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Abstract

The effect of increasing green house gases (GHGs) is already changing the worlds cli-

mate, increasing atmospheric temperatures and affecting the land-surface, for example,

by changing water availability and the viability of crops. These direct and indirect

climate change impacts interact with each other, thereby increasing or decreasing the

overall impact of a changing climate. South Asia (SA) is a region with complex orog-

raphy, ranging from high glaciated mountains, the headwaters for large rivers that flow

through several countries to feed vast lowland deltas. The region has extensive irriga-

tion systems that support an intensive agricultural industry. These features, together

with a highly variable climate, make SA vulnerable to climate change and important

for developing understanding of interactions between land-surface climate impacts.

This thesis develops simulations to study the interactions between water resources

and crop production for SA using a land surface model. Analysis of SA river flows

from regional climate model (RCM) simulations indicate an increasing water resource

toward 2100. However this RCM does not include abstraction or irrigation. The Joint

UK Land Environment Simulator (JULES) represents rivers but irrigation and crops

require development to represent key features of the SA crop calendar; these include:

the correct growing season inputs for crops, the capability to simulate several crops in

rotation during a single growing period (sequential cropping) and crop specific irriga-

tion.

This thesis addresses the main development needs for representing the SA region. A

method is presented for estimating sowing and harvest dates for SA based on the dom-

inating climatological phenomena, the Asian Summer Monsoon (ASM). This method

provides a more accurate alternative to the global datasets of cropping calendars than is

currently available and generates more representative inputs for climate impact assess-

ments. In order to model the SA cropping system more accurately, the development

and implementation of sequential cropping in JULES with crop specific irrigation is

presented to develop simulations to understand how changes in the SA climate could

affect water resources and crops. Finally I present simulations in which all of the in-

dividual developments from this thesis are brought together; these show the progress

that has been made towards simulations that enable analysis of the impacts of climate

on rivers, irrigation and crops for SA in a fully integrated way.
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Chapter 1

Introduction

The observed increases in greenhouse gas (GHG) concentrations and the subsequent in-

crease in temperatures are already having an impact on climate around the world. The

complexity of the climate system means that climate change impacts individual regions

differently, affecting both the average, variability and extremes of climate. Awareness

of these impacts has resulted in a growing interest in their effect on food and water

security. This has driven demand for climate impact assessments and therefore model

development, for simulating the impacts of climate on food production and water re-

sources (Frieler et al., 2015).

Christensen et al. (2013) highlight that a direct effect of increased CO2 concentra-

tions can increase crop yields by increasing productivity. The impact of higher GHG

concentrations, such as high temperatures and drought, can also reduce yields due to

heat stress; this is likely to be a problem in tropical regions where the temperatures are

already at or above the physiological maxima for crops (Gornall et al., 2010). Direct

impacts of climate can lead to other indirect effects. For example, higher average grow-

ing season temperatures may affect the rate a crop matures and cause a reduction in

yield by shortening the growing season (Hussain et al., 2018, Waha et al., 2013, Gornall

et al., 2010). Other downstream impacts from increased temperatures could include

increasing evaporation and transpiration costs or changes in the distribution of rainfall

that lead to prolonged dry spells (Hewitson et al., 2014); both of which could have an

impact on the demand for water for irrigation (Fischer et al., 2007, Boonwichai et al.,

2018). Rainfall distribution alone could be important, Challinor et al. (2004) found

that even where the total rainfall amount stays the same, changes in the distribution

of rainfall during the growing season strongly affected groundnut crop yield.

The relationship between climate impacts can be highly non-linear and therefore

have a larger combined effect than seen individually (Halladay and Good , 2017). Agri-

culture acts to both influence and be influenced by the regional climate, for example,

via the local effect of methane emissions from rice paddies (Betts, 2005). Large scale

irrigation systems modify the local climate through evaporation (Tuinenburg et al.,
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2014, Harding et al., 2013) or affecting the radiation and energy balance at the sur-

face, thereby affecting the surface temperature and humidity (Kang and Eltahir , 2018).

Croplands cover a large proportion of the earth surface and therefore could have a sig-

nificant influence on the response of the land surface to climate change. For example,

higher CO2 emissions are widely reported to cause a reduction in transpiration via re-

duced stomatal opening, thereby reducing the moisture flux from the surface (Falloon

and Betts, 2010).

It is usual for studies regarding the impacts of climate to be sector specific, with

each using different methods to understand the likely impacts to that sector. Usually

the process for simulating the impacts of climate is unidirectional, with atmospheric

models used to drive downstream offline models that simulate separate aspects of the

land-surface, thereby using different models for crops and hydrology. This approach

will always have caveats and limitations, not least of these is the missing feedbacks

between the land–surface and the atmosphere, for example, allowing the croplands to

modify the atmosphere through evaporation. This also means that there is little to link

the impacts of two related sectors that are in reality affected not only by climate but

also by each other (Betts, 2005). The Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP– Warszawski et al., 2013, 2014) has highlighted the importance of

these links between sectors and has developed frameworks to encourage modellers to

develop their models with these in mind.

An integrated approach is common in understanding human influences on climate

change and mitigation of greenhouse gases (Schwanitz , 2013), involving the use of In-

tegrated Assessment Models (IAMs). For example, IAMs are used by economists to

understand the links between the climate, social and economic factors to determine

future climate change and the effectiveness of climate policy (van Vuuren et al., 2011).

They are often complicated because of all the different processes being represented.

Inevitably this leads to compromises in the representation of some of the more com-

plex areas. For example in terms of resolution, IAMs often aggregate geographical

areas using economic metrics like GDP or they neglect the daily to monthly timescales

(Schwanitz , 2013). IAMs are usually constructed with a very specific purpose in mind

and therefore the choices made are affected by this. An economist would require a com-

plex economic representation while an energy company might require a more complex

demand and supply model (Schwanitz , 2013). Often IAMs use a simplified represen-

tation of the climate system and they are typically deterministic using a best guess

approach to uncertainty (Ackerman et al., 2009). On the other hand, Lontzek et al.

(2015) applies a stochastic approach to study the economic impacts of climate tipping

points. Nevertheless these simplified representations of the carbon cycle and climate

can lead to large variations in outcomes (van Vuuren et al., 2011).

The growing interest in climate change and food security has influenced the develop-

ment of crop models for use in future climate impact assessments (Frieler et al., 2017)
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and encouraged large intercomparison projects such as the Agricultural Model Inter-

comparison and Improvement Project (AgMIP– Rivington and Koo, 2010, Rosenzweig

et al., 2013, 2014) and the Global Gridded Crop Model Inter-comparison (GGCMI–

Elliott et al., 2015). These large projects have developed frameworks to try to gain

the most from this offline approach, encouraging and focussing model development by

highlighting where models need to improve. For example as part of the AgMIP project,

Maiorano et al. (2017) shows that improving the response of wheat to heat stress in

15 models reduces the uncertainty range in the model yields. These projects have also

encouraged climate modellers to output relevant data from larger more complex models

that are needed to run downstream sector specific models.

Figure 1.1: A flowchart summarizing the interactions between climate, irrigation and agricul-
ture.

Betts (2005) highlights the need for an integrated or online approach to create more

robust climate projections for crops, for example where the crop model is part of the

land surface scheme and is therefore run as part of the larger climate model (Osborne

et al., 2007, 2015). The interactions between climate, water resources and agriculture

are summarized by the flowchart shown in Fig. 1.1. The crop model could then take

advantage of the high temporal resolution data from the climate model and the crops

could feed back on the atmosphere and thereby affect the regional climate. Betts (2005)

suggests that the implementation of crop and hydrology models into offline versions of

land-surface models that are also used within climate models would be a significant step
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towards a crop model that is a fully integrated part of a climate model. Gornall et al.

(2010) highlight the interactions between climate, water resources and agriculture and

the variation between these interactions for different regions. In their global analysis

Gornall et al. (2010) highlight the uncertainties for the South Asia region particularly,

with changes to the seasonality of river flows affected by increases in temperature and

therefore snowmelt and precipitation. Any increases in water resources during times of

excess can only have a positive impact on agriculture if it is stored during these periods;

otherwise it could be lost to the oceans in the form of increased river flows and runoff.

The main aim of this thesis is to use a model that is both a standalone model,

and the land–surface scheme within climate simulations, to make progress towards this

more integrated approach for understanding climate impacts for a region where inter-

sector interactions are important, namely South Asia. Global datasets are not readily

available for all the different sectors, both for setting up the simulations and evaluating

them. In this thesis the missing elements needed for simulating the impacts of climate

for a particular region are identifed; methods to address these are then proposed and

demonstrated in Chapters 2, 3 and 4. Chapter 5 applies these methods to a present

day simulation to develop simulations of the impacts of climate on water resources and

crop production. A more detailed description of each chapter is provided in Sect. 1.5.

The study region selected for this analysis has the following characteristics:

• the region is already being strongly affected by the impacts of climate today,

• there are data available to both set up and evaluate simulations and

• there is a real need for more information on climate impacts.

The remainder of this chapter is structured as follows. The study region is intro-

duced in Sect. 1.1 of this Chapter. The model is introduced in Sect. 1.2 and the

climate forcing data that is used throughout this thesis is described in Sect. 1.3. An

outline of the thesis providing more details on each chapter is provided in Sect. 1.5.

1.1 South Asia

South Asia (SA) is a region which has already experienced significant climate impacts,

with parts of SA experiencing disasters such as tropical cyclones, storm surges, coastal

erosion or flooding almost annually (Rahman et al., 2019, Mirza, 2002). The impacts

of climate are many and varied across SA, including: droughts, heatwaves, lightening

strikes, cyclones, landslides, flash floods and salt water intrusion into agricultural lands.

Bangladesh is particularly vulnerable to coastal climate impacts due to its low lying,

relatively flat orography and coastline. The three large rivers (Ganges, Brahmaputra

and the Meghna) that flow through Bangladesh to the Bay of Bengal, also represent a

significant and increasing flood risk (Mohammed et al., 2018). In general, the population
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of SA is large and forecast to increase to more than 2 billion by 2050, with India alone

accounting for 1.66 billion (United Nations, 2013, 2017). Almost 25 % of the Bangladesh

population, which equates to more than 38 million people, live in these vulnerable

coastal locations and are likely to be affected by these climate impacts (Rahman et al.,

2019). In recent times, floods particularly have displaced large numbers of people from

their homes (Dhar and Nandargi , 2000). However, droughts are also likely to be an

increasing problem for parts of SA as the mean global temperature increases (Naumann

et al., 2018). The SA region relies on industries with a high demand for water, including

agriculture and hydroelectricity generation (Rasul et al., 2019). The effect of climate

on the demand for water resources from all sectors in SA is discussed in Chapter 2.

The economy of SA is expanding, with the per capita GDP of the region doubling

over the last 10 years (from 957 USD in 2008 to 1840 USD in 2018). Yet 400 million

people do not have access to electricity and 200 million face chronic food shortages

or little access to fresh water or sanitation (Rasul et al., 2019). Rasul et al. (2019)

argues that increased resource scarcity, together with the growing demand for water for

energy, food and other competing uses, highlights the need for integrated solutions for

SA. These solutions would be coordinated across sectors to provide water for multiple

uses, starting as a resource for generating hydropower, later being used for agricultural

use, for making water navigable or sustaining fisheries. Currently, Nepal stores less

than 1 % of its water for use later in the year (Biswas, 2008). However, there are plans

for building reservoirs, with a total capacity of 121 km3, equivalent to 18 % of the total

annual flow of the Ganges (Biswas, 2008).

The terrain and climate of SA are extreme in their diversity. From the high moun-

tainous glaciated regions of the Himalaya to vast lowland deltas, where large rivers

cross multiple borders and enter both the Bay of Bengal and the Arabian sea. The

climate is highly variable both temporally and spatially. Some parts of SA have sur-

plus water (Dhar and Nandargi , 2000); while others, for example the north-west of the

Indian subcontinent have extended periods of very low rainfall (Thatte, 2018). These

factors contribute to making this part of the world highly vulnerable to climate change

and therefore an important region to study. In addition to this vulnerability to climate,

the SA land–surface has many features in a relatively limited area that are likely to be

affected by the climate and by each other. Glaciers, large rivers and intensive irrigation

systems together with a significant proportion of land devoted to agriculture and crop

cultivation, are just some of the characteristics that make this an interesting region.

These aspects of the land surface could usefully be considered together, as they interact

and affect each other, but are often evaluated using separate models in a more sectoral

approach (Rasul et al., 2019). Although such individual models are highly specific and

detailed they could miss important links and feedbacks from other parts of the land–

surface, such as how much surface water is available and what is the demand for water

for irrigation. In the remainder of this section water resources, including rivers and
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irrigation, are discussed in Sect. 1.1.1 and crops are discussed in Sect.1.1.2.

1.1.1 Water resources

The Asian Summer Monsoon (ASM) is a major feature of the South Asian climate

occurring during the months of June–September (Goswami and Xavier , 2005). The

ASM is main source of fresh water for this region. There is also a contribution to water

resources from glacial melt, which is likely to be important outside the ASM period

when river flows are usually lower (Mathison et al., 2013). Recent studies have cast

doubt on the reliability of both the ASM (Hewitson et al., 2014, Christensen et al., 2013,

2007) and glacial melt (Shannon et al., 2019, Fujita and Nuimura, 2011, Bolch et al.,

2012, Gardelle et al., 2013) for future water resources for this region. The influence of

glaciers on water resources for SA is discussed further in Chapter 2.

Rivers are an important source of irrigation water. Of the major basins in Northern

India: the Indus, Ganges and Brahmaputra; the Indus basin has the largest proportion

of water sourced from surface sources (i.e. rivers and lakes) with a larger contribution

from glacial melt than the other two (Biemans et al., 2013, Immerzeel et al., 2010).

A significant proportion, approximately 80 % of India’s total demand for water is for

the agricultural industry for irrigation. This means total water extractions from both

surface and groundwater are large in this region (Biemans et al., 2013). The gross

irrigated area in SA has increased significantly: for India alone this has increased

from 76 million ha in 2000-2001 to a provisional figure of 96 million ha in 2014-2015

(Bodh et al., 2017). Biemans et al. (2013) uses the LundPotsdamJena managed Land

model (LPJml – Bondeau et al., 2007) to simulate changes in water resources for food

production in five South Asian river basins. They find that for the Indus over 90 % of

the crop production depends on irrigated land, which means a reduction in availability

of water for irrigation could put yields at risk in this part of India. A significant

proportion of the irrigation water for the Ganges, Godavari and Krishna basins comes

from ground water, without which crop production in these basins would be severely

impacted (Biemans et al., 2013). Ground water is less renewable than surface water,

but this resource is often heavily utilized, even when normal rainfall is observed because

of pollution and mismanagement of surface waters (Rodell et al., 2009). A key water

resource in SA includes canals: these have been constructed all over India, three states

in Northern India that account for 30 % of the water used for canal irrigation include

Haryana, Punjab and Uttar Pradesh (Narayanamoorthy , 2018). Water tanks are also

used in regions such as Tamil Nadu (Anbumozhi et al., 2001).

The EU FP7 project, High End cLimate Impacts and eXtremes (HELIX) assessed

a range of climate impacts and adaptation at different global warming levels (between

1.5 and 6◦C) using a new 60km resolution global model, HadGEM3A-GA3.0. As part

of HELIX Betts et al. (2018) focussed on the hydrological impacts of climate change

across the world, generally finding large differences between ensemble members for some
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regions. However, for the Ganges there is agreement between most ensemble members

for an increase in river flows, which represents more than a doubling of river flows at

a 2◦C global warming level. This agrees with the findings in the analysis of SA river

flows presented as part of this thesis in Chapter 2, which uses 25km resolution regional

climate model simulations described in Sect. 1.3 to provide runoff to a river routing

scheme. This also shows that the Ganges could experience a doubling of river flow

towards the 2100s.

1.1.2 Crops

One of the main features of the crops in SA is the use of the sequential cropping system,

which makes the most efficient use of limited resources and space in order to maximize

yield potential and lower the risk of complete crop failure. Sequential cropping is also

referred to as multiple cropping and is discussed in Chapter 4. The Indo-Gangetic plains

(IGP) traditionally provide the staple crops of rice and wheat in rotation (Aggarwal

et al., 2000) for India and SA as a whole; the continued success of these crops is

therefore important for the food security of the region and can be severely affected

by water availability. The two main seasons in SA agriculture correspond to summer

and winter/spring growing seasons respectively; these are kharif and rabi. Kharif crops

include rice, which is usually sown during the monsoon, and harvested in the autumn.

Rabi crops include wheat, which is mainly cultivated during the dry season (Erenstein

and Laxmi , 2008, Singh et al., 2014) and is therefore irrigated. This crop rotation is

discussed further in Chapter 3 and simulated in Chapter 4 of this thesis.

Biemans et al. (2016) found that including multiple cropping in a SA version of

LPJml improved the simulations of the demand for water from irrigation, particularly

the timing of the demand. This highlights the close relationship between crops and

water resources and the importance of being able to simulate the two together. The

model providing the basis for a more integrated approach to understanding climate

impacts on water and crops in this thesis is introduced in Sect. 1.2.

1.2 The JULES land surface model

Chapter 4 of this thesis uses the Joint UK Land Environment Simulator (JULES)

model described in detail in (Best et al., 2011, Clark et al., 2011). The relevant parts

of JULES for this thesis are described in Chapter 4. JULES is the main land surface

scheme used with the Met Office weather and climate models. JULES is a dual-purpose

model, intended for both use as a standalone impacts model (JULES-IM) and as the

land surface scheme in larger coupled simulations such as earth system models (ESMs

eg. HadGEM2-ES; Collins et al., 2011), global climate models GCMs e.g. (HadGEM3-

Williams et al., 2018a) and regional climate models (RCMs e.g. HadRM3- Jones et al.,

2004). JULES-IM and the larger coupled models are therefore based on the same code
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structure, which reduces potential inconsistencies between them (Betts, 2005). JULES

in these larger models allows feedbacks from the land surface to have an effect on the

atmosphere, but simulations are often complex and require significant computational

resource. JULES-IM on the other hand has a smaller demand for computer resource,

because it models only the land surface processes and the associated fluxes. This means

that, although feedbacks are unable to influence the atmosphere (and vice-versa) as this

is prescribed from the driving data, it is possible to include additional processes that

are not yet possible within most of the coupled models and study the impact of these

processes on surface fluxes, e.g. crops and irrigation. The land–surface schemes in these

larger simulations cannot currently include crops or irrigation which could be important

for extensive cropland areas and regions with intensive irrigaton. The availability of

JULES-IM means smaller more focussed studies are possible that include multiple

aspects of the land-surface response to climate change in one simulation. JULES-IM

allows a full evaluation of the influence of new model developments on the land-surface

before they are implemented in larger more complicated simulations.

JULES is a process-based model that simulates the fluxes of carbon, water, energy

and momentum between the land-surface and the atmosphere. JULES represents both

vegetation (including natural vegetation and crops) and non-vegetation surface types

including; urban areas, bare soil, lakes, and ice. With the exception of the ice tile all

these tiles can co-exist within a gridbox so that a fraction of the surface within each

gridbox is allocated between surface types. For the ice tile a grid box must be either

completely covered in ice or not (Shannon et al., 2019). JULES treats each vegetation

type as a separate tile within a gridbox, with each one represented individually with its

own set of parameters and properties, such that each tile has a separate energy balance.

The forcing air temperature, humidity and windspeed are prescribed for the gridbox

as a whole for a given height. Below the surface the soil type is also uniform across

each gridbox (where the number of soil tiles is set to one). JULES-IM represents many

different aspects of the land–surface, including river flows, irrigation and crops; these

are individually important in terms of climate impacts but their impact on each other

cannot be separated easily. In the remainder of this section the representation of each

of these in JULES-IM are described in more detail.

1.2.1 River flow and glaciers in JULES

In this thesis, river flows in JULES are routed using the 0.5◦ Total Runoff Integrating

Pathways river routing scheme (TRIP; Oki and Sud , 1998); this is the same scheme

that is used in Chapter 2 as a post processing step, prior to being included in an official

release of JULES. In this configuration, the TRIP routing scheme takes the 25km

gridbox runoff from the RCM and converts it into river flow for comparison with river

gauge observations. TRIP is described in more detail in Chapter 2. Previous studies

that use TRIP successfully with GCMS such as HadCM3 and HadGEM1, improving

8
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the seasonality of river flows for many major rivers (Falloon et al., 2007, 2011), are

also discussed in Chapter 2. The TRIP model has been shown to agree well with

observed river flow gauge data (Oki et al., 1999) and largely showed good skill when

comparing runoff from several land surface models (Morse et al., 2009). Using TRIP

ensures the river flow forcing is consistent with the atmospheric forcing; however, it

also assumes that all runoff is routed to the river network and as such there is no net

aquifer recharge/discharge. This may not be the case in regions with significant ground

water extraction which is subsequently lost though evaporation and transported out of

the basin.

Representation of glaciers in JULES is a new development that is currently imple-

mented in a branch of JULES vn4.7; this is presented in Shannon et al. (2019). The

implementation of elevation bands in JULES together with a glaciated and unglaciated

elevated tile allows the variation in glacial coverage up the mountain to be repre-

sented. Both glaciated and unglaciated elevated tiles can accumulate snow, represented

in JULES using a full energy balance snow pack scheme; however, the glaciated tile can

gain mass through accumulation and freezing of water and lose mass through sublima-

tion and melting (Shannon et al., 2019). These developments allow JULES to simulate

changes in the mass balance of glaciers, which can move the terminus of a glacier higher

up the mountain. However, this development does not include the dynamical processes

needed to move the glacier down the mountain, i.e. glacier dynamics (Shannon et al.,

2019).

TRIP is already included in the current SA configuration presented in Chapter

5; however, further work is needed to successfully merge the glacier developments into

this configuration. Including the glacier model development presented in Shannon et al.

(2019) in a SA configuration of JULES-IM would be interesting and valuable future

work, providing a more complete representation of the water resources for this region.

1.2.2 Irrigation in JULES

Irrigation in JULES is implemented in two stages. The first stage is to implement

irrigation demand; setting only irrigation demand means that the water applied to the

soil is unlimited by availability. All of the irrigation schemes in JULES add water to

the top two soil levels (Gedney et al., 2014; see Supplementary information) to ensure

that the soil moisture is at a critical point (often the field capacity); this means that

the vegetation does not experience water stress (Williams and Falloon, 2015, Williams

et al., 2017). Using the unlimited irrigation demand simulates potential yield (Williams

and Falloon, 2015) in the absence of a yield gap parameter, which would account for

the impact of differing nutrient levels, pests, diseases and non-optimal management

(Challinor et al., 2004).

The second stage for implementing the irrigation in JULES is to limit the irrigation

according to water availability. When water is limited in JULES, water for irrigation

9
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is taken first from the deep soil (surface groundwater) store. In this thesis surface

groundwater is represented by a TOPMODEL-based approach in JULES (Best et al.,

2011, Clark and Gedney , 2008); this allows the lowest regions to become saturated first,

using a topographic index to define the upstream area and the local slope and thereby

determine which areas flood first. The TOPMODEL approach includes a deep soil

layer in JULES, with a simplified representation of water fluxes. This deep soil layer

occurs below the standard 4 soil levels (which occur at 0.1, 0.25, 0.65 and 2.0 m), i.e.

below 3.0 m (Best et al., 2011). When there is no more water available from this deep

soil layer, then resource is taken from the river storage. Tiles are only then irrigated,

provided water is available, up to the critical point. The critical point allows vegetation

to maintain un-water-stressed transpiration at values below field capacity, i.e. the soil

moisture held in the soil after any excess has drained away. In JULES this is defined

as a matrix water potential of -33 kPa (Best et al., 2011, Cox et al., 1999).

Limiting the irrigation according to water availability is useful for understanding the

impact of water availability on crop yields. Halladay (2018) assesses the performance

of interactive hydrological and agricultural impacts for Brazil using JULES with both

limited and unlimited irrigation, ensuring irrigation of specific tiles by introducing a new

irrigated tile for c3 and c4 grasses. Halladay (2018) finds that JULES underestimates

the irrigation demand for Brazil especially where the demand is highest. This happens

whether irrigation is limited or not and is probably because JULES does not account for

inefficiency of the irrigation system used. Irrigation efficiency is a particular problem for

SA (Biemans et al., 2013) and this would be a useful development for JULES; however,

it is not included in JULES currently. There are three irrigation schemes available in

JULES. In this thesis the scheme that requires the crop model is used (i.e. the number

of crop tiles must be greater than 0); therefore for irrigation to occur, the crop must

be sown. This means that irrigation only occurs during the crop season. In Chapter 4

of this thesis the irrigation scheme in JULES is extended in a branch of JULES vn5.2

so that irrigation can be more easily restricted to specific tiles. This development is

intended for implementation in a future JULES release.

1.2.3 Crops in JULES

The parametrisation of crops in JULES (JULES-crop) is described in detail in Osborne

et al. (2015) and Williams et al. (2017). The main aim of JULES-crop is to improve

the simulation of land-atmosphere interactions where crops are a major feature of the

land-surface (Osborne et al., 2015). JULES-crop is intended for use both in JULES

and JULES-IM (Osborne et al., 2015). Each crop is represented by an additional

separate tile within JULES-crop with four main crops included in the Osborne et al.

(2015) JULES configuration; these are wheat, maize, soybean and rice. JULES-crop

requires a sowing date, representing the start of the growing season and two thermal

times that represent the growing season length. The thermal times contol the rate that
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the crop develops through the stages of: sowing to emergence, emergence to flowering

and flowering to maturity. In this thesis the concept of thermal time and effective

temperature are introduced in Chapter 3, while the relevant JULES-crop equations for

this study are discussed in Chapter 4.

There have been a number of studies that use JULES-crop within the JULES-

IM infrastructure including Williams et al. (2018b, 2017) and Williams and Falloon

(2015); although the aim of using JULES-crop fully integrated into a global climate

model has not to date been realized, due to the complexity in setting up global coupled

simulations that include crops. JULES-crop currently simulates a single crop per year

by default, which is typical of many crop models, especially those used for global and

regional applications (Biemans et al., 2016). In Chapter 4 of this thesis the crop model

is extended in a branch of JULES at vn5.2 to include the sequential cropping system,

as with the modifications to irrigation (discussed in Sect. 1.2.2), this is also intended

for implementation into a future release of JULES.

1.3 Data

This thesis uses 25 km resolution climate data for the SA region from the EU HighNoon

project. The focus of the HighNoon project was on the water resources of Northern

India but the RCM simulations were for the whole of the Indian subcontinent including

the high Himalaya (25◦ N, 79◦ E–32◦ N, 88◦ E). This data is described in this thesis

in Chapters 2 (Section 2.2 Mathison et al., 2015) and 3 (Section 3.6 Mathison et al.,

2018), as well as a number of previous publications (Kumar et al., 2013, Mathison

et al., 2013). The RCMs in the HighNoon project were run using GCM data from

HadCM3 and ECHAM5 which were both considered to have a good representation of

the monsoon (Kumar et al., 2013, Annamalai et al., 2007, Mathison et al., 2013). The

HighNoon RCMS (HNRCMs) are from the Coupled Model Intercomparison Project

3 (CMIP3), which contributed to the Intergovernmental Panel on Climate Change

(IPCC) 4th assessment report (AR4- Christensen et al., 2007). The HNRCMs also use

the A1B SRES scenario (Nakicenovic et al., 2000) from the same generation of models

and simulations. Even though the SRES scenarios are almost 20 years old, they are no

less probable than any of the more recent RCP scenarios from later CMIP simulations.

In addition, their relevance to more recent work is maintained through projects like the

HELIX project (Sect. 1.1.1). The HELIX Specific Warming Levels (SWLs) shift the

focus from the particular climate scenario being used to a realization of what the world

will look like at each of these SWLs of 1.5, 2, 4 and 6◦C Gohar et al. (2017). These

SWLs are used in Chapter 3 of this thesis.

Since AR4, the 5th assessment report (AR5- Christensen et al., 2013) using output

from the 5th CMIP (CMIP5), has been published. CMIP5 models include many model

developments that were unavailable for CMIP3. Compared with CMIP3, many of the
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CMIP5 models have increased horizontal and vertical resolution, while some also in-

clude a more complete representation of the carbon cycle and aerosols. However, the

ASM remains a challenging phenomenon to simulate (Sperber et al., 2013), with a large

spread across the CMIP5 ensemble and many of them underestimating the monsoon

rainfall (Hagos et al., 2019). Sperber et al. (2013) evaluates the simulation of the ASM

in 22 CMIP3 and 25 CMIP5 models. The CMIP5 multi-model mean (MMM) is more

skillfull in terms of variability (interannual and interseasonal) and annual cycle than

the CMIP3 MMM, although no one single model is better for all metrics. Unfortu-

nately the comparison between CMIP3 and CMIP5 models for the monsoon onset and

retreat does not include the ECHAM5 and HadCM3 CMIP3 models (the GCMs that

provide the boundary conditions in this thesis) due to a lack of available data. How-

ever, Annamalai et al. (2007) show that the monsoon precipitation climatologies from

the CMIP3 HadCM3 and ECHAM5 simulations are reasonable. Sperber et al. (2013)

suggests that the CMIP3 and CMIP5 ensembles should arguably be used together to

investigate climate change impacts because they are so similar in terms of their ASM

skill. During the HighNoon project there were relatively few simulations at 25 km res-

olution with the correct outputs to run JULES. However, now a few years on, there are

more equivalent resolution simulations of SA available using CMIP5 data (Janes et al.,

2019). The availability of these downscaled CMIP5 simulations has great potential for

future work on this region using a combined CMIP5 and CMIP3 ensemble.

The 6th Coupled Model Intercomparison Project, CMIP6, has grown considerably

even since CMIP5, requiring a new experimental design. CMIP now includes many

more models, representing more processes and focussing on a wider range of questions,

to further understanding of both the present and future climate (Eyring et al., 2016a).

The simulations for CMIP6 are currently in progress (July 2019), with most of the

essential simulations (referred to as DECK and historical), likely to be completed by the

Autumn of 2019. Together with the new CMIP6 structure, there is also more of a focus

on model evaluation, with a new framework for CMIP6 to improve understanding of

how past CMIPs relate to more recent ones (Eyring et al., 2016b). This framework will

be especially useful where there are systematic model errors or processes not captured

well by the models.

1.4 Uncertainty and errors

In this thesis, boundary conditions from a GCM are used to drive an RCM, which in

turn provides climate data to a land surface model like JULES or river routing model

such as TRIP. This is seen as an interim step on the way to a more integrated approach

for impacts with crops and irrigation part of a fully coupled system. RCMs are run at

a higher resolution than their driving GCMs and therefore often improve simulations

of precipitation; as discussed in Chapter 2. However, RCMs still have biases that are
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either inherited from the GCM or due to the parameterization of regional processes

in the RCMs themselves (Brown et al., 2014). Biases in RCMs and GCMs can affect

the usability of the output data for studying climate impacts (Papadimitriou et al.,

2017). Current approaches tend to bias correct specific variables from the GCMs or

RCMs that are used to drive impacts models, namely temperature and precipitation.

This bias correction step is seen as essential to ensure that future impacts projections

are realistic. Papadimitriou et al. (2017) suggest that in addition to precipitation and

temperature, radiation and humidity should also be bias corrected, particularly for

hydrological applications. Where impacts models are run as an integral part of larger

model simulations, this approach to bias correction will no longer be possible and an

alternative approach will be needed. Bias correction may then need to be implemented

as a post-processing step. In this thesis no bias correction is carried out on the GCM

or RCM data before it is used to run TRIP or JULES.

There are also uncertainties associated with the models that use climate data from

the RCM. TRIP for example, is a very simple representation of the movement of water

down a river channel. Other routing models might represent this movement in a more

complex way, which may or may not reduce the uncertainty compared with using TRIP.

JULES on the other hand, is a complex model, representing many different aspects of

the land-surface. JULES has evolved from version 2.2 of the Met Office Surface Ex-

change Scheme (MOSESv2.2, Essery et al., 2003), the land-surface representation used

in the RCM simulations described in this thesis in Chapter 2. There have been many

releases of JULES since MOSESv2.2, which have included many developments that

have fixed bugs and introduced new processes. Because of these developments, there

may be more inconsistencies between the representation of the land-surface in the RCM

and in JULES. A version of the RCM that included JULES rather than MOSESv2.2,

would have more in common with the standalone version of JULES, especially in terms

of code structure; this would minimise inconsistences between the impact’s projections

and the RCM.

1.5 Thesis aims and structure

In this section more detail is provided on the individual chapters of the thesis and how

they contribute towards the main aim of the thesis to develop a more integrated ap-

proach to understanding the impacts of climate in SA. The important components of

the thesis are summarised in the schematic shown in Fig. 1.2. The individual compo-

nents of river routing, crops (Osborne et al., 2015) and irrigation and their availability

in JULES are discussed in Sect. 1.2, these are relatively recent additions to the official

JULES trunk and therefore have not been tested for the SA region either individually

or all together in a single simulation. In this thesis essential developments that are

needed to provide a more realistic representation of the SA region are presented and
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1. SA Water resources include 
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crops grown in the dry season
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Figure 1.2: A schematic overview of the thesis.

evaluated. These developments will enable a more complete understanding of the im-

pacts of climate on the SA region and are presented in a series of published papers

provided in Chapters 2, 3 and 4.

The aim of Chapter 2 is to analyse the RCM river flows across the Himalaya and

understand how useful these simulations are for understanding how river flows could

change in SA in the future. Mathison et al. (2015) presents regional climate projections

of river flow for the SA region by analysing river flows for 12 river gauges across the

Himalayan arc. These gauges are selected to characterize the changing conditions from

west to east across the Himalayan arc considering the present day river flows, where

possible comparing against observations, and the potential changes in river flows and

their implications for future surface water resources for the region. In this analysis, the

RCM data described in Sect. 1.3 is used to provide runoff to the TRIP river routing

scheme; this demonstrates that the ability to route the RCM river flow adds value to the

RCM data and enables the limitations of the RCM data to be more fully understood.

TRIP is now available in the official JULES code providing consistency between the

simulations presented here and other simulations that use JULES with river routing.

Initial SA simulations using irrigation and crops for the whole of SA (not shown

here) highlighted problems with the SA sowing and harvest dates being used both for

the present day and with their application to future climate. In addition, recent work in

climate–crop impact studies seeking to quantify uncertainty from the quality and scale
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of input data found that, for global scale simulations, planting dates are a significant

source of uncertainty (Frieler et al., 2017, Elliott et al., 2015). On this basis the aim of

Chapter 3 is to provide a more accurate alternative to the global datasets of cropping

calendars than is currently available and generate more representative inputs for climate

impact assessments for SA. The uncertainty surrounding sowing and harvest dates

within crop models is particularly important for regions where high-resolution data are

unavailable or, as is the case in future climate runs, where no data are available at all.

This method estimates the crop sowing and harvest dates, for rice and wheat, using

the ASM onset and retreat from the model. This ensures that the sowing and harvest

date remains consistent with the internal model climate so the crops are still growing

at the optimum time even in future simulations.

A key feature of agriculture in SA is the use of the sequential cropping system

(also known as multiple or double cropping). This practise involves growing two or

more crops on the same field in a given year or growing period (Liu et al., 2013,

Waha et al., 2013). Currently there are few land surface models (LSMs) that are

able to simulate sequential cropping, but the capability is needed for understanding

the resource requirement of this region both today and in the future. On this basis

the main objective of Chapter 4 is to develop and implement sequential cropping in

JULES and demonstrate that it grows two crops within one growing season. Chapter

4 evaluates the new implementation of sequential cropping in JULES against a site in

Avignon (France, Garrigues et al. (2015, 2018)) to show that the method provides a

realistic representation of the real land surface at Avignon. The same method is applied

to four locations in the North Indian states of Uttar Pradesh and Bihar, representing

a tropical region with a large variation in growing conditions.

