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Abstract

Pharmaceuticals have been identified as emerging contaminants of concern due to their
widespread occurrence in the aquatic environment and potential to be biologically active,
yet the implications of their presence in the environment is not fully known. There is a
plethora of pharmaceuticals commercially available making it unfeasible to carry out
detailed investigations on all of these compounds, and prioritisation schemes can provide
a useful tool to determine how best to direct resources. Different prioritisation schemes
were carried out on the fifty most prescribed drugs in the UK, and their results were
compared in order to assess the efficacy of these schemes. Many failed to accurately
identify these risks, but a holistic approach using more than one method to generate a
priority list of compounds, may provide better protection for the environment. To date,
most monitoring and ecotoxicological studies have focused on pharmaceuticals in
freshwater, and there is less understanding of their occurrence and effects in estuaries.
In order to gain insight into their spatio-temporal patterns, five pharmaceuticals were
monitored in the Humber Estuary every other month for twelve months. Patterns in their
spatial and temporal occurrence were related to source points, consumption patterns
and environmental conditions. Eleven further estuaries were monitored to give an overall
picture of pharmaceutical pollution in the UK. The Humber Estuary contained highest
levels of pharmaceuticals and concentrations of ibuprofen were the highest measured
globally. Finally, ragworms (Hediste diversicolor) were exposed to diclofenac and
metformin in a controlled experimental exposure, and the expression of selected target
genes, ATP synthase and c-amp activated protein kinase was measured. Highest levels
of metformin (1 pg I't) were found to significantly increase expression of ATP synthase,
indicating that this drug induces environmental stress in H. diversicolor. Overall, this body
of research has further contributed to the knowledge of pharmaceuticals as emerging
contaminants in estuaries, and information on the occurrence, current levels and
biological effects of the drugs studied may be of interest to regulators in their

management decisions for such environments.
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Chapter 1: Introduction

This introductory chapter seeks to place the thesis into context by providing background
information and reviewing previous research conducted on pharmaceuticals as emerging
contaminants. Pharmaceuticals are consumed in large quantities, with annual production
for the most widely consumed pharmaceuticals in the kiloton range (Beretta et al. 2014).
The average global per capita consumption is 15 g of drugs per day with developed
countries consuming 3 - 10 times more pharmaceuticals than less economically developed
ones (Pal etal. 2010). In addition to compounds used in human medicine, pharmaceuticals
are also available for veterinary use (Capleton et al. 2006). Pharmaceuticals are unique
contaminants, as they are designed to be biologically active, and are therefore likely to
have an effect in non-target organisms (Kuster and Adler 2014). This review aims to bring
together research on the occurrence and ecotoxicology of pharmaceuticals in the marine

and estuarine environments and identify potential knowledge gaps.

Pharmaceuticals have the potential to enter the aquatic environment as a mixture of parent
compounds, metabolites and transformation products (Backhaus 2014). After
consumption, a proportion of the drug is used by the body, and then is excreted into the
sewage system via urine and faeces (Figure 1.1; Hutchinson et al. 2014). Topical
pharmaceuticals may also enter sewage systems after being washed off or directly into
the aquatic environment (Ruhoy and Daughton 2008). It has been estimated that
approximately 30% of topical ointments applied to the skin will be washed off and not
absorbed into the body, however, these products only make up a small proportion of
pharmaceuticals available on the market (Bound and Voulvoulis 2006). Some
pharmaceuticals, such as sertraline, are excreted as less than 1% of the parent compound,
whereas other such as gabapentin are excreted largely unchanged (Drugbank, 2018).
Drugs may also enter sewage through improper disposal of unused or out of date
pharmaceuticals, however, data is insufficient to determine if this is a significant route of
entry (Ruhoy and Daughton 2008). Bound and Voulvoulis (2005) found 64% of surveyed
people in the US had disposed of medicines through household waste, and the amount of
incorrectly disposed pharmaceuticals is estimated to be as high as 2.3% of those sold in
the US (Ruhoy and Daughton 2008). Wastewater treatment plants (WWTPs) may further
remove some pharmaceuticals through bacterial degradation, UV degradation or
absorption to sludge (Boreen et al. 2003; Cuong et al. 2011). Pharmaceuticals have
different sorption properties and those with a low sorption coefficient (Kq) are more likely

to enter the environment as they will not bind to suspended solids as easily (Liu et al.



2013). Biodegradation is the most prominent form of removal in WWTPs, with sludge
retention time and compound structure, the most important factors in determining the
efficiency of this (Sipma et al. 2010). Even the most advanced WWTPs will be unable to
completely remove all pharmaceuticals, which can lead to the continuous input of low
levels into the aquatic environment (Fabbri 2015). 41% of the global population lives in
coastal areas, and as a result, a high amount of sewage is being released into coastal
waters or estuaries (Gaw et al. 2014). Sewage may also be discharged from ships and
cruise liners, therefore there is the potential for drugs to be found in marine waters further

from the coast, however these concentrations are likely to be small (Backhaus 2014).

Agriculture and aquaculture provide another route of entry into the aquatic environment
(Figure 1.1; Pal et al. 2010). Many of the pharmaceuticals used in these industries,
particularly antibiotics are also registered for human use (Kim et al. 2016). Veterinary
pharmaceuticals also have the potential to enter the aquatic environment and pose a
threat. However, the scope of this review will only focus on those which are registered for
human use. In offshore aquaculture, up to 75% of medicines administered can be lost to
surrounding waters and in some areas of Asia, fish in aquaculture are fed with treated
sewage sludge, which will contain low levels of pharmaceuticals (Gaw et al. 2014). The
spreading of manure contaminated with pharmaceuticals, and runoff from agriculture can

also contribute to their entrance into the aquatic environment.

Figure 1.1: Diagram outlining the sources of pharmaceuticals in the aquatic environment.
Pharmaceuticals can enter the aquatic environment through the manufacturing process, human

consumption, improper disposal, aquaculture, run off from agriculture and the spreading of manure.



Once in the aquatic environment, pharmaceuticals may absorb to sediment or suspended
particles, enter biological organisms or be further degraded or transformed (Yang et al.
2011; Liu et al. 2013). In surface waters, photodegradation is the most efficient form of
removal, as itis likely that many of the pharmaceuticals present have already experienced
biodegradation in WWTPs and will therefore be resistant to this (Boreen et al. 2003; Cuong
et al. 2011). The efficiency of photodegradation depends on the chemical structure of the
compound and light intensity, and therefore is likely to be more efficient in some seasons
and geographical areas than others (Cuong et al. 2011). Sorption to sediment is the other
main method of pharmaceutical removal from surface waters, however, there is limited
data on the fate of pharmaceuticals once they reach aquatic sediment (Maskaoui and Zhou
2010; Liu et al. 2013). They are likely to become bioavailable to different organisms, but
depending on the biogeochemistry may become buried or resuspended (Beretta et al.
2014).

There are many parameters which can affect the partitioning of pharmaceuticals between
water and sediment (Oh et al. 2016).Pharmaceuticals with a high molecular weight and
high octanol-water partition coefficient (Logkow) are less soluble and more easily sorbed
to sediments. However, this is not the only predictor of sorption to sediment, and
pharmaceuticals with a low logkow, such as trimethoprim (logkow <1), have been detected
in sediments (Lara-Martin et al. 2014). This partitioning of pharmaceuticals between
sediment and water is not only determined by chemical properties, but also environmental
factors, and sediment properties. Pharmaceuticals often have one or more ionisable
groups and the ionisation of these compounds is often pH dependent (Martinez-
Hernandez et al. 2014). As a result, sorption to sediment can also be influenced by water
and sediment pH. When the pH of a compound is less than its dissociation constant (pKa)
then it will be protonated, and more likely to absorb to sediment (Yamamoto et al. 2009).
As a result acidic (pKa < 7) pharmaceuticals such as ibuprofen and diclofenac have
showed lower affinity to bind to suspended solids in the environment in comparison to
compounds with basic characteristics such as antidepressants (Zenker et al. 2014; Oh et
al. 2016). For instance, ibuprofen has a pKa of 4.5 and in experimental studies, has been
shown to have a higher sorption tendency to sediment with a pH below this, and almost
no sorption to sediment at pH 7 due to increased solubility and decreased logkow (Oh et
al. 2016). A linear relationship between the organic content of sediment and the Kp of a
compound has been observed. Al-Khazrajy and Boxall (2016) assessed the sorption
behaviour of amitriptyline, atenolol, cimetidine, diltiazem and mefenamic acid to ten types
of sediment and found that there was a positive relationship between sorption of cimetidine

(pKa 6.8) to the organic and clay content of sediment, as the result of a greater presence



of the neutral form fraction. These characteristics will also influence the uptake of
pharmaceuticals by aquatic organisms. Logkow IS often used as a predictor of
pharmaceutical bioaccumulation, however, due to the ionisation of these compounds, is
often found to be inaccurate, and the potential for bioaccumulation of pharmaceuticals is
dependent on pH (Schreiber et al. 2011). Whilst lipophilicity of pharmaceuticals plays a
role in the uptake of pharmaceuticals, this can differ between tissue type and organisms
(Moreno-Gonzélez et al. 2016; Ojemaye and Petrik 2019).

Current research on the fate of pharmaceuticals in the aguatic environment has focused
on freshwater. However, this may not be transferable to the marine and estuarine
environments due to different physical-chemical properties (Gaw et al. 2014). Changes in
pH and salt within an estuary will have an influence on the ionisation of many compounds
which can lead to changes in solubility and sorption (Fabbri and Franzellitti 2016).
Typically, seawater has a pH of 8, which may increase the lipophilicity of compounds,
leading to enhanced affinity to be absorbed to sediment or taken up by organisms.
Additionally, the increased salt content will decrease the solubility of neutral compounds
as the result of the salting-out effect (Turner 2003). Tides and currents are key process in
these environments and are likely to play a role in the transport of pharmaceuticals,
changes in pH, and interaction of pharmaceuticals with suspended sediment (Zhao et al.
2015).

1.1 Prioritisation of pharmaceuticals

In 2004 the first pieces of legislation (2004/27/EC and 2004/28/EC) to require an
environmental risk assessment (ERA) for pharmaceutical compounds came into effect,
requiring an ERA assessment to be completed for all new marketing authorisation
applications under regulation for Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH; Adler et al. 2008). Under REACH, an ERA must include an
assessment on the risk and hazards of the given compound in aquatic and terrestrial
compartments (Tarazona et al. 2007). A risk-benefit analysis for veterinary drugs was
introduced where compounds could be banned from use if the environmental risks
outweighed the potential benefits, however, the benefit to human medicine is always seen
to outweigh the potential environmental risks (Kuster and Adler 2014). Under this
legislation, ERAs must include an assessment of the amount of the compound in different
compartments (e.g. freshwater, terrestrial and marine environments) and if a trigger level
is reached an assessment on the risk to biota in these compartments must be undertaken
(Tarazona et al. 2007). In the aquatic environment this usually comprises of predicted no

effect concentrations (PNEC) or acute toxicity tests with Daphnia magna, green algae and



zebrafish (Danio rerio; Tarazona et al. 2007). Prior to this, compounds were released into
the environment unregulated with little to no knowledge of their potential hazards (Roos et
al. 2012). Currently, human pharmaceuticals must be disposed of through hazardous
waste, but there are not any regulations surrounding their usage and environmental
consequences. Since this legislation came into effect, approximately 10% of
pharmaceuticals were found to pose an environmental risk (Kuster and Adler, 2014).
Diclofenac and ethinylestradiol are examples of compounds which pose a risk to the
aguatic environment (Adler et al. 2008). They were added to priority watch lists under the
water framework directive in 2013, recognising for the first time that pharmaceuticals have

the potential to be a serious environment risk (Mavragani et al. 2016).

There is still a lot of uncertainty surrounding the occurrence of pharmaceuticals in the
aquatic environment, and their environmental risk. There is evidence that they are
occurring in the environment (Hughes et al. 2013; Fabbri and Franzellitti 2016), however,
the implications of this is not yet fully understood (Taylor and Senac 2014). It is only within
recent years that analytical methods have been able to detect these compounds, and prior
to this, little research was conducted on pharmaceuticals as environmental contaminants.
Despite the widespread and ubiquitous usage of pharmaceuticals, we know relatively little
about their environmental impacts. Unlike other pollutants, there is already extensive
knowledge surrounding the pathways of pharmaceuticals in vertebrates, but there is some
uncertainty over the potential effects on non-target organisms (Fabbri 2015). With so many
pharmaceuticals commercially available, it would use a great deal of resources to monitor
their occurrence in the environment and determine the effects in non-target organisms.
Prioritisation schemes are frequently used in the literature to identify a smaller subset of
compounds which are likely to be found in the environment and pose a risk (Mansour et
al. 2016). This can help direct resources and determine where scientific research should
be invested. Further research into the environmental effect of pharmaceuticals can impact

legislation, by further determining those which need to be regulated.

1.1.1 Exposure assessment

Many prioritisation schemes use predicted environmental concentrations (PECs) as a
basis to these assessments, assuming that if the compound is not found in the
environment, or is found at low concentrations then there is no risk. Most prioritisation
schemes include the assessment of pharmaceutical concentrations in surface water, but
not other compartments (Besse and Garric 2008). The EU technical guidance advises that
PECs are calculated by modelling discharge and fate processes or that measured
environmental concentrations (MECs) are used where available (Ehrlich et al. 2011).

Guidelines are also given on assessing concentrations in other compartments such as



sediment. The use of MECs is often difficult for pharmaceuticals as there aren’t many
monitoring schemes in place and fate of pharmaceuticals in the aquatic environment is not
fully understood (Fabbri and Franzellitti 2016). PECs used in the prioritisation literature are
often simplified versions of those found in ERAs. Most PECs are calculated from usage
data on the volume of drugs produced per year or number of prescriptions filled and then
are refined based on metabolism, removal in WWTPs and dilution (Ashton et al. 2004;
Besse et al. 2008). Dilution is a key process affecting the fate of pharmaceuticals in the
aquatic environment, and some studies have included localised data into these equations
(Ferrari et al. 2004; Burns et al. 2017). Other schemes have estimated that 5 to 15% of
oral pharmaceuticals and 30% of topical pharmaceuticals will never be consumed (and
therefore not enter the environment) and have been included into PEC calculations
(Kostich and Lazorchak 2008). Prescription data and usage of over the counter (OTC)
medicines are not available in many regions, making it difficult to predict environmental
concentrations. The European medicines agency (EMEA) guidelines advise use of a PEC
calculation which does not require prescription data, as it involves predicting
environmental concentrations from the maximum dosage per person and market
penetration (EMEA 2006).

Few prioritisation schemes include the assessment of pharmaceuticals in sediment. This
is reflected in the literature, with most environmental monitoring having been carried out
in effluent and surface waters (Fabbri and Franzellitti 2016). The Kp of pharmaceuticals is
often used to determine the likelihood of their presence in sediment, however, this value
is heavily influenced by temperature and pH, which will differ between regions (Al-Khazrajy
and Boxall 2016). The EMEA requires a risk assessment on the fate of pharmaceuticals
in sediment, however, experimental data does not currently exist for many compounds
(EMEA, 2006).

1.1.2 Predicting toxicity

Many prioritisation schemes assess the risk of pharmaceuticals using traditional ERAs.
Risk quotients using a ratio of PEC:PNEC are calculated and if the result is greater than
1, then it is deemed to pose a threat (Hoyett et al. 2016). PNECs are usually calculated by
selecting the most sensitive LCso and applying an assessment factor (Thomas Backhaus
and Faust 2012). Such experimental data is often unavailable in the literature and is time
consuming to generate for prioritisation schemes. Many authors have used quantitative
structure-activity relationships (QSARs), which are allowed under REACH and US
environmental protection agency (EPA) guidelines to model the potential toxicity of these
compounds (Sanderson et al. 2004; Ortiz de Garcia et al. 2013). These models predict the

physico-chemical properties of an unknown chemical by comparing them to other known



chemicals based on their structure (Guillén et al. 2012). There are many different software
packages which can be used in these assessments, of which, ECOSAR is the most widely
used in the prioritisation literature (Guillén et al. 2012). The use of QSARs to model toxicity,
has been widely debated, and has been found to be a poor predictor of toxicity for many
compounds (de Roode et al. 2006). Ashton et al. (2004) estimated PNECs using a different
method, taking the maximum therapeutic dose in humans and applying an assessment
factor of 1000. The rationale of which is that there are many conserved drug targets
between humans and non-target organisms, and those which are more biologically active

in humans, may be so in other organisms (Gunnarsson et al. 2008).

Persistence, bioaccumulation and toxicity (PBT) assessments are alternatives to risk
quotients for ERAs under REACH (Ehrlich et al. 2011). In prioritisation schemes, PBT
assessments are often used alongside PECs. Most commonly, this is assessed through
the half-life of compounds in the environment (persistence), bioconcentration factor (BCF;
bioaccumulation) and no-observed effect concentrations (NOECs) or PNECs (toxicity),
however where data is lacking it allows flexibility, and different approaches have been
used within the prioritisation literature (Ortiz de Garcia et al. 2013). For example, Sangion
and Gramatica (2016) used modelled PBT data using QSARs, whilst Daouk et al. (2015)

used removal in wastewater to determine the persistence of compounds in effluent.

Due to difficulty in obtaining experimental data on PBT of compounds and the limitations
of QSARs in modelling toxicity, several studies have suggested modelling the effects of
pharmaceuticals on aquatic species by utilising information on pathways of these
pharmaceuticals in mammals. Due to difficulty in obtaining experimental data on PBT of
compounds and the limitations of QSARs in modelling toxicity, several studies have
suggested modelling the effects of pharmaceuticals on aquatic species by utilising
information on pathways of these pharmaceuticals in mammals. The under-pinning
assumption in these models, is that drug-targets in mammals are conserved across other
species and function in the same way, however, novel functions may arise as the result of
evolution of such targets and it may not always be possible to translate the effects seen in
vertebrates to non-target organisms (Thornton 2000; Ankley et al. 2010). There is
conflicting evidence as to the conserved function of these targets across species, and the
ability to extrapolate this information has been debated (Adler et al. 2008). Gunnarsson et
al. (2008) looked at 1318 drug targets across 16 species and determined that 86% were
conserved in zebrafish, 61% in daphnia and 35% in green algae, suggesting that the
pathways of pharmaceuticals could be predicted in a variety of species. They also found
that whilst enzymes are well conserved across species, the function of receptors are not.

Whilst many of these receptors are present in other species, there is often a poor



mechanistic understanding, and when differences in their function arise, it can be difficult
to translate effects to other organisms (Rand-Weaver et al. 2013). For example, an
estrogen receptor (ER) ortholog has been described in some molluscs, but is not activated
by estrogen (Bannister et al. 2000; Thornton et al. 2003). Furthermore, steroid hormones
have been characterised in molluscs, however, there function is poorly understood, and
there is not a consensus in the scientific literature as to their role in reproduction (Scott et
al. 2013). Despite this, ethinylestradiol has caused reproductive changes in molluscs, such
as increased vitellogenin and increased egg laying (Jobling et al. 2004; Ciocan et al. 2010;
Benstead et al. 2011). This suggests that ethinylestradiol could mediate its effect through
a non-ortholog receptor or through conserved pathways that have yet to be characterised.
Regardless, this highlights the limitations of methods which are underpinned by assuming

the conservation of drug-targets.

The fish plasma model (FPM), which was originally developed by Huggett et al. (2003), is
one method which utilises information on the activity of pharmaceuticals in mammals. It
estimates the plasma concentration in fish based upon the human therapeutic plasma
concentration of a pharmaceutical. This is compared to environmental concentrations and
is often used as an alternative to RQs in prioritisation schemes (Fick et al. 2010, Schrieber
et al. 2011, Roos et al. 2012). There are two main assumptions with this model: that drug
targets are conserved across human and fish species, and that the therapeutic
concentration at which an effect is exerted is the same (Schreiber et al. 2011). Brown et
al. (2014) determined the conservation of 459 drug targets across 14 fish species and
found that between 65 and 86% were conserved, which suggests the difficulty in

translating the effects of pharmaceuticals between fish species.

Many authors have also suggested the use of adverse outcome pathways (AOPs) for
prioritising pharmaceuticals (Ankley et al. 2010, Caldwell et al. 2014). AOPs look at the
effect of a chemical at a molecular, cellular, individual and population level, linking an effect
with a molecular initiating event (Figure 1.2). For example, a molecular initiating event may
be an estrogen receptor (ER) antagonist, which will lead to a decline in vitellogenin
synthesis and concentrations which ultimately leads to decreased spawning and fecundity
in females, and ultimately a declining population (Ankley et al. 2010, Figure 1.2). This
allows for better cross-species prediction, which is particularly useful for pharmaceutical
assessments as pathways of pharmaceuticals in humans are relatively well understood
(Caldwell et al. 2014, LalLone et al. 2014). However, there is often complexity in linking
molecular initiating events with a population effect, which is further complicated by
uncertainty surrounding the conservation of drug targets across species. A number of

pharmaceuticals, such as tamoxifen and ethinylestradiol are known ER antagonists and



have the potential to have an effect on fish populations. However, even with a well-defined
AOP, experimental exposures often lack information on plasma concentrations, which can
make it difficult to support models such as FPM (Rand-Weaver et al. 2013). As evidenced
with the example of estrogen receptors in molluscs, such pathways may not be as well

defined or understood in other species.

Molecular Cellular Tissue/Organ Whole Organism Population
Initiation Response Alteration Effects Effects

Estrogen Reduced Reduced Decreased Declining
receptor vitellogenin vitellogenin spawning and population
antagonism synthesis concentrations fecundity trajector

Figure 1.2 Process of adverse outcome pathways, which link a molecular initiating event to effect
at a population level. Estrogen receptor antagonism in female fish as an example of how an AOP
can be used to link a molecular initiating event to a population effect.

1.2 Occurrence of pharmaceuticals in estuaries

1.2.1 Surface Water

Reviews have previously summarised the occurrence of pharmaceuticals in fresh (Hughes
et al. 2013) and marine waters (Fabbri and Franzellitti 2016); 155 published studies have
been conducted in 41 countries and 46 published studies have been carried out in 22
countries, respectively. In contrast, 29 studies across 9 countries (China, USA, Portugal,
Australia, UK, Germany, Belgium, France and Spain) have been carried out in the
estuarine environment, with sulfamethoxazole being the most monitored compound (Table
1.1). It has only been within recent years, that the occurrence of pharmaceuticals in
estuaries has gained more attention, as only 5 of these studies were conducted prior to
2011 (Thomas and Hilton 2004, Wiegel et al. 2004, Benotti and Brownawell 2007, Noppe
et al. 2007, Tamtam et al. 2008). In total 126 of 181 target pharmaceuticals have been
detected in estuarine surface waters, with median concentrations generally less than 100
ng It (Appendix 1.1). Only five compounds (oxytetracycline, tetracycline, trimethoprim,
salbutamol and phenytoin) have been found in the pg I* range (Benotti and Brownawell
2009; Hui Chen et al. 2015; Mijangos et al. 2018). Of these, the highest concentration was
the antibiotic oxytetracycline, which was detected in China (Table 1.1). Antibiotics were
the most studied compound type, comprising of approximately 30% of those monitored in
estuaries (Table 1.2), most of which were carried out in China. China is the largest

consumer and producer of antibiotics globally, and as a result some of the highest
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concentrations have been seen here (Bu et al. 2013). Approximately 200,000 tons of
antibiotics are produced annually in China, compared to approximately 9,000 tons in USA
(Daghrir and Drogui 2013). Many of these antibiotics are also used in veterinary medicine
and as growth promoters in agriculture, which can account for their high occurrence and
detection frequencies (Guo et al. 2019). Antidepressants, antihypertensives, nonsteroidal
anti-inflammatories (NSAIDs) and pain killers made of a further 50% of the compounds
studied, with the remaining 20% made up of 19 different classes (Table 1.2). Although the
literature has covered a wide range of compounds, there is often little overlap between
studies, with some pharmaceuticals having only been measured in a few areas (Appendix

1.1). As aresult, it is difficult to establish trends in their occurrence.

The concentrations of pharmaceuticals varied between these estuaries, with the main
sources differing between geographical areas. Most of the studies in the USA and Europe
attributed the input of pharmaceuticals to mostly be the result of the discharge of domestic,
industrial and hospital wastewater (Beretta et al. 2014). In China on the other hand,
discharge of untreated sewage and presence of agriculture and fish farming were found
to be a greater source of pharmaceuticals (Cui et al. 2019; Guo et al. 2019). The elevated

concentrations of some pharmaceuticals were the result of proximity to these sources.

In terms of spatial distribution, most pharmaceuticals have a negative correlation with
salinity, declining in concentration from source to mouth of an estuary (Liang et al. 2013;
Sun et al. 2014). These concentrations have been observed to vary as the result of flow
rate, tides and currents, and as a result, dilution has been named as the biggest factor
influencing the fate of these pharmaceuticals in estuaries (Cantwell et al. 2017).
Additionally, concentrations are generally highest at low and ebb tide, when salinity is
lowest (Lara-Martin et al. 2014), however, Munro et al. (2019) observed the opposite in
the Thames Estuary, as high tide coincided with untreated effluent discharge from
combined sewer overflows (CSOSs), causing transport of the compounds further upstream
the estuary. The variations in concentrations of pharmaceuticals between estuaries is also
likely the result of flushing time, as those with a higher flushing rate are less likely to retain

pharmaceuticals (Cantwell et al. 2017).

Concentrations of pharmaceuticals were also found to vary temporally as the result of
changes in environmental conditions and fluctuations in input. In wastewater effluent
dominated estuaries, temporal fluctuations may have been the result of seasonal
differences in population or consumption patterns (Mijangos et al. 2018). Golovko et al.
(2014a, 2014b) looked at seasonal variations in pharmaceutical concentrations in

WWTPs. Antibiotics were found to be seasonal with concentrations highest in winter, likely



11

due to the increase in colds and infections (Golovko et al. 2014b). Antidepressants and
lipid lowering agents were also highest during this time (Golovko et al. 2014a). However,
due to the usage of these drugs to treat chronic conditions, the seasonal differences in
their occurrence are more likely the result of low temperatures which leads to lower
degradation and reduced input (Gonzalez-Rey et al. 2015). In general, overall
concentrations were higher in estuaries during winter as the result of reduced degradation
due to low temperatures and low irradiance (Hedgespeth et al. 2012). This pattern did not
apply to all regions, and some areas exhibited higher concentration in the summer as the

result of decreased flow (Benotti and Brownawell 2007).
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Table 1.2: Summary of monitoring studies that have been conducted in estuaries, showing the number of compounds monitored,
how many were detected in at least one estuary and the number of studies which monitored each compound class. Full details
can be found in appendix A1.1 and A1.2

Surface Water Sediment
Compound Class No. of No. No. of No. of No. No. of
Compounds Detected Studies Compounds Detected Studies
Antibiotic 62 39 20 32 28 10
Anticonvulsant 5 5 14 1 5
Antidepressant 10 7 10 4 3 3
Antihypertensive 20 17 17 10 8 6
Anxiolytic 6 5 4 2 1 2
Bronchodilator 6 4 5 1 1 2
Hormone 7 5 10 1 1 1
Lipid Lowering 5 4 14 3 3 3
Agent
Metabolite 10 7 5 7 4 3
Mucosal Protectant 4 7 3 3 3
NSAID 11 9 13 5 5 4
Pain Killer 9 8 14 3 2 2
Other 27 13 12 8 8 5

1.2.2 Sediment

Few studies have determined the occurrence of pharmaceuticals in estuarine sediments
in comparison to surface water. A total of 11 studies have been carried out in four countries
(Brazil, USA, China, New Zealand), comprising of 79 pharmaceutical compounds (Table
2; Appendix 1.2). Similar to studies conducted on surface water, antibiotics were the most
studied compounds class (Table 1.2). Concentration of pharmaceuticals were often lower
in sediment than those found in surface, with only ofloxacin, chlortetracycline and
oxytetracycline, detected at concentrations above 100 ng |1, and only ten pharmaceuticals
were detected above 25 ng | -1 (Table 1.3). Of the antibiotics measured, sulfanomides,
such as sulfamethoxazole showed low sorption capacity, and were mostly absent from

sediment, which could account for their high presence in surface water (Shi et al. 2014).

Few studies have looked at the spatial and temporal patterns of pharmaceuticals in
sediments. Many of the compounds measured, exhibited trends similar to those observed
in surface water, with the presence of pharmaceuticals related to consumption patterns
and highest concentrations occurring in regions with higher populations and at sites in
closer proximity to sources (Beretta et al. 2014). The presence of pharmaceuticals in
sediment is dependent on their Kp, however these values are highly dependent on pH and
temperature, suggesting that removal of pharmaceuticals to sediment could differ
seasonally (Al-Khazrajy and Boxall 2016). The sorption capacity of estrone was found to

increase with increasing salinity in the Scheldt Estuary, and as a result, concentrations in
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the dissolved phase were lower further downstream the estuary (Noppe et al. 2007). The
sorption capacity of pharmaceuticals has also been observed to differ with sediment type,
with a positive correlation between sorption and the percentage of clay in the sediment

(Beretta et al. 2014).
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1.3 Biological Effects

The ecotoxicological effects of pharmaceuticals have been extensively studied in
freshwater organisms (Crane et al. 2006; Fent et al. 2006; Fabbri 2015). Studies in marine
organisms are sparser, and have been summarised in Table 1.4. Despite this, there are
similarities in biological systems of organisms found in both of these systems. However,
differences may occur in physiology between marine and fresh water organisms, for
example, to be able to cope with saline conditions, and organisms present in estuaries are
often living at the edge of their tolerance zones, which can make them more sensitive to

contaminants (Scaps 2002).

The effects of 38 different compounds have been assessed on marine species, with
carbamazepine and fluoxetine dominating these studies, and bivalves were the most
commonly studied taxa in ecotoxicity studies (Table 1.4). Bivalves are commonly used in
ecotoxicology experiments as they are long-living, sessile, and filter high volumes of water,
and as a result can be particularly susceptible to contaminants (Gagné et al. 2010). They
are also abundantly available, of commercial importance and easy to maintain in a
laboratory setting. Despite the numerous studies which have spanned a broad range of
taxa and pharmaceuticals, there are still many questions about the effects and pathways
of these chemicals. Many experiments use concentrations much higher than
environmental ones and simple endpoints such as mortality and growth. Although these
are important to know, it is essential to have a deeper understanding of pathways of
pharmaceuticals in order to determine toxicity that has the potential to effect populations,
and therefore is of more interest to regulators (Ankley et al. 2010). Almost all types of
pharmaceuticals have been found to cause oxidative stress where reactive oxygen
species (ROS) are produced as the result of pharmaceutical metabolism (Diniz et al.
2015). ROS can cause oxidation of proteins and lipids, alter gene expression, and damage
cells (Diniz et al. 2015). Many organisms have developed mechanisms to minimise the
damage by producing anti-oxidants such as catalase (CAT), superoxide dismutase (SOD),
and Glutathione. This demonstrates that these pharmaceuticals have the potential to

harm, but in many cases, the exact mechanisms of toxicity are poorly understood.
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1.3.1 Antibiotics

The greatest threat of antibiotics to aquatic ecosystems is the potential to cause antibiotic
resistant bacteria and genes, which can cause the spread of antibiotic resistant infections,
having implications on human and veterinary health (Cizmas et al. 2015). Antibiotics are
toxic to bacteria, which can also have implications on the immunology of aquatic species
(Guardiola et al. 2012). Microbes play an important role in marine ecosystems, and the
presence of antibiotics could disrupt these. Antibiotics have been observed to disrupt
microbial processes such as denitrification, nitrogen fixation and organic breakdown,

which could have implications on water quality and aquatic health (Costanzo et al. 2005).

