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Deposition of carbonaceous materials on internal surfaces of spark ignition 

engines is a long-standing problem that can seriously impact engine 

performance. For gasoline fuel, deposit control additives (‘detergents’) 

comprising nitrogen-based detergents are commonly used to inhibit 

deposition and minimise its effects. However, the molecular basis of their 

detergency is still poorly understood. The most commonly quoted mechanistic 

hypothesis assumes that gasoline detergents inhibit deposit formation via 

surface passivation. i.e. by forming an adsorbed 2D thin film phase that 

protects the metal surface. The present work constitutes a first step towards 

establishing a systematic protocol for analysing the molecular mechanisms 

leading to the macroscopically observable detergency effect. This was done 

by synthesising a model fuel system that contained carbonaceous material 

(‘gum’) that can deposit on steel surfaces. First, a method for the synthesis of 

gum by a radical oxidation of mono- and diolefin components with air was 

developed. This established a reproducible method for oxidising gasoline 

surrogate to create gum. FTIR spectroscopy along with other analytical 

characterisation techniques were employed to validate the formulation and 

oxidation methods, the resulting oxidation product, and their deposits on steel 

surfaces. Then, the influence of a model detergent, 1-octadecylamine (ODA), 

on the oxidised fuel was studied. In solution, it interacts strongly with polar 

groups of the gum, likely solubilising it and thereby shifting any interfacial 

adsorption equilibrium towards the solution state. Gum deposition and 

detergency were then examined by using 316 stainless steel substrates. The 

ODA concentration was found to not only influence the adsorption equilibrium, 

but also the morphology of deposits on the surfaces, minimising the surface 

area covered by them. A systematic experimental design was developed to 

investigate the solid-liquid interactions at the stainless steel/solution interface 

in more detail. X-ray photoelectron spectroscopy was extensively used as the 

main surface sensitive technique to gain insight into the molecular basis of 

adsorption and detergency in this system. The results revealed that the 

detergency process was related mainly to solubilisation of gum in the solution 

phase, rather than surface passivation by formation of an adsorbed ODA 

layer. Adsorbed ODA was only evident when unrealistically high ODA 

concentrations were used.  
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Fossil fuel has been used by mankind as a resource for lighting and energy for 

millennia. Advancements in science and technology in the 19th and 20th centuries 

have opened up numerous other applications of fossil fuels, making them one of 

the main pillars of the world economy. Petroleum derived fuels are complex 

mixtures of hydrocarbon compounds that are capable of generating power and 

energy. Gasoline fuel in particular is dominant in the automotive industry. 

However, markets around the world differ in their gasoline product specification 

in a number of aspects including, but not limited to, hydrocarbon composition, 

sulphur content, and octane number. Specifications and fuel composition 

contribute significantly to fuel quality and hence engine performance. (1) During 

gasoline fuel refining processes, functionalised chemical additives are blended 

with the fuel, fulfilling functions such as tackling combustion complications, 

enhancing gasoline performance and stability, and controlling sulphur levels. (2-

4) Gasoline combustion is a complex process in spark ignition (SI) engines. 

By-products formed in the combustion cycle have received extensive attention 

from engines manufacturers and researchers. Their impact on ignition, fuel 

economy, and hydrocarbon emissions is well established. For instance, materials 

deposition on engine internal parts (e.g. combustion chamber (CC), intake valves 

(IV), and port fuel injectors (PFI)) has the potential to severely impact on the 

combustion cycle and lead to practical complications (Figure 1). (5-8) This is 

because the accumulation of deposits can drastically increase engine 

temperature causing uncontrolled ignition, knocking, and higher CO exhaust 

emissions. (9)  

 

Figure 1 Cross sectional image of a typical SI engine (10), showing engine 

conditions leading to deposits accumulation on IV surfaces (far right).  
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Deposit control additives (DCAs) are therefore widely applied to treat 

post-combustion materials and control their deposition, which promotes fuel 

economy. (11) Within the chemical additives industry, DCAs hold a market share 

of approximately 40% – 50%. In most modern applications, engine internal parts 

are treated in two consecutive stages. Stage one, clean up, involves removing 

accumulated deposits with a high concentrated DCAs dosage. Stage two, keep 

clean, ensures continuous treatment to engine internal parts with lower 

concentration dosages. (12)  

 

 

DCAs utilised with gasoline fuel contain three main ingredients, namely detergent 

as active ingredient (AI), solvents, and a carrier fluid, with a typical formulation 

containing 30%, 30%, and 40% v/v of these components. The functional groups 

within the AI possess the utmost influence over the deposited materials. Several 

studies have discussed the positive effects of amine functional groups (-NH2) in 

gasoline detergents. Furthermore, nitrogen-based detergents have been tested 

in several commercial products and showed promising results. However, the 

relationship between nitrogen concentration in the additive and the function of 

detergency remains an area of considerable research. (13-16) The interactions 

of gasoline detergents with engine metal surfaces and gum deposits in fuel 

require further extensive studies at microscopic and molecular levels. (17) Hence, 

the research question underlined by this study is: How do nitrogen-based DCAs 

inhibit (or minimise) gum adsorption from gasoline fuels? A deep 

understanding of the attachment mechanism as well as of the detergent and 

deposit chemical structures is vital to achieve successful and reliable results in 

this field. The association mechanism of amines in complex hydrocarbon systems 

was studied and characterised by various analytical techniques to better 

understand the influence of such compounds on engine deposits. (18, 19) 

Infrared spectroscopy has been particularly utilised in the characterisation of fuel 

and fuel additives. (15, 20) Various hypotheses have been developed over the 

years to explain the action mechanism of amine-based detergents. Current 

understanding (and the most extensively used hypothesis) focuses on 

passivation or ‘stick and eliminate’ scenario (Figure 2), in which active ingredients 

within the additive (i.e. the amine functional polymer) forms a thin adsorbed layer 

on the metal surface to prevent deposit accumulation. (5) However, competing 

with their adsorption is the surfactant nature of the AI in DCAs, which stabilises 

them colloidally in solution.  
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Figure 2 Schematic representations of the hypotheses developed to explain 

DCAs behaviour in eliminating deposit and gum formation in gasoline fuels. 

 

The AI molecules (i.e. R-NH2) can form micelles and solubilise gum and deposit 

particles in the gasoline (Figure 2), prohibiting precipitation on the metal surfaces. 

(21) This mechanism will be referred to as ‘capture and wash’ in this thesis. The 

well-known ‘hump-effect’ phenomenon observed for DCAs in gasoline fuels 

(Figure 3) is the observation that fuels treated with very low concentrations of 

DCA can create more deposits than entirely untreated fuels. This suggests that 

the AI additive only starts to solubilise gum when it is present in concentrations 

sufficient for colloidal action. At lower concentrations it may even promote more 

gum deposition by binding both to gum (through its non-polar groups) and the 

metal surface through its polar headgroups, acting as an ‘anchor’ for gum at the 

metal surface. (22, 23)  

To provide a brief overview of the hump-effect phenomenon, performance of 

commercial detergents was evaluated at Saudi Aramco Research and 

Development Centre (R&DC) using intake valve deposits apparatus (IVDA) 

developed by Southwest Research Institute (SwRI®). (24) Experiments were 

conducted at various DCA concentrations using the same gasoline product to 

understand the impact of concentration over IV deposits (Figure 3). Test runs 

were repeated three times for each concentration and all low, medium, and high 

results were recorded. The test, in principle, calculates IV deposits gravimetrically 

based on the ASTM D-6201 standard test method for dynamometer evaluation 

of unleaded spark-ignition engine fuel for intake valve deposit formation. (25) It 

was clearly evident that at lower concentrations, higher amount of deposits have 
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accumulated on the outer surface (tulip) of the intake valves. Once the DCA 

concentration has exceeded 200 ppm (w/v), a clear reduction in deposition was 

observed, indicating good and reliable ‘keep clean’ detergency effects. (26)  

 

Figure 3 IVDA experimental results showing a hump-effect at lower 

concentrations (< 100 ppm w/v).  

Based on the above discussions, both mechanisms depicted in Figure 2 are 

plausible scenarios. In fact, one may well envision their concurrent action. 

However, no fundamental studies have been conducted at the molecular level to 

investigate and pinpoint whether, or when, one or the other predominates, and 

what the balance between these two mechanistic pathways may be. (13-19) 

Therefore, this research focused on devising a systematic approach to 

fundamentally answer the research question stated above. Due to the complexity 

of the reactions involved in gum and deposits formation from gasoline fuels, it 

was decided that a model system needed to be developed to facilitate a 

fundamental study at the molecular level. The model system was primarily 

designed to mimic the components and interactions depicted in Figure 2. Thus, it 

was comprised of four components, namely a fuel model, synthesised deposits 

(gum), a model nitrogen-based detergent, and a metal substrate. Solid-liquid 

interactions at the substrate interfaces were then investigated using X-ray 

photoelectron spectroscopy (XPS) as a main surface sensitive technique. 

Probing the uppermost layers of the substrates at the nanometer scale was 

expected to allow a deeper molecular-level understanding of the attachment and 

detergency mechanisms of the nitrogen-based additive. The resulting study 

would thus be at the interface of applied research and fundamental surface 

science.   
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The overall aim of this research was to fundamentally investigate the effect of 

gasoline detergents on gum adsorption on metallic surfaces. The passivation 

hypothesis and the ‘stick and eliminate’ mechanism (Figure 2) are widely 

supported in the previous literature. (5, 21, 27) It therefore appears sensible to 

orient the studies towards testing and evaluating this hypothesis. A systematic 

programme of work comprising a series of mechanistic studies was set out to 

mimic and investigate gum adsorption/inhibition behaviour. The specific 

objectives were as follows: 

• To establish a method for reproducibly formulating a simple gasoline fuel 

surrogate. 

• To establish a reproducible method for synthesising model deposits (gum) 

from the formulated surrogate. 

• To characterise the physical and chemical properties of the synthesised 

gum, as well as of the formulated surrogate fuel.  

• To establish reproducible methods to prepare metallic surfaces for gum 

adsorption studies and surface sensitive analyses.  

• To establish a laboratory scale method for gum adsorption on metallic 

surfaces. 

• To introduce a nitrogen-based model detergent capable of inhibiting (or 

minimising) gum adsorption. 

• To investigate the ability of the model detergent to adsorb onto metallic 

surfaces and consequently eliminate gum adsorption. 

• To investigate the ability of the model detergent to remove adsorbed gum 

from the surface. 

• To investigate the effects of the liquid-liquid interactions between the 

synthesised gum and the detergent on the adsorption behaviour.  
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The body of this thesis is divided into five main chapters as briefly outlined in 

below.  

Chapter 2 Literature review: Provides insight into the theoretical concepts and 

background knowledge relevant to the methods, materials, principles, and 

techniques applied throughout the course of this research.  

Chapter 3 Experimental materials and methods: Describes the experimental 

methods, frameworks, and reproducibility studies designed for each phase of the 

project.  

Chapter 4 Oxidative formation of gum in model surrogate fuel: Presents and 

discusses the results obtained pertaining the formulation and characterisation of 

the surrogate fuel and the synthesised gum. 

Chapter 5 Addition of ODA into oxidised surrogate fuel: Presents and 

discusses the results obtained following the addition of the model detergent into 

the gum-containing surrogate fuels. This chapter serves as a proof of concept to 

the interactions between the model detergent, surrogate fuel, and gum.  

Chapter 6 Systematic studies of interfacial behaviour by XPS: Presents and 

discusses the results obtained pertaining the systematic studies designed to 

extensively investigate the adsorption, detergency, and interactions behaviours 

within the model system.  
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Gasoline fuel is a complex mixture of hydrocarbons in the range of C4 – C20 

(boiling points of 30 – 220°C), which is used primarily in SI engines. Chemical 

composition of a typical gasoline product would include olefinic, paraffinic, and 

aromatic compounds as well as small contents of oxygenates to enhance fuel 

performance (e.g. ethanol as octane number booster). As a result of the refining 

of gasoline fuel, it contains traces of metals, sulphur, and nitrogen which in large 

concentrations can adversely affect fuel quality and provoke harmful exhaust 

emissions such as NOx and SOx.(17, 28-32) Therefore, legislation and monitoring 

programs have been developed to minimise environmental impact and regulate 

gasoline products specifications. (1) Following the combustion reaction in SI 

engines, certain products accumulate on engine metal surfaces such as intake 

valves and port fuel injectors affecting engine performance, combustion cycle, 

and fuel economy. Such products are commonly described in the literature as 

engine deposits and they have been widely investigated. (5, 7, 17, 33-36) One of 

the most common and effective solutions to tackle engine deposits is the use of 

gasoline detergents. (1, 5, 6, 37, 38) In the following, the four components of the 

model system designed to investigate the mechanism of nitrogen-based 

detergents in inhibiting deposits formation will be reviewed, followed by a review 

of the relevant literature on surface interactions. 

 

Several surrogate fuels have been developed to study gasoline behaviour before 

and after the combustion cycle. Among formulated gasoline surrogates, toluene 

reference fuel (TRF) has been widely used in combustion and simulation studies. 

TRF is a hydrocarbon mixture based on primary reference fuel (PRF: n-heptane 

and iso-octane) with the addition of toluene to enhance the research octane 

number (RON) and the motor octane number (MON) of the blend and hence fuel’s 

sensitivity (S = RON – MON). The RON value is determined at low engine speed 

and intake temperature of 600 rpm and 52°C, respectively, whereas the MON 

value is determined at 900 rpm and 149°C to represent motorway driving modes. 

(39-41) The following table illustrates the octane numbers for each component 

(42). 
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Table 1 Knock resistance values for TRF blend components.  

Component RON MON 

Toluene (tol) 120 109 

n-Heptane (nH) 0 0 

Iso-octane (io) 100 100 

 

Alternative methods for creating gasoline surrogates have considered different 

blending components and ratios. For instance, Vanhove et al. suggested 

formulating ternary gasoline surrogates using toluene, iso-octane, and  

1-hexene. (43) Moreover, additional compounds may be added to gasoline 

surrogate blends to mimic certain properties. Numerous studies have discussed 

the addition of olefin compounds as well as other classes of chemicals and 

functional groups to formulate more complex surrogates. (44-50) When 

compared to a basic TRF surrogate, complex TRF blends would allow for more 

advanced studies and investigations to be conducted. Matching surrogate 

properties to that of gasoline product is a key parameter when formulating 

alternative fuels. The RON and MON are essential values when it comes to TRF 

blends performance. Morgan et al. have developed a mathematical model to 

calculate volume fractions needed to formulate any TRF blend with targeted RON 

and MON, and hence predict the blend’s sensitivity. (42) The work was based on 

a series of engine experiments using several TRF blends to identify knock 

resistance values (i.e. RON and MON). (51-54) Three models were developed to 

determine blends sensitivity, namely linear by volume (LbV), second order, and 

modified linear by volume (MLbV). The LbV model proposes linear addition of 

components to achieve targeted RON and MON values. However, it has been 

observed that such a model lacks the ability to adequately take interactions 

between the blend components into account, and while RON and MON values 

are reasonably well predicted, their difference (i.e. their sensitivity) might deviate 

significantly from the experimentally observed values. The following equation 

describes the proposed LbV model. 

Equation 1 

𝑅𝑂𝑁 = 𝑎𝑡𝑜𝑙 . 𝑥𝑡𝑜𝑙 +  𝑎𝑖𝑜. 𝑥𝑖𝑜 + 𝑎𝑛𝐻. 𝑥𝑛𝐻 

 

Where ‘a’ represents the RON value for the components listed in Table 1 and ‘x’ 

is the corresponding volume fraction. Figure 4 illustrates how the proposed model 

predicts RON and MON values based on toluene volume fraction in the blend. 
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Figure 4 Prediction of octane number as a function of toluene volume 

percentage in TRF blends using LbV model. Data points are experimental, lines 

are calculated LbV values (42)  

A second order model was developed to provide a more precise account to the 

influence of components on sensitivity. The model includes an interaction 

parameter to describe the interaction between toluene and PRF. (42) Due to the 

complexity of this model, a third model was proposed to address all interactions 

parameters and provide a more accurate definition for fuel system sensitivity 

prediction. The MLbV model uses a parameter ‘p’ which introduces a normalised 

PRF volume fraction into the model according to 

Equation 2 

𝑝 =  
𝑥𝑖𝑜

𝑥𝑖𝑜 +  𝑥𝑛𝐻
 

and hence,  

Equation 3 

𝑅𝑂𝑁 =  𝑎𝑝. 𝑝 +  𝑎𝑡𝑜𝑙. 𝑥𝑡𝑜𝑙 + 𝑎𝑡𝑜𝑙2. 𝑥𝑡𝑜𝑙
2 +  𝑎𝑡𝑜𝑙,𝑝. 𝑥𝑡𝑜𝑙 . 𝑝 

Where all the coefficients can be defined as per the following table (42). 

Table 2 Coefficients of the MLbV model using response surface model for RON, 

MON, and Sensitivity. 

Coefficient ap atol atol2 atol,p 

RON 100 142.79 -22.651 -111.95 

MON 100 128.00 -19.207 -119.24 

Sensitivity 0 14.79 -3.444 7.29 
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Further validation of the MLbV method led to a method that allows to predict the 

exact composition of any TRF blend to achieve a targeted RON value. A 

validation equation was developed to ensure precise matching between TRF 

blend properties and that of gasoline fuel. Figures 5-7 illustrate how TRF 

components affect a blend’s RON, MON, and sensitivity values (42). 

 

Figure 5 RON contour plot in ternary gasoline surrogate (TRF), reconstructed 

using MLbV model. (42) 

 

 

 

Figure 6 MON contour plot in ternary gasoline surrogate (TRF), reconstructed 

using MLbV model. (42) 
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Figure 7 Sensitivity contour plot in ternary gasoline surrogate (TRF), 

reconstructed using MLbV model. (42) 

 

The following equations describe the final model. 