Chapter 5 is the first implementation of all of the methods presented in Chapters

2 to 4 in one regional integrated study. Therefore the JULES simulations included in

this chapter include TRIP river flows (implemented in JULES outside of this thesis -

see Chapter 2), an extended irrigation scheme to allow irrigation only on specific tiles

and an enhanced version of the crop model to enable sequential cropping (implemented

in a branch of JULES at version 5.2 - see Chapter 4). The method for estimating the

sowing and harvest dates, described in Chapter 3 is used for calculating the thermal time

requirement for the rice–wheat rotation in these simulations. This chapter includes two

simulations: The first one is limited by water availability, therefore linking the rivers

and groundwater to irrigation and the second is not linked to the rivers and ground

water and is therefore referred to as unlimited. The aim of Chapter 5 is to demonstrate

that an integrated impact simulation is possible that links the agriculture and water

sectors and shows promising results. These are prototype simulations rather than a

complete solution suitable for informing policy decisions. Chapter 6 summarises the

progress made toward simulating integrated impacts for SA, now possible as a result

of the analyses presented in Chapters 2 to 5 of this thesis. Chapter 6 also discusses

15
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the next steps that are needed beyond this thesis to achieve integrated simulations of

future climate change impacts on multiple sectors for SA.
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South Asia is a region with a large and rising population, a high dependence on water

intense industries, such as agriculture and a highly variable climate. In recent years,

fears over the changing Asian Summer Monsoon (ASM) and rapidly retreating glaciers,

together with increasing demands for water resources, have caused concern over the

reliability of water resources and the potential impact on intensely irrigated crops in this

region. Despite these concerns, there is a lack of climate simulations with a high enough

resolution to capture the complex orography and water resource analysis is limited by

a lack of observations of the water cycle for the region. In this paper we present

the first 25 km resolution regional climate projections of river flow for the South Asia

region. Two global climate models (GCMs), which represent the ASM reasonably well

are downscaled (1960–2100) using a regional climate model (RCM). In the absence of

robust observations, ERA-interim reanalysis is also downscaled providing a constrained

estimate of the water balance for the region for comparison against the GCMs (1990–

2006). The RCM river flow is routed using a river-routing model to allow analysis

of present day and future river flows through comparison with available river gauge

observations. We examine how useful these simulations are for understanding potential

changes in water resources for the South Asia region. In general the downscaled GCMs

capture the seasonality of the river flows but over-estimate the maximum river flows
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compared to the observations, probably due to a positive rainfall bias and a lack of

abstraction in the model. The simulations suggest an increasing trend in annual mean

river flows for some of the river gauges in this analysis, in some cases almost doubling

by the end of the century. The future maximum river flow rates still occur during the

ASM period, with a magnitude in some cases greater than the present day natural

variability. Increases in river flow could mean additional water resource for irrigation,

the largest usage of water in this region, but has implications in terms of inundation

risk. These projected increases could be more than countered by changes in demand

due to depleted groundwater, increases in domestic use or expansion of water intense

industries. Including missing hydrological processes in the model would make these

projections more robust, but could also change the sign of the projections.

2.1 Introduction

South Asia, the Indo-Gangetic plain in particular, is a region of rapid socio-economic

change where both population growth and climate change are expected to have a large

impact on available water resource and food security. The region is home to almost

1.6 billion people and the population is forecast to increase to more than 2 billion by

2050 (United Nations, 2013). The economy of this region is rural and highly dependent

on climate sensitive sectors such as the agricultural and horticultural industry, charac-

terised by a large demand for water resources. As a result, over the coming decades,

the demand for water from all sectors (domestic, agricultural and industrial) is likely

to increase (Gupta and Deshpande, 2004, Kumar et al., 2005).

The climate of South Asia is dominated by the Asian Summer Monsoon (ASM),

with much of the water resource across the region provided by this climatological phe-

nomena during the months of June–September (Goswami and Xavier , 2005). The

contribution from glacial melt to water resources is less certain but likely to be impor-

tant outside the ASM period during periods of low river flow (Mathison et al., 2013).

Glaciers and seasonal snowpacks are natural hydrological buffers releasing water during

the drier periods, such as spring and autumn, when the flows of some catchments in this

region are at their lowest. Similarly they may act to buffer interannual variability as

well releasing water during warmer drier years and accumulating during wetter colder

years (Barnett et al., 2005). However, Kaser et al. (2010) show that the influence of

glacial melt reduces with distance downstream, as other influences such as evaporation

and precipitation increase in importance. Immerzeel et al. (2010) found that by the

2050s the main upstream water supply could decrease due to a reduction in snow and

glacial melt (reductions of 8 % for the upper Indus and more than 18 % for the Ganges

and Brahmaputra). Meltwater plays an important role for the Indus and Brahmaputra

particularly, accounting for a larger percentage of the downstream flow than the Ganges

(where meltwater is approximately 10 % of the downstream flow). However Immerzeel
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et al. (2010) also show that these reductions in melt water are offset by an increase in

precipitation in all three basins. Immerzeel et al. (2010) use coarse resolution general

circulation models (GCMs) known to have difficulties in capturing monsoon precipita-

tion and in estimating the relationship between daily mean temperature and melting

of snow and ice.

Recent studies have highlighted uncertainty in both glacier mass balance and ASM

rainfall. Fujita and Nuimura (2011) show a negative mass balance for three benchmark

glaciers in the Nepal Himalaya. Bolch et al. (2012) and Gardelle et al. (2013) highlight

losses more generally from western, eastern and central Himalayan glaciers. These ob-

served changes in Himalayan glaciers can be attributed to the increase in temperature

already experienced across the region, with warming more pronounced at higher eleva-

tions and during winter months (Shrestha and Aryal , 2011). There are however some

glaciers in the Karakoram region showing increases in mass which has been attributed

to a decrease in temperature for this region (Bolch et al., 2012, Gardelle et al., 2013).

Projections of future glacial change are challenging due to poor understanding of glacial

processes, diversity in climate extremes and the complex orography of the region (Bolch

et al., 2012). Complex orography contributes to other processes such as avalanching and

therefore debris cover. The relationship between debris cover and melt is complex with

a wide variety of responses across different glaciers across the Himalayan arc (Gardelle

et al., 2013). The thickness of debris cover is widely thought to significantly affect the

response of the glacier to climate, with thick debris cover tending to slow down surface

melting (Bolch et al., 2012, Scherler et al., 2011). However on the regional scale Kääb

et al. (2012) found, using satellite data, similar thinning rates between clean and debris

covered ice despite insulation by debris cover at some sites. Kääb et al. (2012) suggest

that the insulating effect of debris layers with thicknesses exceeding a few centimetres

depends on the continuity of the coverage. Therefore changes in the thickness of debris

across a glacier could change the melt rate on a local scale even across a single glacier

tongue.

The ASM is also uncertain: Christensen et al. (2007) highlight two climate fea-

tures that could influence the ASM, including a general weakening of monsoonal flows

while enhanced moisture convergence could increase precipitation. Any reduction in

water availability from either resource is likely to put more pressure on groundwater

resources, which is not sustainable in the longer term (Rodell et al., 2009). There is

some disagreement in the literature regarding the main effects of climate change on

this region. Gregory et al. (2005) suggest that the availability and quality of ground

water for irrigation could be more important factors influencing food security than the

direct effects of climate change, particularly for India. However, Aggarwal et al. (2012)

suggest that an increase in extremes (both temperature and precipitation) could lead

to instability in food production and it is this variability in food production that is

potentially the most significant effect of climate change for the South Asia region.
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Despite the general uncertainty in the reliability of water resources and the im-

pacts of climate change for this region, there are few simulations available with a high

enough resolution for capturing the complex topography of the Himalayan region. The

water balance for the South Asia region as a whole is generally poorly understood with

limited observing networks and data availability for both precipitation and river flows

presenting a real challenge for validating models and estimates of water balance. This

analysis seeks to use regional climate simulations to develop our understanding of the

water cycle for the region in the context of the complete climate system, while acknowl-

edging that more needs to be done to address the missing hydrological processes in the

model. Regional Climate Model (RCM) simulations are a widely used method across

climate science for downscaling GCMs, including the regional IPCC assessment but are

used in many other regional climate projects (Christensen et al., 2007, Murphy et al.,

2009, Jacob et al., 2007). RCMs are based on the same physical equations as GCMs

and therefore represent the climate system for the region being modelled including the

carbon and water cycle as completely as possible. Although there are some limitations

due to missing processes, their higher resolution allows a better representation of the

regional scale processes; especially in regions of complex topography such as the Hi-

malaya (Lucas-Picher et al., 2011). RCMs are designed to maintain the conservation

of water, mass, energy and momentum, essential for analysis on climate timescales.

Lucas-Picher et al. (2011) conduct a comprehensive assessment of four RCMs run over

South Asia demonstrating their ability to capture the monsoon; this analysis includes

the RCM used here. Mathison et al. (2013) compare GCM and RCM outputs for

temperature and precipitation specifically for the RCM used in this analysis.

Perhaps due to the lack of adequate resolution regional climate simulations available

for this region, there are relatively few studies that consider the value of downscaling

using RCMs for hydrological applications. However Akhtar et al. (2008) found that

RCM data produced better results when used with a hydrological model than using

poor-quality observation data; this implies greater confidence in the RCM simulated

meteorology than available observational data for this region (Wiltshire, 2014). There-

fore in the literature hydrological analysis is typically at the global scale using GCMs

coupled with hydrological models (Milly et al., 2005, Hirabayashi et al., 2008, Falloon

et al., 2011, Wiltshire et al., 2013a,b) or at the basin scale using stand-alone hydrological

models (Singh and Kumar , 1997, Singh and Bengtsson, 2005, Singh et al., 2008, Seidel

et al., 2000) such as the Soil Water Assessment Tool (SWAT – Arnold et al., 1998).

Weather data in SWAT is either simulated within the model using a weather generator

or taken from observations of daily precipitation and maximum/minimum temperature

(Nyeko, 2015). This approach may be appropriate for small domains within which

there is consistency in rainfall patterns but may not be suitable for large domains in

South Asia due to the high temporal and spatial variability in precipitation across the

region (Hijioka et al., 2014). Gosain et al. (2006) use the SWAT model with 50 km
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resolution daily RCM weather data to conduct a climate change impact assessment of

the hydrology of several individual basins over India for two 20-year periods represent-

ing the present day (1981-2000) and future (2041-2060). Gosain et al. (2006) compare

the differences between the two periods, rather than focussing on absolute values, to

find that climate change causes an increase in precipitation, river flow and evaporation

for the Ganges basin. High variability across basins and sub-basins means that parts

of the Ganges basin could experience seasonal or regular water-stressed conditions un-

der climate change (Gosain et al., 2006) although it is not clear exactly which climate

change scenario has been used for these simulations. There are more examples of the

application of RCMs for hydrological analysis for other regions such as the UK and Eu-

rope. Kay et al. (2006) use 25km RCM data in a catchment-based rainfall-runoff model

to estimate the flood frequency of small UK river basins to good effect. Dankers et al.

(2007) use an RCM to evaluate the benefits of using high spatial resolution climate

information for the Danube basin. Sampson et al. (2014) have also demonstrated the

importance of the resolution of precipitation data for a region of Ireland for hydrological

impact modelling.

The typical domain and resolution of RCM simulations enables the analysis of

areas spanning multiple river basins covering a larger area than is usually possible with

hydrological models. This means that there is consistent forcing across different basins.

The use of the RCM generated runoff within the hydrological model also preserves the

consistency of the projections with atmospheric forcing, which is not possible if the

runoff is derived within a hydrological model. However, there are few regional river

flow analyses currently available, where these consistencies are maintained. Biemans

et al. (2013) analyse the RCM projections used in this analysis in terms of water

availability for food production for selected river basins, using a coupled hydrology

and dynamic vegetation model; however, so far no specific analysis of river flows has

been done for these RCMs. Therefore we present the first 25 km resolution regional

climate projections of river flow for the South Asia region by using RCM generated

runoff within a routing model to estimate river flow thereby enabling consistency to

be maintained across basins and with the driving climate scenario. This is a new

application of the highest resolution RCM data currently available for this region, to

enable analysis of the impacts of climate on river flows in conjunction with the strategic

sampling of climate variability from selected GCMs. We use a novel approach to the

consideration of variability of river flows through analysis of the upper and lower parts

of the distribution, in addition to the mean flows.

The aim of this analysis is to examine how useful RCM simulations are for under-

standing how river flows could change in South Asia in the future. Irrigation is an

important part of the agricultural industry for this part of the world, with the Indo-

Gangetic plains traditionally providing the staple crops of rice and wheat (Aggarwal

et al., 2000) for India and South Asia as a whole; the continued success of these crops
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is therefore important for the food and water security of the region. We discuss the

potential implications of projected changes in the water resources needed to maintain

yields of these crops in a changing climate. The models, observations and the analysis

used are described in Sect. 2.2, while a brief evaluation of the driving data and the

river flow analysis is presented in Sect. 2.3. The implications of the potential changes

in river flows on water resources and conclusions are discussed in Sects. 2.4 and 2.5

respectively.

2.2 Methodology

2.2.1 Models

Figure 2.1 summarises the methodology described in this section in a flow chart, high-

lighting the main stages in the generation of the presented river flow projections and

the approximate resolution of the model data used.

Figure 2.1: A flow chart showing the methodology for the presented analysis

2.2.1.1 GCM and RCM forcing

This analysis utilizes 25 km resolution regional climate modelling of the Indian sub-

continent to provide simulations across the Hindu-Kush Karakoram Himalaya mountain

belt. These RCM simulations form part of the ensemble produced for the EU-HighNoon

project (referred to hereafter as HNRCMs), for the whole of the Indian subcontinent

(25◦ N, 79◦ E–32◦ N, 88◦ E), for the period 1960–2100. The other simulations in the

HighNoon ensemble, which used another RCM, the Regional Model from the Max

Planck Institute for Meteorology (REMO – Jacob et al., 2007) were unavailable for use

in this analysis. Therefore one RCM, the HadRM3 RCM (Jones et al., 2004) is used to
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generate the river flow projections presented here. While the additional RCM would be

useful here, analysis of the ERAint driven HadRM3 and REMO simulations over the

Western Himalaya by Dimri et al. (2013) show that both models run at 25 km resolution

over comparable domains have similar distributions of precipitation, temperature and

interannual variablility, despite having different representations of orography. Analysis

of the complete HighNoon ensemble for the Ganges/Brahmaputra basin in Mathison

et al. (2013) also indicate a small spread between HNRCMs for the 30-year mean

climatologies of temperature. Precipitation is more variable for this basin, with a

larger spread between HNRCMs. However the RCM uncertainty defined by these two

models (REMO and HadRM3) is still smaller than the climate uncertainty represented

by the selected GCMs with the influence of the GCM on the projections of precipitation

as great as the variability between RCMs (Kumar et al., 2013). Therefore the most

important contribution to the input uncertainty is from the GCM (Akhtar et al., 2008)

and using two GCMs to provide boundary data to one RCM provides a better estimate

of climate uncertainty than using a single GCM to drive two RCMs, which would be

the computational equivalent. On this basis we use HadRM3 driven by two carefully

selected GCMs for this analysis. However other RCMs, not yet applied to this region

could produce different projections.

In order to sample climate uncertainty, we use two GCM simulations that have been

shown to capture a range of temperatures and variability in precipitation similar to the

AR4 ensemble for Asia (Christensen et al., 2007). Although using just two ensemble

members is unlikely to capture the full range of uncertainty of a larger ensemble, the

two models used for these simulations have been shown to capture the main features of

the large-scale circulation particularly the ASM (Kumar et al., 2013, Annamalai et al.,

2007, Mathison et al., 2013), which is not true of all GCMs. The experimental design

of the HighNoon ensemble compromises between the need for higher resolution climate

information for the region and the need for a number of ensemble members to provide

a range of uncertainty. The length of the simulations needed and the limited number of

GCMs that are able to simulate the ASM also affect the number of ensemble members.

These factors are all important given the limited computational resources available. The

GCMs: the third version of the Met Office Hadley Centre Climate Model (HadCM3 –

Pope et al., 2000, Gordon et al., 2000; a version of the Met Office Unified Model) and

ECHAM5 (3rd realization – Roeckner et al., 2003) are downscaled using the HadRM3

RCM (Jones et al., 2004). These two GCMs capture the uncertainty in the sign of

the projected change in precipitation with one showing an increase (HadCM3) and the

other a decrease (ECHAM5). This feature is a key reason for the selection of these

two GCMs. In addition to the GCMs, ERA-interim data (Simmons et al., 2007, Dee

et al., 2011) is also downscaled using the HadRM3 RCM. ERA-Interim is reanalysis

product that combines model and observations to provide a constrained estimate of

the water balance of the region. The ERAinterim simulation has also been shown to
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capture the role of steep topography on moisture transport fluxes and vertical flow for

the western Himalayas (Dimri et al., 2013). Therefore, for this region, where there is a

lack of robust observations, particularly of the water cycle (see Sects. 2.2.3.1 and 2.3.1),

it provides a useful benchmark against which to compare the GCM driven simulations.

A similar approach is described in a previous study by Wiltshire (2014).

These RCM simulations are currently the finest resolution climate modelling avail-

able for this region (Mathison et al., 2013, Moors et al., 2011, Kumar et al., 2013).

HadRM3 has 19 atmospheric levels and the lateral atmospheric boundary conditions

are updated 3 hourly and interpolated to a 150 s timestep. These simulations include a

detailed representation of the land surface in the form of version 2.2 of the Met Office

Surface Exchange Scheme (MOSESv2.2, Essery et al., 2003), which includes a full phys-

ical energy-balance snow model (Lucas-Picher et al., 2011). MOSESv2.2 treats subgrid

land-cover heterogeneity explicitly with separate surface temperatures, radiative fluxes

(long wave and shortwave), heat fluxes (sensible, latent and ground), canopy moisture

contents, snow masses and snowmelt rates computed for each surface type in a grid box

(Essery et al., 2001). However the air temperature, humidity and wind speed above

the surface are treated as homogenous across the gridbox and precipitation is applied

uniformly over the different surface types of each gridbox.

The relationship between the precipitation and the generation of runoff is compli-

cated, depending on not only the intensity, duration and distribution of the rainfall

but also the characteristics of the surface. The infiltration capacity of the soil, the

vegetation cover, steepness of the orography within the catchment and the size of the

catchment are important influencing factors on runoff generation (Linsley et al., 1982).

In GCMs and even 25 km RCMs such as the one presented here, the resolution is

often too coarse to explicitly model the large variations of soil moisture and runoff

within a catchment and therefore the major processes are parameterized (Gedney and

Cox , 2003). The method used within MOSES2.2 for generating surface and subsurface

runoff across a gridbox is through partitioning the precipitation into interception by

vegetation canopies, throughfall, runoff and infiltration for each surface type (Essery

et al., 2003). The Dolman and Gregory (1992) infiltration excess mechanism generates

surface runoff; this assumes an exponential distribution of point rainfall rate across

the fraction of the catchment where it is raining (Clark and Gedney , 2008). Moisture

fluxes are allowed between soil layers; these are calculated using the Darcy equation,

with the water going into the top layer defined by the gridbox average and any excess

removed by lateral flow (Essery et al., 2001). Excess moisture in the bottom soil layer

drains from the bottom of the soil column at a rate equal to the hydraulic conductivity

of the bottom layer as subsurface runoff (Clark and Gedney , 2008). The performance

of MOSESv2.2 is discussed in the context of a GCM in Essery et al. (2001), however

no formal assessment of MOSESv2.2 and the runoff generation in particular has been

done for the RCM.
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2.2.1.2 River routing model

In this analysis the simulated 25km gridbox runoff is converted into river flow using

the 0.5◦ Total Runoff Integrating Pathways river routing scheme (TRIP; Oki and Sud ,

1998) as a post-processing step. TRIP is a simple model that moves water along a pre-

defined 0.5◦ river network; the Simulated Topological Network at 30 min resolution

(STN-30p, version 6.01; Vörösmarty et al., 2000a,b, Fekete et al., 2001) in order to

provide mean runoff per unit area of the basin; this can be compared directly with

river gauge observations. TRIP has been used previously in Falloon et al. (2011),

which used GCM outputs directly to assess the skill of a global river-routing scheme.

The TRIP model has been shown to agree well with observed river flow gauge data (Oki

et al., 1999) and largely showed good skill when comparing runoff from several land

surface models (Morse et al., 2009). Implementation of TRIP in two GCMs; HadCM3

and HadGEM1 is described by Falloon et al. (2007) and was found to improve the

seasonality of the river flows into the ocean for most of the major rivers. Using TRIP

ensures the river flow forcing is consistent with the atmospheric forcing, however it also

assumes that all runoff is routed to the river network and as such there is no net aquifer

recharge/discharge. This may not be the case in regions with significant ground water

extraction, which is subsequently lost though evaporation and transported out of the

basin.

These simulations do not include representation of extraction, reservoirs or dams.

Many of the river gauges used in this analysis and described in Section 2.2.2 are located

at large dams along rivers in these basins and therefore the comparison between the

simulations and the river gauges could be affected by these large features. Extraction,

particularly for irrigation purposes is large in this region (Biemans et al., 2013); this

means that the extraction-evaporation and subsequent recycling of water in a catch-

ment (Harding et al., 2013, Tuinenburg et al., 2014) is not considered in this analysis.

The routed runoff of the HNRCM simulations are generally referred to hereafter using

only the global driving data abbreviations; ERAint, ECHAM5 and HadCM3 (except

Sect. 2.3.1 where we refer to the HadCM3 GCM and ERAint datasets before downscal-

ing).

2.2.1.3 Emission Scenario

These simulations use the SRES A1B scenario (Nakicenovic et al., 2000). The SRES

scenarios were devised according to the production of greenhouse gases and aerosol

precursor emissions as part of the AR4 IPCC report (Christensen et al., 2007). The

A1 storyline and scenario family represents a future world of very rapid economic

growth, global population that peaks in mid-century and declines thereafter, and rapid

introduction of new and more efficient technologies. The A1B scenario specifically,

represents this future world where there is balance across energy sources i.e. a mixture
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of fossil and non-fossil fuels (Nakicenovic et al., 2000). This scenario does not represent

changes in landuse, which remains fixed through the duration of these simulations. This

is useful for understanding the effect of climate change in the absence of any adaptation.

2.2.2 Observations

This analysis uses observations of precipitation and river flow to assess the present

day RCM hydrology. The precipitation observations are from the Asian Precipitation-

Highly Resolved Observational Data Integration Towards the Evaluation of Water Re-

sources (APHRODITE – Yatagai et al., 2012) dataset. APHRODITE is a daily, 0.25◦

resolution gridded dataset.

The river flow analysis focuses on a selection of river gauges from the Global Runoff

Data Centre (GRDC , 2014) that are located within the three major river basins for

South Asia; the Indus and the Ganges/Brahmaputra. These gauges provide observa-

tions, which are used, in addition to downscaled ERA-interim river flows, to evaluate

the downscaled GCM river flows. The selection of these river gauges aims to illustrate

from the perspective of river flows, as modelled in an RCM, that the influence of the

ASM on precipitation totals increases, from west to east and north to south across

the Himalayan mountain range, while that of western disturbances reduces (Wiltshire,

2014, Dimri et al., 2013, Ridley et al., 2013, Collins et al., 2013). The differing influ-

ences across the Himalayan arc result in complex regional differences in sensitivity to

climate change; with western regions dominated by non-monsoonal winter precipitation

and therefore potentially less susceptible to reductions in annual snowfall (Wiltshire,

2014, Kapnick et al., 2014). A brief geographical description of the rivers and the

chosen gauges is given in this section, their locations are shown in Fig. 2.2 and listed

in Table 2.1 (including the abbreviations shown in Fig. 2.2 and the gauge location in

terms of latitude and longitude).

The Indus, originates at an elevation of more than 5000m in western Tibet on the

northern slopes of the Himalayas, flowing through the mountainous regions of India

and Pakistan to the west of the Himalayas. The upper part of the Indus basin is

greatly influenced by western disturbances, which contribute late winter snowfall to

the largest glaciers and snow fields outside the polar regions; the meltwaters from

these have a crucial role in defining the water resource of the Indus basin (Wescoat Jr ,

1991). In this analysis the Attock gauge is the furthest upstream and the Kotri gauge,

located further downstream provide observations on the main trunk of the Indus river.

The Chenab river, located in the Panjnad basin and in this analysis represented by the

Panjnad gauge, is a major eastern tributary of the Indus, originating in the Indian state

of Himachal Pradesh. In the upper parts of the Chenab sub-basin western disturbances

contribute considerably to precipitation while the foothills are also influenced by the

ASM (Wescoat Jr , 1991).

The Ganges river originates on southern slopes of the Himalayas (Thenkabail et al.,
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2005) and traverses thousands of kilometres before joining with the Brahmaputra in

Bangladesh and emptying into the Bay of Bengal (Mirza et al., 1998). The Ganges basin

has a population density 10 times the global average making it the most populated river

basin in the world (Johnston and Smakhtin, 2014), it covers 1.09million km2 with 79 %

in India, 13 % in Nepal, 4 % in Bangladesh and 4 % in China (Harding et al., 2013). The

main trunk of the Ganges is represented in this analysis by the gauge at the Farakka

barrage, located at the India–Bangladeshi border, to the East of the Himalayas. The

Bhagirathi river, located in ”the Upper Ganga basin”, is one of the main head streams

of the Ganges. The Bhagirathi river originates from Gaumukh 3920ma.s.l. at the

terminus of the Gangotri glacier in Uttarakhand, India (Bajracharya and Shrestha,

2011). The Tehri dam is located on this tributary, providing the most central data

point on the Himalayan arc in this analysis (not a GRDC gauge).

The Karnali river (also known as Ghaghara), drains from the Himalaya originating

in Nepal flowing across the border to India where it drains into the Ganges. The Kar-

nali is the largest river in Nepal and a major tributary of the Ganges (Bajracharya and

Shrestha, 2011) accounting for approximately 11 % of the Ganges discharge, 5 % of its

area and 12 % of its snowfall in the HNRCMs. Two of the river gauges in this analysis;

the Benighat and the Chisapani are located on this river. Two other sub-catchments

complete those covering the Ganges basin; the Narayani river (or Gandaki River, repre-

sented here by the Devghat river gauge); reportedly very dependant on glaciers at low

flow times of the year with over 1700 glaciers covering more than 2200 km2 (Bajracharya

and Shrestha, 2011). The Arun river, part of the Koshi river basin originates in Tibet,

flows south through the Himalayas to Nepal. The Arun, represented in this analysis

by the Turkeghat gauge joins the Koshi river, which flows in a southwest direction as

a tributary of the Ganges.

The Brahmaputra originates from the glaciers of Mount Kailash at more than

5000ma.s.l., on the northern side of the Himalayas in Tibet flowing into India, and

Bangladesh before merging with the Padma in the Ganges Delta. The Brahmaputra

is prone to flooding due to its surrounding orography and the amount of rainfall the

catchment receives (Dhar and Nandargi , 2000). The Brahmaputra is represented in

this analysis by three gauges; Yangcun, the highest upstream gauge, Pandas in the

middle and Bahadurabad furthest downstream but above the merge with the Padma.

There are no known observation errors for the GRDC observations (personal com-

munication, GRDC). Estimates of observation errors for river gauges vary in the lit-

erature with a recommendation in Falloon et al. (2011) for GCMs to be consistently

within 20 % of the observations while Oki et al. (1999) suggest that errors of 5 % at the

95 % confidence interval might be expected. McMillan et al. (2010) propose a method

for quantifying the uncertainty in river discharge measurements by defining confidence

bounds. In this analysis, these methods are hindered by the lack of observations con-

current with the model simulations. Therefore the method for approximating the inter-
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annual variability in this analysis is based on the model variability and is described in

Sect. 2.2.3.

Figure 2.2: A map showing the locations of the river gauges used in this analysis.

Map River Gauge Latitude Longitude Years
abbreviation name name of data

IND KOT Indus Kotri 25.37 68.37 14u (1950–1978)
IND ATT Indus Attock 33.9 72.25 6c (1973–1979)
CHE PAN Chenab Panjnad 29.35 71.03 6c (1973–1979)
BHA TEH Bhagirathi Tehri Dam 30.4 78.5 3c (2001–2004)
KAR BEN Karnali River Benighat 28.96 81.12 25u (1963–1993)
KAR CHI Karnali River Chisapani 28.64 81.29 31c (1962–1993)
NAR DEV Narayani Devghat 27.71 84.43 23u (1963–1993)
ARU TUR Arun Turkeghat 27.33 87.19 10c (1976–1986)
GAN FAR Ganges Farakka 25.0 87.92 18u (1950–1973)
BRA BAH Brahmaputra Bahadurabad 25.18 89.67 12u (1969–1992)
BRA YAN Brahmaputra Yangcun 29.28 91.88 21u (1956–1982)
BRA PAN Brahmaputra Pandu 26.13 91.7 13u (1956–1979)

Table 2.1: Table listing the rivers and gauges (including their location) used in this analysis;
all the observations shown here are from GRDC. The abbreviations used in Fig. 2.2 are given
in column one. The Years of data column includes the number of years that data is available
since 1950 with c to denote where data is continuous and u to show where the data is available
for that number of years but not as a continuous dataset.
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2.2.3 Methods

There are two stages to the analysis presented, comparison of the simulations with

observations (for both RCM precipitation and river flows) and analysis of future cli-

mate. The comparison against observations aims to assess if the RCM reproduces the

regional hydrology in terms of precipitation and river flow compared with available ob-

servations. The objective of the analysis of future climate is to understand how these

simulations compare against the present day high and low flows i.e. present day natural

variability. In this section we describe the methods used in each stage of the analysis;

the comparison against observations is described in Sect. 2.2.3.1 and the analysis of

future river flows in Sect. 2.2.3.2.

2.2.3.1 Comparison against observations

The total precipitation from each of the downscaled GCM simulations are compared

against a downscaled ERAinterim simulation and APHRODITE observations. This

comparison is on the basin scale, focussing on the basins included in the river flow

analysis (see Sect. 2.2.2); the Indus and the Ganges/Brahmaputra. The TRIP model

basin boundaries for each of these basins are shown in Fig. 2.4. The Ganges and

Brahmaputra catchments are considered together in this analysis as these rivers join

together in the Ganges Delta and are not clearly delineated in TRIP (see Fig. 2.4b).

The precipitation patterns for each basin are useful for understanding the changes in the

river flows within the catchments although rain gauges in the APHRODITE dataset are

particularly sparse at higher elevations (see Yatagai et al., 2012, Fig. 1). This leads to

underestimation of the basin wide water budgets particularly for mountainous regions

(Andermann et al., 2011). This is confirmed by Immerzeel et al. (2015) for the Indus

basin where they find a high altitude precipitation of up to ten times higher than current

gridded datasets is needed to close the water balance for this basin. We compare the

observations and simulations in terms of their annual timeseries and the climatology for

each basin. The climatologies are calculated using the 1971-2000 period for HadCM3

and ECHAM5 and 1990-2006 for the ERAint simulation in order to capture a typical

seasonal cycle for each simulation and basin.

This analysis is repeated for river flows in Sect. 2.3.2 for each of the 12 gauges

described in Sect. 2.2.2. We also calculate the 1.5 standard deviation (SD) over a 30 year

period to define the interannual variability. A value of plus 1.5 SD indicates an approx

1 in 10 year wet event, a value of minus 1.5 SD indicates a 1 in 10 year dry event. This

approach is taken to indicate the possible impact of such a change under the hypothesis

that current socio-economic levels of climate adaptation can cope with a 1 in 10 year

events. The change driving mechanism could be anthropogenic climate or decadal

variability. This assumes that interannual variability is independent of climate change

whether that is due to decadal variability or externally forced change. In this context it
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is indicative of the timing and magnitude of possible changes under the A1B emissions

scenario. More work and ensemble members would be required to control for the

role of decadal variability while the substantial computation expense in running high-

resolution RCM experiments currently precludes the use of initial condition ensembles.

2.2.3.2 Future analysis

In Sect. 2.3.3 we use the annual timeseries of the whole simulation period to highlight

any trends in future precipitation, evaporation (at the basin scale) and river flows (for

each gauge) over the century. We also calculate the climatologies for two future 30-year

periods; 2040-2070 (referred to as the 2050s) and 2068-2098 (referred to as the 2080s).

The monthly climatology for the two periods is compared against the 1971-2000 range

of natural variability. The purpose of the climatology analysis is twofold. The first

objective is to establish if there is any change in the seasonality of the river flow. The

second objective is to establish if there is any increase in the future 30-year mean

river flows that is outside the present day variability, thereby indicating an increase in

future events that are equivalent to the 1971-2000 1 in 10 year wet (dry) events (see

Sect. 2.3.3.1).

Analysis of the 30 year mean is useful for understanding the general climatology of

the region but often it is the periods of high and low river flow that are critical in terms of

water resources. Mathison et al. (2013) highlight the importance of potential changes

in the seasonal maximum and minimum river flows for the agricultural sector. The

analysis in Sect. 2.3.3.2 uses Kernal Density Estimation (KDE, Scott , 2009, Silverman,

1986) to calculate the probability density functions (pdfs) of the river flows for each

river gauge and 30 year period. The main aim of this analysis is to establish if there is

any change in the distribution of the highest and lowest river flows for the 2050s and

2080s compared with the 1971-2000 period (see Sect. 2.3.3.2). Given these distributions,

we then attempt to quantify the changes in highest and lowest river flows for the two

future periods by focussing on the changes in the lowest and highest 10 % of flows using

two different approaches. In the first approach in Sect. 2.3.3.3 we apply the upper

and lower 10% of river flows for the 1971-2000 period as thresholds for the 2050s and

2080s. In Sect. 2.3.3.4, we take the principle of the threshold analysis one step further

by calculating the 10th and 90th percentile threshold for each decade, simulation and

gauge. The aim of this second approach is to establish if there is any systematic change

in the upper and lower parts of the distribution through the century.

2.3 Results

The results are divided into three sections. Precipitation has a key influence on river

flows; therefore, in Sect. 2.3.1, we consider the previous evaluation of the HNRCM simu-

lations comparing the RCM precipitation for major South Asia basins with observations
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and ERAint. In Sect. 2.3.2 we focus on river flows themselves for 12 gauges within these

basins distributed across the Himalayan arc. The methods used in Sect. 2.3.1 and 2.3.2

are described in Sect. 2.2.3.1). In Sect. 2.3.3 we analyse the future projections of pre-

cipitation, evaporation and river flow to understand the water cycle of the region (see

Sect. 2.2.3.2 for the methods used).

2.3.1 Comparison of present day driving data with observations

The HNRCM simulations have been evaluated in several previous publications. Lucas-

Picher et al. (2011) evaluates the ability of RCMs to capture the ASM using ERA-40

data. Kumar et al. (2013) analysed the HNRCMs forced with ERA-Interim data. The

GCM and HNRCM simulations are also evaluated against a range of observations for

the Ganges/Brahmaputra river basin in Mathison et al. (2013). Figure 2.3 shows the

observed spatial distribution of total precipitation for the monsoon period (June to

September Goswami and Xavier , 2005) together with the HadCM3 and ERAint prior

to and post downscaling. The HNRCMs (Figure 2.3 d and e) improve the spatial dis-

tribution of precipitation and therefore compare well with the observations shown in

Figure 2.3c. This is highlighted by the additional detail shown in the precipitation

fields through comparison of the pre-downscaled datasets for the HadCM3 GCM (Fig-

ure 2.3a) with those downscaled using HadRM3 (Figure 2.3e). This comparison is also

possible for the downscaled ERA-interim reanalysis dataset shown in Figure 2.3d, which

also shows an improved precipitation representation compared with the pre-downscaled

dataset (Figure 2.3b). The higher resolution orography used in the 25km RCMs is more

able than the much coarser resolution datasets to capture the particularly varied terrain

of this region and the effects of this on the precipitation distribution.

In general the HNRCM simulations capture the spatial characteristics of the ASM,

successfully reproducing regions of high convective precipitation, maximum land rain-

fall and the rain shadow over the east coast of India (Kumar et al., 2013). Through

adequately representing the spatial precipitation characteristics across the region, the

areas of maximum and minimum precipitation can have a direct impact on the river

flows for the appropriate basin. This is shown by the improvement in the timing and

magnitude of the maximum precipitation for the RCM (HadRM3) compared with the

GCM (HadCM3) shown in Fig. 2.6c (Indus) and Fig. 2.6d (Ganges/Brahmaputra). The

RCMs are also able to reproduce the interannual variability of the region, although they

underestimate the magnitude of the variation (Kumar et al., 2013). The GCMs in the

AR4 ensemble tend to exhibit cold and wet biases compared to observations both glob-

ally (Nohara et al., 2006) and for South Asia (Christensen et al., 2007). Although these

are generally reduced in the RCM simulations there is a cold bias in the RCM that is

probably carried over from the larger bias in the GCMs (Mathison et al., 2013, Kumar

et al., 2013).

