specific binary cell-formation problems. Coefficients
were fed into an SLCA procedure, which returned the best solution found in the

156

dendrogram o f potential solutions, in relation to the desired objective. The
methodology was tested on a number o f published test problems, performing at least
as good as alternative cell-formation algorithms. In addition, the application o f the
proposed methodology on the solution o f advanced formulations o f the cell-formation
problem was illustrated with the help o f some test problems taken from the literature.
Genetic programming was also employed for the evolution o f new similarity
coefficients that can be used in combination with a hierarchical clustering procedure
for the solution o f binary cell-formation problems. The proposed framework was able
to evolve coefficients that performed at least as good as the coefficients that have
been devised by human intuition, when SLCA is employed as the clustering
procedure.

The proposed GP-SLCA methodology is quite flexible since it can be used with a
variety o f grouping objectives without altering its main operation. On the other hand,
as the size o f the problem increases, the evaluation function becomes computationally
expensive since the value o f the coefficient is calculated for every pair o f machines in
the plant and any potential solution from the constructed dendrogram has to be
evaluated.

The research into the applicability o f genetic programming for the solution o f
manufacturing optimisation problems concludes in the next chapter, with the
consideration o f a problem from the field o f multiobjective manufacturing
optimisation, the multiobjective process planning selection problem.

Chapter 5: The cell-formation problem

157

Chapter 6

MULTIOBJECTIVE MANUFACTURING
OPTIMISATION

6.1 Introduction
In previous chapters single objective formulations o f manufacturing optimisation
problems were addressed. However, manufacturing practice usually involves
decision-making procedures where multiple objectives need to be simultaneously
optimised.
When the objectives considered are conflicting in nature, a single optimal solution
that simultaneously optimises both objectives does not generally exist. However, there
are solutions that perform better than any other solution in the search space for at least
one o f the objectives. This set o f solutions is usually referred to as the Pareto front, or
the set o f non-dominated solutions. A formal declaration o f Pareto optimality will be
presented in the following section. Conventional optimisation methodologies cannot
readily cope with this situation since they are designed to search for a single optimal
solution within the search space. A compromise solution is usually found by
aggregating the conflicting objectives into one optimisation function (see section
5 5.4). Weights are employed for the assignment o f partial importance to individual
objectives.
The fact that evolutionary algorithms evolve a population o f potential solutions makes
them ideal for the case o f multiobjective optimisation, since they are able to search for
all non-dominated solutions in a single optimisation run. In addition, there exist
several multiobjective fitness assignment methodologies that help guide the

Chopter 6: Multiobjective manufacturing optimisation

population towards the area o f the Pareto front, instead o f converging to a single
solution.

In this chapter the application o f genetic programming to a multiobjective
manufacturing optimisation problem is presented. The process planning selection
problem is used for this purpose. While the single objective version o f the problem
can be handled efficiently by flow network optimisation techniques, only evolutionary
algorithms have been able to consider non-trivial multiobjective instances o f the
problem. The proposed methodology employs a number o f alternative multiobjective
evolutionary techniques to facilitate the search for Pareto-optimal solutions.
The rest o f this chapter is organised as follows: In section 6.2 the basic concepts o f
multiobjective optimisation are discussed and a survey o f the main evolutionary
multiobjective techniques is presented. Section 6.3 introduces the multiobjective
process planning selection problem. The genetic programming based methodology for
the generation o f process plans is introduced in section 6.4. The application o f the
proposed methodology in combination with evolutionary multiobjective techniques on
a number o f test problems is illustrated in section 6.5. The conclusions o f this chapter
are discussed in section 6.6

6.2 Evolutionary multiobjective optimisation
6.2.1 Introduction to multiobjective optimisation
A problem where a number o f non-commensurable objectives need to be
simultaneously optimised is defined as a multiobjective optimisation problem.
Formally, a general multiobjective optimisation problem can be described as follows
(Zitler and Thielle, 1999):

min/max ^ = / W = U (4 / 2(4 . . , / nW) (6.1)
subject to: X = (jC,,X2,...,Xn) € X (6.2)

y = (yi>y2.....y „) e r (6.3)
where: x is the decision vector

y is the objective vector

159

amptcr 6: Multiobjective manufacturing optimisation

X is the parameter space
Y is the objective space

The main characteristic of a multiobjective optimisation problem with conflicting
objectives is the non-existence of a single decision vector that simultaneously
optimises all objectives. Instead, there is a set of solutions for which the performance
cannot be further improved in relation to one of the objectives without degrading the
performance in relation to one or more of the remaining objectives. These solutions
constitute the set ol P a re to -o p tim a l solutions, or else the P a re to -fro n t. All
multiobjective solution methodologies seek to find solutions that lie within this set.
Pareto-optimal solutions are also known as n a n -d o m in a ted so lu tio n s since no other
possible solution is better than them in terms of all objectives considered.
Formally, and assuming a maximisation problem for all objectives (without loss of
generality), the concepts of Pareto-dominance and Pareto-optimality can be defined as
follows:
P a re to d o m in a n c e . Given two decision vectors a = (a i t a „ . . . , a)e X and
b = (bt ,b 2,.. .,b n) e X , a dominates b (or a > b) iff:

V i e f { a) > f { b) a 3 je { l ,2 „} f J(a) > f j {b) (6.4)
P a re to o p tim a li ty . A decision vector a = (av a 2.... an) e X is Pareto-optimal if there
is no other decision vector b = (b ,,b2,...,b n) e X such that by a .

8

7

6

5

4

3

2

1
0

0

* Non-dominated solutions « Dominated solutions

*A . D
C

»B .F
.G

* E
Hé

1 2 5 6 7 8
F ig u re 6.1: I llu s tr a tio n o f th e c o n c e p t o f P a r e to o p t im a lity

160

Chapter S: Multiobjective manufacturing optimisation

A B C D E F G H
X I 3 4 4.5 5 5.5 6 7
Y 7 5 6 7 3 5 4 2

Table 6.1: Objective values for the solutions of figure 6.1
These principles are illustrated in figure 6.1. The potential solutions o f a
multiobjective minimisation problem are represented by points A-H that are
illustrated in table 6.1. Solutions A, B, E and H are non-dominated since no other
solution is better than they are, when both objectives are considered. These four
solutions constitute the Pareto-front for this example problem. Conversely, the
remaining solutions (C, D, F, G) are dominated, since there are solutions that perform
better than them in respect to both objectives. The Pareto-front provides the Decision-
Maker (DM) with a wealth o f potential solutions. At the same time it indicates the
relative compromises that can be made with respect to the objectives. However,
finding the actual Pareto-front is not an easy task. Conventional multiobjective'
optimisation methods usually attempt to transform the vector optimisation function
into a scalar function, using aggregating techniques such as objective weighting and
distance functions (Srinivas and Deb, 1994). The aggregation o f the objectives means
that these methods produce a single compromise solution; thus the whole length o f the
Pareto-front is not explored, at least in a single optimisation run. Alternative weight
assignments have to be made in order to focus on different regions o f the front.
Evolutionary computation techniques offer an alternative approach to multiobjective
optimisation based on the foundations laid by Goldberg (1989) in the form o f the
Pareto-ranking approach. In the next section the main evolutionary multiobjective
techniques will be discussed in more detail.

6.3 Evolutionary computation for multiobjective optimisation
6.3.1 Introduction
The ability o f evolutionary algorithms to conduct a search in the solutions’ space from
a population o f points in parallel is particularly useful for the solution o f
multiobjective optimisation problems. Evolutionary computation is perhaps the only

161

Chapter 6: Multiobjective manufacturing optimisation

optimisation procedure that has the natural ability to provide a set o f potential
solutions in a single optimisation run. At the same time, it provides a computationally
feasible approach for the solution o f large instances o f multiobjective optimisation
problems. A number o f significant evolutionary multiobjective techniques that have
been proposed over the years will be reviewed in the following paragraph.

6.3.2 Review of evolutionary multiobjective techniques
Schafer (1985) was the first researcher to propose the use o f evolutionary algorithms
for the solution o f multiobjective optimisation problems. His Vector Evaluated
Genetic Algorithm (VEGA) operated as a normal genetic algorithm. However, in the
selection step o f the algorithm each generation was divided into a number o f parts
equal to the total number o f objectives considered. Each part was then filled with
individuals selected based only on their performance on the respective objective. This
approach was unable to explore the whole length o f the Pamto front since the alternate
selection scheme was promoting solutions that occupied the extreme regions. For that
reason the evolutionary procedure had the tendency to neglect compromise solutions.
The need to include Pareto dominance information in the fitness assignment
procedure was addressed by Goldberg (1989) (pages 197-201) who proposed, without
actually implementing, an efficient scheme for the promotion o f non-dominated
solutions. Goldberg's scheme was based on the assignment o f ranks to individual
solutions according to their dominance level. The procedure started by identifying the
non-dominated solutions o f the entire population and assigning them with rank one.
The search for non-dominated solutions was repeated, however, the solutions that had
already been ranked were not considered in the process. A new set o f non-dominated
solutions was found and assigned with the next rank. The procedure was repeated,
until all solutions in the population had been associated with a rank. Fitness was then
assigned to individuals according to their rank.
Goldberg’s ranking scheme, while unveiling the partial ordering o f the solutions’
space, provided the evolutionary algorithm with the necessary tools to promote non-
dominated solutions without focusing on a specific area o f the Pareto front. However,
as in single-objective multimodal optimisation, genetic drift, the tendency o f thé
evolutionary algorithm to converge to one o f the equally ranked Pareto-optimal

162

Chapter 6: Multiobjective manufacturing optimisation

solutions, still limited the search to a fraction o f the Pareto front. In order to maintain
the diversity o f the Pareto-front, Goldberg suggested the use o f niching, a technique
that had been employed successfully to fight genetic drift in multimodal optimisation.
Niching aims to form stable sub-populations o f solutions across the length o f the
Pareto front. Fitness sharing is the niching technique employed by the majority o f
researchers in evolutionary computation. It is based on the idea that all individual
solutions within the same niche have to share the same resources. In other words, the
fitness o f individual solutions is degraded in proportion to the number o f solutions
that belong to the same niche (niche count). In that way, the algorithm does not suffer
from premature convergence, since the fitness o f any solution that attempts to
dominate the population is immediately degraded through the sharing scheme.
A sharing function is used for the calculation o f the niche count o f individuals within
the same rank. The triangular sharing function is usually employed for this purpose:

For each individual solution, the value o f the sharing function is calculated with
respect to the solutions belonging to the same rank. The fitness o f the solution is
degraded in proportion to the sum o f its sharing values. The distance between
solutions can be defined either in the parameter space (decision vector) or the
objective space. The parameter ^ determines the size o f the niche. The shape o f
the niche depends on the metric used for the calculation o f distance between
individual solutions (Horn and Nafpliotis, 1993). Deb and Goldberg (1989), Fonseca
and Fleming (1993) and Horn and Nafpliotis (1993) have proposed gu ideline for the
selection o f the c r ^ value. The latter suggestions were used for the calculation o f
the value in the experiments conducted in this chapter. Alternative techniques
for the avoidance o f genetic drift include the crowding scheme (De Jong, 1975) and
the mating restriction scheme (Deb and Goldberg, 1989).

(6.5)
0 otherwise

where: d is the distance between two individual solutions
& share the niche radius

163

Goldberg did not present a practical implementation o f his ideas. However
subsequent researchers extended the concept o f Pareto ranking and presented’
applications on multiobjective optimisation problems. Fonseca and Fleming (1993,
1998) introduced the Multiobjective Genetic Algorithm (MOGA). MOGA employed
a modified ranking scheme, in which a solution’s rank was proportional to the number
o f solutions by which it was dominated. This scheme produced a more fine-grained
classification o f solutions in comparison to Goldberg’s approach, since a greater
number o f individual ranks existed within the population. Fitness sharing was
performed in the objective space between individuals belonging to the same rank.
In the same year Horn and Nafpliotis (1993) presented an evolutionary multiobjective
technique called Niched Pareto Genetic Algorithm (NPGA). The main feature o f this
algorithm was the use o f tournament selection as the driving force o f the evolutionary
procedure. The authors employed a modified version o f the conventional tournament
selection scheme, which explicitly considered Pareto dominance information.
Initially, two individuals were selected randomly from the population. Another set o f
individuals was also selected from the population for comparison putposes. The user
could determine the selective pressure by changing the size o f this comparison set.
Each o f the two individuals was compared with each individual in the comparison se t
I f one o f the individuals was not dominated by solutions in the comparison set and the
other was, then the former was selected for the potential genetic operation. If neither
or both individuals were non-dominated solutions, then the individual with the lowest
niche count was selected.

As in MOGA, fitness sharing was implemented in the objective space, between
individuals having the same rank. However, the authors indicated that the
combination o f tournament selection with fitness sharing could lead the algorithm to
exhibit chaotic behaviour (Oei, Goldberg and Chang, 1991). Instead, a modified
ranking scheme was proposed, originally suggested by Oei, Goldberg and Chang, in
which the calculation o f niche counts was not based on the current population o f
solutions, but on the partially filled next generation. The sampling o f the latter
population was suggested, in an attempt to reduce the computational overhead
induced by the updated sharing scheme.