The literature on antibiotic toxicity has focused on antibiotic resistance, however, there is
an indication that they may exert effects on aquatic organisms in different ways (Daghrir
and Drogui 2013). Many bacteria have symbiotic relationships with algae, supplying them
with nutrients in return for a protective environment, and inhibition of these bacteria to form
biofilms as the result of antibiotic exposure could result in limited algal growth and nutrient
deficiency (Guo et al. 2015). Antibiotics also cause oxidative stress in a range of species
(Table 1.4). Trimethoprim and erythromycin were found to cause DNA damage in the
mussels, Mytilus edulis and Dreissena polymorpha (Lacaze et al. 2015). This is in part,
attributed to oxidative stress, but also to also to the ability of these drugs to interfere with
DNA synthesis and replication, respectively. Oxytetracycline and amoxicillin inhibited CAT
and induced GST in zebrafish at high concentrations (Oliveira et al. 2013). Oxytetracycline
also caused an increase in lactate dehydrogenase (LDH) a key enzyme in energy

production, and an indicator of stress (Oliveira et al. 2013).

1.3.2 Anticonvulsants

Carbamazepine is one of the most prolific pharmaceuticals in the literature. It is a
psychiatric drug used to treat epilepsy, bipolar disorder, chronic nerve conditions and
addiction by blocking sodium channels and reducing the firing of neurones (Jarvis et al.
2014). Due to its high consumption, low removal and long half-life, high concentrations
have been found in estuaries globally (Almeida et al. 2015). It has also been found to
bioaccumulate at high concentrations in bivalves, algae and crustaceans, but not cnidarian
(Vernouillet et al. 2010; Almeida et al. 2015). Carbamazepine has the potential to alter
behaviour leading to changes in reproduction, predator avoidance and locomotion (De
Lange et al. 2006; Brandao et al. 2013; Chen et al. 2014). It reduces fecundity, breeding
success, alters courtship behaviour and sperm morphology in fish (Overturf et al. 2015).
In bivalves, carbamazepine caused reduction in siphoning behaviour and valve movement,
which plays an important role in nutrition, defence and reproduction (Chen et al. 2014).

Reduction in siphoning is a response to chemical stress which can lead to ammonia
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accumulation in the tissue, reduction in oxygen and reduced feeding, and chronic
exposure to carbamazepine could eventually lead to death. Low concentrations of
carbamazepine also cause oxidative stress in fish and bivalves, and caused reduced LMS
in the haemocytes of the crab, Carcinus maenas (Aguirre-Martinez et al. 2013; Brand&o
et al. 2013; Almeida et al. 2015). Carbamazepine caused changes of the enzymes LDH,
glutamate pyruvate transamine, and glutamate oxaloacetate transamine in the gill, liver
and muscle leading to tissue hypoxia and damage (Malarvizhi et al. 2012). Another anti-
epileptic phenytoin caused oxidative stress in the pumpkinseed sunfish, Lepomis
gibbosus, but did not alter behaviour (Brandao et al. 2013). Despite high concentrations
of phenytoin found in estuaries (1.4 ug I%), effects on aquatic organisms is relatively

unknown (Mijangos et al. 2018).

1.3.3 Antidepressants

Antidepressants, which include tricyclics, monoamine oxidise inhibitors and selective
serotonin reuptake inhibitors (SSRIs), account for approximately 4% of pharmaceuticals
detected in the environment (Fong and Ford 2014). The main concern surrounding
antidepressants is their role as endocrine disruptors due to the alteration of serotonin and
dopamine which stimulate hormone production (Fong and Ford 2014). As a result, they
are often used in aguaculture to speed up growth and reproduction (Fong and Ford 2014).
The chemical structure of antidepressants has several potentially mutagenic effects as
DNA damage can be caused directly by the aromatic ring and/or flyorobenzene group
(Lacaze et al. 2015). Serotonin and dopamine have similar metabolic pathways in aquatic
invertebrates and fish to humans (Gagné et al. 2010). As a result, the side effects seen in
humans such as changes in behaviour and aggression have been observed in such biota
(Weinberger and Klaper 2014).

SSRIs are the most widely prescribed antidepressant (Fong and Ford 2014; Lacaze et al.
2015). They exert a therapeutic effect by inhibiting the reuptake of serotonin and therefore
increasing concentrations in the body (Overturf et al. 2015). Fluoxetine has been studied
most prolifically, however citalopram and venlafaxine have now surpassed fluoxetine
prescriptions in the USA and Canada (Fong and Ford 2014; Lacaze et al. 2015), and
citalopram is prescribed more than fluoxetine in the UK (National Health Service 2017).
Serotonin plays an important role in reproduction in both vertebrates and invertebrates,
and SSRIs have been found to negatively impact reproductive processes in many species
(Dorelle et al. 2017). Exposure of fluoxetine (20 - 200 ng I*) to D. polymorpha caused
decreased oocytes and spermatozoan in male and female gonads, as well as increased
levels of estradiol (Lazzara et al. 2012). It also caused increased vitellogenin levels in the

Mediterranean mussel, Mytilus galloprovincialis (Gonzalez-Rey and Bebianno 2013). In
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fish, fluoxetine has caused decreased sperm production and caused aggressive behaviour
(Weinberger and Klaper 2014). Fathead minnows, Pimephales promelas, were exposed
to 1 - 100ug I fluoxetine for four weeks, which caused changes in reproductive behaviour
(Weinberger and Klaper 2014). In this species males are responsible for nest preparation
and egg care; some males did not engage in reproductive behaviour, whilst others were
aggressive and attacked females. Those which did mate successfully exhibited aggressive
nest cleaning behaviour resulting in broken eggs. However, similar levels of the SSRI
citalopram in guppies, Poecilia reticulata, did not induce changes in sexual behaviour
(Holmberg et al. 2011).

SSRIs also cause other effects in aquatic organisms which are unrelated to the endocrine
system. Serotonin controls ciliary pedal activity, pedal muscle contraction and swimming
movement in gastropods (Lewis et al. 2011). Serotonin will increase these movements,
which could result in altered locomotion which is vital to feeding, reproduction and predator
avoidance (Estévez-Calvar et al. 2017). Exposure to SSRIs also resulted in changes in
behaviour; fluoxetine also reduced learning and memory in cuttlefish, Sepia officinalis, at
concentrations as low as 1ng I'* (Di Poi et al. 2013). Fluoxetine, sertraline and venlafaxine
have caused reduced predator avoidance in P. promelas (Painter et al. 2009). A variety of
antidepressants: fluoxetine, paroxetine, amitriptyline and clomipramine cause
immunotoxicity at environmentally relevant concentrations (Minguez et al. 2014).
Paroxetine and fluoxetine also caused DNA strand breakage, cytotoxicity and

immunotoxicity in M. edulis haemocytes (Lacaze et al. 2015).

The toxicity of other types of antidepressants aren’t as prevalent in the literature. Tricyclics
(such as amitriptyline) block serotonin and norepinephrine reuptake transporters reducing
the hyperactivity of the hypothalamo-pituitary-adrenocortical axis present in depression
(Yang et al. 2014). Neurotoxic side effects of tricyclics in aquatic life have been reported.
Amitriptyline caused a reduction in nitric oxide (NO) production which compromised the
immune system (Yang et al. 2014). The anti-inflammatory activity of amitriptyline is
suggested to be associated with the inhibition of pro-inflammatory cytokines from immune

cells and a decrease in NO (Yang et al. 2014).

1.3.4 Antihypertensives

There are many different anti-hypertensives including, angiotensin-converting-enzyme
inhibitors, calcium channel blockers, angiotensin Il receptor antagonists (sartans) and B-
blockers. The most widely studied of these are B-blockers, which are the most consumed,
and found in the highest concentrations in the aquatic environment (Godoy et al. 2015). A

total of 34 anti-hypertensives (20 in estuaries; Appendix 1.1) have been detected globally
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in aguatic ecosystems, however, ecotoxicology studies have only been conducted on 16
(4 in marine species) of these (Godoy et al. 2015). B -blockers function by binding to B-
adrenergic receptors to block the binding of norepinephrine and epinephrine, resulting in
decreased blood pressure (Maszkowska et al. 2014). B-blockers can either be selective,
binding to a particular 3-adrenergic receptor (e.g. metoprolol and atenolol) or non-selective
(e.g. propranolol; Massarsky et al. 2011). B-adrenergic receptors are present in mussels
and vertebrates, but not in crustaceans or echinoderms, however deleterious effects have

been observed in all of these groups (Franzellitti et al. 2013).

There is debate in the literature as to the toxicity of p-blockers, with a few reaching the
consensus that environmental concentrations of B-blockers do not pose a significant risk
to aquatic life (Winter et al. 2008, Godoy et al. 2015). Exposure to propranolol at
environmentally relevant concentrations (0.3 — 500 ng I'Y) caused oxidative stress and
disrupted cell signalling in M. galloprovincialis (Solé et al. 2010, Franzellitti et al. 2013) and
ragworm, Hediste diversicolor (Maranho et al. 2014). Sun et al. (2015) looked at the
regulation of genes involved in antioxidant and detoxification responses in zebrafish to
propranolol and metoprolol. Responses were not significant below 3mg I, which is far
above concentrations found in the freshwater (Hughes et al. 2013), estuaries (Appendix
1.1) or oceans (Gaw et al. 2014). B-blockers appear to have the potential to disrupt
reproductive function, and affect early life stages, which could have implications at a
population level. It is thought that B-adrenergic receptors may play a role in larval
metamorphosis in bivalves, and as a result p-blockers could have an effect on this (Solé
et al. 2010). Medaka exposed to propranolol, metoprolol and nadolol produced less viable
embryos after 4 weeks, however no significant difference from the control was seen at 2
weeks (Huggett et al. 2002). In the same study, these drugs caused reproductive effects
to Daphnia magna, Hyalella azteca and Ceriodaphnia dubia, however, due to the high
concentrations at which these effects were observed, it is unlikely concentrations currently
observed in the environment would have significant impacts on populations.
Norepinephrine also plays a role in stimulating or inhibiting hormones and B-blockers have
been found to decrease testosterone and luteinising hormone in fish indicating their

potential as endocrine disruptors (Massarsky et al. 2011; Godoy et al. 2015).

Interestingly, propranolol is one of the few pharmaceuticals to be involved in mesocosm
experiments studying inter-species dynamics in the presence of this drug. Oskarsson et
al. (2014) exposed a model Baltic Sea community composed of macroalgae, mussels and
amphipods to 100 and 1000ug "* propranolol. Mussels were the most sensitive, which led
to a feeding shift from the algae to the mussel by the amphipod. The amphipods did not

suffer negative effects and it was thought that the higher nutritious food may have
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counteracted this. This shift was beneficial in turn to algae as they were no longer

consumed.

Ecotoxicology studies on other types of anti-hypertensives are not as common. Calcium
channel blockers block L-type calcium channels preventing the influx of calcium ions into
the vascular system, reducing myocardial contractions and vascular relaxation, resulting
in reduced blood pressure (Palande et al. 2015). There is evidence that the mode of action
(MoA) of calcium channel blockers in fish is similar to that in humans; verapamil caused a
reduced heart rate in common carp (Cyprinus carpio) embryos and larvae (Steinbach et
al. 2013). At high levels, calcium channel blockers can cause toxicity to other organs such
as kidneys due to difficulty in metabolising this drug. These drugs also block neuronal
calcium channels resulting in altered behaviour. Exposure of goldfish (Carassius auratus)
to verapamil caused loss of balance, increased ocular movement, increased swimming
rate and caused capsizing (Palande et al. 2015). It has been suggested that calcium
channel blockers may also impact K* and Na* channels, which would negatively affect the
osmoregulatory capacity of fish (Palande et al. 2015). Verapamil caused pericardial
oedemas in carp embryos, which is often indicative of osmoregulatory disruption
(Steinbach et al. 2013). However, this was only seen at concentrations much higher than

those found in the environment.

1.3.5 Lipid Lowering Agents

There are two types of lipid lowering medications: fibrates and statins. Fibrates are the
most targeted for analytical and ecotoxicological studies (Fent et al. 2006, Overturf et al.
2012). Statins lower blood plasma lipids, whilst fibrates lower both lipids and triglycerides
(Fent et al. 2006). Fibrates bind to peroxisome proliferator-activated receptors which cause
them to stimulate fatty acid uptake and regulate the expression of several lipid regulatory
proteins (Canesi et al. 2007b). In fish, steroid hormones are derived from cholesterol, and
it's reduction caused by fibrates can disrupt steroidogenesis and spermatogenesis
(Velasco-Santamaria et al. 2011). Gemfibrozil causes reduced growth and in turn lower
fecundity, altered reproductive behaviour and sperm morphology leading to reduced
reproductive success in fish (Overturf et al. 2015). D. rerio exposed to Bezafibrate altered
the expression of the testis gene, suggesting it also had an effect on reproduction
(Velasco-Santamaria et al. 2011). Bezafibrate had no effect on lowering cholesterol levels
in P. promelas, however it's metabolite Clofibric acid increased the activity of fatty acetyl-
coenzyme-A which plays a role in the oxidation of fatty acids (Weston et al. 2009). Clofibric
acid also reduced egg production. Fibrates appear to negatively impact the immune
system of some organisms. Bezafibrate and gemfibrozil injected into M. galloprovincialis

haemocytes caused lysosomal destabilisation, NO production and decreased phagocytic
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activity (Canesi et al. 2007b). Fibrates also affected the haemocyte function of freshwater

bivalve Elliptio compalnata (Gagné et al. 2006).

Statins block mevalonic acid pathways thereby inhibiting the synthesis of cholesterol
(Ellesat et al. 2010). Atorvastatin and simvastatin are prodrugs which are inactive, and are
metabolised by the body into the active compound, as a result, it is their metabolites which
pose the largest risk (Besse and Garric 2008). To date exposure experiments have
included the parent compound, and it not known if they will be metabolised in the same
way in non-target organisms. Despite this, exposure of some species to statins have
resulted in deleterious effects. Atorvastatin caused upregulation of genes involved in
membrane transport, oxidative stress, apoptosis and biotransformation at concentrations
as low as 200ng I'* in O.mykiss (Ellesat et al. 2012). These effects were observed in the
gill, but not the liver despite this being a target organ of statins in humans. This is likely
due to cholesterol levels being highest in fish gills. In humans, statin toxicity includes
inhibition of membrane transport, however, Ellesat et al. (2012) did not observe any
change in Na*/K* -ATPase. Statins also caused impairment to reproduction. Simvastatin
negatively affected reproduction of Gammarus locusta by disrupting the hormone methyl
farnesoate (MF) and causing reduced gonadal development at concentrations as low as
320ng It (Neuparth et al. 2014). MF is an important hormone in crustaceans and is
responsible for reproductive maturation by increasing vitellogenin and stimulating gonadal

growth.

1.3.6 Analgesics

1.3.6.1 NSAIDs

There are many different types of analgesics, which can be broadly split into two
categories: NSAIDs and painkillers (Overturf et al. 2015). These are among the most
prolifically used pharmaceuticals as they are widely prescribed and readily available OTC
(Fent et al. 2006). Ibuprofen and diclofenac, are the most commonly used and studied
NSAIDs (Table 1.4). NSAIDs reduce pain and inflammation by inhibiting the production of
prostaglandins at the site of an injury, which are produced through the oxidation of
arachidonic acid by cyclooxygenases (COX), resulting in pain and inflammation (Gan
2010). There are two isoforms of this enzyme: COX | and COX Il, which are non-selectively
inhibited by NSAIDs (Gravel et al. 2009). Prostaglandins are involved in other physiological
processes, including thermoregulation, ovulation, sexual behaviour, homeostasis, ion
transport and kidney filtration (Miller 2006). COX | is responsible for the baseline levels of
prostaglandins involved in these processes, whilst COX Il produces prostaglandins at the

point of a stimulus such as an injury (Gan 2010). Prostaglandin function is similar in fish
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to other vertebrates, but they are also found in cnidarian, bivalves and crustaceans
(Ruggeri and Thoroughgood 1985; Courant et al. 2017). As both of these isoforms are
inhibited by NSAIDs, there is a potential that these physiological processes could be
disrupted. NSAIDs have caused toxicity in the liver and kidneys in humans, and similar

toxic effects have been seen in fish (Triebskorn et al. 2004).

Diclofenac induced Acetylcholinesterase (AChE) activity in the gills of the M.
galloprovincialis (Gonzalez-Rey and Bebianno 2014). AChE is released after cell
membrane disruption, causing apoptosis and plays a role in the neuromuscular system by
preventing continuous muscle contraction (Milan et al. 2013). This indicated the potential
of NSAIDs to cause apoptosis. In humans, they have been studied as a candidate for
cancer prevention as they have the potential to enhance cell proliferation and enhance
apoptosis (Milan et al. 2013). This could be problematic in aquatic organisms and have
the potential to cause neurotoxic effects. In some species, AChE activity has been linked
to the disruption of estrogenic receptors, however, the endocrine disruption of NSAIDs
needs to be further investigated (Gonzalez-Rey and Bebianno 2014). Experimental
exposure to NSAIDs has led to altered reproduction. Ibuprofen caused increased ovary
maturation in female marine shrimp (Litopenaeus spp.) and lowered sperm abnormalities
in males (Alfaro-Montoya 2015). Whilst this could be beneficial in aquaculture, in the
natural environment this could lead to poor fecundity and decreased reproductive success.
Ibuprofen (<100ug I) altered reproductive timing in medaka, Oryzuas latipes (Flippin et
al. 2007); exposure for six weeks increased fecundity but decreased the amount of
spawning events. Osmoregulatory processes are important for physiology of marine and
estuarine species, and there is indication that this could be interrupted by NSAIDs.
Diclofenac disrupted osmoregulation in brown trout at 1g It and at more environmentally
realistic concentrations (10ng I') in C. maenas (Eades and Waring 2010). Ibuprofen and
salicylic acid have also reduced osmoregulation capability in O. mykiss at concentrations

(12 mg I'Y) higher than those found in the environment (Gravel et al. 2009).

1.3.6.2 Pain Killers

Paracetamol also inhibits prostaglandin synthesis, but at a central nervous system level
and it also blocks pain impulses, however, doesn’'t have the same anti-inflammatory
properties as NSAIDs (Ouellet and Percival 2001). The exact pathways of paracetamol
are poorly understood. There is some evidence in vertebrates that there may be a third
isoform of cyclooxygenase, COX lll, which may be inhibited and account for differences in
effects between paracetamol and NSAIDs (Chandrasekharan et al. 2002). However, it has
been debated whether it is a target of paracetamol and it is not known if this isoform exists

in aquatic species (Schwab et al. 2003; Graham et al. 2013). In humans, paracetamol is
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metabolised in the liver, with high concentrations causing hepatotoxicity, and there is
evidence that this may occur in fish as well (Graham et al. 2013; Guiloski et al. 2017).
Paracetamol caused neurotoxicity in the freshwater shrimp, Neocaridina denticulata and
planarian, Dugesia japonica (Wu and Li 2015). Paracetamol inhibited two enzymes, which
are essential for normal neurological function: Cholinesterase and monoamine oxidase
(MAO). It has also been found to indirectly inhibit Na*/K* ATPase in the brain as the result
of oxidative stress (Wu and Li 2015). Paracetamol also caused oxidative stressed in the
European eel, Anguilla anguilla) which led to the inhibition of AChE (Nunes et al. 2015). A
transcriptome analysis of gilthead bream (Sparus aurata) brains has shown that
paracetamol may alter processes involved in gene regulation and DNA repair and may
disrupt development of embryos (Hampel et al. 2017). There is also some evidence that
paracetamol could impact reproductive processes in organisms; it reduced testosterone
levels and inhibited spermatogenesis in male fish (Rhamdia quelen), at environmentally
relevant concentration (>250 ng I't), however, there is currently not any further evidence

in these effects in other organisms (Guiloski et al. 2017).

Opiates are another type of painkiller which have the potential to impact non-target
organisms. Low levels of codeine, hydrocodone and tramadol have been found in
estuaries (Benotti and Brownawell 2007; Klosterhaus et al. 2013; Birch et al. 2015; Sun et
al. 2016,; Munro et al. 2019). Despite the high prescription rates and occurrence of opiates
in aquatic systems, marine ecotoxicology studies are largely absent (Hughes et al. 2013;
Rosi-Marshall et al. 2015). Opiates bind to opiate receptors causing the release of
dopamine and reduction of serotonin which lessen pain (Gagné et al. 2010). It is likely that
they would have an effect on reproduction in bivalves as dopamine plays a role oogenesis
and serotonin in the maturation of gametes and spawning (Gagné et al. 2010). Morphine
compromised the immune system of the freshwater mussel, Mytilus Elliptio, through the
production of NO which downregulates immunocyte activity and inhibits phagocytosis
(Gagné et al. 2006).

1.3.7 Other compound classes

The amount of pharmaceuticals with the potential to enter the marine environment is too
numerous to be completely covered in this review. There are some pharmaceuticals which
exist in current literature, and are relevant to this thesis, which are not included in the
above sections. Cimetidine and ranitidine are H2 receptor antagonists which inhibit the
action of histamine at this site (Bergheim et al. 2012). As a result, these drugs inhibit acid
production and are used to treat gastric ulcers and acid reflux (Bergheim et al. 2012). In
humans, H2 receptors are also present in the brain, and have side effects affecting the

nervous and endocrine systems (Fent et al. 2006). Some fish, such as C. carpio and cod
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(Gadus spp.) have H2 receptors, whilst others such as D. rerio have H3 receptors (Fent
et al. 2006). Toxicity data of cimetidine and ranitidine on freshwater or marine organisms
mostly focuses on acute mortality, which is low (Isidori et al. 2009). Despite this, these
pharmaceuticals have been highlighted as a potential of concern due to their high
excretion rates, low removal from WWTPs and chronic presence in freshwater systems
(Bergheim et al. 2012). Experimental exposures of ranitidine and cimetidine have caused
a decrease in testosterone in males and intersex embryos in D. rerio exposed to low levels
(298.25 ng I) of cimetidine (Lee et al. 2015). In humans cimetidine caused increases of
luteinising hormone and follicle stimulating, but this was not seen in female D. rerio at such
low levels (Lee et al. 2015). Ranitidine has effects on the endocrine systems of non-aquatic
species; it lowered testosterone levels in rats and has the side effect of sexual dysfunction
in humans (Lee et al. 2015). Histamines supress cellular immune response, and exposure
of fish to cimetidine improved immune system function (Hosseinifard et al. 2013). As a
result, it has been proposed that cimetidine should be used in aquaculture to prevent

disease (Hosseinifard et al. 2013).

Metformin was the eleventh most prescribed drug in 2014 and in the top 20 in the
preceding five years (National Health Service, 2017). Few studies have monitored this
compound in the aquatic environment, however, it has been found at concentrations above
500 ng I'* in freshwater (Burns et al. 2018) and estuaries (Meador et al. 2016). Metformin
is an antidiabetic drug also used in the treatment polycystic ovarian syndrome (PCOS)
and cancer. Metformin primarily reduces glucose output in the liver, and secondary to this,
stimulate glucose uptake in peripheral tissues (Joshi 2005). It's MoA in patients with PCOS
is poorly understood, but thought to be effective as insulin resistance is commonly
experienced alongside PCOS (Sivalingam et al. 2014). It has the potential as an endocrine
disruptor, and caused increased levels of vitellogenin in male P. promelas, but not
testosterone (Niemuth and Klaper 2015). It is thought that this is not due to the ability of
the drug to bind hormone receptors, but the indirect disruption of steroidogenesis caused
by the alteration of insulin signalling (Niemuth and Klaper 2015). Further evidence that
metformin could increase vitellogenin has been seen in M. edulis, however the cause of
this is unknown, and further research into its MoA is needed (Sumpter et al. 2016,

Koagouw and Ciocan 2018).

1.4 Aims and Objectives
Pharmaceuticals are occurring in the environment, and many appear to be biologically

active. This review highlights the gaps in the knowledge surrounding the spatio-temporal
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distributions of pharmaceuticals in estuaries. Additionally, little is known about the MoA of
these drugs to non-target organisms, and their effects at environmentally relevant
concentrations. As a result, it is difficult to get an overall picture of the problem of

pharmaceutical pollution. The key questions which guided this thesis were:

1. Based on existing knowledge on the occurrence, fate and effects of
pharmaceuticals in the aquatic environment, which compounds pose the greatest
risk to the aquatic environment?

2. At what concentrations are pharmaceuticals occurring in estuaries, and do these
differ spatially and temporally?

3. What are the effects of pharmaceuticals on non-target organisms?

The primary aim of this thesis was to develop a deeper understanding of the occurrence
and effects of pharmaceuticals in estuaries. The specific objectives were to:

1. Explore the efficacy of prioritisation schemes used in the literature to predict the
occurrence and toxicity of pharmaceuticals in the aquatic environment, through the
comparison of these schemes using one dataset.

Create a list of priority pharmaceuticals that pose a risk to the aquatic environment.
Quantify the spatial and temporal occurrence of five pharmaceuticals in an estuary,
and determine if they are representative of other geographical areas.

4. Examine the biological effects of pharmaceutical exposures to H. diversicolor,
through controlled experimental exposures and use of quantitative gPCR-based

assays to determine expression of targeted genes.

It is anticipated that this thesis will contribute to the sparse data on the presence of
pharmaceuticals in estuaries and provide valuable insight into the patterns in their
occurrence. It will also provide novel information on the effects of these contaminants to

an understudied, yet ecologically important estuarine species.

1.5 Thesis Outline

A suite of methodologies were employed in order to address the aims and objectives
detailed in section 1.4. The rest of this thesis contains the results of this research organised
into three manuscripts, and final discussion chapter which considers the work as a whole.

A summary of each chapter is described below:

o Chapter 2: Method development for the analysis of pharmaceuticals in

environmental samples
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This chapter outlines the rationale behind selecting the pharmaceuticals used in
monitoring (chapter 4) and ecotoxicological studies (chapter 5). It also details the
methodological development in the preparation of environmental samples for

analysis.

Chapter 3: Comparison of prioritisation schemes for human pharmaceuticals

in the aquatic environment

In this chapter, prioritisation schemes commonly used in the literature were carried
out on the fifty most prescribed drugs in the UK, and their resulting rankings were
compared in order to explore their efficacy. These schemes highlighted a number
of priority compounds which warrant further study and may be of interest to

regulators.

Chapter 4: Spatial and temporal occurrence of pharmaceuticals in UK

estuaries

In this chapter, five pharmaceuticals — ibuprofen, paracetamol, diclofenac,
trimethoprim and citalopram were measured in the surface water of the Humber
Estuary every other month over a twelve month period. In order to put the
concentrations seen in the Humber Estuary into context, water samples from
eleven further estuaries were analysed for the presence of these target

compounds.

Chapter 5: Effects of metformin and diclofenac on the ragworm, Hediste

diversicolor

Two target genes ATP synthase (ATPS) and c-amp activated protein kinase
(AMPK) were isolated from H. diversicolor, which had been experimentally
exposed to metformin, diclofenac, or a control. Quantitative gqPCR assays were
optimised and carried out in order to determine differences in expression between

these treatments.

Chapter 6: Discussion

The results obtained from the preceding chapters were considered within the

context of the original research questions (section 1.4) which guided this thesis.
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Chapter 2: Method development for the analysis of pharmaceuticals

in environmental samples

2.1 Selection of Compounds

Due to time and financial limitations it is not feasible to carry out monitoring of all
pharmaceutical compounds. There are many prioritisation schemes in the existing
literature which are used to determine the likelihood of a compound to enter the
environment and cause potential harm to organisms. In order to determine which
pharmaceuticals to focus on in the subsequent chapters, a prioritisation exercise was
carried out. Compounds which are commonly prescribed in the UK or are present in the
literature were included (National Health Service, 2014). Naturally occurring compounds,
such as, caffeine and nicotine were not included, leaving 80 compounds (Appendix 2.1).
This method was adapted from an assessment carried out by Daouk et al. (2015) where
compounds were assigned a ranking of 1-5 based on their potential to enter the

environment, persist, and be taken up by organisms and cause toxicity (Table 2.1).

The potential to enter the environment was determined by calculating PECs. This is
shown in Eq. 2.1, where A is the amount prescribed (kg year? calculated from National
Health Service, 2014), E is the fraction of the compound excreted unchanged, V is the
volume of waste water per capita per day (assumed to be 200 litres; EMEA 2006), P is
the population of the UK in 2014 and D is the dilution of wastewater (assumed to be 10
times; EMEA 2006). Excretion rates were obtained from peer reviewed literature or
databases such as drugbank (http://www.drugbank.com) and compendium
(http://www.compendium.ch). Excretion rates were often variable, so the highest value
was used, and where data was not available, excretion was assumed to be 100%. A
score of 1 to 5 was given to each of the compounds based on the calculated PEC (Table
2.1).

AxE (Eq. 2.1)
V+PxDx*365

Pharmaceuticals were then ranked 1-5 based on removal rates during wastewater
treatment (Table 2.1). Removal rates were obtained from the literature and they were
assumed to be 0, when no data was available or when removal rates were negative.

These rates often varied depending on technology used so the lowest rate was chosen
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for this exercise. Wastewater treatment plant (WWTP) removal rates were used for
persistence criteria, as there was little available experimental data on the half-life of
pharmaceuticals in the environment. WWTP was used instead, as compounds which
have gone through this process, are more likely to be resistant to degradation processes
(Kim et al. 2014). Daouk et al. (2015) used bioconcentration factor (BCF) to determine
the bioavailability of a compound, however this data is often unavailable. Instead, the
logkow, Which is often use in prioritisation schemes as a predictor of bioconcentration

was used instead, and compounds were ranked based on this information (Table 2.1).

In order to determine potential toxicity, compounds were ranked by a method adapted
from Capleton et al. (2006) in order to determine how likely a compound is to exert a
biological effect on aquatic organisms. Six categories of potential effects on different
biological systems were chosen: reproductive health, neurotoxicity, endocrine disruption,
immunotoxicity, antimicrobial and genotoxicity. Each compound was given a score 1 to
5 (Table 2.1) to determine if the compound would have an effect on the selected systems.
If it was unknown whether a compound exerted a particular effect, it was decided to
distinguish between whether the effects were truly unknown (score 3) or whether it was
suspected to have an effect (score 2). Suspected was defined as compounds which had
had a mode of action (MoA) that was likely to occur in an aquatic species, or if another

compound with a similar MoA had an effect on aquatic species.

Finally, the rankings from the four categories were added together to create a final
ranking. Those with the lowest score are more likely to occur in the environment and
exert a biological effect, and therefore should be prioritised for study. This resulted in
compounds with a ranking between 16 and 35. The top 20 ranked drugs are shown in

Table 2.2, with the full scores presented in Appendix 2.1.

Table 2.1: Criteria thresholds for the ranking of pharmaceuticals

Score Occurrence Persistence Bioaccumulation Toxicity
PEC WWTP Logkow
(ng I'") Removal (%)
1 >1000 <20 >4 Proven
2 500-999 20-39 3-3.9 Suspected
3 200-499 40-59 2-2.9 Unknown
4 50-199 60-79 1-1.9
5 0-49 >80 <1 No Effect
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Six compounds were selected for monitoring in the Humber Estuary: citalopram,

diclofenac, paracetamol, ranitidine, metformin and trimethoprim. Compounds were

chosen to incorporate a variety of classes and based on their overall score (Table 2.2)

Table 2.2: Scores of priority compounds based on PECs, wastewater removal, logkow and

potential for toxicity. Selected target compounds for study are shaded in grey.