The remaining analysis focuses on the downscaled simulations of HadCM3, ECHAM5
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Figure 2.3: The spatial distribution of the seasonal mean total precipitation for the monsoon
period (June, July, August, September) for the HadCM3 GCM (a), ERAint (b), APHRODITE
observations (c) and the three HadRM3 simulations; HadRM3-ERAint (d), HadRM3-HadCM3
(e) and HadRM3-ECHAM5 (f).

and ERAint using the HadRM3 RCM. The RCM simulations shown in Fig. 2.6 appear

to overestimate the seasonal cycle of total precipitation compared with the APHRODITE

observations; this is highlighted by the annual mean of the total precipitation shown

in Fig. 2.5. However, given the limitations of the observations at high elevations dis-

cussed in Sect. 2.2.3.1, we compare HadCM3 and ECHAM5 against an ERAint simula-

tion. The annual mean precipitation (Fig. 2.5), the monthly precipitation climatology

(Fig. 2.6) and the annual mean evaporation (Fig. 2.7) show that, for these catchments,

the ERAint simulation lies between the two HighNoon ensemble members for much

of the year. However, during peak periods of precipitation the magnitude of total
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Figure 2.4: The outline of the basins within the TRIP model; Indus (a) and
Ganges/Brahmaputra (b).
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Figure 2.5: Annual mean total precipitation for the Indus (a) and Ganges/Brahmaputra (b)
catchments for each model run (HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines) plotted
against APHRODITE observations (black line). Paler observations are annual averages and
darker lines are a 5-year rolling smoothed average. See sect. 2.6 for Addendum plot with
additional observations

precipitation for ERAint is larger.

The seasonal cycles of total precipitation are distinctly different between the basins
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Figure 2.6: Seasonal cycle of total precipitation for the Indus (a and c) and
Ganges/Brahmaputra (b and d) catchments. The RCM simulations are shown in plots a and
b (HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines). A comparison of the HadCM3
GCM (cyan line) and HadCM3-HadRM3 (red line) seasonal cycles are shown in plots c and d.
APHRODITE observations are also shown (black line) on all plots.

shown. The Indus basin (Fig. 2.6a), indicates two periods of precipitation; one smaller

peak between January and May and another larger one between July and Septem-

ber. The timings of the largest peak compare well, however the smaller peak occurs

later than both ERAint and APHRODITE for ECHAM5 and HadCM3. The magni-

tude of the peaks in precipitation in the APHRODITE observations are consistently

lower throughout the year than the simulations. The magnitude of the ERAint total

precipitation is typically the largest while the ECHAM5 simulation is the lowest and

closest to the APHRODITE observations. HadCM3 is between ECHAM5 and ERAint

for most of the year. In contrast the Ganges/Brahmaputra catchment (Fig. 2.6b) has
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Figure 2.7: Annual mean evaporation for the Indus (a) and Ganges/Brahmaputra (b) catch-
ments for each model run (HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines) from 1971–
2100. Paler lines are annual averages and darker lines are a 5-year rolling smoothed average.

one strong peak between July and September. In general this seasonal cycle is cap-

tured reasonably well by the simulations, both in terms of magnitude and timing of

the highest period of precipitation. However there is a tendency for the simulations

to overestimate rainfall between January and June compared to the observations, thus

lengthening the wet season (Mathison et al., 2013). Mathison et al. (2013) also show

that in these simulations, the region of maximum precipitation along the Himalayan

foothills is displaced slightly to the north of that shown in the observations. One expla-

nation for this could be that the peak in total precipitation is due to the distribution of

observations already discussed. Alternatively it could be due to the model resolution,

which may still be too coarse to adequately capture the influence of the orography on

the region of maximum precipitation. The downscaled ERAint simulation also indicates

a higher total precipitation for January–May that is within the range of uncertainty

of the GCM driven simulations. However for the remainder of the monsoon period,

ERAint has a higher total precipitation than the GCM driven simulations. Fig. 2.3d

illustrates this, showing a slightly larger and more intense area of maximum rainfall

over the eastern Himalayas for the downscaled ERAint simulation than shown in the

other RCM simulations (Fig. 2.3e and f) or APHRODITE (Fig. 2.3c).

2.3.2 Present day modelled river flows

In this section we compare present day modelled river flows with observations and

a downscaled ERAint simulation using annual average river flows (see Fig. 2.8) and

monthly climatologies (see Fig. 2.9). It is clear from Fig. 2.8 that observed river flow

data is generally limited, which makes statistical analysis of the observations difficult.
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44 Chapter 2: South Asia river flow projections and their implications for water resources

River flow data for this region is considered sensitive and is therefore not readily avail-

able, particularly for the present day. For each of the gauges shown here, there are

generally several complete years of data but often the time the data was collected

pre-dates the start of the model run. The ERAint simulation is also shown (cyan line-

ERAint) to provide a benchmark in the absence of well-constrained observations (See

Sect. 2.3.1). The comparison between the model and observations shown in Figs. 2.8

and 2.9 is therefore to establish if the model and observations are comparable in terms

of the average seasonal cycle and mean river flow rate without over-interpreting how

well they replicate the observations. The Tehri Dam on the Bhagirathi river is not a

GRDC gauge therefore observations are not shown. Observations for this gauge were

received via personal communication from the Tehri Dam operator and therefore could

not be adequately referenced.

The Kotri gauge on the Indus (Fig. 2.9a) and the Yangcun gauge on the Brahma-

putra (Fig. 2.9k) are the only two gauges where the modelled river flow is higher than

the observations and not within the estimated variability (1.5 SD) of the region. The

ERAint simulation is also outside the estimated variability (1.5 SD) for the Benighat

gauge on the Karnali river (Fig. 2.9e). The differences in these gauges are also reflected

in the annual mean river flows (Fig. 2.8) for these river gauges, which are higher than

observed. The high bias in modelled river flow at the Kotri gauge could be due to the

extraction of water, which is not included in the model. The Indus has the largest

irrigation scheme in the world and a semi-arid climate (Immerzeel et al., 2015), which

means the extraction rate for this basin is large (Biemans et al., 2013). This gauge is

also located relatively close to the river mouth to the west of the Himalayas (see Fig. 2.2

and Table 2.1), therefore the river flows are less likely to be affected by the ASM and

more likely to be affected by meltwater from winter precipitation. The Yangcun gauge

is a more upstream gauge and the differences between the model and observations for

this gauge are more likely to be related to the precipitation distribution. Fig. 2.3 shows

a region of intense precipitation in the simulations (Fig. 2.3d, e and f) for the ASM

period close to this gauge. The APHRODITE data (Fig. 2.3c) also shows a region of

higher rainfall although this is not as large as that shown for the simulations. This

could be having a direct effect on the river flow.

The other two gauges on the Brahmaputra are located downstream of the Yangcun

gauge; the Pandu (Fig. 2.9j) and Bahadurabad (Fig. 2.9l). At these two gauges, the

seasonal cycle of river flow has a very broad peak particularly in the modelled river

flows compared to the other gauges. In the simulations the snowfall climatology for

the Ganges/Brahmaputra basin (not shown) has a similar seasonal cycle to that of

the river flow for the Bahadurabad and the Pandu gauges. It is therefore likely that

the broad peak in river flow is related to the broad peak in snowfall and subsequent

snowmelt. The Pandu gauge is also one of only two gauges where the modelled river

flow is less than the observations for at least part of the year, the other being the
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Figure 2.8: Timeseries of river flows showing available observations (black) and RCM runs
(HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines) from 1971–2100. Paler lines are annual
averages and darker lines are a 20-year rolling smoothed average.

Devghat gauge on the Narayani river (Fig. 2.9g). Both of these gauges are located in

the Himalayan foothills close to the region of simulated maximum total precipitation.
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Figure 2.9: Seasonal cycle of river flow at individual river gauges; observed (black solid line)
and for each of the RCMs (HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines) for 1971–
2000; with shaded regions showing 1.5 SD from the mean for the two simulations for the same
period.
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If the simulations put the location of this maximum below these gauges this could

cause the river flows at the gauges to be lower than observed. The river flow on the

main trunk of the Ganges at the Farakka barrage (shown in Fig. 2.9i), is a reasonable

approximation to the observations in terms of magnitude; however, the timing of the

peak flow seems to be later in the models. It could be argued this also happens in

some of the other gauges, although it is more noticeable for the Farakka barrage. All

the gauges shown here are for glacierized river basins. Snow fields and snow melt are

represented in the simulations in this analysis and will therefore replicate some aspects

of melt affecting river flow. However glacial melt is not explicitly represented in the

RCM used for these simulations. Including glacial processes specifically could act to

reduce runoff because more snow is stored as ice or increase runoff where there is an

increased melting (Bolch et al., 2012). Therefore including glacial processes could be

important for the timing and magnitude of the maximum and minimum river flows for

these catchments.

2.3.3 Future river flows

In this section we consider the future HNRCM simulations. Figure 2.5 highlights

the variability in the future projections of total precipitation for South Asia between

basins. In these simulations the Ganges/Brahmaputra catchment shows an increasing

trend in total precipitation and there is considerable variation between the simula-

tions (Fig. 2.5b). The Indus basin (Fig. 2.5a), however, has a much flatter trajectory

to 2100 and the simulations are more similar. The annual timeseries of evaporation

(Fig. 2.7) over these catchments shows a similar picture, with an increasing trend for the

Ganges/Brahmaputra basin (Fig. 2.7b) but no real trend for the Indus (Fig. 2.7a). The

annual mean runoff efficiency (not shown), defined here as the ratio of annual runoff

(streamflow per unit area) to annual precipitation, shows no real trend for either basin.

The trends in river flow (see Fig. 2.8) vary between gauges, although none indicate

decreasing river flows. There is an upward trend in river flows at some of the gauges, in

particular, the Narayani-Devghat (Fig. 2.8g), Arun-Turkeghat (Fig. 2.8h) and Ganges-

Farakka (Fig. 2.8i). These gauges suggest an upward trend toward the 2100s that

actually represents a doubling of the river flow rate. The increase in river flow for

the Narayani-Devghat gauge (Fig. 2.8g) are consistent with analysis by Shrestha and

Aryal (2011) using a hydrological model for the Narayani basin. Ganges-Farakka is the

most downstream gauge in the Ganges/Brahmaputra basin in this river flow analysis,

therefore providing an approximation for the whole Ganges basin. These simulations

show an increase in precipitation for the Ganges/Brahmaputra basin of approximately

20 % (See Fig. 2.5) and an increase of approximately 10 % in evaporation (See Fig. 2.7),

over the course of the century. This suggests the changes in runoff over the Ganges

catchment are predominantly driven by precipitation on the annual scale. However

regional analysis by Jhajharia et al. (2012) covering the humid northeastern part of
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48 Chapter 2: South Asia river flow projections and their implications for water resources

India and a global analysis by McVicar et al. (2012) suggest there has been a decline

in the evaporation caused by lighter surface winds and reduced radiation. A future

reduction in evaporation could also contribute to future increases in runoff. Analysis

using a conceptual hydrological model by Singh and Bengtsson (2005) suggests that the

type of precipitation being received at different elevations and the changes in melt and

evaporation from snowpacks in a warmer climate could also be important for changes

in runoff.

2.3.3.1 Climatology analysis

In this section we use climatologies to compare future river flows with the present day

interannual variability (defined in Sect. 2.2.3.1). South Asia is a very variable region,

yet these models suggest the future mean river flow could lie outside the present day

variability for peak flows for some of the gauges in this study. This could have important

implications for water resources for the region. The gauges that show an increase in

maximum river flows (see Fig. 2.10) are mainly those in the middle of the Himalayan

arc (see Fig. 2.2). The seasonal cycle for the westernmost (Indus gauges) and the

easternmost (Brahmaputra gauges) are typically still within the range of present day

variability. This could be due to the changes in the influence on river flow from west

to east becoming more influenced by the ASM and less by western disturbances, with

basins in the centre of the Himalayas and to the north influenced by both phenomena.

Figure 2.10 also suggests that the maximum river flows still occur mainly during the

ASM for many of the gauges shown.

2.3.3.2 High and low flow analysis

The analysis of the high and low flows is of particular importance to water resources

and future availability, therefore in this section we calculate the distributions of the

river flows for each of the gauges (see Sect. 2.2.3.2). These are shown in the form of

probability density functions (pdfs) in Fig. 2.11 for the 1971–2000, 2050s and the 2080s.

Figure 2.11 illustrates how the lowest flows dominate the distributions for each of the

three periods. In most of the gauges 1971–2000 period has the highest frequency of the

lowest flows, the curves then tend to flatten in the middle of the distribution before

tailing off toward zero for the highest flows. The two future periods also follow a similar

trajectory, although in general there is a reduction in the frequency of the lowest flows

and an increase in the magnitude of the highest flows for all of the gauges and both

simulations towards 2100.

The Yangcun gauge on the Brahmaputra (Fig. 2.11k) shows the least change of

all the gauges between the 1971–2000 period, future periods and simulations. The

distributions for the gauges downstream of Yangcun; the Pandu (Fig. 2.11l) and the

Bahadurabad (Fig. 2.11j) are notable for their differences from all the other gauges.
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Future RCM climatology

Figure 2.10: Seasonal cycle of river flow in each of the RCMs (HadCM3 – red, ECHAM5
– blue) for the two future periods: 2050s (solid lines) and 2080s (dashed lines), with shaded
regions showing 1.5 SD from the mean for 1971–2000 for each river gauge.

All the other gauges shown have a single peak toward the lower end of the river flow

distribution. The Pandu and Bahadurabad gauges have two distinct peaks in frequency
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with a second peak occurring toward the middle of the distribution, where the distri-

bution for most other gauges flattens out. This is consistent with the broader peak in

the 30-year mean seasonal cycle shown for these gauges in Fig. 2.10 and is probably

similarly explained by snowmelt (see Sect. 2.3.2). In some of the other gauges there is

a small increase in the middle of the river flow distribution but this tends to be smaller

and restricted to the two future periods e.g. the two Karnali river gauges (Fig. 2.11e

and f).

2.3.3.3 Threshold analysis

The pdfs shown in Fig. 2.11 and described in Sect. 2.3.3.2 suggest future changes in the

lower and upper ends of the river flow distribution. In this section we consider these

parts of the distribution in order to confirm this pattern. We compare the two future

periods (2050s and 2080s) against the 1971–2000 period explicitly using thresholds

defined by the 10th and 90th percentiles for this present day period and for each river

gauge. Graphical examples from the results of this analysis are shown for all three

periods (historical (a), 2050s (b), 2080s (c)) for the Farakka Barrage on the River

Ganges in Fig. 2.12 and Fig. 2.13. In Fig. 2.12 the number of months where river

flow is below the present day 10th percentile reduces in each of the future decades.

However for flows greater than the present day 90th percentile there is an increase in

each of the future decades (Fig. 2.13). Table 2.2 illustrates that the patterns shown

in Figs. 2.12 and 2.13 are generally true for almost every other gauge in the analysis.

The Tehri Dam (Bhagirathi) is the only exception of the gauges shown in Table 2.2,

showing an increase of 12 % in the number of incidences where the river flow is less

than the 1971–2000 10th percentile for the 2080s. This is mainly due to the ECHAM5

model, which has a high number of incidences. The Yangcun gauge (Brahmaputra) is

the only gauge where there is no change in the number of incidences where the river

flow is less than the 10th percentile for 1971–2000 in either of the future periods. This

is probably because the lowest river flows are already very low at this gauge.

At every gauge there is an increase in the number of incidences where river flows

are greater than the 90th percentile for 1971–2000 for the two future periods. Several

of the gauges have increases in the number of events above the 90th percentile for the

1971–2000 period of more than 100 %. This confirms the conclusions drawn visually

from the analysis in Fig. 2.11 that the general distributions move toward the higher

flows for these gauges and simulations.

2.3.3.4 Decadal percentile analysis

The annual timeseries shown in Fig. 2.8 is very variable and systematic changes through-

out the century could be masked by this variability. On the basis that there are changes

in the upper and lower parts of the future river flow distributions, the 10th and 90th
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Figure 2.11: The distribution of the river flow in the HadCM3 and ECHAM5 (HadCM3 –
red, ECHAM5 – blue) runs for three periods: historical (1971–2000 – solid lines) and two future
periods (2050s – dashed lines and 2080s – dotted lines) plotted as a pdf for each river gauge.

percentiles for each decade and each simulation are calculated. At the lower end of the

distribution, there is little change in the 10th percentile (not shown) for most of the
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River Gauge < 10th percentile % change > 90th percentile % change
2050s 2080s 2050s 2080s

Indus Kotri −55.4 −89.2 60.8 55.4
Indus Attock −70.3 −95.9 70.3 81.1
Karnali River Benighat −39.2 −73.0 63.5 81.1
Karnali River Chisapani −27.0 −56.8 60.8 79.7
Narayani Devghat −21.6 −54.1 75.7 110.8
Arun Turkeghat −63.5 −90.5 66.2 116.2
Brahmaputra Yangcun 0 0 20.3 36.5
Brahmaputra Pandu −59.5 −79.7 47.3 113.5
Brahmaputra Bahadurabad −48.6 −64.9 67.6 114.9
Ganges Farakka −36.5 −52.7 68.9 102.7
Bhagirathi Tehri Dam −4.1 12.2∗ 13.5 41.9
Chenab Panjnad −58.1 −83.8 43.2 50.0

Table 2.2: Table showing the average percentage change for the two models in the number
of times the modelled river flow is less than the 10th percentile and greater than the 90th
percentile of the 1970–2000 period for the 2050s and 2080s future periods. ∗ This value is the
only positive value in the table.

gauges, probably because of very low flows at the lowest times of the year. Only the

Pandu and Bahadurabad gauges on the Brahmaputra and the Farakka gauge on the

Ganges show a non-zero value for the lowest 10 % of river flows through to the 2100s.

These three gauges indicate a slight increase for the 10th percentile for each decade

through to 2100.

The 90th percentile values (Fig. 2.14) are generally much more variable throughout

the century than those for the 10th percentile to the 2100s. We consider the gauges

according to their location across the Himalayan arc from west to east (see Fig. 2.2).

The HadCM3 simulation projects an increase in river flows for the most westerly gauges

in this analysis; Attock and Kotri gauges located on the Indus (see Fig. 2.14a and b)

and the Chenab-Panjnad gauge (see Fig. 2.14c). ECHAM5, on the other hand, shows

a much flatter trajectory for these gauges. This may be explained by the HadCM3 sim-

ulation depicting an increase in the occurance of western disturbances and an increase

in total snowfall, which is not simulated by ECHAM5 (Ridley et al., 2013).

The gauges located toward the middle of the Himalayan arc generally show increases

across the decades to 2100 in both models; these are the Bhagirathi-Tehri (Fig. 2.14d),

both Karnali river gauges (Benighat - Fig. 2.14e and Chisapani-Fig. 2.14f), Narayani-

Devghat and Arun-Turkeghat (Fig. 2.14g and h). There is very close agreement between

the two simulations for the Narayani-Devghat, Arun-Turkeghat (Fig. 2.14g and h) and

Bhagirathi-Tehri (Fig. 2.14d) gauges, with the former two showing less variability be-

tween decades than the others in the analysis. The Karnali-Benighat gauge (Fig. 2.14e)

also has less variability between the decades. However, there is a systematic difference

between the two simulations, which remains fairly constant across the decades. From

the subset of gauges in this analysis that are the most central on the Himalayan arc,

the Karnali-Chisapani gauge (Fig. 2.14f) has the largest variability between simulations
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Figure 2.12: Comparison of the lowest 10 % of monthly river flows at the Farakka barrage
on the Ganges river against the 10th percentile for the 1971–2000 period for 1971–2000 (top),
2050s (middle) and 2080s (bottom) for HadCM3 (red triangles) and ECHAM5 (blue stars).
Each star or triangle represents a month within the 30 year period where the value is less than
the 10th percentile of the 1971-2000 period with the total number for each of the simulations
given in the top right corner of each plot.

and decades. However this gauge still shows an increase overall in both simulations with

a steeper increase for HadCM3 than ECHAM5. The closer agreement between simula-

tions at these more central gauges may be due to the reducing influence of the western

disturbances in the HadCM3 simulation from west to east across the Himalaya therefore

resulting in smaller differences between the the two simulations.

The Farakka-Ganges gauge (Fig. 2.14i) and two of the Brahmaputra gauges – Ba-

hadurabad (Fig. 2.14j) and Pandu (Fig. 2.14l), represent three of the most easterly river

gauges in the analysis. These gauges show an increase in both simulations through to

the 2100s, in this case more pronounced in ECHAM5 than HadCM3 for these two

Brahmaputra gauges. There is much closer agreement between the two simulations at
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Figure 2.13: Comparison of the highest 10 % of monthly river flows at the Farakka barrage on
the Ganges river against the 90th percentile for the 1971–2000 period for 1971–2000 (top), 2050s
(middle) and 2080s (bottom) for HadCM3 (red triangles) and ECHAM5 (blue stars). Each star
or triangle represents a month within the 30 year period where the value is greater than the
90th percentile of the 1971-2000 period with the total number for each of the simulations given
in the top right corner of each plot.

the Farakka-Ganges gauge (Fig. 2.14i), which is located slightly further west than the

two Brahmaputra gauges. The other Brahmaputra gauge, the Yangcun (Fig. 2.14k) is

very variable through the century, there is a period with consecutive decades of increas-

ing river flows in the middle of the century but over the whole century neither model

shows a consistent change.

This analysis shows that neither simulation is consistently showing a systematic

increase in the 90th percentile of river flows across all the gauges. Instead it highlights

the changing conditions and the different behaviour of the two simulations across the

Himalayan arc.
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Figure 2.14: The 90th percentile of river flow for each decade for HadCM3 (red triangles) and
ECHAM5 (blue circles) for each river gauge.
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2.4 Implications of changes in future river flows

In this section we consider the implications of the projected future changes in river

flows for South Asia on water resources. We highlight the broader challenges facing

the region and where the current RCMs need development to represent key processes

for this region. The key points from this discussion are summarised in Table 2.3. In

the present day, water resources in South Asia are complicated, precariously balanced

between excess and shortage. Parts of South Asia receive some of the largest volumes of

precipitation in the world and are therefore at frequent risk of flooding and yet others

regularly endure water stress. The complexity is increased by the competition between

states and countries for resources from rivers that flow large distances crossing state and

country borders, each with their own demands on resource. There is a considerable gap

between the amount of water resource flowing through South Asia and the actual usable

amount (Aggarwal et al., 2012), for example the total flow for the Brahmaputra basin

is approximately 629 km3 of which only 24 km3 is usable (Kumar et al., 2005). There

is therefore huge potential for improvements in the efficiency of systems for irrigation

and domestic water supply that could ease pressures on water resources, currently and

predicted, as demand increases.

In the last 50 years there have already been efficiency improvements, such as de-

velopment of irrigation systems and use of high yielding-water efficient crop varieties.

These improvements have fuelled the rapid development in agriculture across South

Asia, making the region more self-sustained and alleviating poverty (Kumar et al.,

2005). However these advances have also had a large impact on the regions river

ecosystems resulting in habitat loss, reduced biodiversity (Sarkar et al., 2012) and

water pollution (Vörösmarty et al., 2010). Historically arbitrary thresholds based on

a percentage of the annual mean flow have been used to estimate minimum flows, but

these simplistic estimates do not take account of the flow variability that is crucial for

sustaining river ecosystems (Arthington et al., 2006, Smakhtin et al., 2006), referred to

as environmental flows. Environmental flows are defined by Smakhtin and Anputhas

(2006) as the ecologically acceptable flow regime designed to maintain a river in an

agreed or predetermined state. The variability in river flows through the year have

important ecological significance; for example low flows are important for algae con-

trol and therefore maintaining water quality. High flows are important for wetland

flooding and preserving the river channel. When considering the implications of future

changes in climate on river flows and therefore surface water resources, estimates of

flow variability and minimum flows are an important consideration. However these are

not easily quantified in general terms with many methods requiring calibration for ap-

plications to different regions and basins. In our simulations there is an intensification

of the seasonal cycle and therefore an increase in the flow variability and a reduction

in the occurrance of the lowest flows. These changes could have implications for the
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Types of change Implications for Adaptation options Other issues
water resources

Large annual Abundance some years Building storage capacity Type of water storage
variability and scarcity in others e.g. rainwater harvesting. is important e.g.

make it difficult to Improvement of irrigation reservoirs/dams have
plan budgets for systems. both political and
different users. Development of water ecological implications.

efficient, high yielding Developing new crops
crop varieties. takes time.

Changes in Increases in peak flows Improving river channel Flood protection levels
peak flow – could be postive for capacity. do not match demographic
timing and irrigation and domestic Diverting excess water trends so vulnerability
magnitude supply but could to a different valley. to flooding remains high

increase the risk of Storing the excess water in this region
flooding. for low flow periods e.g. (Gupta et al., 2003).
Peak flows occurring through rainwater Market development for
later and/or decreases harvesting. new crops takes time.
in peak flows could Improving drainage and
reduce availability water recycling.
of water for irrigation Adopting varieties of
at crucial crop crops that grow when
development stages water for irrigation
negatively impacting is more readily
yields. available.

Changes in Increases in the Adaptations to avoid
low flows – magnitude of the low flooding during peak flow
timing and flows could be positive periods could provide
magnitude for irrigation and resource during low

domestic supply. flow periods.
Decreases could mean Development of water
less resource available efficient, high yielding
for irrigation leading crop varieties.
to reduced yields.

Table 2.3: Table of implications of changes in water resources.

biodiversity of these catchments.

In India the domestic requirement for water is the highest priority but is only 5 %

of the total demand. Irrigation is the second highest priority accounting for a much

greater proportion, approximately 80 % of India’s total demand for water. A signifi-

cant proportion of domestic and irrigation resource comes from both ground and sur-

face water. Biemans et al. (2013) study future water resources for food production

using LPJml and the HNRCMs. LPJml also simulates ground water extractions (Bie-

mans et al., 2013); these are thought to be important for the Indus and parts of the

Ganges, but not the Brahmaputra. The LPJml simulated extraction varies consider-

ably between basins: the largest occuring in the Indus (343 km3 year−1) followed by

the Ganges (281 km3 year−1) and Brahmaputra (45 km3 year−1). The Brahmaputra

has the smallest percentage of irrigated crop production (approximately 40 %) followed

by the Ganges (less than 75 %) and the Indus where more than 90 % of crop production
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is on irrigated land. The Indus has the largest proportion of water sourced from rivers

and lakes of the three basins and the largest proportion of the river flow is glacial melt

(Immerzeel et al., 2010).

Wiltshire et al. (2013a) use a perturbed physics ensemble of HadCM3 GCM simu-

lations (Murphy et al., 2004) and find an increase in water resources for South Asia at

the annual timescale due to climate change. The analysis shown here shows a similar

result with increases in river flow, particularly the magnitudes of the higher river flows

at these gauges, in some cases above the range of variability used for this analysis (1.5

SD). However, the analysis shown here on the monthly timescale, also highlights that

these increases in resource tend to occur during the ASM, when river flow is at its

maximum. This could mean that the benefits of an increase in water resource may

not be realised due to the timing of this increase within the year. Although these

projected changes in river flow are not critical for water resources they could still be

beneficial where there is the capacity to store the additional flow for use during periods

of low flow. Additional water storage capacity for example through rainwater harvest-

ing, could greatly increase the useable water resource for the Ganges–Brahmaputra

catchments (Kumar et al., 2005) and potentially alleviate the increased risk of flooding

during the ASM when rainfall is most persistent and rivers are already at their peak

flow. South Asia, even in the current climate, is particularly susceptible to flooding

due to the high temporal and spatial variability of rainfall of the region. It is estimated

that approximately 20 % of Bangladesh floods annually (Mirza, 2002). Several studies

have highlighted increases in both the extremes (Sharma, 2012, Rajeevan et al., 2008,

Goswami et al., 2006, Joshi and Rajeevan, 2006) and the variability (Gupta et al., 2005)

of precipitation in recent years that cause extreme rainfall events resulting in catas-

trophic levels of river flooding. Over 30 million people in India alone are affected by

floods and more than 1500 lives are lost each year (Gupta et al., 2003), the economic

cost of flooding is also considerable with the cumulative flood related losses estimated

to be of the order of USD 16 billion between 1978 and 2006 (Singh and Kumar , 2013).

The timing of the peak flows of major rivers in this region is also very important

in terms of flooding. In 1998 the peak flows of the Ganges and the Brahmaputra

rivers occurred within 2 days of each other resulting in devastating flooding across the

entire central region of Bangladesh. Approximately 70 % of the country was inundated,

the flood waters then remained above danger levels for more than 60 days (Mirza,

2002). This event caused extensive loss of life and livelihood in terms of damaged

crops, fisheries and property and the slow recedance of flood waters hindered the relief

operation and recovery of the region. This analysis does not suggest any change to

the timing of the peak flows, only the magnitude. However given the high probability

of two rivers in this region having coincident peak flows in any given year (Mirza,

2002) and the likelihood that severe flooding will result, an increase in the magnitude

of the peak could still be significant. Flooding can have a large impact on crops, for
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example in Bangladesh over 30 % of the total flood related damages are due to the

loss of crops. The estimated crop damage from the 1998 floods was estimated to be

3.0 million t (Gain et al., 2013). The slow receding of flood water can also mean the

ground is not in a suitable condition to sow the next crop, restricting the growing time

and potentially affecting crop yields for the following year. On the other hand a limited

amount of flooding could also be a benefit, particularly for rice crops. Inundation of

clear water can benefit crop yield, due to the fertilization effect of nitrogen producing

blue-green algae in the water (Mirza et al., 2003).

In our simulations the reduced occurrence of the lowest flows could translate into

an increase in the surface water resource in this region especially during periods when

the river flows are traditionally very low. This could mean that the current and in-

creasing pressure on ground water (Rodell et al., 2009) may be alleviated in future

years. Alternatively increases in the lowest flows may enable adaptation to a changing

climate and the modification of irrigation practises. Current projections of future cli-

mate suggest that temperatures could also increase for this region (Cruz et al., 2007).

Increasing temperatures poses a threat to crop yields of a different kind because this

is a region where temperatures are already at a physiological maxima for some crops

(Gornall et al., 2010). Rice yield, for example, is adversely affected by temperatures

above 35 ◦C at the critical flowering stage of its development (Yoshida, 1981). Wheat

yields could also be affected by rising temperatures, with estimated losses of 4–5 mil-

lion tonnes per degree of temperature rise through the growing period (Aggarwal et al.,

2012). Additional water resource for irrigation at previously low flow times of the year

could allow sowing to take place at a different time of the year in order to avoid the

highest temperatures, thereby reducing the likelihood of crop failure. However with

increasing variability and extremes, a potential feature of the future climate for this

region (Hijioka et al., 2014), there is also the increased risk of longer periods with

below average rainfall and potentially more incidences of drought. This could lead to

additional demand for water for irrigation to prevent crops becoming water stressed

(Aggarwal et al., 2012). There may also be increases in demand from other sources

other than agriculture, for example the increasing population (United Nations, 2013)

or the reduced availability of ground water of an acceptable quality for domestic use

(Gregory et al., 2005). Any of these factors, either individually or combined, could

effectively cancel out any or all increases in resource from increased river flow due to

climate change.

In addition there are a number of processes missing from the models used for these

simulations that could change the sign of the projected changes. There is no irrigation

included in these simulations, which could be important particularly on the basin scale.

The impacts of extensive irrigation on the atmosphere are complex but could have

a positive impact on water availability (Harding et al., 2013) due to evaporation and

water being recycled within the basin. Tuinenburg et al. (2014) estimate that up to
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35 % of additional evaporation is recycled within the Ganges basin. This means that

this part of the regional water cycle is not accounted for in these simulations. There

is also no representation of glaciers which could act to increase or reduce river flows

depending on the occurance of negative or positive mass balance respectively. In these

simulations snowmelt is represented, however representing glacial processes as snowmelt

could act to enhance the seasonal cycle in the simulated river flows for both present day

and future projections as snow melts more readily than ice. These simulations also do

not explicitly include groundwater, primarily focusing on river flows. Groundwater is

a highly exploited part of water resources for South Asia. Representation of this would

give a more complete picture of the total water resources for this region.

2.5 Conclusions

We present the first 25 km resolution regional climate projections of river flow for the

South Asia region. A sub-selection of the HNRCMs are used to provide runoff to a river

routing model in order to provide river flow rate, which can be compared directly with

ERAInt and any available river gauge data for the South Asia region. This analysis

focuses on the major South Asia river basins, which originate in the glaciated Hindu-

Kush Karakoram Himalaya; the Ganges/Brahmaputra and the Indus. The aim of

this analysis is firstly to understand the river flows in the ECHAM5 and HadCM3

simulations and secondly examine how useful they are for understanding the changes

in water resources for South Asia. We also consider what the projected changes in river

flow to the 2100s might mean for water resources across the Himalaya region.

The driving GCMs (ECHAM5 and HadCM3) have previously been shown to capture

a range of temperatures and variability in precipitation similar to the AR4 ensemble

for the much larger domain of Asia (Christensen et al., 2007). However using just two

ensemble members cannot capture the full range of these larger ensembles. In this

analysis the seasonal cycle of precipitation, a key influence on river flows, is captured

reasonably well for the downscaled GCMs compared to both observations and the

downscaled ERAint simulation. Although observed precipitation is lower than in the

model the underestimation inherrent in precipitation observations at higher elevations

are likely to be an important factor for this analysis, which includes the high Himalaya.

A number of GRDC gauge stations (GRDC , 2014), selected to capture the range

of conditions across the Himalayan arc and sample the major river basins, provide

observations of river flow for comparison against the HNRCM simulations. The lack

of recent river flow data limited the gauges that could be selected for analysis. In the

absence of robust observations we use a downscaled ERAint simulation in addition to

the available observations to provide a useful benchmark against which to compare

the downscaled GCM simulations. In general there is a tendancy for overestimation of

river flow rate across the selected gauges compared with GRDC observations; however,
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comparison against the ERAint simulation is more mixed with some gauges showing

higher and others with lower river flows than ERAInt. In general most of the simulations

broadly agree with observations and ERAint to within the range of natural variability

(of 1.5 SD) and agree on the periods of highest and lowest river flow. Therefore the

RCM is able to capture the main features of both the climate and hydrology of this

region for the present day.

The future projections indicate an increase in surface water resources, with river

flow rates at some of the gauges almost doubled by the end of the century. These

increases in river flow occur for the gauges in the Ganges/Brahmaputra basin, which

also shows an increasing trend in both evaporation and precipitation. Therefore the

changes in river flow are likely to be mainly driven by precipitation on the annual scale,

which more than counters the evaporation caused by increasing temperatures in the

model. This is consistent with other analyses of precipitation, which also use the A1B

climate scenario (Nepal and Shrestha, 2015), which is a useful result. The trajectories

of the annual average river flow, evaporation and precipitation for the Indus are much

flatter, showing little or no trend.

The increases in the annual mean river flows are reflected in the seasonal cycles of

river flow for the two future periods (2050s and 2080s), which indicate that most of

the changes occur during peak flow periods. Some of the gauges toward the middle

of the Himalayan arc show changes above the range of present day natural variability.

This could be due to the increasing influence of the ASM and reducing influence of

western disturbances from west to east having an additive effect. The gauges located

furthest west and east in this analysis lie within the present day natural variability.

There were also differences between the two simulations across the Himalayan arc with

HadCM3 suggesting increases in river flow at the upper end of the distribution for

western gauges that was not evident in ECHAM5. The analysis shown here does not

suggest a systematic change in the models for the timing of the maximum and minimum

river flows relative to the present day suggesting an overall increase in water resources

at the top and bottom of the distribution. This has positive and negative implications

with potentially more resource during usually water scarce periods. However there are

also implications in terms of increased future flood risk during periods where the river

flow is particularly high. Increases in maximum flows for rivers in this region could be

important in terms of loss of life, livelihoods, particularly agriculture and damage to

infrastructure.