Equation 4  

𝑝 =  
𝑅𝑂𝑁 − (𝑎𝑡𝑜𝑙 . 𝑥𝑡𝑜𝑙 +  𝑎𝑡𝑜𝑙2. 𝑥𝑡𝑜𝑙

2 )

100 +  𝑎𝑡𝑜𝑙,𝑝. 𝑥𝑡𝑜𝑙
 

𝑎𝑛𝑑 

Equation 5 

𝑆 =  𝑎𝑠,𝑡𝑜𝑙. 𝑥𝑡𝑜𝑙 +  𝑎𝑠,𝑡𝑜𝑙2. 𝑥𝑡𝑜𝑙
2 +  

𝑎𝑠,𝑡𝑜𝑙,𝑝. 𝑥𝑡𝑜𝑙 (𝑅𝑂𝑁 −  𝑎𝑅,𝑡𝑜𝑙. 𝑥𝑡𝑜𝑙 − 𝑎𝑅,𝑡𝑜𝑙2. 𝑥𝑡𝑜𝑙
2 )

100 +  𝑎𝑅,𝑡𝑜𝑙,𝑝. 𝑥𝑡𝑜𝑙
2  

Where subscripted ‘S’ and ‘R’ denote sensitivity and RON values, respectively, 

which were defined in Table 2. 

 

By implementing the MLbV model, it was possible to produce a TRF blend in 

accordance with the British and European standards of unleaded petrol (EN-228) 

(55). Similar TRF surrogate fuels were used as the gasoline models for this PhD. 

Table 3 TRF blends compositions in volume percentage with 95 RON and 85 

MON using the MLbV model. 

Blend no. Toluene n-Heptane Iso-octane 

1 60.54 18.82 20.65 

2 71.37 22.04 22.04 
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In the gasoline fuel industry, the term ‘gum’ is used to describe the insoluble, 

polymeric, and non-volatile products resulting primarily from oxidation of 

hydrocarbons in the fuel by oxygen absorbed from the atmosphere. It occurs due 

to the undesired changes in fuel stability either during storage or when exposed 

to high temperatures. Fuel (or storage) stability can be controlled by introducing 

sufficient inert gas into fuels storage tanks (e.g. nitrogen blanket) or via the use 

of oxidation inhibitors. Moreover, exposing light hydrocarbon fuels such as 

gasoline to high temperatures affects the fuel ability to resist changes in physical 

and chemical properties. (17) Table 4 defines the common terms used in 

literature to describe gum formation in fuel. 

Table 4 Vocabulary used to identify different types of gum in testing practice. 

 

 

Gum is believed to be one of the main precursors of post-combustion deposits 

on SI engines. During the combustion cycle, gum can react within the complex or 

combust to form solid carbonaceous materials, which in turn precipitate as 

deposits on engine metal surfaces. (36, 59) Several studies have discussed the 

Expressions Definition 

Soluble gum 
Non-volatile product left following fuel and toluene/acetone 

washing and evaporation. (56) 

Insoluble gum 

Product deposited to the sample flask after removing fuel, 

soluble gum, and any precipitates (calculated 

gravimetrically). (56) 

Potential gum Sum of the soluble and insoluble gum. (56) 

Existent gum 
Residue following aviation fuel evaporation, without any 

further treatment. (57) 

Residual gum 
Product collected after evaporation, distillation, filtration, or 

extraction. (58) 

Washed gum 
Heptane-insoluble, residue of gasoline fuel evaporation. 

(57) 

Unwashed gum 
Residue of motor gasoline and non-volatile additives 

evaporation. (57) 
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nature, composition, and adverse effects of gum and deposit formation on engine 

performance. (5, 17, 41, 60) Gum formation is a complex process and is affected 

by numerous factors. Temperature variations at engine surfaces and the actual 

surface chemistry play a major role in determining the nature and composition of 

the formed gum. For example, surface temperatures at the fuel injectors’ tips are 

just over 100°C, whereas in the combustion chamber they may vary from 250°C 

to over 600°C at the exhaust valves. (5, 6, 8, 61, 62) Gasoline composition is also 

a key factor in gum formation. Certain compounds are notorious for increasing 

the tendency of gum formation in fuel. In increasing order, the following chemical 

families trigger the formation reaction: paraffins, naphthenes, iso-paraffins, 

aromatics, olefins, aromatic olefins, and diolefins. The presence of such 

compounds within the complex induce the oxidation reaction to occur, forming 

oxygenated products which in turn produce the undesired resinous gum either 

via thermal condensation or polymerisation reactions caused by free radicals in 

the system. (60) Other elements such as sulphur, nitrogen, and traces of metals 

can also act as a catalyst to the oxidation reaction. (5, 60) Details of the formation 

mechanism will be discussed in section 2.2.3. The oxidation reaction is also 

governed by the surface interactions between the metal surfaces and the 

produced particles. In a study conducted by Tseregounis, more particles were 

deposited on clean steel surfaces when compared to surfaces covered by thick 

oxide films. (36) The surface interactions are very poorly understood and thus 

remain an area requiring considerable research, especially to generate molecular 

level mechanistic insight. (5, 17)  

The chemical composition of gum varies depending on fuel composition, 

formation process, and location inside the engine. IR spectroscopy and NMR 

have revealed that gum in gasoline fuel are highly aromatic compounds with a 

molecular weight in the range of 200 – 500 g.mol-1. (17, 63) Moreover, elemental 

analysis confirmed the presence of oxygen, sulphur, nitrogen, carbon, and 

hydrogen in different concentrations. In a comparable study conducted on 

cracked naphtha, Kawahara illustrated that sulphur compounds present in the 

gum are mainly in the form of thioethers. Other components include dialkyl 

peroxides, hydroperoxides, ether and ester groups, acids, carbonyl, and hydroxyl 

groups. (64) However, it is important to mention that gum composition has 

changed drastically due to the strict legislations in controlling sulphur content in 

gasoline fuel. Current regulation states that sulphur content in unleaded gasoline 

and diesel fuels should not exceed 10 ppm. (65) 
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Gum in gasoline fuel is a product of the oxidation reaction occurring within the 

system. Unsaturated species such as olefins exhibit higher rate of oxidation 

among other constituents. (66) Several experimental studies have replicated the 

process of gum formation on metal surfaces to understand the reaction and 

attachment mechanisms. (35, 36, 60) In 1988, Tseregounis developed an 

oxidation rig to study thin deposit films from oxidised gasoline on steel surfaces. 

(36) The gasoline used was specially blended for deposition studies. (61) Full 

specification can be found in Table 5. 

Table 5 Unleaded gasoline specifications for PFI testing. (61) 

 

440C chromium steel coupons were used as a metal substrate. Prior to the 

experiment, coupons were polished with 6µm diamond paste on nylon cloth, 

using lapping oil as a lubricant. The oxidation rig setup and the experimental 

parameters are illustrated in Figure 8 and Table 6, respectively. The experimental 

setup consisted of a round bottom flask with a stirring rod, air inlet, condenser, 

and a thermometer. The stirring rod was attached to a coupon holder and rotated 

using an overhead stirrer. Prior to the experiment, the blend was heated to 100°C 

to remove lighter components and coupons were heated in air to 200°C. (36) 

 

 

Property Value 

Octane number, (RON+MON) / 2 87 (min.) 

Existent gum 5 mg/100 ml (max.) 

Sulphur content 0.09 – 0.11 mass % 

Olefins 20 – 25 vol % 

Aromatics 30 – 40 vol % 

Reid Vapour Pressure (RVP) 11.5 psi (max.) 

Distillation 
10% (60°C max.) 50% (77 - 116°C) 

90% (185°C max), 100% (205 - 225°C) 
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Figure 8 Experimental setup of the gum formation rig. (36) 

 

Table 6 Experimental parameters of gum formation from oxidised gasoline fuel. 

 

Deposition of thin brown layers was observed on the metal substrates. The 

coupons were then placed in a desiccator for further analysis. Figure 9 shows the 

scanning electron microscope (SEM) image of the formed deposits. 

Condition Value 

Fuel temperature 100°C 

Air flow rate 30 ml/min 

Condenser fluid temperature 22 – 24°C (Water) 

Experiment duration 24 h 

Rotation speed 150 rpm 

Fuel quantity 200 ml 
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Figure 9 SEM image of deposits formed on a polished 440C steel surface. (36) 

The outcome of this study confirmed the possibility of inducing gasoline fuel to 

undergo controlled oxidation reaction and to deposit resulted products onto steel 

surfaces. 

Researchers have proposed different mechanisms of gum formation in 

hydrocarbon fuels. The general and current understanding is that the reaction 

undergoes several free radical chain processes, where the olefins react through 

the addition of peroxide radicals to the double bonds. (66, 67) Impurities such as 

moisture and metal ions in the fuel can catalyse the decomposition of the 

peroxides into radical species. (17) It was observed that the hydroperoxide 

formation reaction is extremely slow. However, once there is sufficient 

hydroperoxide within the system, the consequent formation of oxygenated 

products can be fairly fast; as alkyl radicals can also be an additional source to 

the hydroperoxide and peroxy decomposition. (68, 69) The overall mechanism of 

the reaction is usually described as follows: 

 

Initiation: RH → R• + H•  (1) 

Propagation: R• + O2 → ROO• (2) 

ROO• + RH → ROOH + R• (3) 

Termination: R• + R• → R – R (4) 

ROO• + R• → ROOR (5) 

ROO• + ROO• → Products (6) 



17 
 

Where ‘RH’ is unsaturated hydrocarbon (e.g. olefins), ‘R•’ is a free radical, ‘ROO•’ 

is the peroxy radical, and ‘ROOH’ is the hydroperoxide. Free radicals are formed 

from the unsaturated hydrocarbon, during the initiation reaction (step 1). During 

the propagation stage (steps 2 and 3), the free radicals react with oxygen to form 

a peroxy radical, which consequently reacts with another hydrocarbon molecule 

yielding additional free radicals into the system (chain process). The chain 

oxidation process continues until it is completed by one of the termination 

reactions (steps 4, 5, or 6). (17) A more detailed mechanism was proposed by 

Pereira et al. (70) where they showed a complete oxidation reaction for 2,4-

hexadiene, a diolefin capable of forming allylic radicals (H2C=CH-CH2R•), which 

contributes significantly to gum formation in gasoline fuels. It was emphasised 

that the reaction force is governed by the stability of the allylic radicals. In other 

words, the longer the radical exists, the higher the potential of gum formation. 

(17, 70) The suggested mechanism was described as follows. 

 

Initiation: RH + ROO• → ROOH + R• (7) 

Propagation: R• + O2 → ROO•  (8) 

+ ROO• →  + ROOH (9) 

↔  ↔  (10) 

+ 2ROO• →  + 2ROOH (11) 

 ↔  (12) 

 + O2 →  (13) 

+  →  

(14) 

Termination: ROO• + R• → ROOR (15) 

ROOR →           or                    or            

 

Although researchers have proposed several oxidation mechanisms for different 

species in gasoline fuel, the exact and overall gum formation mechanism is still 

an area of research. 
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The adverse effects of gum formation and engine deposits are well established. 

Deposits at different locations within the engine result in various complications, 

which increase the difficulty to pinpoint problems and prime causes. Moreover, 

quantitative engine deposition tests (e.g. IVDA) are notorious for poor 

repeatability and reproducibility. However, significant efforts have been made to 

qualitatively explain the deposition effects. (41) There are three main locations 

where deposition mostly occurs: port fuel injectors, intake valves, and most 

critically the combustion chamber. The following table shows the most common 

effects noted in literature. 

Table 7 Effects of deposit formation on engine performance and emissions. 

Location 
Effects on 

engine performance 

Effects on  

emissions 

Port fuel 

injectors (PFI) 

Restricts fuel flow, causing 

major power disruption. (6, 

8, 61, 71) 

Disruption of fuel spray 

leads to an increase in CO 

levels as well as 

particulates and fuel 

consumption. (72, 73) 

Intake valves  

(IV) 

Reduces air flow to engine 

causing power loss. (8, 71) 

Increase in combustion 

rates leading to an 

increase in NOX emissions. 

(8, 74) 

Combustion 

chamber 

(CC) 

Deposits form hot spots due 

to heat stored during the 

combustion cycle. (41) 

Deposits occupy volume, 

which increases 

compression ratio. (41) 

Deposits are estimated to 

increase bulk gas 

temperature by 50°C (heat 

transfer modelling), 

increasing NOX by 

approximately 44%. (75) 

 

 

Surface interactions between fuel, deposits, and engine metals affect the 

deposition mechanism and, hence, deposition rate. Numerous studies have 

demonstrated how different metal substrates can interact with deposit particles 

within oxidised fuels. (35, 36) However, the detailed mechanism of surface 

interactions at the molecular level is still largely unexplored. (17) In most gum 
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formation studies, martensitic carbon/chromium stainless steel (AISI 440C) is 

used as a metal substrate due to its heat resistance and durability. (76) Elemental 

analysis showed the following chemical composition (36). 

Table 8 Chemical composition of 440C steel coupons used in gum formation 

studies. (36) 

 

Another metal grade used for similar applications is the AISI C1010, which has a 

lower carbon content in the range of 0.08 - 0.13 mass% and a high iron content 

(max. 98.86 mass%); as this grade does not contain chromium. (77) Metal 

coupons used for fouling and deposition studies usually come with a mounting 

hole at one end, pre weighed, blast finished, and stencilled with part number to 

facilitate robust workflows and recording of data. The following picture shows an 

example of C1010 coupons. 

 

Figure 10 Back and front of AISI C1010 coupons. Dimensions: L: 14 mm, 

W: 9 mm. Mounting hole diameter: 3 mm, and thickness: 1 mm. 

 

Since the fuel surrogate described in chapter 2.1 is a simple blend formulated 

primarily for systematic simulation studies, it was reasonable to use a basic metal 

substrate for this project. A common stainless steel (SS) grade used in 

hydrocarbon processes and applications (e.g. corrosion monitoring) is SS316. 

Elemental analysis of SS316 showed similar elements to that of 440C, but with 

Element Mass % Element Mass % 

Chromium, Cr 16.0 – 18.0 Phosphorous, P 0.040 

Carbon, C 0.95 – 1.20 Sulphur, S 0.030 

Silicon, Si 1.0 Molybdenum, Mo 0.75 

Manganese, Mn 1.0 Iron, Fe 
Max.77.98 

(balance to 100) 

Nickel, Ni 0.0   
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different composition (mass%). The following table illustrates the composition of 

a typical SS316 substrate (78). Figure 11 shows an example of the SS316 

coupons used in this study.  

Table 9 Typical chemical composition of a 316 SS coupon used in corrosion 

monitoring. (78) 

 

 

Figure 11 Unpolished 316 SS coupon used throughout this project, showing 

stencilled side (left) and dimensions (right). 

 

 

Gasoline fuel additives have been utilised since the 1920’s to improve fuel quality 

and engine performance. Examples of common commercial additives include 

corrosion inhibitors, anti-oxidants, deposit control additives, and octane boosters. 

(37) Other additives may be blended with fuels for legal purposes. For example, 

dyes and fuel markers are being added to distinguish and track fuels in an attempt 

to minimise fuel smuggling. (79) This section is devoted to discussing the fuel 

Element Mass % Element Mass % 

Chromium, Cr 16.0 – 18.0 Phosphorous, P 0.045 max. 

Carbon, C 0.08 max. Sulphur, S 0.030 max. 

Silicon, Si 0.75 max. Molybdenum, Mo 2.0 – 3.0 

Manganese, Mn 2.0 max. Nitrogen, N 0.10 max. 

Nickel, Ni 10.0 – 14.0 Iron, Fe 
Max.62.00 

(balance to 100) 
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additives utilised to control and minimise deposits and gum formation in gasoline 

fuels.  

 

As stated previously, deposit formation on engine internal parts can harm engine 

performance, decrease fuel economy, and seriously affect the environment. 

Thus, control measures have to be in place. Engine deposits can be controlled 

by different methods, and the engine design can be a key factor in minimising 

material deposition. For instance, direct injection spark ignition (DISI) engines 

used to exhibit high levels of intake valves deposits. This issue was resolved by 

re-designing the exhaust gas recirculation system and oil flow down the valve 

stem. Another method of controlling engine deposits is to manipulate the fuel 

composition. For example, an increase in olefin and sulphur content generally 

leads to higher deposit formation rates. (60) However, it is often economically 

difficult to improve fuel quality by manipulating the composition. (41) As a result, 

the use of DCAs is the most practical solution to minimise deposit formation in SI 

engines, especially PFI and IV systems. (8, 71)  

DCAs are usually applied in two modes, ‘clean up’ and ‘keep clean’. The former 

is used at higher concentrations to remove existing deposits accumulated in 

engines. It is believed that in this mode the additive associates with the deposits 

and eventually dissolves the soluble parts. A considerable fraction of additive is 

spent this way reactively and removed from the engine, and consequently, a 

higher concentration of the additive is needed to compensate for the lost amount. 

(27, 41) Once the ‘clean up’ mode has been applied for a sufficient period of time, 

typically 3 – 6 months, the DCA dosage is reduced to moderate ‘keep clean’ 

levels (< 200 ppm). (12, 41)  

Several mechanisms were developed to explain the behaviour of DCAs in 

controlling deposition in SI engines. As illustrated in Figure 2, the general 

consensus is that the polar head groups are either attached towards the engine 

metal surfaces (i.e. forming a thin film) or to the gum molecules (i.e. forming a 

micelle), whereas the hydrocarbon tails are projected towards the fuel. (21, 27) 

Molecular weight (MW) of the additive is mainly dependent on the length of the 

hydrocarbon tail. It was reported that high MW additives (∼ 1000 MW) exhibit 

better detergency in gasoline; as the long hydrocarbon tail allows for easier 

dissolution. On the other hand, additives of < 500 MW showed better adsorption 

on metal surfaces. (27) 

The chemical composition of a typical DCA is consisted of a detergent as active 

ingredient, a carrier fluid, and a solvent. The active ingredients are in the form of 

a polymeric material consisting a polar head group and a hydrocarbon-soluble 
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tail. Common compounds used in DCA formulations include amino amides, 

polyether, polybutene amines (e.g. polyisobutylene amine, PIBA), and 

polybutene succinimides. Figure 12 shows the chemical structures for two of the 

most widely used active ingredients in DCA formulations. (80) 

   

Figure 12 Chemical structures of PIBA (left) and polyisobutylene succinimide 

(right). (80) 

 

Long chain alkylamines and di-amines (C8 – C22) are also widely used in the oil 

and fuel industry. Depending on their chain length, polar head, and degree of 

saturation, they can be applied as surfactants, corrosion inhibitors, gasoline and 

fuel oil additives, or even as asphalt emulsifiers. (81, 82) In gasoline fuels, primary 

amines with chain length of C18 such as octadecylamine (ODA, C18H39N) and 

9-octadecenylamine (Oleylamine, C18H37N) are used as DCAs active ingredients 

or detergent precursors. (82, 83) Due to the simple composition of the gasoline 

surrogate formulated for this PhD project, it was preferable to use a primary 

amine as a detergent model rather than a polymeric surfactant such as PIBA. 