Chapter 6: Multiobjective manufacturing optimisation

164

Chapter 6: Multiobjective manufacturing optimisation

The Non-dominated Sorting Algorithm (NSGA) (Srinivas and Deb, 1994) followed
closely the guidelines proposed by Goldberg. Initially, the first set of non-dominated
solutions was found and each solution was assigned with a large ‘dummy’ fitness
value. Fitness sharing was implemented within the rank; however, the procedure took
place in the parameter rather than the objective space. The first set of non-dominated
solutions was removed from consideration and the second set o f non-dominated
solutions was found. These solutions were assigned a ‘dummy’ fitness value that was
smaller than the minimum fitness value o f the individuals included in the first set o f
non-dominated solutions, after fitness sharing had been implemented. This technique
ensured that individual solutions were always assigned with higher fitness values than
those having a lower rank.
Recently, Zitzler and Thiele (1999) presented the Strength Pareto evolutionary
multiobjective technique that attempted to combine the positive characteristics o f the
previous methods. Their algorithm always maintained two sets o f solutions in each
generation; the evolved population P and the off-line set P' that contained the up-to-
date non-dominated solutions. Any new solution generated was compared with the set
o f solutions in P . I f it was not dominated, then it was inserted in P while the
solutions covered by it in P ' were removed from the set. Both P and P ’ took part in
the selection process.
The main feature on this methodology was its fitness assignment procedure. Each
solution in P ’ was assigned with a strength value that was proportional to the number
o f solutions that it dominated in P. A t the same time, the fitness o f solutions in P was
proportional to the sum o f the strength values o f the solutions in P ’ that dominated
them. The intuition behind this technique was an attempt to promote dominated
solutions that were covered only by a small number o f non-dominated solutions and
penalise dominated solutions that contained a large number o f neighbourhood non-
dominated solutions. This form o f niching was based only on dominance information;
there was no need to calculate the distance between individual solutions. The authors
also suggested reducing the size o f P ’ by means o f clustering. The average linkage
clustering method was employed for this purpose. The reduced set P ’ was generated
by choosing the centroid o f each cluster as a representative solution.

165

Chapter 6: Multiobjective manufacturing optimisation

Fonseca and Fleming (1995) and Zitzler and Thiele (1999) discuss in detail the issues
associated with evolutionary multiobjective optimisation and present analytical
reviews o f relative techniques that have been proposed over the years.

6.4 The multiobjective process planning selection
problem

One o f the main stages o f the process planning procedure is the selection o f the
optimal process plan from the set o f the potential process plans that exist for the
product considered. The problem is usually referred to as the process planning
selection problem. A formal declaration o f the problem and a review o f the
evolutionary computation approaches that have been proposed for its solution are
presented in section 2.5.3.
When the objective o f the optimisation is the minimisation o f a single objective, then
the process planning selection problem is equivalent to the Shortest Path Problem
(SPP). The SPP can be solved efficiently by network algorithms such as Dijkstra’s
(Jensen and Barnes, 1980). However, these algorithms are unable to handle the
multiobjective version o f the problem. Conventional optimisation techniques such as
goal programming (Cohon, 1978), linear programming (Swaragi et al., 1985) and
dynamic programming (Sniedovich, 1985) have been used for this purpose, however,
their application has been illustrated only in small-sized networks.
Evolutionary computation is the only optimisation method that has been employed for
the solution o f medium to large size instances o f the multiobjective process planning
selection problem. More specifically, Awadh et al. (1995) combined their binary
encoded genetic algorithm (section 2.5.3) with a weighted-sum approach for the
solution o f the multiobjective version o f the problem. The objective o f their algorithm
was the simultaneous minimisation o f cost and maximisation o f quality o f the process
plans. However, their simple aggregating multiobjective approach provided only a
single compromise solution between the objectives, without considering the concept
o f Pareto optimality.
Zhou and Gen (1997) combined their real value-coded evolutionary algorithm
(section 2.5.3) with a multiple criteria decision technique (Chankong and Haimes,
1983). This approach differed from the one proposed by Awadh et al., in the sense

166

diopter 6: Multiobjective manufacturing optimisation

that it evolved solutions across the length o f the Pareto front and not a single
compromise solution. However, not enough experimental evidence was presented to
assess the efficiency o f the proposed algorithm.

While both these approaches constituted a significant advance in the solution o f the
multiobjective process planning selection problem, their search for the set o f Pareto
optimal solutions was inefficient. In the next section a new methodology is presented,
which addresses this issue by combining a novel genetic programming approach for
the generation o f potential process plans with a number o f established evolutionary
multiobjective techniques.

6.5 A genetic programming-based methodology for
the solution of the multiobjective process planning selection problem

6.5.1 Introduction
In this section a novel methodology for the solution o f the multiobjective process
planning selection problem is introduced. The proposed framework consists o f two
semi-independent parts: A genetic programming algorithm is responsible for the
generation o f potential process plans. The search for Pareto-optimal solutions is
implemented through a number o f alternative evolutionary multiobjective techniques.

O B J E C T IV E V A L U E S
O F P R O C E S S P L A N S

Figure 6.2: Genetic programming „pproacl. f0 llle generation of Parc,0.0n,ima|
process plans 1

A s has already been discussed the design o f the ge„etic programming algorithm
requires the redefinition o f the problem considered in a program-induction form For
the case o f the multiobjective process planning selection problem, this definition takes
the following form: “Find a computer program drat takes as input information about
the objective values associated with each process plan and produces as output a set o f

167

Pareto-optimal process plans”. Figure 6.2 illustrates the genetic programming
approach for the solution o f the multiobjective process planning selection problem.
6.5.2 Design of the algorithm
6.5.2.1 Representation o f process plans
The process plan representation schemes employed by evolutionary techniques that
have been proposed for the solution o f the general process planning selection
problem, are based on the network formulation o f the problem. These algorithms
evolve strings o f binary or real-coded values that correspond to valid process plans for
the problems considered (section 2.5.3).

The genetic programming methodology introduced in this chapter exploits the same
formulation in its attempt to generate potential process plans. Since the network
formulation transforms the process planning selection problem into a routing problem,
the genetic programming algorithm evolves computer programs that aim to guide the
product through the required processing stages in a way that simultaneously optimises
all objectives considered.

More specifically, the product moves through the arcs and nodes o f the network with
the help o f navigating instructions that are evolved by genetic programming in the
form o f a computer program. Any program that manages to find a complete path
through the network corresponds to a unique process plan for the product considered.
The product is placed at the first node o f the network and its navigation starts from an
arc specified by the user. In the applications presented in this chapter, the right-most
arc o f the node constitutes the starting point o f the navigation (figure 6.3). However,
this is only an issue o f convention and alternative initialisation schemes may also be
used.

Chapter 6: Multiobjective manufacturing optimisation

Figure 6.3: Initialisation of the navigation procedure

168

Chapter 6: Multiobjective manufacturing optimisation

In each node the computer program can move between arcs (i.e. alternative process
plans) using the navigation commands RIGHT and LEFT, which move the product to
the node placed immediately left or right o f the present node respectively (Figure
6.4).

Figure 6.4: Effect of LEFT and RIGHT commands on the navigation procedure
The operation o f these commands assumes that there are no borders at the extreme
arcs o f the network nodes. The application o f the LEFT command on the left-most arc
o f the node and the application o f the RIGHT command on the right-most arc o f the
node, positions the product on the right-most arc and the left-most arc o f the node
respectively (Figures 6.5-6.6).

Figure 6.5: Effect of the LEFT command on arc

Figure 6.6: Effect of the RIGHT command on the right-most node of the arc

Chapter 6: Multiobjective manufacturing optimisation

The product moves to the next processing stage with the help o f the MOVE
command. This command places the product on the node that is pointed by the current
arc. The relative positioning o f the product on the new node follows the convention o f
the right-most arc (figure 6.7).

Figure 6.7: Effect o f the MOVE command on the navigation procedure
The navigation commands are executed sequentially with the help o f the PROGN
function (a function that allows the sequential execution o f two or more function or
terminal nodes, section 4.3.2.1, Figure 4.2). The complete navigation program moves
the product through the various processing stages.
The genetic programming approach for the generation o f process plans will be
illustrated with the help o f an example problem taken from Awadh et al. (1995). The
network flow model o f a process planning selection problem is illustrated in figure
6.8.

Figure 6.8: Network flow model of the example process planning selection
problem

170

Chapter 6: Multiobjective manufacturing optimisation

Each arc in the network is associated with a value that represents the cost o f following
a specific sequence o f operations. The objective in this problem is the minimisation o f
the overall cost o f the product’s process plan. Figure 6.9 illustrates a computer
program that generates the optimal process plan (cost=5) for the example problem.
The detailed navigation o f the product is presented in figure 6.10.

Figure 6,9: Evolved computer program for the generation o f the minimum cost
process plan

Figure 6.10: Step-by-step generation o f the minimum cost process plan

6.5.2.2 Function set
The PROGN function executes sequentially two or more function or terminal nodes
that form its set o f arguments. As in the scheduling application presented in chapter 4,

171

Chapter 6: Multiobjective manufacturing optimisation

the PR0G N 2 and PR0GN3 functions formed the function set o f the genetic
programming algorithm. The valid operation o f these functions requires the
specification o f argument sets o f size 2 and 3 respectively.

6.5.2.3 Terminal set
The three navigational commands LEFT, RIGHT and MOVE formed the set o f
terminals for the genetic programming algorithm. The LEFT and RIGHT commands
alternated the choice o f the potential processing sequence o f a product for a specific
processing stage. The MOVE command confirmed the processing sequence choice
and initialised the product position for the next processing stage.

6.5.2.4 Genetic operators
The subtree crossover and mutation operators were employed by the evolutionary
procedure for the exchange o f genetic material between individual solutions and the
generation o f diversity within the population. The probability o f applying the
crossover and mutation operators was set to 90% and 10% respectively.

6.5.2.5 Objective function
The minimisation o f processing cost and the maximisation o f product quality were
chosen as the objectives to be simultaneously optimised by the evolutionary
procedure. The same objectives were employed in the multiobjective process planning
selection applications presented by Awadh et a l (1995) and Zhou et a l (1997)
The proposed methodology performed a non-aggregating evaluation o f generated
process plans using three alternative evolutionary multiobjective techniques (section
6.3.2). The first approach (which will be identified as ‘Pareto’ from this point
onwards) followed the guidelines proposed by Goldberg for ranking individual
solutions according to their dominance information. A ranking fitness assignment
methodology introduced by Fonseca and Fleming (1993) was employed for the
calculation o f fitness values. Individual solutions were selected to participate in
genetic operations with the help o f the Stochastic Universal Sampling (SU S)
technique (Baker, 1987).

172

Chapter 6: Multiobjective manufacturing optimisation

The Multiobjective Genetic Algorithm (MOGA) o f Fonseca and Fleming (1993) was
also employed as an alternative approach to the multiobjective evaluation o f potential
process plans. The implementation o f the algorithm followed closely the guidelines
set by the authors in terms o f the rank assignment, fitness assignment and selection
methods (SUS).

The final evolutionary multiobjective algorithm used in the experiments was the
Niched Pareto Genetic Algorithm (NPGA) o f Horn and Nafpliotis (1993). The size o f
the comparison set for the tournament selection procedure, as well as the sampling
rate for the calculation o f niche counts (see section 6.3.2) was set to 20% o f the
population size used in the experiments.

6.5.2.6 Additional parameters
The Koza tableau o f table 6.2 illustrates the value o f additional parameters that are
necessary for the valid run o f the genetic programming algorithm and summarises the
multiobjective process planning selection solution methodology presented in this
chapter.

Parameters ValuesObjective: simultaneous minimisation o f cost and
maximisation o f quality o f potential
process plans for individual products.

Terminal set: LEFT, RIGHT, MOVE
Function set: PROGN2, PROGN3
Population size:
Evolutionary multiobjective

500-1000 (depending on problem size)

technique: Pareto, MOGA, NPGA
Selection: Stochastic universal sampling (Pareto,

MOGA), tournament (NPGA)
Subtree crossover probability: 0.9
Mutation probability: 0.1
Number o f generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Table 6.2: Koza tableau for the multiobjective process planning geneticprogramming algorithm

6.5.3 Experimental basis
Chapter 6: Multiobjective manufacturing optimisation

The experimental basis employed in this chapter comprised o f ten multiobjective
process planning selection problems with sizes ranging from (7 stages x 24 nodes) to
(15 stages x 89 nodes). The test problems employed by Awadh et al. (1995) and Zhou
et a l (1997) featured the same characteristics in terms o f number o f stages and
number o f nodes. However, while both authors were contacted, they were unable to
provide their experimental basis and the respective results. For this reason, a new set
o f multiobjective process planning selection problems had to be randomly generated.
The cost and quality values associated with each alternative processing sequence were
randomly chosen from the uniform distribution [1, 50]. The minimum cost and
maximum quality values for each o f these problems were found through exhaustive
enumeration. These values represented the solutions lying on the extreme regions o f
the Pareto front. They were also used for the calculation o f the crs)mrt value in the
fitness sharing procedure o f the evolutionary multiobjective techniques. A summaiy
o f the experimental basis employed in this chapter is presented in table 6.3.

174

Chapter 6: Multiobjective manufacturing optimisation

20 runs o f the genetic programming algorithm were conducted for each evolutionary
multiobjective technique on the process planning selection problems included in the
experimental basis. For each technique, the off-line set o f non-dominated solutions
over the batch o f 20 runs was recorded. The population size was set to 500 for
problems 1-5, and 1000 for the larger problems 6-10. The results o f the experimental
phase are presented in the following section.

6.5.4 Results
The off-line sets o f non-dominated solutions that were evolved by the combination o f
genetic programming with the evolutionary multiobjective techniques are presented in
figures 6.11-6.20. For ease o f illustration the non-dominated solutions o f each
technique have been connected with continuous coloured lines.

