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SUMMARY

A considerable number o f optimisation techniques have been proposed for the 
solution o f  problems associated with the manufacturing process. Evolutionary 
computation methods, a group o f non-deterministic search algorithms that employ the 
concept o f Darwinian strife for survival to guide the search for optimal solutions, have 
been extensively used for this purpose.
Genetic programming is an evolutionary algorithm that evolves variable-length 
solution representations in the form o f computer programs. While genetic 
programming has produced successful applications in a variety o f optimisation fields, 
genetic programming methodologies for the solution o f  manufacturing optimisation 
problems have rarely been reported. The applicability o f genetic programming in the 
field o f manufacturing optimisation is investigated in this thesis. Three well-known 
problems were used for this purpose: the one-machine total tardiness problem, the 
cell-formation problem and the multiobjective process planning selection problem. 
The main contribution o f this thesis is the introduction o f  novel genetic programming 
frameworks for the solution o f  these problems.
In the case o f  the one-machine total tardiness problem genetic programming 
employed combinations o f  dispatching rules for the indirect representation o f job 
schedules. The hybridisation o f genetic programming with alternative search 
algorithms was proposed for the solution o f more difficult problem instances. In 
addition, genetic programming was used for the evolution o f new dispatching rules 
that challenged the efficiency o f man-made dispatching rules for the solution o f the 
problem.
An integrated genetic programming -  hierarchical clustering approach was proposed 
for the solution o f simple and advanced formulations o f the cell-formation problem. 
The proposed framework produced competitive results to alternative methodologies 
that have been proposed for the solution o f the same problem. The evolution o f



similarity coefficients that can be used in combination with clustering techniques for 
the solution o f  cell-formation problems was also investigated.
Finally, genetic programming was combined with a number o f evolutionary 
multiobjective techniques for the solution o f the multiobjective process planning 
selection problem. Results on test problems illustrated the ability o f  the proposed 
methodology to provide a wealth o f  potential solutions to the decision-maker.
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Chapter 1

INTRODUCTION

1.1 Background
Manufacturing is the process o f transforming raw materials through labour into a 
product o f  greater value that meets the designer’s specifications (Singh, 1996).
The Industrial Revolution transformed the manufacturing process from a series o f  
operations carried out collectively by a single man or few people, to a set o f  
interrelated activities where each person involved is specialised in the completion o f  a 
certain task. As manufacturing processes grew rapidly in scale and complexity, the 
need for efficient production lines emerged.
Modem manufacturing companies aim to continuously improve the efficiency o f their 
production lines in an attempt to reduce overall costs, increase productivity and 
address customer needs. The process o f  continuous improvement is critical in today’s 
competitive market environment, since even a small difference in the overall 
production costs o f  rival products could have an impact on their commercial success.
The need for efficient production lines has been addressed by scientific research, 
which, especially the last fifty years, is continuously developing new optimisation 
techniques and procedures. The term manufacturing optimisation is usually employed 
for the description o f  problems associated with the optimisation o f various stages o f  
the manufacturing process. The scheduling o f  part operations, the balancing o f  
machine workloads and the sequencing o f  assembly operations are some typical 
manufacturing optimisation problems that require optimal solutions in the day-to-day 
operation o f  a modem manufacturing plant. Manufacturing optimisation also
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Chapter 1: Introduction

considers problems from areas such as robot control, aggregate production planning 
and inventory control.
The design o f modem manufacturing systems is usually based on philosophies that 
aim to eliminate or ease the solution o f these optimisation problems. The principles o f  
just-in-time production (JIT systems), flexibility (flexible manufacturing systems) and 
groupability (cellular manufacturing systems) have been used successfully for this 
purpose. However, the implementation o f such systems gives rise to optimisation 
problems o f  different nature that can be just as difficult to solve, like the cell- 
formation problem, which is a subject o f  research in this thesis.
Most o f  the problems described above, when formulated mathematically, are 
combinatorial in nature and NP-hard (Garey and Johnson, 1979), i.e. the time 
complexity o f solution methodologies increases exponentially with the size o f the 
problem. This means that exhaustive enumeration o f  the solutions’ space is only 
feasible for small problem instances with present computational resources.
The difficulty o f  manufacturing optimisation problems has attracted considerable 
research interest, not only for the practical issues associated with them on the 
manufacturing process level, but also for their benchmarking potentials in relation to 
solution methodologies. The main methodologies that have been used for the solution 
o f manufacturing optimisation problems over the years are the following:
• Implicit enumeration algorithms (dynamic programming, branch and bound) 

(Bellman and Dreyfus, 1962))
•  Classic optimisation methods (steepest descent, gradient search) (Beveridge, 

1970)
• Mathematical programming (linear programming, non-linear programming) 

(Winston, 1995)
• Neural networks (Zurada, 1992)
•  Fuzzy logic (Dubois and Prade, 1980)
•  Meta-heuristics
Meta-heuristics is a group o f  search algorithms that have been mainly developed 
during the last two decades for the solution o f  difficult multimodal and combinatorial
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Chapter 1: Introduction

optimisation problems. The main feature o f  these algorithms is their ability to escape 
local optima by probabilistically accepting worse-performing solutions during an 
optimisation run, in contrast to classic local search or gradient search procedures. 
Evolutionary algorithms (EA’s) (Holland, 1975), (Michalewicz, 1992), simulated 
annealing (Kirkpatrick et ah, 1985) and tabu search (Glover, 1990) are the most 
notable members o f  the meta-heuristics group. Meta-heuristics have been applied 
successfully on a wide range o f optimisation problems where traditional solution 
methodologies could either handle only small problem instances (mathematical 
programming), or performed poorly due to the presence o f local optima (local search 
or gradient search techniques).
Evolutionary computation methods proved to be particularly popular due to their 
added characteristic o f being able to search the solutions’ space not from a single 
point but from a population o f points in parallel. Their search procedure employs the 
concept o f the Darwinian strife for survival, where solutions performing better on the 
problem considered are given more chance o f  surviving during an optimisation run.
There are several variants o f evolutionary algorithms that are mainly distinguished by 
the type o f  coding used for the representation o f solutions, and the type o f operators 
employed for the generation o f new solutions in the search space. The optimisation 
methodology used in this thesis is genetic programming (GP) (Koza, 1992), one o f the 
newest and most popular members o f  the evolutionary algorithms group. Genetic 
programming evolves solutions in the form o f computer programs, i.e. structures that 
can be compiled either directly or with slight modifications by a computer. In that 
sense genetic programming is an automatic programming methodology. This efficient 
combination o f  evolutionary computation concepts with the principles o f  program 
induction has produced successful applications in a wide range o f optimisation fields 
(Banzhaf et ah, 1998).

1.2 Objectives and contributions of the research
Manufacturing optimisation is one o f  the main application fields o f evolutionary 
computation algorithms. The use o f evolutionary computation techniques for the 
solution o f  manufacturing optimisation problems has grown rapidly during the last
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Chapter 1: Introduction

decade both in terms o f number and range o f applications (Dimopoulos and Zalzala,
2000).

However, genetic programming has not followed the development o f the evolutionary 
computation research in the field o f  manufacturing optimisation. The applications o f  
genetic programming in this field have been relatively few  (McKay et al., 1996), 
(Garces-Perez et a l ,  1996), given the sharp rise in the popularity o f the method and 
the number o f publications during the last decade.
Motivated by this noticeable imbalance, this thesis investigates the applicability o f  
genetic programming for the solution o f manufacturing optimisation problems. It 
attempts to explore the applicability o f genetic programming on a range o f  problems 
from various areas o f  manufacturing optimisation rather than focus on a group o f  
similar problems from the same field, such as scheduling. In addition, the 
performance o f  the proposed methodologies is compared with the best alternative 
methodologies that have been reported so far for the problems considered.
This research aims to provide evidence on the benefits and disadvantages o f  
employing genetic programming for the solution o f  manufacturing optimisation 
problems. At the same time it aims to produce quantitative arguments on the merits o f  
using the proposed methodologies in relation to the state o f the art on manufacturing 
optimisation.
The contributions o f this research can be summarised with the help o f  the following 
points:

•  Development o f  a genetic programming-based methodology for the solution o f  
the one-machine total tardiness problem. The methodology employs 
combinations o f  dispatching rules for the indirect construction o f  job schedules. 
The same methodology is also combined with alternative search techniques such 
as local search and simulated annealing for the generation o f  near-optimal 
solutions in large problem instances.

•  Evolution o f  a new dispatching rule for the solution o f the one-machine total 
tardiness problem. The rule schedules jobs in a similar manner to ordinary 
dispatching rules; however, its form is a product o f the evolutionary procedure 
rather than a formula based on the human understanding o f the problem.

4
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•  Development o f  a genetic programming-based methodology for the solution o f  
the cell-formation problem. The proposed methodology is designed to consider 
both simple and advanced formulations o f the cell-formation problem. The latter 
refer to cases where information about design constraints, operation sequences 
o f jobs, and machine workloads are explicitly considered in the formulation o f  
the problem.

•  Evolution o f  a similarity coefficient to be used in combination with the Single 
Linkage Cluster Analysis procedure (SLCA) (Sneath, 1957) for the solution o f  
cell-formation problems. The coefficient employs identical inputs to the ones 
used by man-made coefficients for the calculation o f similarity between 
machines; however, the form o f the coefficient is determined by the 
evolutionary procedure.

•  Development o f a genetic programming-based methodology for the solution o f  
the optimal process planning selection problem. The methodology uses the 
network representation o f the problem to evolve a solution in the form o f a 
network path. This path corresponds to a potential process plan for the product 
considered.

•  Combination o f genetic programming with various evolutionary multiobjective 
optimisation approaches that are based on the concept o f Pareto optimality 
(Goldberg, 1989) for the solution o f the multiple-objective version o f the 
optimal process planning selection problem.

1.3 Outline of this thesis
The layout o f  this thesis is described as follows:
Following the introductory chapter, chapter 2 presents a review o f  evolutionary 
computation research on the solution o f manufacturing optimisation problems. A  
considerable number o f applications are surveyed from the fields o f  scheduling, 
process planning, cellular manufacturing, assembly lines and other related 
manufacturing optimisation areas.
Chapter 3 introduces genetic programming, the optimisation method that is the focus 
o f this thesis. After briefly examining the mechanics o f  evolutionary computation, the
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genetic programming approach to problem solving and the relevant structures evolved 
are explained. A  number o f issues related to the application o f  genetic operators such 
as crossover and mutation are discussed. The chapter finishes with an illustrative 
example o f the use o f genetic programming on a symbolic regression problem.
Chapter 4 describes the application o f  genetic programming to the solution o f the one- 
machine total tardiness problem. Initially the problem is defined and a survey o f  
solution methodologies that have been proposed for its solution is presented. The 
genetic programming-based methodology for the solution o f the problem is explained 
and compared with alternative solution methodologies on a wide range o f  test 
problems. The performance o f hybrid approaches based on combinations o f  genetic 
programming with local search and simulated annealing algorithms is also 
investigated. Finally, genetic programming is employed for the evolution o f a new  
dispatching rule for the solution o f the one-machine total tardiness problem. Rules 
produced through the evolutionary procedure are compared with dispatching rules 
devised by human intuition.
Chapter 5 introduces the genetic programming-based approach for the solution o f the 
cell-formation problem. The formulation o f the problem and a literature survey o f  
related solution methodologies are followed by the description o f the genetic 
programming-based hierarchical clustering algorithm for the solution o f  simple binary 
cell-formation problems. The proposed approach is compared with alternative 
solution methodologies on a wide range o f  test problems taken from the literature. 
Results are also presented for advanced formulations o f the cell-formation problem, 
which explicitly consider the operation sequences o f jobs, constraints on the total 
number o f  cells and machines per cell, and machine workloads. Finally, genetic 
programming is employed for the evolution o f  a similarity coefficient that is used in 
combination with a hierarchical clustering procedure for the solution o f  cell-formation 
problems.
Chapter 6 focuses on the development o f  a genetic programming algorithm that 
explicitly considers a multiobjective manufacturing optimisation problem. The 
process planning selection problem is employed for this purpose. The principles o f  
multiobjective optimisation are explained and a survey o f relevant evolutionary 
computation techniques is presented. The application o f genetic programming on the
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solution o f  the process planning selection problem is illustrated using an example o f  
its operation on a single-objective case. Finally, combinations o f  genetic 
programming with evolutionary multiobjective optimisation techniques are applied to 
a group o f  randomly generated process planning selection problems. The evolutionary 
techniques that are employed in the experimentation are the Pareto-ranking approach 
(Goldberg, 1989), the Multi-Objective Genetic Algorithm approach (MOGA) 
(Fonseca and Fleming, 1993), and the Niched Pareto Genetic Algorithm (NPGA) 
(Horn and Nafpliotis, 1993). Results are presented to illustrate the ability o f  the 
proposed framework to provide a variety o f potential solutions to the decision-maker.
Chapter 7 draws the conclusions o f  this research and gives recommendations for 
future work.
Finally, some reference data are provided in the Appendix o f the thesis.
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Chapter 2

EVOLUTIONARY COMPUTATION FOR 
MANUFACTURING OPTIMISATION

2.1 Introduction
From as early as the 1950’s researchers have been using concepts based on Darwin’s 
evolution theory for the solution o f optimisation problems (Box, 1957). A  
considerable number o f algorithms based on these concepts have been developed over 
the last thirty years. They are usually described by the term ‘evolutionary computation 
methods’. The most notable members o f  this group are simple genetic algorithms 
(GA’s) (Holland, 1975), evolution strategies (Rechenberg, 1973), evolutionary 
programming (Fogel, 1966), and genetic programming (Koza, 1992).
The basic operation o f the algorithm is similar in all evolutionary computation 
methods: Given a certain optimisation problem, an initial population o f  appropriately 
coded solutions (‘chromosomes’) is generated randomly. The performance o f  each 
solution is evaluated and assigned with a ‘fitness’ value. Chromosomes selected from 
the ‘old’ population then create a ‘new’ population o f  solutions. The higher the 
‘fitness’ o f  an individual solution, the better is its chance to be selected for the new  
population. Chromosomes exchange or alter their genetic material using specially 
designed genetic operators. The purpose o f this operation is the best possible 
exploration o f the solutions’ search space. The procedure is repeated until desired 
‘fitness’ values have been reached, or until a predefined number o f iterations have 
been completed.
The use o f  intelligent techniques in the manufacturing field has been growing rapidly 
during the last two decades due to the fact that most o f manufacturing optimisation
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Chapter 2: Evolutionary computation for manufacturing optimisation

problems are combinatorial and NP -  hard, i.e. the time-complexity o f the solution 
methodologies is not a polynomial function o f  the size o f the problem.
Heuristic methods are often employed for the solution o f these problems. A  growing 
number o f  researchers have adopted the use o f  meta-heuristic techniques ( ‘smart- 
heuristics’) for large combinatorial problems. As it has been discussed in the previous 
chapter, evolutionary computation methods are meta-heuristics that are able to search 
large regions o f  the solutions’ space without being trapped in local optima.
The aim o f this chapter is to illustrate recent developments in the field o f evolutionary 
computation for manufacturing optimisation. A  wide range o f optimisation problems 
is considered, from the classic job-shop and flow-shop scheduling problems, to 
assembly line balancing and aggregate production planning. The focus o f  this review  
is mainly on recent publications, but there are pointers to significant earlier 
approaches.
The terminology o f evolutionary computation methods has not been standardised; 
thus the term ‘evolutionary algorithms’ (EAs) is used interchangeably to describe 
different evolutionary computation methods. The same convention will be followed 
throughout this chapter, unless otherwise stated.
The rest o f  this chapter is organised as follows: Section 2.2 examines recent 
evolutionary algorithms that have been proposed for the solution o f the job-shop 
scheduling problem. The same procedure is followed in section 2.3 for the flowshop 
scheduling problem, in section 2.4 for the dynamic scheduling problem, in section 2.5 
for the process planning problem, in section 2.6 for cellular manufacturing 
optimisation problems, and in section 2.7 for assembly optimisation problems. Section 
2.8 overviews some recent developments in other manufacturing optimisation areas 
and section 2.9 draws the conclusions o f  this chapter.

2.2 The Job-Shop Scheduling Problem
2.2.1 Introduction and historical development
Considerable work in the field o f  evolutionary computation has been devoted to the 
solution o f the job-shop scheduling problem (JSSP). The first attempt to solve the 
JSSP using evolutionary algorithms was made by Davis (1985), who employed the
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concept o f preference lists for the coding o f solutions (a discussion on the subject o f  
solution representation will follow later in this chapter). A  few years later Yamada 
and Nakano (1992) proposed a more natural representation, which was based on the 
completion times o f operations. Since then, the number o f  alternative evolutionary 
computation approaches that have been proposed for the solution o f the problem has 
been growing rapidly.

2.2.2 Formulation of the problem
The job-shop scheduling problem consists o f  ordering n jobs to be processed in m 
machines. Each job involves a number o f  different machining operations. The 
following conditions hold for the classic formulation o f the JSSP:

•  Each machine can process only one job at a time
•  The sequence o f operations for each job is predefined
•  Two operations o f  the same job cannot be processed at the same time
•  Pre-emption is not allowed (an operation cannot be withdrawn from a machine 

unless it is completed)
•  Processing times are known in advance
•  Transportation time between machines is zero

The quality criterion most often used for the JSSP is the minimisation o f makespan 
(Cmax). Makespan is defined as the completion time o f  the final job to leave the 
system (Pinedo, 1995). Bierwirth et a/.(1996) describe JSSP as a ‘representative o f  
constrained combinatorial problems’. Garey et al. (1976) have illustrated that it is NP- 
hard in the strong sense (proof by transformation o f the 3-PARTITION problem to the 
associated JSSP decision problem). In this section the static version o f  the problem is 
considered, in which unexpected events are not taken in account. The dynamic 
version o f  the JSSP will be discussed in a following section.
Cao et al. (1997) argued that the classic formulation o f the JSSP is unrealistic since it 
does not take in account a number o f  elements that are important in real-life 
scheduling, like set-up times, due dates and machine off-line times. Academic
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research has been criticised for considering scheduling problems that rarely appear in 
practice. As a result, many researchers in the field o f evolutionary computation are 
increasingly using a variety o f  criteria for the evaluation o f schedules. Minimisation 
o f  makespan is still used as an objective in many cases (Bierwirth et al., 1996), 
(Domdorf and Pesch, 1995), however, the trend in modem manufacturing 
optimisation systems is the minimisation o f the overall production cost. Addressing 
the over-dominance o f  makespan-oriented work in the field, Fang et al. (1996) 
employed seven quality criteria for the evaluation o f good schedules: maximum 
tardiness, average tardiness, weighted flow time, weighted lateness, weighted 
tardiness, weighted number o f tardy jobs, and weighted earliness plus weighted 
tardiness. The last criterion is in accordance with the Just-In Time (JIT) principle o f  
having a product made exactly when it is required, so that storage costs (earliness) and 
lateness fines (tardiness) are kept to a minimum. Similar objectives were used in 
(Croce et al., 1995), (Kumar and Srinivasan, 1996). Due-dates and ready times o f the 
products were pre-specified in these cases.

2.2.3 Encoding
A number o f  alternative representations for JSSP schedules have been proposed by 
researchers in the field o f  evolutionary computation. In the following paragraphs a 
classification o f  the most successful representations is attempted.

2.2.3.1 Direct representations
A  natural representation for the solution o f the JSSP problem is a data structure that 
can be used as a schedule itself. No decoding is needed to obtain the schedule; thus 
this type o f  representation is called ‘direct'. Bums (1993) was the first researcher to 
employ an EA with direct representation for the solution o f a production scheduling 
problem. His representation explicitly defined the process plan for each job, machine 
assignment for each operation, and individual start-end times. Purpose-based genetic 
operators ensured that solutions remained valid throughout the evolutionary 
procedure.

An alternative approach is the use o f an w-partitioned permutation (where m is the 
total number o f  machines), with each partition representing the complete schedule o f
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an independent machine. This representation is especially popular in sequencing 
problems, where the solution is not partitioned, so a number o f genetic operators that 
have been originally designed for the solution o f the travelling salesman problem 
(Michalewicz (1992)) can be easily applied. Dagli and Sittisathancai (1995) employed 
this type o f  direct representation for the solution o f the JSSP. They overcame 
feasibility problems by using legal schedules to initialise the population and an order- 
based crossover operator to preserve the precedence constraints o f the problem. They 
also used a back-propagation neural network for the evaluation o f schedules. Aizpuru 
and Usunariz (1995) adopted the same representation for their hybrid scheduling 
algorithm, which was based on evolutionary algorithms and tabu search. A  
knowledge-based system was employed for the generation o f  efficient scheduling 
strategies. The hybrid algorithm helped the system to induce knowledge about the 
scheduling procedure. Giffler and Thompson’s (1969) algorithm generated initial 
actives schedules, and efficient operators maintained the precedence relations o f the 
jobs.

2.23.2 Indirect representations
2.2.3.2.1 Job-based representations

This common type o f  indirect representation does not explicitly state the number o f  an 
operation, but instead, the job number is defined. The chromosome:

[ Ji> J2> Ji> J2 , Jj,...]
indicates that the first operation o f the first job should be scheduled first, followed by 
the first operation o f  the second job, the second operation o f  the first job, etc. It is 
obvious that a schedule builder is needed to transform this solution into a feasible 
schedule (for a discussion about schedule builders, see Cheng et al. (1996c)). 
Bierwirth et al. (1996) employed this method in their discussion o f permutation 
representations for combinatorial problems. Their experimentation with various 
crossover operators led to the conclusion that the preservation o f  the absolute order o f  
jobs and their associated operations was quite significant for the JSSP. They 
introduced a new operator called PPX (precedence preservation operator) which 
featured this useful characteristic. Fang et al. (1996) highlighted the superiority o f  a 
job-based GA over dispatching rules and stochastic hillclimbing on a variety o f
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scheduling criteria. Shi (1997) built an EA scheduler that efficiently decoded the 
strings into active schedules and utilised genetic operators optimised for speed.

2.23.2.2  Dispatching rule representations

The use o f  dispatching rules for scheduling purposes is common manufacturing 
practice. The following definition o f a dispatching rule is given by Blackstone et al. 
(1982): ‘A  dispatching rule is used to select the next job to be processed from a set o f  
jobs awaiting service’. In the case o f static scheduling, this selection is based on 
various job characteristics such as processing time, due date, etc.
Herrmann et al. (1995) proposed an efficient EA representation based on the concept 
o f dispatching rules. The solution was encoded in the following form:

[ED D , SPT, FIFO,......... ]

where: EDD : Earliest Due Date rule
SPT : Shortest Processing Time rule 
FIFO : First In First out rule

Each element (gene) corresponded to a particular machine, and the value o f the 
element defined the dispatching rule that this machine employed for the scheduling o f  
operations awaiting service. This type o f  representation did not suffer from feasibility 
problems and the application o f  conventional operators was straightforward. Fujimoto 
et al. (1995) employed the same representation for the scheduling o f  a flexible 
manufacturing system. In this case, each gene represented a decision making point in 
the plant, and the value o f  the gene specified the dispatching rule that would be used 
at this point. Kumar and Srinivasan (1996) used a circular string o f dispatching rules 
as a scheduling policy, whenever a part was requested for processing.
Domdorf and Pesch (1995) proposed an alternative use o f  the same representation for 
the JSSP, where each rule determined the next job to be scheduled among the conflict 
set o f  jobs created by Giffler and Thompson's algorithm. However, this method 
performed poorly in comparison with another algorithm presented in the same paper 
based on the shifting bottleneck heuristic, a well-known method for the solution o f the 
JSSP. An EA was employed to control the selection o f nodes in the enumeration tree 
created by this heuristic.
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2 .2 .3 .23  Preference-list representations

A popular way o f  encoding a solution o f the JSSP is the preference-list representation. 
Preference lists are not actual schedules, but a preferable sequence o f  operations on 
each machine. Operations are scheduled according to this sequence unless they violate 
a precedence constraint. In that case the next operation in the preference list is 
scheduled. Croce et al. (1995) used the concept o f  preference lists for the encoding o f  
solutions, together with a look-ahead evaluation method that generated non-delay 
schedules (a discussion on schedule types is given by Baker (1974)). Cao et al. (1997) 
addressed a complex JSSP problem with multiple objectives utilising a Hierarchical 
Evaluation (HE) model instead o f  a look-ahead evaluation. Their framework was able 
to generate feasible schedules and perform local optimisation at the same time, 
resulting in slightly better performance than Croce's algorithm. Kobayashi et al. 
(1995) and Ono et al. (1996) encoded the solution in the same preference-list form. 
They additionally introduced two purpose-based crossover operators, the subsequent 
exchange crossover (SSX) and job-order based crossover (JOX) respectively. JOX 
used the traditional Giefler and Thompson (GT) algorithm for the decoding o f  
solutions into active schedules. The result was a much better performance both in 
terms o f optimal and average values for Fisher & Thompson's benchmark problems 
(see section 2.2.4). Park and Park (1995a) (1995b) reported their preference list-based 
GA with the introduction o f  a crossover operator called active schedule constructive 
crossover (ASCX), which was based on the active schedule generation algorithm 
(Baker, 1974).

2 .23 .2 .4  Alternative representations

A  number o f  alternative schemes for the representation o f schedules have been 
reported in the literature. The most successful o f them was proposed by Kim and Lee 
(1995), (1996). Their schedule representation was a priority list o f  operation-machine 
assignment pairs, which corresponded to a certain priority rule. Schedules (and 
consequently the corresponding priority rules) were constructed with the help o f  a 
genetic reinforcement learning (GRL) procedure. Their method showed the best 
overall performance on Muth and Thompson's benchmark JSSP problems in 
comparison with any other evolutionary method included in this survey.
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Yamada and Nakano (1995) employed a disjunctive-graph representation for the 
solution o f the JSSP. Following the trend o f enhancing the evolutionary process with 
local search techniques, they introduced a crossover operator called multi-step 
crossover (MSX), which was in effect a local search operator. Cho et ah (1996) 
presented the Total Operation Order Method (TOOM), where a solution was given in 
the form o f a job operation matrix that defined the absolute order o f  all operations to 
be processed. A  dynamic data structure called “hierarchical linked list” was utilised 
by Niemeyer and Shiroma (1996) in order to accommodate variable lengths o f  jobs 
and operations in a real manufacturing environment. Kim and Kim (1996) tackled the 
problem o f  infeasibility by using a random-keys (Bean, 1994) representation for the 
solutions. Finally, Gohtoh et al. (1995) applied a special EA with neutral mutations to 
some standard benchmark problems. An excellent analytical review o f  EA 
representations and hybrid methods that have been used for the solution o f the JSSP, 
can be found in Cheng et al. (1996c), (1999).

2.2.4 Test problems and case studies
In recent years academic research has attempted to consider real-life scheduling 
problems, since the use o f standard benchmark problems has not generated 
considerable interest in industrial circles. However, the famous Fisher and 
Thompson’s (1963) and Lawrence’s (1984) benchmark problems are still used by 
many researchers. Table 2.1 gives a summary o f  results that have been published 
recently for the three Fisher & Thompson problems. The best and average (wherever 
available) results o f each method in terms o f the total makespan are presented. Table 
2.2 summarises the results published for some Lawrence’s benchmark problems. A  
considerable number o f recently published papers address real-life scheduling cases. 
Herrmann et al. (1995) described the development o f  a global scheduling system for a 
semiconductor test area. Niemeyer and Shiroma (1996) used EAs for the scheduling 
o f  factories o f  a multinational company. Hamada et al. (1995) approached a complex 
scheduling problem in a steel making company using a hybrid system based on EAs 
and expert systems. Finally, Shaw and Fleming (1997) and Kumar and Srinivasan 
(1996) proposed evolutionary computation methods for the solution o f  scheduling 
problems in companies that produce ready chill meals and defence products 
respectively.
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PAPERS
FT

Best
6 X 6

Aver.
FT

Best
0 X 1 0

Aver.
FT

Best.
2 0 X 5

Aver.
Aizpuru é ta l.  (1995) - - 930 951 - -

Cao et al. (  1997) - - 945 953.5 1176 1198.3
Cho é ta l.  (1996) 55 - 943 - - -

Croce et al. (1995) 55 55 946 965.2 1178 1199
Dorndorf et al. (1995) 55 - 938 - 1178 -

Gen et al. (  1994) 55 - 962 - 1175 -

Gohtoh é ta l.  (1996) t ÿ  ; ; 930 935.36 1165 1180.34
Kim et al. (1995) - - 930 931.57 1165 1165.97
Kim et al. (1996) - - 930 930 1165 1165.27

Kobayashi et al. (1995) - - 930 934.3 1165 1217.4
Ono et al. (1996) - 930 931.1 1165 1176.5
Park et al. (1995a) - - 936 949 1178 1185
Shi et al. (1997) - - 930 946.2 1165 -

Yamada e t al. (1995) - - 930 934.5 1165 1177.3

Table 2.1: Published results (makcspan) on Fisher & Thom pson’s benchmark  
problems. Optimal values: FT 6X6: 55, FT 10X10: 930, FT 20X5: 1165

A izpu ru  e t ah 
(1995)

Cao
(19

et al. 
97)

Kim  et al. 
(1995)

Croce et al. 
(1995)

P ark et al. 
(19956)

TEST
N O .

B e s t A v er. B est A v er. B est A ver. B est A ver. B est A v er.

LA01 666 * 666 666 * 666 666 * 666
LA06 926 * 926 926 * 926 926 * 926
L A I 1 1222* 1222 1222* 1222 1222* 1222
LA 16 956 980 945 * 945.4 979 989
LA21 1056 - 1061 1083.6 1055 1055.8 1097 1113.6
LA22 935 935.47 935 949
LA26 1227 1231.2 1218* 1218 1231 1248
LA 27 1255 - 1255 1264.9
L A 3 1 1784* 1784 1784* 1784 1784* 1784
LA36 1337 1348 1305 1330.4

Table 2.2: Published results on Lawrence’s benchmark problems (m akespan).(-)
denotes optimal value

16



Chapter 2: Evolutionary computation for manufacturing optimisation

2.3 The Flowshop Scheduling Problem
2.3.1 Introduction
The permutation flowshop scheduling problem, or the job sequencing problem as it is 
often called, is another manufacturing optimisation problem that attracts particular 
research interest. It is relatively easy to apply evolutionary computation methods to 
this problem, since it can be formulated as a classic travelling salesman problem 
(TSP) with path representation (Michalewicz, 1992). This latter problem has been a 
subject o f  research from the early days o f evolutionary computation. As a result, the 
efficient operators that have been developed for the travelling salesman problem are 
directly applicable to the flowshop scheduling problem.

2.3.2 Problem formulation
The permutation flowshop scheduling problem involves ordering n jobs to be 
processed in m machines. The difference between the job shop and the flowshop 
scheduling problem is that in the latter case each job undergoes the same machining 
sequence, and the sequence o f operations is the same on each machine. This means 
that the solution o f the problem can be represented as a permutation o f  all jobs to be 
processed:

[ Ji, J2, J3, .......J/i ]
where n is the total number o f  jobs. The conditions that were introduced for the JSSP 
hold for the flow shop scheduling problem as well. The minimisation o f makespan is 
usually employed as the objective o f  the scheduling algorithm (Braglia and Gentili, 
1994), (Reeves, 1995), (Chen et al., 1996a), (Murata et al., 1996a). In the special case 
o f m =\, the problem is described as the one-machine scheduling problem. Garey et a l  
(1976) have shown that the flowshop scheduling problem is NP-hard in the strong 
sense (proof by transformation o f the 3-PARTITION problem to the associated 
flowshop scheduling decision problem).
In recent years, more complicated formulations o f the problem have been considered 
with various alternative optimisation criteria included. Murata et al. (1996b) used 
their multi-objective GA approach for a flowshop scheduling problem, aiming to
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simultaneously minimise makespan, total tardiness, and total flowtime o f the 
production. Minimisation o f  total tardiness was also employed as an optimisation 
criterion by Lam et al. (1996). Sikora (1996) attempted to minimise makespan, 
holding costs (earliness), and overtime (tardiness), in a flow-line with limited buffer 
capacity. Sannomiya and lima (1995) also tried to minimise makespan, keeping at the 
same time the processing rate o f each product as constant as possible. Their 
formulation o f the problem considered the existence o f a carrier that transferred 
products between the machines. Lee and Choi (1995) assigned earliness and tardiness 
penalty weights to schedules, for a one-machine scheduling problem. Lee et al. 
(1997b) presented an interesting formulation o f  the problem, introducing the concept 
o f  a flexible flow line with variable lot sizes. In this case jobs consisted o f  lots that 
could be split and an efficient EA was used to simultaneously optimise the ordering o f  
jobs and the lot sizing. Gonzalez et al. (1995) considered the ‘no-wait’ version o f  the 
job sequencing problem, where once the processing o f a job has started in the first 
machine o f the production line, there must be no time delay between the consequent 
operations o f  the job at the following machines. An EA combined with heuristic 
methods was employed for the solution o f  the problem. Herrman and Lee (1995) 
described a class one-machine scheduling problem where jobs belonged to different 
classes, with each class having sequence-dependent set-up times. Their evolutionary 
algorithm generated different input conditions for a minimum waste heuristic 
algorithm, which accomplished the task o f  producing legal schedules. Finally, 
Karabati and Kouvelis (1997) addressed the flowshop scheduling problem with 
controllable processing times, i.e. the problem where the processing time o f a part is 
not fixed, but can assume a number o f  different values. An EA was employed for the 
solution o f  large-scale problems o f this type.

2.3.3 Encoding
The permutation representation is used in the majority o f  evolutionary computation 
approaches discussed in this section. A  permutation is a natural representation for the 
solution o f  the problem, since there are many well-tested operators to ensure the 
feasibility o f  solutions and to enhance the evolutionary process.
There are, however, some exceptions to this rule. The most notable is that o f  Lam et 
al. (1996) who introduced a pigeon hole coding scheme. In this representation, the
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value o f  each gene corresponded to the index o f job selected for scheduling, out o f  the 
list o f  unscheduled jobs. Each time a job was scheduled, the list o f unscheduled jobs 
was re-indexed, and the value o f the next gene defined the job selected out o f the new  
set. Their representation allowed the use o f traditional crossover and mutation 
operators without producing infeasible solutions. Some slight modifications in the 
encoding o f  solutions were also present in Sikora (1996) and Lee et al. (1997b), in 
order to accommodate the simultaneous lot sizing that was attempted by these 
algorithms. Finally, Kebbe et al. (1996) adopted the vibrational-potential method 
(VPM) for the solution o f sequencing problems. VPM is an evolutionary computation 
method based on the concept o f  information propagation in nature, which employs 
different representation schemes.

2.3.4 Test problems and case studies
It is extremely difficult to compare the performance o f  different evolutionary 
algorithms in flowshop scheduling problems, since most researchers use their own 
instances o f  randomly generated test problems, i.e. problems where the processing 
times and due dates o f jobs are selected randomly out o f a uniform distribution. A  
comparison o f  results taken from this type o f problems would not be valid.
Most o f  the papers referenced in this section use their own problem instances, or test 
problems not widely available. The only exceptions are Reeves (1995), and Ross and 
Tuson (1997) who presented results on standard benchmark problems taken from 
Tailard (1993). It is interesting to note that Lee et al. (1997b) and Sikora (1996) 
considered the scheduling o f  a manufacturing plant producing Printed Circuit Boards 
(PCB’s) as a case study.

2.4 The Dynamic Scheduling Problem
2.4.1 Introduction
The cases discussed so far in job shop and flow shop scheduling were addressing 
static scheduling problems, i.e. problems where the dynamic nature o f  the scheduling 
decision is not examined. However, in practice, a scheduler often has to react to 
unexpected events. The main uncertainties encountered in a real manufacturing 
system, are the following:
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•  machine breakdowns including uncertain repair times
•  increased priority o f  j obs
•  change in due dates
•  order cancellations

Whenever an unexpected event happens in a manufacturing plant, a scheduling 
decision must be made in real-time about the possible reordering o f jobs. This process 
is known as ‘rescheduling’. The main objective o f rescheduling is “to find immediate 
solutions to problems resulting from disturbances in the production system” (Jain and 
Elmaraghy, 1997).
Until recently, evolutionary computation methods have rarely been used for dynamic 
scheduling, due to their inability to cope with real-time decision making. They were 
developed and tested on static scheduling problems that did not require real-time 
control. However, the last few years, EAs have been employed as parts o f hybrid 
dynamic scheduling systems, which exploit their useful characteristics.

2.4.2 Machine learning methods
Machine learning is one o f the methods that have traditionally been used in 
manufacturing environments to face uncertainties. Chiu and Yih (1995) proposed such 
a learning-based methodology for dynamic scheduling. They divided the scheduling 
process in a series o f  ordered scheduling points. An evolutionary algorithm examined 
which dispatching rules performed better for each o f  these points, given a set o f  plant 
conditions (system status). The chromosome was formed by a series o f  genes, each 
one representing a respective scheduling point and taking as a value one o f  the 
available dispatching rules. The performance o f the algorithm was simulated under 
different plant conditions, forming a knowledge base that described the scheduling 
rules that were preferable in different cases. A  binary decision tree was used to 
describe the gained knowledge. This method had the advantage o f  being able to 
modify its existing knowledge (new system conditions), without having to reconstruct 
the entire knowledge-base. Aytug et al. (1994) presented a different machine learning 
approach for dynamic scheduling, based on classifier systems (Booker et al., 1989). In 
this case, an initial knowledge base was given, and an EA modified it, using results

20



Chapter 2: Evolutionary computation for manufacturing optimisation

taken from the simulation o f  the production line. In that way the system learned to 
react to certain unexpected events. Jones et al. (1995) used a hybrid system based on 
neural networks, EAs, and an inductive learning algorithm to infer knowledge about 
the scheduling process. A back-propagation neural network selected a number o f  
candidate dispatching rules out o f a larger set o f  available rules. The schedules formed 
by these dispatching rules were used as the initial population o f  an EA that evolved an 
optimal schedule. The results taken from the simulation o f the schedule helped the 
learning algorithm to create a set o f rules that formed the knowledge - base. Lee et al. 
(1997a) also proposed a hybrid scheduling framework that consisted o f  an inductive 
learning system for job releasing in the plant, and an EA-based system for the 
dispatching o f jobs at the machines.

2.4.3 Alternative methods
Fang and Xi (1997) presented a different rescheduling strategy based o f  the rolling 
horizon optimisation method. Scheduling was performed periodically on a predefined 
number o f  jobs that formed the ‘job-window’. Rescheduling was initiated either by 
the elapse o f  a job-window or by the occurrence o f an unexpected event. An EA 
evolved an optimal schedule for each planning horizon, considering the status o f  the 
system. Cartwright and Tuson (1994) employed the same concept o f  job-windows, in 
their attempt to dynamically control the scheduling o f a chemical flowshop using an 
EA. Bierwirth et a l  (1995) proposed a similar approach aiming to decompose a non- 
deterministic job-shop problem in a series o f  deterministic smaller ones. Each 
subproblem was then solved with the help o f the static scheduling EA method that 
was described in the JSSP section (Bierwirth et al., 1996).
Finally, Jain and Elmaraghy (1997) presented a steady-state EA-framework for the 
scheduling o f  an FMS system. Specially designed algorithms dealt with unexpected 
events like machine breakdowns and order cancellations. A  series o f test cases 
indicated the validity o f the method for scheduling and rescheduling purposes.
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2.5 Process Planning
2.5.1 Introduction
Process planning is one o f  the most complex phases in the manufacturing process. It 
comprises o f  a series o f tasks that are heavily dependent on the type o f product that is 
to be processed. Process planning takes as input the design characteristics o f a product 
and gives as output its complete production plan. This plan determines the machining 
processes needed, the tools that are going to be used, and the sequencing o f  
operations. I f  alternative plans exist, an optimal process plan should be selected in 
relation to the optimisation objective(s). Process planning can be fine-grained or 
course-grained, according to the processing requirements o f  a particular part.
Process planning is the link between the design and the manufacturing phase o f a 
product. The design phase is highly automated nowadays with the introduction o f  
state-of-the-art Computer Aided Design (CAD) programs. Research interest in the 
field o f  Computer Aided Process Planning (CAPP) is growing rapidly.