Score Compound Class
17 Fluoxetine Antidepressant (SSRI)
18 Paracetamol Pain Killer
19 Bezafibrate Lipid Lowering
Citalopram Antidepressant (SSRI)
Ibuprofen Anti-inflammatory
20 Tamoxifen Hormone
22 Amoxicillin Antibiotic
Atorvastatin Lipid Lowering
Diclofenac Anti-inflammatory
23 Carbamazepine Anticonvulsant
Metformin Antidiabetic
24 Erythromycin Antibiotic
Flucloxacillin Antibiotic
Ketoprofen Anti-inflammatory
Mefenamic Acid Anti-inflammatory
Sodium Valproate Anticonvulsant
25 Atenolol Anti-hypertensive (Beta Blocker)
Pregabalin Anticonvulsant
Ranitidine Ulcer Medication
Trimethoprim Antibiotic

2.2 Chemicals and Reagents

Pharmaceutical standards were used to create working and stock solutions. Diclofenac
sodium (298.5), paracetamol (299%), citalopram hydrobromide (=98), ibuprofen (298%),
metformin hydrochloride (=98), ranitidine (>97%) and trimethoprim (=98%) were supplied
by Sigma-Aldrich Ltd. (Dorset, UK). A fresh Individual stock standard solution was
prepared by weight in 100% methanol each day. Standards were prepared by
appropriate dilution in 100% methanol immediately before each analytical run. Methanol,

acetonitrile, hydrochloric acid, acetic acid, ammonium acetate and formic acid were
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supplied by VWR chemicals (Leicestershire, UK). 0.1% Trifluoroacetic acid (TFA) in
methanol was supplied by Fisher Scientific. (Loughborough, UK).

2.3 Solid Phase Extraction

There are several methods in the existing literature for the extraction of the target
analytes from surface water samples, however, most of these are for determining
occurrence in freshwater (Biatk-Bielinska et al. 2016). A matrix effect is often seen in
marine samples which can lead to poor analytical accuracy, requiring different methods
than those used for freshwater samples (Vieira Madureira et al. 2009). As a result, the
salinity gradient seen in estuaries can pose a challenge to the analysis of samples from
this environment. In order to minimise cost and maximise efficiency, solid phase
extraction (SPE) methods need to be suitable for as many of the target analytes as
possible. Metformin provides an additional challenge, as it is a polar compound, and as

a result requires a different analysis methods than the other compounds (Poole 2003).

2.3.1 Cartridges

The recovery of three SPE cartridges: Oasis HLB (6 cc, 150 mg; Waters Corporation,
Milford, MA, USA), Oasis WXC (6 cc, 150 mg; Waters Corporation, Milford, MA, USA)
and Strata-X (6 cc, 150mg; Phenomenex, Torrance, CA, USA) using five different
methods was determined. Recovery was determined by dosing artificial seawater (20
ppt, Tropic Marin Synthetic Sea Salt) with 1 pg I* of citalopram, diclofenac, metformin,
paracetamol, ranitidine and trimethoprim. Prior to SPE, samples were filtered through a
0.45 um cellulose filter (Scientific Laboratory Supplies, Hessle, UK) under vacuum. The
concentration for each compound was determined by comparing the peak area against
a standard of the same concentration. Recovery experiments were carried out in
triplicate with a blank sample (not containing pharmaceuticals). It was determined that
Oasis HLB method two resulted in the best recovery for citalopram, diclofenac,
trimethoprim, ranitidine and paracetamol, whereas Strata-X method two resulted in best

recovery for metformin (Figure 2.1).

2.3.1.1 Oasis HLB

The first method was adapted from Petrovic et al. (2006), where HLB cartridges were
used for the extraction of 27 pharmaceuticals including ranitidine, trimethoprim, and
diclofenac. Cartridges were first conditioned with 5 mL 100% methanol followed 5 mL
deionised water at a flow rate of 1 mL min-t. 500mL samples were then loaded onto the
SPE cartridge at a flow rate of 10 mL min-t, during which care was taken to ensure the
sorbent material did not dry out. Cartridges were then rinsed with 5 mL deionised water

prior to being air dried under vacuum for 30 minutes. Elution of cartridges was then
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performed with 5 mL 100% methanol twice at a flow rate of 1 mL mint. The eluent was
evaporated to dryness using a rotary evaporator (40°C, speed 7) and reconstituted with
1 mL 100% methanol. For the second method, conditioning and loading of samples was
performed in the same way, but cartridges were eluted twice using 5 mL 0.1%
trifluoroacetic acid (TFA) in methanol. The addition of TFA for elution improved recovery
of all compounds except trimethoprim and metformin where it remained the same (Figure
2.1)

2.3.1.2 Oasis WCX

Prior to SPE, samples were acidified to pH 4 using hydrochloric acid. 500 mL samples
were loaded directly onto the cartridge at a flow rate of 10 mL min-t and then rinsed with
6 mL 5% ammonium hydroxide. Cartridges were left to dry under vacuum for 30 minutes,
prior to elution with 6 mL 100% methanol followed by 6 mL 2% formic acid in methanol.
The eluent was evaporated to dryness using a rotary evaporator (40°C, speed 7) and
reconstituted with 1 mL 100% methanol. This method resulted in moderate recovery (<
80%) for diclofenac, paracetamol and trimethoprim, however, recovery for metformin and

ranitidine was poor (< 10%; Figure 2.1)

2.3.1.3 Strata-X

SPE using strata-X cartridges were carried out using two different methods. First
cartridges were conditioned with 5 mL 100% methanol, followed by 5 mL deionised
water. 500 mL samples were loaded onto the cartridge at 5 mL min* and then were
rinsed with 5 mL 50% methanol, prior to drying under vacuum for 30 minutes. The first
method consisted of elution with 5 mL 2% formic acid in methanol, twice. The second
method eluted using 5 mL 2% formic acid in methanol followed by 5 mL acetonitrile. The
eluent was evaporated to dryness using a rotary evaporator (40°C, speed 7) and
reconstituted with 1 mL 100% methanol. The second method, yielded improved

recoveries for Metformin.
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Figure 2.1 Mean recovery (xstandard deviation) for target analytes: citalopram, diclofenac,

metformin, paracetamol, ranitidine and trimethoprim using three SPE cartridges (n = 3).

2.3.2 Salinity

SPE recoveries can often differ between freshwater and marine samples, which can
complicate analysing estuarine samples due to variable salinities (Vieira Madureira et al.
2009). In order to determine if there was a difference in recovery between salinities,
artificial seawater was made to two salinities (10 and 20 ppt) using deionised water. SPE
was carried out by spiking 500 mL deionised water, 10 ppt and 20 ppt samples with 500
ng of citalopram, diclofenac, paracetamol, ranitidine and trimethoprim. SPE was carried
out using Oasis HLB cartridges as described in section 2.3.1.1, with 0.1% TFA in

methanol as an elution solvent.

There was little difference in the recovery of samples between 10 and 20 ppt for all
compounds, except ranitidine where the mean recovery differed by 33% (Figure 2.2).
Use of deionised water resulted in 12 — 48% difference in recovery from saline samples.
The recovery of compounds in deionised water is likely to be different from freshwater,
because freshwater will have a higher ionic strength which may increase sorption of
compounds to the SPE column. Additionally, an increase in salinity will have a similar
effect by increasing ionic strength, decreasing solubility, and as a result can improve
recovery efficiency of hydrophobic compounds such as diclofenac (Zhang and Zhou
2007). Conversely, an increase in pH as the result of salinity or other environmental

differences at sites could affect the sorption of compounds and cause differences in
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recovery. For example, the sorption of acidic compounds may decrease as they will not
be ionised at a high pH. However, it was determined that the recovery seen with Oasis
HLB cartridges would be sufficient for the analysis of estuarine samples, as most sites
within the Humber had a salinity of 7-24 ppt, however variability in the recovery between
the samples will be expected due to fluctuations in salinity and pH throughout the

estuary.
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Figure 2.2 Mean recovery (tstandard deviation) of target analytes: citalopram, diclofenac,
metformin, paracetamol, ranitidine and trimethoprim in deionised water and artificial seawater (10

and 20 ppt, n = 3s).

2.3.3Volume
In order to determine the optimum volume of sample to be loaded onto the cartridge SPE

of citalopram, ranitidine and trimethoprim in 250 mL, 500 mL, 800 mL and 1000 litres of
artificial seawater (20 ppt) was determined using Oasis HLB cartridges as outlined in
section 2.3.1.1. Samples were spiked with 500 ng I* citalopram, diclofenac, paracetamol,
ranitidine and trimethoprim. 800 mL and 1000 mL samples containing diclofenac and
paracetamol were not analysed. Samples for 250 mL samples were also partially
analysed, however, an insufficient number of samples (n = 1) were analysed as the result

of technical problems with the LC-MS/MS, but those which were showed lower recovery.
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Studies frequently perform SPE on 1 litre samples collected from rivers (For example
Camacho-Mufoz et al. 2009; Liu et al. 2017). However, a lower recovery was seen at
800 and 1000 mL for citalopram, ranitidine and trimethoprim in comparison to 500 mL.
The increased salt in the larger volumes clogged the cartridges and prevented complete
filtration and sorption of the pharmaceuticals. However, at a lower volume (250 mL)
recovery was lower due to lower concentrations of pharmaceuticals in these samples.
As a result, 500 mL was chosen as the optimum volume for SPE.
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Figure 2.3 Mean recovery (tstandard deviation) of target analytes citalopram, ranitidine and
trimethoprim in 500 mL, 800 mL and 1000 mL artificial seawater (20 ppt) as well as diclofenac
and paracetamol in 500 mL artificial seawater (20 ppt; n = 3). SPE of diclofenac and paracetamol

in 800 mL or 1000 mL seawater were not analysed.

Due to technical problems with the LC-MS/MS, it was not possible to determine recovery
of different volumes or salinity for metformin. As the result of these ongoing difficulties,
samples were sent for external analysis by colleagues at the Catalan Institute for Water
Research, and due to financial limitations, it was only possible to analyse environmental
samples for the presence of ibuprofen, paracetamol, diclofenac, trimethoprim and

citalopram in the subsequent chapters.

The recovery of these compounds in spiked water samples differed between this chapter
and Chapter 4. Whilst the same SPE method was used, samples were reconstituted in
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10:90 (methanol: water). The use of TFA in elution of the compounds, will have further
acidified compounds such as diclofenac, and use of a higher agueous solution will have
resulted in lower solubility of this compound. Additionally, optimisation of SPE was
performed on samples containing artificial seawater and environmental samples will
contain more complex mixtures of organic matter, salinity and pH which can also account

for differences in these salinities.

2.4 Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)

Liquid chromatography (LC) was performed using Agilent 1100 series and the LC eluent
was directly infused into the Z-spray electrospray source of a Bruker mass spectrometer.
Tandem mass spectrometry (MS/MS) was initially performed for each compound
alternating between positive ion (Pl) and negative ion (NI) modes. MS/MS was then
performed using multiple reaction monitoring (MRM) on target compounds identifying
compounds based on run time, molecular weight of the compound and the molecular
weight of one or two fragments (Table 2.3). Chromatograms for the target analytes are
displayed in Figure 2.4. MS/MS method was optimised by trying different temperatures,
backing pressures and flow rates. Once a method was optimised, spiked methanol
standards using a standard solution in dilution series were analysed in order to determine
method detection limits (MDL) and method quantification limits (MQL). These were
calculated using Eq. 2.2, where the standard deviation of 20 blank samples is multiplied
by a factor of 3 and 10 for MDL and MQL respectively, SD is the standard deviation from
20 blank samples and b is the slope of the regression line for each of the compounds
(Shrivastava and Gupta 2011)

F*SD (EqQ. 2.2)

MDL/MQL =—

Table 2.3 Precursor ion, MRM transitions and run time used for a positive identification of each
of the target compounds. MDL and MQL were calculated as outlined in Eqg. 2.2. Mean recovery

(+ standard deviation) is also provide using SPE methods outlined in section 2.3.
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Compound Precursor MRM Run MDL MQL Recovery (%)
lon Transition Time (ng I') (ng I'")
Citalopram 325 325> 109 11.5 0.5 1 75.13 (2.09)
325> 83
Diclofenac 296 296 > 215 15.5 04 6.5 84.12 (6.46)
296 > 214
Metformin 130 130 > 85 2:1 10 50 42.56 (4.70)
Paracetamol 152 152 >110 52 9.9 60 67.97 (9.04)
Ranitidine 315 315> 130 5.0 1 12 102.26 (3.32)
315> 124
Trimethoprim 291 291 > 261 7.9 1 25 98.12 (0.56)
291 > 123

Citalopram, ranitidine and trimethoprim were analysed in positive ion (PI) mode whilst
diclofenac and paracetamol were analysed in negative ion (NI) mode using a C18 column
(Water Corporation, Milford, MA, USA). These samples were analysed with a solvent
system of acetonitrile + 0.1% formic acid (Buffer A) and water + 0.1% formic acid (Buffer
B) at a flow rate of 0.3 mL min* and the column held at 35°C. After 10 pl injection the
gradient was increased from 0 to 100% A over 15 minutes. This was held for four minutes
followed by a decline to 0% A over 30 seconds. Reequilibriation time was 5.5 minutes.
A column wash in 100% acetonitrile was carried out between each sample injection. The
LC eluent was directly infused into the MS, with a backing pressure of 35psi, electrospray
desolvatation temperature of 150°C and 9 | min-t. The lockspray frequency was set to

scan 45ms for each ion.

Metformin was analysed in Pl mode using a HILIC column according to US EPA method
1694 (EPA 2007). LC was performed using a solvent system of acetonitrile (solvent A)
and 0.1% acetic acid in ammonium acetate buffer (solvent B), with a flow rate of 0.2 mL
min* and the column held at 35°C. After 10 pl injection, the gradient was kept at 98%
solvent A for 5 minutes. Solvent A was then decreased to 70% and was held for 7
minutes before increasing back to 98% over 30 seconds. The column was reequilibriated
for 3.5 minutes. A column wash in 100% acetonitrile was carried out between each
sample injection. The LC eluent was directly infused into the MS, with a backing pressure
of 35psi, electrospray desolvatation temperature of 150°C and 9 | min-t. The lockspray

frequency was set to scan 45ms for each ion.
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Figure 2.4: Chromatograms and calibration curves for target analyte standards (100 ng ml* in
methanol) for (A)Citalopram (B)Diclofenac (C)Metformin (D)Ranitidine (E)Trimethoprim
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Abstract

Only a small proportion of pharmaceuticals available for commercial use have been
monitored in the aquatic environment, and even less is known about the effects on
organisms. With thousands of pharmaceuticals in use, it is not feasible to monitor or
assess the effects of all of these compounds. Prioritisation schemes allow the ranking of
pharmaceuticals based on their potential as environmental contaminants, allowing
resources to be appropriately used on those which are most likely to enter the
environment and cause greatest harm. Many different types of prioritisation scheme exist
in the literature and those utilising predicted environmental concentrations (PECSs), the
fish plasma model (FPM), critical environmental concentrations (CECs) and acute
ecotoxicological data were assessed in the current study using the fifty most prescribed
drugs in the United Kingdom. PECs were found to be overestimates of mean measured
environmental concentrations but mainly underestimations of maximum concentrations.
Acute ecological data identified different compounds of concern to the other effects
assessments although the FPM and CECs methods were more conservative. These
schemes highlighted antidepressants, lipid regulators, antibiotics, antihypertensive

compounds and ibuprofen as priority compounds for further study and regulation.

3.1 Introduction

Concern over the presence of pharmaceuticals in the environment and the subsequent
development of environmental risk assessments (ERAS) for these compounds began in
the 1990s (Kuster and Adler 2014). Currently, only Europe and the USA have specific
ERA protocols for the assessment of pharmaceuticals, which are required to be
completed in order to register them for commercial use (Adler et al. 2008). In 2006, an

EU regulation on the Registration, Evaluation, Authorisation and Restriction of chemicals
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(REACH) came into effect, and now all chemicals being manufactured in or imported to
the EU must be assessed following ECHA guidelines, including information on potential
risks and hazards to the environment (Ehrlich et al. 2011). However, prior to the
implementation of such legislation, pharmaceuticals have been released into the
environment unregulated for years. The number of human pharmaceuticals in use has
been reported as being between 1,500 and 10,000 (Guo et al. 2016; Dong et al. 2013).
Only a little over 200 of these have been monitored in freshwaters and fewer in marine
waters, and even less is known about their impacts once they enter the aquatic
environment (Fabbri and Franzellitti 2016; Hughes et al. 2013). This has left continuing
uncertainty surrounding the environmental impacts of pharmaceuticals in the aquatic
environment. The use of a prioritisation scheme can help address this by identifying a
smaller set of compounds which have the potential to enter the environment and pose a
biological risk. This can allow researchers and policy makers to direct resources towards
further study; they can help decide which compounds need to be monitored in the
environment and which require more information on their fate and biological effects
(Mansour et al. 2016).

Many prioritisation schemes are based on existing ERAs, which include the calculation
of predicted environmental concentrations (PECs) and an assessment of the risk to biota.
PECs are usually derived from usage data on the volume of drugs produced per year, or
number of prescriptions filled, which may be further refined based on processes which
affect the compounds between production and entering the environment, such as
metabolism, wastewater treatment, and dilution (Besse and Garric 2008). Often, where
experimental data is missing or chemical properties are not known, simplified PECs,
where little or no fate criteria are applied, may be calculated to facilitate quick
assessment of a large number of chemicals (Ashton et al. 2004; Besse and Garric 2008;
Kostich and Lazorchak 2008). As a result, the PECs calculated in such schemes give
broad predictions for a country or large area and are not refined enough to give

predictions at different spatial or temporal scales.

PECs are usually paired with assessments of hazards to biological organisms inhabiting
the receiving environments. One such method is through the use of risk quotients, which
determine if the predicted no effect concentrations (PNECs) of a compound exceed
PECs. If the result is greater than 1 then the study compound is deemed to pose a threat
(Hoyett et al. 2016). PNECs are usually calculated by selecting the most sensitive LCso
and applying an assessment factor (Backhaus and Faust 2012). Such experimental data
is often unavailable in the literature, however, and it is time consuming to generate such

data for a prioritisation scheme. Ecotoxicological structure-activity relationships
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(ECOSAR) can be used to calculate chronic and acute LCso values and are allowed
under REACH guidelines (Sanderson et al. 2004, Ortiz de Garcia et al. 2013)

Pharmaceuticals are unique contaminants as they are designed to be biologically active
and, unlike many other environmental contaminants, information from the medical
literature on the pathways and effects of pharmaceuticals in vertebrates is abundant.
This information has been utilised to produce alternative methods of assessing the
hazard of pharmaceuticals to biota. Fish are not biochemically different from vertebrates
and share many of the same drug targets (Huggett et al. 2003). The fish plasma model
utilises this information and compares the human therapeutic concentration to a
calculated fish plasma concentration. Vertebrates are usually more sensitive to
chemicals than invertebrates, due to shared targets. It is thought that this model is a

scheme sufficient to predict the environmental hazard of chemicals (LaLone et al. 2014).

Despite their extensive development, the prioritisation schemes which exist in the
literature are varied and often highlight different compounds of concern (Besse and
Garric 2008; Donnachie et al. 2016; Roos et al. 2012). Moreover, it can be difficult to
compare them as they are applied to different data sets and scenarios which can make
it hard to understand which compounds really are of most concern or to select a scheme
for use in research and management. The aim of this paper was, therefore, to use a
range of common prioritisation schemes to assess the environmental risk of the fifty most
prescribed pharmaceuticals in the UK, highlight compounds of concern, and make

suggestions as to the efficacy of the different schemes.
3.2 Methods

3.2.1 Predicted Environmental Concentrations

3.2.1.1 Calculations

Information on the quantity of pharmaceuticals prescribed was obtained from data
released monthly by the National Health Service England for 2014 (NHS, 2014). The 50
most prescribed compounds during this period were used for this assessment. For each

compound, the monthly and annual mass of prescriptions was calculated (Appendix 3.1).

PECa was calculated using (Eq. 3.1), where A is the amount of pharmaceuticals
dispensed (kg year?), E is the fraction of the compound excreted unchanged, V is the
volume of waste water per capita per day (assumed to be 200 litres), P is the population
of England in 2014, and D is the dilution of waste water (assumed to be 10 times; EMEA
2006). This method was derived from the approach detailed in the EU technical guidance

for risk assessment of human pharmaceuticals (EU 2003). Excretion rates were obtained
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from peer reviewed literature or online databases and the highest excretion rate was
used in the calculation (Appendix 3.2). PECg further refined this equation by applying the
removal rate for pharmaceuticals in wastewater treatment plants (WWTPs ;Eq. 3.2),
where R is the removal rate. Removal rates were obtained from peer reviewed literature
and where multiple removal rates were published for the same compound, the lowest
was chosen in order to create a more conservative estimate (Appendix 3.2). If no removal
rate, or a negative one, was found then it was assumed to be 0. PECc included further

refinement; taking into account metabolism and removal in wastewater (Eg. 3.3).

B Ax*E (Eq. 3.1)
PECA_V*P*D*365

_ Ax(1-R) (Eq. 3.2)
PECB_365*P*V*D

_A*Ex(1-R) (Eqg. 3.3)
PECc = 7P+ D» 365

PECo (Eg. 3.4) is derived from the EMEA guidelines and does not require prescription
data to be calculated. Instead, it includes the proportion of the population being treated
with a particular drug (Fpen), where a suggested value of 1% is used (EMEA 2006).
Dose is the maximum dosage per person and Capsy is the capacity of the local WWTP
(assumed to be 10,000; EMEA 2006). The EMEA guidelines also suggest the inclusion
of information on the fraction of the compound absorbed to suspended matter. Due to
the unavailability of this data for most compounds this was not included (Besse et al.
2008).

Elocalyater * (1 — R) (Eqg. 3.4)
PECD =
V * D * Capgtp
Elocalyater = Dose * E * Fpen * Capgp (Eqg. 3.5)

Each compound was ranked by each of the PEC calculations (Appendix 3.3) and the
mass prescribed annually in order to compare how the different schemes altered the

predicted relative environmental risk.
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3.2.1.2 Comparison with Environmental Concentrations

In order to compare the PECs to measured environmental concentrations (MECs) data
were taken from monitoring studies carried out in the United Kingdom (Baker and
Kasprzyk-Hordern 2013; Bound and Voulvoulis 2006; Burns et al. 2017; Burns et al.
2018a; Kasprzyk-Hordern et al. 2008; Kasprzyk-Hordern et al. 2009; Kay et al. 2017,
Nakada et al. 2017; Roberts and Thomas 2006; Ashton et al. 2004). Only monitoring
studies from surface water were included, measurements from influent and effluent were
omitted. The mean MEC across all studies was calculated and compared to each of the

PECs along with the maximum MEC.

3.2.2 Effect Data

3.2.2.1 Fish Plasma Model

The FPM was calculated according to Huggett et al. (2003). This model compares the
human therapeutic plasma concentration (HrPC) and the fish steady state concentration
(FssPC) to give an effective ratio (ER), a measure of risk (Eq. 3.6). FssPC was estimated
for each of the PEC values calculated in 2.1.1 (Eq. 3.7) and the HtPC was obtained by
using the peak serum concentration that is reached in humans after the drug has been
administered (cmax). Where multiple cmax values were found, the higher value was

used in this assessment (Appendix 3.4).

H-PC
ER = T (Eq. 3.6)

R PC
F¢sPC = PEC X Pgjgod:water (Eq- 3-7)
logPgio0d:water = 0.73 * logyew — 0.88 (Eq- 3-8)

The compounds were ranked from lowest to highest by ER. Huggett et al. (2003)

suggested that compounds with an ER<1000 may warrant further assessment.

3.2.2.2 Critical Environmental Concentrations

Critical environmental concentrations (CECs) were proposed by Fick et al. (2010) and
utilise the concept of the FPM but are independent of environmental concentrations.
CECs are calculated by the ratio (Eqg. 3.9) of HrPC and Pgiood:water (EQ. 3.8).
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HyPC (Eq. 3.9)

CEC =
PBlood:Water

3.2.2.3 Risk Quotients

Information on the acute toxicity of each of the compounds was obtained from reviews
containing comprehensive experimental ecotoxicological data or studies containing such
data provided by pharmaceutical companies (Sanderson and Thomsen 2009, Sangion
and Gramatica 2016a, Vestel et al. 2016). For compounds not included in these studies,
LCso values were obtained from risk assessments or scientific literature (Appendix 3.4).
Values were only included if they followed standard protocols (for example, OECD, US
EPA), used at least five concentrations in the exposures and at least three replicates per
treatment. This data was unavailable for 12 compounds, so ECOSAR (v 1.11) was used
to estimate LCso values although the model was unable to estimate these for 7 of the
compounds. A relative ranking, where the ranking was divided by the number of
compounds in the scheme, was used in order to compare rankings across all effect

schemes.

Risk quotients (RQ) were calculated by dividing the lowest LCsq value for fish, algae or
daphnia by each of the PECs calculated in 2.1.1. An assessment factor of 1000 was
applied in order to account for any uncertainties and provide a more conservative
assessment. Those compounds with a RQ > 1 deemed to be hazardous to the

environment.
3.3 Results

3.3.1 Exposure Criteria

3.3.1.1 Comparison of predicted environmental concentrations between schemes

Metformin, gabapentin, flucloxacillin, amoxicillin, naproxen and ibuprofen were ranked in
the top 10 across all PEC schemes, whereas tamsulosin, ethinylestradiol, fluticasone,
budesonide, beclomethasone, felodipine, and tiotropium were ranked in the bottom 10
(Figure 3.1). These compounds were in the top 10 and bottom 10 respectively when
ranked by the amount dispensed annually. For most compounds, there was less than a
10 place difference between schemes (Appendix 3.3). Where larger differences occurred
it can mostly be attributed to different results between schemes which utilised usage data
(PECa, PECg and PECc) and PECp which did not. However, the PEC values for individual

compounds did differ greatly depending on which scheme was used.
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3.3.1.2 Comparison with measured environmental concentrations

MECs in the UK were available for 24 out of the 50 study compounds. Of these, warfarin
sodium, sertraline prednisolone and fluticasone propionate were below the method
detection limit (MDL) in all studies. All of the schemes underestimated the maximum
concentrations for tramadol, salbutamol, paracetamol, ibuprofen and ethinylestradiol
(Figure 3.2). Maximum MECs were overestimated for amoxicillin, diltiazem, gabapentin
and naproxen by all schemes. For the other compounds, PECg overestimated maximum

concentrations more than the other schemes.

Venlafaxine - MM &
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Salbutamol - B
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Figure 3.2 Ratio of PEC: maximum MEC for each of the schemes. The line denotes a ratio of 1.

All PECs were overestimates of mean MECs for all of the compounds, with the exception
of ethinylestradiol and salbutamol (Figure 3.3). PECa, PECc: and PECp also
underestimated the MECs of propranolol and tramadol. Further to this PECc and PECp
underestimated the MECs for paracetamol and codeine respectively. The ratio for mean
MECs was much higher than those for maximum MECs for all compounds. PECp
overestimated MECs to a greater degree than the other schemes, and PECc more

accurately predicted the mean MECs than the other schemes.
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3.3.2 Effect Criteria

For many of the compounds, LCs values resulted in the opposite ranking to the other
schemes (Appendix 3.5). The FPM, LOGkow and CEC schemes resulted in simvastatin,
atorvastatin, candesartan, ibuprofen and losartan being ranked in the top 25%, however,
the LCso ranked these compounds as lower priority (Figure 3.4). The opposite was true
for allopurinol, alendronic acid, beclomethasone and amoxicillin. Pregabalin, gabapentin,
isosorbide mononitrate and tiotropium were ranked in the bottom 25% across all
schemes. CECs highlighted some compounds as priority that the other schemes did not;
ethinylestradiol, fluticasone propionate and beclomethasone diproprionate had a higher
relative ranking before the inclusion of PEC values. As a compound class,
antidepressants and antibiotics were given a high priority ranking, whereas

bronchodilators and mucosal protectants were not.

All compounds had an ER ratio < 1000, with the exception of tiotropium and alendronic
acid, where the ER exceeded this value with all PECs (Appendix 3.6). Isosorbide
mononitrate also had an ER < 1000 for FPMa, and FPMc. Less compounds exceeded
the RQ value of 1; all PECs resulted in an RQ > 1 for amoxicillin (Appendix 3.6). PECg
resulted in the RQ being exceeded for the allopurinol and fluoxetine and PEC, for

allopurinol, fluoxetine and flucloxacillin.
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3.4 Discussion

3.4.1 Comparison of schemes for predicted environmental concentrations

For many of the compounds in this assessment, the ranking within each PEC scheme
was correlated with the amount dispensed, which has also been found in other
prioritisation studies (Ashton et al. 2004; Roos et al. 2012). Of the compounds which
were ranked in the top ten across all schemes, metformin, amoxicillin, naproxen and
ibuprofen have previously occurred on many priority lists (Burns et al. 2018b).
Gabapentin and flucloxacillin have only been listed of concern in one prioritisation
exercise each (Helwig et al. 2013; Ortiz de Garcia et al. 2013) and, as a result, fewer
monitoring studies include these compounds. PECp results were less closely related with
the amount of compound dispensed, as this was not included in the calculation. Instead,
PECo used the maximum dosage and assumed 1% of the population was taking the
compound. It is unsurprising that compounds which have a higher dosage are also
prescribed at higher masses. However, for many compounds, the usage has been found
to surpass 1% (Pereira et al. 2017). As a result, the inclusion of usage data in risk
assessments is very important and, where this is not available (e.g. many developing
countries), its production should be seen as a high priority by governments. As over the
counter (OTC) sales of some products have been attributed to up to 50% of this, it is
very important that these figures are available for risk assessment purposes (Guo et al.
2016). Of the compounds assessed in the current study, paracetamol, ibuprofen,
diclofenac, omeprazole and naproxen are available OTC in the United Kingdom. Even
though OTC data were not available, omeprazole was ranked between 10 and 20 across
all schemes and if OTC sales were also included, it could be much more important in
terms of environmental impact. Furthermore, many pharmaceuticals are also used for

veterinary purposes and these data are needed for more accurate PEC calculations.

Although, for the majority of compounds, ranking by the amount of pharmaceutical
dispensed may be sufficient to estimate relative environmental exposure, some
compounds undergo extensive metabolism or removal in WWTPs, making some
refinement necessary. Amoxicillin, metformin, gabapentin, ibuprofen and naproxen are
prescribed in such high numbers that the application of removal and excretion data has
little impact on their relative ranking. Gliclazide, on the other hand, had a 20 place ranking
difference between the amount dispensed and PECa due to its extensive excretion.
Those which were ranked between 20 and 40 showed more variability in their ranking
between schemes than those at the top and bottom end, as they were dispensed in

similar amount to other compounds. Information on the metabolism of pharmaceuticals
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was available in the scientific literature and pharmaceutical databases, with little variation

in reported values.

Removal rates during wastewater treatment had less of an effect on the ranking of
compounds than excretion rate. It is possible that this is the result of the overall lack of
information of this process or variability within the data, depending on external factors
such as temperature and WWTP efficiency (Golovko et al. 2014). For example, removal
of metformin has been reported to be as low 0% and as high as 99% (Santos et al. 2013).
Variability such as this can have a great impact on the ranking of compounds; PECg
included the lower rate of removal of 0% which resulted in a ranking of 1, however, using
the higher removal rate of 99% would have resulted in the lower ranking of 23.
Furthermore, in some cases, an increase in the compound concentration has been seen
in effluent as the result of conversion back to the parent compound in WWTPs and so a
negative removal rate would have to be used in a PEC scheme to accurately take this

occurrence into account (Paiga et al. 2016).