While this analysis suggests increasing surface water resources due to climate change,

there are a number of other factors that could affect this result, both in terms of this

analysis and uncertainties surrounding the region itself. The South Asia region is

changing rapidly, therefore other factors could have a large effect on water resources

for this region. A rising population, expansion of industry (other than agriculture) and

the continued depletion of ground water could change the demand for surface water
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resource from other parts of the South Asia economy. In addition increasing variability

of an already changeable climate could lead to extended periods throughout the year

of rainfall below the annual average, leading to an increase in demand for irrigation re-

source. In terms of this analysis, this is only one RCM and another RCM could produce

a different result. Also there are missing hydrological processes in the RCM and river

flow model that could impact the river flows directly. The RCM and river flow model do

not include abstraction and irrigation, groundwater recharge or explicitly include glacial

processes and their contribution to river flow. Including glacial processes in the form

of a glacier model together with river routing within the land-surface representation

will be useful to establish if the contribution from glaciers changes the timing and/or

magnitude of both the lowest and highest flows in these gauges. Likewise including

representation of water extraction (both from rivers and groundwater) particularly for

irrigation, the biggest user of water in the region, will help to provide a more complete

picture of the demand for water resources for the South Asia region. Including irriga-

tion and therefore the associated evaporation will capture part of the water cycle not

possible with the current model and maintain the regional water balance. Including

representation of these processes in the RCM or river flow model would improve the

robustness of the future projections of water resources and further our understanding

of the water balance for this region. These processes could have a large impact on the

water balance in the model, potentially changing the sign of the projected changes in

river flow. Understanding the interactions between availability of water resources, irri-

gation and food production for this region by using a more integrated approach, such

as that used in Biemans et al. (2013) may also help with understanding how pressures

on resources could change with time. In support of this work and others, there is also

a need for good quality observations of both precipitation and river flow available for

long enough time periods to conduct robust water resource assessments for this region.

2.6 Addendum: Comparison of precipitation against ob-

servations

Figure 2.15 shows the annual mean timeseries of precipitation for South Asia to com-

pliment Fig. 2.3 and Fig. 2.5. The maps of the climatological average of the total

monsoon precipitation for each of the driving GCMs, the APHRODITE observations

and the RCM simulations (Fig. 2.3) highlight the benefits of increased horizontal res-

olution for representing rainfall. However, Fig. 2.3 does not show the considerable

variability of precipitation for South Asia from year to year. The large interannual

variability of the South Asia region is shown by the timeseries of the annual mean pre-

cipitation for the observed datasets: APHRODITE (black solid line - Yatagai et al.,

2012), GPCPv2.3 (black dashed line - Adler et al., 2003) and TRMM 3B43 7 (purple

line - Huffman et al., 2007) (Fig. 2.15). The average annual precipitation for the
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RCM simulations are also shown in Fig 2.15; the interannual variability in the RCMS

is arguably too large compared to observations. The considerable uncertainty in the ob-

served precipitation for the South Asia region is highlighted by the difference between

the GPCP/TRMM datasets and APHRODITE in Fig. 2.15. The TRMM 3B43 7

dataset and the GPCPv2.3 observations shown are not independent of each other,

which is why they are so similar

The GRDC river gauge observations are not provided with an observational un-

certainty, due to the variety across its network of gauges. The quality control is the

responsibility of the provider, which is largely due to the age of the gauges and the data

from the IGP. Falloon et al. (2011) choose a threshold of 20% as a reasonable estimate

for a GCM to be able to achieve consistently and a threshold of 10% as statistically

indistinguishable from observations. This level is also consistant with observational

errors of 5% at the 95% confidence interval quoted by Oki et al. (1999).
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Figure 2.15: Annual mean precipitation for South Asia for each model run (HadCM3 –
red, ECHAM5 – blue, ERAint – cyan lines) plotted against APHRODITE observations (solid
black line), TRMM observations (purple solid line) and GPCP observations (dashed black line).
GPCP observations are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their Web site at https://www.esrl.noaa.gov/psd/.
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Sowing and harvest dates are a significant source of uncertainty within crop models

especially for regions where high-resolution data are unavailable or, as is the case in

future climate runs, where no data are available at all. Global datasets are not al-

ways able to distinguish when wheat is grown in tropical and sub-tropical regions, they

are also often coarse in resolution. South Asia is one such region where large spatial

variation means higher resolution datasets are needed, together with greater clarity

for the timing of the main wheat growing season. Agriculture in South Asia is closely

associated with the dominating climatological phenomenon, the Asian Summer Mon-

soon (ASM). Rice and wheat are two highly important crops for the region, rice being

mainly cultivated in the wet season during the summer monsoon months and wheat

during the dry winter. We present a method for estimating the crop sowing and harvest

dates, for rice and wheat, using the ASM onset and retreat. The aim of this method

is to provide a more accurate alternative to the global datasets of cropping calendars

than is currently available and generate more representative inputs for climate impact

assessments.

We first demonstrate that there is skill in the model prediction of monsoon onset and

retreat for two downscaled General Circulation Models (GCMs) by comparing modelled

precipitation with observations. We then calculate and apply sowing and harvest rules
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for rice and wheat for each simulation to climatological estimates of the monsoon onset

and retreat for a present day period. We show that this method reproduces the present

day sowing and harvest dates for most parts of India. Application of the method

to two future simulations demonstrates that the estimated sowing and harvest dates

are successfully modified to ensure that the growing season remains consistent with

the internal model climate. The study therefore provides a useful way of modelling

potential growing season adaptations to changes in future climate.

3.1 Introduction

Field studies dominate the modelling literature on crops and agriculture. Many crop

models are developed and applied at the field scale using site specific observations to

drive models and optimize outputs. The growing awareness of climate change and the

likely impact this will have on food production has generated a demand for regional and

global assessments of climate impacts on food security through for example, projects

such as Agricultural Model Intercomparison and Improvement Project (AgMIP– Riv-

ington and Koo, 2010, Rosenzweig et al., 2013, 2014), the Inter-Sectoral Impact Model

Intercomparison Project (ISIMIP– Warszawski et al., 2013, 2014) and Global Gridded

Crop Model Inter-comparison (GGCMI– Elliott et al., 2015). Recent work in such

climate–crop impact studies has sought to quantify uncertainty from the quality and

scale of input data. A result from this work is that, for global scale simulations, planting

dates are a significant source of uncertainty (Frieler et al., 2017, Elliott et al., 2015).

Aside from their use in modelling studies, deciding when to plant crops is a sig-

nificant challenge, particularly in water scarce regions such as parts of Sub-Saharan

Africa (SSA- Waongo et al., 2014), South and South East Asia (Kotera et al., 2014).

These regions have crop sowing dates that are closely associated with the onset of the

rainy season. Any prolonged dry spells of more than two weeks after sowing could have

serious consequences, leading to crop failure or significant yield reduction, because top

soil layers dry out preventing germination (Laux et al., 2008). For large parts of SSA

deciding when to sow determines the length of the crop duration for the agricultural

season and is therefore an important tactical decision (Waongo et al., 2014).

Planting dates can be determined using a number of different methods; for example,

Kotera et al. (2014) propose a cropping calendar model for rice cultivation in the

Vietnam Mekong Delta (VMD). The Kotera et al. (2014) model estimates the sowing

date based on the the suitability of the land for crops given any flooding, salt water

intrusion or erratic monsoon rains; these are important factors for the water resources

of the VMD region. Alternatively Laux et al. (2008, 2010) use a fuzzy logic-based

algorithm developed to estimate the onset of the rainy season in order to examine the

impact of the planting date for the SSA. In the General Large Area Model (GLAM–

Challinor et al., 2004), the sowing date can be estimated by the model based on the soil
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moisture conditions, with the crop sown when surface soil moisture exceeds a specified

threshold during a given time window and crop emergence occurring a specified time

after sowing. Waha et al. (2012) base their estimates of sowing dates at the global scale

on climatic conditions and crop specific temperature thresholds, therefore providing a

suitable method for taking climate change into account. However the Waha et al.

(2012) method is not really intended for use in irrigated multiple cropping regions.

Elliott et al. (2015) describe how sowing dates are defined in the GGCMI project. The

GGCMI protocols use a combination of Sacks et al. (2010), Portmann et al. (2010)

and model data to define sowing dates, thus highlighting the challenges in defining a

complete, accurate dataset of sowing and harvest dates. This has influenced and driven

the development and application of crop models on broader scales. In this study we are

considering the whole South Asia region; this is a large scale problem with complicated

cropping patterns, which means that assumptions and generalizations need to be made

across a region with a wide variety of climatic conditions and cropping environments

(soils etc). Waha et al. (2013) highlight that global crop calendars such as those used

in the GGCMI often only report individual crops, therefore limiting their usefulness for

regions with multiple cropping systems.

The growing interest in climate change and food security has influenced the develop-

ment of crop models for use in future climate impact assessments (Frieler et al., 2017);

this represents a different challenge for crop models in terms of the input data used.

ISIMIP simulations use time varying crop management data until 2005 after which

the data are held fixed at 2005 levels for the remainder of the simulations (Frieler

et al., 2017). Fixing crop management to present day practices is not really suitable

for adaptation studies (van Bussel et al., 2015). The assumption that there will be no

large shifts in climate, causing sowing and harvest dates to change significantly from

the present day, could lead to the sowing and harvesting of crops in the model in the

future at unrealistic times of the year. Thus the appropriate sowing and harvest dates

used in future simulations depends on the intended application for the simulations. In

many adaptation studies, impacts without adaptation are assessed using present day

estimates of sowing dates, then the sowing dates are adjusted in response to climate

change to assess the benefits of adaptation (Lobell , 2014). Challinor et al. (2018) sug-

gest using autonomous adaptation in simulations in order to avoid overestimating the

effects of adaptation. On this basis there is a requirement for estimates of sowing and

harvest dates for climate simulations that remain consistent with the future model

climate. Thus, making estimates of sowing and harvest dates important not only for

understanding the present day, but also for use in future simulations especially when

considering potential adaptation to climate change.

Agriculture in South Asia is dominated by the Asian Summer Monsoon (ASM).

Kharif and Rabi are the two main seasons in South Asian agriculture and these corre-

spond to summer and winter/spring growing seasons respectively. Rice-wheat systems
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are a major crop rotation across South Asia. Kharif crops include rice, which is usually

sown during the monsoon, and harvested in the autumn. Sowing and harvest dates

for rice cultivated during the Kharif season vary between states, with rice traditionally

sown in some locations with the first rains of the monsoon, while other regions such

as eastern parts of the Indo Gangetic Plain (IGP) tend to plant rice late into June

when the monsoon is fully established (Erenstein and Laxmi , 2008). Rabi crops in-

clude wheat, which is mainly cultivated during the dry season (Erenstein and Laxmi ,

2008, Singh et al., 2014). The close association of the sowing dates of these crops and

the ASM offer the potential for a new method of defining the cropping calendar for this

important rotation.

Rice-wheat systems, particularly those in Pakistan (Erenstein et al., 2008) and the

Indo Gangetic Plain (IGP), tend to plant varieties like Basmati that take a long time

to mature (Erenstein and Laxmi , 2008). Since this delays wheat planting, this has a

direct impact on wheat yield. In the Eastern IGP this is a particular problem as the

season for which wheat is viable is relatively short (Erenstein and Laxmi , 2008, Laik

et al., 2014, Jat et al., 2014). Any delay between the rice harvest and wheat planting

can have a large impact on the success of the wheat crop, as this will reduce the time

available before the temperatures get too high for the successful cultivation of wheat

(Joshi et al., 2007). The time between the rice harvest and wheat sowing also depends

on the time it takes to ensure the soil is in a suitable condition for wheat sowing

after the rice harvest. Erenstein and Laxmi (2008) describe the zero-tillage approach

which allows for a reduced turn-around time between the harvest of rice and sowing of

wheat. Potential avenues by which the uncertainty from sowing and harvest dates can

be reduced in inputs to crop simulations include:

• The use of higher resolution regional data sets of recorded sowing and harvest

dates for crop calendars rather than existing global data sets.

• The use of new methods for estimating crop calendars in the absence of higher

resolution regional data sets.

3.1.1 Motivation

The correct representation of the crop duration within crop models are crucial for the

interpretation of the important outputs from the model. For example if the datasets

used for sowing and harvest dates are inaccurate, the simulations could grow crops

during the wrong season, thereby affecting the reliability of the simulated water use

and crop yield. The main differences between the regional Bodh et al. (2015) dataset

and the global Sacks et al. (2010) data are for spring wheat. Spring wheat grown in

winter is misclassified as winter wheat in the Sacks et al. (2010) data. This is discussed

by Sacks et al. (2010) as a potential limitation when using the data for tropical and

subtropical regions. Spring wheat is the more common type of wheat grown in the
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South Asia region (Hodson and White, 2007) because minimum temperatures there are

not low enough to allow vernalization to take place, which is needed for winter varieties

of wheat (Sacks et al., 2010, Yan et al., 2015).

Figure 3.1 shows the averaged rice (green rectangles) and wheat (orange rectangles)

growing season durations for Sacks et al. (2010) (diagonal hatching) and the Bodh et al.

(2015) dataset (perpendicular hatching - labeled MinAg) overlaid on the present day

South Asia averaged precipitation climatology and estimates of the monsoon onset and

retreat. This illustrates the differences between the Bodh et al. (2015) and Sacks et al.

(2010) datasets showing that in Sacks et al. (2010), the main growing period for both

rice and wheat appears to be during the monsoon. While rice is usually grown during

the monsoon it is not typical that wheat should be grown during this period for this

region. The growing season durations for the Bodh et al. (2015) dataset (Fig. 3.1 -

perpendicular hatching rectangles labeled MinAg) are more typical of this region with

rice (green) growing during the monsoon and wheat (orange) growing during the dry

season. Figure 3.1 highlights that where a global dataset is unable to establish exactly

when wheat is grown in tropical regions, an alternative is needed.

Crop models such as those described by Challinor et al. (2003, 2004) and Osborne

et al. (2015) require sowing information such as a sowing date or a sowing window, with

the crop model integrating an effective temperature over time as the crop develops.

The effective temperature is a function of air or leaf temperature and differs between

models. The integrated effective temperature in each development stage is referred to

as the thermal time of that development stage (Cannell and Smith, 1983, McMaster

and Wilhelm, 1997) (there may also be an additional photoperiod length dependence).

The thermal time in each development stage is typically set by the user, and can be

calibrated to simulate different varietal properties. Where these varietal properties are

unavailable e.g. for the global analysis in Osborne et al. (2015), in order to mimic the

spatial variation in the choice of crop variety, these thermal times were determined from

sowing and harvest dates and the temperature climatology which allowed them to vary

spatially. This ensures that during the simulation, the crop develops over the course of

the crop season starting at the sowing date and ending at approximately the harvest

date (i.e. the harvest date is the average over the course of climatological period used).

The use of this predefined thermal time ancillary drives the requirement for pro-

viding both a sowing and harvest date. Reliable high resolution datasets for sowing

and harvest dates are often unavailable for either the region or the time period that

is needed. In addition there is a demand for sowing and harvest dates that maintain

consistency with the model climate. Therefore, in this paper we propose a new method,

outlined in Fig 3.2, for estimating sowing and harvest dates for use in the large-scale

modelling of the rice-wheat rotation in South Asia using estimates of monsoon onset

and retreat. This method does not require large amounts of data and the user can elect

to use either the sowing input data or if needed, both sowing and harvest data to run
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Figure 3.1: The one and a half year precipitation climatology for the 1990–2007 period
averaged for South Asia for each simulation (ERAint-cyan line, ECHAM5-blue line, HadCM3-
red line) and APHRODITE observations (black line) using a 5-day smoothed rolling mean. Also
shown are the growing seasons also averaged for 1990–2007 for South Asia for wheat (orange)
and rice (green) from two datasets; Sacks et al. (2010) (diagonal hatching-labeled sacks) and
Bodh et al. (2015) (perpendicular hatching-labeled minag) and the monsoon onset (blue vertical
lines) and retreat (pink vertical lines) from each of the simulations (APHRODITE-dotted,
ERAint-dashed, HadCM3-solid, ECHAM5-dash dot).
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their chosen crop model. The main objectives of this study are:

• To develop a method for determining sowing and harvest dates for modelling the

rice-wheat rotation in South Asia based on the ASM.

• To test the method in current and future climates.

We therefore present the methodology in Sect. 3.2. We show the proposed method is

viable and show it works in Sect. 3.3. Discussion of the results and conclusions are

provided in Sect. 3.4 and Sect. 3.5 respectively.

3.2 Methodology

The methodology is summarized in the flow chart in Fig. 3.2. The model datasets,

described in detail in Sect. 3.6 of the Appendix, include General Circulation Models

(GCMs) and a Regional Climate Model (RCM). GCMs provide spatially consistent

boundary data to an RCM, which generates 25km regional fields (Fig. 3.2 blue boxes).

The two GCMs used in this analysis were specifically selected because they were able

to capture main features of the ASM (Sect. 3.6 of the Appendix). RCMs are based

on the same physical equations as GCMs and therefore represent the entire climate

system including the carbon and water cycle. Their higher resolution allows a better

representation of the regional-scale processes adding detail to fields like precipitation

(Mathison et al., 2015). The individual RCM simulations (also called HNRCMS - see

Appendix Sect. 3.6) used in this analysis are referred to using their global driving

data abbreviations; HadCM3, ECHAM5 and ERAint as described in Appendix Sect.

3.6. Precipitation fields are used to generate a precipitation climatology which are

used to calculate monsoon statistics (Sect. 3.2.2) from which sowing and harvest dates

are estimated; shown by the pink rectangles (Sect. 3.2.3). These estimated sowing

and harvest dates are referred to as relative monsoon sowing and harvest dates (Fig.

3.2). Observations are used throughout the process to ensure the method is viable and

produces sensible results, these are described in Sect. 3.2.1 and shown by the green

boxes.

3.2.1 Observations

In order to demonstrate the viability of the methodology outlined in Fig. 3.2 we com-

pare the simulated precipitation with observations from the Asian Precipitation-Highly

Resolved Observational Data Integration Towards the Evaluation of Water Resources

(APHRODITE –Yatagai et al., 2012) dataset in Section 3.2.2.1. APHRODITE is a

daily, 0.25◦ resolution land only gridded dataset that is also used in Mathison et al.

(2015) to show that the RCMs in this analysis capture the general hydrology of the

region. The monsoon is a highly variable and complex phenomenon that currently not
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Figure 3.2: A flow chart summarizing the methodology. The blue rectangles represent datasets
that are used within the methodology, green rectangles represent observations and pink rect-
angles represent any calculations parts of the methodology.

all climate models are able to represent; this may mean that some climate models would

not yet be suitable for using with this method, which relies on a good representation

of the monsoon. The method presented in Fig. 3.2 will become more robust with

improving representations of the monsoon in climate models.

The datasets used for sowing and harvest dates include a global dataset, Sacks et al.

(2010) and a regional dataset, Bodh et al. (2015) from the Government of India, Ministry

of Agriculture & Farmers welfare. The Bodh et al. (2015) data is referred to from here

on as MinAg data. The MinAg observations of sowing and harvest dates for rice and

wheat are given as a range of days of year. The midpoints of these observed ranges

are calculated and compared against the midpoints of the model pentads for onset and

retreat in day of year. As a post-processing step the differences are then masked using

crop areas from the International Crops Research Institute For The Semi-arid Tropics

(ICRISAT , 2015) so that only the areas where rice or wheat are grown are considered.

3.2.2 Estimating monsoon onset and retreat

There are a wide variety of metrics for estimating the monsoon onset and retreat. Some

are specific to agriculture and include representation of breaks in the monsoon (Moron

and Robertson, 2014). More general metrics include a combination of meteorological

variables such as 850hPa wind and precipitation as in Martin et al. (2000), or only use

precipitation, such as in Sperber et al. (2013) and the Normalized Pentad Precipitation

Index (NPPI) (Lucas-Picher et al., 2011). The NPPI and Sperber et al. (2013) methods

both use a long term climatological average of precipitation because the model data are
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too noisy to calculate the monsoon statistics per year. Agricultural specific definitions

of monsoon onset and retreat represent breaks in the monsoon which can adversely

affect the germination of crops. However these metrics are not as effective when used

in conjunction with long term average precipitation fields such as those used here. This

is probably because the breaks that occur in the monsoon are quite variable from year

to year and are smoothed out within the climatology. The approach by Sperber et al.

(2013) defines monsoon onset as the pentad where the relative rainfall exceeds 5 mm

day−1 during the May–September period. However, Sperber et al. (2013) regrid to the

GPCP rainfall dataset (Huffman et al., 2001) which is much coarser resolution than

the APHRODITE data used here. The NPPI metric uses Eq. 3.1 to estimate monsoon

onset, retreat, peak and duration.

NPPI =
P − Pmin

Pmax − Pmin
(3.1)

where P is the unsmoothed pentad precipitation climatology and Pmin and Pmax

are the annual minimum and maximum at each gridbox respectively. The monsoon

onset is then defined as the pentad in which the NPPI exceeds 0.618 for the first time

and withdrawal as the last time the NPPI drops below this threshold in the year. The

NPPI only reaches a value of 1.0 once in the annual cycle which corresponds to the

monsoon peak. In the NPPI method the only regridding that takes place is to ensure

the model and observations are on the same grid, as they are both 25km resolution there

is no loss of resolution in doing this. The threshold for NPPI is also independent of the

resolution of the data which is not the case for the Sperber et al. (2013) method. The

NPPI metric has been successfully applied previously by Lucas-Picher et al. (2011) to

analyse the monsoon of models of a similar resolution to the simulations used here (Fig

3.2). Therefore in this analysis, in the same way that Lucas-Picher et al. (2011) uses the

1981–2000 climatology, we use a 1990–2017 climatology. The pentad provided by the

NPPI is representative of the climatological period and therefore cannot be compared

to a particular year; however the pentad can be used to find the 5-day window for

the climatological period where onset and retreat typically occur which can then be

compared to APHRODITE observations also averaged for that period. We use the

NPPI metric to calculate the pentad of the monsoon onset, retreat, peak and duration

for the APHRODITE observations and the three HNRCM simulations.

3.2.2.1 Comparison of model monsoon onset and retreat with precipitation

observations

Figure 3.3 shows plots of the onset (left column) and the retreat (right column) of

the South Asian Summer Monsoon as defined using the NPPI described in Sect. 3.2.2.

The NPPI index for the climatology of the APHRODITE precipitation observations

(Yatagai et al., 2012) are shown in plots (a) and (b) of Fig. 3.3 for comparison with the
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precipitation climatology for each of the HNRCMs shown; ERAint (c and d), HadCM3

(e and f) and ECHAM5 (g and h). The white regions are areas where the threshold

was exceeded at the first pentad; this implies the monsoon had already started at the

first pentad which suggests a model bias and therefore these regions were masked out.

Figure 3.4 shows the differences between the model onset (retreat) and APHRODITE

onset (retreat) for each model. On average the difference between the monsoon onset in

APHRODITE and the HNRCM simulations is between 1 and 7 days and the difference

between the retreat in APHRODITE and the HNRCM simulations is between 4 and

10 days. However there are regions where the differences between the APHRODITE

monsoon statistics are much larger than this; these are highlighted by the darker red

and blue regions in Fig. 3.4. In general for most of India the HNRCMS are within

25 days of the APHRODITE observations, with the regions where the differences are

larger explained by different monsoon characteristics, for example the South of India

and the Bangladesh region (this is discussed further in Sect. 3.4.1).

3.2.3 Calculating sowing and harvest dates from monsoon character-

istics

We use estimates of the monsoon onset and retreat together with present day rules

on sowing and harvest for rice and wheat, referred to as crop rules to calculate the

sowing and harvest dates relative to the monsoon (Fig. 3.2). This method allows any

crop model that uses, for example, a driving dataset similar to APHRODITE or the

HNRCMs, to derive sowing and harvest dates that are consistent with the monsoon

of the driving data (Fig. 3.2). Thus growing the crop at the appropriate time of the

year i.e rice is kept during the monsoon period and wheat is sown and harvested during

the dry season. The monsoon is a highly variable phenomenon; however the use of a

long term average (climatology) to calculate the monsoon statistics smooths out their

large inter-annual variability. This highlights the consistency between the sowing and

harvest dates and the monsoon statistics. Therefore we do not expect the monsoon

statistics to be exactly the same as the observed sowing and harvest dates. Rather,

this method relies on consistency between the climatological estimate of the monsoon

statistics and the sowing and harvest dates across the region. The introduction of a

croprule then moves the monsoon statistic to more closely reflect the observed sowing

and harvest dates. This means that, even if the difference between the most relevant

monsoon statistic and the observed sowing or harvest date is large then the difference

is similar across India. Although these sowing and harvest events may not always be

dictated entirely by the monsoon, it provides the broader seasonality associated with

the crop seasons in this region. The consistency between the crop practices and the

monsoon statistics across the region provides the empirical relationship exploited here

to estimate the sowing and harvest dates for use in both present day and future crop
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Figure 3.3: Plots of the 1990–2007 monsoon statistics; monsoon onset (left column) and
retreat (right column). The APHRODITE precipitation observations (a and b) are shown and
the three model simulations; ERAint (c and d), HadCM3 (e and f) and ECHAM5 (g and h)
calculated using the NPPI metric. White areas are the regions where the model precipitation
exceeds the threshold indicating the start of the monsoon at the initial pentad, this does not
imply early monsoon but more likely a model bias in the precipitation at this location.
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Figure 3.4: Plots of the 1990–2007 difference between model simulations and APHRODITE
observations for the monsoon statistics; monsoon onset (left column) and retreat (right column);
ERAint (a and b) HadCM3 (c and d) and ECHAM5 (e and f) calculated using the NPPI metric.
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simulations. These sowing and harvest dates are not really intended to offer advice to

farmers on when to sow or harvest on a year to year basis, rather it provides a way

for sowing and harvest dates to remain relevant to this major climatological feature. A

key assumption is that the monsoon remains a defining feature of the crop seasons for

South Asia in the future.

3.2.3.1 Calculation of monsoon derived estimates of sowing and harvest

dates for rice and wheat

We use the precipitation climatologies from APHRODITE precipitation observations

and each of the HNRCM simulations (Fig. 3.2) by calculating the difference between

the monsoon onset (or retreat) and the observed MinAg sowing (or harvest) dates for

each crop (Fig. 3.2). These differences are per gridbox. We then calculate a weighted

area average (using the Met Office (2018) package) to produce a crop rule for the whole

region for each crop and stage; these are listed in Eq. 3.2. Collectively the crop rules

given in Eq. 3.2 are referred to as RelMonsooncroprule. This provides a simple rule that

can be applied across the region, even where observations are not available. Although

calculating a rule per gridbox would provide excellent results where observations were

available, it would limit the usefulness of the method where observations were not

available, which is one of the main aims of this approach.

RiceSowingCroprule = AreaAverage(MonsoonOnset−RiceSowing)

RiceHarvestCroprule = AreaAverage(MonsoonRetreat−RiceHarvest)

WheatSowingCroprule = AreaAverage(MonsoonRetreat−WheatSowing)

WheatHarvestCroprule = AreaAverage(MonsoonOnset−WheatHarvest)

(3.2)

The RelMonsooncroprule is then applied to the monsoon onset and retreat field

to provide an estimate of sowing and harvest dates for rice and wheat based on the

monsoon. We refer to these estimates of sowing and harvest dates as ‘monsoon derived

crop dates’ for brevity.

MonsoonDerivedCropDate = MonsoonStatistic−RelMonsooncroprule (3.3)

where the MonsoonStatistic can be monsoon onset or retreat and the

RelMonsooncroprule is one of the four crop rules given in Eq. 3.2

The spatial variability of the monsoon derived sowing and harvest dates is ac-

counted for by the monsoon onset and retreat in the climatology used to calculate

the RelMonsooncroprule. The monsoon derived sowing and harvest dates for both the

APHRODITE and HNRCM simulations are provided and compared against MinAg
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observed sowing and harvest dates in Sect. 3.3.2.

The calculation of the RelMonsooncroprule is based on observations for India (from

MinAg and ICRISAT , 2015) and therefore the analysis for the present day in Sect. 3.3.2

focuses on these areas. On the basis that most of the South Asia region is dominated

by the ASM, the RelMonsooncroprule, though tuned using India observations, can be

applied to any region dominated by the ASM in order to estimate sowing and harvest

dates for larger areas with a rice-wheat rotation (Sect 3.3.3). The method does not

currently perform as well for parts of southern India where the climate is influenced

by the Northeast monsoon but could be modified to provide better results for these

areas. In Sect. 3.3.2, we compare the monsoon derived estimates of sowing and harvest

dates for the period 1990–2007 with the MinAg range of sowing and harvest dates to

establish if the method shown in Fig. 3.2 gives good results. There are four datasets

used throughout this analysis; APHRODITE and the three HNRCMS. Where three

of the four datasets provide sowing or harvest dates that are within the MinAg range

the method is said to give good results, where two of the four datasets are within the

MinAg range the results from the method are said to be fair. If no datasets are within

the MinAg range the method is classed as poor. The sowing and harvest dates are

presented for each state in Sect. 3.3.2.

3.2.4 Demonstration using monsoon derived estimates of sowing and

harvest dates for two future periods

The method summarized in Fig. 3.2 is applied to two future periods using the ECHAM5

and HadCM3 RCM simulations (described in Sect. 3.6 of the Appendix). Global mean

temperatures are used (within the High-End cLimate Impacts and eXtremes project

– HELIX) to define the future climate in terms of specific warming levels (SWLs),

i.e considering a 2◦C, 4◦C and 6◦C world. The use of time periods is much more

common than SWLs; however SWLs enable the analysis to focus less on the climate

scenarios and more on what the world will look like at 2◦C, 4◦C and 6◦C (Gohar

et al., 2017). This will differ depending on when the threshold is passed. The SWL

approach is therefore a benefit as it means that new scenarios that are developed

as part of new model intercomparison projects can be compared against older ones

from previous projects. Although the older scenarios may not contain the most up-

to-date socio-economic information, they are no less likely than the newer scenarios.

The simulations used here are for the period 1965 to 2100 and therefore only the 2◦C

threshold for global mean temperature is actually passed during these simulations.

For HadCM3 this occurs in 2047 and for ECHAM5, 2055. Therefore the two future

periods used in this analysis are 2040–2057 and 2080–2097. The 2040–2057 period is

chosen because it includes the year that the global mean temperature exceeds 2◦C in

the two simulations and the 2080–2097 period is chosen because it is furthest into the
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future in these simulations and therefore likely to show the greatest warming. The

length of the two future analyses periods has been chosen for consistency with the

ERAint RCM simulation which is only available for the period 1990–2007. Although

the threshold of 2◦C is exceeded globally it is important to note that the relationship

between the projected global mean change in temperature and the regional climate

change in temperature for South Asia is complicated. Heat and moisture and how they

vary across the globe are not evenly distributed with land warming faster than the

ocean (Christensen et al., 2013); therefore the actual temperature change experienced

in South Asia may be higher than the global mean change.

3.3 Results

We compare the model monsoon to the monsoon calculated from precipitation obser-

vations to demonstrate that the model is able to reproduce the monsoon (Sect. 3.2.2.1)

and therefore the methodology summarized in Fig. 3.2 and Sect. 3.2 is viable. In

Sect. 3.3.1 we compare the simulated monsoon with the observed sowing and harvest

dates in order to calculate the monsoon derived sowing and harvest dates and compare

these new simulated sowing and harvest dates with the observations. We then show

results from applying the method in Sect. 3.3.2. As a demonstration, we also apply

the method to two future periods in Sect. 3.3.3.

3.3.1 Comparing observed sowing and harvest dates with estimates

of monsoon onset and retreat

The climatology shown in Fig. 3.1 shows that on average the observed rice and wheat

sowing and harvest dates from MinAg align well with the monsoon onset and retreat in

the simulations. Observed rice sowing dates generally compare well with the monsoon

onset in the model as shown in Fig. 3.5 and Fig. 3.6.

The monsoon onset and retreat estimates are provided in days of year (pentads)

therefore with a range of plus or minus 2.5 days. The MinAg observations are also

provided in days of year with a range that varies from plus or minus 15 days depending

on the location. Figure 3.8 shows the range of the MinAg sowing and harvest observa-

tions for each state; the full sowing or harvest window is shown by the downward grey

triangles, with the midpoints shown by black triangles joined by a black line. Figure

3.6 considers the midpoints of these two ranges in order to summarize how well aligned

the monsoon onset range is to the observed range of rice sowing dates i.e. how the

5-day onset windows coincide with the observed sowing window. If the monsoon onset

range is completely within the range of sowing days provided by the observations then

this is classed as a ’hit’ (shown by the blue regions). If the monsoon onset range is

completely outside the range of observed sowing days then this is classed as a ’miss’

(shown by the red regions). The yellow regions in Fig. 3.6 show the places where the
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Figure 3.5: Plots of the difference between the midpoint of the monsoon onset in the model
and the midpoint of the observed rice sowing period for 1990–2007.

monsoon onset overlaps the range of observed sowing days but does not completely fall

within it; these regions are labelled ’Overlaps’. Figure 3.6 has only a small area of red

indicating that monsoon onset is, for large parts of India, within the range of days of

rice sowing. In each plot shown in Fig. 3.6 the region that is red or yellow is different;

this makes it difficult to say if one dataset is better than another. ECHAM5 appears to

have the smallest total area of red/yellow, which is probably because ECHAM5 tends

to have an earlier onset than the other datasets and in general that makes it closer to

the rice sowing dates.

Table 3.1 lists the differences between the monsoon statistics (onset and retreat)

and the relevant sowing and harvest dates for each crop calculated for each of the

simulations and the APHRODITE observations and averaged for India. Table 3.1

shows that on average across India rice sowing occurs between 10 and 20 days prior to

the averaged modelled monsoon onset (third block, Table 3.1). We would not expect

the different datasets to give the same results, however Table 3.1 shows that they are

87



88 Chapter 3: Estimating sowing and harvest dates based on the Asian Summer Monsoon

relatively consistent with each other and importantly with observations as is illustrated

by the APHRODITE data. Table 3.1 highlights that on average APHRODITE requires

a larger croprule than the simulations for rice sowing; however, this is not always the

case for sowing or harvest and rice or wheat. The croprules used here are based on the

1990–2007 period for which ERAint has the earliest onset (Fig. 3.10). ECHAM5 has

the smallest croprule to move it towards the rice sowing date, but the highest variance

in the mean difference between the monsoon onset and the MinAg rice sowing date.

APHRODITE has the largest crop rule for rice sowing, indicating that the weighted

average of the APHRODITE monsoon onset is further from the rice sowing date than

for other datasets.

Figure 3.6: The comparison of the model monsoon onset in terms of the days of the year (to
within the pentad) and the range of days of the year for the observed sowing date for rice. This
is shown in terms of hit (blue) and overlap (yellow) or if there was no overlap this is shown as
a miss (red)

In general the differences between rice harvest and monsoon retreat are larger but

still consistent across the region (Fig. B.1), with rice harvest occurring on average 30–

40 days after monsoon retreat (fourth block, Table 3.1). Wheat sowing tends to occur

approximately 60–70 days after monsoon retreat (Fig. B.2 and first block, Table 3.1)
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and wheat harvest tends to occur approximately 90–101 days before monsoon onset

(Fig. B.3 and second block Table 3.1). These values (given in Table 3.1) provide

the RelMonsooncroprule values introduced in Sect. 3.2.3.1 used to adjust the monsoon

statistics and calculate the new sowing and harvest dates based on the monsoon. There

are small regions with different monsoon characteristics and therefore much earlier

sowing days, for example for rice sowing in the southern and far north of India. These

regions have a direct impact on the values (minimum, maximum, mean and standard

deviation - SD) given in Table 3.2 which are averages for the whole of India and are

discussed in more detail in Sect. 3.4. Fig 3.1 highlights that the the average sowing

and harvest dates for rice and wheat are closely aligned with the monsoon precipitation

from all three RCM simulations.

crop stage Monstat source RelMonsooncroprule
(India average)

wheat sowing retreat APHRODITE -63.5
wheat sowing retreat ERAint -62.8
wheat sowing retreat HadCM3 -67.9
wheat sowing retreat ECHAM5 -63.6

wheat harvest onset APHRODITE 98.5
wheat harvest onset ERAint 100.4
wheat harvest onset HadCM3 98.9
wheat harvest onset ECHAM5 91.4

rice sowing onset APHRODITE 19.7
rice sowing onset ERAint 17.3
rice sowing onset HadCM3 17.2
rice sowing onset ECHAM5 10.1

rice harvest retreat APHRODITE -32.7
rice harvest retreat ERAint -35.4
rice harvest retreat HadCM3 -38.5
rice harvest retreat ECHAM5 -34.7

Table 3.1: Table of RelMonsooncroprule for each dataset, crop and stage. The
RelMonsooncroprule is the value subtracted from the monsoon onset/retreat in order to cal-
culate a new sowing/harvest date based on the monsoon onset/retreat. In each case the new
estimate of the sowing and harvest dates is calculated by subtracting the RelMonsooncroprule

from the Monstat where Monstat is Monsoon onset or Monsoon retreat from a HNRCM or
APHRODITE precipitation observations. Where the sowing/harvest is before the monsoon
statistic, the crop rule is in bold with normal type indicating that sowing/harvest occurs after
the monsoon statistic.

