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Abstract 

Certain oral processing strategies, such as slow eating, high number of chews and 

hard food textures, have been linked to lowering food intake in a systematic review 

and meta-analysis. Although oral lubrication is an important aspect of oral 

processing, its effects on satiation remain unclear. Therefore, this thesis aimed to 

study the effects of both chewing and oral lubrication on snack intake by 

developing model foods (non-fat hydrogels) with different textural properties. The 

methodology used in this thesis ranged from instrumental techniques to human 

trials. Instrumental (texture analysis, rheology, tribology) and sensory evaluations 

(descriptive analysis, n=11) were used to characterise simple and mixed hydrogels 

with/without inhomogeneity using different concentrations and ratios of 

biopolymers. Viscosity and friction coefficients (µ) of the hydrogel-boli were 

characterized after simulated oral processing. Results demonstrated that gel 

fracture properties were directly correlated to the chewing-related sensory 

attributes, such as ‘firm’, ‘elastic’ and ‘chewy’ (p < 0.05). On the other hand, µ at 

orally relevant speeds (3-50 mm/s) was inversely correlated to ‘pasty’ of the gel 

bolus fluid where the large bolus fragments were filtered out. In addition, it was 

questioned whether the eating capabilities (EC) of young healthy consumers can 

be a determining factor in oral processing. Using quantitative frame-by-frame 

video analysis (n=28), it was demonstrated that number of chews and oral residence 

time were mainly dictated by food material properties rather than EC of young 

panellists. The effects of these novel hydrogels on subjective appetite and objective 

intake of a salty snack were measured in a preload, between-subjects design (n=55). 

Results showed that oral lubrication rather than chewing resulted in a reduced 
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snack intake after consuming a hydrogel preload (p < 0.05). In summary, 

manipulating oral lubrication is a promising new construct to reduce snack intake 

that merits future research in the oro-sensory satiety domain. 
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Chapter 1 

General introduction 

 

 

1.1. Introduction and overall research aim 

Understanding the relationship between oral processing, texture perception and 

food satisfaction can help improve the design of food products tailored to the 

energy needs of specific consumers. The intake of food is essential human 

behaviour, providing the body with energy and nutrients to sustain life. The current 

trend of increased energy intake in excess of energy requirements has led to serious 

problems with overweight and obesity in the world population, particularly in 

urban settings (World Health Organization 2000). Overweight and obesity form 

major risk factors for a number of chronic diseases, such as diabetes, cardiovascular 

diseases and cancer, and impose a huge burden on health-care systems (World 

Health Organization 2016a). The food industry can play a significant role in 

promoting healthy diets by ensuring healthy and nutritious food options are 

available. Among many nutritional strategies proposed to reduce food intake, foods 

that inhibit appetite between meals (satiety) and increase the strength and duration 

of sensory, cognitive and post-ingestive signals that determine when a meal ends 

(satiation) have been on the radar of food industries (Chambers, McCrickerd and 

Yeomans 2015). 
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Previous research has indicated that certain oral processing strategies, such 

as more chews per bite and eating more slowly, result in lower food intake 

(Christen and Christen 1997). This would suggest that foods with textural 

properties that stimulate these oral processing strategies may be used to enhance 

satisfaction. Therefore, understanding the influence of the material as well as the 

sensorial texture properties of food on the oral processing behaviour is of great 

importance. 

Oral processing is a dynamic process, with the food structure being broken 

down into a smaller particles and being mixed with saliva to form a cohesive food 

bolus that can be swallowed (Chen 2009; Chen and Stokes 2012). The food 

physical properties change drastically during this process, from first bite until 

swallowing, and consequently, oral processing plays a major role on the sensorial 

texture perception as well. Due to the continuously changing nature of oral 

processing, food properties transition from being rheology-dominated (i.e. bulk 

flow properties) to tribology-dominated (i.e. friction or lubrication due to 

interactions of food with the tongue and oral palate surfaces). In order to fully 

understand the textural changes during oral processing that eventually contribute 

to reduced food intake and their influence on texture perception, it is important to 

consider food properties both from a rheological and tribological point of view, 

with tribology experiments being a relatively new area in food research. 

Thesis Aim: This PhD project aims to understand better the influence of 

oral processing on satiety and satiation, both from a rheological as well as a 

tribological perspective. The project involves a multidisciplinary approach due to 

the complexity of the parameters involved in oral processing, such as food science, 
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sensory science, psychology and mechanical engineering. Three main research 

areas were identified: (1) the material and sensory texture properties of model 

hydrogels, (2) their oral processing characteristics to study how such instrumental 

and sensory properties are realised during food consumption, and (3) the 

satiety/satiation responses resulting from foods with different chewing and oral 

lubrication properties (see Figure 1.1). By studying the instrumental characteristics 

of a wide range of single and mixed hydrocolloid model systems, soft solid 

hydrogels with different texture and oral lubrication properties can be designed. 

Instrumental analysis (rheology, aqueous tribology) can be used to describe the 

material properties and predict the sensory perception and eventually the oral 

processing behaviour of hydrogels. Thesis hypothesis: This thesis postulates that 

besides the chewing behaviour, the lubrication generated during oral processing by 

exogenously introduced hydrogels plays a role in reducing hunger and food intake. 

 

Figure 1.1. Schematic overview of the three main themes in this thesis. 

In this chapter, the rationale behind the instrumental techniques and sensory 

analysis methodologies used in this thesis are explained, as discusses the rationale 

for using model foods. At the end, an outline of this PhD thesis is provided. This 

chapter is followed by a systematic review highlighting the gaps in literature in 

Chapter 2 and the selection method for the hydrogel model systems in Chapter 3. 

Food texture

• Material properties

• Rheology

• Tribology

• Sensory

Oral processing

• Chewing

• Lubrication

Satiety and satiation

• Appetite ratings

• Food intake
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1.2. Rationale behind different techniques 

For many years texture has been considered an overlooked food quality attribute, 

being the last of the key attributes (appearance, taste, aroma and texture) to gain 

wider research interest. However, the increased understanding of the importance of 

texture in food acceptance the last few decades has led to an increased use of both 

instrumental and sensory analysis methodologies, as well as the development of 

more universal equipment to measure texture and sensory methods that focus more 

on the dynamic aspects of texture perception (Bourne 2002b; Chen 2009). Due to 

the wide variety in food products and their different types of rheological and 

textural properties, there is a need for a wide variety of different methods to 

measure texture instrumentally. Although an adequate number of different methods 

exists nowadays, satisfactory measurements for certain product groups is as of yet 

unavailable or needs to be improved further (Bourne 2002a). The theoretical and 

technical aspects of the main instrumental and sensory characterisation tools used 

in this thesis are discussed below, as well as the techniques used to quantify oral 

processing and satiety/satiation. 

1.2.1. Rheology 

Rheology is the study of flow and deformation of materials under applied forces. 

Rheological properties of food can be measured either at small or large 

deformations. 

1.2.1.1. Large deformation rheology 

The large deformation measurements have found to be more relevant in oral 

processing studies, as food is subjected to large deformations during consumption; 
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the physical and chemical bonds between atoms and molecules in soft solids, such 

as gels, are weakened and eventually destroyed. Force measuring instruments, such 

as a Texture Analyser, are the most common for texture evaluation and several 

different tests can be used to apply large deformations. Examples of these force 

tests are puncture tests, (uniaxial) compression tests, bending and snapping tests 

(e.g. 3-point), tension or torsion tests, or compression-extrusion tests for bulk 

measurements (Bourne 2002a). 

The plate-to-plate uniaxial compression is a commonly used method to test 

large deformation properties in soft solids. A constant force is applied to the test 

sample along a straight axis, and the sample is allowed to deform freely in the other 

directions. The applied force over time is measured, and a fracture stress (σ) and 

fracture strain (ε) can be used to describe the deformation behaviour. The stress is 

defined as the force applied per unit area of food responsible for the deformation, 

and the strain represents the deformation per unit length of the food as caused by 

the applied force (Figure 1.2). 

 

Figure 1.2. Schematic representation of fracture stress and fracture strain. 
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Thus, using these definitions, the true stress and true strain can be obtained 

by Equations 1.1 and 1.2: 

 

𝑇𝑟𝑢𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑃𝑎) =  
𝐹𝑡(𝑁)

𝐴𝑡 (𝑚2)
     (1.1) 

 

𝑇𝑟𝑢𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) = ln [
𝐻𝑡(𝑚)

𝐻0(𝑚𝑚) 1000⁄
]  (1.2) 

 

where Ft is the applied force at a given time and At the cross-sectional area of the 

sample at a given time. This area can be determined using Eq. 1.3: 

 

𝐴𝑡 (𝑚2) =
𝐴0(𝑚𝑚2) 1000000⁄ ×𝐻0(𝑚𝑚) 1000⁄

𝐻𝑡 (𝑚)
   (1.3) 

 

with A0 the original cross-sectional area of the sample, H0 the original height of the 

test sample and Ht the height of the sample at a given time, obtained from Eqs. 1.4 

and 1.5: 

 

𝐴0 = 𝜋𝑟2        (1.4) 

 

𝐻𝑡 (𝑚) =
𝐻0 (𝑚𝑚)−𝐷𝑡(𝑚𝑚)

1000
     (1.5) 

 

with r the radius of the sample and Dt the displacement of the sample at a given 

time. Thus, the stress-strain curve can be drawn from the force-time curve 
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(see Figure 1.3). The fracture properties can be determined at the maximum point 

of the stress-strain curve. The fracture energy is determined as the area under the 

curve up to the fracture point, and the Young’s modulus is the initial slope of the 

force displacement (Peleg 1984). These fracture properties under large deformation 

have been linked to the sensory perception of food textures, with fracture stress 

often being related to hardness and fracture strain with brittleness (Foegeding et al. 

2011). 

 

Figure 1.3. Representation of typical stress strain curve of solid materials 

under large deformation, explaining the fracture behaviour (Koç et al. 2013). 

In literature it has been described that lubrication, or lack of lubrication, of 

the contact surface between the food and the mouth affects the force required to 

reach a certain degree of compression, with a non-lubricated surface requiring a 

higher force than a lubricated surface for the same degree of compression (Culioli 

and Sherman 1976). Also, a cylindrically shaped food sample compresses in 

different ways depending on whether lubricant is present or not. However, during 

food compression in the mouth, the cusps of the molars act as anchors to hold the 

food in place and prevent lateral movement. Comparison tests have shown that the 
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anchoring effect of molars prevailed over the lubricating effects provided by saliva. 

Therefore, the surface should be lubricated in compression tests trying to replicate 

true rheological data, but in tests trying to see what happens in the mouth the 

surface should not be lubricated (Brennan and Bourne 1994). 

In this thesis, compression tests to characterise the model foods were used 

(Chapter 4), as well as puncture tests to mimic first bite oral processing conditions 

(Chapters 3 and 5). As we were mostly interested in initial food properties, no 

saliva was added during testing. 

1.2.1.1. Flow behaviour and apparent viscosity 

The flow behaviour of liquid foods is commonly characterised by viscosity 

measurements, where the sample is subjected to a shearing deformation. 

Depending on the flowing behaviour, liquids can be classified as Newtonian or 

non-Newtonian. For ideal Newtonian fluids, the viscosity can be determined by the 

slope of shear stress by shear rate, and will be independent of shear rate and 

shearing time at a specific temperature (van Vliet 2014). Typically, samples with 

higher molecular weight will not have a linear relationship between shear stress 

and shear rate, and are classified as non-Newtonian liquids. Non-Newtonian liquids 

can display shear thinning or shear thickening behaviour, as shown in Figure 1.4. 

Products thickened by polysaccharides are typically shear thinning. Under applied 

shear, the polymers will disentangle in the direction of the flow, leading to a 

viscosity decrease with increasing shear rate. Shear thickening behaviour is much 

less common, and mainly occurs in concentrated dispersions. With increasing shear 

rates, the molecules will form new clusters thus increasing the viscosity. Viscosity 

dependent on the shear rate is termed apparent viscosity. 
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Figure 1.4. Typical flow-curves for Newtonian and non-Newtonian fluids (van 

Vliet 2014). 

In this thesis, the apparent viscosity of simulated hydrogel bolus samples 

was studied. Using a stress-controlled rheometer, the so-called flow curves or 

viscosity curves can be obtained (Chapter 4). Rheological measurements can be 

conducted using three different type of geometries: plate on plate (two parallel 

plates), cone on plate or a concentric cylinder (i.e. cup and bob) geometry. Due to 

the heterogeneous nature of bolus samples with gel particles, a plate-plate geometry 

was used where the gap could be widened in order to accommodate the gel particles 

of various sizes in the different samples. 

1.2.2. Tribology 

Most studies on oral processing focus mainly on the mechanical response (via 

compression tests) and bulk rheology (via viscosity measurements) of the food 

(Prakash, Tan and Chen 2013). However, as demonstrated in Figure 1.5, food 

undergoes continuous structural changes during oral processing, such as reduction 
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of food particle size, release of nutrients, addition of saliva to increase the moisture 

content for the formation of a cohesive bolus and formation of an oral coating in 

the mouth after swallowing of the bolus (Chen 2009; Foegeding et al. 2011; Stokes, 

Boehm and Baier 2013). 

 

Figure 1.5. Oral processing, going from rheology-dominant to tribology-

dominant, adapted from Stokes, Boehm and Baier (2013). 

The rheological properties of the food structure before consumption are not 

sufficient to describe some of the observed differences in flow behaviour and the 

surface-related sensory texture and mouthfeel attributes (Chen and Stokes 2012; 

Selway and Stokes 2013). Instead these attributes can be explored further by 

studying the frictional responses of the food-saliva mixture between the oral-

contact surfaces (Selway and Stokes 2013; Stokes 2012a). Tribology, although 

well-established in mechanical engineering and material science as a technique for 

measuring these frictional properties, is a relatively new technique in food and 

related soft matter sciences. The main goal of applying tribological measurements 

in food science literature has been to replicate oral processing conditions, with the 

two interacting surfaces representing the tongue and upper-palate. Materials for 

these interacting surfaces vary from rubber, nylon, and modified PDMS 

(polydimethylsiloxane) to animal tissue such as a pig’s tongue (Selway and Stokes 

2013; Stokes 2012a; van Vliet et al. 2009). 
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Figure 1.6 shows a schematic representation of a mini-traction machine 

(MTM), which is a general purpose instrument used in this thesis (Chapter 4) for 

measuring the frictional properties of lubricated and non-lubricated contacts under 

a wide range of rolling and sliding conditions. The ball is loaded against the face 

of the disc, and the ball and disc are turned independently to create a mixed 

rolling/sliding contact. The frictional force between the ball and disc, the turning 

speed of the ball and the disc, the applied load and the lubricant and the pot 

temperature are recorded by the tribometer. To mimic body temperature, tests have 

been performed at 37 °C. 

 

Figure 1.6. Schematic representation of a tribometer set-up, with W the 

applied contact load, uball and udisc the ball and disc speed, respectively, and F 

the friction force. 

As an alternative to the hard specimens made from steel commonly used in 

mechanical engineering, soft contact ball and disc surfaces can be used. Among the 

soft contact materials, polydimethylsiloxane (PDMS) elastomers are well-

characterised and more suitable for measuring the tribological behaviour in 
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conditions representative of in-mouth oral processing than hard specimens (Selway 

and Stokes 2013; Sarkar et al. 2019). PDMS tribopairs (see Figure 1.7) are 

prepared by mixing two base elastomers and allowing them to form cross-links, 

resulting in certain physical and chemical properties. The oral surfaces are 

intrinsically hydrophobic, however, due to the continuous presence of saliva in the 

mouth, become rather hydrophilic (Sarkar et al. 2019). The PDMS surfaces on the 

other hand are also hydrophobic, and therefore were coated in artificial saliva 

before the measurement in this thesis (Chapter 4) in an attempt to make them more 

hydrophilic and thus better mimic the conditions in the mouth. 

 

Figure 1.7. Commercial PDMS ball and disc tribology specimens. 

Using these contact surfaces, the friction behaviour can be presented via the 

construction of a Stribeck curve. In this curve, the coefficient of friction is plotted 

against a controlling parameter, such as the entrainment speed. Often a measure of 

the film thickness or the sample viscosity is included (Stokes 2012a). A typical 

Stribeck curve, as shown in Figure 1.8, can be divided into three distinctive 

regimes: the boundary, mixed and hydrodynamic lubrication regimes (Chen and 

Stokes 2012; Joyner, Pernell and Daubert 2014). In the boundary regime, a 

constant, relatively high friction can be observed at low sliding speeds. This means 

that the sample thickness is lower compared to the roughness of the surface, and 
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the ball and disc are in direct asperity contact. With increasing sliding speeds, the 

friction will eventually start to decrease, shifting to the mixed regime. The sample 

thickness will start to increase with increasing sliding speeds, starting to separate 

the contact surfaces from each other and thus lowering the coefficient of friction. 

After the surfaces are completely separated, the minimum friction is reached and 

the curve will move to the hydrodynamic regime (Stokes 2012a; Joyner, Pernell 

and Daubert 2014). This typical Stribeck curve is mostly seen for Newtonian 

liquids and with contact surfaces made from steel, so with non-Newtonian 

samples and soft contact specimens the shape of the curve might differ (Joyner, 

Pernell and Daubert 2014). 

 

Figure 1.8. Typical Stribeck curve, adapted from (Bongaerts, Fourtouni and 

Stokes 2007; Stokes 2012b; Liu 2016). 
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Using the high shear rheology viscosity, a Stribeck master curve can be 

modelled for Newtonian liquids (de Vicente, Stokes and Spikes 2005; Bongaerts, 

Fourtouni and Stokes 2007). By multiplying the entrainment speed with the 

viscosity of the lubricant and plotting that against the friction coefficient, a baseline 

curve can be generated against which the Stribeck curves of other samples can be 

compared. In the mixed and hydrodynamic lubrication regimes, the friction 

coefficient mainly depends on the bulk viscosity properties. However, in the 

boundary regime the friction coefficient also depends on the adhesion properties of 

the lubricant. Therefore, the master curve will fit less well in the boundary regime. 

Additionally, for non-Newtonian fluids the master curve will look slightly 

different. By using the product of entrainment speed and the dynamic viscosity, the 

mixed lubrication effects of non-Newtonian lubricants can be compared (de 

Vicente, Stokes and Spikes 2006). 

1.2.3. Sensory perception 

Texture plays a major role in consumer liking and acceptance of food (Szczesniak 

2002). In addition to appearance, taste and aroma, texture is a key sensory attribute 

in food perception. Texture perception, or haptaesthesis, is a dynamic process and 

involves a complex interplay between the structural properties of the food, the oral 

processing characteristics and integration of the stimuli as perceived by the senses 

leading to a conscious perception of the sensory attributes (Wilkinson, Dijksterhuis 

and Minekus 2000). Unlike for taste and aroma, no specific receptors exist for 

texture perception. Despite the developments in instrumental texture analysis 

methodologies, instruments can only measure certain physical properties of the 

food which must then be interpreted in terms of sensory perception (Szczesniak 
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2002). Human assessment remains the most accurate method to determine the 

textural properties of a food. Since texture consists of a number of different 

physical sensations, elicited by the food structure, it is considered a multi-

parameter attribute and better referred to as a group of properties (Bourne 2002b; 

Szczesniak 2002). Texture properties are mainly perceived through the senses of 

touch and kinesthesis (the perception of muscle movement), during food 

preparation and handling as well as during oral processing in the oral cavity. In 

addition, textural properties may be assessed by the senses of vision and hearing, 

however, this thesis will focus on the attributes perceived in the mouth by the 

senses of touch and kinesthesis. 

The texture profile method (Brandt, Skinner and Coleman 1963) is one of 

the few sensory methods focussed solely on texture assessment of food. However, 

other techniques such as Quantitative Descriptive Analysis (QDA®) (Stone et al. 

1974) and Spectrum™ descriptive analysis (Muñoz and Civille 1998) can be 

modified to focus solely on the texture attributes. Although these methods 

acknowledge the dynamic nature of texture perception, assessors are required to 

integrate the attribute ratings over time to provide single intensity values (Cliff and 

Heymann 1993). Therefore, the evolution of texture attributes during oral 

processing, from first bite to swallowing, is not included in these measurements.  

Oral texture properties are commonly divided into three sub-groups: 1) 

those related to the food mechanical properties, 2) the geometrical properties, and 

3) attributes related to the moisture and fat content (Szczesniak 1963). Mechanical 

attributes, such as hardness, fracturability (brittleness) and chewiness, can be easily 

linked to the chewing aspects of oral processing, whereas geometrical and 
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moisture/fat-related attributes are more associated with the friction/lubrication in 

the mouth. Mouthfeel attributes, such as creamy, smooth, watery, sticky and 

astringency, seem to be connected to oral lubrication.  

In this thesis, descriptive sensory analysis was used to provide a complete 

quantitative picture of the texture attributes in the designed model foods 

(Chapter 4). Sensory attributes were specifically selected with an eye on their 

connection to oral lubrication. Attributes were rated on a 100 mm unstructured line 

scale, labelled from “not at all” to “very” at opposing ends. Descriptive analysis 

allows the investigation of the impact of changing structural elements on specific 

sensory attributes, as well as a way to study the relationship between different 

sensory attributes and instrumentally measured properties. 

1.2.4. Oral processing 

Food oral processing is a complex dynamic process in which the food is 

manipulated in the mouth from first bite until swallowing to form a food bolus that 

is suitable for further digestion and the uptake of energy and nutrients to sustain 

life. As a result of this dynamic process, texture perception will depend on the 

continuously changing physical properties of the food product (Bourne 1975; Chen 

2009). This led Hutchings and Lillford (1988) to come up with a new approach in 

which oral processing is considered a combination of reduction of particle size 

(degree of structure) and an increase of moisture content (degree of lubrication) 

over time. They outlined the breakdown path of different types of food using this 

approach, where the degree of structure and degree of lubrication are manipulated 

over time until the swallowing threshold is reached (see Figure 1.9). The initial 

structure of the food determines the oral processes needed before swallowing, e.g. 
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liquid foods will require little processing and will be transported through the mouth 

relatively quickly, whereas semi-solids may be processed by tongue compressions 

and solids require chewing to break the food down into smaller particles before 

swallowing can occur (Pascua, Koç and Foegeding 2013). The moisture content 

may be increased due to water released from the food matrix upon breakdown or 

by the addition of saliva in the mouth. 

 

Figure 1.9. Schematic model of the in-mouth breakdown path during oral 

processing, adapted from Hutchings and Lillford (1988). 

Oral processing may be divided in several stages, including grip, first bite, 

fracture, particle size reduction, transportation and swallowing (Lucas et al. 2002), 

and is regulated by sensory feedback to the central nervous system as the physical 

properties of the food are modified (van der Bilt et al. 1995; de Wijk et al. 2008). 

There are various different methods with which the oral processing behaviour has 

been investigated, such as electromyography (EMG) or vibromyography (VMG) 
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to measure muscle activity, real-time magnetic resonance imaging (MRI), jaw-

tracking, sirognathography (magnetic tracking of jaw movements), 

videofluography, or by less invasive techniques such as self-tracking, direct 

observation or video recording (Chen 2009; Pascua, Koç and Foegeding 2013; de 

Wijk et al. 2008; Çakir et al. 2012; Gonzalez Espinosa and Chen 2012). Video 

recording is considered a relatively easy, yet accurate technique and allows for the 

analysis of a large number of participants in relatively short time (Hennequin et al. 

2005; Wilson et al. 2016), and therefore was used in this thesis to analyse the oral 

processing behaviour for different model foods (Chapters 5 and 6). Using 

specialised behavioural observation software, videos can be coded for specific 

parameters to facilitate accurate analysis, see Figure 1.10 (Forde et al. 2013). 

 

Figure 1.10. Oral processing video analysis, example of the coding scheme with 

participant 28 drinking a liquid tea sample and participant 36 eating a soft 

solid hydrogel sample. 
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1.2.4.1. Saliva 

An important aspect of oral processing of solid and semi-solid foods is the 

incorporation of saliva to form a swallowable food bolus. Saliva is a complex 

biological fluid that consists of mainly water (~99.5%), various enzymes (α-

amylase, lysozyme, lingual lipase, etc.) and proteins, (~0.3%), small organic 

compounds and inorganic salts (Sarkar, Goh and Singh 2009). The key protein 

component in human saliva is highly glycosylated mucin, which mainly contributes 

to the lubrication and shear-thinning properties of saliva (Schipper, Silletti and 

Vingerhoeds 2007). Mucins cover the oral mucosa and either form an immobile 

salivary pellicle on the epithelial cells or a mobile salivary film (Laguna and Sarkar 

2017; Xu, Laguna and Sarkar 2019). Different types of mucins have been identified 

in humans, and are specific to its mobility function in the mucosal salivary pellicle 

(Morzel et al. 2014). 

The incorporation of saliva in the food bolus over time has a major effect 

on the sensory texture perception (Funami et al. 2012; Hutchings and Lillford 

1988). Therefore, the mechanical and friction properties might change significantly 

due to the interactions between food and salivary components, such as mucins and 

salts. Saliva is a biological fluid that might contain pathogens. For this reason, any 

work on bolus samples containing real saliva could pose a risk to the person 

handling the samples. Due to chemical and enzymatic reactions, the properties of 

saliva and a food bolus containing saliva will change over time. Therefore, analysis 

of the samples should happen within a very short time frame. To minimise any risk, 

instead of using real human saliva, artificial saliva was prepared and used for the 

instrumental measurements in this thesis (Chapters 4, 5 and 6). For ethical 
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reasons, porcine gastric mucin was used as a close representative of human salivary 

mucins (Sarkar, Goh and Singh 2009). 

1.2.4.2. Eating capabilities 

Besides differences in oral processing due to the physical properties of food, oral 

processing may vary due to oro-physiological differences between individuals. 

Factors, such as age, gender, volume of the oral cavity, muscle strength or even the 

time of day the food is being consumed, can have an influence on the oral 

processing behaviour (Chen 2009; Pereira and van der Bilt 2016; Lassauzay et al. 

2000). Though mainly relevant in studies looking at individuals with reduced oral 

capabilities, such as the elderly or patients with dysphagia (a swallowing disorder), 

differences in oral processing for healthy participants have been noted in many 

studies (Chen 2009; Woda et al. 2006). A number of techniques can be to measure 

the oro-physiological properties involved in oral processing, such as bite and 

tongue capabilities. 

There are several oro-facial muscles that are relevant in oral processing, 

such as the left and right masseter and temporalis muscles and the medial pterygoid 

(Chen 2009; Foegeding et al. 2011). These muscles perform a collaborative 

function to make the open and closed jaw movements necessary for oral processing. 

The thickness of the muscles has an effect of bite force and may differ depending 

on the individual, gender and age (Pereira 2012). A simple, cost-effective device 

to measure bite force was designed by Flanagan et al. (2012). A very thin flexible 

force sensor sandwiched between two adhesive silicone discs can be used to 

measure changes in electronic resistance under load (Flanagan et al. 2012). By 

placing the sensor between the teeth and biting down at full capacity, the maximum 
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bite force can be recorded. As shown in Figure 1.11, the sensors are connected to 

a multi-meter to detect the changes in resistance, and can then be converted to force 

(N) using calibration data (Flanagan et al. 2012; Laguna et al. 2015). 

 

Figure 1.11. Multi-meter and flexisensor with silicon disc for bite force 

measurements, connected through a bread board. 

The tongue plays a major role in oral processing due to its ability to deform 

and its flexibility to move in all directions in a highly coordinated manner. It 

consists of a large bundle of muscles and forms a major part of the oral cavity 

(Chen 2009; Pereira 2012). The effectiveness of the tongue may be determined by 

the strength of the muscle to facilitate bolus movement through the mouth (Laguna, 

Sarkar and Chen 2015; Alsanei and Chen 2014). The Iowa Oral Performance 

Instrument (IOPI) is a medical device used for measuring the maximum tongue 

pressure that can be expressed (Figure 1.12). By compressing a disposable tongue 

bulb linked to a pressure transducer between the tongue and the upper hard palate, 

the tongue pressure can be recorded. 
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Figure 1.12. The Iowa Oral Performance Instrument (IOPI) and tongue bulb 

used for tongue pressure measurements. 

The tongue pressure and bite force may give an indication of the forces used 

during oral processing. In this thesis, the eating capabilities of healthy participants 

were quantified by measuring the maximum tongue pressure and maximum bite 

force, and are described in Chapter 5. 

1.2.5. Satiety studies 

The concept of human appetite has become an increasingly important research 

topic in the last couple of decades. With the world’s increasing overweight and 

obesity related health problems, the need for studies on the expression of appetite 

and energy intake regulation is becoming more urgent (World Health Organization 

2016a). An adult with a healthy body weight is characterised by a normal body 

mass index (BMI) between 18.5 and 24.9 kg/m2. BMI is a simple index of weight 

divided by a person’s square height. Below 18.5 kg/m2 a person is considered 

underweight, with a BMI of 25 kg/m2 or above one is considered overweight, and 

30 kg/m2 or higher is the threshold for adult obesity (World Health Organization 
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2016b). Overweight and obesity tend to be the result of food intake in excess of 

energy requirements (World Health Organization 2016b; Blundell et al. 2009). 

Healthy regulation of appetite and food intake involve both the decision to select a 

variety of food products and their consumption in appropriate quantities (Blundell 

et al. 2009). 

The “Satiety Cascade” is a multifactorial framework, shown in Figure 1.13, 

used to capture the various processes, attributes of food, and related psychological 

and behavioural states involved in the regulation of satiation and satiety (Blundell, 

Rogers and Hill 1987; Blundell et al. 2010; Mela 2006). Satiation is defined as the 

short-term processes leading to the termination of an eating event, and 

encompasses all the sensations and psychological influences perceived during the 

meal itself (Blundell et al. 2009). As satiation is said to control the meal size, it is 

usually represented by the objective measure of ad libitum food intake, i.e. the 

amount of food selected freely in that moment, measured in weight or energy 

content (Blundell et al. 2010). Additionally, the subjective appetite sensations, such 

as hunger, fullness, desire to eat and thirst, can be monitored using visual analogue 

scales (VAS). This is a reproducible method for detecting small effects when there 

is no impact on food intake (Stratton et al. 1998; Stubbs et al. 2000). VAS typically 

consists of an unmarked 100 mm horizontal line that is anchored at either end with 

the two extreme states (e.g. minimum and maximum hunger), although alternative 

versions, such as 5 to 10-point Likert scales, 150 mm line scales or bipolar scales, 

exist (Merrill et al. 2002; Blundell et al. 2009). Satiation may be influenced by a 

number of dietary factors, such as portion size, energy density of the presented 

food, and the sensory properties and perceived palatability (Blundell et al. 2009), 
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as well as non-dietary factors, such as stress, mindfulness during eating, memory, 

social facilitation, food availability and price etc.. 

Satiety, on the other hand, refers to the suppression of appetite and 

inhibition of further eating after a meal has ended due to the cognitive and 

physiological effects involved in the digestion of food (Blundell et al. 2009). 

Satiety may be measured objectively by the time until the next eating occasion, but 

meal times are highly conditioned in most people and are determined to a high 

degree by convenience (de Castro 1987; de Castro and Elmore 1988). However, 

more commonly satiety is characterised by subjective feelings of appetite at pre-

specified time intervals after a meal. Thus, satiety is more influenced by the actual 

amount of energy consumed and the macronutrient content, rather than the weight 

of the food. Due to experience over time, people learn to estimate the satiating 

effects of many different foods. This learned expected satiety, for example for 

certain textures, may determine food intake at subsequent meals regardless of the 

actual energy density of the food (Blundell et al. 2010). 

 

Figure 1.13. Satiety cascade, adapted from Blundell et al. (2010). 
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Due to the multifaceted nature of appetite regulation, a study on the short-

term satiation and satiety effects needs to be designed under carefully controlled 

cognitive, sensory and environmental circumstances where hunger levels between 

participants are standardised prior to the start of the study (Blundell et al. 2009; 

Robinson et al. 2018; Hetherington and Rolls 2018; Meule 2018). 

1.3. Rationale for using biopolymer model gels 

Food products generally consist of rather complex structures, whether occurring 

naturally or manufactured by industry. While taste and aroma (flavour) can be 

modified, it is more difficult to change food texture. Therefore, model foods with 

simplified structures may offer a means to manipulate specific aspects of food 

texture (Funami 2011). Biopolymer gels from polysaccharides or proteins have 

been characterised extensively in the literature, e.g. the effects of composition 

(such as type of polymer, concentrations, combinations, addition of salts etc.) and 

processing (temperature, applied shear, pH) on the structural and rheological 

properties, as well as the sensory texture properties (Foegeding 2007; Funami et al. 

2012; Stieger and van de Velde 2013). The hydrogel selection process for this 

thesis is discussed further in Chapter 3. 

1.4. Thesis outline 

This thesis starts with a systematic review of the effects of oral processing related 

to satiety and satiation, and continues with experimental studies on different 

hydrogels for selection and characterisation using instrumental and sensory 

techniques, the measurement of the oral processing characteristics of these 

hydrogels and eating capabilities of participants, up to the investigation of the 
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satiating properties of these hydrogels varying in chewing and oral lubrication 

properties. The outline of this thesis is highlighted in Figure 1.14. 

Chapter 2 provides the context for this thesis by presenting a systematic 

research review and meta-analysis of the literature on oral processing, including 

chewing and oral lubrication, related to appetite ratings and food intake. The aim 

of this chapter is to set the scene for subsequent research by identifying gaps in 

current knowledge. The content of this chapter is published in the peer-reviewed 

journal ‘Appetite’. 

Chapter 3 discusses a preliminary study of the fracture properties of a wide 

range of single hydrogels, mixed hydrogels and hydrogels with texture complexity. 

Based on these fracture properties, different hydrogels were then selected for 

further study. 

In Chapter 4 the selected hydrogels are characterised in detail using 

different instrumental and sensory methods. The fracture properties will be used to 

link to chewing-related sensory attributes, whereas the apparent viscosity and 

friction properties of simulated bolus hydrogels might relate to lubrication-related 

sensory attributes. For the first time, tribology measurements of non-fat containing 

food products are explored and their relevance to sensory perception is determined. 

The results of this chapter are published in the peer-reviewed journal ‘Food 

Hydrocolloids’. 

The aim of Chapter 5 is to disaggregate the effects of the food material 

properties and the eating capabilities of the individual eating the food on their oral 

processing behaviour. The correlation data of this chapter have been submitted for 

publication in the peer-reviewed journal ‘Journal of Texture Studies’. 



 

 

Figure 1.14. Schematic overview of the experimental approach employed in this thesis and the associated research chapters: linking the 

instrumental and sensory properties of hydrogels to satiety through chewing and oral lubrication.



- 28 - 

 

Chapter 6 shows the effects of hydrogel preload foods differing in chewing 

and lubrication properties on the intake of a salty snack. For the first time, 

instrumental and sensory parameters for lubrication will be linked to measures of 

satiation and satiety. The effects of the hydrogel preloads on snack intake have 

been published in the peer-reviewed journal ‘Food Quality and Preference’. 

The final chapter, Chapter 7, includes a general summary and discussion 

of the main findings of this PhD project. In addition, the implications of the results 

along with recommendations for future research are included. 
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Chapter 2 

Influence of oral processing on appetite and food 

intake - A systematic review and meta-analysisa 

 

 

Abstract 

Food delivers energy, nutrients and a pleasurable experience. Slow eating and 

prolonged oro-sensory exposure to food during consumption can enhance the 

processes that promote satiation. This systematic review and meta-analysis 

investigated the effects of oral processing on subjective measures of appetite 

(hunger, desire to eat) and objectively measured food intake. The aim was to 

investigate the influence of oral processing characteristics, specifically “chewing” 

and “lubrication”, on “appetite” and “food intake”. A literature search of six 

databases (Cochrane library, PubMed, Medline, Food Science and Technology 

Abstracts, Web of Science, Scopus), yielded 12161 articles which were reduced to 

a set of 40 articles using pre-specified inclusion and exclusion criteria. A further 

two articles were excluded from the meta-analysis due to missing relevant data. 

From the remaining 38 papers, detailing 40 unique studies with 70 subgroups, raw 

data were extracted for meta-analysis (food intake n = 65, hunger n = 22 and desire 

                                                 
a Published as Krop, E. M., M. M. Hetherington, C. Nekitsing, S. Miquel, L. Postelnicu and A. 

Sarkar. 2018. Influence of oral processing on appetite and food intake – A systematic review and 

meta-analysis. Appetite, 125, pp.253-269. 
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to eat ratings n = 15) and analysed using random effects modelling. Oral processing 

parameters, such as number of chews, eating rate and texture manipulation, 

appeared to influence food intake markedly but appetite ratings to a lesser extent. 

Meta-analysis confirmed a significant effect of the direct and indirect aspects of 

oral processing that were related to chewing on both self-reported hunger (-0.20 

effect size, 95% confidence interval CI: -0.30, -0.11), and food intake (-0.28 effect 

size, 95% CI: -0.36, -0.19). Although lubrication is an important aspect of oral 

processing, few studies on its effects on appetite have been conducted. Future 

experiments using standardized approaches should provide a clearer understanding 

of the role of oral processing, including both chewing and lubrication, in promoting 

satiety. 

2.1. Introduction 

Food intake is a motivated behaviour essential to survival by providing energy and 

nutrients to the body. However, chronic energy intake in excess of requirements 

leads to a positive energy balance, and in the long term, contributes to obesity 

(World Health Organization 2000). For the first time in human history, the 

proportion of the population that is obese (body mass index, BMI ≥ 30 kg/m2) and 

overweight (BMI of 25 to < 30 kg/m2) has surpassed the proportion of adults who 

are underweight (BMI < 18.5 kg/m2). The WHO (2016) estimates that about 

1.9 billion adults globally have overweight, of whom ˃ 30% have obesity (World 

Health Organization 2016). Consumers are encouraged to eat less and move more 

(Hill 2006) and food manufacturers have been working to reformulate foods to 

reduce their energy content whilst maintaining or improving satisfaction for 
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example, by increasing oral processing to enhance satiation and satiety 

(Hetherington et al. 2013). 

While the terms “satiation” and “satiety” are often used synonymously in 

the literature, they encompass different components of the satiety cascade. 

Satiation is defined as the processes leading to meal termination, and therefore 

includes all events taking place during the course of the eating occurrence and 

controls meal size (Blundell et al. 2009). On the other hand, satiety is described as 

the inhibition of further eating as well as the suppression of feelings of hunger 

(Blundell et al. 2009; Blundell et al. 2010). Satiety has an influence on the time 

between two meals during which hunger, which has been suppressed, then begins 

to increase until the next eating occurrence. Constructs such as hunger and desire 

to eat represent approach behaviours indicative of appetite or readiness to eat 

(Stubbs et al. 2000). During sham feeding studies in humans, chewing fails to 

reduce hunger and desire to eat (subjective appetite) but produces sensory specific 

satiety and decreases food intake (Nolan and Hetherington 2009). Therefore, in 

examining the effects of oral processing it is important to attend to behavioural 

markers of both appetite and satiation. 

During food consumption, food is processed in the mouth from first bite to 

swallowing, primarily involving reduction in the particle size driven by “chewing”, 

and the incorporation of saliva to form a swallowable bolus through “oral 

lubrication” (Chen 2009; Chen and Stokes 2012; Sarkar and Singh 2012; Sarkar, 

Ye and Singh 2017). Depending on the nature of food and its oral interactions, the 

length or intensity of the oro-sensory exposure (i.e. oral residence time) may vary 

(Ferriday et al. 2016; Forde et al. 2013; Laguna and Sarkar 2016; Viskaal-van 



- 38 - 

 

Dongen, Kok and de Graaf 2011). For instance, in previous studies food 

manipulations to influence oral processing indirectly have involved the comparison 

of solid versus liquid forms of food, variations in viscosity or texture, or flavour 

intensities. The more direct influence of chewing on appetite ratings and food 

intake has been studied by varying the number of chews of a target food, and 

examining chewing gum interventions (Hogenkamp and Schiöth 2013; Robinson 

et al. 2014; Miquel-Kergoat et al. 2015). However, it is recognized that altering 

chewing in this way also varies oral residence time, eating rate, muscle fatigue and 

other oral processing attributes. Therefore, the effects of chewing in isolation is 

rarely studied due to the interrelated nature of these variables. 

Lubrication is an important aspect of oral processing in addition to chewing 

per se (Laguna and Sarkar 2017; Laguna et al. 2017; Stokes, Boehm and Baier 

2013). In-mouth lubrication may depend on the type of food consumed, its 

interactions with saliva and with the oral surfaces (e.g. tongue, teeth, oral palate). 

The mechanical properties of food can be evaluated using rheological 

measurements, such as viscosity, small and large deformation rheology. However, 

rheological measurements do not account for changes that occur in the food during 

the later stages of oral processing, such as the incorporation of saliva. Furthermore, 

the rheology of food during oral processing is not static; it is a highly dynamic 

process and the textural properties change continuously when the food is exposed 

to the oral cavity and becomes largely tribology-dominant, i.e. lubrication or 

friction dependent (Stokes, Boehm and Baier 2013). To that end, the lubricating 

effects arising from the incorporation of saliva can be measured using tribological 

measurements (Laguna and Sarkar 2017), a technique introduced relatively 

recently in food science. Although oral lubrication is an integral part of oral 
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processing, to date this has not been reviewed systematically with reference to 

satiety. 

The main aim of this systematic review and meta-analysis was to 

understand the impact of oral processing, including both chewing and lubrication, 

on appetite and food intake. It was hypothesized that the enhancement of both 

chewing and lubrication during oral processing will affect appetite sensations, and 

reduce food intake. The main dependent variables included were: 1) subjective 

ratings of hunger and desire to eat as markers of appetite and readiness to eat, and 

2) objective measures of energy intake following manipulation of food as a marker 

of satiation and meal termination. This review aimed to provide insights into 

potential oral processing manipulation strategies that could ultimately be applied 

to design foods offering enhanced satisfaction and satiety (Hetherington et al. 

2013). 

2.2. Materials and methods 

The 2009 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analysis) guidelines were used for reporting this systematic review (Liberati et al. 

2009). The search strategy and inclusion criteria were specified in advance and 

documented in a protocol. This protocol was registered with the International 

prospective register of systematic reviews PROSPERO, registration number: 

CRD42016034019. 