342 Comparison of predicted environmental concentrations with measured
environmental concentrations

In the majority of cases, the PECs failed to accurately represent the MECs; mean MECs
were mostly overestimated, and half of the maximum MECs were underestimated by all
schemes. PECx, PECg and PECc were most accurate in estimating mean MECs, despite
overestimations. The MECs of naproxen were the least accurately identified, with PECs
overestimating maximum concentrations by a factor of 6-10, and mean concentrations
by a factor of 106 to 163. Nevertheless, these afford a degree of environmental safety.
When interpreting these results, the lack of available monitoring data needs to be taken
into consideration and many compounds were only measured at one time point and at
one or two sites. Concentrations of some pharmaceuticals have been shown to fluctuate
depending on seasonal and environmental conditions, so more thorough monitoring
studies are needed to further validate methods for producing PECs (Moreno-Gonzalez
et al. 2015). Ferrari et al. (2004) compared PECg and the highest MECs for five
pharmaceuticals in wastewater effluent and rivers in France and Germany. In German
effluents, these concentrations were accurately predicted for carbamazepine and
diclofenac, but were underestimated (although by less than a factor of 10) for
propranolol, clofibric acid and sulfamethoxazole, and overestimated for oflaxin. However,
in French effluents, MECs were overestimated for all compounds showing that the
scenario being assessed is important when choosing a PEC model and that local factors
which could affect concentrations are considered. Burns et al. (2017) also compared

MECs and PECs which were calculated using local hydrological information alongside
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lowest removal and highest excretion rates. MECs were accurately predicted in one river
but not another, which was attributed to missing inputs. The inclusion of local

hydrological information such as this may help to produce more accurate PECs.

PECa, PECg and PECc rely upon the accuracy of usage data to form reliable estimates.
Besides the compounds available OTC, prescription data may not always be an accurate
representation of the usage of compounds. It is unlikely that all pharmaceuticals
prescribed will be consumed, and a survey of 400 people in South-Eastern England
showed that only 53% of people finish their medication (Bound and Voulvouslis 2005),
and another survey in the United States showed that more than 98% of people disposed
of their unused medication in household waste or down the sink and toilets (Kupis and
Krenzelok 1996). Kostich and Lazorchak (2008) tried to add estimates of unconsumed
pharmaceuticals into their PEC calculations assuming that approximately 5% of drugs
prescribed for long-term therapy were wasted compared to 15% prescribed for short term
therapy and 33% for topical use. Whilst naproxen is a prescription only NSAID, it is often
prescribed short-term or on an as needed basis for pain management, and as a result

could help explain the over-estimate of its concentrations.

3.4.3 Comparison of effect based methods

FPM, Logkow and CEC schemes resulted in different rankings to acute LCso and
triggered different compounds for further assessment, which is concurrent with other
recent studies, showing that Logkow has a strong influence on these calculations (Roos
et al. 2012). Additionally, FPMs were more conservative than RQs, triggering more
compounds for further assessment. Thus, simply ranking compounds by logkow could be
a useful approach for determining the relative hazard pharmaceuticals pose to biota.
Nevertheless, although logkow is used in FPM and CEC models, it does not necessarily
indicate the compound will be toxic, but instead that it is likely to be taken up by fish at a
level sufficient to have a biological effect (Schrieber et al. 2011). Instead, it is suggested
that those with an ER less than 1000 warrant further assessment (Huggett et al. 2003).
Logkow Vvalues have been used as predictors for bioconcentration however this
measurement was originally developed for non-polar chemicals, and as a result does not

work for many chemicals (Schrieber et al. 2011).

The use of acute LCso and QSAR in order to assess the potential hazard of
pharmaceuticals has been debated. Although LCso values are derived from experimental
work, they can be influenced by variables such as the number of concentrations
assessed (Hoyett et al. 2016). The primary concern relating to pharmaceuticals in the

environment is the potential chronic exposure to low levels, and not acute toxicity. As a
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result, they may affect endpoints which are not covered by traditional risk assessments
(Johnson et al. 2017). QSARs have been used to model the potential toxicity of
contaminants to fish, daphnia and algae. There are several QSAR models which have
been proposed for use in predicting ecotoxicity of pharmaceuticals which have found to

vary in accuracy (for example, de Roode et al. 2006; Sangion and Gramatica, 2016a).

There is evidence that fish are more sensitive than algae or invertebrates as they retain
many of the same drug targets as humans (Donnachie et al. 2016). The FPM was
developed in order to utilise this information. A read-across approach can be used in
assessing the potential risk of pharmaceuticals to invertebrates and algae. Fish share
86% of targets with humans, 61% have been found to be conserved in daphnia and 35%
in algae (Gunnarsson et al. 2008). There is particular concern surrounding the toxicity
of antibiotics and statins to algae, in part due to conserved pathways, but also due to the
inhibition of symbiotic bacteria (Guo et al. 2015). CEC resulted in a higher ranking for
statins and two of the antibiotics than LCso values. Amoxicillin, on the other hand, was
highlighted by its acute toxicity and not by the FPM. Only the RQ which included PECa
exceeded 1 for amoxicillin, whereas this was exceeded by all of the FPM schemes. As
a result, the FPM and CEC will add a degree of protection for organisms besides fish.

For many compounds, FPM and CECs resulted in similar rankings. The minor influence
PEC has on FPM confirms what has been found in other comparisons between
prioritisation schemes (Roos et al. 2012). However, ethinylestradiol, fluticasone
propionate and beclomethasone were highlighted by CECs, but not by FPMs as the PEC
values for these compounds were small. In this case, ethinylestradiol had a low PEC,
however MECs were much higher than this. Ethinylestradiol is a compound on the EU’s
priority watch list due to concern over its potential effects at environmentally relevant
concentrations. Johnson et al. (2017) ranked chemicals based on their measured
environmental concentrations in UK Rivers and measured ecotoxicity concentrations,
and found that ethinylestradiol was highlighted as posing the greatest risk. As a result it
is important that PEC results are accurate if FPM is going to be used. The use of an
assessment factor or ER value of 1000 allows for the most conservative estimate of risk

whilst accounting for uncertainty in the PEC values.

3.4.4 Selecting a prioritisation scheme

It is important to consider the inclusion of compounds into a scheme to begin with.
Metoprolol, carbamazepine, aspirin and sulfamethoxazole were four of the most cited
pharmaceuticals of concern in the prioritisation literature but were not in the 50 most

prescribed compounds (Donnachie et al. 2016). The high number of prescriptions does
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not necessarily translate into a large mass of the compound; bronchodilators, for
example, were prescribed in high numbers, but at a very low mass. As a result, certain
compounds may be overlooked and it may be necessary to select compounds based on

their mass as well as prescription numbers.

Of the PEC schemes used in this assessment, PECa is the most suitable for assessing
the relative exposure risk as it requires limited data, but also conservatively estimates
the likelihood of pharmaceuticals entering the environment. It can be used to select
pharmaceuticals for which to further refine PECs based on local criteria before selection
of compounds for monitoring in the environment. Where information on the number of
prescriptions is not available, PECp is a better alternative as it can work within the

confines of available data.

Assessment of the potential effects of pharmaceuticals should be used alongside PEC
evaluations. Logkow offers a quick and easy method for assessing the relative risk, based
on potential bioaccumulation. The use of CECs and FPM add an extra level of
refinement, based on utilising information on mammalian effects. FPM appears to give a
conservative approach to prioritising pharmaceuticals in comparison to acute RQs. As a
result, those compounds which exceed the RQ threshold should be of priority. The use
of CECs over FPMs allows the ranking of compounds independent of PECs. However,
both exposure risk and potential effects should be included, as compounds found at
small concentrations could still be enough to warrant an effect. For example
ethinylestradiol was ranked as a low priority by the PEC schemes, but inclusion of effect

information increased its ranking.

When prioritising pharmaceuticals, it is essential to take a holistic approach which
conservatively highlights potential compounds of concern which warrant further
assessment. It is important to consider why the exercise is being carried out and the
question it is trying to address. There will not be a one size fits all approach, and not all
schemes will be appropriate in all situations. As a result, the limitations to each of these

schemes needs to be kept in mind.

3.4.5 Compounds of concern

The combination of PEC and effect criteria clearly highlight groups which should be a
priority for further research. Some assessments have only added one compound from
each class to the priority list, assuming that each class will have a similar mode of action
and similar effect (Besse and Garric, 2008). Antidepressants were ranked high across
all of the effect schemes, and moderately for PECs too. Overall ranking between

compounds does not differ much, however, fluoxetine may be of most of concern due to
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exceeding the RQ threshold values when none of the others did. Fluoxetine is commonly
present on priority lists, however some rankings have pointed towards sertraline,
citalopram and amitriptyline as representing a greater hazard (Besse and Garric 2008;
Roos et al. 2012; Sangion and Gramatica 2016b). Many of these antidepressants have
been found to have an effect on biota at environmentally relevant concentrations and the
use of FPM also highlights this (Silva et al. 2015). To the authors’ knowledge, this is the
first prioritisation exercise which has highlighted mirtazapine and venlafaxine to be a

potential concern.

Similarly to antidepressants, candesartan and losartan had moderate PEC rankings but
high effect rankings for FPM, CEC and LCsp, whilst other anti-hypertensives had a low
ranking across both PEC and effect schemes. These compounds are not commonly
included in prioritisation exercises, however, losartan has been present on priority lists
previously (Besse and Garric 2008). Candesartan had a higher ranking across schemes
and as a result may be more of a concern. The lipid regulators, atorvastatin and
simvastatin also had moderate to low PECs. However, their high ranking among CECs

and FPM means they warrant further investigation.

Amoxicillin and flucloxacillin were two of four compounds to exceed a RQ value of 1.
Both of these compounds were ranked highly as the result of PEC values. The effect
rankings of flucloxacillin were much higher than those of amoxicillin. Flucloxacillin is not
commonly present in monitoring or effects studies and there is still uncertainty about its

occurrence and impacts so it could be seen as a priority compound.

Ibuprofen was ranked in the top 10 of all of schemes, with the exception of acute LCso.
Ibuprofen is the fifth most prioritised compound in the prioritisation literature (Burns et al.
2018b). The environmental impact of ibuprofen pollution has been the focus of many
studies and its repeat presence on priority lists and high rankings in the current study

indicate the importance in understanding its fate and effects.

Allopurinol may also warrant further assessment due to its high exposure ranking and
RQ value. Whilst it had a low ranking for FPM, CEC and Logkow values it had an ER <
1000. Allopurinol has been stated to be a highly prescribed drug in other EU countries
(Kuster and Adler, 2014; Roos et al. 2012) although Roos et al. (2012) carried out a
comparison of first-tier prioritisation schemes, including FPM, on 582 pharmaceuticals in
Sweden, and did not find it to be a high priority. However, it has been highlighted on
other priority lists based on exposure and effect criteria (Besse and Garric, 2008; Linert

et al. 2007). Despite this, it is not present in the monitoring or ecotoxicity literature and it
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has only been monitored in coastal waters in Spain, where it was not detected
(Rodriguez-Navas et al. 2013).

Other compounds such as metformin and gabapentin are ranked in the top by PEC
schemes, but inclusion of effect criteria decreased their ranking. However, due their high
PECs, moderate effect rankings across FPM and acute LCso values, they may still
warrant further assessment. It is particularly important to understand their occurrence
and fate. Metformin in particular may be of concern as it now a widely used drug, and its

usage has increased rapidly over the last decade (Oosterhuis et al. 2013).

This assessment also clearly highlights compounds which are not of concern.
Bronchodilators were ranked in the bottom of all schemes and corticosteroids were
ranked at the bottom across all PEC schemes. This is concurrent with other prioritisation
exercises. As a result, these compounds are not commonly featured in monitoring
campaigns or experimental effects work. Although the priority ranking increased with the

application of effect criteria, it was still low.

3.4.6 Future direction for the management of pharmaceuticals in the environment

There is some evidence that EU policy has not used risk assessment approaches to
accurately identify compounds of concern. In the present study, ibuprofen and naproxen
had a higher PEC and effect ranking than diclofenac even though the latter has been
placed on the EU priority watch list. This could perhaps be attributed to the fall in
diclofenac’s usage over the past few years though (Mavragani et al. 2016).
Ethinylestradiol is another compound included on the EU priority watch list even though
it had a low PEC ranking and similar effect ranking; only CECs ranked it as a priority.
Similar results were seen in comparison of first-tier risk assessments by Roos et al.
(2012), where FPM did not result in a high ranking for ethinylestradiol but CEC and three
other schemes did. As pharmaceuticals are designed to be biologically active, it is
important that there is an understanding of these pathways in non-target organisms in

order to create better risk assessments.

There has been an increasing interest in the occurrence of pharmaceuticals in
environmental compartments other than effluent and water such as sediment and marine
environments. Comparatively little is known about the occurrence of pharmaceuticals in
these areas (Fabbri and Franzellitti 2016; Gaw et al. 2014) and use of the PEC schemes
employed here may not appropriately predict presence in these compartments. Other
properties, such as lipophilicity, pH and sediment type may be more relevant in predicting
the presence of pharmaceuticals in sediments, and in turn the potential risks to biota

which live within these systems (Al-Khazrajy and Boxall 2016). Salinity is also a defining
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factor of marine waters and it is hypothesised that the physical-chemical characteristics
of some compounds may change in marine waters. For example, the partition coefficient
between sediment and water for estrone increases with increasing salinity, meaning

concentrations will be lower (Pal et al. 2010).

All pharmaceuticals are metabolised to a different degree, yet only two prioritisation
schemes have included metabolites (Besse and Garric 2008; Capleton et al. 2006). If
metabolism and degradation play a significant role in the fate of pharmaceuticals then
metabolites will be present in the environment. Few studies have covered the occurrence
and effects of metabolites, many of which are inert, but some of which have been found

to be pharmacologically active and even toxic (Garcia-Cambero et al. 2015).

3.5 Conclusion

Prioritisation schemes should include assessments of the potential of a compound to
enter the environment as well its potential toxicity. Excretion of pharmaceuticals had a
large influence on the ranking of PECs for different compounds, and as a result should
be included in these calculations. CECs should be used alongside PECs in order to
assess potential hazard; both of these schemes result in a conservative estimate of risk,
and highlight compounds which warrant further assessment. Antidepressants, statins,
antibiotics candesartan, losartan and ibuprofen were highlighted as the substances of

greatest environmental concern.
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Abstract

There is a lack of data on the occurrence of pharmaceuticals in estuaries worldwide, with
little understanding of their temporal and spatial variations globally. Ibuprofen,
paracetamol, diclofenac, trimethoprim and citalopram were measured in twelve estuaries
in the UK. Initially, these compounds were monitored in the Humber Estuary, where
samples were taken every two months over a twelve month period in order to assess
their spatial and temporal variations. Ibuprofen was found at some of the highest
concentrations ever measured in an estuary globally (18 — 6297ng I'%), with paracetamol
also measured at relatively high concentrations (4 — 917 ng I'!) in comparison to the other
compounds. In terms of spatial distribution, a pattern was observed, where highest
concentrations were found at a site where wastewater is discharged, whilst compound
concentrations were often lower upstream and downstream of this site. The downstream
profile of pharmaceuticals differed temporally with concentrations highest downstream
when input from wastewater effluent was highest. Eleven further estuaries were sampled
around the UK in order to put the occurrence of pharmaceuticals seen in the Humber
Estuary into a wider context. Pharmaceutical concentrations in the other estuaries
sampled were less than 210 ng I, but, again, ibuprofen and paracetamol were found at
concentrations higher than other compounds, whereas diclofenac and citalopram were
absent from many estuaries. The Humber, which is the receiving environment for the
sewage effluent for approximately 20% (13.6 million people) of the population of

England, was observed to have the highest overall concentration of pharmaceuticals in
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contrast to the other estuaries sampled, thereby representing a worst case scenario for

pharmaceutical pollution.

4.1 Introduction

Despite the extensive and long-term use of pharmaceuticals, it has only been in the past
few decades that interest in pharmaceutical pollution has gained popularity and now
hundreds of pharmaceuticals have been detected in the aquatic environment (Hughes
et al. 2013; Gaw et al. 2014). Their presence in the aquatic environment is sustained
through continuous input from wastewater treatment plants (WWTPs), as well as from
improper disposal, agriculture and aquaculture (Godoy et al. 2015). Pharmaceuticals are
designed to be biologically active, often at low levels, and their presence in surface water
has led to concern over their potential biological effect (Santos et al. 2010). Many
pharmaceuticals (e.g. diclofenac and fluoxetine) have been found to illicit a negative
response on biota in laboratory exposures at concentrations similar to those found in the
aquatic environment (Eades and Waring 2010; Franzellitti et al. 2013; Minguez et al.
2016).

The fate of pharmaceuticals is best understood in the freshwater environment, with input,
environmental conditions, biological degradation and sediment-related processes
playing a prominent role in their spatial and temporal distribution (Li 2014).
Pharmaceuticals often show a decline in concentration downstream from input sources
as the result of dilution, degradation and partitioning to sediment (Kunkel and Radkle
2012). However, due to the prevalence of WWTPs, this leads to the continuous input of
pharmaceuticals into the environment. As a result, these processes are not enough to
sufficiently remove compounds leading to their high detection in the aquatic environment

and potentially, transportation into estuaries and coastal waters (Ebele et al. 2017).

Estuaries are receiving waters, often for many rivers, acting as a confluence for
contaminants, therefore increasing the potential risk of pharmaceutical pollution in these
environments (Ridgway and Shimmield 2002). Estuaries are ecologically important to
ecosystem services, providing habitat for many species and acting as an area for
recreation and transport (Ridgway and Shimmield 2002). Despite this, few studies have
measured the occurrence of pharmaceuticals in estuaries, and those that do, exist
typically lack the resolution to determine spatial and temporal patterns (Table 4.1).
Studies which have investigated the spatial and temporal patterns of pharmaceuticals
are often locally focused, monitoring only one estuary (for example Tamtam et al., 2012;
Hedgespeth et al. 2012; Cantwell et al. 2017) and it is important to determine if any

patterns seen are relevant at a wider scale. It is important to examine the fate of these
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compounds across a wider spatial scale in order to determine whether they pose a risk

to the environment.

Table 4.1: Maximum concentrations of ibuprofen, paracetamol, diclofenac and trimethoprim

detected in estuaries globally (ng I') Citalopram has not previously been monitored in any

estuaries.
Region Estuary 5 o £ Reference
$ £ g 5
(<] @ 2 £
o (=
Asia Jiulong, China 21 13 11 Sun et al. (2016)
Hailing Bay, China 37 Chen et al. (2015)
Qinzhou Bay, China 7 Cui et al. (2019)
Yangtze, China <MDL Yang et al. (2011)
Yangtze, China 330 Zhang et al. (2012)
Yangtze, China <MDL Zhao et al. (2015)
Europe Seine, France 45 Tamtam et al. (2008)
Elbe, Germany 1 1 Weigel et al. (2002)
Arade, Portugal 28 88 31 Gonzalez-Rey et al. (2015)
Douro, Portugal 16 Madureira et al. (2010)
Tejo, Portugal <MDL 1 52 8 Reis-Santos et al. (2016)
Bilbao, Spain 440 650 2046 Mijangos et al. (2018)
Plentzia, Spain 49 22 6 Mijangos et al. (2018)
Urdaibai, Spain 321 35 3 Mijangos et al. (2018)
Belfast Lough, UK 376 <MDL <MDL 32 Thomas and Hilton (2004)
Mersey, UK 386 <MDL 195 569 Thomas and Hilton (2004)
Tees, UK 88 <MDL 191 17 Thomas and Hilton (2004)
Thames, UK 928 <MDL 125 <MDL Thomas and Hilton (2004)
Thames, UK 19 Munro et al. (2019)
Tyne, UK 755 90 46 Thomas and Hilton (2004)
North Charleston Harbour, USA 8 28 Hedgespeth et al. (2012)
America Jamaica Bay, USA 38 156 125 Benotti and Brownawell
(2007)
Narragansett Bay, USA 60 18 Cantwell et al. (2017)
New York Bay, USA 162 14 Cantwell et al. (2018)
San Francisco, USA 4 Klosterhaus et al. (2013)
Oceania Sydney, Australia 31 Birch et al. (2015)

This study aimed to further contribute to the overall picture of pharmaceutical
contamination in estuaries. Five target compounds — ibuprofen, paracetamol,
diclofenac, trimethoprim and citalopram were chosen for the present study, based on
their prevalent usage and predicted risk to the aquatic environment (National Health
Service 2017; Roos et al. 2012). To the author's knowledge, citalopram has not

previously been monitored in the estuarine environment (Table 4.1). Moreover,
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monitoring of the aforementioned compounds is limited, with some of these
measurements dating back almost 15 years. The target compounds were measured
every other month over a twelve month period at various sites in the Humber Estuary to
determine their spatial and temporal occurrence. In addition, eleven further estuaries,
located in other parts of the UK, were selected in order to determine whether

concentrations observed in the Humber were representative of other estuaries.

4.2 Methods

4.2.1 Study Area

The Humber Estuary is a macrotidal estuary located in Yorkshire, on the East Coast of
England, UK (Figure 4.1). It is 303 km?, has an average depth of 6.5 m and is the
confluence for the Rivers Ouse, Trent and Hull which pass through some of the largest
urban areas in the UK, thus it is the receiving water for approximately 20% of UK effluent
(European Environment Agency, 2017; Table 4.2). Samples were collected from nine
sites along a 65 km stretch on the North side of the estuary (Figure 4.1). Two of these
were located in the River Ouse: Al (20 km from Humber) was the furthest upstream and
A2 was located less that 1km upstream from the confluence with the Humber Estuary.
The furthest site upstream in the Humber Estuary (R1) was the receiving site for effluent
from Melton WWTP, which serves a population equivalent (PE) of 12,255 (European
Environment Agency, 2017). Three sites (R2-R4) were positioned every 2 km
downstream from R1. Three final sites (A3-A5) were located 20km from R1 in the lower
estuary and 15 km from the mouth. Further information on site location can be found in
Appendix 4.1. The Humber Estuary is an important site for conservation and has been
designated as a Special Protection Area (SPA), also containing a Special Area of
Conservation (SAC). Itis also a vital habitat for many species of international importance,
providing habitat for 4.1% of the red knot (Calidris canutus) and 5.7% of the common
redshank (Tringa tetanus) international populations, and as a result has also been
designated as a RAMSAR site (Buck et al. 1997)

Samples were also collected from eleven further estuaries which encompassed a range
of estuary types, tidal ranges and sizes (Table 4.2). The total PE was calculated for the
WWTPs in the catchment area of each estuary (Table 4.2); further information on the
proximity of WWTPs to the sampling sites in each estuary can be found in Appendix 4.2.
Many of these estuaries have been designated as SACs, SPAs and RAMSAR sites as

the result of the sensitive and important species resident to them.
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Table 4.2: Information on the type and size of estuaries sampled (Davidson et al.1991).
Information on the number of WWTPs and the population equivalent served in 2014 was

calculated from an interactive wastewater treatment map (European Environment Agency 2017).

Estuary Type Estuary Tidal Number of Total PE
Area (km?) Type WWTPs in (000s)
Catchment
Cromarty Complex 92.3 Mesotidal 3 15.6
Forth Complex 84.0 Macrotidal 33 1613.3
Humber Coastal Plain 303.6 Macrotidal 304 13 674.7
Mersey Coastal Plain 89.1 Macrotidal 30 3689.7
Portsmouth Ria 15.9 Macrotidal 2 383
Severn Coastal Plain 556.8 Macrotidal 171 6724 .4
Solway Complex 420.6 Macrotidal 20 314.9
Tay Complex 121.3 Mesotidal 12 167.6
Tees Coastal Plain 13.5 Macrotidal 9 844.9
Thames Coastal Plain 46.5 Macrotidal 198 16 510.5
Tyne Complex 7.9 Macrotidal 6 1092.8
Ythan Barbuilt 28 Mesotidal 1 11.2
4.2.2 Sampling

4.2.2.1 Seasonal monitoring

Sampling was carried out in the Humber Estuary, UK, every two months from October
2016 to August 2017 at sites R1-R4 (Figure 4.1). Samples were also collected from four
additional sites (A1-A2 and A4-A5) in October, February and June, and a further site (A3)
in February and June (Figure 4.1). Sampling was carried out during a high neap tide (+
3 hours) to minimise differences in diurnal concentrations as the result of tides (Lara-
Martin et al. 2014). At each site, 3 x 1 L of surface seawater were collected in amber
glass bottles and temperature, pH and dissolved oxygen were determined using a HACH
meter and salinity (0 — 27 ppt) measured with a refractometer (Appendix 4.1). Water
samples were kept on ice or in the fridge at 4 °C and extracted within 48 hours for

analysis of pharmaceuticals.
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4.2.2.2 UK wide monitoring

Sampling was carried out in eleven additional UK estuaries in order to provide a wider
context for the concentrations of pharmaceuticals seen in the Humber Estuary (Figure
4.1). Sampling was carried out in August and September 2017 and samples were also
collected during high tides (x 3 hours). Within each estuary, sites were chosen in the
upper, middle and lower parts of the estuary and 1 L of water was collected at each of
these in amber glass bottles. (Appendix 4.2). Temperature, pH, dissolved oxygen and
salinity (0-34 ppt) were determined as above and samples were stored and extracted in

the same manner (Appendix 4.2).
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4.2.3 Chemical Analysis

4.2.3.1 Study Compounds

Five study compounds — ibuprofen, paracetamol, diclofenac, trimethoprim and
citalopram, were chosen for monitoring (Table 4.3). Standards of diclofenac sodium
(=98.5), acetaminophen (=299%), citalopram (298), ibuprofen (298%), and trimethoprim
(298%) were supplied by Sigma-Aldrich Ltd. (Dorset, UK).

Table 4.3: Physico-chemical characteristics of the study compounds. Physico-chemical data
obtained from USEPA (2019). Prescription data obtained from (National Health Service 2019;
Appendix 4.3).

Compound Therapeutic Use Prescriptions Water Logkow Molecular pKa

(kg year™) Solubility Weight
(mg I)
Ibuprofen NSAID 82,756 21 3.79 206.29 4.9
Paracetamol Painkiller 2,169,244 14,000 0.9 151.16 9.9
Diclofenac NSAID 5459 2.37 4.51 296.15 4.2
Trimethoprim Antibiotic 8444 400 0.7 290.32 71
Citalopram Antidepressant 9204 31 3.74 324.39 9.4

4.2.3.2 Solid Phase Extraction

A composite sample was made, by combining the 3 x 1L surface water samples collected
from each site during seasonal monitoring, or from each of the estuaries during the UK-
wide survey; they were added together in a 5 L beaker and stirred vigorously for two
minutes. A 500 mL subsample was taken and filtered through a 0.45 um cellulose filter
(Scientific Laboratory Supplies, Hessle, UK) under vacuum. Solid phase extraction was
performed on the filtered water samples using Oasis HLB cartridges (Waters
Corporation, Massachusetts, USA), which were conditioned with 5 mL 100% methanol

followed by 5 mL deionised water at a rate of 1 mL min-t. The sample was loaded on to
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the cartridge at a rate of 10 mL mint, during which care was taken not to let the sorbent
material dry out. The cartridges were then rinsed with 5 mL deionised water. The sorbent
was dried under vacuum for 15 minutes to remove excess water prior to elution. Elution
was performed with 5 mL 0.1% TFA in methanol, followed by a further 5 mL. The eluent
was evaporated to dryness using a rotary evaporator (40°C, speed 7) and reconstituted
with methanol: water (10:90).

SPE recovery was evaluated by spiking known concentrations (100, 200, and 1000 ng I-
1) of all study compounds into three replicates each of artificial seawater made up to 20
ppt in deionised water (Appendix 4.4). The mean recovery across all concentrations was

used to correct the measured environmental concentration (Table 4.4).

Table 4.4: Mean method detection limits (+ standard deviation), mean method quantification

levels (+ standard deviation) and mean recovery (z standard deviation) of target compounds.

Compound MDL (ng I'") MQL (ng I') Recovery (%)
Citalopram 0.34 (0.25) 1.18 (0.85) 43 (5.5)
Diclofenac 1.77 (1.35) 5.91 (4.49) 20 (11.0)
Ibuprofen 1.45 (0.41) 4.83 (1.38) 73 (34.0)

Paracetamol 3.28 (1.82) 10.93 (6.07) 86 (34.1)

Trimethoprim 0.07 (0.04) 0.24 (0.12) 63 (10.6)

4.2.3.3 UltraperformanceTM-ESI-(QqLIT) MS/MS analysis

Analysis was carried out according to Gros et al. (2012). Briefly, chromatographic
separations were performed with a Waters Acquity Ultra-Performance liquid
chromatograph system equipped with two binary pumps systems (Milford,
Massachusetts, USA), and coupled to a 5500 QTRAP hybrid quadrupole-linear ion trap
mass spectrometer with a turbo ion spray source (Applied Biosystems, Foster Systems,
Foster City, CA, USA). Citalopram and trimethoprim were analysed under positive
electrospray ionisation (PI) using an Acquity HSS Tz column (50 mm x 2.1 mm, 1.8um
particle size) and ibuprofen, paracetamol and diclofenac were analysed under negative
ion (NI) electrospray using an Acquity BEH C1g column (5 mm x 2.1 mm, 1.7 pm particle

size), both from Waters Corporation.

All data acquisition was performed in Analyst 2.1 software. Quantification of analytes

was performed by selective reaction monitoring (SRM), monitoring two transitions for
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each compound as described in Gros et al. (2012). Method detection limits (MDL) and
Quantification levels (MQL) were determined for each of the compounds based on a

signal-to-noise ratio of 3 and 10, respectively (Table 4.4).

4.2.4 Statistical Analysis

Statistical analysis was performed in R 3.3.1. In order to determine if there was a
difference in the occurrence of pharmaceutical between sampling months,
concentrations from Melton, North Ferriby, Hessle East and Hessle West were grouped
together, as these sites were sampled during all of the sampling periods. A Friedman’s
Test followed by a Nemenyi post-hoc test were conducted using the PMCMR package
(Pohlert 2014). Relationships between pharmaceutical concentrations and site-specific
physico-chemical properties (Salinity, pH and dissolved oxygen) were investigated using
a linear model. All data is presented in graphs created by the ggplot2 package (Wickham
2016).

4.3 Results

4.3.1 Humber Estuary

Pharmaceuticals were frequently detected (58 - 97% of samples for individual study
compounds) in the Humber Estuary (Table 4.5) and concentrations followed the order of
ibuprofen>paracetamol>diclofenac>trimethoprim>citalopram. Whilst mean
concentrations were in the order of 100 ng I* or below, maximum concentrations were
approximately 5 to 10 times higher (Table 4.5; Appendix 4.5). Maximum levels of
ibuprofen and paracetamol detected in the Humber are the highest concentrations
reported in estuaries to date (Table 4.1). Furthermore, this is the first study to detect

citalopram in the estuarine environment (Table 4.1).
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Table 4.5: Pharmaceutical concentrations (ng IY) in surface water in the Humber Estuary (n=38)
during a 12 month sampling campaign. Values were corrected based on mean recovery values
(Table 3). Max = maximum concentration, SD = standard deviation. Detection rate is the amount

of samples above the method quantification limit (MQL).

Compound Detection Rate Max Mean SD
(%) (ng I) (ng I)
Ibuprofen 97.37 6297.14 665.58 1481.49
Paracetamol 73.68 916.88 88.65 163.66
Diclofenac 57.89 250.8 51.44 68.29
Trimethoprim 92.11 247.02 27.43 54.56
Citalopram 89.47 42.93 6.39 7.66

A general pattern was observed in the occurrence of pharmaceuticals in the Humber
surface water, with pharmaceutical concentrations peaking at sampling site R1 (Figures
4.2) and concentrations upstream (sampling sites A1-A2) and downstream (sampling
sites R2-A5) of this site were similar to each other. Conversely, this pattern was not
consistent in that the chemical concentrations at some of the sampling periods (for
instance: paracetamol and diclofenac in June), displayed a reduction in levels
downstream (A3-A5). Maximum concentrations were generally seen at sampling site R1

although during some of the sampling periods, they also occurred at sites R2-R4.