3.3.2 Monsoon derived estimates of sow/harvest dates for rice and

wheat

The monsoon derived sowing and harvest dates are calculated from applying the

RelMonsooncroprule for each model (Table 3.1) to the simulated monsoon onset and

retreat fields (Fig. 3.2). Here we compare these with the gridded observations to see
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crop stage monsoon stat source min max mean SD

wheat sowing retreat APHRODITE -122.0 53.0 -63.5 23.6
wheat sowing retreat ERAint -160.0 36.0 -62.8 19.8
wheat sowing retreat HadCM3 -185.0 33.0 -67.9 26.7
wheat sowing retreat ECHAM5 -187.5 53.0 -63.6 34.6

wheat harvest onset APHRODITE 32.5 216.5 98.5 26.5
wheat harvest onset ERAint 22.0 216.5 100.4 26.8
wheat harvest onset HadCM3 -3.0 216.5 98.9 23.0
wheat harvest onset ECHAM5 -18.0 217.5 91.4 33.7

rice sowing onset APHRODITE -24.5 156.5 19.7 32.8
rice sowing onset ERAint -49.5 196.5 17.3 30.5
rice sowing onset HadCM3 -40.0 226.5 17.2 25.4
rice sowing onset ECHAM5 -65.0 186.5 10.1 36.7

rice harvest retreat APHRODITE -91.5 110.5 -32.7 30.4
rice harvest retreat ERAint -116.5 73.5 -35.4 23.3
rice harvest retreat HadCM3 -111.5 78.5 -38.5 29.3
rice harvest retreat ECHAM5 -141.5 98.5 -34.7 35.9

Table 3.2: Analysis of the differences between the midpoints of the MinAg data and Monsoon
onset/retreat for rice/wheat sowing and harvest dates: The table shows the minimum, maxi-
mum, mean and standard deviation (SD) averaged across South Asia where wheat or rice are
planted.

how well the method performs for the present day. The monsoon derived sowing and

harvest dates are compared with the MinAg observations using regional maps and an

analysis for each state area in order to show the differences in the method across India.

Figure 3.7 shows the monsoon derived estimates of rice sowing dates (left column)

and compared with MinAg observations (right column). Fig. C.1 shows the same plots

for rice harvest, with plots for wheat shown in Fig. C.2 and Fig. C.3 for sowing and

harvest respectively. The RelMonsooncroprule for wheat for both sowing and harvest

are much larger than those for rice but there is still good agreement between the

monsoon derived estimates and the MinAg observations across the region. On average

the monsoon derived estimates of sowing and harvest dates are within four days of

the midpoints for the sowing and harvest dates for rice and within seven days of the

midpoints for sowing and harvest dates for wheat. There is some variation across

India with some regions showing some larger differences but generally the monsoon

derived estimates for sowing and harvest dates are within the range provided by the

observations across much of the region for both crops.

Figure 3.8 shows the average crop duration for each state where MinAg observations

were available for the 1990 to 2007 period alongside the crop duration for each of the

four sets of monsoon derived estimates using the Fig. 3.2 method. In the majority of

states shown in Fig. 3.8 the sowing and harvest dates calculated using the Fig. 3.2

method were within the range of the MinAg observations for rice and wheat sowing

and harvest dates; however, the overall performance was better for rice compared with

90



§3.3 Results 91

Figure 3.7: The monsoon derived rice sowing dates (left) and the difference between the MinAg
observations and the monsoon derived rice sowing dates (right) for the period 1990–2007.

wheat and sowing compared with harvest in each crop. Figure 3.8 also highlights the

difference in both the observed and simulated crop duration between the two crops

with rice having a shorter season than wheat. In general across most of the states with

available data the method provides a reasonable estimate of the sowing, harvest date

and crop duration. Even where the method does not quite capture the observed sowing

and harvest dates, the method is often just outside the observed range.

In order to establish how well the method performs over all, we use Fig. 3.8 to
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Figure 3.8: The state averaged crop durations for each dataset are shown by the lines for
each state together with the sowing and harvest dates shown by the different shapes at the
end of each line. The MinAg observations are shown by the black line and downward triangles,
with the paler triangles representing the full range of sowing and harvest days for that state.
The APHRODITE observations are also shown by black lines and filled circles for the sowing
and harvest dates. ERAint is shown by cyan lines and squares, ECHAM5 by blue lines and
asterisks, HadCM3 by red lines and upward triangles.

assess if the results using the method are good, poor or fair compared to the MinAg

data. Where the monsoon derived sowing and harvest dates from three of the four

datasets using the method are within the range of the MinAg data as shown in Fig.

3.8, the results of the method are said to be ’good’ for a state. The results of the

method are said to be ’fair’ where two datasets are within the range of the MinAg data
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and ’poor’ where the sowing and harvest dates fall outside the observed range. In this

analysis only the state of Assam did not have any ’good’ scores for rice or wheat sowing

or harvest. Most of the scores for most of the states for both sowing and harvest, and

wheat and rice had a score of good or fair.

In general the regions where the monsoon derived sowing and harvest dates are not

as close to the MinAg observations tends to be for the states in the south, such as

Andhra Pradesh and Karnataka or to the north of India, such as Jammu and Himachal

Pradesh. This is supported by the maps, particularly for rice for these regions (in

Fig. 3.7 and Fig. C.1) which show that the method does not perform as well for

some of these states. These differences may be explained by the differing monsoon

characteristics in these regions compared to the rest of India; these are highlighted in

Fig. 3.3 and discussed further in Sect. 3.3.1 and Sect. 3.4. Assam in the north east of

India is also noticeable compared with the other states in Fig. 3.8 with the rice crop

season in the MinAg data displaced to an earlier part of the year. Assam tends to

plant predominantly rice, tending to have three distinct rice seasons (autumn, winter

and summer) rather than a rice-wheat rotation (Sharma and Sharma, 2015). In this

analysis we use data for the Kharif paddy rice crop from the MinAg dataset which is

planted and harvested earlier in Assam than in other states, with sowing in Feb/March

and harvest in June/July (Bodh et al., 2015).

3.3.3 Analysis of future monsoon onset and retreat

As a demonstration of the method summarized in Fig. 3.2, the HELIX SWLs (de-

scribed in Sec. 3.2.4) are used to select two future periods: 2040–2057 and 2080–2097.

Considering only these future periods, spatially HadCM3 and ECHAM5 show quite dif-

ferent future climates. HadCM3 shows a similar onset to the present day for 2040–2057

(Fig. 3.9a and c) but later onset compared with the present day for 2080–2097 (Fig.

D.1a and c). ECHAM5 shows an earlier onset compared with the present day for the

2040–2057 period (Fig. 3.9b and d) but much later for the 2080–2097 period (Fig. D.1b

and d). This suggests high variability in monsoon onset in these simulations. In fact

all of monsoon onset, peak, retreat and duration show a large degree of variability as

shown in Fig. 3.10 where each statistic has been averaged for South Asia. Each point

in Fig. 3.10 represents a 17-year timeslice from between 1970 and 2097 for each of the

APHRODITE, ECHAM5, HadCM3 and ERAint datasets. Figure 3.10 supports the

points made regarding the spatial plots and also shows how the four monsoon statistics

change between the 17 year timeslices. The 2040–2057 period has a much earlier onset

for ECHAM5 than all the other periods except the 2000–2017 period, which is similar

(Fig. 3.10a. For most of the periods ECHAM5 has an earlier onset than HadCM3,

this is also true of the retreat (Fig. 3.10b), the duration is usually longer for ECHAM5

compared with HadCM3 (Fig. 3.10d).

In order to illustrate the method for deriving sowing and harvest dates, Fig. 3.11
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Figure 3.9: The difference between the monsoon statistics for the 2040–2057 future period
and the present day 1990–2007 for HadCM3 (left) and ECHAM5 (right).

shows the annual cycle of precipitation averaged for South Asia for the two future

periods (plot a shows 2040–2057 and plot b shows 2080–2097) in the same way as the

present day is shown in Fig. 3.1. The crop sowing and harvest dates used to provide

the growing season durations in each of the plots shown in Fig. 3.11 for each of the

simulations are calculated using the method described in Fig. 3.2. This shows that the

proposed method provides an estimate of sowing and harvest dates that ensures the

crops can continue to be grown, in the simulation, when the climate is most appropriate

rather than being fixed to the present day observed values.
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Figure 3.10: Monsoon statistics; onset (a), retreat (b), peak (c) and duration (d) averaged
for South Asia for twelve 17-year timeslices between 1970–2097 to provide a timeseries of values
for the region to assess the variability of the monsoon

3.4 Discussion

Recent climate impact studies such as AgMIP (Rosenzweig et al., 2013, 2014) and

ISIMIP (Warszawski et al., 2013, 2014) have highlighted the importance of reliable in-

put data for models. Section 3.1.1 highlights the scale of the uncertainties present when

solely using a global sowing and harvest dataset to simulate region specific cropping

patterns. We have therefore proposed a new method for generating sowing and harvest

dates for South Asia based on the ASM. The method reproduces observed sowing and

harvest dates for much of India. These results are discussed further in Sect. 3.4.1. This

method will also be useful in other monsoon regions where data are scarce, unreliable

or unavailable such as in future climate simulations. The future results are discussed

further in Sect 3.4.2.

3.4.1 Present day analysis

In general the method described by Fig. 3.2 works well across most of India for the

present day, with the monsoon derived estimates of sowing and harvest dates falling

within the range of days for sowing given by the observations and therefore providing

a good estimate of the crop duration for most states (Fig. 3.8). However, there are

regions where the estimated sowing and harvest dates do not compare as well against
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Figure 3.11: The one and a half year precipitation climatology for the period 2040–2057 (a)
and the 2080–2097 (b) averaged for the whole of South Asia for each simulation (HadCM3-red
line, ECHAM5-blue line) using a 5-day smoothed rolling mean. Also shown are the monsoon
derived growing seasons for wheat (orange) and rice (green) calculated using the method de-
scribed in Fig. 3.2 for HadCM3 (perpendicular hatching) and ECHAM5 (diagonal hatching).
The monsoon onsets for each simulation are shown using blue vertical lines and retreat pink
vertical lines (ECHAM5-dash dot lines, HadCM3-solid

present day observations. Rice sowing is generally closely associated with ASM onset

across most of central India; however, in the south of India, there is a small region where

the differences between the observations of sowing dates and the monsoon are larger

than everywhere else (Fig. 3.5). In Sect. 3.3.1 this region is shown to have different

monsoon characteristics to the rest of India. This part of India includes the state of

Tamil Nadu, this state is located on the lee side of the Western Ghats and therefore

does not receive the large amounts of ASM rainfall that is more commonly associated

with this part of the world. Tamil Nadu receives up to 50 percent of its annual rainfall

during October–December via the less stable North Eastern (NE) Monsoon. The NE

monsoon is therefore more important for water resources for this part of India than

the ASM which accounts for approximately 30 percent of the annual rainfall for this

region (Dhar et al., 1982). These differing monsoon characteristics mean different

agricultural practices are required to cultivate rice in this part of the country. This

is illustrated by Fig. 3.12 (left plot) which shows that the southern region of India

with differing monsoon characteristics irrigates rice more intensively than other parts

of India. In the Tamil Nadu region, rivers are usually dry except during the monsoon

months and the flat gradients mean there are few locations for building reservoirs,
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therefore approximately one third of the paddy rice crop is irrigated from a large

network of water tanks (Anbumozhi et al., 2001). The Southern states of India have the

highest density of irrigation tanks with large numbers also found in Andhra Pradesh

and Karnataka, these are also regions shown to have a high irrigation intensity in Fig.

3.12. Rice harvest is typically not as closely associated with the monsoon onset as rice

sowing, which usually requires the monsoon to be fully established before planting.

The widespread irrigation of wheat shown in Fig. 3.12 (right plot) has less of an

impact on the estimates of wheat sowing/harvest dates because this crop is less closely

linked to the monsoon onset than rice. Therefore the regional differences between the

MinAg observations and the monsoon derived sowing and harvest dates for wheat are

not as large as some of those for rice (Sect. 3.3.2). Given that the method has provided

reasonable estimates of sowing and harvest dates for most of India, it would be useful

and interesting to extend this method to improve it for the South of India.

Figure 3.12: The average irrigation fraction for rice (a) and wheat (b) calculated from the
ICRISAT observations of irrigation area and area planted

3.4.2 Analysis of future periods

Analysis of the future monsoon onset, retreat, peak and duration shown in Sect. 3.3.3

shows how changeable the ASM is for these simulations between time periods. Chris-

tensen et al. (2013) shows that there is a high model agreement within the ensemble

from the 5th Coupled Model Intercomparison Project (CMIP5) for an earlier onset and

later withdrawal in the future and therefore indicates a lengthening monsoon duration.

However the simulations presented here do not show this with Fig. 3.10, instead, high-

lighting the large amount of variability in the ASM for this region. It is possible that

an increase in the monsoon duration does occur in these simulations for some parts of

South Asia, but this detail is lost through averaging over the region or as a result of

the time periods selected. Christensen et al. (2013) also suggest that there is medium

confidence within the CMIP5 ensemble that the ASM rainfall will increase to the end

97



98 Chapter 3: Estimating sowing and harvest dates based on the Asian Summer Monsoon

of the century. The simulations presented do indicate this as shown by the timeseries

in Fig. 3.13.

Figure 3.13: The annual timeseries of total monsoon precipitation, smoothed using 5-year
averaging, averaged for the whole of South Asia for all simulations; APHRODITE-solid black
line, ERAint-solid cyan line, ECHAM5-blue dashed line and HadCM3-red dotted line.

Assuming that crops continue to be grown in accordance with the monsoon, Sect.

3.3.3 shows that the method described in Sect. 3.2 provides a good estimate of sowing

and harvest dates for the two future periods shown. Spatial plots of the sowing and

harvest dates for the two future periods (not shown) are similar to those in Sect. 3.3.2

for the present day with the south of the Indian peninsula continuing to show different

monsoon characteristics (Sect. 3.4.1) to the rest of India in the future, resulting in later

estimated sowing and harvest dates for this region.

The proposed method successfully adjusts the sowing and harvest dates where the

monsoon begins earlier in the future simulations and therefore provides a good estimate

of sowing and harvest dates for the two future periods considered. This is a key benefit

of using this method as it simulates the decision a farmer might take to sow before

the usual observed date if the monsoon arrived early. This method therefore provides

the capability for climate simulations to replicate the type of adaptation response that

would happen in the real world. This method would also be useful for other regions
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that have a crop calendar that is similarly defined such as the SSA; this is a multiple

cropping region with sowing and harvest dates closely associated with the main rainy

season (Waha et al., 2013).

3.5 Conclusions and future work

Sowing and harvest dates are an important input within crop models but are a source

of considerable uncertainty. Global datasets, such as Sacks et al. (2010), cannot always

distinguish when wheat is grown in tropical and sub-tropical regions therefore driving

a requirement for higher resolution regional datasets. Crops across much of South Asia

are heavily dependent on the ASM and therefore sowing and harvest dates tend to be

closely linked to this climatological phenomenon. We have therefore presented a new

method for deriving sowing and harvest dates for rice and wheat for South Asia from

the ASM onset and retreat. For the present day, the method generally shows good

results for most areas of India with the derived sowing and harvest dates within the

range of the observations for most states. The method does not work as well for the

south of the Indian peninsular, this region receives a lower proportion of annual rainfall

from the ASM than much of the rest of South Asia and irrigates intensively. Monsoon

derived estimates of sowing and harvest dates for rice and wheat are useful for regions

where data are scarce, unreliable or in future climate impact assessments. The method

presented assumes that the agricultural practices remain dependent on the monsoon

in the future. Given this assumption, the method presented successfully estimates the

sowing and harvest dates for two future periods by adjusting the sowing and harvest

dates according to the timing of the monsoon. Future work in this area could investigate

refinements to the method to take into account the different characteristics of the

monsoon in the regions where the method does not work as well and the differing

agricultural practices there. It would also be interesting to investigate how well the

method works for different crop rotations in different monsoon regions.

3.5.1 Addendum: Conclusions and future work

This paper focuses on the South Asia region and the ASM. Applying the method to

another part of the world influenced by a different monsoon would require analysis

similar to that presented here. In the first instance a model, either an RCM or GCM,

would need to show skill in simulating the monsoon for that region. The monsoon onset

and retreat would also need to be aligned with the sowing and harvest dates for that

region. Currently in this method there is no estimate of interannual variability. South

Asia is a highly variable region, which means that metrics used to estimate the monsoon

typically use climatological information, as used in the analysis presented here. In order

to estimate the interannual variability of the monsoon, many ensembles are needed. A

large ensemble of simulations would enable an annual estimate of the monsoon rather
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than a climatological estimate, thus allowing an estimate of the interannual variability

to be included in the estimate of sowing and harvest dates. CMIP5 suggests that in

the future, the ASM will be longer, with increasing rainfall towards the end of the

century. There are also questions over its reliability, with more breaks in the rainfall

during the monsoon. Therefore, including interannual variability could be an important

development of the original method, especially for the application of the method to

future periods.
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3.6 Appendix A: Details of the models used

This analysis uses two General Circulation Models (GCMs) selected to capture a range

of temperatures and variability in precipitation similar to the AR4 ensemble for Asia

(Christensen et al., 2007) and the main features of the ASM (Kumar et al., 2013,

Annamalai et al., 2007, Mathison et al., 2013, 2015). HadCM3; the Third version of

the Met Office Hadley Centre Climate Model (HadCM3 – Pope et al., 2000, Gordon

et al., 2000; a version of the Met Office Unified Model) provides the positive variation

in precipitation and ECHAM5, (Roeckner et al., 2003; 3rd realization–) the negative

variation in order to estimate the uncertainty in the sign of the projected change in

precipitation over the coming century.

One RCM, the HadRM3 RCM (Jones et al., 2004) is used to downscale the GCM

data to provide more regional detail to the global datasets. HadRM3 has 19 atmo-

spheric levels and the lateral atmospheric boundary conditions are updated 3 hourly

and interpolated to a 150 s timestep. These simulations include a detailed representa-

tion of the land surface in the form of version 2.2 of the Met Office Surface Exchange

Scheme which includes a full physical energy-balance snow model (MOSESv2.2, Es-

sery et al., 2003). MOSESv2.2 treats subgrid land-cover heterogeneity explicitly with

separate surface temperatures, radiative fluxes (long wave and shortwave), heat fluxes

(sensible, latent and ground), canopy moisture contents, snow masses and snowmelt

rates computed for each surface type in a grid box (Essery et al., 2001). However the

air temperature, humidity and wind speed above the surface are treated as homogenous

across the gridbox and precipitation is applied uniformly over the different surface types

of each gridbox (Mathison et al., 2015). This RCM was included in an assessment of

four RCMs conducted by Lucas-Picher et al. (2011) for the South Asia region which

demonstrated that RCMs were able to capture the monsoon.

HadRM3 is driven by boundary data from the two GCMs (Fig. 3.2) to provide 25 km

resolution regional climate modelling of the Indian sub-continent (25◦ N, 79◦ E–32◦ N,

88◦ E) for the period 1960–2100. These RCM simulations are from the EU-HighNoon

project (referred to hereafter as HNRCMs), representing currently the finest resolution

climate modelling available for this region (Mathison et al., 2013, Moors et al., 2011,

Kumar et al., 2013).

The HNRCMs use the SRES A1B scenario which represents a future world of very

rapid economic growth, global population that peaks in mid-century and declines there-

after, and rapid introduction of new and more efficient technologies. The A1B scenario

specifically, represents this future world where there is balance across energy sources

i.e. a mixture of fossil and non-fossil fuels (Nakicenovic et al., 2000).
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3.7 Appendix B: Comparing observed sowing and harvest

dates with estimates of monsoon onset and retreat

Figure B.1: The difference between the midpoint of the monsoon retreat in the model and
the midpoint of the observed rice harvest period for 1990–2007.
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Figure B.2: The difference between the midpoint of the monsoon retreat in the model and
the midpoint of the observed wheat sowing period for 1990–2007.
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Figure B.3: The difference between the midpoint of the monsoon onset in the model and the
midpoint of the observed wheat harvest period for 1990–2007.
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3.8 Appendix C: Monsoon derived estimates of sow/harvest

dates for rice and wheat

Figure C.1: The monsoon derived rice harvest dates (left) and the difference between the
MinAg observations and the monsoon derived rice harvest dates (right) for the period 1990–
2007.
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Figure C.2: The monsoon derived wheat sowing dates (left) and the difference between the
MinAg observations and the monsoon derived wheat sowing dates (right) for the period 1990–
2007.
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Figure C.3: The monsoon derived wheat harvest dates (left) and the difference between
the MinAg observations and the monsoon derived wheat harvest dates (right) for the period
1990–2007.
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3.9 Appendix D: Analysis of future monsoon onset and

retreat

Figure D.1: The difference between the monsoon statistics for the 2080–2097 future period
compared with the present day 1990–2007 for HadCM3 (left) and ECHAM5 (right).
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Portmann, F. T., S. Siebert, and P. Döll (2010), Mirca2000-global monthly irri-
gated and rainfed crop areas around the year 2000: A new high-resolution data
set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24 (1),
doi:10.1029/2008GB003435, gB1011. 3.1

Rivington, M., and J. Koo (2010), Report on the meta-analysis of crop modelling
for climate change and food security survey, Climate Change, Agriculture and Food
Security Challenge Program of the CGIAR. 3.1
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Sequential cropping (also known as multiple or double cropping) is common in

tropical regions, where the crop seasons are largely dictated by the main wet season.

The Asian summer monsoon (ASM) provides the water resources for crops grown for

the whole year, thereby influencing crop production outside the ASM period. Land

surface models (LSMs) typically simulate a single crop per year. However, in order

to understand how sequential cropping influences demand for resources, we simulate

all of the crops grown within a year in a seamless way. In this paper we implement

sequential cropping in a branch of the Joint UK Land Environment Simulator (JULES)

and demonstrate its use at Avignon, a site that uses the sequential cropping system.

Avignon provides over 15-years of continuous flux observations which we use to evaluate

JULES with sequential cropping. In order to implement the method in future regional

simulations where there may be large variations in growing conditions, we apply the

same method to four locations in the North Indian states of Uttar Pradesh and Bihar

to simulate the rice–wheat rotation and compare model yields to observations at these

locations. The results show that JULES is able to simulate sequential cropping at

Avignon and the four India locations, representing both crops within one growing
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season in each of the crop rotations presented. At Avignon the maxima of LAI, above

ground biomass and canopy height occur at approximately the correct time for both

crops. The magnitudes of biomass, especially for winter wheat, are underestimated and

the leaf area index is overestimated. The JULES fluxes are a good fit to observations

(r-values greater than 0.7), either using grasses to represent crops or the crop model,

implying that both approaches represent the surface coverage correctly. For the India

simulations, JULES successfully reproduces observed yields for the eastern locations;

however, yields are under estimated for the western locations. This development is

a step forward in the ability of JULES to simulate crops in tropical regions, where

this cropping system is already prevalent. It also provides the opportunity to assess

the potential for other regions to implement sequential cropping as an adaptation to

climate change.

4.1 Introduction

Climate change is likely to impact all aspects of crop production affecting plant growth,

development and crop yield (Hatfield and Prueger , 2015) as well as cropping area and

cropping intensity (Iizumi and Ramankutty , 2015). The impact of climate change on

agriculture has been the focus of several large collaborative projects such as the Agricul-

tural Model Intercomparison and Improvement Project (AgMIP; Rivington and Koo,

2010, Rosenzweig et al., 2013, 2014) and the Inter-Sectoral Impact Model Intercompar-

ison Project (Warszawski et al., 2013, 2014; ISIMIP;). These projects have highlighted

the likelihood of competition between crops grown for food and those grown for bio-

energy in order to mitigate climate change (Frieler et al., 2015). Petrie et al. (2017)

discuss how the use of sequential cropping systems may have made it possible for popu-

lations in some areas to adapt to large changes in monsoon rainfall between 2200–2100

BC. These ancient agricultural practices are common today across most tropical coun-

tries but may also be a useful adaptation, especially where traditionally mono-crop

systems are currently used, in order to meet a future rising demand for food (Hudson,

2009) or the demand for bio-fuels. This sort of adaptation is already happening in some

locations. Mueller et al. (2015) show that longer growing seasons in the extratropics

have made the cultivation of multiple crops in a year at northern latitudes more vi-

able. Warmer spring temperatures in the Brahmaputra catchment have allowed earlier

planting of a winter crop, leaving time for a second crop (Zhang et al., 2013).

Intercropping or sequential cropping allow farmers to make the most efficient use

of limited resources and space in order to maximize yield potential and lower the risk

of complete crop failure. These techniques also influence ground cover, soil erosion and

chemical properties, albedo and pest infestation (Waha et al., 2013). Intercropping is

the simultaneous cultivation of multiple crop species in a single field (Cong et al., 2015)

while sequential cropping (also called multiple or double cropping) involves growing two
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or more crops on the same field in a given year (Liu et al., 2013, Waha et al., 2013). We

use the term sequential cropping from here on to avoid confusion with other cropping

systems. Sequential cropping systems are common in Brazil where the soybean–maize

or soybean–cotton rotations are used (Pires et al., 2016) and for South Asia where the

rice–wheat systems are the most extensive, dominating in many Indian states (Mahajan

and Gupta, 2009), across the Indo-Gangetic Plain (IGP) (Erenstein and Laxmi , 2008)

and Pakistan (Erenstein et al., 2008). States such as Punjab, Haryana, Bihar, Uttar

Pradesh and Madhya Pradesh (Mahajan and Gupta, 2009) account for approximately

75 % of national food grain production for India. Rice-rice rotations are the second

most prevalent crop rotation to rice-wheat rotations, these are typically found in the

north eastern regions of India and Bangladesh (Sharma and Sharma, 2015) with some

regions cultivating as many as three rice crops per year. The South Asia economy is

highly dependent on the agricultural industry and other industries also with a high

demand for water (Mathison et al., 2015). The most important source of water for this

part of the world is the Asian Summer Monsoon (ASM), which typically occurs between

June and September (Goswami and Xavier , 2005); this phenomenon provides most of

the water resource for any given year. The South Asia crop calendar is defined by the

ASM which therefore has an important influence on the productivity across the whole

year (Mathison et al., 2018) and therefore on crop production outside the Monsoon

period.

The modelling of crop rotations is a common feature in soil carbon simulations

(Bhattacharyya et al., 2007). Bhattacharyya et al. (2007) found that the rice–wheat

rotation, common across the IGP, has helped maintain carbon stocks. However, in

recent years, the yields of rice and wheat have plateaued, leading farmers to diversify

and include other additional crops in the rotation, potentially depleting carbon stocks.

The modelling of crop rotations has also been common in the field of agricultural eco-

nomics with work regarding sequential cropping being mainly to understand influences

on decision-making; therefore focusing on short timescales and at the farm management

level (Dury et al., 2012, Caldwell and Hansen, 1993).

Many dynamic global vegetation models (DGVMs), commonly used to study the

effects of climate change, simulate a single crop per year, both for individual sites and

gridded simulations. This may be due in part to some global observation datasets such

as Sacks et al. (2010) reporting only one growing period per year for most crops (Waha

et al., 2012). MIRCA2000 (Portmann et al., 2010) include different cropping calendars

for different regions; however, rice and wheat are divided equally between the kharif

and rabi seasons, when in reality wheat is only grown during the rabi season (Biemans

et al., 2016).

Waha et al. (2013) extend the LundPotsdamJena managed Land model (LPJml-

Bondeau et al., 2007) to consider sequential cropping in Africa for two different crops.

LPJml is able to simulate sequential cropping in monoculture systems such as the rice–
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rice system grown in Bangladesh (Sharma and Sharma, 2015). In order to implement

sequential cropping in LPJml, Waha et al. (2013) specify different growing season

periods for each crop in the rotation, where the growing period is given by the sum of

the daily temperatures above a crop specific temperature threshold. They also specify

the onset of the main rainy season as the start of the growing season using the Waha

et al. (2012) method. Waha et al. (2013) find that when considering the impact of

climate change, the type of cropping system is important because yields differ between

crops and cropping systems. Biemans et al. (2016) also use a version of LPJml, refined

for South Asia, to estimate water demand and crop production for South Asia. Biemans

et al. (2016) simulate sequential cropping by combining the output from two simulations

with different kharif and rabi land-use maps and zonal sowing and harvest dates based

on observed monsoon patterns. Biemans et al. (2016) find that accounting for the use of

sequential cropping in this South Asia version of LPJml improved the simulations of the

demand for water from irrigation, particularly the timing of the demand. There are few

land-surface models that are able to simulate sequential cropping but both Waha et al.

(2013) and Biemans et al. (2016) have highlighted its importance in their simulations.

It would be beneficial for more land-surface models to develop the capability to simulate

different cropping systems and link crop production with irrigation both to improve the

representation of the land surface in coupled models and to improve climate impacts

assessments.

The JULES model is the land-surface scheme used by the UK Met Office for both

weather and climate applications. It is also a community model and can be used in

standalone mode; which is how it is used in the work presented here. JULES-crop, as

described in Osborne et al. (2015) is a dual-purpose crop model intended for use both

within standalone JULES, enabling a focus on food production and water availability

applications, as well as being the land-surface scheme within climate and earth system

models. JULES in these larger models allows feed-backs from regions with extensive

croplands and irrigation systems, like South Asia, to have an effect on the atmosphere

e.g. via Methane emissions from rice paddies or evaporation from irrigated fields (Betts,

2005).

In this paper we describe and demonstrate the development and implementation of

sequential cropping in JULES. This is part of a larger project to develop simulations

for South Asia to understand the integrated impacts of climate change (Mathison et al.,

2015, 2018) using state of the art RCM projections (Kumar et al., 2013, Mathison et al.,

2013). This will improve understanding of the impacts of climate change and how they

affect each other. There are many reasons for doing this including:

• improvement of simulations of those regions that use this cropping system cur-

rently,

• to understand the impact future climate change may have on this cropping system,
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for example in terms of water resources,

• and to consider the impact of adopting this cropping system for regions where it

is not currently used but could be in the future.

The purpose of this study is to use the site in Avignon (France) described in Gar-

rigues et al. (2015, 2018) to illustrate and evaluate the sequential cropping method

implemented in JULES. The method is summarized by Fig. 4.1 and described in Sect

4.3. We aim to show that the method is able to produce two crops in a single growing

period and therefore provide a better representation of the real land surface at Avignon

than previously possible using the crop model, rather than perform a detailed tuning

exercise. Avignon is chosen because it has been observed and documented over several

years (2001 to 2014), growing a range of crops throughout this period. The continuous

measurements of surface fluxes provided by this dataset are a unique resource for eval-

uating land surface models (LSMs) and for testing and implementing crop rotations in

LSMs. Garrigues et al. (2015) use this dataset to evaluate LSM simulations of evap-

otranspiration using the interactions between soil, biosphere, and atmosphere scheme

(ISBA) LSM (Noilhan and Planton, 1989) specifically, the version from Calvet et al.

(1998); ISBA-A-gs.

We focus on a two-crop-rotation between 2005 and 2012. In order to implement

the method in a tropical region where there is large variation in growing conditions, we

apply the same method to four locations in the North Indian states of Uttar Pradesh and

Bihar to simulate the rice-wheat rotation. These states are key producers of these crops

using the sequential cropping system. The paper is structured as follows, Section 4.2

describes the JULES model and the method for implementing the sequential cropping

system in JULES is outlined in Sect. 4.3. The simulations are described in Sect. 4.4,

the observations used in Sect. 4.5, the results in Sect. 4.6 and Sect. 4.7 provides the

discussion and conclusions.

4.2 Model description

JULES is a process-based model that simulates the fluxes of carbon, water, energy and

momentum between the land-surface and the atmosphere. The model and the equations

it is based on are described in detail in Best et al. (2011) and Clark et al. (2011). JULES

treats each vegetation type as a separate tile within a gridbox with each one represented

individually with its own set of parameters, independent fluxes and interactions with

the atmosphere. Prognostics such as leaf area index (LAI) and canopy height are

therefore available for each tile. However the air temperature, humidity and windspeed

are treated as homogenous across a gridbox and precipitation is applied uniformly over

the different surface types of each gridbox. Below the surface the soil type is also

uniform across each gridbox. The parametrisation of crops in JULES (JULES-crop) is
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described in detail in Osborne et al. (2015) and Williams et al. (2017); the main aim of

JULES-crop is to improve the simulation of land-atmosphere interactions where crops

are a major feature of the land-surface (Osborne et al., 2015).

The development of the crop is controlled by the cardinal temperatures, these define

the temperature range within which each crop is able to develop; these are the base

temperature (Tb), maximum temperature (Tm) and optimum temperature (To) and

specific for each crop. The cardinal temperatures and the 1.5m tile temperature (T )

are used to calculate the thermal time i.e. the accumulated effective temperature

(Teff ) to which a crop is exposed, as defined in Eq. 4.1 (Osborne et al., 2015). Table

4.3 summarises the settings for these temperatures used in this analysis.

Teff =



0 for T < Tb

T − Tb for Tb ≤ T ≤ To

(To − Tb)

(
1− T − To

Tm − To

)
for To < T < Tm

0 for T ≥ Tm

(4.1)

Crop development can also be affected by the length of the day; this is called pho-

toperiod sensitivity and is controlled by two parameters in the model: the critical

photoperiod (Pcrit) and the sensitivity of a specific crop development rate to photope-

riod (Psens). The critical photoperiod defines the threshold optimum photoperiod for

crop development, this typically only affects the crop during the vegetative phase, ie.

before flowering (Penning de Vries et al., 1989). For some crops progress toward flow-

ering is slowed if the day length is less than or greater than this specific photoperiod

(Osborne et al., 2015). These parameters are used to define the overall effect of the

photoperiod on the crop called the relative photoperiod effect, RPE described by Eq.

4.2. In these simulations, as in (Osborne et al., 2015), the effect of photoperiod is not

included i.e Psens is set to 0 and therefore RPE is equal to 1.0.

RPE = 1− (P − Pcrit)Psens (4.2)

The RPE is then used to calculate the rate of crop development described by Eq.

4.3.

dDV I

dt
=



Teff
TTemr

for −1 ≤ DV I < 0(
Teff

TTveg

)
RPE for 0 ≤ DV I < 1

Teff
TTrep

for 1 ≤ DV I < 2

(4.3)

where TTemr is the thermal time between sowing and emergence, TTveg and TTrep

are the thermal time between emergence and flowering and between flowering and

maturity respectively. These are calculated using a temperature climatology from the
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driving data and sowing dates from observations or a reliable dataset to ensure that

the crop reaches maturity on average by the harvest date, the values used in these

simulations are given in Tables 4.4 and 4.5.

In order to simulate the characteristics of a typical sequential cropping location us-

ing JULES we have implemented modifications to both JULES-crop and the irrigation

code, these are described here. In order to simulate crops in sequence on the same

gridbox, the first crop must no longer be in the ground so that the second one can be

sown. The use of a latest harvest date forces the harvest of the first crop regardless of

whether it has reached maturity or not to make certain of this. These modifications are

controlled using the l croprotate switch (see table 4.1). Therefore l croprotate ensures

the following:

• All crops are initialized at the start of a simulation so that they can be used later

when they are needed within the crop rotation being modelled.

• If JULES is simulating a crop rotation, the user must supply a latest harvest date

so that the first crop is harvested before the second crop is sown (a latest harvest

date can also be specified without using l croprotate).

The current JULES default for irrigation allows individual tiles to be specified

(when frac irrig all tiles is set to false) but the irrigation is applied as an average across

a gridbox and therefore actually occurs across tiles. The flag set irrfrac on irrtiles

restricts the irrigation to the tiles specified by irrigtiles only (see table 4.1). This new

functionality is needed because many locations that include crop rotations include crops

that both do and do not require irrigation.

Figure 4.1: A flow chart showing the process followed to carry out the crop rotation in JULES.
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4.3 Method for sequential cropping in JULES

The sequential cropping method implemented into JULES as part of this study is

illustrated by the flow chart in Fig. 4.1 and described here using the Avignon site

simulation. The Avignon site is a point run which is assumed to be entirely used to

grow sorghum (in summer) and winter wheat (in winter). JULES updates the fraction

of the site that is allocated to sorghum (winter wheat) just before the sowing date so

that the appropriate crop occupies the whole of the site. The fraction of the site that

is sorghum (winter wheat) is prescribed in the Avignon case using observed sowing

and harvest dates. Once the fraction is updated the crop is sown, it then develops

between the stages of: sowing and emergence, emergence and flowering and flowering

and maturity.

The crop model integrates an effective temperature over time as the crop develops

through these stages with the carbon partitioned according to the DVI (see Sect. 4.2).