2.2.1. Search strategy 

A systematic review attempts to collate all empirical evidence that fits pre-specified 

eligibility criteria to answer a particular research question. The research question 

of this systematic review was formulated using PICOS (Population, Intervention, 
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Comparison, Outcome, and Setting). The population was defined as healthy people 

with a healthy oral status that would not interfere with normal chewing and/or oral 

lubrication. The intervention was considered to be any manipulation directly or 

indirectly affecting oral processing characteristics, such as eating rate, oral 

residence time and number of chews, and where the comparison would involve two 

extreme conditions (see Table 2.1). For the outcomes, measures related to 

subjective appetite (hunger, desire to eat) and/or objectively measured food intake, 

as a consequence of manipulating oral processing, were included. The setting 

mostly involved a laboratory environment, but other settings were not excluded. 

Table 2.1. Oral processing parameters as compared across studies. 

Parameteri 
“Reduced” 

oral processing 

“Enhanced” 

oral processing 

Bite size (5-15g) Large Small 

Eating rate Fast Slow 

Number of chews (10-40 chews) Low High 

Oral residence time (3-30s) Short Long 

Texture Liquid (soft foods) Semi-solid (hard foods) 

Texture complexity Low High 

Chewing gum No gum Gum 

i In brackets: the lowest and highest values of the different oral processing parameters that were 

used in the different studies. For instance in the study by Cassady et al. 2009, the lowest number of 

chews was 10, whereas the lowest number of chews by Li et al. 2011 was 15 number of chews (for 

both the highest number of chews was 40 per mouthful). 

                                                 

A comprehensive literature search was conducted using six different online 

databases, including Cochrane Library, OVID Medline, PubMed, OVID Food 

Science and Technology Abstracts (FSTA), Web of Science (Thomson Reuters) 

and Scopus (Elsevier). The last search was run on 12 May 2017. Additional studies 
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were identified using the reference lists of the articles found in the search. Only 

articles published in English were included in this systematic review and no time 

limit was set. A broad range of search terms were used to increase the chance of 

locating all relevant literature. Three combined searches were performed in the six 

selected databases, linking chewing to satiety, lubrication to satiety and tribological 

measurements to satiety (this is related to lubrication, but extra search key words 

were added at a later stage). The search terms related to chewing were: ["oral 

processing" OR chewing OR mastication OR "structural breakdown" OR "food 

breakdown" OR "food destruction" OR "chewing cycle"]. The lubrication related 

search terms were: ["oral processing" OR "oral behavio*r" OR lubrication OR 

saliva OR "artificial saliva" OR "oral coating" OR "oral exposure" OR tongue]. For 

satiety the following search terms were used: [satiety OR satiation OR "expected 

satiety" OR "food intake" OR appetite OR hunger OR fullness OR "sensory 

specific satiety" OR "energy intake" OR "food behavio*r" OR "eating behavio*r"]. 

The selected key words for the added tribological variable were: [tribology OR 

tribometer OR thin-film rheology OR soft tribology OR tribol*]. 

The search in Scopus was limited to publications where the search terms 

appear in the title, abstract or keywords. No additional limitations were set for the 

other databases. The search strategy was validated by checking that a number of 

pre-selected relevant articles were indeed retrieved in at least one of the databases. 

The pre-selection was made during the orientation phase of literature research, 

focusing on more general articles based on the research topic, as well as articles 

found in previous related systematic review by Miquel-Kergoat et al. (2015). The 

citations of all found articles were exported to the reference software Endnote X7 

for further processing. 
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2.2.2. Study selection 

Only original research reports of human studies were included in this systematic 

review. The study selection phase was executed by first author EK. A summary of 

the selection procedure (PRISMA four-phase flow diagram) is given in Figure 2.1. 

The initial 12161 identified articles were reduced to 5825 after duplicates were 

removed. The remaining articles were screened for relevance based on their title. 

An additional 5505 studies were excluded based on the PICOS criteria. Research 

reports involving animal studies (2043), or medical studies on patients with certain 

diseases or disorders, studies with children, the elderly or participants of whom it 

was suspected that normal chewing was hindered (1762) were excluded. 

Additionally, articles not addressing the topic of interest were excluded (5464), as 

well as studies published in any other language than English (458). Some articles 

were excluded for multiple reasons, therefore the total number of articles is lower 

than the sum.  

The remaining 320 articles were screened for their abstracts, resulting in 

the exclusion of an additional 241 articles (219 based on their topic, 17 were review 

papers without original data and 12 were meeting and conference abstracts, as well 

as posters presentation abstracts, and one was a data-set). The remaining number 

for the next screening step was n = 100, including an additional 21 articles that 

were identified through supplementary approaches. For example, the PRISMA 

statement for reporting systematic reviews (item 7 in Liberati et al. (2009)) 

advocates hand searches of the reference lists from screened articles so that relevant 

papers are not omitted.  
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Figure 2.1. PRISMA flow-chart of the study selection procedure. 

Finally, after assessing the full-text of these articles, another 61 articles 

were excluded for one or more reasons. Articles not addressing the topic of interest 

or studies aiming at validating new devices or methods (n = 46), articles where the 

two extreme oral processing characteristics were achieved by comparing two liquid 

products of for example differing viscosity (n = 7) and studies focusing on 

lubrication related parameters without direct measures of satiety/satiation (n = 6) 



- 44 - 

 

were eliminated, leading to a set of 40 articles. Two of those articles reported two 

independent studies (de Wijk et al. 2008; Zijlstra et al. 2008), bringing the total 

number of studies for qualitative synthesis to 42. 

The quality assessment tool developed and validated by Moore (2012) was 

used to assess the quality of the included studies. Additionally, these 42 studies 

were critically appraised for risk of bias at both the study level and outcome levels. 

The quality and accuracy of a sample (~35%) of the extracted data was checked by 

authors MH and AS. 

2.2.3. Study characteristics 

Relevant information, such as study design, participant age, body mass index 

(BMI) status and gender ratio, as well as study outcomes on appetite ratings and 

food intake measures, was extracted from the 42 included studies. The key study 

characteristics are given in Table 2.5. In addition, means and standard deviations 

of the two most extreme outcome measures were extracted for the meta-analysis 

by author EK, as well as their statistical significance (p-values). The corresponding 

authors of more recent articles, where the values of interest were measured but not 

actually reported, were contacted with a data request. In the case of 9 articles (10 

studies) data was received and incorporated into the current systematic research 

review (Cassady et al. 2009; Higgs and Jones 2013; Hogenkamp et al. 2010; 

Hogenkamp et al. 2012a; Hogenkamp et al. 2012b; Smit et al. 2011; Zijlstra et al. 

2008, Study 1 and 2; Zijlstra et al. 2009b; Zijlstra et al. 2010) and in the case of 

the study by Ferriday et al. (2016) additional data was made publicly available 

online (Bosworth 2015). 
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All studies selected for qualitative synthesis were well-controlled 

experiments, in which participants were randomly assigned to experimental 

conditions. Of the 42 studies, all but two were laboratory based (Zijlstra et al. 2008, 

Study 1; Zijlstra et al. 2010) and all but two had a within subjects design 

(Hogenkamp et al. 2010; Higgs and Jones 2013). In only 10 of the studies, a power 

calculation was used to determine the number of participants needed to find a 

meaningful significant difference (Ferriday et al. 2016; Forde et al. 2013; 

Hogenkamp et al. 2012a; Lasschuijt et al. 2017; Martens et al. 2011; Martin et al. 

2007; McCrickerd et al. 2017; Zhang, Leidy and Vardhanabhuti 2015; Zhu and 

Hollis 2014; Zhu, Hsu and Hollis 2013).  

The total number of participants of all 40 studies included in the 

quantitative synthesis was 1711, arising from studies with samples varying from 9 

to 120 participants, and involved mainly young adults (mean 25.1 years). Ideally 

studies should have an equal ratio of men to women, however for a number of 

studies more women than men were included, with six studies using more than 70% 

women (Bolhuis et al. 2014; Hetherington and Regan 2011; Higgs and Jones 2013; 

Hogenkamp et al. 2012a; Weijzen et al. 2008; Zijlstra et al. 2011). On the other 

hand, five studies included only males (Bolhuis et al. 2011; Labouré et al. 2002; 

Li et al. 2011; Martens et al. 2011; Zhu, Hsu and Hollis 2013), whereas only four 

studies included just females (Andrade, Greene and Melanson 2008; Komai et al. 

2016; Park et al. 2016; Spiegel et al. 1993). Weight status varied across studies, 

with 20 studies specifically selecting participants within a healthy BMI range, five 

studies selecting people from specific weight groups to control for the influence of 

weight status whereas the remaining 15 studies did not specifically select or control 

for BMI. From those studies, there were two that also included participants with a 
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BMI higher than 25 (Julis and Mattes 2007; Martin et al. 2007). In most studies 

(29 out of 40), participants with any dietary restriction or dramatic weight change 

were specifically excluded as well as those who reported high levels of dietary 

restraint (27 out of 40) as assessed by either the Dutch Eating Behaviour 

Questionnaire (DEBQ) (van Strien et al. 1986) or the Three Factor Eating 

Questionnaire (TFEQ) (Stunkard and Messick 1985). None of the studies were 

double blinded, however in 22 studies the participants were distracted from the true 

aim through the use of a cover story. 

In all studies, the researchers intended to vary only one characteristic of oral 

processing. However manipulating one characteristic inevitably had an effect on 

other characteristics (i.e. a higher eating rate might directly shorten the oral 

residence time). In 16 studies a test food was given with manipulated texture, such 

as liquid versus semi-solid food, and in two studies a texture complexity component 

was added. In six studies the number of chews per bite was manipulated, in three 

studies the oral residence time was directly influenced, and in five studies 

participants were instructed to eat at a specific chewing rate. Another three studies 

were included where the bite size was changed, and the final six studies looked at 

the influence of chewing gum on satiety and food intake during a later meal. For 

the purpose of the meta-analysis, the minimum and maximum oral processing 

characteristics were compared to one another (see Table 2.1). The maximum 

values were set as the commonly recommended values for reducing food intake 

and controlling appetite, such as small bites, high number of chews and long oral 

residence time (Christen and Christen 1997; Smit et al. 2011). In addition to the 26 

studies that directly compared two oral processing parameters, the remaining 14 

studies examined other intermediate oral processing conditions that were not 
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considered in this systematic review. However, in the case of the study by Zijlstra 

et al. (2009b) more separate conditions were considered in the meta-analysis; i.e. 

conditions comparing different oral residence times after ingestion of free-choice 

boluses of liquid food (which the authors called “bites”) as well as small and large 

boluses delivered with a peristaltic pump. 

In the second search for papers linking lubrication or tribological 

parameters of food to satiety measures, a relatively small number of studies were 

found which had a comparable study design. Only six studies emerged 

investigating a link between a lubrication parameter and satiety. These papers are 

discussed separately and were not included in the meta-analysis, since most did not 

examine any direct satiety measure, or they measured expected satiety. 

2.2.4. Meta-analysis 

For the purpose of the meta-analysis, an additional two articles were excluded 

because appropriate data on a number of outcome measures were missing (Forde 

et al. 2013; Zandian et al. 2009). The remaining 38 articles, detailing 40 studies, 

were further divided in 70 subgroups (See Figure 2.1), as some studies provided 

more than one unique comparison group. Rather than combining these groups 

(study as unit of analysis), we entered each subgroup separately into the meta-

analysis (subgroup within study as unit of analysis). These subgroups included the 

same experiment repeated with different test foods, indicated by Product A, B etc., 

such as Labouré et al. Part A studying soups and Part B looking at rusks (Labouré 

et al. 2002), as well as studies with different participant groups, indicated by Group 

A, B etc., such as Martin et al. Group A with all males and Group B with all females 

(Martin et al. 2007). 
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Table 2.2. Participant data of studies included in the meta-analyses. 

Study ID and reference n 1 n 2 Male Female 

Mean Age 

± SD 

Mean BMI 

± SD 

1 Andrade, Greene and Melanson (2008) 30  0 30 22.9 ± 7.1 22.1 ± 2.9 

2 Bolhuis et al. (2011), Part A + B 55  55 0 22.0 ± 3.0 22.0 ± 2.0 

4 Bolhuis et al. (2014), Step 1 + 2 50  11 39 24.0 ± 2.0 21.0 ± 2.0 

6 Cassady et al. (2009) 13  8 5 24.0 ± 6.5 23.1 ± 1.4 

7 Ferriday et al. (2016), Step 1 + 2 + 3 + 4 24  12 12 22.8 ± 3.8 21.8 ± 2.6 

11 Hetherington and Boyland (2007), Part A + B 60  20 40 21.7 ± 4.0 22.7 ± 3.4 

13 Hetherington and Regan (2011) 60  7 53 32.3 ± 10.7 26.2 ± 4.0 

14 Higgs and Jones (2013) 14 13i 7 34 20.6 ± 8.8 21.0 ± 8.2 

15 Hogenkamp et al. (2010), Part A + B 34 35ii 36 33 22.0 ± 3.0 21.6 ± 1.7 

17 Hogenkamp et al. (2012a), Part A + B 53  12 41 21.0 ± 2.9 21.8 ± 2.0 

19 Hogenkamp et al. (2012b), Part A + B + C + D + 

E + F 81iii  9 18 21.0 ± 2.4 22.2 ± 1.6 

25 Julis and Mattes (2007) 47  29 18 24.0 ± 6.3 28.3 ± 2.6 

26 Komai et al. (2016) 10  0 10 20.6 ± 1.9 20.0 ± 1.3 

27 Labouré et al. (2002), Product A + B 12  12 0 21.5 ± 2.1 22.3 ± 2.1 

29 Larsen et al. (2016), Step 1 + 2 26      

31 Lasschuijt et al. (2017), Part A + B 58  14 44 23.0 ± 9.0 22.0 ± 2.0 

33 Lavin et al. (2002) 20  10 10  23.7 ± 3.1 

34 Li et al. (2011), Group A 16  16 0 20.8 ± 0.8 20.1 ± 2.0 

35 Li et al. (2011), Group B 14  14 0 20.4 ± 0.7 30.1 ± 3.0 

36 Martens et al. (2011) 10  10 0 21.1 ± 3.9 22.4 ± 1.2 

37 Martin et al. (2007), Group A 22  22 0 32.0 ± 11.8 30.9 ± 2.6 

38 Martin et al. (2007), Group B 26  0 26 29.6 ± 8.8 29.4 ± 2.9 

39 Mattes and Considine (2013), Group A 30  15 15 25.7 ± 8.4 21.2 ± 1.3 

40 Mattes and Considine (2013), Group B 30  15 15 26.5 ± 8.4 32.7 ± 1.6 

41 McCrickerd et al. (2017) 58  28 30 24.6 ± 4.5 22.1 ± 3.0 

43 Mourao et al. (2007), Product A 40  20 20 23.2 ± 5.0 26.2 ± 1.5 

44 Mourao et al. (2007), Product B 40  20 20 25.4 ± 7.5 26.3 ± 1.7 

45 Mourao et al. (2007), Product C 40  20 20 24.8 ± 4.9 27.1 ± 1.6 

46 Park et al. (2016), Group A 25  0 25 26.0 ± 8.0 22.0 ± 2.0 

47 Park et al. (2016), Group B 25  0 25 36.0 ± 13.0 33.0 ± 3.0 

48 Smit et al. (2011) 11  4 7  27.2 ± 6.4 

49 Spiegel et al. (1993), Product A + B 18  0 18 28.8 ± 9.8 26.8 ± 7.2 

51 Swoboda and Temple (2013) 44  21 23 31.1 ± 11.5 26.2 ± 5.2 

52 Tang et al. (2016), Step 1 + 2 38  22 16 25.2 ± 3.4  

54 Weijzen et al. (2008) 59  5 54 28.4 22.3 

55 de Wijk et al. (2008), Study 1 9  4 5  24.4 

56 de Wijk et al. (2008), Study 2 10  6 4  25.3 

57 Zhang, Leidy and Vardhanabhuti (2015) 12      

58 Zhu and Hollis (2014) 47  24 23 23.5 ± 6.4 28.0 ± 6.1 

59 Zhu, Hsu and Hollis (2013) 21  21 0 24.0 ± 4.6 24.8 ± 2.7 
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Study ID and reference n 1 n 2 Male Female 

Mean Age 

± SD 

Mean BMI 

± SD 

60 Zijlstra et al. (2011), Group A 27  6 21 36.0 ± 14.0 21.8 ± 1.6 

61 Zijlstra et al. (2011), Group B 27  6 21 36.0 ± 14.0 30.5 ± 5.7 

62 Zijlstra et al. (2010), Product A + B + C 106  45 61 24.0 ± 7.0 21.8 ±1.7 

65 Zijlstra et al. (2008), Study 1 108  36 72 26.0 ± 7.0 22.7 ± 2.4 

66 Zijlstra et al. (2008), Study 2 49  14 35 24.0 ± 6.0 22.2 ± 2.3 

67 Zijlstra et al. (2009a) 32  12 20 22.0 ± 2.0 21.9 ± 2.2 

68 Zijlstra et al. (2009b), Condition 1 + 2 + 3 22  8 14 21.0 ± 2.0 21.9 ± 1.5 

i Between subjects design 
ii Between subjects design 
iii Within subjects design; 27 participants * 3 meals per day = 81 observations 
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Some subgroups were indicated with Step 1, 2 etc., such as Bolhuis et al. Step 1 

for ad libitum course one: lunch, and Bolhuis et al. Step 2 for ad libitum course 2: 

dinner (Bolhuis et al. 2014), as well as Part A, B etc. to indicate different subgroups 

that did not necessarily have an effect on oral processing for example different 

energy density products or different test days as extra replicates. The participants’ 

characteristics of all individual subgroups can be found in Table 2.2. 

The meta-analysis was conducted on three outcome measures: subjective 

appetite ratings of hunger and desire to eat and objective measures of food intake 

(see Tables 2.3 and 2.4). Despite the importance of standardizing hunger levels 

before the oral processing manipulation, only seven studies provided a standard or 

preload meal (Bolhuis et al. 2011; Lasschuijt et al. 2017; Mourao et al. 2007; 

Zhang, Leidy and Vardhanabhuti 2015; Zijlstra et al. 2008, Study 1 and 2; Zijlstra 

et al. 2010). The oral processing intervention consisted of a fixed amount of food 

or was an ad libitum meal where food intake was measured. In some studies ad 

libitum intake was permitted during the oral processing intervention, and in others 

there was a fixed amount of food consumed. In one study ad libitum intake was 

measured twice, once during the oral processing intervention and again at the test 

meal (Bolhuis et al. 2014). Appetite ratings were measured at baseline on arrival 

in the lab and/or directly after the standard meal. Measurements were repeated 

directly after the oral processing intervention, and in some cases at 30 minute or 

hourly intervals after for a specific period of time. 



 

 

Table 2.3. Meta-analysis data on appetite ratings. 

Study ID and reference Category n 1 n 2 Test food type 

Fasting 

time (h) 

Hunger 

units 

Mean Hungeri 

± SD 

Mean 

Hungerii ± SD 

Hunger 

p-value 

DEiii 

units 

Mean 

DEi ± 

SD 

Mean 

DEii ± 

SD 

DE 

p-value 

6 Cassady et al. (2009) 

Number of 

chews 13  Solid 8 mm -12.5 ± 15.7 -22.0 ± 20.5 <0.05     

7 Ferriday et al. (2016), Step 1 Eating rate 24  Meal 3 mm -28.9 ± 23.4  -28.9 ± 25.3 <0.05     

9 Ferriday et al. (2016), Step 3 Eating rate 24  Meal 3 mm -27.2 ± 31.0 -35.5 ± 24.3 <0.05     

14 Higgs and Jones (2013) 

Chewing 

duration 14 13iv Solid 2 mm -55.7 ± 18.1 -45.1 ± 17.6 >0.1 mm 

-47.0 ± 

22.2 

-45.0 ± 

17.4 >0.1 

15 Hogenkamp et al. (2010), 
Part A Texture 33 35v Liquid/Solid 8 mm -14.3 ± 15.8 -15.0 ± 16.8 >0.05 mm 

-15.5 ± 
16.7 

-19.0 ± 
15.9 >0.05 

16 Hogenkamp et al. (2010), 

Part B Texture 34 35vi Liquid/Solid 8 mm -18.3 ± 19.8 -21.7 ± 20.2 <0.05 mm 

-17.5 ± 

19.4 

-22.2 ± 

21.1 >0.05 

19 Hogenkamp et al. (2012b), 

Part A Texture 81 78vii Liquid/Solid 8 

10-

points -16.4 ± 20.2 -25.7 ± 22.7 <0.0001 

10-

points 

-9.8 ± 

21.8 

-15.9 ± 

24.0 <0.0001 

20 Hogenkamp et al. (2012b), 

Part B Texture 81 81 Liquid/Solid 8 

10-

points -10.9 ± 20.2 -15.9 ± 21.4  <0.0001 

10-

points 

-7.3 ± 

17.3 

-9.3 ± 

19.4 <0.0001 

21 Hogenkamp et al. (2012b), 

Part C Texture 81 81 Liquid/Solid 8 

10-

points -12.3 ± 21.1 -15.7 ± 20.6 <0.0001 

10-

points 

-7.6 ± 

20.3 

-10.8 ± 

18.6 <0.0001 

22 Hogenkamp et al. (2012b), 

Part D Texture 81 81 Liquid/Solid 8 

10-

points -18.0 ± 22.7 -22.7 ± 22.6 <0.0001 

10-

points 

-6.5 ± 

24.3 

-13.6 ± 

24.3 <0.0001 

23 Hogenkamp et al. (2012b), 
Part E Texture 81 80viii Liquid/Solid 8 

10-
points -15.6 ± 22.5 -21.7 ± 21.2 <0.0001 

10-
points 

-6.6 ± 
21.5 

-13.4 ± 
21.4 <0.0001 

24 Hogenkamp et al. (2012b), 

Part F Texture 79 81ix Liquid/Solid 8 

10-

points -14.6 ± 22.2 -19.5 ± 20.6 <0.0001 

10-

points 

-9.2 ± 

20.1 

-11.4 ± 

20.1 <0.0001 

26 Komai et al. (2016) 

Number of 

chews 10  Meal 10 mm -64.6 ± 30.9 -67.1 ± 30.9 0.959     

27 Labouré et al. (2002), 

Product A Texture 12  

Liquid/Semi-

solid 5.5 mm -62.3 ± 27.2 -71.4 ± 22.2 >0.05      

28 Labouré et al. (2002), 

Product B Texture 12  Liquid/Solid 5.5 mm -54.3 ± 11.7 -72.8 ± 22.2 >0.05      

29 Larsen et al. (2016), Step 1 
Texture 
complexity 26  Solid 3 mm -8.7 ± 29.7 -11.9 ± 32.0 >0.05 mm 

-8.1 ± 
23.8 

-10.8 ± 
32.1 <0.05 



 

 

Study ID and reference Category n 1 n 2 Test food type 

Fasting 

time (h) 

Hunger 

units 

Mean Hungeri 

± SD 

Mean 

Hungerii ± SD 

Hunger 

p-value 

DEiii 

units 

Mean 

DEi ± 

SD 

Mean 

DEii ± 

SD 

DE 

p-value 

33 Lavin et al. (2002) Texture 20  Liquid/Solid 2.5 mm -7.0 ± 28.3 -2.0 ± 33.9 0.35      

36 Martens et al. (2011) Texture 10  Liquid/Solid 3 mm -44.1 ± 28.3 -51.4 ± 20.9 >0.05 mm 

-38.6 ± 

17.5 

-54.0 ± 

15.6 >0.05 

52 Tang et al. (2016), Step 1 

Texture 

complexity 38  Solid 3 mm -3.7 ± 24.9 -5.5 ± 26.9 >0.05 mm 

-5.4 ± 

25.3 

-7.0 ± 

28.5 >0.05 

57 Zhang, Leidy and 
Vardhanabhuti (2015) Texture 12  Liquid/Solid 2.5 mm -9.0 ± 10.4 -7.5 ± 8.0 >0.05 mm 

-5.0 ± 
8.7 

-9.2 ± 
8.7 >0.05 

59 Zhu, Hsu and Hollis (2013) 

Number of 

chews 21  Meal 8 mm -23.5 ± 20.0 -25.0 ± 23.9 0.009 mm 

-22.6 ± 

20.0 

-25.0 ± 

20.0 0.002 

67 Zijlstra et al. (2009a) Texture 32  Liquid/Solid 12 

10-

points -15.0 ± 23.0 -21.3 ± 22.5 >0.05 

10-

points 

-10.8 ± 

25.9 

-19.2 ± 

25.8 >0.05 

i Large bite size, fast eating rate, low number of chews, short oral residence time and soft texture conditions 
ii Small bite size, slow eating rate, high number of chews, long oral residence time and hard texture conditions 
iii DE: Desire to Eat 
iv Between subjects design 
v Between subjects design; decreased sample size in n1 due to missing values 
vi Between subjects design 
vii Within subjects design, 27 participants * 3 meals per day = 81 observations, decreased sample size in n2 due to missing values 
viii Within subjects design, 27 participants * 3 meals per day = 81 observations, decreased sample size in n2 due to missing values 
ix Within subjects design, 27 participants * 3 meals per day = 81 observations, decreased sample size in n1 due to missing values 
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Table 2.4. Meta-analysis data on food intake. 

Study ID and reference Category n 1 n 2 

Mean Food 

intakei ± SD 

Mean Food 

intakeii ± SD 

Intake 

p-value 

1 Andrade, Greene and Melanson 
(2008) Eating rate 30  645.7 ± 155.9 579.0 ± 154.7 <0.01 

2 Bolhuis et al. (2011), Part A Eating rate 55  66.0 ± 33.6 90.0 ± 39.6 <0.05 

3 Bolhuis et al. (2011), Part B Eating rate 55  60.0 ± 30.0 82.8 ± 34.8 <0.05 

4 Bolhuis et al. (2014), Step 1 Texture 50  737.0 ± 155.0 644.0 ± 173.0 <0.001 

5 Bolhuis et al. (2014), Step 2 Texture 50  565.5 ± 179.4 540.2 ± 170.1 0.16 

7 Ferriday et al. (2016), Step 1 Eating rate 24  640.8 ± 321.4 529.8 ± 238.5 0.004 

8 Ferriday et al. (2016), Step 2 Eating rate 24  338.5 ± 190.6 297.8 ± 167.9 0.004 

9 Ferriday et al. (2016), Step 3 Eating rate 24  196.3 ± 190.0 223.3 ± 189.6 0.35 

10 Ferriday et al. (2016), Step 4 Eating rate 24  389.3 ± 223.2 423.2 ± 233.0 0.35 

11 Hetherington and Boyland 
(2007), Part A Chewing gum 60  461.3 ± 199.1 407.1 ± 217.1 <0.05 

12 Hetherington and Boyland 

(2007), Part B Chewing gum 60  164.8 ± 198.3 351.0 ± 176.8 >0.05 

13 Hetherington and Regan (2011) Chewing gum 60  247.5 ± 106.9 222.4 ± 108.4 0.029 

14 Higgs and Jones (2013) 
Chewing 
duration 14 13iii 270.5 ± 121.5 127.6 ± 97.8 0.01 

15 Hogenkamp et al. (2010), 

Part A + B Texture 68 70iv 555.9 ± 236.5 431.6 ± 186.0 0.03 

17 Hogenkamp et al. (2012a), 

Part A Texture 53  374.1 ± 198.5 274.4 ± 119.9 <0.0001 

18 Hogenkamp et al. (2012a), 
Part B Texture 53  458.3 ± 171.3 369.3 ± 165.5 <0.0001 

19 Hogenkamp et al. (2012b), 

Part A Texture 81  

1767.0 ± 

581.0 

1720.0 ± 

583.0 0.56 

20 Hogenkamp et al. (2012b), 

Part B Texture 81  

1886.0 ± 

465.0 

1850.0 ± 

546.0 0.56 

21 Hogenkamp et al. (2012b), 
Part C Texture 81  

2016.0 ± 
582.0 

1941.0 ± 
560.0 0.56 

22 Hogenkamp et al. (2012b), 

Part D Texture 81  

1549.0 ± 

427.0 

1496.0 ± 

438.0 0.56 

23 Hogenkamp et al. (2012b), 

Part E Texture 81  

1537.0 ± 

418.0 

1554.0 ± 

460.0 0.56 

24 Hogenkamp et al. (2012b), 
Part F Texture 81  

1589.0 ± 
448.0 

1588.0 ± 
407.0 0.56 

25 Julis and Mattes (2007) Chewing gum 47  

1415.0 ± 

747.3 

1330.0 ± 

822.7 >0.05 

27 Labouré et al. (2002), Product A Texture 12  776.9 ± 299.6 790.3 ± 204.4 >0.05 

28 Labouré et al. (2002), Product B Texture 12  939.6 ± 301.2 703.6 ± 376.6 >0.05 

29 Larsen et al. (2016), Step 1 

Texture 

complexity 26  982.4 ± 445.6 622.4 ± 302.6 <0.01 

30 Larsen et al. (2016), Step 2 
Texture 
complexity 26  377.8 ± 197.4 292.0 ± 175.6 0.08 

31 Lasschuijt et al. (2017), Part A Texture 58  75.9 ± 21.7 54.1 ± 22.1 <0.001 

32 Lasschuijt et al. (2017), Part B Texture 58  70.6 ± 21.7 51.7 ± 22.1 <0.001 

33 Lavin et al. (2002) Texture 20  884.4 ± 209.4 766.6 ± 222.2 <0.05 

34 Li et al. (2011), Group A Number of chews 16  555.0 ± 111.0 477.8 ± 72.4 0.021 

35 Li et al. (2011), Group B Number of chews 14  695.0 ± 127.9 625.0 ± 106.2 0.021 

37 Martin et al. (2007), Group A Eating rate 22  

1020.0 ± 

248.0 918.0 ± 225.0 <0.05 

38 Martin et al. (2007), Group B Eating rate 26  588.0 ± 212.0 585.0 ± 216.0 >0.05 
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Study ID and reference Category n 1 n 2 

Mean Food 

intakei ± SD 

Mean Food 

intakeii ± SD 

Intake 

p-value 

39 Mattes and Considine (2013), 
Group A Chewing gum 30  

2009.2 ± 
414.6 

1879.2 ± 
452.4 0.056 

40 Mattes and Considine (2013), 

Group B Chewing gum 30  

2146.8 ± 

452.4 

2339.8 ± 

452.4 0.059 

41 McCrickerd et al. (2017), Part A Texture 58  300.0 ± 84.5 271.6 ± 72.3 <0.001 

42 McCrickerd et al. (2017), Part B Texture 58  546.3 ± 216.3 483.9 ± 204.1 <0.001 

43 Mourao et al. (2007), Product A Texture 40  

1915.0 ± 

815.9 

1665.0 ± 

638.8 0.03 

44 Mourao et al. (2007), Product B Texture 40  
1970.0 ± 
619.8 

1752.0 ± 
619.8 0.026 

45 Mourao et al. (2007), Product C Texture 40  

2517.0 ± 

1138.4 

2116.0 ± 

695.7 0.016 

46 Park et al. (2016), Group A Chewing gum 25  563.0 ± 270.0 511.0 ± 270.0 >0.05 

47 Park et al. (2016), Group B Chewing gum 25  676.0 ± 270.0 613.0 ± 270.0 >0.05 

48 Smit et al. (2011) Number of chews 11  702.2 ± 125.0 612.8 ± 111.9 0.006 

49 Spiegel et al. (1993), Product A Bite size 18  770.0 ± 237.7 784.0 ± 297.1 >0.05 

50 Spiegel et al. (1993), Product B Bite size 18  883.3 ± 283.0 833.3 ± 283.0 >0.05 

51 Swoboda and Temple (2013) Chewing gum 44  254.5 ± 150.6 227.3 ± 195.7 >0.05 

52 Tang et al. (2016), Step 1 

Texture 

complexity 38  793.0 ± 246.7 696.9 ± 296.1 <0.01 

53 Tang et al. (2016), Step 2 

Texture 

complexity 38  235.2 ± 73.1 246.8 ± 90.6 0.839 

54 Weijzen et al. (2008) Bite size 59  192.0 ± 132.1 169.1 ± 128.6 0.02 

55 de Wijk et al. (2008), Study 1 Texture 9  402.5 ± 213.5 222.8 ± 27.1 0.003 

57 Zhang, Leidy and Vardhanabhuti 

(2015) Texture 12  830.0 ± 405.3 809.0 ± 426.1 >0.05 

58 Zhu and Hollis (2014) Number of chews 47  760.0 ± 371.1 647.1 ± 322.6 0.001 

59 Zhu, Hsu and Hollis (2013) Number of chews 21  

1098.3 ± 

546.0 

1117.6 ± 

668.9 0.851 

60 Zijlstra et al. (2011), Group A Texture 27  572.5 ± 270.0 376.5 ± 198.3 <0.05 

61 Zijlstra et al. (2011), Group B Texture 27  600.0 ± 251.3 369.8 ± 166.2 <0.05 

62 Zijlstra et al. (2010), Product A Texture 106  406.6 ± 323.8 393.7 ± 321.9 >0.05 

63 Zijlstra et al. (2010), Product B Texture 106  174.4 ± 113.2 164.8 ± 112.3 >0.05 

64 Zijlstra et al. (2010), Product C Texture 106  592.0 ± 372.6 565.8 ± 340.3 >0.05 

65 Zijlstra et al. (2008), Study 1 Texture 108  788.5 ± 386.0 567.9 ± 312.1 <0.0001 

66 Zijlstra et al. (2008), Study 2 Eating rate 49  226.8 ± 122.4 176.6 ± 88.3 0.01 

67 Zijlstra et al. (2009a) Texture 32  394.8 ± 212.9 371.5 ± 178.0 >0.05 

68 Zijlstra et al. (2009b), 

Condition 1 

Chewing 

duration 22  427.7 ± 185.2 416.4 ± 189.9 0.0008 

69 Zijlstra et al. (2009b), 

Condition 2 Bite size 22  406.1 ± 153.2 294.2 ± 159.8 <0.0001 

70 Zijlstra et al. (2009b), 
Condition 3 Bite size 22  447.4 ± 165.4 359.1 ± 185.2 <0.0001 

i Large bite size, fast eating rate, low number of chews, short oral residence time, soft texture and 

no chewing gum conditions 
ii Small bite size, slow eating rate, high number of chews, long oral residence time, hard texture and 

chewing gum conditions 
iii Between subjects design 
iv Between subjects design; n1: 34 participants * 2 energy density products = 68 observations, n2: 

35 participants * 2 energy density products = 70 observations 
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Appetite ratings were measured on 100 mm Visual Analog Scales (VAS) 

or categorical rating scales. The 10-point or 5-point scores were converted to a 100 

point scale, so appetite ratings could be better compared against each other. When 

appetite was assessed at multiple time points after the oral processing manipulation, 

the ratings directly after the end of manipulation were retrieved. To control for 

differences in appetite levels before the start of the study due to varying fasting 

states, for example, the change in mean appetite level was computed (raw mean 

difference, e.g. hunger level after chewing intervention minus the baseline hunger 

level). Food intake was measured after the chewing manipulation in either weight 

(g) or energy (kcal or kJ). Where needed, given values were converted to kcal to 

standardize the measurement units. Mean, standard deviation and sample size for 

each group were extracted for all papers where they were reported. To account for 

differences in the measurement scales, the standardized mean difference (SMD) 

was used to compute the effect size (Borenstein et al. 2009). The studies employing 

a between subjects design were treated as independent studies, whereas the studies 

employing a within subjects design were considered as dependent studies. For the 

food intake studies a correlation coefficient of 0.5 was assumed and for the appetite 

studies a correlation coefficient of 0.2. Both correlation coefficients were based on 

the few studies where raw data was available to determine the actual correlation 

coefficients (Cassady et al. 2009; Ferriday et al. 2016; Hetherington and Boyland 

2007; Hogenkamp et al. 2012b; Smit et al. 2011). 

Since the studies from our sample used different methodologies, the meta-

analysis was performed using a random effects (RE) model. The heterogeneity was 

assessed with the I2 statistic as indicator for the percentage of statistically 
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meaningful variability between studies. An I2 value of 0% means there is no 

heterogeneity that needs to be explained, values of 25% are considered low, 50% 

moderate and above 75% is considered high (Higgins et al. 2003). If heterogeneity 

between studies was considered high, we tried to explain this further by 

implementing a mixed effects (ME) model with a number of moderators, such as 

fasting time, participants’ age and BMI status. To investigate risk of publication 

bias across the studies, funnel plots were produced. A funnel plot is used to visually 

represent high oral processing effect estimates from individual studies against the 

standard error of each study. Typically the precision of an estimate increases with 

the size of the study, with studies with a small sample size distributed towards the 

bottom of the plot and studies with a larger sample size scattered towards the 

narrower top of the funnel plot as they are more precise. The different shades of 

the funnel plot correspond to the 90% confidence interval CI (white), 95% CI (light 

grey) and 99% CI (dark grey). The free statistical software R® (version 3.3.1) and 

the metaphor package (version 1.9-9) were used to conduct the meta-analyses 

(forest plots and funnel plots). The software Comprehensive Meta-Analysis 

(version 2.2) was used to conduct the sensitivity and group effect analyses, as well 

as the Egger’s tests to assess publication bias (Egger et al. 1997).



 

 

Table 2.5. Characteristics of studies included in the systematic reviewi. 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Andrade, 

Greene and 

Melanson 

(2008) 

30 0/30 UW, 

NW, 

OW 
and OB 

Randomized, 2-

arm, within 

subjects design 

Pasta meal Ad libitum lunch with fast/big 

bite/no pauses and slow/small 

bite/chew 20-30 times/pauses 
condition 

VAS No difference in 

appetite ratings 

Weighing Yes, under slow eating 

condition weight and energy 

intake ↓ compared to fast 
eating 

Bolhuis et al. 

(2011) 

55 55/0 NW Randomized, 6-

arm, cross-over 

design 

Tomato soup Three conditions (2 or 3 s oral 

exposure each of 5 or 15 s, 

respectively, or free bite size) for 
two salt concentrations 

VAS No difference in 

appetite ratings 

Weighing Yes, intake was ↑ in short 

oral exposure condition 

compared to long (34 %) 

Bolhuis et al. 

(2014) 

50 11/39 NW Randomized, 2-

arm, cross-over 

study, within 
subjects 

Hamburger/ 

rice salad 

Ad libitum lunch of hard or soft 

foods, followed by ad libitum 

dinner to test if energy intake was 
compensated 

VAS No difference in 

appetite ratings 

Weighing Yes, ↓ intake of hard foods, 

↓ energy intake and ↓ eating 

rate compared to soft foods 

Cassady et 

al. (2009) 

13 8/5 NW Randomized, 3-

arm, cross-over 

design, within 

subjects (no 
control group, i.e. 

0 g almonds) 

Almonds 55 g almonds (11 x 5 g portions) 

chewed for 10, 25 or 40 times 

VAS Yes, ↓ hunger with 

40 chews than with 

25 chews (no diff. 

with 10 chews) 

 
NA 

Ferriday et 

al. (2016)ii, 

Product A 

and B 

24 12/12 NW Counterbalanced, 

randomized, 4-
arm, cross-over 

design, within 

subjects, sample 
size power 

calculation 

Beef stew 

with 
dumplings/ 

fish, chips 

and peas 

Two fixed test meals with 

maximized differences in oral 
processing, followed by ad 

libitum same meal or dessert, and 

1 h later ad libitum snack intake 

VAS Yes, ↑ fullness after 

eating slow meal 
than after fast meal 

Weighing Yes, ↓ food intake after slow 

meal than after fast meal 

Forde et al. 

(2013) 

15 5/10 NW Full cross-over 

design, within 

subjects, 

randomized 

within test days, 
sample size power 

calculation 

35 different 

food items 

50 g portions of 35 different food 

items, across 5 consecutive days, 

images of 200 g portions for 

expected satiety assessment 

(separate descriptive sensory 
analysis panel, n = 11) 

VAS Yes, ↓ hunger with 

increased chewing 

and longer oral 

exposure time and 

smaller bite size 

 
NA 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Hetherington 

and Boyland 

(2007) 

60 20/40 UW, 

NW 

and OB 

Repeated 

measures, 

counter-balanced 
(Latin-square), 

within subjects 

design 

Sweet or salty 

snack 

Fixed lunch, followed by 4 

conditions (no gum sweet snack; 

no gum salty snack; gum sweet 
snack; gum salty snack), with 

gum chewed at 3 time points after 

lunch and ad libitum intake 
measured 3 h later 

VAS Yes, ↓ hunger and ↑ 

fullness in chewing 

gum condition for 
sweet and savory 

snacks, with ↓ desire 

to eat sweet snacks 
but not savory 

snacks 

Weighing Yes, ↓ snack intake in 

chewing gum condition for 

sweet and savory snacks 

Hetherington 

and Regan 

(2011) 

60 7/53 NW, 

OW 
and OB 

Repeated 

measures, 
counter-balanced, 

within subjects 

design 

Sweet or salty 

snack 

Restrained eaters: given a fixed 

lunch, followed by 4 conditions 
(no gum sweet snack; no gum 

salty snack; gum sweet snack; 

gum salty snack), with gum 
chewed at 4 time points after 

lunch and ad libitum intake 

measured 3 h later 

VAS Yes, ↓ hunger, 

desire to eat and ↑ 
fullness in chewing 

gum condition at 2 

and 3 h after lunch 

Weighing Yes, ↓ snack intake in 

chewing gum condition 

Higgs and 

Jones (2013) 

41 7/34 NW Three groups, 

between subjects 
design 

Sandwich Fixed lunch with 3 conditions 

(habitual chewing n = 13; 10 s 
pauses between each mouthful 

n = 14; 30 s chewing before 

swallowing n = 14) and its 
influence on ad libitum snack 

intake 2 h later 

VAS No difference in 

appetite ratings 

Weighing Yes, ↓ snack intake in 30s 

chewing condition 

Hogenkamp 

et al. (2010) 

105 46/59 NW Randomized, 3-

arm, between 
subjects design 

Yoghurts Ad libitum yoghurt presented in 

three groups (liquid-
yoghurt/straw n = 34, liquid-

yoghurt/spoon n = 36 and 

yoghurt-pudding/spoon n = 35) 

VAS No difference in 

appetite ratings 

Weighing Yes, intake on first exposure 

↑ for liquid/straw compared 
to semi-solid/spoon 

Hogenkamp 

et al. (2012a) 

53 12/41 NW Randomized, 2-
arm, cross-over, 

within subjects 

design, sample 
size power 

calculation 

Milk-based 
custards 

Ad libitum intake on day 1 and 5, 
and fixed amount on day 2, 3, and 

4 of low vs high expected satiety 

samples 

VAS No difference 
between ad libitum 

liquid and solid 

Weighing Yes, liquid product intake ↑ 
than semi-solid 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Hogenkamp 

et al. (2012b) 

27 9/18 NW Randomized, 4-
arm, cross-over, 

within subjects 

design 

Novel 
gelatine 

products 

Fixed product conditions 
(liquid/semi-solid and low/high 

energy density) eaten with 3 ad 

libitum main meals a day for 

three days  

10-point 
categorical 

scale 

Yes, ↑ hunger 
directly after liquid 

compared to semi-

solid food 

Weighing No difference in intake 
between liquid and semi-

solid preload condition 

Julis and 

Mattes 

(2007) 

47 29/18 OW 

and OB 

Randomized, 3-

arm, within 

subjects design 

Free Fixed lunch 3 conditions (no 

chewing gum, fixed time gum 

chewing and gum chewing after 
first hunger occurrence) 

VAS No difference in 

appetite ratings 

Questionnaire No difference in snack 

intake between chewing 

gum conditions 

Komai et al. 