Salinity in the Humber Estuary ranged between 0 ppt (sites A1l and A2) to 27 ppt (site
A5). Although salinity differed during each sampling period, a general downstream
decline was observed (Appendix 4.1). There was not a clear pattern in the pH and
dissolved oxygen measurements. The linear regression analysis indicated that there was
significant relationship between dissolved oxygen and concentrations of paracetamol (R?
= 0.15, P = 0.03), diclofenac (R? = 0.29, P = 0.001) and trimethoprim (R? = 0.22, P =
0.007), with lower dissolved oxygen corresponding with higher concentrations (Figure
4.3). There was also a significant relationship between pH and dissolved oxygen (R? =
0.12, P = 0.03). However, this was a very weak relationship with R? values less than 0.3
for all compounds. No statistically significant relationship was seen between salinity and

any of the compound concentrations (Figure 4.3).

Of the three months where all sites were sampled, February had the highest detection
rates and concentrations of pharmaceuticals at downstream sites (A3-A5), whilst many
of the compounds were absent at these sites in October and June (Figure 4.2). In

contrast, ibuprofen was an exception to this with compounds found at these sites during
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all of the sampling periods. Citalopram also showed little decline in downstream
concentrations in June, and was present at A3-Ab, at concentrations similar to or higher
than many of the sites further upstream (Figure 4.2). There appeared to be a relationship
between the concentration of pharmaceuticals at R1 and those seen at the other sites;
typically, a higher concentration at R1 resulted in a higher presence at sites further
downstream (Figure 4.2).
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Figure 4.2 Concentrations of target analytes at nine sites in the Humber Estuary. Values were
corrected based on mean recovery values (Table 4.3). Sites are listed from furthest upstream
(A1) to furthest downstream (A5). R1-R4 were sampled every sampling event, whilst the other
sites were only sampled in October, February and June, except for A1 which was not sampled in
October.
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Sites R1-R4 were sampled more frequently than the other sites, and trimethoprim was
the only compound to show a statistically significant difference between sampling months
(Friedman’s Test, chi-squared = 14.71, p < 0.05) with concentrations, significantly higher
in winter (December and February; 3.29 — 166.54 ng I''), compared to October and the
summer months (June and August; 0 — 142 ng I; Figure 4.4). Nevertheless, the
difference was almost significant for ibuprofen (p = 0.054) and citalopram (p = 0.051).
For citalopram, February had the highest concentrations (3.74 — 42.93 ng I'%), whereas
ibuprofen concentrations were higher in April and June (186.37 — 6297.14 ng I'}; Figure
4.3) in comparison to the other sampling periods. All compounds had lowest mean
concentrations in August (Figure 4.4), with no peaks seen at sampling site R1 (Figure
4.2).

Ibuprofen Paracetamol

Diclofenac Trimethoprim

Citalopram

Figure 4.4 Mean bi-monthly concentrations (+ one standard deviation) of (A) Ibuprofen (B)
Paracetamol (C) Diclofenac (D) Trimethoprim and (E) Citalopram at the four sites monitored most
frequently (R1-R4). Values were corrected based on mean recovery values (Table 4.3). Letters

denote statistically significant difference (Friedman’s Test).
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4.3.2 UK-wide Sampling

Pharmaceuticals were detected in all of the estuaries sampled around the UK but only
at concentrations in the low ng I'* range and were generally present at concentrations
lower than those detected in the Humber Estuary (Figure 4.5). The order of
pharmaceuticals were similar to that found in the Humber
(ibuprofen>paracetamol>diclofenac>citalopram>trimethoprim), except trimethoprim was
found at lowest concentrations (Appendix 4.6). Ibuprofen and trimethoprim were present
in all of the estuaries sampled, whereas diclofenac was only detected in two of the other
estuaries, the Cromarty and Thames (Figure 4.5). The Thames and Humber were the
only estuaries to contain all of the compounds. The Humber had the overall highest
concentration of pharmaceuticals, and the Cromarty and Tay were the only other

estuaries which had a total concentration of pharmaceuticals over 200 ng I'* (Figure 4.5).

3501
3001

2501

compound

- Ibuprofen

. Paracetamol
. Diclofenac
i . Trimethoprim
I Citalopram
0- I

Cromarty Forth Humber Mersey Portsmouth Sevem Solway Tees Thames Tyne Ythan

Concentration (ng/l)

Figure 4.5 Concentrations of citalopram, diclofenac, ibuprofen, paracetamol and trimethoprim
across eleven estuaries in the UK. Concentrations have been corrected for recovery (Table 4.3).
Concentrations reported for the Humber are maximum concentrations measured in August, when
the wider UK survey was undertaken.
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4.4. Discussion

Most monitoring studies to date have been carried out in freshwater systems as it was
originally thought that estuaries and coastal waters would dilute compounds so that they
would be undetectable (Fabbri and Franzellitti 2016). Despite this hypothesis,
pharmaceutical contamination was found to be widespread as all of the estuaries
monitored contained at least three of the target analytes at levels of a similar magnitude
to those found in the freshwater environment, and higher than those measured in many
other estuaries (Hughes et al. 2013; Table 4.1). The levels of pharmaceuticals detected
in this study, contribute to the overall picture on pharmaceutical pollution and add to the
growing evidence that it is a global issue (aus der Beek et al. 2016). Our work indicates
that the limited monitoring carried out to date may not have captured peak concentrations

that occur in these environment and clearly highlights that further work is needed.

Ibuprofen was detected at the highest concentrations and in all of the estuaries sampled,
with its occurrence not only exceeding levels detected in other estuaries (Table 4.1), but
also those seen in river water both in the UK (Barbara Kasprzyk-Hordern et al. 2008;
Kay et al. 2017; Burns et al. 2017, 2018), as well as globally (Hughes et al. 2013).
Ibuprofen has only been measured in 7 estuaries previously, with maximum
concentrations all under 100 ng I (Table 4.1). Further monitoring studies should include
ibuprofen as a priority to determine if high concentrations seen in the UK are similar to

those elsewhere.

Concentrations of paracetamol, diclofenac and trimethoprim were similar to those seen
in other global estuaries, with mean concentrations less than 100 ng I* (Table 4.1). Whilst
maximum concentrations of paracetamol were similar to those detected in rivers
(Barbara Kasprzyk-Hordern et al. 2008; Burns et al. 2017), concentrations of diclofenac
and trimethoprim were considerably lower (Hughes et al. 2013; Nakada et al. 2017). In
the present study, water samples were collected at high tide, when concentrations would
be expected to be lowest, so itis possible that these levels could be higher at other points
in the tidal cycle (Yang et al. 2016). This is the first study to measure the occurrence of
citalopram, however concentrations were low and did not exceed 50 ng I'. These low
concentrations are in agreement with previous studies which have monitored citalopram
in rivers (Hughes et al. 2013). Despite these low concentrations, PNECs for citalopram

are below this (Minguez et al. 2016).

Whilst an overall widespread occurrence of pharmaceuticals was seen in the UK,
patterns in their spatial and temporal distributions within and between estuaries were

observed.
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4.4.1 Humber Estuary

4.4.1.1 Spatial Variation

It is generally expected that pharmaceutical concentrations will decrease downstream
due to physical processes in an estuary leading to their breakdown and removal
(Daughton 2016). The spatial pattern of pharmaceutical occurrence in the Humber
Estuary followed this pattern to a degree; peak concentrations were found in the middle
of the estuary, particularly at R1, where samples were collected next to an outlet from a
WWTP, indicating that they could be a significant source of pharmaceuticals in the
Humber Estuary. Input from WWTPs has been attributed as the largest source of
pharmaceutical pollution in the aquatic environment (Caldwell 2016). Dissolved oxygen
was often lowest at R1, and can explain the relationship observed between diclofenac,
paracetamol and trimethoprim. Dissolved oxygen is often lowest at sites where
wastewater effluent is discharged, as the result of increased microbial activity and
decreased water quality (Igbinosa and Okoh 2009). However, the overall relationship
between these variables was weak and could be explained by maximum concentrations
seen outside of this site or difference in dissolved oxygen between sampling periods and
indicates that other variables are important in determining the concentrations of these
compounds. In some cases maximum concentrations were detected outside of this site;
in April and June, maximum concentrations for paracetamol and ibuprofen occurred at
sites R2-4. It is difficult to determine what caused these peaks as composite sampling
can lead to uncertainty in the representativeness of samples in cases such as this,
however these sites are within 6km from R1, so it is possible that the large increases
seen at these sites are still due to input at R1, and fluctuations of concentrations between
these sites are the result of sampling timing or within sample variation (Ort et al. 2010).
The site R4, which showed the highest levels (6.2 pg I'%) of ibuprofen was also 7km
upstream from the confluence of the River Hull. Transport of pharmaceuticals from this
tributary upstream during high tide could also account for the increases seen. The River
Trent, located near the confluence with the Ouse (Figure 4.1), will also account for the
addition of further pharmaceuticals. Inputs of pharmaceuticals in other studies have also
been attributed to other sources such as improper disposal, leaching from landfills or
through veterinary usage and subsequent runoff of these compounds into the aquatic
environment, which could account for these differences. (Bound and Voulvoulis 2005;
Ebele et al. 2017).

Dilution plays a key role in the fate of pharmaceuticals in the aquatic environment and
the decrease in concentrations after R1 is presumably caused by dilution away from the

input source (Baker and Kasprzyk-Hordern 2013). Decline of pharmaceutical
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concentrations downstream the estuary was observed more in some compounds than
others, and as a result, is unlikely to be fully explained by dilution. Other studies have
seen a negative correlation between pharmaceutical concentrations and salinity, which
was not seen in this study, and could partially be explained by the input of
pharmaceuticals throughout the estuary or other factors leading to their removal from
surface water (Cantwell et al. 2017). Degradation of pharmaceuticals has been found to
be a significant factor affecting the fate of pharmaceuticals and could account for these
differences (Caracciolo et al. 2015). Citalopram experienced the lowest decrease in
concentration downstream, and was typically the same concentration, or higher at A5
than Al, which could be explained by the low degradation which has been observed in
other studies (Metcalfe et al. 2010; Styrishave et al. 2011). Ibuprofen, paracetamol and
trimethoprim also showed little decline in concentration beyond initial dilution after R1,
which is consistent with what has been seen in other studies. These compounds have
been found up to 10 km downstream from a WWTP (Bendz et al. 2005, Kay et al. 2017,
Burns et al. 2018), and trimethoprim has even been found 200 km downstream from an
WWTP (Tamtam et al. 2008). Further WWTPs are located within the estuary (European
Environment Agency, 2017) which could also account for this lack in decline. Diclofenac
on the other hand, was not detected at A3 or A5 during any of the sampling periods, but
was found at A4. The downstream decline of diclofenac has been found to be variable,
with some studies finding it to be more persistent than others (Bendz et al. 2005;
Wilkinson et al. 2017). Removal of compounds through degradation and sorption to
sediment has been found to be highly dependent on environmental conditions,
compound properties and sediment type. Linear regressions indicated there was a weak
negative relationship between diclofenac concentrations and pH. Diclofenac is an acidic
compound (pKa 4.2), and it would be expected that removal as the result of sorption to
sediment and uptake by organisms would be higher at lower pH as the result of ionisation
(Oh et al. 2016). The pH in the Humber ranged between 7.5 and 8.9, and as a result
diclofenac would not be fully protonated at any of the sites. In estuaries, a positive
correlation is often seen between pH and salinity, but not in the Humber. However, pH
can also fluctuate as the result of mixing, biological activity, water quality and presence

of other contaminants (Howland et al. 2000).

4.4.1.2 Temporal Variation

Seasonal differences of pharmaceuticals have been observed in a number of studies
and these are often attributed to changes in usage and local environmental conditions
(Golovko et al. 2014b; Moreno-Gonzalez et al. 2014). Trimethoprim was the only

compound to show significant temporal differences in concentrations (at sites R1-R4),
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with average winter concentrations over double that of those during the summer months.
Previous studies have explained the seasonal occurrence of antibiotics in winter due to
their higher usage in those months to treat seasonal infections (Verlicchi and Zambello
2016). The temporal differences seen in the occurrence of trimethoprim in the Humber
Estuary appeared to follow this pattern, as prescriptions were highest in October 2016
to March 2017 and lowest in August 2017 (Appendix 4.4). Trimethoprim has been
observed to have higher winter concentrations in some studies (Golovko et al. 2014b)
but not in others (Burns et al. 2018). Burns et al. (2018) found higher levels of
trimethoprim during spring in the Ouse (upstream from Al), which was attributed to
hydrological differences seen between the seasons sampled. As a result, it is likely that
the temporal differences in trimethoprim are the result of different site specific conditions
or daily variations. Temporal variations in other studies have also been explained by
lower temperatures, leading to lower degradation (Golovko et al. 2014a), however, input
at R1 was highest in April. The other target compounds have exhibited temporal
differences in other locations, but did not in the Humber. Paracetamol, for instance, has
been detected at high concentrations in spring in some rivers but winter in others, whilst
other studies found no temporal variations (Paiga et al. 2016; Ma et al. 2017; Burns et
al. 2018).

Temporal variations in the downstream pattern of pharmaceuticals were also observed,
with the greatest variation seen at the sites furthest downstream (A3-A5).
Pharmaceuticals were mostly absent from these sites in October, with the exception of
ibuprofen, where concentrations were reduced. Sampling at high tide could account for
the absence of these pharmaceuticals downstream as the result of increased dilution or
transport of contaminants upstream (Munro et al. 2019). Pharmaceutical concentrations
often fluctuate diurnally as the result of timing of effluent discharges from WWTPs and
combined sewer overflows (CSOs), as well as variations in wastewater as the result of
consumption patterns (Xu et al. 2007). To an extent, there was a pattern in the presence
of compounds at R1 consistent with those seen downstream the estuary, so it is possible
that the temporal variations could be the result of these daily variations, instead of
conditions seen seasonally. The concentration of pharmaceuticals at R1 were lowest in
October and the low input could, in part, account for the absence of compounds seen at
sites furthest downstream (A3-A5). Likewise, concentrations for the majority of
compounds were highest at R1 during February where concentrations were highest at
sites furthest downstream (A3-A5). This is further evidence that there is a difference in
input from WWTPSs. R1 is not the only site at which wastewater is discharged, but if these

other sites exhibit the same temporal variations, then it could explain the differences
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observed in concentrations at A3-A5. WWTP removal has been found to be less efficient
during the winter time due to lower temperatures and decreased biodegradation, leading
to higher concentrations in effluent (Vieno et al. 2005). At R1, concentrations for all

compounds were lowest in August when temperatures were warmest (Appendix 4.1).

4.4.3 UK Estuaries

The Humber Estuary was shown to represent a worst case scenario in terms of
pharmaceutical pollution, with all five pharmaceuticals present at relatively high
concentrations. Of the estuaries sampled, it was the second highest impacted by
WWTPs, with a PE of approximately 13.7 million people. The Thames, which was the
most impacted, was the only other estuary to contain all five compounds. A higher
presence of pharmaceuticals is frequently seen in large urban areas due to their
increased usage (Hong et al. 2018). With the exception of both the Humber and the
Thames estuaries, there was no apparent relationship between the number of WWTP
and concentrations (Table 2). The Cromarty Firth, which was the receiving water of only
3 WWTPs (15,600 PE), exhibited similar levels of pharmaceuticals to the Humber. This
could be explained by differences in WWTP efficiency, as technology used in WWTPs
can greatly affect the removal of pharmaceuticals. For example, ibuprofen removal has
been reported to be between 7% and 99% at different WWTPs (Radjenovic et al. 2007,
Jelic et al. 2015). Itis possible that the removal efficiency of WWTPs could differ between
areas, with rural areas being less efficient as they are serving smaller populations. Rural
areas are more likely to have a higher occurrence of septic tanks, which could contribute
to the elevated levels seen in the Cromarty (Hanamoto et al. 2018). Whilst the Humber
experienced the lowest concentration in August, it is possible that seasonal variations in
population in areas like the Scottish Highlands (a tourist destination), where the Cromarty
is located, could be responsible for these higher concentrations, increasing pressure on
WWTPs. Pharmaceuticals in a Portuguese river have previously shown higher
concentrations which was thought to be the result of increased summer populations
(Rocha et al. 2014).

The presence of pharmaceuticals is greatly influenced by environmental conditions and
proximity of the sampling site to input sources, possibly accounting for some of the
apparent differences in concentrations observed between estuaries. Water samples from
different locations in the estuary were mixed together and a subsample was taken to
obtain a snapshot of the presence of pharmaceuticals, and it is likely that these
concentrations will vary depending on these factors. This could possibly explain the

absence of diclofenac, which in the Humber study was frequently undetected in sites
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downstream the estuary. Citalopram also had a low detection (50%) in estuaries,

however, it was detected in estuaries which have the highest PE.

There are also likely to be more complex interactions in play which further affect the
occurrence of pharmaceuticals in estuaries and can help to explain the spatial
differences seen. Differences in site specific conditions such as salinity profiles and
hydrology can affect sorption processes, degradation and dilution. Undoubtedly, these
processes, in conjunction with daily variations in rainfall and temperature, are likely to be
responsible for differences in concentrations in estuaries between sampling periods, yet
it is still clear that pharmaceutical pollution is a ubiquitous problem in estuaries (Tamtam
et al. 2008).

Ibuprofen, paracetamol, diclofenac and trimethoprim were previously monitored in the
Mersey, Thames, Tees and Tyne estuaries (as well as Belfast Lough) in 2002 (Thomas
and Hilton, 2004). It was also found that ibuprofen was present at highest
concentrations. Paracetamol, however, was not detected in any of the estuaries sampled
in 2002, which indicates that the occurrence of this compound could be rising. A rise in
pharmaceuticals would be consistent with what has been found in other areas. For
example, analysis of sediment cores in the Bay of Jamaica showed an overall rise in
pharmaceutical concentrations over time, with these concentrations doubling over the
last decade (Lara-Martin et al. 2015). This highlights the importance of establishing
baseline measurements of pharmaceuticals, in order to determine areas most at risk and
therefore require continued monitoring. The Humber Estuary likely poses the greatest
risk, particularly due to the high level concentrations of ibuprofen. Other large urban
estuaries (such as the Thames and Severn) may also warrant a further detailed study.
However, as seen with the Cromarty, focus on monitoring should be extended to rural

areas as well.

4.5 Conclusion

All five target analytes — ibuprofen, paracetamol, diclofenac, trimethoprim and
citalopram were detected in twelve estuaries in the UK. Diclofenac is a compound that
has been highlighted as a potential concern, yet paracetamol and ibuprofen were
consistently detected at higher concentrations and at levels which could be toxic to
aquatic organisms (Vestel et al. 2016). In particular, the concentrations of ibuprofen
measured indicates that the limited monitoring of pharmaceuticals in estuaries around
the globe to date has not accurately quantified peak concentrations. Whilst trimethoprim
was detected in every sample it was only present at concentrations in the low ng I range.

Citalopram was present at lowest concentrations, but also showed the least change in
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concentration downstream the estuary. A more intensive monitoring regime of the
Humber Estuary showed that pharmaceutical input from WWTPs is a significant source
and could explain the overall higher concentrations of pharmaceuticals in large urban
estuaries. Despite this, a rural estuary had the highest concentration of ibuprofen which
may be due to lower removal at smaller rural sewage works. More detailed studies need
to be undertaken in order to understand the complex interactions taking place in
estuaries which could affect the fate of pharmaceuticals.

Whilst there was little significant variation of pharmaceutical concentrations between
sampling periods in the Humber Estuary, August typically had the lowest input from
WWTPs and overall lowest concentrations, which is when samples were taken from
estuaries throughout the UK. Consequently, it could be expected that pharmaceutical
concentrations may exceed those measured. Additionally, samples were taken on a high
tide when it would be expected that concentrations are lowest due to dilution. This study
provides an important baseline of pharmaceutical measurements in the UK, and
highlights ibuprofen as a compound which may warrant further assessment. This work
provides further evidence to the growing problem of pharmaceutical pollution,
highlighting that it is not only an urban and localised issue.
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Abstract

Diclofenac and metformin are two pharmaceuticals of particular environmental concern
due to their widespread usage and presence in the aquatic environment at high
concentrations. Estuaries have the potential to act as a sink for emerging contaminants
such as these, putting resident and visiting biota at risk. Despite the ecological and
commercial importance of the estuarine polychaete, Hediste diversicolor, little is known
about the effects of pharmaceutical contamination on this species. This study
investigates the effects of diclofenac and metformin on energy status, by evaluating
MRNA expression of ATP synthase and c-amp activated protein kinase. H. diversicolor
were exposed to either 100 ng I or 1ug I'* of either diclofenac or metformin for 7 days.
ATP synthase expression was significantly higher in individuals exposed to the higher
level of metformin than the other treatments. No other significant differences were seen
in any of the other treatments. This study reveals that environmentally relevant
waterborne concentrations (1 pg ') of metformin have the potential to induce
environmental stress in H. diversicolor individuals and the requirement to sustain high

energy levels could have long term consequences on physiological processes.

5.1 Introduction

Many compounds are bioavailable to aquatic organisms and some compounds (such as
diclofenac and ibuprofen) have been found in the tissues of aquatic organisms, whilst
others have not. Both of these compounds were present in the tissues of mussels
(Mytilus galloprovincialis) sampled from the field and after exposure under laboratory
conditions, whilst ketoprofen and paracetamol were not (Mezzelani et al. 2016).
Pharmaceuticals may pose a risk to non-target organisms, as they are designed to be
biologically active, and have the potential to illicit a response in non-target organisms
which possess conserved drug targets (Gunnarsson et al. 2008). In some species, these
targets may have a different physiological role, causing effects not seen in humans. An

example of this is diclofenac, which caused the decline of vultures (Gyps coprotheres) in
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Pakistan as the result of renal toxicity, despite being used in veterinary medicine without
the same effects (Oaks et al. 2004). This increased sensitivity is thought to be due to the
differences in cytochrome P450 enzymic pathways (Naidoo et al. 2010). Diclofenac is a
widely available over the counter (OTC) non-steroidal anti-inflammatory drug (NSAID),
which is frequently detected in surface water at hundreds of ng I, with peak
concentrations as high as 18 ug I'* (Hughes et al. 2013). In vertebrates, diclofenac inhibits
cyclooxygenase (COX), which is responsible for the formation of prostanoids (Gan
2010). There are two isoforms in vertebrates, COX | which is responsible for the baseline
levels of prostaglandins involved in processes such as thermoregulation, ovulation,
sexual behaviour, homeostasis, ion transport and kidney filtration required for
physiological processes, and COX Il which produces prostaglandins at the point of an
injury (Gan 2010). These isoforms are also present in invertebrates, and there is
evidence that many of these functions are conserved (Ruggeri and Thoroughgood,
1985).

Metformin is among the top 10 drugs prescribed with annual prescriptions in the millions
in USA and Europe (Marshall 2017). It is of environmental concern, because of the
amount consumed, its increasing usage, and the fact that it is not heavily metabolised
and is excreted via urine relatively unchanged (Oosterhuis et al. 2013; Xu et al. 2018).
As a result, it should be considered a priority substance. Recent studies have detected
metformin at high concentrations in wastewater effluent (21 ug I'*; Scheurer et al. 2009)
and surface water (2.5 ug I''; Bradley et al. 2016; Burns et al. 2018). Metformin is
prescribed for type Il diabetes, and is used to regulate glucose levels through the
activation of c-AMP activated protein kinase (AMPK) leading to inhibition of hepatic

glucogenesis and increased glucose uptake in muscles (Joshi 2005).

H. diversicolor are polychaetes, which are a key species ubiquitously present in estuaries
globally (Scaps 2002). They are one of the most important prey items in estuaries,
providing food for a variety water birds, such as the grey plover (Pluvialis squatarola)
and fish species such as sole (Solea solea; Cobra et al. 2000; Rosa et al. 2008). H.
diversicolor are also of commercial interest and are harvested from estuarine sediment
and sold as fishing bait (Virgilio and Abbiati 2004). To the authors’ knowledge, only two
studies (Maranho et al. 2014, 2015) have previously studied the effects of
pharmaceuticals on this species, however, they are well studied for other groups of
substances such as metals (He et al. 2019), nanoparticles (Buffet et al. 2014) and
pesticides (Scaps et al. 1997). Additionally, they are easily maintained in the laboratory,
and sensitive to contaminants, which could make them a useful bioindicator of sublethal

pharmaceutical pollution in estuaries (Scaps et al. 2002; Maranho et al. 2014).
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Few studies have looked at the effects of pharmaceuticals in estuarine or marine
species, and studies are often limited to short exposures and standard endpoints (Gaw
et al. 2014; Fabbri and Franzellitti 2016). The objective of this study was to assess the
effects of diclofenac and metformin at environmentally relevant concentrations on H.
diversicolor energy status, through the evaluation of ATP Synthase (ATPS) and AMPK
MRNA expression.

Energy status has previously been used an indicator of environmental stress and energy
reserves have been found to be lower in H. diversicolor in contaminated estuaries (Durou
et al. 2007). Energy levels have been found to naturally vary in this species as they often
live at the edge of their tolerance zone, and lower temperatures, pH and salinity can lead
to increased metabolic rate (Barrick et al. 2016; Freitas et al. 2016). ATP is an important
source for normal physiological functions such as growth and reproduction, and as a
result, energy stores are often high in mature individuals, particularly close to spawning
(Durou and Mouneyrac, 2007). As a result, exposure to environmental stressors which
lead to increased ATP expenditure can lead to a reduction in these processes, which are
essential for survival. It is therefore an important endpoint for assessment as exposure

to pharmaceuticals could potentially impact H. diversicolor physiology.
5.2. Materials and Methods

5.2.1 Sample collection and maintenance

H. diversicolor individuals were collected during low tide at Paull, East Riding of
Yorkshire, U.K. (563°43’ North, 0°14’ West) in October 2016. Worms were kept in
sediment until return to the lab, where individuals were rinsed and placed in aquaria
containing 2.5 litres artificial seawater (20 ppt; Tropic Marin Synthetic Sea Salt) and coral
sand. Coral sand was chosen as a substrate for H. diversicolor as it allows them to
burrow, whist also ensuring that it is free from environmental contaminants. No more
than 15 individuals were placed in each container in order to allow sufficient space and
were left for 4 weeks to acclimate. Worms were maintained at a photoperiod 12:12 hours
(light: dark), constant temperature (13°C = 0.6), pH (7.9 £ 0.1), salinity (22 ppt £ 1) and
oxygenation level (>89% saturation) under constant aeration. A photoperiod of 12:12
was chosen, as H. diversicolor were collected in early October when there is between
11 and 12 hours of daylight (UK Hydrographic Office, 2019). Feeding and water changes
were carried out on alternate days; individuals were fed with ZM flake fish food, feeding

ceased two days prior to exposure assays.
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5.2.2 Exposure assays

Exposure assays were conducted under semi-static conditions for 7 days. Ten
individuals (mean length 40.11 mm £ 17.90 SD, mean mass 90.46 mg + 42.82 SD; no
statistically significant difference between treatment) were placed in each treatment:
either control, low concentration of metformin or diclofenac (100 ng I*%), or high
concentration of metformin or diclofenac (1 pg I'Y). These concentrations were chosen
as they reflect median and peak concentrations of these compounds measured in
surface waters (Yang et al. 2011; Hughes et al. 2013; Meador et al. 2016; Burns et al.
2018). Four replicates of each treatment were maintained at each exposure. A standard
solution of metformin hydrochloride (298%; Sigma-Aldrich, Dorset, UK) or diclofenac
sodium (=98.5%; Sigma-Aldrich, Dorset, UK) were made up at the beginning of the
exposure. Water changes were carried out on days 3 and 5, where 2.5 litres of water
from each treatment was renewed with 20 ppt seawater and with the relevant
pharmaceutical added to each treatment after each water change. Water quality
measurements were carried out daily to ensure temperature, salinity, pH and
oxygenation level remained constant. The assays were terminated after 7 days and
individuals were removed from the treatments and placed at -80°C to euthanise them.
Each individual was divided into thirds; one third was reserved for tissue chemical
analysis and two thirds for mRNA expression placed in 0.4 mL RNAlater® Stabilisation

Solution (Thermo Fisher Scientific, Loughborough, UK) prior to storage at -20°C.

5.2.3 mRNA isolation and characterisation

The total RNA was extracted from 10 mg H. diversicolor tissue using the High Pure RNA
Tissue Kit (Roche, Burgess Hill, UK) including DNase | treatment (180 U per sample)
according to manufacturer’s instructions. Total RNA was quantified using a Qubit 1.0
Fluorometer (Life Technologies, UK). cDNA synthesis utilised the Transcriptor High
Fidelity cDNA Synthesis Kit reagents (Roche, Burgess Hill, UK) and was carried out
according to manufacturer’s instructions. A total of 20 ng RNA was used in each reaction
with 2 pl random hexamer primers (6 uM); following pre-incubation, Transcriptor high
fidelity reaction buffer (containing RT reaction buffer, 250 mM Tris/HCI, 150 mM KClI, 40
mM MgCI2), RNase inhibitor (0.02 U) and dNTP mix (100 puM) were added to create a
final volume of 20 ul. Conditions for cDNA synthesis were as follows: pre-incubation for
10 min at 65°C followed by the cDNA reaction for 10 min at 25 °C and 60 min at 50 °C.

The samples were frozen at -20 °C until analysis.
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5.2.4 Primer design

Primers were designed for the 18S mRNA gene, to act as a housekeeping gene, from
H. diversicolor (KC686629.1) using the Primer-Blast tool
(http://www.ncbi.nim.nih.gov/tools/primer-blast/). Degenerate primers were then
designed for the housekeeping gene, elongation factor 1 (EF1), and the targeted genes
of interest: AMPK and ATPS from a nucleotide alignment using Clustal Omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/; Appendix, 5.1). Primer details for all genes

can be seen in Table 5.1.

Table 5.1: Primers used for gene isolation of 18S, EF1, AMPK and ATPS from H. diversicolor

Gene Primer Sequence 5°-3’ Tm Expected
(°C) Amplicon
Size (bp)
18S Forward GGC CGTTCT TAG TTG GTG GA 59 100
Reverse TCT AAG AAGTTG GCG CCC G 58
EF1 Forward GAY TTC ATC AAR AAC ATG AT 50 686
Reverse ACRTTG AAD CCNACATTG TC 52
Forward GGC TAC AAC AAA GCC GTA 52
AMFK Reverse TAG ATR GCR ATC CAG TC 48 20
ATPS Forward GAC AACATTTTCAGR TTC 45 312
Reverse GGG TAR ATA CCC AAY TC 46

5.2.5 PCR Amplification

All PCR reactions contained 17.25 ul molecular grade water, 0.5 ul 40mM dNTP mix,
0.25 pl (0.005 U) Q5® High Fidelity DNA polymerase (New England BiolLabs,
Massachusetts, USA), and 5 pl Q5® buffer (containing 2 mM Mg) (New England
BioLabs, Massachusetts, USA). Thermal cycling conditions were as follow: 94°C for 30
sec, followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 55°C for 30
sec and extension at 72°C for 2 min. PCR products were separated and visualised by
agarose gel electrophoresis. EZ Seq Sanger sequencing service (Macrogen Europe,

Amsterdam, The Netherlands) was used for DNA sequencing.