Moreover, upon reviewing the physical and chemical properties of ODA and 

oleylamine, it was found that ODA is more stable than oleylamine at ambient 

conditions (melting points = 53°C vs 21°C, respectively). (82) Therefore, ODA 

was chosen as a model detergent throughout this study.  

 

 

Gasoline refining processes such as thermal and catalytic cracking can result in 

high volume of olefinic components in the final product. The stability of olefins, 

and especially diolefins, is considered very low, as they can easily undergo 

aerobic or radical oxidation reactions, forming undesired oxidation products 

(gum). (66) Therefore, oxidation inhibitors are blended into gasoline fuels to 

compete with the gum formation kinetics, especially by neutralising free radicals 

in the system. Conventional active ingredients used as oxidation inhibitors are 

aromatic amines (e.g. phenylenediamine) and hindered phenols. (37) Anti-

oxidants and DCAs can both be used to target gum and deposits precursors and 

consequently minimise engine deposits. (84) However, anti-oxidants do not act 
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as detergents to clean accumulated deposits on engine surfaces. Thus, anti-

oxidants are mainly used to enhance storage stability of hydrocarbon fuels. (85)  

 

Several studies have discussed the adsorption behaviour and surface 

interactions of long chain alkylamines on various metallic and non-metallic 

substrates. (86-93) ODA (Figure 13) is a saturated, hydrophobic mono-amine 

capable of forming superhydrophobic layers that can act as corrosion inhibitors 

in oil pipelines and water desalination units. (82, 94, 95) To establish a complete 

understanding of known alkylamine adsorption behaviour and surface 

interactions, this section will now be divided into two main categories, namely 

structural orientation of adsorbed alkylamines (fundamental research) and 

adsorption behaviour on metal surfaces (applied research). 

 

Figure 13 Geometry-optimised chemical structure of octadecylamine 

(ODA, C18H39N) showing a head-to-tail molecule length of approximately 

22.7 Å. Carbon, hydrogen, and nitrogen are shown in black, white, and blue 

respectively. 

   

 

The adsorption mechanism, including packing information, of long chain 

alkylamines on minerals was of a great interest to industrialists back in the period 

from 1960 into the 1980s. Particularly, mono-alkylammonium salts were widely 

used during the treatment process of silicates. (96, 97) Several techniques have 

been employed to investigate the surface interactions of alkylamines, including 

surface force, contact angle, and flotation recovery. It was found that at neutral 

and slightly acidic conditions, alkylamine molecules became ionised, whereas the 

surface became negatively charged, increasing adsorption potential. (98-100) 

However, the amine concentration plays a major role in surface adsorption. For 

instance, at low amine concentrations the surface is characterised by a low 

contact angle (i.e. low hydrophobicity) due to the poor structural packing of the 

amine ions at the surface. The area taken up by adsorbed amine on the surface 

was found to be greater than 134 Å2/molecule, whereas the theoretical area 

needed for a close-packed monolayer is approximately 25 Å2/molecule. (101-

103) At such low concentrations, amine ions adsorb far apart from each other 
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and thus cannot maintain a hydrophobic state of the surface. Moreover, even at 

higher amine concentrations, where the electrostatic interaction between the 

amine cations and the negatively charged surface steeply increases, the surface 

is still poorly hydrophobic. (102-105) The poor hydrophobicity in such instances 

is attributed to the disordered packing of the amine molecules on the surface, 

which can be caused by steric hindrance between the hydrocarbon chains (tails) 

and the repulsion between the charged amino groups (polar heads). (96, 106) 

Only when the amine concentration at the interface surpasses the critical micelle 

concentration (CMC), molecules begin to orderly pack themselves and form a 

mono-layer at the surface; in which the head groups are attached to the surface 

and the hydrocarbon tails are oriented towards the liquid phase. (107, 108)   

Structural orientation and adsorption behaviour of dodecylamine (C12) and 

hexadecylamine (C16) on silicate quartz (SiO2) were evaluated in (96) using XPS 

and FTIR spectroscopy. The quartz substrates were treated with dodecylamine-

acetate (DAAc) and hexadecylamine-acetate (HAAc) solutions for 5 min. It was 

found that at low amine concentrations, surface silanol groups (SiOH) interacted 

with the amine head groups via hydrogen bonding (R-NH3
+- - -OHSi), at 

concentrations insufficient to form a densely packed mono-layer of ordered 

material on the surface (Figure 14, region II). The point at which a dense, ordered 

mono-layer is formed on the surface was referred to as the critical hemimicelle 

concentration (CHC). At the CHC point, molecular as well as protonated amines 

were adsorbed onto the surface, with the hydrophobic hydrocarbon tails oriented 

outward and upright at an angle of 30°, which increases surface hydrophobicity. 

At concentrations greater than the CHC point, amine precipitation beyond a 

mono-layer occurs and bulk molecular amine starts to pack on the surface (Figure 

14, region III). The surface elemental composition on the quartz substrates was 

quantified using XPS analysis. Substrates treated with DAAc (C12) solution 

showed higher carbon and nitrogen content in comparison to those treated with 

HAAc (C16) solution, despite containing the same amine concentration of 0.2 mM. 

Table 10 lists the XPS data obtained for the adsorbed amines on the studied 

substrates. (96) 

Table 10 XPS binding energy (B.E) and concentration of carbon and nitrogen on 

the quartz surfaces as a function of amine solutions. (96) 

Element DAAc (at%) B.E (eV) HAAc (at%) B.E (eV) 

Carbon (C 1s) 43.08 285.0 33.1 285.0 

Nitrogen (N 1s) 1.23 400.1 
0.64 399.5 

0.54 401.4 
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The observed carbon (C 1s) emission at a binding energy around 285.0 eV in XP 

spectra (Table 10) stems from aliphatic C-C in the hydrocarbon chains. (109, 110) 

The nitrogen (N 1s) peak at 400.1 eV observed on the surface treated with DAAc 

arises from amine head groups (NH2). (86, 111) A shift in N 1s binding energy to 

about 401.4 eV indicated protonation on the surface (NH3
+). (86, 90, 93, 112, 113) 

Such chemical speciation has indicated that at equal concentration of amine 

solutions (0.2 mM), C16 molecules have adsorbed via hydrogen bonding and 

formed a hydrophobic mono-layer on the surface. The presence of molecular 

amine groups (NH2 at 400.1 eV) as well as the higher carbon content on the 

surface treated with DAAc solution was indicative of admicelles formation on the 

surface. Other studies have postulated that further molecular amine precipitation 

could lead to the formation of other admicelles (bilayers) or even full micelles on 

the surface, especially in the case of shorter chain lengths (C10 – C14). In such 

cases, polar, hydrophilic head groups could be oriented towards the solution and 

thus the surface would revert to and/or stay in a hydrophilic state. (102, 114, 115)  

 

 

Figure 14 Schematic representation of long chain alkylamines adsorption on 

silicate quartz as depicted in (96). Regions I, II, and III represent amine 

concentrations below, at, and above the CHC point respectively. 
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Similar, but more recent, work was conducted on ODA (C18) to investigate its 

packing information and adsorption behaviour on mica surfaces, using XPS and 

ATR-FTIR spectroscopy. (86) Nitrogen-free, double cleaved mica substrates 

were immersed in a 15 mM ODA/chloroform solution for 1 minute. Once removed, 

they were allowed to dry under dry N2 for 2 – 3 min and then to ripen in contact 

with air from few hours to 7 days. (86, 116) Structural packing information 

retrieved from IR spectroscopy was complemented by molecular dynamic (MD) 

simulations. Analysis revealed that self-assembled ODA mono-layers were 

orderly packed with a tilt angle () of 15 – 20° (Figure 15). Adsorption mechanism 

and findings from this study were in agreement with the observations discussed 

above for C16 molecules. In particular, XPS analysis confirmed the presence of 

protonated amine species (-NH3
+ at 401.7 eV) on the surface of all samples, 

regardless of amine concentration or ripening time. Authors, however, postulated 

adsorption via acid-base reaction with adsorbed water layer on the surface. (86)  

 

 

Figure 15 MD simulations output showing ordered arrangement of ODA 

molecules on a flat surface with intermolecular distance of 4.7 Å. (86) Polar 

head (NH2) and CHn groups are represented as red spheres and green bonds, 

respectively. 
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Fundamental studies on long chain alkylamines ( C12) have shown a positive 

affinity towards adsorption and formation of ordered structures on mineral-based 

surfaces. In industrial and chemical processing applications, formation of such 

hydrophobic layers via grafting of film-forming amines can provide robust surface 

protection in corrosive environments. (117, 118) Thus, it was of great interest to 

review the mechanistic effects of film-forming amines from a more applied 

perspective to the oil and gas industry.  

 

 

Several studies have employed surface and near-surface characterisation by 

XPS, ATR-FTIR, and SEM to investigate the adsorption behaviour of alkylamine 

self-assembled mono-layers on stainless steel and other iron-based surfaces. 

(119-121) In a study conducted on 316L stainless steel, long chain alkylamines 

(C10, C12, C16, and C18) were dissolved in various polar and non-polar solvents 

including isopropanol, toluene, ethanol, and hexane. (119) Mechanically polished 

substrates (average surface roughness ca. 0.03 μm) were then immersed in 

solutions for times ranging from 30 min – 3 h, at room temperature. All coating 

processes were conducted under a nitrogen blanket. FTIR characterisation of the 

coated surfaces showed stronger -CH2- and -CH3 (2800 – 3000 cm-1) absorption 

bands as a function of amine chain length (Figure 16), which indicates effective 

coating. XPS analyses were performed on the coated surfaces to gain a better 

understanding of the adsorption behaviour at atomistic levels. The substrate 

coated with ODA (C18) was compared to a blank substrate and found to exhibit 

different features, especially in the nitrogen (N 1s) region (Figure 17). Immersion 

in ODA-containing solution resulted in an increase in intensity of the -NH2 peak 

at 400.5 eV and a distinctive shoulder at 397 eV, which was assigned to nitrogen 

bound to the metals (i.e. Cr-N and Fe-N) at the substrate. (122) Other studies 

have attributed the observed shoulder to chemisorption of nitrogen-containing 

compounds to Cr and Fe. (111, 123, 124) The build-up in nitrogen intensity was 

accompanied by an increase in carbon (C 1s) content and an attenuation in 

substrate elements (Cr and Fe). Contact angles of deionised water were 

measured on the polished reference substrate and compared to those coated 

with C10, C12, C16, and C18 alkylamines. Indications of a hydrophobic effect of the 

coatings were observed. Advancing contact angles on the bare reference were 

45° ± 2°, whereas values measured for the coated coupons were 90° ± 2°, 

92° ± 2°, 104° ± 2°, and 109° ± 1° for C10, C12, C16, and C18 molecules (in hexane), 

respectively. (119) Although quoted measurements agree in principle with 

literature values reported elsewhere (111, 118, 125), the alkylamine 
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concentration in solution was believed to be extremely high (50 mM), which may 

have resulted in physical precipitation of bulk amines, rather than chemisorption 

on the surface. Nevertheless, the obtained FTIR and XPS data presented 

evidence that supports substrate immersion as a viable ‘surface coating’ 

technique. Other studies have also adopted this method (113, 126) and thus it 

was considered throughout this PhD.  

 

Figure 16 ATR-FTIR spectra of stainless substrates coated with alkylamine 

films of different chain lengths. Spectral lines represent C10NH2 (solid), C12NH2 

(dotted), and C16NH2 (dashed). (119) 

 

 

Figure 17 N 1s XPS spectra of a) the reference stainless steel substrate 

compared to b) the ODA coated surface, showing appearance of an Fe-N 

shoulder around 397 eV. (119) 
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Superior coating methods such as magnetron sputtering (90) or plasma 

polymerisation using monomeric organic molecules (127, 128) have been 

employed in other adsorption studies. In a study conducted to investigate the 

adsorption behaviour of hexadecylamine (C16) at the iron oxide-oil interface (90), 

the use of reactive magnetron sputtering allowed for the iron oxide layer to be 

uniformly sputtered on a silicon substrate to a thickness of 20 nm. Such level of 

precision in surface sensitive applications is extremely valuable; as it allows for 

accurate quantification and better understanding of the studied systems. In the 

hexadecylamine study, a combination of a solution-depletion isotherm and XPS 

measurements was performed to explore the solid-liquid interactions and 

adsorption behaviour as a function of concentration. (90) The adsorption isotherm 

of deuterated hexadecylamine was found to be steeply increasing with 

concentration until it reached a plateau at approximately 1 x 10-3 M. The adsorbed 

layer thickness was determined to be 16 ± 3 Å at lower amine concentrations 

(1.03 x 10-4 and 4.18 x 10-4 M) and 20 ± 3 Å in the steady state ([amine]c  1 x 10-3 

– 2.5 x 10-3 M), at maximum surface coverage (adsorbed area  3 x 10-6 mol.m-2). 

Adsorption via protonation was also evident upon investigating the surface by 

XPS. The nitrogen (N 1s) spectrum revealed the distinctive peak of protonated 

amine species (-NH3
+) at a binding energy of about 401.1 eV. Geometric 

calculation based on the surface thickness at the plateau and a chain length of 

21.5 Å revealed a tilt angle for the hydrocarbon chain of approximately 22 (90), 

which can be compared to the tilt angle range of 15 – 20 measured for ODA in 

(86).  

One limitation to adsorption on metallic surfaces is the instant formation of oxide 

layers upon exposure to atmosphere. (129) Researchers have dealt with such 

limitations in various ways. For instance, an attempt was made to 

electrochemically reduce the substrates used in (119) to minimise the oxide levels 

on the surface. Walczak et al. designed an oxygen-free system and attached it to 

the XPS instrument to prepare and analyse the samples in the least oxidised 

state. (129) Argon-ion etching under vacuum (XPS) is another effective method 

to obtain oxide-free surfaces. (130) On the other hand, other studies have 

demonstrated that the formed oxide layers are of distinctive and characteristic 

features of the real-world systems, which in turn allowed for accurate 

determination and quantification of features arising from other adsorbed layers. 

(131, 132) Although minimising post-immersion oxidation was demonstrated to 

be feasible in XPS applications (129, 130), it was impractical to adopt such 

methods throughout this PhD.  
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Tables 11-12 list all chemicals and materials used throughout the research 

reported in this dissertation.  

Table 11 Description of the chemicals used for TRF formulation and oxidation. 

Chemical Supplier Description (Purity%) 

Toluene Sigma Aldrich Certified AR for analysis (99.8%) 

n-heptane Fisher Scientific B.P. 98°C (99%) 

Iso-octane Fisher Scientific B.P. 98-99°C (99%) 

1-pentene Fisher Scientific Acroseal (97%) 

1-octene Sigma Aldrich 100 ml. (98%) 

2,4-hexadiene Fluorochem 25 ml mixture of isomers (95%) 

Tertiary butyl 

hydroperoxide (tBHP) 
VWR Int. 70% solution in water 

Octadecylamine Sigma Aldrich 25 g (99% GC) 

Thermal fluid (H335) Julabo Range = +40°C to +335°C 

 

Table 12 Description of the materials used in preparing and polishing the SS 

substrates used in the gum adsorption experiments. 

Material Supplier Description (Dimensions) 

Stainless steel (SS) 

coupons 

Rose Corrosion 

Services 

Limited (RCSL) 

Strip weight loss coupons in 316 

SS (L=2" x W=0.5" x H=0.0625"). 

Pre weighed, pre numbered, blast 

finished. Each packed in a VCI 

envelope with 1x (Ø=0.1875" 

clearance) mounting hole at one 

end, centred at 0.25" from end. 

Silicon carbide 

grinding papers 

MetPrep Adhesive backed discs (Ø=8").  

Grit size P120, P320, P600, and 

P1200. 
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Material Supplier Description (Dimensions) 

Polishing cloths Buehler Magnetic backed discs (Ø=8"). 

MicroFloc. 

Aquapol-P diamond 

suspension 

Kemet Water-based polycrystalline  

(3 µ). 

Polishing and finishing 

cloths 

Arco Automax rolled sheets (L=36 cm, 

W=26 cm, weight=60 gsm). 

  

 

 

The TRF oxidation rig (Figure 18) consisted of a 3-neck round bottom flask, a 

thermometer, an adjustable Drechsel bottle head, a double surface condenser, 

an air pump (max. flow rate 120 l/hr), an oil bath, a heating and stirring plate, and 

a chiller (Thermal Exchange CS20). 

 

Figure 18 Single-batch TRF oxidation rig which connects to an air pump to 

bubble air through at a rate of 60 ml/min, via the air inlet at the top of the 

Drechsel bottle head. 



32 
 

Experimental conditions during the single-batch TRF oxidation process were as 

follows. 

Table 13 Conditions chosen for the TRF oxidation process 

Condition Value 

Oil bath temperature 
85°C (mono-olefins) 

75°C (diolefins) 

Air flow rate 60 ml/min 

Condenser fluid temperature 10°C (95:5 Water:Ethylene glycol) 

Experiment duration 48 h 

Blend quantity 100 ml 

 

The process was optimised by using a Radley Carousel 6 Plus Reaction 

Station™ (Figure 19) to perform six parallel oxidation reactions. The instrument 

was manually fitted with 1/16” PTFE Teflon tubes to allow for uniform air-bubbling 

in all flasks. It was also fitted with needle outlets to ensure pressure equilibrium 

throughout the reaction time. The station was placed in a fume hood to ensure 

no off-gases were released into the laboratory. 

 

Figure 19 Radley multi-batch reaction system. 
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Quantification measurements of the oxidation products (gum) were done using a 

modified lab-scale ASTM D381 (Standard Test Method for Gum Content in Fuels 

by Jet Evaporation). (57) Once the TRF oxidation experiment was terminated, 

50 ml of the oxidised TRF was collected in a beaker and placed in an oil bath at 

120°C for approximately 30 – 45 min (Figure 20). The beaker was weighed before 

and after the experiment to determine the gum content. All calculations were done 

as per the equations stated in the ASTM D381 standard method. 