6.5.5 Discussion
The results presented in figures 6.11-6.20 illustrate that the combination o f the genetic
programming procedure for the generation o f process plans with evolutionary
multiobjective techniques provide a variety o f potential solutions for the DM.
However, the relative performance o f the proposed methodology cannot be
sufficiently evaluated for the following reasons:
. N o comparative results exist on the same set o f problems from alternative solution

methodologies.
. The actual Pareto-front o f the problems considered is not known in advance.
An indication o f the algorithm’s performance can be provided by the visual
comparison o f the evolved sets with the extreme values o f the Pareto front, which
were calculated through exhaustive enumeration. Based on this information, it can be
said that for the small-sized problems (1 and 2) there is an indication that the
algorithm evolved the actual Pareto-front because all evolutionary multiobjective
techniques produced the same set o f non-dominated solutions. However, since the
actual Pareto-front is not known, no positive conclusions can be reached. While some
extreme Pareto-front values (minimum cost and maximum quality) were evolved for
bigger test problems as well (problems 3 and 4), the algorithm faced difficulties in
reaching extreme Pareto regions as the size o f the problem increased.

175

CN

■ Minimum cost
Maximum quality

-♦ -P a re to
- — MOGA
—»-NPGA

ligure 6.11: Evolved solutions for test problem 1

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cost
Maximum quality

-♦—Pareto
. MOGA

NPGA

Figure 6.12: Evolved solutions for test problem 2

Chapter 6: Multiobjective manufacturing optimisation

400

oo

■ Minimum cost
Maximum quality

-♦—Pareto
-• -M O G A
—— NPGA

Cost

Figure 6.13: Evolved solutions for test problem 3

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cost
Maximum quality

-♦—Pareto
MOGA
NPGA

Figure 6.14: Evolved solutions for test problem 4

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cost
Maximum quality

—♦—Pareto
—»—MOGA
—— NPGA

Cost

Figure 6.15: Evolved solutions for test problem 5

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cost
Maximum quality

— Pareto
MOGA

— NPGA

Cost

Figure 6.16: Evolved solutions for test problem 6

Chapter 6: M
ultiobjective manufacturing optimisation

oo
IO

■ Minimum cost
Maximum quality

— Pareto
— MOGA
— NPGA

Cost

Figure 6.17: Evolved solutions for test problem 7

Chapter 6: M
ultiobjective manufacturing optimisation

Qu
alit

y

700

ooU)

600 -

500 -

400 -

300 -

200 -

■ Minimum cost
Maximum quality
Pareto
MOGA
NPGA

100 -

Q -------------- 1-------------- ;-------------- 1-------------- 1-------------- 1-------------- 1---------------1--------------1-------------- 1--------------

0 50 100 150 200 250 300 350 400 450 500

Cost

Figure 6.18: Evolved solutions for test problem 8

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cosi
Maximum quality

—♦—Pareto
—«—MOGA
— NPGA

0 100 200 300 400 500 600

Cost

Figure 6.19: Evolved solutions for test problem 9

Chapter 6: M
ultiobjective manufacturing optimisation

■ Minimum cost
Maximum quality

—♦—Pareto
— -MOGA
— Update

Figure 6.20: Evolved solutions for test problem 10

Chapter 6: M
ultiobjective manufacturing optimisation

The performance o f the algorithm degraded as the size o f the problems increased.
While for a number o f problems there were indications that evolved solutions were
situated close to the actual Pareto-front (problems 5, 6 , 7 and 9), the Pareto-front
evolved for some o f the large-sized problems (problems 8 and 10) was probably
entirely dominated by the actual Pareto-front. This is not an unexpected result since
the number o f potential process plans for these cases is considerable for a
multiobjective optimisation problem (table 6.3). The attempt that was made to offset
the massive expansion in the size o f the solutions' space by increasing the population
size o f GP was insufficient, and thus additional computational resources are required.
The relative performance o f the evolutional? roultiobjective techniques that were
employed in the experimentation phase can be assessed quantitatively through the
coverage measure introduced by Zitzler and Thiele (1999). This measure maps an
ordered pair o f decision vectors c (x \ X ') to the interval [0, 1). The C measure is
calculated by dividing the number o f points in r that are either dominated by or
equal to points in X ' , to the total number o f points in X". c (x ' ,X ")= l means that
all points in XT are covered by points in X ' . c (x \ r) = 0 indicates that no solution
in X ’ is covered by solutions in X . Note that since the C function defines an ordered
relationship, the value o f c { x ’,X ‘) is not necessarily equal to c (x " ,X ') . Both cases
need to be considered in order to assess the relative performance o f the sets. The C
values for all three evolutionary multiobjective techniques that were used in the
experimental phase are illustrated in table 6.4:

PROBLEM NO. 1 2"" 3 4 5 6 7 8 9 10
C{Pareto, MOGA) 1.0 1.0 0 .85 0.8 0 .15 0 .3 6 0 .53 0.31 0 .6 5 0 .5 9
C (Pareto, NPGA) 1.0 1.0 0.73 0 .73 0.43 0 .2 0 .7 8 0 .75 0 .71 0 .5
C (MOGA, Pareto) 1.0 1.0 0 .63 0.73 0 .7 7 0 .6 4 0 .5 8 0 .63 0 .0 7 0 35
c (m o g a , n p g a) 1.0 1.0 0.53 0 .73 0 .7 0 .2 0 .5 2 0 .75 0 .2 9 0 .3 8
C(NPGA, Pareto) 1.0 1.0 0 .63 0 .82 0 .7 2 0 .6 4 0 .2 5 0 .1 9 0 .0 7 0 18
c (n p g a , m o g a) 1.0 1.0 0.5 0.8 0 .22 0 .6 4 0 .4 7 0 .15 0 .5 3 0 .5 9

Table 6.4: C measure for the evolutionary multiobjective
experimental set-up techniques in the

186

Chapter 6: Multiobjective manufacturing optimisation

These results indicate that the performance o f all multiobjective techniques in small-
sized problems was similar, since a considerable number o f equal solutions were
produced. A s the size o f the problem increased, different sets o f non-dominated
solutions were evolved for each technique. However, a consistent pattern in to m s o f
the coverage measure did not emerge. Each technique produced better results than the
alternative ones in some problems, but none o f them was able to dominate the others
on the entire set o f test problems.
NPGA was able to produce a considerable number o f extreme Pareto-front values but
its performance deteriorated more rapidly as the size o f the problem increased.
MOGA produced the most consistent pattern o f solutions; however, at no point it
totally dominated the performance o f both alternative techniques. The ‘Pareto’
technique managed to produce the best results in the majority o f large-sized problem,
but its performance was inconsistent over the entire set o f problems.
It can be concluded that no significant differences existed between the performance o f
the three evolutionary multiobjective techniques that were employed in the
experimental phase. The overall performance o f the proposed framework was dictated
by the search power o f the genetic programming algorithm rather than the choice o f a
particular multiobjective technique for the assignment o f fitness to individual
solutions. For that reason it is suggested that future research should concentrate on the
enhancement o f the genetic programming search engine, which will make possible the
consideration o f large instances o f multiobjective process planning selection
problems.

6.6 Conclusions
In this chapter a novel methodology for the solution o f the multiobjective process
planning selection problem was introduced. The backbone o f the methodology was a
genetic programming algorithm for the generation o f potential process plans.
Multiobjective optimisation was implemented through a number o f non-aggregating
evolutionary multiobjective techniques.
The proposed methodology was tested on a number o f variable-sized randomly
generated problems. All evolutionary multiobjective techniques were able to produce
a variety o f potential solutions for the decision-maker to consider. The evaluation o f

187

Chapter 6: Multiobjective manufacturing optimisation

the relative performance o f the proposed methodology was not possible due to the
lack o f comparative results and the unknown configuration o f the actual Pareto-front.
This chapter concludes the research conducted in this thesis concerning the use o f
genetic programming for the solution o f manufacturing optimisation problems. The
conclusions o f this research and suggestions for further work in the same area are
presented in the following chapter.

188

Chapter 7

CONCLUSIONS

This chapter summarises the conclusions drawn from the application o f genetic
programming to a number o f manufacturing optimisation problems. A detailed
description o f these applications has been presented in chapters 4, 5, and 6.
The aim o f this research was to investigate the possibility o f using genetic
programming for the solution o f a range o f manufacturing optimisation problems and
at the same time assess the quality o f the proposed methodologies in relation to the
state-of-the-art solution techniques on the problems considered. Three well-known
manufacturing optimisation problems, the one-machine total tardiness problem, the
cell-formation problem and the process planning selection problem were used for this
purpose. The first two cases were representative examples o f combinatorial
sequencing and clustering problems respectively. The multiobjective process planning
selection problem highlighted a case which traditional solution methodologies were
unable to address sufficiently in a single optimisation run.
The summary o f conclusions starts with the evaluation o f the performance o f the
proposed methodologies on the individual manufacturing optimisation problems that
were used in this research. Based on these observations, general comments are made
on the advantages and drawbacks o f using genetic programming for the solution o f
manufacturing optimisation problems.
These conclusions lead naturally to the consideration o f future perspectives in this
research. The last section o f this chapter examines ways in which this research can be
extended in relation to both the genetic programming methodologies presented in this
thesis and alternative manufacturing optimisation cases.

Chapter 7: Conclusions

7.1 The one-machine total tardiness problem
A considerable number o f manufacturing optimisation problems are formulated as
sequencing problems. Evolutionary algorithms are particularly suited for the solution
o f sequencing problems, since a potential solution can be easily coded into a fixed-
size chromosome. However, since genetic programming evolves variable-length
computer programs, it has never been regarded as a suitable algorithm for the solution
o f these types o f problems.
The applicability o f genetic programming for the solution o f sequencing problems
was investigated in this thesis with the help o f a representative problem, the one-
machine total tardiness problem. A novel genetic programming methodology was
introduced, which employed the concept o f dispatching rules for the indirect
generation o f job schedules. The proposed methodology succeeded in producing
schedules with lower tardiness levels than individual dispatching rules on the set o f
problems used in the experimentation phase. In addition, combinations o f the
proposed genetic programming algorithm with local search and simulated annealing
techniques were able to produce competitive results to one o f the leading heuristic
algorithms that has been proposed for the solution o f this problem.
The main drawback o f the proposed methodology was that it evolved a sequence o f
dispatching rules for a fix-sized problem within a variable-length genetic
programming environment. This feature clearly limited the efficiency o f the
algorithm, since it did not utilise the positive characteristics o f genetic programming.
The results o f this application indicated that if genetic programming was to be
employed for the solution o f sequencing problems, a solution representation natural to
its program-induction framework was necessary.
This issue was addressed by the second genetic programming application introduced
for the solution o f the one-machine total tardiness problem. In this application genetic
programming created a variety o f formulas o f potential dispatching m les using the
scheduling information available for the problem considered. These rules were trained
on a set o f representative test problems. Nine new dispatching rules were evolved
during the experimental phase. A number o f these rules were not only able to

190

Chapter 7: Conclusions

generalise on the entire set o f validation problems, but also outperformed the
corresponding man-made dispatching rules.
The main drawback o f this methodology was the complexity o f the formulas o f
evolved dispatching rules, which made the explanation o f their operation a difficult
task. However, the fact that the solution representation was natural to the problem
considered meant that it could provide significant insights to the solution o f the
problem. At the same time, computational efficiency was not an issue in this
application, since the process o f evolution only took place during the training phase.
Once the potential dispatching rule had been evolved, it could be used independently
o f the evolutionary procedure as a fast computer program for the scheduling o f jobs.
The above considerations indicate that the evolutionary construction o f dispatching
rules in the form o f computer programs is a promising application o f genetic
programming in the field o f manufacturing optimisation.

7.2 The cell-formation problem
The solution o f the cell-formation problem constitutes one o f the most significant
phases in the implementation o f a cellular manufacturing system. It is a combinatorial
NP-hard clustering problem that has been extensively researched during the last thirty
years. A considerable number o f solution methodologies from a wide range o f
optimisation fields have been proposed for its solution, since the complexity o f the
problem creates a benchmarking potential for any new optimisation technique.
W hile several evolutionary computation algorithms had been employed for the
solution o f this problem, it had never been the subject o f genetic programming
research. A novel genetic programming methodology for the solution o f simple binary
cell-formation problems was introduced in this thesis. The algorithm processed
information about the similarity o f operations between machines using a coefficient
evolved through a genetic programming machine. The front-end o f the procedure was
a hierarchical clustering algorithm that produced the final groupings o f machines into
cells.
The methodology was tested on a wide range o f test problems taken from the
literature and was found to produce results that were at least as good as the ones that

191

Chapter 7: Conclusions

have already been published for the objectives and the problems considered. The
proposed methodology combined the efficiency o f the hierarchical clustering
procedure with the flexibility o f the evolutionaiy algorithm. While a stand-alone
clustering procedure created a set o f promising cell configurations, its outcome was
always independent o f the optimisation objective. The replacement o f the standard
similarity coefficient with a genetically evolved population o f coefficients provided
the necessary flexibility, since each coefficient was either promoted or demoted by the
evolutionary procedure depending on the quality o f the groupings that it produced.
The successful application o f the proposed methodology on the solution o f the binary
cell-formation problem was mostly significant from the genetic programming
perspective since the binary cell-formation problem represents a fairly simple and
unrealistic modelling o f the real problem. Fortunately, one o f the main features o f the
proposed framework was its ability to address more complex formulations o f the cell-
formation problem by modifying either the type o f similarity information evolved
through the genetic programming machine or the objective function o f the algorithm.
This process was illustrated with the help o f some example problems taken from the
literature.
W hile the proposed framework was tested on a limited number o f advanced
formulations o f the cell-formation problem, it can be said that its ability to consider a
variety o f cell-formation models constituted a significant advantage in relation to
alternative non-evolutionary solution techniques.
Genetic programming was additionally employed for the evolution o f general-purpose
similarity coefficients that could be used in combination with clustering procedures
for the solution o f cell-formation problems. Evolved coefficients were found to
generalise over the entire set o f validation problems. However, their performance was
similar to the one produced by man-made similarity coefficients. There were
indications that some o f the genetically evolved coefficients were able to handle ill-
structured machine/component matrices more efficiently, however, no statistical
verification o f this hypothesis was obtained.