Sequence data were edited, aligned and formed into sequences using BioEdit (Version
7.0.9.0). Sequence identities were investigated using BLAST searches
(http://blast.ncbi.nim.nih.gov/Blast.cgi) to perform nucleotide sequence comparison
(blastn) and to compare the translated nucleotide sequences against the protein
database (blastx) to identify protein domains. Sequences were aligned and used to
perform phylogenetic analysis of amino acid sequences in Mega 5.2. Phylogenetic
analysis consisted of Maximum Likelihood Analysis with the Nearest Neighbour

Interchange method (1000 bootstrap replicates).
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5.2.6 Total quantitative real-time PCR analysis

5.2.6.1 Amplification using quantitative real-time PCR analysis

The total RNA was extracted from 10 mg H. diversicolor tissue from each of the
treatments as previously described. RNA concentrations were quantified using a Qubit
1.0 Fluorometer (Life Technologies, UK) and cDNA was generated using 20 ng RNA with
Transcriptor High Fidelity cDNA Synthesis Kit reagents (Roche, UK) as previously
described. Reactions were performed on a CFX96 Real Time PCR Detection System
(BioRad, Hemel Hempstead, UK) and contained 10 pl FastStart Universal SYBR Green
Master Mix (PrimerDesign, Camberley, UK), 7 pl of molecular-grade water, 2 pl each
primer (Table 5.2) and 1 pl cDNA. All samples were analysed in duplicate and template

negative reactions were carried out for each of the reactions.

5.2.6.2 Primer optimisation and assay performance

The optimisation of gPCR assays is required to ensure the validity and accuracy of gene
expression evaluation. Primers were designed from the sequences isolated from H.
diversicolor individuals outlined in section 5.2.5 using the NCBI primer-blast tool, and
optimised for gPCR assays as described below. gPCR products were separated and
visualised using gel electrophoresis (Figure 5.1) and sent to EZ Seq Sanger sequencing
services. Identity of isolated sequences were confirmed through alignment with

previously aligned sequences and BLAST searches as described previously.

185 ATPS AMPK

Figure 5.1: Image of a 1% agarose gel electrophoresis of gPCR products. Lane 1, EF1
housekeeping gene; Lane 2, 18S housekeeping gene; Lane 3, ATPS; Lane 4, AMPK; Lane 5,

100 bp ladder. Negative controls were run on a separate agarose gel (Appendix 5.2).

Primer specificity was determined by the melt peaks generated by the reaction, and the

absence of other products. Firstly, five different primer concentrations were investigated:
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100 nM, 200 nM, 300 nM, 400 nM and 500 nM with the conditions described previously.
The primer pair with the lowest Ct (threshold value) and a melt curve only showing a
single distinct product was chosen for subsequent gPCR assays (Table 5.2). Ct values

greater than 40 were assumed to be due to low efficiency.

To test the efficiency, accuracy and sensitivity of qPCR reactions, a standard curve was
performed using a 1:10, 1:5 or 1:2 serial dilution of cDNA, subjected to the same
conditions as previously described. To obtain a standard curve, the Ct values of each
dilution were plotted against cDNA dilution. Primer efficiencies, assessed from these
standard curves and those which had a value between 90-110% were chosen for gqPCR
assays in accordance with the MIQE guidelines (Bustin et al. 2009). The primers which
met these guidelines are outlined in Table 5.2 and were used in gPCR based assays to

determine expression of ATPS and AMPK of H. diversicolor exposed to pharmaceuticals.

Table 5.2: Primers used for gPCR amplification of housekeeping genes and genes of interest

from H. diversicolor

Gene Primer Sequence 5°-3’ Final Efficiency Expected
Concentrati (%) Amplification
on (nM) Size (bp)
Forward GGT GGA GCG ATT TGT CTG GT
85 Reverse  CGT GCACGC TGA TTG CTT C 100 200 "
EF1 Forward CAA CAC CTG GTC CGT CAA GA 300 110.4 74

Reverse  TGT CCA AGG CAT CGA GAA GG
Forward  GTC AAG TCG ACC TGT AGC AGA

AMPK  peverse  TGC GCT TCC CAT CTC ACT TT 100 i "
Forward GCA GGA CGT ATC ACA ACA ACA C

Reverse TGT AGG GGC AGG ATC TGT CA

ATPS 200 98.1 93

5.2.7 Statistical Analysis

Statistical analysis was carried out in R studio (1.0.136), using packages PMCMR and
ggplot2 (Pohlert 2014; Wickham 2016). In order to determine if there was a statistically
significant difference between the size and mass of H. diversicolor individuals between
treatments, a one-way ANOVA test was used. The stability of housekeeping genes was
checked by carrying out ANOVASs, with 18S selected as a housekeeping gene for data
analysis. To evaluate the relative gene expression, the 2-22¢t method was used
(Schmittgen and Livak 2008). Normalised values were expressed as fold difference
compared to normalised control values, and used to calculate the degree of induction or
inhibition. This method was chosen as normalisation to the reference genes can correct
and compensate for sample to sample variation of the RNA input. Statistical analysis
was carried out on 2-2Ctvalues to determine if there was statistically significant difference

in expression between treatments according to Livak and Schmittgen (2001) using
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Kruskall-Wallis. A post-hoc Nemenyi test was conducted to determine differences

between treatments.

5.3 Results

5.3.1 Isolation and characterisation of genes

5.3.1.1 Target Genes

A partial 199 bp ATPS sequence was isolated, sharing 91% similarity with Nereis
vexillosa ATPS (DQ087492.1) sequence. The translated nucleotide sequence showed
similarity with protein sequences from other species (Figure 5.2a). Comparison did not
identify any specific conserved domain, but comparison of N. vexillosa protein sequence
identified the ATPase beta subunit binding domain and conserved Walker A and Walker
B motifs (Figure 5.2a). Phylogenetic analysis revealed that H. diversicolor was clustered
with other annelids, N. vexillosa (AAZ30692.1) and Nephasoma pellucidum
(ADW27397; Figure 5.3a).

A partial 205 bp AMPK sequence was isolated, sharing 86% similarity with Schistosoma
japonica AMPK (GU130533.1), and the translated nucleotide showed similarity with
protein sequences from other species (Figure 5.2b). A comparison of H. diversicolor
translated nucleotide sequence identified the serine/threonine protein kinase domain, as
well as protein domains of the protein kinase superfamily, of which AMPK is a member.
Phylogenetic analysis revealed that H. diversicolor was clustered with another annelid
Hydroides elegans (BAE19914.1; Figure 5.3b). It is also closely related to vertebrates

and arthropod species.

5.3.1.2 Housekeeping Gene

A 511 bp partial EF1 sequence was isolated, sharing 97% similarity with Hediste
japonica EF1 sequence (AB003702.1). The translated nucleotide showed similarity with
protein sequences from other species, and elongation factor Tu GTP binding domains
(GTP_EFTU) were identified (Figure 5.2c). Protein domains characteristic of EF1 alpha
were also identified. Phylogenetic analysis revealed that the isolated partial H.
diversicolor EF1 amino acid sequence was clustered with another annelid from the same
genus H. japonica (BAA25731.1), but was more distantly related to another annelid, N.
vexillosa (AB113251.1; Figure 5.3c).
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VDVQFDEELPPMLNALEVQGRDTRLVLEVAQHLGENTVRT IAMDGTEGLVRGQPVVDTNA
------- DLPPILNALEVQONRTPRLILEVAQHLGENTVRTIAMDGTEGLVRGQPCYDIGS

Beta subunit nucleotide binding domain
PIRXPVGPETLGRIMNVIGEPIDERGPIPSKAFSGIHQEAPEF TEMSVEXETLETGIKVY
PISIPVGPETLGRIINVIGEPIDERGPVNARTTAPIHAEAPEFVEMSVEQEILETGIKVY

PISIPVGPETLGRIINVIGEPIDERGPVNAKTYWGIHQDAPEFVEMSVEQEILETGIKVA
Walker A Motif

DLLAPYSKGGKIGLF GVGKTVLIMELINNVAKAHGGYSVFAGVYGERTREXNDLYHEM
DLLAPYAKGGKIGLFGGAGVGKTVLIMELTNNVAKAHGGYSVFAGVGERTREGNDLYHEM

DLLAPYAKGGKIGVFGGAGVGKTVLIMELINNVAKAHGGYSVFAGVGERTREGNDLYHEM
Walker B Motif
|

IESGVIXLKDDTSKVSLVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFIDNIFR
IEGGVISLKDDTSKVSLVYGQMNEPPGARARVALTGLTVAEYFRDIEGQDMLLFIDNIFR

IESGVINLKDDSSKVSLVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFIDNIFR
| —

FTQAGSEVSALLGRIPSAVGYQPTLATDXGTMOQERITTTKKGSITSVQAIYVPADDLTDP
FTQAGSEVSALLGRIPSAVGYQPTLATDMGAMQERITTTRKGSITSVQAIYVPADDLTDP
——————————————— PSAVGNQPTLATDMGTMQERITTTQKGSITSVQAIYVPADDLTDP
FTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTTKGSITSVQAIYVPADDLTDP

Fokkdok kkExEIE R, chkkkkEEs FxsdkkkkkREsEsrshikk

APATTFAHLDATTVLSRGIAELGIYPAVDPLDSISRILDPNVVGEEHXNVARAVQKILQD
APATTFAHLDATTVLSRGIAELGIYPAVDPLDSTSRILDPNIVGAEHYGVARGVQKILQD
APTTTFAHLXATTVLSRGIAKL
APATTFAHLDATTVLSRGIAELGIYPAVDPLDSNSRILDKNVVGEEHYTVARGVQKILQD

BEEREERE SEBIIBAERE LK

HKSLQDIIAILGHDXLS -~ ~=-===-====~====---- 377
YKSLQDIIAILGHDDLSEDDKLTVSRARKIQRFLS - -~ 388
--------------------------------------- 67

NKSLQDIIAILGHMDELSEEDKLTVSRARKIQRFLSQPFQ 359

MGNAATTKKGEHVTESVEKF LAEAKEQFEIKWNNPSKNTSSLDDFDRIKTLGTGSFGRVM

LVQHKNDKDYYAMKI LDKQKVVK LKQVEHT LNEKKILQAIDFPFLVKLEFHFKDNSNLYM
LVKHKETNQFYAMKILDKQKVVKLKQIEHTLNEKRILQAVSFPFLVRLEYSFKDNSNLYM
LVQHKVSKEYYAMKILDKQKVVK LKQVEHT LNEKRILQATSFPFLVRLDYHFKDNSNLYM

LVKHRNAGDY FAMKILDKQKVVKLKQVEHTLNEKKILQAVDFPFLVRLAYHFKDNSNLYM

VLPYWGGEMFSHLRKVGRF SEPHSRFYAAQIVLAFQYLHSLDLVYRDLKPENILIDODG
VMEYVPGGEMFSHLRRIGRF SENHARFYAAQIILTFEYLHSLDLIYRDLKPENLLIDQHG
VLEFVNGGEMFSHLRRIGRF SESHSRFYASQVVLAFEYLHHLELVYRDLKPENILIDQYG

VLEYVQGGEMFTHLRKVGKF SEPHARFYAAQIVLAFQYLHSLDLIYRDLKPENLLIDHQG

Serine/Theonine Protein Kinase Domain

YIKVTDFGFAKRVKGRTWTLCGTPEYLSPEIILSKGYNKAVDUWWALGVLVYEMAAGYPPF
YIQVTDFGFAKRVKGRTWTLCGTPEYLAPEITLSKGYNKAVDWWALGVLIYEMAAGYPPF
YLKITDFGFAKRVKGRTWTLCGTPEYLAPEITLSKGYNKAVDWWALGVLVYEMAAGYPPF
———————————————————————————————————————— VDWWALGVLVYEMAAGYPPF
YIKVTDFGFAKRVKGRTWTLCGTPEYLAPEITLSKGYNKAVDWWALGVLVYEMAAGYPPF

EARELEERE EEXXXLLAXEE

FADQPIQIYEKIVSGKVRFPSHFTSDLKDILRNLLQVDLTKRYGNLKNGVNDIKNHKWFA
FADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFS
FADQPIQIYERIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKTHKWFA
FADQPIQIYEKIVSGKVRFPSHFSSDLKDLLKNLLQVDLTKRYGNLKNGVNDII------
FADQPIQIYEKIVSGKVRFPSHFTSDLKDLLRNLLQVDLTKRYGNLKNGVNDIKNHRIWFA

EEEEEREERE  EEEELRERE RN L REEER L K FERRREEEIR  RARRER TR

TLDWIATIYQKKVEAPFLPKCKGPGDTSNFDEYEEETLRVSGTEKCVKEFADF 352
TTDWIAIYERKVEAPFLPKCRGPGDTSNFDDYEEEDIHVSQTEKCAKEF ADF 293
TTDWFSIFKRDIEAPFTPKCSGAGDASNFDDYEEEPLRIATTEKCAKEF SEF 350
---------------------------------------------------- 74

QTDWIAIYRKEIEAPFLPRSAGPGDTSNFDEYEEEPLRISSTEKCAKEFADF 312

68
53

2@

12e

113

8@

1se

173

142

248

233

268

368
353

32e

12e

118

ge

18e
121
178

1l4e

242
181
238
29

200

3e0
241
298
74

260



(c) EF1

A.aurita
0.mykiss
H.diversicolor
H.japonica

.aurita
.mykiss
.diversicolor
.japonica

T TOX

.aurita
.mykiss
.diversicolor
.japonica

I TOX

.aurita
.mykiss
.diversicolor
.japonica

T T X

.aurita
.mykiss
.diversicolor
.japonica

I IO

.aurita
.mykiss
.diversicolor
.japonica

T T O

.aurita
.mykiss
.diversicolor
.japonica

ITOX

.aurita
.mykiss
.diversicolor
.japonica

I TOr

Figure 5.2: Alignment of H. diversicolor translated nucleotide sequence with multiple species.
Dashes represent gaps in the alignment and asterisks represent homology. Shaded boxes show
conserved domains and grey boxes show other conserved features. Alignments were cropped
and are not shown in full. (a) EF1 alignments with A. aurita, O. mykiss and H. japonica
(BAA25731.1) (b) ATPS alignments with N. vexillosa (AAZ306902.1),
(ADW27397.1), O. lemacina (ADW27401.1). (c) AMPK alignments with H. elegans and S.

japonica (GU130533.1).
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Figure 5.3: Phylogenies of full and partial amino acid sequences for (a) ATPS (b) AMPK and (c)
EF1 rooted with Alitta virens elongation factor 2. Shaded boxes represent species groups: green

— echinoderms; pink — vertebrates; yellow — annelids; blue — molluscs; brown — arthropods.
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5.3.2 Quantitative real-time PCR optimisation
Five primer concentrations were tested in order to determine the optimal primer
concentrations. 100 nM 18S and AMPK, 200 nM ATPS, and 300 nM EF1 resulted in the

lowest Ct value and unique dissociation temperature peak according to melt curves

(Figure 5.4ii). PCR amplification efficiency for reference and target genes ranged from
90% (18S) to 110% (EF1), indicating that all of the primers had high specificity (Figure

5.4iii). The serial dilution of these genes resulted in an R? > 0.96 for all genes, showing

that non-diluted cDNA used in gPCR assays were within this range (Figure 5.4i).

A i

Tompurstars, Corvn

Ampttcaton

Amptecaton

Figure 5.4: (i) Standard curves (i) melt peaks and (iii) gq°PCR amplification generated from
amplification of each gene using diluted cDNA samples as follows: A: 18S, B: EF1, C: ATPS and

D: AMPK
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5.3.3 Expression of ATPS
After 7 days of exposure, only H. diversicolor exposed to the metformin treatment with a

nominal concentration of 1 pg I'* showed a significant difference from the control in the
expression of ATPS (Kruskal-Wallis, x?> = 19.271, p < 0.001), which led to an increase in
expression (Figure 5.4). The relative expression of ATPS was also significantly higher in
this treatment than the diclofenac treatments, however there was no statistically

significant difference between metformin treatments (Figure 5.5).

41

I vs]

Fold Change
N

Control Diclofenac High Diclofenac Low Metformin High Metformin Low
Treatment

Figure 5.5: Fold change (222 in expression of ATPS in H. diversicolor exposed to diclofenac
high (1 pg I nominal concentration; n = 22), diclofenac low (100 ng I'Y; n = 28), metformin high
(1pg It nominal concentration; n = 28) or metformin low (100ng I'* nominal concentration; n = 23)
relative to control control (n = 28). Error bars represent standard deviation calculated as outlined
in Livak and Schmittgen (2001). Different letters denote exposure groups that are significantly

different (P>0.05) analysed using Kruskal-Wallis.
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5.3.4 Expression of AMPK
After 7 days of exposure, there was no significant difference in the expression of AMPK

between any of the treatments (Kruskal-Wallis x> = 2.0641, p > 0.05; Figure 5.6).

Fold Change

Control Diclofenac High Diclofenac Low Metformin High Metformin Low
Treatment

Figure 5.6 Fold change (222%) in expression of AMPK of H. diversicolor exposed to either
diclofenac high (1 pg I'* nominal concentration; n = 22), diclofenac low (100 ng I'* nominal
concentration; n = 23), metformin high (1ug I'* nominal concentration; n = 27) or metformin low
(100ng I'* nominal concentration; n =23) relative to control (n = 21). Error bars represent standard

deviation calculated as outlined in Livak and Schmittgen (2001).
5.4 Discussion

5.4.1 RNA isolation and assay optimisation

One partial housekeeping sequence (EF1) and two target sequences (ATPS and AMPK)
were isolated from H. diversicolor as demonstrated by GenBank database comparisons,
multiple species amino acid alignments (Figure 2) and phylogenetic trees (Figure 3). The
target genes, ATPS and AMPK were 91% and 86% similar to other related genes and
the phylogenetic analysis showed clustering of the target genes with other annelid
species, indicating that they were very likely the homologs of the ATPS and AMPK genes

respectively.
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Primer efficiencies for 18S, EF1, ATPS and AMPK were 90 — 110% efficient and
concentrations of cDNA fell within the standard curves generated. Analysis of gene
transcripts was calculated based on relative change in mMRNA expression of a reference
and target gene, so it is essential that these are consistent and reliable. RNA quality was
not measured and partially degraded RNA could have resulted in poor reactions and
unreliable expression results (Vermeulen et al. 2011). However, steps were taken to limit
RNA degradation such as appropriate storage of samples in RNA later and storage of
RNA at -80°C. Additionally, two technical replicates were conducted for each of the
sample reactions, and those which had a difference in Ct value greater than 0.5 were
not included in the final analysis. Ct values of EF1 differed significantly between
treatments and as a result was not a suitable housekeeping gene, and ACt values were

calculated as relative expression between target gene and 18S.

5.4.2 Pharmaceutical exposures

The effects of metformin and diclofenac at low nominal (100 ng I'Y) and high nominal (1
ug I'Y) concentrations on mMRNA expression after 7 days of exposure were investigated
in the polychaete H. diversicolor. Following controlled exposure for 7 days, the high
nominal dose (1 ug I'Y) of metformin was the only treatment to alter expression of ATPS,
and none of the treatments had a significant effect on AMPK. No mortalities were
observed in these exposures, indicating that these compounds only have the potential
for sub-lethal toxicity. It was not possible to analyse water samples from exposures for
pharmaceutical concentrations, and as a result, it is only possible to express treatment
doses as nominal concentrations. It would have been beneficial to take these
measurements in order to confirm actual exposure concentrations in order to better
interpret the results (Harris et al. 2014). Semi-static exposures were conducted, which
could result in a decrease in water concentration between dosing and replenishing water
as the result of degradation or in the rise in concentrations as the result of repeated
dosing. All exposure media was replenished every other day in order to minimise these
effects and try to ensure stable exposure concentration for the duration of the

experiment.

Whilst there was no statistically significant difference in the size of H. diversicolor
individuals between treatments, there was a difference within-treatments, which could
account for the high variation seen in the expression of ATPS and AMPK (Harris et al.
2014). The uptake of pharmaceuticals could differ between individuals of different sizes
or maturity, which could lead to this variation in gene expression. Additionally, difference
in size indicates differences in maturity which can lead to differences in energy status

and can also account for variability (Durou and Mouneyrac 2007). At the end of the
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exposures, H. diversicolor were divided into thirds, with two thirds reserved for gPCR
analysis and one third for tissue analysis. The portion of the worm (i.e. head, middle or
tail) was randomly divided for these analyses, which could account for some of the
variability seen in gene expression. Different organs will have different metabolic
requirements and energy is often partitioned to tissue and organs based on this need
which can lead different expression between the anterior and posterior end. In fish,
partitioning has of energy has been found to be allocated differently in mature and
reproducing individuals, and will also differ between sex (Patterson et al. 2004). The
uptake and accumulation of pharmaceuticals has also been found to be tissue-
dependent in fish, and if this is the same for H. diversicolor, it could help explain these

variations. (Zhao et al. 2015)

5.4.3 Metformin

In vertebrates, the primary function of metformin is to reduce glucose output in the liver
and secondarily to stimulate glucose uptake in the muscles (Joshi 2005). The primary
target of metformin in humans has been debated (Viollet et al. 2012). It was originally
thought AMPK was the primary target, but it has also been suggested that the activation
of AMPK is the result of specific inhibition of respiratory chain complex | (Bridges et al.
2014; Fontaine 2014). Metformin has been shown to activate AMPK and exert a similar
therapeutic effect in non-target vertebrates as humans, causing the inhibition of hepatic
glucogenesis in fish (Panserat et al. 2009) and the activation of glucose uptake into fish

muscle (Magnoni et al. 2012).

The pathway of metformin in invertebrates is not currently known but there is evidence
that it still acts as an AMPK activator (Sheng et al. 2012). AMPK is highly conserved and
has been found to maintain energy budgets in other invertebrates including crustaceans
and molluscs (Sokolova et al. 2012). Metformin has also been found to activate AMPK
in Daphnia (Sheng et al. 2012). AMPK is responsible for regulating energy budgets in
response to environmental or nutritional stress (Bridges et al. 2014). It is activated by
limited ATP or increased ATP depletion. Whilst AMPK expression did not differ between
treatments, ATPS expression was higher in the high metformin treatment indicating that
metformin is causing stress in H. diversicolor leading to depletion of ATP. It is possible
that longer exposure or higher concentrations could lead to AMPK activation as the result
of ATP synthesis not being able to keep up with requirements. H. diversicolor individuals
were collected from Paull (A1) where other pharmaceuticals were detected in surface
water in Chapter 4, and Metformin has been detected in tributaries of the Humber (Burns

et al. 2018). It is therefore plausible that metformin may be present at this site, and could
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affect the expression of these genes as individuals may already be stressed, or may

have acclimatised to the concentrations of these compounds.

The effect of metformin on ATPS, a general biomarker for stress could be indicative of
other negative effects occurring (Sokolova et al. 2012). Exposure to metformin has also
caused reproductive changes including causing lower fecundity in intersex minnows (P.
promelas; Niemuth and Klaper 2015), as well as increasing vitellogenin in mussels,
(Mytilus edulis; Koagouw and Ciocan 2018). There are conflicting reports in the literature
as to whether this is an expected (Crago et al. 2016) or unexpected (Sumpter et al. 2016)
mechanism in non-target organisms. A therapeutic effect of metformin in humans is to
reduce the androgen effects of polycystic ovaries to increase ovulation, however, the
mechanism of action is poorly understood (Spritzer 2014). It is thought that this use is
the result of lowered insulin, but it is also thought that metformin could also directly affect
steroidogenesis (Lashen 2010). Sexual steroids also play a vital role in the reproduction
of polychaetes including H. diversicolor, so this and depleted energy reserves have been
shown to affect reproductive abilities in contaminated estuaries (Durou and Mouneyrac
2007). As a result, further investigation into the pathways and effects of metformin on H.

diversicolor reproduction is warranted.

Many of the reproductive effects seen in experimental studies, were the result of
exposure to very high concentrations of metformin to mussels (M. edulis; 40 ug I
;Koagouw and Ciocan, 2018) and fathead minnows, Pimphelas promelas (40 ug I'%;
Niemuth et al. 2014, Niemuth and Klaper 2015). No differentiation was made in the
inclusion of males and females in the present study, and if metformin does impact the
reproductive system, it will affect each sex differently. Concentrations of 1 ug I'* were
seen to increase vitellogenin expression in juvenile fathead minnows, but no changes
were seen at levels up to 100 ug I'* in adults (Crago et al. 2016). This is the only study
to investigate the age-dependent effects of metformin and introduces uncertainty
surrounding the variability seen in mRNA expression, and whether this is natural
variation or as the result of the range of sizes used in the exposures. The effects of
metformin on glucose homeostasis in trout (Oncorhynchus mykiss) were seen after being
fed or injected metformin at doses of approximately 50 mg kg (Panserat et al. 2009;
Polakof et al. 2009; Polakof et al. 2010). This is reflective of the large quantities of
metformin (approximately 2.5 g per day), which are required to have a therapeutic effect
in humans (Rena et al. 2013). Although metformin has been detected in surface waters
at high concentrations in comparison to other compounds, the concentrations used in
these studies (1 — 100 ug I't) are similar to those seen in wastewater influent (2 — 129 ug

I1) and effluent (1.2 — 100 pg I'1), and those which have been measured in surface water
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are much lower (< 3ug I'Y; Bradley et al. 2016, Briones et al. 2016, Burns et al. 2018).
Metformin has frequently been detected in surface water at approximately 1 pg I*
(Scheurer et al. 2012), but averages are far lower than this (Briones et al. 2016). The
effect on ATPS expression seen in the current study suggests that metformin could have
an effect at peak environmental concentrations. Additionally, the potential role of
metformin as an endocrine disruptor are concerning and this highlight the need for further
investigation into whether these effects can be seen at concentrations regularly detected

in the environment.

5.4.4 Diclofenac

Diclofenac didn’t have an effect on AMPK or ATPS expression at either low nominal (100
ng I'Y) or high nominal (1 pg I'*) concentrations. Similarly to mRNA expression in the
metformin treatment, there was high within-treatment variability. However, size
differences of H. diversicolor were non-significant between treatments so it is possible
that these endpoints are not affected by diclofenac. These endpoints have not previously
been measured in non-target species, however, there is some evidence that diclofenac,
and other acidic nonsteroidal anti-inflammatories (NSAIDs) may activate AMPK in
humans and mice, and it is thought that this could contribute to the anti-inflammatory and
analgesic properties (King et al. 2015). Additionally, AMPK has been observed to be
activated in mussels exposed to municipal effluent (Goodchild et al. 2015). Although it is
a target of metformin, AMPK can also be a sign of environmental stress as the result of

depleted energy reserves.

Although H. diversicolor is a key species in estuarine environments, and has been
suggested as a bioindicator of contaminated estuaries, few studies have researched the
impact of pharmaceuticals on this or similar species (Catalano et al. 2012; Maranho et
al. 2014). H. diversicolor exposed to ibuprofen has been found to result in the inhibition
COX, leading to increased mitochondrial energy consumption and neuroendocrine
effects (Maranho et al. 2015). Diclofenac is generally considered to be more toxic to
organisms than other NSAIDs as evidenced by both acute (Sanderson and Thomsen
2009; Vestel et al. 2016) and chronic toxicities (Du et al. 2016). Diclofenac has been
shown to inhibit COX activity and prostaglandin synthesis in other aquatic invertebrates
such as the mussels Mytilus galloprovincialis, and Perna perna (Courant et al. 2017;
Fontes et al. 2018). As a result, it is also possible that diclofenac could inhibit COX

activity in H. diversicolor, but this has not been studied in aquatic annelids.

Prostaglandins not only play a role in inflammation response, but also in other

physiological processes including osmoregulation, homeostasis and reproduction
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(Ruggeri and Thoroughgood 1985). Most invertebrates only have one isoform of this
enzyme, which is responsible for all of these processes, and as a result can be affected
by diclofenac (Heckmann et al. 2008; Rowley et al. 2005). In vertebrates, diclofenac
selectively inhibits COX-II, however, it is unknown how these base-line physiological
processes will be affected in H. diversicolor. Interruption of these processes could lead
to stres and increased ATP demand in order to survive. The variation seen in these
experiments, could indicate that the toxicity of diclofenac could be dependent on other
factors such as age, sex and size due to differences in metabolic requirements and prior

exposure to contaminants as previously discussed.

Diclofenac has been shown to cause oxidative stress in the zebra mussel, Dreissena
polymorpha (Quinn et al. 2011), alter reproduction in mussels (Mytilus spp;. Schmidt et
al. 2011), reduce hatching success in Daphnia magna (Lee et al. 2011), impact
osmoregulation in the edible crab, Carcinus maenas (Eades and Waring 2010), and
cause neurotoxic effects in M. galloprovincialis (Gonzalez-Rey and Bebianno 2012). It
has also been found to affect the motility of annelid Arenicola marina sperm at
concentrations of 100 ng I'* (Mohd Zanuri et al. 2017). H. diversicolor reproduce, by
males spawning into the water and females bringing sperm into the burrows where they
have buried their eggs, diclofenac polluted waters could negatively affect this (Scaps
2002). These studies are evidence that diclofenac can cause biological changes in
aquatic organisms, and this has often been demonstrated to occur at concentrations
similar to those found in surface water (Acufia et al. 2015). However, there has been a
focus on the use of fish and bivalves, and it would be beneficial to improve information

to account for the effects of diclofenac outside of these species.

5.5 Conclusion

This is the first study to investigate the effects of metformin or diclofenac on the estuarine
polychaete H. diversicolor. Metformin was found to increase the expression of ATPS at
the high nominal concentration (1 pg I'Y) and the requirement to sustain high energy
levels could have long term consequences in the environment. Metformin failed to alter
the expression of AMPK, the target of metformin in vertebrates. As a result, there is a
need for further investigation of metformin pathways in aquatic invertebrates, particularly
at environmentally relevant concentrations. This could help to interpret the results seen
in this study and determine how factors such as maturity and sex could affect toxicity of
metformin and diclofenac. The potential impact of metformin to biota is particularly
concerning, as metformin in now one of the most widely used drugs globally and if recent

trends continue, usage will rise leading to higher concentrations in surface water
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(Oosterhuis et al. 2013). Diclofenac on the other hand, did not activate ATPS or AMPK
at either concentration, indicating that diclofenac does not affect the energy balance in
H. diversicolor. There is also a need to further investigate the effects of both these
compounds at longer exposures in order to further understand the potential implications

to long-term chronic exposures in the environment.
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Chapter 6: Discussion

The literature review in Chapter 1 highlights that there has been an increasing interest in
the occurrence of pharmaceuticals in the aquatic environment. Reviews have succinctly
covered the presence of these compounds in fresh (Hughes et al. 2013) and marine
waters (Fabbri and Franzellitti 2016), but studies on the occurrence of pharmaceuticals
in estuaries lag behind these environments. Estuaries act as a site of interaction between
the freshwater and marine environments and play a role in the fate of pollutants (Ridgway
and Shimmield 2002). They provide an important habitat for many organisms and provide
commercially important resources such as food, transport and recreation, and as a result
the presence of pollutants can have negative consequences (Monserrat et al. 2007).
There is evidence that pharmaceuticals are biologically active, and have the potential to
impact non-target organisms (Santos et al. 2010). However, there is still uncertainty over
the pathways of these drugs and at which levels an effect will occur. The overarching
aim of this thesis was to address these gaps, which were further discussed in Chapter
1, and gain a deeper understanding surrounding the occurrence and effects of
pharmaceuticals in estuaries, specifically by (1) assessing if prioritisation schemes
accurate identify priority compounds (2) identifying pharmaceuticals of environmental
concern (3) measuring the concentrations of pharmaceuticals and the spatial and
temporal variations in their occurrence, and (4) determining their effects on non-target

organisms.

Chapters 3-5 have been separated by research themes, and the results and implications
have been discussed within each of the preceding sections. This chapter of the thesis
aims to collate the findings from each of these chapters and discuss them as a whole

within the context of the original aims.