 

Figure 20 Gum content evaluation setup showing oxidised TRF at different 

stages during the evaporation process. Gum appeared at the bottom of the 

beaker as a brown resinous material. 

 

 

 

Gum adsorption experiments conducted for the short studies described in 

sections 5.4.3 and 5.4.4, later in this thesis, were performed by immersing five 

stainless steel substrates in oxidised TRF blends containing various ODA 

concentrations (zero, 50, 500, 1000, and 2000 ppm w/v). Immersion was 

performed in a fume hood at room temperature for 10 s. Once a coupon was 

taken out, it was left to dry in the fume hood prior to analysis. No further 

treatments were performed.  
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Adsorption experiments conducted and described in sections 6.3.1, 6.3.2, and 

6.3.3 were performed by immersing 1 x 1 cm2 stainless steel substrates in TRF 

blends for 24 h, at room temperature. Composition and components 

concentrations varied depending on the objectives of the experiment. Full details 

are described in the relevant sections. Once taken out, substrates were soaked 

a few times in neat TRF to remove any heavy polar hydrocarbon residue on the 

surface. Finally, substrates were rinsed with heptane to remove any nonpolar 

residues. Such treatment allowed for better analysis to the chemisorbed species.  

 

 

 

Reference materials and TRF blends, both neat and oxidised, were analysed 

using a Thermo Scientific Nicolet iS10 FTIR Spectrometer equipped with a 

Diamond/Zinc Selenide (ZnSe) ATR sampling accessory. Briefly, the IR source 

provides a light beam, focused via several mirrors, which illuminates the sample. 

The amount of absorbed light is determined as shown in Figure 21. Knowledge 

of absorbed and incident beam intensity determines the absorbance (A) or 

percentage transmittance (%T) as a function of the light wavelength (400 – 4000 

cm-1). Characteristic peaks correspond to specific molecular vibration 

frequencies. FTIR spectroscopy was a primary technique throughout this PhD; 

as it is capable of fast turnaround and providing quick analysis of the influence of 

experimental variations on samples. 
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Figure 21 Schematic diagram of the basic principle of FTIR spectroscopy. (133) 

 

The absorbance (A) is calculated using the following equation. (133) 

Equation 6 

A = log10 (
𝐼0

𝐼
) = 𝑙𝑜𝑔10(𝐼0) − 𝑙𝑜𝑔10(𝐼) 

Where ‘I0’ is the incident light intensity and ‘I’ is the transmitted light intensity.  

 

Spectra can also be plotted as percentage transmittance (%T). 

Equation 7 

%T = 100 x (
I

I0
) 

 

In ATR-FTIR applications, the IR beam travels through a crystal of high refractive 

index (nc) into the sample which has a lower refractive index (ns) (Figure 22). The 

difference in refractive indices results in light internal reflectance depending on 

the incidence angle (i). If the incidence angle is small, the light will partially reflect 

internally creating an angle of reflectance (r) as well as a refracted beam, which 

travels through the sample. The angle the refracted beam travels against the 

surface normal is called the angle of refraction (R). The relationship between i 

and R is proportional. (134) However, at certain i angles, R becomes 90° which 

results in no refracted beam to travel through the sample. Hence, the term total 

internal reflectance was introduced. The minimum i which allows for internal 
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reflectance is called critical angle (c). In other words, internal reflectance occurs 

whenever i  c. The critical angle (c) correlates to the refractive indices of the 

crystal (nc) and sample analysed (ns) in accordance to the following equation. 

(133) 

Equation 8 

c =  sin−1(
ns

nc
) 

 

 

Figure 22 Schematic diagram representing the basic principle of ATR internal 

reflectance. (133) 

 

 

 

TRF blending was verified via GC-MS analysis using a PE Clarus 500 GC and 

PE Clarus 560S MS, with a 30 m long column (PE Elite 5 ms, 250 µm I.D). GC-

MS is a technique used to separate components using a temperature-controlled 

column and detect the fragmented species using a mass spectrometer. The 

resulted chromatogram quantifies components within the sample (i.e. area under 

the curve) against the time taken for each component to travel through the 
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separation column and reach the detector (i.e. retention time). For accurate 

quantification, parameters in Table 14 were applied to the method detailed in 

Table 15 in order to calibrate the instrument and analyse the studied systems. All 

calibration standards were prepared by adding 10 µl of sample to 1 ml of 

n-pentane followed by 5 µl of n-decane as an internal standard.  

Table 14 Parameters of GC-MS method developed to characterise the TRF 

blends. 

 

Table 15 GC-MS calibration standards composition in volume percentage. 

 

Based on this method, the composition of the prepared TRF blends was 

validated, indicating a composition of 61.02, 19.30, and 18.95 vol% for toluene, 

iso-octane, and n-heptane, respectively. This shows excellent correlation 

between actual and calculated compositions. The calibration curves for the 

reference materials can be found in the appendices (Figure A 1, Figure A 2, and 

Figure A 3). 

 

Carrier Gas Flowrate Split ratio 
Injection 

temperature 
Temperature 

Helium (He) 1 ml/min 50:1 200°C 

40°C, 6min, 

100°C at 

20°C/min, 3min 

Blend no. Toluene Iso-octane n-Heptane Sample type 

1 10 45 45 Reference 

2 50 25 25 Reference 

3 90 5 5 Reference 

4 45 10 45 Reference 

5 25 50 25 Reference 

6 5 90 5 Reference 

7 45 45 10 Reference 

8 25 25 50 Reference 

9 5 5 90 Reference 

10 62 19 19 Check sample 
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1 mg of gum was dissolved in 1 ml of acetone and analysed using a HP 

6890/5973 GC-MS with the method summarised in Table 16. 

Table 16 Parameters of the GC-MS method developed to characterise the gum 

product. 

Carrier 

Gas 
Flowrate 

Split 

ratio 

Injection 

temperature 
Temperature profile 

Helium 

(He) 

2.6 

ml/min 
100:1 250°C 

40°C, 5min, 200°C at 

12.5°C/min, 17min 

 

 

UV-Vis spectroscopy is an analytical technique used to characterise materials 

based on their ability to absorb light waves. In simple terms, a light source is used 

to radiate electromagnetic waves in the visible region of the electromagnetic 

spectrum (390 – 780 nm). A monochromator is then used to separate the lights 

into different wavelengths, which transfer through the sample. Depending on the 

sample material, an aliquot of light gets absorbed and/or scattered. 

Spectrophotometer detectors then measure the intensity of the transmitted light 

(I) and compare it to the original intensity (I0). A reference material can be used 

to remove background absorption (e.g. by air) from the sample spectrum. (135) 

 

Figure 23 Schematic representation of the basic principle of a UV-Vis 

spectrometer. (136) 

 

The ratio between the light intensities before and after the analysed sample (I/I0) 

can be calculated as a percentage transmittance (T). However, UV-Vis spectra 

are conventionally plotted as absorbance (A) over wavelength. Absorbance, 

which is a dimensionless quantity, can be calculated as per the following 

equation. (135) 
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Equation 9 

A =  − log(T) 

In all UV-Vis measurements conducted in this study, approximately 2 ml of 

sample was placed in a rectangular 3.5 ml quartz cuvette (Agilent Technologies 

5061-3387), using glass Pasteur pipettes. The cuvette was rinsed with toluene 

three times between runs to ensure no cross contamination between samples. 

 

 

TGA is an analytical technique in which the mass of a sample is monitored via a 

very sensitive balance as a function of sample’s temperature or heating time. 

Temperature profile can be recorded as a function of constant heat rate 

introduced to the sample (dynamic measurement) or as a function of a specific 

temperature the sample is held at (isotherm measurement). TGA results are 

conventionally plotted as mass percentage against time or temperature. The first 

derivative of the TGA curve with respect to time (or temperature) usually 

complements the TGA data by showing the mass change rate. The resulting 

curve is denoted as differential thermogravimetric (DTG) curve. Sample mass 

changes as it interacts with the surroundings in the presence of temperature and 

processing gas. This change leads to steps in the TGA curve and events (or 

peaks) in the DTG curve. (137) Methods and details of processing gases used in 

this study are described in chapter 4.3.4.2. 

 

 

In colloidal and suspension systems, DLS is a powerful technique used to 

determine the size, size distribution, and shape of the studied particles. The 

technique uses a monochromatic laser beam to hit the particles and create 

scattered light. The change in wavelength between the scattered and unscattered 

light provides information about size, distribution, structure, and shape of the 

particles. (138) In all DLS measurements conducted in this study, approximately 

2 ml of sample was placed in a rectangular 3.5 ml quartz cuvette (Agilent 

Technologies 5061-3387), using glass Pasteur pipettes. The cuvette was rinsed 

with toluene three times between runs to ensure no cross contamination between 

samples.  
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Contact angle () and diameter (d) of deionised water droplets on polished 316 

stainless substrates were measured using a pendant drop camera (KSV Modular 

CAM200 Optical Angle) and a Surface Tension meter with a Sensirion sensor 

and a Firewire camera. A single water droplet was placed on the substrate using 

Hamilton 10 μl syringe with cemented needle of 22s gauge. Images were taken 

at a fast rate of 1 frame/second. Analysis was performed using Biolin Scientific 

software (Attension® Theta).  

 

 

 

SEM is a microscopic imaging technique capable of providing information on the 

morphology, topography, and sometimes also crystallographic properties of the 

sample. In comparison to optical microscopy (OM), magnification in SEM 

applications can be orders of magnitude higher (2x106x vs 500 – 1500x) with a 

resolution down to 0.4 nm, compared to 0.3 μm in OM. SEM utilises a focused 

electron beam to scan samples and interact with electrons. Following this 

interaction, beam electrons undergo elastic and inelastic scattering. Electrons 

exhibiting elastic scattering change their direction, but they do not lose energy, 

whereas inelastically scattered electrons do lose part of their energy. Other 

effects of the interaction between the electron beam and the sample include 

emission of secondary electrons, backscattered electrons, and X-ray emissions. 

Emission of secondary electrons is the most reoccurring effect and thus 

contribute the most to the SEM imaging signal. As the name suggests, 

backscattered electrons are being reflected as a result of the elastic collision 

between the electron beam and the atom. Intensity of the generated signal is then 

displayed as a black and white image, depending on the atomic weight of the 

detected element. The heavier the element, the brighter the region. (139) 

In EDX spectroscopy, the incident energetic electrons excite electrons in atomic 

core levels. The decay of these excited states generates characteristic 

fluorescent photons in the X-ray range. The wavelength of the emitted X-rays is 

characteristic for the chemical element and thus can be used for elemental 

microanalysis. The resolution of the output spectrum depends on the energy of 

the emitted X-rays as well as the atomic weight of the detected element. 

Generally, elements with higher atomic number generate stronger EDX signals 
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due to higher probabilities of core hole decay under emission of fluorescent 

photons. (140-142) 

The instrument used for SEM/EDX analysis in chapter 5.4.3 was a Carl Zeiss 

EVO MA15 (Tungsten gun) coupled with Oxford Instruments AZtecEnergy EDX 

system with 80 mm X-Max silicon drift detectors (SDD) for secondary and 

backscattered imaging and EDX elemental mapping. Samples were mounted on 

standard specimen stubs using double sided carbon tape and analysed at 

accelerating voltage of 5 kV. 

 

 

XPS is a surface sensitive technique based on the photoemission principle, with 

X-ray photons exciting electrons from the valence and core levels of atoms 

(Figure 24). Due to the high cross section for inelastic losses and re-absorption 

in condensed matter, only photoelectrons generated near the surface (i.e. 20 – 

50 Å) are capable of escaping without energy loss. (143) The binding energy of 

each atomic core level is characteristic for each element, permitting elemental 

analysis through quantitative analysis of the intensities of the characteristic 

photoemission lines.  For a given photon energy, the binding energy (B.E, EB) 

can be, in a first approximation, calculated  as the difference between the photon 

energy and the measured kinetic energy (K.E., EK) of the detected 

photoelectrons. The electron spectrometer is designed to provide a high 

resolution spectrum of the photoemission line intensities (plotted as absolute 

counts or counts per seconds, CPS) as a function of the kinetic energy. 

Conventionally, the photoelectron spectra are therefore plotted as intensity as a 

function of electron energy (either the measured kinetic energy or, more 

commonly, the derived binding energy), calculated via (144) 

Equation 10 

B. E = hν − KE − W 

‘W’ is the spectrometer work function, which represents the difference between 

the Fermi level and the vacuum level. It can be determined spectroscopically by 

measuring the difference between the Fermi level and the cut-off at the low kinetic 

energy scale. (145) Subtracting the work function from the photon excitation 

energy should, by definition, corresponds to a binding energy of 0 eV, with 

reference to the Fermi edge. Thus, the work function can be used in calibrating 

the B.E scale. (146) B.E is usually expressed in electron volt (eV) units. Final 

state effects, e.g. due to core hole relaxation during the emission, influence the 

measured value of the B.E as well, but this is a secondary effect.  
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Photoelectron spectra produced in terms of binding energy can give insight into 

the electronic structure of the studied element. Excited or ejected electrons which 

escape from the core level contribute to characteristic peaks at specific binding 

energy values. Once a photoelectron has been ejected, the atom undergoes a 

relaxation process via fluorescent emission of X-ray photons, or radiationless 

decay through Auger electron emission. (144) 

 

Figure 24 Schematic diagram of the XPS principle illustrating photoemission 

process of an atom by the incident X-ray beam, resulting in an ejected core-

level electron. (144) 

 

XPS allows for quantification of elemental and chemical state composition. The 

photoemission intensity is the area under the curve of the produced photoelectron 

emission peak. Once a set of peak areas has been calculated, intensity can be 

interpreted as atomic percentage (at%) of the studied elements. However, 

several factors have to be taken into consideration to ensure accurate 

quantification. Of these factors, the relative sensitivity factor (F) which is element 

dependent and includes the photoelectron cross-section, instrumental factors, 

and electron attenuation depth (), typically up to 5 nm. Once all these 

parameters have been determined, surface composition in terms of at% can be 

calculated by dividing the peak area (IA) by the sensitivity factor (FA) and 

expressing it as a fraction of the summation of all normalised intensities ( I/F). 

(144) 

Equation 11 

at% = {
(

IA

FA
)

∑ (
I
F)

} x 100% 
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It is important to mention that the above equation assumes that the area analysed 

by XPS is homogeneous and representative of the whole sample. Therefore, a 

systematic study was applied to the analysed stainless steel substrates to verify 

and confirm surface homogeneity (section 3.5.3). 

The spectral lineshapes resulting from the core level photoemission process are 

Lorentzian, with an asymmetric tail towards high binding energy, as described by 

Doniach-Sunjic theory. However, the natural lineshape is influenced by several 

factors. The K X-ray source, for example, contributes towards a Lorentzian line-

shape, while spectrometer broadening gives rise to Gaussian broadening. 

Moreover, variations in intermolecular relaxation processes can account for an 

increase in linewidth (FWHM). (109, 110) In other words, lower-energy emission 

lines typically lead to narrower FWHMs. The FWHM of the peak can also be 

artificially affected (i.e. broadened and with asymmetrical features) as a result of 

surface charging. (110)  

The notation followed in XPS applications is conventionally in the formula of ‘nlj’, 

where n is the principal quantum number (e.g. 1, 2, 3, etc.), l is the angular 

momentum number of the electron (e.g. 0 = s, 1 = p, 2 = d, and 3 = f), and j = |l + s| 

(where s is the spin angular momentum number, which can be either +1/2 or -1/2). 

Therefore, XPS spectral peaks derived from orbitals with angular momentum 

(l) > 0 (i.e. p, d, or f) typically split into two peaks (i.e. spin orbit splitting). For 

instance, an electron from orbital p would have a j value of 3/2 (l + s) or 1/2 (l – s) 

(e.g. in the case of iron, Fe 2p3/2 and Fe 2p1/2). An electron from a d orbital, on 

the other hand, would result in j values of 5/2 and 3/2. (144) 

The angle at which the sample is analysed at is also of great importance in XPS 

applications. Although conventional XPS is considered as advanced surface 

sensitive technique, analysis depth may be varied based on the angle of 

measurement. Thin surfaces of up to 3 nm can be accurately probed by tilting the 

surface to increase the surface area exposed to the X-ray beam. (144) This 

method is called surface angle measurements and allows for more sensitive 

analysis of the surface (Figure 25). The angle between the surface normal and 

the direction in which the photoelectrons leave the surface towards the analyser 

is called the electron take-off angle (). At  = 0°, the X-ray beam can penetrate 

the surface to deeper levels and partially probe the bulk material as well. This 

method is called bulk angle measurements.  
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Figure 25 Schematic representation of bulk vs surface angle measurements in 

XPS applications showing deeper  at  = 0°. 

 

Intensity of emitted electrons (I) from all depths can be then calculated as per the 

following equation. (144) 

Equation 12 

I = I0 exp (−
d

l . cos
) 

 

Where ‘I0’ is the electron intensity in the bulk, ‘d’ is the analysis depth, ‘’ is the 

attenuation depth, and ‘’ is the electron take-off angle.  

Since the objective of this PhD was to study the attachment of ODA and gum on 

stainless steel, bulk angle was used in all XPS measurements to understand, 

both, bulk and surface properties within the studied systems. 

 

UHV-XPS measurements were performed on FlexMod (SPECS™) UHV-XPS 

system using Aluminium (Al) Kα unfocused twin anode (XR 50) and 

monochromatic (FOCUS 500) X-ray sources (400 W, 14.99 kV) within a 

rectangular area of approximately 3.5 x 1 mm2 (Figure 26). Standard lens iris 

diameter of 60 mm was applied in conjunction with the hemispherical analyser 

(PHOIBOS). Samples were mounted on the instrument’s standard sample plates 

with an electron take-off angle () of 0° using high purity double sided carbon 

tape (Figure 27). Measurements were conducted at analysis chamber pressure 

of 7x10-10 mbar. Charge neutralisation was done using ions flood gun (FG 15/40) 

at 2 eV energy, 25 μA electron emission, and 2.1 A filament current. 
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Figure 26 Actual image of the UHV-XPS system used, showing key 

instrumental components. 
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Figure 27 Samples layout as seen from the analysis chamber windows. 