192

Chapter 7: Conclusions

7.3 The multiobjective process planning selection
problem

Multiobjective optimisation is one o f the main application areas for evolutionary
computation algorithms due to their natural ability to search for all Pareto-optimal
points in a single optimisation run. Manufacturing optimisation is a field where
multiple objectives, often conflicting in nature, need to be simultaneously optimised.
In this thesis, a novel genetic programming methodology for the solution o f the
multiobjective process planning selection problem was presented. Genetic
programming was applied on a set o f randomly generated test problems in
combination with a number o f evolutionary multiobjective techniques.
The performance o f the proposed framework was not sufficiently evaluated since test
problems and comparative results from alternative evolutionary algorithms were not
available. A visual analysis o f evolved Pareto-fronts on the problems considered
indicated that in small-to-medium sized problems the framework was able to produce
some Pareto-optimal process plans in the extreme regions o f the front (minimum cost
- maximum quality). However, the performance o f the algorithm degraded as the size
o f the problem increased. In all cases the proposed framework was able to provide the
decision-maker with a wide range o f potential process plans, instead o f a single
compromise solution that would have been produced by a traditional aggregating
multiobjective technique. None o f the evolutionary multiobjective techniques that
were employed in the experimentation was able to dominate the performance o f the
alternative ones.
It can be concluded that the integration o f genetic programming with the evolutionary
multiobjective techniques for the solution o f the multiobjective process planning
selection problem was able to produce a wealth o f potential solutions near the surface
o f the actual Pareto-front. Unfortunately the level o f proximity could not be estimated
due to the unknown position o f this front. At the same time, since no comparative
results were available, the performance o f the algorithm in relation to alternative
evolutionary algorithms could not be assessed. For these reasons further research is
needed in order to establish the full significance o f the proposed methodology.

193

Chapter 7: Conclusions

7.4 Comments on the use o f genetic programming for
the solution o f manufacturing optimisation
problems

The main conclusion o f this research is that genetic programming can be used for the
solution o f various types o f manufacturing optimisation problems, producing
competitive results to alternative optimisation techniques that have been proposed for
the solution o f these problems.
The most promising use o f genetic programming in manufacturing optimisation is the
off-line generation o f computer programs that can subsequently be used
independently o f the evolutionary procedure as stand-alone optimisers, like the
evolution o f dispatching rules for the one-machine total tardiness problem and the
evolution o f similarity coefficients for the cell-formation problem. The advantages o f
this approach are the following:

• The computational complexity o f the algorithm is no longer a critical issue. The
training phase o f the algorithm requires a number o f genetic programming runs on
some pre-specifled fitness cases, however, once the best computer program has
been evolved, it can be used independently o f the evolutionary procedure on an
unlimited number o f problems.

• Evolved computer programs are constructed from building blocks that are natural
elements o f the problem considered. For that reason it is possible to explain the
operation o f a program, depending on its size and complexity. This feature can
provide insights on optimisation problems where little or no theoretical
background exists, and lead to the development o f robust solution methodologies.
The transparency o f evolved computer programs can be enhanced by using
techniques such as the Constrained Complexity Crossover (CCC) o f Watson and
Parmee (1998) and Automatically Defined Functions (ADFs) o f Koza (1994).

The methodologies presented in the previous chapters illustrate the point that
successful genetic programming applications in the field o f manufacturing
optimisation are possible. However, the practical implementation o f the proposed
methodologies in real manufacturing cases requires the consideration o f additional
parameters:

194

Chapter 7: Conclusions

• The computational complexity o f the algorithms, the time-consuming design o f
the genetic programming framework, and the absence o f a general-purpose genetic
programming toolkit, deter engineers from employing genetic programming for
the solution o f manufacturing optimisation problems, especially when cheap and
fast alternative techniques exist.

• The model-based formulations o f manufacturing optimisation problems that were
considered during the experimental phase do not always give accurate descriptions
o f the cases faced in manufacturing practice.

The reasons for the limited number o f reported genetic programming applications in
the field o f manufacturing optimisation are the following:
• The genetic programming solution representation for the majority o f

manufacturing optimisation problems is not as straightforward as in the case o f
alternative evolutionary algorithms.

• Genetic programming applications require significant computational resources.
The performance o f the algorithms does not always justify the additional overhead
induced in comparison to alternative optimisation techniques.

• Genetic programming is a relatively new technique that is still in development.
The bulk o f research in the field is focused on problems where a solution
representation can be easily extracted from their formulation. Researchers are
reluctant to experiment with problems that are not considered to be genetic
programming-friendly.

A ll previous considerations should be viewed in the light o f the following points:
• Each manufacturing optimisation problem has its own complexity and

characteristics. While the cases considered in this thesis are significant, it cannot
be said that genetic programming is necessarily suitable for the solution o f any
manufacturing optimisation problem.

• The results presented in this thesis are based on the genetic programming coding,
configuration and solution representations designed by the author o f this thesis.
Alternative genetic programming machines that employ different solution
representations will not necessarily produce the same results on the set o f
manufacturing optimisation problems considered in this thesis.

195

Chapter 7: Conclusions

7.5 Future work
The research presented in this thesis provides an introductory investigation into the
potential use o f genetic programming for the solution o f manufacturing optimisation
problems. However, additional research is needed for the drawing o f safer
conclusions. Some promising areas for the continuation o f this research are the
following:
• The evolution o f dispatching rules for the solution o f the one-machine total

tardiness problem can be extended to any other static scheduling problem.
Furthermore, the proposed methodology provides the opportunity for
manufacturing companies with special scheduling considerations to evolve their
own case-based dispatching rules by providing the relevant inputs to the
evolutionary procedure.

• A wider experimental basis is needed in order to assess the efficiency o f genetic
programming in solving advanced formulations o f the cell-formation problem.

• The performance o f the genetic programming methodology for the solution o f the
multiobjective process planning selection problem could not be sufficiently
evaluated due to the lack o f comparative results from alternative solution
methodologies. It is hoped that these data will be available in the future for further
comparisons to be made.

• The initialisation process o f the genetic programming methodology for the
generation o f potential process plans favours plan selections situated near to the
initialisation point (section 6.5.2.1). This bias can be reduced by introducing
navigational commands that alternate between potential process plans in step-sizes
larger than one. These commands were not included in the experiments o f this
thesis since their introduction requires a significant increase in the population size
o f the algorithm.

• There are several important manufacturing areas where the potential application o f
genetic programming has not been investigated. Dynamic scheduling, assembly
lines, quality control and production planning are some optimisation areas for
which genetic programming might be able to provide successful applications.

196

Chapter 7: Conclusions

• The genetic programming algorithm employed in the experiments o f this thesis
followed the guidelines suggested by Koza (1992). However, alternative
frameworks for the evolution o f computer programs have also been introduced
(section 3.3.2). The application o f these frameworks on the set o f manufacturing
optimisation problems considered in this thesis could yield improvements in terms
o f the computational efficiency o f the proposed methodologies.

• The use o f length reduction techniques such as the Constrained Complexity
Crossover (CCC) (Watson and Parmee, 1998), (Parmee and Watson, 2000) and
modularization techniques such as Automatically Defined Functions (ADFs)
(Koza, 1994) would help reduce the length o f evolved genetic programs and
simplify the task o f explaining their operation. A reduction on the length o f
genetic programs can also be achieved through the introduction o f parsimony
penalties in the objective function o f the algorithm.

• The availability o f computational power was always a main consideration during
the experimental phase o f this research. The employment o f parallel processing
machines would allow the use o f larger populations o f solutions, thus increasing
the search potential o f the proposed methodologies.

• A number o f applications presented in this thesis suggest that the hybridisation o f
genetic programming with alternative optimisation methods is a promising area
for further research, since it combines the positive characteristics o f the co
operating algorithms.

197

APPENDIX

SIMULATED ANNEALING PARAMETERS
Neighbourhood structure All general pairwise interchanges -

restart from the best sequence found
in the entire neighbourhood

Neighbourhood size
— « • (« - 1)

Probability o f acceptance o f a solution that
performs worse than the best solution that has

p _ g-(« Armf)
been found so far w here:

a = 10 + (ITER -4)
ITER = Number o f iterations
ATard = increase in tardiness

Termination criterion When no better sequence has been
found in an entire neighbourhood

Table 1 A. Simulated Annealing implementation for the one machine total
tardiness problem

NAME ABBREVIATION FORMULA
Mean Absolute Deviation from Optimal MADO AA l i f t

L n > ,. - L t dd is o p tL 1 l80
M e a n Relative Deviation from Optimal MRDO so (r n _ r n ^

y d is 1 ^ op t»C >
80 *100

Maximum Relative Deviation from
Optimal

Tardiness o f dispatching rule or GPC
Optimal Tardiness

MAX(RDO)

TDdis
TD,o p t

max,-i TDijis - TDiopt
TDio p t

Table 2A: List of statistical terms used in Chapter 4

Appendix

199

Appendix

Table 3A (co n t.): Evolved dispatching rules for the one machine total tardiness
problem

Name No. o f fitness cases Problems
SET1 8 1 - 8
SET2 6 1 6 -2 1
SET3 6 2 2 - 2 7
SET4 6 9 - 1 2 ,1 4 ,1 5
SET5 6 1 - 4 , 1 6 - 1 8
SET6 7 5 - 8 , 1 9 - 2 1
SET7 8 1 1 ,1 2 ,1 4 ,1 5 ,2 2 -2 5
SET8 8 9 - 1 2 , 2 4 - 2 7
SET9 14 1 - 1 2 ,1 4 ,1 5

SET10 14 1 4 - 2 7

Table 4A: Experimental sets for the evolution of similarity coefficients

2 0 0

Appendix

Coefficient Formula

1. Jaccard a
a + b + c

2. Yule a d — be
a d + be

3. Sorenson 2 a
2 a + b + c

4 . Ham ann {a + d) - (b + c)
(a + d) + (b + c)

5. Rogers & Tanimoto a + d
a + 2(b + c) + d

6 . Sokal & Sneath 2 (a + d)
2 (a + d) + b + c

7. Russel & Rao a
a + b + c + d

8 . Baroni-Urbani and a + { a d f ! 2
Buser a + b + c + (a d) ^ 2
9. Sim ple matching a + d

a + b + c + d
10. Ochial a

ï a + i X a + c W 2
11. Phi a d —be

. I(a + b f a + c \ b + d \ c + d ^ 1

Table 5A: Similarity coefficients produced by human intuition

201

REFERENCES
Aizpuru, J.R.Z. and Usunariz, J.A. (1995), “GA/TS: A hybrid approach for job-shop
scheduling in a production system” in Proc.of the 7th Potuguese Conf.on Artificial
Intelligence - EPIA '95, pp.153-164, Springer-Verlag, Berlin, Germany.
Aljaber, N ., Baek, W., and Chen, C.-L. (1997), “A tabu search approach to the cell-
formation problem”, Computers & Industrial Engineering, vol.32, n o .l, pp. 169-185.
Angeline, P. (1997), “Subtree crossover: building block engine or macromutation?”,
in Genetic Programming 1997: Proceedings o f the Second Annual Conference, Koza,'
J.R. et al. (eds), pp.9-17, Stanford University, CA, USA.
Askin, R.G., Cresswell, S.H., Goldberg, J.B., and Vakharia, A J. (1991), “A
hamiltonian path approach to reordering the part-machine matrix for cellular
manufacturing”, Int.J o f Production Research, vol.29, no.6, pp. 1081-1100.
Awadh, B., Sepehri, N. and Hawaleshka, 0 . (1995), “A computer-aided process
planning model based on genetic algorithms”, Computers & Operations Research,
vol.22, no.8, pp.841-856.
Aytug, H., Koehler, G.H. and Snowdon, J.L. (1994), “Genetic learning o f dynamic
scheduling within a simulation environment”, Computers & Operations Research,
vol.21, no.8, pp.909-925.
Baker K.R. and Schrage L.E. (1978), “Finding an optimal sequence by dynamic
programming: an extension to precedence-related tasks”, Operations Research,
vol.26, n o .l, pp.l 11-120.
Baker, J.E. (1987), “Reducing bias and inefficiency in the selection algorithm”, in
Proc. o f the 2n Int. Conf. on Genetic Algorithms and their Applications,
J.J.Grefenstette (Ed.), p p .l4-21, Lawrence Erlbaum, Hillsdale, NJ.
Baker, K. (1974), Introduction to Sequencing and Scheduling, Whiley, N ew York.
Bazargan-Lari, M. and Kaebemick, H. (1997) “An approach to the machine layout
problem in a cellular manufacturing environment”, Production Planning & Control,
vol.8, n o .l, pp.41-55.
Banerjee, P., Zhou, Y. and Montreuil, B. (1997), “Genetically assisted optimisation o f
cell layout and material flow path skeleton”, HE Transactions, vol.29, no.4, pp.277-
291.
Banzhaf, W., Nordin, P., Keller, R.E. and Francone F.D. (1998), Genetic
Programming: An Introduction, Morgan Kaufman, San Francisco, CA.
Bean, J.C. (1994), “Genetic algorithms and random-keys for sequencing and
optimisation”, ORSA Journal on Computing, vol.6, no.2, p p .l54-160.
Bellman, R.E. and Dreyfus S.E. (1962), Applied Dynamic Programming, Princeton
University Press.

2 0 2 .