2.5.2 Operation sequencing
Operation sequencing is an important task o f process planning. The planner must 
determine the machining sequence o f parts, taking in account all the existing 
precedence constraints for the machining o f  features. These constraints are normally 
given in the form o f a precedence graph. Usher and Bowden (1996) proposed an 
evolutionary computation approach for the solution o f this problem, where the 
number o f  genes in the chromosome was equal to the number o f features that must be 
machined. The authors introduced a special decoding procedure based on the feature 
precedence graph, which transformed any string into a feasible sequence o f  machining 
operations. This type o f representation was first introduced by Yip-Hoi and Dutta 
(1996). The total number o f  set-ups, the continuity o f  motion and the loose 
precedence determined the quality o f solutions. Takatori et al. (1994) adopted a TSP 
representation for the solution o f  the same problem, using a repair mechanism to cope 
with solutions that violated the constraints. The objectives o f their algorithm were the 
minimisation o f the total change cost, the machining cost and the non-machining cost.
Kamhawi et al. (1996) developed an elaborate feature sequencing system based on
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EAs. The representation scheme was the same as the one used by Takatori et al. 
(1994), but the evaluation o f solutions was based on rules and constraints about 
safety, quality, and minimisation o f tool changes and tool travel. The user assigned a 
weight to each o f  these objectives, according to his preferences.
Norman and Bean (1997) discussed the problem o f  operation sequencing and tool 
allocation in Parallel Machine Tools (PMT’s). A PMT is a machine capable o f  
processing more than one part at a time, since it contains multiple spindles. A  
random-keys coded EA was proposed for the solution o f the problem. The tool 
allocation task was dealt with the introduction o f an integer part to the value o f  the 
genes. This part defined the machining unit (MU) that was responsible for a particular 
operation. The decimal part o f the value determined the sequence o f  operations. The 
authors also proposed the enhancement o f the algorithm with a heuristic method, 
presenting results that justified their decision. Yip-Hoi and Dutta (1996) tackled the 
same problem using an efficient solution representation based on feature precedence 
graphs, as was discussed earlier. The objective o f  their algorithm was the 
minimisation o f the part’s total processing time.

2.5.3 The process planning selection problem
The process planning selection problem is the task o f selecting an optimal process 
plan out o f  a population o f alternative plans. The problem is usually modelled with the 
help o f  flow-networks, i.e. constructions o f arcs and nodes that determine alternative 
sequences o f  machining for a given product (figure 2.1).

Figure 2.1: Flow network representation of the process planning selection
problem

Each stage o f  this graph represents a machining operation and the nodes denote the 
number o f  alternative machines that are capable o f performing this operation. The 
weighted arcs define the cost o f  following a particular machining sequence.
Awadh et a l  (1995) presented one o f  the first evolutionary algorithms for the solution
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o f  the process planning selection problem. Each stage o f  a process plan was 
represented by a binary-coded matrix, where the occurrence o f  a bit with positive 
value denoted the presence o f  a connection between the corresponding nodes o f  the 
matrix. The authors warned that this representation could sometimes lead to the 
existence o f  multiple processing plans for a single chromosome solution. A  decoding 
algorithm called ‘Path Modifier’ ensured that there was a ‘1 to 1’ relationship between 
the genotype and the phenotype o f  each solution. The objective o f their approach was 
the minimisation o f the overall cost. Zhou and Gen (1997) noted that fast and efficient 
algorithms like the shortest path method and dynamic programming were capable o f  
producing good solutions for single-objective process planning problems like the 
previous one. They argued that evolutionary computation methods would be ideal for 
the multiobjective version o f  the problem, which cannot be easily formulated as a 
shortest path or dynamic programming problem. They constructed an EA that used the 
same network flow model but employed an efficient integer solution representation 
that did not require the existence o f additional operators like ‘Path Modifier’. A  non- 
aggregating approach facilitated the solution o f the multiobjective version o f  the 
problem.

2.5.4 Advanced process planning methodologies
Concurrent Engineering (Singh, 1996) has received a lot o f  attention lately, as a 
modem approach to manufacturing optimisation. It is a manufacturing philosophy 
where the design and the related manufacturing processes o f a product are integrated 
into one procedure. Process planning and scheduling are closely related 
manufacturing processes. One o f the aspects o f concurrent engineering is the 
integrated process planning (in terms o f  the optimal selection o f  a process plan) and 
scheduling o f  a product. Mcllhaga et al. (1996) proposed an EA-based method for the 
simultaneous determination o f  planning and scheduling in a vehicle manufacturing 
company. They used parallel genetic algorithms with a diploid chromosome 
representation, which defined both the sequencing o f operations and the use o f  
alternative machines. A  number o f  different optimisation objectives were considered 
by the algorithm, like the minimisation o f makespan, flowtime and tardiness.
Bowden and Bullington (1996) created a hybrid system called GUARDS, based on 
unsupervised machine learning and EAs, in order to optimise the control o f  a
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manufacturing process. The system learned to select the optimal process plan 
according to the status o f  the plant. Horvath et al. (1996) described a complete 
process planning procedure, from the input o f  part specifications in the form o f  CAD 
files, to the optimisation o f  the constructed process plan. They used an object-oriented 
approach in the form o f ‘features’. A  'feature’ was an object that defined specific 
operations and contained all the relative functional, geometrical and technological 
data. Knowledge - based reasoning was used for the generation o f  plans, which were 
subsequently optimised with the help o f  an evolutionary algorithm. Zhang et a l 
(1998) developed a similar complete CAPP system for parts manufactured in job shop 
environments. They adopted a direct solution representation originally introduced by 
Bums (1993). Each chromosome defined the sequencing o f  operations, machine-tool 
assignments and Tool Approach Directions (TAD’s) for an individual process plan. In 
this way, the procedures o f  operation sequencing and process planning selection were 
integrated.
Dereli and Filiz (1999) indicated that process planning methodologies usually 
addressed specific parts o f  the overall planning procedure, making their integration 
with existing CAD and CAPP packages a difficult task. They introduced a framework 
for the process planning optimisation o f  prismatic parts that comprised o f  three 
evolutionary algorithms. Each o f  these algorithms was responsible for the 
optimisation o f  a specific planning problem, namely operation sequencing, tool- 
magazine positioning and cutting parameter selection. The advantage o f  the proposed 
methodology was its ability to be used both off-line and in combination with CAD 
and CAPP packages, giving as output the ready-to-use process plan o f  the part 
considered.

2.6 Cellular Manufacturing
2.6.1 Introduction
Cellular Manufacturing is the application o f  Group Technology (GT) in 
manufacturing systems. GT was first introduced in the former USSR by Mitrofanov 
(1966), and was popularised in the west by Burbidge (1975), who introduced 
Production Flow Analysis (PFA), the first scientific method for creating 
manufacturing cells. Cellular manufacturing is a philosophy that attempts to convert a
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manufacturing system into a number o f  cells. Each cell manufactures products with 
similar processing characteristics. Ideally, all the processing operations o f  a part 
should be completed within a cell. However, in realistic cases, intercell movements o f  
parts are always present. Cellular manufacturing offers certain advantages to mid
variety, mid-volume production lines like the reduction o f set-up and transfer costs, 
the minimisation o f  inventory, improved quality and significant savings in plant 
space.
There are three main phases in the design o f  a manufacturing cell: i) the grouping o f  
machines into cells, better known as the cell-formation problem, ii) the layout o f  cells 
in the plant and iii) the layout o f machines within the cells. The implementation o f  
each o f these stages is associated with difficult optimisation problems, where 
traditional optimisation methods are incapable o f finding optimal solutions in 
reasonable time. In the following paragraphs some evolutionary methods that have 
recently been used to tackle optimisation problems associated with cellular 
manufacturing will be examined.

2.6.2 The cell-formation problem
Venugopal and Narendran (1992) were the first researchers to approach the cell- 
formation problem using EAs. Their objective was the minimisation o f the intercell 
traffic and the balancing o f  load in the cells. A different population o f solutions was 
employed for each o f  these objectives. The solution representation was simple and 
efficient. Each machine in the plant corresponded to a gene in the chromosome. The 
value o f  the gene defined the cell o f  the respective machine. The total number o f  cells 
in the plant was predefined, but the formulation o f  the problem also considered the 
processing time o f  parts, which was an additional feature in relation to conventional 
cell-formation methods. Gupta et al. (1996) enhanced this formulation by considering 
the intracell moves o f parts and the intracell layout. Special care was taken to ensure 
that no cell remained empty during the evolutionary process.
Billo et al. (1996) adopted a direct solution representation, based on a two-part 
chromosome. The first part was a permutation o f all parts to be processed, while the 
second part denoted the cut-off points o f  the first part. Each segment between cut-off 
points denoted a part-family. The objective o f  their algorithm was the maximisation o f
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machines’ similarity within the cells and the minimisation o f  the total number o f cells. 
The advantage o f  this method was that the total number o f  cells was not predefined, 
however, the structure o f  the chromosomes was quite complex and computationally 
expensive. The algorithm performed well on a series o f test problems, including some 
ill-structured machine-component matrices.
Joines et al. (1996) introduced a new efficient integer programming formulation o f the 
problem, which reduced the search space significantly. An evolutionary algorithm 
was employed for the solution o f the problem, with the variables o f the mathematical 
formulation coded into the chromosome. Only the upper bound o f  the total number o f  
cells needed to be specified. The objective o f  the algorithm was the minimisation o f  
exceptional elements and voids (zero’s in the diagonal blocks) in the machine- 
component matrix. The validity o f the method was depicted by results on test 
problems taken from the literature. Su and Hsu (1996) used the classic Venugopal’s 
solution representation, but their chromosome also accommodated the existence o f  
multiple machines o f  the same type.
Cheng et al. (1998) noted that the reorganisation o f rows and columns in a binary m/c 
matrix could be described as a permutation problem equivalent to the TSP, where the 
objective was the minimisation o f some type o f distance measure between columns or 
rows. They employed a real-coded EA with path-representation for the solution o f  the 
problem. The Minkowski metric was used as an indication o f the distance between a 
pair o f  machines or parts. The performance o f the algorithm was compared with that 
o f a non-hierarchical clustering solution methodology (ZODIAC) (Chandrasekharan 
and Rajagopalan, 1987), on a wide range o f  problems taken from the literature and 
was found to be superior in most cases.
Gravel et al. (1998) considered a version o f  the cell-formation problem that allows the 
existence o f  alternative process plans for the parts. A double-loop EA was employed 
for the solution o f  the problem with the objective o f  minimising the volume o f  
intercell moves and balancing the workload within cells. The external loop o f the EA 
used Venugopal and Narendran’s coding for the assignment o f  machine to cells. A  
second internal loop that determined the allocation o f process plans to parts was used 
for the evaluation o f  solutions created in the external loop. Different multiobjective 
optimisation approaches were tested, including the epsilon-constraint approach and
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the weighted-sum approach.

2.6.3 Cell layout and machine layout optimisation methods
Once the configuration o f  cells has been determined, the designer must define the 
layout o f  machines inside the cells, and the layout o f  cells in the plant area. These 
optimisation problems belong to the general category o f the Facility Layout Problem 
(FLP). The FLP is a well-known combinatorial problem. It has been formulated as a 
quadratic set covering problem, linear integer programming problem, mixed integer 
programming problem and graph theoretic problem. However, the Quadratic 
Assignment Problem (QAP) formulation is the most popular in the literature and since 
QAP is known to be NP-complete for most problem instances, efficient algorithms 
must be used for its solution.

2.63.1 Evolutionary computation methods for the solution o f  the facility 
layout problem

Several researchers have used evolutionary algorithms to tackle FLP problems in 
manufacturing. Cohoon et al. (1991) and Tam (1992) were the first researchers to 
approach the problem using evolutionary computation methods. In both cases, the 
layout was represented by a Slicing Tree Structure (STS) that can be easily decoded 
into a layout. A  slicing tree is "a binary tree representing the recursive partitioning 
process o f  a rectangular area, through cuts. A  cut specifies the relative position o f  
departments through four distinguished branching operators" (Mavridou and Pardalos, 
1997). Kado et al. (1995) investigated the combination o f  STSs with different 
clustering methods for the initialisation o f the population, and different decoding 
methods for the creation o f  layout. Some o f these combinations produced improved 
results on previously published test problems. Garces-Perez et al. (1996) refined these 
results by putting the slicing tree structures into a much more natural genetic 
programming framework, and by employing a variation o f one o f  Kado's most 
successful decoding methods. The STS representation was also adopted by Cheng et 
al. (1995) in their EA framework. The authors additionally addressed the issue o f  the 
uncertainty o f  material flow between cells using a convex fuzzy number 
representation. Gau and Meller (1999) illustrated the deficiencies o f  the STS 
representation and proposed a number o f  modifications in order to improve the search
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power o f the evolutionary algorithm. Their methodology allowed both the exchange 
o f departments within the same tree structure and the change o f  structure o f  STSs by 
the introduction o f  ‘dummy’ departments. The methodology was tested on several test 
problems taken from the literature, producing satisfactory results.
Tate and Smith (1995) adopted the QAP formulation o f  the problem with the 
objective o f  minimising the sum o f products o f  total material flow and rectilinear 
distances between the departments. They proposed a flexible-bay layout structure that 
accommodated unequal sizes for the departments. The plant was initially divided into 
a number o f  bays by end-to-end slices in one direction, which were subsequently split 
into departments by perpendicular slices. A  permutation representation o f  the solution 
was used, which determined both the allocation o f departments in the layout and the 
place o f  bay-divisions. Norman and Smith (1997) enhanced this representation by 
using a random-keys EA - thus avoiding feasibility constraints - and by incorporating 
uncertainty in the mathematical formulation o f the problem. Material handling costs 
were expressed using expected values and standard deviations for the product volume 
over time. Suresh et al. (1995) adopted the permutation representation but used a 
much simpler grid-structure for the layout. Kazerooni et a l  (1996) proposed an 
integrated approach for the design o f  manufacturing cells, which incorporated specific 
stages for the simultaneous determination o f cell and machine layouts.
Baneijee et al. (1997) modelled the problem using a mixed-integer programming 
formulation. They proposed a graph solution representation based on nodes and edges. 
Nodes corresponded to input-output cell stations and edges corresponded to material 
flows between the stations. The layout structure was continuous; thus much more 
flexible than the grid and bay structures which restricted the shape o f  cells. Genetic 
search was employed as a part o f  the overall algorithm, aiming to transform the 
problem into a series o f  iterative linear programming problems. The robustness o f this 
method was illustrated in a number o f test cases taken from the literature, where it 
was shown to outperform traditional methods.
Conway and Venkataramanan (1994) considered an interesting version o f  the FLP, 
the dynamic FLP. In this case, the facility layout changes with time, and the algorithm 
must find the best allocation o f facilities over an entire planning horizon. The authors 
introduced a multi-part chromosome representation for the layout, where each part
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corresponded to a planning period. The position o f  a gene corresponded to a fixed 
place in the layout, and the value o f the gene denoted the facility that occupied this 
place for a particular period. The objective o f  the algorithm was the minimisation o f  
layout rearrangements costs and materials flow costs over the entire planning horizon.

2.6.3.2 Special cases for the machine layout problem
The papers reviewed so far introduced methods that normally apply to the cell layout 
problem. The machine layout problem is a special type o f FLP and it is usually 
addressed individually, since various assumptions that are made for the FLP are not 
valid for this problem, such as the equal-sized areas and the a-priori knowledge o f  
facilities locations (Bazargan etal., 1997).
Manufacturing practice usually restricts the search for an optimal intracell layout to a 
small number o f  fixed configurations, like the single-row layout, the multi-row layout, 
the semi-circled layout and the loop layout. Braglia and Stemieri (1996) utilised an 
EA in order to find the machine layout in a pre-fixed single-row structure. The 
objective o f  the algorithm was the minimisation o f the distance travelled by the 
material-handling device o f  the cell. The solution was represented by a permutation o f  
all machines in the row. This method performed well on large problem instances, in 
comparison with heuristic approaches. Cheng et al. (1996b) addressed the loop 
machine layout problem using two different objectives: the minimisation o f  the total 
number o f  reloads for all products (minsum problem) and the minimisation o f the 
maximum number o f  reloads for all products (minmax problem). The layout was 
considered to be unidirectional and there was a single loading-unloading station. The 
solution was once again represented by a permutation o f the available machines. Gen 
et al. (1995) introduced a hybrid fuzzy-GA approach for the solution o f complex 
multi-row machine layout problems. The objective o f  the algorithm was the 
minimisation o f  travel cost between the machines, and the solution was represented by 
a multi-part chromosome that contained information about the total number o f  rows, 
the permutation o f machines in each row, and the clearances between the machines. 
Fuzzy sets were used for the representation o f the uncertainty that existed in the value 
o f  clearances.
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2.7 Optimisation of Assembly Lines
2.7.1 Introduction
Assembly lines are widespread in manufacturing plants. A  number o f optimisation 
problems are associated with assembly lines, like the assembly sequence planning 
problem, the sequencing o f mixed model assembly lines and the assembly line 
balancing problem. A  variety o f evolutionary computation methods have been 
proposed for the solution o f  assembly line optimisation problems.

2.7.2 The assembly sequence planning problem
The Assembly Sequence Planning Problem (ASSP) is the problem o f  finding an 
optimal sequence o f  assembling a product that consists o f N  parts, given its design 
characteristics. An assembly sequence is feasible i f  it does not violate the assembly 
rules and constraints that are defined by the designer. Sebaaly and Fujimoto (1996) 
proposed an evolutionary approach for the solution o f this problem, where an 
individual chromosome was a randomly constructed sequence o f parts. An efficient 
mapping procedure transformed any random assembly sequence into a feasible one. 
Gropetti and Muscia (1995) analysed the assembly planning procedure and used an 
EA in order to obtain a clear contact relational graph.

2.7.3 Sequencing in mixed model assembly lines
It is often the case that several products with similar characteristics (models) are 
assembled in a single line (mixed-model assembly lines). The sequencing o f models 
in mixed-model assembly lines is an important task, especially i f  the JIT principle is 
to be applied in the production line. There are a number o f objectives associated with 
this task, like the minimisation o f  line’s length, the minimisation o f  total utility work, 
and the minimisation o f  the variability o f parts’ consumption (vpc). This latter 
objective is critical in JIT systems. Leu et al. (1996) addressed the problem o f  
sequencing a mixed-model assembly line with the objective o f  minimising vpc in a 
JIT production system. An EA was used for the solution o f  the problem, with each 
chromosome representing a sequence o f  models to be assembled. The sequence was 
cyclic, and the number o f individual models in each sequence was fixed. This method
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outperformed Toyota’s Goal Chasing Algorithm (GCA), which is often used in JIT 
production systems, in a number o f test problems. Kim et al. (1996) adopted the same 
representation for the sequencing o f a mixed model assembly line, where the objective 
was the minimisation o f  the total length o f the line.

2.7.4 The assembly line balancing problem
Another well-known assembly line optimisation problem is the assembly line 
balancing problem. Given n workstations and m parts to be assembled, the assignment 
o f  parts to workstations should be defined according to certain optimisation criteria. 
Two versions o f  the problem are usually considered: the first version aims to 
minimise the total number o f  workstations in the plant given a fixed cycle time, while 
the second version aims to minimise the cycle time, given a fixed number o f  
workstations. Secondary objectives like the minimisation o f  balance delay and the 
minimisation o f  probability o f line stoppage are also considered. Suresh et al. (1996) 
presented an excellent literature review on the assembly line balancing problem and 
proposed an evolutionary algorithm for the solution o f a similar problem where the 
objective was mainly the minimisation o f the smoothness index o f  balance delay. The 
solution was represented by a list o f  sets with length equal to the total number o f  
workstations. Each set contained one or more processing jobs. All the initial solutions 
were feasible and special operators ensured the feasibility o f solutions throughout the 
evolutionary procedure. The authors also presented an alternative version o f  the 
algorithm, where a number o f infeasible solutions were allowed in the population. The 
latter version performed well on large problem instances. Rubinovitz and Levitin’s 
(1995) representation was a permutation o f all parts, divided into a number o f  sections 
equal to the total number o f workstations. Random sequences were initially 
constructed, and special mechanisms were employed to reorder them according to the 
precedence constraints and to divide them in an appropriate number o f  sections. 
Tsujimura et al. (1995) presented an interesting EA-fuzzy logic method for the 
solution o f  the assembly line balancing problem, aiming to minimise the balance 
delay. A  conventional permutation representation was employed, which considered all 
precedence constraints. The processing time o f each job was not deterministic, but 
was defined by a fuzzy set. The allocation o f jobs to workstations was accomplished 
using the EA sequence, the fuzzy sets, and a standard predefined maximum
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completion time: starting with the first job in the sequence, the fuzzy sets o f  
processing times were added, until the upper limit o f the sum o f fuzzy sets became 
bigger than the predefined maximum completion time. The set o f  jobs that comprised 
the sum was assigned to the first workstation, and the procedure started again from the 
next job after this set in the sequence. Special mechanisms and operators ensured the 
feasibility o f  solutions.

2.8 Manufacturing-related Optimisation Problems
2.8.1 Introduction
In the previous sections recent papers in the field o f  evolutionary computation for 
some standard manufacturing optimisation problems were reviewed. However, these 
are not the only optimisation problems associated with the manufacturing process. 
The purpose o f  this section is to illustrate some recent evolutionary computation 
approaches in various manufacturing areas.

2.8.2 Design Optimisation Problems
Design is a complicated and time-consuming phase in the development o f a product. 
Every design must be properly optimised, otherwise the result will be huge redesign 
costs. Enormous effort has been devoted to the development o f  efficient CAD systems 
in order to simplify and speed up the design process. Evolutionary computation 
methods have been applied successfully to complex design optimisation problems.
Cao and Wu (1997) adopted an evolutionary programming approach for the solution 
o f a mechanical design optimisation problem: a number o f  design variables needed to 
be optimised, subject to certain constraints. Continuous, binary, integer and discrete 
variables were included in the mathematical model, a condition that made the 
optimisation procedure even harder. The solution was represented by a string o f  
design variables initialised within the constraints, while a special mutation procedure 
was used for each type o f variable. Two design problems were used to illustrate the 
method, the design o f  a gear train and the design o f  a pressure vessel. The algorithm 
performed equally well or better in comparison with other optimisation methods like 
the branch & bound algorithm and simulated annealing.
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Rasheed et a l  (1997) proposed an EA for the solution o f a similar parameter 
optimisation problem that involved only continuous variables. The solution was a 
string o f  all parameters that needed to be optimised, initialised within their feasible 
regions. Feasibility problems were accommodated using a penalty function. The 
evolutionary process was enhanced with the introduction o f  two crossover operators 
namely line crossover and guided crossover, which produced an offspring on the line 
connecting the parent chromosomes, considering the solutions’ search space. The 
algorithm was tested on two complex design optimisation problems, the design o f  a 
supersonic transport aircraft and the design o f  a supersonic missile inlet. The method 
performed much better on these problems than a classic binary-coded GA and a 
sequential quadratic programming method.
A  discussion about the use o f evolutionary computation techniques in the wider field 
o f engineering design can be found in (Parmee, 1998).

2.8.3 Process model identification
The identification o f  process models is essential for the optimal control o f  
manufacturing systems. Pohlheim and Marenback (1996) used genetic programming 
in order to identify the model o f  a manufacturing process. Common control 
engineering tools, like transfer function blocks were used for the creation o f trees 
(programmes). In this way, the algorithm provided structured process models, giving 
the control engineer a useful insight on systems’ internal configuration. Test problems 
validated the performance o f the method and especially its ability to generalise. 
McCay et al. (1996) also employed genetic programming for system identification, 
constructing the trees with common mathematical functions. Reeves et al. (1996) 
proposed an interesting EA methodology where the solution was coded in terms o f  the 
radii and angles o f  poles and zeros o f  the transfer function. The values o f these 
variables were constrained within the stability regions; thus the final solution was 
guaranteed to be stable.

2.8.4 Machine failure and maintenance
Some failure o f machines in the plant is often inevitable. Shop-floor engineers aim to 
diagnose the failure o f  a machine as quickly as possible. They normally use a number
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o f  symptom parameters that are sensitive to changes o f  specific signals from the plant. 
Chen et al. (1996b) described some o f these parameters and proposed an evolutionary 
approach for the determination o f an optimal sequence o f symptom parameters. Their 
method resembled genetic programming, in terms o f  the tree structures that were used 
as individual chromosomes. Guzman and Kramer (1994) developed a hybrid Bayesian 
networks - EAs system that performed on-line monitoring and failure diagnosis, based 
on data taken from the plant.
Maintenance scheduling is another important task in the shop-floor, since the 
disruption o f  the production process must be as little as possible, but on the same time 
the machines must work without failures for the longest time possible. Kim et al. 
(1994) proposed an interesting hybrid o f EAs and simulated annealing for optimal 
maintenance scheduling. The acceptance probability o f simulated annealing was used 
for the survival o f  the less fit offspring in the population.

2.8.5 Quality control
Quality control is an important aspect o f modem manufacturing. The optimal 
allocation o f  inspection stations in the plant ensures that products are manufactured 
according to the quality criteria set by the management team. Viswanadham et al. 
(1996) addressed this problem in a multi-stage manufacturing system and employed 
an evolutionary algorithm to optimally allocate inspection stations. The solution was 
binary coded, with each gene representing a manufacturing stage. The presence o f  a 
station at a particular stage was denoted by a positive value. Patro and Kolarik (1997) 
designed a system that performed statistical processing control using neural networks 
and evolutionary computation. The neural network identified the process model, and 
the evolutionary algorithm adjusted the control parameters in order to obtain the 
desired quality performance. Lu et al. (1995) presented an EA-based system that 
optimised the motion o f a co-ordinate measuring machine used in inspection systems. 
A permutation representation was employed for the solution o f the problem, with each 
gene corresponding to a testing point that the measuring machine should visit. The 
algorithm aimed to find the optimal sequence o f  visiting points that minimised the 
total length o f the inspection path.
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2.8.6 Advanced manufacturing optimisation problems
In the following paragraphs, some advanced manufacturing optimisation problems 
that have been the subject o f evolutionary computation research will be discussed. 
Mak and Wong (1995) considered the problem o f  designing an optimal integrated 
production-inventory-distribution system, aiming to minimise the overall costs, 
including inventory holding costs, delivery costs, manufacturing costs and shortage 
costs. An evolutionary algorithm was employed for the solution o f the problem. An 
integer programming formulation o f the problem was adopted, and the solution was 
represented using the variables o f  the model. Disney et al. (1997) addressed the 
problem o f controlling a production and inventory system. Transfer functions were 
used for the modelling o f  the problem, illustrated in the form o f block diagrams. The 
solution o f  the problem was represented by the variables o f the transfer function, and 
a fitness measure was designed based on stock reduction, production robustness and 
inventory recovery.
A  difficult decision that the marketing team often has to face is the location o f  
inventory centres for the accommodation o f department stores, and the allocation o f  
an inventory centre to each o f these stores. This difficult location-allocation problem 
was formulated as a non-linear mixed-integer programming problem and solved by 
Gong et al. (1996) using an evolutionary approach for the location task, and a 
Lagrangian relaxation method for the allocation task.
Aggregate production planning is a high level decision making procedure that takes as 
input product capacities and forecast demands, and produces aggregate production 
plans. Stockton and Quinn (1995) addressed this problem using a binary-coded GA. 
The algorithm determined the amount o f resources needed each month in order to 
meet the demand. The resources were expressed in the form o f  overtime, subcontracts 
and stock. Wang and Fang (1997) formulated the same problem using a fuzzy linear 
programming model. They employed Zimmerman’s tolerance approach to transform 
the problem into a linear programming model. The variables o f the model formed the 
chromosome o f  an evolutionary algorithm that was used for the solution o f the 
problem. Feng et al. (1997) addressed the problem o f joint marketing/production 
decision making aiming to maximise the net profit o f  a company. The decision 
problem consisted o f  the promotion problem for the marketing department and the
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production problem for the manufacturing department. Each problem was formulated 
mathematically and a respective number o f  EAs were employed for their solution. The 
decision variables o f  the mathematical models were used for the representation o f  
solutions. Garavelli et al. (1996) considered the production planning problem o f  a 
multinational company with multiple manufacturing plants around the world. 
Parameters like local market demands and independent capacities were taken in 
account in the formulation o f  the problem. An EA defined which plants would be 
activated for production and the timing o f their activation.
The dynamic lot-sizing problem in a multi-stage, multi-item production system was 
described by Jinxing (1997). He proposed an evolutionary programming approach 
with binary representation for the solution o f the problem. The objective was the 
minimisation o f  set-up, production and inventory costs.

2.8.7 Various applications
In a pull (JIT) production system, the demand must always be satisfied without the 
help o f  excessive stocks. The total number o f  kanbans in the plant and the 
corresponding production trigger values should be optimally defined in order to 
achieve this objective. Bowden et al. (1996) addressed this problem using an 
evolutionary algorithm seeded with the optimal solution o f the Toyota equation. Zhao 
et al. (1996) addressed the problem o f robot selection and workstation assignment in a 
Computer Integrated Manufacturing (CIM) system. A bin-packing formulation o f the 
problem was proposed and an EA was employed for the solution o f the problem. A  
diploid chromosome that accommodated both parts o f  the problem represented the 
solution. Finally, Mcllhaga (1997) designed a framework for solving generic 
scheduling problems, i.e. scheduling problems o f non-specific form. This framework 
was based on distributed genetic algorithms and was able to solve problems o f  this 
kind more efficiently than random search and dispatching rules. The parameters o f  the 
problem were defined by the user through a Scheduling Description Language (SDL).

2.9 Conclusions
It is obvious that the use o f evolutionary computation methods for manufacturing 
optimisation is growing. The number o f papers published is increasing rapidly, and
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research covers a wide range o f manufacturing problems. The amount o f  work itself 
indicates that evolutionary computation methods have established themselves as a 
useful optimisation technique in the field.
Evolutionary computation research has been criticised for the consideration o f  
artificial test problems that are much simpler than real-life manufacturing cases. This 
review shows that researchers have reacted to this criticism by considering realistic 
cases taken from manufacturing plants. This move has also been triggered by the low  
response o f  evolutionary computation in manufacturing practice. It is encouraging to 
report recent projects where companies have adopted evolutionary computation 
methods in their plants. The gap between academic research and manufacturing 
practice is not a problem restricted to the field o f evolutionary computation. However, 
for the optimisation field considered in this thesis, there are a number o f  additional 
reasons that make this approach harder:

• The terminology o f  evolutionary computation is vague for the manufacturing 
engineer. Despite the fact that the concept o f evolutionary algorithms is simple, 
the terminology inherited from genetics predisposes manufacturing engineers to 
think the opposite.

•  Evolutionary computation is a relatively new technique, still in development. 
There are no universally accepted methods for the determination o f technical 
parameters like population size, probability o f  applying operators etc. There is 
also no guarantee that an algorithm will converge to an optimal or near-optimal 
solution, except under specific problem conditions.

•  There is no standard evolutionary computation toolkit that can be used easily by 
manufacturing people who are not familiar with evolutionary concepts.

Despite the previous considerations, evolutionary computation methods offer 
solutions that combine computational efficiency and good performance. This 
significant feature will certainly continue to attract the interest o f  engineers.
The robustness o f evolutionary algorithms is greatly enhanced when they are 
hybridised with other optimisation methods like local search techniques, simulated 
annealing, tabu search, neural networks and expert systems. The number o f  papers 
introducing hybrid systems is growing, indicating that there is a trend towards this
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direction.
This review highlights the lack o f genetic programming applications in the field o f  
manufacturing optimisation. In the remainder o f this thesis the possibility o f  using 
genetic programming for the solution o f some standard manufacturing optimisation 
problems w ill be examined. An overview o f  the genetic programming optimisation 
method is presented in the following chapter.
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Chapter 3

INTRODUCTION TO GENETIC 
PROGRAMMING

3.1 Introduction
During the last decade genetic programming has emerged as an efficient methodology 
for teaching computers how to program themselves.
Automatic programming algorithms have been proposed within the machine learning 
community from as early as the late 1950’s (Friedberg, 1958). While a number o f  
program induction techniques based on the principles o f  evolution were introduced 
during the 1980’s (Cramer, 1985), (Fujiki and Dickinson, 1987), genetic 
programming was formally introduced by Koza (1992) as an extension o f  the popular 
genetic algorithm paradigm (Holland, 1975). The efficient integration o f  the 
evolutionary procedure with a simple scheme for the representation o f  computer 
programs proved to be successful in the solution o f  a number o f  alternative 
optimisation problems.
The original genetic programming algorithm was soon subject to proposed 
modifications both in its internal operations and the representation o f  genetic 
programs. Recently Banzhaf et al. (1998) argued that any search algorithm that 
employs a population o f  computer programs in its search and generates new variant 
programs using any form o f  non-deterministic procedure could be legitimately called 
genetic programming. This extension o f  the genetic programming definition was 
necessitated by the controversy caused within the evolutionary computation 
community about the optimality o f  the original genetic programming algorithm and
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more specifically the use o f  the crossover operator. This subject will be discussed in 
more detail in the following sections.
The focus o f this thesis is the usefulness o f  the genetic programming model for the 
solution o f  manufacturing optimisation problems. The original form o f the genetic 
programming algorithm, as introduced by Koza, was employed in the majority o f  the 
experiments.
The remainder o f  this chapter is organised as follows: In section 3.2 an overview o f  
the genetic programming paradigm is presented. Section 3.3 deals with the 
representation, initialisation and computer implementation o f  the programs. The 
issues o f  fitness assignment and fitness-based selection are discussed in section 3.4. In 
section 3.5 the use o f  genetic operators and their implication on the theoretical 
foundations o f  genetic programming is examined. The preparatory steps for the run o f  
the genetic programming algorithm are described in section 3.6. Section 3.7 describes 
the application o f  genetic programming on an example symbolic regression problem. 
The conclusions o f  this chapter are drawn in section 3.8.

3.2 Overview of genetic programming
Genetic programming is an evolutionary algorithm that employs the principle o f  
Darwinian strife for survival for the creation o f  solutions in the form o f computer 
programs. Koza (1992) claimed that there exists a large number o f  problems that can 
be re-formulated as program induction problems, i.e. their solution can be represented 
by a computer program that uses a number o f  problem-related input(s) to create the 
necessary output(s) (figure 3.1).

INPUT(S)

Figure 3.1: Genetic programming approach to problem-solving

Depending on the coding used for the representation o f genetic programs (see section 
3.3) and the particular optimisation problem considered, the search space for the
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optimal computer program can be quite substantial. Genetic programming employs 
the concept o f  genetic evolution to guide its search within the space o f potential 
computer programs.
The operation o f the genetic programming algorithm is presented in a pseudo-code 
form in figure 3.2.

Generate population o f randomly created genetic programs 
Evaluate performance o f genetic programs on the problem considered 
Assign fitness values to genetic programs 
While termination criterion has not been satisfied 

While population size has not been exceeded
Probabilistically select genetic operation (crossover, mutation, or 

reproduction)
Select genetic programs to participate in genetic operation based on 

their fitness
Perform genetic operation
Insert offspring genetic programs in the new generation

end
Evaluate performance o f genetic programs on the problem considered 
Assign fitness value to genetic programs

end
Report best solution found

Figure 3.2: Genetic programming algorithm in pseudo-code form

Initially, a population o f  genetic programs is randomly generated and their 
performance is evaluated on the solution o f the problem considered. A  fitness value is 
associated with each genetic program, as a measure o f  its quality in solving the 
problem. There is a possibility that the optimal solution o f the problem will be 
generated form the initial population o f  programs. However, this rarely happens in 
practice, unless a problem is trivial or small-sized.
The next step o f the genetic programming procedure is the selection o f  genetic 
programs that will form the new population o f  solutions. What makes the operation o f  
genetic programming (and evolutionary computation algorithms in general) different 
to a random search procedure is that these programs are selected probabilistically 
according to their measured fitness. That is, genetic programming aims to exploit the 
programs that perform better on the solution o f the problem. However, genetic 
programming is not a deterministic hill-climbing procedure, since the probabilistic 
selection step might favour the reproduction o f a program that is not as fit as other
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individuals o f  the same population. In that way, genetic programming is able to 
escape from local-optima.
One o f  the necessary conditions for evolution to occur, both in nature and in 
algorithms that attempt to mimic its operation, is genetic diversity. While the 
computer programs o f the initial generation are quite variable in their structure (in fact 
the designer can enforce them to be different from each other), it is certain that i f  only 
simple reproduction o f  fit programs was to be used as the method o f  generating the 
new population o f  solutions, the best programs would overwhelmingly dominate the 
population within few generations, and the search would stagnate (premature 
convergence). Instead, genetic programming, in accordance with all other 
evolutionary computation methods, employs specially designed genetic operators for 
the creation o f genetic diversity. These operators are used to either force the exchange 
o f  genetic material between programs (crossover) or to introduce new pieces o f  
genetic code in them (mutation). The operation o f genetic operators and the 
controversy that surrounds their use is discussed in section 3.5.
The new population o f  solutions is constructed through simple reproduction and 
genetic modification. In both cases, probabilistic selection o f solutions according to 
their measured fitness is required. Once the new population o f solutions has been 
formed, their performance is evaluated once again and new fitness values are assigned 
to them.
The same procedure is repeated until a user-defined termination criterion has been 
reached. This criterion can be the generation o f a program with fitness equal to the 
optimal value for the problem considered. However, since the optimal solution is not 
always known in advance, genetic programming runs normally terminate after a 
predefined number o f  generations. The end product o f the evolutionary procedure 
would ideally be a computer program that is able to adequately solve the problem 
considered.
The form o f  the program structures initialised, evolved and translated by a genetic 
programming algorithm is discussed in the following section.
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3.3 Representation, initialisation and computer 
implementation of genetic programs

Koza (1992) defined genetic programs as variable-length structures that can be 
compiled as they are, or with slight modifications by a computer. The shape and the 
size o f  these programs are not predefined and can change dynamically during the 
course o f  the evolutionary procedure.

3.3.1 Basic program elements
Genetic programs consist o f  a set o f  inputs that provide problem-specific information 
and a set o f  functions that manipulate these inputs. In genetic programming 
linguistics, the terms ‘terminals’ and ‘functions’ are used to describe these elements 
respectively.
The terminal set may contain variables, constants, or functions that require no 
arguments. The function set may contain any function that the designer o f  the 
algorithm considers to be relevant to the solution o f the problem. This definition does 
not only include standard functions (arithmetic, boolean, etc.) but user-defined 
functions as well, i.e. functions that have been constructed by the designer and have a 
specific meaning for the problem considered. This feature o f  genetic programming is 
a useful tool in the hands o f the designer, especially when standard functions are 
unable to form a solution for the problem considered. Koza (1992) indicated that a 
function set consisting o f  the four basic arithmetic operations (addition, subtraction, 
multiplication, and division) could solve a considerable number o f optimisation 
problems.
The choice o f  terminals and functions for the construction o f the respective sets is not 
straightforward. The minimum requirement for the selected terminals and functions is 
that they should be able to create a solution for the problem considered {sufficiency 
property). A  rule o f  thumb states that the size o f these sets should be kept to the 
minimum possible. The evolutionary procedure has the ability to disregard any 
function that is irrelevant to the solution o f the problem, however, when extraneous 
functions are included in the function set, the performance o f  the system is generally 
degraded. There are cases where the relevance o f  specific inputs to the solution o f  the
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problem is not known in advance. Statistical methods (correlation coefficients etc.) 
can provide some indication o f their importance. However, in the overwhelming 
majority o f  genetic programming applications that have been reported in the literature, 
this decision is left to the evolutionary procedure (see for example Gilbert et al. 
(1998)).
Another consideration during the construction o f the function and terminal sets is the 
maintenance o f  the closure property. This property states that each function included 
in the set should be able to accept as argument any value that might be generated by 
any other function or terminal in the system. The division function is a typical 
example o f  a potential violation o f the closure property. I f the denominator o f  the 
division function was to assume the value o f ‘O’, the computer would come to a halt 
(although some modem programming languages prevent this from happening using 
built-in protection procedures). In a genetic programming algorithm this situation is 
usually contained by employing the protected division function, which returns the 
value o f  T ,  when the value o f the denominator is ‘O’. Similar precautions must be 
taken for square-root and logarithmic functions, or functions that contain conditional 
branches.

3.3.2 Representation of genetic programs
The representation o f  genetic programs is mainly an issue o f  convention (Banzhaf et 
al., 1998). The way that the designer chooses to represent and interpret genetic 
programs and the way that these programs are actually stored in the memory o f  the 
computer are not necessarily the same. The most popular form o f representation for 
genetic programs is the parse-tree representation, originally suggested by Koza (1992) 
in his pioneering book. The intuition behind Koza’s choice was that some computer 
languages use this type o f representation to store and interpret programs. A parse-tree 
is a collection o f  terminal and function nodes interpreted in a depth-first, left-to-right 
postfix manner. This practically means that the interpretation o f  the program starts 
with the leftmost function for which all inputs are available. The interpretation is 
characterised as postfix since the operators appear after the operands. An example o f a 
genetic program in a parse-tree form and its representation is presented in figure 3.3.
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While the parse-tree coding and representation o f genetic programs has been 
dominant among GP researchers, it is by no means the only one that has been 
suggested. The register-based GP-machine o f  Nordin (1994) and the graph-based 
PADO GP-system (Teller and Veloso, 1996) are examples o f alternative 
representations that have received considerable attention.