 

 

Figure 28 Illustration of the charge correction process in near-ambient XPS 

applications. (147) 
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Analysis was performed on EnviroESCA™ electron spectrometer (SPECS™ 

Surface Nano Analysis GmbH) using Aluminium (Al) Kα micro-focused 

monochromator (h = 1486.7 eV) over a circular area of approximately 300 µm. 

Samples were mounted on standard specimen stub using high purity double 

sided carbon tape and placed in the instrument’s designated sample plate in an 

electron take-off angle () of 0°. Measurements were conducted at analysis 

chamber pressure of 9x10-7 mbar. Sample charge is neutralised by generation of 

electron/ion pairs in the gas phase as shown in Figure 28. 

 

Figure 29 Cross-section view of the EnvrioESCA™ system showing A) 

hemispherical analyser, B) differential stage pump, C) analysis column with 

pumping stages and transfer lenses, D) X-ray generating system, E) digital 

microscopes, F) analysis chamber, and G) sample transfer environment. (148) 
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XPS measurements presented in chapter 5.4.4 were performed on a Thermo 

Fisher Scientific K-alpha+ spectrometer. Samples were analysed using a micro-

focused monochromatic Al X-ray source (72 W) over an area of approximately 

400 microns. Data was recorded at pass energies of 150 eV for survey scans and 

40 eV for high-resolution scans with 1 eV and 0.1 eV step sizes respectively. 

Charge neutralisation of the sample was achieved using a combination of both 

low energy electrons and Ar+ ions. Data analysis was performed in CasaXPS 

using a Shirley background and Scofield cross sections, with an energy 

dependence of -0.6. 

 

 

The experimental framework set up for the methods established to formulate the 

TRF surrogate fuels used in chapter 4 will be summarised in section 3.5.1. 

Sections 3.5.2 and 3.5.3 will discuss in detail the reproducible polishing and 

cleaning methods established to prepare the substrates for the adsorption 

experiments and concurrently the surface sensitive analyses conducted 

throughout this PhD. The applied methods allowed for quantitative measures to 

ensure roughness uniformity and cleanliness across all substrates.  

Any further optimisations to the methods detailed in this chapter will be discussed 

and justified in the relevant chapters. 

 

A gasoline surrogate was formulated based on the TRF fuel model described in 

chapter 2.1. Equation 4 was rearranged to a quadratic equation to generate a 

general formula that give the exact volume percentages needed to make any TRF 

blend at a certain RON value (R) and a normalised PRF volume ratio (P). 

Mathematical computing software (Maple™ 18) was used for all calculations. 

(149) The new equation can be described as follows: 

Equation 13 

0 = (𝑃 ∗ 𝑎1 ∗ ) + (𝑎3 ∗ ) + (𝑎2 ∗ ) + (100 ∗ 𝑃) − 𝑅 

 

Where a1, a2, and a3 are constants atolp, atol, and atol2 respectively, as described 

in Table 2 (chapter 2.1).  = total volume. 
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Equation 5 was used to validate the sensitivity of the generated blends. 

Acceptable blends would typically have a sensitivity (S) in the range of 8 – 10. 

(42) The following TRF blend was formulated based on the generated equations. 

 

Table 17 TRF blend compositions in volume percentage with 95 RON and 1:1 

normalised PRF ratio (P = 0.5) using the rearranged equation of MLbV model. 

 

TRF composition was first based on engine performance calculations to meet 

RON values of > 95. However, meeting such RON values required very high 

aromatic contents, which resulted in unrealistic gasoline surrogates. Composition 

was adjusted to meet the maximum aromatic and olefin content values as per the 

EN-228 specifications for unleaded gasoline.   

 

Table 18 TRF surrogate fuel composition based on engine performance 

calculations compared to EN-228 gasoline specifications.  

Component 
Initial composition (vol%) 

(Engine performance) 

Optimised composition (vol%) 

(EN-228 specification) 

Toluene 54.5 35.0 

n-heptane 15.0 22.6 

Iso-octane 25.0 22.6 

tBHP 0.5 1.8 

1-octene -- 13.0 

2,4-hexadiene 5.0 5.0 

 

Full TRF blend calculations retrieved from Maple software can be found in 

Appendix 1. Furthermore, Equation 6 can be rearranged to calculate the RON 

value of any generated TRF blend by manipulating toluene and PRF composition. 

The sensitivity equation can be also applied for validation. An example of a 

calculation can be found in Appendix 2. 

 

 

Toluene n-Heptane Iso-octane Sensitivity 

61.8 19.1 19.1 9.04 
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16 x grade 316 SS coupons were wet-polished using Buehler BETA Grinder-

Polisher (Figure 30). Consecutive courses of silicon carbide papers were used to 

polish the coupons (Grit P120, P320, P600, and P1200). 3µ water-based 

polycrystalline diamond suspension (Aquapool 3-WP) was used in combination 

with a MicroFloc polishing cloth to achieve the final mirror-finish of the surface. 

All coupons were polished manually by holding the coupons perpendicularly onto 

the desk at 3 o’clock position, with slight alternation between 1 and 5 o’clock 

positions to ensure polishing uniformity. This method was repeatedly performed 

across all coupons.  

 

 

Figure 30 Generic image of the Buehler B.ETA polisher used for coupons 

preparation. (150) 

 

 

Coupons were weighed pre- (as received) and post-polishing using a micro-gram 

scale as a mean to aid in recording all physical changes on the prepared 

substrates. Average masses of neat and polished coupons were 7.1768 g and 

6.9915 g respectively, with an average mass loss of 185.35 mg (2.58%). 12 out 

of the 16 polished coupons fell within ± 1 standard deviation (St. Dev., σ) of mass 

loss, which indicated a reproducible polishing procedure. The following table lists 

the raw values for all polished coupons. 
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Table 19 Measured and calculated mass values of all polished coupons. 

Coupon 

number 

Mass before  

(g) 

Mass after  

(g) 

Mass loss  

(mg) 

Percentage 

loss (%) 

Reference 

polished 
7.2136 6.9803 233.30 3.23 

1 7.1964 7.0770 119.40 1.66 

2 7.2056 6.9150 290.60 4.03 

3 7.2017 6.9924 209.30 2.91 

4 7.1979 7.0579 140.00 1.95 

5 7.1984 7.0324 166.00 2.31 

6 7.1960 7.0267 169.30 2.35 

7 6.9565 6.7818 174.70 2.51 

8 7.2043 7.0605 143.80 2.00 

9 7.1678 6.9977 170.10 2.37 

10 7.1938 6.8196 374.20 5.20 

11 7.1705 7.0452 125.30 1.75 

12 7.1844 6.9192 265.20 3.69 

13 7.1766 7.0606 116.00 1.62 

14 7.1716 7.0318 139.80 1.95 

15 7.1943 7.0657 128.60 1.79 

Average 7.1768 6.9915 185.35 2.58 

St. Dev. 0.0584 0.0862 70.89 0.97 
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The following figure compares the unpolished side in one of the SS coupons to 

the polished side. 

 

Figure 31 Left: Unpolished, rough surface on the back side of the coupon 

compared to (right) mirror-polished front side, reflecting surroundings as the 

photo was taken. 

 

SEM images were taken to visualise the difference in coupons’ surface 

roughness at a micrometer scale.  

 

Figure 32 SEM images of polished (a and b) compared to unpolished (c and d) 

stainless steel coupons at 100 and 20 μm scales. 
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Due to the restricted availability of the surface profilometer and the high 

repeatability of the established polishing method, it was decided to randomly 

select three samples for surface roughness analysis. Therefore, average surface 

roughness (Ra) measurements were determined for coupons number 4, 8, and 

13 using a Taylor-Hobson Talysurf I20-L Profilometer (Figure 33).  

 

 

Figure 33 Actual image of the Talysurf profilometer used for roughness 

measurements, detailing key parts of the instrument. 

 

X-Y directional surface roughness was measured at six different sites on each 

coupon, three sites on each direction (Figure 34). Analysis length was 8 mm with 

a cut-off value at 0.8 mm and a measurement angle of 0°. Average X and Y axes 

Ra value calculated for the three coupons, and reported to two significant digits, 

was 0.01 µm. Surface roughness for the unpolished (as received) reference 

coupon (denoted as Ref.U in Table 20) was also determined and found to be 

1.15 µm. This demonstrates the efficacy of the polishing procedure. The following 

schematics illustrate the sites and directions where each measurement was 

taken, followed by tabulated roughness values of the profiled coupons. 
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Figure 34 Schematic diagram of a stainless steel coupon indicating an 

approximation of the three measured sites (in red) at Y and X axes, left and 

right respectively. Blue arrow indicates the direction of profiling. 

 

The following table lists the raw surface values measured for each coupon, where 

Ra = Arithmetic average height, Rsk = Skewness, Rp = Maximum peak height,  

Rq = Root mean square roughness, Rv = Maximum valley depth, and 

Rt  =  Maximum height of the profile. (151) 

Table 20 Values of surface roughness parameters measured for each coupon. 

Coupon 

number 

(site) 

Ra 

(µm) 
Rsk 

Rp 

(µm) 

Rq 

(µm) 

Rv  

(µm) 

Rt  

(µm) 
Axis 

Ref.U (1) 1.01 0.10 3.60 1.30 3.17 9.56 Y 

Ref.U (2) 1.17 0.15 3.82 1.46 3.73 9.63 Y 

Ref.U (3) 1.21 0.30 4.27 1.53 3.50 10.24 Y 

Average 1.13 0.18 3.90 1.43 3.46 9.81  

Ref.U (4) 1.14 -0.04 3.63 1.43 3.62 9.72 X 

Ref.U (5) 1.17 0.09 4.08 1.45 3.35 9.41 X 

Ref.U (6) 1.18 -0.03 3.72 1.47 3.74 10.14 X 

Average 1.16 0.01 3.81 1.45 3.57 9.76  

13 (1) 0.02 -0.05 0.05 0.02 0.04 0.12 Y 

13 (2) 0.02 -0.84 0.05 0.03 0.07 0.22 Y 

13 (3) 0.02 -1.33 0.05 0.02 0.08 0.35 Y 

Average 0.02 -0.74 0.05 0.02 0.06 0.23  

13 (4) 0.01 -0.07 0.02 0.01 0.03 0.09 X 
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Coupon 

number 

(site) 

Ra 

(µm) 
Rsk 

Rp 

(µm) 

Rq 

(µm) 

Rv  

(µm) 

Rt  

(µm) 
Axis 

13 (5) 0.01 0.11 0.02 0.01 0.03 0.07 X 

13 (6) 0.01 0.20 0.02 0.01 0.02 0.07 X 

Average 0.01 0.08 0.02 0.01 0.03 0.08  

4 (1) 0.02 0.11 0.04 0.02 0.06 0.19 Y 

4 (2) 0.02 -0.22 0.04 0.02 0.07 0.19 Y 

4 (3) 0.01 -0.36 0.04 0.02 0.04 0.14 Y 

Average 0.02 -0.15 0.04 0.02 0.06 0.17  

4 (4) 0.01 0.04 0.02 0.01 0.03 0.08 X 

4 (5) 0.01 -1.63 0.03 0.02 0.05 0.19 X 

4 (6) 0.01 0.13 0.02 0.01 0.03 0.10 X 

Average 0.01 -0.49 0.03 0.02 0.04 0.12  

8 (1) 0.01 0.13 0.03 0.01 0.03 0.08 Y 

8 (2) 0.01 0.03 0.04 0.02 0.04 0.10 Y 

8 (3) 0.01 -0.02 0.03 0.01 0.03 0.08 Y 

Average 0.01 0.05 0.03 0.01 0.03 0.09  

8 (4) 0.01 -0.12 0.02 0.01 0.02 0.06 X 

8 (5) 0.01 0.20 0.02 0.01 0.02 0.06 X 

8 (6) 0.01 -0.05 0.02 0.01 0.02 0.06 X 

Average 0.01 0.01 0.02 0.01 0.02 0.06  

 

Figure 35 compares the average Ra values of the polished coupons to the 

reference point.  
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Figure 35 Average surface roughness (Ra) of unpolished vs. 3 polished 

coupons, showing ca. 99% reduction in roughness (Reference vs. average). 

 

Due to the relatively large size of the coupons, it was decided at a later stage of 

the project to laser-cut each coupon into three smaller substrates (Figure 36). 

Reducing coupons size allowed for better optimisation for the adsorption 

experiments as well as all the consequent surface sensitive analyses.  

 

Figure 36 Schematic drawing of a stainless steel coupon (left) showing 

locations where the laser cutting was performed. Right: 1x1 cm laser-cut 

coupon. 

 

 

It is vital in surface analysis to establish a rigorous, reproducible cleaning method 

to achieve reliable results. (152-154) Surface elemental composition is a key 

factor contributing to chemical interactions at the interface. (155, 156) In this 

study, a cleaning method utilising a solution of polar and non-polar solvents was 
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established to ensure removal of both polar and non-polar contaminants. The 

solution was consisted of toluene, acetone, and methanol (TAM) in 1:1:1 ratio. 

Five substrates at a time were immersed in a Duran bottle containing the TAM 

solution and placed in a water-filled ultrasonic bath for 15 min, at room 

temperature. Coupons were the taken out of solution, rinsed individually with 

acetone, and wiped thoroughly with a finishing cloth. This cleaning cycle was 

repeated for three times with the TAM solution being changed and the Duran 

bottle cleaned in between each run. Following the last cycle, coupons were 

allowed to dry in an oven for 3 h at 65°C to ensure removal of any residual 

acetone. The following figure shows the effectiveness of the established method 

in cleaning the stainless steel substrates. 

 

Figure 37 Uncleaned (left) compared to a TAM-cleaned (right) substrate 

showing noticeable improvements, especially around the edges. 

 

XPS was utilised to compare the cleaning efficiency of TAM solution against that 

of acetone, on two SS substrates. Data were collected as per the following 

parameters. 

Table 21 XPS scanning parameters used to probe the surfaces of the acetone 

and TAM cleaned coupons 

Scan range 
Pass energy 

(eV) 

Dwell time 

(s) 

Step size 

(eV) 

Number of 

scans 

Survey 100 0.1 1 1 

High-resolution 

(C, N, O, Fe) 
10 0.4 0.1 

4, except for  

N 1s (8) 

 

Binding energy (B.E) scale was calibrated to aliphatic C-C emission at 285.0 eV. 

(109, 110) Data analysis was performed in CasaXPS using Scofield cross 

sections, Shirley background, and Gaussian-Lorentzian line shape, GL(30), 

unless otherwise stated. Wide range survey scans resulted in the same major 
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elements (i.e. C, N, O, Cr, and Fe), except where 1.55 atomic percentage (at%) 

of fluorine (F1s) was found on the surface of the TAM cleaned coupon. It was 

believed that this was due to the use of a fluorinated solvent bottle to contain the 

TAM solution. Figure 38 compares the elemental composition of both coupons. 

 

Figure 38 Elemental composition obtained from survey scans for the acetone 

and TAM-cleaned coupons. 

 

It can be seen from Figure 38 that iron (Fe 2p3/2) and nitrogen (N 1s), which are 

integral to the substrate, (123, 156, 157) showed 6.66% and 26.42% increase 

respectively, in favour of the TAM cleaning method. However, it was imperative 

to investigate the adventitious layer elements, especially carbon (C 1s) and 

oxygen (O 1s), in more details to gain a wider understanding of chemical species 

behaviour on the surface.  

Upon deconvoluting the high-resolution C 1s spectra (Figure 39), three main 

peaks were assigned for the adventitious carbon layer, namely aliphatic C-C at 

285.0 eV, C-O at 286.2 – 286.5 eV, and C=O at 288.4 – 288.6 eV. (156) Carbonyl 

species on the surface showed an attenuation of 5.15 at% in the favour of TAM 

cleaning. On the other hand, O 1s high-resolution spectra (Figure 40) was fitted 

to a Lorentzian function line shape, LF(1,1,25,280), and deconvoluted into three 

main peaks, metal oxides at 529.9 eV, C-O at 531.3 – 531.4 eV, and C=O at 

532.7 – 532.9 eV. (146) Adventitious C-O and C=O showed an attenuation of 

3.21 and 4.97 at% respectively, in the favour of TAM cleaning. Moreover, the 

metal oxide peak increased by 8.19 at% with TAM cleaning, which indicated more 

exposure of the surface. Table 22 lists the C 1s and O 1s core level binding 

energies (B.E), full width at half maximum (FWHM), peak area, and atomic 

percentage (at%) for each component. 
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Table 22 Carbon (C 1s) and oxygen (O 1s) XPS core level binding energy, 

FWHM, and peak intensities as a function of cleaning method. 

 Acetone cleaned TAM cleaned 

Species 
B.E 

(eV) 
FWHM 

Peak 

area 
at% 

B.E 

(eV) 
FWHM 

Peak 

area 
at% 

C 1s 

C-C 285.0 1.2 144.07 61.57 285.0 1.1 180.05 66.53 

C-O 286.2 2.7 36.52 15.61 286.5 1.3 42.75 15.80 

C=O 288.4 1.5 53.40 22.82 288.7 2.0 47.81 17.67 

O 1s 

Metal 

oxides 
529.9 1.1 116.01 41.54 529.9 1.1 141.60 49.73 

C-O 531.3 1.9 126.40 45.26 531.4 1.9 119.73 42.05 

C=O 532.7 1.8 36.86 13.20 532.9 1.8 23.42 8.23 

  

 

 

Figure 39 Carbon (C 1s) high-resolution spectra of acetone vs. TAM cleaned 

coupons. 
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Figure 40 Oxygen (O 1s) high-resolution spectra of acetone vs. TAM cleaned 

coupons. 

 

Following establishing the above discussed cleaning method, it was crucial to 

statistically evaluate the consistency of producing clean substrates with 

comparable elemental composition. Section 3.5.3 discusses the reproducibility of 

post-cleaning surface composition. 
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Due to the nature of this PhD in using XPS as the main technique to probe the 

solid-liquid interactions at the interface and the large number of substrates used, 

it was time consuming and costly to scan three sites at each coupon. Thus, a 

systematic study was conducted to evaluate the compositional uniformity within 

each coupon (i.e. Intra-surface composition) and across various coupons 

(i.e. Inter-surface composition). Outcomes of this study allowed for better 

optimisation to the scanning time, by reducing number of sites to one or two, while 

maintaining high levels of confidence and reliability of the collected data.  