6.1 Research Synthesis

6.1.1 Evaluation of prioritisation schemes

The prioritisation exercises carried out in Chapters 2 and 3 identified a range of
compounds which have the potential to enter the environment and pose a risk to the
environment. Chapter 3 included a more detailed assessment, where differences in
predicted environmental concentration (PEC) calculations evaluated against each other,
measured environmental concentrations (MECs), and the existing literature to determine

the efficacy of the different methods in protecting the environment. PECa which included



165

excretion rates and critical environmental concentrations (CECs) were suggested as
being the most conservative of the schemes. Whilst these two schemes may provide a
useful tool for an initial assessment, they are not appropriate for all situations, and could
be further improved to ensure compounds are not overlooked or unnecessarily flagged
as a priority when they are not. Whichever methods are used, it is important to take a
holistic approach to combine environmental and effects data, as some compounds, such
as ethinylestradiol will illicit a biological response at concentrations much lower (less than
10 ng I'Y) than that of other compounds (Lange et al. 2010). Despite the limitations of the
assessed prioritisation methods, antidepressants, antibiotics, ibuprofen, metformin,
allopurinol and candesartan were not only highlighted as compounds of concern in
Chapters 2 and 3, but also by the existing literature, emphasising the importance of
directing research towards these areas (Linert et al. 2007; Besse et al. 2008, Kostich
and Lazorchak 2008, Roos et al. 2012, Daouk et al. 2015).

The largest differences arose in the results between the two chapters due to the inclusion
of more compounds in chapter 2. Carbamazepine for instance, was ranked as the 65"
most used drug in the UK, so as a result was not included in the assessments carried
out in Chapter 3. Carbamazepine is one of the most well-studied compounds in existing
freshwater literature and has been found at concentrations up to 11 pg I, and thought
to cause harm at environmental concentrations (Martin-Diaz et al. 2009; Camacho-
Mufioz et al. 2010; Hughes et al. 2013). This shows it is important to consider that the
number of compounds included in these schemes, yet a large variation (12 — 3000
compounds) has been seen in the number of compounds included in previous
prioritisation exercises (Sanderson et al. 2004; Donnachie et al. 2016). The number of
compounds included must be enough to adequately protect the environment, but it also
must be within time and financial resources to feasibly conduct the prioritisation exercise.
It would therefore appear, that the inclusion of only 50 compounds in a broad assessment
such as the one carried out in Chapter 3, does not strike this balance. In the context of
this study, the excretion rates, cmax and logkow values needed to calculate PEC, and
CECs are relatively easy to obtain, and therefore including more compounds would allow
a more robust assessment, whilst also being feasible in terms of time and resources

needed.

Whilst the rankings of compounds by PECs appeared to accurately portray relative
concentrations, they were largely inaccurate at predicting environmental concentrations.
Comparing MECs to PECs can be challenging, as many of these measurements were
limited by sample numbers and study locations. As is evidenced by the existing literature

and results from the monitoring study in Chapter 4, there are many natural variations in
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the occurrence of pharmaceuticals (Paiga et al. 2016; Cantwell et al. 2018; Munro et al.
2019). The variation in these concentrations, highlights the difficulty in including PECs
into risk quotients (RQs) and the fish plasma model (FPM). In section 3.4.2., the inclusion
of local environmental criteria was suggested in order to provide more accurate PECs,
however, the variation in these conditions could make this difficult to apply to a large
number of compounds. Dilution appears to have been a key factor in determining the
occurrence of pharmaceuticals in the aquatic environment, and its inclusion in PECs
would be useful (Burns et al. 2018a). PECs in some studies have previously included
site specific information on dilution, and have been found to be accurate predictors in
some rivers (Burns et al. 2017) and accurate for some compounds, but not others in

wastewater treatment plans (WWTPs) (Ferrari et al. 2004).

Other differences arose in the prediction of toxicity of these compounds between the two
chapters and existing literature. The main limitations of CECs and the FPM are that they
are utilising mammalian data to predict possible concentrations at which compounds are
thought to be likely to exert an effect on fish (Huggett et al. 2003). The implications of
assessing potential toxicity to one trophic level could fail to identify compounds (such as
antibiotics), which have shown greater toxicity to other organisms, and as a result
predicted toxicities for multiple trophic levels should be included (Guo et al. 2015). Other
assessments have done this through the use of experimental acute and chronic data
(Dong et al. 2013), modelling predicted effects (Sangion and Gramatica 2016) and
utilising information on pharmacological mode of action (MoA) (Besse et al. 2008). In
Chapter 3, it was discussed that FPM and CECs were the most conservative and
accurately identified compounds which posed a risk to multiple trophic levels. However,
this is likely to fail when there are unexpected ecotoxicological effects of targets non-
conserved targets, such as the reproductive toxicity of metformin observed in P.

promelas and Mytilus edulis (Niemuth et al. 2015; Koagouw and Ciocan 2018).

Tiered risk assessments are used in ERAs (Hoyett et al. 2016) and are often utilised in
the prioritisation literature (Besse et al. 2008). This could help overcome the limitations
discussed previously of providing sufficient detail on a large number of chemicals. The
schemes discussed in Chapter 3 (PECa and CEC) could provide a useful first tier
assessment, but there would need to be further criteria to include assessments on the
toxicity of the compounds to other trophic levels, whether this is through acute data or
PNECs. The use of a tiered scheme could produce a smaller subset of compounds on
which to do a more detailed assessment. Roos et al. (2012) assessed the use of different
methods for prioritising pharmaceuticals in a Swedish context. They also found that these

criteria accurately predicted the relative importance of several well-studied compounds,
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and also suggested the use of QSAR and logkow as alternatives. The use of QSAR has
been widely debated (Schrieber et al. 2011, Nallani et al. 2016) and discussed in
previous sections (1.1.2 and 3.4.3). Regardless of which is used, it needs to be chosen
based on relevance to the rationale of why the assessment is being carried and to the

compounds included, as well as available data.

A first-tier assessment can be used to create a smaller sub-set of compounds upon which
a more detailed assessment can be carried out. PECs can be further refined to include
local data such as the number of prescriptions, population, WWTP removal, flow, and
inputs. There are many different examples of calculations in the literature which include
local information on input and flushing rates in rivers (Burns et al. 2017), fate calculations
(Oldenkamp et al. 2013), and local usage (Helwig et al. 2016). This could help to provide

more reliable data for FPM and RQs.

Other prioritisation schemes have used information on the pharmacological MoA to
further assess the potential toxicity of chemicals, and those which had a relevant MoA
were placed on a priority list (Besse et al. 2008), or through the use of adverse outcome
pathways (Caldwell et al. 2014). The point based ranking system used in Chapter 2
attempted to do this. It was adapted from a prioritisation exercise carried out by Capleton
et al. (2006) to prioritise veterinary pharmaceuticals. An assessment like this utilised
pharmacological information in addition to data in the existing literature, but was time
consuming to carry out on a large number of compounds. Further consideration into the
adaption of such a method to a human pharmaceutical context, such as the weighting of
different criteria and inclusion of more relevant endpoints could be beneficial. For
example, adverse effects to reproduction are important as they could have population
level effects and should be weighted appropriately (Ankley et al. 2010). Oxidative stress
on the other hand, is an endpoint commonly used in the literature and is useful in
determining stress caused by exposure to a pharmaceutical, however, the overall
biological significance can be variable and therefore should be weighted differently
(Regoli et al. 2002). Additionally, weighting for data quality such as concentrations which

induce an effect or sample numbers should be considered

6.1.2 Occurrence of pharmaceuticals in estuaries

To date, relatively few studies have monitored pharmaceuticals in estuaries and those
which have, have largely been limited to East Asia (13 studies), North America (10
studies) and Europe (7 studies; Figure 6.1). Only the monitoring study in Chapter 4 and
those conducted by Mijangos et al. (2018), Long et al. (2013) and Thomas and Hilton

(2004) measured compounds in more than one estuary. Some patterns in the occurrence



168

of pharmaceuticals have evolved from these studies. Concentrations of pharmaceuticals
decrease with increasing salinity, leading to dilution being named as the key factor
influencing the fate of these compounds within estuaries (Cantwell et al. 2016, 2017).
Other processes such as tides, water flow and rainfall also influence dilution and
subsequent pharmaceutical concentrations (Benotti and Brownawell 2007, Mijangos et
al. 2018). Sorption of pharmaceuticals to sediment and degradation have also been
found to play a role in removal (Yang et al. 2011, Hedgespeth et al. 2012). However, due
to the varying concentrations, limited study locations and complex interactions occurring
in estuaries, there has been uncertainty over the magnitude of estuarine pharmaceutical
pollution (Cantwell et al. 2018). The findings of this thesis help to put the wider problem
of pharmaceutical contamination into context, by contributing to the overall picture on the
global occurrence of pharmaceuticals, and what is currently known about the spatial and
temporal patterns in estuaries. As illustrated by Figure 6.1, further monitoring needs to

be conducted in order to fully understand the global scale of this issue.

A
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Figure 6.1 Number of studies conducted in each country monitoring pharmaceuticals in (A)
surface Water and (B) sediment. Further information on pharmaceuticals monitored and
concentrations can be found in appendices 1.1 and 1.2.
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In Chapter 4, pharmaceutical pollution was found to be ubiquitous in the UK, which adds
to the increasing literature that pharmaceuticals are not just present in freshwater (Fabbri
and Franzellitti 2016, Gaw et al. 2016). The ability of these compounds to persist and
their occurrence in the downstream most regions of estuaries and therefore likelihood of
entering the marine environment shows that pharmaceuticals are widespread within the
aquatic environment as a whole (Rocha et al. 2014). Ibuprofen, paracetamol and
trimethoprim had the highest detection frequencies (90-100%) across UK estuaries and
were present in nearly all of the samples collected. Whilst diclofenac and citalopram were
highly detected in the Humber Estuary, they were only present in 25% and 50% of the

12 estuaries sampled, respectively.

In Chapter 3, PECs were calculated for the five compounds measured in these estuaries.
These calculations predicted that paracetamol would be found at the highest
concentrations (800 — 5740 ng I) followed in order by ibuprofen (1484 — 2968 ng I%),
diclofenac (112 — 488 ng I'), trimethoprim (133 — 488 ng I'') and citalopram (74 — 223 ng
I'). This order was mostly reflected in the concentrations of pharmaceuticals measured
in UK estuaries, although ibuprofen was generally detected at higher concentrations than
paracetamol. However, the resulting calculations were less accurate, which is
unsurprising due to the temporal and spatial variations that were seen in Chapter 4, as
well as in other monitoring studies (Conley et al. 2008, Wilkinson et al. 2017, Cantwell et
al. 2018). As a result, it is most important that these schemes are sufficient for predicting
the highest concentrations. The calculated PECs mostly underestimated the maximum
concentrations by a factor of 2 — 10, but overestimated mean concentrations by a factor
of 2 - 113, which was the case for many of the MECs in Chapter 3 (Figures 3.2 and 3.3).
Most of the MECs used were measurements taken from rivers, and PECa was found to
be the most conservative estimate. However, in the estuaries sampled, PECp accurately
predicted maximum concentrations of paracetamol (916 ng I'Y) and diclofenac (42.93 ng
I1) in the Humber Estuary, whilst PECg accurately predicted the maximum
concentrations of trimethoprim (247 ng I1). In the context of this thesis, PECa still
provided the most conservative estimate for the compounds and would be useful to
prioritise pharmaceuticals in the aquatic environment as a whole, but lacks detail to

provide estimates in specific areas.

The Humber Estuary, which is the second largest estuary in the UK and is the receiving
environment for the sewage effluent for approximately 13.7 million population equivalent
(PE; European Environment Agency 2017), had the highest overall levels of
pharmaceuticals. Concentrations of ibuprofen in the Humber were the highest recorded

in an estuary, globally (Table 4.1). Further large estuaries, including the Mersey (3.7
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million PE) and Thames (16.5 million PE), also had relatively high concentrations of
pharmaceuticals in comparison to the other estuaries sampled (European Environment
Agency, 2017). A relationship between the amount of pharmaceuticals and densely
populated catchment areas has been seen in other waterbodies; a monitoring study in
the Jiulong River, China showed highest concentrations in urban areas in comparison to
other land uses (Hong et al. 2018). Pharmaceuticals were also present in rural areas due
to their combined usage as veterinary medicines and spreading of sludge and manure,
however, pharmaceutical presence in areas with higher forest cover were much lower.
A positive correlation between catchment population and pharmaceutical populations
was also found in Japanese rivers (Hanamoto et al. 2018). This relationship was not
observed in this thesis; the Cromarty Firth (92.3 km?; PE 156, 000), a relatively secluded
estuary in the North of Scotland had the highest level of any pharmaceutical (ibuprofen
— 210 ng I'Y) measured in the August-September monitoring campaign, and was one of
the few estuaries to contain diclofenac. This could, in part be due to differences in WWTP
technology resulting in the lower removal of these compounds (Nebot et al. 2015). Septic
tanks are likely to be higher in rural areas (which are not included in the calculated PE
of each catchment) and have been attributed as a source of pharmaceuticals in rural
areas in Canada (Comeau et al. 2008), Sweden (Magnér et al. 2010), and USA (Palmer
et al. 2008). As a result countries with growing populations and inefficient or non-existent
sewage removal (such as Bangladesh, Pakistan, China and India) could pose the biggest
threat to water quality (Rehman et al. 2015). Not only are these countries the highest
global consumers of pharmaceuticals, they also house many pharmaceutical
manufacturing companies where there is a lack of regulation surrounding the emission
of pharmaceutical waste (Ashfaq et al. 2017). Few studies have measured
pharmaceuticals in these regions, but diclofenac was found in Pakistan at levels of 0.1
to 4.4 ug I* (Scheurell et al. 2009), and other pharmaceuticals were frequently detected
above 1 pg I'* in India (Mutiyar et al. 2018). These differences in land use, sewage
treatment and pharmaceutical consumption in areas such as this can make it difficult to
apply findings from this thesis to other countries. Pharmaceuticals have been detected
at concentrations up to 500 ng I* in surface water and up to 87 ug I in effluent in sub-
arctic locations (Faroe lIslands, Iceland and Greenland), which have low populations
(50,000 — 329,000 people), which shows the potential wide-reaching impacts of
pharmaceuticals pollution and that monitoring studies shouldn’t be limited to urban areas
(Huber et al. 2016).

Geochronological sampling of estuarine sediment in New York has revealed that most

pharmaceutical concentrations have increased over the last 50 years, with
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concentrations doubling in the last ten years, a higher increase in comparison to previous
decades (Lara-Martin et al. 2015). Four of the estuaries sampled in Chapter 4 (Mersey,
Thames, Tees and Tyne) were previously sampled in 2002 (Thomas and Hilton 2004).
It can be difficult to directly compare concentrations in these estuaries, due to seasonal
and temporal variations, however, detection frequencies of ibuprofen, trimethoprim and
paracetamol were higher than previously sampled. Particularly concerning, is the
occurrence of paracetamol, which was completely absent in these estuaries, but is now
the second most occurring compound 15 years later. Diclofenac concentrations
measured in this thesis were similar and even lower than these previous measurements,
however, due to low recovery, higher method quantification limit (MQL) and potential
temporal variations of this compound, it may be too early to say concentrations are
declining, particularly as it has recently been found in the Ouse (a tributary of the
Humber) at concentrations up to 2.8 ug I'* (Kay et al. 2017). In the UK, prescription rates
of diclofenac have declined in recent years, and only low doses are available over the
counter (OTC), and as a result a decline in concentrations could be expected (National
Health Service 2014). As for trimethoprim and ibuprofen, concentrations were higher in
the Mersey (by a factor of 10) in 2002, but similar to the other estuaries sampled.
Baseline data on the occurrence of pharmaceuticals in estuaries (or many other
waterbodies) does not exist (Figure 6.1), yet is essential to determine if these levels are

in fact rising.

This variation in pharmaceutical levels could be the result of site selection (and distance
to input sources), as well as variations in seasonal or diurnal concentrations as opposed
to an overall decline. Thomas and Hilton (2004) collected samples in November,
whereas the UK wide survey in Chapter 4 was conducted in August, when concentrations
would be expected to be lowest. In the Humber, trimethoprim was the only compound to
show seasonal difference, with highest concentrations in February, when highest overall
pharmaceutical concentrations occurred, and December. Other studies have showed
highest concentrations of pharmaceuticals, such as hydrochlorothiazide (which showed
50% higher detection frequency) to be highest in winter as the result of colder
temperatures, when degradation is lower, resulting in higher input, higher concentrations
and more persistence (Cantwell et al. 2017). Previous studies have also identified the
flow rate of an estuary to be an important factor in the fate of pharmaceuticals (Cantwell
et al. 2016). This was not accounted for in the Humber or UK wide monitoring, but rainfall
recorded in Yorkshire the previous years showed highest levels in June and August,
which could also account for the low concentrations observed at sites furthest

downstream (A3-A5) during these months (Tanguy et al. 2016). These complex
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interactions between the input of pharmaceuticals, their removal and transport can make

it difficult to predict these variations, as they can vary daily as well as seasonally.

Total prescription numbers of the most commonly used pharmaceuticals in the UK have
risen by a factor of 1.6 between 2005 and 2015 (National Health Service 2006, 2016),
and if this increase remains constant, then over 1 billion prescriptions of these compound
classes could be dispensed in 2025 (Figure 6.2). Further understanding of consumption
patterns and prediction of environmental concentrations is needed in order to understand
if this same increase could be reflected in surface water. The Lara-Martin et al. (2015)
study showed higher increases in sediment over a ten year period, and as a result it isn’t
unfeasible. If little is done to curb the rise of pharmaceutical levels, then they have the
potential to become a problem in the future. According to our current understanding of
ecotoxicology, few pharmaceuticals pose a risk at the levels currently found in the
environment, however detrimental effects could be seen if concentrations continue to

increase at this rate (Taylor and Senac 2014).
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Figure 6.2 Annual prescription numbers for the most prescribed pharmaceuticals for 2005, 2010
and 2015 taken from National Health Service (2006, 2011, 2016). Projected prescription numbers
for 2025 calculated based on change between 2005 and 2015.
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A better understanding of the spatial and temporal differences of pharmaceuticals and
the factors which influence their fate can help to identify areas and organisms which
could be most at risk from this pollution. In the Humber, the highest concentrations were
observed in the 6 km section between R1 and R4. This was the likely the result of effluent
discharged at R1, and sustained concentrations from this source. Other peak
concentrations seen at R3 and R4 could have been the result of compounds transported
from the River Hull. There are eight other WWTPs which discharge effluent into the
Humber, the largest of which serves a PE of 500,000 (European Environment Agency
2017). Improper disposal, agriculture and aquaculture have also been identified as
sources of pharmaceuticals, as a result the spatial distribution of some compounds may
differ depending on land use (Godoy et al. 2015). For instance, trimethoprim, which is
also used in fish farming, has been found to be present at concentrations 2-3 times higher
in seawater where farming was present than other areas (Kim et al. 2016). It is essential
that monitoring campaigns are designed to include areas where concentrations are
highest in order to gain a better understanding of risk in that area. An understanding of
consumption patterns is also important when determining which pharmaceuticals to
monitor; prescriptions of lipid lowering agents, antidepressants, antihypertensives,
mucosal protectants and antidiabetic drugs have experienced the highest rate of
increase, doubling between 2005 and 2015 (Figure 6.2), and as a result, may be of
interest for future monitoring work. However, as discussed previously in Chapter 2, it is
essential to have an understanding on the effects of pharmaceuticals, when determining

those which may be a priority.

6.1.3 Biological effects of pharmaceuticals in estuaries

Many pharmaceuticals exhibit temporal variations in their occurrence, and as a result,
some pharmaceuticals may pose a greater risk at certain times of the year (Conley et al.
2008). This can have implications for migratory species or biological processes which
occur at certain times of the year. Reproductive processes often exhibit seasonal
patterns, which could leave species more vulnerable during these periods (Milligan et al.
2009). For example, recruitment for the ragworm, Hediste diversicolor occurs at different
times of the year, depending on the population (Scaps 2002). In the Humber, populations
near sites R1-R4 spawn around June (coinciding with highest levels of ibuprofen),
whereas for populations near A3-A5, this occurs around February, when downstream
concentrations of pharmaceuticals are highest. Diclofenac has been found to decrease
sperm motility in the lugworm (Arenicola marina) at environmentally relevant
concentrations (100 ng I'), and high concentrations coinciding with spawning events

could have implications on population numbers (Mohd Zanuri et al. 2017). Many other
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pharmaceuticals (such as antidepressants) have been observed to negatively impact
reproduction in fish (Overturf et al. 2015) and invertebrates (Fong and Ford 2014) in
laboratory exposures. The timing of reproductive events are often coordinated with
events of other species. For instance, the recruitment periods of H. diversicolor, coincide
with the highest feeding periods of one of their predators, sole (Solea solea) juveniles
(Cabral 2000). This could result in increased pressure on the prey item (in this case, H.
diversicolor), leading to population reductions, which would in turn impact the predator

(in this case, S. solea).

In chapter 5, H. diversicolor were exposed to two different concentrations of metformin
and diclofenac (100ng I, 1ug I) for 7 days. Only the highest level of metformin was
seen to alter ATPS after 7 days, and no effect was seen for AMPK in any treatment.
However, the variation in gene expression in response to metformin exposure introduces
uncertainty as to the full extent of the effect on energy status. Levels of metformin have
been found to be high, with concentrations in tributaries of the Humber (Rivers Ouse and
Foss) found at 2.3 pg It in surface water and 6.1 ug I in effluent, and a detection rate
of 100% (Burns et al. 2017, 2018b). Globally concentrations are up to 1 pg I'* in estuaries,
3 ug It in freshwater and 10 pg I in effluent (Briones et al. 2016, Meador et al. 2017,
Burns et al. 2018b). It is therefore plausible that concentrations could reach 1ug Itin the
Humber, which could result in an increase of ATPS in H. diversicolor. However, these
are likely to encompass peak concentrations in estuaries, and as a result are unlikely to

continually be exposed at the levels.

H. diversicolor are polychaetes, which are ubiquitous, and they are a key species in
estuarine sediment in Europe and North America (Coelho et al. 2008). Closely related
relatives, such as Hediste japonica and Hediste limnicola, are abundant in other regions,
and it is possible that pathways in these species could be similar due to conserved
targets, however differences in toxicity could also occur (Fong and Garthwaite 1994,
Fabbri 2015). Additionally, H. diversicolor have been suggested as good indicators of
estuarine pollution due to their susceptibility to effects of pollutants in estuaries (Scaps
2002, Kalaman et al. 2009, Maranho et al. 2014). Due to the dynamic process in
estuaries, these species often live at the edge of their tolerance zone for pH, salinity and
dissolved oxygen, so further stress caused by contaminants has a greater impact on
their physiology. Further to metformin, ibuprofen has been showed to have an effect on
energy metabolism in H. diversicolor exposed to sediment spiked with 5 ng g* (Maranho
et al. 2015). Organisms have limited energy for processes such as movement,

reproduction and growth, so prolonged stress and increased energy requirements
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caused by pharmaceuticals could prohibit them from sustaining these processes
(Goodchild et al. 2015).

Not only are H. diversicolor a commercially important species for bait, but effects to their
populations can impact other important species (Rosa et al. 2008). H. diversicolor are an
important prey for other species of commercial value such as the edible crab, Carcinus
maenas and S. solea (Cabral 2000, Baeta et al. 2006). They are also an important food
source for water birds such as, dunlin (Calidris alpina), black headed gull (larus
ridbundus), grey plover (Pluvialis squatarola) and the bar tailed godwit (Limosa
lapponica; Rosa et al. 2008). These species also feed on bivalves such as the clam,
Scrobicularia plana, which have been found to accumulate carbamazepine (Almeida et
al. 2017). The Humber Estuary is of ecological significance to many species of water
birds, supporting approximately 150,000 individuals, including those mentioned
previously, which rely on H. diversicolor as a prey item (Mander et al. 2007; Austin et al.
2008). These species have accounted for 2% (C. alpina) to 13% (red knot, Calidris
canutus) of the international population, however, many of these species have
experienced a 25-50% of decline in population numbers between 1991 and 2006, and
reduction in their food sources could add further pressure (Buck 1997; Stillman et al.
2005; Austin et al. 2008). This trend is not seen in all species, and populations of some,
such as L. lapponica have increased. The reduction in water bird species has been
attributed to other anthropogenic threats such as habitat loss and decline in water quality,
and the contamination of pharmaceuticals or other contaminants could add to this threat
(Norris et al. 2004).

There is evidence that many other emerging contaminants, such as flame retardants and
plasticisers, transfer through the food chain (Nilsen et al. 2019). Laboratory and
environmental studies on the trophic dynamics of pharmaceuticals are limited, however,
there is little evidence for biomagnification of pharmaceuticals, and the main route of
entry appears to be environmental exposure (Du et al. 2014, Bostrom et al. 2017,
Haddad et al. 2018). Nonetheless, pharmaceutical pollution can have an effect on food
chains, particularly as these pollutants have been found to be more bioavailable to the
lower trophic organisms (Vernouillet et al. 2010, Lagesson et al. 2016). Reduction of
lower trophic species will have a knock on effect on those which have an effect further

up the food chain (Lagesson et al. 2016).

The CECs calculated in Chapter 3, were exceeded by ibuprofen, diclofenac and
citalopram in all estuaries sampled in Chapter 4. CECs are a prediction that these

compounds will be taken up by fish, and not that they will necessarily cause an effect in
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that organism (Huggett et al. 2003; Fick et al. 2010). Considering the large size of the
Humber, it has a relatively small fish population (~28,000 individuals), compared to the
Severn (~172,000) and Thames (~103,000), so these predictions may be more important
for some estuaries than others (Environment Agency 2019) The CECs for ibuprofen (0.2
ng I'Y), diclofenac (2.2 ng I't), and citalopram (0.4 ng I'%), were low, yet there is currently
no evidence that these compounds illicit a biological effect at these concentrations. Of
the compounds assessed in the prioritisation scheme, 19 out of 50 had lowest LCso
values for algae, showing they were most acutely sensitive to pharmaceuticals (Appendix
3.4). This shows the importance in using multiple trophic levels in risk assessments and
prioritisation schemes. Whilst trimethoprim had a high CEC (1.6 pg I'!), bacteria and
algae are most sensitive to this drug (Vestel et al. 2016) which is further evidence that
use of CECs alone in prioritisation schemes are not adequate predictors of

environmental toxicity.

Whilst diclofenac did not have an effect on H. diversicolor energy metabolism, as
measured by ATPS and AMPK expression in Chapter 5, it has been shown to cause
oxidative stress in tilapia (Oreochromis niloticus) and mussels (Mytilus galloprovincialis),
reduce osmoregulation in shore crabs (C. maenas), and cause liver and kidney damage
in trout (Salmo trutta) at concentrations under 1 pg It (Hoeger et al. 2005, Eades and
Waring 2010, Gonzalez-Rey and Bebianno 2014, Groner et al. 2017). In 2013, diclofenac
was placed on the watch list under the EU Water Framework Directive (WFD), with
maximum allowable concentrations of 0.01 ug I'* in marine waters; these levels were
exceeded in the Humber, Thames and Cromarty (Lonappan et al. 2016). However, there
is no evidence that negative effects will occur at concentrations this low, and in 2018 its

removal from the watch list was recommended (Loos et al. 2018).

The CECs for paracetamol were 35 ug |1, however, there is evidence that aquatic
invertebrates and fish accumulate and are affected by paracetamol at levels lower than
this. Paracetamol was detected in the estuaries sampled in Chapter 4 at 13 - 916 ng I,
which are consistent with levels that have been observed to cause adverse effects in
freshwater species, such as neurotoxicity in the planarian worm (Dugesia japonica) and
oxidative stress in Daphnia magna (Parolini et al. 2010, Wu and Li 2015). Many of the
toxicity tests of paracetamol, focus on acute exposures, and due to its ubiquitous
presence in the aquatic environment, further studies are needed for chronic low level
exposures (Kim et al. 2007, Antunes et al. 2013). The pathways of paracetamol are
thought to be similar in vertebrates as humans, and chronic exposures to moderate
levels of paracetamol have cause hepatic toxicity in fish (Rhamdia quelen) exposed to
250 ng I* for 21 days (Guiloski et al. 2017).
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6.2 Future direction for the management of pharmaceuticals in the environment

If pharmaceutical concentrations in the environment continue to increase it is possible
that they could become a global problem. Globally, rivers, estuaries and seas are facing
growing pressure as the result of pollution, climate change and other anthropogenic
pressures, and as a result could become more sensitive to contaminants such as
pharmaceuticals (Chapman 2016). Therefore, the continued monitoring and
investigation on pharmaceuticals is important. The previous sections have identified the
potential ecological implications of pharmaceutical contamination, and whilst most
pharmaceutical concentrations seen in the environment are too low to illicit biological
effects seen in laboratory exposures, their impact in not yet fully understood. The WFD
watch list was reviewed in 2018, and currently contains the following pharmaceuticals:
17a-ethinylestradiol, 17@-estradiol, estrone, erythromycin, clarithromycin, azithromycin
(Loos et al. 2018). Ibuprofen may also be of interest to regulators as the result of high
levels found in this study, and the potential effects at these concentrations. There are
further compounds which have been identified in the previous chapters, which have the
potential to also pose a considerable risk. These include metformin, candesartan,
allopurinol, antibiotics (particularly amoxicillin, flucloxacillin) and antidepressants
(particularly citalopram, fluoxetine and amitriptyline). Due to the limited number of
compounds included in the prioritisation exercise, this list will not be exhaustive, and if
prescription numbers continue to rise, other compounds may become more of a priority.
Additionally, this list will need to be adapted to different geographical areas based on
consumption patterns and identification of potential sources. More research on these

and other compounds is needed to determine the severity of the risk.

The usage of some pharmaceuticals, particularly antidepressants and antibiotics, are
growing in the UK (as evidenced by Figure 6.2) as well as globally, which can have
implications on the environment (OECD, 2017). This growth is even more pronounced in
areas such as Brazil, China or India which have growing populations and highest rate of
antibiotic usage (Van Boeckel et al. 2014). ERAs for veterinary pharmaceuticals contain
a risk-benefit analysis, which is not feasible for those used in human medicine, as human
health will always be seen as overriding benefit (Pereira et al. 2017). Whilst not a
complete solution in itself, awareness of the environmental effects of pharmaceuticals
within the communities as well as to prescribers could help to lower the usage of some
pharmaceuticals (Daughton and Ruhoy 2014). There are currently campaigns to reduce
the unnecessary prescription of antibiotics to try and prevent resistance, and similar

initiatives could be used for other pharmaceuticals (Edgar et al. 2009). Regulation of
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OTC drugs could also reduce the environmental risk, but equally could have implication
on an already overstretched medical system, resulting in an increased need for
appointments and prescriptions (Daughton and Ruhoy 2014). Additionally,
pharmaceuticals are often disposed of inappropriately in household waste or down toilets
and increased awareness of alternative disposal methods could help prevent this (Bound
and Voulvoulis 2005).