3.3.3 Initialisation of genetic programs
There are three main methods o f initialising parse-tree genetic programs, all o f them 
originally introduced by Koza (1992).
When the ‘grow’ initialisation method is used, genetic programs are constructed by 
randomly selecting functions and terminals from the union o f  the respective sets. The 
root o f  the tree is always selected from the function set, ensuring that a single
terminal genetic program is never created. Every time a function is selected, a 
corresponding number o f  arguments are selected randomly from the union set. If one 
o f  these arguments turns out to be a terminal, the subtree terminates at this point. If 
the selected argument is a function then the procedure continues in the same fashion. 
There is a user predefined maximum depth o f  genetic programs that should not be 
exceeded (where depth is defined as the maximum non-backtracking distance from an 
end node to the root o f the tree). When the maximum depth level for a tree has been 
reached, selection o f  nodes is restricted to the terminal set only. Trees initialised using 
the ‘grow’ method are characterised by uneven depth since terminal nodes can be 
selected at any initialisation stage.
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The ‘full’ method proceeds by restricting the choice o f possible nodes, for depths less 
than the prespecified maximum depth, from the function set only. Maximum depth 
nodes can only be selected from the terminal set, as in the case o f the ‘grow’ method.
The ‘ramped half-and-half method combines efficiently the characteristics o f  the 
‘grow’ and ‘full’ methods constructing genetic programs that are structurally quite 
dissimilar. Initially, the population o f genetic programs is divided into a number o f  
depth levels according to the maximum depth constraint. If, for example, the 
maximum depth allowed for a genetic program is equal to 6, then the population is 
divided into equal sets o f programs for each depth level between 2 and 6. For a 
population size o f  500 programs, 100 programs are assigned to each o f  the levels 2, 3, 
4, 5 and 6. Then, half o f  the programs in each set are initialised using the ‘grow’ 
method, while the remaining half is initialised using the ‘full’ method. The ‘ramped 
half-and-half method is used as the standard initialisation method in the genetic 
programming applications presented in this thesis.

3.3.4 Computer implementation of genetic programs
Koza employed the LISP programming language for the computer implementation o f  
genetic programs, mainly due to its unique interpretation o f  computer code as both 
program code and data. However, several alternative computer implementations o f the 
genetic programming algorithm have been proposed. The genetic programming 
system used in this thesis is based on a computer implementation that exploits the 
pointer utility o f  the C++ programming language. This implementation stores genetic 
programs as collections o f node classes. Each node contains information about the 
function or terminal that it represents. It also carries pointers to the addresses o f  the 
function and/or terminal nodes that are necessary for the evaluation, or follow the 
evaluation o f  the specific node.

3.4 Fitness assignment and selection methods
3.4.1 Fitness functions
As it has already been discussed the quality o f  evolved genetic programs on the 
solution o f  the problem considered is mirrored in their fitness values. The form o f  the
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function used for the assignment o f fitness to genetic programs is problem-dependent. 
In symbolic regression problems the fitness o f  a genetic program will normally be 
equal to the sum o f the squared differences between the predicted value o f  the 
dependent variable and its actual value, over the entire set o f input-output training 
examples. Cost, time and parsimony are just some o f  the alternative forms o f  fitness 
functions that have been used in genetic programming algorithms.
The measured value o f  fitness is known as the raw fitness o f  the genetic program. In 
some cases it is preferable to express fitness in a form where lower values o f fitness 
correspond to better performance than higher ones, with ‘zero’ being the fitness o f the 
best possible individual program. This type o f fitness is usually referred to as the 
standardised fitness o f  the genetic program. The choice o f  fitness representation is 
critical for the operation o f  the genetic programming algorithm, since even subtle 
differences in the performance o f genetic programs should be reflected in their 
assigned fitness values.
The calculation o f fitness requires in many problems the evaluation o f  their 
performance on a number o f test cases {fitness cases) representative o f  the problem 
considered. An important decision that the designer o f the genetic programming 
algorithm has to face is the choice o f  the number and type o f cases that will form the 
training set. Large training sets generally produce better performance, but require 
significant computational power. The type o f  training cases is also important since 
they must be representative o f as many instances o f  the problem considered as 
possible. The result o f  employing an inappropriate set o f  fitness cases for the 
evaluation o f  genetic programs is poor generalisation. A  genetic program that fails to 
perform satisfactory on problem instances that were not included in its training set has 
failed to generalise, i.e. it has failed to capture information that is relevant to the 
solution o f  the problem. The cause o f poor generalisation is the overfitting o f  data. 
This phenomenon occurs when the algorithm, in its attempt to reduce the error 
between the predicted input-output relationship and the actual relationship o f  the data, 
fits the noise that is inherent in the training set since only a sample o f  all possible 
fitness cases is employed. In the experiments presented in this thesis, a validation set 
is used for the assessment o f the solution’s generalisation, wherever this is 
appropriate. This set comprises o f problem instances that were not used for the 
training o f  the evolved program.
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3.4.2 Selection methods
A  significant step in the operation o f  genetic programming is the selection o f  
computer programs that will participate in genetic mating or will be used for 
reproduction and mutation purposes. As has already been discussed, individual 
programs are selected probabilistically based on their fitness values. The selection 
operation ensures that fitter individuals have more chance o f  surviving in the next 
generation. At the same time, the non-deterministic nature o f  the procedure allows the 
potential survival o f less-fit individuals, a condition that makes the algorithm less 
vulnerable to the existence o f  local optima in the solutions' search space.

The selection procedure is independent o f the representation scheme employed in the 
evolutionary procedure. As a result, genetic programming has inherited the selection 
methods that were originally designed for alternative evolutionary algorithms. The 
most popular o f  these methods is the ‘fitness-proportionate’ or ‘roulette-wheel’ 
selection method. It is based on the calculation o f the relative fitness o f each 
individual in respect to the fitness o f the entire population. The value o f the relative 
fitness indicates the probability o f  survival o f  the individual into the next generation. 
Specific individuals are then selected with the help o f a pseudo-random number 
generator. The ‘roulette wheel’ selection method is simple but computationally 
expensive since it requires a centralised calculation o f fitness. In addition, the 
existence o f  individuals with extremely high levels o f fitness ( ‘super individuals’), 
leads to the premature convergence o f  the algorithm since these individuals are 
assigned with a very high probability o f survival.

The ‘ranking’ selection method addresses the shortcomings o f  the ‘roulette-wheel’ 
selection method by assigning ranks to individual programs according to their fitness, 
with the best individual receiving the highest rank and the worse individual having the 
lowest rank. The probability o f  survival for an individual is based on its ranking, 
however, since the scale o f ranking is fixed, ‘super individuals’ do not overcrowd the 
population and thus the evolutionary procedure does not easily stagnate.

During the last few  years ‘tournament’ selection has become the standard choice o f  
selection method, at least within the genetic programming community. Tournament 
selection proceeds by randomly selecting a number o f  individual programs from the

49



population. The exact number o f programs is predefined by the designer o f  the 
algorithm and is referred to as the tournament size. Selected individuals ‘compete’ 
with each other, i.e. their fitness values are compared and the best individual is 
selected. Tournament selection owns its popularity to its computational efficiency and 
simplicity. In addition, it provides the designer with the flexibility o f  adjusting the 
selective pressure o f  the algorithm by changing the tournament size.
The importance o f  stochastic steps in the operation o f  evolutionary algorithms has 
already been discussed (section 3.2). While this type o f  non-determinism ensures that 
these algorithms are not just parallel hill-climbing heuristics, the use o f  the pseudo
random number generator is a controversial issue. The quality o f  the generator has 
been reported to affect the quality o f  the results in genetic programming applications 
(Daida et al., 1997). Moreover, researchers rarely provide detailed information about 
the type o f  generator used in their experiments, thus making the task o f  comparing 
published results less reliable.

3.5 Genetic operators
Genetic operators are assigned with the task o f  preserving good genetic material for 
future generations, exchanging genetic material between evolved genetic programs 
and introducing diversity to the population o f  programs. Researchers in the field o f  
genetic programming have proposed several forms o f genetic operators. The operators 
employed in the majority o f  cases are crossover, mutation and reproduction.

3.5.1 Crossover
The crossover operator aims to emulate the process o f  sexual recombination in nature. 
In genetic programming terms, and for the parse-tree representation, the operation o f  
the tree-based crossover is quite simple (figure 3.4). Initially, two genetic programs 
are selected probabilistically according to their fitness. Then, a node is selected 
randomly in each o f  the programs and the subtrees defined by these nodes are 
swapped. The resulting genetic programs are inserted to the new population.
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Figure 3.4: Example of the crossover operation

3.5.1.1 The schema theorem in genetic programming
Koza considered crossover as both essential for the operation o f  genetic programming 
and responsible for its success. In fact, in his genetic programming implementation
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90% (on average) o f  the genetic programs in each generation were created using tree- 
based crossover. However, the justification o f  its use and its real contribution to the 
evolutionary procedure is fiercely debated within the evolutionary computation and 
machine learning communities. The theoretical foundations for the use o f the 
crossover operator are based on the existence o f  a theorem that would explain how its 
application improves the fitness o f genetic programs during the evolutionary 
procedure. Koza defined a genetic programming ‘schema’ as any tree or subtree 
whose presence within a computer program improves its fitness. He claimed that 
schemata increased exponentially during the evolutionary procedure with the help o f  
the crossover operator, acting as building blocks for the construction o f  increasingly 
fit individuals {building block hypothesis). Koza’s ideas were an extension o f  the 
well-known schema theorem originally introduced by Holland, which explains the 
operation o f  simple genetic algorithms (Holland, 1975). Koza’s schema theorem was 
not expressed in mathematical form, however, subsequent genetic programming 
researchers have presented schema theorems for genetic programming algorithms that 
use specific types o f  crossover and mutation operators (O’Reily and Oppacher, 1995), 
(Langdon and Poli, 1997). It has been indicated that all the above theorems do not 
guarantee the exponential increase o f  good schemata during a GP run, thus further 
research is needed for the establishment o f  sound mathematical foundations (Banzhaf 
et al., 1998). Empirical results have not been able to clarify this issue any further. If  
crossover was to be mathematically responsible for the success o f  the GP algorithm, 
then its omission should degrade the performance significantly. However, it has been 
debated that the use o f  alternative genetic operators yield results that are at least as 
good or even better (Angeline, 1997). The assessment o f  these studies is  difficult, 
since experiments are usually conducted on a limited number o f  test problems, while 
it is a known fact that the performance o f  evolutionary algorithms is problem- 
dependent and sensitive to the combination o f  various parameters o f the experimental 
run.

The operation and the performance o f  the crossover operator are not a subject o f  
research in this thesis. Unless otherwise stated, genetic programming experiments 
were conducted using the tree-based crossover operator as introduced earlier. 
However, the significance o f the crossover operator is still a controversial issue within 
the evolutionary computation and machine learning communities.
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PARENT RANDOMLY CREATED SUBTREE

Figure 3.5: Example o f the mutation operation

3.5.2 Mutation
Until recently, mutation was considered to be a minor operation in evolutionary 
algorithms, with the exception o f  evolutionary programming (Fogel et al., 1966) that 
employs it as the sole genetic operator. A number o f researchers have published 
results which indicate that the mutation operator might be more beneficial to a genetic 
programming algorithm than originally thought, especially when small populations o f  
genetic programs are used (Luke & Spector, 1997), (Fuchs, 1998).

The operation o f  the tree-based mutation operator is described in figure 3.5. Initially, 
a genetic program is selected probabilistically according to its fitness. Then, a node 
within the tree is selected randomly and the corresponding subtree is deleted. In its
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place a new subtree is generated, following the same procedure described in the 
initialisation section (3.3.3). In the majority o f  genetic programming experiments 
conducted in this thesis the tree-based mutation operator was applied with a 
probability o f  10% to individual computer programs.

3.5.3 Reproduction
Reproduction proceeds by copying into the new generation the genetic programs that 
have been chosen through the selection algorithm, without any modification. While it 
preserves fit individual programs without altering their structure and operation, it does 
not introduce genetic diversity to the population, thus forcing the premature 
convergence o f  the algorithm. The reproduction operator was employed in a small 
number o f  experimental genetic programming runs that were conducted in this thesis.

3.6 Design of the genetic programming algorithm
The design o f a genetic programming algorithm for the solution o f an optimisation 
problem, is a multi-step procedure that requires the determination o f  various 
parameters. Initially, the problem is redefined in a program induction form. Then, the 
main preparatory steps for the run o f  the algorithm are followed:

I. Definition o f  the functions that will participate in the function set
II. Definition o f the terminals that will participate in the terminal set
III. Definition o f  a fitness measure for the evaluation o f  the performance o f  

genetic programs
IV. Definition o f  a number o f additional parameters that are necessary for a valid 

genetic programming run
The first three preparatory steps have been discussed in detail in the previous sections. 
The fourth preparatory step requires the determination o f the following parameters:

•  Population size
•  Number o f  generations
•  Initialisation method
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•  Maximum depth allowed for initial genetic programs
•  Selection method

•  Probability o f  applying genetic operators (crossover, mutation, reproduction)
•  Maximum depth allowed for genetic programs after the application o f operators
•  Termination criterion

Once all preparatory steps have been completed, an experimental run o f the genetic 
programming algorithm can be conducted. However, since genetic programming is a 
non-deterministic search procedure, it is recommended that multiple runs (at least 20) 
o f  the algorithm should be conducted for each set of fitness cases.

3.7 An illustration of the genetic programming algorithm
The genetic programming approach to the solution o f optimisation problems will be 
described in this section with the help o f  a symbolic regression problem taken from 
Banzhaf et. al (1998). In symbolic regression problems the algorithm aims to uncover 
the function that describes the behaviour o f  a system using a set o f  input-output 
numeric values as the learning domain. In the example problem this set corresponds to 
the function described in equation 3.1.

y=T  0 -D

Initially, a redefinition o f  the problem in a program induction form is required. In this 
case the solution o f the problem is expressed as a computer program that takes as 
input the value(s) o f  the independent variable(s), and produces as output(s) the 
value(s) o f  the dependent variable(s). The quality o f  the evolved computer program is 
determined by its performance on the set o f  fitness cases.

The design o f  the genetic programming algorithm is based on the preparatory steps 
described in the previous section:
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/. Definition o f  the functions that will participate in the function set
The function set comprises o f the four main arithmetic operations (addition, 
subtraction, multiplication, and division). The set o f  functions that is sufficient 
for the solution o f the problem is not always known in advance. The designer 
o f  the algorithm needs to examine the problem carefully and experiment with 
alternative configurations in order to find a set with satisfactory performance. 
Note that a protected form o f the division function was always used in the 
experiments conducted in this thesis, for reasons explained in section 3.3.1.

II. Definition o f the terminals that will participate in the terminal set

The terminal set comprises o f  the independent variable x , and a set o f  integer 
constants with values ranging from (-5 ) to (5). These particular constants were 
included for reasons o f consistency with the experimental approach followed 
in Banzhaf et. al (1998). However, a solution to the problem can be created 
without including any constant in the terminal set.

III. Definition o f a fitness measure for the evaluation o f the performance o f  
genetic programs
The fitness o f evolved computer programs is calculated using the root mean 
squared error between the predicted output and the actual output on the set o f  
fitness cases described in table 3.1. Then, the fitness value is adjusted using 
the formula presented in equation 3.2, so that a higher fitness value will 
correspond to a better individual.

1
1 + raw fitnessadjusted fitness = (3.2)
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INPUT OUTPUT
Fitness case 1 0.000 0.000
Fitness case 2 0.100 0.005
Fitness case 3 0.200 0.020
Fitness case 4 0.300 0.045
Fitness case 5 0.400 0.080
Fitness case 6 0.500 0.125
Fitness case 7 0.600 0.180
Fitness case 8 0.700 0.245
Fitness case 9 0.800 0.320

Fitness case 10 0.900 0.405
Table 3.1: Fitness cases for the example problem

IV. Definition o f  a number o f additional parameters that are necessary for a  valid
genetic programming run

Parameters 1 Values —
Objective: identification o f  the function that corresponds to the data 

o f fitness cases
Terminal set: * » (integer constants from -5  to 5)
Function set: ■ > x, % (protected division function)
Population size: 600
Subtree crossover probability: 0.9
Subtree mutation probability: 0.05
Reproduction probability: 0.05
Selection: Tournament selection, size 4
Number o f  generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Table 3.2: Koza tableau for the GP methodology
The set o f  additional parameters that need to be defined for the valid run o f  the 
genetic programming algorithm is described in table 3.2.
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As it has already been discussed, genetic programming is a non-deterministic 
procedure, thus multiple runs are required for a valid estimation o f the performance o f  
the algorithm on the problem considered. 20 runs were conducted in total for the 
problem discussed in this section. Genetic programming was able to correctly identify 
the required function in 12 o f them. In the following paragraphs a successful genetic 
programming run will be presented, describing the general performance o f the 
algorithm and the structures evolved.

The best program from the initial generation o f randomly created individuals is 
depicted in figure 3.6. This program corresponds to the function described in equation 
3.3.

y = a 4- • x 2+ — -x2
5 25 (3.3)

Figure 3.6: Best individual of initial generation

In generations 1, 2 and 3 the evolutionary procedure began to take effect, however, 
the algorithm did not manage to find the 100% correct solution. The best individuals 
o f  these generations and the corresponding functions are presented in figures 3.7, 3.8 
and equations 3.4, 3.5 respectively.

58



Chapter 3: Introduction to Genetic Programming

%

x 3

Figure 3.8: Best individual of generations 2 and 3

In generation 4, the algorithm was able to find the 100% correct individual, i.e. the 
computer program that produces a root mean squared error o f  ‘O’ between the 
predicted and the actual output value. The evolved program (figure 3.9) corresponds 
to the test function from which the fitness cases had been sampled (equation 3.1).

Figure 3.9: Best individual of generation 4 (100% correct)

59



Chapter 3: Introduction to Genetic Programming

Figure 3.10 illustrates the dynamic characteristics of this particular run in terms of the 
mean adjusted fitness of the population, the mean complexity (length) of the 
population and the adjusted fitness of the best individual over the course of 50 
generations.

Mean fitness/100 ............ Mean complexity________ Best fitness

L811.6 J

0.4
0.2

0 ------------------------------- T ------------------------ , --------------------------------- r - ------------------------ , ----------------- r -

1 6 11 16 21 26 31 36 41 46 51

Figure 3.10: Dynamic characteristics of the run

3.8 Conclusions
Genetic programming is a non-deterministic algorithm that combines efficiently the 
concepts of evolutionary computation and automatic programming. It requires the 
redefinition of problems in program induction form. An evolutionary procedure is 
then assigned with the task of finding a satisfactory solution within the space of 
potential computer programs. Research interest in genetic programming has 
developed rapidly since its introduction in the early 1990’s. In the next chapters the 
use of genetic programming for the solution of manufacturing optimisation problems 
will be investigated, starting with the one-machine total tardiness scheduling problem.
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THE ONE-MACHINE TOTAL 
TARDINESS PROBLEM

4.1 Introduction
One o f  the possible reasons for the lack o f  genetic programming applications in the 
field o f  manufacturing optimisation is the difficulty o f  evolving a direct permutation 
through a GP algorithm. Most solutions o f manufacturing optimisation problems - 
especially in scheduling -  can be represented by permutations. While in a classic 
evolutionary algorithm a permutation can be easily coded as a fixed-size string 
chromosome and the feasibility o f  solutions is guaranteed by the application o f  
specially designed operators, a similar GP structure would suffer feasibility problems 
from the application o f  subtree-crossover and mutation operators.
In this chapter, the potential use o f  traditional and modified-GP algorithms for the 
solution o f  a well-researched scheduling problem, the one-machine total tardiness 
problem, is investigated. The proposed algorithms use the traditional manufacturing 
concept o f  dispatching rules for the indirect construction o f  job schedules, thus 
avoiding feasibility problems.
Dispatching rules are employed in two alternative forms. First, combinations o f  
existing dispatching rules are evolved for the solution o f  individual tardiness 
problems. Then, a genetic programming framework is employed for the construction 
o f a new formula o f  a dispatching rule that challenges man-made dispatching rules on 
the problem considered.
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Potts and Van Wassenhove (1982) created an algorithm that is able to find optimal 
solutions for one-machine total tardiness problems within acceptable computational 
times. This algorithm allows the realistic evaluation o f the performance o f  all GP- 
generated methods introduced in this chapter. However, while Potts and Van 
Wassenhove’s algorithm has no other known applicability apart from the one-machine 
total tardiness problem, all the methods described in the following sections can be 
used - in principle - for the solution o f  any other one-machine scheduling problem.
The rest o f  this chapter is organised as follows: In section 4.2 the one-machine total 
tardiness problem is defined and a review o f  the solution methodologies that have 
been proposed for its solution is presented. Section 4.3 introduces the GP-based 
methodology for the solution o f  individual one-machine total tardiness problems. In 
section 4.4 genetic programming is employed for the evolution o f  new dispatching 
rules that can be used for the solution o f  all instances o f the problem. The conclusions 
o f  this chapter are drawn in section 4.5.

4.2 Minimising total tardiness in a single-machine 
environment

4.2.1 Problem definition
One o f  the main objectives o f the scheduling procedure is the completion o f  all jobs 
before their agreed due dates. Failure to keep that promise has negative effects on the 
credibility o f  the company.
If lateness o f  job i is defined as the difference between its completion time C/ and the 
corresponding due date dh then the tardiness o f the job is calculated from equation 
(4.1).

T, = max(0,C, -  d,) (4.1)

In other words, tardiness represents the positive lateness o f  a job. In a single-machine 
environment, the total tardiness problem is defined as follows:
A number o f  jobs Jb J2....,Jn are to be processed in a single facility. Each job is 
available for processing at time zero, and its processing time p t and due date di are
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known in advance. The aim is to find the processing sequence that minimises the sum 
o f  tardiness o f  all jobs (4.2).

2  max(0,C, - d )
<=l

(4.2)

where C, is the completion time o f  job i. If for each job i, an associated weight 
(penalty) w* exists, the total tardiness is calculated using (4.3).

2  w;{max(0,C,-</,)} (4.3)M

The objective o f  the weighted total tardiness problem is the minimisation o f  (4.3). I f  
(4.2) or (4.3) was to be divided by the total number o f  jobs «, the objective would 
become the minimisation o f  mean tardiness. However, since a division by a constant 
does not alter the nature o f  the objective, the problems are essentially the same.
The total tardiness problem is a special case o f  the weighted total tardiness problem. 
Both problems are not easy to solve, especially for large values o f« . The complexity 
o f  the weighted total tardiness problem has been established by Lawer (1977), He 
proved that the associated decision problem is NP-complete by reduction from the 3- 
partition problem. The complexity o f  the unweighted total tardiness problem remained 
unestablished until 1989, when Du and Leng (1989) proved that the associated 
decision problem is NP-complete by reduction from a restricted version o f  the Even- 
Odd Partition problem.
In the following paragraph the solution methodologies that have been proposed for the 
solution o f  the one-machine total tardiness problem will be discussed.

4.2.2 Literature review
4.2.2.1 Introduction
The research for the solution o f  both versions o f  the one-machine total tardiness 
problem spans a period o f four decades. From the early stages it became apparent that 
complete enumeration o f  all permutations o f  jobs was not practical, since the total 
number o f  all possible schedules is («!), where « is the total number o f  jobs in the
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problem. Two main lines o f  research were followed during these forty years. In the 
early stages researchers focused on the development o f efficient implicit enumeration 
algorithms, mainly dynamic programming and branch and bound. While these 
algorithms are analytical, their application is restricted to relatively small-sized 
problems due to computational and memory requirements.
Dynamic Programming (DP) (Bellman and Dreyfus, 1962) is much faster than 
complete enumeration. However, it has obvious limitations in terms o f  memory 
requirements (2” values must be stored before the construction o f an optimal 
schedule). Branch and bound methods are quite unpredictable in their computational 
requirements. Their success depends heavily on the calculation o f  sharp lower bounds, 
which result on the quick elimination o f subtrees, speeding up the procedure 
considerably.
In recent years, researchers have focused on the development o f fast and efficient 
heuristic algorithms. While these algorithms perform much better than implicit 
enumeration techniques in terms o f  computational requirements, the optimality o f  
their solutions is not guaranteed. In the following paragraphs the research on the one- 
machine total tardiness problem as it has evolved during the last forty years will be 
presented.

4.2.2.2 Early approaches
The earliest investigation o f the total tardiness problem was given by McNaughton 
(1959), who presented some theorems for scheduling independent tasks in a single 
machine, with associated penalties for missing the deadlines. McNaughton showed 
that the set o f  permutation schedules is dominant for this objective, and that the 
Weighted Shortest Processing Time (WSPT) rule produces optimal schedules when 
no job can be finished on time. Schild and Fredman (1961) extended the use o f  
dispatching rules on some other cases and proposed a general methodology for the 
solution o f  the problem with no guaranteed optimality.
Held and Karp (1962) were the first researchers to propose the use o f  dynamic 
programming for the solution o f sequencing problems. The principle o f  optimality for 
a scheduling problem o f this type stated that “in an optimal schedule, the first k jobs 
must form an optimal schedule for the reduced problem based on these k jobs alone”.
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The recursive equations o f  DP were formed based on this principle. Lawler (1964) 
utilised dynamic programming for the solution o f  the weighted total tardiness 
problem. No results were presented, however the author indicated the computational 
drawbacks o f  his method.
Emmons (1968) published a breakthrough paper on the one-machine total tardiness 
problem without associated weights. He proved a series o f  theorems that established 
relations between jobs in an optimal sequence. Emmons also proposed an algorithm 
that utilised these theorems in order to reduce the size o f  the problem and employed 
branching when no further relations between jobs could be found. These theorems 
formed the basis o f  a number o f solution methodologies over the years. Emmons also 
generalised the cases where EDD or SPT sequencing yielded optimal schedules.
A  few  years later Srinivasan (1971) introduced a hybrid method based on Emmons’ 
theorems and dynamic programming. In this three-step algorithm, Emmons’ theorems 
were initially used to reduce the size o f  the problem and to introduce precedence 
relations between jobs. Dynamic programming was then employed to solve the 
reduced problem. Results from randomly generated test problems showed that his 
method exhibited substantial gain on computational efficiency in comparison with 
complete enumeration and conventional DP. Srinivasan also investigated the effect 
that the change o f  the parameters o f  the problem had on the computational 
requirements. He reported that problems representing shops 60% tardy on average 
were computationally hard. This observation was later confirmed by alternative 
researchers (Russel and Holsenback, 1992).
The same year Wilkerson and Irwin (1971) presented the first heuristic technique for 
the solution o f  the total tardiness problem. Their algorithm employed a decision rule 
and adjacent pairwise interchanges for the construction o f  schedules. Their method 
was substantially faster than complete enumeration, however, the optimality o f  
solutions was not guaranteed.

4.2.2.3 Development o f  implicit enumeration algorithms during the 70 ’s 
and 80’s

Rinnooy Kan et al. (1975) proposed an improved brand and bound approach for the 
solution o f  the weighted version o f the problem. They focused their research on the
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development o f  dominance theorems and the calculation o f  strong lower bounds. The 
authors warned that the implementation o f their theorems could lead to the creation o f  
precedence cycles and proposed a method for avoiding this deadlock situation. 
Despite the fact that their algorithm was faster than previous algorithms for problems 
with 15<«<20, they underlined the need for sharper lower bounds, and even better 
dominance theorems.
Fisher (1976) recognised this need and produced an algorithm that was able to find 
extremely sharp lower bounds for branch and bound algorithms. His method was 
based on a dual formulation o f the problem. He introduced a subalgorithm that solved 
efficiently the Langrangian problem formed by the dual variables. The solution o f this 
problem provided both sharp lower bounds and good feasible solutions. In this latter 
way the algorithm could be utilised as an efficient heuristic procedure. The extremely 
sharp lower bounds allowed the solution o f  large sized problems («=50) in moderate 
computational times. Fisher’s method presented considerable advantages over the 
alternative methods that had been proposed until that time for the same problem.
Lawler (1977) presented a ‘pseudopolynomial’ algorithm for the solution o f  the total 
tardiness problem with agreeable weights (o f which the unweighted total tardiness 
problem is a special case). Lawler’s algorithm, based on dynamic programming, had a 
worst case running time o f complexity O(n4P), where

p - ± p ,/=]

and pi is the processing time o f  job i. The existence o f Lawler’s ‘pseudopolynomial’ 
algorithm meant that the unweighted total tardiness problem is NP-hard in the 
ordinary sense.
It has already been pointed out that dynamic programming approaches to the total 
tardiness problem had limited applicability due to the extensive computer memory 
requirements. However, Baker and Shrage presented two dynamic programming - 
based methods that were able to solve large-sized problems («=50) faster than branch 
and bound algorithms. The first method (Baker and Shrage, 1978) was an 
investigation into the application o f  dynamic programming to sequencing problems 
with precedence constraints. The authors argued that when chain-like relations
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between jobs existed (jobs with only one direct predecessor and only one direct 
successor), the number o f  feasible subsets that needed to be enumerated was reduced, 
making the DP procedure much faster. In the case o f  the total tardiness problem, 
where no precedence relations exist a priori, Emmon’s theorems could be utilised to 
create them a posteriori. A  few months later Shrage and Baker (1978) introduced a 
powerful dynamic programming implementation for problems o f the same type. Their 
method involved an enumerative procedure for all feasible subsets, and a labelling 
procedure for storing and retrieving efficiently the values o f these subsets. Depending 
on the precedence constraints o f the problem, the labelling procedure could reduce 
considerably the storage requirements o f  the algorithm, allowing the application o f  
dynamic programming in large sized problems. Indeed, Shrage and Baker showed that 
their method could solve 50-job test problems much faster than the algorithms o f  
Fisher and Rinnoy Kan et al.
In the early 80’s Potts and Van Wassenhove (1982) presented a new methodology for 
the solution o f  the total tardiness problem, which combined features from earlier 
approaches. The algorithm started by constructing a precedence relations graph based 
on Emmons’ theorems. The labelling scheme o f Shrage and Baker was then employed 
to address all feasible subsets. In the case o f a very large number o f  labels (>35000), 
the decomposition algorithm o f Lawer (1977) was utilised to break up the problem in 
a number o f  smaller and easily tackled subproblems. Each o f  these subproblems was 
solved optimally by the dynamic programming approach o f  Shrage and Baker. The 
efficiency and the speed o f  this algorithm enabled the solution o f  medium to large 
problems (50<«£100) in reasonable computational times. Especially for problems 
with «<70, the performance o f  the algorithm was impressive. In larger problems the 
algorithm was slightly slower, but still no optimal results on problems o f this size had 
been reported from any researcher until that time. The authors indicated that their 
method did not generalise for the case o f  the weighted total tardiness problem. A few  
years later, they proposed an alternative branch and bound method for the solution o f  
the latter problem (Potts and Van Wassenhove, 1985). The lower bounds were 
obtained using Langrangian relaxation. The multiplier adjustment method was 
employed for the calculation o f  Langrangian multipliers. Some dominance features o f  
dynamic programming were also utilised for the elimination o f  as many nodes o f  the 
solution tree as possible. Potts and Van Wassenhove’s method was able to solve

67



Chapter 4: The one-machine total tardiness problem

problems much larger than those reported in earlier branch and bound approaches. 
The authors concluded that the existence o f  a very sharp lower bound was not as 
important as it was considered to be by previous researchers. They claimed that a 
feature o f  quick enumeration o f feasible subsets - like the one that they used in their 
algorithm - could enhance the search for an optimal schedule considerably.
Another implicit enumeration algorithm was proposed by Sen et a l (1983) who 
utilised Emmon’s theorems and corollaries in order to establish precedence relations 
between jobs. They reported that their seven-step algorithm outperformed Shrage and 
Baker’s (1978) dynamic programming algorithm in terms o f computational efficiency 
for large-sized problems («>50).

4.2.2.4 Recent developments
In the last decade, researchers have turned their attention to the implementation o f  
efficient heuristic methods, which are generally faster and much easier to implement. 
The optimality o f  a heuristic solution is not guaranteed, however, it is easy to test its 
efficiency by calculating the optimal values using an implicit enumeration algorithm.
A typical local search procedure for permutation problems such as the one-machine 
total tardiness problem incorporates Adjacent Pairwise Interchanges (API’s) o f jobs in 
order to find optimal or near optimal sequences. The quality o f an API depends both 
on the initial sequence o f  the algorithm (‘seed’), as well on the search strategy that is 
employed. Fry et al. (1989) presented a heuristic approach that utilised the best o f  
nine Adjacent Pairwise Interchange (API) strategies. These strategies were produced 
by the combination o f three different initialising procedures (EDD, SPT and 
Minimum Slack Time (MST)), with a same number o f search strategies ( front to back 
- restart when local optimum found, back to front - restart when local optimum found, 
all adjacent pairwise interchanges - restart from the best found ). A comparison o f  
their method with Wilkerson and Irwin’s algorithm showed that API’s constituted a 
very fast and reliable optimisation technique for the one-machine total tardiness 
problem.
Some years later, Holsenback and Russel (1992) introduced their powerful Net 
Benefit O f Relocation (NBR) heuristic procedure. Emmons stated in one o f  the 
corollaries o f  his theorems that an EDD sequence is optimal i f  the tardiness o f  each
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job is less or equal than its processing time. The NBR heuristic was based on this 
observation. Starting from the last job o f the EDD sequence the algorithm found the 
first job which possessed ‘reducible’ tardiness (i.e. T^p,). For each job preceding job 
i in the sequence and having largest processing time, the Net Benefit o f  Relocation 
was calculated, i.e. the benefit in tardiness units o f  exchanging the positions o f  these 
jobs. The job with the higher NBR (subject to NBR>0) exchanged its position with 
job  i. The same procedure was repeated on the remaining i-1 jobs. NBR produced 
high quality results even for large problem instances («=100). The deviations from the 
optimal values - obtained using Potts and Wassenhove’s method - were relatively 
small, while the computational times where excellent (around one second o f CPU 
time for problems with «=100).

A  year later Panwalkar et al. (1993) introduced the PSK heuristic, which performed 
impressively on a number o f different cases. PSK was a simple, effective procedure 
that started from an SPT sequence and constructed a schedule by making «-passes, 
one for each job. The algorithm used two sets o f jobs, the SPT set o f  unscheduled jobs 
{U }, and the set o f  the o f  jobs that had already been scheduled {S}. In each pass, a 

job from {U} was considered to be active, starting from the leftmost one. If the 
scheduling o f  this job was considered necessary since it was already tardy or on time, 
or because the successive job would make it tardy, then it was removed from {Ujand  
it was placed on {S}. Otherwise the next job in {U} became active and the same set o f  
comparisons was performed. The algorithm was tested on a wide range o f test 
problems producing satisfactory results. However, Russel and Holsenback (1996) 
questioned the validity o f  these results, claiming that in their own experimentation 
with the same problems used in (Panwalkar et al., 1993), the NBR was generally 
superior to PSK. In any case, they noted that PSK was particularly suitable for a 
specific set o f  problems characterised by high values o f  tardiness factor and range o f  
due dates.

Recently, Russel and Holsenback (1997) introduced some modifications to the NBR  
heuristic, which improved the performance significantly, especially in the case o f  
large - sized problems («=100). They also proposed the composite use o f the modified 
NBR and PSK heuristics, since both methods were extremely fast, easy to implement 
and complementary in nature.
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Meta-heuristics (simulated annealing, tabu search, genetic algorithms etc.) have 
gained a considerable research interest during the last decade. All o f  these techniques 
have been applied to a wide range o f  scheduling problems. Simulated annealing (SA) 
is a non-deterministic heuristic algorithm developed by Kirkpatrick et al. (1983). The 
main operation o f  SA is similar to a hill-climbing local search procedure. SA  
however, allows probabilistic jumps to neighbourhood solutions that perform worse 
than the starting solution. In that way the algorithm has the ability to escape local 
optima. The probability o f selecting a worse solution depends on a ‘temperature’ 
value T, in a procedure that resembles the annealing o f  metals to a minimum energy 
state. Temperature is initially high, but its value drops exponentially with the number 
o f  iterations. Thus, selection o f  a worse individual is more likely during the initial 
phases o f the algorithm.
Matsuo et al. (1989) were the first researchers to employ simulated annealing for the 
solution o f  the weighted total tardiness problem. A  few years later Potts and Van 
Wassenhove (1991) presented a simulated annealing algorithm for the unweighted 
case o f  the same problem, adopting the adjacent pairwise interchange strategy for the 
creation o f  neighbourhood schedules, and a special interweaving procedure which 
performed local search at certain stages o f the algorithm. A much simpler simulated 
annealing method was proposed a few years later by Ben-Daya and Al-Fawzan 
(1996). Random job interchanges were used for the creation o f neighbourhood 
schedules and no form o f local search was employed. Their method outperformed the 
heuristic approaches o f  Fry et al. (1989) and Holsenback and Russel (1992) in a wide 
range o f  test problems. However, while Holsenback’s heuristic was extremely fast, 
Ben-Daya’s algorithm suffered from slow convergence, a well-known disadvantage o f  
simulated annealing.
Ibaraki and Nakamura (1994) presented another dynamic programming - based 
approach for the solution o f  the weighted total tardiness problem called Successive 
Sublimination Dynamic Programming (SSDP). It aimed to reduce the number o f  
subsets that need to be enumerated in a dynamic programming procedure. The 
algorithm utilised upper and lower bounds to eliminate as many states o f  the 
scheduling tree as possible. Experimentation showed that Ibaraki’s approach was 
much faster than conventional dynamic programming. However, as the authors
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indicated, the method had limited applicability to problems characterised by certain 
levels o f  tardiness.
Finally, Tansel and Sabuncuoglu (1997) have recently presented an interesting 
investigation on the total tardiness problem, utilising geometric representations in 
order to analyse and prove Emmons’ theorems. Their research introduced a number o f  
theorems that identified ‘easy’ or ‘hard’ problem instances based on the graphic 
representation o f  the problem’s data. They noted that a particularly ‘hard’ family o f  
problems (the one where Emmons’ theorems cannot be initiated), is difficult to be 
created using a random number generator, thus the reliability o f the randomly 
generated test problems is not guaranteed.

4.3 A GP - heuristic for the solution of the one- 
machine total tardiness problem

4.3.1 Introduction
This section describes the design o f a genetic programming algorithm for the solution 
o f individual one-machine total tardiness problems. The aim o f the algorithm is the 
generation o f  schedules for specific instances o f the problem rather than the evolution 
o f  scheduling policies for the general total tardiness problem. This is achieved by 
employing the instance o f  the problem considered as the only fitness case during the 
training phase o f  the algorithm. The first step for the design o f the genetic 
programming algorithm is the redefinition o f  the problem in a program induction 
form: “Find a computer program that takes as input information about the 
characteristics o f  the unscheduled jobs, and produces as output a complete schedule 
that minimises the total tardiness o f  all jobs in the system”.

COMPLETE
SCHEDULE

Figure 4.1: Genetic programming approach to schedule generation
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4.3.2 Design of the algorithm
4.3.2.1 Schedule representation
A  natural representation for the solution o f  the one-machine total tardiness problem is 
a permutation o f  all jobs to be scheduled. Evolutionary computation researchers have 
extensively used permutation representations for flowshop and one-machine 
scheduling problems like the one discussed in this chapter. Specially designed genetic 
operators (originally created for the solution o f  the travelling salesman problem) 
ensure the feasibilty o f  solutions throughout the evolutionary procedure
The representation o f  a permutation within a conventional GP framework is not 
straightforward due to the variable length o f the structures evolved. A direct 
representation o f  a schedule through a tree-like program structure would suffer from 
feasibility problems by the application o f  subtree crossover and mutation operators.
In the implementation proposed in this section, common manufacturing dispatching 
rules are employed as an indirect way o f  representing a permutation through a genetic 
programming framework. A  dispatching or priority rule is a method o f determining 
the next job to be scheduled out o f a set o f unscheduled jobs (section 2.23.2.2). The 
decision is based on certain job characteristics like processing times, due dates etc 
There is a wide variety o f  dispatching rules available, especially for dynamic 
scheduling problems (Blackstone et al., 1982).
The idea o f  using combinations o f  dispatching rules for the solution o f  scheduling 
problems is not new. In a well-known scheduling textbook, Fisher and Thompson 
(1963) proposed the probabilistic learning o f scheduling rules as a method for tackling 
job-shop scheduling problems. A  number o f  researchers have employed combinations 
o f  dispatching rules for the solution o f similar problems (section 2.2.3.2.2) The 
majority o f  these approaches were based on the idea o f  utilising different dispatching 
rules on individual machines or alternative scheduling points in the plant
In the algorithm presented in this section, a sequence o f  jobs is constructed indirectly 
through an associated sequence o f  dispatching rules. While dispatching rules can be 
easily represented in a GP framework as terminal nodes, there are still a number o f  
issues that need to be addressed before a GP run can take place. First, a connection 
mechanism between the dispatching rules within the genetic program needs to be
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defined. Koza has already suggested a way o f  sequencing two or more functions or 
terminals by employing the function PROGN (the notation is taken from the LISP - 
equivalent function). PROGN takes as arguments two or more function or terminal 
nodes and operates as a connection point between these arguments. Figure 4.2 
portrays the operation o f  PROGN function and its role in the indirect generation o f  
schedules.