 

 

A single TAM-cleaned coupon was survey scanned at six different positions using 

an EnviroESCA™ electron spectrometer and as per the parameters in Table 21, 

denoted as P1 – P6 throughout this section, to quantify the elemental composition 

on the surface. Average composition was calculated for each element, with an 

error margin of ± 1 standard deviation (Figure 43). Elemental composition from 

central position (i.e. P1) was compared to the average of position 2 – position 6 

(P2 – P6). Analysis showed good correlation between P1 and average P2 – P6 

on the surface (Figure 44), which suggested that P1 was representative of the 

surface and hence was chosen as an optimum scanning site. 
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Figure 41 Survey spectra collected at six different positions on a single TAM-

cleaned coupon. Positions are denoted P1 – P6. 
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Figure 42 Intra-surface elemental composition, showing clear variation within 

the same coupon. 

Table 23 lists the elemental composition plotted in Figure 42 as a function of 

scanning position. By examining the calculated regions, it can be seen that 

nitrogen (N 1s) and calcium (Ca 2p) were not detectable in all positions, which 

indicated that those two elements were not uniformly distributed across the 

surface. Moreover, high levels of iron (e.g. P2 and P6) were associated with high 

levels of oxygen at the same positions, which suggested that metal oxides were 

the main constituent of oxygen (O 1s) on the surface. Such observation validates 

the postulation proposed in section 3.5.2.3 to consider contents of metal oxides 

on the substrate as a mean to evaluate surface exposure to the X-ray beam, in 

addition to iron content.   

Table 23 Composition of surface elements in atomic percentage calculated from 

survey scans (Figure 41). Green cells fall within an error margin of ± 1 σ (St. Dev.) 

Position C 1s N 1s O 1s F1s Ca 2p Cr 2p3/2 Fe 2p3/2 

P1 39.74 2.44 47.37 1.55 0.00 1.85 7.05 

P2 31.47 0.00 53.84 2.35 0.00 2.87 9.47 

P3 42.10 0.00 44.60 4.10 0.00 2.35 6.84 

P4 43.22 0.43 46.79 1.41 0.69 1.94 5.53 

P5 50.23 1.70 38.24 2.89 0.15 1.20 5.59 

P6 36.09 0.00 49.66 2.41 0.00 3.06 8.78 

Average 40.48 0.76 46.75 2.45 0.14 2.21 7.21 

St. Dev. 5.86 0.96 4.76 0.90 0.25 0.63 1.48 
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Figure 43 Average intra-surface elemental composition for all positions, 

showing acceptable error margin (± 1 σ). 

 

 

Figure 44 Bar chart comparing composition of major surface elements at P1 

against average of positions P2 – P6. Error margin (± 1 σ) shown on the graph 

signifies how P1 composition varies in comparison to the surrounding positions 

(P2 – P6). Schematic representation of positions is illustrated on the top right 

corner. 
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Based on the outcomes from the intra-surface composition study, it was sensible 

to implement a comparable approach to study the cleaning method’s 

reproducibility across various coupons. Thus, six blank, polished coupons were 

treated using the TAM cleaning method described in chapter 3.5.2.3. Wide range 

XPS survey scans were taken at two central sites within each coupon to quantify 

elemental compositions on the surface. Average elemental composition was 

calculated for each coupon (Figure 45) and an error margin of ± 1 σ was applied 

to better understand elemental composition variation across the coupons (Figure 

46). Full spectra and table of raw values can be found in the appendices (Figure 

A 4, Figure A 5, and Table A 1). 

 

Figure 45 Average inter-surface elemental composition calculated from survey 

scans at two sites on each coupon. 

 

Table 24 lists the average elemental compositions plotted in Figure 45, for all 

measured coupons. Similar observations found to those in section 3.5.3.1 were 

also valid and evident in this study. For instance, in coupons 2, 3, and 4 no 

nitrogen (N 1s) content was detected by XPS, which agrees with the previous 

findings to suggest that nitrogen is not uniformly distributed on the surface. 

Correlation between iron and oxygen levels were also in agreement with the 

postulations proposed in sections 3.5.2.3 and 3.5.3.1. In such instances, high 

levels of iron found on the surface of coupon 3 contributed towards the high levels 

of oxygen on the same coupon; as metal oxides were believed to be the main 

constituent of the oxygen peak in the spectra.  
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Table 24 Average elemental composition per coupon in atomic percentage 

calculated from survey measurements of two sites on each coupon. Green cells 

fall within an error margin of ± 1 σ (St. Dev.). 

Coupon C 1s N 1s O 1s F1s Ca 2p Cr 2p3/2 Fe 2p3/2 

1 32.66 0.95 53.75 2.80 1.16 0.49 8.20 

2 34.76 0.00 51.15 3.25 0.26 2.81 7.78 

3 29.11 0.00 56.27 3.27 0.00 0.92 10.44 

4 35.66 0.00 50.07 3.11 0.85 2.52 7.81 

5 33.44 0.97 53.34 3.11 0.43 0.00 8.73 

6 35.51 1.14 48.81 3.47 0.83 2.96 7.30 

Average 33.52 0.51 52.23 3.17 0.59 1.62 8.38 

St. Dev. 2.24 0.51 2.50 0.20 0.39 1.18 1.02 

   

 

Figure 46 Average inter-surface elemental composition of coupons 1 – 6, 

showing acceptable error margin (± 1 σ). 

 

Average elemental composition of coupon 1 was then compared to the average 

of coupons 2 – 6. Results revealed acceptable correlation across various 

coupons, which validates the TAM cleaning method to produce comparable 

surfaces with regard to elemental composition.   
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Figure 47 Bar chart comparing average composition of major surface elements 

at coupon 1 against average of coupons 2 – 6. Error margin (± 1 σ) shown on 

the graph signifies how the average composition of coupon 1 varies in 

comparison to coupons 2 – 6. Schematic representation of the two measured 

sites on each coupon is illustrated on the top right corner. 

 

Overall, section 3.5.2 discussed the surface preparation methodology with 

respect to polishing, finishing, and cleaning. Ra values measured for the three 

polished coupons showed significant reduction in surface roughness when 

compared to the unpolished reference, 1.15 vs. 0.01 µm.  

XPS was employed to compare the cleaning effects of the TAM solution against 

acetone. Results showed reduction in adventitious carbonyl species (C=O) in 

both C 1s and O 1s XP spectra, in favour of the TAM cleaning method. In addition, 

higher levels of iron content (Fe 2p3/2) and metal oxides were found on the surface 

of the TAM cleaned coupon, which indicated more exposure of the surface to the 

X-ray beam, or in other words a cleaner surface. 

The reproducibility of the TAM cleaning method was then evaluated throughout 

a comprehensive set of inter- and intra-surface composition studies (section 

3.5.3). Analysis from the intra-surface composition study revealed that central 
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position (i.e. P1) is representative of the surface and can be confidently chosen 

as an optimum scanning site. The inter-surface study, on the other hand, showed 

acceptable correlation of elemental composition across various coupons treated 

using the TAM cleaning method. More importantly, both studies have indicated 

that nitrogen was not uniformly distributed across the surface of the coupons. 
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In this chapter, TRF surrogate formulation and oxidation methods as well as 

analytical characterisation of the oxidation products (gum) are described and 

discussed. The TRF formulation method was based on the surface response 

model discussed in chapter 2.1. The development of the oxidation process was 

based on the gum formation mechanism described in chapter 2.2.3. ATR-FTIR 

spectroscopy was used as a main analytical technique to investigate changes in 

chemical composition by detecting characteristic functional groups on the 

oxidised TRF as well as the formed gum. GC-MS, SEM and TGA were used to 

characterise the synthesised gum. 

 

 

As already discussed in Chapter 2 and Chapter 3, surrogate fuels are typically 

used in engine performance predictions and combustion simulations. (39, 42) 

Conventionally, iso-octane and dodecane are used as single-compound 

surrogates to represent gasoline and diesel fuels, respectively. However, such 

single component surrogates cannot realistically represent real fuel systems that 

are much more complex, especially for combustion studies. (158, 159) In this 

study, as a compromise, blends of toluene, n-heptane, and iso-octane were 

chosen to represent the typical mixture of aromatics and saturated alkanes in 

gasoline fuels. Blending volumes were initially calculated to be compatible with 

reasonable engine performance (i.e. RON and MON values), as per the fuel 

design principles reviewed in chapter 2.1. (42) For the envisaged studies of gum 

deposition and detergency, the TRF blend composition had to be extended to 

include gum. It is well established that reactions of olefins are associated with 

aerobic oxidation of gasoline fuels. (17, 60, 70) Consequently, 1-octene and 2,4-

hexadiene, representing mono- and diolefins, respectively, were added to the 

blend to facilitate a simulated fuel oxidation process to form the model gum. Final 

blending composition were optimised and adjusted as per the British and 

European standards of unleaded petrol (EN-228). (55) 
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The TRF blend was initially prepared as per the composition detailed in Table 17. 

Figure 48 illustrates the FTIR spectra of the TRF blend and the reference 

materials, followed by a discussion explaining the observed characteristic IR 

absorption bands. 

 

Figure 48 Y-axis offset stacked FTIR spectra comparing reference materials 

against formulated TRF blend. 

 

The FTIR spectrum of the TRF blend exhibited the characteristic strong 

absorption bands of aromatic mono-substituted benzene rings at 693 and 

727 cm-1. The two intense peaks at the lower end of the spectrum are 

characteristic of the adjacent =CH out of plane bonds deformation (i.e. change in 

bond angle) vibration in toluene rings. (160) In-plane deformation vibration of the 

same molecules appeared as two weak peaks at 1030 and 1081 cm-1.  

Unique branched methyl (–CH3) groups at the 2,2 position in the iso-octane (2,2,4 

tri methyl pentane) vibrated symmetrically at 1365 and 1393 cm-1. The bend 

deformation at 1365 cm-1 is stronger, which explains the intensities at these 
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wavenumbers in the TRF blend spectrum. Moreover, due to the third aliphatic 

methyl group attached to the carbon atom at position 2 in the iso-octane 

molecule, a third weak peak was found at 1379 cm-1. (160) Similar vibration 

response within the same region was expected to be arisen from the two aliphatic 

methyl groups in the n-heptane molecule. CH3 bend vibration of the methyl 

groups in iso-octane and n-heptane appeared in the TRF blend spectrum at 

1466 cm-1. 

C=C in electron donor mono-substituted benzene rings (e.g. toluene) have a very 

unique deformation mode at ∼1500 cm-1. (160) A relatively strong peak at 

1496 cm-1 was observed in the spectrum. Characteristic C=C stretch in the 

toluene ring also appeared at 1604 cm-1. Furthermore, it is typical for mono-

substituted benzene rings to show combination bands and overtone vibration 

(four small consecutive peaks) in IR spectroscopy at 1660 – 2000 cm-1 due to the 

=CH out of plane deformation. Toluene overtone peaks appeared in the TRF 

blend spectrum at 1735, 1800, 1856, and 1940 cm-1. It is important to mention 

that C=C bonds in olefins and C=O in carbonyl groups may interfere with these 

bands around the 1600-1650 and 1700-1750 cm-1, respectively.  

The aliphatic methyl groups stretch vibration resulted from the –CH3 in iso-octane 

and n-heptane was observed at 2871 and 2956 cm-1. An iso-octane molecule has 

more aliphatic CH3 groups than a n-heptane molecule (5 vs 2), which explains 

the higher intensity found at 2956 cm-1. Similarly, the stretch vibration at 

2925 cm-1 corresponds primarily to the acyclic –CH2– groups in the n-heptane 

rather than that of iso-octane (5 vs 1), which explains the comparable intensity to 

that of CH3 vibrations around 2956 cm-1. The relatively small peaks at the far end 

of the spectrum (> 3000 cm-1) correspond mainly to the =CH stretch in toluene 

ring. All three peaks are due to the mono-substitution in the benzene ring. 

According to literature, the number of peaks decrease with the increase in 

substitution. (160)  

Finally, formation of undesired products during blending can affect consequent 

oxidation reactions. FTIR characteristic absorption bands of the reference 

materials appeared unchanged in the formulated TRF blend spectrum (Table 25), 

confirming that no reactions have took place during blending. Therefore, the 

formulated TRF blend can be used in all consequent experimental stages. 
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Table 25 Details of characteristic IR absorption bands of the formulated TRF 

blend. Reference IR regions retrieved from (160). 

 

Full details of the ATR-FTIR spectra of iso-octane, n-heptane, and toluene can 

be found in the appendices (Table A 2, Table A 3, and Table A 4, respectively). 

 

 

Following the formulation of the neat TRF blend, several methods were carried 

out to induce oxidation of the mono- and diolefin components added to the blend. 

Previous research had demonstrated that such olefins components can be 

oxidised and hence trigger gum formation in gasoline fuel (5, 17, 60). A 

diagrammatic overview of the TRF oxidation development process is given in 

Figure 49.  

 

 

 

Sample Region (cm-1) Frequency (cm-1) Assignment 

TRF 

blend 

670-710 693 =CH in toluene 

720-820 727 =CH in toluene 

1000-1040 1030 =CH in toluene 

1050-1085 1081 =CH in toluene 

1350-1395 1365 2,2, CH3 bend in i-octane 

1370-1390 1379 –CH3 rock in  i-oct & n-hep 

1350-1395 1393 2,2, CH3 bend in i-octane 

1435-1475 1466 CH3 bend in i-oct & n-hep 

1470-1525 1496 –C=C– in toluene 

1590-1625 1604 –C=C– in toluene 

2865-2875 2871 CH3 stretch in i-oct & n-hep 

2915-2940 2925 –CH2 stretch in n-heptane 

2950-2975 2956 CH3 stretch in i-oct & n-hep 

3000-3105 3028 =CH stretch in toluene 
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Figure 49 Colour-coded flow chart of the preliminary work conducted to oxidise 

the TRF surrogate. 
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Initially, the TRF oxidation rig shown in Figure 18 was used for this work. Its 

construction was informed by gum formation research reported in the literature. 

(35, 36) Preliminary work with this rig started by bubbling air at 120 l/h through 

the neat formulated TRF mixture in an open system, using an INTERPET AP1 

aqua air pump at room temperature for 20 h to evaluate the possibility of oxidising 

the system without the aid of olefins. However, evaporative losses from the open 

system were too substantial to allow this approach. For example, direct oxidation 

with air was attempted with 1 vol% of 1-pentene, a typical olefin susceptible to 

oxidation in gasoline fuel. (161) Once the experiment was completed, residual 

materials on the flask were dissolved in acetone and analysed using FTIR. 

Spectra showed typical TRF absorbance with no signs of oxidation products. 

Moreover, no sign of olefin composition was found which indicates a complete 

loss of pentene during the reaction, mainly due to the considerably high vapour 

pressure of 1-pentene (0.82 bar at 24°C). (162) 

For subsequent experiments, a quasi-closed system approach was taken, using 

a double surface condenser to capture and re-feed evaporated components. A 

water-based cooling fluid was circulated throughout the system at 10°C using a 

Thermal Exchange CS20 circulation chiller. Olefin content was increased to 5 

vol%, but the mixture had still evaporated completely from the reaction flask with 

no sign of oxidation products in the IR spectra of the residual materials (not 

shown). 

To reduced evaporative losses further, the air flow rate was controlled and 

adjusted to 100 ml/min to prevent excessive evaporation. A sintered Drechsel 

bottle head was used to enhance bubbling uniformity. 90% of the blend was 

thereby retained after 44 h. However, IR spectra showed no sign of oxidation 

products (data not shown). 

 

 

 

As an initial study, different TRF blends were investigated in flasks 1 – 6 of the 

multi-reaction system (Figure 19), with compositions summarised in Table 26. It 

was found that 1-octene (vapour pressure 0.02 bar at 24°C) (163) showed better 

response compared to that of 1-pentene. The reduction on the FTIR band at 

1365 cm-1 indicated that the concentration of branched CH3 functional groups 

from iso-octane had been reduced as a result of the reaction (Figure 50). 

Moreover, the extent of the peak intensity reduction was found to scale with the 

olefin and radical addition. More precisely, CH3 bands were present in flask 1 
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(4 vol% olefin) spectra whereas flasks 5 (12 vol% olefin) and 6 (0.5 vol% tBHP) 

did not show any absorbance at the same IR region. This pattern suggests that 

an oxidation reaction has occurred. Further analysis in the carbonyl vibration 

region can validate these observations and help to identify any oxidation 

products.  

Table 26 Initial TRF blend compositions by volume percentage (vol%), as utilised 

in the Radley carousel reaction system. 

Flask no. Toluene Iso-octane n-heptane 1-octene 

1 62 17 17 4 

2 62 16 16 6 

3 62 15 15 8 

4 62 14 14 10 

5 62 13 13 12 

6 62 12 12 5 + 0.5 tBHP 

 

 

Figure 50 Pre and post-reaction FTIR absorption bands of in the symmetrical 

deformation region of the CH3 group (1365 cm-1). 
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Indeed, the spectra revealed that addition of tBHP resulted in the formation of a 

product with a carbonyl group (C=O) (Figure 51 and Figure 52), as one would 

expect as a result of oxidation (chapter 2.2.3). It appeared that some other blends 

showed a response similar to that observed for flask 6, around the same carbonyl 

vibration region (e.g. flask 5). Therefore, further analysis of the spectra was 

needed. Pre-reaction absorption bands were subtracted to analyse bands which 

will only appear as a result of the reaction. The generated spectra confirmed that 

the C=O band only appeared in flask 6 post-reaction spectrum. 

 

 

Figure 51 Pre and post-reaction FTIR absorption bands at the beginning of the 

C=O stretching region of carbonyl groups (1700 – 1750 cm-1). 
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Figure 52 TRF blends difference FTIR spectra showing the positive response 

following the addition of tBHP and 1-octene. 