(2016)iii 

10 0/10 NW Randomized, 2-

arm, within 

subjects design 

Hamburger, 

rice and soup 

Fixed solid meal with 30 CPM or 

pureed meal without chewing 

(0 CPM) 

VAS No difference in 

appetite ratings 

 NA 

Labouré et 

al. (2002), 

Product A 

and B 

12 12/0 NW Randomized, 5-

arm, within 
subjects design 

Soups and 

rusks 

Fixed lunch sessions with five 

products with different textures, 
followed by an ad libitum dinner 

VAS No difference in 

appetite ratings 

Dinner 

energy and 
macro-

nutrient 

content 

No difference in energy 

intake at dinner 

Larsen et al. 

(2016) 

26 m/f NW Randomized, 2-
arm, cross-over, 

within subjects 

design 

Gelatine-agar 
gels 

Fixed preload of high or low 
complexity model foods, 

followed by a two-course ad 

libitum meal  

VAS No difference in 
appetite ratings 

Weighing Yes, ↓ intake after high 
complex food compared to 

low complex food 

Lasschuijt et 

al. (2017) 

58 14/44 NW Randomized, 4-

arm, cross-over, 

within subjects 
design, samples 

size power 

calculation 

κ-carrageenan 

/locust bean 

gum gels 

Ad libitum portion of model foods 

varying in hardness and 

sweetness 

VAS No difference in 

appetite ratings 

Weighing Yes, ↓ intake after hard 

compared to soft model 

foods 

Lavin et al. 

(2002) 

20 10/10 NW 

and 

OW 

Four-arm, within 

subjects design, 

randomization 

unclear 

Sucrose 

containing 

drink/jelly/ 

pastilles and 
water 

Four preloads (consumed with 

varying oral durations) with ad 

libitum meal served immediately 

after preload 

VAS No difference in 

appetite ratings 

Weighing Yes, energy intake ↓ after 

pastilles compared to water 

and the sweet drink 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Li et al. 

(2011)iv 

30 30/0 NW + 

OB 

Randomized, 2-

arm, within 

subjects design 

Pork pie Ad libitum habitual breakfast with 

2 conditions (15 chews or 40 

chews, found to be lowest and 
highest possible chews/bite) 

VAS No difference in 

appetite ratings 

Weighing Yes, after 40 chews energy 

intake ↓ than after 15 chews 

Martens et 

al. (2011) 

10 10/0 NW Randomized, 2-

arm, cross-over, 

within subjects 

design, sample 

size power 

calculation 

Chicken 

breast 
Fixed lunch of whole or blended 

chicken breast (soup) 

VAS No difference in 

appetite ratings 

 NA 

Martin et al. 

(2007) 

48 22/0 OW 

and OB 

Randomized, 3-

arm, between 
subjects design, 

sample size power 

calculation 

Chicken Baseline meal (normal eating 

rate), reduced-rate meal 
(by 50 %), combined-rate meal 

(50 % slower during second half 

of the meal) 

VAS No difference in 

appetite ratings 

Weighing No, food intake did not 

differ between conditions 

Mattes and 

Considine 

(2013) 

60 30/30 NW + 
OB 

Randomized, 3-
arm, cross-over, 

within subjects 

design 

Pasta meal Three treatments (no gum, soft or 
hard gum) chewed at 1 chew/s for 

15 min while sipping grape juice 

through a straw, followed by a 
6 h blood collection and ad 

libitum lunch and free dinner at 

home 

VAS No difference in 
appetite ratings 

Weighing + 
Food record 

No difference in energy 
intake in any of the meals 

during the test day, 

however, trend to reduce 
energy intake in lean 

participants and increase 

energy intake in obese 
participants 

McCrickerd 

et al. (2017)v 

61 30/31 NW Counterbalanced, 

randomized, 4-

arm, between 
subjects design, 

sample size power 

calculation 

Rice based 

porridge 

Ad libitum intake at breakfast of 

thin and thick porridge with low 

and high energy density 

VAS No difference in 

appetite ratings 

Weighing Yes, ↓ intake of thick 

compared to thin porridge 

Mourao et al. 

(2007), 

Product A, B 

and C 

40 20/20? NW 

and OB 

Randomized, 6-

arm, cross-over, 
between subjects 

design (in sub-

groups within 
subjects design) 

Milk/cheese, 

Watermelon 
juice/fruit and 

Coconut 

milk/coconut 
meat 

Ad libitum lunch and fixed 

amount of water, liquid or solid 
test food with either high 

carbohydrate, high protein or high 

fat content 

VAS No difference in 

appetite ratings 
between products or 

BMI status 

Weighing Yes, for all three foods daily 

intake was ↑ in liquid 
condition compared to solid 

foods 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Park et al. 

(2016) 

25 0/25 NW + 
OB 

Randomized, 2-
arm, cross-over, 

within subjects 

design 

Sweet or salty 
snack 

Fixed lunch, followed by 4 
conditions (no gum sweet snack; 

no gum salty snack; gum sweet 

snack; gum salty snack), with 

gum chewed at 3 time points after 

lunch and ad libitum intake 

measured 3 h later 

VAS Yes, chewing gum ↓ 
hunger over time 

compared to not 

chewing gum 

Weighing No difference in snack 
intake between chewing 

gum conditions 

Smit et al. 

(2011) 

11 4/7 NW 

and OB 

Counterbalanced, 

randomized (for 
last 2 treatments), 

within subjects 

design 

Pasta meal Pilot study with 3 treatments (ad 

libitum chewing, 10 or 35 chews 
per mouthful: CPM) 

VAS No difference in 

appetite ratings 

Weighing Yes, after 35 CPM food 

intake ↓ than after 10 CPM 

Spiegel et al. 

(1993), 

Product A 

and B 

18 0/18 NW 

and OB 

Counterbalanced 

for bite size, 
randomized, 

alternating 

products between 

sessions, within 

subjects design 

Sandwich 

rolls and 
bagels 

Ad libitum lunch with food 

varying in bite size (sandwiches 
5, 10 and 15 g; bagels 6 or 12 g) 

tested on separate days 

VAS No difference in 

appetite ratings due 
to bite size 

Weighing No difference in meal size 

due to different bite sizes in 
either products even though 

the food texture was very 

different and was eaten at 

very different ingestion rates 

(g/min) 

Swoboda 

and Temple 

(2013)vi 

44 21/23 OW Randomized, 

within subjects 
design (with 

different subjects 

for part 1 and 2) 

Fruit, sweet 

or savory 
snack 

Two separate studies: one-day 

acute effect of chewing gum and 
effect of chewing gum before 

each meal for a week 

VAS Yes, chewing either 

mint or fruit gum ↓ 
hunger compared to 

no gum 

Weighing Yes, chewing mint-flavored 

gum ↓ healthy food intake 
compared to no gum 

(however no effect on snack 

food or total energy intake, 
nor with fruit gum) 

Tang et al. 

(2016) 

38 22/16 NW Single-blind, 
randomized, 3-

arm, cross-over, 

within subjects 
design 

Gelatine-Agar 
gels 

Fixed preload of high, medium or 
low complexity model foods, 

followed by 2 ad libitum meal 

courses 

VAS No difference in 
appetite ratings 

Weighing Yes, ↓ intake after high 
complex food compared to 

low and medium complex 

food 

Weijzen et 

al. (2008) 

59 5/54 NW 

and 

OW 

Randomized, 4-

arm cross-over, 

within subjects 
design 

Biscuits with 

chocolate/ 

hazelnut 
cream filling 

Either morning or afternoon ad 

libitum snack intake with snacks 

varying in size and weight, as 
well as usual or extra attention 

paid during consumption 

5-point 

categorical 

scale 

Not reported Weighing Yes, snack intake of nibbles 

↓ than of bars 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

de Wijk et al. 

(2008), 

Study 1 

9 4/5 NW 

and 

OW 

Counterbalanced, 

randomized, 2-

arm, within 
subjects design 

(different subjects 

between Study A 
and Study B) 

Chocolate 

dairy products 

Ad libitum intake by straw with 

fixed eating rate and fixed meal 

duration (20 s intervals over 
15 min = 45 bites of ad lib bite 

size) 

10-point 

categorical 

scale 

No difference in 

appetite ratings 

between liquid and 
semi-solid foods 

Weighing Yes, semi-solid food intake 

↓ than liquid food intake 

de Wijk et al. 

(2008), 

Study 2 

10 6/4 NW 

and 

OW 

Counterbalanced, 

randomized, 3-

arm, within 
subjects design 

(different subjects 

between Study A 
and Study B) 

Chocolate 

dairy products 

Ad libitum intake of 45 bites by 

peristaltic pump with varying oral 

processing time (5 or 9 s for 
semi-solid only) and with 

eliminated bite effort (ad lib bite 

size) 

10-point 

categorical 

scale 

No difference in 

appetite ratings 

between liquid and 
semi-solid foods 

Weighing No difference in energy 

intake between liquid and 

semi-solid food, nor due to 
oral processing time for 

semi-solid food 

Zandian et 

al. (2009) 

47 0/47 NW Two groups 

(decelerated and 

linear eating rate), 

within subjects 

design 

Rice meal Increased eating rate (40 % more 

food in same amount of time) and 

decreased eating rate (30 % less 

food in same time) 

VAS No difference in 

appetite ratings 

Mandometer Yes, changing someone’s 

habitual eating rate affected 

food intake 

Zhang, Leidy 

and 

Vardhanabh

uti (2015) 

12 m/f NW 
and 

OW 

Randomized, 5-
arm, cross-over, 

within subjects 

design, sample 
size power 

calculation 

Protein 
snacks 

Protein beverages at pH 3 or pH 
7, or acid or heated treated gels 

compared to a water control 

sample, followed by ad libitum 
lunch 

VAS No difference in 
appetite ratings 

Weighing No difference in food intake 
between protein snacks 

Zhu and 

Hollis (2014) 

47 24/23 NW, 

OW 

 and 
OB 

Randomized, 3-

arm, cross-over, 

within subjects 
design, sample 

size power 

calculation 

Pizza rolls Ad libitum lunch (no beverage) 

with predetermined average 

number of chewing cycles used as 
baseline for the three treatments 

(100, 150 and 200 %) 

VAS No difference in 

appetite ratings for 

treatment or BMI 
even after a 60 min 

period 

Weighing Yes, food intake ↓ for 200 % 

chews compared to 100 % 

baseline number of chews 



 

 

Reference 

Participants Study information Outcomes 
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(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Zhu, Hsu 

and Hollis 

(2013) 

21 21/0 NW 
and 

OW 

Randomized, 2-
arm, within 

subjects design, 

sample size power 

calculation 

Pasta meal Fixed pizza meal with 2 chewing 
conditions (15 and 40 chews), 

followed by ad libitum pasta meal 

3h later 

VAS Yes, hunger after 40 
chews ↓ compared 

to 15 chews 

(however fullness 

not different) 

Weighing No difference in food intake 
at lunch meal 3h after 

chewing intervention 

Zijlstra et al. 

(2011) 

54 12/42 NW + 

OB 

Randomized, 

cross-over, within 

subjects design 

Rice meal and 

yoghurt 

Ad libitum lunch, two sessions of 

45 min with a neutrally and 

highly liked product 

VAS No, satiety ratings 

for both products 

were similar, while 
significantly more 

calories were 

consumed with 
yoghurt 

Weighing 

over time 

Yes, ↑ ad libitum intake for 

yoghurt compared to rice 

Zijlstra et al. 

(2010), 

Product A, B 

and C 

106 45/61 NW Randomized, 6-

arm, cross-over, 

within subjects 
design (with 7th 

session to measure 

eating rate) 

Luncheon 

meat, 

vegetarian 
meat replacer 

and chewy 

candy 

Ad libitum snack intake while 

watching 90 min movie (with two 

breaks of 15 min in between) 
receiving 3 x 400 g) of three 

different product types with 

different levels of hardness 

VAS No difference in 

appetite ratings 

between hard and 
soft versions of all 

food products 

Weighing No difference in intake 

between hard and soft 

version of all food products 

Zijlstra et al. 

(2008), 

Study 1 

108 36/72 NW Randomized, 3-

arm, cross-over, 
within subjects 

design (different 

subjects between 
study 1 and 2) 

Chocolate 

dairy products 

Ad libitum intake while watching 

90 min movie (with two breaks of 
15 min in between) receiving 3 x 

1500 g portions 

10-point 

categorical 
scale 

No difference in 

appetite ratings 
between liquid, 

semi-liquid and 

semi-solid foods 

Weighing Yes, semi-solid food intake 

↓ than liquid food intake 

Zijlstra et al. 

(2008), 

Study 2 

49 14/35 NW Randomized, 6-

arm, cross-over, 

within subjects 
design (different 

subjects between 

study 1 and 2) 

Chocolate 

dairy products 

Ad libitum snack intake under 3 

conditions (free eating rate with 

effort, free eating rate without 
effort and fixed eating rate 

without effort at 10 s intervals) 

10-point 

categorical 

scale 

No difference in 

appetite ratings 

between liquid and 
semi-solid foods 

Weighing Yes, controlling eating rate 

and effort had an effect on 

food intake (for both 
products, no difference 

between products). No 

effect of effort alone (but 
semi-solid intake ↓ 

compared to liquid food 

intake) 



 

 

Reference 

Participants Study information Outcomes 

n Gender 

(M/F) 

BMI 

groups 

Study design Test food Test procedure Appetite 

method 

Effect appetite Food intake 

method 

Effect food intake 

Zijlstra et al. 

(2009a) 

32 12/20 NW Randomized, 2-

arm, cross-over, 

within subjects 
design 

Chocolate 

dairy products 

Ad libitum snack intake after 

fixed intake of liquids and semi-

solids as breakfast time 

10-point 

categorical 

scale 

No difference in 

appetite ratings 

between liquid and 
semi-solid foods 

Weighing No difference in chocolate 

cake intake after 

consumption of a liquid or 
semi-solid product 

Zijlstra et al. 

(2009b), 

Condition 1, 

2 and 3 

22 8/14 NW Randomized, 7-

arm, cross-over, 

within subjects 
design 

Chocolate 

dairy product 

Control vs different bite size 

(free, 5 or 15 g) and oral 

processing time (3 or 9 s) for at 
least 30 min 

10-point 

categorical 

scale 

Yes, significant 

effect of condition 

on hunger after 
intake 

Weighing Yes, ↓ intake for 9 s oral 

processing time than for 3 s  

Yes, ↓ intake for 5 g bite 
size than for 15 g 

i CPM: Chews Per Mouthful, NW: Normal Weight, OB: Obese: OW: Over Weight, UW: Under Weight, VAS: Visual Analytical Scale 
ii Two studies were reported, only Study 2 was included in this review 
iii Two studies were reported, only Study 2 was included in this review 
iv Two studies were reported, only Study 2 was included in this review 
v Two studies were reported, only Study 1 was included in this review 
vi Two studies were reported, only Study 1 was included in this review 
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2.3. Results 

A total of 40 articles, that included 42 studies, were found suitable for qualitative 

analysis (see Figure 2.1 and Table 2.5). 

2.3.1. Effect of food oral processing on appetite 

Based on the 42 studies that measured appetite ratings, 10 found significant effects 

on the appetite ratings, such as hunger, fullness and desire to eat. This disparity in 

the results may be associated with the study methodology employed, such as having 

a fixed amount of food to chew. For example, Cassady et al. (2009) provided their 

participants with a fixed amount of almonds to chew for different number of times 

(10, 25 or 40 chews). They found that a larger number of chews significantly 

reduced appetite. A fixed amount of food was also given during the manipulation 

of oral processing in five other studies that found a significant effect on appetite 

(Ferriday et al. 2016; Forde et al. 2013; Hogenkamp et al. 2012b; Zhu, Hsu and 

Hollis 2013; Zijlstra et al. 2009b). When ad libitum meals were provided, 

participants ate until they reached a certain level of fullness, so the change in 

appetite ratings was similar regardless of the amount consumed or how much 

energy was ingested. If an excess amount of food is offered in an ad libitum meal, 

the motivation to eat may be stronger than the oral processing manipulation itself. 

2.3.2. Effect of oral processing on food intake 

Four studies did not measure ad libitum food intake during or after the oral 

processing intervention (Cassady et al. 2009; Forde et al. 2013; Komai et al. 2016; 

Martens et al. 2011), and therefore were not considered in this section of the 

review. Thus, the total number of studies that measured food intake was 38. Food 

intake was measured either at the same time as the oral processing intervention 
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occurred, e.g. number of chews was manipulated during an ad libitum meal (Li et 

al. 2011), or after the oral processing manipulation, e.g. Zhu, Hsu and Hollis 

(2013).  

The effect of oral processing on objective measures of food intake was 

significant in 26 studies, but no clear patterns were evident. The provision of a 

fixed meal to standardize hunger before the oral processing intervention was linked 

to a significant effect in food intake in seven studies (Bolhuis et al. 2011; 

Hetherington and Boyland 2007; Hetherington and Regan 2011; Lasschuijt et al. 

2017; Mourao et al. 2007; Zijlstra et al. 2008, Study 1 and 2), which seems to 

highlight the importance of a standardized meal to ensure a similar level of hunger 

between participants before the oral processing manipulations. 

2.3.3. Effect of lubrication on appetite and food intake 

Six articles were identified that mentioned some links between lubrication and 

satiety (see Table 2.6). McCrickerd, Chambers and Yeomans (2014) tested the 

satiety effects of fruit drinks varying in thickness and creaminess. The viscosity 

and lubrication profiles of the test drinks showed that the thickened drinks were 

more viscous and more lubricating, having a lower traction coefficient than the thin 

drinks. No effect was found on satiety ratings, but they did observe a difference in 

food intake where female participants self-selected a smaller portion size when the 

drink’s visual sensory characteristics indicated it would be more satiating 

(McCrickerd, Chambers and Yeomans 2014). A limitation of this study was that 

participants were allowed to self-select their own portion size in a glass from a 

larger amount of the drink in a jug, after assessing the sensory characteristics. The 

results might have been clearer if the sensory aspects were evaluated by a different 
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panel, and if the panellists were instructed to drink directly from a larger or fixed 

amount to ensure satiation. A mindful assessment of the drink attending to the 

sensory features of the drinks before ad libitum intake might have influenced the 

results. Moreover, as also suggested by the authors, the portion size effect might 

have had a bigger influence on intake than the texture manipulation. It was 

suggested that the average portion size for men was bigger than the serving glass 

could hold, but was smaller for women. Therefore the portion size could explain 

the lack of effect found in male participants, while there was an effect for female 

participants. 

In a study by Morell et al. (2014) the effect of four different hydrocolloids 

in milkshakes with similar viscosity during pouring and handling conditions on 

expected satiety was investigated. They found that the starch granules (mainly in 

modified starch) swell up and disintegrate in presence of artificial saliva. However, 

the structural properties of guar gum and λ-carrageenan milkshakes remained more 

or less intact. In addition, the modified starch milkshake had a higher expected 

satiety. It was hypothesized that expected satiety was more linked to the initially 

perceived thickness and creaminess of foods and that the loss of structure in 

presence of saliva is linked to a melting sensation of the modified starch in the 

mouth (Morell et al. 2014). However, this melting sensation could be a function of 

better lubrication, which in this case seems to be related to higher expected satiety, 

suggesting later stages of oral processing could be just as important to satiety 

perceptions as the initial stages. In addition, Stribeck analysis of these milkshakes 

with or without saliva was not performed to confirm whether the milkshakes had 

significantly different friction coefficients in the mixed regime. 



 

 

Table 2.6. Characteristics of studies involving lubrication measures. 

Reference 

Participants Study information Outcomes 

n Age BMI 

status 

Study design Test food Test procedure Lubrication measure Effect appetite Effect food intake 

Gavião, 

Engelen and 

van der Bilt 

(2004) 

16 35 ± 13 NA Randomized, 

3-arm, within 

subjects 

design 

Parafilm, Melba 

toast with and 

without 

margarine, 

breakfast cake and 

cheese 

Parafilm and 3 

different types of food 

products were chewed 

and expectorated in 

duplicate, and salivary 

flow rate was 

measured 

Flow rate significantly increased due to 

mechanical stimulation by Parafilm and by 

food. Dry foods had longer oral exposure 

time than more moist products, while flow 

rate was similar. Toast with margarine 

reduced chewing duration and number of 

chewing cycles 

NA NA 

Joyner, Pernell 

and Daubert 

(2014) 

7 NA NA Randomized, 

16-arm, 

within 

subjects 

design 

Acid milk gels 

containing 

thickeners 

16 acid milk gel 

samples, tested for 

sensory texture 

attributes in QDA, as 

well as instrumental 

rheological and 

tribological properties 

Starch had an impact on friction behaviour 

of acid milk gels, and addition of artificial 

saliva resulted in a change of frictional 

behaviour across the entire range of sliding 

speeds 

NA NA 

Lett, Norton 

and Yeomans 

(2016) 

34 Range: 

18-37 

22.7 ± 

1.6 

Randomized, 

2-arm, within 

subjects 

design 

Emulsions with 

different droplet 

size 

Fixed preload 

emulsions with a 

droplet size of 2 or 50 

μm, followed by an ad 

libitum pasta lunch 

Rheological and lubrication properties for 

the two emulsions were comparable 

(results not published at this time) 

Yes, ↓ hunger after 2 μm 

compared to 50 μm preload 

(however fullness not 

different) 

Yes, food intake after 

2 μm preload ↓ than 

after the 50 μm 

preload 

McCrickerd, 

Chambers and 

Yeomans 

(2014) 

48 20.8 ± 

5.3 

NW Randomized, 

4-arm, within 

subjects 

design 

Fruit drinks,, 

containing 

thickeners and 

creamy 

flavourings 

Ad libitum intake of 4 

iso-energetic fruit 

drinks varying in 

texture (thin vs thick) 

and creamy flavour 

(low vs high 

creaminess)  

Both instrumental viscosity and lubrication 

(Stribeck) properties were measured, with 

the thick drinks being more viscous and 

more lubricating. The creamy flavour 

additions did not affect the physical texture 

of the drinks (both viscosity and 

lubrication) 

No difference in appetite 

ratings 

Yes, for females 

consumption of the 

thick drink ↓ than the 

thin drink. However, 

no differences found 

in food intake for 

males, or due to 

creamy flavour, 

regardless of gender 



 

 

Reference 

Participants Study information Outcomes 

n Age BMI 

status 

Study design Test food Test procedure Lubrication measure Effect appetite Effect food intake 

Morell et al. 

(2014) 

106 Range: 

18-61 

NA Randomized, 

4-arm, within 

subjects 

design 

Milkshakes, 

containing 

thickeners 

Sip-test of 4 

milkshakes with 

consumer panel using 

CATA questionnaires 

The swollen starch granules in modified 

starch disintegrated in presence of artificial 

saliva 

Yes, modified starch had 

the highest satiety 

expectation score, and 

native starch, guar gum and 

λ-carrageenan the lowest as 

linked to their sensory 

creamy sensations when 

entering the mouth 

NA 

Morell et al. 

(2015) 

121 NA NA Randomized, 

6-arm, within 

subjects 

design 

Yoghurts, 

containing added 

protein and 

thickeners 

Spoonful test of 6 

yoghurts with 

consumer panel 

Physically modified starch granules remain 

unaltered in presence of α-amylase from 

artificial saliva leading to a thick, dense 

and creamy yoghurt that could lead to a 

longer oro-sensory exposure 

Yes, samples which were 

perceived as thicker and 

denser were perceived as 

having a higher satiating 

capacity 

NA 
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In another study by Morell et al. (2015) the influence of different proteins and 

presence of starch in yoghurts was studied in relation to expected satiety. In line 

with their previous study, it was found that addition of starch, as well as addition 

of protein, increased expected satiety with whey protein having more potential to 

increase expected satiety than skimmed milk powder. The breakdown of starch in 

presence of saliva and linked melting sensation was not found here, as the starch 

granules were incorporated in the protein network, aggregating upon exposure to 

artificial saliva (Morell et al. 2015). 

In a study by Gavião, Engelen and van der Bilt (2004) several oral 

processing characteristics of different food products were determined. Dry Melba 

toast resulted in a longer oral residence time with more chewing cycles, whereas 

the addition of margarine reduced the time until swallowing as well as the number 

of chews. This was largely attributed to the lubricating effects of butter facilitating 

bolus formation (Gavião, Engelen and van der Bilt 2004), however no quantitative 

tribological measurement of the bolus was performed to confirm such findings. 

Joyner, Pernell and Daubert (2014) tested the friction behaviour of acid milk gels 

with and without the addition of saliva. The addition of saliva was found to cause 

a significant change in the frictional behaviour of the acid milk gels, with a stronger 

effect seen in samples containing starch (Joyner, Pernell and Daubert 2014). 

However, in both of these studies no direct link was made with any satiety 

parameters. Finally, Lett, Norton and Yeomans (2016) have shown the effects of 

physicochemical characteristics (e.g. droplet size) of model (emulsions) affecting 

hunger and food intake. They highlight that the tribological and rheological 

properties of these emulsions are the same; however, exact coefficients of friction 
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at orally relevant speeds are not mentioned (Lett, Norton and Yeomans 2016; Lett 

et al. 2016). These reports suggests that there is growing interest in lubrication 

measurements but these have yet to be studied in depth for a potential contribution 

(if any) to satiety and food intake. 

2.3.4. Meta-analysis 

The 38 articles included in the meta-analysis were divided into 70 individual 

subgroups. The narrative part of this systematic review indicated that for the two 

appetite ratings (hunger and desire to eat), the different methodology of a fixed or 

ad libitum meal might have significant effects on the study outcomes. The studies 

were divided into groups where either a fixed amount was used for the oral 

processing manipulation (Type 1), or where an ad libitum amount of food was 

presented (Type 2). For the meta-analysis on hunger ratings, 14 Type 1 studies 

including 22 subgroups and 14 Type 2 studies with 22 subgroups reported data. 

The studies where chewing gum was used to manipulate oral processing, and thus 

no food was ingested, were not included in the meta-analysis for appetite. 

Figure 2.2 shows the meta-analysis results of the Type 1 studies. The 

results confirmed that a higher level of oral processing had a significant effect on 

reducing hunger ratings (-0.20 effect size, 95% confidence interval CI: -0.30, -0.11, 

I2 statistic = 0%). The meta-analysis was also performed with both the Type 1 and 

Type 2 studies included, and the results remained similar (-0.21 effect size, 95% 

CI: -0.27, -0.15, I2 = 0%). The ME model using moderators indicated that the 

included moderators were unable to better explain the total amount of 

heterogeneity, as the heterogeneity level was already 0%. Subgroup analysis 

revealed that the oral processing variables eating rate and texture had a significant 
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effect on hunger ratings, whereas bite size, oral residence time, number of chews 

and texture complexity on their own did not affect hunger. It is however important 

to note that few studies were included for the latter variables, where no significant 

effect was found. 

 

Figure 2.2. Forest plot of oral processing effects on the SMD of hunger ratings 

with corresponding 95% CI. The pooled estimates were obtained using RE 

modelling. The I2 value is a measure of the approximate proportion of total 

variability in point estimates that can be attributed to heterogeneity. 

For the desire to eat ratings, 9 studies including 15 subgroups reported data. 

The meta-analysis showed similar results to that of the hunger ratings namely that 

higher oral processing reduced self-reported desire to eat (-0.21 effect size, 95% 

CI: -0.31, -0.10, I2 = 0%, see Figure 2.3). 
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Figure 2.3. Forest plot of oral processing effects on the standardized mean 

difference (SMD) of desire to eat ratings with corresponding 95% confidence 

interval (CI). The pooled estimates were obtained using a random effects (RE) 

modelling. 

Meta-analysis of the food intake data included 35 studies with 65 

subgroups. Study 2 by de Wijk et al. (2008) did not provide the standard deviations 

for food intake and therefore was not included in the meta-analysis. A significant 

effect of oral processing reducing food intake was found (-0.28 effect size, 95% 

CI: -0.36, -0.19, I2 = 61.52%), as can be observed in Figure 2.4. This is in line with 

what we expected, given the large amount of individual studies that found a 

significant effect. The I2 value did indicate a moderate level of heterogeneity, 

however the ME model using moderators did not result in a consistent 

improvement. Subgroup analysis revealed that there was no significant effect of 

oral residence time alone on food intake, however there were only two studies that 

looked specifically at oral residence time. 
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Figure 2.4. Forest plot of oral processing effects on the SMD of food intake 

with corresponding 95% CI. The pooled estimates were obtained using RE 

modelling. 



- 75 - 

 

 

The other oral processing factors all included more than two studies, and all showed 

a significant effect on reducing food intake. Furthermore, as there are different 

processes that might affect food intake over time, such as cephalic-phase responses 

in anticipation of food after eating chewing gum or cognitive processes due to the 

increased expected satiating power of harder, thicker and chewier food, the meta-

analysis outcome was tested when Type 1 studies were excluded. However, when 

only looking at the studies that measured ad libitum food intake at the same time 

as the oral processing intervention, the outcome was not affected (-0.45 effect size, 

95% CI: -0.55, -0.35, I2 = 69.06%).  

Publication bias was assessed using funnel plots and the Egger’s regression 

test. The funnel plot for the hunger ratings (Figure 2.5) shows a relatively good 

distribution over the vertical axis, indicating that studies with different sample sizes 

were included. 

 

Figure 2.5. Funnel plot of oral 

processing effects on hunger ratings. 

 

Figure 2.6. Funnel plot of oral 

processing effects on food intakei. 

i The different shades in the plot correspond to the 90% CI (white), 95% CI (light grey) and 99% 

CI (dark grey). 
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However, the majority of the studies clustered towards to the left of the mean, 

indicating there might be evidence of publication bias. Nevertheless, this visual 

impression was not supported by the Egger’s test (p = 0.17, CI: -1.01, 0.18). The 

asymmetry in the funnel plot for food intake in Figure 2.6 also shows a potential 

bias in favour of studies that found oral processing had an effect on lowering food 

intake. This was confirmed by the Eggers’s test (p = 0.000, CI: -3.59, -1.25). 

2.4. Discussion 

The main aim of this systematic review and meta-analysis was to understand the 

impact of oral processing, including chewing and lubrication, on appetite and food 

intake. It was hypothesized that enhanced oral processing would affect appetite 

sensations, and reduce food intake. Oral processing is an important factor in the 

development of satiation and satiety. The results of this review indicate that self-

reported appetite and measured food intake are influenced by manipulating 

components of oral processing such as eating rate, texture and chewing. Thus, 

where participants are instructed to use a certain oral processing strategy such as 

the number of times a food is chewed, this will alter how much is eaten. Where 

participants are provided with foods which increase oral residence time, and/or 

slow the rate of eating, this reduced subjective appetite. The analyses demonstrate 

that increased oral processing appears to promote satiation, although it is difficult 

to isolate which specific component is directly influencing the outcome. Larsen et 

al. (2016) developed a model food where the oral residence time was kept constant 

while texture complexity was varied. This enabled the study to examine texture 

complexity controlling for oral exposure time. They found that providing a more 

complex, orally stimulating first course promoted satiation and reduced food intake 
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at a subsequent second course. Therefore, enhanced oral processing through greater 

textural complexity, can lead to enhanced satiety. 

Few studies have been performed focusing on the effects of oral lubrication 

on appetite and satiety, even though this is an aspect that is also manipulated when 

looking at foods with differently designed textures (e.g. soft vs hard). Additionally, 

it is worth noting that saliva has an important role in the cephalic phase linked to 

amylase digestion (Giduck, Threatte and Kare 1987), however this was not within 

the scope of the present review and we have only considered the lubrication 

(tribological) aspects of saliva. 

The results of these meta-analyses suggest that varying different 

components of oral processing taken together, can have a significant influence on 

reducing hunger ratings and food intake. Overall, from the literature included in 

this systematic review, it is clear that all studies involved a relatively small number 

of participants (varying from 9 to 120) and short-term exposures (only once in most 

studies). Studies with a larger sample size involving longer well-described 

replicable interventions (from weeks to months) are needed to understand the 

impact of oral processing on long-term satiety enhancement and its potential in 

weight management. In addition, product differences need to be large enough to be 

detectable by consumers to find a potential influence due to oral processing.  

The lack in standardization of study design is a key limitation identified by 

this systematic review. Blundell et al. (2010) have advocated that for all studies of 

satiation and satiety, a framework should be applied to standardize procedures; as 

was also suggested by the results in this review, by standardization of prior hunger 

levels using a fixed meal before the oral processing intervention takes place, the 
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actual study effects can be studied more carefully (Blundell et al. 2010). The 

recommended study procedure for satiation studies includes a standard, fixed meal 

based on individuals’ estimated daily energy needs before oral processing is 

manipulated. Furthermore, for satiety studies, the satiety quotient, the time until 

the next eating occasion, should be reported in addition to subjective hunger ratings 

and how much is eaten at the next eating occasion (Blundell et al. 2010). Thus, 

conclusions regarding the effects of oral processing on satiety must be made with 

caution since varying results may be attributable to differences in study design. 

Moreover, dimensions such as food type, meal occasion, differences between 

individuals or specific participant groups, such as male/female (Martin et al. 2007) 

or low/high BMI status (Mattes and Considine 2013; Zhu and Hollis 2014), 

appeared to have an influence on the outcome as well. 

A systematic review and meta-analysis by Robinson et al. (2014) studied 

the effects of the specific oral processing characteristic of eating rate on hunger and 

energy intake. They concluded that a slower eating rate led to a lower energy intake 

as compared to a faster eating rate, and that different ways in which eating rate 

could be manipulated (directly or indirectly) did not alter the outcome. No effect 

of eating rate on hunger was found directly after the meal or up to 3.5h after the 

meal, both in the analysis with ad libitum studies as well as the fixed studies. The 

difference with our results on the hunger ratings could be explained by including 

more oral processing variables, and also many more studies were included (five 

compared to 22 subgroups in the current review with fixed amounts of foods). 

Another systematic review by Miquel-Kergoat et al. (2015) compared the outcome 

measure of hunger ratings and energy intake under different oral processing 

conditions, with the addition of gut hormones and metabolites. Besides hunger 
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ratings, meta-analyses in the current review focused on food intake and desire to 

eat data, thereby broadening the scope of the review. Also, the oral processing 

definition was expanded to include aspects of lubrication and saliva incorporation. 

Finally, oral processing parameters were grouped together according to the 

recommended oral processing strategies commonly suggested for better weight 

management such as slow eating rates, high number of chews and longer oral 

resident time (Christen and Christen 1997; Ford et al. 2010; Smit et al. 2011). 

Moreover, additional data not included in the original publication was requested 

from authors. Instead of comparing 13 subgroups as was reported by Miquel-

Kergoat et al. (2015), the current review included hunger ratings from 

22 subgroups. Therefore, the present review allows a more comprehensive and 

advanced analysis by broadening the scope of the used measures, expanding the 

search to include lubrication, and performing detailed analysis using raw data from 

authors. 

2.5. Conclusions 

In this study we conducted a comprehensive systematic review to assess different 

oral processing characteristics on appetite ratings and food intake. In order to 

address this quantitatively, a meta-analysis was undertaken to test the effect size of 

self-reported appetite ratings and objectively measured food intake in studies that 

manipulated oral processing parameters, such as oral residence time, texture, eating 

rate, chewing and lubrication. The meta-analysis demonstrated that manipulating 

oral processing through slow eating rates and textural complexity reduced 

subjective appetite and greater oral processing through strategies such as greater 

chewing reduced food intake. 
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Although evidence was found for the effects of oral processing on appetite 

ratings and food intake, this systematic review identified a clear gap in knowledge 

on the influence of saliva incorporation and oral lubrication on appetite ratings and 

food intake. The influence of the lubrication parameters of food (pre and post 

mixing with saliva) on appetite and food intake remains largely unquantified. 

Furthermore, the studies involving lubrication did not perform tribological 

measurements of the food and the bolus to quantify differences in lubrication 

profiles. Future research should be conducted following the framework outlined by 

Blundell et al. (2010) and standardize prior hunger before oral processing 

manipulations, which should be apparent and not subtle. With carefully planned 

and standardized procedures, the knowledge base on the importance of all aspects 

of oral processing, including both chewing and lubrication, for satiation and satiety 

development will be expanded and potential application to weight management can 

be explored. Such knowledge, together with longer interventions, are needed to 

underpin the creation of the next generation of foods for weight management and 

allow the development of coordinated public health strategies to tackle obesity. 

The next chapters of this thesis will focus on studying the influences of oral 

processing including both chewing and lubrication on satiation and satiety. The 

instrumental fracture properties of different hydrocolloid gels were measured 

(Chapter 3) and a number of hydrogels with varying properties were selected for 

further study. Then, the selected hydrogels were characterised by instrumental and 

sensory techniques as related to chewing (fracture properties) and oral lubrication 

(friction properties) (Chapter 4). After that, it was attempted to explain the oral 

processing behaviour of the different hydrogels for a group of participants by the 

food structural properties and by the eating capabilities of the tested participants 
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(Chapter 5). And then finally, the effects of model hydrogels with different 

chewing and oral lubrication characteristics on the hunger levels and food intake 

of a snack were examined (Chapter 6). 
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Chapter 3 

Selection of hydrogels 

 

 

Abstract 

In order to study the effects of oral processing on satiety, focussing both on the 

chewing and oral lubrication properties, model preload foods were designed based 

on their fracture properties. The fracture properties of different κ-carrageenan (κC) 

hydrocolloid gels were determined using a wide range of concentrations, mixing 

ratios with locust bean gum (LBG) or sodium alginate (NaA), and levels of 

complexity using calcium alginate beads (CaA) of 300 or 1000 μm, at 1-4 wt% 

total hydrocolloid concentrations. First bite oral processing fracture properties were 

determined using a Texture Analyser with a Volodkevitch bite jaw probe. Seven 

hydrogel samples were selected that were considered to be edible for a human trial, 

and that differed in their fracture stress. In addition, hydrogels were selected based 

on their potential differences in lubricity and complexity, so that differences may 

be achieved in their oral lubrication properties. 

3.1. Background on hydrocolloids 

Results of the systematic review and meta-analysis identified gaps in the literature 

in relation to the specific effects of both chewing and oral lubrication on satiation 

and satiety. Ideally, to investigate the potential effects of chewing and oral 
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lubrication on short-term regulation of satiety and food intake, a preload-test meal 

paradigm is applied (Blundell et al. 2009). A preload is defined as an eating episode 

smaller than a meal (usually about 1 MJ) and is given at a particular time interval 

(often 30 to 90 min) before a test meal (Blundell et al. 2009). Hydrocolloid based 

model systems have been widely used to study the influence of rheological 

properties on food oral processing (Hayakawa et al. 2014; Hori et al. 2015; 

Kohyama et al. 2015), and can easily be used as a small-scale preload food. 

Although the influence of hydrogel hardness on oral residence time is relatively 

well researched, there has been limited literature on the influence of structural 

properties of gels on other oral processing characteristics. 

Hydrocolloids are a heterogeneous group of hydrophilic long chain 

polymers that can form viscous dispersions and/or gels upon dispersion in water 

due to the presence of large number of hydroxyl (-OH) groups (Saha and 

Bhattacharya 2010). By using hydrocolloid model systems, the structural and 

rheological properties can be specifically modified within a relatively simple 

matrix. Texture design of real food products, by comparison, is more challenging, 

where it is much more difficult to change specific aspects of texture due to their 

rather complex structures and interactions between different components 

(Szczesniak 1990). In order to study the oral processing effects of chewing and oral 

lubrication, a selection of different hydrocolloid model gels were investigated. 

Hydrocolloid gelation can be either thermo-reversible or thermo-irreversible 

(Ahmed 2015). The textural properties of hydrogels vary widely due to the type of 

used hydrocolloid, their concentration as well as any mixture of hydrocolloids, and 

thus may have very different sensory perceptions (Hayakawa et al. 2014). 

Hydrocolloids that have been frequently used in research on gel systems are 
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alginate, agar, carrageenan, locust bean gum, gelatin, gellan, pectin and xanthan 

(Banerjee and Bhattacharya 2012; Nishinari, Zhang and Ikeda 2000; Saha and 

Bhattacharya 2010). Using a combination of multiple hydrocolloids can be useful 

to improve the rheological and sensory characteristics of gels. The type of synergy 

may depend on the association or non-association of two different hydrocolloid 

molecules (Williams and Phillips 2000). Oppositely charged molecules are likely 

to associate and may form a precipitate or result in gel formation. Hydrocolloids 

that do not associate may appear to form a single homogeneous phase in the case 

of low concentrations, whereas at higher concentrations they might phase separate 

(Williams and Phillips 2000). 

For the purposes of this PhD project, no fats or sugars were introduced to 

the model systems and hydrocolloids were selected for their ability to form gels 

that do not melt in the mouth during oral processing. Thus, carrageenans, locust 

bean gum and alginates were selected based on their thermo-irreversibility, i.e. no 

change in gel structure is expected when exposed to oral temperatures of 37 °C. 