Equivalent code:
schedule a job according to EDD rule 
then,
schedule a job according to SPT rule

Figure 4.2: Operation o f the PROGN function

The number o f  jobs in the tardiness problems considered in the experimentation is 
always fixed. However, the application o f operators creates offspring o f  unequal size. 
The standard GP algorithm has to be modified in order to take in account the 
following cases: (i) the case where evolved individuals contain more dispatching rules 
than the number needed to generate a schedule and (ii) the case where programs 
contain fewer dispatching rules than the number needed for the creation o f  a complete 
schedule. The former case is easily accommodated by considering only the first n 
dispatching rules (where n is the total number o f  jobs in the problem) during the 
evaluation phase o f  the algorithm. The latter case is accommodated using a function 
that penalises any program that produces an incomplete schedule with a very high 
value o f  tardiness.
Figure 4.3 illustrates the translation o f an evolved computer program to a valid job 
schedule. The data o f  the example problem (table 4.1) have been taken from Baker 
(1974). A  description o f  the dispatching rules used in this example program is given 
in section 4.3.2.3.

Job no. 1 2 3 4 5 6 7 8
P i 121 147 102 79 130 83 96 88
d , 260 269 400 266 337 336 683 719

Table 4.1: Data of the example problem for the illustration of schedule
representation
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Dispatching rules sequence: EDD-SPT-MON-EDD-SPT-SPT-EDD-EDD
Corresponding job sequence: 1 - 4 - 6  - 2 -  8 - 7 -  5  - 3
Total Tardiness: 1014

Figure 4.3: Illustration o f schedule representation using the GP-heuristic

4.3.2.2 Function set
Two variations o f  the PROGN function were employed in the experimentation, the 
PROGN2 and PROGN3 functions that require two and three arguments for their 
execution respectively. While the PROGN2 function was sufficient for small sized 
problems, PROGN3 enhanced the performance o f  the algorithm in large-sized 
problems. Tests were also made with PROGN4 and PROGN5 functions without any 
significant change on the performance o f  the algorithm. As a result, the function set o f  
the algorithm contained only the connecting functions PROGN2 and PROGN3.

4.3.2.3 Terminal set
The terminal set comprised a number o f  dispatching rules that can be considered as 
good building blocks for the generation o f  fit schedules. Three rules were selected to 
take part in the terminal set. The first was the Earliest Due Date rule (EDD), which 
sequences jobs in non-decreasing order o f their due date. The second was the Shortest 
Processing Time rule (SPT), which sequences jobs in non-decreasing order o f  their 
processing time. Both these rules are known to perform optimally or near-optimally in 
specific cases; the SPT rule produces an optimal schedule when no job in the resulting 
schedule can be completed on time, while the EDD rule is optimal when at most one 
job in the resulting schedule is tardy. More general cases for the optimality o f  EDD
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and SPT scheduling are given by Emmons (1968). Based on these theorems the SPT 
rule is expected to perform better at problems with high levels o f tardiness, and the 
EDD rule to be ideal for the inverse case. The last rule o f the terminal set was 
originally introduced by Montagne (1969) for the solution o f  the weighted total 
tardiness problem. This rule (which will be identified as ‘MON’ from this point 
onwards) sequences jobs in non-decreasing order o f the following ratio:

Pt_______ 1
f  >

1-
2>

_ _

where: pt is the processing time o f  job i 
di is the due date o f job i 
Wi is the associated penalty for job i

(4.4)

By setting all weights equal to one, the ratio used for the unweighted version o f the 
problem is obtained:

____ Pi(  r, > (4.5)

(the summation term missing from the numerator o f the ratio has no effect on the 
operation o f  the rule). The fact that the MON rule has been designed specifically for 
the solution o f  the one-machine total tardiness problem, means that it produces a good 
overall performance. If, for example, a due date o f  a job is close to the makespan o f  
all jobs, then the ratio becomes larger, thus the job is likely to be scheduled on a later 
stage. Conversely, jobs with early due dates are given extra priority.
For this particular terminal set, there are 3" possible combinations o f dispatching 
rules. In principle, GP should be able to find a combination that performs at least as 
good as the best dispatching rule o f the terminal set. Unless a combination o f  
dispatching rules is able to produce a better result, the algorithm should be able to
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create an individual that is constructed only from terminals o f  the best dispatching 
rule for the problem considered.

4.3.2.4 Fitness measure
The fitness measure used for the evaluation o f solutions was the level o f  tardiness 
produced by the resulting schedules on the problem considered. The higher the level 
o f tardiness, the lower was the chance o f individual combinations o f dispatching rules 
o f  surviving into the next generation. The raw and stanardised fitness o f  the programs 
was the same, since a smaller value o f fitness corresponded to better individuals. Note 
that since only one problem was considered as fitness case during the evaluation 
phase o f  the algorithm, the proposed algorithm acted as an optimiser for specific 
problem instances.

4.3.2.5 Genetic operators
The traditional crossover and mutation operators were employed in the 
experimentation described in this section together with a point-mutation operator, 
which, within the context o f  this problem, operated as a conventional EA mutation 
operator. Whenever an individual genetic program was probabilistically selected for 
the point-mutation operation, a terminal point o f  the program was selected randomly, 
and was replaced by another terminal selected randomly from the terminal set.
Different combinations o f  these operators were tested during the experimentation 
phase, and results indicated that the best performance was given by a combination o f  
the tree-mutation and point-mutation operators. Configurations involving the 
crossover operator performed slightly worse than the proposed setting. However, 
since this is a modified version o f  a genetic programming algorithm, there is nothing 
to suggest a generalisation o f  this statement.

4.3.2.6 Additional parameters
The values o f  additional parameters that need to be defined for the valid run o f the GP 
algorithm together with a summary o f the proposed methodology are described in 
figure 4.4.
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Parameters V alues
Objective: Evolve a combination o f  dispatching 

rules for the solution o f  individual total 
tardiness problems

Terminal set: EDD, SPT, MON
Function set: PROGN2, PROGN3Population size: 200
Tree mutation probability: .8
Point mutation probability: .2
Selection: Tournament selection, size 4Number o f  generations: 50
Maximum depth for crossover: 
Maximum depth for individual

17
generatedfor mutation: 2 (h= 12), 3 («=25), 4 (n=50,n=100)
Initialisation method: Ramped half and half

Figure 4.4: Koza tableau for GPC heuristic

4.3.3 Experimental basis
The experimental basis employed in this section followed the guidelines suggested by 
the majority o f  researchers investigating the one-machine total tardiness problem. A  
number o f  test problems were generated randomly for particular settings o f  n. The 
processing times for each job were drawn out o f  the uniform distribution [1..100]. 
Due dates were drawn out o f  a uniform distribution defined as follows:

[P( l-T -(R /2)), P( l-T +(R /2))]
where:
P: is equal to the sum o f processing times o f all jobs.
T. is the tardiness factor. It defines the percentage o f jobs that are expected to be tardy 
on average. If, for example, T =0.2,20% o f jobs are expected to be tardy.
R: is the range o f  due dates. It defines the tightness o f due dates around the makespan 
o f  all jobs. Generally speaking problems with tight due dates are more difficult to 
solve.
Table 4.2 describes the combinations o f  R and T that were used in the 
experimentation and the number o f  replications for each o f  these combinations:
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T=0.2 T=0.4 T=0.6 T=0.8
R=0.2 5 problems 5 problems 5 problems 5 problems
R=0.4 5 problems 5 problems 5 problems 5 problems
R=0.6 0 5 problems 5 problems 5 problems
R=0.8 0 5 problems 5 problems 5 problems
R=1.0 0 0 5 problems 5 problems

Table 4.2: Configuration settings for the test problems

Problems with T=1.0 were not included in the experimental setup since the levels o f  
tardiness in this case are unacceptable in practice. The remaining combinations o f  T 
and R that were not included in the set are considered to represent trivial cases.
This set o f  combinations was tested on four different settings o f «  (12, 25, 50 and 
100). The GP heuristic was tested on 320 problems in total, a fairly representative set 
o f  benchmark problems. The optimal values for these problems were generated using 
Potts and Van Wassenhove’s algorithm, which has already been described in section 
4.2.2.3. The modified version o f  Holsenback and Russel’s NBR heuristic (Russel and 
Holsenback, 1997) was employed as a comparison heuristic. This method has shown 
outstanding performance in published results. In addition, a simulated annealing 
algorithm was designed and tested on the same benchmark problems. This 
implementation o f  the SA algorithm was based on two previous successful approaches 
o f Potts and Van Wassenhove (1991) and Ben-Daya and Al-Fawzan (1996). Table 1A  
in the Appendix describes the characteristics o f the SA approach that was used in this 
section. The search strategy o f the algorithm was systematic in the form o f  adjacent 
pairwise interchanges, but temperature was decreased according to the schedule 
proposed by Ben-Daya and Al-Fawzan.
Three versions o f  the GP-heuristic described in this section were tested during the 
experimental phase. Apart from the simple version (which will be identified as GPC 
from now on), two local search methods were employed as optimisers for the best 
individual evolved by the GP algorithm. The first method used the best individual 
schedule found as the starting sequence o f  a local adjacent pairwise procedure (GLS). 
In the second method, the GP-heuristic ran for a small number o f  generations (five), 
and the best evolved individual program provided the initialising sequence o f  the SA
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algorithm already described (GSA). There are several reasons for hybridising GP with 
other local search techniques in this particular problem:

•  Local search has been used successfully to enhance the evolutionary procedure 
in sequencing problems (Murata et al., 1996a).

•  The function and terminal sets employed by GPC are not always sufficient for 
the creation o f an optimal schedule. The introduction o f  a local search algorithm 
at the end o f the evolutionary procedure increases the probability o f reaching an 
optimal solution.

•  A  number o f  researchers have reported that dispatching rules provide good 
initial schedules for local search techniques (Panwalkar et al., 1993). A  
combination evolved by GPC should provide, in principle, a better starting point 
than individual dispatching rules for a local search procedure.

A  number o f  student’s t-tests were used in many cases for the calculation o f  a 
statistical measure o f  the difference between the algorithms compared. Note that these 
tests were performed on the sets o f penalties produced by each method in relation to 
the optimal values, as was suggested in the experimental approach o f  Russel and 
Holsenback (1997).

4.3.4 Results
4.3.4.1 GPC v i. other dispatching rules
The hypothesis for the introduction o f  combinations o f dispatching rules (4.3.2.3) 
suggested that they would perform at least as good or better than individual 
dispatching rules on the problems considered. Tables 4.3-4.6 support this hypothesis 
by highlighting the superiority o f GPC on a variety o f cases. Table 2A in the 
Appendix explains in detail the statistical terms used in the tables.
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O PTIM A L
SO LU TIO N S

M A D O
(U N IT S)

M R D O
(%)

M A X (R D O )
(V.)

E D D 10 357.4 39.12811 126.75
S P T 1 215.7875 410.7046 14200

M O N s 97.2625 22.68682 169.44444
G P C 33 25.275 2.250583 15.562565

Table 4.3: GPC vs. EDD, SPT and MON 
(«=12)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S)

MRDO
(%)

MAX(RDO)
<%)

E D D 4 1775.538 52.57428 131.42857
S P T 0 994.45 413.1591 19483.333
MON 3 502.05 29.03441 203.125
G P C 9 230.275 7.039146 23.329558

Table 4.4: GPC vs. EDD, SPT and MON 
(«=25)

O PTIM A L
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO)
(%)

E D D 6 6668.163 55.095 124.15254
S P T 0 4372.938 1035.89 30030
MON 4 2197.275 54.53038 1129.5238
G P C 5 1254.25 12.0713 43.808651

Table 4.5: GPC vs. EDD, SPT and MON 
(«=50)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S )

MRDO
(%)

MAX(RDO)
(%)

E D D 5 28229.94 57.86391 92.885164
S P T 0 17231.99 9109.769 318066.66

M O N 5 8689.35 49.79771 1126.8691
G P C 6 6418.888 18.4861 140.47619

Table 4.6: GPC vs. EDD, SPT and M ON  
(«=100)

In comparison with EDD the difference o f  GPC in terms o f  MADO started from 
1314% for «=12, fell to 671% for «=25, and further decreased to 431% and 339% for 
«=50 and «=100 respectively. GPC performed better than SPT as well, especially in 
problems with small levels o f  tardiness, as expected from the theory o f  the problem.
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The best performance o f individual dispatching rules was achieved by MON, the only 
purpose-based dispatching rule included in this report. The penalties imposed by 
MON in terms o f  MADO were 284% higher than GPC for «=12, 212% higher for 
«=25 and 175% higher for «=50. The difference in penalties dropped significantly for 
«=100 (only 35% higher), showing that as the size o f the problem increased and the 
algorithm struggled to find a suboptimal solution in the enormous search space (3100), 
the MON rule became dominant in the combination o f dispatching rules o f the GPC 
solutions. In terms o f  optimal values GPC had a significant advantage only in very 
small problem instances. EDD outperformed GPC for «=50 due to its strength in 
problems with low levels o f tardiness (as discussed earlier, an EDD sequence is 
optimal i f  it produces schedules where at most one job is tardy). However, Table 4.7 
illustrates that when GPC was compared with the cumulative performance o f the three 
individual dispatching rules, it outperformed them in all problem sizes.

Number of times 
GPC was better than 

individual 
dispatching rules

Number of times 
individual 

dispatching rules 
were better than 

GPC

Number of times 
GPC had the same 
performance with 

individual 
dispatching rules

«=12 64 0 16
«=25 77 0 4
«=50 69 5 6

«=100 64 11 5
Table 4.7: GPC vs. dispatching rules in terms of non-dominated solutions

43.4.2 M-NBR vs. GLS and GSA
The fact that GPC employs dispatching rules for the scheduling o f jobs, indicates that 
there are only a limited number o f schedules that can be generated. The combination 
o f  GP with local search procedures allows the exploration o f  regions o f  the solutions’ 
space that the GPC algorithm is unable to reach. In this section the performance o f  
these methods is compared with the M-NBR heuristic, which is a well-tested and 
well-documented optimisation method for the one-machine total tardiness problem. 
Tables 4.8-4.11 illustrate the statistical performance o f these three algorithms on the 
same experimental basis that was used in the previous section.
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OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO>
(%)

M-NBR 75 0.8 0,11705 5.1136363
GLS 63 2.425 0.246131 5.9431524
GSA 64 1.7125 0.509119 19.277108

Table 4.8: M-NBR vs. GLS and GSA 
(«=12)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%)

MAX(RDO)
(%)

M -N B R 61 9.75 0.352129 8.3456790
GLS 25 22.375 1.201713 11.059907
GSA 57 5.1375 0.988265 29.761904

Table 4.9: M-NBR vs. GLS and GSA 
(«=25)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(%>

MAX(RDO)
(%)

M -N B R 32 65.675 1.012977 9.2341356
GLS 9 78.575 1.682691 23.728813
GSA 53 9.3125 0.286414 4.2517006

Table 4.10: M-NBR vs. GLS and GSA 
(n=50)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

M R D O
(%)

MAX(RDO)
(%)

M-NBR 13 494.8625 2.438429 19.846647
GLS 8 454.8125 3.543847 78.971962
GSA 42 67.8 0.571563 23.809523

Table 4.11: M-NBR vs. GLS and GSA 
(« = 100)

GLS performed significantly better than its parent method GPC. However, GLS could 
not reach the level o f  M-NBR performance in small and moderate problem sizes. GLS 
imposed 203% higher penalties for «=12, 129% for «=25 and 19% for «=50. 
However, the performance o f GLS seemed to drop slower than M-NBR as the 
problem-size increased. For «=100 M-NBR had a slightly worse MADO than GLS. In 
addition, while t-tests for «=12 and «=25 suggested a difference between the two 
methods, (t=1.75, p<0.0417 and t=2.53, p<0.006 respectively), the same test on larger 
problem instances resulted in different conclusions (t=0.97, p<0.16 for «=50 and 
t=0.61, p<0.27 for «=100). On the other hand, Table 4.12 shows that M-NBR  
consistently found better solutions than GLS over the whole range o f  problems. In
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addition, M-NBR produced a considerably larger number o f optimal solutions 
especially for n=25 and «=50. The consideration o f these data leads to the conclusion 
that M-NBR performed better than GLS on the set o f one-machine total tardiness 
problems considered in the experimentation. I f computational efficiency was also to 
be considered, the result would significantly favour M-NBR since it required at worst 
(«=100) a few  milliseconds o f CPU time for the generation o f schedules.

Number of times 
GLS was better 

than M-NBR
Number o f times 
GLS was worse 

than M-NBR
Number o f times 
GLS was equal to 

M -NBR
« = 1 2 5 13 62
«=25 11 46 23

oIIR 25 46 9
« = 1 0 0 29 45 6

Table 4.12: M -NBR vs. GLS in terms o f non-dominated solutions

The superiority o f  M-NBR over GLS was not replicated with the other stochastic 
optimiser, GSA. In the smallest problem size considered («=12), M-NBR had the 
advantage since GSA produced on average 114% higher penalties. As the problem 
size increased, the performance o f M-NBR dropped significantly faster than GSA. For 
«=25 M-NBR imposed 89% higher penalties than GSA on average. Tables 4.8-4.11 
illustrate the increasing difference in performance for increasing values o f «. Table 
4.13 contains t-test results on the null hypothesis for GSA and M-NBR. From these 
data it can be concluded with high confidence that GSA was significantly different 
from M -NBR for large values o f  «.

(M-NBR) -  USA
n i t p ( T i t )
12 1.26 0.105
25 1.25 0.106
50 5.03 1.48*1 O'6
100 6.34 6.44*1 O'9

Table 4.13: t-test results between M -NBR and GSA
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In addition, the data in table 4.14 highlight the superiority o f  GSA in moderate and 
large problem instances in terms o f non-dominated solutions.

Number o f times 
GSA was better 

than M-NBR
Number of times 
GSA was worse 

than M-NBR
Number o f times 
GSA was equal to 

M -NBR
«=12 5 15 60
«=25 16 21 43

oIIK 10 43 27
«=100 66 7 7
Table 4.14: M -NBR vs. GSA in terms o f non-dominated solutions

4.3.4.3 SA versus GSA
From the results presented in the previous paragraph, it can be concluded that GSA 
had the best overall performance on the set o f benchmark problems used in the 
experimentation. While its superiority from the other methods was evident, a 
comparison between GSA and the simple SA algorithm, i.e. the GSA procedure 
without the GP seed, could not bring any safe conclusions.

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
C/o)

MAX(RDO)
(V.)

SA 68 2.325 0.735869 15.286624
GSA 64 1.7125 0.509119 19.277108

Table 4.15: SA vs. GSA  
(n=12)

OPTIMAL
SOLUTIONS

MADO
(UNITS)

MRDO
(Vo)

MAX(RDO)
(%)

SA 60 3.1875 0.401984 9.7142857
GSA 57 5.1375 0.988265 29.761904

Table 4.16: S A vs. GSA  
(«=25)

OPTIMAL
SO LU TIO N S

MADO
(U N IT S)

MRDO
(%)

MAX(RDO)
(%)

SA 45 21.675 0.765335 25
G S A 53 9.3125 0.286414 4.2517006

Table 4.17: SA vs. GSA  
(«=50)
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O PTIM A L
SO LU TIO N S

M A D O
(U N IT S)

M R D O
(%> M A X (R D O )(%)

SA 36 86.52S 0.298231 4.3756145
G S A 42 67.8 0.571563 23,809523

Table 4.18: SA vs. GSA  
(«=100)

Differences in terms o f  MADO were relatively small as tables 4.15-4.18 indicate. SA  
seemed to perform slightly better in small problem instances, while GSA had an 
advantage for large values o f  n. Pairwise t-tests suggested that the null testing 
hypothesis should not be easily rejected (Table 4.19).

Table 4.19: t-test results between SA and GSA

The comparison o f  performance between SA and GSA in terms o f non-dominated 
solutions (Table 4.20) showed that the number o f  equal solutions remained close to 
50% o f  the total number o f problems even for «=100. This figure suggests that there 
was a high correlation on the performance o f  SA and GSA. In other words there was 
not enough evidence to suggest that the introduction o f a five-generation evolved 
GPC-seed significantly improved the performance o f  SA.

Number o f times 
GSA was better 

than SA
Number o f times 
GSA was worse 

than SA
Number o f times 
GSA was equal to 

SA
«=12 8 13 59
«=25 11 17 52
«=50 25 9 46

«=100 26 18 36
Table 4.20: SA vs. GSA terms of non-dominated solutions
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A different point o f view  can be established i f  the computational requirements o f  the 
algorithms are to be considered. Despite the fact that the SA algorithm used in this 
report was not as slow  as GP, it was still much slower than M-NBR. The combination 
o f  GPC and SA resulted in small improvements in terms o f computational efficiency. 
This was due to the initialisation o f the SA procedure from a better starting point in 
the solutions’ search space. However, the running time o f  the algorithm was very 
much problem-dependent and unpredictable.

4.4 Evolving dispatching rules using Genetic 
Programming

4.4.1 Introduction
Results presented in section 4.3.4.1 suggest that MON dispatching rule produces a 
good overall performance in a variety o f  one-machine scheduling problems, due to its 
unique design that takes in account both the processing time and due dates o f  
individual jobs, as well as the makespan o f  all jobs. These three parameters are 
combined in Montagne’s formula (see section 4.3.2.3) and create a ratio that defines 
the scheduling urgency o f  each job. Montagne constructed this formula based on his 
understanding o f  the problem. However, there is a possibility that another formula 
exists -  perhaps more complex -  that is able to utilise a priori knowledge o f the 
problem in a way that creates better scheduling ratios than the MON dispatching rule. 
In this section the possibility o f evolving a dispatching rule formula through a GP- 
framework for the solution o f the one-machine total tardiness scheduling problem is 
investigated. The algorithm is supplied with problem-specific information and trained 
on various sets o f  tardiness problems, aiming to evolve a dispatching rule that will 
perform at least as good as dispatching rules produced by human intuition.
The problem can be described in the same program induction form that was presented 
in paragraph 4.3.1. However, while in the algorithm described in the previous section 
scheduling information was used indirectly through the combination o f  dispatching 
rules, in this case the algorithm directly processes raw scheduling data through the 
formula o f  the evolved dispatching rule.
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4.4.2 Design of the algorithm
4.4.2.1 Schedule representatio n
The proposed algorithm employs the same procedure for the generation o f  job  
schedules as the one used by dispatching rules designed by human intuition. Evolved 
dispatching rules comprise o f  combinations o f  variables and constants that provide 
scheduling information. For each job in the system, the respective scheduling data are 
fed in the formula o f  the dispatching rule, which calculates an urgency value. When 
all jobs have been considered, the job schedule is generated by ordering jobs in a non
decreasing order o f  their urgency values. Note that since the formula o f  the 
dispatching rule is decided by the evolutionary procedure, the choice o f  increasing or 
decreasing order o f the urgency values is purely an issue o f  designer’s choice and 
does not affect the operation o f the algorithm.
In the algorithm presented in this section the traditional subtree crossover and 
mutation operators can be employed without the danger o f producing infeasible 
solutions. At the same time, the size o f tardiness problems that can be considered is 
unlimited since, once evolved, the dispatching rule operates independently o f the 
number o f  jobs included in the problem.
Figure 4.5 and table 4.21 illustrate the scheduling o f jobs by a potentially evolved 
dispatching rule on the example problem described in section 4.3.2.1. A  description o f  
the terminals used in the example program is given in section 4.4.2.3.

p l + (dr N ) + ...SP
P i+ d ,

Figure 4.5: An example of an evolved dispatching rule
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Job no. 1 2 3 4 5 6 7 8
2203.22 2301.03 3303.68 2209.45 2827.81 2773.01 5561.08 5841.04

Corresponding job sequence: 1 - 4 - 2  - 6 -  5 -  3 -  7 -  8
Total Tardiness: 859

Table 4.21: Priority values of jobs for the example dispatching rule and
corresponding schedule

4.4.2.2 Function set
The function set comprises o f  the four main mathematical operations: addition, 
subtraction, multiplication and division (+, -, *, %). The symbol corresponds to 
the protected division function that returns the value o f ‘ 1’ when the value o f the 
denominator is equal to ‘O’. These functions help the algorithm to create a formula o f  
a dispatching rule for the scheduling o f jobs.

4.4.23 Terminal Set
The terminal set o f the algorithm is mainly constructed from the parameters that form 
Montagne’s dispatching rule:

•  pc. processing time o f  job i
•  d,\ due date o f  job i
•  SP\ sum o f the processing time o f all jobs in the problem (‘makespan’)

Two additional parameters were included in the terminal set:

•  SD: sum o f  the due dates o f all jobs in the problem

•  n. total number o f jobs in the problem

There was no a priori knowledge about the suitability o f  the additional terminals for 
the evolution o f  an optimal formula. As has already been discussed (section 4.3.2.3), 
the GP algorithm should, in principle, be able to disregard any terminal that is not 
related to the solution o f the problem and create a fit program using only the relative
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terminals. In this case, the algorithm should be able to converge at least to the formula 
o f MON rule, since all its elements are included in the function and terminal sets.

4.4.2.4 Fitness measure and fitness cases
The quality o f  evolved programs is once again measured by the amount o f  tardiness 
produced by the resulting schedules. However, since the aim o f  the algorithm is the 
evolution o f  a generic dispatching rule for all problem instances, a variety o f  test 
problems are used for the training o f  the programs. Thus, the objective o f  the 
algorithm becomes the minimisation o f  the sum o f  tardiness over the entire set o f  test 
problems that are used as fitness cases. Tardiness is measured by scheduling jobs in 
non-decreasing order o f their priority value, as this is calculated using the formula o f  
the evolved dispatching rule.
A  set o f  twenty tardiness problems was employed for the training o f dispatching rules 
in each individual GP run. Nine different sets o f test problems (table 4.22) were used 
in the experimentation. In the first four o f them the value o f n in the training set was 
kept fixed («=12, «=25, «=50 and «=100). The remaining sets comprised o f  twenty 
problems, five for each value o f «. All problems in training sets were generated using 
the method described in section 4.3.3. Careful consideration was given so that 
different levels o f tardiness (T) and tightness o f due dates (R) were included in each 
experimental set.

N am e n F IT N E S S  C A S E S  (P R O B L E M S )
P E R  S E T -U P

SE T U P 12 12 ________  20
SET U P25 25 «1

S E T U P 50 50 II

S E T U P 100 100 It

SETV A R 1 5x(n= 12)+  5x(n= 25)+  5x(/j=50)+  5x(«=100) M

S E T V A R 2 M “

S ET V A R 3 <( It

S E T V A R 4 (I M

S E T V A R 5 M II

Table 4.22: Training sets
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4.4.2.5 Additional parameters
The values o f additional parameters needed for the run o f the GP algorithm and a 
summary o f the proposed methodology are described in figure 4.6.

Parameters Values
Objective: Evolve a formula o f a dispatching rule for 

the solution o f total tardiness problems
Terminal set: P i, db SP, SD, n
Function set: +, ♦ , %
Population size: 200
Mutation probability: .5
Crossover probability: .5
Selection: Tournament selection, size 4
Number o f  generations: 50
Maximum depth for crossover: 
Maximum depth for individual

17
generatedfor mutation: 4
Initialisation method: Ramped half and half

Figure 4.6: Koza tableau for evolution of dispatching rules

4.4.3 Results
The GP framework evolved different dispatching rules for each training set that was 
used. The individual and cumulative performance o f  each rule is illustrated in table 
4.23. The outlined cells in this table indicate the performance o f the corresponding 
dispatching rule on the set o f  test problems that was used for its training. The rest o f  
the cells in the same column illustrate the performance o f  the dispatching rule on the 
previously unseen test problems (validation set). The results on the latter set o f  
problems allow us to assess the generalisation o f  the evolved dispatching rule since 
these problems were not used for its training. From table 4.23 it can be concluded that 
in most cases the algorithm was able to evolve dispatching rules with better overall 
performance than MON rule and much better performance than the EDD and SPT 
rules. Most evolved rules performed quite well in a very large set o f  validation 
problems (160 in total). Based on this observation it can safely be concluded that 
these rules did not just fit the data o f the fitness cases but they contained information 
that was relevant to the solution o f  the problem.
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SE T U P12 13189 20094 16357 17073 17068 13858 14812 13795 15676 17598 17044 14916

S E T U P 25 68440 54380 58734 68101 69135 56292 57228 57101 57915 77523 69698 60657

S E T U P 50 263231 242878 200935 227332 245993 202102 203149 213328 206380 286042 264225 226565

SE T U P100 1047471 1128759 868513 790374 779475 808824 806609 828507 852978 1158371 1093840 886600

SE T V A R 1 596043 613494 48948$ 452603 440238 457345 452723 453549 490575 643558 501370 472004

S E T V A R 2 295745 317238 248306 250549 262970 238507 239999 253411 245431 336645 355541 263629

SE T V A R 3 47 86 3 6 493293 399584 384416 380885 380406 377472 383781 396611 522807 449199 420317

SE T V A R 4 487201 495474 392716 377739 377760 377886 378137 377781 397891 526316 427636 393561

SE T V A R S 219631 235816 188116 184426 190791 180388 182291 193274 183361 248575 266219 204599

T O T A L 34 69 5 9 9 3601451 2862796 2752713 2764315 2715608 2 712420 2774527 2846818 3817435 3444772 2942848

Table 4.23: Tardiness results for all evolved dispatching rules and comparison 
with dispatching rules produced by human intuition

However, the formulas o f  these dispatching rules were not as simple as the formula o f  
the MON rule. Table 3 A  in Appendix presents the mathematical formulas o f the nine 
evolved dispatching rules. All these formulas were cleared from introns (segments o f  
code that have no effect on the outcome o f the problem) and were also simplified 
wherever that was possible.
In order to compare the performance o f a GP-evolved rule with the traditional 
dispatching rules used in this chapter, the rule evolved from the experimental set-up 
SETVAR3 (figure 4.7), which produced the best overall performance, was selected.

Figure 4.7: Dispatching rule evolved from set-up SETVAR3
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This particular rule was constructed from three main terms. The first and the third 
term operated in favour o f EDD and SPT scheduling respectively. The second term 
acted as a control segment that shifted the operation o f the rule towards EDD or SPT 
scheduling according to the values o f the parameters o f the problem. When, for 
example, the due date o f a job was small in comparison with the makespan, the 
second term o f the formula produced a significant negative result that decreased the 
value o f the ratio and therefore assigned urgency to the job. In the inverse case the
value o f  the term was becoming less significant, thus the two big positive terms 
controlled the ratio.

In table 4.24 SETVAR3 is compared with EDD, SPT and MON dispatching rules in 
all test problems used in this section. The improvement in overall performance by 
using SETVAR3 was significant. MON imposed 81% higher penalties in terms o f  
MADO, while the t-test between the two rules rejected the null hypothesis with a very 
high probability (t=5.62, p<3.49x10'8).

O PT ED D SPT M ON SETV A R 3
TARD1NES

(UNITS)
2430198 38I7 4 3J 3444772 2942848 2712420

(UNITS) 7706.872 5636.522 2848.056 1567.9
SOLUTIONS 39 0 4 25

Table 4.24: Comparative performance of SETVAR3 for all test problems

At least 77% o f the solutions produced by SETVAR3 were better or equal than those 
produced by alternative dispatching rules (Table 4.25).

Number of times 
SETVAR3 was better Number of times 

SETVAR3 was worse Number of times 
SETVAR3 was 

equal
EDD 115 40 25
SPT 16 4 8 8

MON 1 4 7 30 3
Table 4.25: Performance of SETVAR3 on non-dominated solutions (all test

problems)

A s expected, EDD performed well in the set o f  problems identified by small levels o f  
tardiness and wide range o f  due dates. However, when the scheduling problems in the
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plant were evenly distributed in terms o f T and R, EDD scheduling produced the 
worst performance over the available dispatching rules.
The dispatching rule evolved using the experimental set-up SETVAR2, which 
performed almost identical to SETVAR3, is illustrated in figure 4.8.

While there were terms with similar operation between the two rules (the second one 
favouring EDD scheduling and the first, third and fourth favouring SPT scheduling), 
there were no other easily observed similarities. An interesting feature in the operation 
o f  SETVAR2 was the control nature o f  the SD value in the second term. When the 
sum o f  due dates was large in comparison with the sum o f the processing times, EDD  
scheduling was favoured, since the problem was likely to be less tardy. In the inverse 
case, the SPT terms became more significant, thus SPT scheduling was favoured.
The examples presented in the previous paragraphs illustrate the potential o f  
employing genetic programming for the evolution o f  dispatching rules in scheduling 
problems. The fact that genetic programming evolves solution representations in the 
form o f  computer programs means that it is possible to understand the operation o f  
their solution mechanism. This feature can be exploited by human experts, who may 
be able to identify the underlying relationships o f  the data and thus get significant 
insights on the theory o f  the problem. Efficient solution algorithms can be constructed 
as a result o f  this process.
A s Banzhaf et a l  (1998) indicated, it is not always possible to explain the operation o f  
a genetic program on the problem considered. The methodology described in this 
chapter was able to find individual programs that outperformed conventional 
dispatching rules on a wide range o f test problems, however, the analysis o f  their 
operation was not a straightforward task, as the previous examples have illustrated. 
This phenomenon raises the issue o f  transparency o f  evolved genetic programs, i.e.

Figure 4.8: Dispatching rule evolved from set-up SETVAR2
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the understanding o f their operation in solving the problem considered. The 
conventional subtree crossover operator that was used in the previous experiments 
causes the semantic disruption o f evolved genetic programs since it does not consider 
either the length o f  the exchanged subtrees or their usefulness in solving the problem 
considered (Watson and Parmee (1996), (1998)). As a result, subtrees that contribute 
highly to the fitness o f  a genetic program can easily be disrupted. At the same time, 
evolved programs can grow either so large that their evaluation process is slowed 
down considerably, or so small that their efficiency in solving the problem considered 
is limited. Watson and Parmee (1998), proposed the use o f the Constrained 
Complexity Crossover (CCC) operator within their Distributed, Rapid, Attenuated 
Memory Genetic Programming (DRAM-GP) framework, which only allowed the 
exchange o f  genetic material between subtrees o f similar complexity, thus restricting 
the length o f  evolved genetic programs. While their method produced more 
parsimonious structures, it did not have any significant effect on the transparency o f  
evolved programs, as indicated in (Parmee and Watson (2000)).

4.5 Conclusions
In this chapter the potential use o f  genetic programming for the solution o f  the one- 
machine total tardiness problem was investigated. To the best o f  the author’s 
knowledge, no previous effort has been made to solve static scheduling problems in a 
GP-framework, in contrast with alternative evolutionary computation techniques that 
have been extensively used for the solution o f similar problems. It is difficult to 
evolve a permutation representation without producing infeasible solutions when 
subtree crossover and mutation are utilised. The variable length o f  genetic programs is  
an additional disadvantage for the evolution o f  a fixed-size schedule.
Two alternative ways o f approaching the problem were tested during the experimental 
stage. First, a combination o f dispatching rules was utilised as an indirect way o f  
representing a permutation through a GP-framework. The problem o f  variable length 
was dealt by considering only the part o f the program that was significant for the 
solution o f  the problem. This configuration was employed as a heuristic procedure for 
the solution o f  individual problems. While it outperformed conventional dispatching 
rules, near-optimal solutions were only reached when alternative heuristic procedures
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were employed to enhance the outcome o f the GP algorithm. A particular combination 
o f  a few  generations evolved GP individual and SA produced high quality solutions 
over the entire range o f problem parameters and sizes.
In the second approach, a conventional GP-framework was employed for the 
evolution o f  a dispatching rule for the solution o f  the one machine total tardiness 
problem. A  number o f the evolved dispatching rules outperformed Montagne’s 
dispatching rule in the experimental basis used in this chapter. The conclusions o f  this 
investigation can be summarised in the form o f the following points:
•  While the evolution o f  a direct permutation representation through a GP- 

framework is not a straightforward task, an indirect representation can be 
sometimes constructed based on the problem considered.

•  Evolved combinations o f  dispatching rules can outperform individual dispatching 
rules in the solution o f one-machine total tardiness problems.

•  The hybridisation o f  GP with alternative search techniques can yield significant 
improvements in the performance o f  the algorithm.

•  While it is possible to employ GP as a heuristic procedure for the solution o f  the 
one-machine total tardiness problem, the algorithm is quite slow in comparison 
with alternative search methods.

•  The evolution o f dispatching rule formulas is a procedure much more natural to 
the GP-framework. While high quality results can be achieved, the evolved 
individuals might be able to provide human experts with significant insights to the 
nature o f  the problem. This process can lead to the development o f improved 
solution algorithms for individual scheduling problems.

In the following chapter, genetic programming will be employed for the solution o f  
another difficult manufacturing optimisation problem that has received considerable 
research attention, the cell-formation problem.
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THE CELL-FORMATION PROBLEM

5.1 Introduction
A modem manufacturing system should be cost-effective, easily controllable and 
human friendly. Group Technology (GT) (Mitrovanov, 1966) addresses these issues 
comprehensively by grouping together objects that are bound by some form o f  
similarity on all levels o f  the corporate structure. The implementation o f GT at shop- 
floor level is traditionally referred to as cellular manufacturing.
Cellular manufacturing targets mid-volume, mid-variety production lines which are 
widespread in today’s versatile market environment. The intuition behind cellular 
manufacturing is an attempt to bring the benefits o f  the mass-production flow-line 
manufacturing to batch production lines. The implementation o f  cellular 
manufacturing has been reported to result in significant benefits for the manufacturing 
process (Singh, 1993). Some o f  these benefits are:

•  reduced set-up times
•  reduced work-in-progress inventory
•  reduced throughput times
•  reduced material handling costs
•  simplified scheduling
•  simplified flow  o f  products
•  improved quality
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The implementation o f a cellular manufacturing system is a multi-stage procedure that 
requires the analysis o f material flow in the plant (Burbidge, 1975). A  specific part o f  
this procedure, the problem o f  forming machine cells and part families, has attracted 
considerable research attention. Numerous methodologies have been proposed for its 
solution over the last thirty years. Many o f  these approaches have been successful in 
handling particular versions o f  the problem. However, the trade-off between 
modelling an accurate version o f  the manufacturing process and the resulting 
computational complexity o f  the algorithm, means that there is always a research 
interest in finding more efficient solution methodologies.
In this chapter, a novel genetic programming approach for the solution o f  simple and 
advanced formulations o f  the cell-formation problem is introduced. In addition, the 
possibility o f  evolving new similarity coefficients, which - in combination with 
hierarchical clustering procedures -  can be used for the solution o f  cell-formation 
problems, is investigated.
The remainder o f  this chapter is organised as follows: In section 5.2 the cell-formation 
problem is defined, and some o f  the issues involved in its solution are discussed. A  
literature survey o f  the problem is given in section 5.3. The genetic programming 
approach for the solution o f  binary cell-formation problems is illustrated in section 
5.4. An extension o f  the proposed methodology for the solution o f advanced 
formulations o f  the cell-formation problem is presented in section 5.5. Genetic 
programming is employed for the evolution o f  new similarity coefficients in section 
5.6. The conclusions are summarised in section 5.7.

5.2 Formulation of the cell-formation problem
5.2.1 Simple binary matrix formulation
The most important step in the development o f  a cellular manufacturing system is the 
creation o f  machine cells and associated part families. There are numerous alternative 
problem formulations depending on the objective o f  optimisation and the level o f  
manufacturing data incorporated in the solution procedure.
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In this chapter the simplest version o f the cell-formation problem is mainly 
considered, which is usually illustrated with the help o f the machine-component (m/c) 
matrix, A[n x m\ , where:

n: total number o f  machines in the plant 
m: total number o f  parts in the plant

Each position in the matrix can assume two values, ‘0 ’ and ‘1’. An entry, ‘1’, 
indicates that the part o f  the corresponding column has an operation on the machine o f  
the corresponding row. A  ‘O’ entry indicates the opposite (‘O’ entries are mostly 
omitted from the matrix for ease o f illustration). The information provided by the m/c 
matrix is illustrated with the help o f the following example:
It is assumed that a plant produces 5 parts using 3 machines. By analysing information 
from the route cards o f parts, the m/c matrix illustrated in figure 5.1 is obtained.