The effective temperature (see Eq. 4.1) is a function of air or leaf temperature and

differs between models. The DVI is a function of the thermal time since emergence,

therefore DVI=-1 is sowing, 0 is emergence and 1 is flowering. Maturity and therefore

harvest occurs at a DVI of 2 (Osborne et al., 2015). The integrated effective temperature

in each development stage is referred to as the thermal time of that development stage

(see Sect. 4.2, Eq. 4.1 and Osborne et al. (2015), Mathison et al. (2018)).

It is recommended for sequential cropping to prescribe a latest possible harvest date

for those instances where the crop does not develop quickly enough and therefore does

not reach maturity before the next crop in the rotation is due to be sown. The latest

possible harvest date forces the removal of the first crop before the crop fraction is

reassigned, ensuring that crops that are adjacent in time do not occupy the same area

at the same time. This value can be assigned an observed harvest date if this is known

or it can be the day before the next crop in the rotation is due to be sown. The flow

chart shown in Fig. 4.1 is equally applicable to the India simulations. Rice is therefore

represented by the summer crop (green boxes) and wheat is represented by the winter

crop (purple boxes). This method could be extended to include as many crops as occurs

in a rotation at a particular location.

4.4 Model simulations

The simulations are divided into two sections. Section 4.4.1 applies the method to a well

observed site in order to describe and demonstrate how the sequential cropping method

works and evaluate it against observations at this location. Section 4.4.2 applies the

method to points in Northern India where this cropping system is commonly used. The

parameter settings and switches used in JULES for the simulations in this study are

provided in tables 4.1, 4.2 and 4.3. The Avignon and India simulations use the same
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settings wherever possible; these are provided in Table 4.1 (see Avignon settings and

India settings columns).

The plant functional type (PFT) parameter settings are also broadly the same

between simulations, with the majority of these from Osborne et al. (2015) and therefore

based on natural grasses. The crops are different between the two sets of simulations

with winter wheat and sorghum at the Avignon site and spring wheat and rice at the

India locations. The PFT parameters used in this study that govern Vcmax: including

the lower (Tlow) and upper (Tupp) temperatures for photosynthesis, neff and nl(0) are

tuned to the maximum leaf assimilation expression from Penning de Vries et al. (1989)

(see Table 4.2) for each crop. These values are consistent with the wider literature (Hu

et al., 2014, Sinclair et al., 2000, Olsovska et al., 2016, Xue, 2015, Makino, 2003, Ogbaga,

2014). The respiration parameters, µrl and µsl are from nitrogen concentrations given

in Penning de Vries et al. (1989). The crop parameters are mainly from Osborne et al.

(2015), with maize parameters used for sorghum (see Sect 4.4.1) except for the cardinal

temperatures which are from Nicklin (2013) (see Table 4.3).

The calculation of the soil moisture availability factor (see Table 4.2) is different

between the Avignon and India simulations. In the Avignon simulations we assume

that the total depth of the rootzone dr is 1.5 m, equivalent to the observed average

maximum root depth over all of the years at the Avignon site. The soil moisture

availability factor is then calculated using this maximum root depth together with the

average properties of the soil. The India point simulations assume an exponential root

distribution with an e-folding depth dr of 0.5 m because we do not have an observed

root depth for these locations. The individual simulations are described in more detail

in Sect. 4.4.1 and Sect. 4.4.2 for the Avignon and India simulations respectively.

4.4.1 Avignon site simulation

The Avignon ”remote sensing and flux site” of the National Institute Agronomic Re-

search (INRA) described in Garrigues et al. (2015, 2018), provides a well studied loca-

tion with several years of crop rotation data. We focus on the period with a rotation

of just two crops: winter wheat and sorghum between 2005 and 2012. The aim of

simulating the crops at this site is to illustrate that the new sequential cropping func-

tionality in JULES can simulate more than one crop within a year and reproduce the

correct growing seasons for each crop. We evaluate JULES with sequential crops and

grasses representing crops against the observed fluxes. We are not aiming to provide a

perfect representation of the two crops at this site; this would require significant further

work and model tuning. We have therefore not added specific parameterizations for

the crops at Avignon, but used existing crops within the model. Therefore Sorghum is

largely based on the maize crop (as discussed earlier) as this is also a C4 crop and it

is already available in JULES. We also use the existing spring wheat parameterization

to represent the C3 winter wheat crop at Avignon.
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Flag JULES Avignon India Effect
notation settings settings of switch

Canopy radia-
tion scheme

can rad mod 6 6 Selects the canopy radiation
scheme.

Irrigation de-
mand

l irrig dmd F T Switches on irrigation de-
mand.

Irrigation
scheme

irr crop - 2 Irrigation occurs when the de-
velopment index of the crop is
greater than 0.

Physiology l trait phys F F Switches on trait based phys-
iology when true.

Sowing l prescsow T T Selects prescribed sowing.
Plant mainte-
nance respira-
tion

l scale resp pm F F Switch to scale respiration by
water stress factor. If false
this is leaf respiration only but
if true includes all plant main-
tenance respiration.

Crop rotation l croprotate T T A new switch to use the se-
quential cropping capability.

Irrigation on
tiles

frac irrig all tiles - F Switch to allow irrigation on
all or specific tiles

Irrigation on
specific tiles

set irrfrac on irrtiles - T A new switch to set irrigation
to only occur on a specific tile.

Specify irri-
gated tile(s)

irrigtiles - 6 Setting to set the value(s) of
the specific tile(s) to be irri-
gated.

Number of
tiles irrigated

nirrtile - 1 Setting to set how many
tile(s) to be irrigated.

Set a constant
irrigation
fraction

const irrfrac irrtiles - 1.0 A new setting to set the
value(s) of the irrigation frac-
tion for specific tile(s) to be
irrigated in the absence of a
file of irrigation fractions.

Table 4.1: JULES flags used that are new or different from those in Osborne et al. (2015)

The Avignon JULES simulation (referred to from here on using AviJUL) is driven

using the meteorological site observations outlined in Section 4.5.1 and Garrigues et al.

(2015, 2018) using a half hourly timestep. The irrigation is only applied to the summer

Sorghum crop; this is included in the rainfall observations used to drive Avi-JULES.

Therefore the irrigation and other settings governing irrigation are not switched on in

JULES for the Avignon site simulations (See Table 4.1, column ‘Avignon settings’).

We include simulations for the Avignon site where the crops are represented by grasses

(AviJUL-grass) for comparison with the simulations that use the new sequential crop-

ping method implemented in the JULES-crop model (AviJUL-sqcrop). In the AviJUL-

grass simulations the LAI and the canopy height are prescribed from observations in

order to capture the growing seasons correctly without the crop model and the PFT

parameters are adjusted to be the same as the crops. In the AviJUL-sqcrop simula-
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Parameter JULES
notation

Description Winter
wheat

Sorghum Spring
wheat

Rice

Tlow t low io Lower temperature for photo-
synthesis (◦ C).

5 18 5 15

Tupp t upp io Upper temperature for photo-
synthesis (◦ C).

30 53 30 40

neff neff io Scale factor relating Vcmax

with leaf nitrogen concentra-
tion.

0.8e-3 0.75e-3 0.8e-3 0.95e-3

nl(0) nl0 io Top leaf nitrogen concentra-
tion (kg N/kg C).

0.073 0.07 0.073 0.073

fsmc
method

fsmc mod io When equal to 0 we assume
an exponential root distribu-
tion with depth.

0 0

When equal to 1, the soil
moisture availability factor,
fsmc, is calculated using av-
erage properties for the root
zone.

1 1

dr rootd ft io If fsmc mod io = 0 dr is the
e-folding depth.

0.5 0.5

If fsmc mod io = 1 dr is the
total depth of the root zone.

1.5 1.5

p0 fsmc p0 io Parameter governing the
threshold at which the plant
starts to experience water
stress due to lack of water in
the soil.

0.5 0.5 0.5 0.5

µrl nr nl io Ratio of root nitrogen concen-
tration to leaf nitrogen con-
centration.

0.39 0.39 0.39 0.39

µsl ns nl io Ratio of stem nitrogen con-
centration to leaf nitrogen
concentration.

0.43 0.43 0.43 0.43

Q10,leaf q10 leaf io Q10 factor in the Vcmax calcu-
lation.

1.0 1.0 1.0 1.0

Table 4.2: JULES plant functional type (PFT) parameters and values modified for use in this
study. We include only the values that have been changed or are new in JULES since Osborne
et al. (2015)

tions the LAI and the canopy height are calculated by the model. Observed sowing

and harvest dates from Garrigues et al. (2015) are used to calculate the thermal time

requirements for each crop, these are provided in Table 4.4. During the periods between

each crop, the ground is mostly bare (Garrigues et al., 2018).

4.4.2 India Simulations

The India simulations focus on the north Indian states of Uttar Pradesh and Bihar.

These states are key producers of rice and wheat in India and the use of a rice-wheat
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Parameter JULES Description Winter Sorghum Spring Rice
notation wheat wheat

Tb t bse io Base temperature (◦ K). 273.15 284.15 273.15 278.15
Tm t max io Max temperature (◦ K). 303.15 317.15 308.15 315.15
To t opt io Optimum temperature (◦

K).
293.15 305.15 293.15 303.15

TTemr tt emr io Thermal time between sow-
ing and emergence (◦ Cd).

35 80 35 60

TTveg tt veg io Thermal time between emer-
gence and flowering (◦ Cd).

Table
4.4

Table
4.4

Table
4.5

Table
4.5

TTrep tt rep io Thermal time between flow-
ering and maturity (◦ Cd).

Table
4.4

Table
4.4

Table
4.5

Table
4.5

Tmort t mort io Soil temperature (2nd level)
at which to kill crop if DVI¿1
(◦ K).

273.15 281.15 273.15 281.15

fyield yield frac io Fraction of the harvest car-
bon pool converted to yield
carbon.

1.0 1.0 1.0 1.0

DV Iinit initial c dvi io DVI at which the crop car-
bon is set to Cinit.

0.0 0.0 0.0 0.0

DV Isen sen dvi io DVI at which leaf senescence
begins.

1.5 1.5 1.5 1.5

Cinit initial carbon io Carbon in crop at emergence
in kgC/m2.

0.01 0.01 0.01 0.01

Table 4.3: JULES crop parameters used in this study. The Sorghum cardinal temperatures
are from Nicklin (2013) with the other parameters those used for Maize in Osborne et al. (2015).
We include only the values that have been changed or added since Osborne et al. (2015). Table
3 of Osborne et al. (2015) provides the original PFT parameters and Table 4 of Osborne et al.
(2015) provides the original crop parameters).

Year Crop Sowing
date

Harvest
date

Emergence-
flowering

Flowering-
maturity

Sowing
DOY

2005 Winter
wheat

27 Oct 2005 1301.3 867.5 300

2006 27 Jun 2006
2007 Sorghum 10 May 2007 16 Oct 2007 647.6 791.5 130
2007 Winter

wheat
13 Nov 2007 1401.0 934.0 317

2008 1 Jul 2008
2009 Sorghum 25 Jun 2009 22 Sep 2009 462.5 565.3 176
2009 Winter

wheat
19 Nov 2009 1308.6 872.4 323

2010 13 Jul 2010
2011 Sorghum 22 Apr 2011 22 Sep 2011 679.5 830.5 112
2011 Winter

wheat
19 Oct 2011 1559.6 1039.7 292

2012 25 Jun 2012

Table 4.4: Thermal times in degree days used in this study for the Avignon site, these are
based on the observed sowing and harvest dates from Garrigues et al. (2015).
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rotation is prevalent in this part of India (Mahajan and Gupta, 2009). The sequential

cropping system in this region involves growing rice during the wet monsoon months

and an irrigated wheat crop during the dry winter. The wheat varieties grown in this

region are spring wheat, this is an important distinction as spring wheat does not

require a vernalization period which is important for winter wheat varieties (Griffiths

et al., 1985, Robertson et al., 1996, Mathison et al., 2018). We select four points across

these two states in order to gain understanding of the model response, particularly in

terms of yield, to the variation in the conditions across the two states. Point simulations

allow more in depth analysis than a complete regional simulation, in order to inform

future regional simulations using this sequential cropping method.

The locations of the selected points are shown on a map of the surface altitude for

South Asia in Fig. 4.2 (a). The driving data used for these four point simulations

is from an RCM simulation run for South Asia for the period 1991–2007 as described

below. Figure 4.2 (b, c and d) show a close-up view of the locations selected. Map (b)

in 4.2 shows the average total monsoon precipitation for the 1991-2007 period while

(c) and (d) show the average minimum and maximum temperatures respectively to

illustrate that these four points are representative of the climate of the wider Uttar

Pradesh/Bihar region.

In these simulations JULES is run using a 3-hourly timestep using driving data

from ERA-interim (Dee et al., 2011, Simmons et al., 2007) downscaled to 25 km using

the HadRM3 regional climate model (RCM- Jones et al., 2004). This RCM simulation

is one of an ensemble of simulations produced for the EU-HighNoon FP7 project for the

whole of the Indian subcontinent (25 N, 79 E–32 N, 88 E) for the period 1991-2007. The

HighNoon simulations are described in detail in previous publications such as Kumar

et al. (2013) and Mathison et al. (2013, 2015). HadRM3 provides more regional detail

to the global data with lateral atmospheric boundary conditions updated 3-hourly and

interpolated to a 150 s timestep. These simulations include a detailed representation of

the land surface in the form of version 2.2 of the Met Office Surface Exchange Scheme

(Essery et al., 2001; MOSESv2.2;). JULES has been developed from the MOSESv2.2

land surface scheme and therefore the treatment of different surface types is consistent

between the RCM and JULES (Essery et al., 2001, Mathison et al., 2015). Sowing dates

are prescribed using climatologies calculated from the observed dataset, Bodh et al.

(2015), from the government of India, Ministry of Agriculture and Farmers welfare.

Thermal times are calculated using these climatological sowing and harvest dates from

Bodh et al. (2015) and a thermal climatology from the model simulation as described

in Osborne et al. (2015), the values used in the simulations here are provided in Table

4.5. In the JULES point simulations only wheat is irrigated, the settings used for this

are provided in Table 4.1 (column ‘India settings’).
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Figure 4.2: A map showing the location of the point simulations in the wider context of India
on a map of the surface altitude (a) from the regional climate model that is used in the JULES
simulations. The same points are shown in three smaller maps (b,c,d) that zoom in on the
two states of Uttar Pradesh and Bihar. Map (b) shows the total monsoon precipitation, map
(c) shows the minimum temperature, and map (d) the maximum temperature averaged for the
period 1991-2007.

4.5 Observations

4.5.1 Avignon observations

The length and detail of the observation record at the Avignon site means it is an ideal

site to demonstrate the method being implemented in JULES for simulating sequen-

tial cropping. High resolution meteorological data, important for the practicalities of

running the JULES model is available on a half hourly basis; this includes air tem-

perature, humidity, windspeed and atmospheric pressure at a height of 2m above the

surface. Cumulative rainfall, radiation measurements and sensible (H) and latent heat

(LE) fluxes are also available, with the latter flux measurements enabling the eval-

uation of the JULES fluxes. Cumulative evapotranspiration (ET ) are derived from

the half hourly LE measurements. The observations for evaluating the model include

soil measurements of soil moisture along with plant measurements including canopy
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Location Crop Sowing
DOY

Emergence-
flowering

Flowering-
maturity

WestUP Spring
wheat

335 1007.6 671.1

Rice 150 1759.4 1181.3
EastUP Spring

wheat
335 993.55 662.5

Rice 150 1865.5 1243.5
WestBi Spring

wheat
335 991.54 661.6

Rice 150 1907.55 1271.7
EastBi Spring

wheat
335 1019.21 679.1

Rice 150 1976.96 1300.64

Table 4.5: The sowing day of year (Sowing DOY) and thermal times in degree days used
in this study for the locations in Uttar Pradesh and Bihar, India (see 4.2 for a map of the
locations), the values given here are based on the observed sowing and harvest dates from Bodh
et al. (2015)

.

height (measured every 10 days), above ground dry weight biomass (taken at four field

locations) and LAI; biomass and LAI are destructive measurements repeated up to

six times per crop cycle (Garrigues et al., 2015). More information is documented in

Garrigues et al. (2015) regarding the site and the observations available.

4.5.2 India observations

Crop yield observations from the International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT , 2015) provides seasonal yields for each crop for each district for

comparison with the point simulations. We also show average crop yield observations

from Ray et al. (2012a) for three, 5-year periods between 1993 and 2007 (1993–1997,

1997–2003, 2003–2007) via Ray et al. (2012b). These data are based on previous pub-

lications Monfreda et al. (2008) and Ramankutty et al. (2008) and include the period

of the point simulations which are from 1991–2007. We show both of these datasets to

highlight that there is a range in the estimates of yield for this region.

4.6 Results

4.6.1 Avignon site simulation

Figure 4.3 shows the timeseries of total above ground biomass (a), LAI (b) and canopy

height (c) for the AviJUL-grass and AviJUL-sqcrop simulations. Figure 4.3 shows that

the crops are developing throughout the crop seasons with maxima of biomass, LAI and

canopy height occurring at approximately the correct time for both crops. The total

above ground biomass from JULES is calculated from the sum of the stem, leaf and
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harvest carbon pools for each crop and plotted as a time series (dashed lines). Biomass

observations are provided as a single timeseries with the crop type confirmed from the

timing of the observations. These are plotted alongside the model represented by purple

asterisks (see plot (a), Fig. 4.3). It is noticeable that the 2009 observed growing season

for sorghum is much shorter than for the other two sorghum crop seasons (shown by

the red solid line in Fig. 4.3 a, b and c). The 2009 sorghum crop is planted much later

in the year compared to the other two sorghum seasons (2007 and 2011) but harvested

at a similar time. This is because the variety of sorghum planted in 2009 is different

to the variety planted 2007 and 2011 seasons. The 2009 variety is a fodder crop with a

much larger LAI and a shorter growing season.

JULES fits the biomass observations for 2009 well (see Fig. 4.3 plot a). JULES also

closely fits the leaf area (see Fig. 4.3 plot b) and canopy height observations (see Fig.

4.3 plot c) for the 2009 Sorghum season, with differences between the simulations and

observations maximum values of approximately 1 m2 m−2 and 0.1 m respectively. In

the 2007 sorghum season JULES overestimates the maximum LAI and canopy height

by approximately two times the observations (see Fig. 4.3 plots b and c) and under-

estimates the total biomass (see Fig. 4.3 plot a) by about 30 %. For the 2011 season

the JULES sorghum biomass equals the magnitude of the observations; however, the

maximum LAI is overestimated by four times in the model (similar to 2007) and the

maximum canopy height is approximately two times the observed maximum. The

canopy height is very close to observations for wheat in all four seasons; however, the

wheat LAI is overestimated and the biomass is underestimated in all years. The two

wheat seasons of 2006 and 2010 are closer to the LAI observations than 2008 and 2012.

However the underestimation of the biomass is greater for these seasons. For 2008 and

2012 the wheat biomass is closer to the observations, but the overestimation in the

LAI is greater. The increase in biomass for both crops through the start of the season

follows the observations quite closely but in most years, especially for wheat, JULES

does not accumulate enough biomass later in the crop season to reach the observed

maxima.

The level of soil moisture that a plant begins to experience water stress at is reduced

by the introduction of the variable p0; this is a scaling factor used in the soil moisture

stress calculation (Williams et al., 2018). The setting of p0 and how this affects GPP

at the First ISLSCP Field Experiment (FIFE) site in Kansas is discussed in detail in

Williams et al. (2018). In addition Williams et al. (2017) suggest modifying the p0

parameter to be 0.65 for the Mead site in Nebraska. In the simulations shown here p0

is set to 0.5 (see Table 4.2) modified from the default setting of 0, as recommended by

Allen et al. (1998). The way that vegetation in JULES uses water and its response to

drought conditions is currently under investigation within the wider JULES community

as described in Williams et al. (2018) and Harper et al. (in preparation). The canopy

height does not really change with the modification of p0 from 0 to 0.5 (not shown),
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however biomass and LAI are more sensitive to changes in this parameter. This is

apparent from comparison of Fig. 4.3, plots (a) and (b) with those from simulations

that use the default setting provided in the Appendix (see Fig. A.5 plots (a) and (b).

Setting p0 to 0.5 marginally improves the JULES biomass fit to observations but results

in a large over estimation of the wheat LAI compared with a setting of 0 which gives

an LAI that is closer to the observations (see Fig. A.5 plot b). The years with a large

(small) LAI are also represented more closely for p0 = 0.

Garrigues et al. (2015) highlight that 2006 and 2008 are two atypical years with

2006 being very dry (256 mm of rain) and 2008 being very wet (500 mm of rain); these

differing conditions could explain the large differences in observed LAI and biomass

between the two years (Garrigues et al., 2015). The peaks in productivity shown in the

LAI in Fig. 4.3, (b) are consistent with the two years (2006 and 2007) of observations

of GPP, shown by the black line in Fig. 4.4, plot (a). The wheat crop is clearly shown

in the GPP for 2006, although it is underestimated in all simulations (see Fig. 4.4).

The decline in GPP at the end of the wheat season is quite close to the observations

with AviJUL-grass (red line) being slightly early and AviJUL-sqcrop (blue line) being

slightly late. In the sorghum season of 2007 the magnitude and timing of the maximum

GPP for the AviJUL-sqcrop simulation are a good fit to observations (see Fig. 4.4,

plot a and Fig. A.1 plot b), although the increase in GPP for both simulations begins

too early the decline is very close to the observations. The decline is very close to

observations for the AviJUL-grass simulations too, although the maxima are slightly

too low and a little later than observed (see Fig. 4.4, plot a). This is quantified in Fig.

A.1 each of the simulations show a strong linear correlation with r values of above 0.7

(see Fig. A.1 plots (a) and (b) and the values in the GPP row of Table 4.6).

On the basis that p0 has a positive impact on some aspects of the Avignon simu-

lations it is likely that water stress is a factor in the simulations shown here. However

there may be other factors not considered here, for example, the long periods of bare

soil between between the winter and summer crops (e.g. July of 2006 to April of 2007).

This could have a more significant impact on the crops grown in the following year in

the model than in reality.

The H and LE fluxes are shown in Fig. 4.4, plots (b) and (c) respectively. The

AviJUL-sqcrop (blue line) and the AviJUL-grass (red line) simulations follow each other

closely which is reflected in the RMSE values and bias values for each simulation (see

Table 4.6 and Figures A.2 and A.3 for H and LE comparisons respectively), these are

generally comparable to those from Table 5 in Garrigues et al. (2015), which are LE:

rmse of 52.4, bias of -11.8, and H: rmse of 56.2, bias of 17.6. The linear correlations

shown for H and LE in Fig. A.2 and Fig. A.3 respectively, are strong for these

simulations with r values above 0.7, (see plots a and b). These values are comparable

to those from Table 5 in Garrigues et al. (2015), which provides values of 0.8 for LE and

0.85 for H. The annual cycle of LE and H are shown in Fig. A.4, a and b respectively.

130



§4.6 Results 131

2005 2006 2007 2008 2009 2010 2011 2012 2013

Time (Year)

0.0

0.5

1.0

1.5

2.0

B
io

m
a
ss

 (
k
g
m
−

2
)

Wheat AviJUL-sqcrop Sorghum AviJUL-sqcrop Avignon biomass obs Obs uncertainty

(a) Total above ground biomass for Avignon simulations

2005 2006 2007 2008 2009 2010 2011 2012 2013
Time (Year)

0

2

4

6

8

10

L
A
I

(m
2
m
−2

)
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(c) Canopy height for Avignon simulations compared with obs 
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Figure 4.3: The timeseries of total above ground biomass (a), leaf area index (LAI) (b) and
canopy height (c) for the Avignon site for wheat (black) and sorghum (red) for observations
(solid lines) and simulations using the observed sowing and harvest dates: AviJUL-sqcrop and
modelled soil moisture (dashed) for the period between 2005 and 2013 using observed sowing
and harvest dates. Simulations with prescribed LAI and canopy height are not shown here as
these follow the observed LAI and canopy height. Observed above ground biomass in plot (a)
shown by purple asterisks

Figure A.4 highlights how well the simulations capture the seasonal cycle; this is also

evident in the timeseries shown in Fig. 4.4, plot b and c.

Given that the soil moisture is important for these JULES simulations at Avignon,

Fig. 4.5 plot (a) and (b) summarize the soil moisture conditions in these simulations.

Figure 4.5, Plot (a) shows the available soil moisture in the top 1.0 m of the soil. The

observations are generally lower than the soil moisture in the simulations throughout

most of the timeseries. The AviJUL-sqcrop simulation captures some of the larger

dips in the available soil moisture but mostly follows the same patterns as AviJUL-

grasses. The soil moisture availability factor shown in Fig. 4.5 plot b, shows that there
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Variable Simulation
type

RMSE Bias r value

GPP
(gCm−2day−1)

AviJUL-grass 2.0 -1.0 0.95

AviJUL-sqcrop 3.0 0.0 0.82
H (Wm−2) AviJUL-grass 37.0 13.0 0.76

AviJUL-sqcrop 38.0 6.0 0.71
LE (Wm−2) AviJUL-grass 28.0 -3.0 0.81

AviJUL-sqcrop 33.0 0.0 0.73

Table 4.6: Table of statistics comparing the JULES simulations with and without soil moisture
prescribed to observations

are periods where the soil moisture stress is higher in the observations. Additional

simulations that prescribe the soil moisture using these site observations (shown in Fig.

4.5) have an early decline in GPP (not shown). This is due to water stress acting as

a scaling factor on net leaf assimilation. A closer look at the soil moisture timeseries

on each of the four levels reveals that the top soil layer (not shown), with a depth of

10 cm, is much too variable in the model compared with the observations, which are

very stable. The AviJUL-sqcrop simulations follow the observations more closely in

the other three soil layers capturing the timing of periods where the soil moisture is

lower although not the magnitude. There is also a period in the second half of 2009

where the models simulate a drop in soil moisture in levels 1,2 and 3 that is not in the

observations; this is evident in the available soil moisture in the top 1.0 m of the soil

shown in Fig. 4.5, plot (a).

The Avignon simulation has shown that the method implemented for simulating

sequential cropping in JULES provides two crops per year for several years. The rep-

resentation of crops either using the crop model or using grasses to represent crops has

a similar effect on the surface fluxes. The representation of soil moisture has a large

effect in these simulations. As previously discussed the representation of soil moisture

stress on vegetation in JULES is a known issue which is the subject of a large inter-

national collaborative effort (Williams et al., 2018, Harper et al., in preparation). The

representation of individual crops at Avignon in JULES could probably be improved

by having sorghum and winter wheat specific parameterizations in JULES, which are

tuned to the crop varieties at this location. Such parameterizations are not available

at the time of writing and would require significant further work to implement. It is

clear that the 2009 variety of sorghum would also require different parameters to those

for 2007 and 2011. However, the aim of presenting this simulation is to demonstrate

the method rather than provide a perfect representation of either of these crops. This

site at Avignon is a valuable resource that will help develop and test future specific

parameterizations for these crops and others that are also grown at this site. It is hoped

that the suite that runs JULES at Avignon with and without sequential crops could

become one of the ’golden’ sites that is referred to in Williams et al. (2018) and thereby
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Figure 4.4: The timeseries of GPP (a), H (b) and LE (c) for the Avignon site compared
with observations (black lines). H (b) and LE (c) heat fluxes show the whole period from
2005-2012, while GPP shows the period 2005-2008 due to availability of observations. The
following model simulations are also shown: AviJUL-grass with prescribed LAI and modelled
soil moisture (red), AviJUL-sqcrop with both soil moisture and LAI modelled (blue). In each
plot a 10-day smoothing has been applied to the daily data.

aid future development of JULES and other land surface and crop models to include a

sequential cropping capability. In the following section we apply this same method to

a range of locations that use the sequential cropping system in the north of India in

order to implement this method for a regional tropical simulation.

4.6.2 India simulations

The four India points selected for analysis in this study are shown on a map of South

Asia in Fig. 4.2 (plot a) with smaller inset plots (b, c and d) focusing on the sequential

cropping region being considered across the states of Uttar Pradesh and Bihar. Figure
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Figure 4.5: The timeseries of the available soil moisture in the top 1.0 m of soil and the
soil moisture availability factor (Beta) for the Avignon site for 2005 to 2013 using observed
sowing and harvest dates (black line). AviJUL-grass with modelled soil moisture shown in
(red), AviJUL-sqcrop with modelled LAI and soil moisture (blue).

4.6 shows the differences in the timeseries of the average precipitation (a), temperatures

(b), and vapour pressure deficit (VPD) (c) at each of these four points with the different

crop seasons emphasized by the different colour shading (yellow for wheat and pink for

rice) on each of the plots. The temperatures rarely reach the low temperatures of the

tbase cardinal temperatures set in the model shown for rice (green) or wheat (orange)

on Fig. 4.6 (b); however the high temperatures do exceed the maximum cardinal

temperatures for these crops, especially those set for wheat. In general EastBi is cooler

than the other points in more of the years, with the two locations in Uttar Pradesh

often being the warmest. The precipitation at each location is variable (see Fig. 4.6

plot a) and there appears to be a variation in the distribution of precipitation through

the monsoon period which could be important for crop yields. Challinor et al. (2004),

for example, found that in two seasons with similar rainfall totals, the distribution of

the rainfall during the growing season strongly affected groundnut crop yield. There is

also a clear seasonal cycle in the vapour pressure deficit (VPD), increasing toward the

end of the wheat season and decreasing into the rice season. EastBi generally has the

lowest VPD, with WestUP and EastUP usually the highest throughout the timeseries

shown (see Fig. 4.6). These plots suggest that there is a gradual change in conditions
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from west to east across Uttar Pradesh and Bihar with increasing humidity and rainfall

and decreasing maximum temperatures from west to east.
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Figure 4.6: Timeseries of monthly precipitation (a), temperature (b), and vapour pressure
deficit (c) at each of the India sites shown by the solid lines (WestUP-black, EastUP-red,
WestBi-blue and EastBi-cyan). Plot (b) also shows the minimum (’x’) and maximum (’+’)
temperatures for each of the locations for each month together with the JULES cardinal tem-
peratures (horizontal lines) for rice (green) and wheat (orange): Max temperatures (dotted
line), optimum temperatures (solid line) and base temperatures (dashed line).

The sequential cropping simulations at these India sites produce both a rice and

wheat crop (see Fig. 4.7, with red representing rice and black representing wheat),
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and a crop DVI regularly showing that the crop reaches 2 (see Fig. B.2), indicating

maturity. JULES is growing both wheat and rice at each of these locations within one

growing season and is therefore simulating the sequential cropping rotation. We first

consider if the main crop characteristics such as LAI and canopy height are realistic.

This is important, especially where the results are to be applied to analysis of future

water resource requirement, where an overestimation (underestimation) of size or leaf

area for a crop could skew the results towards a higher (lower) resource requirement.

In these simulations the canopy height (see Fig. B.3) for both rice and wheat at each

location is between 0.5 and 0.7 m (see Fig. B.3) which is an expected value for a typical

crop, as described in (Penning de Vries et al., 1989). Figure 4.8 shows the LAI for each

of the four locations, indicating that the wheat LAI from JULES is between 5 and

7 m2m−2 across the locations; this is also an expected value for a crop according to

Penning de Vries et al. (1989). Rice LAI is lower (between 2 and 4 m2m−2) with the

lowest values for WestUP, slightly increasing from west to east locations. For WestUP

particularly, rice (red solid line) has a small LAI (see Fig. 4.8) but it generates a yield

(red asterisks Fig. 4.7) that falls within the range of the observations for each year.

However, wheat (black solid line) generates a LAI that is closer to expected values but

a smaller yield compared with observations (see Fig. 4.7, black asterisks). WestUP has

the least available soil moisture, lowest rainfall and higher temperatures than the other

locations, yet the observed yields and therefore the actual productivity are higher than

the other locations.

Figure 4.10, plot (c) shows the NPP for each of the locations. The stage at which

leaf senescence begins is given by a user defined parameter in JULES (sen dvi io). In

these simulations this is set to be when the DVI is equal to 1.5. At this stage the

carbon from the leaves starts to be remobilized to the harvest pool (Fig. 4.9). During

this period where the leaves are senescing, they continue to respire (Fig. B.5) but are

no longer photosynthesizing. This results in a decline in NPP, which begins relatively

early in the season (Fig.4.10c). This decline in NPP appears to have a direct impact

on the yield. In JULES the partitioning of carbon to the different parts of the crop is

controlled by allometric coefficients. The values assigned to these allometric coefficients

in these JULES simulations are those from Osborne et al. (2015); it is possible that

the results could be improved for South Asia if these were tuned to more appropriate

values for the crops there.

Figure 4.7 shows the yields from JULES (asterisks) overlaid on the curve of the

harvest pool (solid lines) for each crop together with two observation datasets. The

datasets are from ICRISAT (2015) shown by the filled circles and Ray et al. (2012a)

by filled triangles (see Fig. 4.7) highlight that there is a spread between yield estimates

for this region. The model (asterisks on Fig. 4.7) tends to underestimate the wheat

yield for most years at the WestUP location (average bias across both datasets of -0.13

kg m−2). Rice is more mixed for WestUP, falling within the range of the observations
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in more than half of the years (average bias -0.064 kg m−2). The average bias across

both observation datasets is much smaller for the other locations with rice and wheat

yields within the range of the observations for most years for both EastUP and WestBi

(average bias across both crops at these locations ranges from -0.07 to 0.02 kg m−2).

During the second half of the simulation the wheat yield is underestimated by the

model more often at EastUP but this is just the occasional year for WestBi and does

not occur at all for EastBi. For EastBi the rice yields are often toward the top of

the range provided by the two observed datasets but still within the range of the

observations (see Fig. 4.7); this gives on average a positive bias of 0.06 for rice and 0.02

for wheat. However the observed yields at EastBi are lower than the other locations,

where the cooler wetter conditions should be more conducive to achieving higher yields

but these are neither observed nor modelled.

The wheat crop is irrigated in these simulations and therefore the soil moisture

availability factor is equal to 1.0 during the wheat season (see Fig. 4.11). This sug-

gests, therefore it is not water stress that influences the wheat yields in these JULES

simulations. In JULES the irrigation is applied to the top two layers. However, if the

roots at these India locations are deeper or shallower at these India locations, the irri-

gation may not be as effective at preventing water stress. The models underestimation

of the high WestUP wheat yield (compared to EastBi) is therefore likely to be due to

a combination of factors. One explanation is likely to be the differing management

practices between the two states of Uttar Pradesh and Bihar. Uttar Pradesh is charac-

terized by high agricultural productivity with effective irrigation systems (Kumar et al.,

2005) and early adoption of new management practices (Erenstein and Laxmi , 2008).

Bihar on the other hand has lower agricultural productivity, farms tend to be smaller

and more fragmented, irrigation systems are less effective (Laik et al., 2014) and adop-

tion of new technology is also slower due to the lack of available machinery (Erenstein

and Laxmi , 2008). Yield gap parameters are included in many crop models in order

to account for the impact of differing nutrient levels, pests, diseases and non-optimal

management (Challinor et al., 2004), thus explaining the difference between potential

and actual yield under the same environment Fischer (2015). This is not included in

these simulations.

At the western locations, the humidity is lower (higher VPD) and the temperatures

are higher; these conditions may provide another contributory factor for the model

underestimating the yields there. The humidity in the simulations could be lower in

these simulations than in reality for two reasons: firstly we are running JULES in

standalone mode. This means that the land-surface and therefore the crop is unable

to influence the atmosphere through evaporation because the humidity is prescribed

by the driving data at each timestep. Secondly the driving data is from an RCM that

does not include irrigation (Mathison et al., 2015) so the humidity in the driving data

is not modified by evaporation due to irrigation. We are therefore missing the part

137



138 Chapter 4: Developing a Sequential cropping capability in JULESvn5.2

of the water cycle that allows evaporation from the surface to affect the humidity.

This region is intensively irrigated (Biemans et al., 2013) which means that there is

a significant contribution from the evaporation due to irrigation and the recycling of

water into precipitation (Harding et al., 2013, Tuinenburg et al., 2014) that cannot

be accounted for here. Tuinenburg et al. (2014) estimate that as much as 35 % of

the evaporation moisture from the Ganges basin is recycling within the river basin.