Also, the selected gels were targeted for their resistance to oral enzymes, and 

therefore starch gels were not considered. 

3.1.1. Carrageenans 

Carrageenans are large, highly flexible molecules, consisting of linear sulphated 

polysaccharide chains, and are extracted from red seaweeds (Rhodophyceae). They 

consist of high molecular weight linear polysaccharides comprising repeating 

galactose units and 3,6-anhydrogalactose, both sulphated and non-sulphated, 

joined by alternating α-(1,3) and β-(1,4) glycosidic links (Imeson 2000). The three 

major carrageenan types are kappa (κC), iota (ιC) and lambda (λC), as shown in 
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Figure 3.1, with each differing in degree of sulphation (Kariduraganavar, Kittur 

and Kamble 2014). The thickening and gelling properties of the different 

carrageenan types vary widely. Upon cooling hot aqueous dispersions of κC and 

ιC to between 40 and 60 °C, gelation occurs. Carrageenan gels are thermos-

reversible at 5 to 20 °C above the gelling temperatures, but properties do not change 

at 37 °C, and the gels can exhibit hysteresis (Imeson 2000). Whereas ιC can form 

soft elastic gels in the presence of calcium ions (Ca2+), λC does not form a gel and 

is mainly used as a thickener in dairy products (Kariduraganavar, Kittur and 

Kamble 2014).  

 

Figure 3.1. Schematic representation of the molecular structures of κ-, ι- and 

λ-carrageenan (left), and gelation mechanism (right), adapted from 

Kariduraganavar, Kittur and Kamble (2014) and Williams and Phillips 

(2003). 

The gelation process of κC involves coil-to-helix transition of the molecules 

followed by aggregation that occurs upon cooling (see Figure 3.1), particularly in 

presence of potassium ions (K+), and forms strong, rigid gels (Morris, Rees and 

Robinson 1980; Kariduraganavar, Kittur and Kamble 2014). In the presence of K+, 

the κC network forms rigid rod-like aggregates (Meunier et al. 1999), increasing 

the hardness and fracture properties of the gels (Zhu, Bhandari and Prakash 2018). 

The electrostatic repulsions along the carrageenan polymer backbone are screened 
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by like charges from the K+ ions and weaken the electrostatic attraction between 

semi-ester sulphates, neutralising them. As a consequence, helix-helix formations 

are promoted and κC aggregates are more easily formed, increasing the gel strength 

(Rey and Labuza 1981; Zhu, Bhandari and Prakash 2018). Similarly, Ca2+ ions 

might act between adjacent κC helices, neutralising the repulsion between 

carrageenan strands (Zhu, Bhandari and Prakash 2018). However, the excess 

presence of the divalent Ca2+ ions might cause precipitation, resulting in syneresis 

(i.e. the release of water from the κC network) and a decrease in gel strength (Lai, 

Wong and Lii 2000; MacArtain, Jacquier and Dawson 2003). Thus, κC in presence 

of K+ ions was used in this PhD for its ability to form strong gels. 

3.1.2. Locust bean gum (LBG) 

Locust bean gum (LBG), also known as carob gum, is a galactomannan vegetable 

gum that is extracted from the seeds of the carob tree (Ceratonia siliqua). As can 

be seen in Figure 3.2, the structure consists of linear β-(1,4)-D-mannan chains with 

single D-galactose substituents linked to the main backbone by α-(1,6)-glycosidic 

bonds, in a ratio of 4:1 (Wielinga 2000). LBG is only slightly soluble in cold water, 

and must be heated to at least 80 °C for full hydration (Pegg 2012). Solutions tend 

to be a little cloudy due to the presence of small quantities of protein and fibre. 
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Figure 3.2. Schematic representation of the molecular structure of LBG 

(Wielinga 2000). 

Although able to form a gel on its own (Richardson and Norton 1998), it is 

more commonly used to form a gel in combination with other hydrocolloids such 

as κC, agar or xanthan (Pegg 2012). Incorporation of LBG strengthens κC’s 

continuous network, promotes elastic properties and reduces syneresis (Arnaud, 

Choplin and Lacrox 1989; Dunstan et al. 2001). This synergistic interaction is 

attributed to the ability of LBG to form stable cross-links with the rigid κC 

structure, increasing the elasticity of the gels (Stading and Hermansson 1993; 

Imeson 2000). 
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3.1.4. Alginates 

Alginate is extracted from natural brown seaweeds or algae (Phaeophycea), and 

forms heat-stable gels in the presence of acids and calcium. Sodium alginate (NaA) 

is an unbranched linear polysaccharide consisting of β-(1,4)-D-mannuronic acid 

(M-block) and α-(1,4)-L-glucuronic acid (G-block) residues, see Figure 3.3, and 

varies widely in composition and sequence (Draget 2000; Yoo et al. 2006). 

 

Figure 3.3. Schematic representation of the molecular structure of alginate, as 

adapted from Draget (2000) and Kariduraganavar, Kittur and Kamble 

(2014). 

The gelling characteristics of NaA are based on their ion binding properties, 

where the alginate undergoes ionic crosslinking in presence of Ca2+ ions to form a 

so-called “egg-box model” gel structure, as shown in Figure 3.4 (Yoo et al. 2006; 

Draget 2000). The divalent calcium displaces the sodium ions (Na+), and due to the 

physical crosslinking or chelation between the carboxylate anions of guluronate-

units in NaA and the Ca2+ ions, calcium alginate gels (CaA) are formed. 



- 94 - 

 

 

Figure 3.4. Schematic illustration of the “egg-box model” gel structure for 

alginates in presence of calcium ions (Braccini and Pérez 2001). 

To achieve structural complexity, κC gels mixed with NaA or with the 

inclusion of CaA beads differing in particle size can be created. CaA beads can be 

created via extrusion techniques. By dropping a liquid NaA solution into a ionic 

water bath, a gel capsule is formed around the liquid NaA droplets (Torres, Murray 

and Sarkar 2017). The Buchi Encapsulator® was developed based on this technique 

(see Figure 3.5), in which the NaA solution is pumped through the encapsulator 

system, passing it through a vibrating nozzle before dropping it into a turbulently 

stirred Ca2+ solution. 
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Figure 3.5. Buchi Encapsulator® set-up (left) and dropping mechanism of the 

NaA solution into a water bath with Ca2+ ions (right). 

3.2. Materials and methods 

3.2.1. Materials 

Food grade quality kappa-carrageenan, locust bean gum and sodium alginate were 

purchased from Special Ingredients Ltd (Chesterfield, UK). Potassium chloride 

was purchased from Minerals Water Ltd (Purfleet, UK) and calcium chloride from 

VWR International (Leuven, Belgium). Gels were prepared with demineralised 

water and all materials were used without further purification. 

3.2.2. Preparation of the hydrogels 

A wide range of different single and mixed hydrogels were prepared with κC, LBG 

and NaA/CaA. Typically 400 g of sample was prepared per batch and poured into 

petri-dishes to a height of 1 cm. These petri-dishes were kept overnight at 4 °C to 

allow the gels to set, and cylindrical pieces of the hydrogels were cut out from the 

petri-dishes using a circular cookie cutter (diameter 24 mm, height 10 mm). Visual 

images of the hydrogels are shown in Supplementary Figures A.1 to A.3.
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The single matrix κC hydrogels were prepared by dispersing the desired 

amounts of κC in a 0.2 M KCl solution and letting them stir for 30 min to ensure 

maximum hydration. Then, the solutions were heated up in a shaking water bath at 

98 °C for 1 h under constant mixing until completely dissolved. In the case of 

mixed hydrogels, LBG or NaA were mixed with the κC first, before continuing the 

gel preparation. CaA beads of various sizes (nozzle size 300, 450, 750 and 100 μm) 

were prepared separately, and then added as a separate layer in the petri-dish before 

adding the hot κC mixture. A 1 wt% NaA solution was passed through the Buchi 

Encapsulator B-390® (Buchi UK Ltd, Chadderton, UK) at 250 mbar with a 

vibrating nozzle at 500 Hz, and then dropped into stirring 0.05 M CaCl2 water bath. 

The aqueous Ca2+ solution was stirred for 20 min, after which the CaA beads were 

filtered and washed three times using demi water to remove residual Ca2+ ions. 

3.2.3. Texture analysis 

The textural properties of the different hydrogels consisting of a κC matrix were 

measured with a puncture test in a Texture Analyzer (TA-TX2, Stable Micro 

Systems Ltd., Surrey, UK), attached with a 30 kg load cell. Samples were 

compressed using a 10 mm Volodkevitch bite jaw probe, at a constant speed of 

2 mm/sec with a deformation of 80 % strain. All tests were carried out at 22 °C, 

and at least three replicates were recorded for each hydrogel. The software 

Exponent (TEE32, v6.1.9.0, Stable Micro Systems Ltd., Surrey, UK) was used to 

obtain the force-distance curves, and the fracture mechanics were calculated from 

these curves. Analysis of variance (one-way ANOVA) with Bonferroni post-hoc 

testing was performed using SPSS (IBM® SPSS® Statistics, v24, SPSS Inc, 

Chicago, USA) to study the statistically relevant differences between hydrogel 

samples and significance level was set at p < 0.05. 
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3.3. Results 

3.3.1. Fracture properties of κC hydrogels 

First of all, a wide concentration range of single matrix κC hydrogels was prepared, 

increasing the concentrations stepwise by 0.5 wt%. The lowest κC concentration 

that formed a gel firm enough to measure with the texture analyser was 0.5 wt%, 

but it was not very stable. The highest concentration that we were able to dissolve 

was 5.0 wt%. The samples formed translucent gels, and visibly increased in 

opaqueness with increasing concentration (see Supplementary Figure A.1). 

 

Figure 3.6. Mean (± SD) fracture stress and fracture strain of puncture tests 

with Volodkevitch probe of κC hydrogels, with concentrations 0.5κC (⚪), 1κC 

(▲), 1.5κC (□), 2κC (★), 2.5κC (◊), 3κC (⚫), 3.5κC (∆), 4κC (■), 4.5κC (✩) 

and 5κC (♦). The trendline is shown in black for the κC concentrations 1.5 – 

5.0 wt%: y = -99.5x + 63.3 and R2 = 0.95. The fracture stress differed 

significantly between hydrogels (p < 0.05). 
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Figure 3.6 shows the fracture stress and fracture strain of these gels, and a 

clear trendline could be observed from the increasing concentrations, starting with 

1.5κC. The higher the concentration, the higher the fracture stress and the lower 

the fracture strain. With each 0.5 wt% increase in concentration, the fracture stress 

increased by about 1-2 kPa. This strongly indicates the gel strength increases with 

concentration, but decreases in elasticity. 

3.3.2. Fracture properties of κC/LBG hydrogels 

Subsequently, different mixed hydrogels with a κC matrix were evaluated. The 

fracture stress and fracture strain of mixed κC hydrogels with LBG are shown in 

Figure 3.7. Hydrogels with 1, 2 and 3 wt% total hydrocolloid concentrations were 

measured in various κC and LBG ratios, indicated in red, green and purple, 

respectively. As can be seen, the fracture stress increases with increasing total 

hydrocolloid concentration. No clear trend could be seen within the hydrogels with 

the same total hydrocolloid concentrations with different ratios. For the ratios with 

total biopolymer concentrations 2 and 3 wt%, the fracture stress and fracture strain 

were not significantly different from each other (p < 0.05), except for the fracture 

stress of 1.67κC0.33LBG being a little higher than that of 1.5κC0.5LBG and 

1.8κC0.2LBG. For the ratios with a total biopolymer concentration of 1 wt%, the 

fracture stress and fracture strain increased with decreasing κC content and 

increasing LBG content.  
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Figure 3.7. Mean (± SD) fracture stress and fracture strain of puncture tests 

with Volodkevitch probe of mixed κC and LBG hydrogels, with 

concentrations 0.7κC0.3LBG (⚫), 0.8κC0.2LBG (∆), 0.9κC0.1LBG (■), 

1.5κC0.5LBG (✩), 1.67κC0.33LBG (♦), 1.8κC0.2LBG (▲), 2.25κC0.75LBG 

(□), 2.5κC0.5LBG (★) and 2.7κC0.3LBG (◊). 

This suggests that the κC network can be strengthened with LBG at lower 

biopolymer concentrations, but a certain limit is reached at higher concentrations 

where the network is no longer strengthened by the increase in LBG content. In 

addition, the fracture stress of the single 3κC hydrogel was slightly higher than that 

of the mixed hydrogel 2.25κC0.75LBG, with values of 9.2 kPa compared to 

7.9 kPa, respectively (p < 0.05), but the other 3 wt% κC/LBG ratios were not 

significantly different (p > 0.05). The fracture stress of 2κC and 1κC was 

consistently higher than that of all 2 wt% κC/LBG or 1 wt% κC/LBG ratios, 

respectively (p > 0.05). This would indicate that the addition of LBG at the tested 

concentrations weakened the κC network slightly. 
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3.3.3. Fracture properties of alginate hydrogels (NaA and CaA) 

The fracture stress and fracture strain of mixed κC hydrogels with alginates are 

shown in Figures 3.8. Mixed κC hydrogels with NaA at 2 and 3 wt% total 

hydrocolloid concentrations were measured in various ratios, indicated in yellow 

and blue, respectively. With increasing κC, and thus reducing NaA concentrations, 

the fracture stress and fracture strain increased. Compared to κC alone, κC/NaA 

mixed hydrogels at 2 and 3 wt% total hydrocolloid concentrations were much 

weaker suggesting that the κC network in interrupted by the NaA molecules 

disrupting the strong κC bonds. The 3 wt% κC/NaA hydrogel with the highest 

fracture stress (4.9 kPa) was found to be half as much as the single 3κC (9.2 kPa). 

 

Figure 3.8. Mean (± SD) fracture stress and fracture strain curve of puncture 

tests with Volodkevitch probe of mixed κC and NaA hydrogels, with 

concentrations 1κC1NaA (⚪), 1.4κC0.6NaA (▲), 1.5κC0.5NaA (□), 

1.8κC0.2NaA (★), 1.5κC1.5NaA (∆), 1.8κC1.2NaA (■), 2.25κC0.75NaA (✩) 

and 2.7κC0.3NaA (♦). 
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Measurements with CaA beads revealed the complexity of hydrogel 

measurements with a level of inhomogeneity. Due to the layers, two main fracture 

peaks were identified: one for the beads layer and another as a result of the κC 

matrix. The fracture point here, however, was considered at the highest peak. It was 

found that the main determining factor for fracture stress was the κC matrix, where 

the higher concentration of κC increased the fracture stress (Figure 3.9). The 

presence of CaA beads lowered the gel strength compared to the single hydrogels 

with the same κC concentration. 

 

Figure 3.9. Mean (± SD) fracture stress and fracture strain curve of puncture 

tests with Volodkevitch probe of mixed κC hydrogels of various 

concentrations and an added layer of CaA beads, with 1.6κC0.2CaA300 (⚫), 

1.6κC0.2CaA1000 (∆), 2.4κC0.2CaA300 (■). 
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3.4. Selection of hydrogels 

To study any further differences in instrumental and oral processing properties, two 

single κC hydrogel concentrations were nominated, reflecting differences in 

fracture strain, but that were also considered to be edible. If the concentration, and 

thus the fracture stress, becomes too high, the hydrogel sample might require so 

much chewing that it will no longer considered to be palatable. Therefore, the 

concentrations 2κC and 3κC were selected for further study. Furthermore, a mixed 

gel with LBG and another with NaA were chosen. The sample 2.25κC0.75LBG 

was selected to study any influences of the addition of LBG, where the fracture 

properties were similar to the single 3κC hydrogel. The 1.5κC0.5NaA hydrogel was 

selected to study the influence of NaA with a much lower fracture stress, yet still 

have a measurable amount of oral processing. In addition, the concept of texture 

complexity was explored further by examining κC hydrogels with added CaA 

beads of various sizes. Two basic κC concentrations were chosen for the hydrogel 

matrix, and bead sizes of 300 and 1000 μm were selected as they might potentially 

have the most different lubrication experiences during oral processing. The 

instrumental (rheology, tribology) and sensory properties of the selected hydrogels 

are further explored and described in the next chapter, Chapter 4. 
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Chapter 4 

On relating rheology and oral tribology to sensory 

properties in hydrogelsb 

 

 

Abstract 

The aim of this study was to understand the relationship between rheological, 

tribological and sensory properties of hydrogels differing in hydrocolloid type, 

concentration and degree of inhomogeneity. Fracture properties of hydrogels 

containing different ratios of κ-carrageenan (κC) and/or locust bean gum (LBG), 

sodium alginate (NaA), 300/1000 μm calcium alginate beads (CaA) at 1-4 wt% 

concentration were determined, and the texture perception was analysed by 

descriptive sensory analysis (n=11). Viscosity and friction coefficients (µ) of the 

hydrogel-boli after simulated oral processing were characterized. Tribology 

measurements were conducted in a polydimethylsiloxane ball/disc set-up with 

pre-adsorbed artificial salivary film at 37 °C. ’Scaling’ with boli viscosity showed 

good agreement of observed data with the Stribeck master curve, however only in 

the mixed regime i.e. at intermediate values of the product of velocity and 

lubricant viscosity (Uη). Low µ values of gel boli in the boundary regime were 

                                                 
b Published as Krop, E. M., M. M. Hetherington, M. Holmes, S. Miquel and A. Sarkar. 2019. On 

relating rheology and oral tribology to sensory properties in hydrogels. Food Hydrocolloids, 88, 

pp.101-113. 
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largely driven by the formation of a viscous layer of bolus fragments between 

opposing surfaces. Fracture properties of hydrogels and boli viscosity were 

correlated with all chewing-related texture attributes i.e. ‘firm’, ‘elastic’, ‘chewy’ 

and ‘cohesive’ and inversely correlated with lubrication-related attributes 

‘melting’ and ‘pasty’ (p<0.05). On the other hand, µ of the bolus filtrate at orally 

relevant speeds (50 mm/s) was inversely correlated with lubrication-related 

attributes ‘pasty’ and positively with ‘slippery’ (p<0.05). The lack of correlations 

with ‘smooth’ could be explained due to sample inhomogeneity and the absence 

of ‘ball-bearing’-ability of the gel beads. A combination of initial fracture 

properties, boli viscosity and tribology of bolus filtrates (mixed regime) impacted 

the lubrication-related attribute ‘salivating’ (p<0.05). 

4.1. Introduction 

Oral processing strategies, such as a high number of chews and a long oral 

residence time have recently been linked to lower self-reported hunger and food 

intake in controlled experiments (Krop et al. 2018; Miquel-Kergoat et al. 2015). 

Hence, there has been a gradual increase in research efforts to understand and 

alter oral processing i.e. in-mouth chewing and lubrication by means of 

microstructural engineering (Laguna et al. 2016; Laguna and Sarkar 2016). 

Understanding the characteristics of oral processing (chewing, lubrication) has 

drawn significant research attention with the focal point recently shifting from 

rheology to tribology. This is largely due to the current consensus on the 

transformation during oral processing from rheology (bulk property) to tribology 

(surface property of food-saliva bolus based lubricants) (Pradal and Stokes 2016; 

Stokes, Boehm and Baier 2013; Chen and Stokes 2012; Prakash, Tan and Chen 
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2013; Garrec and Norton 2013; van Stee, de Hoog and van de Velde 2017; Sarkar 

et al. 2017; Laguna and Sarkar 2017). 

An important aspect of oral processing of solid and semi-solid foods is the 

incorporation of saliva to form a swallowable food bolus. Saliva is a complex 

biological fluid that consists of mainly water (~99.5%), various enzymes (α-

amylase, lysozyme) and proteins, (~0.3%), small organic compounds and 

inorganic salts (Sarkar, Goh and Singh 2009; Sarkar and Singh 2012; Sarkar, Ye 

and Singh 2017). The key protein component in human saliva is highly 

glycosylated mucin, which mainly contributes to the lubrication and shear-

thinning properties of saliva (Schipper, Silletti and Vingerhoeds 2007; Vijay et al. 

2015). The incorporation of saliva over time within a single bite episode has a 

major effect on the texture perception (Funami et al. 2012; Hutchings and 

Lillford 1988). The in-mouth friction properties might change significantly due to 

the interactions between food and salivary components, such as mucins and salts. 

However, few studies have used real human saliva, or artificial saliva 

formulation, within in vitro oral processing experiments to understand its impact 

on the mechanical properties, such as viscosity or friction coefficient, and 

correlated such data to sensory perception (Morell, Chen and Fiszman 2017; 

Laguna et al. 2017a; Laguna et al. 2017b). 

This study creates a unique body of evidence on the initial fracture 

properties of hydrogels, viscosity and tribology of hydrogel boli created using 

simulated oral processing (using artificial saliva formulation) and sensory 

profiling (descriptive analysis) to understand the relationship between mechanical 

and sensory properties. To investigate food oral processing, biopolymeric 
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‘hydrogels’ have been selected as model solids and semi-solid foods in the 

literature (Hayakawa et al. 2014; Kohyama et al. 2015; Hori et al. 2015; 

Santagiuliana et al. 2018; Laguna et al. 2016; Laguna and Sarkar 2016). This is 

because hydrogels have a relatively low level of complexity as compared to most 

composite foods systems. They can be structurally manipulated in a systematic 

manner, and exclude prior learning, emotional associations and expected 

postprandial satisfaction (if any) during sensory testing. 

Recently, there has been an increase in research efforts directed towards 

designing hydrogels with structural complexity for various applications (Tang et 

al. 2016; Santagiuliana et al. 2018; Laguna and Sarkar 2016). For instance, 

Laguna & Sarkar (2016) demonstrated that incorporation of calcium alginate gel 

beads of 185-2380 μm size in κ-carrageenan hydrogel matrix enabled to increase 

the oral residence time. On the other hand, Tang et al. (2016) showed the impact 

of using textural heterogeneity with seeds as well as layering arrangements within 

gelatine-agar hydrogels on increasing satiation. Temporal perception of texture 

contrast was recently investigated by Santagiuliana et al. (2018), where authors 

employed layering approaches to generate mechanical contrast in agar, κ-

carrageenan, and gelatine hydrogels and suggested that a combined effect of 

mechanical and physicochemical properties influenced the dynamic perception of 

inhomogeneity over time. Nevertheless, to our knowledge, creation of hydrogels 

with systematic manipulation of structural complexity and understanding the 

impact of those manipulations on ‘chewing’ and ‘lubrication’ related texture 

attributes that are perceived during early and later stages of oral processing, 

respectively, have not been investigated to date. 
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The aim of this study was to understand the relationship between 

rheological, tribological and sensory properties of hydrogels differing in 

hydrocolloid type, concentration and degree of inhomogeneity. Our hypothesis 

was that initial fracture properties of the hydrogels and apparent viscosities of the 

gel boli would be correlated with chewing-related texture attributes, whereas 

tribological properties (i.e. friction coefficients in boundary and mixed 

lubrication) of the gel boli would be correlated with lubrication-related texture 

attributes. A range of hydrogels using κ-carrageenan, locust bean gum (LBG), 

sodium alginate and calcium alginate with different degrees of structural 

complexity and inhomogeneity were employed to test this hypothesis. 

Kappa-carrageenan forms a tight-knit molecular network that results in 

the formation of a strong homogenous gel matrix. Since real food is not 

homogeneous, a degree of structural complexity was achieved in the samples by 

manipulating κ-carrageenan gels using LBG or sodium alginate to form mixed 

gels. Incorporation of LBG can strengthen κ-carrageenan’s continuous network, 

promoting elastic properties and reducing syneresis. This synergistic interaction is 

attributed to the ability of LBG to form stable cross-links with κ-carrageenan 

(Stading and Hermansson 1993). On the other hand, sodium alginate is known to 

interfere with the incipient coil-to-helix transition during the formation of the κ-

carrageenan gel, and thus the sodium alginate + κ-carrageenan mixture is 

expected to create a weaker mixed gel (Laguna and Sarkar 2016). To add another 

dimension to the structural complexity, a level of inhomogeneity was introduced 

in the κ-carrageenan gels by inclusion of calcium alginate beads of different 

particle sizes, where the latter behaved as “inactive filler particles” (Laguna and 

Sarkar 2016). Presence of calcium alginate beads would likely lead to a decrease 
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of mechanical strength due to interruption of the continuous κ-carrageenan 

network by these beads acting as structural defects. To our knowledge, this is the 

first study that attempts to examine the relationship between rheology, tribology 

and sensory perception in hydrogels and findings from this study should provide 

useful information for the design of novel foods with specifically tailored oral 

texture and sensory properties. 

4.2. Materials and methods 

4.2.1. Materials 

Food grade quality kappa-carrageenan, locust bean gum and sodium alginate 

were purchased from Special Ingredients Ltd (Chesterfield, UK). Green food 

colouring was obtained from AmeriColor (Placentia, USA) and American 

peppermint extract was purchased at a local supermarket (Leeds, UK). Potassium 

chloride was purchased from Minerals Water Ltd (Purfleet, UK) and calcium 

chloride from VWR International (Leuven, Belgium). Additionally, sodium 

chloride, potassium phosphate, potassium citrate, uric acid sodium salt, urea, 

lactic acid sodium salt, and porcine gastric Mucin Type II were obtained from 

Sigma-Aldrich (St. Louis, USA). All materials were used without further 

purification. Demineralised water was used in preparation for all the gels and the 

artificial saliva formulation. 

4.2.2. Preparation of the hydrogels 

The composition of the hydrogels is shown in Table 4.1. Visual images of the 

seven hydrogels are shown in Supplementary Figure B.1. Typically 400 g of 

sample was prepared and poured into petri-dishes (150 g gel per petri-dish), and 
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then kept overnight at 4 °C. Cylindrical pieces of the hydrogels were cut out from 

the petri-dish using a circular cookie cutter (diameter 25 mm, height 10 mm), and 

used as such for all measurements. 

Table 4.1. Final composition of the hydrogels. 

Hydrogel 

samplesi 

κ-

carrageenan 

(wt%) 

Locust 

bean gum 

(wt%) 

Na-

alginate 

(wt%) 

Ca-

alginate 

beads 

(wt%) 

Water 

(wt%) 

2κC 2    97 

3κC 3    96 

2.25κC0.75LBG 2.25 0.75   96 

1.5κC0.5NaA 1.5  0.5  97 

1.6κC0.2CaA1000 1.6   0.2 97 

1.6κC0.2CaA300 1.6   0.2 97 

2.4κC0.2CaA300 2.4   0.2 96 

                                                 

i All hydrogels contained 0.5 wt% green food colouring and 0.5 wt% peppermint flavouring. The 

two κ-carrageenan hydrogels contained 0.145 wt% KCl. The composition of the mixed hydrogels 

containing Ca-alginate beads was determined based on the ratio between κ-carrageenan gel matrix 

(2 or 3 wt%) and Ca-alginate beads (1 wt%), irrespective of bead size. 

4.2.2.1. Kappa-carrageenan hydrogels 

For preparation of kappa-carrageenan hydrogels (κC), appropriate quantities of 

κC were dispersed in a 0.2 M potassium chloride (KCl) solution and stirred for 

30 min to ensure maximum hydration. Then, the solution was heated up in a 

shaking water bath at 98 °C for 1 h. The gelling solutions were allowed to cool 

down for 5 min, and finally the green colouring and peppermint flavouring were 

added before being allowed to set in petri-dishes. 
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4.2.2.2. Kappa-carrageenan/LBG or kappa-carrageenan/sodium alginate 

hydrogels 

The mixed hydrogels were prepared by mixing the appropriate quantities of 

powdered κC and LBG or sodium alginate (NaA) together before adding the 

respective powder mixtures to distilled water and mixing for 30 min. Then, the 

solutions were heated up in a shaking water bath at 98 °C for 1 h. The solutions 

were allowed to cool down for 5 min, and finally the green colouring and 

peppermint flavouring were added before being allowed to set in petri-dishes. 

4.2.2.3. Kappa-carrageenan/calcium alginate hydrogels 

The calcium alginate (CaA) beads were prepared first and then added as a layer in 

the κC hydrogels (before the gels were allowed to set) to create a level of 

inhomogeneity within the gels, based on a previous study (Laguna and Sarkar 

2016). The beads were prepared by making a 1 wt% NaA solution in water, and 

stirring for 1 h to ensure complete hydration. Calcium chloride (CaCl2) solutions 

of 0.01 M and 0.05 M were prepared to make the 300 μm and 1000 μm sized 

beads, respectively. The 1 wt% NaA solution was passed through a Buchi 

Encapsulator B-390® (Buchi UK Ltd, Chadderton, UK) with a vibrating nozzle 

and then dropped into the appropriate CaCl2 solutions while being stirred to 

create the CaA beads. A vibrating nozzle of 300 μm (frequency 500 Hz, air 

pressure 250 mbar) or 1000 μm (frequency 700 Hz, air pressure 300 mbar) was 

used depending on the required bead size. The beads were allowed to set in the 

CaCl2 solution at room temperature for 30 min under constant stirring. The beads 

were subsequently washed thrice with distilled water and then air-dried. 

Meanwhile, the κC solution was prepared by dissolving the appropriate amount in 
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distilled water and mixing for 30 min. Then, the solution was heated up in a 

shaking water bath at 98 °C for 1 h and allowed to cool down for 5 min followed 

by adding the green colouring and peppermint flavouring. The appropriate 

amount of CaA beads was weighed and added to the petri-dish and the κC gels 

solution was poured, before allowing the gel to set similar to the preparation 

method of the aforementioned hydrogels. 

4.2.3. Texture analysis 

Uniaxial single compression tests were carried out using a TA-TX2 Texture 

Analyser (Stable Micro Systems Ltd., Surrey, UK), attached with a 50 kg load 

cell. In the compression test, the samples were compressed using a cylindrical 

probe (diameter 59 mm). The tests were carried out at 22 °C, at a constant speed 

of 2 mm/s and the deformation level was set at 80 % strain. At least three repeats 

were recorded for each gel on at least four different gel preparation days. The 

software Exponent (TEE32, v6.1.9.0, Stable Micro Systems Ltd., Surrey, UK) 

was used to obtain the force-distance curves, and the fracture mechanics were 

calculated from these curves. The fracture properties were determined at the 

maximum point of the stress-strain curves. The fracture energy was determined as 

the area under the curve up to the fracture point (Peleg 1984). The initial slope of 

all samples was determined up to a stress of 500 Pa, as this was considered within 

the viscoelastic limit. 

4.2.4. Preparation of artificial saliva 

Artificial saliva was prepared according to the method previously described by 

Sarkar, Goh and Singh (2009). Briefly, artificial saliva was composed of 1.59 g/L 

NaCl, 0.64 g/L K2HPO4, 0.2 g/L KCl, 0.31 g/L K3C6H5O7.H2O, 0.02 g/L 
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C5H3N4O3Na, 0.2 g/L H2NCONH2, 0.15 g/L C3H5O3Na and 3 g/L mucin. The pH 

of the saliva solution was adjusted to pH 6.8 using 1 M NaOH. Noteworthy, 

porcine mucin was used in the artificial saliva to simulate the human salivary 

viscosity at comparable concentrations present in human saliva. However, bovine 

submaxillary mucin could be a promising alternative considering its ability to 

form more elastic films and its higher lubricating properties particularly in 

elastomeric contact surfaces (Madsen et al. 2016). 

4.2.5. Simulated oral processing 

The hydrogels were broken down mechanically in the presence of artificial saliva 

to mimic oral processing. The samples were put into a mechanical blender 

(Andrew James UK Ltd, Bowburn, UK) with artificial saliva in a ratio 2:1 w/w 

and homogenized for 15 seconds at low speed (speed 1). Depending on the 

hydrogel tested, the obtained particle size was < 2-5 mm. After grinding, the gel 

was mixed with artificial saliva (final sample to saliva ratio 4:3 w/w) and left to 

rest for 30 min. It is worth highlighting that the amount of saliva incorporated in 

the food bolus has varied across studies from as low as 8 wt% saliva in vivo in 

emulsion gels (Devezeaux de Lavergne et al. 2015b) to 18 wt% artificial saliva 

incorporation in vitro to create model hydrogel boli (Ishihara et al. 2011) to 

50 wt% simulated saliva addition for food matrices in case of harmonized 

INFOGEST static model (Minekus et al. 2014). For our study, we used a ratio of 

4:3 (w/w) sample:saliva to have the same level of saliva incorporation across all 

samples to enable comparison, though we highlight the limitation that during oral 

processing (in vivo), the amount of saliva added to the samples would not be the 

same across the different hydrogels with varying degrees of complexity. 
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The broken down hydrogel:saliva mixture samples, from here on defined 

as ‘gel bolus fragments’, were used for the rheological and tribological 

measurements. To understand the thin-film properties, the tribological properties 

were also measured for the samples where any large gel particles (> 500 µm) 

were filtered out, from here on defined as ‘gel bolus filtrate’. 

4.2.6. Apparent viscosity 

The apparent viscosities of the gel fragments in presence of artificial saliva were 

measured using a rheometer (Kinexus Ultra+, Malvern Instruments Ltd, 

Worcestershire, UK) equipped with a plate-plate geometry (diameter 60 mm). 

The gap size (ranging from 0.01-0.15 mm) was individually adjusted for each gel, 

depending on their particle size once broken down. To prevent evaporation, the 

samples were sealed off with a thin layer of silicone oil. Flow curves were 

obtained for all gel samples after simulated oral processing at shear rates ranging 

from 0.0001 to 100 s-1 at 37 °C. A minimum of three measurements were 

performed for each sample. Associated Ostwald de Waele power law 

(equation 4.1) was fitted to the viscosity of each sample: 

 

𝜂 = 𝐾𝛾𝑛−1        (4.1) 

 

where η is the apparent viscosity, K is the consistency index (Pa s) and n is the 

behaviour index. These parameters were utilised in the determination and 

validation of the corresponding viscosities calculated by entrainment speeds and 

permitted friction coefficients to be plotted against the entrainment speed and 

viscosity products as described in the tribology section. 
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It is noteworthy that detailed rheological characterization of the 

viscoelasticity of the hydrogels and the corresponding bolus fragments was not 

carried out in this study. 

4.2.7. Oral tribology 

The oral tribological properties of the gel bolus fragments and gel bolus filtrates 

were determined using a ball-on-disc set up in a Mini Traction Machine (MTM2, 

PCS Instruments, London, UK). The gel bolus samples were prepared according 

to the method described above. Commercially available polydimethylsiloxane 

(PDMS) ball (diameter of 19 mm, MTM ball Slygard 184, 50 Duro, PCS 

Instruments, London, UK) and disc (diameter of 46 mm, thickness of 4 mm, 

MTM disc Slygard 184, 50 Duro, PCS Instruments, London, UK) were used for 

the measurements (surface roughness of PDMS tribopairs, Ra < 50 nm). The 

PDMS surface contacts were kept a minimum of 2 h submerged in artificial saliva 

to create a mucin film with the intent to simulate the oral conditions. The sample 

was loaded into the pot equipped with the PDMS disc; the ball was lowered onto 

the disc and then the pot was covered with a lid. The PDMS ball and disc were 

rotated at different speeds to create a relative motion between the surface of the 

ball and the disc, resulting in a slide-to-roll ratio (SRR) of 50%, to impart both 

rolling and sliding motions (Sarkar et al. 2017) and the temperature was 

maintained at 37 °C, simulating oral conditions. 

Two parameters have been used for both the ball speed and the disc speed: 

one with Vball > Vdisc and one with Vball < Vdisc, while keeping the SRR constant. 

The entrainment speed was calculated as the average of the two measures to 

remove any offset errors in the lateral force measurement, as well to remove any 
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friction that did not reverse sign when the speeds were reversed, such as rolling 

friction (Bongaerts, Fourtouni and Stokes 2007). Thus, the entrainment speed was 

defined as: 

 

𝑈̅ =
1

2
(𝑈1 + 𝑈2)       (4.2) 

 

where U is the entrainment speed and U1 and U2 are the velocities of the two 

contacting surfaces (i.e. ball and disc). The rolling speed was reduced from 1000 

to 1 mm/s and friction forces were measured to obtain a Stribeck curve. All tests 

were performed at a load of 2 N, as this is a good representative value of loads 

occurring in the mouth while maintaining sensitivity in the tribometer. Average 

and standard deviation were calculated from three measurements on replicate 

samples. Following the studies by de Vicente, Stokes and Spikes (2005) and 

Bongaerts, Fourtouni and Stokes (2007), we utilized the Stribeck ‘master curve’ 

(equation 4.3) to enable comparison of sample friction coefficient μ against the 

product of entrainment velocity U and sample viscosity η: 

 

𝜇𝑡𝑜𝑡𝑎𝑙 = 𝜇𝐸𝐻𝐿 + (
𝜇𝑏−𝜇𝐸𝐻𝐿

1+(
𝑈𝜂

𝐵⁄ )
𝑚)      (4.3) 

 

where 

 

𝜇𝐸𝐻𝐿 = 𝑘(𝑈𝜂)𝑛        (4.4) 
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and 

 

𝜇𝑏 = ℎ(𝑈𝜂)𝑙        (4.5) 

 

where, (k, n) and (h, l) are the elastohydrodynamic lubrication (EHL) and 

boundary layer power law coefficient and index respectively. Here, B relates to 

the threshold value of Uη for boundary friction and m represents the mixed 

regime exponent. It is worth pointing out that the flow curves (in the above 

section) were only determined for gel fragments to relate to the early stages of 

oral processing where bulk properties tend to dominate. However, friction 

coefficients were determined for both bolus fragments and filtrates, latter 

resemble the thin layer formed between the contact surfaces (e.g. tongue and 

palate) in later stages of oral processing, where surface properties dominate (Chen 

and Stokes 2012; Stokes, Boehm and Baier 2013; Laguna and Sarkar 2017). 

4.2.8. Descriptive sensory analysis 

A panel was recruited from the University of Leeds to participate in a descriptive 

sensory analysis. The panel was selected and familiarized with the hydrogel 

samples followed by generation of attributes and introduction to the rating scale. 

The study was reviewed and approved by the Faculty Research Ethics Committee 

at the University of Leeds (ethics reference MEEC 16-006). A group of 11 

participants (4 male, mean (± SD) age = 28.8 (± 5.5) years, range 21-40 years) 

was trained to familiarize them with the different hydrogel samples and to create 

a list of relevant attributes related to the chewing as well as the lubrication aspects 

of the gels. 



- 119 - 

 

Three training sessions of 1 h each were conducted with the seven 

hydrogel samples. During the first training session, the hydrogels were tasted to 

familiarise the participants with the type of samples, and participants were 

encouraged to come up with terms to describe the different texture aspects of the 

gels. Subsequently, an extensive list of potential attributes related to both the 

chewing and lubrication aspects was introduced to the participants and their 

applicability and definitions were discussed in the group. During the second 

session, the list of attributes generated during the first training session was further 

specified to describe the difference between the textural aspects of the gels as best 

as possible and to reach a consensus within the panel. Finally, in the last training 

session the rating scales were introduced and a group discussion arrived at 

consensus on how to use the scales for the different attributes in the included 

samples and the best order in which to rate these attributes. 

After completion of the training, the samples were evaluated in individual 

sensory test booths under normal lighting conditions, with the samples presented 

in randomised order in triplicate in a balanced block design divided over two test 

days (with 11 samples rated on day one and 10 samples on day two). All samples 

were prepared 24 h prior to the sensory assessment, presented in individual cups 

labelled with a three-digit code, and moved to room temperature 20 min before 

the start of the test. A practice sample was provided on each test day to get a 

sense of the samples before the start of the test due to the novelty of these 

hydrogels. As determined by the training sessions, nine different texture attributes 

were rated for each sample in a fixed order (see Table 4.2). 
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Table 4.2. List of attributes and descriptions as included in the sensory 

analysis. 

Textural 

attributes from 

sensory profiling 

Definition 

Smooth Degree of abrasiveness of the products surface as perceived 

by the tongue 

Firm The force needed to compress the sample between tongue 

and palate (hardness) 

Elastic The ease in which the sample bounces back after chewing 

(springiness)/force with which the sample returns to its 

original shape after partial compression (without fracture) 

between the tongue and palate 

Chewy The amount of chews needed to break down the sample to 

be ready for swallowing 

Cohesiveness Degree to which the samples deforms/holds together rather 

than crumbles/breaks/ruptures (it conforms to the palate 

rather than shears) 

Pasty The sensation of the presence of wet/soft (immiscible) 

solids in the mouth (muddy) 

Slippery The ease in which the sample slides through the mouth 

during chewing (slimy) 

Salivating The amount of saliva released during chewing 

Melting The amount of sample that dissolves/disappears over time 

(loss of structure in the mouth) rather than cracking or 

breaking apart 

The intensities of the different attributes were rated on an unstructured 

line scale of 100 mm, as presented with the software CompuSense (v5.0, Ontario, 

Canada), anchored from ‘not at all’ (0) to ‘very’ (100). All panellists followed the 

same tasting procedure, putting the whole sample in the mouth. It was optional 

for the panellists to choose whether to swallow the sample at the end or spit it out 

in provided cups. Between each sample, panellists were instructed to rinse their 

mouth with water and eat a cracker to cleanse their palate. Data was extracted 
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from the software and exported to SPSS (IBM® SPSS® Statistics, v24, SPSS Inc, 

Chicago, USA) for analysis. 

4.2.9. Statistical analysis 

Mean values and standard deviations (SD) were calculated using Excel 

(Microsoft Office 2010). For each sample, sensory attribute and assessor in the 

sensory analysis, the panel performance was checked to make sure there were no 

clear outliers or obvious errors using the software PanelCheck (v1.4.2). The panel 

agreement, discrimination and repeatability among assessors were assessed using 

Tucker-1 plots, F-plots and MSE plots, respectively. Panel agreement was 

considered high when all assessors were clustered around the same point on the 

outer ellipse of the Tucker-1 plot. The F-plots showed the discriminative ability 

for each panellist, with the higher values signifying better sample discrimination, 

and the MSE plot shows the mean square error values for each panellist as a 

measure of repeatability. The lower the repeatability of an assessor, the higher the 

MSE values (Tomic et al. 2010). The overall panel performance was considered 

to be acceptable, and no data was removed. 