Pi p2 p3 p4 p5
ml 0 1 1 0 1
m2 1 0 0 1 0
m3 0 1 1 0 1

Figure 5.1: An example of a m/c matrix

The value o f A2A is equal to ‘1’, thus part 4 needs an operation on machine 2. In 
contrast, part 4 does not need an operation in machine 1 since Ai 4 is equal to ‘O’.
Once the m/c matrix has been obtained, the cell-formation problem is transformed to 
the problem o f  finding a configuration with all positive entries arranged inside blocks 
along the main diagonal o f  the m/c matrix. A  diagonalised matrix allows the easy 
identification o f  machine cells and corresponding part families. Figure 5.2 shows the 
diagonalised version o f  the example matrix that resulted by rearranging its rows and 
columns.
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p4 Pi p5 p3 P2
m2 1 1 0 0 0
ml 0 0 1 1 1
m3 0 0 1 1 1

Figure 5.2: The diagonalised m/c matrix

By observing the matrix it is easy to identify two independent cells, the first one 
comprising o f  machine 2 and parts 1 and 4, and the second one comprising o f  
machines 1 and 3 and parts 2, 3 and 5. The main objective o f  a cell-formation 
algorithm in this simple version o f  the problem is the construction o f completely 
independent cells, i.e. cells where the parts included in a part family are processed 
only within the corresponding machine cell. However, this is a case rarely 
encountered in practice. Figure 5.3 illustrates a situation on a different m/c matrix 
where the cells that have been formed are not independent.

p4 Pi p5 p3 p2
m2 1 1 0 1 0
ml 0 0 0 1 1
m3 0 0 1 1 1

Figure 5.3: m/c matrix with intercell moves

The reason for this inefficiency is part 3. which requires an operation on a machine 
that belongs to a different cell (machine 2). It is customary in cellular manufacturing 
terminology to describe part 3 as an ‘exceptionalpan' and machine 2 as a ‘bottleneck 
machine’. The handling o f  bottleneck machines and exceptional parts is a significant 
consideration in cellular manufacturing research. Some o f  the approaches that have 
been proposed for its solution over the years are described in the following section.
When completely independent cells cannot be formed, the objective o f  the solution 
methodologies is usually expressed in terms o f  the minimisation o f  intercell moves or 
the minimisation o f  material handling costs in general. However, in the case o f  binary 
m /c matrices it is common to employ a grouping measure to assess the quality o f  
block diagonalisation. Several grouping measures have been introduced over the 
years, with grouping efficiency and grouping efficacy being the ones that have been
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used by the majority o f  researchers. A  detailed explanation o f  these measures is given  
in section 5A 2.6.
The binary m/c matrix representation o f the cell-formation problem is a simple and 
efficient representation but captures only a limited amount o f  manufacturing data. 
However, even in its simplest form, the cell-formation problem is a difficult 
combinatorial problem. Lee and Garcia-Diaz (1993) indicate that the number o f  p- 
sized non-empty partitions o f  n objects is:

S ( n ,p ) * £ -  (5 1 )

where S(n,p) is the Stirling number o f  the second kind. For n=20 the number o f non
empty subsets o f  size 5 is approximately 7.94 x io " . I f  the number o f  clusters is not 
pre-specified, the total number o f  partitions becomes equal to:

i s h j )j-1
This formula rules out the complete enumeration o f  solutions. The manual 
manipulation o f  rows and columns as a method o f  diagonalising the m/c matrix is 
only feasible in small problem instances.

5.2.2 Advanced formulations
The binaiy m /c matrix representation o f  the problem has been extensively used in 
cell-formation research, mainly because it was introduced and utilised by Burbidge in 
the first scientific method for creating manufacturing cells, namely Production Flow  
Analysis (Burbidge, 1971). This representation suffers from serious deficiencies that 
limit its ability to represent realistic manufacturing environments. More specifically, a 
binaiy m/c matrix can capture only a limited amount o f  manufacturing data, ignoring 
in that way information that can be critical in creating the appropriate cell 
configuration. Advanced formulations o f  the problem (mainly mathematical 
programming and graph-based models) are capable o f incorporating a wide range o f  
production data like:

•  processing times
•  product demands

~~Joo —------------------------- --
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•  machine capacities
•  alternative process plans for parts
•  batch sizes
•  limits on cell sizes and total number o f  cells
•  operation sequences
•  multiple machines o f  the same type
•  tooling considerations

The larger the amount o f  data included in a formulation o f  the cell-formation problem, 
the more computationally intractable the model becomes. The objective o f  an 
advanced formulation can be as simple as the minimisation o f intercell moves and as 
complex as the minimisation o f the total costs associated with the production process 
over a specified period o f  time. The application o f  the GP-based methodology in a 
number o f  advanced formulations o f  the cell-formation problem is illustrated in 
section 5.5.

5.3 Literature review
5.3.1 Introduction
Research effort for the solution o f the cell-formation problem spans a period o f  thirty 
years. A  considerable number o f papers have been published during this time making 
the task o f  surveying the field and classifying the solution approaches extremely 
difficult.

In this section a number o f  solution methodologies that are considered to be important 
in cellular manufacturing literature will be examined. The list o f  publications is by no 
means complete. The aim o f this survey to illustrate the state-of-the-art in cell- 
formation research so that meaningful comparisons can be made in later sections.
There is no standard way o f  classifying cell-formation methods. A  coarse-grained 
classification would result in the following categories:
•  Visual inspection methods
•  Coding and classification methods
•  Production-based methods
-------------- ■ -  101  "



Chapter 5: The cell-formation problem

Visual inspection methods or simply ‘eye-balling’ methods rely on the visual 
identification o f  machine cells and part families. Considerable experience is required 
in this process even in small problem cases. However, as the size o f  the problem 
increases the task becomes almost impossible.
In coding and classification methods the design characteristics o f  the parts are used 
for the formation o f  part families. Each part is assigned a multi-digit code according 
to its shape, size, or production requirements, and a classification system is used to 
group parts according to their code. While coding systems are widely used by 
companies, very few  cell-formation methods are based on them.
The core o f  the cell-formation methodologies belongs to the category o f production- 
based methods. In general, production based methods analyse the information found 
on the route cards o f  parts and bring together parts with similar processing 
requirements and/or machines that process similar parts. The genetic programming 
methodology presented in this chapter belongs to the family o f  production-based 
methods. A  fine-grained classification o f  these methods result in the following 
categories:
• Array-based methods
•  Hierarchical clustering methods
•  Non-hierarchical clustering methods
•  Graph-based methods
•  Mathematical programming methods
•  Meta-heuristics, fuzzy logic and neural networks

In the following paragraphs a number o f  important papers in each category will be 
discussed. The classification system used in this section is illustrated in figure 5.4.
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Figure 5.4: Classification of cell-formation approaches
5.3.2 Array-based methods
Array-based methods manipulate the rows and the columns o f the m/c matrix aiming 
to obtain visible groupings o f machines and components. This is usually achieved by 
constructing group diagonals that include as many positive entries as possible.
The first array-based method for obtaining machine-component groups was part o f the 
Production Flow Analysis (PFA) procedure for the implementation o f a cellular 
manufacturing system (Burbidge, 1971,1975). PFA comprised four main steps:
•  Factory flow analysis

This step was necessary in large industries and aimed to decompose the factory in 
a number o f  independent ‘major’ departmental groups, making the 
implementation o f  the group analysis step easier.

•  Group analysis
This step started with the construction o f  the m/c matrix using information 
obtained from the route cards. A  manual manipulation o f  rows and columns 
created machine-component groups. Burbidge believed that these groups existed 
naturally and it was up to the designer to unveil them. He also claimed that groups 
could be obtained manually even in large m/c matrices. Burbidge later presented a 
seven-step method for obtaining cells that was based on the concept o f  ‘nucleus’ 
machines. The algorithm started by eliminating ‘immaterial’ machines from 
consideration, i.e. machines that performed secondary operations, such as washing 
etc. Then, the machines processing the smallest number o f parts were identified as 
‘nucleus’ machines and primitive ‘modules’ were built around them. In the latter
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stages o f the algorithm, final groups were identified by combining or dividing 
primitive modules. Burbidge proposed a number o f  alternative methods for the 
elimination o f  exceptional elements and the balancing o f  workload between the 
cells.

•  Line analysis
After the grouping o f  machines and components, the layout o f  machines within 
the cells was chosen based on the flow o f parts between machines.

•  Tool analysis
During this step families o f  tools that processed similar parts were identified and 
the optimal loading sequence o f tools in the machines was decided.

Group analysis received considerable research interest. Subsequently many 
researchers attempted to improve the efficiency o f  diagonalisation by introducing 
algorithms that were able to manipulate the rows and columns o f  the m/c matrix using 
a pre-programmed logic.
King (1980) devised a diagonalisation method called Rank Order Clustering (ROC). 
ROC was based on the ranking o f  rows and columns according to the binary word 
represented by the ‘0 ’ and T  entries for each o f  them. Rows and columns were 
rearranged in decreasing order o f  their ranking. The process was iterative and 
continued until no further change could be achieved. Chandrasekharan and 
Rajagopalan (1986) argued that the algorithm tended to gather as many positive 
entries as possible in the top-left hand comer o f  the m/c matrix, while the rest o f  the 
matrix was left highly disorganised. This tendency resulted in the erroneous 
identification o f  bottleneck machines. King and Nakomchai (1982) introduced a 
modified version o f  ROC, called ROC2. ROC2 utilised linked lists to store the data o f  
the matrix. Linked lists enabled the use o f  fast and efficient sorting procedures, which 
resulted in an overall algorithm with linear time complexity. They also presented an 
interactive algorithm that combined ROC2 with specialised procedures for dealing 
with exceptional elements and bottleneck machines.
Chandrasekharan and Rajagopalan (1986) noted that the application o f ROC always 
resulted in one clear-cut machine-component group that was located on the top left- 
hand comer o f  the m/c matrix. They proposed an extension o f  ROC called MODROC 
which took advantage o f  this characteristic. MODROC started with the execution o f
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two iterations o f  the ROC algorithm. Then, the group o f machines and components 
that had been formed on the top left-hand comer o f  the matrix was recorded and the 
components were removed from the matrix. The procedure was repeated until no 
more components were left. This algorithm created mutually independent part 
families, but the identified machine cells intersected most o f  the time. The authors 
employed a hierarchical clustering procedure to create the final plant configuration.
Chan and Milner (1982) introduced the Direct Clustering Algorithm (DCA), a fast and 
efficient method for diagonalising m/c matrices. DCA employed a systematic 
procedure for the manipulation o f  rows and columns o f  the matrix. The aim o f the 
procedure was to move the rows with the ‘left-most’ positive entries to the top o f the 
matrix and the columns with the ‘top-most’ positive entries to the left o f  the matrix. 
The procedure was iterative and continued until no further improvement could be 
achieved. The main advantage o f this method over ROC was that the initial 
configuration o f  the matrix did not affect the resulting partition. This was achieved by 
a pre-processing stage where the columns and rows were ranked according to the 
number o f  their positive entries. In this way, the input to the main phase o f  the 
algorithm was always the same.
A cell-formation approach that attracted considerable attention is the Cluster 
Identification Algorithm (CIA) o f  Kusiak and Chow (1987). CIA was based on a 
cutting algorithm, originally introduced by Iri (1968). CIA was able to identify 
machine cells and part families by drawing vertical and horizontal lines on the m/c 
matrix. The authors also introduced the Cost Analysis Algorithm (CAA), an extension 
o f  CIA that explicitly considered the cost o f  subcontracting parts that caused 
intercellular moves.
B oe and Cheng (1991) presented the Close Neighbour Algorithm, a simple but 
efficient heuristic procedure for the clustering o f  machines and parts in a binary m/c 
matrix. A  measure o f  similarity for each pair o f  machines in the plant was calculated 
based on the ‘closeness’ o f  their part routings. The rows o f  the m/c matrix were then 
reorganised by bringing ‘similar’ machines closer together. The rearrangement o f  
columns through a simple heuristic procedure resulted in the diagonalisation o f  the 
intermediate matrix. The authors compared the performance o f  the algorithm with 
some well-known clustering procedures on a number o f  test problems taken from the
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literature and concluded that its performance was always equal or better in terms o f  
the grouping efficiency measure (Chandrasekharan and Rajagopalan, 1986b).
In a recent paper Da Silveira (1999) presented a methodology for the practical 
implementation o f  a cellular manufacturing system. The procedure was illustrated for 
the case o f  a toy manufacturing plant in Brazil. The benefits o f  the implementation in 
terms o f  reduction in scrap, rework, work-in-progress, stock, and delivery times were 
quite significant. Boe and Cheng’s Close Neighbour Algorithm was used for the 
creation o f  machine cells and part families.

5.3.3 Hierarchical clustering methods
Hierarchical clustering methods employ some form o f similarity or dissimilarity 
measure between machines or parts in order to create machine cells or part families. 
Solutions are generated by either progressively breaking down a single cell or part 
family to individual machines or parts (divisive methods) or by progressively merging 
individual machines or parts until a single cell or family has been formed 
(agglomerative methods).
The first author to introduce hierarchical clustering for the solution o f  the cell- 
formation problem was McAuley (1972). Since his methodology formed the basis o f  
the genetic programming approaches introduced later in this chapter, it will be 
described in more detail with the help o f  the example problem presented in figure 5.5.

pl p2 p3 p4 p5
ml 1 1
m2 1 1 1
m3 1 1
m4 1 1 1

Figure 5.5: Example m/c matrix for the illustration of McAuley’s algorithm

The algorithm comprised o f  two main stages. Initially, a similarity coefficient was 
calculated for each pair o f machines that were available in the plant. The value o f  the 
coefficient represented the similarity o f  machines in terms o f  the common operations
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performed. McAuley employed Jaccard’s (1908) similarity coefficient which, for this 
particular problem, was defined as follows:

S ,= ____
O y + b y + C y

(5.2)
where: Sÿ : similarity between machines i and j

ciy : number o f parts processed by both machines i and j
by : number o f parts processed by machine i but not by machine j
Cy : number o f  parts processed by machine j  but not by machine i

The value o f  the similarity coefficient ranged from 0 to 1. For the above example the 
similarities were calculated as follows:

4.3 =
2

2 + 0 + 0 
2

2 + 1 + 1

= 1 

= 0.5

4.4 = 1
1 + 1 + 2 

1
1 + 1 + 2

0.25

0.25

4.2 =

4.3 =

o
0 + 2 + 3 

0
0 + 3 + 2

= 0 

=  0
Thus, there is total similarity between machines 1 and 3, and no similarity between 
machines 1 and 2. The above values were used for the construction o f  the similarity 
matrix (figure 5.6).

m l m2 m3
m2 0 * *
m3 1 0 *
m4 0.25 0.5 0.25

Figure 5.6: Similarity matrix for the example problem

In the second stage, the calculated similarity matrix was used for the creation o f  a 
pictorial representation o f  solutions, known as ‘dendrogram’. Single Linkage Cluster 
Analysis (Sneath, 1957) was employed for the construction o f  the dendrogram. SLCA 
assumed that all machines were initially ungrouped. Then, the pair o f  machines 
having the highest value in the similarity matrix was recorded and grouped at this 
level o f  similarity. In the previous example, machines 1 and 3 were grouped at the 
similarity level o f  1. The next highest similarity level was then found and the 
associated machines were merged at this level. In this case, machines 2 and 4 were
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merged at the similarity level o f  0.5. At this point the highest similarity level was 0.25 
between machines 1 and 4. Since both machines had already been grouped, their 
associated groups were merged as well. Thus, at the similarity level o f  0.25 all 
machines had formed a single cell and consequently there was no reason to examine 
the remaining similarity coefficient values. The constructed dendrogram is illustrated 
in figure 5.7:

m l m3 m2 m 41 ------------
0.75 -

0.5 - --------------

0.25 - -----------------------------

0 -

Figure 5.7: Dendrogram of solutions for the example problem

The above dendrogram contains a number o f  alternative solutions, depending on the 
choice o f  the threshold level (T). More specifically:
•  Solution 1 (initial)

•  Solution 2 (T =l)

•  Solution 3 (T=0.5)

•  Solution 4 (T=0.25)

cell 1: raj

cell 2: m2
cell 3: m3
cell 4: m̂
cell 1: mj, m3

cell 2: m2

cell 3: m4
cell 1: m/, m3

cell 2: m2, mu

cell 1: m/, m2, m3, m.4

The objective o f  M cAuley’s algorithm was the minimisation o f  the sum o f  material 
handling costs, which was calculated by adding the intercellular and intracellular 
handling costs under a pre-specified layout. However, since the output o f the 
algorithm was a partition o f  machines into a number o f cells, the algorithm could be 
used in conjunction with any desired objective.
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The main disadvantage o f SLCA was the occurrence o f the ‘chaining’ phenomenon 
during the grouping procedure. Since the existence o f  a single linkage between 
machines or groups o f  machines was enough for the approval o f  merging, the 
algorithm could bring together machines with low similarity. In our example problem, 
machines 1 and 2 were grouped together at the similarity level o f  0.25, while their 
similarity coefficient was 0. McAuley, as well as other researchers (Gupta and 
Seifoddini, 1990) suggested the use o f  alternative clustering methods like Average 
Linkage Cluster Analysis (ALCA) and Complete Linkage Cluster Analysis (CLCA) 
in order to overcome this problem. ALCA calculated the average o f  similarity 
coefficients between groups o f  machines. CLCA worked in the opposite way o f  
SLCA by assigning the lowest and not the highest similarity coefficient between 
groups o f  machines. However, both ALCA and CLCA required the recalculation o f  
the similarity matrix after each individual merging step, resulting in greater 
computational complexity.
Gupta and Seifoddini (1990) extended the applicability o f the coefficient-based 
hierarchical clustering methods by introducing an enhanced version o f  M cAuley’s 
similarity coefficient. The authors argued that the main disadvantage o f  the simple 
similarity coefficient was the limited amount o f  manufacturing information 
considered by it. They introduced the production-based similarity coefficient that 
explicitly considered the production volume o f  parts, the part routing sequences and 
the processing times. The superiority o f  the production-based similarity coefficient 
over Jaccard’s similarity coefficient was illustrated on test problems taken from the 
literature. Gupta (1993) later introduced an improved version o f the coefficient that 
explicitly considered the existence o f  alternative process plans for the parts produced. 
Seifoddini and Djassemi (1995) also compared the performance o f  these two 
coefficients and concluded that the production-based similarity coefficient was able to 
reduce total material handling costs more efficiently than Jaccard’s coefficient.
Vakharia and Wemmerlov (1990) presented a methodology for the creation o f  
manufacturing cells, which was based on the identification o f  part families rather than 
machine cells. A  similarity measure for parts was introduced, which considered not 
only the machines visited by each part, but the operation sequences as well. The 
merging procedure was interactive, with the designer having the power to approve or 
object to merging, based on the information about the resulted skip moves,
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backtracking moves, etc. After the part families had been created, the designer dealt 
with backtracking and single-operation parts that had been initially removed from 
consideration, and decided where to allocate ‘key’ equipment (equipment required by 
many parts in the plant). At the final stage o f  the procedure more general objectives 
were considered, like the minimisation o f  investment and the respect o f cell-size 
constraints. The procedure was highly interactive since it required decisions from an 
experienced human operator.
The hierarchical clustering methods described so far employed agglomerative 
procedures for the creation o f  machine cells or part families: individual machines or 
parts were merged into progressively larger cells or families until a single cell or 
family was obtained or until a size constraint had been reached. Stanfel (1985) 
proposed a simple divisive hierarchical procedure for the creation o f  machine cells 
that was not based on the calculation o f  similarity coefficients. The algorithm started 
with an initial cell comprised o f all available machines. An iterative procedure 
followed with each machine leaving the cell to either form a new cell or to join one 
that had already been formed. All the solutions were evaluated in terms o f  the 
resulting intercell moves and the number o f  extraneous transitions caused by the 
presence o f  machines within a cell that were not processing all the family parts.

5.3.4 Non -  hierarchical clustering methods
Non-hierarchical clustering methods also employ a measure o f  similarity or 
dissimilarity for the grouping o f  machines or parts. However, machine cells or part 
families are formed around a number o f  seed points that are selected by a pre
specified procedure. The main drawback o f  these methods is that they usually require 
the specification o f  the total number o f  manufacturing cells in advance.
Chandrasekharan and Rajagopalan (1986b) introduced the first non-hierarchical 
clustering algorithm for the solution o f  the cell-formation problem. A  modified 
version o f  MacQueen’s k-means method (MacQueen, 1967) was employed for the 
initial clustering o f  machines and components. Since the k-means method required the 
pre-specification o f the total number o f clusters, a formula was derived for the 
calculation o f  the maximum number o f  independent cells that could be formed for a 
specific problem. During the second stage o f  the algorithm, part families were
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allocated to machine groups according to their efficiency factor, an indicator o f the 
within-cell utilisation for each part family. The output o f  this stage was used for the 
determination o f  ideal-seed clustering points in a perfectly diagonalised matrix. These 
points initialised a new run o f  the k-means clustering algorithm that resulted in the 
elimination o f  singleton clusters. In the same paper Chandrasekharan and Rajagopalan 
introduced grouping efficiency,, a qualitative measure o f  matrix diagonalisation. While 
grouping efficiency has been criticised as being inadequate to assess the performance 
o f  cell-formation algorithms, it has been used by a considerable number o f  researchers 
over the years.
The same authors (Chandrasekharan and Rajagopalan, 1987) introduced an extension 
o f  the ideal-seed clustering algorithm called ZODIAC (Zero-One Data: Ideal-seed 
Algorithm for Clustering). The algorithms were quite similar with the exception o f the 
initialisation phase where ZODIAC considered a choice o f different seeding 
procedures.
Srinivasan and Narendran (1991) illustrated some o f  the deficiencies o f  ZODIAC in 
terms o f  the choice o f  initial seeds and the use o f the city block distance measure as 
the clustering criterion. They introduced a new non-hierarchical clustering procedure 
called GRAFICS (GRouping using Assignment method For Initial Cluster Seeds). 
GRAFICS identified initial machines for seeding by solving the assignment problem 
as introduced by Srinivasan et a l  (1990). The maximum density rule was employed as 
the clustering criterion. The main algorithm progressed by alternatively clustering 
machines and parts until no improvement could be made in terms o f  the number o f  
exceptional elements and voids (zeros inside the block diagonal matrices). GRAFICS 
did not allow the existence o f  singleton clusters. GRAFICS was tested against 
ZODIAC on a considerable number o f  problems taken from the literature and was 
found to be superior in most cases. Srinivasan (1994) later extended GRAFICS by 
using a minimum-spanning tree algorithm for the creation o f  initial seeds. The 
modified GRAFICS algorithm performed better than simple GRAFICS and ZODIAC 
on a wide range o f  problems.
Nair and Narendran (1998) presented a non-hierarchical clustering method for the 
creation o f  manufacturing cells called CASE (Clustering Algorithm for SEquence 
Data). They introduced a new similarity metric that explicitly considered the sequence
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o f  operations for each part, multiple visits to machines, and part demands. The metric 
was used for the identification o f  initial seeds in a non-hierarchical clustering 
algorithm. Nair and Narendran (1999) later presented an enhanced version o f  CASE  
called ACCORD (A bicriterion Clustering algorithm for Cell-formation using Ordinal 
and Ratio-level Data). ACCORD combined the similarity coefficient used in CASE 
with a new similarity coefficient that captured the workload similarity between any 
pair o f  machines in the plant.

5.3.5 Graph-based approaches
Graph-based methods employ a graph or network representation o f  the cell-formation 
problem and use corresponding techniques for the creation o f  manufacturing cells.
One o f  the first graph-based approaches for the solution o f  the cell-formation problem 
was introduced by Rajagopalan and Batra (1975). Their method combined graph 
theory and similarity coefficients. The problem was modelled with the help o f  a 
vertex-edge map. Vertices represented machines in the plant. Jaccard’s similarity 
coefficients were calculated for each pair o f  machines. A  pair o f vertices was 
connected by an edge i f  the value o f  the similarity coefficient for the corresponding 
pair o f machines was larger than a pre-specified threshold level. All the cliques 
(complete maximal sub-graphs) o f  the graphs were identified and subsequently used 
for the formation o f  hybrid machine cells. At this point machines could be present in 
more than one cell, thus a procedure was needed for the creation o f  mutually 
independent cells. A  new graph was constructed with each vertex representing a cell 
and each connecting edge representing intercellular moves between the hybrid cells. 
The graph was partitioned with the help o f  a standard graph-partitioning procedure 
introduced by Kemighan and Lin (1970). The objective o f  the algorithm was the 
minimisation o f the total number o f  intercell moves. The resulted partitions 
corresponded to the final configuration o f  cells in the plant.
(De Witte, 1980) combined the same combination o f  the hierarchical clustering 
procedure o f  McAuley with the graph-partitioning approach o f Rajagopalan and Batra 
(1975). The machines in the plant were initially divided in three main types: primary 
machines (machine types o f  which only one unit was available), secondary machines 
(machine types o f  which multiple units were available) and tertiary machines
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(machine types o f which enough units were available to cover eveiy cell in the plant). 
A machine-to-machine combination matrix was then created based on the routings o f  
parts and their required quantity. This matrix was utilised for the calculation o f  three 
different similarity coefficients that were fed as input to Rajagopalan and Batra’s 
graph partitioning procedure for the creation o f  manufacturing cells. Primary, 
secondary and tertiary cells were created in a sequential manner. Finally, secondary 
and tertiary cells were added to primary cells to obtain the final design.
Vannelli and Kumar (1986) focused on the development o f  a method for finding the 
minimal number o f  bottleneck machines or parts when creating manufacturing cells. 
They showed that the problem was equivalent to finding the minimal cut-nodes o f  a 
bipartite graph while disconnecting it to a number o f  subgraphs. Since the problem 
was NP-complete, a heuristic procedure (Lee et a/., 1979) was employed for its 
solution. The same authors later extended their methodology by introducing the 
concept o f weighted graphs (Kumar and Vannelli, 1987). The improved model was 
able to tackle cost-based problems by simply assigning costs as weights for each part 
in the graph.
Askin et al. (1991) proposed a diagonalisation method based on the Hamiltonian path 
representation o f  the problem. Initially, the distance matrix for all machine and parts 
in the plant was calculated. A  suitably modified version o f  Jaccard’s similarity 
coefficient was employed as the distance metric. The problem o f  rearranging the rows 
and columns o f  the m/c matrix was modelled as a graph-based Travelling Salesman 
Problem (TSP) with the objective o f  finding the shortest tour o f all vertices. TSP 
required a cyclic solution, thus the associated Hamiltonian Path Problem (HPP) had to 
be considered since it did not require a return tour to the starting vertex. Graph 
heuristic procedures where used for the solution o f both problems.

N g (1993) introduced a minimum spanning tree methodology for the solution o f the 
binary version o f  the problem. The nodes o f  the tree represented the rows o f  the 
matrix and the connecting arcs denoted the distance between them, i.e. the level o f  
their dissimilarity. K machine cells were obtained by deleting the (k-1) largest arcs 
from the tree. A  procedure was also presented for the re-assignment o f  parts to 
machine cells aiming to improve the derived partitions. A  worst-case analysis o f  the 
algorithm was performed in terms o f  the grouping efficiency and grouping efficacy
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(Kumar and Chandrasekhara!!, 1990) measures. N g illustrated the deficiencies o f  
these grouping measures and proposed the weighted grouping efficacy measure for the 
evaluation o f  cell-formation solutions.
The concept o f  minimum spanning trees was also employed by Lin et al. (1996) in an 
attempt to solve a more complex version o f  the cell-formation problem. The objective 
o f  their cost-based mathematical model was the minimisation o f the sum o f intercell 
processing costs, intracell processing costs and total cell-balance delay costs. Since 
the formulation was computationally intractable, a minimum spanning tree heuristic 
was employed for its solution. Disconnected subgraphs were created by progressively 
deleting arcs until no configuration could be found that resulted in lower overall costs. 
The method was compared with some conventional array-based methods on test 
problems taken from the literature and produced excellent results. In addition, a case- 
study application o f  the method was presented for a company that manufactured 
irrigation products.

5.3.6 Mathematical programming
Mathematical programming formulations o f the cell-formation problem are capable o f  
considering a wide range o f  manufacturing data. Several types o f  integer 
programming formulations have been proposed over the years, especially the last 
decade. Most o f  these models suffer from computational intractability and require the 
a priori specification o f  the total number o f  manufacturing cells.
Kusiak (1987) was one o f  the first researchers to propose the use o f mathematical 
programming for the solution o f  the cell-formation problem. He introduced a p- 
median zero-one integer programming model for the formation o f  part families. The 
objective o f  the model was the maximisation o f  similarity o f  parts within the part 
families in terms o f the common machines used. A standard integer programming 
package (LINDO) was employed for the solution o f  the problem. Kusiak additionally 
presented a generalised zero-one integer programming formulation that considered the 
existence o f  alternative process plans for each part. Shtub (1989) proposed a 
Generalised Assignment Problem (GAP) formulation that was equivalent to Kusiak’s 
p-median formulation.
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Choobineh (1988) presented a two-stage procedure for the design o f  a cellular 
manufacturing system. First, a hierarchical clustering algorithm was employed for the 
creation o f  part families. The similarity between parts was calculated through an 
enhanced version o f  Jaccard's similarity coefficient. The existence o f  alternative 
process plans was also addressed during this stage o f  the procedure. After the creation 
o f  part families, a linear integer programming formulation o f  the problem was 
presented. The objective o f  the model was the minimisation o f  the sum o f  production 
costs and the costs o f  acquiring and maintaining machine tools.
Wei and Gaither (1990) introduced a zero-one integer programming formulation that 
explicitly considered the available capacity o f  machines. The objective o f the model 
was the minimisation o f  opportunity costs in the fonn o f  subcontracting costs for 
exceptional parts. The authors indicated a number o f  alternative objectives that could 
be used in conjunction with the proposed mathematical formulation.
Boctor (1991) presented a simple zero-one integer programming formulation o f the 
problem that considered only the data available from the binary m/c matrix. The 
objective was the minimisation o f the total number o f  exceptional elements. An 
efficient procedure for the linearisation o f  the objective function was proposed. In 
addition, Boctor showed that a large number o f  integrality constraints could be 
relaxed without affecting the binary outcome o f  the solution. Even with these 
modifications the model was computationally intractable for large problem instances. 
Boctor proposed the use o f  simulated annealing for these cases.

Zhu et al. (1995) introduced a zero-one integer programming formulation o f the 
problem with the objective o f  maximising the opportunity costs associated with all the 
parts manufactured within the system, i.e. the parts that do not need to be 
subcontracted. The authors showed that their formulation resulted in a smaller number 
o f  variables and constraints and in faster computational times than the corresponding 
formulation o f  Wei and Gaither (1990).

Finally, Cheng et al. (1996a) proposed a simple zero-one quadratic assignment 
formulation o f  the problem based on the information available from the binary m)c 
matrix. The objective o f  the model was the minimisation o f the sum o f  Hamming 
distances between machines within the ceils. A  truncated-tree heuristic algorithm was

115



Chapter 5: The cell-formation problem

employed for the solution o f  the problem. The authors extended their formulation to 
allow for the existence o f  multiple machines o f  the same type.

5.3.7 Meta-heuristics, fuzzy logic and neural networks
The evolutionary computation research for the solution o f  the cell-formation problem 
has been described in detail in section 2.6.2. In this section a number o f  solution 
methodologies that are based on alternative forms o f meta-heuristics, fuzzy logic and 
neural networks will be described.
Soflanopoulou (1997) introduced an efficient mathematical programming formulation 
o f  the problem that did not require the pre-specification o f the total number o f  cells in 
the plant. The objective o f  the model was the minimisation o f  the total intercell traffic 
A  simulated annealing algorithm was employed for the solution o f  the problem. 
Sofianopoulou (1999) later extended the use o f  simulated annealing to cell-formation 
problems with alternative process plans and duplicate machines. She presented non
linear mathematical programming formulations for the machine allocation and part 
allocation problems respectively. Since the models were computationally intractable, 
a novel simulated annealing procedure was proposed for their solution. The procedure 
had the ability to move simultaneously in two different search dimensions. The 
algorithm started with a random allocation o f  parts to process plans. Then, the 
algorithm searched for the machine-cell configuration that minimised the number o f  
intercell m oves, given the part-process allocation. Once the termination criterion had 
been reached, a new part-process allocation was randomly created and the same 
procedure was repeated until a global termination criterion was reached. The 
efficiency o f  the proposed methodology was illustrated on several test problems taken 
from the literature.
Aljaber et al. (1997) modelled the cell-formation problem using a pair o f  shortest 
spanning path problems, one for the machines (rows) and one for the parts (columns) 
o f  the m/c matrix. A  modified version o f  Jaccard’s similarity coefficient was 
employed for the calculation o f  distances between pairs o f  machines or parts. The 
authors introduced a tabu search methodology for the solution o f  both problems. The 
algorithm was able to accommodate the consideration o f  additional manufacturing 
data with a suitable modification o f  the distance measure used.
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Vakharia and Chang (1997) presented both a simulated annealing and a tabu search 
methodology for the solution o f  a detailed version o f  the cell-formation problem. A  
considearble amount o f  manufacturing data were included in the formulation o f  the 
problem, such as transportation costs and processing times. The objective was the 
minimisation o f  machine investment and material handling costs. A  comparison o f  the 
proposed algorithms on a number o f  problems showed that simulated annealing 
outperformed tabu search both in terms o f  solution quality and computational 
complexity.
Chu and Hayya (1991) indicated that there was a degree o f  uncertainty in the 
allocation o f  a part to a specific part family. This uncertainty could be expressed with 
the help o f  fuzzy sets. For each part processed a degree o f  membership was defined in 
relation to each part family. The authors employed the generalised fuzzy c-means 
algorithm for the clustering o f  parts. The advantage o f  this methodology was that it 
provided the designer with a number o f  alternative solutions.
Kao and Moon (1998) employed the concept o f memory association for the solution 
o f  the cell-formation problem. The intuition behind their approach was to simulate the 
association procedure that takes part in the memory o f  a production engineer who is 
faced with the task o f  creating manufacturing cells. The methodology was comprised 
o f  two main stages: First, an autoassociative neural network formed part families by 
considering the characteristics (features) o f  the parts. Then, a heteroassociative neural 
network created machine cells by considering the relation between machines and part 
features. In addition, an extension o f the latter network was introduced that was able 
to create groups for other important GT domains, like tool sets, canned cycles etc.

5.4 A genetic programming-based methodology for 
the solution of binary cell-formation problems

5.4.1 Introduction
In this section a novel methodology for the solution o f  binary cell-formation problems 
is presented. The methodology is based on the combination o f  genetic programming 
and the Single Linkage Cluster Analysis algorithm described in section 5.3.3 (the 
proposed framework will be identified as ‘GP-SLCA’ from this point onwards). GP-
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SLCA acts as an optimiscr for specific ccl 1 -formation problems, i.e. only one fitness 
case is considered during the evaluation phase o f  the algorithm.
The application o f  genetic programming for the solution o f any optimisation problem 
requires the restatement o f  the problem in a program induction form. In the cell- 
formation case, the problem can be restated in the following form: “Find a computer 
program that takes as input information about the similarity o f processing operations 
between machines and produces as output a grouping o f  machines and parts that 
minimises a pre-specified objective” (figure 5.8).

S IM IL A R IT Y  O F
PROCESSING
O P E R A T IO N S

Figure 5.8: Genetic programming approach to cell-formation

This definition forms the basis o f  the solution methodology presented in the following 
paragraphs.

5.4.2 Design of the algorithm
5.4.2.1 Generation o f machine-cells and part-families using the GP- 

SLCA algorithm
The application o f  McAuley’s SLCA procedure for the solution o f  cell-formation 
problems is inflexible since the same dendrogram o f solutions is always produced 
irrespective o f  the optimisation objective. In addition, as Sarker (1996) has indicated, 
the performance o f  similarity coefficients varies significantly with both the problem 
domain and the optimisation objective.
The proposed methodology replaces Jaccard’s coefficient with a GP algorithm that 
generates a variety o f  similarity coefficients and consequently a variety o f  potential 
solutions. The evolutionary part o f  GP ensures that this procedure is not just a random 
search through the population o f  potential coefficients, since coefficients that produce 
promising machine groupings (in relation to the optimisation objective) are more 
likely to survive in subsequent generations. Genetic programming evolves similarity
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coefficients in the form o f  computer programs that take as input similarity information 
for the problem considered and output similarity values for pairs o f  machines to the 
SLCA procedure. A  detailed description o f  the interaction between GP and the SLCA 
algorithm is presented in figure 5.9.

SLCA
s im ila r ity  I Genetic 
information-W Program

I (coefficient)

Calculation of Construction> the similarity - > of thematrix dendrogram
Evaluation of 
each potential 
solution

Assign best 
solution 
found as 
program 
fitness

Figure 5.9:Illustration of the GP-SLCA procedure

The operation o f  the GP-SLCA procedure in pseudo-code form is presented in figure 
5.10.

Procedure Main
initialise population o f  randomly created similarity coefficients
run procedure SLCA for each coefficient
loop

loop
select individuals for crossover or mutation 
apply genetic operators and form new coefficients 

until a  new generation has been formed 
run procedure SLCA for each coefficient 

until termination criterion is true
Procedure SLCA
compute similarity matrix 
construct dendrogram 
loop

create machine cells for the highest level o f  similarity coefficient assign parts to machine cells 
calculate the fitness value o f  the cell configuration 
i f  solution is the best recorded so far, best=current solution 

until a single cell has been formed 
assign the best solution found as fitness o f  the individual

Figure 5.10 : GP-SLCA procedure in pseudo-code form
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5.4.2.2 Allocation o f  parts
The methodology described in this section belongs to the category o f  cell-formation 
methods that group machines into cells and not parts into families. Thus, for each 
machine-cell configuration created from the dendrogram o f  potential solutions, the 
corresponding part families must be formed in order to be able to calculate the value 
o f  the objective function. Since no information is available about the sequencing o f  
operations (backtracking, skips, etc.), parts are assigned to the cell where the majority 
o f  their operations take place. In case o f  a tie, the part is assigned to the smallest o f  
the candidate cells. In that way, the number o f voids created by the assignment 
procedure is always minimal. If there is still a tie, the part is assigned randomly to one 
o f  the candidate cells. If the allocation o f  parts to machine cells results in the creation 
o f  an empty cell (a cell that processes no parts), then the fitness o f the solution is set 
to zero. However, there is no limit on the size o f machine cells, and consequently no 
limit on the total number o f  cells in the plant. If required, the algorithm has the ability 
to explicitly consider size constraints, as it will be illustrated in section 5.5.

5.4.2.S Function set
The set o f  the four standard arithmetic operations {+, x, o/0} ¡s sufficient for the 
production o f  a wide range o f  formulas o f  similarity coefficients. Note that the 
division operator ‘%’ corresponds once again to the protected division function that 
returns the value o f  ‘1’ i f  the denominator o f  the division is equal to ‘O’. In that way 
the closure property o f  the set is not violated.

5.4.2.4 Terminal set
The following four terminals were used for the construction o f  potential similarity 
coefficients:

au : number o f  parts processed by both machines / andy 
by . number o f  parts processed by machine i but not by machine y 
cv : number o f  parts processed by machine J  but not by machine i 
dy . number o f  parts processed by neither machine i nor machine y
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With the exception o f dtJ the same variables are present in the formula o f  Jaccard’s 
similarity coefficient. McAuley did not include this independent variable in his SLCA 
algorithm since its value is usually quite high, thus it created very small values o f  the 
coefficient. In the GP-SLCA case, the structure o f  evolved similarity coefficients is 
not known in advance and neither is the significance o f  dtJ in the construction o f  a fit
partition. In principle, the evolutionary procedure should be robust enough to leave 
out o f  the final solution any terminal (variable) that is irrelevant to the solution o f  the 
problem. The range o f  values for the evolved similarity coefficient is not known in 
advance. However, this does not change the operation o f  the SLCA procedure, since 
the latter does not require a specific range o f  similarity values. For ease o f  illustration 
a function that normalises the values o f  the similarity matrix within the region [0, 1] 
was included in the algorithm. The operation o f  SLCA on either matrix yields the 
same result.

5.4.2.5 Genetic operators
The subtree crossover and subtree mutation operators were employed for the creation 
o f genetic diversity in the population o f coefficients. These operators were applied 
with a probability o f  90% and 10% respectively in each generation.