References

Ben-Daya M. and Al-Fawzan M. (1996), “A simulated annealing approach for the
one-machine mean tardiness scheduling problem”, European Journal o f Operational
Research, vol.93, pp.61-67.
Beveridge, G.S. G. (1970), Optimization : theory and practice, N ew York, McGraw-
Hill.
Bierwirth, C., Kopfer, H., Mattfeld, D.C. and Rixen, I. (1995), “Genetic algorithm
based scheduling in a dynamic manufacturing environment”, Proc.of the 1995 IEEE
Conf.on Evolutionary Computation, V ol.l, pp.439-443, IEEE, Piscataway, NJ, USA.
Bierwirth, C., Mattfeld, D.C. and Kopfer, H. (1996), “On permutation representations
for scheduling problems”, in Proc.of the 4th Int.Conf.on PPS from Nature, Voigt,
Ebeling, Rechenberg, Schwefel (Eds.), pp.310-318, Springer-Verlag, Berlin]
Germany.
Billo, R.E., Bidanda, B. and Tate, D. (1996), “A genetic cluster algorithm for the
machine-component grouping problem”, Journal o f Intelligent Manufacturing, vol.7,
no.3, pp.229-243.
Blackstone, J.H., Philips, D.T. and Hogg, C.L. (1982), “A state o f the art survey o f
dispatching rules for manufacturing job shop operations”, Int.J.of Production
Research, vol.20, pp.27-45.
Boctor, F.F. (1991), “A linear formulation o f the machine-part cell-formation
problem”, Int.J. o f Production Research, vol.29, no.2, pp.343-356.
Boe, W.J., and Cheng, C.H. (1991), “A close neighbour algorithm for designing
cellular manufacturing systems”, Int.J. o f Production Research, vol.29, no 10
pp.2097-2116.
Booker, L.B., Goldberg, D.E. and Holland, J.H. (1989) “Classifier systems and
genetic algorithms”, in Machine Learning: Paradigms and methods, pp.235-282, J.G.
Carbonnel (Ed.), MIT Press/Elsevier, MA.
Bowden, R. and Bullington, S.F. (1996), “Development o f manufacturing control
strategies using unsupervised machine learning”, 1IE Transactions, vol.28, no.4,
pp.319-331.
Bowden, R.O., Hall, J.D. and Usher, J.M. (1996), “Integration o f evolutionary
programming and simulation to optimise a pull production system”, Computers &
Industrial Engineering, vol.31, no.1/2, pp.217-220.
Box, G.E.P. (1957), “Evolutionary operation: A method for increasing industrial
productivity”, Journal o f the Royal Statistics Society, C, vol.6, no.2, pp.81-101.
Braglia, M. and Gentili, E. (1994), “An improved genetic algorithm for flowshop
scheduling problems” in Proc.of the 10th ISPE/IFAC Int.Conf. on CAD/CAM,
Robotics and Factories o f the Future, pp.137-142, OCRI, Ontario, Canada.
Braglia, M. and Stemieri, A. (1996), “A genetic algorithm for layout optimisation in a
flowline cellular manufacturing system”, in Proc.of the Int.lCSC Symposia on
Intelligent Industrial Automation and Soft Computing, Anderson & Warwick (Eds.),
pp.A 21-A26, Int.Comp.Science Conventions, Millet, Canada.
Burbidge, J.L. (1971), “Production Flow Analysis”, Production Engineer, vol 50 pp
139-152.

203

References

Burbidge, J.L. (1975), The Introduction o f Group Technology, Halste Press, John
Wiley, N ew York, U.S.A.
Bums, R. (1993), “Direct chromosome representation and advanced genetic operators
for production scheduling”, in Proc. o f the 5th Int.Conf. on Genetic Algorithms,
Stephanie Forest (Ed.), pp. 352-359, Morgan Kaufman, San Mateo.
Cao, H., Xi, H., Luo, Y. and Yang, S. (1997), “GA with hierarchical evaluation: a
framework for solving complex machine scheduling problems in manufacturing”, in
GALESIA ‘97: Genetic Algorithms in Engineering Systems: Innovations and
Applications. Conference Proceedings, pp.326-331, IEE Conf.Publ. no.446, IEE,
Stevenage, England.
Cao, Y.J. and Wu, Q.H. (1997), “Mechanical design optimisation by mixed-variable
evolutionary programming”, in Proc.of the 1997 IEEE Int.Conf.on Evolutionary
Computation, pp.443-446, IEEE, Piscataway, NJ, USA.
Carrie, A.S. (1973), “Numerical taxonomy applied to group technology and plant
layout”, Int.J. o f Production Research, vol.l 1, no.4, pp.399-416.
Cartwright, H.M. and Tuson, A.L. (1994), “Genetic algorithms and flowshop
scheduling: towards the development o f a real-time process control system” in
Evolutionary Computing. AISB Workshop. Selected Papers, pp.277-290, Lecture
N otes in Computer Science (865), T.C.Fogarty (Ed.), Springer-Verlag, Berlin,
Germany.
Chan, H.M., and Milner, D.A. (1982), “Direct clustering algorithm for group
formation in cellular manufacture”, Journal o f Manufacturing Systems, v o l.l, n o .l,
pp.65-75.
Chandrasekharan, M.P., and Rajagopalan, R. (1986), “MODROC: An extension o f
rank order clustering for group technology”, Int.J. o f Production Research, vol.24,
no.5, pp.1221-1233.
Chandrasekharan, M.P., and Rajagopalan, R. (1986b), “An ideal-seed non-
hierarchical clustering algorithm for celllar manufacturing”, Int.J. o f Production
Research, vol.24, no.2, pp.451-464.
Chandrasekharan, M.P., and Rajagopalan, R. (1987), “ZODIAC - an algorithm for
concurrent formation o f part families and machine-cells”, Int.J. o f Production
Research, vol.25, no.6, pp.835-850.
Chandrasekharan, M.P., and Rajagopalan, R. (1989), “GROUPABILITY: an analysis
o f the properties o f binary data matrices for group technology”, Int.J. o f Production
Research, vol.27, no.6, pp. 1035-1052.
Chankong, V. and Haimes, Y.Y. (1983), Multiobjective decision making and
methodology, North Holland, N ew York.
Chen, C.-L., Neppali R.V. and Aljaber, N. (1996a), "Genetic algorithms applied to the
continuous flow-shop problem”, Computers & Industrial Engineering, vol.30, no 4
pp.919-929.
Chen, P., Toyota, T. and Nasu, M. (1996b), “Self-organisation method o f symptom
parameters for for failure diagnosis by genetic algorithms, Proc. o f the 1996 IEEE
Industrial Electronics Conference - IECON, pp.829-835, IEEE, Piscataway, NJ, USA.

2 0 4

References

Cheng, C.H., Gupta, Y.P., Lee, W.H., and Wong, K.F. (1998), “A TSP-based
heuristic for forming machine groups and part families”, Int.J. o f Production
Research, vol.36, no.5, pp.1325-1337.
Cheng, C.-H., Madan, M.S., and Motwani, J. (1996a), “Designing cellular
manufacturing systems by a truncated tree search”, Int.J. o f Production Research,
vol.34, no.2, pp.349-361.
Cheng, R., Gen, M. and Tosawa, T. (1996b), “Genetic algorithms for designing loop
layout manufacturing systems”, Computers & Industrial Engineering, vol.31, no 3/4
pp.587-591.
Cheng, R., Gen, M. and Tozawa, T. (1995), “Genetic search for facility layout design
under intreflows uncertainty”, Proc.of the 1995 IEEE Confon Evolutionary
Computation, V o l.l, pp.400-405, IEEE, Piscataway, NJ, USA.
Cheng, R., Gen, M. and Tsujimura, Y. (1996c), “A tutorial survey o f job-shop
scheduling problems using genetic algorithms, part I: representation”, Computers &
Industrial Engineering, vol.30, no.4, pp.983-997.
Cheng, R., Gen, M. and Tsujimura, Y. (1999), “A tutorial survey o f job-shop
scheduling problems using genetic algorithms, part II: hybrid genetic search
strategies”, Computers & Industrial Engineering, vol.36, no.2, pp.343-364.
Chiu, C. and Yih, Y. (1995), “A learning-based methodology for dynamic scheduling
in distributed manufacturing systems”, IntJ.of Production Research, vol.33 no 11
pp.3217-3232.
Cho, B.J., Hong, S.C. and Okoma, S. (1996), “Job-shop scheduling using genetic
algorithms”, in Critical Technology: Proc. o f the 3rd World Congress on Expert
Systems”, pp.351-358, Cognizant Com.Corp., New York.
Choobineh, F.C. (1988), “A framework for the design o f cellular manufacturing
systems”, Int.J. o f Production Research, vol.26, no.7, pp. 1161 -1172.
Chu, C.-H., and Hayya, J.C. (1991), “A fuzzy-clustering approach to manufacturing
cell-formation”, Int.J.of Production Research, vol.29, no.7, pp.1475-1487.
Cohon, J.L. (1978), Multi-Objective Programming and Planning, Academin Press,
N ew York.
Cohoon, J.P., Hedge, S.U., Martin, W.N. and Richards, D.S. (1991), “Distributed
genetic algorithms for the floorplan design problem”, IEEE Transactions on
Computer-Aided Design o f Integrated Circuits and Systems, vol.10, no.4, pp.483-492.
Conway, D.G. and Venkataramanan, M.A. (1994), “Genetic search and the dynamic
facility layout problem”, Computers & Operations Research, vol.21, no.8, pp.955-
960.
Cramer, N.L. (1985), “A representation for the adaptive generation o f simple
sequential programs”, in Proc. o f the 1st Int. Conf. on Genetic Algorithms and their
Applications, pp. 183-187, J.J.Grefenstette (Ed.), Lawrence Erlbaum, Hillsdale, NJ.
Croce, F.D., Tadei, R. and Volta, G. (1995), “A Genetic Algorithm for the job-shop
problem”, Computers & Operations Research, vol.22, n o .l, pp. 15-24.
D a Silveira, G. (1999), “A methodology o f implementation o f cellular
manufacturing”, Int.J. o f Production Research, vol.37, no.2, pp.467-479.

205

References

Dagli, C.H. and Sittisathancai, S. (1995), “Genetic neuro-scheduler: a new approach
for job shop scheduling, Int.J. o f Production Economics, vol.41, no.1-3, pp.135-145.
Daida, J., Ross, S., McClain, J., Ampy, D. and Holczer, M. (1997), “Challenges with
verification, repeatability, and meaningful comparisons in genetic programming”, in
Genetic Programming 1997: Proceedings o f the Second Annual Conference, Koza,
J.R. et al. (eds), pp. 64-69, Stanford University, CA, USA.
Davis, L. (1985), “Job shop scheduling with genetic algorithms”, in Proc. o f the 1st
Int. Conf. on Genetic Algorithms and their Applications, pp.136-140, J.J.Grefenstette
(Ed.), Lawrence Eribaum, Hillsdale, NJ.
D e Jong, K.A. (1975), “An analysis o f the behaviour o f a class o f genetic adaptive
systems” (Doctoral dissertation, University o f Michigan), Dissertation Abstracts
International, vol.36, no. 10, 5 HOB.
D e Witte, J. (1980), “The use o f similarity coefficient in production flow analysis”,
Int.J o f Production Research, vol.18, no.4, pp.503-514.
Deb, K. and Goldberg, D.E. (1989), “An investigation o f niches and species formation
in genetic function optimisation”, in Proc. o f the 2nd Int. Conf. on Genetic Algorithms
and their Applications, pp.42-50, J.D. Schaffer (Ed.), Morgan Kaufman, San Mateo.
Dereli, T., and Filiz, I.H. (1999), “Optimisation o f process planning functions by
genetic algorithms”, Computers & Industrial Engineering, vol.36, no.2, pp.281-308.
Dimopoulos, C., and Zalzala, A.M.S. (2000), “Recent developments in evolutionary
computation for manufacturing optimisation: problems, solutions and comparisons”,
IEEE Transactions in Evolutionary Computation, vol.4, no.2, pp.93-113.
Disney, S.M., Naim, M.M. and Towill, D.R. (1997), “Development o f a fitness
measure for an inventory and production control system”, in GALESIA '97: Genetic
Algorithms in Engineering Systems: Innovations and Applications. Conference
Proceedings, pp.351-355, IEE Conf.Publ. no.446, IEE, Stevenage, England.
Domdorf, U. and Pesch, E. (1995), “Evolution-based learning in a job-shop
scheduling environment”, Computers & Operations Research, vol.22, n o .l, pp.177-
181.
Du J. and Leung J.Y.-T. (1989), “Minimising total tardiness on one machine is NP-
hard”, Mathematics o f Operations Research, vol.15, no.3, pp.483-495.
Dubois, D ., and Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications,
Academic Press, N ew York.
Emmons H. (1968), “One machine sequencing to minimise certain function o f job
tardiness”, Operations Research, vol.17, no.4, pp.701-715.
Fang, H.L., Come, D. and Ross, P. (1996), “A Genetic Algorithm for job-shop
problems with various schedule quality criteria”, in Evolutionary Computing. AISB
Workshop. Selected Papers, Lecture Notes in Computer Science (1143), T.C.Fogarty
(Ed.), pp.39-49, Springer-Verlag, Berlin, Germany.
Fang, J. and Xi, Y. (1997), “A rolling horizon job shop rescheduling strategy in the
dynamic environment”, Int.J.of Advanced Manufacturing Technology, vol.13, no.3,
pp.227-232.