In addition, Principal Component Analysis (PCA) was conducted on the 

nine sensory attributes with orthogonal rotation (Direct Oblimin). The Kaiser-

Meyer-Olkin measure verified the sampling adequacy for the analysis: KMO = 

0.788, which is well above the acceptable limit of 0.5 (Field 2017). Bartlett’s test 

of sphericity χ² (36) = 1197.985, p < .001, indicated that correlations between 

items were sufficiently large for PCA. An initial analysis was run to obtain 

eigenvalues for each component in the data. Two components had Eigenvalues 
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over Kaiser’s criterion of 1 and in combination explained 64.1 % of the variance, 

and thus were retained in the final analysis. 

In order to study the differences in samples for all selected attributes, 

analysis of variance (one-way ANOVA) was applied to the ratings data from the 

sensory panel with the samples as fixed factor; least significant differences were 

calculated by Bonferroni’s post-hoc test. Similarly, differences between samples 

for the mechanical analyses (uniaxial compression test of hydrogels, flow curves 

of bolus fragments, friction coefficients of gel bolus fragments and filtrates) were 

determined with one-way ANOVA and Bonferroni post-hoc testing. Pearson's 

product moment correlations were calculated to assess the simple relationships 

between the different instrumental and sensory characteristics of the hydrogels. 

All statistical analyses were performed in SPSS (IBM® SPSS® Statistics, v24, 

SPSS Inc, Chicago, USA), and statistical significance level was set at p < 0.05. 

4.3. Results and discussion 

4.3.1. Mechanical characterisation of hydrogels and simulated boli 

4.3.1.1. Texture analysis of the hydrogels 

The fracture stress and strain of the seven hydrogels are shown in Figure 4.1. The 

samples can be categorized into three groups: 1) high fracture stress/high fracture 

strain, 2) intermediate fracture stress/fracture strain, and 3) low fracture stress/low 

fracture strain. Group 1 included the two κC samples (2 wt% and 3 wt%) and the 

κC/LBG sample, averaging a fracture stress of 190 kPa and a fracture strain of 

1.17. Group 2 included the samples containing the CaA beads, with an average 

fracture stress and fracture strain of 71 kPa and 0.93, respectively, where the 
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particle size of CaA beads (300 or 1000 µm) did not show any significant 

contribution to the fracture mechanics at equivalent biopolymer concentration 

(p > 0.05). Group 3 consisted of the κC/NaA hydrogels with an average fracture 

stress of 27 kPa and a fracture strain of 0.70. The high and low fracture stress 

samples varied by a factor 7 and the samples in the low and high fracture strain 

groups varied by a factor 1.8. The fracture energy of the hydrogels, shown in 

Table 4.3, also indicate that the samples were categorized in similar groups as in 

Figure 4.1. Based on these groupings, Figure 4.2 shows a schematic 

representation of the structures of these hydrogels. 

 

Figure 4.1. Fracture stress and strain of 2κC (○), 3κC (▲), 2.25κC0.75LBG  

( ), 1.5κC0.5NaA ( ), 1.6κC0.2CaA1000 ( ), 1.6κC0.2CaA300 (►) and 

2.4κC0.2CaA300 ( ) hydrogels in uniaxial compression test. Data points 

represent the average of at least three measurements on four different 

preparation days. Error bars indicate the standard deviation. 
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Table 4.3. Textural properties of the hydrogels obtained from uniaxial 

compression test. A different lower case letter denotes a statistically 

significant difference (p < 0.05). 

Samples 
Fracture energy (kPa) 

Mean SD 

2κC 91.52b 8.31 

3κC 147.87a 17.75 

2.25κC0.75LBG 71.13c 43.74 

1.5κC0.5NaA 6.54f 0.98 

1.6κC0.2CaA1000 26.60e 5.11 

1.6κC0.2CaA300 22.39ef 7.03 

2.4κC0.2CaA300 47.27d 12.85 

 

Figure 4.2. Schematic representation of the hydrogels. 

As expected, the fracture stress followed a power law increase with 

increased concentration of κC in native κC hydrogels (Figure 4.1), allowing the 

formation of a three-dimensional network structure (as shown schematically in 

Figure 4.2) induced by the supramolecular aggregation of the double helices 

(Laguna and Sarkar 2016). Interestingly, the fracture stress of the 

2.25κC0.75LBG hydrogel was significantly lower than that of 3κC hydrogel at 

equivalent total biopolymer concentration (p < 0.05). This is not in line with 

previous findings, where it has been reported that LBG has the ability to 
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strengthen the κC network by forming multiple junction zones between LBG un-

substituted mannan backbones and 𝜅C helices (Devezeaux de Lavergne et al. 

2016; Dea and Morrison 1975; Dunstan et al. 2001). A possible explanation for 

this could be the difference in total biopolymer concentrations and the ratio 

between κC and LBG used in this study versus previous reports. Interestingly, 

Czaczyk, Olejnik and Trojanowska (1999) also observed similar weakening effect 

of LBG on κC hydrogels at 2-3 wt% total biopolymer concentration in a ratio of 

κC: LBG of 2:1 w/w i.e. similar to the range used in this study. 

Unsurprisingly, the presence of NaA (1.5κC0.5NaA hydrogel) resulted in 

significant weakening of the κC gel (Figure 4.1), which might be attributed to the 

segregative interaction between NaA and κC, disrupting the coil-to-helix 

transition during 𝜅C hydrogel formation (Figure 4.2), finally leading to a phase 

separated κC/NaA hydrogel (Goh, Sarkar and Singh 2008; Goh, Sarkar and Singh 

2014; Laguna and Sarkar 2016). On the other hand, the presence of CaA beads 

(1.6κC0.2CaA300, 1.6κC0.2CaA1000) contributed to considerable reinforcement of 

the κC hydrogel as compared to that of the presence of NaA (1.5κC0.5NaA). 

Introducing defects due to the presence of these CaA beads as “inactive filler 

particles”, resulted in a less defined network (Figure 4.2) with less fracture stress 

as compared to that of a native κC hydrogel (Figure 4.1). Based on the texture 

analysis results, it can be concluded that the chosen hydrogel types covered a 

wide range of deformation behaviour, which can be hypothesized to have 

different sensory properties, particularly in terms of chewing-related attributes. 
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4.3.1.2. Apparent viscosity of the hydrogel boli 

Figure 4.3 shows the apparent viscosity (η) of the bolus particles derived from 

simulated oral processing of the hydrogels in the presence of artificial saliva at 

37 °C. All bolus fragments in presence of artificial saliva showed extreme shear 

thinning behaviour, with slight indications of plateau values being reached only at 

low shear rate limits (10–3 s–1). Such pseudoplastic behaviour is in agreement with 

that of protein-based microgels, where latter showed similar ranges of η values as 

a function of volume fraction and shear rate (Sarkar et al. 2017). 

 

Figure 4.3. Flow curves of artificial saliva (), 2κC (○), 3κC (▲), 

2.25κC0.75LBG ( ), 1.5κC0.5NaA ( ), 1.6κC0.2CaA1000 ( ), 1.6κC0.2CaA300 

(►) and 2.4κC0.2CaA300 ( ) gel bolus fragments as a function of shear rate 

at 37 °C. Data points represent the average of at least three measurements. 

Error bars indicate the standard deviation. 
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In addition, high values of η persisted in boli of both κC hydrogels and 

mixed hydrogels even after subjection to fairly high i.e. orally relevant shear of 

50 s–1. As expected, due to the aforementioned segregative interaction between 

κC and NaA, the bolus of 1.5κC0.5NaA hydrogels were one to two orders of 

magnitude lower in η as compared to that of the rest of the hydrogels (κC, 

κC/LBG and κC/CaA) even though all the systems were highly shear thinning. It 

is worth noting that at oral shear (50 s-1), η of 1.5κC0.5NaA hydrogel bolus 

fragments and the rest of the (κC, κC/LBG and κC/CaA) hydrogel bolus 

fragments was three or four orders of magnitude higher than artificial saliva 

(Figure 4.3) or real human saliva, respectively (Bongaerts, Rossetti and Stokes 

2007). This suggest that the rheology might play an important role in driving the 

load bearing capacity of these gel bolus fragments during oral tribology 

experiments and consequently sensory perception. However, the viscosity results 

were insufficient to identify the underlying differences in the friction coefficients 

(if any) between κC, κC/LBG and κC/CaA hydrogel bolus, as the viscosities were 

not significantly different between these gel bolus fragments at orally relevant 

shear rates (p > 0.05). Furthermore, one might investigate how the viscoelastic 

parameters of the bolus fragments may impact the load bearing aspects and oral 

processing attributes, which is beyond the scope of this study and needs to be 

studied in future. 

4.3.1.3. Oral tribology of the hydrogel bolus fragments and filtrates 

It is well recognized that the rheological properties (bulk phase) dominate the 

textural sensation only in the early stages of oral processing. It is now postulated 

that oral tribology (surface properties) dictates the thin-film properties and thus 
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the oral sensation in the later stages of oral processing where the food and/or 

food-saliva mixture interact with the oral surfaces (Stokes, Boehm and Baier 

2013; Chen and Stokes 2012; Pradal and Stokes 2016; Laguna and Sarkar 2017). 

To understand this surface phenomenon, the coefficient of friction (μ) of both gel 

bolus fragments and gel bolus filtrate (i.e. the thin-film) when sheared between 

smooth hydrophobic PDMS-PDMS ball and disc tribopairs was plotted as a 

function of entrainment speed as shown in Figures 4.4a and 4.4b, respectively. 

Although attempts were made to pre-adsorb artificial salivary films to 

hydrophobic PDMS substrates, there was no change in the water contact angle (θ) 

of the substrates (data not shown) and the PDMS surface remained hydrophobic 

(θ = 108 ○) as studied previously (Sarkar et al. 2017; Yakubov et al. 2009). 

The plateau boundary (Ū ≤ 10 mm/s) and mixed regimes (10 < Ū ≤ 300 

mm/s) of lubrication could be clearly identified in the Stribeck curves of the 

measured samples (Figures 4.4a and 4.4b). Considering the relevance of 

biologically relevant speeds, such as the speed of the human tongue being ~ 20 

mm/s (Steele and van Lieshout 2009), we have focussed only on boundary and 

mixed lubrication regimes. The artificial saliva, which served as a control, 

showed a classical Stribeck profile with µ varying from 0.3–0.5 in the boundary 

regime, falling off by one-order of magnitude in the mixed regime. This is 

consistent with ranges of values found in a previous study using the same 

artificial saliva formulation (Laguna et al. 2017a). 
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Figure 4.4. Friction coefficients of 2κC (○), 3κC (▲), 2.25κC0.75LBG ( ), 

1.5κC0.5NaA ( ), 1.6κC0.2CaA1000 ( ), 1.6κC0.2CaA300 (►) and 

2.4κC0.2CaA300 ( ) gel bolus fragments (a) and gel bolus filtrates (after 

filtering out the larger fragments) (b), respectively, after simulated oral 

processing in presence artificial saliva (■), at 37 °C as a function of 

entrainment speed. Data points represent the average of at least three 

measurements. Error bars indicate the standard deviation. 
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In the boundary conditions, the PDMS ball and disc appeared to be in 

near-adhesive PDMS-PDMS (intimate) contact, where the entrainment of the 

hydrogel bolus fragments or filtrates was rather poor (Figures 4.4a and 4.4b). 

Interestingly, gel fragments containing higher concentration of κC (3κC), LBG 

(2.25κC0.75LBG) and alginates as beads (1.6κC0.2CaA1000, 1.6κC0.2CaA300, 

2.4κC0.2CaA300) showed some sort of entrainment even in the boundary regime 

reducing the friction force significantly (< 0.4 N) as compared to that of artificial 

saliva (p < 0.05) (Table 4.4). Gong & Osada (1998) described a “repulsion–

adsorption model” to explain friction in hydrogels, which suggests that the 

friction force is the sum of elastic force and viscous force, which can be applied 

to these gel bolus fragments. The elastic force arises from anchorage of the 

biopolymer to the substrate (adhesive), whereas the viscous force results from the 

hydration of the polymer (repulsive) (Stokes et al. 2011; Gong and Osada 1998; 

Gong 2006). At a first glance, it seems that the reduction in μ in the boundary 

regime of these gel fragments (3κC, 2.25κC0.75LBG, 1.6κC0.2CaA1000, 

1.6κC0.2CaA300, 2.4κC0.2CaA300) might be associated with interactions between 

κC, LBG, NaA or CaA hydrogels and the PDMS substrates allowing biopolymer 

adsorption to some degree. However, this is somewhat unlikely considering the 

high hydrophobicity of PDMS (Sarkar et al. 2017) and hydrophillicity of these 

gels. 

Hence, the relevance of ‘opposing substrate’ in friction in this case is 

worth recognizing (Gong et al. 2001). Note, both κ-carrageenan and alginates are 

highly negatively-charged biopolymers at pH 6.8. Thus, repulsions from both 

opposing PDMS substrates (artificial saliva coated i.e. negatively charged) 

(Sarkar et al. 2017; Sarkar, Goh and Singh 2009) as well as the opposing gel 
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surfaces (i.e. inter-gel repulsion between negatively-charged gel bolus fragments) 

(Gong and Osada 2002; Bongaerts, Cooper-White and Stokes 2009; Gong, 

Kagata and Osada 1999) are highly likely. Such repulsive interactions against the 

opposing artificial saliva coated PDMS substrate and/or the gel fragment 

surfaces, might have enabled these hydrogel fragments to remain hydrated 

forming a thicker solvent layer of ‘lubricant’, thus providing an effective barrier 

to the asperity contacts under the low load. This is further justified by the high 

viscosity values of these specific gel fragments (Figure 4.3) suggesting viscous 

force as the driving factor and separating the PDMS contacts effectively 

(Figure 4.4a). 

Table 4.4. Friction force (N) for the gel bolus fluid (thin liquid) after filtering 

out the larger fragments at 3 mm/s (boundary lubrication regime) and 50 

mm/s (mixed lubrication regime) entrainment speed and 37 °C. The samples 

were prepared using simulated oral processing in the presence of artificial 

saliva, and compared to artificial saliva as a control measure. A different 

lower case letter denotes a statistically significant difference (p < 0.05). 

 Samples 

Friction force of the gel bolus 

fragments (N) 

Friction force of the gel bolus 

filtrate (N) 

Boundary 

lubrication 

regime  

(3 mm/s) 

Mixed 

lubrication 

regime  

(50 mm/s) 

Boundary 

lubrication 

regime  

(3 mm/s) 

Mixed 

lubrication 

regime (50 

mm/s) 

Mean SD Mean SD Mean SD Mean SD 

Artificial saliva 1.097a 0.211 0.585a 0.071 1.097a 0.211 0.585a 0.071 

2κC 0.978ab 0.179 0.096b 0.024 0.928ab 0.067 0.469a 0.069 

3κC 0.348cd 0.146 0.061b 0.010 1.042a 0.047 0.515a 0.059 

2.25κC0.75LBG 0.387cd 0.076 0.049b 0.018 0.498bc 0.301 0.172b 0.036 

1.5κC0.5NaA 1.046ab 0.125 0.067b 0.011 0.386c 0.143 0.024b 0.007 

1.6κC0.2CaA1000 0.687bc 0.135 0.080b 0.017 1.141a 0.103 0.135b 0.055 

1.6κC0.2CaA300 0.338cd 0.168 0.015b 0.002 1.393a 0.003 0.113b 0.039 

2.4κC0.2CaA300 0.104d 0.026 0.012b 0.003 0.313c 0.112 0.038b 0.018 
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As the sliding speed of the disc started to increase, µ decreased in all 

samples (Figures 4.4a and 4.4b) and started to fill the gap between the surface 

asperities of the tribopairs in the mixed lubrication regime. The inclusion or 

exclusion of gel fragments or gel filtrate largely depends on the gap between the 

contacting surfaces, the size of the gel fragments compared to the size of the gap 

and asperities, as well as the interactions of these gel fragments with the PDMS 

surfaces. In the case of gel bolus fragments containing beads (1.6κC0.2CaA1000, 

1.6κC0.2CaA300, 2.4κC0.2CaA300) (Figure 4.4a), the µ was one-order of 

magnitude lower than artificial saliva (p < 0.05). The beads were larger in size as 

compared to the asperities of the PDMS substrates (Ra = 50 nm) and thus the 

beads released from the gel fragments during simulated oral processing might 

have rolled into the contact zone between the PDMS tribopairs, thus reducing µ 

values. It is tempting to propose a “ball-bearing mechanism” for the reduction in 

µ using CaA, such mechanism has been previously postulated for whey protein 

particles and protein microgel particles (Sarkar et al. 2017; Liu et al. 2016b). 

To test the possibility of this ball-bearing mechanism occurrence, the 

Hertz pressure effects for the CaA beads of 1000 and 300 μm were calculated 

with the assumption that 10% of the beads were entrained between the PDMS 

ball and disc surfaces (Johnson 2009; Johnston et al. 2014; de Vicente, Stokes 

and Spikes 2005; Puttock and Thwaite 1969). The Young’s modulus for CaA 

beads was assumed to be 20 kPa, based on previous studies (Larsen et al. 2015). 

From Hertz theory, the spherical contact area of the PDMS ball and disc was 

calculated: 
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𝜋𝛼2 = 1.31 (
𝑅′𝐹

𝐸′
)

0.67

       (4.6) 

 

where, α is the surface contact, R’ is the reduced radius of the PDMS ball, F is the 

force for each particle entrained between the two contacts and E’ is the reduced 

elastic modulus. The E’ was defined as: 

 

2

𝐸′
=

1−𝜈1
2

𝐸1
+

1−𝜈2
2

𝐸2
        (4.7) 

 

where, ν is the Poisson’s ratio, assumed to be 0.5, and E is the Young’s modulus 

(de Vicente, Stokes and Spikes 2005). 

The number of particles in the contact area was calculated as: 

 

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =
𝜑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠×𝐴

𝜋𝑅2
       (4.8) 

 

with φ being the concentration of particles in the contact zone, A the area of 

contact (πα2) and R the radius of the particles. Hence, the force per particle was 

calculated as: 

 

𝐹𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝐹𝑡𝑜𝑡𝑎𝑙

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
       (4.9) 
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with F the total force applied and N the number of particles. Finally, the spherical 

contact area was determined using the approach of distant points (Johnson 2009): 

 

𝛼 = (
9𝐹2

16𝑅′𝐸′2)
1

3⁄

       (4.10) 

 

with E’ defined as: 

 

𝐸′ = 2 (
1−𝜈1

2

𝐸1
+

1−𝜈2
2

𝐸2
)

−1

      (4.11) 

The results shown in Table 4.5 clearly indicate that the CaA particles 

were not capable of rolling as α >> size of the beads, even with 10% particles 

being entrained between the PDMS surfaces. Interestingly, the 1000 μm CaA 

beads were too large to actually be entrained in the contact zone. These 

calculations indicate that there was no “ball-bearing effects” using CaA 

irrespective of the particle size studied, and the reduction in µ could be explained 

by the rheological behaviour (Figure 4.3) of the gel boli containing beads 

forming the viscous layer as the ‘lubricant’, as discussed previously. Also, not to 

underestimate, that the amount of water within these gel beads might also play an 

important role in exhibiting low friction (Gong and Osada 2002). The water 

might be squeezed out the gel beads forming a thin-film and may serve as a 

‘boundary lubricant’. 

In case of the gel filtrates (Figure 4.4b), the Stribeck curve of the κC 

hydrogels almost overlapped irrespective of the biopolymer concentration in both 
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boundary and mixed lubrication regimes (p > 0.05). Similarity in friction forces 

for both 2κC and 3κC hydrogel bolus filtrates and artificial saliva irrespective of 

entrainment speeds (Table 4.4) suggests that the hydrogel bolus filtrates lacked 

the ability to migrate into and replenish the confined region in the event that the 

two PDMS shearing surfaces were almost in direct contact. This is unlike the 

behaviour in Figure 4.4a, where κC gel bolus fragments showed entrainment 

driven by the viscosity of the hydration layer created by the gel bolus fragments 

(Figure 4.3). As expected, such influence of rheology on tribology was not 

evident in the hydrogel bolus filtrates owing to the loss of the gel fragments 

particles during filtration (Figure 4.4b). In the mixed lubrication regime, the 

filtrates from hydrogel boli containing LBG (2.25κC0.75LBG), NaA 

(1.5κC0.5NaA) or CaA (1.6κC0.2CaA1000, 1.6κC0.2CaA300, 2.4κC0.2CaA300) 

contributed to significantly lower friction forces as compared to the artificial 

saliva (p < 0.05) (Table 4.4). This complies with the behaviour observed for the 

corresponding hydrogel bolus fragments (Figure 4.4a). Even after filtration, the 

spherical CaA beads might have been retained in the filtrate enabling some 

degree of entrainment (Table 4.5), or both gel fragments containing NaA and 

CaA were increasing the lubrication effect, possibly by ‘weeping out’ the water 

layer as a thin-film ‘boundary lubricant’ (Gong and Osada 2002). 

Table 4.5. Elastic compression of the CaA beads based on 10% particle 

entrainment. 

Samples Nparticle Fparticle (N) α (mm) 

1.6κC0.2CaA1000 0.5 3.90 18.3 

1.6κC0.2CaA300 5.7 0.35 5.5 

2.4κC0.2CaA300 5.7 0.35 5.5 
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In our study, the fitted values i.e. k = 0.0065, n = 0.55, h = 11, l = 0.075, B 

= 0.33·10 -4, m = 1.0 (see equation 4.3), gave a good fit with the Stribeck master 

curve as can be seen in Figure 4.5 (de Vicente, Stokes and Spikes 2005; 

Bongaerts, Fourtouni and Stokes 2007). Here it should be noted that since the 

samples were shear thinning (Figure 4.3), the viscosity multipliers were 

calculated at each entrainment velocity. This was achieved by fitting the 

entrainment speeds to the shear rate by use of a power law relation of the same 

format as equation 4.1, and which enabled calculation of the associated viscosity. 

In this study, entrainment speeds of 1 to 1000 mm/s translated to shear rates of 

0.1 - 100 s-1. This was validated to ensure the entrainment speeds did indeed 

coincide with shear rates and that the predicted viscosities agreed with the shear 

rate/viscosity Ostwald de Waele power law regressions relevant to each sample. 

As can be seen in the master curve (Figure 4.5), good agreement was 

achieved in the mixed regime and from the transitionary region into the EHL. 

However, in contrast to Newtonian lubricants (de Vicente, Stokes and Spikes 

2005; Bongaerts, Fourtouni and Stokes 2007), using the particulate hydrogel 

bolus fragments, the model failed in the boundary regime. This suggests that the 

hydrogel bolus particles had a different degree of entrainment in the boundary 

regime and the key mechanism of friction reduction in the boundary regime was 

due to opposing surface-mediated formation of a viscous layer of ‘gel fragments’ 

(Figure 4.4b). As one might expect, such layer formation varied as a function of 

sample inhomogeneity under shear conditions in confinement and samples with 

inhomogeneity indicated a limitation in the Stribeck representation in this regime. 
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Figure 4.5. Stribeck master curve for 2κC (○), 3κC (▲), 2.25κC0.75LBG ( ), 

1.5κC0.5NaA ( ), 1.6κC0.2CaA1000 ( ), 1.6κC0.2CaA300 (►) and 

2.4κC0.2CaA300 ( ) gel bolus fragments as a function of the product of 

viscosity and entrainment speed component (Uη). The black solid line is the 

best fit to the data using equation (4.3). 

4.3.2. Descriptive sensory analysis of the hydrogels 

Table 4.2 summarizes the sensory attributes generated by the sensory panel 

together with their definitions. Nine different texture attributes were selected that 

were perceived during oral processing of the hydrogels. With the first two 

principal components (PC), 64% of the variance in the data was explained and the 

PCA plot showed that attributes were clustered in three groups (Figure 4.6). The 

pattern matrix, Table 4.6, shows that PC1 included the attributes related to the 

chewing aspects: ‘firm’, ‘elastic’, ‘chewy’ and ‘cohesive’, as well as the inverse 
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of the attributes more related to lubrication: ‘pasty’ and ‘melting’. The PC2 was 

represented by attributes that could be considered in the oral lubrication domain: 

‘smooth’, ‘slippery’ and ‘salivating’ (Figure 4.6). At first bite, perceived 

firmness of a solid or semi-solid food is known to be related often to the fracture 

stress (Foegeding et al. 2011).  

 

Figure 4.6. Principal component analysis (PCA) of all texture attributes 

obtained in the descriptive sensory analysis. Principal component 1 (PC1) 

represents 48.5 % and PC2 15.6 % of the variance in the data. 
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Table 4.6. Pattern matrix from the Principal Component Analysis (PCA). 

The Oblimin with Kaiser Normalisation rotation method was applied and 

the rotation converged in 5 iterations. Highlighted in red shows the sensory 

attributes best represented in PC1 and PC2 (> 0.500). 

 PC 1 PC 2 

Smooth .098 .562 

Firm .803 .264 

Elastic .688 .219 

Chewy .809 .234 

Cohesive .671 .116 

Pasty -.797 .247 

Slippery -.109 .880 

Salivating .094 .682 

Melting -.926 .157 

In fact, in this study, for all the chewing-related attributes (see Figure 4.7), the 

hydrogels could be categorised into two key groups. Group 1) included the 

hydrogels with high fracture stress/high fracture strain (κC and κC/LBG gels) 

(Figure 4.1) that generally scored high on the chewing-related texture attributes, 

such as ‘firm’, ‘elastic’ and ‘cohesive’, and Group 2) included the hydrogels with 

low fracture stress/low fracture strain (κC/NaA and κC/CaA gels) that scored low 

on these attributes. As one might expect, the chewing-related texture attributes 

were strongly dominated by the concentration of κC i.e. higher concentration of 

κC (3wt%) resulted in more ‘firm’ and ‘chewy’ perception as compared to that 

created using lower concentrations (2 wt%) (p < 0.05). Similarly for samples 

containing beads of the same size (300 µm), a higher concentration of κC (2.4 

wt%) resulted in creating samples (2.4κC0.2CaA300) that scored on the higher end 

of the 100 mm scale and were more ‘firm’, chewy’, ‘elastic’ and ‘cohesive’, as 
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compared to that created using lower κC concentrations (1.6 wt%) (p < 0.05). 

Although the presence of beads and their particle size (300 versus 1000 µm) 

significantly influenced the fracture mechanics during the uniaxial compression 

test (Figure 4.1), this was not apparent in the sensory analysis of the four 

chewing-related texture attributes (p > 0.05) (Figure 4.7). 

 

Figure 4.7. The ratings of the chewing-related attributes obtained from 

sensory profiling of the gels. Data points represent the average of the gels 

evaluated in triplicate by 11 panellists. Error bars indicate the standard 

deviation and bars within one attribute with different lower case letters 

denote a statistically significant difference (p < 0.05). 

The lubrication-related texture attributes (see Figure 4.8) appeared to 

show a somewhat opposite effect, with the low fracture stress/low fracture strain 

samples scoring high on ‘melting’ and ‘pasty’, whereas the high fracture 

stress/high fracture strain samples scored relatively low on the 100 mm scale. The 

κC/NaA hydrogel (1.5κC0.5NaA) scored high on most of the lubrication-related 

texture attributes, such as ‘smooth’, ‘pasty’, ‘melting’. It is worth remembering 

that the 1.5κC0.5NaA hydrogel bolus had the lowest η (though three-orders of 



- 141 - 

 

magnitude higher than human saliva) as compared to the other samples 

(Figure 4.3). Nevertheless, the higher scores on the lubrication-related texture 

attributes of the κC/NaA hydrogel is in close agreement with the lower µ values 

(Figure 4.4b), and correspondingly lower friction force in both boundary and 

mixed lubrication regimes for the hydrogel bolus filtrate (Table 4.4). This 

suggests that the viscosity-parameter could not explain the lubrication-related 

texture attributes in case of κC/NaA hydrogel and it was the ‘weeping’ water film 

that might have acted as a ‘boundary lubricant’. Interestingly, the κC and 

κC/LBG hydrogels scored significantly low on ‘pasty’ and ‘melting’ (p < 0.05), 

congruent with the high µ of the hydrogel bolus filtrate (Figure 4.4b) and their 

correspondingly high friction forces in both the boundary and mixed regimes 

(Table 4.4). 

 

Figure 4.8. The ratings of the lubrication-related attributes obtained from 

sensory profiling of the gels. Data points represent the average of the gels 

evaluated in triplicate by 11 panellists. Error bars indicate the standard 

deviation and bars within one attribute with different lower case letters 

denote a statistically significant difference (p < 0.05). 
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The κC/CaA hydrogels with beads (1.6κC0.2CaA300, 1.6κC0.2CaA1000, 

2.4κC0.2CaA300) scored rather intermediate (30-60 mm) on all lubrication 

attributes. They were perceived to be more ‘melting’ and ‘pasty’ as compared to 

the κC and κC/LBG hydrogels (p < 0.05) (Figure 4.8), which corresponds with 

the reduced friction coefficients (Figure 4.4b) and equivalent friction force in the 

mixed regime for these samples (Table 4.4). However, considering that these 

beads were not rolling, as discussed before, the beads appeared to provide some 

degree of inhomogeneity perception, which might explain the relatively low 

scores on the attribute ‘smooth’ (p < 0.05) as compared to that of their absence in 

the other hydrogels, irrespective of particle size (Figure 4.8). It is worth noting 

that the sensory perception of particles is not only dictated by the particle size, 

but also by its concentration, shape, roughness and hardness of the particles as 

well as the properties of the matrix in which it is dispersed. For example, the 

sensory threshold for particle size in chocolate is ~ 30 μm (Afoakwa, Paterson 

and Fowler 2007), whereas for sharp-faceted silica particles it is as low as 2 μm 

(Engelen et al. 2005) to be perceived as rough and/or gritty. Also, a thicker 

matrix can mask the sensory detection of particles (Sala and Scholten 2015; Imai, 

Hatae and Shimada 1995). Thus, the observed low ratings in sensory smoothness 

might have resulted from these soft big CaA beads (≥ 300 μm) with sizes much 

above the sensory detection threshold, the inability of the κC matrix to mask such 

perceptions as well as the absence of any ball-bearing effects. 

It is worth highlighting that although the κC hydrogels scored high on the 

sensory attribute ‘smooth’ (Figure 4.8), the friction coefficients of κC hydrogel 

bolus filtrates were highest in the boundary regime (µ ~ 0.5) (Figure 4.4b). 

Noteworthy is that the PDMS substrates used in this study for tribology were 
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highly hydrophobic (even after pre-adsorption of artificial saliva), which might 

not have allowed efficient polymer-adsorption of the hydrophilic κC hydrogel 

bolus particles remaining in the filtrate to the substrates and thus did not reduce 

friction significantly (p > 0.05). This might not be the case during real oral 

processing as the oral mucosa is highly hydrophilic because of the salivary 

coating (Laguna and Sarkar 2017). Hence, one might consider introducing some 

degree of hydrophilicity in these soft PDMS substrates for doing oral tribology 

measurements in order to accurately understand this sensory smoothness scores 

for κC hydrogels (Sarkar et al. 2017). Interestingly, the friction coefficients of the 

κC hydrogel bolus fragments (particularly 3κC) was considerably low (µ ~ 0.15) 

in the boundary regime (Figure 4.4a, Table 4.4). This suggests that the 3κC gel 

bolus fragments were responsible for acting as a solvated layer of lubricant to 

reduce viscous friction, as discussed previously, and consequently were rated 

high on the sensory attribute, ‘smooth’ (Figure 4.8). 

For the attributes ‘slippery’ and ‘salivating’, the trend was not very clear 

for samples containing NaA or CaA (Figure 4.8), which might be associated with 

the rather difficult definitions and the unfamiliarity of the panel with these 

lubrication-related texture attributes. This can also be seen in the Tucker-1 plots, 

see Figure 4.9, where the attributes ‘slippery’ and salivating’ showed rather 

random clustering patterns indicative of poor panel agreement. It appears that 

insufficient training was provided to the participants on these constructs for them 

to grasp the complexity of these attributes in novel soft solid systems i.e. the 

hydrogels with different textural complexity. Only samples containing NaA 

scored significantly lower on ‘salivating’ as compared to that of κC or κC/LBG 

hydrogels (p < 0.05). ‘Salivating’ was defined as ‘amount of saliva released 
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during chewing’ (Table 4.2). Therefore, it is likely that panellists rated κC or 

κC/LBG hydrogels as more ‘salivating’ compared to that of NaA samples 

(p < 0.05) as possibly a larger quantity of saliva was generated for cleansing the 

residues of the stiffer hydrogel fragments (Figure 4.1). Similarly, samples 

containing NaA and CaA (except 1.6κC0.2CaA300) scored significantly lower on 

the attribute ‘slippery’ compared to that of κC hydrogels (p < 0.05). This suggests 

that samples containing alginate as biopolymer or beads did not slip easily and 

provided some sort of oral coating properties due to the alginate itself or created a 

‘weeping’ layer of water as a lubricant during tribological shearing (Gong and 

Osada 2002), as discussed in the previous section. The oral coating property of 

alginates is in agreement with literature suggesting that alginate can create 

hydrogen bonds with human salivary mucins through carboxyl–hydroxyl 

interactions (Shtenberg et al. 2018; Cook et al. 2017). 

 

Figure 4.9. Tucker-1 plots for the all attributes from the descriptive sensory 

analysis, showing the panel agreement. 
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In general, it can be concluded that all chewing-related attributes were 

largely controlled by the fracture properties of the hydrogels, whereas the 

lubrication-related attributes showed significant variations between the hydrogel 

samples and some of the lubrication-related attributes corroborated the oral 

tribology results of the gel bolus filtrates in the mixed lubrication regime. 

Noteworthy is that the relationship between fracture properties, tribology and 

sensory analysis has been investigated in literature, particularly in emulsion gels 

(Devezeaux de Lavergne et al. 2015a; Liu et al. 2016a). Nevertheless, to our 

knowledge, this is the first study that has been carried out using descriptive 

sensory analysis focussing on textural attributes related to both chewing and 

lubrication in aqueous systems i.e. hydrogels with varying degree of textural 

complexity. 

4.3.3. Relationship between instrumental and sensory properties of 

the hydrogels 

To understand the complex sensory perceptions in these hydrogels with or 

without inhomogeneity, an integrative approach of identifying interrelationships 

between sensory textural attributes and instrumental parameters rather than 

dependence on a single instrumental test is necessary. Table 4.7 highlights the 

statistically significant correlation coefficients between the broad spectrum of 

mechanical parameters, i.e. fracture properties, apparent viscosity, µ in boundary 

and mixed lubrication regime, and the texture attributes. 



 

 

Table 4.7. Pearson’s correlations of sensory attributes (descriptive analysis) and physical properties (large deformation rheology, 

apparent viscosity and coefficient of friction) of the hydrogels, where green is positive and red shows a negative correlation with p < 0.05 

in light colours and p < 0.01 in the darker shade. 

   

Smooth Firm Elastic Chewy Cohesive Pasty Slippery Salivating Melting 
Fracture 

stress 

Fracture 

strain 

Fracture 

Energy 

Viscosity 

at 50 s-1 

shear 

rate 

µ at 50 

mm/s 

µ at 3 

mm/s 

µ at 50 

mm/s 

µ at 3 

mm/s 

Sensory 

Smooth 
                

 

Firm 0.40 
               

 

Elastic 0.44 0.98 
              

 

Chewy 0.41 0.99 0.98 
             

 

Cohesive 0.53 0.96 0.94 0.98 
            

 

Pasty -0.43 -0.92 -0.95 -0.91 -0.84 
           

 

Slippery 0.66 0.68 0.77 0.64 0.63 -0.84 
          

 

Salivating 0.25 0.94 0.94 0.91 0.82 -0.95 0.71 
         

 

Melting -0.38 -0.97 -0.99 -0.97 -0.91 0.97 -0.73 -0.96 
        

 

Texture 

analysis 

Fracture 

stress 
0.59 0.96 0.96 0.95 0.95 -0.94 0.80 0.91 -0.94 

       
 

Fracture 

strain 
0.36 0.87 0.90 0.87 0.80 -0.98 0.80 0.92 -0.92 0.91 

      
 

Fracture 

Energy 
0.55 0.89 0.87 0.87 0.84 -0.88 0.72 0.90 -0.87 0.94 0.82 

     
 

Rheology 
Viscosity at 50 

s-1 shear rate 
0.30 0.91 0.89 0.88 0.80 -0.90 0.67 0.98 -0.91 0.80 0.86 0.95      

Tribology, 

gel bolus 

filtrate  

µ at 50 mm/s 0.56 0.68 0.71 0.63 0.57 -0.80 0.82 0.79 -0.72 0.79 0.74 0.90 0.85     

µ at 3 mm/s -0.30 -0.11 -0.11 -0.16 -0.30 -0.15 0.14 0.22 0.04 -0.03 0.25 0.14 0.24 0.39    

Tribology, 

gel bolus 

fragments 

µ at 50 mm/s 0.47 0.06 0.19 0.05 0.00 -0.31 0.48 0.16 -0.24 0.18 0.22 0.25 0.16 0.56 0.15   

µ at 3 mm/s 0.42 -0.44 -0.31 -0.45 -0.42 0.22 0.17 -0.40 0.31 -0.28 -0.30 -0.23 -0.37 0.18 0.34 0.81  
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Positive correlations were obtained between the chewing-related sensory 

attributes, i.e., ‘firm’, ‘elastic’, ‘chewy’ and ‘cohesive’ and the instrumental 

measures of fracture stress, fracture strain, fracture energy and viscosity at 50 s−1 

(Table 4.7). The correlations of the fracture parameters with the chewing-related 

attributes are in agreement with previous literature dealing with emulsion gels 

(Devezeaux de Lavergne et al. 2015b) and agarose gels (Barrangou et al. 2006). 

This suggests that firm samples, such as, κC and κC/LBG will require more stress 

to deform, particularly in the early stages of oral processing. 

Interestingly, the lubrication-related sensory attribute ‘salivating’ also 

showed strong positive correlations with instrumental measures of fracture stress, 

fracture strain, fracture energy and viscosity at 50 s−1, respectively. As discussed 

previously, the firm samples might have created residues/particles, which 

required increased salivary flow for oral cleansing (Table 4.2). Hence, it appears 

that the trained panel might have associated sensory ‘salivating’ with the quantity 

rather than the quality of saliva production. In addition, strong inverse 

relationships were obtained between the chewing-related sensory attributes, i.e., 

‘pasty’, and ‘melting’ and the instrumental measures of fracture stress, fracture 

strain, fracture energy of the hydrogels and viscosity of boli at 50 s−1 (p < 0.01). 

In other words, ‘firm’ samples, such as κC or κC/LBG hydrogels might have 

created bolus fragments during the oral processing that were relatively stiff, 

retained their integrity and were not melting easily over the duration of the oral 

residence time. And, due to such fragment creation, firm samples were not 

perceived to be ‘pasty’ (p < 0.01) i.e. did not form a continuous layer of soft 

solids. Although the sensory attribute ‘smooth’ showed no correlations with 
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either the fracture properties of the hydrogels or the viscosity of the boli, the 

sensory attribute ‘slippery’ showed a positive correlation with initial fracture 

stress and fracture strain, which suggests that the term ‘slippery’ had some 

association with early stages of oral processing, which was not expected (p > 

0.05). Overall, clear relationships existed between all fracture properties of the 

hydrogels and rheology of the bolus fragments with lubrication-related attributes, 

such as ‘pasty’, ‘melting’ and ‘salivating’ that were perceived by the panellists 

during oral processing. 

We now shift our focus to investigate whether µ of the hydrogel 

fragments and/or filtrates could predict the sensory dimensions of both chewing- 

and lubrication-related texture attributes (Table 4.7). As one might expect, no 

correlations existed between the chewing-related attributes and µ of bolus 

fragments/filtrates irrespective of the lubrication regimes. However, looking at 

the lubrication-related sensory attributes (Table 4.7), ‘pasty’ was inversely 

correlated with the µ of hydrogel bolus filtrates in the mixed lubrication regimes 

(p < 0.05). This further suggests that ‘pasty’ was most likely associated with the 

mouth-coating aspects during oral processing, as discussed previously. For 

example, samples with lower µ values in the boundary regime (e.g. 

1.5κC0.5NaA) will be more lubricating and will thus be perceived as more 

‘pasty’, forming an oral coating and/or ‘weeping’ layer of water and separating 

the oral surfaces from the asperity contacts. Although the signs of correlations in 

case of the tribology experiments performed with hydrogel bolus fragments were 

similar to that of the hydrogel bolus filtrate, no statistical significance was 

observed in the former irrespective of the lubrication-related attribute. This 

confirms that the bolus filtrates being thin-film had more relevance in the oral 
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tribology domain in this study when relating to the in-mouth sensory perception 

as compared to that of the bolus gel fragments. 

Interestingly, there was a tendency towards an inverse relationship of 

sensory ‘melting’ to the µ of the hydrogel bolus filtrates in the mixed lubrication 

regime, however there was no statistical significance (Table 4.7). Moreover, 

‘salivating’ was positively correlated with the µ of the bolus fragments 

(p < 0.05). This supports the explanation for the initial fracture properties, which 

suggests that hydrogels scoring higher on ‘salivating’ were the samples that 

generated more volume of saliva (Table 4.2). As can be expected, the generated 

saliva was perhaps depleting the gel fragments or residues from the oral surfaces. 

Such ‘depletion’ of bolus fragments or residues from the oral surfaces might have 

resulted in apparent surface asperity contacts, which may justify the positive 

correlation of ‘salivating’ with friction coefficients as observed in Table 4.7. No 

relationships could be observed between ‘smooth’ and μ of bolus filtrates, which 

might be attributed to the inhomogeneity of samples, such as the ones containing 

CaA beads. For the sensory attribute ‘slippery’, there was a positive correlation 

with µ of hydrogel bolus filtrates in the mixed lubrication regime (p < 0.05) 

(Table 4.7). 

It is worth highlighting this observed anomaly when relating the sensory 

attribute of ‘slippery’ to the tribology results. Previously, an inverse relationship 

of friction coefficient and slipperiness in foods, i.e. 

𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑖𝑛𝑒𝑠𝑠 𝛼 
1

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒+ 𝑊µ 
 (where W is the applied load in tribology), has 

been postulated by Kokini (1987). However, this previous study by Kokini (1987) 

was done with fat-rich low viscosity fluids, where ‘slipperiness’ could be 
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perceived easily due to ‘fatty’ or ‘creamy mouthfeel’. In comparison, the current 

study has employed semi-solid aqueous hydrogels and their corresponding bolus 

fragments and filtrates. Furthermore, ‘slippery’ perception was defined by the 

ease of sliding of the sample (Table 4.2). This suggests that highly slippery 

samples, such as 2κC gels (Figure 4.8) were sliding past the oral mucosa easily, 

which apparently resulted in having no fragments/ filtrate in the confinement, 

corroborating with the high μ values (Figure 4.4b, Table 4.4). Nevertheless, it is 

worth emphasising that both ‘slippery’ and ‘salivating’ were difficult sensory 

terms for the panellists (Figure 4.8), as discussed before, and so these 

correlations should be taken with caution. 

4.4. Conclusions 

This study presents hydrogels as model soft solid foods, where systematic 

manipulation of the structural properties was used to investigate the relationship 

between mechanical (instrumentally measured) and sensory aspects of oral 

processing. A range of hydrogels with varying degrees of structural complexity 

was evaluated using uniaxial compression test of the hydrogels, flow curves and 

tribology of gel boli (after simulated oral processing) as well the sensory 

properties, which was investigated using descriptive sensory analysis. Tribology 

of the bolus fragments and filtrates were explained using theoretical “repulsion-

adsorption” model highlighting the role of opposing surfaces (PDMS, gels). A 

clear correlation was obtained between the initial fracture properties of the 

hydrogels, viscosity of the bolus fragments and all chewing-related texture 

attributes i.e. ‘firm’, ‘elastic’, ‘chewy’ and ‘cohesive’. Interestingly, all fracture 

attributes and boli viscosity showed positive correlations with the relatively novel 
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lubrication-related texture attributes, such as ‘salivating’ and inverse correlations 

with both ‘pasty’ and ‘melting’. The coefficient of friction of the bolus filtrates in 

the mixed lubrication regime showed inverse correlations with the lubrication-

related attributes, such as sensory ‘pasty’ and positive correlations with ‘slippery’ 

and ‘salivating’. However, our experimental design could not establish a 

significant inverse correlation between sensory ‘smooth’ and the friction 

coefficients, which is largely attributed to the inhomogeneity of the samples 

employed in the study. Novel findings from this study suggests that lubrication-

related attributes were perceived during both early and later stages of oral 

processing and thus relationships existed with initial fracture properties of gels, 

boli viscosity and boli tribology and not only to boli tribology, as hypothesized 

initially. Future studies could conduct more independent systematic studies on 

hydrogels with varying degrees of structural complexity at micro- to macro-scale 

to establish the tribology-sensory relationships particularly at the later stages of 

oral processing. In addition, further training of panel members particularly with 

respect to lubrication-related texture attributes could be done to achieve more 

uniform responses and less variability in descriptive analyses. However, it is 

recognised that there are large individual differences which account for variance 

in sensory perception, and as an adjunct approach to training panels it is 

important to discern the contribution of these differences to sensory perception of 

the physical manipulations of the hydrogels. 

In order to explore the impact of both the instrumental and sensory 

properties of the hydrogels, as well as the individual differences in consumer 

perception and eating capability, a further study was conducted. The next chapter 

reveals the results of this study, examining the effects on the oral processing 
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behaviour of the same hydrogels as characterised here and the eating capabilities 

of a group of young, healthy participants (Chapter 5). 
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Chapter 5 

Oral processing of hydrogels: influence of food 

material properties versus individuals’ eating 

capabilityc 

 

 

Abstract 

Food material properties play an important role in the sensory perception and 

consumer acceptance of foods. However, the actual oral processing behaviour 

may depend on both the material properties of the food that is being consumed as 

well as individuals’ oral capabilities. This study aimed to examine the 

relationships between intrinsic (oral capabilities of healthy participants), as well 

as extrinsic (food material properties of a set of hydrogels) variables to the real 

oral processing behaviour. Three κ-carrageenan hydrogels (κC), differing in 

fracture mechanics and oral tribology properties, were prepared: native κC, κC 

with added Na-alginate and a κC matrix with added Ca-alginate beads of 300 μm. 

A composite score of eating capability (EC) was measured with non-invasive 

techniques (maximum bite force and tongue pressure) using a panel of 

28 untrained consumers. The oral processing behaviour (number of chews, oral 

                                                 
c Accepted for publication as Krop, E. M., M. M. Hetherington, S. Miquel and A. Sarkar. 2019. 

Oral processing of hydrogels: influence of food material properties versus individuals' eating 

capability. Journal of Texture Studies. 
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residence time and chewing rate) was analysed with the same participants using 

frame-by-frame video analysis. It was found that the EC scores did not correlate 

with any of the oral processing behaviours. The number of chews and oral 

residence time showed a strong correlation to the fracture force and friction force 

at orally relevant speeds (10-100 mm/s), whereas chewing rate did not vary with 

these properties. The results from this study indicate that oral processing in 

healthy adults seems mainly motivated by food material properties, and the 

chewing rate seems to relate more to individual differences and EC than to food 

properties. 

5.1. Introduction 

As global obesity rates increase, there have been intensified efforts to design 

satiety-enhancing foods that can decrease appetite and thus reduce food intake in 

the longer term. Previous studies have demonstrated the role of oral processing on 

satiety (Miquel-Kergoat et al. 2015), and in a recent systematic review and meta-

analysis it was found that “oral processing” leads to a significant reduction in 

food intake (-0.28 effect size, 95 % CI: -0.36, -0.19) (Krop et al. 2018). Here, the 

term “oral processing” incorporated a variety of strategies, such as increased 

number of chews, eating rate or bite size, extended oro-sensory exposure time 

and/or introducing harder textures as compared to a softer/liquid variant. 

However, the effects of salivation and food/saliva interactions were not 

considered in the retrieved studies (Krop et al. 2018). 

Previous evidence revealed that the actual oral processing strategy is 

adapted to the extrinsic material properties of the food that is being consumed 

(Koç et al. 2014; Le Révérend et al. 2016), but also varies between individuals 
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according to their intrinsic oral capabilities (Peyron et al. 2011; Wilkinson, 

Dijksterhuis and Minekus 2000). During oral processing, the food’s physical 

properties are continuously manipulated with the food structure being broken 

down and mixed with saliva and fluid released from the food matrix to form a 

cohesive bolus (Chen 2009). Therefore, both texture properties and the degree of 

moisture of the initial food structure contribute significantly to oral processing 

(Hutchings and Lillford 1988). The central nervous system uses sensory feedback 

from the changing physical properties during oral processing to update the oral 

processing strategy, from visual cues before ingestion, to first bite until 

swallowing (Koç et al. 2014; de Wijk, Engelen and Prinz 2003; van der Bilt et al. 

1995). 

Research on chewing has primarily focussed on solid foods, using various 

techniques to quantify chewing behaviour. In a study by Hiiemae et al. (1996), it 

was found that the number of chews and oral residence time increased for foods 

with a more complex initial structure, with banana requiring less chewing than 

biscuits. In another study by Forde et al. (2013), the number of chews related to 

the number of bites for 50 g food sample, and the eating rate was inversely 

related to the number of chews. Previous studies have also made the link between 

commercial food products like cheese, peanuts and carrots, where harder and 

drier foods required more chewing (Engelen, Fontijn-Tekamp and van der Bilt 

2005; Fontijn-Tekamp et al. 2004). In addition, Engelen, Fontijn-Tekamp and 

van der Bilt (2005) found that quantity of saliva and maximum bite force were 

only weakly correlated with chewing characteristics, accounting for less than 

10 % of the variance in the number of chews. However, these products are highly 

familiar with learned expectancies for processing and satiety. 
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Hydrocolloids have been used in research to make model foods to study 

texture and oral processing behaviour without invoking an emotional response 

and expectancies built up from prior experience with real life products (Funami 

2011; Funami et al. 2012; Funami et al. 2016; Hayakawa et al. 2014; Nishinari 

2004; Larsen et al. 2016; Laguna and Sarkar 2016). Previous studies observed a 

relationship between food hardness and chewing behaviour, where fracture stress 

from instrumental texture analyses was correlated to higher number of chews and 

increased oral residence time (Funami et al. 2016; Devezeaux de Lavergne et al. 

2016; Laguna and Sarkar 2016). Moreover, from bolus particle analysis it was 

found that harder and more complex model gels break down into significantly 

higher number of particles that are smaller in size (Larsen et al. 2016; Devezeaux 

de Lavergne et al. 2016). 

Aside from fracture properties, the effects of food structure on oral 

lubrication (both internal and external) have gained increased research attention. 

Human saliva binds particulated food into a cohesive bolus that can be easily 

swallowed (Pedersen et al. 2002; Carpenter 2012). In addition, the moisture 

content in foods (providing external oral lubrication) has been linked to the used 

oral processing strategy (Hutchings and Lillford 1988). A dry solid food (e.g. 

biscuits) will generally require a large quantity of saliva in order to form a 

swallowable bolus, whereas more moist solid foods, such as fruits and vegetables, 

already contain a large quantity of moisture that is released during oral processing 

(Chen and Rosenthal 2015). However, due to the continuously changing nature of 

the food structure during oral processing, the effects of external lubrication by 

food on oral processing behaviour remains a challenging research topic (Chen 

2009). 
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Besides the extrinsic food properties, oral processing also depends on 

intrinsic individual differences in oral physiology, from the size of the oral cavity 

to the strength of the oro-facial muscles (Alsanei and Chen 2014; Engelen, 

Fontijn-Tekamp and van der Bilt 2005). Several studies have mentioned that 

chewing patterns vary not only between individuals but also within the same 

person. In a study by Lassauzay et al. (2000) the number of chews for gelatine 

based model foods in male individuals varied from 19 to 57, with a similar 

variability found for the different test foods. Another study by Brown et al. 

(1994) using healthy subjects also reported large variations between subjects for 

the tested foods, such as apple, salami and toast, with raw carrot showing 

particularly big differences in number of chews and oral residence time, ranging 

from 20 to 190 chews and 15 to 125 s, respectively. Furthermore, the effects of 

gender and age on masticatory ability have been reported in literature. Males have 

a bigger bite size, faster eating rate and a higher EMG muscle activity than 

females (Peyron et al. 2004; Park and Shin 2015), whereas females chewed more 

and for a longer time than males (p < 0.05) (Park and Shin 2015). Also, due to 

the decrease of masticatory muscle mass and maximum bite force with age 

(Bakke et al. 1990), the number of chews and EMG activity increased in older 

participants who still had complete healthy dentition compared to younger adults 

(Kohyama, Mioche and Martin 2002; Peyron et al. 2004). At the same time, 

salivary secretion, saliva viscosity, and its protein content varies widely between 

individuals, as well as within the same individual at different times of the day 

(Carpenter 2012), and would therefore be expected to influence oral processing. 

Thus, understanding the relationship between oral processing behaviour, 

food material properties (determined both instrumentally and sensorially) and 
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individuals’ eating capabilities is important in determining what drives the 

consumer experience of eating a food and what leads to consumer acceptance and 

preference. To date, no studies have looked at the oral processing behaviour of 

hydrogels in young individuals, examining both the food material properties as 

well as the participants’ individual eating capability. Therefore, the aim of this 

study was to investigate the oral processing response and their potential 

relationships with 1) the extrinsic food material properties of different hydrogels 

(i.e. fracture behaviour and oral lubrication) and 2) the intrinsic eating capability 

of a group of young healthy consumers. 

5.2. Materials and methods 

5.2.1. Materials 

Food grade-quality κ-carrageenan (κC) and sodium alginate (NaA) were 

purchased from Special Ingredients Ltd (Chesterfield, UK). Green food colouring 

was obtained from AmeriColor (Placentia, USA) and American peppermint 

extract was purchased at a local supermarket (Leeds, UK). Potassium chloride 

(KCl) was purchased from Minerals Water Ltd (Purfleet, UK) and calcium 

chloride (CaCl) from VWR International (Leuven, Belgium). All materials were 

used without further purification. Demineralised water was used in preparation 

for all hydrogels. 

5.2.2. Hydrogels 

Based on a previous study by (Krop et al. 2019), three model hydrogels (that did 

not contain any fat) were selected that had different chewing and oral lubrication 

properties as determined by instrumental and sensory texture analysis. The 
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hydrogels consisted of varying concentrations of κC alone or with the addition of 

NaA or calcium alginate (CaA) beads of 300 μm diameter. The selected model 

gels were 3κC (3 wt% κC), 1.5κC0.5NaA (1.5 wt% κC and 0.5 wt% NaA) and 

2.4κC0.2CaA300 (2.4 wt% κC and 0.2 wt% CaA beads of 300 μm). The hydrogels 

were unsweetened, but flavoured with peppermint aroma and coloured with green 

food colouring to increase acceptability. Further details on the preparation 

method, as well as instrumental and sensory characterisation of the hydrogels 

have been published elsewhere (Krop et al. 2019). The samples were presented in 

bite-size round pieces (diameter 25 mm, height 10 mm) in small, shot-glass type 

plastic cups. 

5.2.3. Puncture test (texture analysis) 

The mechanical properties of the hydrogels were determined using uniaxial 

puncture test with a Texture Analyzer (TA-TX2, Stable Micro Systems Ltd., 

Surrey, UK) , with a 30 kg load cell. The fracture mechanics were measured 

using a 10 mm Volodkevitch bite jaw probe to simulate a first bite with human 

incisor teeth. Tests were carried out at 22 °C, at a constant speed of 2 mm/s and 

the deformation level was set at 80 % strain. Six replicates were measured for 

each hydrogel on at least four different preparation days. The software Exponent 

(TEE32, v6.1.9.0, Stable Micro Systems Ltd., Surrey, UK) was used to plot the 

force-distance curve. 

5.2.4. Tribological measurements 

The oral lubrication properties of the hydrogels after simulated oral processing 

were determined with a Mini Traction Machine (MTM2, PCS Instruments, 

London, UK), based on a method developed by Krop et al. (2019). Briefly, the 
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hydrogels were broken down in presence of artificial saliva containing mucin at 

pH 6.8 (Sarkar, Goh and Singh 2009) with a mechanical blender (final sample to 

saliva ration 4:3 w/w). The larger gel particles (> 500 μm) were filtered out, and 

the friction behaviour of the bolus filtrate was determined. Commercially 

available polydimethylsiloxane (PDMS) ball (diameter of 19 mm) and disc 

(diameter of 46 mm, thickness of 4 mm) were obtained from PCS Instruments 

(MTM ball and disc, Sylgard 184, 50 Duro, London, UK), with the surface 

roughness of the PDMS tribopairs, Ra < 50 nm. The friction force in the mixed 

lubrication regime was determined as a function of the applied entrainment speed, 

ranging from 10 to 100 mm/s, with an applied load of 2 N, slide-to-roll ratio 

(SRR) of 50 % at 37 °C. Measurements were performed in triplicate and then 

averaged to obtain the Stribeck curves. 

5.2.5. Participants 

Twenty-eight healthy participants with natural, intact dentition were recruited to 

participate in this study and gave written informed consent before the start of the 

study. The study was reviewed and approved by the Faculty Research Ethics 

Committee at the University of Leeds (reference number MEEC 16-006). 

Participants were aged between 22 and 52 years old (mean 28.5 ± SD 6.2, 9 male 

and 19 female). Participants with any allergies/intolerances to the gel ingredients 

were excluded, as well as those who suffered from any condition hampering 

normal chewing or swallowing. All participants received a financial 

compensation. 
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5.2.6. Study procedure 

Test sessions were conducted in sensory booths at the School of Food Science 

and Nutrition, University of Leeds. Prior to the start of the study, participants 

were instructed that they would be video recorded while eating the three model 

foods and that afterwards eating capability measures (bite force and tongue 

pressure) would be taken. Participants were given the opportunity to ask 

questions in case anything was unclear, after which they provided written, 

informed consent form. Samples were provided to the panellists in randomised 

order, and a practice sample was provided to familiarise the panellists with the 

type of test samples and the eating instructions. 

5.2.7. Video analysis of oral processing characteristics 

To analyse the oral processing behaviour, participants were video recorded while 

eating the model foods. A digital camera (Panasonic SDR-H90) was positioned in 

front of the participant on a tripod, and participants were instructed to look 

straight into the camera while eating the hydrogels. Participants were aware that 

their oral processing behaviour would be analysed, such as number of chews and 

eating rate, and were given the option to swallow the samples or indicate the 

moment they felt the urge to swallow by raising their hand and expectorate the 

sample in provided containers. Videos were analysed frame-by-frame using 

Observer XT 12 software (v 12.5, Noldus Information Technology, The 

Netherlands). A coding scheme was created to identify the first bite, number of 

chews and point of swallowing, as adapted from previous studies (Lasschuijt et 

al. 2017; Forde et al. 2013). A chew was defined as the point in time when the 

jaw was at the lowest position during a masticatory cycle (closing action). From 
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these behaviours, the eating duration was determined as the time between first 

bite and swallowing, identified as the first main swallow at the end of the 

rhythmic rotary chewing movements. The chewing frequency was calculated by 

dividing the number of chews for each sample by the total eating duration of this 

hydrogel (Chen and Lolivret 2011; Forde et al. 2013; Laguna et al. 2016b; 

Laguna and Sarkar 2016). 

All videos were coded by a trained researcher, with a second observer 

analysing at least 15 % of the videos in parallel to assess the accuracy of the 

coding scheme and the performance of the coders. The performance of the 

researchers assessing the videos was validated using a reliability analysis, 

showing at least 85 % agreement. 

5.2.8. Eating capability measurements 

Tongue pressure was measured using the Iowa Oral Performance Instrument 

(IOPI®, Medical LLC, Redmond, Washington, USA (Ono et al. 2009; Laguna et 

al. 2015). Participants were instructed to place the plastic bulb sensor in the 

centre of the oral cavity between their tongue and the hard upper palate, and press 

these surfaces together with their maximum strength. The maximum tongue-

palate pressure was recorded in kPa. 

The maximum biting force was measured using force sensors and a 

multimeter connected through a bread board, a device previously used by 

Flanagan et al. (2012). The force sensor was sandwiched between two adhesive 

silicone disks (diameter 1.5 cm, thickness 0.3 cm), which in turn were wrapped in 

wrapping foil for hygienic reasons. Participants were instructed to bite down 

separately on the sensor for a couple of seconds using their front incisors, left 
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molars and then their right molars. The minimum resistance was independently 

recorded by the multimeter for the front incisors, left molars and right molars and 

subsequently converted into N (Laguna et al. 2015; Flanagan et al. 2012). Both 

measures of tongue pressure and bite force were measured in triplicate for each 

participant. 

Eating capability (EC) has been defined as “the physical, physiological 

and cognitive capabilities of an individual consuming food” (Laguna et al. 

2016b). In previous studies, a composite EC score was used that consisted of grip 

strength, manual dexterity, and oro-facial muscular capability (tongue pressure 

and bite force) (Laguna et al. 2016b; Laguna et al. 2015). It was determined that 

the most important factors in determining the EC score were related to the oro-

facial muscular capabilities, therefore for this study only tongue pressure and bite 

force were included. The EC composite score was calculated using the following 

equation: 

𝐸𝐶 = (
𝑇𝑃

𝑇𝑃𝑚𝑎𝑥
) + (

𝐵𝐹𝐿
𝐵𝐹𝐿,𝑚𝑎𝑥

+
𝐵𝐹𝐹

𝐵𝐹𝐹,𝑚𝑎𝑥
+

𝐵𝐹𝑅
𝐵𝐹𝑅,𝑚𝑎𝑥

3
)    (5.1) 

where, TP represents the tongue pressure and BF the biting force measured for 

each participant. The subscript max indicates the highest value measured in the 

strongest participant for that particular variable, L is the bite force from the left 

side molars, F from the front incisors and R from the right side molars. Thus, the 

maximum EC score that could be obtained was 2-points. 

5.2.9. Statistical analysis 

All statistical analyses were performed using SPSS (IBM® SPSS® Statistics, v24, 

SPSS Inc, Chicago, USA). Results are presented as mean ± standard deviation 
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(SD) and alpha was set at p < 0.05, unless stated otherwise. Analysis of variance 

(ANOVA) was applied to determine statistically significant differences between 

samples for the fracture mechanics and eating behaviour, and between 

participants for the bite force parameters. Least significant differences were 

calculated by Bonferroni’s post-hoc test. Pearson’s correlations were calculated 

to study the relationships between food material properties, oral processing 

behaviour and participants’ eating capabilities. 

5.3. Results and discussion 

5.3.1. Fracture properties 

The force-distance curves of the three hydrogels upon puncturing with a 

Volodkevitch bite jaw probe can be seen in Fracture 5.1. It shows the typical 

penetration curves, with the increasing deformation of the sample upon increased 

applied load up to the point of fracture as the probe penetrates and ruptures the 

sample. The hydrogel 3κC required an applied force of 8.29 ± 0.96 N, whereas 

the sample containing alginate beads, 2.4κC0.2CaA300, required only half that to 

rupture (3.67 ± 0.88 N). Interestingly, the sample containing alginate, 

1.5κC0.5NaA, was structurally weaker and required a force of an order of 

magnitude lower than the native κC hydrogel to puncture the gel (0.57 ± 0.14 N). 

The fracture forces for the three hydrogels were determined to be significantly 

different (p < 0.05). 
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Figure 5.1. Mean (± SD) force over distance curve of the hydrogels obtained 

from puncture tests with a Volodkevitch probe (first bite), with 3κC (▲), 

1.5κC0.5NaA ( ) and 2.4κC0.2CaA300 ( ). 

This indicates that κC formed a strong continuous network, whereas the 

CaA beads disrupted this network indicating they were not inherently connected 

to the κC matrix. The presence of NaA weakened the κC network even further, 

causing disruption of the strong κC matrix. This weakening of κC gels in 

presence of alginates as measured with puncture tests was in agreement with 

results from the same gels during compression tests (previously studied by (Krop 

et al. 2019) and (Laguna and Sarkar 2016)). 

5.3.2. Lubrication properties 

Figure 5.2 shows the friction force as a function of entrainment speed for the 

bolus filtrate of the three hydrogels. From previous studies it was determined that 

the relevant oral processing speeds, such as the speed of the tongue, ranged from 
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20-50 mm/s (Krop et al. 2019; Steele and Van Lieshout 2009). Therefore, we 

have focussed here on the mixed lubrication regime. The hydrogel bolus samples 

were prepared using artificial saliva, and therefore the friction force of the 

artificial saliva was used as a control. 

 

Figure 5.2. Mean friction force (± SD) of 3κC (▲), 1.5κC0.5NaA ( ) and 

2.4κC0.2CaA300 ( ) gel bolus filtrates, after simulated oral processing with 

artificial saliva (), at 37 °C as a function of entrainment speed in the mixed 

lubrication regime. 

It can be seen that the friction force curve of the simulated bolus filtrate of 

the 3κC hydrogel is similar to that of artificial saliva (p > 0.05, except at μ = 70, 

90, 100 mm/s), whereas the 1.5κC0.5NaA and 2.4κC0.2CaA300 samples had a 

significantly lower friction force as compared to artificial saliva (p < 0.001). It is 

worth pointing out here that the larger gel particles were removed by filtration 

before the oral tribology measurements. The 3κC hydrogel broke down into 
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significantly larger particles than the other two after simulated oral processing 

(> 500 μm), and thus were most likely removed during the filtration process 

resulting in friction forces more similar to those of artificial saliva. Interestingly, 

the 1.5κC0.5NaA and 2.4κC0.2CaA300 hydrogel boli did not have a significant 

difference in friction force over the measured entrainments speeds in the mixed 

regime (p < 0.001). The reduced friction force of 1.5κC0.5NaA and 

2.4κC0.2CaA300, compared to 3κC, could be explained by the entrainment of a 

viscous layer of the alginate-based systems (hydrogel bolus filtrates with artificial 

saliva) between the PDMS contact surfaces due to the smaller broken down 

hydrogel particles (Gong and Osada 2001; Krop et al. 2019). For 

2.4κC0.2CaA300, as theoretically predicted by Hertz theory in our previous study 

(Krop et al. 2019), the alginate beads will most likely be deformed during 

entrainment due to the high pressures generated in the PDMS-PDMS contact 

zone. Therefore, the lubrication was attributed to the entrainment of the alginate 

polymer in continuum rather than the intact beads, as well as leaching out of a 

layer of water from these beads that might act as a surface separator, reducing the 

friction values. 

5.3.3. Eating capability 

The EC values of tongue pressure and the different measurement locations of bite 

force for all participants is shown in Table 5.1. The measured tongue pressure 

values were in line with the results from previous studies on young healthy 

participants (Alsanei and Chen 2014; Alsanei, Chen and Ding 2015; Laguna et al. 

2016a).  

 



- 174 - 

 

Table 5.1. Eating capability measures of the 28 included participants. 

Gender Age 

Tongue 

Pressure 

(kPa) 

Bite Force 

(N) Left Side 

Molars 

Bite Force 

(N) Front 

Incisors 

Bite Force 

(N) Right 

Side Molars 

  Mean SD Mean SD Mean SD Mean SD 

Female 24 12.3 1.2 85.1 2.2 79.4 5.7 62.8 1.4 

Female 32 10.0 1.0 164.2 17.4 142.3 11.8 124.7 27.8 

Female 34 27.7 1.5 89.9 2.2 58.2 1.6 104.0 15.1 

Female 22 42.0 3.0 73.8 5.2 62.3 0.0 63.0 19.1 

Female 27 47.0 4.4 91.7 10.9 78.9 13.4 91.3 7.6 

Male 25 54.3 7.5 106.9 15.8 61.0 4.1 98.4 7.9 

Female 26 44.3 3.8 148.9 18.3 108.7 29.5 174.1 20.7 

Male 28 61.0 1.0 121.0 4.5 85.5 8.5 105.2 12.5 

Female 36 64.0 4.6 83.7 6.4 76.4 12.2 116.0 11.3 

Female 31 37.3 7.5 198.7 15.1 151.6 5.3 230.7 7.5 

Male 31 57.0 1.7 180.0 7.3 75.9 3.2 126.7 23.9 

Female 27 47.3 8.3 196.1 3.5 127.9 10.8 186.4 10.3 

Female 25 53.7 6.7 164.9 3.4 138.9 5.1 172.2 9.6 

Male 52 63.0 1.7 147.0 5.2 103.9 8.5 143.7 8.3 

Male 36 62.7 2.1 165.8 19.8 123.3 8.0 122.1 3.3 

Female 25 51.7 7.0 247.8 3.1 110.8 24.6 191.4 44.2 

Female 31 59.3 2.3 244.8 14.6 121.4 8.6 117.6 12.6 

Female 24 53.0 10.1 198.9 3.1 144.5 7.6 210.0 14.6 

Female 29 40.0 3.6 286.4 7.8 154.9 9.3 272.8 13.3 

Male 24 56.0 8.5 106.9 1.7 160.5 4.2 256.7 5.3 

Female 23 60.7 5.5 207.7 14.4 73.0 19.7 227.5 5.8 

Female 23 65.3 2.9 148.8 19.2 132.9 2.5 172.0 12.7 

Female 32 60.0 1.0 230.3 45.7 99.9 12.2 206.4 12.0 

Male 28 52.3 5.8 237.9 11.8 151.7 27.6 236.8 16.4 

Female 26 81.3 2.9 123.4 2.7 79.5 31.8 108.7 25.7 

Female 22 52.3 1.5 273.6 4.4 147.6 25.3 268.6 12.9 

Male 23 53.7 1.5 297.2 3.3 166.7 17.8 272.6 10.7 

Male 33 46.0 2.6 336.0 9.0 284.6 5.7 280.6 16.1 

Panel Mean 50.6 15.5 177.1 72.2 117.9 48.1 169.4 68.5 
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The bite force values were comparable to studies on healthy participants by 

Fernandes et al. (2003) and Laguna et al. (2016a) who used a similar 

measurement device. However, on average the values were slightly higher in the 

current study, possibly due to the positioning of the test sensors or the 

interpretation of the instructions by the participants. Interestingly, there was no 

correlation between tongue pressure and any of the bite force measurements, with 

p > 0.1 (see Table 5.2a). This is in line with the study by Laguna et al. (2016a) 

on participants from a similar age group, highlighting that such correlations 

between oro-facial muscle forces only exist in older adults with limited overall 

oral capabilities (Laguna et al. 2015). 

Table 5.2. Correlation matrix of the eating capability measurements (a) and 

oral processing behaviours (b) for the 28 participants with 3 replicates 

(n = 84), and significant values indicated in green: p < 0.01. 

(a) 

Tongue 

pressure 

Bite force, 

left side 

molars 

Bite force, 

front 

incisors 

Bite force, 

right side 

molars 

Tongue pressure 1    

Bite force, left side molars 0.07 1   

Bite force, front incisors -0.08 0.69 1  

Bite force, right side molars 0.11 0.77 0.71 1 

(b) 

Number of 

chews 

Oral residence 

time 

Chewing 

rate 

Number of chews 1   

Oral residence time 0.94 1  

Chewing rate 0.35 0.07 1 
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To group the panellists according to their overall eating capability (tongue 

pressure and bite force), the EC composite scores were calculated using 

equation 5.1. Figure 5.3 shows the histogram of the distribution of the EC scores 

of all participants. Based on the plot, two groups of panellists can be identified on 

the extreme ends of the plot, with eighteen observations in each group: a low EC 

group (< 1.0) and a high EC group (> 1.3). The age distribution was similar in 

both groups, and both groups consisted of male and female participants. The 

remaining 48 values in the middle had an EC score between 1.0 and 1.3 (1.0 ≤ EC 

score ≤ 1.3). From an eating capability perspective, the participants in this study 

were however rather homogeneous. 

 

Figure 5.3. Histogram of the eating capability (EC) composite scores of the 

28 participants with three replicates each (n = 84). 
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5.3.4. Oral processing behaviours 

Figure 5.4 shows the oral processing characteristics, such as number of chews, 

oral residence time and chewing rate, that were derived from frame-by-frame 

video analysis of participants eating the hydrogels. The sample 3κC had a 

significantly higher number of chews and oral residence time compared to the 

1.5κC0.5NaA and 2.4κC0.2CaA300 hydrogels (p < 0.05). The chewing rate did 

not show a significant difference between the presented samples, suggesting that 

chewing rate was subject to individual differences rather than the food material 

properties (Hiiemae et al. 1996). 

 

Figure 5.4. Mean values (± SEM) of the oral processing characteristics of the 

hydrogels obtained from video analysis (n = 28). From left to right: number 

of chews, oral residence time and chewing rate. Different lower case letters 

indicate statistically significant differences between conditions (p < 0.05). 
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The correlations between the chewing behaviours were analysed for the 

combined data set (see Table 5.2b). The number of chews and the oral residence 

time were strongly correlated (p < 0.001), meaning that food that is kept in the 

mouth for a longer amount of time is also chewed more. This was in line with 

findings from previous studies (Laguna et al. 2016a; Engelen, Fontijn-Tekamp 

and van der Bilt 2005). The number of chews also correlated with chewing rate 

(p < 0.001), but the chewing rate was not related to oral residence time (p > 0.1). 

5.3.5. Correlations between food material properties, EC parameters 

and oral processing behaviours 

The food material properties and EC parameters were examined for relationships 

(if any) with the oral processing behaviours to check whether it was the intrinsic 

capability or extrinsic food design factors that could best explain the oral 

processing strategy used for the hydrogels (Table 5.3a and 5.3b, respectively). 

As can be seen in Table 5.3a, the puncture force showed a strong correlation with 

the oral processing characteristics, i.e. number of chews and oral residence time 

(p < 0.01). This confirms the data from previous researchers using real food 

systems, where they made similar conclusions for banana, apple, biscuits 

(Hiiemae et al. 1996) and products like cheese, peanuts and carrots (Engelen, 

Fontijn-Tekamp and van der Bilt 2005). The friction force measurements showed 

a good correlation to the number of chews (p < 0.01 to p < 0.05), and the oral 

residence time (p < 0.05 to p < 0.1), depending on the entrainment speed. At the 

orally relevant speeds, 20-50 mm/s, the correlations seemed to be weaker 

(p < 0.01) than at higher speeds (p < 0.05), however, suggesting that slightly 

higher entrainments speeds might relate better to the number of chews and oral 
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residence time. Therefore, we propose that for the hydrogel bolus filtrates, 

number of chews and oral residence time are better explained by frictional 

properties in the mixed lubrication regime at speeds ≥ 80 mm/s, where the boli 

form a film separating the two PDMS surfaces (i.e. separating tongue and palate 

during in vivo oral processing). Additionally, we do not expect to see any 

correlations of the friction force in the boundary regime (speeds < 10 mm/s) to 

the oral residence time due to the absence of any adsorption of the hydrophilic 

hydrogel bolus particles to the hydrophobic tribo-surfaces (de Vicente, Stokes 

and Spikes 2006; Sarkar et al. 2019; Krop et al. 2019). The chewing rate did not 

correlate with any of the food material properties (p > 0.1), suggesting that it is a 

more inherent property linked to each individual. In addition, it is worth pointing 

out that where the number of chews and oral residence time showed a strong 

correlation (see Table 5.2b), and are more product specific (Figure 5.4), the 

more inherent chewing rate still increased with the number of chews as indicated 

by the correlation between the two. This effect was not found for the oral 

residence time (no correlation to chewing rate), suggesting that where chewing 

rate and number of chews have a link to the individual, the oral residence time 

does not and is mostly linked to the type of food structure being consumed. 
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Table 5.3. Correlation matrix of food material properties related to oral 

processing behaviour (a) and eating capabilities related to oral processing 

behaviour (b), with the levels of significance indicated in different shades of 

green: p ≥ 0.1, p < 0.1, p < 0.05 and p < 0.01. Since the number of 

measurements for the food material properties and the oral processing 

characteristics (a) was not the same, no exact correlation values are 

displayed but an overall impression of the data is shown based on multiple 

variations of correlation analyses between the two data sets. 

(a) Number of 

chews 

Oral residence 

time 
Chewing rate 

Puncture force    

Friction force 100 mm/s    

Friction force 90 mm/s    

Friction force 80 mm/s    

Friction force 70 mm/s    

Friction force 60 mm/s    

Friction force 50 mm/s    

Friction force 40 mm/s    

Friction force 30 mm/s    

Friction force 20 mm/s    

Friction force 10 mm/s    

(b) Number of 

chews 

Oral residence 

time 
Chewing rate 

Tongue pressure 0.09 0.04 0.02 

Bite force left molars 0.13 0.07 0.09 

Bite force front incisors 0.14 0.04 0.21 

Bite force right molars 0.08 0.00 0.11 

EC score 0.15 0.06 0.11 
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The individual EC measures did not correlate with the oral processing 

behaviours, nor did the EC composite scores (p > 0.1), see Table 5.3b. Together, 

these results suggest that the food material properties dictated the oral processing 

behaviour of hydrogels with different textural properties in young individuals 

rather than their individual EC. However, it should be noted that EC was not a 

limiting factor in the oral processing of the model gels used in these participants. 

The strength of these model gels was considerably lower than the maximum bite 

force and tongue pressure measured in current individuals, 8.29 ± 0.96 N or 10.83 

± 1.18 kPa for the hardest hydrogel (3κC) compared to the mean 50.6 ± 15.5 kPa 

for tongue pressure and 154.8 ± 68.8 N for bite force. 

Additionally, the effect of EC level was checked by analysing the 

correlations between ECs and oral processing behaviours for the selected low EC 

and high EC groups separately. For the participants with an EC score < 1.0, the 

bite force for the front incisors and left side molars correlated with the number of 

chews and oral residence time (p < 0.05). On the other hand, the high EC group 

(score > 1.3) only showed correlations of the chewing rate with the bite force of 

the front incisors and EC (p < 0.05). This would suggest that participants with a 

low EC score compensated for this by increasing the number of chews and oral 

residence time, while for people with a higher EC score, and thus a combination 

of higher maximum bite force and higher maximum tongue pressure, the chewing 

rate increased. 

5.4. Conclusions 

Both the extrinsic food material properties and the intrinsic eating capability of 

the consumer are hypothesized to have an influence on oral processing behaviour. 
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Food material properties can be quantified by the use of instrumental as well as 

sensory techniques. Characteristics of an individual including age, gender and 

their oro-facial muscular capabilities may also affect oral processing behaviour. 

In this study, a panel of relatively young, healthy participants, consisting of both 

males and females, was recruited to investigate the importance of their eating 

capabilities, such as maximum bite force and tongue pressure, versus the food 

material properties on the oral processing strategy of three hydrogels with 

different textural properties and bolus tribology. It was found that the oral 

processing behaviour was dominated by both the instrumental fracture properties 

of the hydrogels and the lubrication properties of the hydrogel boli. Whilst the 

fracture force of the gels and the friction force of the boli in the mixed lubrication 

regime correlated well with number of chews and oral residence time, they did 

not relate to the chewing rate. Therefore, we suggest that chewing rate for 

hydrogels is more subject to individual differences than their physical properties. 

Interestingly, the number of chews and oral residence time were greater in 

participants with a low EC compared to high EC score, whereas individuals with 

a higher EC score had a higher chewing rate. In the future, this study should be 

replicated with different hydrogels, as well as other types of food to confirm the 

current findings. Also, it might be interesting to investigate relationships between 

oral physiological parameters specific to each individual, such as the effects of 

consumers’ habitual salivary flow on oral processing strategy, as well as their 

preferred oral processing style/chewing type and their favoured type of food 

materials to eat (Wilson et al. 2018). 

A key finding from this study was that in healthy, young individuals the 

differing material properties of the hydrogels were more important determinants 
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of oral processing than individual differences in eating capability. This then 

suggests that for hydrogels to influence outcomes such as satiation and satiety, at 

least in this population, manipulating the physical properties of the gels such as 

the chewing and oral lubrication properties may produce changes in appetite and 

food intake across consumers. To test these effects, the hydrogels with different 

material properties were employed in a preload study design, and results are 

discussed in Chapter 6. 
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Chapter 6 

The influence of oral lubrication on food intake: 

a proof-of-concept studyd 

 

 

Abstract 

As overeating, overweight and obesity remain public health concerns, it is crucial 

to design satiety-enhancing foods that suppress appetite and lower snack intake. 

Existing research identifies oro-sensory targets to promote satiation and satiety, 

yet it remains unclear as to whether it is ‘chewing’ or ‘oral lubrication’ that might 

amplify satiation signals. In this study, techniques from experimental psychology, 

food material science and mechanical engineering have been combined to 

develop model foods to investigate the role of chewing and oral lubrication on 

food intake. Novel model gels, similar in pleasantness, were given as a preload 

and their effects on subjective appetite and intake of a salty snack were measured 

in a between-subjects design. Three mint flavoured hydrogels were engineered to 

vary in their texture (fracture stress) and lubrication (inverse of coefficient of 

friction), and a control group received mint tea. Results showed that snack intake 

was suppressed by 32 % after eating the low chewing/high lubricating preload as 

                                                 
d Published as Krop, E. M., M. M. Hetherington, S. Miquel and A. Sarkar. 2019b. The influence 

of oral lubrication on food intake: a proof-of-concept study. Food Quality and Preference, 74, 

pp.118-124. 
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compared to the high chewing/low lubricating preload (p < 0.05), but remained 

unchanged after consuming the medium chewing/high lubricating preload. 

Hunger ratings decreased from t1 to t3 (p < 0.05), however differences between 

conditions were subtle and not significant. Thus, this proof-of-concept study 

demonstrates that manipulating oral lubrication is a promising new construct to 

reduce snack intake that merits future research in the oro-sensory satiety domain. 

6.1. Introduction 

There has been an upsurge in research efforts to design satiation- and satiety-

enhancing foods that suppress appetite and prevent overconsumption. Satiation is 

defined as the processes leading to the termination of an eating event and satiety 

as the inhibition of appetite and further eating until the next meal, as described 

within the multifactorial concept of the ‘satiety cascade’ (Blundell et al. 2009). 

Both satiation and satiety responses contribute to the termination of energy 

intake, and therefore understanding these processes is important for designing 

food-based approaches to limit overeating with potential in the longer term to 

influence weight management (Hetherington et al. 2013).  

Although the role of oral processing on satiation and satiety has been well 

established, the quantitative understanding of which dimensions of oral 

processing influence this has remained elusive (Hetherington and Regan 2011; 

Krop et al. 2018; Lasschuijt et al. 2017; Lavin et al. 2002). Based on a recent 

systematic review and meta-analysis on relating oral processing to satiety, it was 

demonstrated that extending the oro-sensory exposure time to foods leads to a 

significant reduction in self-reported hunger and food intake (Krop et al. 2018). 

Interestingly, in many, if not most of these satiety trials involving oro-sensory 
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cues, ‘food rheology’ (i.e. liquid versus solid foods, texture/thickness 

manipulations) has been used as a ‘gold standard’-design tool to influence the 

number of chews, oral residence time or eating rate, and thus, impact satiety 

outputs such as appetite ratings (hunger, desire to eat etc.), food intake and gut 

hormonal release (Larsen et al. 2016; Lavin et al. 2002; Hogenkamp et al. 2012). 

However, during oral exposure, food characteristics change dramatically due to 

lubrication by saliva as well as the saliva-food mixture that might coat the tongue 

and other oral surfaces that are of fundamental importance for deglutition and 

satisfaction (Stokes, Boehm and Baier 2013). Although oral lubrication or friction 

provided by food is a crucial aspect of this fundamental biological process 

occurring in the mouth, its’ mechanistic effects on psychological and 

physiological consequences implicated in altering the motivation to eat remain 

under-researched (Krop et al. 2018). 