 

According to the mechanism illustrated in chapter 2.2.3 and the reagents used in 

this reaction, it was believed that the oxidation product will be in the form of a 

ketone ( ). The carbonyl stretching vibrations in unsaturated ketones 

generally occur in the 1660 – 1700 cm-1 region. (160) In Figure 51, the C=O band 

was observed at 1707 cm-1. According to the literature, the methyl vinyl ketone 

(Butenone) carbonyl stretching vibration appears at 1707 cm-1. (164) However, 

additional analytical techniques are needed to confirm the chemical structure of 

the oxidation product.  

Following the promising results achieved by adding tBHP to the composition of 

flask 6 (Figure 52), TRF blends were further optimised as per the composition 

detailed in Table 27.  

 

 

 



78 
 

Table 27 Optimised TRF blend compositions by volume percentage (vol%), as 

utilised in the Radley carousel reaction system. 

Flask no. Toluene Iso-octane n-heptane 1-octene tBHP 

1 62 17.35 17.35 3 0.3 

2 62 15.70 15.70 6 0.6 

3 62 14.05 14.05 9 0.9 

4 62 12.40 12.40 12 1.2 

5 62 10.75 10.75 15 1.5 

6 62 9.10 9.10 18 1.8 

 

Moreover, the influence of temperature was examined to ensure sufficient heat 

is provided to initiate the radical reaction. Several experimental studies have 

previously discussed the oxidation reaction of 1-octene using molecular oxygen 

or other oxidants such as tBHP. Temperatures quoted in literature varied between 

80, 90, and 120°C depending on reaction conditions (e.g. pressure and catalyst 

used). (165, 166) Consequently, the reaction temperature was adjusted to match 

that of literature. The main constraint was the boiling point of tBHP (96°C) (167), 

and thus the reaction temperature was set to 85°C to avoid evaporation of the 

reactant during the reaction. After 48 h reaction, the appearance of blends 

containing higher olefin and tBHP concentrations has changed. A yellowish-

brown colour was clearly apparent in the samples collected from flasks 5 and 6 

(Figure 53), when compared to the clear colourless liquids in flasks 1 and 2.  

 

Figure 53 Top: TRF blends prior to oxidation reaction. Bottom: TRF blends 

following oxidation reaction. 
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FTIR absorption bands measured for the blends showed a similar response to 

that of previous experiment. Branched methyl groups at 1365 cm-1 have 

disappeared for flasks 2 – 6 following the free radical reaction. Figure 54 

illustrates the resulting spectra. 

 

Figure 54 FTIR absorption bands of TRF blends with 1-octene and tBHP 

showing clear difference between the branched CH3 bands at 1365 cm-1. 

This behaviour is expected due to the higher reactivity of tertiary alkyl groups       

(–C(CH3)3) compared to the other alkyl groups within the system. Bond energies 

provide a predictive indication of reactivity, as molecules with low bond energies 

are easier to transform into radicals. (168) Their radical forms are then more 

stable compared to radicals from molecules with higher bond energy. Table 28 

lists the dissociation energies which are generally associated with alkyl groups. 

Table 28 Absolute bond dissociation energies (kJ/mol) for branched alkyl groups. 

(168) 

Methyl 

–CH3 

Primary 

–C(CH3) 

Secondary 

–C(CH3)2 

Tertiary 

–C(CH3)3 

439 423 410 397 
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Another region of interest is the region of C=C vibrations. It has been established 

that the radical reaction in olefin oxidation is governed by the stability of the allylic 

radicals. (17, 70) Therefore, allylic absorbance, near the 1640 cm-1 region, 

following the reaction should indicate the magnitude of the radical transformation 

(i.e. oxidation reaction). Figure 55 shows the FTIR transmittance of the C=C 

region. 

 

Figure 55 Pre and post-reaction FTIR spectra showing the vibrational response 

at the isolated alkenes stretching region (1640 cm-1). 

 

It can be seen that prior to the reaction, the C=C vibrational band intensity 

increases with olefin concentration in each blend, as one would expect. However, 

the spectrum has slightly changed following the reaction. It can still be seen that 

flask 1 has lower C=C intensity compared to flask 5 (3 vol% vs. 15 vol%), but a 

relatively stronger decrease for flask 5 indicated that the reaction had resulted in 

more radical transformation. Consequently, there should also be more oxidation 

product in flask 5, and this is indeed borne out by higher intensity, compared to 

other flasks in the carbonyl vibration region (Figure 56). 
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Figure 56 Pre and post-reaction FTIR spectra comparing the intensities of the 

carbonyl groups resulted from the oxidation reaction. 

 

The post-reaction FTIR analysis similarly indicated that no oxidation products 

were observed in blends with low concentrations of olefins and tBHP (e.g. flasks 

1 and 2). Although it was expected that flask 6 will have the highest intensity, 

calibration curve of the bands at 1707 cm-1 showed that reactions in flasks 4 and 

6 did not follow the expected pattern. Periera et al. argued that the oxidation 

reaction force is governed by the stability of the allylic radicals. In other words, 

the longer the radical exists, the higher the potential of gum formation. (17, 70) 

Further analysis of the carbonyl (C=O) region (1700 – 1750 cm-1) was used to 

examine the oxidation reaction. Figure 57 and Figure 58 illustrate the FTIR 

transmittance patterns of the TRF blends oxidised using 1-octene at the C=C 

(1640 cm-1) and C=O (1707 cm-1) IR regions. 

 



82 
 

 

Figure 57 Intensity of the isolated alkenes C=C stretching band absorptions of 

the reaction product as a function of initial 1-octene concentration. Data derived 

from Figure 55. 

 

 

Figure 58 Intensity of the carbonyl group C=O stretching band absorptions of 

the reaction product as a function of initial 1-octene concentration. Data derived 

from Figure 56. 

 

Overall, it can be concluded that the employed TRF blend oxidation method led 

to the formation of oxygenated compounds, including carbonyl species, but no 

evidence for high molecular weight compounds resembling gum was observed. 

The formation of 2-octenal has previously been reported for the oxidation of 

1-octene in the presence of tBHP, (169) and this would be compatible with the 

observations made here. 
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The following mechanistic model could explain the anticipated radical 

transformation (where I: Initiation, P: Propagation, and T: Termination) leading to 

1-octenal and ketones. However, there was no indication that the reaction 

proceeded beyond the formation of light oxygenated products, which is perhaps 

not too surprising given the monofunctional nature of 1-octene.  

 

(I) :  +  →  +  (1) 

(P) :  + O2 →  (2) 

+  →  + 

 

(3) 

↔   (4) 

+ 2  →  +  

2  

(5) 

 ↔  (6) 

 + O2 →  (7) 

+  →  

(8) 

(T) : ROO• + R• → ROOR  

 → i)  + ii)                            (9) 

 

 

Only a small amount of gum was observed with 1-octene (see section 4.3.3.3), 

presumably due to its monofunctional nature that does not allow for extensive 

condensation and cross-linking of several hydrocarbon components. 

2,4-hexadiene was therefore added to the formulation to allow the gum formation 

process. The addition of diolefins resulted in a noticeable response with respect 

to C=O group formation due to the formation of allylic radicals. FTIR spectra were 

collected for the neat and oxidized TRF blends to emphasise on the formed 
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chemical groups. The following spectrum shows the subtracted transmittance 

near the carbonyl region. 

 

 

Figure 59 Subtracted FTIR spectra showing C=O bond formation at 1709 cm-1. 

Negative y-axis values indicate less transmittance from the oxidised TRF blend. 

 

In a similar previous study, base gasoline samples were spiked with different 

mono- and diolefins namely 1-octene, 1-hexene, cyclohexene, 1,5-hexadiene, 

and 2,4-hexadiene to evaluate the effect of each component on gum formation. 

It was found that cyclic and conjugated olefins forming secondary allylic radicals 

(i.e. cyclohexene and 2,4-hexadiene) contributed the most towards gum 

formation. Mono- and non-conjugated olefins did not exhibit similar effects (70), 

as observed in the 1-octene experiment in this study (flask 6 in Figure 57 and 

Figure 58).  
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It is well established that mono- and diolefins tend to increase the tendency of 

gum and deposit formation in gasoline fuels. Several studies have illustrated that 

olefinic molecules have higher susceptibility towards oxidation and consequently 

formation of gum precursors, typically in the form of polymerised ketones, 

aldehydes, carboxylic acids, or esters. (17, 35, 60, 170) For gum quantification, 

a sample beaker was weighed before and after the modified lab-scale gum 

content method explained in chapter 3.2.2. Calculation as per the ASTM D-381 

(57) revealed formation of 110 mg / 100 ml of oxidation products (gum). Figure 

60 show the resinous formed products. 

 

Figure 60 Oxidation products collected using the lab-scale gum content method 

(left) compared to actual gasoline gum obtained using standard ASTM D-381 

method (right). Actual gasoline’s gum images retrieved from Anton Paar (171). 

 

Further systematic experimental repeats were conducted to ensure the method’s 

reproducibility. Quantified gum increased to an average of 452.9 mg / 100 ml 

(σ = 12.7 mg / 100 ml) within three consecutive repeats. It is important to mention 

that the 110 mg / 100 ml sample was produced from a TRF blend oxidised using 

mono-olefins. Once diolefins were introduced into the blends, gum content has 

increased significantly (Figure 61). 
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Figure 61 Repeats of gum formulation and quantification methods showing 

acceptable reproducibility within the last three consecutive tests (± 1 σ). 

 

 

 

Formulated gum was analysed using FTIR spectroscopy to pinpoint the chemical 

functional groups of the oxidation products and eventually enable chemical 

structure prediction. It was suspected that the mono- and diolefin compounds will 

combine to form tri-olefin species within the oxidation products. The fingerprint 

region of the spectrum showed C=C vibration bands at 968 and 1621 cm-1, which 

correlate with tri-olefins IR bands from literature (987 and 1621 cm-1). (172) It can 

also be deduced that the transmittance spectrum does not follow that of a 

carboxylic acid, where the OH vibration band is usually observed within the same 

region of the CH stretching (∼3000 cm-1). (160) The following table lists the 

characteristic IR peaks observed for the fingerprinting chemical functional 

groups.  

 

Table 29 Characteristic ATR-FTIR band assignments of oxidation products. 

Chemical group Wavenumber 

(cm-1) 

Assignment 

C=C w 1605-1640 Olefinic C=C stretch 

C=O s 1707 Carbonyl stretch 

CH m 2858-2957 CHn stretch region 

OH b 3379-4446 Hydroxyl stretch 

Legend: (w) weak, (s) strong, (m) medium, and (b) broad. 
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FTIR spectra were collected for the oxidised TRF blend and the gum product 

throughout different stages of the gum content experiment to observe the 

changes in functional groups as a function of time. The first sample was taken 

prior to the gum content experiment (i.e. for the oxidised TRF blend at zero 

minute). The second sample was a gum-concentrated TRF, which was collected 

after 20 min from the start of the experiment. The same sample was further 

concentrated by adding gum product, which was collected at the end of the 

experiment, to verify that the observed C=O (Figure 62) and OH (Figure 63) 

absorption bands increase as a function of gum content. Full spectra can be 

found in the appendices (Figure A 6). 

 

 

Figure 62 Alkenes (C=C) and carbonyl (C=O) FTIR absorption bands from the 

oxidised TRF blends and oxidation products (gum) collected at different times. 
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Figure 63 Aliphatic (CHn) and hydroxyl (OH) FTIR absorption bands from the 

oxidised TRF blends and oxidation products (gum) collected at different times. 

 

 

Thermal degradation of the oxidation products was also taken into consideration 

when analysing the formed gum. The decomposition profiles is crucial to 

understand the structural integrity of the formed products. Analysis was 

conducted using Mettler Toledo TGA/DSC 1 thermogravimetric analyser. Two 

samples of oxidation product (gum) were heated under nitrogen (35 – 400C) and 

nitrogen/air (35 – 200C / 200 – 400C) respectively. The first sample (N2) was 

subjected to 10 min isotherm at 200C, whereas the N2/air sample was subjected 

to 3 min isotherm at 200C followed by 20 min isotherm once air was introduced. 

Data analysis was performed using Mettler Toledo STARe Evaluation Software. 

The following figures illustrate the decomposition behaviour of the oxidation 

products (TGA) in addition to the differential thermogravimetric (DTG) curve as a 

time derivative (dx/dt). 

 



89 
 

 

Figure 64 Thermal degradation profile of the oxidation products heated under 

nitrogen, showing gum decomposition of ≈ 75% (35 - 400°C) with a sharp mass 

loss (48%) between 150-200°C. 

 

 

Figure 65 Thermal degradation profile of the oxidation products heated under 

nitrogen/air, showing gum decomposition of ≈ 74% (35 - 400°C), with a sharp 

mass loss (43%) between 150-200°C. 

 

TGA and DTG curves of both samples exhibited a thermal event between 

approximately 150 – 200C. Another event was only observed in the N2/air 

sample ( 250C). A similar number of events were observed for actual gasoline 

gum samples heated under nitrogen and air. (31) However, onset and endset 

temperatures were slightly higher due to the complex composition of gasoline in 

comparison to the formulated/oxidised TRF. Table 30 lists the thermal events and 

decomposition values.  
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Table 30 TGA results calculated for the gum samples processed under nitrogen 

and nitrogen/air. 

Gas Event 
Onset T 

(C) 

Endset T 

(C) 

Mass loss 

(%) 

Residual mass  

(%) 

N2 1 159 195 48 25 

N2/Air 
1 153 200 43 

26 
2 241 328 20 

 

In comparison, onset and endset temperatures for actual gasoline gum heated 

under nitrogen were 208 and 268C respectively. Samples heated under air 

recorded two thermal events with onset and endset temperatures of 207 – 278C 

and 512 – 578C respectively. (31) In SI engines, surface temperatures at fuel 

injectors’ tips would typically reach just over 100°C, whereas at the combustion 

chamber may vary between 250°C to over 600°C at the exhaust valves. (5, 6, 8, 

61, 62) Thus, the observed mass losses between 150 – 200°C indicate that gum 

or gum precursors would decompose and form hard deposits on the injectors’ tips 

and intake valves tulips (outer surface). Since the aim of this work was to study 

gum behaviour prior to combustion, it was decided to evaluate the decomposition 

profile to a maximum temperature of 400C 

 

 

Following the results obtained from TGA, it was of a great benefit to identify the 

components which constitute most of the oxidation products. The obtained mass 

spectrum revealed that the most abundant molecule within the oxidation products 

has a molecular weight (MW) of 208.1 g.mol-1 with a retention time of 13.14 min. 

Typical MW values of gum in gasoline fuel varies in the range of 200 – 500 

g.mol-1. (63) Since the oxidation products were formed from relatively low MW 

components, representing the light fraction of gasoline fuel, it was expected to be 

at the lower end of the typical range. Actual m/z values (208.1: 100%, 209.1: 

15.8%) retrieved from OpenChrom (173) following the analysis of the mass 

spectrum showed good correlation with that of theoretical values calculated by 

ChemDraw. Moreover, the MW of the fragmentation shown in Figure 66 (i.e. 71, 

97, 123, and 165 g.mol-1) match that of the calculated fragment ions for the 

anticipated chemical structure (C13H20O2), shown in Figure 67. The following 

figure illustrates the fragment ions of the subject molecule, including the parent 

peak (M+). 
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Figure 66 Fragment-ion mass spectrum of the abundant molecule in the gum 

product. 

 

It was expected from the radical chain reaction with 1-octene and 2,4-hexadiene 

to produce a tri-olefin molecule, which was also suggested by the obtained FTIR 

spectroscopy. C=O and OH functional groups were also confirmed to be present. 

Hence, based on the above described analyses, the following chemical structure 

was expected to be most relevant to the synthesised gum (or gum precursor). 

 

Figure 67 Predicted chemical structure of the most abundant molecule found 

within the oxidation product. 

The observed molecular masses also correlate to the fragment ions of the 

predicted molecule.  

Table 31 Fragment ions and molecular weights as calculated from the predicted 

molecule.  

Fragment ion MW (g.mol-1) Fragment ion MW (g.mol-1) 

C4H7O• 71 C11H17O• 165 

C6H9O• 97 C13H20O2 (M+) 208 

C8H11O• 123   
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In support of the predicted structure, Density Functional Theory (DFT) 

calculations were performed to predict the IR frequency of the proposed gum 

structure shown in Figure 67. Geometry of the predicted molecule was initially 

optimised using molecular modelling and visualisation package (Avogadro 1.1.1). 

(174) The force field chosen for the molecule was MMFF94 with a steepest 

descent algorithm. (175) Cartesian coordinates were then used for tighter 

geometry optimisation and IR frequency calculation using quantum chemistry 

software (ORCA 3.0.3). (176) Optimisation was converged using B3LYP 

functional and def2-TZVP basis set with a maximum SCF iterations of 125. (177) 

A RIJCOSX approximation with def2-TZVP/J auxiliary basis set was applied to 

the calculations to speed up the Hartree-Fock step. (178)  ORCA_mapspc 

function was then called to extract the IR frequency and plot the spectrum as per 

the following values (-w = 25, -x0 = 650 cm-1, -x1 = 4000 cm-1, and -n = 3476). 

Where -w is Gaussian width, -x0 and -x1 are wavenumbers representing the start 

and end of the spectrum, and -n is number of points. Scale factor of 0.965 was 

applied. (179) The predicted IR frequency was found to be in good correlation 

with the actual spectrum of gum.  

 

 

Figure 68 Actual vs predicted IR frequencies of gum sample and predicted 

molecule respectively. 

 

 

 

 



93 
 

 

Microscopic images of the oxidation products were taken using Carl Zeiss EVO 

MA15 SEM instrument. Mirror-polished 316 stainless steel (SS) coupon (surface 

roughness, Ra = 0.01 µm) was immersed into oxidised TRF blend for 10 seconds 

at room temperature. Once taken out, the coupon was allowed to dry in fume 

hood prior to scanning. Images revealed circular islands of gum distributed over 

the metal substrate. Gum deposits exhibited ‘coffee-stain’ effect which resulted 

in the observed ring shape (Figure 69, b). The rings inner diameter was 

approximately 90 – 100 μm. In a comparable study conducted on gasoline fuel, 

gum deposits were also found to form clusters on the steel surface (Figure 9). 

(36) However, unlike the TRF gum, gasoline gum deposits were in the form of 

fused spherical particles. 