5.4.2.6 Objective function
Two different fitness measures were used for the evaluation o f  the similarity 
coefficients. Both measures assess the quality o f  block diagonalisation and have been 
extensively used by researchers to illustrate the performance o f  cell-formation 
algorithms. The following notation is essential for understanding the calculation o f  the 
fitness measure (notation taken from N g (1993)):

n: total number o f  columns (parts) 
m: total number o f  rows (machines) 
e: total number o f  non-zero entries in the mJc matrix 
<?/: total number o f non-zero entries inside the diagonal blocks 
e0: total number o f  non-zero entries outside the diagonal blocks 

(exceptional elements)
ev: total number o f  zero entries inside the diagonal blocks (voids)
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dj: total number o f  elements inside the diagonal blocks 
do' total number o f  elements outside the diagonal blocks

The grouping efficiency, t / ,o f a  diagonalised matrix is calculated using formula (5.3) 
(Chandrasekharan and Rajagopalan, 1986b).

where: 0 < g < 1
In the case o f  a single cell configuration d0 is equal to 0, thus (5.4) should be used 
instead.

r w
1 - eQUJ (5.3)

TJ = 0 - i ) (5.4)

Grouping efficiency has two main drawbacks:
•  I f  the value o f  the weight q used in the calculation o f  (5.3) and (5.4) is set to 0.5, it 

can be shown that the elimination o f  voids becomes much more important than the 
elimination o f  exceptional elements (Ng, 1993). However, in practical situations, 
exceptional elements are more costly to handle. A remedy that has been suggested 
is to set the value o f the weight to 0.2, however, the majority o f  reported results 
have been calculated with q=0.5. For this reason the same value was employed in 
our experimental set-up.

•  The value o f grouping efficiency is always greater than 75%, independent o f  the 
structure o f  the diagonalised matrix. It is thus not a good reflection o f  the real 
quality o f  diagonalisation.

The grouping efficacy measure, T , is calculated using the formula (5.5) (Kumar and 
Chandrasekharan, 1990).

e + ev e + ev ' ’
Grouping efficacy has been used by a considerable number o f  researchers, since it is 
considered to be a better grouping measure than grouping efficiency. However, as Ng  
(1993) proved, it assigns excessive importance to the elimination o f exceptional
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elements. He suggested a weighted version o f the measure (weighted grouping 
efficiency, y ), which is calculated using formula (5.6).

I f  q is set to 0.5, then y = T . N g showed that if  q is set to 0.2, y assigns realistic 
importance to the existence o f  exceptional elements and voids in the m/c matrix.
The proposed methodology is flexible enough to work with any objective function 
chosen by the user (for a review o f the grouping measures in cellular manufacturing, 
see (Sarker and Mondal, 1999)). The only consideration should be that the available 
information is sufficient for the calculation o f the objective value.

5.4.2.7 Additional parameters
The values o f  the additional genetic programming parameters and a summary o f  the 
proposed methodology are presented in the Koza-tableau o f  figure 5.11.

(5.6)
q-{e + ev-e0)+{[-q)-e{ 

where: 0 <, q <, 1

Parameters Values

Terminal set:
Function set:
Population size:
Subtree crossover probability: 
Subtree mutation probability: 
Selection:
Number of generations: 
Maximum depth for crossover: 
Initialisation method:

Objective: maximisation o f  the grouping efficiency or 
grouping efficacy o f a diagonalised matrix 
a, b, c, d (defined earlier)
+, -, x, %
500
.9
.1
Tournament selection, size 7
50
17
Ramped half and half

Figure 5.11: Koza tableau for the GP-SLCA methodology
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5.4.2.8 Illustration o f the GP-SLCA procedure using an example 
problem

The purpose of this section is to illustrate the operation of the methodology with the 
help of a well-known binary cell-formation problem, the (16x43) m/c component 
matrix, originally introduced by Burbidge (1975), which is presented in figure 5.12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

1 1
2 1
3

4

5
6 1 1

7 18 111
9 1 1

10 1
11 1
12

13 1

14 1

15
16 1

1

1
1 1 

1 1 1
1 1 1 

1 1 1

11 11 
1

1 1 1

1 1 1  11

1 1  1 1

1 11 11 11
11 1 1  
1 1  1 1 

1

1 1 
1

Figure 5.12: 16x43 example cell-formation problem

Almost every algorithm for the solution of binary cell-formation problems has been 
applied to this test problem.
20 runs of the GP-SLCA methodology were performed on the problem for each of the 
objectives. The results of the experiments are summarised in tables 5.1 and 5.2:

" B e s t  v a lu e  o f  e f f ic ie n c y  r e c o r d e d 0.935761
N u m b e r  o f  t im e s  th is  v a lu e  w a s  f o u n d 2
M e a n  b e s t  v a lu e  o f  e f f ic ie n c y  p e r  ru n 0.932657

S ta n d a r d  d e v ia tio n 0.003324
Table 5.1: GP-SLCA grouping efficiency results for Burbidge’s (16x43) test

problem

"  B e s t  v a lu e  o f  e f f ic a c y  r e c o r d e d 0.567901
------------ N u m b e r  o f  t im e s  th is  v a lu e  w a s  f o u n d 5

M e a n  b e s t  v a lu e  o f  e f f ic a c y  p e r  ru n 0.566063
S ta n d a r d  d e v ia tio n 0.003658

Table 5.2: GP-SLCA grouping efficacy results for Burbidge’s (16x43) test
problem
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The similarity coefficient that produced the best value o f grouping efficacy (when fed 
into the SLCA algorithm), was evolved in the form presented in figure 5.13 (in LISP 
symbolic language with prefix order o f  execution). The equivalent formula for the 
similarity coefficient is illustrated in figure 5.14.

((-(+(/(d)(b))(-(+(d)(a))(/(a)(b))))(-(-C(+(a)(a))(-
(b)(a)))(/(*(a)(d))(+(b)(c))))(/(*(+(a)(a))(-(b)(a)))(-(+(*(-

(+(a)(a))(*(c)(/(+(/(*(a)(b))(/(d)(b)))(d))C*(a)(a)))))(d))(/(+(/(-
(+(d)(a))(/(/(a)(b))(-

(d)(b))))(/(+(a)(b))(d)))(a))(a)))(/(+(+(d)(c))(d)X*(a)(a))))))))

Figure 5.13: Similarity coefficient that produced the best value of grouping 
efficacy (in computer program form)

Figure 5.14: Formula of the similarity coefficient that produced the best value of
grouping efficacy

It is not expected that genetic programming will evolve programs which human 
operators w ill find easy to understand how and why they work. However, in the case 
presented in figure 5.14 it can be seen that the values o f  a  and d, which indicate a 
similarity o f  processing operations between a pair o f  machines, dominate the outcome 
o f  the formula. High values o f  a and d  w ill result in high values for the similarity 
coefficient. It should be noted that the evolved coefficient is not necessarily ideal for 
the solution o f  any other cell-formation problem, since its evolution was based solely 
on its performance on the particular Burbidge’s test problem.
The diagonalised matrix is derived from the evolved coefficient through the Single 
Linkage Clustering Analysis procedure, which proceeds as follows: The formula o f  
figure 5.14 is used for the calculation o f  similarities for each pair o f  machines in the 
plant, resulting in the similarity matrix o f figure 5.15. The corresponding normalised

a
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similarity matrix, in which all similarity values have been scaled to the region [0, 1], 
is presented in figure 5.16.

\m 1  m 2  m 3  m 4  m S  m l  m 7  m l  m 3  m 1 0  m 1 1  m 1 2

m 2 5 6 .6 7 2 4

m 3 5 4 .0 0 0 0 3 3 .7 5 0 0

m 4 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0

m S 4 2 .0 0 0 0 2 4 .7 5 0 0 3 0 .0 0 0 0 1 6 9 .7 0 4 9

m l 3 6 .8 2 7 1 5 7 .9 1 1 4 4 4 .1 7 5 0 2 4 .2 4 0 9  1 1 .1 4 6 8

m l 5 7 .0 0 0 0 3 6 .0 0 0 0 4 2 .0 0 0 0 3 7 .7 1 4 3  2 9 .0 7 6 9 -3 1 .5 4 1 8

m 8 4 5 .1 0 0 0 3 0 . 5 5 0 0 2 1 .6 0 0 0 4 1 .5 7 4 5  6 4 .2 2 3 8 -2 6 .7 6 3 5  3 0 .9 9 9 6

m fl 5 1 .2 5 4 5 3 0 0 .7 5 1 5 3 3 .6 0 0 0 2 9 .7 1 4 3  2 1 .5 3 8 5 ■ 61.2140 4 0 .0 0 0 0 -7 1 .3 6 8 2

m i o 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0 3 3 .1 4 2 9  2 4 .7 6 9 2 -5 8 .3 2 3 1  8 4 .0 8 51 -5 8 .5 4 0 6 2 8 .6 0 0 0

m i l 5 2 .5 0 0 0 3 2 .6 2 5 0 3 8 .4 0 0 0 2 9 .8 1 6 1  7 .4 6 4 8 1 8 .9 4 7 4  4 5 .3 3 3 3 ■ 64.3697 2 9 .7 0 0 0 3 4 .2 8 5 7
m 1 2 5 4 .0 0 0 0 3 3 .7 5 0 0 3 9 .6 0 0 0 3 5 .4 2 8 6  2 6 .9 2 3 1 2 0 .0 0 0 0  4 6 6 6 6 7 6 6 .1 4 9 8 3 0 .8 0 0 0 3 5 .4 2 8 6 6 9 .6 6 6 7

m 1 3 5 8 .5 0 0 0 3 7 .1 2 5 0 4 3 .2 0 0 0 3 8 .8 5 7 1  3 0 .1 5 3 8 2 3 .1 5 7 9  5 0 .6 6 6 7 -34 .6 1 0 1 3 4 .1 0 0 0 3 8 .8 5 7 1 5 8 .2 8 1 9 4 8 .3 9 4 6
m 1 4 5 5 .5 0 0 0 2 8 .6 2 4 7 5 9 .7 2 3 2 3 6 .5 7 1 4  2 8 .0 0 0 0 4 6 3 .5 9 6 6  4 8  0 0 0 0 -1 3 .1 0 6 8 2 0 .7 1 6 6 3 6 .5 7 1 4 3 8 .5 0 0 0 4 0  8 0 0 0
m 1 9 5 1 .0 0 0 0 3 1 .5 0 0 0 3 7 .2 0 0 0 7 6 .5 8 0 9  8 9  8 0 0 9 6 8 .3 2 3 1  4 4 0 0 0 0 6 7 .7 2 4 2 2 8 .6 0 0 0 3 3 .1 4 2 9 3 5 .0 0 0 0 3 7 .2 0 0 0
m 1 0 5 6 .6 7 2 4 1 4 9 .8 6 6 7 3 6 .3 1 7 3 3 2 .0 0 0 0  2 3 .6 9 2 3 6 4 .6 5 4 4  4 2 .6 6 6 7 6 9 .8 1 5 6 1 5 9 2 0 7 0 3 2 .0 0 0 0 3 3 .8 3 3 3 3 6 .0 0 0 0

m13 m14 m is

5 5 .5 0 0 0

5 1 .0 0 0 0  4 0 .0 0 0 0

4 9 .5 0 0 0  4 2 .5 3 2 8  3 2 .0 0 0

Figure 5.15: Similarity coefficient matrix

m l m 2 m 3 m 4 m S m 6 m 7 m l m 0 m 1 0 m i l M 2 i» 1 3 m 1 4
m 2 0 .2 3 0 7

m 3 0 .2 2 5 9 0 .1 8 9 4

m 4 0 .2 2 0 5 0 .1 6 5 4 0 .1 9 5 6

m S 0 .2 0 4 3 0 .1 7 3 2 0 .1 8 2 7 0 .4 3 4 4

m 6 0 .1 9 5 0 0 .2 3 3 0 0 .2 0 8 2 0 .1 7 2 3 0 .1 4 8 7

m 7 0 .2 3 1 3 0 .1 9 3 5 0 .2 0 4 3 0 ,1 9 6 6 0 .1 8 1 0 0 .0 7 1 8

m 3 0 .2 0 9 9 0 .1 8 3 6 0 .1 6 7 5 0 .2 0 3 5 0 .2804 0 .0 8 0 4 0 .1 8 4 5

m 9 0 2 2 1 0 0 .8 7 0 5 0 .1 8 9 1 0 .1821 0 .1 6 7 4 0 .0 1 8 3 0 .2 0 0 7 0 .0 0 0 0

m i o 0 .2 2 0 5 0 .1 6 5 4 0 .1 9 5 0 0 .1 8 8 3 0 .1 7 3 2 0 .0 2 3 5 0 .2801 0 .0231 0 .1801

m i l 0 .2 2 3 2 0 .1 8 7 4 0 .1 9 7 8 0 .1 8 2 3 0 .1421 0 .1 6 2 7 0 .2 1 0 3 0 .0 1 2 6 0 .1 8 2 1 0 .1 9 0 4

m 1 2 0 .2 2 5 9 0 .1 8 9 4 0.2000 0 .1 9 2 4 0.1771 0 .1 6 4 8 0 .2 1 2 7 0 .0 2 7 4 0 .1841 0 .1 9 2 4 0 .2541
m 1 3 0 .2 3 4 0 0 .1 9 5 5 0 .2 0 6 4 0 .1 9 8 6 0 .1 8 2 9 0 .1 7 0 3 0 .2 1 9 9 0 .0 6 6 2 0 .1 9 0 0 0 .1 9 8 6 0 .2 3 3 6 0 2 1 5 8
m 1 4 0 .2 2 8 0 0 .1 8 0 2 0 .2 3 6 2 0 .1 9 4 5 0 .1791 1.0000 0 .2151 0 .1 0 5 0 0 .1 6 5 9 0 .1 9 4 5 0 .1 9 8 0 0.2021 0 .2 2 8 6
m 1 S 0 .2 2 0 5 0 .1 8 5 4 0 .1 9 5 6 0 .2 5 6 6 0 .2 9 0 4 0 .0 2 3 5 0 .2 0 7 9 0 .0 0 6 6 0.1001 0 .1 8 8 3 0 .1 9 1 7 0 .1 9 5 6 0 .2 2 0 5 0 .2 0 0 7
m i l 0 .2 3 0 7 0 .3 9 8 6 0 .1 9 4 0 0 .1 8 6 3 0 .1 7 1 3 0 .0301 0 .2 0 5 5 0 .0 2 0 8 0 .4 1 5 5 0 .1 8 6 3 0 .1 8 9 8 0 .1 9 3 5 0 .2 1 7 8 0 .2 0 5 2

Figure 5.16: Normalised similarity coefficient matrix
Either o f  these matrices can be used as input to the SLCA algorithm, since they 
produce the same dendrogram o f  potential solutions. Figure 5.17 illustrates the 
resulting dendrogram, which has been cut at the similarity level o f  0.2340. The cell 
configuration for this instance o f the dendrogram (after the allocation o f  parts to 
families through the procedure described in 5.4.2.2.), corresponds to the diagonalised 
matrix o f  figure 5.18, which has a grouping efficacy value o f  0.5679.
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Figure 5.17: Dendrogram cut at the similarity level 0.2340

3 2 4 10 18 28 32 37 38 40 42 6 7 17 34 35 36 5 8 9 14 15 16 19 21 23 29 33 41 43 1 12 13 25 26 31 39 11 20 22 24 27 30

Figure 5.18: Diagonalised matrix (grouping efficacy)

C o m p a ra t iv e  re su lts  p re se n te d  in  sec tio n  5 .4 .4  in d ica te  th a t  th is  v a lu e  o f  g ro u p in g  
e f f ic a c y  is  o n e  o f  th e  b e s t th a t  h a v e  b een  re p o rte d  in  th e  lite ra tu re  fo r  th e  p a r tic u la r  
p r o b le m  c o n s id e re d .

I n  th e  fo l lo w in g  p a ra g ra p h s  th e  p e rfo rm a n c e  o f  th e  p ro p o se d  m e th o d o lo g y  is  
i l lu s t r a te d  o n  a  c o n s id e ra b le  n u m b e r o f  te s t p ro b le m s  ta k e n  fro m  th e  lite ra tu re .

5 .4 .3  E x p e r im e n t a l  b a s is

F in d in g  a  se t o f  su ita b le  p ro b le m s  fo r th e  ev a lu a tio n  o f  th e  p e rfo rm a n c e  o f  an  
o p t im is a t io n  m e th o d  is  a lw ay s  a  d iff ic u lt ta sk . T h e  m a in  re q u ire m e n ts  th a t a  
r e p re s e n ta t iv e  se t o f  te s t  p ro b le m s  sh o u ld  fu lfil a re  th e  fo llo w in g :
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• Different instances of the problem should be included in terms o f size, difficulty
or any other parameter that can be varied

• Results from alternative solution methods should be available, so that meaningful
comparisons can be made.

In the case o f  the cell-formation problem, there is no formal definition o f  the difficulty 
for a particular instance o f  the problem. The only attempt to express the difficulty o f  
binary cell-formation problems has been made by Chandrasekharan and Rajagopalan 
(1989). In their investigation, they employed ZODIAC (Chandrasekharan and 
Rajagopalan, 1987) for the solution o f a set o f progressively more difficult test 
problems. The value o f  grouping efficiency for each o f  these problems was recorded 
and associated to the parameters o f  the matrices. The mean value and the standard 
deviation o f  the pairwise similarities o f  rows and columns as measured by Jaccard’s 
similarity coefficient were used as the discriminating characteristics o f the matrices. 
The authors concluded that the value o f  standard deviation was a good indication o f  
the groupability o f  the matrix. However, since other discriminating parameters, like 
the number o f  rows and columns, were not included in the study, it was suggested that 
this conclusion should not be regarded as nothing more than an indication o f  the 
actual relationship between the structure o f  the matrix and its groupability.
27 problems were employed for the testing o f the GP-SLCA methodology. AH the 
problems were taken from the cellular manufacturing literature and results from 
alternative cell-formation methods were available. The size o f the problems ranged 
from 10x15 to 40x100. All these problems along with their characteristics and their 
corresponding references are described in table 5.3. The number located in the first 
column o f  the table will be used for the identification o f these problems from this 
point onwards. For readers interested in using the same test problems for their own  
comparisons, it should be noted that problems 1-8 correspond to problems 1-6, 8, 9 in 
the order presented by Boctor (1991), and problems 16-21 correspond to problems 1- 
3, 5-7 in the order presented by Chandrasekharan and Rajagopalan (1989).
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1 Boctor(1991)
Size

16x30
e

1212 99

16x30 1063 16x30 924 99

16x30 1115 99

16x30 1076 99

16x30 1017 99

16x30 1148 99

16x30 1189 Boe and Cheng (1991) 20x35 15310 Burbidge (1975) 16x43 12611 Carrie (1973) 20x35 13612 Chan and Milner (1982) 10x15 4613 Chandrasekharan and Rajagopalan (1987) 40x100 42014 Chandrasekharan and Rajagopalan (1986) 8x20 91
15 99

8x20 61
16 Chandrasekharan and Rajagopalan (1989) 24x40 13117 99

24x40 13018 99

24x40 13119 99

24x40 13120 99

24x40 131
21 99

24x40 13022 Kumar et al. (1986) 23x20 11323 Kumar and Vannelli (1987) 30x41 12824 Seifoddini (1989) 11x22 7825 Stanfel (1985) 14x24 6126 99

30x50 15427 99

30x50 167
Table 5.3: Test problems used for the evaluation of the GP-SLCA methodology

The GP-SLCA framework was applied to all test problems using each o f  them as an 
individual fitness case. Two different optimisation objectives were utilised, grouping
efficiency and grouping efficacy. Twenty runs o f GP-SLCA were conducted for each 
problem and each individual objective.
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5.4.4 Results
Cumulative results are presented in two parts. First, in table 5.4, detailed results o f  the 
GP-SLCA procedure are illustrated. Then, in tables 5.5 and 5.6, the best solution 
evolved by GP-SLCA is compared with a number o f  solutions that have been 
produced by alternative cell-formation methodologies for the same test problems.

Pr.
No.

max 
, J 7 ___

n CT
(s.dev)

eo ev No. of 
cells

max
r

r o
(s.dev)

©0 ev No. of 
cells

1 0.917 0.909 0.0051 71 0 10 0.509 0.503 0.0063 40 38 5
2 0.935 0.903 0.0146 56 0 10 0.618 0.618 0 22 30 6
3 0.952 0.949 0.0024 44 0 10 0.7 0.7 0 8 28 4
4 0.926 0.924 0.0007 64 0 10 0.496 0.493 0.0029 31 40 6
5 0.930 0.926 0.0032 52 1 9 0.727 0.727 0 11 25 4
6 0.938 0.933 0.0023 54 0 11 0.782 0.782 0 18 18 5
7 0.930 0.926 0.0020 60 0 10 0.595 0.590 0.0063 23 39 4
8 0.927 0.913 0.0058 54 1 9 0.774 0.774 0 12 19 4
9 0.930 0.915 0.0107 90 0 13 0.568 0.568 0 40 46 5
10 0.940 0.933 0.0033 77 0 13 0.568 0.566 0.0037 34 36 6
11 0.944 0.916 0.0133 62 1 11 0.767 0.766 0.0016 11 27 6
12 0.96 0.96 0 0 4 3 0.92 0.92 0 0 4 3
13 0.964 0.956 0.0029 88 17 13 0.840 0.840 0 36 37 10
14 0.788 0.788 0 51 0 4 0.587 0.587 0 27 18 2
15 0.958 0.958 0 9 0 3 0.852 0.852 0 9 0 3
16 1 1 0 0 0 7 1 1 0 0 0 7
17 0.967 0.964 0.0040 31 3 10 0.851 0.851 0 10 11 7
18 0.953 0.940 0.0067 51 3 12 0.735 0.735 0 20 20 7
19 0.961 0.960 0.0011 70 0 16 0.533 0.531 0.0029 50 21 11
20 0.961 0.957 0.0042 70 0 16 0.479 0.476 0.0020 63 11 13
21 0.930 0.919 0.0045 78 3 18 0.437 0.435 0.0016 61 28 11
22 0.846 0.784 0.0291 66 8 9 0.490 0.453 0.0179 43 30 5
23 0.975 0.968 0.0079 59 0 19 0.607 0.607 0.0011 46 7 16
24 0.917 0.917 0 28 1 6 0.731 0.731 0 10 15 3
25 0.957 0.954 0.0008 26 0 10 0.718 0.718 0.0010 10 10 7
26 0.963 0.960 0.0063 70 2 20 0.594 0.583 0.0063 53 16 14
27 0.966 0.944 0.0205 96 0 22 0.5 0.488 0.0044 75 17 15

Table 5.4: Performance of GP-SLCA on individual test problems
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P r.N o . G P -S L C A Z O D IA C  
(Chandr. & Raj., 

1987)
G R A F IC S  

(Sriniv.A Naren., 
1991)

M S T -G R A F IC S  
(Srinivasan et at., 

1994)
M S T

(Ng, 1993)
G A  IS P  

(Cheng el al., 
1998)

1 0 .917 0 .643 0.772 0.846 - -

2 0 .935 0.795 0.816 0.810 - -

3 0 .952 0.858 0 .869 0.858 - -

4 0 .926 0.586 0 .764 0.730 - -

S 0 .930 0.881 0.901 0.881 - -

6 0 .938 0.896 0.908 0.891 - -

7 0 .9 30 0.636 0.791 0.799 - -

8 0 .927 0 .907 0 .907 0.907 - -

9 0 .930 0.776 “ - 0.796
10 0 .940 0.802 0.794 0.776 * 0.794
11 "  0 .944 0.878 0.878 - 0 .945 0 .878
12 “ " 0.96* 0.96 0.96 - 0.96 0.96
13 0.964* 0.951 0.951 - 0 .974 0.951
14 0.788* 0 .719 0.763 “ - 0 .719
15 0.958* 0.958 0.958 * 0.958 0.958
16 T 1 1 - 1 1
17 0 .967 0.952 0.952 - 0.975 0.952
18 "  0 .953 0.908 0.912 - - 0.908
19 0 .961 0 .773 0.789 0.856 - 0.836
20 0.961 0.724 0.791 0.833 - 0 .853
21 0 .930 0.693 0.791 0.761 - 0.811
22 0 .846 0.670 0.762 0.721 - 0.814
23 0 .975 0.681 0.823 0.865 - 0.824
24 0 .917 0.878 0.878 - - -

25 0 .957 0.839 0 .839 - - 0.841
26 .......  0 .963 0 .754 0 .852 - - 0 .860
27 6 .966 0 .629 0 .856 • 0.822

Table 5.5: Comparison with alternative cell-formation methods (grouping 
efficiency) (* indicates that the evolved GP-SLCA solution contained no singleton

clusters)

P r .N o . G P -S L C A Z O D IA C  
(Chandr. & Raj., 

1987)
G R A F IC S  

(Sriniv.it Naren., 
1991)

M S T -G R A F IC S  
(Srinivasan et al., 

1994)
M S T

(Ng, 1993)
G A -IS P  

(Cheng et al., 
1998)

1 0 .509 0.349 0.481 0.447 - -
2 0 .618 0 .586 0 .534 0.508 • -
3 0.7* 0.686 0.675 0.644 - -
4 0 .496 0 .267 0.449 0.407 - -
5 .... . 0.727* 0.727 0.691 0.727 - -
6 0 .782 0 .764 0.771 0 .760 - -
7 0.595* 0 .320 0.579 0.530 - -
8 0.774* 0.774 0.774 0.774 - -
9 0 .568 0.511 - - - 0.551

10 0.568* 0 .538 0.544 0.471 - 0 .539
11 ”  0 .767 0.751 0.751 “ 0 .767 0 .753
12 ....  “  0.92* 0.92 0.92 0.92 0 .92
13 ..... .. 0.840* 0 .839 0.839 “ 0.831 0 .840
14 0 .5 87 ’ 0 .583 0.581 - - 0 .583
15 0.852* 0 .852 0.852 0 .852 0 .852
16

.. .-T .~ 1 1 - 1 1
17 0 .8 5 1 ' 0.851 0.851 * 0.851 0.851
18 ........  0.735* 0 .730 0.735 - - 0 .730
19 0 .533 0.204 0 .433 0 .446 - 0 .494
20 6 .479 0 .182 0 .445 0 .439 - 0 .447
21 0 .437 '  ~  0 .176 0.417 0 .335 - 0 .425
22 6.490* 0 .387 0 .494 0 .436 - 0 .466
23 ------- 0 .607 '  0 .337 0 .554 0 .559 - 0 .538
2 4 6.731* 0.731 0.731 - - -
25 67718 0.656 0 .656 - - 0 .674
26 0 .594 0.461 0.563 - - 0 .566
27 ......... 0 .5 0.211 0.480 “ 0 .459

Table 5.6: Comparison with alternative cell-formation methods (grouping 
efficacy) (* indicates that the evolved GP-SLCA solution contained no singletonclusters)
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5.4.5 Discussion
Results from tables 5.4, 5.5 and 5.6 indicate that GP-SLCA is an efficient algorithm 
for the solution o f  binary cell-formation problems. More specifically, for the grouping 
efficiency measure GP-SLCA dominated the performance o f ZODIAC, GRAFICS, 
MST-GRAFICS and the GA-TSP heuristic. However, while the value o f grouping 
efficiency was always higher than 0.9, the resulting diagonalised matrices were not 
ideal for the implementation o f a cellular manufacturing system. Figure 5.19 
illustrates the diagonalised matrix for problem 9, which had a grouping efficiency 
value o f  0.944.

34 10 18 27  31 3  29  2  12 13 24 23 28 22 1 5  15 17 20 25 8  14 19 18 35 33 4  9  11 21 28 30 6  32 7

Figure 5.19: Diagonalised matrix for test problem 9 (Boe and Cheng, 1991)

The proposed grouping o f  machines and parts illustrated in figure 5.19 is not a 
practical cell-formation solution since its implementation would rather disrupt the 
manufacturing process. However, this is not due to the inefficiency o f  GP-SLCA, 
since the aim o f the algorithm was to maximise the desired objective. It is the 
maximisation o f  grouping efficiency that does not necessarily correspond to suitable 
solutions for the implementation o f  a cellular manufacturing system.
The deficiencies o f the grouping efficiency measure have been discussed in detail in 
section 4.2.5.2. Figure 5.19 illustrates the result o f  assigning excessive importance to 
the minimisation o f voids in comparison to the minimisation o f  exceptional elements.
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It is obvious that the algorithm attempted to minimise the number o f  voids by creating 
small compact matrices o f  positive elements along the main diagonal o f  the m/c 
matrix. Table 5.4 provides numerical evidence that all evolved solutions focused 
mainly on the elimination o f voids from the diagonalised matrix. The GP-SLCA 
solutions that did not include singleton clusters for both the grouping efficiency and 
efficacy measures are illustrated in tables 5.5 and 5.6.
The unusual configuration o f  the diagonalised matrices could be the reason for the 
slightly worse performance o f GP-SLCA over the MST algorithm in some test 
problems. When a large number o f  small-sized cells is foiroed, the optimal 
assignment o f  parts to machines becomes almost a random search procedure since 
there are many candidate cells that satisfy both allocation criteria. As it was discussed 
in section 5.4.2.2, double ties in the part-assignment algorithm o f  GP-SLCA are 
broken randomly. In contrast, MST uses a special procedure for maximising the 
grouping measure by reassigning parts and machines after the initial machine cell -  
part family configuration has been created (section 5.3.5). This procedure is 
particularly useful in this situation where the assignment o f  parts to cells is not a 
straightforward task. However, partitions resulting from the MST algorithm are even 
more impractical than the ones already described. N g (1993) reports a final solution 
containing 15 cells in a 20-machine problem (problem 9). An increase in the 
population size o f  GP-SLCA could result in similar solutions, simply because more 
random assignments o f parts to machines would be generated. In any case, it is 
obvious that the grouping efficiency measure is inadequate for judging the quality o f  
cell-formation solutions.

The inefficiency o f  the grouping efficiency measure should also be blamed for the 
poor performance o f  all non-hierarchical clustering methods in comparison to the 
evolutionary algorithms and the MST algorithm. The former methods do not allow the 
formation o f  singleton clusters (cells containing only one machine) in the potential 
cell configuration. However, as the previous results indicate, an optimal cell 
configuration in terms o f the grouping efficiency measure will almost certainly 
involve singleton cells, thus the solutions o f  these algorithms are mostly sub-optimal.
The performance o f the GP-SLCA procedure was even better when the maximisation 

o f  grouping efficacy measure was used as the objective o f optimisation. Evolved
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solutions were always equal or better than those reported for all the comparing cell- 
formation methodologies (with the exception o f  problem 22, where GRAFICS 
produced a marginally better result). In addition, a considerable number o f  the 
evolved solutions did not include singleton clusters, so in these cases the algorithm 
exhibited a genuinely equal or better performance than the non-hierarchical clustering 
algorithms (ZODIAC, GRAFICS and the Assignment Algorithm).
Tables 5.5 and 5.6 indicate that GP-SLCA and MST produced the best overall 
performance for the specific grouping objectives used in the experimentation. The 
algorithms were further compared using the maximisation o f the weighted grouping 
efficacy as the optimisation objective. As suggested by Ng (1993), the weight value o f  
0.2 was used for the calculation o f  the objective function. Cumulative results are 
presented in table 5.8. The weighted grouping efficiency value reported for GP- 
SLCA, was the best value found in twenty runs o f  the algorithm.

Problem
number

GP-SLCA M ST

11 0.732 0.732
12 0.92 0.92
13 0.680 0.680
15 0.591 0.591
16 1 1
17 0.702 0.702

Table 5.8: Comparison of GP-SLCA for the MST method (weighted groupingefficacy, ̂ =0.2)
As can be seen, both algorithms produced identical results. However, a more thorough 
investigation on the relative performance o f  the algorithms is required, since only a 
limited number o f  published results were available for comparison. Irrespective o f  the 
above results, it can be argued that an increase in the population size and the number 
o f  generations per run could further enhance the performance o f  GP-SLCA. Fine- 
tuning o f  the parameters could also result in better solutions. MST cannot be further 
improved in that way since there are no variable parameters that could determine the 
outcome o f  the run.
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5.5 Advanced formulations of the cell-formation problem
5.5.1 Introduction
In the previous section the application o f  genetic programming for the solution o f  
simple binary cell-formation problems was described. This formulation o f  the 
problem is considered to be insufficient, since only a limited amount o f  production- 
related information can be included in a binary machine-component matrix (see 
section 5.2.2). Information such as operation sequences o f parts, processing times, 
machine capacities and opportunity costs is essential for the practical implementation 
o f  a cellular manufacturing system. The designer o f  the system might also impose 
constraints on the size o f  the machine cells and part families formed by the algorithm.
Ideally, a solution methodology should be able to simultaneously consider all these 
factors and produce an optimal configuration according to the desired settings. 
However, while a number o f detailed models o f cellular manufacturing systems have 
been developed, these are usually computationally intractable (see for example Selim  
et al. (1998)). In most cases cell-formation methodologies focus on the optimisation 
o f  models that are balanced between an accurate description o f  a manufacturing 
system  and computational efficiency.
While the majority o f  binary cell-formation methods are either incapable o f  solving 
advanced formulations o f  the problem, or exhibit poor perfomrance on them, the 
genetic programming methodology introduced in the previous section is capable o f  
considering a variety o f additional production-based information. GP-SLCA employs 
the following methods (individually or combined) for dealing with advanced 
formulations o f  the cell-formation problem:

•  Modification o f  the terminal set

•  Use o f  penalty function for solutions that violate designer’s constraints
•  Modification o f  the objective function

In the following paragraphs it will be shown how GP-SLCA can be modified to 
explicitly consider realistic formulations o f  the cell-formation problem. Three
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example problems taken from the literature will be used for the illustration o f  the 
proposed methodology. Note that results presented in the following paragraphs are 
only indicative o f  the performance o f  the algorithm in comparison with alternative 
solution methodologies that have been proposed for the same version o f  the problem. 
A  comparative analysis requires performance results o f  the competing methodologies 
on a large number o f  test problems. However, unlike the case o f  the binary cell- 
formation problem described in the previous section, there are only a limited number 
o f  test problems and published results for each o f  the advanced formulations o f the 
problem. Thus, the main aim o f  this section is to illustrate the application o f  GP- 
SLCA on advanced cell-formation problems and at the same time give an 
approximate indication o f  its performance in comparison with other solution 
methodologies for the version o f  the problem considered.

5.5.2 Operation sequences
The simple binary formulation o f  the cell-formation problem does not contain any 
information about the operation sequences o f  parts. However, this information is 
essential for the determination o f  the real cost o f  a cellular manufacturing 
configuration. Figure 5.20 illustrates the machine cells and part families produced by 
a potential solution algorithm.

p2 P i p5 p4 p3
m3 1 1 0 0 1
m l 0 0 1 1 1
m2 0 0 1 1 1

Figure 5.20: Potential cell-formation solution

Part 3 in this configuration is identified as the exceptional part, and machine 3 as the 
bottleneck machine. This simple interpretation o f  the proposed solution can be 
enhanced by replacing the positive entries in the m/c matrix with integer values 
indicating the operation sequence o f  a part on a particular machine, as shown in figure 
5.21.
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p2 Pi p5 p4 p3
m3 1 1 0 0 2
ml 0 0 2 1 3
m2 0 0 1 2 1

Figure 5.21: m/c matrix indicating operation sequences

From this figure it can be deduced that the proposed configuration results in 2  
intercell moves, since the operation required outside the block diagonals is neither the 
first nor the last o f  the processing sequence. This configuration leads to increased 
material handling costs and more complicated flow o f  parts within the system.
The consideration o f  the operation sequences o f  parts is therefore essential for the 
realistic evaluation o f  a cell-formation configuration. The simple GP-SLCA algorithm 
can be modified to explicitly consider the sequencing o f  parts during the evaluation
phase o f  the algorithm.
The original GP-SLCA can be used unchanged for the solution o f  the advanced 
version o f  the problem, as it will be illustrated later in this section. However, it is  clear 
that the similarity information fed to the algorithm through terminal o  is mrisy, since 
no distinction can be made between consecutive and non-consecutive operations o f  
parts on  pairs o f  machines. Thus, this terminal has to be modified accordingly, i„  
order to explicitly consider the additional sequencing information. The value o f  the 
new terminal, as, is  calculated as follows:

asÿ ~ 1 i f  part has non-consecutive operations on machines i  and j  
= 2 i f  part has consecutive operations on machines i and j

In this way, the similarity value o f  machines that processed parts in sequence is  
increased.
The objective o f  the optimisation algorithm should also be modified to reflect the 
quality o f  the optimisation in relation to the additional information that is now  
available. Nair and Narendran (1998) proposed bond efficiency, p ,  as a quality 
measure for the evaluation o f  cell-formation methodologies. Bond efficiency is able to 
consider both the compactness and the number o f  intercell moves produced by the
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proposed cell configuration. Equation (5.7) is used for the calculation o f the bond 
efficiency o f  a diagonalised matrix.

P ( I - U ) + (i - q ) -
Y jO T O P k
k-1_____________

Ÿ ftv ro P i+ N O P Ù*-1
(5.7)

where:

/ = S ( o - i )j -i
n (o-1)

u  =  2
7 -1  * - l

: Group technology efficiency (Harhalakis et al., 1990)

(5.8)

(5.9)

Y jO T O P k
—— —-------------------: Compactness measure
ff iO T O P , +NOP„)

1
I : Possible number o f  intercell moves in the system
U : Number o f intercell moves generated by the potential solution
r j : Number o f operations on part j
xlJk =  0 if  operations k, £+1 are performed in the same cell
xlJk = 1 i f  operations k, k+ 1 are not performed in the same cell
TOTOPk : Number o f  operations within cell k
NOPk : Number o f non-operations within cell k
TOTOPk + NOPk : Possible number o f  operations within cell k
n : Total number o f parts in the system
c : Total number o f cells in the system
q : Weighting factor (0  < g < 1)

There are no other changes in the operation o f the GP-SLCA algorithm. A summary 
o f  the proposed implementation is presented in the Koza tableau o f figure 5.22:
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Parameters Values
O b jec tiv e : maximisation of the bond efficiency of the cell 

configuration
T erm in a l se t: a s, b, c, d  (defined earlier)
F u n ction  se t: +, x, %
P o p u la tio n  size : 500
S u b tree  c ro s so v e r  p ro b a b ility : .9
S u b tree  m u ta tio n  p ro b a b ility : .1
S e lec tio n : Tournament selection, size 7
N u m b er o f  g en era tio n s: 50
M axim u m  d ep th  f o r  c ro sso ver: 17
In itia lisa tio n  m eth od: Ramped half and half

Figure 5.22: Koza tableau for the GP-SLCA methodology that explicitly 
considers operation sequences

The proposed GP-SLCA algorithm was tested on the example problem introduced by 
Nair and Narendran (1998) and illustrated in figure 5.23. Initially, 20 runs of the 
original GP-SLCA algorithm were conducted and the results are summarised in table 
5.9. The value of the maximum bond efficiency produced was lower than the one 
reported by Nair and Narendran (/? = 0.7163).

1 2  3 4
1 2
2 3
3 2
4 5
5
6
7 3
8

10 1
11
12
13
14
15
18 4
17
18 2
19
20
21
22 6
23
24
25

5 6 7 8 9 1 0 11 12 1 3 1 4 1 5 18 1 7 1 8 1 9 2 0 21 22 23 24 2 5 28 27 28 2 9 30 31 32 33 34 3 5 36 37 38 39 40

2 2 
1

1 1 4
3 3 2

5 3 2 2

2 4 3

1 1

1 2 
4 2

2 2 
1 1 3

1

3 2
2

2
2 2 

3
2
3

1 4
2 2 1

2 3 1
2

1 4 3 11 1 
3

2

Figure 5.23: Nair and Narendran’s (25x40) test problem

B e s t v a lu e  o f  b o n d  e f f ic ie n c y  r e c o r d e d 0.701984
N u m b e r  o f  t im e s  th is  v a lu e  w a s  f o u n d 3

M e a n  b e s t  v a lu e  o f  b o n d  e f f ic ie n c y  p e r  ru n 0.690819
S ta n d a r d  d e v ia t io n 0.006823

Table 5.9: Bond efficiency results for the original GP-SLCA algorithm

139



Chapter 5: The cell-formation problem

In contrast, the modified GP-SLCA algorithm that explicitly considered the operation 
sequences of parts was able to find the best reported value of bond efficiency in 7 out 
of the 20 runs (table 5.10).

B e s t  v a lu e  o f  b o n d  e f f ic ie n c y  r e c o r d e d 0.71633
N u m b e r  o f  t im e s  th is  v a lu e  w a s  f o u n d 7

M e a n  b e s t  v a lu e  o f  b o n d  e f f ic ie n c y  p e r  ru n 0.708852
S ta n d a r d  d e v ia t io n 0.007145

T a b le  5 .1 0 : B o n d  e ffic ien cy  resu lts  fo r  th e  m o d ified  G P -S L C A  a lg o r ith m

The cell configuration that corresponds to this particular value of bond efficiency is 
illustrated in figure 5.24.

2 12 36 1 5 7 16 17 30 8 15 23 24 31 11 25 27 29 35 40 10 19 21 22 28 38 3 g 13 14 33 4 g 20 26 34 37 39 18 32

F ig u r e  5 .2 4 : B e s t  so lu tio n  fo u n d  b y  th e  m o d ified  G P -S L C A  a lg o r ith m
(£ = 0 .7 1 6 3 3 )

The previous example demonstrates the ability of GP-SLCA to consider cell- 
formation problems where information about the operation sequences of parts is 
included in the formulation of the problem.