The present study was designed to address this fundamental knowledge 

gap using a cross-disciplinary approach. Here we report the effects of novel 

‘biopolymeric hydrogel’ preloads on appetite ratings and food intake from both 

the ‘chewing’ and ‘oral lubrication’ perspective, of which the latter has never 

been used as a construct in satiety trials. For the purposes of this study, we have 

focussed only on the external lubrication effects, i.e. any lubrication induced by 

the food material properties and not due to saliva. The selected hydrogels had no 

energy content and varied in texture in two specific domains: the chewing as well 

as the lubrication properties. The main objective was to investigate which food 

design factor between chewing and lubrication might lower snack intake, and 

whether this is reflected in subjective appetite. The second objective was to study 

whether the hydrogel preload effects were variable according to eating context 
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(eating alone or in a group). The first hypothesis to be tested was that greater 

chewing would result in a lower food intake relative to lower chewing. The 

second hypothesis was that greater oral lubrication would reduce snack intake 

relative to lower lubrication. We further predicted that participants in the group 

setting would eat more snack compared to participants eating alone due to social 

facilitation, but that the preload effect would occur in both eating contexts. 

6.2. Materials and methods 

6.2.1. Participants 

The study was performed at the University of Leeds, UK. Participants were 

recruited using a poster campaign around the university campus, departmental 

recruitment emails and emails sent to a database with people who signed up 

voluntarily with an interest in participating in human studies. Healthy male and 

female volunteers were eligible for the study, aged between 18-55 years, without 

any dental deficiencies or problems with chewing or swallowing, that did not 

have any food allergies or intolerances to the used study foods and were not 

taking any medications that might influence appetite or food intake. The 

experimental protocol of this study was approved by the University of Leeds, 

School of Psychology Research Ethics Committee (reference number PSC-190) 

and all participants signed informed consent before their participation. The aim 

was to recruit 60 participants, 15 in each group, to match previous studies on 

chewing (see Higgs and Jones (2013)). Participants were not told of the exact aim 

of the study, instead they were told that the aim of the study was to investigate the 

effect of a mint stimulus on their perception of a salty snack. Students from the 

School of Psychology were awarded course credits for their participation, while 
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other participants were entered into a prize draw with three participants being 

randomly selected to win a £10 shopping voucher as compensation. 

 

Figure 6.1. Schematic representation of the three different preload gels made 

up of a κC gel matrix alone or with the addition of sodium alginate (NaA) or 

calcium alginate beads (CaA) to create distinct chewing and lubrication 

properties. These properties were based on instrumental characterisation by 

texture analysis (fracture properties) and tribology (the inverse of the 

coefficient of friction at 50 mm/s is a measure of oral lubrication at orally 

relevant speeds), as well as characterisation of the oral processing behaviour 

(number of chews) using frame-by-frame video analysis. 

6.2.1. Experimental design 

The study followed a between-subjects design where participants were assigned 

to one of four conditions. According to availability, participants were allocated to 

group or alone test sessions and within this randomly assigned to the preload 

condition. In the different conditions, participants received one of four preload 
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hydrogels with different chewing and oral lubrication properties (see Figures 6.1 

and 6.3). To study the effect of social interactions, testing sessions took place 

either individually or in groups of five to six people. 

6.2.2. Study foods 

A standardised lunch was given to all participants prior to the start of the study. 

The lunch consisted of a cheese sandwich, apple, an oatmeal flapjack and ad 

libitum water. The sandwich was prepared using two slices (186 kcal/80 g) of 

Kingsmill medium sliced 50/50 bread (Allied Bakeries, UK), 12 g (84 kcal) Flora 

buttery margarine (Unilever, UK) and 32 g (133 kcal) grated British medium 

cheddar cheese. A Braeburn apple was washed and cut in slices, and 100 g (47 

kcal) was weighed out. The sandwich and apple were presented with an 

individually wrapped flapjack slice (159 kcal/37 g). All products were purchased 

at a local supermarket. Participants were instructed to consume all the foods 

provided, containing 609 kcal in total. For the ad libitum snack, ready salted 

crisps (Walkers Snack Foods Ltd., UK) were provided (526 kcal/100 g). 

For the preloads, novel mint flavoured hydrogels were selected based on 

their different chewing and lubrication aspects as characterised in our previous 

work (Krop et al. 2019a), see Figure 6.1. The differences in chewing and 

lubrication were achieved by varying the concentration of different gelling 

agents, i.e. κ-carrageenan (κC) and sodium alginate (NaA), or by introducing 

calcium alginate beads (CaA) to create textural complexity. The 3κC represents a 

3 wt% κ-carrageenan hydrogel with high chewing and low oral lubricating 

properties; 1.5κC0.5NaA represents a mixed 1.5 wt% κ-carrageenan and 0.5 wt% 

Na-alginate hydrogel with low chewing and high lubricating properties; and 
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2.4κC0.2CaA300 denotes 2.4 wt% κ-carrageenan with a layer of 0.2 wt% Ca-

alginate beads, 300 μm in diameter, with medium chewing and high lubricating 

properties (Krop et al. 2019a). The hydrogels were presented in bite-size round 

pieces (diameter 25 mm, height 10 mm) in small, shot-glass type plastic cups. 

Samples were standardised by volume, and weighed about 5-6 g each (3κC: 5.8 ± 

0.4 g, 1.5κC0.5NaA: 5.3 ± 0.3 g and 2.4κC0.2CaA300: 5.8 ± 0.3 g). The hydrogels 

were unsweetened, but flavoured with peppermint aroma and coloured with green 

food colouring to increase acceptability, and contained less than one kcal. 

Peppermint tea (Pure Peppermint, Twinings, UK), purchased at a local 

supermarket and coloured with the same food colouring as the gels, was used as a 

control preload matching the peppermint flavour and green colouring. The tea 

was presented in the same cups and filled up to the same height as the hydrogel 

samples. 

6.2.3. Characterisation of the hydrogels 

The instrumental properties of the hydrogels were characterised as related to the 

chewing and the lubrication aspects using texture analysis and tribology, 

respectively (Figure 6.1). The sensory properties were analysed using descriptive 

analysis (Figures 6.2a and b). More in-depth details on the methodology and 

results have been published elsewhere (Krop et al. 2019a). 

Uniaxial single compression tests were performed on the hydrogels with a 

TA-TX2 Texture Analyser Micro Systems Ltd., Surrey, UK) using a cylindrical 

probe (diameter 59 mm), attached with a 50 kg load cell. The tests were carried 

out at room temperature at a constant speed of 1 mm/s and the deformation level 
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was set at 80 % strain. Measurements were performed in triplicate on at least four 

different preparation days, and mean values of fracture stress were calculated. 

 

Figure 6.2. The sensory properties (mean ± SD) of the same hydrogels were 

evaluated using descriptive analysis as related to either chewing (a) or oral 

lubrication (b), with 3κC (), 1.5κC0.5NaA (), 2.4κC0.2CaA300 (). Data 

was adapted from Krop et al. (2019a). 

Tribology measurements were performed on the hydrogels after simulated 

oral processing in presence of artificial saliva using a Mini Traction Machine 

(MTM2, PCS Instruments, London, UK). The smooth steel surfaces in this 

device, commonly used in engineering disciplines, were replaced by a 

polydimethylsiloxane (PDMS) ball and disc set-up at 37 °C to mimic the oral 

surfaces (surface roughness, Ra < 50 nm) (Laguna et al. 2017). The rolling speed 

was reduced from 1000 to 1 mm/s at a load of 2N, using a slide-to-roll ratio 

(SRR) of 50 %, and the coefficient of friction in the mixed lubrication regime 

(50 mm/s) was measured in triplicate. 

A panel of 11 participants (4 male, 28.8 ± 5.5 years old) selected sensory 

attributes for the hydrogels related to chewing and oral lubrication after three 

training sessions and rated their intensities on a 100 mm visual analogue scale 

(Krop et al. 2019a). 



- 195 - 

 

6.2.4. Study procedure 

A schematic overview of the timeline and study procedure can be found in 

Figure 6.3a. On the day of testing, participants were instructed to eat their 

normal breakfast and attend the lab at lunchtime between 12:00-13:00 h. All 

participants were asked about their age, self-reported body mass index (BMI), 

health and dietary preferences, and tested for eating restraint using the Dutch 

Eating Behaviour Questionnaire (DEBQ) (van Strien et al. 1986). In addition, 

participants were provided with one of the novel preloads used in this study (3κC 

gel), and were asked for their liking and preparedness to eat similar stimuli for the 

purposes of this study. Then, the standardised lunch was served to control for 

participants’ hunger, and panellists. 

Participants were asked to return to the lab 3 h after lunch for the snack, 

and instructed not to eat or drink anything besides water between sessions. Next, 

participants completed the pre-preload (t1) appetite questionnaire, by rating their 

level of hunger, fullness, desire to eat, appetite, thirst, nausea, desire to eat 

something sweet and desire to eat something salty on a 100 mm visual analogue 

scale (VAS), anchored from ‘not at all’ to ‘extremely’. After the appetite ratings, 

participants were offered the preload stimuli and 50 mL of water. Males received 

five units and females four to account for the difference in body size, and 

therefore the oral cavity, between men and women. Participants were instructed 

to finish the mint stimuli within 10 minutes by consuming the first mint stimulus 

followed by a sip of water until all mint stimuli and water were consumed. 

Afterwards, the perceptions of the mint stimulus were evaluated (VAS ratings), 

followed by another appetite questionnaire (t2). Then, the participants were 
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offered a snack of 100 g ad libitum ready salted crisps (pre-weighed amount, 526 

kcal), as shown in Figure 6.3a. To distract the participants form the true nature of 

the study, they rated their desire to eat and pleasantness of the crisps after a first 

bite. After that, participants were instructed to eat a normal sized snack, eat as 

much as they liked within 15 minutes until they felt comfortably full, and to rate 

their sensory perception of the crisps. Immediately after the snack, participants 

re-rated appetite (t3) and answered a final debrief questionnaire, which invited 

participants to consider the true purpose of the study. 

 

Figure 6.3. Timeline and study procedures of each experimental phase with 

appetite ratings scored on visual analogue scales (VAS) as a function of time 

(a). Frame-by-frame video analysis of oral processing behaviour (eating 

duration from first bite to swallowing and number of chews) (b). 

6.2.5. Oral processing characteristics 

To analyse the eating behaviour and make sure participants followed the study 

protocol, a small selection of the participants were asked permission to video 

record them while eating the preload model food (n = 21). A digital camera 
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(Panasonic SDR-H90) on a tripod was positioned in front of the participant, and 

participants were instructed to look straight into the camera while eating the 

preloads. Videos were analysed using The Observer XT 12 software (v12.5, 

Noldus Information Technology, The Netherlands). A coding scheme was created 

to analyse the chewing behaviour, including number of chews (Figure 6.1) and 

eating duration, adapted from previous studies (Laguna et al. 2016). A chew was 

defined as the moment the jaw was at the lowest level during a masticatory cycle 

(closing action) and eating duration as the time between first bite and swallowing, 

identified as the first main swallow at the end of the rhythmic rotary chewing 

movements (Figure 6.3b). From these characteristics, the chewing frequency 

could be calculated by dividing the number of chews by the total eating duration 

(Forde et al. 2013; Laguna et al. 2016). 

6.2.6. Statistical analysis 

All statistical analyses were performed using SPSS (IBM® SPSS® Statistics, v24, 

SPSS Inc, Chicago, USA). Results are presented as mean ± standard error of 

mean (SEM), and significance level was set at p < 0.05 (2-tailed), unless stated 

otherwise. Differences between conditions were tested by independent factorial 

analysis of variance (ANOVA) for food intake and repeated measures to assess 

condition effects on appetite ratings, followed if appropriate by a post-hoc 

Bonferroni correction for multiple comparisons. Pearson's product moment 

correlations were calculated to assess the relationship between the different 

preload conditions and hunger ratings at the three different time points. 
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6.3. Results 

6.3.1. Participants’ characteristics 

In total, 59 participants completed the study. Before the start of the study, the 

participants’ liking and their preparedness to eat the novel preload foods (3κC 

gel) were recorded. The mean liking for the test food was 35 ± 23 mm and all 

participants indicated they were willing to eat the model foods as part of this 

study. After data collection was completed, four participants were excluded from 

the analysis due to the following reasons – three participants ate less than 12.5 g 

of the snack, which is less than half the size of a normal portion, indicating that 

these participants had not complied with the instruction to eat a normal snack; 

one participant consumed all of the provided snack, and thus, exhibited the 

‘cleaning-the-plate’ effect suggesting that eating was influenced simply by 

availability. Thus, the data for 55 participants (16 male, 39 female) were analysed 

(see Table 6.1). Participants ranged in age from 18 to 45 years (mean 26 ± 1 

years) and BMI from 18 to 33 (mean 23 ± 0.4 kg/m2). Eating restraint from the 

DEBQ showed that three males (> 2.89) and six females (> 3.39) were restrained 

eaters (van Strien et al. 1986), with a mean score of 2.17 ± 0.2 for males and 

2.59 ± 0.1 for females. 

6.3.1. Effect of oral processing on snack intake 

The difference in oral processing between the three preloads, as characterised by 

video analysis, instrumental analysis (fracture properties and tribology) and 

sensory panel, is shown in Figures 6.1 and 6.2. The 3κC hydrogel showed a high 

fracture stress (218 kPa) on compression as well as a high number of chews 

(Figure 6.1), indicating that it is a hard gel that has to be chewed more. 
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Table 6.1. Number of participants in the different preload conditions (in 

bold) and eating contexts, as well as the mean (± SEM) age and BMI values 

for the different participant groups. 

 
Total Male Female 

Age 

(years) 

BMI 

(kg/m2) 

Hard/Low lubricating 

(3κC) 
13 5 8 29 ± 3 22.6 ± 0.5 

Individual 8 5 3 
  

Group 5 0 5 
  

Soft/High lubricating 

(1.5κC0.5NaA) 
13 3 10 23 ± 2 21.8 ± 0.8 

Individual 7 2 5 
  

Group 6 1 5 
  

Medium/High lubricating 

(2.4κC0.2CaA300) 
15 3 12 27± 2 22.7 ± 0.9 

Individual 10 2 8 
  

Group 5 1 4 
  

Control (Mint tea) 14 5 9 26 ± 1 25.0 ± 1.0 

Individual 9 3 6 
  

Group 5 2 3 
  

Total 55 16 39 26 ± 1 23.0 ± 0.4 

Individual 34 12 22 
  

Group 21 4 17 
  

The coefficient of friction from the tribology measurements, however, was 

relatively high (μ = 0.26), indicating that it has low lubricating properties. The 

opposite was found for the preload 1.5κC0.5NaA, with low fracture stress 

(27 kPa) and correspondingly low number of chews, and low coefficient of 

friction (μ = 0.01), indicating it is low chewing and high lubricating. The sensory 

properties further corroborate this, as the chewing-related attributes, such as 

‘firm’, ‘chewy’ and ‘elastic’, were rated high for 3κC and low for 1.5κC0.5NaA 

(Figure 2a). In addition, the 3κC hydrogel scored lower on the lubrication-related 
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attributes, such as ‘smooth’, ‘pasty’ and ‘melting’, whereas 1.5κC0.5NaA scored 

higher on the same attributes (Figure 2b). The hydrogel with beads, 

2.4κC0.2CaA300, showed fracture stress (104 kPa), number of chews and chewing 

attribute ratings between the 3κC and 1.5κC0.5NaA samples, and therefore was 

characterised as medium chewing. The coefficient of friction of 2.4κC0.2CaA300 

was similar to that of the 1.5κC0.5NaA hydrogel, and therefore characterised as 

high lubricating, however 2.4κC0.2CaA300 scored rather intermediate on the 

lubrication-related sensory attributes as well. 

The amount of snack eaten was significantly different after the four 

preload conditions (p < 0.01), with snack intake suppressed by 32 % after the 

soft/high lubricating mint stimulus (1.5κC0.5NaA, 37 ± 3 g) compared to the 

hard/low lubricating stimulus (3κC, 59 ± 6 g), see Figure 6.4a. 

 

Figure 6.4. Mean (± SEM) snack intake after the four preload conditions (a) 

and mean (± SEM) snack intake split between the individual sessions (solid 

fill, n = 34) and group sessions (diagonal lines, n = 21) (b), with 3κC (), 

1.5κC0.5NaA (), 2.4κC0.2CaA300 () and mint tea (). Different lower case 

letters indicate statistically significant differences between conditions 

(p < 0.05). 
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The overall snack intake also differed between session types (p < 0.01), with the 

intake in the group sessions being higher (59 ± 4 g) than when eating alone 

(44 ± 3 g), as was expected due to the social setting. Figure 6.4b shows the 

difference in snack intake between conditions separated by session type (alone or 

in a group). No interaction effects were found between condition and session type 

(p = 0.604). Also, the effect of gender was analysed but main effects and 

interactions were not significant, consistent with previous research (Hetherington 

and Regan 2011). Therefore all subsequent analyses were reported for the group 

as a whole: male and female, and individual and group sessions together. 

6.3.2. Effect of oral processing on subjective appetite ratings 

Hunger ratings did not differ by condition, nor was there a significant condition 

by time interaction. However, the hunger ratings did change over the different 

time points (t1 - t3, see Figure 6.5a), with a significant decrease over time 

(F(2, 102) = 14.87, p < 0.001). Post-hoc tests revealed that hunger at t3 was 

significantly lower than at t1 and t2. There was no significant difference between 

ratings at t1 and t2. Similar effects were found for desire to eat (F(2, 102) = 14.15, 

p < 0.001) and appetite (F(2, 102) = 14.34, p < 0.001), see Figures 6.6a and 

6.6b. The fullness ratings, on the other hand, mirrored those of the hunger, desire 

to eat and appetite ratings showing a significant time effect (F(2, 102) = 11.97, 

p < 0.001), where fullness ratings at t3 were significantly higher than t1 and t2 

ratings (see Figure 6.5b). There was no significant effect of condition on thirst 

ratings (Figure 6.5c), nor was there any interaction effect of condition by time. 

However, there was an effect of time alone (F(2, 96) = 31.62, p < 0.001). Post 
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hoc tests revealed that t3 thirst was higher than at t1 and t2. Thirst ratings were 

also lower at t2 compared to t1 at the start of the second session. 

 

Figure 6.5. Mean (± SEM) hunger (a), fullness (b), thirst (c) and nausea (d) 

ratings over time for the four preload conditions, with 3κC (), 

1.5κC0.5NaA (▲), 2.4κC0.2CaA300 () and mint tea (), and t1 before 

preload, t2 immediately after preload and t3 immediately after the snack. 

Asterisks (*) indicate statistically significant differences (p < 0.05). 

There were no interaction effects between conditions and time points, and 

there was no effect of condition on desire to eat something sweet or desire to eat 

something salty. However, desire to eat something sweet (F(2, 96) = 4.52, 

p < 0.05) and desire to eat something salty (F(2, 96) = 33.28, p < 0.001) did 

significantly change over time (Figures 6.6c and 6.6d). To make sure none of the 

preloads invoked a stronger feeling of nausea, due to the novelty of the model 

foods or the presence of the hydrocolloids in the preloads, nausea was rated over 
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time as well (Figure 6.5d). There was no significant main effect of preload 

condition or time point, nor was there any interaction effect of condition vs time. 

 

Figure 6.6. Mean (± SEM) desire to eat (a), appetite (b), desire to eat 

something sweet (c) and desire to eat something salty (d) ratings over time 

for the four preload conditions, with 3κC (), 1.5κC0.5NaA (▲), 

2.4κC0.2CaA300 () and mint tea (), and t1 before preload, t2 immediately 

after preload and t3 immediately after the snack. Asterisks (*) indicate 

statistically significant differences (p < 0.05). 

6.3.3. Perception of the study foods 

The pleasantness, strength of the mint flavour, sweetness or chewiness of the 

preload foods were rated on 100 mm VAS. One-way ANOVA indicated that 

pleasantness, mint flavour and sweetness did not differ between the preload 

conditions. However, the chewiness of the preload samples was significantly 

different (F(3, 51) = 31.30, p < 0.001). The post hoc test indicated that the mint 
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tea (control sample) was not perceived as chewy at all (mean 3 ± 2 mm), the 

1.5κC0.5NaA was significantly more chewy (mean 37 ± 8 mm) than the mint tea, 

and 3κC (mean 77 ± 7 mm) and 2.4κC0.2CaA300 (mean 67 ± 6 mm) were the 

most chewy. 

6.3.4. Correlations 

Pearson correlations between chewiness of the preload and the snack intake 

showed that they were not related (r = 0.056, p = 0.687). Food intake between the 

different preloads also did not correlate with the perceived pleasantness 

(r = -0.132, p = 0.338) or any potentially induced nausea after eating the preload 

foods (r = -0.189, p = 0.168). 

6.4. Discussion 

The present study investigated whether model hydrogels with varying chewing 

and oral lubrication properties had a significant influence on self-reported 

appetite measures, such as hunger, fullness and desire to eat, as well as the intake 

of a snack. It was hypothesized that more chewing would lead to lower food 

intake, as reported in previous studies (Krop et al. 2018). Interestingly, results 

showed that snack intake was only lowered after the consumption of the soft/high 

lubricating preload sample (1.5κC0.5NaA) compared to the hard/low lubricating 

preload (3κC), suggesting that it was not the chewing but the lubricating 

properties that governed subsequent intake of a salty snack. Sensory ratings for 

the different preloads did not reveal a significant difference in terms of 

pleasantness, strength of mint flavour or sweetness, and therefore these 

characteristics could not account for the suppressed food intake after the soft/high 

lubricating preload (1.5κC0.5NaA). Nevertheless, there was no significant 
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difference between the soft/high lubricating preload (1.5κC0.5NaA) and 

medium/high lubricating preload (2.4κC0.2CaA300). Therefore, it seems unlikely 

that the instrumental measure of coefficient of friction alone can explain the 

mechanism of lubrication behind the lower snack intake after the soft/high 

lubricating preload (1.5κC0.5NaA). Previous research analysing the hydrogel 

preloads using a sensory panel found that the soft/high lubricating preload 

(1.5κC0.5NaA) was rated more ‘smooth, ‘pasty’ and ‘melting’ compared to the 

medium/high lubricating preload (2.4κC0.2CaA300), see Figure 6.2b, though they 

were rated similarly for other indices of lubrication (Krop et al. 2019a). In 

particular, this pastiness was defined as ‘a sensation of the presence of wet/soft 

(immiscible) solids in the mouth’, which could result in a certain amount of 

mouth coating. Such mouth-coating aspects of sodium alginate (1.5κC0.5NaA) 

have previously been reported as related to a mouth moistening and hydrating 

property (Cook et al. 2017), which in turn might lead to a lower snack intake. To 

make sure this mouth-coating did not lead to any lingering feelings of nausea, the 

nausea ratings were analysed and no significant differences in subjective nausea 

were found between conditions after the consumption of any of the preloads. 

Besides the difference in snack intake between 1.5κC0.5NaA and 3κC, 

snack intake after the hard/low lubricating (3κC) and the control sample (no 

chewing/low lubricating) did not show a significant difference, indicating that it 

was not the chewing properties that determined snack intake after the preload. 

This does not support previous research, which showed that a higher level of 

chewing did indeed reduce food intake (Lasschuijt et al. 2017; Lavin et al. 2002; 

Krop et al. 2018). This might be explained by the short exposure time of 10 

minutes and the low amount of elicited chewing in this period, indicating that the 
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total chewing time may not have been sufficiently long enough to influence food 

intake. Future research incorporating more hydrogel pieces into the preload to 

increase overall chewing time may find a more pronounced effect on food intake. 

However, there are other studies that confirm no impact of chewing on food 

intake (Julis and Mattes 2007). 

In addition, it was found that snack intake was greater in a group setting 

compared to eating alone, confirming the hypothesis that social interactions 

during a snack increases food intake (Redd and de Castro 1992). 

The effect size was considered relatively small, which is also consistent 

with previous research investigating oro-sensory stimulation (Hetherington and 

Regan 2011). This may be related to a small effect of chewing or lubrication 

during oral processing, or the amount of preload gels (four or five units per 

participant) was rather small. The novelty of the preload hydrogels and their 

generally low rated pleasantness were a consideration in providing a limited 

amount of the preload foods (Pliner and Hobden 1992), as well as not wanting to 

prevent any further food intake due to the volume of the preload. The present 

study also found that preload foods with varying chewing and oral lubrication 

properties did not significantly influence self-reported appetite measures, such as 

hunger, fullness and desire to eat, indicating that one preload did not lead to 

higher or lower self-reported appetite ratings than any of the other preloads. In 

addition, a decrease in hunger, desire to eat, appetite and desire to eat something 

salty, and an increase in fullness ratings were observed over time in the following 

snack intake in all preload conditions. Thus, this confirmed that the participants 

consumed the snack until satiety was reached. 
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6.5. Limitations 

Limitations of the study include the lack of a fully factorial design with model 

foods representing hard/high lubricating and soft/low lubricating properties. In a 

future replication study, hydrogels with these qualities could be developed to 

improve the matrix for comparisons. In addition, the in-vivo oral lubrication 

effects of the preloads, i.e. the lubrication contributed by the bio-lubricant saliva 

(internal) versus hydrogels (external), were not checked whereas the chewing 

properties were measured by video analysis of the chewing behaviour. 

Furthermore, the sample size was smaller than planned and this limits 

extrapolation from this study; future studies should use a larger sample. Also, the 

use of ready salted crisps as a salty snack in the current study may have 

influenced the results. Liking for the crisps may have overshadowed the chewing 

and oral lubrication effects of the preloads. A larger effect may have been found 

had we included a sweet snack since intake is influenced by individual food 

preferences. On the other hand, increasing variety by providing both salty and 

sweet snacks might stimulate appetite and increase intake (Rolls et al. 1981), and 

overpower any effects due the preloads. 

An independent between-subjects design was used in the present study to 

facilitate easier panel recruitment and flexibility. Better results might have been 

obtained with a within-subjects design where the random noise would be 

minimized (Stone and Sidel 2004). However, a within-subjects design would 

have resulted in increased familiarity with the preload hydrogels, and would be 

associated with increased expected satiation and satiety. 
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6.6. Conclusions 

The aim of this study was to investigate whether chewing and lubrication during 

oral processing, manipulated by hydrogel preloads, had an influence on snack 

intake and self-reported appetite ratings. Results from this proof-of-concept study 

demonstrated that snack intake was reduced following the soft/high lubricating 

preload relative to the hard/low lubricating preload, which was not predicted. The 

mechanism by which oral lubrication, rather than chewing, played a prominent 

role in reducing subsequent food intake of a salty snack, was associated with the 

sensory ‘mouth-coating’ aspects of the preload; however, exact biological cross-

talk between mouth-coating, tactile perception and mechano-receptor stimulated 

satiation, as well as the role of food material-saliva interactions in both satiation 

and satiety, demand systematic future studies. 
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Chapter 7 

General discussione 

 

 

7.1. Summary of the main thesis results 

Understanding the interface between the physical properties of foods, the intrinsic 

features of the consumer and how consumers respond to oro-sensory manipulations 

both advances knowledge in the field and leads to potential strategies for appetite 

control. This is especially urgent and relevant given the current obesogenic 

environment, where an increasingly sedentary lifestyle is matched by an excessive 

intake of food leading to a positive energy balance. The broad aim of this thesis 

was to explore the domain oral processing using different food structures with the 

potential for appetite control and reduced food intake. If successful, these studies 

may lead to the development of satiety-enhancing foods to address the dual 

concerns of excess food intake and risk of obesity. An overview of the chapters in 

this thesis and their outcomes is shown in Figure 7.1, from the development of the 

model foods, their physical properties and sensory perception to the use of these 

foods with consumers differing in eating capability and ultimately their use in a 

short-term satiety study. 

                                                 
e Part of this chapter is published as Sarkar, A. and E. M. Krop. 2019. Marrying oral tribology to 

sensory perception: a systematic review. Current Opinion in Food Science, 27, pp.1-10. 
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Based on the perceived knowledge gap in the literature on the effects of all 

aspects of oral processing on satiety (Chapter 2), this PhD project has advanced 

the knowledge base by moving beyond the chewing-related aspects of oral 

processing to external lubrication. In order to test both the effects of chewing and 

oral lubrication, a set of model food systems were developed and their properties 

characterised instrumentally and sensorially (Chapters 3 and 4). Using the 

mechanical engineering technique of tribology, it was hypothesised that the 

lubrication processes in the mouth can be quantified and potentially linked to the 

sensory perception of lubrication-related attributes using descriptive sensory 

analysis. The strategy to test this hypothesis involved the engineering of different 

hydrocolloid systems, with a range of concentrations and ratios, and by tuning the 

interactions between the structural elements so that they affect the oral processing 

behaviour (Chapter 3). The hypothesis was supported and the hydrogels with high 

chewing and lubricating properties were identified (Chapter 4). It was 

demonstrated that for young adults, it was not the person’s eating capabilities but 

the food’s material properties that influenced the oral processing behaviour, such 

as number of chews (Chapter 5). Then, using the identified model hydrogels from 

Chapters 4 and 5 as preload food systems, the effects on food intake and appetite 

ratings were measured (Chapter 6). New insights were generated on the reduction 

of food intake by the lubricating gels rather than the chewy gels. 

This discussion chapter reflects on the novelty of the key findings obtained 

in each chapter of this thesis and considers the major study parameters. Finally, the 

implications of the current findings are discussed and recommendations for future 

work are made. 



 

 

 

Figure 7.1. Thesis summary: linking model foods’ instrumental, sensory and oral processing properties to food intake, focussing on 

chewing and external lubrication using hydrogel preload foods.
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7.2. Novelty of this thesis 

In Chapter 2, a systematic review and meta-analysis on the influence of oral 

processing on satiation and satiety revealed a clear knowledge gap in the literature. 

For the first time, key words related to oral lubrication, friction and tribology were 

used as part of the oral processing search terms, and linked to appetite ratings and 

food intake measures. Little to no literature was found investigating the effects of 

oral lubrication as an integral part of oral processing, using a standardised test-

design to allow for comparisons between studies. 

In Chapter 3, a wide range of hydrogels with different hydrocolloids, 

concentrations and mixing ratios were prepared and the fracture properties were 

analysed instrumentally. Previous studies on model gels focussed mainly on 

emulsion-filled gels, where the focus was on the fat-related properties, e.g. 

Devezeaux de Lavergne et al. (2016) and Liu et al. (2015). In this study, no fat was 

added to the model systems to study the instrumental and sensory properties, which 

required the development of new methodologies to measure lubrication-related 

aspects of oral processing in non-fat food products. Based on the fracture properties 

of these hydrogels and their potential suitability for human consumption, a 

selection was made. In Chapter 4, the instrumental friction properties (tribology) 

and sensory lubrication attributes were determined for this selection of hydrogels. 

By correlating the various properties, it was found that instrumentally determined 

friction coefficients could be used in order to predict sensory perception, 

specifically in non-fat hydrogels. In addition, it was found that creating simulated 

bolus samples by breaking down the hydrogels in the presence of artificial saliva, 

provided realistic samples that could then be compared to the findings from sensory 
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analyses. More importantly, the method development involving gel bolus fragment 

samples and gel bolus filtrates highlighted the importance of the thin-film aspects 

in tribology, and indeed the instrumental tribological behaviour of gel bolus 

filtrates were correlated with lubrication-related sensory attributes. 

An important aspect of this thesis was to design the instrumental properties 

of the hydrogels in such a way that would result in different oral processing 

strategies in the same person. However, different individuals can have widely 

varying oral capabilities, i.e. the size of the oral cavity and maximum bite force. 

Therefore, we wanted to make sure any differences in the oral processing strategy 

we measured was due to the different hydrogels and not due to the individual eating 

capabilities (ECs) of the consumer. In Chapter 5, we showed the importance of 

the food material properties over individuals’ ECs in young adults, where the 

differences in EC did not indicate any correlation to the number of chews, the oral 

residence time or eating rate. 

Finally, using a proof-of-concept study we demonstrated the effect of oral 

lubrication on short-term satiation (snack intake), as well as the importance of 

considering lubrication as an aspect of oral processing for food perception and 

satiety development (Chapter 6), which had not been considered before. 

7.3. Discussion points and thesis’ implications 

7.3.1. Considerations of the preload foods: hydrogels 

This thesis concerns model hydrogels based on different hydrocolloid systems, 

such as κ-carrageenan (κC), locust bean gum (LBG), sodium alginate (NaA) and 

calcium alginate (CaA) beads. These hydrocolloids were selected based on their 

ability to form stable, non-thermo-reversible gels at body temperatures of 37 °C 
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that were suitable for human consumption (Chapter 3). Aside from the selected 

hydrocolloid systems, many more polysaccharide options exist, such as agar, 

gelatine, gellan, pectin, xanthan gum, etc, as well as proteins such as whey protein, 

that can form gels. By creating systems with different concentrations and mixtures, 

different textural and tribological properties might be obtained. Certain 

hydrocolloids were not considered further in this study, as they are known to 

possess certain characteristics unsuitable for the purposes in this thesis, e.g. 

gelatine which shows melting behaviour at orally relevant temperatures. This 

melting behaviour would further complicate the sensory experience, particularly 

when comparisons are made with systems that do not melt at body temperatures 

(Devezeaux de Lavergne et al. 2016). Based on a series of preliminary studies, 

other hydrocolloid systems were excluded as they did not form stable gels that 

would be pleasant to eat. Pectin gels for example showed a brown discolouration, 

especially at higher concentrations (see Figure 7.2), which might be difficult to 

conceal from the panellists, and xanthan gum was unable to form stable gels 

convenient for handling. For this thesis, κC was selected for its suitability and LBG 

and NaA were used to change structural properties of the κC matrix. As this was 

the first study to look at both the instrumental and sensory lubrication 

characteristics of solid hydrogel systems, the expected properties were unclear at 

this early stage. 

 

Figure 7.2. Images of pectin hydrogels (concentration range 1.0-6.0 wt%). 
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In addition, the κC gels were layered with CaA beads of two different sizes 

(300 and 1000 μm), with the aim to achieve a level of inhomogeneity resulting in 

a different lubrication perception in the mouth. However, from the sensory 

descriptive analysis (Chapter 4), it was found that the CaA beads were not 

necessarily noticed during consumption. Incorporating the beads directly into the 

κC network, instead of as a separate layer, would potentially improve the sensory 

experience. Different CaA concentrations and bead sizes were not explored further. 

Instead of larger particles, which we expected would have increased lubrication 

properties due to particles bursting and releasing liquid during oral processing, 

smaller particles might be able to create the so-called “rolling” effect with 

improved perceived smoothness. 

7.3.2. In vitro compared to in vivo oral tribology 

The surfaces in the mouth relevant for oral lubrication measurements consist of the 

tongue, palate, teeth and mucosa (Sarkar et al. 2019). To measure the oral 

lubrication processes instrumentally, it is important to use a set-up that closely 

mimics the actual oral surfaces. Although an attempt was made to change the 

hydrophobic surface properties of the PDMS tribopairs by coating them in artificial 

saliva before analysing the bolus hydrogel properties (Chapter 4), other studies 

have shown the ineffectiveness of this procedure considering the high contact angle 

of PDMS (108○), where almost any saliva might just slip off rather than adsorb 

(Sarkar et al. 2017). Therefore, the PDMS tribopairs might not have been the best 

representatives of the hydrophilic oral surfaces, making it more difficult to find any 

potential correlations with the sensory lubrication attributes. Although PDMS is 

commonly considered a gold-standard for tribological testing in food science, the 

Young’s modulus of smooth PDMS surfaces is actually two orders of magnitude 
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higher than that of the human tongue (Dresselhuis et al. 2008a). Using the Hertz 

contact theory, the contact pressure during testing can be determined, which using 

PDMS surfaces is one order of magnitude lower than the pressure measured in 

healthy adults (Sarkar et al. 2019). In order to better mimic the oral conditions, 

lower loads (below 0.1 N) or materials with lower Young’s modulus should be 

considered. In addition, the tongue surface is not smooth, but consists of numerous 

filiform papillae, mainly at the front of the mouth, as well as larger mushroom 

shaped fungiform and other papillae that trigger taste perceptions (Sarkar et al. 

2019). The rather smooth PDMS surfaces are thus quite dissimilar from the surface 

of the human tongue. Future studies might benefit from improved tribological 

surfaces before any more definitive correlations to sensory perceptions can be 

made. 

In this thesis, the sensory texture attributes were targeted for their 

connection to chewing and oral lubrication. During the first phase of oral 

processing, the focus is more on the chewing related texture attributes, such as 

chewiness, hardness, brittleness and elasticity. In the later phases, the sensory 

attributes are more influenced by the rheological and tribological properties. After 

swallowing, some food residues can remain in the mouth adhered to the oral 

surfaces forming an oral coating. These food residues are often perceived as fatty, 

creamy and smooth, or dry, rough and gritty, summarised as after-feel attributes. 

Moreover, these after-feel attributes are better described by the tribological 

properties of the food residues and their interactions with saliva and the oral 

surfaces, rather than the rheological bulk properties of the food (Prakash, Tan and 

Chen 2013). Since the hydrogels used in this thesis did not contain any fat, the 

after-feel properties were considered less relevant at the start of the project. 
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However, the ‘pasty’ properties revealed in the hydrogels containing NaA were 

theorised to be a result of their mouth-coating capabilities (Chapter 4), showing 

the importance of dynamic sensory evaluations. 

Besides the instrumental tribology measurements to determine oral friction, 

it is important to study the link with in vivo oral lubrication processes. In this thesis, 

the chewing behaviour for the different hydrogels was analysed using video 

recordings and frame-by-frame analysis of targeted chewing behaviours, such as 

number of chews and chewing duration. As the in-mouth friction behaviour cannot 

be visually studied outside of the mouth, this poses a research challenge that still 

needs to be tackled. Previous studies have used in vivo fluorescence methods to 

quantify fatty deposit layers on the tongue (Camacho et al. 2014; Camacho et al. 

2015), however, due to the absence of fat in the hydrogels this method was less 

suitable for use in this thesis. Alternatively, the mouth-coating properties of non-

fat products could be determined from the protein content on the oral surfaces. Due 

to the food-saliva interactions, the salivary film usually present in the mouth may 

be broken down at various rates causing differences in sensory perception (Selway 

and Stokes 2013). By measuring the mucin content of the salivary film at different 

stages of oral processing, it may be possible to link the in-vivo mouth-coating 

properties to the sensory lubrication attributes. Other researchers have focussed on 

a classification system for individuals that show a preference for a specific eating 

style, i.e. ‘chewers’, ‘crunchers’, ‘smooshers’ and ‘suckers’ (Wilson et al. 2018). 

This classification system shows a potential application in further lubrication 

studies, where the eating style might indicate something about the friction 

behaviour of certain foods or a participants’ preference for foods with certain 

lubrication properties. Using more advanced techniques, such as tracking of the 
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jaw’s movements using a 3D electromagnetic system (Wilson et al. 2016), chewing 

behaviour might be analysed in more detail which might be linked to their eating 

behaviour and also the oral lubrication properties. Overall, little is known about 

how to analyse the mouth-coating properties of non-fat products. Therefore, there 

is a need to develop new methodologies to measure the in vivo mouth-coating 

properties, and standardise them for both fat and non-fat food products. 

7.3.3. Correlations between tribology and sensory perception 

Quantitative relationships between μ at particular entrainment speeds and specific 

sensory attributes evaluated by panellists have attracted significant research 

attention in both model foods (emulsions, emulsion gels and hydrogels) and real 

foods (milk, yoghurts, custards, cream cheese, chocolate and bread). From a 

systematic review into published literature, 38 studies were identified correlating 

instrumental tribology data and sensory attributes (see Table 7.1). Most previous 

studies looking at the correlations between tribology and sensory perception have 

concentrated on model foods or real food products with a fatty component, 

resulting in a focus on attributes such as ‘creamy’, ‘fatty’ and ‘smooth’. However, 

these attributes were found to be less relevant in products not containing any fat. 

In this thesis, we have shown for the first time correlations between 

instrumental tribology measurements and lubrication-related sensory attributes in 

aqueous hydrogels, not containing any fat (Chapter 4). The coefficient of friction 

(μ) in the mixed lubrication regime (50 mm/s) of the hydrogel bolus filtrate (i.e. gel 

particles > 500 μm were filtered out after simulated oral processing in presence of 

artificial saliva) revealed an inverse correlation with ‘pasty’ (R2 = -0.80, p < 0.05) 

and a positive correlation with ‘slippery’ (R2 = 0.82, p < 0.05) and ‘salivating’ 
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(R2 = 0.79, p < 0.05). A study by Malone, Appelqvist and Norton (2003) on 

hydrocolloid solutions also found a positive correlation with ‘slippery’ in the mixed 

regime (10-100 mm/s), similar to our result on solid hydrogels. However, another 

study on hydrocolloid-protein gel particle dispersions, without added fat, found the 

opposite with an inverse correlation to ‘slippery’ (R2 = -0.40, p < 0.05) in the mixed 

regime (50 mm/s) (Chojnicka-Paszun, Doussinault and de Jongh 2014). 

The direction of the correlations between μ and sensory attributes in 

hydrogels might be counterintuitive when comparing against those in fat-based 

emulsion gels. For the hydrogels, ‘pastiness’ was linked to the mouth-coating 

aspects of the samples, i.e. the coating of the bolus filtrates was viscous enough to 

separate the oral surfaces and thus μ was reduced in the hydrogels that were 

evaluated to be highly ‘pasty’. On the other hand, ‘slipperiness’ was defined as the 

ease of sliding through the mouth during oral processing, indicating that highly 

slippery hydrogels were easily sliding past the oral surfaces. This resulted in the 

hydrogel boli not being retained within the contact surfaces, with as a consequence 

higher μ values. The inverse correlation found in the study by Chojnicka-Paszun, 

Doussinault and de Jongh (2014) seemed to be a result of the added protein gel 

particles. Due to the added complexity, the expected positive correlation between 

μ and ‘slippery’ was not found. Likely, the perception of ‘slippery’ here is 

influenced by some other property of the dispersion, such as the film-forming 

capacity, and would suggest it might behave more like foods with a fatty-aspect. 

Figure 7.3 shows a schematic representation of the more recent studies in 

Table 7.1, summarizing possible existing correlations in different test foods (both 

model and real food systems) between lubrication-related sensory attributes as well 

as other relevant instrumental parameters, such as friction coefficient, viscosity and 
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particle size. It can be seen that three clusters were identified: 1) foods containing 

fat, 2) no- to low-fat containing foods, and 3) a variety of different solid model and 

real foods. For clusters 1 and 2, the relevant sensory attributes were ‘smooth’, 

‘creamy’, ‘viscous’, ‘astringent’ and ‘grainy’ in the fat-related foods, whereas for 

the solid foods different descriptors were used. The exception being the fat-

containing emulsion-filled gels, which showed some overlap with attributes found 

mainly in cluster 1. 