2 0 6

References

Feng, W., Bums, G.B. and Harrison, D.K. (1997), “Using genetic algorithms bounded
by dynamic linear constraints for marketing/production joint decision making”, in
GALESIA ‘97: Genetic Algorithms in Engineering Systems: Innovations and
Applications. Conference Proceedings, pp.339-344, IEE Conf.Publ. no.446, IEE,
Stevenage, England.
Fischer, H. and Thompson, G.L. (1963), “Probabilistic learning combinations o f local
job-shop scheduling rules” in Industrial Scheduling, pp.225-251, J.F.Muth and
G.L.Thompson (Eds), Prentice Hall, Englewood Cliffs, NJ.
Fisher M.L. (1976), “A dual algorithm for the one-machine scheduling problem”,
Mathematical Programming, vol.l 1, no.3, pp.229-251.
Fogel, L.J., Owens, A.J. and Walsch, M.J. (1966), Artificial Intelligence through
Simulated Evolution. Wiley, N ew York.
Fonseca, C.M. and Fleming, P.J. (1993), “Genetic algorithms for multiobjective
optimisation: Formulation, Discussion and Generalization”, in Proc. o f the 5th Int.
Conf. on Genetic Algorithms and their Applications, pp.416-423, S. Forrest (Ed.),
Morgan Kaufman, San Mateo.
Fonseca, C.M. and Fleming, P.J. (1995), “An overview o f evolutionary algorithms in
multiobjective optimisation”, Evolutionary Computation, vol.3, n o .l, pp.1-16.
Fonseca, C.M. and Fleming, P.J. (1998), “Multiobjective optimization and multiple
constraint handling with evolutionary algorithms-Part I: A unified formulation” IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
vol.28, no. 1, pp.26-37.
Friedberg, R. (1958), “A learning machine, part I”, IBM Journal on Research &
Development, vol.2, pp.2-13.
Fry T.D., Vicens L., Macleod K. and Femadez S. (1989), “A heuristic solution
procedure to minimize total tardiness”, Journal o f the Operational Research Society,
vol.40, pp.293-297.
Fuchs, M. (1998), “Crossover versus mutation: An empirical and theoretical case
study”, in Genetic Programming 1998: Proceedings o f the Third Annual Conference
(J.R. Koza etal., eds.), pp.78-85, Morgan Kaufmann.
Fujiki, C. and Dickinson, J. (1987), “Using the genetic algorithm to generate LISP
source code to solve the prisoner’s dilemma”, in Proc. o f the 2nd Int. Conf. on Genetic
Algorithms and their Applications, J.J.Grefenstette (Ed.), pp.236-240, Lawrence
Erlbaum, Hillsdale, NJ.
Fujimoto, H., Lian-yi, C., Tanigawa, Y. and Iwahashi, K. (1995), “Application o f
genetic algorithm and simulation to dispatching rule-based FMS”, in Proc. o f the 1995
IEEE Int. Conf.on Robotics & Automation, pp. 190-195, IEEE, Piscataway, NJ, USA.
Garavelli, A.G., Okogbaa, O.G. and Violante, N. (1996), “Global manufacturing
systems: a model supported by genetic algorithms to optimise production planning”,
Computers & Industrial Engineering, vol.31, no. 1/2, pp. 193-196.
Garces-Perez, J., Schoenefeld, D.A. and Wainwright, R.L. (1996), “Solving facility
layout problems using genetic programming”, in Genetic Programming 1996: Proc.of
the 1st Annual Conference, Koza, Goldberg, Fogel and Riolo (Eds.), pp. 182-190, MIT
Press.

2 0 7

References

Garey, M. and Johnson, D. (1979), Computers and Intractability: A Guide to the
Theory ofNP-Completness. W.H.Freeman, San Francisco.
Garey, M., Johnson, D.S. and Sethi, R. (1976), “The complexity o f flowshop and
jobshop scheduling”, Mathematics o f Operations Research, v o l.l, pp.l 17-129.
Gau, K.-Y. and Meller, R.D. (1993), “An iterative facility layout algorithm”, Int.J. o f
Production Research, vol.37, no.16, pp.3739-3758.
Gen, M., Tsujimura, Y. and Kubota, E. (1994), “Solving job shop scheduling
problems by genetic algorithms” in Proc.of the 1994 IEEE Int.Conf on Systems, Man
& Cybernetics, p p .l577-1582, IEEE, Piscataway, NJ, USA.
Gen, M., Ida, K. and Cheng, C. (1995), “Multirow machine layout problems in fuzzy
environment using genetic algorithms”, Computers & Industrial Engineering, vol.29,
no. 1-4, pp.519-523.
Giffler, B. and Thompson, G.L. (1969), “Algorithms for solving production
scheduling problems”, Operations Research, vol.8, pp.487-503.
Gilbert, R.J., Goodacre, R., Shann, B., Taylor, J., Rowland, J.J. and Kell, D.B. (1998),
“Genetic Programming-Based Variable Selection for High-Dimensional Data”, in
Genetic Programming 1998: Proceedings o f the Third Annual Conference (J.R. Koza
et al., eds.), p p .l09-115, Morgan Kaufmann.
Glover, F. (1990), “Tabu Search: a tutorial”, Interfaces, vol.20, no.3, pp.79-94.
Gohtoh, T., Ohkura, K. and Ueda, K. (1996), “An application o f genetic algorithm
with neutral mutations to job-shop scheduling problems”, Proc.of the Int.Conf. on
Advance in Production Systems, APMS’96, Okino, Tamura, Fujii (Eds.), pp.563-568,
Kyoto Univ., Kyoto, Japan.
Goldberg, D ., E. (1989), Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, Reading, MA.
Gong, D., Yamazaki, G. and Gen, M. (1996), “Evolutionary program for optimal
design o f material distribution system”, in Proc.of the 1996 IEEE Int.Conf.on
Evolutionary Computation, p p .l39-143, IEEE, Piscataway, NJ, USA.
Gonzalez, B., Torres, M. and Moreno, J.A. (1995), “A hybrid genetic algorithm
approach for the ‘no-wait’ flowshop scheduling problem” in GALESIA ‘95: Genetic
Algorithms in Engineering Systems: Innovations and Applications. Conference
Proceedings, pp.59-64, IEE Conf.Publ. no.414, IEE, London, England.
Gravel, M., Nsakanda, A.L., and Price, W. (1998), “Efficient solutions to the cell
formation problem with multiple routings via a double-loop genetic algorithm”,
European Journal o f Operational Research, vol.l 09, pp.286-298.
Groppeti, R. and Muscia, R. (1995), “Genetic algorithms for optimal assembly
planning”, in Proc.of the 1st World Congress on Intelligent Manufacturing Processes and Systems, pp.319-333, Univ.of Puerto Rico, Sa Juan, Puerto Rico.
Gupta, T. (1993), “Design o f manufacturing cells for flexible environment
considering alternative routeing”, Int.J. o f Production Research, vol.31, no 6
pp.l 259-1273.

2 0 8

References

Gupta, T., and Seifoddini, H. (1990), “Production data based similarity coefficient for
machine-component grouping decisions in the design o f a cellular manufacturing
system”, Int.J. o f Production Research, vol.28, no.7, pp.1247-1269.
Gupta, Y., Gupta, M., Kumar, A. and Sundaram, C. (1996), “A genetic algorithm-
based approach to cell-composition and layout design problems”, Int.J.of Production
Research, vol.34, no.2 pp.447-482.
Guzman, C.-R. and Kramer, M.A., (1994), “Remote diagnosis and monitoring o f
complex industrial systems using a genetic algorithm approach, in Proc.of the IEEE
Int.Symposium on Industrial Electronics, pp.363-376, IEEE, Piscataway, NJ, USA.
Hamada, K., Baba, T., Sato, K. and Yufu, M. (1995), “Hybridising a genetic
algorithm with rule-based reasoning for production planning”, IEEE Expert, vol.10,
no.5, pp.60-67.
Harhalakis, G.R., Nagi, R , and Proth, J.-M. (1990), “An efficient heuristic in
manufacturing cell formation for group technology applications”, Int.J. o f Production
Research, vol.28, n o .l, pp.185-198.
Held M. and Karp R.M. (1962), “A dynamic programming approach to sequencing
problems”, Journal o f the Society for Industrial and Applied Mathematics (SIAM),
vol.10, n o .l, pp.196-210.
Herrmann, J.W. and Lee, C.Y. (1995), “Solving a class scheduling problem with
genetic algorithms”, ORSA Journal on Computing, vol.7, no.4, pp.443-452.
Herrmann, J.W., Lee, C.Y. and Hinchman, J. (1995), “Global job-shop scheduling
with a genetic algorithm”, Production & Operations Management, vol.4, n o .l, pp 30-
45.
Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor,
University o f Michigan Press, MI.
Holsenback J.E. and Russel R.M. (1992), “A heuristic algorithm for sequencing on
one machine to minimize total tardiness”, Journal o f the Operational Research
Society, vol.43, pp.53-62.
Horn, J. and Nafpliotis N. (1993), “The Niched Pareto Genetic Algorithm”, IlliGAL
Report no.93005, Illinois Genetic Algorithms Laboratory, University o f Illinois.
Horvath, M., Markus, A. and Vancza, C. (1996), “Process planning with genetic
algorithms on results o f knowledge-based reasoning”, Int.J. o f Computer Integrated
Manufacturing, vol.9, no.2, pp. 145-166.
Ibaraki T. and Nakamura Y. (1994), “A dynamic programming method for single
machine scheduling”, European Journal o f Operational Research, vol.76, pp.72-81.
Iri, M. (1968), “On the synthesis o f loop and cutset matrices and related problems”,
RAAG Memoirs, vol.4, A-XII, pp.376-410.
Jaccard, P., 1908, “Nouvelles recherches sur la distribution florale”, Bull. Soc. Vaud.
Sci. Nat., 44,223-270.
Jain, A.K. and Elmaraghy, H.A. (1997), “Production scheduling/rescheduling in
flexible manufacturing systems”, Int.J.of Production Research, vol.35, n o .l, pp.281-
309.

2 0 9

References

Jensen, A.P. and Barnes, J.W. (1980), Network Flow Programming, Wiley, N ew
York.
Jinxing, X. (1997), “An application o f genetic algorithms for general dynamic
lotsizing problems”, in GALESIA '97: Genetic Algorithms in Engineering Systems:
Innovations and Applications. Conference Proceedings, pp.82-87, IEE Conf.Publ.
no.446, IEE, Stevenage, England.
Joines, J.A., Culbreth, C.T. and King, R.E. (1996), “Manufacturing cell design: an
integer programming model employing genetic algorithms”, HE Transactions,
vol.28,no.l, pp.69-85.
Jones, A ., Rabelo, L. and Yih, Y. (1995), “A hybrid approach for real-time
sequencing and scheduling”, Int.J.of Computer Integrated Manufacturing, vol.8, no.2,
pp.145-154.
Kado, K., Ross, P. and Come, D. (1995), “A study o f genetic algorithms for facility
layout problems”, in Proc.of the 6th Int.Conf. on Genetic Algorithms, pp.499-505,
Morgan Kaufman.
Kamhawi, H.N., Leclair, S.R. and Philip, C.L (1996), “ Feature sequencing in the
rapid design system using a genetic algorithm”, Journal o f Intelligent Manufacturing,
vol.7, no. 1, pp.55-67.
Kao, Y., and Moon, Y.B. (1998), “Feature-based memory association for group
technology”, Int.J. o f Production Research, vol.36, no.6, pp.1653-1677.
Karabati, S. and Kouvelis, P. (1997), “Flow line scheduling problem with controllable
processing times”, HE Transactions, vol.29, n o .l, pp.1-14.
Kazerooni, M., Luong, L.H.S., Abhary, K., Chan, F.T.S. and Pun, F. (1996), “An
integrated method for cell layout problem using genetic algorithms”, in Proc.of the
12th Int.Conf.on CAD/CAM, Robotics and Factories o f the Future, pp.752-762,
Middlesex Univ.Press, London, UK.
Kebbe, I., Yokoi, H., Suzuki, K. and Kakazu, Y. (1996), “Vibrational-Potentional
method for large scale scheduling problems”, Proc.of the Int.Conf. on Advance in
Production Systems, APMS’96, Okino, Tamura, Fujii (Eds.), pp.585-590, Kyoto
Univ., Kyoto, Japan.
Kemighan, B.W., and Lin, S. (1970), “An efficient heuristic procedure for
partitioning graphs”, Bell Systems Technology Journal, vol.49, pp.291-307.
Kim, G.H. and Lee, C.S.G. (1995), “Genetic reinforcement learning approach to the
machine scheduling problem”, in Proc.of the 1995 IEEE Int.Conf.on Robotics &
Automation, pp. 196-201, IEEE, Piscataway, NJ, USA.
Kim, G.H. and Lee, C.S.G. (1996), “Genetic reinforcement learning for scheduling
heterogeneous machines”, in Proc.of the 1996 IEEE Int.Conf.on Robotics &
Automation, pp.2798-2803, IEEE, Piscataway, NJ, USA.
Kim, H., Koichi, N. and Gen, M. (1994), “A method for maintenance scheduling
using GA combined with SA”, Computers & Industrial Engineering, vol.27, no. 1-4,
pp.477-480.