5.5.3 Minimisation of opportunity costs under design 
constraints

Any part not totally processed within its corresponding cell Is identified as an 
exceptional part. Generally speaking, there are two alternative ways of dealing with 
the presence of exceptional parts within a cellular manufacturing system:
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•  Exceptional parts are subcontracted to a third party

•  Bottleneck machines associated with exceptional parts are duplicated

It is obvious that there are specific costs associated with each o f  these decisions. The 
minimisation o f  opportunity costs o f  exceptional parts is the objective in a number o f  
cell-formation solution methodologies (Kumar and Vanelli, 1987), (Wei and Gaither 
1990), (Zhu et al., 1995). The problem becomes more complex in the case o f  imposed 
constraints by the designer o f the system on the total number o f  cells allowed in the 
plant and the maximum number o f machines allowed within a cell. These constraints 
might be introduced due to practical considerations about the size o f  the plant and the 
existing layout o f  machines.

The original GP-SLCA methodology is able to consider the objective o f  the 
minimisation o f  opportunity costs for the exceptional parts, without any modification 
o f  the terminal set o f  the system. However, special care should be taken for the 
satisfaction o f  the constraints imposed by the designer o f  the system. A  penalty 
function is introduced, which assigns zero fitness value to any solution o f  the GP- 
SLCA algorithm that violates the constraints. Note that since there is a dendrogram o f  
potential solutions corresponding to each similarity coefficient evolved by the GP 
evolutionary procedure, a considerable number o f  feasible solutions will be produced 
in every generation o f  the algorithm. However, the search power o f  the algorithm is 
certainly degraded by the fact that there is a substantial amount o f genetic material 
that is ignored by the evolutionary procedure because it produces infeasible solutions.
The GP methodology employed for the solution o f cell-formation problems with 
associated opportunity costs for the exceptional parts and/or design constraints is 
presented in the Koza tableau o f figure 5.25.
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Parameters Values
O b jec tiv e : minimisation of the opportunity costs of the 

exceptional parts in the system under specific 
constraints

T erm in a l se t: a, b, c, d  (defined earlier)
F u n ction  se t: +, x, %
P o p u la tio n  s ize : 500
S u b tree  c ro s so v e r  p ro b a b ility : .9
S u b tree  m u ta tio n  p ro b a b ility : .1
S e lec tio n : Tournament selection, size 7
N u m b er o f  g en era tio n s: 50
M axim u m  d e p th  f o r  c ro sso ver: 17
In itia lisa tio n  m eth od: Ramped half and half

Figure 5.25: Koza tableau for the GP-SLCA methodology which explicitly 
considers opportunity costs of exceptional parts and design constraints

Kumar and Vanelli’s (30x41) test problem (figure 5.26) was employed for the testing 
of the proposed methodology. The total number of cells in the proposed configuration 
was equal to 2, with no more than 20 machines allowed within each cell. Note that the 
last row in figure 5.26 denotes the opportunity cost associated with the part of the 
corresponding column. The cumulative results of the 20 runs of the algorithm 
conducted on the example problem are presented in table 5.11.

1
2

3
45 0
7
8 0 10 
11 
12
13

14

15 

18

17

18

19

20 

21 
22
23

24

25 20
27

28

29

30

10 11 
1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

47 MO 2« 165 232 22« 22 33 121 132 34 30 40 164 21 24 44 114 44 42

Figure 5.26: Kumar and Vanelli’s (30x41) test problem
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B e s t  v a lu e  o f  c o s t  r e c o r d e d $210
N u m b e r  o f  t im e s  th is  v a lu e  w a s  fo u n d 19

M e a n  b e s t  v a lu e  o f  c o s t  p e r  ru n $210.9
S ta n d a r d  d e v ia t io n $4.024922

Tabic 5.11: Opportunity cost results for the GP-SLCA algorithm

The best solution found by the GP-SLCA procedure corresponds to a total cost of 
$210, and is illustrated in figure 5.27. While the evolved solution was better than the 
one reported by Kumar and Vanelli ($217), Wei and Gaither’s analytical 
mathematical programming approach was able to produce a cell configuration where 
the opportunity cost associated with the exceptional parts was equal to $146.

1 3  7 8 9  13 14 15 16 21 2 2  26 2 7  2 9  30 3 4  35 36
— r \

1

\
1 1 1

1

1

1

1 1

1

1

1

1

1

1

1 1

1 1 1 1

1 1 1 1 1

1 1

1 1

1

1

1

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1

2  4 5  6  10 11 12 17 18 19 2 0  2 3  2 4  2 5  2 8  31 32 3 3  37 3 8  3 9  4 0  41 
1

310 26 22 33 121 132 21 28 45 6» 47 42 44 60 41 50 71 61 41 166 232 22# 34 3# 41

Figure 5.27: Best solution found by the GP-SLCA algorithm (cost=$210)

The cell-formation problem examined in this section illustrates the ability 0f  the 
simple GP-SLCA methodology to deal with constraints imposed by the designer of 
the system. While penalising infeasible solutions clearly degrades the performance of 
the system, GP-SLCA is still able to produce high-quality cell configurations that 
meet the specifications of the designer.
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5.5.4 Balancing the workload within the cells
The binary cell-formation formulation does not take into account the balancing o f  
workload within the designed cells. This is because the calculation o f  workload 
requires information about the processing times and demand rates o f  parts in 
particular machines. This type o f  information is not available through the binary m/c 
matrix representation o f  the problem.
Balancing the workload within machine cells results in significant benefits both from 
the production and the operator’s point o f  view. It means that the flow o f  parts within 
the cells is  smooth and the work-in-progress inventory (WIP) is reduced. It also 
means that the operators will work at a steadier pace, a condition that, generally
speaking, increases job satisfaction.
GP-SLCA is capable o f solving cell-formation problems where the balancing o f  
workload is explicitly considered, without any alteration on the basic structure o f  the 
algorithm. However, the optimisation objective should be suitably modified to 
incorporate additional information that is available. In the example problem presented 
in this section (which was adopted from Lin et a l  (1996)), the fitness measure takes a 
multiobjective form, aiming to simultaneously minimise intercell and intracell 
processing costs, as well as costs associated with unbalanced workload within the 
cells. The information needed for the calculation o f the objective is taken from a 
modified version o f the binary m/c matrix, where positive binary values are replaced 
by integer weights. These weights represent the workload induced by parts on 
particular machines as calculated by the product o f  the demand rate o f  a part by its 
processing time on the respective machine. Formally, the problem can be described 
with the following non-linear integer programming formulation (  Lin et al., 1996):

Min Z = aWa + eWe + dWd (5.10)

K  m  n

(5.11)
A =1  i = 1 7 = 1

1II

fcT (5.12)
K  tti  n

A=1 i = l  7=1 ' (5.13)
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____  K  m

* o = z > * 2 ;
h = \  /=1 /  ¿-1

» j  = 1, • . .  ,n (5.14)

*II* * = 1 , . . .  ,m (5.15)

CII•*»»II£ (5.16)
K f

(5.17)

K < K J (5.18)

o o »■i «N
, II . . .  ,m, h = 1................. £

y Jh= 0 or 1, y = 1 , . . .  ,n, h = l , . . . , K  

Wa >: 0 , We > 0,  Wd Z 0 , K Z 0

where:
a  : unit time intracell processing cost
e : unit time intercell processing cost
d  : unit time balance delay cost
W : sum o f weights in matrix

: maximum number o f  cells specified by the designer

w,y : workload (demand rate x standard processing time) o f  part y o n  
machine i

K  : total number o f  machine cells 

Wa : sum o f intracell weights 

We : sum o f intercell weights 

Wd •’ sum o f balance delay weights

Wj ¡average intracell workload for party

xih= 1 if  machiney is assigned to cell h, 0 otherwise 

yjh= 1 if  party is assigned to family h, 0 otherwise
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Lin et al. (1996) applied their minimum spanning tree solution methodology (section 
5.3.5) on a number of binary test problems taken from the literature, with part weights 
generated randomly from a uniform distribution. Since these data were not published 
in detail, comparison with the GP-SLCA procedure was not possible. However, the 
authors also presented an application of their methodology on a case study of a 
company that manufactured irrigation products. The company decided to transform 
their functional layout into a cellular manufacturing layout. After the collection of the 
necessary data, the resulted cell-formation problem was summarised with the help of a 
(22x62) machine/component matrix (figure 5.28). The heuristic procedure of Lin e t 
al. was applied on this cell-formation problem, and resulted in an overall cost of 617
units (note that the multiobjective function was calculated with the cost weights set at 
the following values: a - 1, e=3, d = 0.5).
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1 2 3 4 5

1 3 3 3 2 2

2 3 3 3 2 2

10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 75 28 27 28 29 30 31 32 M  34 55 38 37 38 S9 40 41 43 43 44 45
48 47 45 48 50 61 52 53 54 55 58 5 7 68 59 80 81 82

4 4 4 4 2 2

4 4

4 4 4 4 2 2

3 3 3 3 
5 5

3 3 3 3 3 3 2 2

• B fl 5 6 9 B 
» 8 5  5 6 9 9

3 3 3 3 3 3 3 3 3 3

4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 ]

10 3 3 3 2 2 3 3 2 2 2 3 3
10 2 2  2 1 1 3 2 1112 2
21 2 2 2 1

Figure 5.28: (22x62) test problem (Lin ct al., 1996)

The GP-SLCA methodology was applied to the same problem without any 
modification on the basic structure of the algorithm. The optimisation objective used 
was the minimisation of the sum of material handling costs and balanced delay costs, 
as calculated by equation (5.10). The same set of weights was employed for the 
scaling of each cost factor (a =  1, e= 3 , d = 0.5).
A summary of the proposed methodology is presented in the Koza tableau of figure 

5.29.
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Parameters Values
O b jec tiv e : minimisation of the sum of intercell, intracell, 

and balance delay costs
T erm in a l se t: a, b, c, d  (defined earlier)
F u n ction  se t: +, x, %
P o p u la tio n  size : 500
S u b tree  c ro sso v e r  p ro b a b ility : .9
S u b tree  m u ta tion  p ro b a b ility : .1
S elec tio n : Tournament selection, size 7
N u m b er o f  g en era tio n s: 50
M axim um  d ep th  f o r  c ro sso ver: 17
In itia lisa tio n  m eth od: Ramped half and half

Figure 5.29: Koza tableau for the GP-SLCA methodology that explicitly
considers balance delay costs

The cumulative results of 20 runs of the algorithm are presented in table 5.12.
B e s t  v a lu e  o f  c o s t  r e c o r d e d 606.601

N u m b e r  o j  t im e s  th is  v a lu e  w a s  f o u n d 20
M e a n  b e s t  v a lu e  o f  c o s t  p e r  ru n 606.601

S ta n d a r d  d e v ia t io n 0

Table 5.12: Total cost results for the GP-SLCA algorithm

G P -S L C A  w a s  a b le  to  fin d  a  so lu tio n  th a t  h ad  a  lo w e r c o s t v a lu e  th an  th e  o n e  re p o rte d  
b y  L in  e t al. (6 1 7 )  in  a ll ex p e rim en ta l runs. T h is  so lu tio n  is  il lu s tra te d  in  f ig u re  5 .30 .

B 8 10 11 12 13 59 60 61 62 33 36 35 45 <6 47 48 49 50 51 24 25 26 27 28 29 30 31 32 36 37 38 39 40 41 42 43 44 52 53 54 55 56 67 68 14 15 18 17 18 16 20 21 22 23

Figure 5.30: Best solution found by the GP-SLCA algorithm (cost=606.6 units)

The previous example illustrates the ability of the GP-SLCA algorithm to consider 
c e l l -formation problems where the balancing of workload is explicitly defined in the 
formulation of the problem.
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5.5.5 Discussion
Results presented in sections 5.5.2, 5.5.3 and 5.5.4, suggest that GP-SLCA has the 
ability to consider advanced formulations o f  the cell-formation problem with only a 
limited number o f  modifications in the basic structure o f  the algorithm.
These results are only indicative o f  the performance o f  the GP-SLCA on advanced 
formulations o f  the cell-formation problem. While GP-SLCA produced competitive 
results to alternative solution techniques on the problems considered, a larger 
experimental basis is needed in order to establish a statistical performance measure o f  
the efficiency o f  the algorithm. However, this experimental basis only exists for 
binary cell-formation problems, since published results for advanced formulations o f  
the problem are usually restricted to a single illustrative example for each proposed 
methodology.

5.6 Evolution of similarity coefficients for the solution 
binary cell-formation problems

5.6.1 Introduction
A  variety o f  similarity coefficients have been used in clustering algorithms for the 
solution o f  cell-formation problems (Sarker, 1996). In this section genetic 
programming is used in combination with the SLCA algorithm for the evolution o f  
new similarity coefficients for the solution o f  cell-formation problems. Instead o f  
having a predefined coefficient (like Jaccard’s similarity coefficient) providing 
information to the SLCA procedure, a genetic programming evolutionary machine 
proposes a variety o f  similarity information through a population o f potential 
coefficients, in the same way that was described in sections 5.4 and 5.5. However, in 
this case, the performance o f evolved coefficients is  not evaluated only on a specific 
instance o f  the problem, but on a set o f  test cases instead. The end product o f  this 
procedure is hoped to be a similarity coefficient that is at least as good as man-made 
coefficients in the solution o f  simple cell-formation problems, when used in 
combination with a hierarchical clustering procedure like SLCA
In genetic programming terms, the problem is stated as follows: “Find a program that 
takes as input similarity information between machines and produces as output a
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similarity coefficient that maximises a pre-specified grouping measure o f  any binary 
cell-formation problem, when used in combination with a hierarchical clustering 
procedure” (figure 5.31).

S IM IL A R IT Y  O F  
P R O C E S S IN G  —  
O P E R A T IO N S

SIMILARITY
COEFFICIENT
THAT
MAXIMISES
OBJECTIVE

Figure 5.31: Genetic programming approach to the evolution of similarity 
coefficients for the solution of binary cell-formation problems

5.6.2 Design of the algorithm
In the previous sections GP-SLCA was employed for the evolution o f  similarity 
coefficients that were specific to the problem considered, i.e. the test problem was 
used as the only fitness case o f  the evolutionary procedure. The method was not 
focused in the evolution o f  similarity coefficients as such, but rather exploited this 
procedure for the diagonalisation o f  binary m/c matrices.
In this section the possibility o f evolving a similarity coefficient that can be used for 
the solution o f  any binary cell-formation problem, in a similar way to Jaccard’s 
similarity coefficient, is examined. Evolved coefficients are evaluated through the 
SLCA algorithm on a pre-specified number o f  test problems that are used as fitness 
cases. The fitness o f  a solution is calculated by adding the value o f  the objective 
function from each individual test problem. In that way similarity coefficients that 
produce good overall performance will prevail during the evolutionary procedure. The 
proposed methodology is illustrated in figure 5.32.

similarity inputs

sum of best solutions 
found assigned as 
fitness of the 
coefficient

Figure 5.32: Illustration of the GP-SLCA procedure for the evolution of
similarity coefficients

The basic operation o f  the GP-SLCA algorithm in terma o f  the function and terminal 
sets employed remains the same. The maximisation o f  grouping efficacy was used as 
the objective o f  the evolutionary procedure.
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Selecting the test problems for the construction o f  the set o f  fitness cases was not a 
straightforward procedure. A  representative set o f  fitness cases should include 
different instances o f the problem in terms o f  size, difficulty or any other parameter 
that can be varied. In this way the outcome o f  the evolutionaiy procedure would be 
more likely to generalise to previously unseen problems. However, in the case o f  cell- 
formation problems, grouping difficulty cannot be easily described in terms o f  
parameters (see section 5.4.3). At the same time the evaluation function o f  the 
algorithm is computationally expensive, especially for large-sized problems, thus the 
number o f  test cases must be kept within certain limits depending on the available 
computational power.
In the experimental set-up o f  this section, ten different combinations o f  test problems 
were employed, all taken from the batch o f  27 test problems described in table 5.3. 
A ll sets comprised different problems in terms o f  their characteristics (size, grouping 
difficulty as it has been reported in published results, etc.) in an attempt to fulfil the 
requirements described earlier. Table 4A  in the Appendix, illustrates the configuration 
o f  these sets. The additional parameters that were necessaiy for the valid run o f  the 
genetic programming algorithm and a summary o f  the proposed methodology are 
presented in the Koza tableau o f  figure 5.33.

Parameters Values
Objective: Evolution o f a similarity coefficient that 

maximises grouping efficacy in binary cell- 
formation problems when SLCA is used as the
clustering procedure

Terminal set: a, b, c, d  (defined earlier)
Function set: +, -, x, %
Population size: 500
Subtree crossover probability: .9
Subtree mutation probability : .1
Selection: Tournament selection, size 7Number o f  generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Figure 5.33: Koza tableau of the GP-SLCA methodology for the evolution of new 
similarity coefficients for the solution binary cell-formation problems
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5.6.3 Results
Twenty runs o f  the GP-SLCA algorithm were conducted for each experimental set-up, 
as the probabilistic nature o f  genetic programming requires. The cumulative results o f  
the best coefficients evolved for each set-up are presented in table 5.13. The outlined 
problems in each column denote the test problems that were used as training (fitness) 
cases for the evolution o f  the corresponding similarity coefficient. The rest o f  the test 
problems in each column comprised the validation set for the evolved coefficient.
For comparison reasons, the performance o f eleven different similarity coefficients 
(table 5A in Appendix) in combination with the SLCA algorithm was measured on the 
same set o f  test problems (table 5.14). The list o f  coefficients was retrieved from the 
review paper o f  Sarker (1996).

Pr.
no

.

SE
TI

SE
T2

SE
T3

SE
T4

SE
T5

SE
T6

SE
T7

SE
T8

SE
T9

SE
T1

0

1 0.5 0.471 0.451 0.471 0.5 0.467 0.438 0.438 0.490 0.467
2 0.615 0583 0.586 0.586 0.618 0.571 0.588 0.586 0.611 0.601
3 0.7 0.698 0.698 0.7 0.7 0.7 0.7 0.7 0.7 0.7
4 0.474 0.459 0.240 0.455 0.489 0.470 0.409 0.231 0.467 0.475
5 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727
6 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.742
7 0.579 0.579 0.579 0.579 0.570 0.579 0.579 0.238 0.579 0.568
8 0.773 0.773 0.773 0.773 0.773 0.773 0.748 0.748 0.774 0.774
9 0.568 0.412 0.554 0.568 0.520 0.562 0.568 0.568 0.568 0.568
10 0.544 0.556 0.367 0.568 0.545 0.383 0.543 0.552 0.568 0.545
11 0.760 0.757 0.760 0.760 0.757 0.757 0.760 0.760 0.767 0.75712 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
13 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.84
14 0.569 0.569 0.569 0.587 0.569 0.587 0.587 0.569 0.587 0.587
15 0.852 0.852 0.852 0.852 0.639 0.852 0.852 0.852 0.852 0.852
16 1 1 1 1 1 1 1 1 1 1
17 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.581 0.851 0.851
18 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735
19 0.443 0.532 0.149 0.465 0.503 0.523 0.522 0.136 0.513 0.507
20 0.454 0.472 0.194 0.466 0.458 0.477 0.309 0.136 0.295 0.453
21 0.410 0.429 0.330 0.429 0.41 0.431 0.203 0.41 0.203 0.429
22 0.283 0.246 0.430 0.246 0.246 0.246 0.479 0.246 0.385 0.337
23 0.520 0.525 0.6 0.528 0.558 0.530 0.6 0.543 0.516 0.585
24 0.709 0.677 0.731 0.682 0.682 0.650 0.731 0.731 0.720 0.682
25 0.671 0.7 0.718 0.671 0.699 0.710 0.710 0.706 0.666 0.696
26 0.558 0.570 0.571 0.567 0.558 0.482 0.468 0.573 0.521 0.561
27 0.176 0.298 0.484 0.244 0.161 0.224 0.165 0.479 0.147 0.479

Table 5.13: Cumulative results of evolved coefficients on test problems
151



Chapter S: The cell-formation problem
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1

CO
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CO
EF
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CO
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4

CO
EF

5

CO
EF

6

CO
EF

7

CO
EF

8

CO
EF

9

CO
EF

10

CO
EF

11

1 0.471 0.467 0.471 0.393 0.393 0.393 0.438 0.471 0.393 0.438 0.4712 0.571 0.571 0.571 0.585 0.585 0.585 0.571 0.571 0.585 0.571 0.571
3 0.7 0.7 0.7 0.688 0.688 0.688 0.471 0.7 0.688 0.471 0.74 0.474 0.453 0.474 0.394 0.394 0.394 0.231 0.453 0.394 0.434 0.468
5 0.727 0.727 0.727 0.71 0.71 0.71 0.727 0.727 0.71 0.727 0.7276 0.752 0.752 0.752 0.738 0.738 0.738 0.738 0.752 0.738 0.738 0.752
7 0.579 0.579 0.579 0.568 0.568 0.568 0.47 0.579 0.568 0.579 0.579
8 0.774 0.774 0.744 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774
9 0.568 0.568 0.568 0.519 0.519 0.519 0.24 0.541 0.519 0.556 0.568
10 0.544 0.54 0.544 0.257 0.257 0.257 0.183 0.548 0.257 0.183 0.546
11 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757
12 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
13 0.840 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
14 0.569 0.587 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.587
15 0.852 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.852 0.852
16 1 1 1 1 1 1 1 1 1 1 1
17 0.851 0.851 0.851 0.851 0.851 0.851 0.667 0.851 0.851 0.851 0.851
18 0.735 0.735 0.735 0.735 0.735 0.735 0.585 0.735 0.735 0.735 0.735
19 0.517 0.501 0.517 0.167 0.167 0.167 0.167 0.516 0.167 0.491 0.517
20 0.199 0.392 0.199 0.382 0.382 0.382 0.28 0.461 0.382 0.34 0.199
21 0.232 0.429 0.232 0.208 0.208 0.208 0.242 0.429 0.208 0.203 0.24
22 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.272 0.417
23 0.552 0.587 0.552 0.414 0.414 0.414 0.121 0.556 0.414 0.525 0.533
24 0.682 0.682 0.682 0.682 0.682 0.682 0.667 0.682 0.682 0.667 0.682
25 0.671 0.697 0.671 0.699 0.699 0.699 0.679 0.693 0.699 0.679 0.694
26 0.565 0.509 0.565 0.511 0.511 0.511 0.5 0.509 0.511 0.53 0.565
27 0.389 0.426 0.389 0.119 0.119 0.119 0.111 0.163 0.119 0.42 0.393
Table 5.14: Performance of similarity coefficients produced by human intuition 

5.6.4 Discussion
Results front tables 5.13 and 5.14 Indicate that the GP-SLCA framework was able to 
evolve coefficients that generalised over the entire set o f  problems.
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r 0.620 0.635 0.619 0.577 0.577 0.577 0.520 0.626 0.577 0.597 0.627
Table 5.15: Mean value of grouping efficacy for evolved and man-made

coefficients
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Table 5.15 illustrates that the mean value o f grouping efficacy produced by all 
evolved coefficients was similar to the one produced by man-made coefficients.
Coefficients SET4 and SET10 performed particularly well on the entire set o f  
problems, producing an increase o f  1% and 2.6% respectively on average grouping 
efficacy in comparison to Jaccard’s similarity coefficient (COEFF1). Since the 
difference in performance was relatively small, further research was needed in order 
to establish i f  SET10 could be distinguished from Jaccard’s coefficient. A  winner- 
takes-all comparison o f their relative performance on the test problems is presented in 
table 5.16.

Jaccard’s coefficient 
better

Jaccard’s coefficient 
worse

Jaccard’s coefficient 
equal

SET10 5 10 12
Table 5.16. Jaccard’s coefficient vs. SET10 in terms of non-dominated solutions

It is obvious that there are a large number o f  problems where the same level o f  
grouping efficacy was achieved by both coefficients, thus we cannot safely reject the 
hypothesis that the coefficients are actually the same (null hypothesis). The Analysis 
O f Variance (ANOVA) between the two sets o f values confirms this statement (table 
5.17).

SUMMARY
Groups Count Sum Average VarianceSET10 27 17.438 0.645852 0.027259JACCARD 27 16.737 0.619889 0.041745

ANOVA
F P-value F crit

0.263753 0.609729 4.026631
Table 5.17: ANOVA for SET10 and Jaccard’s coefficient (a=0.05)

The man-made similarity coefficient that produced the best performance in terms o f  
the mean value o f  grouping efficiency was Yule’s coefficient (COEFF2), a coefficient 
employed in psychological research. The winner-takes-all comparison between 
SET10 and Yule’s coefficient produced a significant number o f  equal solutions (table
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5.18). In addition, the ANOVA test indicated that the 
rejected (tables 5.19).

null hypothesis could not be

truies coemcient 
better Yule’s coefficient 

worse Yule’s coefficient equal
SET10 5 8 14

Table 5.18. Yule’s coefficient vs. SET10 in terms o f non-dominated solutions

SUMMARY
Groups Count Sum Average Variance
YULE 27 17.143 0.634926 0.032474
SET10 27 17.438 0.645852 0.027259

_________ ANOVA_________
F_____ P-value F crit

0.05396 0.817223 4.026631

Table 5.19: ANOVA for SET10 and Yule’s coefficient (a=0.05)

It is interesting to take a closer look at the structure o f  the evolved similarity
coefficients. Coefficient SET4 is illustrated in figure 5.34:

<(./«+£+A
—  a 

\ c

Figure 5.34: Similarity coefficient SET4

Notice that genetic programming evolved structures that did not follow the elegant 
form o f  Jaccard’s coefficient, but were just as effective in the solution o f  the test 
problems. From the above fonnula it is clear that the value o f  the coefficient is 
proportional to the values o f a  and d. This is expected since these values are indicative 
o f  the similarity o f  parts processed between a pair of machines.

The structure o f  coefficient SET10 is much more complicated than SET4, as figure 
5.35 depicts:
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Figure 5.35: Similarity coefficient SET10

The size and complexity o f  the evolved coefficient makes the task o f  explaining its 
operation quite difficult. This is not an unusual situation in GP, since the application 
o f  genetic operators leads to quick growth o f  programs up to the pre-specified 
maximum depth constraint (the ‘bloat’ effect). However, there is still the issue o f  the 
transparency o f  evolved genetic programs, as was discussed in section 4.4.3. It is 
evident that the value o f  the coefficient is proportional to the values o f a and d, 
however, a number o f  control terms are also present which seem to fine tune its value 
in particular fitness cases. Note, that there are two terms that according to common 
algebra should have been simplified:

c - c  
d  +  b

However, due to the operation o f the protected division function and the postfix order 
o f  program execution, these expressions will evaluate to ‘1’ if  the denominator is 
equal to ‘O’, which is not an unlikely case. Thus, they should be considered in this 
form during the calculation o f the coefficient value.
The generalisation o f  this coefficient was quite good. SET 10 appeared to have 
captured information that is relevant to the solution o f the problem. In problems 19- 
21 where the m/c matrices have been custom designed to be difficult for grouping, 
Jaccard’s coefficient failed to find fit partitions. On the same problems SET 10 created 
cell configurations with much higher levels o f grouping efficacy. On problem 27, 
where alternative evolved coefficients either produced poor results, or their good 
performance was not mirrored in the set o f validation problems, SET 10 produced an 
excellent level o f grouping efficacy. While the difference in performance between 
SET10 and man-made coefficients could not be mathematically confirmed, results on
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specific test problems indicated that SET10 might be able to handle ill-structured
matrices in a more efficient way.
From the above results it can be safely concluded that the GP-SLCA algorithm was 
able to evolve similarity coefficients that performed at least as good as the similarity 
coefficients that have been devised by human intuition. The advantage o f  the 
proposed methodology is that while man-made coefficients produce the same 
clustering outcome independent o f  the clustering objective, the proposed framework 
can be used to evolve purpose-based coefficients by simply altering the objective 
function, or introducing constraints in the evolutionary procedure.
The main disadvantage o f evolved coefficients is their non-parsimonious structure. A  
solution to this problem could be the explicit consideration o f  parsimony in the 
objective function o f  the evolutionary procedure by the penalisation o f long programs, 
as it has been suggested in genetic programming literature (Koza, 1992). However,' 
this modification would lead to greater computational costs. Another disadvantage o f  
the proposed methodology was the use o f  the SLCA clustering procedure, which has 
been reported to result in suboptimal groupings in comparison to the Average 1 inWo» 
Clustering procedure, or the Complete Linkage Clustering procedure (Gupta and 
Seifoddini, 1990). The choice o f  SLCA was again necessitated by computational 
requirements, since it did not require the recalculation o f  the similarity matrix for 
every similarity level in the dendrogram.

5.7 Conclusions
In this chapter the use o f  genetic programming for the solution o f simple and 
advanced formulations o f the cell-formation problem was investigated. M cAuley’ 
Single Linkage Cluster Analysis (SLCA) algorithm was used as basis for the 
development o f  the proposed methodology. SLCA employs Jaccard’s similarity 
coefficient for the creation o f  a pictorial representation o f  solutions in the form o f  a 
‘dendrogram’. Choosing a particular similarity level in the dendrogram can create a 
variety o f  cell configurations.
Genetic programming was utilised in two different ways. First, similarity coefficients 
were evolved for the solution o f specific binary cell-formation problems. Coefficients 
were fed into an SLCA procedure, which returned the best solution found in the
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dendrogram o f  potential solutions, in relation to the desired objective. The 
methodology was tested on a number o f  published test problems, performing at least 
as good as alternative cell-formation algorithms. In addition, the application o f  the 
proposed methodology on the solution o f  advanced formulations o f  the cell-formation 
problem was illustrated with the help o f some test problems taken from the literature.
Genetic programming was also employed for the evolution o f  new similarity 
coefficients that can be used in combination with a hierarchical clustering procedure 
for the solution o f  binary cell-formation problems. The proposed framework was able 
to evolve coefficients that performed at least as good as the coefficients that have 
been devised by human intuition, when SLCA is employed as the clustering 
procedure.

The proposed GP-SLCA methodology is quite flexible since it can be used with a 
variety o f  grouping objectives without altering its main operation. On the other hand, 
as the size o f  the problem increases, the evaluation function becomes computationally 
expensive since the value o f  the coefficient is calculated for every pair o f  machines in 
the plant and any potential solution from the constructed dendrogram has to be
evaluated.

The research into the applicability o f  genetic programming for the solution o f  
manufacturing optimisation problems concludes in the next chapter, with the 
consideration o f  a problem from the field o f multiobjective manufacturing 
optimisation, the multiobjective process planning selection problem.

Chapter 5: The cell-formation problem
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Chapter 6

MULTIOBJECTIVE MANUFACTURING
OPTIMISATION

6.1 Introduction
In previous chapters single objective formulations o f  manufacturing optimisation 
problems were addressed. However, manufacturing practice usually involves 
decision-making procedures where multiple objectives need to be simultaneously 
optimised.
When the objectives considered are conflicting in nature, a single optimal solution 
that simultaneously optimises both objectives does not generally exist. However, there 
are solutions that perform better than any other solution in the search space for at least 
one o f  the objectives. This set o f  solutions is usually referred to as the Pareto front, or 
the set o f  non-dominated solutions. A  formal declaration o f Pareto optimality will be 
presented in the following section. Conventional optimisation methodologies cannot 
readily cope with this situation since they are designed to search for a single optimal 
solution within the search space. A  compromise solution is usually found by 
aggregating the conflicting objectives into one optimisation function (see section 
5 5.4). Weights are employed for the assignment o f  partial importance to individual 
objectives.
The fact that evolutionary algorithms evolve a population o f potential solutions makes 
them ideal for the case o f  multiobjective optimisation, since they are able to search for 
all non-dominated solutions in a single optimisation run. In addition, there exist 
several multiobjective fitness assignment methodologies that help guide the
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population towards the area o f  the Pareto front, instead o f  converging to a single 
solution.

In this chapter the application o f  genetic programming to a multiobjective 
manufacturing optimisation problem is presented. The process planning selection 
problem is used for this purpose. While the single objective version o f  the problem 
can be handled efficiently by flow network optimisation techniques, only evolutionary 
algorithms have been able to consider non-trivial multiobjective instances o f  the 
problem. The proposed methodology employs a number o f  alternative multiobjective 
evolutionary techniques to facilitate the search for Pareto-optimal solutions.
The rest o f  this chapter is organised as follows: In section 6.2 the basic concepts o f  
multiobjective optimisation are discussed and a survey o f  the main evolutionary 
multiobjective techniques is presented. Section 6.3 introduces the multiobjective 
process planning selection problem. The genetic programming based methodology for 
the generation o f  process plans is introduced in section 6.4. The application o f the 
proposed methodology in combination with evolutionary multiobjective techniques on 
a number o f  test problems is illustrated in section 6.5. The conclusions o f  this chapter 
are discussed in section 6.6

6.2 Evolutionary multiobjective optimisation
6.2.1 Introduction to multiobjective optimisation
A  problem where a number o f  non-commensurable objectives need to be 
simultaneously optimised is defined as a multiobjective optimisation problem. 
Formally, a general multiobjective optimisation problem can be described as follows 
(Zitler and Thielle, 1999):

min/max ^ = / W = U ( 4 / 2( 4 . . , / nW ) (6.1)
subject to: X  = (jC,,X2,...,Xn) €  X (6.2)

y  = (yi>y2.....y „ ) e r (6.3)
where: x  is the decision vector

y  is the objective vector
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X  is the parameter space 
Y  is the objective space

The main characteristic of a multiobjective optimisation problem with conflicting 
objectives is the non-existence of a single decision vector that simultaneously 
optimises all objectives. Instead, there is a set of solutions for which the performance 
cannot be further improved in relation to one of the objectives without degrading the 
performance in relation to one or more of the remaining objectives. These solutions 
constitute the set ol P a re to -o p tim a l solutions, or else the P a re to -fro n t. All 
multiobjective solution methodologies seek to find solutions that lie within this set. 
Pareto-optimal solutions are also known as n a n -d o m in a ted  so lu tio n s  since no other 
possible solution is better than them in terms of all objectives considered.
Formally, and assuming a maximisation problem for all objectives (without loss of 
generality), the concepts of Pareto-dominance and Pareto-optimality can be defined as 
follows:
P a re to  d o m in a n c e . Given two decision vectors a  =  (a i t a „ . . . , a  )e  X  and 
b  = (bt ,b 2,.. .,b n) e  X  , a  dominates b  (or a  >  b  ) iff:

V i  e  f { a ) > f { b ) a 3 je { l ,2 .... „} f J( a ) > f j {b) (6.4)
P a re to  o p tim a li ty . A decision vector a =  (av a 2.... an) e  X  is Pareto-optimal if there
is no other decision vector b  =  (b ,,b2,...,b n) e  X  such that by  a .
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A B C D E F G H
X I 3 4 4.5 5 5.5 6 7
Y 7 5 6 7 3 5 4 2

Table 6.1: Objective values for the solutions of figure 6.1
These principles are illustrated in figure 6.1. The potential solutions o f  a 
multiobjective minimisation problem are represented by points A-H that are 
illustrated in table 6.1. Solutions A, B, E and H are non-dominated since no other 
solution is better than they are, when both objectives are considered. These four 
solutions constitute the Pareto-front for this example problem. Conversely, the 
remaining solutions (C, D, F, G) are dominated, since there are solutions that perform 
better than them in respect to both objectives. The Pareto-front provides the Decision- 
Maker (DM ) with a wealth o f  potential solutions. At the same time it indicates the 
relative compromises that can be made with respect to the objectives. However, 
finding the actual Pareto-front is not an easy task. Conventional multiobjective' 
optimisation methods usually attempt to transform the vector optimisation function 
into a scalar function, using aggregating techniques such as objective weighting and 
distance functions (Srinivas and Deb, 1994). The aggregation o f  the objectives means 
that these methods produce a single compromise solution; thus the whole length o f  the 
Pareto-front is not explored, at least in a single optimisation run. Alternative weight 
assignments have to be made in order to focus on different regions o f  the front.
Evolutionary computation techniques offer an alternative approach to multiobjective 
optimisation based on the foundations laid by Goldberg (1989) in the form o f  the
Pareto-ranking approach. In the next section the main evolutionary multiobjective 
techniques will be discussed in more detail.

6.3 Evolutionary computation for multiobjective optimisation
6.3.1 Introduction
The ability o f  evolutionary algorithms to conduct a search in the solutions’ space from 
a population o f  points in parallel is particularly useful for the solution o f  
multiobjective optimisation problems. Evolutionary computation is perhaps the only
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optimisation procedure that has the natural ability to provide a set o f  potential 
solutions in a single optimisation run. At the same time, it provides a computationally 
feasible approach for the solution o f  large instances o f  multiobjective optimisation 
problems. A  number o f  significant evolutionary multiobjective techniques that have 
been proposed over the years will be reviewed in the following paragraph.

6.3.2 Review of evolutionary multiobjective techniques
Schafer (1985) was the first researcher to propose the use o f  evolutionary algorithms 
for the solution o f  multiobjective optimisation problems. His Vector Evaluated 
Genetic Algorithm (VEGA) operated as a normal genetic algorithm. However, in the 
selection step o f  the algorithm each generation was divided into a number o f  parts 
equal to the total number o f  objectives considered. Each part was then filled with 
individuals selected based only on their performance on the respective objective. This 
approach was unable to explore the whole length o f  the Pamto front since the alternate 
selection scheme was promoting solutions that occupied the extreme regions. For that 
reason the evolutionary procedure had the tendency to neglect compromise solutions.
The need to include Pareto dominance information in the fitness assignment 
procedure was addressed by Goldberg (1989) (pages 197-201) who proposed, without 
actually implementing, an efficient scheme for the promotion o f  non-dominated 
solutions. Goldberg's scheme was based on the assignment o f  ranks to individual 
solutions according to their dominance level. The procedure started by identifying the 
non-dominated solutions o f  the entire population and assigning them with rank one. 
The search for non-dominated solutions was repeated, however, the solutions that had 
already been ranked were not considered in the process. A  new set o f  non-dominated 
solutions was found and assigned with the next rank. The procedure was repeated, 
until all solutions in the population had been associated with a rank. Fitness was then 
assigned to individuals according to their rank.
Goldberg’s ranking scheme, while unveiling the partial ordering o f  the solutions’ 
space, provided the evolutionary algorithm with the necessary tools to promote non- 
dominated solutions without focusing on a specific area o f  the Pareto front. However, 
as in single-objective multimodal optimisation, genetic drift, the tendency o f  thé 
evolutionary algorithm to converge to one o f  the equally ranked Pareto-optimal
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solutions, still limited the search to a fraction o f  the Pareto front. In order to maintain 
the diversity o f  the Pareto-front, Goldberg suggested the use o f  niching, a technique 
that had been employed successfully to fight genetic drift in multimodal optimisation.
Niching aims to form stable sub-populations o f  solutions across the length o f  the 
Pareto front. Fitness sharing is the niching technique employed by the majority o f  
researchers in evolutionary computation. It is based on the idea that all individual 
solutions within the same niche have to share the same resources. In other words, the 
fitness o f  individual solutions is degraded in proportion to the number o f  solutions 
that belong to the same niche (niche count). In that way, the algorithm does not suffer 
from premature convergence, since the fitness o f  any solution that attempts to 
dominate the population is immediately degraded through the sharing scheme.
A  sharing function is used for the calculation o f the niche count o f individuals within 
the same rank. The triangular sharing function is usually employed for this purpose:

For each individual solution, the value o f  the sharing function is calculated with 
respect to the solutions belonging to the same rank. The fitness o f  the solution is 
degraded in proportion to the sum o f  its sharing values. The distance between 
solutions can be defined either in the parameter space (decision vector) or the 
objective space. The parameter ^  determines the size o f  the niche. The shape o f  
the niche depends on the metric used for the calculation o f  distance between 
individual solutions (Horn and Nafpliotis, 1993). Deb and Goldberg (1989), Fonseca 
and Fleming (1993) and Horn and Nafpliotis (1993) have proposed gu ideline for the 
selection o f  the c r ^  value. The latter suggestions were used for the calculation o f  
the value in the experiments conducted in this chapter. Alternative techniques 
for the avoidance o f  genetic drift include the crowding scheme (De Jong, 1975) and 
the mating restriction scheme (Deb and Goldberg, 1989).