 

Figure 7.3. Schematic representation of qualitative clusters on correlations 

between instrumental and sensory parameters for different model and real 

food products, based on the studies published in or after 2016 reported in 

Supplementary Table E.1. Here μ, η, d3,2 represent the friction coefficient, 

viscosity and mean particle size. The subscripts for μ and η are the speed 

(mm/s) and shear rate (s-1), respectively. 



 

Table 7.1. Studies that have examined the relationship between tribology and sensory properties. 

  Lubricant Tribology Simulated oral 

conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

Model 
foods 

Emulsions 

Hydrocolloid solutions and 

o/w emulsions (guar gum) 

MTM (1-1100 mm/s, 3 N, 

steel ball on silicon disc 

set-up) 

Artificial saliva 

(ions, mucin), 35 °C 

Ratings compared to 

references 

Pearson's 

correlations 

Slippery [hydrocolloid 

solutions], creamy (-) 

[emulsions] 

Mixed (10-

100 mm/s) 

Malone, 

Appelqvist and 

Norton (2003) 

Emulsions varying in type 

and amount of emulsifier, 
droplet size and fat type 

OTC (80 mm/s, 0.5 N, 

16 mm oscillation, pig’s 
tongue surface and glass) 

No saliva, 20 °C QDA, n=8 PCA Raw tongue, dry, rough, 

astringent 

 Dresselhuis et 

al. (2008b)* 

Protein-stabilised 

emulsions 

OTC (10-80 mm/s, 0.5 N, 

16 mm oscillation, 

sandblasted PDMS probes 
and glass surface) 

Human saliva 

(stimulated), 20 °C 

QDA, n=8  Raw tongue, dry, rough  Dresselhuis et 

al. (2007) 

Emulsions (22 and 33% 

fat, different emulsifiers) 

Lab-built (1 Hz, 0.5 N, 

PCTFE ball on silicone 

disc) 

Human saliva 

(stimulated), 37 °C 

Triangle tests, n=20 Pearson's 

correlations 

The bigger the 

difference in friction 

between samples, the 
better the discrimination 

Mixed 

(10 mm/s) 

Bellamy et al. 

(2009) 

O/w emulsions Lab-modified TA (0.1-40 

mm/s, 0.57 N, PDMS 

surface and steel balls) 

Artificial saliva 

(ions, mucin, α-

amylase), 28 °C 

Sensory ratings: 

compare to 

reference, n=25 

Pearson's 

correlations 

Smooth (-) Boundary, 

mixed (0.1-30 

mm/s) 

Upadhyay and 

Chen (2019) 

Emulsion-

filled gels 

Emulsion-filled gels 

varying in fat content 
(5 and 15%) and type of 

emulsifier (bound or 

unbound fat droplets) 

OTC (80 mm/s, 0.5 N, 

16 mm oscillation, flat-
bottom PDMS probe and 

glass surface) 

No saliva, 20 °C DA, n=13  Fatty (-) Mixed 

(80 mm/s) 

Camacho et al. 

(2015) 

Emulsion-filled gels 
(gelatine) after simulated 

oral processing 

OTC (10-80 mm/s, 0.5 N, 
16 mm oscillation, flat-

bottom PDMS probe and 

glass surface) 

No saliva, 20 °C QDA, n=11    Liu et al. (2015) 



 

 

  Lubricant Tribology Simulated oral 

conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

Microbubble dispersions, 

o/w emulsions and protein 

solutions (without/with 
thickener or gelling agent) 

OTC (10-80 mm/s, 0.5 N, 

16 mm oscillation, flat-

bottom PDMS probe and 
glass surface) 

No saliva, 20 °C Tetrad test, n=7    Rovers et al. 

(2016) 

O/w emulsions and 

emulsion-filled gels 

(gelatine) 

OTC (10-80 mm/s, 0.5 N, 

16 mm oscillation, flat-

bottom PDMS probe and 
glass surface) 

No saliva, 20 °C QDA, n=12    Liu et al. (2016) 

Emulsion-filled mixed gels 

(gelatine/agar, κ-

carrageenan/LBG, 
low/high acyl gellan) after 

simulated oral processing 

OTC (10-80 mm/s, 0.5 N, 

16 mm oscillation, flat-

bottom PDMS probe and 
glass surface) 

No saliva, 37 °C QDA, n=12 Pearson's 

correlations 

Sticky [first bite], 

sticky, rough, powdery, 

spreadable, fatty 
[chew-down], fatty, dry 

[after-feel] 

Mixed 

(80 mm/s) 

Devezeaux de 

Lavergne et al. 

(2016)* 

Hydrocolloid 

foods 

Liquids with additives and 

commercial liquid foods 
(mainly syrups) 

Friction apparatus 

(chamois-coated surfaces) 

No saliva, 20 °C Ratings compared to 

reference 

Pearson's 

correlations 

Smooth (-) Mixed 

(25 mm/s) 

Kokini, Kadane 

and Cussler 
(1977) 

Polysaccharide (xanthan, 

locust bean gum, pectin) 

mixed with protein gel 
particles of different types, 

sizes and hardness 

MTM (5-500 mm/s, 2 and 

5 N, neoprene O-ring on 

neoprene disc set-up) 

No saliva, 30 °C QDA, n=11 Pearson's 

correlations 

Slippery (-) Mixed 

(50 mm/s) 

Chojnicka-

Paszun, 

Doussinault and 
de Jongh (2014) 

Hydrogels (κ-carrageenan) 

after simulated oral 
processing 

MTM2 (1-1000 mm/s, 2 N, 

PDMS ball-on-disc set-up) 

Artificial saliva 

(ions, mucin), 37 °C 

DA, n=11 Pearson's 

correlations 

Pasty (-), slippery, 

salivating 

Mixed 

(50 mm/s) 

Krop et al. 

(2019)* 

 

 



 

  Lubricant Tribology Simulated oral 

conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

Real 

foods 

Milk 

Commercial liquid and 

semi-solid foods (mainly 

dairy) 

Tribo-rheocell accessory 

(0.21-0.85 mm/s, 10-45 g, 

chamois-coated surfaces) 

No saliva, 20 °C Ratings compared to 

reference 

Pearson's 

correlations 

Smooth (-) Mixed 

(25 mm/s) 

Kokini and 

Cussler (1983) 

Skimmed milk (two types 
of inulin) 

MTM (0-750 mm/s, 5 N, 
nitrile ring on silicon disc 

set-up) 

No saliva, 21 °C QDA, n=11 Pearson's 
correlations 

Thin-as-water (-), 
creamy (-) 

Hydrodynamic 
(750 mm/s) 

Meyer et al. 
(2011)* 

Skimmed and full fat milk 

(0.15, 0.3, 0.5, 0.7, 1.0, 
2.0, 3.0, 4.0 and 6.5% fat) 

MTM (5-500 mm/s, 5 N, 

neoprene O-ring on 
silicone, neoprene or 

Teflon disc set-up) 

No saliva, 20 °C QDA, n=10 Pearson's 

correlations 

Creamy (-), soft/velvet 

(-), fat-film (-), slimy 
(-), watery 

Mixed 

(10 mm/s) 

Chojnicka-

Paszun, de 
Jongh and de 

Kruif (2012) 

Non-fat stirred acid milk 
gels with and without the 

addition of saliva 

Tribo-rheocell accessory 
(0.01-100 rpm, 2.1 N, 

double-polypropylene ball 

on whey protein isolate gel 
plates glued to base) 

Human saliva 
(stimulated), 25 °C 

DA with reference 
samples, n=7 

Pearson's 
correlations 

Chalky, smooth (-), 
gritty (-) 

Boundary, 
mixed (0.016-

100 mm/s) 

Joyner, Pernell 
and Daubert 

(2014)* 

Skim (fat < 0.2%), 1% fat, 

whole (fat > 3.25%) milk 

Tribo-rheocell accessory 

(0.15-750 mm/s, 1 N, 

double-polypropylene ball 
on PDMS disc) 

Human saliva 

(stimulated), 25 °C 

Paired comparison 

(2-AFC), n=24 

   Li et al. (2018b) 

Skim (fat < 0.2%), 2% fat, 

5% fat milk 

Tribo-rheocell accessory 

(0.15-750 mm/s, 1 N, 

double-polypropylene ball 
on PDMS disc) 

No saliva, 25 °C Spectrum, n=7 Regression 

analysis 

Astringency Mixed to 

hydrodynamic 

(100 mm/s) 

Li et al. (2018a) 

Mayonnaise 

Mayonnaises and custard 
desserts 

Friction tester (rubber band 
on metal cylinder) 

Human (stimulated) 
and artificial saliva 

(ions, mucin) 

QDA, n=8 PCA and 
Pearson's 

correlations 

Creamy (-), rough  de Wijk and 
Prinz (2005)* 

Vanilla custard desserts Friction tester (rubber band 

on metal cylinder) 

Human saliva 

(stimulated) 

QDA, n=8 PCA and 

PLS2 
(regression 

coefficients) 

Creamy (-), fatty (-), 

rough 

 de Wijk, Prinz 

and Janssen 
(2006)* 



 

 

  Lubricant Tribology Simulated oral 

conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

Vanilla custard desserts, 

white sauces and 

mayonnaises 

Friction tester (rubber band 

on metal cylinder) 

Human saliva 

(stimulated) 

QDA, n=9 PCA and 

PLS2 

Creamy, fatty (-)  de Wijk and 

Prinz (2007)* 

Mayonnaises and 
mayonnaise-type dressings 

Friction tester (rubber band 
on metal cylinder) 

Unspecified saliva 
(stimulated) 

QDA, n=10 PCA and 
PLS2 

Grainy, powdery, sticky  Terpstra et al. 
(2009) 

Yoghurt 

Stirred yogurts Tribo-rheocell accessory 

(0.001-1000 min-1, 3 N, 

steel ball on styrene 

butadiene rubber pad) 

No saliva, 10 °C DA, n=22 PCA, 

Pearson's 

correlations 

and backward 

multiple 

linear 
regressions 

Viscous (-), fatty (-), 

creamy (-) 

Boundary 

(1 mm/s) 

Sonne et al. 

(2014) 

Whey protein-pectin 

mixtures added to low-fat 

yoghurt matrix compared 
to a full-fat control 

Tribo-rheocell accessory 

(0.001-1000 mm/s, 3 N, 

steel ball on styrene 
butadiene rubber pad) 

No saliva, 10 °C DA, n=22  Creamy (-)  Krzeminski et 

al. (2014) 

Model emulsions, white 

sauce, milk and yoghurt 

Tribo-rheocell accessory 

(10 mm/s, steel wrapped in 

acrylonitrile butadiene 
copolymer films) 

No saliva, 20 °C Paired comparison 

(2-AFC), n=35-50 

  Mixed 

(10 mm/s) 

Le Calvé et al. 

(2015) 

Milk, yoghurt, soft cream 

cheese 

MTM (1-1000 mm/s, 2 N, 

PDMS ball-on-disc set-up) 

Artificial saliva 

(ions, mucin), 37 °C 

Triangle and 

intensity score, n=63 

consumers  

   Laguna et al. 

(2017) 

A range of casein to whey 
protein ratio yoghurt 

systems (80:20, 70:30, 

60:40 and 50:50) prepared 
from skim milk (no fat) 

Tribo-rheocell accessory 
(0.001-1000 mm/s, 3 N, 

stainless steel ball on 

rubber pads) 

No saliva, 10 °C DA, n=7 Pearson's 
correlations 

Gelatinous, aerated, 
lumpy, grainy, adhesive 

(-), creamy (-), smooth 

(-) [in-mouth], difficult 
to swallow (-), mouth 

coating (-) [after-feel] 

Boundary 
(0.1 mm/s) 

Laiho et al. 
(2017)* 



 

  Lubricant Tribology Simulated oral 

conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

Yoghurts with extra 
protein (milk powder, 

whey protein concentrate) 

and modified starch 

Lab-modified TA (0.1-10 
mm/s, 0.27 N, silicone 

elastomer surface and steel 

balls) 

Human (stimulated) 
and artificial saliva 

(ions, mucin, α-

amylase), 25 °C 

Flash profiling, 
n=13 

   Morell, Chen 
and Fiszman 

(2017) 

Pot-set yoghurts (0.1, 1.3 
or 3.8% milk fat, with 

added gelatine, xanthan 

gum, carrageenan or 
modified starch) 

Tribo-rheocell accessory 
(0.01-100 s-1, 2 N, half-ring 

on surgical tape plate) 

No saliva, 35 °C QDA, n=8 Ranking of 
products 

according to 

the different 
parameters 

  Nguyen et al. 
(2017) 

Skim (0.1% fat) stirred 

yoghurt (with added inulin, 

pectin, β-glucan or galacto-
oligosaccharides) 

Tribo-rheocell accessory 

(0.01-100 s-1, 2 N, half-ring 

on surgical tape plate 

No saliva, 35 °C QDA, n=8    Ng et al. (2018) 

Custard dessert 

formulations 

Tribo-rheocell accessory 

(0.01-6.5 rad/s, 2 N, half-

ring on surgical tape plate) 

No saliva, 35 °C Ranking DA, n=11, 

*not for all samples 

   Godoi, Bhandari 

and Prakash 

(2017) 

Cheese 

Cream cheese with varying 
pH, salt and fat content 

Lab-built (0.7 mm/s, 100 g, 
pig's tongue on oesophagus 

shaft) 

No saliva, 20 °C DA, n=10 PLSR and 
mixed model 

ANOVA with 

Measurement 
Error 

Methodology 

Creamy Boundary 
(0.7 mm/s) 

Janhoj et al. 
(2009) 

Cream cheese differing in 

fat content 

Tribo-rheocell accessory 

(0.1-600 s-1, 2 N, ring on 

surgical tape plate) 

No saliva, 35 °C TDS, n=10    Ningtyas et al. 

(2018) 
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conditions 

Sensory Statistical 

analyses 

Correlation Lubrication 

regime 

Reference 

 
Other 

Two chocolate samples 

manufactured to the same 

shear viscosity 

Tribo-rheocell accessory 

(0.001-420 mm/s, 0.5 N, 

steel ball on 3 
polyurethane plates) 

No saliva, 37 °C Paired comparison 

(2-AFC), n=40 

 Mouth-coating (-)  Carvalho-da-

Silva et al. 

(2013) 

Four milk chocolates Tribo-rheocell accessory 
(0.02-750 mm/s, 3 N, 

stainless steel ball on 

PDMS plates) 

Human saliva 
(stimulated), 40 °C 

QDA, n=12    He et al. (2018) 

Gluten-free bread upon 
addition of different 

modified dietary fibres 

Tribo-rheocell accessory 
(1 mm/s, 0.2 N, three steel 

balls on bread taped to 

plate) 

No saliva, 20 °C Time-intensity, 
n=10 

Pearson's 
correlations 

Firm, chewy, dry Boundary 
(1 mm/s) 

Kiumarsi et al. 
(2019)* 

Toothpaste Lab-modified TA (0.03-20 

mm/s, 0.57 N, PDMS 
surface and steel balls) 

Artificial saliva 

(ions, mucin, α-
amylase), 27 °C 

Sensory ratings: 

compared to 
reference, n=25 

Pearson's 

correlations 

Smooth Boundary 

(0.08 mm/s) 

Cai, Li and 

Chen (2017) 
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In those studies that measured both instrumental and sensory lubrication 

data, a relationship with μ at a specific speed within the mixed regime, i.e. at speeds 

within the range of real tongue movements, has been reported (Sarkar et al. 2019; 

Steele and van Lieshout 2009). In addition, it is noteworthy that the use of artificial 

saliva in tribology experiments improved the strength of the relationship with 

sensory attributes, a role that is often ignored in the literature. Besides μ, many if 

not most studies in Supplementary Table E.1 have also conducted bulk rheology 

and particle size analysis that have enabled better understanding of the physical 

reasoning behind sensory attributes, like in this thesis. For instance, besides μ in 

boundary to mixed regimes (30-100 mm/s), the sensory viscosity in milks was 

found to correlate strongly with instrumental viscosity (η) at 50 s-1 shear rate (Li et 

al. 2018a). And in another study, mean particle size (d3,2) has been an important 

factor in understanding the reason behind higher μ values and corresponding 

increased sensory roughness (Liu et al. 2016). An increase in ‘rough’ perception 

was attributed to the higher d3,2 values, which were much above the sensory 

detection threshold. In this thesis, we also considered bulk rheology (Chapter 4) 

and this was used not only to relate to sensory behaviour, but also helped to 

generate a Master curve particularly scaling the elastohydrodynamic regime. 

Again, to our knowledge, this has never been done to date. 

7.3.4. Considerations of the satiety trial: study design 

To test the satiating effects of the hydrogels with different chewing and oral 

lubrication properties, a preload paradigm was selected. Although preload studies 

are attractive for lab-based research, it is more realistic to study an independent 

variable as part of a meal rather than a small amount of food before a meal (Blundell 
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et al. 2009). However, due to the nature of the hydrogels, the participants’ 

unfamiliarity with them and their low liking scores, as well as the lack of a clear 

meal time for these novel gels, it was more complicated to use a meal study design. 

In order to test the hypothesis that oral lubrication plays any role in satiety 

development, it was decided to use a preload study design followed by a snack to 

prove the concept first (Chapter 6). 

A within-subjects repeated-measures design is most suitable for preload 

studies, where the participants serve as their own controls (Blundell et al. 2009). 

This serves to reduce inter-individual variability in satiety regulation, which is not 

controlled for in a between-subjects design. However, as we decided to use novel 

model hydrogels as preloads without further familiarisation, a between-subjects 

design was considered to be advantageous in preventing the participants from 

familiarising themselves with the preloads and acquiring any “learned” satiating 

effects. Learning about a products’ satiating capacity occurs with repeat exposure 

(Yeomans 2012), and so within-subject design might affect the results of the 

preload hydrogels. Preload designs require the inclusion of control conditions, 

either covertly (to assess the physiological response to the preload) or overtly 

manipulated (to assess both the physiological and cognitive responses) depending 

on the tested hypothesis (Rolls and Hammer 1995). Therefore, the mint tea control 

condition was included to evaluate the effect of the preload study design on snack 

intake, while controlling for the influence of exposure to the mint flavour. 

Palatability plays a major role in satiation (Blundell et al. 2010), so test 

foods should be similarly liked. For this thesis, novel model hydrogels were 
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developed without prior notions of their liking and satiating characteristics. They 

were given a peppermint flavour and green colour to avoid any (subconscious) 

comparisons with desert type products, as well a fruity-flavoured jelly candies. It 

is known that familiarity with the satiating characteristics of certain type of foods 

might influence their food intake, due to expectations rather than energy content 

(Cecil, Francis and Read 1998; Chambers, McCrickerd and Yeomans 2015). The 

pleasantness of the hydrogels between conditions was measured, and though scores 

were low, their intensity level for the different hydrogel samples was similar 

(p > 0.05, Chapter 6). Similarly, a snack was selected that was palatable, but not 

so highly palatable that intake would be high regardless of testing condition 

obscuring any condition effects. 

Appetite ratings were recorded before and after the preloads, as well as after 

the ad libitum snack. Since ratings were not collected over a longer interval beyond 

the snack session, they are not truly representative of differences in satiety induced 

by the manipulation. In addition, we are unable to say anything in this thesis about 

the longer term-effects of the chewing and oral lubrication manipulations. 

However, due to the nature of the small preload manipulations (four to five bite 

size hydrogels in 10 minute time period), longer-term effects were not expected. 

In addition to the appetite measures, thirst ratings were recorded. The 

feeling in the mouth at the start of the preload intervention (level of dryness), might 

have an effect on how its lubrication qualities are perceived. Thirst was not 

specifically standardised at the start of the study, as the liquid intake during the day 

varies naturally between individuals. During the standard lunch, ad libitum water 

was provided and participants were free to drink water in between sessions. The 

water intake between standard lunch, and the preload and snack, however, was not 
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logged. Nevertheless, since the thirst ratings did not differ between conditions, 

there is no expected effect of water intake during the day on the intake of the snack. 

7.4. Future directions and concluding remarks 

The main aim of this thesis was to understand the role of instrumental friction 

measurements and the associated oro-sensorially perceived lubrication in the fields 

of food science and oral processing, and show the potential of lubrication as an 

aspect of oral processing on short-term satiety and satiation. In this thesis we have 

shown the added value of oral lubrication and tribology in satiety research using 

non-fat hydrogels. Though tribological measurements may be improved upon 

further by better mimicking the oral surfaces, linking instrumental data with 

sensory measurements shows potential for predicting the sensory lubrication 

perception and the oral processing behaviour. Based on the findings in this thesis, 

the following opportunities can be identified for future research: 

Oral lubrication properties of hydrogels: a selection of hydrogels were 

studied in this thesis. Further analysis of the instrumental and sensorial 

characteristics of other hydrocolloids, mixtures and levels of inhomogeneity might 

reveal additional insights in the mechanisms and contributing factors behind oral 

lubrication. Although we developed important insights by using artificial saliva 

containing ions and mucin to replicate human oral conditions at 37 ○C, developing 

tribological measurement surfaces for the tribometer that replicate the oral surfaces 

better might help to achieve better correlations between instrumental friction 

measurements and sensory perception. 
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Dynamic aspects of oral processing and texture perception: texture 

perception in this thesis was analysed with descriptive analysis, an adapted version 

of Quantitative Descriptive Analysis (QDA®). Proper analysis of the sensory 

texture properties of model gels requires more extensive training of the panellists 

on the model foods, as well as the methodology (purpose, rating scales etc) and 

attributes, specifically related to lubrication. On the other hand, alternative sensory 

characterisation methodologies that require less training/time, such as flash 

profiling, progressive profiling, (temporal) check-all-that-apply (TCATA) etc. can 

be explored. In addition, it would be good to compare the simulated hydrogel bolus 

samples to real food bolus samples from participants. Instrumental analyses of the 

bolus, such as fracture properties, particle size and amount and quality (e.g. protein 

content) of the saliva incorporated into the hydrogel bolus, can be measured as a 

function of oral processing time to gain further insights on internal lubrication. 

Satiety study design: a preload between-subjects design was used to 

measure the short-term satiety effects of manipulating the chewing and oral 

lubrication behaviour during a snack. Follow-up satiety experiments should focus 

on the effects during a different meal moment to confirm whether these results with 

the same gels extend beyond a snack to a test meal design. Furthermore, the effects 

of chewing and lubrication should be explored in real food products, to test the 

validity in a more natural setting. The time until the next eating occasion after the 

intervention meal can also be used as an additional measure to quantify satiety, e.g. 

using food diaries. Finally, in order to extrapolate the results to the longer-term 

satiety effects, several post-ingestive measures can be recorded, such as the gastro-

intestinal response, circulating hormones and rate of gastric emptying. 
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Despite these reflections highlighting limitations and future studies, the 

overall outcome of this thesis has been to showcase the impact of systematic 

instrumental friction manipulations on hydrogels and the associated changes to 

their lubrication properties, the impact on oral processing, sensory perception and 

short-term satiation. The systematic approach adopted in this thesis should now be 

replicated and extended to real foods in order to advance our understanding and to 

stimulate further efforts to produce satiety-enhancing foods for different groups of 

consumers. Further research efforts might specifically target babies or young 

children to improve learned eating habits, and control their food intake better with 

an eye on preventing future obesity and other health related problems. On the other 

hand, a research focussing on helping older adults who are suffering from 

malnutrition due to the decreasing quantity and/or quality of saliva might help to 

increase their food intake and improve their enjoyment of eating. 
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Appendix A 

Supplementary information for Chapter 2 

 

Quality assessment tool (Moore, 2012), based on: 

- National Institute for Clinical Excellence (NICE). 2007. The Guidelines Manual. 

London, National Institute for Clinical Excellence. 

- Downs and Black. 1998. The feasibility of creating a checklist for the assessment 

of the methodological quality of both randomised and non-randomised studies of 

health care interventions. J. Epidemiology Community Health, 52(1), pp. 377-384. 
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QUESTIONS 

 

Yes = 2 

Partly = 1 

No = 0 

1. Is the Qualitative/Quantitative approach appropriate? 

 

 Could another approach have better addressed the research 

question? 

 

 

2. Is the study clear in what it seeks to do? 

 

Qualitative: 

 Is the purpose of the study discussed? 

 Are the research question(s) presented? 

 Is there adequate/appropriate reference to the literature? 

 Are underpinning values/assumptions/theory discussed? 

 

Quantitative: 

 Is the purpose of the study discussed? 

 Are the hypothesis presented? 

 Are the Outcomes to be measured clearly stated? 

 

 

3. How defensible/rigorous is the research 

design/methodology? 

 

 Is the design appropriate to the research question? 

 Is a rationale given for using the approach? 

 

 

4. How well was the data collection carried out? 

 

 Are the data collection methods clearly described? 

 Were the appropriate data collected to address the research 

question? 

 

 

5. Is the context clearly described? 

 

Both: 

 Are the characteristics of the participants and settings 

clearly defined? 

 Was context bias considered? 

 

Qualitative: 

 Has the relationship between the researcher and the 

participants been considered? 

 Does the paper describe how the research was explained 

and presented to the participants? 
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6. Was the analysis sufficiently rigorous? 
 

Qualitative: 

 Is the procedure explicit – is it clear how the data were 

analysed to arrive at the results? 

 How systematic is the analysis – is the procedure 

reliable/dependable? 

 Is it clear how the themes and concepts were derived from 

the data? 

 

Quantitative: 

 Were the measures used valid and reliable? 

 

 

7. Is the analysis reliable? 

 

Qualitative: 

 Did more than one researcher theme and code 

transcripts/data? 

 Did participants feedback on the transcripts/data? (if 

possible and relevant) 

 

Quantitative: 

 Were the statistical tests used to assess the main outcomes 

appropriate? 

 

 

8. Are the findings convincing? 

 

Both: 

 Are the findings clearly presented? 

 Are the findings internally coherent? 

 Are the data appropriately referenced? 

 Is the reporting clear and coherent? 

 

Qualitative: 

 Are extracts from the original data included? 

 

Quantitative: 

 Have actual probability values been reported? 

 

 

9. Are the findings relevant to the aims of the study? 
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10. Are the conclusions adequate? 

 

 How clear are the links between data, interpretation and 

conclusions? 

 Are the conclusions plausible and coherent? 

 Have alternative explanations been explored and 

discounted? 

 Does this study enhance understanding of the research 

subject? 

 Are the implications of the research clearly defined? 

 Is there adequate discussion of any limitations? 

 

 

11. How clear and coherent is the reporting of ethical 

considerations? 
 

 Have ethical issues been taken into consideration? 

 Are ethical issues discussed adequately – do they address 

consent and anonymity? 

 Have the consequences of the research been considered; for 

example, raising expectations, changing behaviour? 

 

 

TOTAL 
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Appendix B 

Supplementary information for Chapter 3 

    

 0.5C  1.0C  1.5C  2.0C 

    

 2.5C  3.0C  3.5C  4.0C 

  

 4.5C  5.0C 

Supplementary Figure B.1. Images of single C hydrogels with a wide range 

of concentrations (0.5 - 5.0 wt%). 
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 0.7C0.3LBG  0.8C0.2LBG  0.9C0.1LBG 

 x  

 1.5C0.5LBG  1.67C0.33LBG  1.8C0.2LBG 

x x x 

 2.25C0.75LBG  2.5C0.5LBG  2.7C0.3LBG 

Supplementary Figure B.2. Images of mixed C and LBG hydrogels with 

different concentrations and ratios (1.0-2.0 wt% total hydrocolloid 

concentrations). 
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 x x x 

 1C1NaA  1.4C0.6NaA  1.5C0.5NaA  1.8C0.2NaA 

x x x x 

 1.5C1.5NaA  1.8C1.2NaA  2.25C0.75NaA  2.7C1.3NaA 

    

  x  

 1.6C0.2CaA300  2.4C0.2CaA300  1.6C0.2CaA1000  

Supplementary Figure B.3. Images of mixed C and alginate gels (NaA or 

CaA) with different concentrations and ratios (1.8-3.0 wt% total hydrocolloid 

concentrations), without and with beads (of various sizes). 
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Appendix C 

Supplementary information for Chapter 4 

  

 

 2κC  3κC  

  

 

 2.25κC0.75LBG  1.5κC0.5NaA  

   

 1.6κC0.2CaA1000  1.6κC0.2CaA300  2.4κC0.2CaA300 

Supplementary Figure C.1. Visual images of the different hydrogels. 
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Questionnaires: 

- QDA test CompuSense 



Panelist Code: ________________________   Panelist Name: ________________________ 

 
 
 

Welcome to Compusense five 
Release 5.2 

 
 
 
 
 

Press the 'Continue' button below  
to begin the test. 



Panelist Code: ________________________   Panelist Name: ________________________ 

 

 
 

Welcome to this test session. 
 

Today you will be rating the texture intensity 
of 9 different attributes for several different 

gels. 
 

Please check you received the sample 
number corresponding to the sample 

number displayed on the screen. Alert the 
researcher when you have finished the 

assessment and would like to receive the 
next sample. 

 

 
 
 
 

Please cleanse your palate with some 
water and/or the crackers provided. 

Make sure there are no more gel 
particles in your mouth before moving 

on to the next sample. 
 



Panelist Code: ________________________   Panelist Name: ________________________ 

Question # 1 - Sample <<Sample xx>> 

 
 
Please rate the intensity of the following attributes. 
 
 
Smooth 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Firm 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Elastic 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Chewy 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Cohesive 
 
 
 A little                                                                                                              A lot 
 

 
 



Panelist Code: ________________________   Panelist Name: ________________________ 

 

Question # 2 - Sample <<Sample xx>> 

 
 
Please rate the intensity of the following attributes. 
 
 
Pasty 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Slippery 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Salivating 
 
 
 A little                                                                                                              A lot 
 

 
 
 
 
 
Melting 
 
 
 A little                                                                                                              A lot 
 

 
 



Panelist Code: ________________________   Panelist Name: ________________________ 

Question # 3. 

 
 

What is your gender? 
 

  Male 
  Female 
 
 
 
 
 
 
 
 
 
 
 
 
Question # 4. 

 
 

What is your age? 
 

Age __________ 
 



Panelist Code: ________________________   Panelist Name: ________________________ 

 

 
 
 
 
 
 

THANK YOU 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Compusense five 
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Appendix D 

Supplementary information for Chapter 5 

 

Questionnaires: 

- Instructions for the video recordings of the chewing behaviour 

- Eating Capability (EC) measurements 



School of Food Science and Nutrition 
Faculty of Mathematics and Physical Sciences 

 
 
 
 

 

 

Characterisation of model gels -  

Video Analysis 

 

Participant Information 

 

Participant Name:     Participant Code: 

 

Gender: 

 

Age: 

 

 

Instructions 

Please look into the camera, and refrain from moving your head as much 

as possible. Please don’t talk during the sample assessment. Place the 

sample in your mouth and chew as you would normally do and swallow. 

You will be given a warm-up sample first to familiarise yourself with the sort 

of samples and the test procedure. 

Optionally: at the point you feel the urge to swallow, please raise your hand 

and then you may spit-out the sample in the provided cup and rinse your 

mouth with water. 



School of Food Science and Nutrition 
Faculty of Mathematics and Physical Sciences 

 
 
 
 

       Participant Code: 

 

Characterisation of model gels –  

Eating capability 

 

Tongue Pressure 

Place the tongue bulb in your mouth into the centre of the oral cavity. 

Compress between your tongue and hard palate as hard as you can. 

Repeat 3 times. The maximum pressure will be recorded on the Iowa Oral 

Performance Instrument. 

 

 Tongue Pressure 

1  

2  

3  

 

 

Max. Bite Force 

Place the bite sensor between your left side molars and compress, as hard 

as you would for normal chewing procedures. Hold each measurement for 

a couple of seconds. Repeat 3 times. Then do the same for the front incisors 

and the right side molars. The minimum resistance shown on the multimeter 

will be recorded. 

 

 Left Side Molars Front Incisors Right Side Molars 

1    

2    

3    
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Appendix E 

Supplementary information for Chapter 6 

 

Questionnaires 

- Satiety study 



School of Food Science and Nutrition 
Faculty of Mathematics and Physical Sciences 
 
School of Psychology 
Faculty of Medicine and Health 
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Mint stimulus study – Q1 

 

PARTICIPANT INFORMATION 

 

Participant Name:      Participant ID:   

 

Age:      D.O.B:    

 

Estimated height:     BMI:    

 

Estimated weight:      

 

Email:        

 

GENERAL INFORMATION 

 

Ethnicity:      

 

What is your occupation? Employed Unemployed  Retired

     Housewife/husband  Student 

 

If you are a student, what course are you currently studying?   

 

What year of study are you in?    

 

YOUR HEALTH 

 

How would you rate your general health? 

Not at all 1 2 3 4 5 6 Extremely 
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Faculty of Mathematics and Physical Sciences 
 
School of Psychology 
Faculty of Medicine and Health 
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Do you suffer from any medical conditions (i.e. heart, asthma, diabetes)? 

           

 

Are you currently taking any medication (prescribed or over-the-counter)?

    YES/NO 

If YES, please specify:        

 

Have you taken any medication recently? YES/NO 

If YES, please specify any medications taken during the past month: 

           

 

Do you smoke?  Yes, regularly  Yes, occasionally

    No, given up   No, never 

 

Do you exercise regularly?  YES/NO 

If YES, how many times a week?   One to four More than four 

Generally, what sort of exercise do you do?     

 

YOUR DIET 

 

In general, how healthy would you rate your diet? 

Not at all 1 2 3 4 5 6 Extremely 

 

Do you usually eat breakfast? YES/NO 

 

Do you usually eat lunch?  YES/NO 

 

Do you ever eat more in order to gain weight?  YES/NO 

 

Do you ever eat less in order to lose weight?  YES/NO 
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Are you a vegetarian? YES/NO 

 

Do you have any food allergies or intolerances? 

           

 

Are there any specific foods you do not like or could not eat? 

           

 

BREAKFAST INFORMATION 

 

When did you last eat something?      

 

When did you last drink something?      

 

When did you eat your breakfast?       

 

What did you eat for breakfast?       
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DIETARY RESTRAINT 

 

Please indicate the answer that applies to you by placing “X” next to the 

appropriate response from the 5 options. Please answer all questions, 

based on your behaviour in the past three months. 

 

 Never Seldom Some-
times 

Often Very 

often 

     1.  When you have put on 

weight, do you eat less than you 

usually do? 

 

     

2.  Do you try to eat less at 

mealtimes than you would like to 

eat? 

     

3.  How often do you refuse food 

or drink offered because you are 

concerned about your weight? 

     

4.  Do you watch exactly what 

you eat? 
     

5.  Do you deliberately eat foods 

that are slimming? 
     

6.  When you have eaten too 

much, do you eat less than usual 

the following day? 

     

7.  Do you deliberately eat less in 

order not to become heavier? 
     

8.  How often do you try not to 

eat between meals because you 

are watching your weight? 

     

9.  How often in the evenings do 

you try not to eat because you 

are watching your weight? 

     

10.  Do you take your weight into 

account with what you eat? 
     
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Mint stimulus study – Q2 

 

Participant ID: 

 

Please answer the following questions by placing a vertical mark through 

the line. Regard the ends of each line as indicating the most extreme 

sensation you have ever experienced. Please taste the provided sample 

before answering the first two questions. 

 

1.  How much do you like the taste of this gel? 

 

Not at all             Extremely 

 

2.  Would you be prepared to consume this gel as part of a study? 

 

YES        NO 

 

3.  How much do you like the taste of mint tea? 

 

Not at all             Extremely 

 

4.  Would you be prepared to consume mint tea as part of a study? 

 

YES        NO 
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5.  How much do you like the taste of a cheese sandwich? 

 

Not at all             Extremely 

 

6.  How much do you like the taste of Braeburn apples? 

 

Not at all             Extremely 

 

7.  How much do you like the taste of flapjacks? 

 

Not at all             Extremely 

 

8.  Would you be prepared to consume a cheese sandwich, an apple and 

a flapjack as a lunch meal? 

 

YES        NO 

 

 

9. How much do you like the taste of ready salted crisps? 

 

Not at all             Extremely 

 

10.  Would you be prepared to consume a ready salted crisps as a snack? 

 

YES        NO 
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Mint stimulus study 

 

We want you to tell us about your perception of a mint stimulus on a snack.  

 First, answer the questions on Questionnaire 3.  

 You will be presented with a mint stimulus. Eat the first mint 

stimulus, followed by a sip of water. Follow each mint stimulus, by 

a sip of water until all the stimuli have been consumed. You have 

10 minutes to eat all stimuli, as well as finish the water. 

 Please answer Questionnaires 4 and 5. 

 After finishing these questionnaires, a snack will be presented to 

you. Answer questions 1 and 2 on Questionnaire 6 with a first bite 

of the snack. Then, you will be allowed to eat as much as you like 

from the snack until comfortably full while answering the remaining 

two questions. 

 Finally, complete Questionnaire 7 and the debrief questionnaire. 

 

Thank you for you participation! 



School of Food Science and Nutrition 
Faculty of Mathematics and Physical Sciences 
 
School of Psychology 
Faculty of Medicine and Health 
 
 

12th December 2017  Version 1 

Mint stimulus study – Q3 

 

Participant ID:       Time point: t0 

 

Please answer the following questions by placing a vertical mark through 

the line. Regard the ends of each line as indicating the most extreme 

sensation you have ever experienced. 

 

1.  When did you last eat? 

            

 

2.  What did you last eat? 

            

 

3.  How hungry do you feel right now? 

 

Not at all             Extremely 

hungry        hungry 

 

4.  How full do you feel right now? 

 

Not at all             Extremely 

full         full 

 

5.  How strong is your desire to eat right now? 

 

Not at all             Extremely 

strong         strong 
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6.  How strong is your appetite right now? 

 

Not at all             Extremely 

strong         strong 

 

7.  How thirsty do you feel right now? 

 

Not at all             Extremely 

thirsty         thirsty 

 

8.  How nauseous do you feel right now? 

 

Not at all             Extremely 

nauseous        nauseous 

 

9.  How strong is your desire to eat something sweet right now? 

 

Not at all             Extremely 

strong         strong 

 

10.  How strong is your desire to eat something salty right now? 

 

Not at all             Extremely 

strong         strong 
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Mint stimulus study – Q4 

 

Participant ID: 

 

Please eat the first mint stimulus, followed by a sip of water. Follow each 

mint stimulus, by a sip of water until all the stimuli have been consumed. 

Make sure you finish all of the mint stimuli and the water that was presented 

to you. Answer the following questions by placing a vertical mark through 

the line. Regard the ends of each line as indicating the most extreme 

sensation you have ever experienced.  

 

1.  How pleasant is the taste of the mint stimulus? 

 

Not at all             Extremely 

pleasant        pleasant  

 

2. How strong is the mint flavour of the mint stimulus? 

 

Not at all             Extremely 

minty         minty 

 

3. How sweet is the taste of the mint stimulus? 

 

Not at all             Extremely 

sweet         sweet 

 

4.  How chewy is the mint stimulus? 

 

Not at all             Extremely 

chewy         chewy 
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Mint stimulus study – Q5/Q7 

 

Participant ID:      Time point: t1 / t2 

 

Please answer the following questions by placing a vertical mark through 

the line. Regard the ends of each line as indicating the most extreme 

sensation you have ever experienced. 

 

1.  How hungry do you feel right now? 

 

Not at all             Extremely 

hungry        hungry 

 

2.  How full do you feel right now? 

 

Not at all             Extremely 

full         full 

 

3.  How strong is your desire to eat right now? 

 

Not at all             Extremely 

strong         strong 

 

4.  How strong is your appetite right now? 

 

Not at all             Extremely 

strong         strong 
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5.  How thirsty do you feel right now? 

 

Not at all             Extremely 

thirsty         thirsty 

 

6.  How nauseous do you feel right now? 

 

Not at all             Extremely 

nauseous        nauseous 

 

7.  How strong is your desire to eat something sweet right now? 

 

Not at all             Extremely 

strong         strong 

 

8.  How strong is your desire to eat something salty right now? 

 

Not at all             Extremely 

strong         strong 
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Mint stimulus study – Q6 
 

Participant ID: 

 

We want you to tell us about your perception of the mint stimulus on a 

snack. In order to do this, please answer the first two questions with your 

first bite of the snack. Indicate your answer by placing a vertical mark 

through the line. Regard the ends of each line as indicating the most 

extreme sensation you have ever experienced. 

 

1.  How strong is your desire to eat the crisps? 

 

Not at all             Extremely 

strong         strong 

2.  How pleasant is the taste of the crisps? 

 

Not at all             Extremely 

pleasant        pleasant  

 

Please now eat a normal-sized snack. Whilst you are eating the snack, 

please answer the next two questions. 

 

3.  How sweet is the taste of the crisps? 

 

Not at all             Extremely 

sweet         sweet 

4.  How salty is the taste of the crisps? 

 

Not at all             Extremely 

salty         salty
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Mint stimulus study – Debrief questionnaire 

 

Participant ID: 

 

In this questionnaire we are interested in your views of the study and your 

experiences as a volunteer. In order for us to learn as much as possible 

from the study we would appreciate you completing this questionnaire fully 

and honestly. All your responses will be treated in confidence. 

 

1. What did you think the aim of the study was? 

___________________________________________________________ 

 

2. How easy did you find it to comply with the instructions of this study? 

___________________________________________________________ 

 

3. Had you ever tasted anything similar to the model gels? 

 YES/NO 

 

4. What did they remind you of? 

___________________________________________________________ 

 

5. Do you like custard desserts?  YES/NO 

 

6. Do you like bubble tea?  YES/NO 

 

7. Have you seen the New Year Diet Special episode of the Channel 4 

programme “Food Unwrapped”, which aired on Thursday 4th January 

2018 at 20:00 BST?  YES/NO 
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If you would like to receive a summary of the study results after the study 

has been completed, please leave your email address below: 

___________________________________________________________ 
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Supplementary Figure E.1. Standard lunch 

 

Supplementary Figure E.2. Snack intervention of ready salted crisps 
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Supplementary Figure E.3. Preload hydrogel samples 

 

Supplementary Figure E.4. Preload control tea samples 



 

 



 

 

 