2 1 0

References

Kim, J.-U. and Kim, Y.-D. (1996), “Simulated annealing and genetic algorithms for
scheduling problems with multi-level product structure”, Computers & Operations
Research, vol.23, no.9, pp.857-868.
Kim, Y.K., Hyun, C J. and Kim, Y. (1996), “ Sequencing in mixed-model assembly
lines: a genetic algorithm approach”, Computers & Operations Research, vol 23
no.12, pp.1131-1145.
King, J.R. (1980), “Machine-component grouping in production flow analysis: an
approach using a rank order clustering algorithm”, Int.J. o f Production Research,
vol. 18, no.2, pp.213-232.
King, J.R. and Nakomchai, V. (1982), “Machine-component group formation in
group technology: review and extension”, Int.J o f Production Research, vol.20, no.2,
pp. 117-133.
Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1985), “Optimisation by Simulated
Annealing”, Science, vol.220, pp.671-679.
Kobayashi, S., Ono, I. and Yamamura, M. (1995), “An efficient genetic algorithm for
job-shop scheduling problems”, in Proc. o f the 6th Int.Conf.on Genetic Algorithms and
their Applications, L.Eshelman (Ed.), pp.506-511, Morgan Kaufman Publishers, San
Francisco, California.
Koza J.R. (1994), Genetic Programming II: Automatic Discovery o f reusable
programs, MIT Press, Cambridge.
Koza, J.R. (1992), Genetic Programming: On the programming o f Computers by
Means o f Natural Selection, MIT Press, Cambridge.
Kumar, C.S., and Chandrasekharan, M.P. (1990), “Grouping efficacy: a quantitative
criterion for goodness o f block diagonal forms o f binary matrices in group
technology”, Int.J. o f Production Research, vol.28, no.2, pp.603-612.
Kumar, K.R., and Vannelli, A. (1987), “Strategic subcontrcting for efficient
disaggregated manufacturing”, Int.J. o f Production Research, vol.25, no.12, pp.1715-
1728.
Kumar, K.R., Kusiak, A., and Vannelli, A. (1986), “Grouping o f parts and
components in flexible manufacturing systems”, European Journal o f Operational
research, vol.24, pp.387-397.
Kumar, N.S.H. and Srinivasan, G. (1996), “A genetic algorithm for job-shop
scheduling - a case study, Computers in Industry, vol.31, no.2, pp. 155-160.
Kusiak, A. (1987), “The generalised group technology concept”, Int.J. o f Production
Research, vol.25, no.4, pp.561-569
Kusiak, A., and Chow, W.S. (1987), “Efficient solving o f the group technology
problem”, Journal o f Manufacturing Systems, vol.6, no.2, pp.l 17-124.
Lam, S.S., Tang K.W.C. and Cai, X. (1996), “Genetic algorithm with pigeon-hole
coding scheme for solving sequencing problems”, Applied Artificial Intelligence,
vol. 10, no.3, pp.239-256.
Langdon, W.B. and Poli, R. (1997), “An analysis o f the MAX problem in genetic
programming”, in Genetic Programming 1997: Proceedings o f the Second Annual
Conference, Koza, J.R. et al. (eds), pp.222-230, Stanford University, CA, USA.

211

References

Lawer E.L. (1977), “A ‘pseudopolynomial’ algorithm for sequencing jobs to minimise
total tardiness”, Annals o f Discrete Mathematics, vo l.l, pp.331-342.
Lawler E.L. (1964), “On scheduling problems with deferral costs”, Management
Science, vol.l 1, no.2, pp.280-288.
Lawrence, S., (1984), Resource Constrained Project Scheduling: An Experimental
Investigation o f Heuristic Scheduling Techniques, GSIA, Carnegie Mellon University.
Lee, C.Y. and Choi, J.Y. (1995), “A genetic algorithm for job sequencing problems
with distinct due dates and general early-tardy penalty weights”, Computers &
Operations Research, vol.22, no.8, pp.857-869.
Lee, C.-Y., Piramuthu, S. and Tsai, Y.-K. (1997a), “Job-shop scheduling with a
genetic algorithm and machine learning”, Int.J.of Production Research, vol.35, no.4,
pp. 1171-1191.
Lee, H., and Garcia-Diaz, A. (1993), “A network flow approach to solve clustering
problems” Int.J. o f Production Research, vol.31, no.3, pp.603-612.
Lee, I., Sikora, R. and Shaw, M.J. (1997b), “A genetic algorithm-based approach to
flexible flow-line scheduling with variable lot sizes”, in IEEE Transactions on
Systems, Man & Cybernetics - Part B: Cybernetics, vol.27, n o .l, pp.36-54, IEEE,
Piscataway, NJ, USA.
Lee, J.G., Vogt, W.G., and Mickle, M.H. (1979), “Optimal decomposition o f large-
scale networks”, IEEE Transactions on Supply and Maintenance Command, SMC-9,
pp.369.
Leu, Y.-Y., Matheson, L.A. and Rees, L.P. (1996), “ Sequencing mixed-model
assembly lines with genetic algorithms”, Computers & Industrial Engineering, vol.30,
no.4, pp.1027-1036.
Lin, L.T., Dessouky, M.M., Kumar, K.R. and Ng, M.S. (1996), “A heuristic-based
procedure for the weighted production - cell-formation problem”, HE Transactions,
vol.28, pp.579-589.
Lu, C.G., Morton, D., Wang, Z., Myler, P. and Wu, M.H. (1995), “A genetic
algorithm solution o f inspection path planning system for multiple tasks inspection on
co-ordinate measuring machine (CMM), in GALESIA ‘95: Genetic Algorithms in
Engineering Systems: Innovations and Applications. Conference Proceedings,
pp.436-441, IEE Conf.Publ. no.414, IEE, London, England.
Luke, S. and Spector, L. (1997), “A comparison o f crossover and mutation in genetic
programming”, in Genetic Programming 1997: Proceedings o f the Second Annual
Conference, Koza, J.R. et al. (eds), pp.240-248, Stanford University, CA, USA.
MacQueen, J.B. (1967), “Some methods for classification and analysis o f multivariate
observations”, in Proc.of the 5th Symposium on Mathematical Statistics and
Probability”, v o l.l, pp.281, Univ.of California, Berkeley.
Mak, K.L. and Wong, Y.S. (1995), “Design o f integrated production production-
inventory-distibution systems using genetic algorithms”, in GALESIA ‘95: Genetic
Algorithms in Engineering Systems: Innovations and Applications. Conference
Proceedings, pp.454-460, IEE Conf.Publ. no.414, IEE, London, England.

212

References

Matsuo H., Suh C.J. and Sullivan R.S. (1989), “A controlled search simulated
annealing method for the single machine weighted tardiness problem”, Annals o f
Operations Research, vol.21, pp.85-108.
Mavridou, T.D. and Pardalos, P.M. (1997), “Simulated annealing and genetic
algorithms for the facility layout problem: a survey”, Computational Optimisation and
its Applications, vol.7, n o .l, pp.l 11-126.
McAuley, J. (1972), “Machine grouping for efficient production”, Production
Engineer, vol.51, no.2, pp.53-57.
Mcllhaga, M. (1997), “Solving generic scheduling problems with a distributed genetic
algorithm”, ” in Evolutionary Computing, AISB Workshop, p p .l99-212, ” in
Evolutionary Computing, AISB Workshop, Lecture Notes in Computer Science
(1305), D.Come & L.Shapiro (Eds.), pp.199-212, Springer Verlag, Berlin, Germany.
Mcllhagga, M., Husbands, P. and Ives, R. (1996), “A comparison o f optimisation
techniques for integrated manufacturing planning and scheduling” in Proc.of the 4th
Int.Conf.on PPS from Nature, Voigt, Ebeling, Rechenberg, Schwefel (Eds.), pp.604-
613, Springer-Verlag, Berlin, Germany.
McKay, B.M., Willis, M.J., Hiden, H.G., Montague, G.A. and Barton, G.W. (1996),
“Identification o f industrial processes using genetic programming”, in Proc. o f the
Conf. on Identification in Engineering Systems, Friswell and Mottershead (Eds.),
pp.510-519, Univ.of Wales, Swansea, UK.
McNaughton R (1959), “Scheduling with deadlines and loss functions”, Management
Science, vol.6, n o .l, pp.1-12.
Michalewicz, Z. (1992), Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, N ew York.
Mitrovanov, S.P. (1966), The Scientific Principles o f Group Technology, National
Lending Library Translation, Boston Spa, Yorkshire, U.K.
Montagne, G.R. (1969), “Sequencing with time delay costs”, Industrial Engineering
Research Bulletin, 5, Arizona State University, 1969.
Murata, T., Ishibuchi, H. and Tanaka, H. (1996a), “Genetic algorithms for flowshop
scheduling problems”, Computers & Industrial Engineering, vol.30, no.4, pp.l 061-
1071.
Murata, T., Ishibuchi, H. and Tanaka, H. (1996b), “Multi-objective genetic algorithm
and its application to flow-shop scheduling”, Computers & Industrial Engineering,
vol.30, no.4, pp.957-968.
Nair, J.G., nad Narendran, T.T. (1998), “CASE: a clustering algorithm for cell-
formation with sequence data”, Int.J. o f Production Research, vol.36, n o .l, pp.l 57-
179.
Nair, J.G., nad Narendran, T.T. (1999), “ACCORD: a bicriteria algorithm for cell-
formation using ordinal and ratio level data”, Int.J. o f Production Research, vol.37,
no.3, pp.539-556.
N g, S.M. (1993), “Worst-case analysis o f an algorithm for cellular manufacturing”,
European Journal o f Operational Research, vol.69, pp.384-398.

213

References

Niemeyer, G. and Shiroma, P. (1996), “Production scheduling with genetic algorithms
and simulation”, in Proc.of the 4th Int.Conf.on PPS from Nature, Voigt, Ebeling,
Rechenberg, Schwefel (Eds.), pp.930-939, Springer-Verlag, Berlin, Germany.
Nordin, P. (1994), “A compiling genetic programming system that directly
manipulates machine code”, in Advances in Genetic Programming, Kinnear Jr., K.E.
(Ed.), pp.311-331, MIT Press, Cambridge.
Norman, B.A. and Bean, G.C. (1997), “Operation sequencing and tool assignment for
multiple spindle CNC machines”, in Proc.of the 1997 IEEE Conf.on Evolutionary
Computation, pp.425-429, IEEE, Piscataway, NJ, USA.
Norman, B.A. and Smith, A.E. (1997), “Random-keys genetic algorithm with
adaptive penalty function for optimization o f constrained facility layout problems”, in
Proc.of the 1997 IEEE Int.Conf.on Evolutionary Computation, pp.407-411, IEEE,
Piscataway, NJ, USA.
O ’Reilly, U-M. and Oppacher, F. (1995), “The troubling aspects o f a building block
hypothesis for genetic programming”, in Foundations o f Genetic Algorithms 3,
Whitley, L.D. and Vose M.D., (eds), pp.73-88, Morgan Kaufman, San Francisco, CA.
Oei, K.O, Goldberg, D.E. and Chang, S.-J. (1991), “Tournament selection, niching,
and the preservation o f diversity”, IlliGAL Report no.91011, Illinois Genetic
Algorithms Laboratory, University o f Illinois.
Ono, I., Yamamura, M. and Kobayashi, S. (1996), “A genetic algorithm for job-shop
scheduling problems using job-based order crossover”, in Proc.of the 1996 IEEE
Int.Conf. on Evolutionary Computation, pp.2798-2803, IEEE, Piscataway, NJ, USA.
Panwalkar S.S., Smith M.L. and Koulamas C.P. (1993), “A heuristic for the single
machine tardiness problem”, European Journal o f Operational Reserarch, vol 70
pp.304-310.
Park, L.-J. and Park, C.H. (1995a), “Genetic algorithms for job-shop scheduling
problems based on two representational schemes”, Electronics Letters, vol.31 no 3
pp.205-207.
Park, L.-J. and Park, C.H. (1995b), “Application o f genetic algorithms to job-shop
scheduling problems with active-schedule constructive crossover”, in Proc.of the
1995 IEEE Int.Conf on Systems, Man & Cybernetics, pp.530-535, IEEE, Piscataway,
NJ, USA.
Parmee, I. (1998), "Exploring the design potential o f evolutionary/adaptive search and
other computational intelligence technologies", in 3rd Int. Conf. o f Adaptive
Computing in design and manufacture, pp. 27-44, Springer-Verlag, Plymouth, U.K..
Parmee, I. and Watson, A.H. (2000), “An investigation o f the utilization o f genetic
programming techniques for response curve modelling”, in Statistics for Engine
Optimization, Edwards, S., P., Grove, D., M. and Wynn, H., P. (eds.), pp. 125-143,
Professional Engineering Publishing, Bury St Edmunds, UK.
Patro, S. and Kolarik, W.J. (1997), “Neural networks and evolutionary computation
for real-time quality control o f complex processes”, Proc. o f the 1997 IEEE Annual
Reliability and Maintainability Symposium, pp.327-332, IEEE, Piscataway, NJ, USA.
Pinedo, M. (1995), Scheduling: Theory, Algorithms and Systems, Prentice Hall,
Englewood Cliffs.