(6.5)
0 otherwise

where: d  is the distance between two individual solutions
& share the niche radius
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Goldberg did not present a practical implementation o f  his ideas. However 
subsequent researchers extended the concept o f  Pareto ranking and presented’ 
applications on multiobjective optimisation problems. Fonseca and Fleming (1993, 
1998) introduced the Multiobjective Genetic Algorithm (MOGA). MOGA employed 
a modified ranking scheme, in which a solution’s rank was proportional to the number 
o f  solutions by which it was dominated. This scheme produced a more fine-grained 
classification o f  solutions in comparison to Goldberg’s approach, since a greater 
number o f  individual ranks existed within the population. Fitness sharing was 
performed in the objective space between individuals belonging to the same rank.
In the same year Horn and Nafpliotis (1993) presented an evolutionary multiobjective 
technique called Niched Pareto Genetic Algorithm (NPGA). The main feature o f  this 
algorithm was the use o f  tournament selection as the driving force o f  the evolutionary 
procedure. The authors employed a modified version o f the conventional tournament 
selection scheme, which explicitly considered Pareto dominance information. 
Initially, two individuals were selected randomly from the population. Another set o f  
individuals was also selected from the population for comparison putposes. The user 
could determine the selective pressure by changing the size o f  this comparison set. 
Each o f  the two individuals was compared with each individual in the comparison se t  
I f  one o f  the individuals was not dominated by solutions in the comparison set and the 
other was, then the former was selected for the potential genetic operation. If neither 
or both individuals were non-dominated solutions, then the individual with the lowest 
niche count was selected.

As in MOGA, fitness sharing was implemented in the objective space, between 
individuals having the same rank. However, the authors indicated that the 
combination o f  tournament selection with fitness sharing could lead the algorithm to 
exhibit chaotic behaviour (Oei, Goldberg and Chang, 1991). Instead, a modified 
ranking scheme was proposed, originally suggested by Oei, Goldberg and Chang, in 
which the calculation o f niche counts was not based on the current population o f  
solutions, but on the partially filled next generation. The sampling o f  the latter
population was suggested, in an attempt to reduce the computational overhead 
induced by the updated sharing scheme.

Chapter 6: Multiobjective manufacturing optimisation
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The Non-dominated Sorting Algorithm (NSGA) (Srinivas and Deb, 1994) followed  
closely the guidelines proposed by Goldberg. Initially, the first set of non-dominated 
solutions was found and each solution was assigned with a large ‘dummy’ fitness 
value. Fitness sharing was implemented within the rank; however, the procedure took 
place in the parameter rather than the objective space. The first set of non-dominated 
solutions was removed from consideration and the second set o f non-dominated 
solutions was found. These solutions were assigned a ‘dummy’ fitness value that was 
smaller than the minimum fitness value o f  the individuals included in the first set o f  
non-dominated solutions, after fitness sharing had been implemented. This technique 
ensured that individual solutions were always assigned with higher fitness values than 
those having a lower rank.
Recently, Zitzler and Thiele (1999) presented the Strength Pareto evolutionary 
multiobjective technique that attempted to combine the positive characteristics o f  the 
previous methods. Their algorithm always maintained two sets o f solutions in each 
generation; the evolved population P  and the off-line set P' that contained the up-to- 
date non-dominated solutions. Any new solution generated was compared with the set 
o f  solutions in P  . I f  it was not dominated, then it was inserted in P  while the 
solutions covered by it in P ' were removed from the set. Both P and P ’ took part in 
the selection process.
The main feature on this methodology was its fitness assignment procedure. Each 
solution in P ’ was assigned with a strength value that was proportional to the number 
o f  solutions that it dominated in P. A t the same time, the fitness o f  solutions in P  was 
proportional to the sum o f  the strength values o f  the solutions in P  ’ that dominated 
them. The intuition behind this technique was an attempt to promote dominated 
solutions that were covered only by a small number o f  non-dominated solutions and 
penalise dominated solutions that contained a large number o f neighbourhood non- 
dominated solutions. This form o f niching was based only on dominance information; 
there was no need to calculate the distance between individual solutions. The authors 
also suggested reducing the size o f  P ’ by means o f  clustering. The average linkage 
clustering method was employed for this purpose. The reduced set P ’ was generated 
by choosing the centroid o f  each cluster as a representative solution.
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Fonseca and Fleming (1995) and Zitzler and Thiele (1999) discuss in detail the issues 
associated with evolutionary multiobjective optimisation and present analytical 
reviews o f  relative techniques that have been proposed over the years.

6.4 The multiobjective process planning selection 
problem

One o f  the main stages o f  the process planning procedure is the selection o f  the 
optimal process plan from the set o f the potential process plans that exist for the 
product considered. The problem is usually referred to as the process planning 
selection problem. A  formal declaration o f  the problem and a review o f  the 
evolutionary computation approaches that have been proposed for its solution are 
presented in section 2.5.3.
When the objective o f the optimisation is the minimisation o f  a single objective, then 
the process planning selection problem is equivalent to the Shortest Path Problem 
(SPP). The SPP can be solved efficiently by network algorithms such as Dijkstra’s 
(Jensen and Barnes, 1980). However, these algorithms are unable to handle the 
multiobjective version o f  the problem. Conventional optimisation techniques such as 
goal programming (Cohon, 1978), linear programming (Swaragi et al., 1985) and 
dynamic programming (Sniedovich, 1985) have been used for this purpose, however, 
their application has been illustrated only in small-sized networks.
Evolutionary computation is the only optimisation method that has been employed for 
the solution o f  medium to large size instances o f  the multiobjective process planning 
selection problem. More specifically, Awadh et al. (1995) combined their binary 
encoded genetic algorithm (section 2.5.3) with a weighted-sum approach for the 
solution o f  the multiobjective version o f  the problem. The objective o f  their algorithm 
was the simultaneous minimisation o f cost and maximisation o f quality o f the process 
plans. However, their simple aggregating multiobjective approach provided only a 
single compromise solution between the objectives, without considering the concept 
o f Pareto optimality.
Zhou and Gen (1997) combined their real value-coded evolutionary algorithm 
(section 2.5.3) with a multiple criteria decision technique (Chankong and Haimes, 
1983). This approach differed from the one proposed by Awadh et al., in the sense

166



diopter 6: Multiobjective manufacturing optimisation

that it evolved solutions across the length o f  the Pareto front and not a single
compromise solution. However, not enough experimental evidence was presented to 
assess the efficiency o f the proposed algorithm.

While both these approaches constituted a significant advance in the solution o f  the 
multiobjective process planning selection problem, their search for the set o f Pareto 
optimal solutions was inefficient. In the next section a new methodology is presented, 
which addresses this issue by combining a novel genetic programming approach for
the generation o f  potential process plans with a number o f established evolutionary 
multiobjective techniques.

6.5 A genetic programming-based methodology for 
the solution of the multiobjective process planning selection problem

6.5.1 Introduction
In this section a novel methodology for the solution o f  the multiobjective process 
planning selection problem is introduced. The proposed framework consists o f  two 
semi-independent parts: A  genetic programming algorithm is responsible for the 
generation o f  potential process plans. The search for Pareto-optimal solutions is 
implemented through a number o f alternative evolutionary multiobjective techniques.

O B J E C T IV E  V A L U E S  
O F  P R O C E S S  P L A N S

Figure 6.2: Genetic programming „pproacl. f0 llle generation of Parc,0.0n,ima|
process plans 1

A s has already been discussed the design o f the ge„etic programming algorithm 
requires the redefinition o f  the problem considered in a program-induction form For 
the case o f  the multiobjective process planning selection problem, this definition takes 
the following form: “Find a computer program drat takes as input information about 
the objective values associated with each process plan and produces as output a set o f
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Pareto-optimal process plans”. Figure 6.2 illustrates the genetic programming 
approach for the solution o f  the multiobjective process planning selection problem.
6.5.2 Design of the algorithm
6.5.2.1 Representation o f process plans
The process plan representation schemes employed by evolutionary techniques that 
have been proposed for the solution o f  the general process planning selection 
problem, are based on the network formulation o f  the problem. These algorithms 
evolve strings o f  binary or real-coded values that correspond to valid process plans for 
the problems considered (section 2.5.3).

The genetic programming methodology introduced in this chapter exploits the same 
formulation in its attempt to generate potential process plans. Since the network 
formulation transforms the process planning selection problem into a routing problem, 
the genetic programming algorithm evolves computer programs that aim to guide the
product through the required processing stages in a way that simultaneously optimises 
all objectives considered.

More specifically, the product moves through the arcs and nodes o f  the network with 
the help o f  navigating instructions that are evolved by genetic programming in the 
form o f a computer program. Any program that manages to find a complete path 
through the network corresponds to a unique process plan for the product considered.
The product is placed at the first node o f  the network and its navigation starts from an 
arc specified by the user. In the applications presented in this chapter, the right-most 
arc o f  the node constitutes the starting point o f  the navigation (figure 6.3). However, 
this is only an issue o f  convention and alternative initialisation schemes may also be 
used.

Chapter 6: Multiobjective manufacturing optimisation

Figure 6.3: Initialisation of the navigation procedure
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In each node the computer program can move between arcs (i.e. alternative process 
plans) using the navigation commands RIGHT and LEFT, which move the product to
the node placed immediately left or right o f  the present node respectively (Figure 
6.4).

Figure 6.4: Effect of LEFT and RIGHT commands on the navigation procedure
The operation o f  these commands assumes that there are no borders at the extreme 
arcs o f  the network nodes. The application o f the LEFT command on the left-most arc 
o f  the node and the application o f the RIGHT command on the right-most arc o f the 
node, positions the product on the right-most arc and the left-most arc o f  the node 
respectively (Figures 6.5-6.6).

Figure 6.5: Effect of the LEFT command on arc

Figure 6.6: Effect of the RIGHT command on the right-most node of the arc
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The product moves to the next processing stage with the help o f  the MOVE 
command. This command places the product on the node that is pointed by the current
arc. The relative positioning o f  the product on the new node follows the convention o f  
the right-most arc (figure 6.7).

Figure 6.7: Effect o f the MOVE command on the navigation procedure
The navigation commands are executed sequentially with the help o f the PROGN 
function (a function that allows the sequential execution o f two or more function or 
terminal nodes, section 4.3.2.1, Figure 4.2). The complete navigation program moves 
the product through the various processing stages.
The genetic programming approach for the generation o f  process plans will be 
illustrated with the help o f an example problem taken from Awadh et al. (1995). The 
network flow  model o f  a process planning selection problem is illustrated in figure 
6.8.

Figure 6.8: Network flow model of the example process planning selection
problem

170



Chapter 6: Multiobjective manufacturing optimisation

Each arc in the network is associated with a value that represents the cost o f following 
a specific sequence o f  operations. The objective in this problem is the minimisation o f  
the overall cost o f the product’s process plan. Figure 6.9 illustrates a computer 
program that generates the optimal process plan (cost=5) for the example problem. 
The detailed navigation o f  the product is presented in figure 6.10.

Figure 6,9: Evolved computer program for the generation o f the minimum cost
process plan

Figure 6.10: Step-by-step generation o f the minimum cost process plan

6.5.2.2 Function set
The PROGN function executes sequentially two or more function or terminal nodes 
that form its set o f arguments. As in the scheduling application presented in chapter 4,
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the PR0G N 2 and PR0GN3 functions formed the function set o f  the genetic 
programming algorithm. The valid operation o f  these functions requires the 
specification o f  argument sets o f  size 2 and 3 respectively.

6.5.2.3 Terminal set
The three navigational commands LEFT, RIGHT and MOVE formed the set o f  
terminals for the genetic programming algorithm. The LEFT and RIGHT commands 
alternated the choice o f  the potential processing sequence o f  a product for a specific 
processing stage. The MOVE command confirmed the processing sequence choice 
and initialised the product position for the next processing stage.

6.5.2.4 Genetic operators
The subtree crossover and mutation operators were employed by the evolutionary 
procedure for the exchange o f  genetic material between individual solutions and the 
generation o f  diversity within the population. The probability o f  applying the 
crossover and mutation operators was set to 90% and 10% respectively.

6.5.2.5 Objective function
The minimisation o f  processing cost and the maximisation o f  product quality were 
chosen as the objectives to be simultaneously optimised by the evolutionary 
procedure. The same objectives were employed in the multiobjective process planning 
selection applications presented by Awadh et a l  (1995) and Zhou et a l  (1997)
The proposed methodology performed a non-aggregating evaluation o f  generated 
process plans using three alternative evolutionary multiobjective techniques (section 
6.3.2). The first approach (which will be identified as ‘Pareto’ from this point 
onwards) followed the guidelines proposed by Goldberg for ranking individual 
solutions according to their dominance information. A  ranking fitness assignment 
methodology introduced by Fonseca and Fleming (1993) was employed for the 
calculation o f  fitness values. Individual solutions were selected to participate in 
genetic operations with the help o f  the Stochastic Universal Sampling (SU S) 
technique (Baker, 1987).
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The Multiobjective Genetic Algorithm (MOGA) o f  Fonseca and Fleming (1993) was 
also employed as an alternative approach to the multiobjective evaluation o f  potential 
process plans. The implementation o f the algorithm followed closely the guidelines
set by the authors in terms o f  the rank assignment, fitness assignment and selection 
methods (SUS).

The final evolutionary multiobjective algorithm used in the experiments was the 
Niched Pareto Genetic Algorithm (NPGA) o f  Horn and Nafpliotis (1993). The size o f  
the comparison set for the tournament selection procedure, as well as the sampling 
rate for the calculation o f niche counts (see section 6.3.2) was set to 20% o f the 
population size used in the experiments.

6.5.2.6 Additional parameters
The Koza tableau o f  table 6.2 illustrates the value o f additional parameters that are 
necessary for the valid run o f  the genetic programming algorithm and summarises the
multiobjective process planning selection solution methodology presented in this 
chapter.

Parameters ValuesObjective: simultaneous minimisation o f  cost and 
maximisation o f  quality o f  potential 
process plans for individual products.

Terminal set: LEFT, RIGHT, MOVE
Function set: PROGN2, PROGN3
Population size: 
Evolutionary multiobjective

500-1000 (depending on problem size)

technique: Pareto, MOGA, NPGA
Selection: Stochastic universal sampling (Pareto, 

MOGA), tournament (NPGA)
Subtree crossover probability: 0.9
Mutation probability: 0.1
Number o f  generations: 50
Maximum depth for crossover: 17
Initialisation method: Ramped half and half

Table 6.2: Koza tableau for the multiobjective process planning geneticprogramming algorithm
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The experimental basis employed in this chapter comprised o f  ten multiobjective 
process planning selection problems with sizes ranging from (7 stages x 24 nodes) to 
(15 stages x 89 nodes). The test problems employed by Awadh et al. (1995) and Zhou 
et a l  (1997) featured the same characteristics in terms o f  number o f stages and 
number o f  nodes. However, while both authors were contacted, they were unable to 
provide their experimental basis and the respective results. For this reason, a new set 
o f  multiobjective process planning selection problems had to be randomly generated. 
The cost and quality values associated with each alternative processing sequence were 
randomly chosen from the uniform distribution [1, 50]. The minimum cost and 
maximum quality values for each o f  these problems were found through exhaustive 
enumeration. These values represented the solutions lying on the extreme regions o f
the Pareto front. They were also used for the calculation o f  the crs)mrt value in the 
fitness sharing procedure o f  the evolutionary multiobjective techniques. A summaiy 
o f  the experimental basis employed in this chapter is presented in table 6.3.
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20  runs o f  the genetic programming algorithm were conducted for each evolutionary 
multiobjective technique on the process planning selection problems included in the 
experimental basis. For each technique, the off-line set o f  non-dominated solutions 
over the batch o f  20 runs was recorded. The population size was set to 500 for 
problems 1-5, and 1000 for the larger problems 6-10. The results o f  the experimental 
phase are presented in the following section.

6.5.4 Results
The off-line sets o f  non-dominated solutions that were evolved by the combination o f  
genetic programming with the evolutionary multiobjective techniques are presented in 
figures 6.11-6.20. For ease o f  illustration the non-dominated solutions o f  each 
technique have been connected with continuous coloured lines.

6.5.5 Discussion
The results presented in figures 6.11-6.20 illustrate that the combination o f  the genetic 
programming procedure for the generation o f  process plans with evolutionary 
multiobjective techniques provide a variety o f  potential solutions for the DM. 
However, the relative performance o f  the proposed methodology cannot be 
sufficiently evaluated for the following reasons:
.  N o comparative results exist on the same set o f  problems from alternative solution

methodologies.
.  The actual Pareto-front o f  the problems considered is not known in advance.
An indication o f  the algorithm’s performance can be provided by the visual 
comparison o f  the evolved sets with the extreme values o f  the Pareto front, which  
were calculated through exhaustive enumeration. Based on this information, it can be 
said that for the small-sized problems (1 and 2) there is an indication that the 
algorithm evolved the actual Pareto-front because all evolutionary multiobjective 
techniques produced the same set o f  non-dominated solutions. However, since the 
actual Pareto-front is not known, no positive conclusions can be reached. While some 
extreme Pareto-front values (minimum cost and maximum quality) were evolved for 
bigger test problems as well (problems 3 and 4), the algorithm faced difficulties in 
reaching extreme Pareto regions as the size o f  the problem increased.

175



CN

■ Minimum cost 
Maximum quality 

-♦ -P a re to  
- — MOGA 
—»-NPGA

ligure 6.11: Evolved solutions for test problem 1

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cost 
Maximum quality 

-♦—Pareto 
.  MOGA 

NPGA

Figure 6.12: Evolved solutions for test problem 2

Chapter 6: Multiobjective manufacturing optimisation



400

oo

■ Minimum cost 
Maximum quality 

-♦—Pareto
-• -M O G A  
——  NPGA

Cost

Figure 6.13: Evolved solutions for test problem 3

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cost 
Maximum quality 

-♦—Pareto
MOGA
NPGA

Figure 6.14: Evolved solutions for test problem 4

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cost 
Maximum quality 

—♦—Pareto 
—»—MOGA 
—— NPGA

Cost

Figure 6.15: Evolved solutions for test problem 5

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cost 
Maximum quality 

— Pareto 
MOGA 

— NPGA

Cost

Figure 6.16: Evolved solutions for test problem 6

Chapter 6: M
ultiobjective manufacturing optimisation



oo
IO

■ Minimum cost 
Maximum quality 

— Pareto 
— MOGA 
— NPGA

Cost

Figure 6.17: Evolved solutions for test problem 7

Chapter 6: M
ultiobjective manufacturing optimisation



Qu
alit

y

700

ooU)

600  -

500  -

400 -

300 -

200 -

■ Minimum cost 
Maximum quality 
Pareto
MOGA
NPGA

100 -

Q -------------- 1-------------- ;-------------- 1-------------- 1-------------- 1-------------- 1---------------1--------------1-------------- 1--------------

0  50  100 150 200  250  300 350 400 450 500

Cost

Figure 6.18: Evolved solutions for test problem 8

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cosi 
Maximum quality 

—♦—Pareto 
—«—MOGA 
— NPGA

0  100 200 300 400 500 600

Cost

Figure 6.19: Evolved solutions for test problem 9

Chapter 6: M
ultiobjective manufacturing optimisation



■ Minimum cost 
Maximum quality 

—♦—Pareto 
— -MOGA 
—  Update

Figure 6.20: Evolved solutions for test problem 10

Chapter 6: M
ultiobjective manufacturing optimisation



The performance o f  the algorithm degraded as the size o f  the problems increased. 
While for a number o f problems there were indications that evolved solutions were 
situated close to the actual Pareto-front (problems 5, 6 , 7 and 9), the Pareto-front 
evolved for some o f  the large-sized problems (problems 8 and 10) was probably 
entirely dominated by the actual Pareto-front. This is not an unexpected result since 
the number o f  potential process plans for these cases is considerable for a 
multiobjective optimisation problem (table 6.3). The attempt that was made to offset 
the massive expansion in the size o f  the solutions' space by increasing the population 
size o f  GP was insufficient, and thus additional computational resources are required.
The relative performance o f  the evolutional? roultiobjective techniques that were 
employed in the experimentation phase can be assessed quantitatively through the 
coverage measure introduced by Zitzler and Thiele (1999). This measure maps an 
ordered pair o f  decision vectors c ( x \ X ' )  to  the interval [0, 1). The C  measure is 
calculated by dividing the number o f points in r  that are either dominated by or 
equal to points in X ' , to the total number o f  points in X". c (x ' ,X " )= l  means that 
all points in XT are covered by points in X ' . c ( x \ r ) =  0 indicates that no solution 
in X ’ is covered by solutions in X . Note that since the C function defines an ordered 
relationship, the value o f  c { x ’,X ‘) is not necessarily equal to c (x " ,X ') . Both cases 
need to be considered in order to assess the relative performance o f the sets. The C
values for all three evolutionary multiobjective techniques that were used in the 
experimental phase are illustrated in table 6.4:

PROBLEM NO. 1 2"" 3 4 5 6 7 8 9 10
C{Pareto, MOGA) 1.0 1.0 0 .85 0.8 0 .15 0 .3 6 0 .53 0.31 0 .6 5 0 .5 9
C (Pareto, NPGA) 1.0 1.0 0.73 0 .73 0.43 0 .2 0 .7 8 0 .75 0 .71 0 .5
C (MOGA, Pareto) 1.0 1.0 0 .63 0.73 0 .7 7 0 .6 4 0 .5 8 0 .63 0 .0 7 0  35
c (m o g a , n p g a ) 1.0 1.0 0.53 0 .73 0 .7 0 .2 0 .5 2 0 .75 0 .2 9 0 .3 8
C(NPGA, Pareto) 1.0 1.0 0 .63 0 .82 0 .7 2 0 .6 4 0 .2 5 0 .1 9 0 .0 7 0  18
c (n p g a , m o g a ) 1.0 1.0 0.5 0.8 0 .22 0 .6 4 0 .4 7 0 .15 0 .5 3 0 .5 9

Table 6.4: C  measure for the evolutionary multiobjective
experimental set-up techniques in the
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These results indicate that the performance o f  all multiobjective techniques in small- 
sized problems was similar, since a considerable number o f  equal solutions were 
produced. A s the size o f  the problem increased, different sets o f  non-dominated 
solutions were evolved for each technique. However, a consistent pattern in to m s o f  
the coverage measure did not emerge. Each technique produced better results than the 
alternative ones in some problems, but none o f  them was able to dominate the others 
on the entire set o f  test problems.
NPGA was able to produce a considerable number o f  extreme Pareto-front values but 
its performance deteriorated more rapidly as the size o f  the problem increased. 
MOGA produced the most consistent pattern o f  solutions; however, at no point it 
totally dominated the performance o f both alternative techniques. The ‘Pareto’ 
technique managed to produce the best results in the majority o f  large-sized problem, 
but its performance was inconsistent over the entire set o f  problems.
It can be concluded that no significant differences existed between the performance o f  
the three evolutionary multiobjective techniques that were employed in the 
experimental phase. The overall performance o f  the proposed framework was dictated 
by the search power o f  the genetic programming algorithm rather than the choice o f  a 
particular multiobjective technique for the assignment o f  fitness to individual 
solutions. For that reason it is suggested that future research should concentrate on the 
enhancement o f  the genetic programming search engine, which will make possible the 
consideration o f  large instances o f  multiobjective process planning selection 
problems.

6.6 Conclusions
In this chapter a novel methodology for the solution o f  the multiobjective process 
planning selection problem was introduced. The backbone o f  the methodology was a 
genetic programming algorithm for the generation o f  potential process plans. 
Multiobjective optimisation was implemented through a number o f  non-aggregating 
evolutionary multiobjective techniques.
The proposed methodology was tested on a number o f  variable-sized randomly 
generated problems. All evolutionary multiobjective techniques were able to produce 
a variety o f  potential solutions for the decision-maker to consider. The evaluation o f
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the relative performance o f  the proposed methodology was not possible due to the 
lack o f  comparative results and the unknown configuration o f the actual Pareto-front.
This chapter concludes the research conducted in this thesis concerning the use o f  
genetic programming for the solution o f  manufacturing optimisation problems. The 
conclusions o f  this research and suggestions for further work in the same area are 
presented in the following chapter.
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CONCLUSIONS

This chapter summarises the conclusions drawn from the application o f  genetic 
programming to a number o f  manufacturing optimisation problems. A  detailed 
description o f  these applications has been presented in chapters 4, 5, and 6.
The aim o f  this research was to investigate the possibility o f using genetic 
programming for the solution o f a range o f  manufacturing optimisation problems and 
at the same time assess the quality o f  the proposed methodologies in relation to the 
state-of-the-art solution techniques on the problems considered. Three well-known 
manufacturing optimisation problems, the one-machine total tardiness problem, the 
cell-formation problem and the process planning selection problem were used for this 
purpose. The first two cases were representative examples o f  combinatorial 
sequencing and clustering problems respectively. The multiobjective process planning 
selection problem highlighted a case which traditional solution methodologies were 
unable to address sufficiently in a single optimisation run.
The summary o f  conclusions starts with the evaluation o f  the performance o f  the 
proposed methodologies on the individual manufacturing optimisation problems that 
were used in this research. Based on these observations, general comments are made 
on the advantages and drawbacks o f  using genetic programming for the solution o f  
manufacturing optimisation problems.
These conclusions lead naturally to the consideration o f  future perspectives in this 
research. The last section o f  this chapter examines ways in which this research can be 
extended in relation to both the genetic programming methodologies presented in this 
thesis and alternative manufacturing optimisation cases.
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7.1 The one-machine total tardiness problem
A  considerable number o f  manufacturing optimisation problems are formulated as 
sequencing problems. Evolutionary algorithms are particularly suited for the solution 
o f  sequencing problems, since a potential solution can be easily coded into a fixed- 
size chromosome. However, since genetic programming evolves variable-length 
computer programs, it has never been regarded as a suitable algorithm for the solution 
o f  these types o f  problems.
The applicability o f  genetic programming for the solution o f  sequencing problems 
was investigated in this thesis with the help o f  a representative problem, the one- 
machine total tardiness problem. A  novel genetic programming methodology was 
introduced, which employed the concept o f dispatching rules for the indirect 
generation o f  job schedules. The proposed methodology succeeded in producing 
schedules with lower tardiness levels than individual dispatching rules on the set o f  
problems used in the experimentation phase. In addition, combinations o f the 
proposed genetic programming algorithm with local search and simulated annealing 
techniques were able to produce competitive results to one o f the leading heuristic 
algorithms that has been proposed for the solution o f  this problem.
The main drawback o f the proposed methodology was that it evolved a sequence o f  
dispatching rules for a fix-sized problem within a variable-length genetic 
programming environment. This feature clearly limited the efficiency o f  the 
algorithm, since it did not utilise the positive characteristics o f  genetic programming. 
The results o f  this application indicated that if  genetic programming was to be 
employed for the solution o f sequencing problems, a solution representation natural to 
its program-induction framework was necessary.
This issue was addressed by the second genetic programming application introduced 
for the solution o f  the one-machine total tardiness problem. In this application genetic 
programming created a variety o f formulas o f potential dispatching m les using the 
scheduling information available for the problem considered. These rules were trained 
on a set o f  representative test problems. Nine new dispatching rules were evolved  
during the experimental phase. A  number o f these rules were not only able to
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generalise on the entire set o f  validation problems, but also outperformed the 
corresponding man-made dispatching rules.
The main drawback o f  this methodology was the complexity o f  the formulas o f  
evolved dispatching rules, which made the explanation o f their operation a difficult 
task. However, the fact that the solution representation was natural to the problem 
considered meant that it could provide significant insights to the solution o f  the 
problem. At the same time, computational efficiency was not an issue in this 
application, since the process o f evolution only took place during the training phase. 
Once the potential dispatching rule had been evolved, it could be used independently 
o f  the evolutionary procedure as a fast computer program for the scheduling o f jobs.
The above considerations indicate that the evolutionary construction o f  dispatching 
rules in the form o f computer programs is a promising application o f  genetic 
programming in the field o f manufacturing optimisation.

7.2 The cell-formation problem
The solution o f  the cell-formation problem constitutes one o f the most significant 
phases in the implementation o f a cellular manufacturing system. It is a combinatorial 
NP-hard clustering problem that has been extensively researched during the last thirty 
years. A  considerable number o f solution methodologies from a wide range o f  
optimisation fields have been proposed for its solution, since the complexity o f  the 
problem creates a benchmarking potential for any new optimisation technique.
W hile several evolutionary computation algorithms had been employed for the 
solution o f  this problem, it had never been the subject o f genetic programming 
research. A  novel genetic programming methodology for the solution o f  simple binary 
cell-formation problems was introduced in this thesis. The algorithm processed 
information about the similarity o f  operations between machines using a coefficient 
evolved through a genetic programming machine. The front-end o f  the procedure was 
a hierarchical clustering algorithm that produced the final groupings o f  machines into 
cells.
The methodology was tested on a wide range o f  test problems taken from the 
literature and was found to produce results that were at least as good as the ones that
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have already been published for the objectives and the problems considered. The 
proposed methodology combined the efficiency o f  the hierarchical clustering 
procedure with the flexibility o f  the evolutionaiy algorithm. While a stand-alone 
clustering procedure created a set o f  promising cell configurations, its outcome was 
always independent o f  the optimisation objective. The replacement o f  the standard 
similarity coefficient with a genetically evolved population o f  coefficients provided 
the necessary flexibility, since each coefficient was either promoted or demoted by the 
evolutionary procedure depending on the quality o f the groupings that it produced.
The successful application o f  the proposed methodology on the solution o f the binary 
cell-formation problem was mostly significant from the genetic programming 
perspective since the binary cell-formation problem represents a fairly simple and 
unrealistic modelling o f the real problem. Fortunately, one o f  the main features o f  the 
proposed framework was its ability to address more complex formulations o f  the cell- 
formation problem by modifying either the type o f similarity information evolved  
through the genetic programming machine or the objective function o f  the algorithm. 
This process was illustrated with the help o f some example problems taken from the 
literature.
W hile the proposed framework was tested on a limited number o f advanced 
formulations o f  the cell-formation problem, it can be said that its ability to consider a 
variety o f  cell-formation models constituted a significant advantage in relation to 
alternative non-evolutionary solution techniques.
Genetic programming was additionally employed for the evolution o f general-purpose 
similarity coefficients that could be used in combination with clustering procedures 
for the solution o f cell-formation problems. Evolved coefficients were found to 
generalise over the entire set o f validation problems. However, their performance was 
similar to the one produced by man-made similarity coefficients. There were 
indications that some o f  the genetically evolved coefficients were able to handle ill- 
structured machine/component matrices more efficiently, however, no statistical 
verification o f  this hypothesis was obtained.
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7.3 The multiobjective process planning selection  
problem

Multiobjective optimisation is one o f the main application areas for evolutionary 
computation algorithms due to their natural ability to search for all Pareto-optimal 
points in a single optimisation run. Manufacturing optimisation is a field where 
multiple objectives, often conflicting in nature, need to be simultaneously optimised. 
In this thesis, a novel genetic programming methodology for the solution o f  the 
multiobjective process planning selection problem was presented. Genetic 
programming was applied on a set o f randomly generated test problems in 
combination with a number o f  evolutionary multiobjective techniques.
The performance o f  the proposed framework was not sufficiently evaluated since test 
problems and comparative results from alternative evolutionary algorithms were not 
available. A  visual analysis o f evolved Pareto-fronts on the problems considered 
indicated that in small-to-medium sized problems the framework was able to produce 
some Pareto-optimal process plans in the extreme regions o f the front (minimum cost 
- maximum quality). However, the performance o f the algorithm degraded as the size 
o f  the problem increased. In all cases the proposed framework was able to provide the 
decision-maker with a wide range o f potential process plans, instead o f a single 
compromise solution that would have been produced by a traditional aggregating 
multiobjective technique. None o f  the evolutionary multiobjective techniques that 
were employed in the experimentation was able to dominate the performance o f  the 
alternative ones.
It can be concluded that the integration o f genetic programming with the evolutionary 
multiobjective techniques for the solution o f the multiobjective process planning 
selection problem was able to produce a wealth o f  potential solutions near the surface 
o f  the actual Pareto-front. Unfortunately the level o f  proximity could not be estimated 
due to the unknown position o f  this front. At the same time, since no comparative 
results were available, the performance o f  the algorithm in relation to alternative 
evolutionary algorithms could not be assessed. For these reasons further research is 
needed in order to establish the full significance o f  the proposed methodology.
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7.4 Comments on the use o f genetic programming for 
the solution o f manufacturing optimisation 
problems

The main conclusion o f  this research is that genetic programming can be used for the 
solution o f  various types o f manufacturing optimisation problems, producing 
competitive results to alternative optimisation techniques that have been proposed for 
the solution o f  these problems.
The most promising use o f  genetic programming in manufacturing optimisation is the 
off-line generation o f  computer programs that can subsequently be used 
independently o f  the evolutionary procedure as stand-alone optimisers, like the 
evolution o f  dispatching rules for the one-machine total tardiness problem and the 
evolution o f  similarity coefficients for the cell-formation problem. The advantages o f  
this approach are the following:

•  The computational complexity o f the algorithm is no longer a critical issue. The 
training phase o f  the algorithm requires a number o f genetic programming runs on 
some pre-specifled fitness cases, however, once the best computer program has 
been evolved, it can be used independently o f  the evolutionary procedure on an 
unlimited number o f  problems.

•  Evolved computer programs are constructed from building blocks that are natural 
elements o f  the problem considered. For that reason it is possible to explain the 
operation o f  a program, depending on its size and complexity. This feature can 
provide insights on optimisation problems where little or no theoretical 
background exists, and lead to the development o f robust solution methodologies. 
The transparency o f  evolved computer programs can be enhanced by using 
techniques such as the Constrained Complexity Crossover (CCC) o f  Watson and 
Parmee (1998) and Automatically Defined Functions (ADFs) o f  Koza (1994).

The methodologies presented in the previous chapters illustrate the point that 
successful genetic programming applications in the field o f manufacturing 
optimisation are possible. However, the practical implementation o f  the proposed 
methodologies in real manufacturing cases requires the consideration o f  additional 
parameters:
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•  The computational complexity o f the algorithms, the time-consuming design o f  
the genetic programming framework, and the absence o f a general-purpose genetic 
programming toolkit, deter engineers from employing genetic programming for 
the solution o f  manufacturing optimisation problems, especially when cheap and 
fast alternative techniques exist.

•  The model-based formulations o f  manufacturing optimisation problems that were 
considered during the experimental phase do not always give accurate descriptions 
o f  the cases faced in manufacturing practice.

The reasons for the limited number o f reported genetic programming applications in
the field o f  manufacturing optimisation are the following:
•  The genetic programming solution representation for the majority o f  

manufacturing optimisation problems is not as straightforward as in the case o f  
alternative evolutionary algorithms.

•  Genetic programming applications require significant computational resources. 
The performance o f the algorithms does not always justify the additional overhead 
induced in comparison to alternative optimisation techniques.

•  Genetic programming is a relatively new technique that is still in development. 
The bulk o f  research in the field is focused on problems where a solution 
representation can be easily extracted from their formulation. Researchers are 
reluctant to experiment with problems that are not considered to be genetic 
programming-friendly.

A ll previous considerations should be viewed in the light o f the following points:
•  Each manufacturing optimisation problem has its own complexity and 

characteristics. While the cases considered in this thesis are significant, it cannot 
be said that genetic programming is necessarily suitable for the solution o f  any 
manufacturing optimisation problem.

•  The results presented in this thesis are based on the genetic programming coding, 
configuration and solution representations designed by the author o f this thesis. 
Alternative genetic programming machines that employ different solution 
representations will not necessarily produce the same results on the set o f  
manufacturing optimisation problems considered in this thesis.
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7.5 Future work
The research presented in this thesis provides an introductory investigation into the 
potential use o f  genetic programming for the solution o f  manufacturing optimisation 
problems. However, additional research is needed for the drawing o f safer 
conclusions. Some promising areas for the continuation o f  this research are the 
following:
•  The evolution o f  dispatching rules for the solution o f  the one-machine total 

tardiness problem can be extended to any other static scheduling problem. 
Furthermore, the proposed methodology provides the opportunity for 
manufacturing companies with special scheduling considerations to evolve their 
own case-based dispatching rules by providing the relevant inputs to the 
evolutionary procedure.

•  A  wider experimental basis is needed in order to assess the efficiency o f  genetic 
programming in solving advanced formulations o f the cell-formation problem.

•  The performance o f the genetic programming methodology for the solution o f  the 
multiobjective process planning selection problem could not be sufficiently 
evaluated due to the lack o f  comparative results from alternative solution 
methodologies. It is hoped that these data will be available in the future for further 
comparisons to be made.

•  The initialisation process o f  the genetic programming methodology for the 
generation o f  potential process plans favours plan selections situated near to the 
initialisation point (section 6.5.2.1). This bias can be reduced by introducing 
navigational commands that alternate between potential process plans in step-sizes 
larger than one. These commands were not included in the experiments o f  this 
thesis since their introduction requires a significant increase in the population size 
o f  the algorithm.

•  There are several important manufacturing areas where the potential application o f  
genetic programming has not been investigated. Dynamic scheduling, assembly 
lines, quality control and production planning are some optimisation areas for 
which genetic programming might be able to provide successful applications.
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•  The genetic programming algorithm employed in the experiments o f this thesis 
followed the guidelines suggested by Koza (1992). However, alternative 
frameworks for the evolution o f  computer programs have also been introduced 
(section 3.3.2). The application o f these frameworks on the set o f  manufacturing 
optimisation problems considered in this thesis could yield improvements in terms 
o f  the computational efficiency o f  the proposed methodologies.

•  The use o f  length reduction techniques such as the Constrained Complexity 
Crossover (CCC) (Watson and Parmee, 1998), (Parmee and Watson, 2000) and 
modularization techniques such as Automatically Defined Functions (ADFs) 
(Koza, 1994) would help reduce the length o f evolved genetic programs and 
simplify the task o f  explaining their operation. A reduction on the length o f  
genetic programs can also be achieved through the introduction o f  parsimony 
penalties in the objective function o f the algorithm.

•  The availability o f  computational power was always a main consideration during 
the experimental phase o f  this research. The employment o f  parallel processing 
machines would allow the use o f  larger populations o f solutions, thus increasing 
the search potential o f the proposed methodologies.

•  A  number o f  applications presented in this thesis suggest that the hybridisation o f  
genetic programming with alternative optimisation methods is a promising area 
for further research, since it combines the positive characteristics o f the co
operating algorithms.
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APPENDIX

SIMULATED ANNEALING PARAMETERS
Neighbourhood structure All general pairwise interchanges -  

restart from the best sequence found 
in the entire neighbourhood

Neighbourhood size
—  « • ( « - 1)

Probability o f  acceptance o f a solution that 
performs worse than the best solution that has

p  _ g-(« Armf)
been found so far w here:

a = 10 + (ITER -4) 
ITER = Number o f iterations 
ATard = increase in tardiness

Termination criterion When no better sequence has been 
found in an entire neighbourhood

Table 1 A. Simulated Annealing implementation for the one machine total
tardiness problem

NAME ABBREVIATION FORMULA
Mean Absolute Deviation from Optimal MADO AA l i f t

L n > ,.  - L t dd is  o p tL 1 l80
M e a n  Relative Deviation from Optimal MRDO so ( r n  _  r n  ^

y  d is  1  ^  op t»C > 
80 *100

Maximum Relative Deviation from 
Optimal

Tardiness o f  dispatching rule or GPC 
Optimal Tardiness

MAX(RDO)

TDdis
TD,o p t

max,-i TDijis -  TDiopt
TDio p t

Table 2A: List of statistical terms used in Chapter 4
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Table 3A  (co n t.): Evolved dispatching rules for the one machine total tardiness
problem

Name No. o f fitness cases Problems
SET1 8 1 - 8
SET2 6 1 6 -2 1
SET3 6 2 2 - 2 7
SET4 6 9 - 1 2 ,1 4 ,1 5
SET5 6 1 - 4 , 1 6 - 1 8
SET6 7 5 - 8 , 1 9 - 2 1
SET7 8 1 1 ,1 2 ,1 4 ,1 5 ,2 2 -2 5
SET8 8 9 - 1 2 , 2 4 - 2 7
SET9 14 1 - 1 2 ,1 4 ,1 5

SET10 14 1 4 - 2 7

Table 4A: Experimental sets for the evolution of similarity coefficients
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Appendix

Coefficient Formula

1. Jaccard a
a  +  b  +  c

2. Yule a d  — be
a d  +  be

3. Sorenson 2 a
2 a  +  b  +  c

4 . Ham ann {a  + d ) - ( b  +  c )
( a + d )  +  (b +  c )

5. Rogers & Tanimoto a  +  d
a  +  2(b +  c ) + d

6 . Sokal &  Sneath 2 (a +  d )
2  (a +  d )  +  b +  c

7. Russel &  Rao a
a + b + c + d

8 . Baroni-Urbani and a  +  { a d f ! 2
Buser a  +  b  +  c  +  ( a d ) ^ 2
9. Sim ple matching a  +  d

a + b + c + d
10. Ochial a

ï a  +  i X a + c W 2
11. Phi a d —be

. I(a + b f a  + c \ b  +  d \ c  +  d ^ 1

Table 5A: Similarity coefficients produced by human intuition
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