We hypothesize that the VPD may be too high in our forcing data and this could

be affecting the model yields at this location (Ocheltree et al., 2014). An additional

simulation, completed as a sensitivity test to see if low humidity in the driving data

could be affecting the model yields, did have the effect of increasing NPP and yield for

WestUP, suggesting this hypothesis is worthy of further investigation. However, how

plants respond to high VPD is still the source of a great deal of debate (Medina et al.,

2019). There are two theories for the plant response to high VPD; the first is stomatal

conductance decreases as VPD increases because of an increase in transpiration that

lowers the leaf water potential (Streck , 2003, Ocheltree et al., 2014, Medina et al.,

2019) rather than a direct response to the humidity. In this first theory if the rate of

movement of moisture out of the stomata cannot be met by the vascular structure of

the plant then the plant will become water stressed (Streck , 2003). The second theory

is that there is a direct stomatal response to high VPD where stomatal conductance

decreases as VPD increases, with abscisic acid (ABA) in the leaves probably triggering

the response (Streck , 2003). However, Streck (2003) suggest that a direct response to

VPD is probably contingent on the plant being exposed previously to water stressed

conditions. (Medina et al., 2019) investigate the response to high VPD of both irrigated

and rainfed C3 and C4 grasses and find evidence of the direct response to VPD in some

species; in fact there are published results that support both of these hypotheses.

Further investigation is needed to confirm exactly why the simulation at WestUP does

not achieve the observed yields.

The total above ground biomass for both crops shown in Fig. B.1 are comparable

with each other and with the values simulated for wheat at Avignon. Figure 4.9 shows

the evolution of the carbon pools for wheat and rice at each of the India locations for

the years between 1998 and 2001, in order to examine the evolution of the carbon pools

more closely by looking at a smaller number of crop seasons. The root carbon pool is

a significant proportion of the total wheat biomass, larger than the rice root carbon

pool. For rice it is the stem carbon pool that constitutes the larger proportion of the

total biomass. As expected the leaf carbon drops away during senescence (this occurs

when the DVI reaches 1.5 in these simulations) and the leaf carbon is remobilized to

the harvest pool but the stem (for rice) and the roots (for wheat) remain high until

harvest. Where the level of carbon remains high for a particular carbon pool, the

respiration also remains high. It is therefore possible that the carbon partitioning after

flowering requires some revision for JULES-crop simulations, especially for wheat. The

138



§4.6 Results 139

carbon partitioning in the model may also be affecting the model wheat yields and

may provide another avenue for investigation in addition to those discussed so far. The

temperatures during the wheat season shown in Fig. 4.6 rise rapidly, often reaching

temperatures that are well above the maximum for the development of wheat by the

expected harvest date. These high temperatures may speed up the rate at which wheat

matures and therefore shorten the senescence period too much in the model bringing

forward the harvest date without giving the yield carbon pool time to increase. The

total plant respiration is also shown in Fig. B.5, with the respiration for each crop and

carbon pool shown in Fig. B.4. Usually toward the end of the wheat season the plant

respiration declines, as carbon is remobilized to the harvest pool which does not respire

and the leaves senesce; this results in a decline in the respiring biomass. The rice plant

respiration (see Fig. B.5) has a dip in the middle of the 2001 season that only occurs

in EastBi; this is caused by a drop in the leaf respiration shown in Fig. B.4 plot (d).

The drop in leaf respiration is related to changes in temperature, precipitation and

VPD at this location. Usually the temperature timeseries shows an increase through

the wheat season, which peaks during the short period between the two crops and then

declines into the rice season. In 2001 there is an initial decline, but then a sharp rise in

temperature before it then follows its usual decline into the winter wheat season. The

rise in temperature is at the same time as the spike in VPD at EastBi (see Fig. 4.6 plot

c). The usual fall in temperature is therefore much later in the 2001 rice season, which

is accompanied by a significant drop in precipitation in the middle of the monsoon for

EastBi, which does not occur at the other locations for this year.

The fluxes of heat (LE and H), NPP and GPP are shown for each of the four India

locations (see Fig. 4.2) in Fig. 4.10, plots (a) to (d), with the moisture fluxes shown

in Fig. 4.11, plot(c). They show the influence of the sequential crop rotation of wheat

and rice on the fluxes at each location by the presence of a first peak for wheat and a

secondary smaller peak during the rice season. This is most obvious in the plots of NPP

and GPP (see Fig. 4.10, plot (c) and (d) respectively). In general the timeseries of the

fluxes shown in Fig. 4.10 and Fig. 4.11, plot(c) are quite similar between locations.

The timeseries (see Fig. 4.10) and the annual cycles (Fig. B.6 and Fig. B.7) show that

on average, all the locations have minima and maxima occurring at the same time.

The drier hotter location, WestUP usually has a lower LE, moisture flux and higher H

than the other three locations. Although there are two short periods in 1998 and 2001,

where EastBi has the lowest available soil moisture, these periods correspond with a

lower monsoon rainfall at this location (see Fig. 4.6). The available soil moisture in the

top 1.0 m of soil and the soil moisture availability factor (Beta) are shown in Fig. 4.11,

plot a and b respectively). They show that for several years of the simulation WestUP

has the lowest available soil moisture and soil moisture availability factor, suggesting

this location is likely to be the most water stressed. WestBi on the other hand often

has the highest soil moisture availability factor and the most consistent available soil

139



140 Chapter 4: Developing a Sequential cropping capability in JULESvn5.2

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Time (Year)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Y
ie

ld
 c

a
r
b
o
n
 (
k
g
m
−

2
)

(a)  WestUP

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Time (Year)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Y
ie

ld
 c

a
r
b
o
n
 (
k
g
m
−

2
)

(b)  EastUP

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Time (Year)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Y
ie

ld
 c

a
r
b
o
n
 (
k
g
m
−

2
)
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(d)  EastBi

Wheat harvest pool

Wheat ICRISAT yield

Wheat Ramankutty 5-yr avg yield

Rice harvest pool

Rice ICRISAT yield

Rice Ramankutty 5-yr avg yield

Wheat yield pool

Rice yield pool

India point runs: Carbon in harvested parts of crop

Figure 4.7: Timeseries of crop harvest pool (solid lines) with the JULES yield at the time it is
output by the model (asterisks) for rice (red) and wheat (black) at each of the India sites shown
in Fig. 4.2. Also shown are two sets of observations; annual yields from ICRISAT (2015) shown
by the filled circles and 5 year averages from Ray et al. (2012a) shown by the filled triangles
(following the same colours with rice shown in red and wheat in black)

moisture in the top 1.0 m across the year of the four locations. This is consistent with

the temperature and precipitation timeseries shown in Fig. 4.6 where the locations

become wetter and cooler from west to east. This means there is more available soil

moisture in the top 1.0 m for the eastern locations compared with the western locations.

We have shown that JULES simulates wheat and rice across the four locations,

however the varying conditions across these locations affect the model response which

subsequently affects the yields produced by JULES. In general the model produces a

similar amount of wheat biomass to Avignon but produces yields that are closer to those

observed than for Avignon. This could be due to the JULES wheat parameterization
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(d)  EastBi
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Figure 4.8: Timeseries of the leaf area index rice (red) and wheat (black) at each of the India
sites shown in Fig. 4.2.

being more appropriate for modelling Indian spring wheat than Avignon winter wheat

varieties.

4.7 Discussion and Conclusions

In this paper we describe and demonstrate a new development for JULES enabling more

than one crop to be simulated at a given location during a particular growing season,

thereby including a sequential cropping capability. There are relatively few models that

are able to simulate sequential cropping, but there is a growing need as more regions

of the world adopt this cropping system as a viable way of adapting to climate change

(Hudson, 2009). We demonstrate the method and evaluate its impact for a site in
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(d)  EastBi

Wheat root carbon pool

Wheat stem carbon pool
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Rice stem carbon pool

Rice leaf carbon pool

Rice harvest carbon pool
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Sequential cropping: Timeseries of each carbon pool for both rice and wheat

Figure 4.9: Timeseries of each crop carbon pool: leaf (solid lines), root (dashed), stem (dotted)
and harvest (dash-dot) with the JULES yield at the time it is output by the model (asterisks)
for rice (red) and wheat (black) at each of the India sites shown in Fig. 4.2 for a subset of years
of the simulation between 1998 and 2001.

Avignon; this a site that has grown crops in rotation for several years and therefore has

a lengthy and detailed observation record. We use this site to simulate a winter wheat–

sorghum rotation in JULES approximated using spring wheat and maize. We apply this

same method to four locations that use the sequential cropping system in the northern

Indian states of Uttar Pradesh and Bihar, in order to inform its implementation for a

regional simulation of South Asia.

We show that JULES is able to simulate two crops in a year both at Avignon and

the four locations across Uttar Pradesh and Bihar, producing maxima of LAI, canopy

height and biomass at approximately the correct times of the year. The wealth of
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 (a) India point runs: sensible heat flux (H)
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 (b) India point runs: latent heat flux (LE)
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 (c) India point runs: net primary productivity (NPP)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Time (Year)

0

2

4

6

8

10

12

G
P
P
 (
g
C
m
−

2
d
a
y
−

1
)

WestUP EastUP WestBi EastBi wheat period rice period

 (d) India point runs: gross primary productivity (GPP)

Figure 4.10: Timeseries of LE (a), H (b), gridbox NPP (c) and gridbox gpp (d) at each of
the India sites shown in Fig. 4.2. Each location is represented by a solid line of a different
colour: WestUP - black, EastUP - red, WestBi - blue and EastBi - cyan

observations at Avignon also provide the opportunity to gain a better understanding of

the effect of sequential cropping on the surface fluxes. For Avignon, the representation

of GPP and fluxes (H and LE) correlate well with observations with r values of above

0.7. However the magnitude of the biomass for wheat is underestimated and LAI is

overestimated compared with Avignon observations. The aim of showing the method

for Avignon was not to produce perfect representations of the crops but show that the

method is able to produce two crops in a single growing period and therefore provide a

143



144 Chapter 4: Developing a Sequential cropping capability in JULESvn5.2

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Time (Year)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

fs
m

c
 f

a
c
t
o
r
 (
β
)
 (

--
)

WestUP EastUP WestBi EastBi wheat period rice period

 (a) India point runs: soil moisture availability factor (β)
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 (b) India point runs: available moisture in top 1.0 m of soil
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 (c) India point runs: moisture flux (Q)

Figure 4.11: Timeseries of moisture fluxes including the gridbox soil moisture availability
factor (beta) (a), the gridbox available moisture in the top 1.0 m of soil (b) and moisture flux
across the gridbox (c) at each of the India sites shown in Fig. 4.2. Each location is represented
by a solid line of a different colour: WestUP - black, EastUP - red, WestBi - blue and EastBi -
cyan

better representation of the real land surface at Avignon than previously possible using

the crop model. In general there are only small differences between using the crop

model and using grasses to represent the crops at this site, indicating that both provide

a similar representation of the surface fluxes. There are two varieties of sorghum grown

at this site and this is apparent from the differences in the JULES simulations presented.

Using maize as an approximation for sorghum provides a better representation for the

variety grown in 2009 than in either of the 2007 or 2011 seasons. The representation

of crops at Avignon could be improved by including crop specific parameterizations

of winter wheat and sorghum in the model, although sorghum would probably require

two different sets of parameters for a significant improvement because the two varieties

grown at the site are so different. The soil moisture observations for Avignon show

that there are periods where the soil moisture is very low. In additional simulations

with prescribed soil moisture (not shown) soil moisture stress causes a significant drop
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in GPP which is much earlier than shown in the observations, this is the subject of a

wider modelling effort (Williams et al., 2018, Harper et al., in preparation) that aims

to improve the response to soil moisture stress in JULES.

The sequential cropping system is used widely in the Tropics, especially regions such

as Pakistan, India and Bangladesh. In order to apply this method to tropical regions

we run JULES at four locations across the Indian states of Uttar Pradesh and Bihar;

these are two of the main producers of rice and wheat in India and use of the rice–spring

wheat rotation is prevalent in this region. This region is highly variable, both in terms of

temperatures (ranging from 7 to 52 ◦ C) and rainfall (between 0 and 15 mm day−1) with

these locations showing a cooling moistening trend from west to east making conditions

for growing crops very different across a relatively limited area. JULES produces both

a rice and wheat crop at each of the four locations, with yields for the locations in

the cooler, wetter east of the region closer to observed yields than those in the warmer

drier west. We propose two possible reasons for this difference, although in reality both

could be contributing factors. One explanation for the differences in observed yields

between WestUP and EastBi is the differing management practices between the two

states of Uttar Pradesh and Bihar. The western locations are typically more effective

at adopting new technology and therefore have higher yields than the eastern locations.

This difference from west to east may therefore be reduced by a yield gap parameter.

The difference between the observed and model yields at WestUP may be exacer-

bated by the lack of irrigation in the forcing data, which means that evaporation from

surface water due to irrigation is missing in these simulations. Tuinenburg et al. (2014)

highlight that this makes a considerable contribution to the overall moisture budget for

this region. On this basis we hypothesize that this missing evaporative process has a

drying effect on the RCM atmosphere driving JULES; particularly at the already arid

western locations. This could be affecting the yields there. In addition, it is possible

that revising the carbon partitioning especially for wheat could have a positive impact

on yields. Further investigation is needed to establish the reasons for the model yields

at these locations. It would be interesting and useful to follow up this study with

further simulations which attempt to account for this missing process, for example, by

using alternative driving data that includes irrigation and the subsequent surface evap-

oration. This would demonstrate if the influence of the evaporation of irrigation water

from the surface is a large enough effect to increase the modelled yields for WestUP

and maintain the yields for EastBi, where the humidity is usually higher and therefore

maybe less influenced by this process.

The work presented here has shown that sequential cropping is an important addi-

tion to JULES, providing a closer representation of the land surface where crops are

grown in rotation. Therefore the code modifications presented as part of this analy-

sis, currently in a branch of JULES at vn5.2, are intended for inclusion in a future

official version of JULES. This analysis has provided valuable information for using
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this sequential cropping method for future regional crop simulations; these regional

simulations will be the focus of work that follows this paper. Model intercomparison

projects such as AgMIP (Rivington and Koo, 2010, Rosenzweig et al., 2013, 2014) and

ISIMIP (Warszawski et al., 2013, 2014) have hugely benefited the crop and land-surface

modelling communities by accelerating development and understanding of land surface

models. On the basis that this cropping system is likely to be a feature of the future

land-surface, not just in the tropics but globally as an adaptation to climate change, we

encourage other modelling communities to develop their models to include a sequential

cropping capability so that future model intercomparisons can include this and find

ways to improve it further.
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4.8 Appendix A: Avignon comparison
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Figure A.1: Comparison of Observed GPP at the Avignon site against the modelled GPP
between 2005 and 2008 for AviJUL-grass (a) and AviJUL-sqcrop (b)
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Figure A.2: Comparison of observed H at the Avignon site against the modelled H between
2005 and 2013 for AviJUL-grass (a) and AviJUL-sqcrop (b)

147



148 Chapter 4: Developing a Sequential cropping capability in JULESvn5.2

0 50 100 150 200 250 300
Obs LE (Wm−2)

0

50

100

150

200

250

M
o
d
e
ls

 L
E
 (
W
m
−

2
)

r_value: 0.8093
slope std err: 0.0095

(a) AviJUL-Grasses

1:1 line

Best fit slope: 0.69

0 50 100 150 200 250 300
Obs LE (Wm−2)

0

50

100

150

200

250

M
o
d
e
ls

 L
E
 (
W
m
−

2
)

r_value: 0.7268
slope std err: 0.012

(b) AviJUL-sqcrop

1:1 line

Best fit slope: 0.67

Comparison between model and obs at Avignon: gridbox latent heat flux

Figure A.3: Comparison of observed LE at the Avignon site against the modelled LE between
2005 and 2013 for AviJUL-grass (a) and AviJUL-sqcrop (b).
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(a) Annual cycle of gridbox latent heat flux
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(b) Annual cycle of gridbox sensible heat flux
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Annual cycle of fluxes at the Avignon site for 2005-2012

Figure A.4: Annual cycle of the H and LE compared with observations (black line) at the
Avignon site for between 2005 and 2013. Annual cycles for the simulations are also shown:
AviJUL-grass (red line). AviJUL-sqcrop (blue line).
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Figure A.5: The timeseries of total biomass (a) and leaf area index (LAI) (b) for simula-
tions with a setting of 0 for p0 for the Avignon site for wheat (black) and sorghum (red) for
observations (solid lines) and simulation using the observed sowing and harvest dates: AviJUL-
sqcrop (dashed) for the period between 2005 and 2013 using observed sowing and harvest
dates. AviJUL-grass simulations are not shown here as these follow the observed LAI and
canopy height.
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Figure B.1: Timeseries of total biomass for rice (red) and wheat (black) at each of the India
sites shown in Fig. 4.2.
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Figure B.2: Timeseries of the development index (DVI) for rice (red) and wheat (black) at
each of the India sites shown in Fig. 4.2.
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Figure B.3: Timeseries of canopy height for rice (red) and wheat (black) at each of the India
sites shown in Fig. 4.2.
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Figure B.4: Timeseries of leaf, stem and root leaf respiration for rice (red) and wheat (black)
at each of the India sites shown in Fig. 4.2.
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Figure B.5: Timeseries of plant respiration for rice (red) and wheat (black) at each of the
India sites shown in Fig. 4.2.
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 (b) India point runs: latent heat flux (LE)
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 (c) India point runs: net primary productivity (NPP)
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Figure B.6: Annual climatology ( in day of year) of H (a), LE (b), gridbox NPP (c) and
gridbox gpp (d) at each of the India sites shown in Fig. 4.2. Each location is represented by a
solid line of a different colour: WestUP - black, EastUP - red, WestBi - blue and EastBi - cyan
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 (a) India point runs: soil moisture availability factor (β)
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Figure B.7: Annual climatology of moisture fluxes including the gridbox soil moisture avail-
ability factor (beta) (a) and the gridbox available moisture in the top 1.0 m of soil (b) at each
of the India sites shown in Fig. 4.2. Each location is represented by a solid line of a different
colour: WestUP - black, EastUP - red, WestBi - blue and EastBi - cyan
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Chapter 5

First integrated impacts

simulations for South Asia

The impacts of climate are often studied separately by each sector, even though the

effects of changes do not respect sectoral divides. A sectoral approach to climate

impacts could miss important links between sectors that are both affected by climate

and also each other. In this chapter a standalone model, which is also a land–surface

model used in larger coupled simulations, is used with additional processes that cannot

yet be included in larger coupled simulations. These additional processes enable the

standalone model to provide a more complete representation of the land–surface. Two

simulations are presented that include river flows and the developments completed

within this thesis: estimated sowing and harvest dates from the ASM (Chapter 3),

irrigation on specific crop tiles and sequential crops (Chapter 4). In one simulation the

irrigation is limited according to availability, therefore taking water from groundwater

and rivers; and in the other the resource is unlimited. The aim of this chapter is two-

fold: firstly to demonstrate that a regional simulation with these processes included

is now possible as a result of the work in this thesis; and secondly to show that it

produces plausible results for a small region of India through comparison with similar

analyses using a different model. These simulations will provide the basis for future

work analysing the demand for water resources and food production for the whole of

South Asia.

5.1 Introduction

Climate impact studies tend to be sector specific, with each sector using different meth-

ods to understand the likely impacts to that sector. A climate model provides forcing

data for simulating the downstream impacts of the land-surface using different models

for each sector, such as crops and hydrology. This unidirectional approach limits the

links between impacts of related sectors that are known to affect each other and misses
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feedbacks between the land–surface and the atmosphere; for example by allowing the

croplands to modify the atmosphere through evaporation (Betts, 2005). A key recom-

mendation by Betts (2005) and Slingo et al. (2005) is for land-surface schemes that are

routinely used in coupled climate simulations to be developed into standalone impacts

models that include these additional processes. This is a useful interim approach en-

route to integrating crops and irrigation more fully into climate simulations. Osborne

et al. (2007) show that using GLAM (Challinor et al., 2004) integrated within the Met

Office Hadley Centre atmospheric model, HadAM3 (Pope et al., 2000) represents the

impacts of weather and climate on crops and the feedbacks of growing crops on the

environment. However the success of this approach depends on the skill of both the

GCM and the crop parameterization.

The ISIMIP project, a community driven climate-impact modelling initiative. This

project has actively encouraged more focussed studies of the land–surface, ultimately

contributing to a better understanding of the impact of climate on the land–surface. As

part of the ISIMIP project, the CMIP5 models were used to drive land–surface models

to contribute to multi-model assessments of climate impacts. ISIMIP included JULES

and covered a range of different sectors including flooding (Dankers et al., 2014), runoff

(Davie et al., 2013), droughts (Prudhomme et al., 2014), water stress (Schewe et al.,

2014), ecosystem distribution and multi-sectoral hot-spots (Piontek et al., 2014).

Integrated Assessment Models (IAMs) are complex models that provide an inte-

grated system perspective of human influences on climate change and mitigation of

greenhouse gases (Schwanitz , 2013). They are a type of integrated impacts model that

seek to combine environmental, social and economic factors to determine future cli-

mate change and the effectiveness of climate policy (van Vuuren et al., 2011). They

are highly complex because they need to include so many different components all of

which have to be merged together but still be representative of the processes being sim-

ulated. A combination of user priority and available computing resources dictate the

level of simplification required to represent the different processes which means compro-

mises have to be made in terms of the complexity of the representation of each process

(Schwanitz , 2013). For example, it is typical for IAMs to use simple climate models

(SCMs) that are calibrated against more complex coupled ocean-atmosphere climate

simulations but use a fraction of the computing power (van Vuuren et al., 2011). In

simplifying individual components, processes that occur on the timescales of a day or a

month are often not considered even though they are important. Also, at times, regions

are aggregated together using broad quantities such as GDP, despite the characteristics

leading to these values varying considerably across a region (Schwanitz , 2013).

IAMS are often built with a specific purpose in mind; for example economists use

IAMS to understand the economic feasibility of particular climate policies, i.e. the

costs and benefits of mitigating climate change (Ackerman et al., 2009). Fundamentally

this involves attaching a numerical value to aspects of life today that are notoriously
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difficult to put a value on, such as human health or biodiversity (Ackerman et al.,

2009). Therefore economists are more likely to require a complex economic component,

whereas those IAMs used by the energy industry are more likely to have a complex

representation of energy demand and usage. The variation in IAM construction means

there is huge scope for the outputs of these models to be different; for example, van

Vuuren et al. (2011) found from analysis of a number of IAMs that different repre-

sentations of the carbon cycle and climate can lead to large differences in the climate

outcomes.

Recognising the complexity in the relationships between climate change, agriculture

and water resources Zessner et al. (2016) developed the integrated impacts modelling

framework (IIMF). The IIMF aims to assess the impacts of climate on land use and

water quality specifically focussing on crop choices, farming practices and fertilization

levels. Zessner et al. (2016) focuses on water pollution in Austria by coupling models

from different sectors together, using the outputs from one as an input for the next.

The main challenge of this approach was the spatial and temporal aggregation and

disaggregation of data to keep inputs and outputs for each of the component models

consistent with each other. These problems with differing scales of application and the

integration of submodels are also highlighted by Ewert et al. (2015). Crop models are

a fundamental part of understanding climate impacts on food production. Therefore

it is useful to align crop model development with the requirements of IAMS that are

designed for completing climate change risk assessments of food security (Ewert et al.,

2015). These requirements include the need for crop models to simulate yield, biomass

and water use while capturing any feedbacks as a result of climate change.

In this thesis the focus in on the impact of climate on the land-surface and consider-

ation of socio-economic factors is limited to the use of the A1B SRES scenario. To look

at the wider issue of food security it would be valuable to combine the JULES model

or outputs from simulations with socioeconomic information; for example the social

response to a climate event, to examine how different responses could amplify/dampen

the impact of that event; or export/import information between major crop producing

countries to understand supply chains (Challinor et al., 2018).

In this chapter the aim is to run simulations that include hydrology, crops and

irrigation as integral parts of a land surface model. Therefore we bring together the

different elements of this thesis and consider the climate impacts on multiple sectors at

once. The river routing described and implemented in Chapter 2 as a postprocessing

step and the crop specific elements of this thesis, described in Chapters 3 and 4, are

included in the simulations presented in this chapter. As these are the first simulations

including the various elements from this project, these simulations focus on the same

two states in northern India as in Chapter 4. The aim of these regional simulations is

to demonstrate that it is both technically possible and the results for the present day

are plausible. The results will highlight where development effort needs to be targeted
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to be able to use JULES-IM for future simulations before fully integrating JULES-crop

and hydrology models into larger more complicated climate simulations.

This chapter is structured as follows. The model simulations are described in Sect.

5.2. The observations used to evaluate JULES are provided in Sect. 5.3 and methods

used to analyse the results in the absence of relevant observations are described in Sect.

5.4. The results of the simulations are discussed in Sect. 5.5 and summarized in Sect.

5.6.

5.2 Model simulation

The first regional simulations using all of the impacts components developed as part

of this thesis continue to focus, as in Chapter 4, on the north Indian states of Uttar

Pradesh and Bihar, to simulate the rice-wheat rotation. These states are key producers

of these crops using the sequential cropping system (Mahajan and Gupta, 2009). The

sequential cropping system in this region involves growing rice during the wet monsoon

months and an irrigated wheat crop during the dry winter. The wheat varieties grown

in this region are spring wheat which does not require a vernalization period which

is required for winter wheat varieties (Griffiths et al., 1985, Robertson et al., 1996,

Mathison et al., 2018). In these simulations it is assumed that wheat and rice are

grown everywhere within this subregion of India; this is a similar assumption to that

made in ISIMIP simulations. In practice this will not be the case and simulations for

the purpose of accurately calculating the demand for resources either for the present

day or a future period would need realistic estimates of crop areas in each gridbox.

Observations of crop area are available from ICRISAT (2015); however time constraints

prevented these being used as input to JULES for this simulation.

As with previous simulations (Chapters 2, 3 and 4), JULES is run using a 3-hourly

timestep using driving data from ERA-interim (Dee et al., 2011, Simmons et al., 2007)

downscaled to 25 km using the HadRM3 regional climate model (RCM- Jones et al.,

2004). The ERA-interim RCM simulation is one of an ensemble of simulations produced

for the EU-HighNoon FP7 project for the whole of the Indian subcontinent (25 N, 79

E–32 N, 88 E) for the period 1991-2007. The HighNoon simulations are described in

Sect. 1.3 and also in previous publications such as Kumar et al. (2013) and Mathison

et al. (2013, 2015). HadRM3 provides more regional detail to the global data with

lateral atmospheric boundary conditions updated 3-hourly and interpolated to a 150

s timestep. These simulations include a detailed representation of the land surface in

the form of version 2.2 of the Met Office Surface Exchange Scheme (Essery et al., 2001;

MOSESv2.2;). JULES has been developed from the MOSESv2.2 land surface scheme

and therefore the treatment of different surface types is in principal consistent between

the RCM and JULES (Essery et al., 2001, Mathison et al., 2015).

The two simulations in this chapter include river routing introduced in Chapter 2
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which is now part of the official JULES code. Therefore the runoff is calculated from

the precipitation prescribed by the forcing data (described above) and then routed

through the TRIP river network in JULES. In the regional simulations in this chapter

the JULES vn5.2 branch with sequential crops and extended irrigation code, described

in Chapter 4 are used. The code included in this branch of JULES means that crops

can be grown in rotation: here we use the rice–wheat rotation which is common across

the IGP region. The changes to the irrigation code enable the irrigation to be limited

to specific tiles, in this case wheat (Chapter 4).

The sowing and harvest dates from the method introduced in Chapter 3 are used

to calculate the thermal time requirements for the rice and wheat crops. The main

reason for using estimated sowing and harvest dates for this present day simulation

is that they are very similar to the observations for this part of India and, unlike the

observations, there is no missing data. The values of the sowing dates, harvest date and

therefore the thermal times are allowed to vary across the region, in the same way as

in Osborne et al. (2015). Maps of the inputs for JULES-crop including: the sowing day

of year, the latest possible harvest date and the thermal times are shown for rice (Fig.

5.1) and wheat (Fig. 5.2). Figure 5.1a shows that the rice sowing dates are between

the 140th and 180th day of the year, i.e. during May and June for these two states,

with Bihar earlier than Uttar Pradesh. Figure 5.2a indicates that the wheat sowing

dates are towards the end of the year between the 315th and 360th day, i.e. during

November and December for these two states. These sowing dates for rice and wheat

are within the observed sowing window from ICRISAT (2015) for both states.

The latest harvest dates represent the last day that the crop can be harvested in

order to sow the next crop in the rotation are shown for rice (Fig. 5.1b) and wheat

(Fig. 5.2b). Therefore the latest harvest date closely resembles the sowing dates for the

other crop in the rotation, i.e. the wheat latest harvest (Fig. 5.2b) closely resembles

the sowing dates for rice (Fig. 5.1a) and vice versa for the rice latest harvest dates

(Fig. 5.1b) and the wheat sowing dates (Fig. 5.2a).

The simulations in this chapter use the same parameters and settings from the

India simulations in Chapter 4, Tables 4.1, 4.2 and 4.3. However, in this chapter, in

one simulation the irrigation is referred to as unlimited and in the other the irrigation

is referred to as limited by water availability. The unlimited simulation represents an

upper limit on how much irrigation can be applied to a crop in JULES, because the

rivers and irrigation are not linked with one another. Therefore the irrigation cannot

affect the river flow and the river flow cannot limit the amount of water available for

irrigation. In the simulation with limited irrigation water is first taken from the surface

groundwater store and then from the rivers when the groundwater source is exhausted.

The limited simulation makes the link between the available water and irrigation de-

mand which means that, provided JULES is correctly simulating the groundwater and

river flow, the estimated use of water resources for crops should be realistic. Running
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Figure 5.1: The values used in the model for rice for the sowing date (a), latest possible
harvest date (b), thermal time for the vegetative stage (c), thermal time for the reproductive
phase (d).
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Figure 5.2: The values used in the model for Wheat for the sowing date (a), latest possible
harvest date (b), thermal time for the vegetative stage (c), thermal time for the reproductive
phase (d).
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with limited or unlimited irrigation involves the very simple change of one switch from

l irrig limit false (for unlimited irrigation) to true (for limited irrigation). The choice

of running with limited or unlimited irrigation is likely to be important for simulating

future resources where resource may not be sufficient to meet the demand. To date, no

simulations have been completed where this occurs.

5.3 Observations

Crop yield observations are from the International Crops Research Institute for the

Semi-Arid Tropics (ICRISAT , 2015) which provides seasonal yields for each crop for

comparison with JULES. River flows for this region are unavailable as are the over-

all extractions from rivers and surface water. Groundwater extractions are available.

However, in JULES the source of the irrigation is not separated and therefore it is not

clear how much of the water extracted is from surface or groundwater. The lack of

relevant observations for this region means that other comparisons have to be made to

understand if the simulations are providing plausible results (see Sect. 5.4).

5.4 Analysis methods

Simulations that follow on from this will be for a larger domain where GRACE data

can be used to estimate irrigation extraction. The prototype simulations presented

here aim to demonstrate that these types of simulations are now possible for this re-

gion. Therefore, the initial evaluation of these simulations presented in this chapter

is designed to check the plausibility of these results, rather than provide a rigorous

comparison against observations, as this is an early stage in the development of the

simulations. The JULES simulations presented in this chapter include estimates of

irrigation demand. These are compared with similar simulations from another model

because surface extractions are not readily available for this size of domain at this lo-

cation. This does not replace the need for a more in depth evaluation using observed

irrigation but provides a quick check that the values for irrigation demand simulated by

JULES are plausible. Therefore the JULES simulated irrigation demand is compared

against the simulations from LPJml in Biemans et al. (2013) and Biemans et al. (2016).

LPJml is a well established model used to simulate the irrigation demand, including

an estimate of the irrigation efficiency from both surface water (rivers and lakes) and

groundwater separately. The analysis presented in both Biemans et al. (2013) and Bie-

mans et al. (2016) includes the states of Uttar Pradesh and Bihar that are simulated

by JULES in this chapter.

In LPJml groundwater is given a higher efficiency of 70 % (Gupta and Deshpande,

2004, Biemans et al., 2016) than the surface water because it is more expensive and

therefore farmers are likely to use it more sparingly. In the LPJml simulations shown

168



§5.5 Results 169

in Biemans et al. (2016), water resource is limited by availability but in Biemans et al.

(2013) simulations with both limited and unlimited irrigation are shown. JULES does

not account for irrigation efficiency which means the irrigation demand from JULES

should be lower than the demand for LPJml.

5.5 Results

5.5.1 Rivers

Figure 5.3 shows maps of the JULES river flows for each simulation. In both simulations

the driving data from a 25km climate simulation uses the 0.5◦ TRIP routing model

within JULES; this is then regridded back to 25km to provide 25km resolution river

flows. 25km is a coarse resolution for the size of the study area which is why the rivers

look very broad in Fig. 5.3. The points A and B are two river locations in TRIP;

one in Uttar Pradesh (A) and another in Bihar (B). There are several river channels

represented by TRIP that run through Uttar Pradesh and merge into one in Bihar by

point B. The river channels in Uttar Pradesh are likely to be the Karnali (Ghaghara),

Gomati and the Ganges as these are the largest in this part of India, although the coarse

resolution of TRIP makes it difficult to say for certain, as there are many tributaries

in this region.

The simulation with limited irrigation (Fig. 5.3b) produces very similar river flows

to the simulation with unlimited irrigation (Fig. 5.3a). However it is noticeable that

with limited irrigation (Fig. 5.3b), the groundwater values are lower in the regions

surrounding the main river channels and the river channels themselves are a lighter

blue, indicating the river flows are being reduced by the demand for irrigation.

The seasonal cycle of river flow at each of the points A and B are shown in Fig.

5.4, a and b respectively. These seasonal cycles also indicate that the limited irrigation

simulation reduces the river flows at each of these points. There are no GRDC gauges

available for sites within this particular region and therefore no observations of river

flow to compare against. However these seasonal river flows are plausible, based on

the gauges at other locations in the same area. The seasonal cycles for the unlimited

irrigation simulation are consistent with the river flow analysis shown in Chapter 2 with

the river flows at the upstream point in Uttar Pradesh (point A) similar in magnitude

to those for the Tehri dam, Benighat and Turkghat gauges and river flows at point

B similar to those for the Chisapani and Devghat gauges. All of these are within the

Ganges/Brahmaputra catchment but are to the north of Uttar Pradesh and Bihar.

There are no observational data available regarding the surface water extraction at

these points, so no conclusions can be drawn regarding how well the surface extractions

are simulated, or if they are reducing the river flow by the right amount. However the

simulation with irrigation limited by availability (blue lines) is clearly taking water from
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(a) Annual average river flow for period 1991-2007

A

B

78.0 79.5 81.0 82.5 84.0 85.5 87.0 88.5

24

25

26

27

28

29

30

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

A
v
e
ra

g
e
 r

iv
e
r 

fl
o
w

 (
m

3
s
−

1
)

(b) Annual average river flow for period 1991-2007 (irrigation linked to rivers)

Figure 5.3: JULES river flows averaged for the period 1991-2007 for simulation with unlimited
irrigation (a) and a simulation where irrigation is limited by availability from groundwater and
rivers (b).

the groundwater and rivers and reducing the river flows compared with the simulation

that is not limited by availability (red lines); this is a promising result for future

work. There is little doubt that simulation of river flows in JULES would benefit from

a higher resolution river routing map than the 0.5◦ resolution currently available and

data regarding river flows and volumes extracted for irrigation are needed for evaluating

the model performance.
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Figure 5.4: JULES river flows averaged for the period 1991-2007 at point A in Uttar Pradesh
(a) and point B in Bihar (b) with unlimited irrigation (red lines) and irrigation limited by water
availability (blue lines). Note the differing scales on the y-axis.

5.5.2 Irrigation demand

Figure 5.5 shows the regional irrigation demand simulated by JULES for the states of

Uttar Pradesh and Bihar for the two main crop seasons: kharif during the monsoon

season (Fig. 5.5a) and rabi the dry season (Fig. 5.5b) for an unlimited irrigation

simulation, i.e. the irrigation is not linked to the rivers. JULES does not have an

irrigation efficiency parameter to allow for losses of water through leaks or evaporation

so the irrigation demand in JULES is assumed to be 100 % efficient. In reality India is

known to have a relatively low irrigation efficiency for surface water of approximately

38 % (Biemans et al., 2013). A simulation with limited irrigation, i.e. linked to rivers

is also shown in Fig. 5.6. Although the spatial patterns change slightly, there is very

little difference in the overall amounts between the simulation with limited irrigation

and the simulation where irrigation is unlimited. Rice is usually cultivated during the

wet kharif season in Bihar and Uttar Pradesh and is therefore not irrigated as much,

if at all in some parts of this region. However wheat, which is cultivated during the

dry winter in these states, usually requires irrigation. In these simulations JULES only

irrigates the wheat crop. Therefore irrigation in these simulations mostly occurs during

the rabi season with very little if any during the kharif season (Figs. 5.5 and 5.6). In

the limited irrigation simulation the irrigation takes resource from the groundwater and

then the rivers, which reduces the river flow across the region in Fig. 5.3b compared
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with Fig. 5.3a.