2 1 4

References

Pohlheim, H. and Marenback, P. (1996), “Generation o f structured process models
using genetic programming”, in Evolutionary Computing. A1SB Workshop. Selected
Papers, Lecture Notes in Computer Science (1143), T.C.Fogarty (Ed.), pp.102-109,
Springer-Verlag, Berlin, Germany.
Potts C.N. and Van Wassenhove L.N. (1982), “A decomposition algorithm for the
single machine total tardiness problem”, Operations Research Letters, vol. 1 no 5
pp. 177-181.
Potts C.N. and Van Wassenhove L.N. (1985), “A branch & bound algorithm for the
total weighted tardiness problem”, Operations Research, vol.33, pp.363-377.
Potts C.N. and Van Wassenhove L.N. (1991), “Single machine tardiness sequencing
heuristics”, HE Transactions, vol.23, no.4, pp.346-354.
Rajagopalan, R., and Batra, J.L. (1975), “Design o f cellular production systems: a
graph-theoretic approach”, Int.J. o f Production Research, vol. 13, no.6, pp.567-579.
Rasheed, K., Hirsch, H. and Gelsey, A. (1997), “ A genetic algorithm for continuous
design search space”, Artificial Intelligence in Engineering, vol. 11, pp.295-305.
Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany.
Reeves, C.R. (1995), “A genetic algorithm for flowshop scheduling”, Computers &
Operations Research, vol.22, n o .l, pp.5-13.
Reeves, C.R., Dai, P. and Burham, K.J. (1996), “A hybrid genetic algorithm for
system identification”, in Proc.of the Int.ICSC Symposia on Intelligent Industrial
Automation and Soft Computing, Anderson & Warwick (Eds.), pp.B278-B283,
Int.Comp.Science Conventions, Millet, Canada.
Rinnooy Kan A.H.G, Lageweg B.J. and Lenstra J.K. (1975), “Minimising total costs
in one-machine scheduling”, Operations Research, vol.23, no.5, pp.908-927.
Ross, P. and Tuson, A. (1997), “Directing the search o f evolutionary and
neighbourhood-search optimisers for the flowshop sequencing problem with idle-time
heuristic” in Evolutionary Computing, AISB Workshop, Lecture Notes in Computer
Science (1305), D.Come & L.Shapiro (Eds.), pp.213-225, Springer Verlag, Berlin,
Germany.
Rubinovitz, J. and Levitin, G. (1995), “Genetic algorithm for assembly line
balancing”, Int.J.of Production Economics, vol.41, no.1-3, pp.343-354.
Russel R.M. and Holsenback J.E. (1996), “Evaluation o f leading heuristics for the
single machine tardiness problem”, European Journal o f Operational Research,
vol.96, pp.304-310.
Russel R.M. and Holsenback J.E. (1997), “Evaluation o f greedy, myopic and less-
greedy heuristics for the single-machine, total tardiness problem”, Journal o f the
Operational Research Society, vol.48, pp.640-646.
Sannomiya, N. and lima, H. (1996), “Application o f a genetic algorithm to scheduling
problems in manufacturing processes”, Proc.of the 1996 IEEE Int.Conf.on
Evolutionary Computation, pp.523-528, IEEE, Piscataway, NJ, USA.

215

References

Sarker, B.R. (1996), “The resemblance coeficients in group technology: a survey and
comparative study o f relational metrics”, Computers & Industrial Engineering,
vol.30, n o .l, pp.103-116.
Sarker, B.R., and Mondal, S. (1999), “Grouping efficiency measures in cellular
manufacturing: a survey and critical review”, Int.J. o f Production Research, vol.37,
no.2, pp.385-314.
Schaffer, J.D. (1985), “Multiple objective optimization with vector evaluated genetic
algorithms”, in Proc. o f the 1st Int. Conf. on Genetic Algorithms and their
Applications, pp.93-100, J.J.Grefenstette (Ed.), Lawrence Erlbaum, Hillsdale, NJ.
Schild A. and Fredman I.J. (1961), “On scheduling tasks with associated linear loss
functions”, Management Science, vol.7, no.3, pp. 280-285.
Schrage L.E. and Baker K.R. (1978), “Dynamic programming solution o f sequencing
problems with precedence constraints”, Operations Research, vol.26, no.3, pp.444-
449.
Sebaaly, M.F. and Fujimoto, H. (1996), “A genetic planner for assembly automation”,
in Proc.of the 1996 IEEE Int.Confon Evolutionary Computation, pp.401-406, IEEE,
Piscataway, NJ, USA.
Seifoddini, H (1989), “Single linkage vs. average linkage clustering in machine cells
formation application”, Computers & Industrial Engineering, vol.16, pp.419-426.
Seifoddini, H., and Djassemi, M. (1995), “Merits o f the production volume based
similarity coefficient in machine cell-formation”, Journal o f Manufacturing Systems,
vol.14, n o .l, pp.35-44.
Selim, M.H., Askin, R.G., and Vakharia, A J. (1998), “Cell-formation in group
technology: review, evaluation and directions for future research”, Computers &
Industrial Engineering, vol.34, n o .l, pp.3-20.
Sen T., Austin L.M. and Ghandforoush P. (1983), “An algorithm for the single
machine sequencing problem to minimize total tardiness”, AIIE Transactions, vol.15,
pp.363-366.
Shaw, K.J. and Flemming, P.J. (1997), “Use o f rules and preferences for schedule
builders in genetic algorithms for production scheduling” in Evolutionary Computing,
AISB Workshop, Lecture Notes in Computer Science (1305), Come, D. and Shapiro,
L. (Eds.), pp.237-250, Springer Verlag, Berlin, Germany.
Shi, G. (1997), “A genetic algorithm applied to a classic job-shop scheduling
problem”, Int.J. o f Systems Science, vol.28, n o .l, pp.25-32.
Shtub, A. (1989), “Modelling group technology cell-formation as a generalised
assignment problem”, Int.J. o f Production Research, vol.27, no.5, pp.775-782.
Sikora, R. (1996), “A genetic algorithm for integrating lot-sizing and sequencing in
scheduling a capacitated flow-line”, Computers & Industrial Engineering, vol.30,
no.4, pp.969-981.
Singh, N . (1993), “Cellular manufacturing systems: an invited review”, European
Journal o f Operational Research, vol.69, pp.284-291.
Singh, N. (1996), Systems Approach to Computer-Integrated Design and
Manufacturing, Wiley, Chchester, N ew York.

2 1 6

References

Sneath, P.H.A, (1957), “The application o f computers to taxonomy”, Journal o f
General Microbiology, vol.17, pp.201-206.
Sniedovich, M. (1988), “A multi-objective routing problem revisited”, Engineering
Optimization, vol.13, pp.99-108.
Sofianopoulou, S. (1997), “Application o f simulated annealing to a linear model for
the formulation o f machine cells in group technology”, lnt.J. o f Production Research,
vol.35, no.2, pp.501-511.
Sofianopoulou, S. (1999), “Manufacturing cells design with alternative process plans
and/or replicate machines”, Int.J. o f Production Research, vol.37, no.3, pp.707-720.
Srinivas, N. and Deb, K. (1994), “Multiobjective optimisation using nondominated
sorting in genetic algorithms”, Evolutionary Computation, vol.2, no.3, pp.221-248.
Srinivasan V. (1971), “A hybrid algorithm for the one machine sequencing problem to
minimize total tardiness”, Naval Research Logistics Quarterly, vol.18, no.3, pp. 317-
327.
Srinivasan, G, and Narendran, T.T. (1991), “GRAFICS - a nonhierarchical clustering
algorithm for group technology”, Int.J. o f Production Research, vol.29, no.3, pp.463-
478.
Srinivasan, G, and Narendran, T.T., and Mahaderan, B. (1990), “An assignment
model for the part-families problem in group technology”, Int.J. o f Production
Research, vol.28, n o .l, pp. 145-152.
Srinivasan, G. (1994), “A clustering algorithm for machine cell-formation in group
technology using minimum spanning trees”, Int.J. o f Production Research, vol.32,
no.9, pp.2149-2158.
Stanfel, L.E. (1985), “Machine clustering for economic production”, Engineering
Costs & Production Economics, vol.9, pp.73-81.
Stockton, D.J. and Quinn, L. (1995), “Aggregate production planning using genetic
algorithms”, Proc. o f the Inst.of Mechanical Engineers, Part B: Journal o f
Engineering Manufacture, vol.209, no.B3, pp.201-209.
Su, C.-T. and Hsu, C.-M. (1996), “A two-phased genetic algorithm for the cell
formation problem”, Int.J. o f Industrial Engineering, vol.3, no.2, pp.l 14-125.
Suresh, G., Vivod, V.V. and Sahu, S. (1995), “A genetic algorithm for facility
layout”, Int.J.of Production Research, vol.33, no.12, pp.3411-3423.
Suresh, G., Vivod, V.V. and Sahu, S. (1996), “A genetic algorithm for assembly line
balancing”, Production Planning & Control, vol.7, n o .l, pp.38-46.
Swaragi, Y., Nakayama, H. and Tanino, T. (1985), Theory o f Multi-Objective
Optimisation, Academic Press, N ew York.
Tailard, E. (1993), “Benchmarks for basic scheduling problems”, European Journal
o f Operations Research, vol.64, pp.278-285.
Takatori, N ., Minagawa, M. and Kakazu, Y. (1994), “A GA-based approach to a
process palnning problem with geometric constraints”, in ANNIE’94: Artificial Neural
Networks in Engineering. Proceedings, pp.369-374, ASME Press.

217

References

Tam, K.Y. (1992), “Genetic algorithms, function optimisation and facility layout
design”, European Journal o f Operational Research, vol.63, no.2, pp.322-346.
Tansel B.C. and Sabuncuoglu I. (1997), New insights on the single machine total
tardiness problem, Journal o f the Operational Research Society, vol.48, pp.82-89.
Tate, D.M. and Smith, A.E. (1995), “Unequal-area facility layout by genetic search”,
HE Transactions, vol.7, no.4, pp.465-472.
Teller, A. and Veloso, M. (1996), “PADO: A new learning architecture for object
recognition” in Symbolic Visual Learning, Ikeuchi, Katsushi and Veloso Manuela
(eds), Oxford University Press.
Tsujimura, Y., Gen, M. and Kubota, E. (1995), “Solving fuzzy assembly-line
balancing problems with genetic algorithms”, Computers & Industrial Engineering,
vol.29, no. 1-4, pp.543-547.
Usher, J.M. and Bowden, R. (1996), “The application o f genetic algorithms to
operation sequencing for use in computer-aided process planning”, Computers &
Industrial Engineering, vol.30, no.4, pp.999-1013.
Vakharia, A.J., and Chang, Y.-L. (1997), “Cell-formation in group technology: a
combinatorial search approach”, Int.J. o f Production Research, vol.35, no.7, pp.2025-
2043.
Vakharia, A.J., and Wemmerlov, U. (1990), “Designing a cellular manufacturing
system: a material flow approach based on operation sequences”, HE Transactions,
vol.22, no. 1, pp.84-97.
Vannelli, A ., and Kumar, K.R. (1986), “A method for finding minimal bottleneck
cells for grouping part-machine families”, Int.J. o f Production Research, vol.24, no.2,
pp.387-400.
Venugopal, V. and Narendran, T.T. (1992), “A genetic algorithm approach to the
machine-component grouping problem with multiple objectives”, Computers &
Industrial Engineering, vol.22, no.4, pp.269-480.
Viswanadham, N ., Sharma, S.M. and Taneja, M. (1996), “Inspection allocation in
manufacturing systems using stochastic search techniques”, IEEE Transactions on
Systems, Man, & Cybernetics - Part A: Systems and Humans, vol.26, no.2, pp.222-
230.
Watson, A.H. and Parmee, I. (1996), “Systems Identification using Genetic
Programming”, in Proceedings o f the 2nd International Conference on Adaptive
Computing in Engineering Design and Control (ACEDC ’96), Parmee, I.C. (ed.),
pp.248-255, PEDC, University o f Plymouth, UK.
Watson, A.H. and Parmee, I. (1998), “Improving Engineering Design Models using
An Alternative Genetic Programming Approach”, in 3rd Int. Conf. o f Adaptive
Computing in design and manufacture, pp. 193-206, Springer-Verlag, Plymouth,
U.K..
Wang, D. and Fang, S.-C. (1997), “A genetics-based approach for aggregated
production planning in a fuzzy environment”, IEEE Transactions on Systems, Man,
Cybernetics - Part A: Systems and Humans, vol.27, no.5, pp.636-645.

218

References

Wei, J.C., and Gaither, N. (1990), “An optimal model for cell-formation decisions”,
Decision Sciences, vol.21, no.2, pp.416-433.
Wilkerson L.J. and Irwin J.D. (1971), “An improved algorithm for scheduling for
independent tasks”, AIIE Transactions, vol.3, no.3, pp.239-245.
Winston, W. L. (1995), Introduction to mathematical programming: applications and
algorithms, Belmont, California, Wadsworth Pub.Co.
Yamada, T. and Nakano, R. (1992), “A genetic algorithm applicable to large scale job
shop problems”, in Proc.of the 2nd Int.Conf.on PPS from Nature, Männer &
Manderick (Eds.), pp.281-290, Elsevier Science Publishers, North Holland.
Yamada, T. and Nakano, R. (1995), “A genetic algorithm with multi-step crossover
for job-shop scheduling problems”, in GALESIA ‘95: Genetic Algorithms in
Engineering Systems: Innovations and Applications. Conference Proceedings,
pp.146-151, IEE Conf.Publ. no.414, IEE, London, England.
Yip-Hoi, D. and Dutta, P. (1996), “A genetic algorithm application for sequencing
operations in process planning for parallel machining”, HE Transactions, vol.28, n o .l,
pp.55-68.
Zhang, F., Zhang, Y.F. and Nee, A.Y.C (1998), “Using genetic algorithms in process
planning for job shop machining”, IEEE Transactions on Evolutionary Computation,
v o l l , no.4, pp.278-289, IEEE, Piscataway, NJ, USA.
Zhao, L., Tsujimura, Y. and Gen, M. (1996), “Genetic algorithm for robot selection
and workstation assignment problem”, Computers & Industrial Engineering, vol.31,
no.3/4, pp.599-602.
Zhou, G. and Gen, M. (1997), “Evolutionary computation o f multi-criteria production
process planning problem”, in Proc.of the 1997 IEEE Conf.on Evolutionary
Computation, pp.419-424, IEEE, Piscataway, NJ, USA.
Zhu, Z., Heady, R.B., and Reiners, S. (1995), “An efficient zero-one formulation o f
the cell-formation problem”, Computers & Industrial Engineering, vol.28, no.4,
pp.911-916.
Zitzler, E. and Thiele, L. (1999), “Multiobjective evolutionary algorithms: a
comparative case study and the Strength Pareto approach”, IEEE Transactions on
Evolutionary Computation, vol.3, no.4, pp.257-271.
Zurada, J., M. (1992), Introduction to Artificial Neural Systems, West Publishing
Company, St.Paul.

2 1 9