WWTPs have been found to remove pharmaceuticals with variable efficiency, and since
a primary route of pharmaceuticals into estuaries is through wastewater improving this
technology would be an important step to regulating the input of pharmaceuticals (Valdés
et al. 2014, Munro et al. 2019). A significant amount of research has been put into the
removal of not only pharmaceuticals, but other emerging contaminants, and the wide
range of different types of compounds provides a challenge (Gavrilescu et al. 2015).
Whilst this wouldn’t stop the input of all compounds, it could be an important step for
effluent dominated estuaries. In some regions, there also needs to be improved
regulation and infrastructure to prevent the discharge of untreated sewage into the

environment.
6.3 Limitations and future research

6.3.1 Prioritisation of pharmaceuticals

There were limitations in the studies conducted in chapters 3-5, and it is important to
take these into consideration when interpreting the results. The schemes included in the
assessment were not exhaustive of all those used in the literature, however those which
were not included (such as QSARs and PBT assessments) have been covered in other
prioritisation studies (Roos et al. 2012; Donnachie et al. 2016). A limitation of this study,
was the number of compounds included. Whilst a smaller set of compounds made it
easier to compare results, it may not have accurately identified all compounds which
pose a risk to the environment. The limitations of the specific calculations have been
discussed in previous section (3.4 and 6.1.1), and this highlights where further research
needs to be done in order to increase accuracy. The study in Chapter 3 was conducted
using prescription data to calculate PECs for the UK as a whole, and did not look at
regional differences. Additionally, comparison with MECs were made across a large
temporal and spatial scale. Further comparison with localised parameters and carefully
designed sampling could help to provide further insight into how PECs could be
improved. Consumption patterns have an influence on these calculations and
concentrations seen in the environment, and it would be beneficial to further understand

the trends behind this. Whilst overall prescription levels are increasing, the patterns of
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some compounds are decreasing, and it may be a better use of resources to fund

research into those which pose a greater risk in the future.

Future research into improving predictions on the toxicity of pharmaceuticals to aquatic
organisms needs to be conducted. As the FPM has been found to be a useful method in
determining toxicity to fish, it would be useful to determine how to better read across this
data to invertebrates (Roos et al. 2012). There is evidence that algae may be sensitive
to some compounds such as antibiotics (Guo et al. 2015), statins (Brain et al. 2008) and
allopurinol (Clode et al. 2009). Due to the importance of algae in aquatic ecosystems, a
better method needs to be developed to predict the effects of pharmaceuticals to these
organisms. In comparison to vertebrates and invertebrates, far less in known about
impacts on marine algae, and this warrants further investigation. Future research on the
occurrence of pharmaceuticals in estuaries and their biological effects are discussed in
sections 6.3.2 and 6.3.3, and this knowledge is essential to improving prioritisation

schemes.

6.3.2 Occurrence of pharmaceuticals in estuaries

The monitoring study was limited by the time taken to collect samples, which meant that
all samples were taken from the North side of the Humber and from only one of the
tributaries. In order to have a better understanding of the source of pharmaceuticals,
monitoring studies should include as many points of input (such as tributaries, CSOs and
areas where effluent is discharged) as possible. Estuaries undergo mixing between
freshwater and marine, which will differ between estuaries and can determine the fate of
compounds (Mijangos et al. 2018). All samples from this study were taken from the
surface of the water column, close to the shore. Further studies should include samples
from other compartments including sediment, within the water column and the middle of
the estuary in order to understand the full exposure of organisms to these chemicals.
Samples were collected at high tide partly to compare these concentrations, but also
because most sites were inaccessible at low tide. It potentially could have accounted for
low concentrations at the sites furthest downstream (A3-A5), and sampling at other times
in the tidal cycle would help determine if the concentrations are observed are
representative of this site as a whole. Salinity, pH and temperature measurements were
taken with each of the samples. There was an attempt to collect information on turbidity,
however, due to the limited access to sites, this was not possible. In order to gain a better
understanding of the spatial and temporal variations, it would also be beneficial to collect
information on water flow and rainfall to determine differences in dilution between

sampling periods.
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This study was also limited by equipment difficulties and cost of external analysis, which
led to a restriction on the number of samples which could be analysed. As a result sample
replication was low, and peak concentrations in the estuaries sampled may not have
been captured. Under optimum circumstances, replicates would be taken from each site
during each sampling period in order to increase confidence in the concentrations of
pharmaceuticals observed. Additionally, recoveries from spiked water samples were low
and variable between samples, which could have accounted for some of the variability
observed. Adjusting for recovery enables a more accurate overview on the levels of
pharmaceuticals, however increasing recovery reduces uncertainty seen in any
unexpected results. The low recovery of some compounds, particularly diclofenac, may
have accounted for its low detection frequency. Differences in the recovery of
compounds from solid phase extraction (SPE) occurred between Chapters 2 and 4. This
could be explained by a change in the reconstitution of samples in methanol: water
(10:90) instead of 100% methanol. The addition of TFA to the samples in Chapter 2
improved recovery, however further acidification of acidic compounds such as diclofenac

and ibuprofen may have affected their solubility.

6.3.3 Biological effects of pharmaceuticals

Adverse reactions have been seen in many organisms, but the pathways for many
pharmaceuticals are poorly understood (Fabbri 2015). This is partially due to the
endpoints chosen such as mortality, growth and oxidative stress, which are important in
determining the effects of these compounds, but a deeper understanding on specific
pathways is needed. Endpoints should be chosen based on the information on MoA in
humans and applied to knowledge on the biology of the non-target species. Exposure
experiments need to be more environmentally relevant in terms of treatment
concentrations, and using multiple compounds. Even though some compounds may not
illicit an adverse reaction in single ecotoxicity tests, they are present in the environment
with other pollutants and anthropogenic pressures, which could make them more toxic
(Di Poi et al. 2018). In other cases, pharmaceuticals have been observed to have a
positive effect, metformin was found to have a protective effect on Daphnia against
hypoxia (Sheng et al. 2012). The use of pharmaceutical mixtures in effects based
studies has been increasing, but still little is known about these effects (Backhaus and
Faust 2012). However, there is evidence that pharmaceutical mixtures are toxic at levels
where single substances are not, and as a result this is an important gap in the literature.
(Cleuvers 2004). Most exposure experiments only include a single test species, when in
reality, there are complex interactions between species and effects on one species, could

have indirect implications on others. Few studies have determined the effect of



181

pharmaceuticals in mesocosms, which could provide further information on the potential

effects of pharmaceuticals to an ecosystem (von der Ohe et al. 2011).

In the environment, pharmaceuticals undergo a number of processes, which result in the
formation of metabolites (Celiz et al. 2009). Often, these metabolites are inert, but some
are pharmacologically active and have the potential to be more toxic than the parent
compound, but relatively little is known about their occurrence, fate or effects (Garcia-
Cambero et al. 2015). Many metabolites are found in the environment at concentrations
in the same order of magnitude or higher than that of the parent compound, but their
overall environmental relevance is not known (Lopez-Serna et al. 2012). For example,

10,11-Epoxi carbamazepine a biologically active metabolite was found at concentrations
15 times higher than its parent compound carbamazepine in a river in Spain (Lépez-

Serna et al. 2012). Many metabolites have the same MoA as their parent compound, so

if both are present in a mixture, the effect may be amplified (Besse et al. 2008)

In order to be more environmentally relevant, exposures need to use a range of
concentrations which include those found in the environment. It is also beneficial to have
long-term as well as short-term studies, as exposure to pharmaceuticals is likely to be to
low levels over a sustained period of time (Godoy et al. 2015). A time-dependent
increase in effects has been seen in some exposures, for instance, Japanese medaka
(Oryzias latipes) exposed to 1 ug I'* diclofenac showed increased vitellogenin expression
after 4 days of exposure, but not beforehand (Hong et al. 2007). A longer exposure to
metformin in Chapter 5 could help to determine if ATPS increase was the result of
permanent stress and could lead to the activation of AMPK or if they will be able to adapt
to the stress over time. H. diversicolor are sediment dwelling organisms, and as a result,
it is likely they could also uptake pharmaceuticals from sediment, where concentrations
of pharmaceuticals are likely to be found at lower concentrations than surface water.
Environmental relevance could have been improved through the use of sediment found

in the estuarine environment and appropriate dosing.

There was variation seen in the relative gene expression within each of the treatments,
which introduced uncertainty as to whether it was only metformin that was causing
increased expression of ATPS, or another variable that wasn’t accounted for. Salinity,
dissolved oxygen, temperature and pH were controlled for, however, the size of
organisms varied between treatments. Confirmation of pharmaceutical concentrations in
the exposure water or H. diversicolor could help to reduce this uncertainty. This
information is often missing from ecotoxicology studies and could help to quantify

bioaccumulation of compounds, which can help to put the effects seen into context and
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help to extrapolate the effects to other species (Harris et al. 2014). Additionally, there are
still gaps over the routes of uptake, bioaccumulation and transfer of pharmaceuticals to
other trophic levels. Reproducibility of results is often a concern in ecotoxicological
studies, and was a limit of the one carried out in Chapter 4, and the need for repeated
studies have been highlighted by previous authors, and it could help reduce uncertainty
over variable results (Sumpter et al. 2016).

6.4 Conclusion

This thesis has demonstrated that pharmaceuticals may pose a risk to estuaries. It
quantified the concentrations of five pharmaceuticals — ibuprofen, paracetamol,
diclofenac, trimethoprim and citalopram in twelve estuaries, which provides an important
baseline on levels in the UK. Their presence in all of the estuaries sampled shows that
they are not only present in large urban catchments, but also in rural estuaries, and as a
result the implications of their presence could be wide reaching. Ibuprofen was found at
levels up to 6.2 pg I, which to date is the highest level found in any estuary globally.
The results from this thesis also show that based on current knowledge on the biological
effects of pharmaceuticals that most pharmaceuticals are currently not present at
concentrations high enough to cause a detrimental effects at a population level. Despite
this, concentrations of pharmaceutical are high enough in some estuaries to be
biologically active in organisms, but the overall implications are not fully understood.
Metformin was found to increase the exposure of H. diversicolor at 1 pg I, which
demonstrates that peak concentrations seen in surface waters have the potential to illicit
this effect. Laboratory exposures are limited in length and the sustained long-term
exposure of pharmaceuticals particularly when they are present in mixtures with other

contaminants are relatively unknown.

There is some evidence that pharmaceuticals levels are increasing with time, and as a
result, concentrations need to be monitored and inputs reduced in order to prevent
serious implications in the future. Pharmaceuticals exhibit spatio-temporal variations in
their occurrence as the result of complex environmental interactions. The patterns seen
in the Humber Estuary follow some patterns exhibited in other regions; wastewater
effluent is a major source of pharmaceuticals in estuaries, and input through this route
plays a role in the fate of pharmaceuticals. As a result, improvement of removal during

wastewater treatment is an important step in reducing environmental concentrations.

Prioritisation schemes can be useful tools in determining the relative exposure of
pharmaceuticals in the aquative environment, but can not adequately protect the

environment as a whole. Exposure predictions could be improved by including localised
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information on usage, removal and environmental conditions. Additionally, many of the
predictors of toxicity used in prioritisation schemes (CEC, FPM, LCs, and Logkow) could
not individually predict toxicity of pharmaceuticals. Futher understanding on the uptake,
bioaccumulation and effects of pharmaceuticals at multiple trophic levels is needed to
better inform these models An inclusive approach of multiple schemes and comparison
with the experimental work highlighted metformin, antibiotics and antidepressants as a
priority for research. Further to these compounds, this thesis identified allopurinol, anti-
hypertensives (candesartan and losartan) and lipid lower drugs (atorvastatin and
simvastatin), which are largely absent from the literature. Further to these compounds,
Chapter 3, identified ibuprofen as a compounds of potential interest to regulators as the
result of its ranking across prioritisation schemes. The possible implications of this drug
were further emphasised by the monitoring work, which observed some of the highest

concentrations of ibuprofen observed in estuaries.
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in estuarine sediment

Al2 Summary of the occurrence of pharmaceutical
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A2 Supporting Information for Chapter 2

A2.1 Ranking of priority compounds
Table A2.1: Scores of priority compounds based on PECs, wastewater removal, logkOW and
potential for toxicity

Score Compound Class
17 Fluoxetine Antidepressant
18 Paracetamol Pain Killer
19 Bezafibrate Lipid Lowering Agent
Citalopram Antidepressant
Ibuprofen NSAID
20 Tamoxifen Hormone
22 Amoxicillin Antibiotic
Atorvastatin Lipid Lowering Agent
Diclofenac NSAID
23 Carbamazepine Anticonvulsant
Metformin Hydrochloride Antidiabetic
24 Erythromycin Antibiotic
Flucloxacillin sodium Antibiotic
Ketoprofen NSAID
Mefenamic Acid NSAID
Sodium Valproate Anticonvulsant
25 Atenolol Antihypertensive
Pregabalin Anticonvulsant
Ranitidine Mucosal Protectant
Trimethoprim Antibiotic
26 Furosemide Antihypertensive
Pravastatin Lipid Lowering Agent
Simvastatin Lipid Lowering Agent
Valsartan Antihypertensive
27 Cimetidine Mucosal Protectant
Codeine Pain Killer
Dextropropoxy-phene Pain Killer
Gabapentin Anticonvulsant
Lansoprazole Mucosal Protectant
Levothyroxine Hormone
Mirtazapine Antidepressant
Morphine Pain Killer
Naproxen NSAID
Sulfamethoxazole Antibiotic
Tramadol Pain Killer
28 Bisoprolol Antihypertensive
Clotrimazole Antifungal
Diltiazem hydrochloride Antihypertensive

Lamotrigine Anticonvulsant
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Table A2.1: Continued

Score Compound Class
28 Mebeverine Hydrochloride Antispasmodic
Orlistat Antidiabetic
Propranolol Antihypertensive
Quetiapine Anxiolytic
Sertraline Antidepressant
Sotalol Antihypertensive
29 Abiraterone Actetate Chemotherapy Agent
Amitriptyline Antidepressant
Aripiprazole Antipsychotic
Fluticasone Proprionate Bronchodilator
Lisinopril Antihypertensive
Mesalazine Aminosalicylate
Metronidazole Antifungal
Oxytetracycline Antibiotic
Phenoxymethyl Penicillin Antibiotic

Solifenacin succinate
Sulfasalazine
30 Aflibercept
Bendroflumethiazide
Etanercept
Gilclazide
Imatinib mesilate
Metoprolol
Olanzapine
Omeprazole
Ramipril
Rituximab
31 Budesonide
Sitagliptin
Truvada
32 Cyclophosphamide
Enoxaparin Sodium
Lenalidomide
Salbutamol

Tiotropium Bromide

Trastuzumab
33 Allopurinol
34 Aspirin

Warafin Sodium
35 Amlopidine

Antispasmodic
Antirheumatic
Chemotherapy Agent
Diuretic
Chemotherapy Agent
Antidiabetic
Chemotherapy Agent
Antihypertensive
Aminosalicylate
Mucosal Protectant
Antihypertensive
Chemotherapy Agent
Bronchodilator
Lipid Lowering Agent
Antiretroviral
Chemotherapy Agent
Blood Thinner
Chemotherapy Drug
Bronchodilator
Bronchodilator
Chemotherapy Agent
Gout Treatment
NSAID

Blood Thinner
Antihypertensive
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A3 Supporting Information for Chapter 3

A3.1 Prescriptions of pharmaceuticals in 2014
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A3.2 Excretion and removal rates of pharmaceuticals

Table 3.2 Highest excretion rate (%) and lowest removal rate (%) used in PEC calculations

Compound Highest Reference Lowest Reference
Excretion Rate Removal Rate
(%) (%)
Alendronic Acid 95 Compendium 0
Allopurinol 20 Drugbank 64 Bound and
Vousvouslis
(2006)
Amitriptyline 5 Compendium 63 Wu et al. (2015)
Amlodipine 10 Compendium 54 Jelic et al. (2015)
Amoxicillin 90 Hirsch et al. 0 Santos et al.
(1999) (2013)
Atenolol 90 Compendium 20.2 Chen et al. (2011)
Atorvastatin 2 Drugbank 0
Beclomethasone 10 Drugbank 42 Radjenovic et al.
(2007)
Bisoprolol 52 Drugbank 24 Radjenovic et al.
(2007)
Budesonide 1 Drugbank 0
Candesartan 56 Compendium negative Jelic et al. (2015)
Citalopram 33 Drugbank negative Kasprzyk-Hodern
et al. (2009)
Codeine 16 Pubchem negative Jelic et al. (2015)
Diclofenac 65 Drugbank 70 Matsuo et al.
(2011)
Diltiazem 64 Compendium negative Jelic et al. (2015)
Doxazosin 4.8 Drugbank 7 Jelic et al. (2015)
Ethinylestradiol 59 Anderson et 0
al. (2002)
Felodipine 0.5 Compendium 40 Gros et al. (2010)
Flucloxacillin 76.1 Compendium 0 Gurke et al.
(20150
Fluoxetine 10 Pharmgkb negative Jelic et al. (2015)
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Compound Highest Reference Lowest Reference
Excretion Rate Removal Rate
(%) (%)
Fluticasone 1 Compendium 0
Gabapentin 100 Compendium negative Gurke et al.
(20150
Gliclazide 1 Compendium 2.3 Ivanova et al.
(2017)
Ibuprofen 50 Compendium 38 Kasprzyk-Hodern
et al. (2009)
Isosorbide 2 Drugbank 0
Lansoprazole 1 Drugbank
Levothyroxine 70 Drugbank
Lisinopril 100 Drugbank 0
Losartan 95 Drugbank negative Jelic et al. (2015)
Metformin 100 Compendium negative Jelic et al. (2015)
Mirtazapine 75 Drugbank 0 Santos et al.
(2013)
Morphine 10 Drugbank 3 Gurke et al.
(2015)
Naproxen 95 Compendium 12 Jelic et al. (2015)
Omeprazole 23 Mansour et 0
al. (2016)
Paracetamol 4 Mansour et negative Kasprzyk-Hodern
al. (2016) et al. (2009)
Perindopril 12 Drugbank 72.8 Baker and
Kasprzyk-Hordern
(2013)
Prednisolone 80 Habet and negative Jelic et al. (2015)
Rogers
(1989)
Pregabalin 90 Drugbank negative Jelic et al. (2015)
Propranolol 1 Pubchem 0 Santos et al.

(2013)
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Table 3.2: Continued

Compound Highest Reference Lowest Reference
Excretion Rate Removal Rate
(%) (%)
Ramipril 1.9 Verho et al. 0 Santos et al.
(1995) (2013)
Ranitidine 35 Compendium 0
Salbutamol 28 Drugbank 8.5 Rosal et al.
(2010)
Sertraline 0.2 Drugbank 90 Matsuo et al.
(2011)
Simvastatin 13 Drugbank 73.6 Sulaiman et al.
(2015)
Tamsulosin 10 Drugbank 0
Tiotropium 74 Drugbank 98.5 Wang et al.
(2016)
Tramadol 30 Drugbank 50 Gurke et al.
(2015)
Trimethoprim 48 Drugbank 0 Roberts and

Thomas (2006)

Venlafaxine 5 Drugbank 0 Gurke et al (2015)

Warfarin 1 Drugbank 81 Golovko et al.
(2014)
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A3.3 Predicted and measured environmental concentrations
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A3.4 Information used in the calculation of effect criteria

(600g) UsswWoyL pue uosiepues oebly 00’8k 61 VHHI 606 jozesdosue
BOBUSZENSY ustd 0zl< G0 VHHI 18'SYS apIqIosos|
(6002) usswoy | pue uosiepues eluydeq oLz 16°€ VHHIN 66°6C usjoudnq|
(£102) "le 1o ZomanleN oebly 0Gl< 9C (1102) "lejo Jexleg 0ozz apizeplo
SASIN Jaziid eluydeq 000§ LL- VHHIN 18¢€€ upuadeqes
SASW YS9 ssijAw 0 Gg'0< v'e (1102) "Ie 1o J8qIaIyYds €10 auoseonn|4
(6002) Usswoy pue uosiopues eluydeg 200 So'Y (8002) eydpioze pue yosisoy ol aupnaxon|4
"vS003 sebly 09's 85T VHHI L9l uljoexojon|4
e08USZENSY sebly G0'0 98'¢ (1661) 1B 10 WayoAlg 9.2 auidipojod
(6002) UsSWoy] pue uosiopues  ssBiAW "0 780 19°€ (1102) "Ie 10 JeqiaIyYdS S0°0 [olpexsalAuILg
SASIN Jezld aebly 0g'e 1'Z vad 8'6C uisozexoQ
dwuys
(9102) eOREWEID pUE UOIBUES pIsAN 2062 8T (8002) Neyoioze pue yosnsoy vLL wazemidg
(6002) usswWoy L pue uosispues eluydeq or'ee 1Sy (1102) "Ie 1 J8qIBIYdS €85 oeusjopIQ
¥vsS0oo3 eluydeq 00'L 6Ll (8002) Yeyoioze pue yosisoy Zrl auIBPOD
(6002) usswoy] pue uosispues eluydeq 06'€ ge (1102) "le 1o JeqiIyas zle weidofeyd
B08USZENSY euydeq 00°zE 19 VYHIN €5°/€ uepesspued
(9102) "le 1o 19)soN oebly 0s'8 6l (5002) "le Yo JoBIIa gl apluosapng
SASIN eleodsooewiieyd yshug sebly 0006 181 (1102) "Ie 10 Jeqieiyog Sh'6 [ojoudostg
HVYS003 eluydeq 08'€ el vad 600 auoseyjewolosg
(9102) '[e 18 915N aebly 0026 LS (8002) Yeyoioze pue yosnsoy ze uneIseAIoNy
(6002) usswoy pue uosispues oebly or'ee 91’0 (1102) "Ie 1o JaqIBIyYds oze [ojous)y
(6002) usswoy| pue uosiepues eiuydeq 0ze 180 va4 008€1 uljjrIxowy
SASWN J8zlid oebly 00'6. € (8002) YeyoiozeT pue yosisoy 0092 auidipojwy
(6002) usswoy pue uosispues oebly 91’0 26y (8002) Yeyoioze pue yosisoy Gl aunAduiwy
SASIN elsodaooewiieyd ysnug aebly S0 Gs0- VHHIN 1691 loutindoly
(6002) UsSWoyL pue uosispues sebly 050 e (9002) ‘e 32 UNA Ly'8e 21UOJpUB|Y
(-1 Bw) dbo (-l Bu)
ERITETETE M| saloadsg 05971 1samo 3saybiH ERITEYETE)Y| Xewd punodwo)

8|qejieAR Jou - YN "€ Jeydeyd ul spunodwod Apnis 8y} Jo Yoes 1o} senjeA 9GO 1semo| pue 4607 1seybiH

‘Xew? p°gVy alqel



222

(6002) Usswoy] pue uosiapues eluydeq 00°ZL 1T (8002) deyoiozeT pue Yosnsoy 0se WwNIpos unepem
SASI 1aziid eluydeq 08t ze (8002) 3eydiozeT pue Yyosisoy gle auIXeje|uaA
(6002) Usswoy] pue uosiapues aebly 000LL 160 (8002) 3eyoiozeT pue Yosisoy 000} widougaw L
(6002) Usswoy] pue uosiapues sebly 00°¢. vz (8002) 3eyoiozeT pue Yyosisoy szl |opewel |
YN T vad 690 wnidosor L
SASI XSO eluydeq 06°L€ €T vad ol uisojnswe |
SASI elsodsodewleyd ysiug eluydeq 06'S 89V VaHN Vi unejseAwls
(6002) usswoy pue uosispues eluydeq 40 1'G (800%) 3eyoiozeT pue yosisoy oL aullesueg
[ENEEYY eluydeq 00'€¥C A (9102) "Ie 1o Buerr 108 |owejngies
SASW XSO eluydeq 00°291 120 (8002) YeyoiozeT pue Yyosnsoy 0S¥ auipiuey
Bosuszelsy sebly 00l< 6T VHHN 9l [udiwey
(6002) usswoy pue uosiapues eluydeg 0L¢ 8v'e (8002) Yeyoioze pue Yyosysoy| (o] lojoueidoid
[ENEETY eluydeq 00g< GE - VNS X7 ulieqebaid
(6002) Usswoy] pue uosiapues sebly 00'LE 9l (8002) 3eyoioze pue Yosisoy 00l auo|osiupaid
YN 9¢C VaHN og |udopuned
(6002) Usswoy] pue uosiapues eluydeq 0z'6 90 (8002) 3eyoioze pue Yosnsoy 0000} [owejsoeied
(6002) usswoy] pue uosiepues eluydeq 00'88 €T (¥002) lloxeAE L pue IABjeISON 9/2 ajozeidswo
(6002) Usswoy] pue uosiapues eluydeq 0S°cY 8lL'e VIHN G585 uexoideN
SASI Jazlid eluydeq 09'¢ 680 (8002) 3eydi0ze pue Yosisoy Syl auydiop
SASI elsodsooewleyd ysiug sspjAw "0 60°C 6¢ VIHN 9 auidezepiy
(9102) 1B 12 19158 sebly 0049 G0- (8002) 3eyoioze pue yosisoy 00g unwJosis N
(6002) Usswoy] pue uosiapues eluydeq 00'S¥C 1'9 VIHN L0z Uepeson
¥VS003 sebly 61'€£95 LO'L- (¥661) "Ie 18 doagnaN 10€ Judouisi
¥vsS003 eluydeg Sov 4 VIHN 423 auIxolAyjona
(-1 Bua) dbo (-l Bu)
ERIIETETENY| saloadg 05971 1samo] 1saybiH ERITETETENY| Xew?d punodwo)

penujuo) p'gy alqeL



223

A3.5 Effect criteria
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A3.6 Risk Quotients
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A4 Supporting Information for Chapter 4

A4.1 Humber Estuary site sampling information

Table A4.1 pH, dissolved oxygen, temperature and salinity taken from each of the sites at each sampling period.

Asterik denotes sites where measurements could not be taken

Dissolved
. i . . Temperature Salinity
Site Date Time Latitude Longitude pH Oxygen
(°C) (ppt)
(%)
10/10/2016  14:21 7.99 . 12.7 0
A1l 20/02/2017  14:51 54°43'42.02" N 0°53'14.62"W  8.21 88.4 10 0
19/06/2017 13:57 8.34 86.5 25.7 0
10/10/2016  13:10 8.04 * 12.6 0
A2 20/02/2017 14:15  53°42'25.29"N 0°43'19.12"W 8.1 90.5 8.5 0
19/06/2017 12:48 8.14 78.2 22.9 0
10/10/2016  12:33 8.07 * 13.5 8
06/12/2017  12:09 8.03 75.9 6.9 8
20/02/2017  13:37 7.9 854 9.5 1
R1 53°42'36.00" N 0°31'38.44" W
18/04/2017  11:27 7.5 72.8 10.9 15
19/06/2017 11:48 8.27 59.7 23 3
07/08/2017  12:17 8.18 92.8 17.7 6
10/10/2016  11:46 8.13 ¥ 131 10
06/12/2017  11:27 7.93 81.1 52 10
20/02/2017  12:57 7.9 91.8 8.7 4
R2 53°42'48.39" N 0°30'25.37" W
18/04/2017  10:56 8 85.3 11.5 11
19/06/2017  11:23 8.36 85.2 253
07/08/2017  11:52 8.35 82.7 17.2
10/10/2016  11:12 8.22 % 134 11
06/12/2017  10:50 7.89 79.7 4.8 12
20/02/2017  12:33 7.94 949 8.7 4
R3 53°43'00.95" N 0°27' 49.25" W
18/04/2017  10:11 7.7 82.6 11 14
19/06/2017  10:41 8.41 88.3 26.7 5
07/08/2017  11:06 8.7 104.5 18.4 10
10/10/2016  10:45 8.11 % 13.1 15
06/12/2017  10:09 7.82 76.6 53 12
20/02/2017 11:15 7.55 88.3 8.4 10
R4 53°42'58.76" N 0°26'02.72" W
18/04/2017 09:35 7.7 854 9.6 11
19/06/2017  10:17 8.33 89.5 227 10
07/08/2017  10:35 8.4 85.3 19.9 11
20/02/2017 12:38 8.93 1174 10.2 10
A3 53°43'21.73"N 0° 14' 05.70" W
19/06/2017 13:50 8.5 118.9 28 18
10/10/2016  12:20 8.02 91.1 134 24
A4 20/02/2017 12:17  53°42'33.81"N 0°13'39.54"W  8.57 98 11.67 10
19/06/2017  13:30 8.25 107.5 23.2 21
10/10/2016  11:30 8.06 92.3 12.5 27
A5 20/02/2017 11:05  53°39'00.25" N 0°08'01.94"W  8.29 85.9 10.2 10
19/06/2017 12:05 8.55 97.2 26.1 22
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A4.2 UK wide site sampling information
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A4.3 2016 prescription information
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A4.4 Solid phase extraction

Table A4.4: Recovery of compounds (%) from spiked seawater samples after solid phase extraction

Concentration (ng/l) Citalopram  Trimethoprim Paracetamol Ibuprofen Diclofenac
100 44 +2.84 68 +4.98 112 £ 16.86 94 + 39.71 28 £ 0.55
200 43+3.18 64 +12.72 98 + 37.44 84 + 2588 22 +10.37

1000 43 £ 10.02 56 +12.05 51+6.20 43 +13.69 9 +8.51
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A4.5 Levels of pharmaceuticals in Humber Estuary
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A4.6 Levels of pharmaceuticals from UK wide sampling

Table A4.6: Mean and corrected values (ng I') of pharmaceuticals detected in UK estuaries

Ibuprofen Paracetamol Diclofenac Trimethoprim Citalopram
Measured Corrected Measured Corrected Measured Corrected Measured Corrected Measured Corrected

Cromarty 153.01 209.60 <MQL <MQL 7.07 35.35 0.28 0.45 <MQL <MQL
Forth 46.50 63.70 39.09 45.45 <MQL <MQL 0.60 0.96 <MQL 0.00
Mersey 34.83 47.72 48.02 55.83 <MQL <MQL 5.82 9.24 3.99 9.27

Portsmouth 34.40 47.12 32.09 37.32 <MQL <MQL 0.52 0.82 <MQL <MQL
Severn 68.59 93.97 42.72 49.68 <MQL <MQL 0.57 0.90 1.60 3.72
Solway 4414 60.47 14.45 16.80 <MQL <MQL 0.75 1319 <MQL 0.00
Tay 104.74 143.48 39.11 45.48 <MQL <MQL 0.88 1.40 <MQL 0.00

Tees 7142 97.83 14.22 16.53 <MQL <MQL 0.71 1.12 <MQL <MQL
Thames 36.32 49.75 60.29 70.10 6.81 34.06 1.67 2.65 3.73 8.68
Tyne 48.14 65.95 <MQL 0.00 <MQL <MQL 353 5.61 3.75 8.72

Ythan 69.77 95.57 12.39 14.41 <MQL <MQL 0.83 1.31 1.65 3.83
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A5 Supporting Information for Chapter 5

A5.1 Primer design
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(c) cAMP-activation protein kinase
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Figure A5.1: Alignment of multiple sequences for designing degenerate primers (green shaded
boxes). Dashes represent gaps in the alignment and asterisks represent homology. Alignments
were cropped and are not shown in full. (a) Elongation factor 1 (EF1) alignments with Aurelia
aurita (GenBank Accession KC341734.1), Bombyx mori (NM_001044045.1), Mus musculus
(BC050124.1), Helix pomatia (KX384883.1) and Oncorhynchus mykiss (NM_01124339.1). (b)
ATP synthase (ATPS) alignments with Nephasoma pellucidum (GU592847.1), Nereis vexillosa
(DQO087492.1), Ophelia limacina (GU592851.1) and Erobdella octoculata (GU592848.1). (c)
cAMP-activation protein kinase (AMPK) alignments with Hydroides elegans (AB232160.1) and

Perinereis aibuhitensis.
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A5.2 PCR Gel Electrophoresis

18S

Figure A5.2: Image of a 1% agarose gel electrophoresis of PCR products. Top Row - Lane 1,
EF1 housekeeping gene; Lane 2, 18S housekeeping gene; Lane 3, ATPS; Lane 4, AMPK; Lane
5, 100 bp ladder. Bottom Row - Lane 1, EF1 negative; Lane 2, 18S negative; Lane 3, ATPS
negative; Lane 4, AMPK negative; Lane 5, 100 bp
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