In the absence of observations of surface water extraction, comparing a limited

LPJml irrigation simulation (Fig. 6 from Biemans et al. (2016)) with the limited

irrigation JULES simulation (Fig. 5.6) suggests that the irrigation demand is lower

in JULES than LPJml. However it is difficult to establish more exactly because the

colour scales in Biemans et al. (2016) represent a wide range of values.
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Figure 5.5: JULES crop average irrigation demand for an unlimited irrigation simulation for
the kharif (a) and rabi (b) crop seasons for the period 1991-2007.

Biemans et al. (2013) estimate the total irrigation demand per year for individual

states including Bihar and Uttar Pradesh for the period 1971-2000. LPJml estimates

the total irrigation demand for Bihar to be just under 40 km3 year−1 and Uttar Pradesh

to be approximately 120 km3 year−1; again this includes an estimate of irrigation

efficiency. However it is not clear if this estimate is for an unlimited or limited irrigation

simulation, as both are mentioned but only one value is shown (in Fig A5 of Biemans

et al. (2013)). The values simulated in the 1991-2007 simulation using JULES are

comparable to these values, with a total irrigation demand for Bihar of between 37 and

42 km3 year−1 and for Uttar Pradesh of between 117 and 119 km3 year−1 for the two

simulations with both unlimited and limited irrigation, respectively.

The similarity between the JULES results and those shown for LPJml in Biemans

et al. (2013) and Biemans et al. (2016) are promising. However, given that JULES

assumes perfect irrigation, it might be expected that the irrigation demand simulated

by JULES should be considerably lower than those simulated for LPJml. This is likely

to be due to the way the two simulations are set up rather than the actual simulated
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Figure 5.6: JULES crop average irrigation demand for a limited irrigation simulation for the
kharif (a) and rabi (b) seasons for the period 1991-2007.

values. A key factor is the crop areas used: in LPJml the crop areas are from Ra-

mankutty et al. (2008) but in this JULES simulation it is assumed that every gridbox

in the two states is entirely used for the cultivation of rice and wheat. This, together

with the shorter time period of the JULES simulation, could mean the values are a

little higher than expected compared with the LPJml values. A cleaner comparison

between models would be beneficial, setting up JULES for the same time period and

WFDEI forcing data (Weedon et al., 2014) as that shown by (Biemans et al., 2016).

In addition, comparison between the JULES simulations with unlimited and limited

irrigation suggests that there are periods where the average regional irrigation demand

is higher for the simulation with limited irrigation than for the simulation with unlim-

ited irrigation (Fig. 5.7). Therefore it is also important to investigate this behaviour

further, establish the reason for this and check that the irrigation in JULES is working

correctly.

5.5.3 Crops

Figures 5.8 and 5.9 show the simulated crop LAI and canopy height respectively for

rice and wheat across Bihar and Uttar Pradesh for the simulation with unlimited irri-

gation; as expected the limited irrigation plots are similar to these and are therefore

not shown. These largely reflect the results from the India point simulations shown in

Chapter 4. The canopy height for both crops is broadly similar to each other and to
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Figure 5.7: The average regional irrigation demand for the rabi season for the Uttar Pradesh
region (a) and the Bihar region (b) for the simulation with limited irrigation simulation (blue)
and the simulation with unlimited irrigation (red) for the period 1991-2007.

the results from Chapter 4 (approximately 0.5-0.7 m), from west to east the canopy

height for rice increases while for wheat it reduces, but these differences are relatively

small (approximately 0.1 m). The LAI shows a similar pattern for the two crops but

the differences between crops are larger, with rice generally having a smaller LAI than

wheat. The magnitudes of the LAI and canopy height are similar to those for the point

simulations, i.e. JULES is producing wheat and rice crops with the broadly typical

LAI and canopy heights suggested by Penning de Vries et al. (1989).

The yields from JULES are compared against seasonal observations of yield for this

region from ICRISAT (2015) in Fig. 5.10 for the unlimited irrigation simulation. Fig.

5.10a shows the ICRISAT rice observations and Fig. 5.10b shows the simulation of rice

from JULES, both averaged for 1991-2007. The magnitude of the rice yields is lower

than the observations for Uttar Pradesh but higher than the observations for Bihar;

highlighting that JULES does not capture the observed reduction in rice yields from

west to east. The reduction in observed yields from west to east is also reflected in the

annual averages of the rice yields shown for the two regions with Uttar Pradesh shown

in Fig. 5.11a and Bihar in Fig. 5.11c. Figure 5.11 also highlights the variability in the

observed rice yields for these two states from year to year.

The observed wheat yields (ICRISAT , 2015), averaged for 1991-2007 are shown in

Fig. 5.10c with the JULES simulated wheat yield shown in Fig. 5.10d. JULES does

capture the observed reduction in yields from west to east for wheat. Similar to the

point simulations in Chapter 4, the wheat yields are underestimated for Uttar Pradesh,

but closer to observations for Bihar; this is reflected in the annual average crop yields
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Figure 5.8: JULES crop estimated LAI for rice (a) and wheat (b) averaged for the period
1991-2007
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Figure 5.9: JULES crop estimated canopy height for rice (a) and wheat (b) averaged for the
period 1991-2007

shown in Fig. 5.11b for Uttar Pradesh and Fig. 5.11d for Bihar.

Irrigation in these simulations is restricted to the wheat tile only, so differences
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Figure 5.10: A comparison of observed rice yields from ICRISAT (2015) (a) with JULES rice
yields (b) and observed wheat yields from ICRISAT (2015) (c) with JULES wheat yields (d)
for the period 1991-2007.

between limited and unlimited irrigation yields for wheat are expected. The wheat

yield for the irrigation simulation with limited irrigation returns typically lower yields

than the unlimited simulation (Fig. 5.11b and d), which is also to be expected. However

Fig. 5.11 also shows that there are small differences between the simulations of rice

yields between the unlimited irrigation and limited irrigation simulations, even though

rice is not irrigated at all in these simulations (Fig. 5.11 a and c). The differences

are small for Bihar and larger for Uttar Pradesh with larger rice yields simulated by

the unlimited irrigation simulation than the limited simulation. It is possible that the

application of unlimited irrigation, which is applied during the wheat season throughout

the crop season until harvest, means the soil remains wet into the rice crop season that

follows; this may be having a positive impact on the JULES rice yields.

5.6 Summary and next steps

The simulations and brief analysis presented in this chapter show that regional JULES

simulations that include: river flows, crop specific irrigation (both unlimited and limited

by availability) and sequential crops, are possible and produce plausible results for the

Uttar Pradesh and Bihar region. These simulations are a more complete representation

of the South Asia cropping system and irrigation than was previously possible with

JULES. Each of the components are an integral part of JULES, which will enable
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(a) Rice yield averaged across Uttar Pradesh
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(b) Wheat yield averaged across Uttar Pradesh
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(c) Rice yield averaged across Bihar
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(d) Wheat yield averaged across Bihar
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Figure 5.11: Annual average observed yields (ICRISAT , 2015) averaged for the state of Uttar
Pradesh for rice (a) and wheat (b) and the state of Bihar also for rice (c) and wheat (d) (black
lines). Two model simulations are also shown; a simulation with unlimited irrigation (red lines)
and a simulation with irrigation limited by availability (blue lines) for the period 1991-2007.

the interactions between the irrigation, river flows and crops to be investigated. The

regional analysis shown in this chapter has highlighted the next steps required to ensure

that JULES can provide useful, reliable results for understanding interactions between

the water and crop sectors (See Sect. 5.6.1). Ultimately the aim is to be able to

use JULES to understand the implications of the interactions between the water and

agriculture sectors on the demand for resources.

5.6.1 Next steps for regional impacts simulations

The first priority for furthering the work shown in this chapter is to estimate the areas

where these crops are currently being grown in the present day. In the simulations pre-

sented in this chapter, wheat and rice are assumed to be planted everywhere. However,

in order to provide a realistic estimate of the demand for resources, a more realistic

representation of where the crops are actually grown is needed. Given that observations

of crop area per district are available from ICRISAT (2015) and the area of each state

is known, estimation of the crop fraction within each district should be possible for a

large proportion of India for the present day.

Following this inclusion of a more accurate representation of crop areas, a second

priority is a comprehensive evaluation of the model for each sector. In order to do

this there is a need for more observations, either regional or site observations to ensure
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that the different elements of the model are being simulated correctly and working as

expected. Some examples of observations that would be useful for evaluating JULES

for these sectors and this region are given in Table 5.1. Current day model evaluation is

important for ensuring that the demands for resources are simulated correctly and for

the appropriate reason; this is important for the interpretation of and having confidence

in simulations of future climate change and the estimated demand for resources. For

example if the irrigation demand for the present day is within the range of observational

uncertainty, then assuming future demand is driven by the same mechanisms as today,

future projections of demand would be more likely to be reliable.

The sparsity of observation data especially for surface water extractions means that

comparison with other models is perhaps the only available option. Therefore another

priority is to repeat the simulations in Biemans et al. (2016) using JULES, i.e. JULES

simulations driven by WFDEI data (Weedon et al., 2014) for the period 1979–2009.

These WFDEI-JULES simulations would enable a cleaner comparison of the irrigation

demand between the LPJml and JULES models. This comparison could be extended

to include other models developed with a multisectoral approach in mind, thereby

contributing to a model intercomparison project specifically designed for modelling the

links between water and agriculture.

Finally, given that the ultimate aim is to use JULES to understand the implications

of interactions between water and agriculture on resources, another priority should be

the development of future simulations. Simulations of future resources require other

information, including estimates of how crop area and population could change. These

estimates rely on projections of future human behaviour, so several simulations that

capture a range of possible future land use scenarios are required.
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Sector Observation
type

Site
Region

Location frequency Other information

Water River flows Sites
- river
gauges

Current river
flows at known
locations along
SA rivers.

Daily,
monthly

Including information
on catchment area

Water Water stor-
age volume
and capac-
ity

Regional District, state
or country in-
formation

Annual,
monthly

Including whether sur-
face water or ground-
water. GRACE useful
on the country or catch-
ment level

Water Irrigation
extractions

Both Farm, dis-
trict, state
and country
information

Annual,
monthly,
seasonal,
daily

Daily useful for look-
ing at the distribution
of extractions through a
crop season

Water Irrigation
applica-
tions

Both Farm, district,
state, country

Annual,
monthly,
seasonal,
daily

Daily especially useful
at the farm level ide-
ally including number
of days after sowing.
ICRISAT provide irri-
gation area.

Water Irrigation
efficiency

Regional District, state
or country

Annual,
seasonal

Specifying if from
ground or surface water

Crops Yields Both Farm, district,
state or coun-
try

Annual or
Seasonal
(every
crop)

ICRISAT useful at the
regional scale

Crops Biomass Both Farm, district,
state or coun-
try

Daily,
monthly,
seasonal

Crops LAI Both Farm, district,
state or coun-
try

Daily,
monthly,
seasonal

MODIS with ICRISAT
for crop area of crop-
types. Subseasonal in-
formation for crop de-
velopment through the
season.

Crops Canopy
height

Both Farm, district
state or coun-
try

Daily,
monthly,
seasonal

Crops Varieties of
Crop

Both Farm, district
and state

Seasonal Including thermal time
information

Crops Key de-
velopment
dates

Both Farm, district
and state

Daily
through
each season

Including number of
days after sowing that
crop emerges, flow-
ers, reaches maturity,
harvest

Table 5.1: A list of observations that would be helpful for model evaluation.
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Y. Masaki, F. T. Portmann, Y. Satoh, T. Stacke, Q. Tang, Y. Wada, D. Wisser,
T. Albrecht, K. Frieler, F. Piontek, L. Warszawski, and P. Kabat (2014), Multi-
model assessment of water scarcity under climate change, Proceedings of the National
Academy of Sciences, 111 (9), 3245–3250, doi:10.1073/pnas.1222460110. 5.1

Schwanitz, V. J. (2013), Evaluating integrated assessment models of global
climate change, Environmental Modelling & Software, 50, 120–131,
doi:10.1016/j.envsoft.2013.09.005. 5.1

Simmons, A., S. Uppala, D. Dee, and S. Kobayashi (2007), Era-interim: New ecmwf
reanalysis products from 1989 onwards., ECMWF Newsletter - Winter 2006/07, 110,
25–35. 5.2

Slingo, J. M., A. J. Challinor, B. J. Hoskins, and T. R. Wheeler (2005), Introduction:
food crops in a changing climate, Philosphical Transactions of the Royal Society B:
Biological Sciences, 360, 1983–1989, doi:10.1098/rstb.2005.1755. 5.1

van Vuuren, D. P., J. Lowe, E. Stehfest, L. Gohar, A. F. Hof, C. Hope, R. Warren,
M. Meinshausen, and G.-K. Plattner (2011), How well do integrated assessment mod-
els simulate climate change?, Climatic Change, 104 (2), 255–285, doi:10.1007/s10584-
009-9764-2. 5.1

Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo (2014),
The wfdei meteorological forcing data set: Watch forcing data methodology ap-
plied to era-interim reanalysis data., Water Resources Research, 50 (9), 7505–7514,
doi:10.1002/2014WR015638. 5.5.2, 5.6.1

Zessner, M., M. Schönhart, J. Parajka, H. Trautvetter, H. Mitter, M. Kirch-
ner, G. Hepp, A. Blaschke, B. Strenn, and E. Schmid (2016), A novel inte-
grated modelling framework to assess the impacts of climate and socio-economic
drivers on land use and water quality, Science of The Total Environment, 579,
doi:10.1016/j.scitotenv.2016.11.092. 5.1

182

http://dx.doi.org/10.1073/pnas.1222471110
http://dx.doi.org/10.1007/s003820050009
http://dx.doi.org/10.1073/pnas.1222473110
http://dx.doi.org/10.1029/2007GB002952
http://dx.doi.org/10.1006/anbo.1996.0132
http://dx.doi.org/10.1073/pnas.1222460110
http://dx.doi.org/10.1016/j.envsoft.2013.09.005
http://dx.doi.org/10.1098/rstb.2005.1755
http://dx.doi.org/10.1007/s10584-009-9764-2
http://dx.doi.org/10.1007/s10584-009-9764-2
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.1016/j.scitotenv.2016.11.092


Chapter 6

Discussion, conclusions and

future work

This final chapter begins by providing a thesis summary (Sect. 6.0.1) followed by

discussion (Sect. 6.1), conclusions (Sect. 6.2) and suggestions for future work (Sect.

6.3).

6.0.1 Thesis summary

In Chapter 2, analysis of river flows in the climate model simulations for 1970-2100

showed a potential increase in water resources for the northern basins of India, with

river flow rates at some of the gauges almost doubled by the end of the century. These

increases in river flow occur for the gauges in the Ganges/Brahmaputra basin, which

also shows an increasing trend in both evaporation and precipitation. Therefore the

changes in river flow are likely to be mainly driven by precipitation on the annual

scale which more than counters the evaporation caused by increasing temperatures

in the model. This is consistent with other analyses of precipitation which also use

the A1B climate scenario (Nepal and Shrestha, 2015) and more recent analyses by

Betts et al. (2018). SA is a location of intensive agriculture with extensive irrigation

systems. However the RCM in this analysis does not include irrigation and crops, these

are needed to fully understand how the demand for water resources could change in

this region in the future. JULES-IM includes representation of crops and irrigation;

therefore using the RCM data within JULES it is possible to look at the effects of crops

and irrigation on the land surface.

In Chapter 3, the close relationship between SA sowing and harvest dates and the

ASM is exploited to propose and demonstrate a method for calculating the sowing and

harvest dates for the SA region. Crop simulations require accurate input data that

ensures the crops are being grown at the correct time of the year. This is usually

in the form of a sowing window or sowing date together with a harvest date or an

estimate of the growing period. Global datasets are often coarse resolution and make
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compromises based on climatology. As a result these datasets are not always able

to distinguish when wheat is grown in tropical and sub-tropical regions; leading to

simulations growing crops during the wrong season, which affects the reliability of the

simulated water use and crop yield. The crop calendar for the SA region is closely

related to the monsoon period; for example, rice sowing dates particularly are very

closely aligned with monsoon onset. Although there is more uncertainty regarding rice

harvest and wheat sowing and harvest dates as these are not as closely associated with

the monsoon rainfall, there is still a relationship. The method presented assumes that

the agricultural practices remain dependent on the monsoon in the future. Given this

assumption, the method can be used to estimate the crop seasons for future simulations;

demonstrated in Chapter 3 for two future periods. The method adjusts the sowing and

harvest dates according to the timing of the monsoon to ensure that the crops in the

future simulations are still sown at the optimum time of year.

Most LSMs only simulate one crop per year, however there are many regions that

use sequential cropping systems (also referred to as double or multiple cropping). These

cropping systems make the most efficient use of limited resources and space to maximize

yield potential and lower the risk of complete crop failure. Previously Biemans et al.

(2016) represented sequential cropping in LPJml by joining two simulations together,

while Waha et al. (2013) changed the growing seasons in LPJml so that there was no

overlap between crops in Africa. In Chapter 4 a sequential cropping method is described

and implemented in a branch of JULES at vn5.2 to enable the continuous simulation

of two crops in each year. This method is demonstrated and evaluated at Avignon

and four locations across Uttar Pradesh and Bihar, a major rice–wheat producing area

of northern India. In Chapter 4 the results show that JULES successfully simulates

two crops in rotation at the Avignon site and the four locations across Uttar Pradesh

and Bihar, producing maxima of LAI, canopy height and biomass at approximately the

correct times of the year. For Avignon, where detailed observations are available, the

JULES fluxes correlate well with the observed fluxes of GPP, H and LE (r values of

above 0.7). In general JULES underestimates biomass and yields in these simulations,

which is consistent with results shown in Osborne et al. (2015); this could be reduced

in some cases, by implementing a yield gap parameter.

All of the developments within this thesis have been brought together in two in-

tegrated simulations presented in Chapter 5. These integrated simulations show the

progress that has been made towards the representation of the impacts of climate on

water (river flows and irrigation) and agriculture (crops) in a single simulation, i.e.

modelling multiple related sectors at once and allowing them to affect each other.

These first regional simulations include sequential cropping and selective irrigation for

the same two states included in Chapter 4: Uttar Pradesh and Bihar. The method

for estimating sowing and harvest dates (including for regions where observations are

sparse), developed in Chapter 3, is used to calculate the thermal time requirement for
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the rice–wheat crop rotation in which only wheat is irrigated (Chapter 4). In one sim-

ulation irrigation is limited which means it is linked to rivers and groundwater; in the

other, irrigation is unlimited, which means it is not linked to the rivers.

These two 17-year regional simulations for Uttar Pradesh and Bihar have demon-

strated that JULES is now closer to being able to simulate impacts for SA for multiple

sectors. Although these initial simulations show some promising results, there are as-

pects that require further investigation, particularly regarding the representation of

irrigation. More observation data is needed to evaluate each of the individual model

components included in these regional simulations; for example river flows and surface

extractions to ensure that the model is simulating both the present day demand and

available water resource correctly. Water resource and usage data is difficult to ac-

quire for SA. Area crop yields, crop areas and irrigation area data are available from

ICRISAT (2015). However it would also be useful, in addition to this, to have site data

for SA crop sites to evaluate modelled crop characteristics against observations for each

of the growing stages. This would allow a thorough evaluation of the water and crop

aspects of JULES to ensure they are simulating each of these elements correctly for the

present day. Section 6.3 summarizes all of the recommendations for future work from

all of the chapters.

6.1 Discussion

SA is a complex region, both in terms of its environment (specifically climate and

orography) and socioeconomics. A large population and dependence on industries with

a high demand for water, make SA vulnerable to changes in climate. SA depends on

the ASM for much of its fresh water each year, with water resources for agriculture of

key importance for economic prosperity and food security. However, the simulation of

the monsoon remains a challenge for the climate modelling community, with a large

spread in simulations and significant overlap between the CMIP3 and CMIP5 ensembles

(Sperber et al., 2013). Sperber et al. (2013) finds that no one model simulates the

monsoon better than all the others, with different models able to simulate different

aspects of the monsoon. In this thesis, GCMs that provide a reasonable estimate of

the monsoon precipitation climatology (Annamalai et al., 2007) are used to provide

boundary conditions for an RCM. The RCM is then used to prescribe the SA climate

and hence the monsoon, for simulations using both river routing and the JULES model.

JULES in this context is the standalone land surface model also used in the UK Met

Office models. There are now more model simulations available for this region, with the

output variables needed to run JULES, which increases the opportunities for further

analysis of this region.

The ASM provides the water resource for much of SA throughout the growing sea-

son, which begins with the start of the monsoon. A major feature of the SA growing
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season is the cultivation of more than one crop per growing season; this is referred to

as sequential or multiple cropping and can be simulated in JULES using outputs from

this thesis (Chapter 4). The use of the sequential cropping system will have an impact

on the amount of water needed for the crops to grow successfully. To understand water

resources, there needs to be a seamless simulation of the whole SA growing season,

incorporating all of the crops grown (and the resources they need), from the start of

one monsoon to the next. This more integrated approach to simulating water and agri-

culture allows climate to affect both aspects of the land–surface simultaneously and

for each to influence each other. Ultimately avoiding the need to arbitrarily separate

out two aspects of the land-surface that are intrinsically linked, while improving under-

standing of the interactions between these climate impacts (Betts, 2005, Falloon and

Betts, 2010).

The JULES developments presented in Chapter 4 also highlight the large number

of parameters that define a range of other crop characteristics, which may also be

important for simulating SA crops. For example, the stage of the crop development

at which senescence begins. In Chapter 4 the start of senescence is defined as the

point at which the development index (DVI) is 1.5, which is the same setting as used

in Osborne et al. (2015). This DVI may not be appropriate for some crops grown in

SA, particularly for wheat, which is grown during the rabi or dry season. Towards

the end of the rabi season, the temperature increases rapidly. High temperatures tend

to accelerate senescence (Penning de Vries et al., 1989), thereby affecting the rate of

grain filling and the rate of senescence in the model. Previously, the default setting for

the start of senescence (DVI=1.5) was found by Williams et al. (2017) to be too late

and the process progressed to quickly for a maize site in Nebraska (prior to tuning to

observations from that site). The crop characteristics (such as LAI and canopy height)

shown for both the point simulations (Chapter 4) and the regional simulations (Chapter

5) of Uttar Pradesh and Bihar are plausible compared with an average crop described

in Penning de Vries et al. (1989). However, there may be specific characteristics of

India spring wheat varieties that could modify the allocation of carbon to different

parts of the crop, affecting for example: the number or density of leaves; the depths of

the roots or the thickness of the stem.

In this thesis, the irrigation scheme is modified so that only one crop can be irrigated

at once but the scheme itself is not changed, i.e., the irrigation season is determined

by maximum dvi. Therefore the crop model must be switched on and the DVI must

be greater than 0 for irrigation to occur. All schemes in JULES assume that crops

access water from the top two soil layers and that this is sufficient to reduce water

stress. In the regional simulations (Chapter 5), rice is not therefore irrigated during

the monsoon. However, this is likely to depend on location, with some regions irrigated

during monsoon breaks and also accessing water from deeper than the second soil layer.

In addition, irrigation in JULES is applied consistently throughout the crop growing
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season. However, irrigation in SA is often applied at particular times throughout the

growing season. To facilitate more focussed development of the irrigation scheme and

ensure that SA irrigation is being modelled correctly, knowledge of when and where

water is applied through the growing season is needed. It may also be relevant to know

the depth the water is being added, especially if it is not typically added to the top two

soil levels.

The input data for SA crops in JULES is important to ensure that the crops are

being grown at the appropriate time of the year, even where there are few observations

available. The method shown in Chapter 3, is flexible, does not require much data and

can be easily applied to a wide range of climate model data. This will be particularly

useful for future climate simulations and looking at alternative adaptation options

The regional simulations that are presented as prototype simulations in Chapter 5

use ERAinterim to provide boundary conditions to the HadRM3 RCM. ERAinterim,

like the other GCMS in this thesis (ECHAM5 and HadCM3) and the RCM, will have

biases due to the representation of processes or resolution. Therefore, these data are

often the focus of bias correction before being used in impacts models like JULES. In

this thesis no bias correction is applied; therefore the outputs from JULES will carry

the errors from the models further up the model chain, in the same way as they would

if the process was completely integrated. In RCM simulations based on the HadGEM3

model, which use JULES as the land-surface scheme in place of MOSESv2.2, there will

be more consistency between the RCM and JULES. As a first step to simulate crops

and irrigation as an integrated part of the land-surface for policy relevance, it would

be a major recommondendation for the design of the integrated impacts experiment to

include an RCM with JULES as the land-surface.

6.2 Concluding remarks

This thesis has produced prototype regional integrated impact simulations (Chapter

5) focusing on two sectors: agriculture (crops) and water (river flows and irrigation).

These integrated simulations allow the climate and irrigation to simultaneously af-

fect both river flows and crops; these are some of the interactions summarized in Fig.

1.1. These simulations represents a significant step towards fully integrated impacts

simulations. However the simulations presented in Chapter 5 do not allow the sur-

face to influence the atmosphere as this would require a fully coupled climate model

that includes hydrology and crops. The development of integrated SA simulations has

required the inclusion of the sequential cropping system in JULES (Chapter 4); this

makes JULES one of the few models with this capability. Including sequential cropping

will improve the representation of surface fluxes over croplands that use this cropping

system and when combined with accurate climate data and crop parameterizations will

provide improved estimates of the use of resources.
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Sequential cropping is a common cropping system across the world, making this

development useful for many other regions; for example Brazil and Africa. However for

regions like Africa, data for setting up crop models is often scarce. For these regions

with limited data availability, the method for calculating sowing and harvest dates

using dominating climate phenomena (Chapter 3) may also be applicable; especially

where there is evidence that the crop seasons and regional climate are closely aligned.

This thesis has focussed on SA but these developments could be applied to any relevant

region, potentially shortening the time required for developing integrated impacts sim-

ulations. To develop simulations for another region where little or no observations are

available, knowledge of the dominating climate phenomena and its relationship with

crop seasons would be needed to calculate the sowing and harvest dates. The different

crops that are used within a region would also need consideration; balancing the need

for new crop parameterizations against using existing crops already in the model.

6.3 Recommendations and Future work

The next steps for developing understanding of the impact of climate for SA fall into

three main categories. Broadly these areas are model evaluation, model development

and simulations of future climate. This section discusses each of these in order of

priority starting with model evaluation discussed in Sect. 6.3.1, followed by model

development in Sect. 6.3.2 and finally future simulations in Sect. 6.3.3.

6.3.1 Model evaluation

Model evaluation is the one of the most immediate considerations for future work es-

pecially for the regional simulations presented in Chapter 5. This relies on having

appropriate data with sufficient detail for a relevant period. This data may be a mix-

ture of both site and regional data because the availability of data is not consistent

across different geographical or subject areas. For SA particularly, past river flow data

is available but rarely for the present day. Most rivers in SA flow through several coun-

tries, crossing many state borders. Each state is responsible for the river(s) in their

jurisdiction, in terms of its use and development, which makes water resource and river

flow a state subject (Jain and Kumar , 2014) and therefore not readily available. This

restriction also applies to extractions for irrigation particularly regarding surface water

extractions although there is more information available on groundwater and data is

available from GoI (2011).

Observations of water extracted for irrigation or irrigation amounts applied would

be useful for establishing that the irrigation is working correctly and to check that

the model is applying a realistic amount of water to the soil. In Chapter 5 there

were increases in rice yields for the unlimited irrigated simulation compared to the

limited simulation despite only wheat being irrigated in both of these simulations. The
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hypothesis proposed is that the soil, irrigated during the wheat season remains wet into

the following rice season; increasing the following season rice yields. This is more likely

to be the case if too much water is added to the soil during the wheat season. The

regional analysis in Chapter 5 also highlighted that the irrigation demand is sometimes

higher when irrigation is linked to the rivers compared with a simulation that includes

irrigation that is not linked to rivers. Further work is needed to understand both of

these aspects of irrigation in these simulations.

There is more information on crop yields from India particularly via ICRISAT

(2015), which is a valuable resource. However yields can occur for a variety of rea-

sons. It would be beneficial to have observations for all stages of the crop development

throughout the crop cycle, to ensure that the model captures the observed stages of de-

velopment; accurate simulation of the different development stages could be important

for calculating the use of resources. Site information is also useful for model evalua-

tion, although care must be taken in using it where a model is intended for regional or

global use. Challinor et al. (2018) highlight the need for models to be evaluated using

historical observations from a range of different sources to avoid overtuning to one site

or crop characteristic; these observations should include, but not be limited to yields

alone. Given the wealth of observations at the Avignon site used in Chapter 4, but with

this note of caution in mind, the Avignon simulation of winter wheat and sorghum in

Chapter 4 indicated some biases in the LAI and biomass for winter wheat. It would be

interesting to revisit this work at Avignon, replacing the spring wheat parameterization

used in Chapter 4 with a winter wheat parameterization to see if this reduces these

biases and improves the simulations. However, additional sites would also be useful to

evaluate the model for a wide range of environments, crops and conditions (Challinor

et al., 2018).

The analysis of four locations across the Indian states of Uttar Pradesh and Bihar

in Chapter 4 highlighted differences both in observed and simulated yield from West to

East that were also evident in the regional simulations of the same area (see Chapter

5). More crop specific data, similar to Avignon, but for individual locations across

SA; such as those suggested in Table 5.1 would facilitate further investigation into

the reasons for differences in both observed and modelled yields between locations.

Understanding if the differences between yields are influenced more by differing land

management practices than missing processes in the driving data would be useful for

planning other similar simulations. For example, if the differences in the model yields

are due to a lack of irrigation in the driving data this suggests that future simulations

should take account of this; particularly given the potential influence that evaporation

from irrigated croplands has on the regional climate (Tuinenburg et al., 2014). However

it would also be beneficial to separate out the influence of the differing management

practices across these two states to quantify its effect on observed yields. Williams

et al. (2017) describes using the fyield parameter to account for different management
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practises at different locations within JULES.

Large projects like ISIMIP and AgMIP are extremely useful for understanding how

models differ and evaluation against other models. The focussed studies that are part

of AgMIP are also a particularly useful resource in developing understanding of the

more detailed processes in models. Although JULES was not included in the original

AgMIP wheat pilot simulations (Asseng et al., 2015) the availability of data to run

these simulations retrospectively is a useful resource of site specific data. Ensuring

JULES is included in future projects like ISIMIP and AgMIP in future would be ben-

eficial in terms of furthering understanding of the JULES model and focussing model

development. It would be also be interesting to explore using higher resolution driving

data to run the regional integrated JULES simulations presented in this thesis. For

example using the 12 km reanalysis data product described by Mahmood et al. (2018);

this is an India reanalysis product that captures the main areas and the intensity of

precipitation over India throughout the monsoon period.

6.3.2 Model development

This section focuses on the model developments that are needed for simulating the im-

pacts of climate on the SA region; highlighted by the research presented in this thesis.

It is not intended to be an exhaustive list of all the different model developments needed

for the whole of JULES. For example further information on the JULES community

wide effort to improve the representation of water stress in JULES are provided in

Harper et al. (in preparation) and Williams et al. (2018). In addition, the particular

development priorities for JULES-crop are provided in a number of deliverables from

the Brazil Climate Science to Services Project (CSSP–Brazil; Falloon et al., 2017, Fal-

loon, 2018); these include for example linking JULES-crop to the nitrogen cycle and

additional or improved crop parameterizations. Model developments useful for the SA

region are:

• Including representation of glaciers: A representation of glaciers in JULES would

be beneficial for simulating river flows more accurately for SA. Implementing the

scheme presented by Shannon et al. (2019), currently in a branch of JULES into

the main JULES code and incorporating it into regional simulations that included

the high Himalaya would be important especially for the lower river flows outside

of the monsoon period.

• A higher resolution river routing map: The current river routing map is 0.5◦,

which is quite coarse resolution. A higher resolution river routing map would

improve the representation of river flows and possibly mean that JULES no longer

needs to regrid the climate data onto the river grid and then back to the climate

grid. Assuming the existing global river routing map is replaced this development

would be beneficial across other regions too.

190



§6.3 Recommendations and Future work 191

• Inundation and flooding are very important for large parts of SA, with parts of

Bangladesh and north eastern India flooding almost annually. Therefore including

representation of inundation in SA regional simulations for simulating the impacts

of climate on agriculture and water would be an extremely useful next step for

this work.

• The SA region has seen a great deal of development along the river network

including the building of dams for purposes of hydroelectric power generation.

Including this type of information in the model would also be beneficial for un-

derstanding the water resources available for people and agriculture. Global dam

and reservoir information would have a positive impact across regions other than

SA.

• Including representation of the irrigation efficiency in JULES either by country

as in Biemans et al. (2016) or by state if available. This would allow comparison

of JULES with extraction data. The irrigation scheme could also be developed to

include management practices for a region where a specific amount of irrigation

water is applied across a given area, with applications on particular days after

sowing e.g an irrigation calendar. Setting up and evaluating a scheme like this

would probably require detailed irrigation information and may not be applicable

across large regions.

• Including representation of heat stress in the crop model. Currently crop yields

are only affected by extreme temperatures in JULES through a slowing of the

crop development. In reality extreme temperatures at critical times could actu-

ally cause complete crop failure and therefore no yield at all. Given that temper-

atures in SA already high and projected to increase further due to climate change

this is likely to an important feature of crop models for future projections. This

development is likely to be useful across multiple regions, especially where tem-

peratures are already at or close to the biological maximum for crops (Gornall

et al., 2010).

Many of the developments described above are likely to be useful for other regions,

particularly tropical regions with similar challenges to SA in terms of climate change,

resources (e.g. water) and population growth. The order of priority for these develop-

ments would be different depending on the region and the question being asked. Unlike

SA the representation of glaciers is not a priority for regions such as Africa or Brazil.

The type of crops will also vary according to region, where rice/wheat dominate in SA,

crops like sorghum/cassava may be the priority in Africa and maize/soybean/sugarcane

for Brazil. The growing importance of heat stress is likely to improve the accuracy of

simulations across the tropics helping to understand the likelihood of crop failures or

years of lower yields for simulated crops; this is therefore a high priority development.
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A better representation of water resources for a region will be possible by including

higher resolution rivers, representation of flooding/inundation and including dams and

water storage. For regions where flooding is almost an annual event such as Bangladesh,

understanding the future frequency of inundation and flooding events could be a higher

priority than heat stress on crops; having the potential to completely devastate not only

crops but livelihoods, homes and infrastructure.

6.3.3 Simulations of future climate

Setting up future simulations, either for the Uttar Pradesh and Bihar region presented

in Chapter 5 or for the whole SA region, would need to include additional input data to

provide a realistic representation of the demand for resources. This is also not intended

to be an exhaustive list but these have been highlighted by the research presented in

this thesis.

• Crop areas: In the regional simulations presented in Chapter 5 it is assumed

that wheat and rice are grown in every gridbox every year. For developing an

understanding of demand for resources it is necessary to have a realistic estimate

of where the crops are actually grown. Developing realistic crop areas for the

present day using observed cropping areas is possible for SA using the ICRISAT

(2015) data. However developing these into plausible future crop areas is a bigger

challenge. Datasets do exist for this purpose for example the Land-use Harmo-

nization 2 project (LUH2; Hurtt et al., 2011), originally developed for the fifth

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change

(IPCC) and now also being used in the coupled model intercomparison project

(CMIP6) simulations.

• Crop thermal time requirements: JULES requires as input thermaltime require-

ments for each gridbox; these would need to be calculated for future simulations

based on the temperature climatology in the driving data as described in Osborne

et al. (2015).

• The 25km HighNoon simulations in use in this thesis are based on the HadCM3

GCM, an AR4 generation model. It therefore does not include many of the

processes from more recent developments that have been implemented into newer

ESMs (e.g. aerosols). Janes et al. (2019) describe new 25km simulations, for a

larger domain (but including the HighNoon domain). These new RCMs use the

same RCM (HadCM3) to downscale three CMIP5 models for the period 1970-

2100. It would be interesting to add these new simulations to the HighNoon

RCMs to produce a 5-model SA region ensemble for studying climate impacts.
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