 

 

Figure 69 SEM images of residual gum on top of a 316 SS coupon at 100 and 

20 μm scale, a and b respectively. 
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In summary, a TRF surrogate fuel has been formulated using toluene, n-heptane 

and iso-octane as primary components. Mono-olefinic component (1-octene) was 

added to the blend to trigger the oxidation reaction. Tertiary butyl hydroperoxide 

was used as a radical initiator in a 1:10 radical to olefin ratio. Oxidation process 

was then further optimised by the addition of 2,4-hexadiene; as diolefins are more 

susceptible towards oxidation. All volumes were optimised and adjusted as per 

the EN-228 gasoline specification.  

Presence of oxidation products containing carbonyl (C=O) functional group was 

confirmed by ATR-FTIR spectroscopy. Analysis of TRF blends oxidised using 

diolefins showed better response with regard to the C=O peak (1709 cm-1), 

compared to 1-octene. Gum content evaluation also showed significant increase, 

in favour of 2,4-hexadiene (110 vs 453 mg / 100 ml).  

FTIR analysis of the oxidation products showed sharp intense C=O peak at 1707 

cm-1 as well as a characteristic OH peak at  3440 cm-1. The thermal 

decomposition profile of gum showed significant mass loss of 48% and 43% 

between 150 – 200C for samples heated under nitrogen and nitrogen/air 

respectively. GC-MS analysis suggested that the molecular weight of the most 

abundant molecule was approximately 208 g.mol-1 with an expected chemical 

formula of C13H20O2. Computed IR frequency was in agreement with the obtained 

FTIR spectra for the oxidation products. SEM images of deposits on stainless 

steel substrates showed ‘rings’ of gum randomly distributed over the surface.  
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After having established a reproducible method to formulate TRF surrogate fuels 

with and without gum, introduction of the third component of the model system, 

the model detergent, was examined. As discussed in chapter 2.4.1, 

octadecylamine is a primary amine with a long aliphatic hydrocarbon tail (C18) 

which resembles the characteristic chemical structure of gasoline detergents (i.e. 

fuel-soluble tail with a polar amine head). In this chapter, the effect of ODA 

introduction into the oxidised TRF blends at various concentrations is described 

to examine the effects of ODA on gum and gum adsorption. The resulting system 

will provide the basis for examining the effect of ODA on gum and the metallic 

substrates.  

 

 

 

Figure 70 displays the ATR-FTIR spectra of solid ODA. Characteristic peaks are 

assigned on the spectra and detailed in Table 32. The CH2 splitting observed at 

1462 – 1473 cm-1 is characteristic of ordered packing in crystalline molecules. 

(86) The split is typically of the order of 8 – 12 cm-1 depending on chain length. 

(180) In the present case, it was found to be 11 cm-1 which was very close to the 

10 cm-1 split observed in (180) for C18 molecules. The weak NH2 peak at 

1607 cm-1 arises from -NH2 groups in primary amines. (160, 181) The broad 

peaks near 3165 – 3252 cm-1 as well as the strong narrow peak at 3330 cm-1 

likewise arise from NH2 and NH stretching vibrations in primary amines. (160, 

182) The CHn region (2848 – 2964 cm-1) exhibited characteristic CH2 and CH3 

vibrations. The two strong peaks at 2848 and 2916 cm-1 correspond to symmetric 

and asymmetric CH2 stretching vibrations, respectively. Significantly weaker CH3 

peaks were observed at 2955 and 2964 cm-1. The difference in intensity was due 

to the large number of CH2 groups in comparison to the end alkyl group (17 vs 1 

in each ODA molecule). 
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Figure 70 ATR-FTIR spectrum of solid octadecylamine. 

 

Table 32 ATR-FTIR band assignments of solid octadecylamine. 

Wavenumber (cm-1) Reference (cm-1) (86) Assignment 

1363 1363 CH3 w 

1462 - 1473 1462 - 1472 CH2 s 

1607 1607 NH2 w 

2848 2848 CH2 s 

2896 2897 CH2 w, sh 

2916 2916 CH2 s 

2955 – 2964 2953 - 2960 CH3 w 

3165 – 3252 3170 – 3254 NH2 w, b 

3330 3330 NH s 

Legend: (w): weak, (s): strong, (sh): shoulder, (m): medium, and (b): broad 
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Water is conventionally used as a solvent to determine CMC point of surfactants. 

(183-185). An attempt was made to determine the CMC point of ODA in TRF, by 

DLS, to better understand the effects of concentrations over ODA interactions 

with gum. Average particle diameter was measured as a function of ODA 

concentration. The inflection point at approximately 0.38 mM and 1500 nm was 

believed to be the CMC value of ODA in TRF (Figure 71). A theoretical CMC 

value of ODA found in literature was 0.4 mM. (186) Although it was expected for 

the average diameter to increase as a function of concentration, it has been 

reported that surfactants (e.g. dodecyltrimethyl ammonium bromide) may exhibit 

a decrease in size due to repulsion forces between micelles. (187) Since ODA 

forms reverse micelles in hydrocarbon solutions, a similar effect may be 

applicable.  

 

 

Figure 71 Average particle diameter as a function of ODA concentration. 

Inflection point represents the CMC of ODA in TRF. 

 

To be consistent with the concentration format used throughout this study, the 

CMC value was converted into ppm (w/v) using the molecular weight of ODA 

(269.51 g.mol-1), resulting in a value of 102.33 ppm.  
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Five TRF blends were oxidised as per the parameters detailed in Table 13. Four 

out of five blends were spiked with 50, 500, 1000, and 2000 ppm of ODA (w/v), 

while keeping the fifth blend as a reference point. UV-Vis analysis was conducted 

to examine changes in chemical and functional groups as a function of ODA 

concentration.  

 

 

Immediate and apparent changes in colour were observed following the addition 

of ODA into the oxidised blends (Figure 72). UV-Vis spectroscopy was performed 

to quantify the observed effect. Unsaturated molecules found in gasoline fuels 

typically undergo  → * (C=C) and n → * (C=O) transitions near the 200 – 350 

nm region. (188, 189) Due to the presence of large numbers of unsaturated 

molecules resulting from the TRF radical oxidation reaction, it was difficult to 

interpret the spectra. An increase in absorbance at max  350 nm as a function 

of ODA concentration was observed, but this peak intensity turned out to be 

undistinguishable from samples with zero and 50 ppm ODA concentration. Thus, 

it was decided to consider the zero ppm ODA sample as a reference spectrum 

for obtaining difference spectra that allow to interpret changes in absorbance as 

a function of ODA concentration with a view to its effect on gum in solution.  
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Figure 72 UV-Vis spectra of the TRF oxidised blends (shown on figure) as a 

function of ODA concentration. 

The resulting difference absorbance profiles in Figure 73 showed a pattern of 

increasing absorption as a function of concentration. The 50 ppm ODA solution 

exhibited what appears to be a weak decrease in overall absorption, but this is 

likely within the experimental reproducibility limits, i.e. an undetectable change 

(see also the similarity of the spectra in Figure 72). With the 500, 1000, and 2000 

ppm samples, a significant increase of the absorption in the wavelength range up 

to about 500 nm was observed. Absorption at these wavelengths corresponds to 

the removal of blue and violet light components, explaining the yellow/orange/red 

colour of the solutions. Since ODA is not UV-Vis active in the absence of gum, 

this increase in light absorption at the lower end of the visible spectrum must be 

associated with the interaction of gum with ODA. The UV-Vis data thus confirm, 

that a significant interaction between ODA and gum takes place in solution, which 

leads to additional functional groups absorbing in the near-UV region, thereby 

influencing the visible light absorption at low wavelengths in the visible region. 

Note that for the ODA concentration range investigated here, the difference 

spectra indicate a linear relationship between the intensity of the additional light 

absorption and the ODA concentration (Figure 74). This suggests that even at 

2000 ppm there is no free ODA in the solutions – all ODA appears to be 

interacting with gum. 



101 
 

 

 

Figure 73 Difference UV-Vis spectra of oxidised TRF blends mixed with 

increasing ODA concentration. 

 

Figure 74 Increase in UV-Vis absorption as a function of ODA concentration. 

Data derived from Figure 72. 
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Attachment of long chain alkylamines onto metallic substrates have been studied 

extensively. (90, 91, 93, 118) Contact angles are commonly used to characterise 

the hydrophobicity of metallic surfaces. (190) ODA adsorption is known to lead to 

hydrophobic surfaces, and even superhydrophobic surfaces with contact angle 

 > 145. (191) To study the adsorption of ODA on steel surfaces, steel substrates 

were immersed in neat (i.e. not oxidised, gum-free) TRF solutions containing 400, 

800, and 1600 ppm of ODA for 24 h. They were then carefully removed from 

solution and contact angles of deionised water (10 μl) were measured. The 

results showed the expected pattern of increasing contact angle as a function of 

ODA concentration. These findings confirm that ODA adsorbs from TRF onto 

metallic substrates in the concentration range examined in this thesis (Figure 75). 

At ODA concentrations lower than 400 ppm, the contact angle variations could 

not be determined reliably.  

 

Figure 75 Contact angle of deionised water measured on 316 stainless steel 

substrates immersed in TRF solutions containing different ODA concentrations. 
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The gum solution in TRF with varying ODA content (0, 50, 500, 1000, 2000 ppm) 

that had been characterised by UV-Vis (section 5.3) were used to study how they 

interacted with 316 stainless steel substrates. The 316 SS substrates were 

immersed in these solutions for 10 s at room temperature. After emersion from 

solution the weight gain was determined gravimetrically, using a half-micro 

balance. Repeatability of the results was found to be within 0.0004 g, which is 

well within the allowable error margin of 0.001 g in the ASTM D-6201 standard 

test method for the evaluation of intake valve deposit formation from unleaded 

spark-ignition engines fuels. (25)  

The surface density (weight per unit area, Figure 76) of deposits in the absence 

of ODA was 0.11 mg/cm2 and increased significantly to 0.19 mg/cm2 at an ODA 

concentration of 50 ppm. For higher concentrations of ODA the additional 

deposition was much less, with surface densities of 0.21, 0.21, and 0.24 mg/cm2 

(11%, 0%, and 14% increases) for 500, 1000, and 2000 ppm samples, 

respectively. On their own, these data suggested that ODA enhanced adhesion 

of deposits from the solution, and that the surface was almost saturated with 

deposits at 50 ppm ODA content, to the extent that no further gum deposition 

took place at higher ODA concentrations. However, increasing the ODA 

concentration by approximately 40 times (50 to 2000 ppm) did not seem to have 

a correspondingly strong effect. To understand these observations better, 

SEM/EDX was applied to get a better understanding of the morphological 

changes at the surface.  

 

Figure 76 Surface density (weight per unit area) of deposits from oxidised TRF 

as a function of the concentration of added ODA. 
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Stainless steel substrates were treated with oxidised TRF containing 0, 50, 500, 

1000, and 2000 ppm ODA, left to dry, and then examined by SEM/EDX. 

Generally, the images indicated strong surface heterogeneity of the deposits, with 

the presence of large ( 200 μm diameter) circular ring deposits, next to smaller 

irregular deposits, in the presence of ODA (50, 500, 1000, and 2000 ppm).  

The SEM image of the sample treated without ODA (0 ppm) revealed islands of 

deposited gum scattered across the coupon substrate (Figure 77). The shape of 

these islands is circular, but often elongated or with other significant 

morphological irregularities. EDX elemental mapping detected C, O, N, Fe, and 

Ni. Using the element contrast for mapping revealed that the gum composition 

was mainly of carbon and oxygen, as expected. Nitrogen was observed uniformly 

distributed across the images, which indicates that some N is intrinsic to the SS 

316 substrates. More advanced surface sensitive techniques such as XPS are 

required to provide deeper insight into the chemical composition of the surfaces 

and the deposits. However, it is worth mentioning that the EDX results are 

reminiscent of elemental analysis data for deposits at PFI tips in DISI engines, 

which likewise showed dominance of carbon and oxygen in the deposits. (192) 

Small concentration of sulphur and calcium were found at sites closer to PFI tips, 

which are not evident here because no compounds with these elements were 

used in the formulation of the model gum fuel.  
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Figure 77 SEM/EDX image of gum deposits on a stainless substrate in the 

absence of ODA in the fuel (0 ppm ODA). The deposits are mainly C and O. 

 

For 50 ppm ODA, a similar gum distribution was observed. EDX mapping 

revealed more regular oval and circular shapes, with ring-like edges of higher 

deposit concentrations. A slight indication of association between C and N was 

evident, with the latter likely coming from the ODA. It seems that ODA is 

particularly concentrated in those regions of the images where C from gum is 

highly concentrated as well, which indicates co-deposition with the gum. Note 

that 50 ppm is well below the CMC of ODA in TRF ( 100 ppm, section 5.2.2), so 

deposition of ODA micelles, which may also explain circular and ring-like features 

is unlikely to take place. The co-location of N and C in the element maps in Figure 

78 clearly shows that ODA and gum are associated in the deposits, suggesting 

that the chemical interaction of ODA and gum in solution, which was already 

indicated by UV-Vis (section 5.3.1), leads to formation of stable complexes that 

deposit together.  

 



106 
 

 

Figure 78 SEM/EDX image of deposits on 316 SS from an oxidised TRF blend 

containing 50 ppm ODA. Element maps indicate co-location of C, N and O. 

 

At 500 ppm ODA, the sample exhibited similar deposit sizes ( 100 μm) and 

morphologies as observed for 50 ppm. EDX mapping showed ring-shaped 

deposits composed of C, N, and O. N was evident around the edges of the 

analysed gum deposit, which again indicates association with gum components. 

In contrast to previous sample, 500 ppm of ODA would be sufficient to form 

micelles in the solution, but the results indicate that it remains associated with 

gum. Again, this is in line with the UV-Vis absorption of the solutions, which 

indicate strong interaction between gum and ODA.  
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Figure 79 SEM/EDX image of gum deposits on 316 SS from oxidised TRF 

blend containing 500 ppm ODA. Element maps indicate co-location of C, N, 

and O. 

 

The same conclusions can be drawn from the SEM/EDX visualisation of deposits 

in the presence of 1000 ppm ODA (Figure 80). In the presence of ODA there is a 

clear indication of oval (50 ppm) and circularly shaped deposits (500 and 1000 

ppm), with an outer ring. Such deposits are reminiscent of features formed by 

droplet deposition, wetting, and drying on surfaces. The progression of the 

deposit shapes from homogeneous irregularly shaped in the absence of ODA, to 

oval and still slightly irregular shapes in the presence of 50 ppm ODA to almost 

perfectly circular shapes with 500 and 1000 ppm suggests that the association of 

ODA and gum in solution facilitates the formation of droplet-like structures, likely 

gum solubilised in ODA surfactant micelles. The clear association between C and 

N in the resulting deposits indicates strongly that interaction of ODA and gum in 

solution leads to colloidal structures that deposit on the surface.  
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Figure 80 SEM/EDX image of gum deposits on 316 SS from an oxidised TRF 

blend containing 1000 ppm ODA. Element maps indicate co-location of C, N, 

and O, and at this concentration even for smaller size deposits (see bottom right 

quarter of the EDX maps for example). 

 

At the highest concentration, 2000 ppm ODA, similar association behaviour was 

observed between C, N, and O. It was also evident that the morphology of the 

circular, ring-shaped deposits reverted to irregular, much larger deposits on the 

surface, compared to the previous sample (1000 ppm). However, by linking this 

observation to the only 14% increase, at 2000 ppm ODA (Gravimetry 5.4.2), one 

may perhaps presume that the increase in deposits size is potentially due the 

presence of excess ODA in the system, which was released onto the surface 

during drying of deposit droplets. Further surface sensitive analysis is required to 

test this hypothesis.  
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Figure 81 SEM/EDX image of gum deposits on 316 SS from an oxidised TRF 

blend containing 1000 ppm ODA. Element maps indicate co-location of C, N, 

and O. Even larger, irregular deposits are observed at excess ODA 

concentration. 

Moreover, based on the SEM/EDX images, we can conclude that the surfaces 

were not homogeneously saturated with gum or ODA; as C, N, and O were only 

evident at the deposits sites and not on the whole surface. Separate adsorption 

of ODA on the 316 SS surfaces was not evident, but EDX may well not be surface 

sensitive enough to detect small quantities such as adsorbed monolayers. More 

advanced surface sensitive techniques are required to verify their presence. 

 

 

 

 

 



110 
 

 

XPS elemental analysis of the immersed 316 SS coupons was therefore 

undertaken to characterise the surface properties in more detail and with higher 

surface sensitivity. As for the SEM/EDX studies, substrates were analysed 

without any post-emersion treatment (i.e. without, e.g. soaking in TRF or rinsing 

with n-heptane). However, an additional pristine reference coupon (not exposed 

to TRF, gum/TRF, or ODA solutions) was included in the analysis to distinguish 

surface features intrinsic to the 316 SS substrates from extrinsic features 

introduced by the TRF/gum/ODA treatments. The elemental composition of the 

surfaces was in all cases to 98% composed of C, N, O and Fe. Ca and Cr were 

found to make up the remaining 2%. Traces of silicon (0.59 %) and sodium 

(0.12 %) were found on the reference coupon (Figure 82).  

The data in Figure 82 show that the Cr 2p photoemission is by far strongest for 

the untreated SS 316 coupon. Cr is intrinsic only to the SS 316 substrate and 

significantly attenuated for all other samples, suggesting that TRF/gum and ODA 

treatments lead to the creation of overlayer deposits. However, to say that these 

overlayers, whether present as islands (as SEM/EDX did suggest in the previous 

section) or adsorbed films, are thin enough to let a significant amount of Cr 2p 

photoelectrons pass, would suggest very thin overlayers on the order of 1 nm 

thickness or less. This model would be incompatible with the results of the 

gravimetric analysis, which suggested macroscopically measurable weight 

increases across all samples. Taken together, these results clearly demonstrate 

that deposition of these heavy deposits takes place mainly in the form of thick 

multilayer islands visible by SEM, while surface regions in between are at most 

covered by ultrathin adsorption layers. 

The C 1s emission was used to quantify the C content of the surface, and was 

found to be between 54 – 66 at% (Figure 83). For 0 ppm ODA it is not much lower 

than for 50 ppm ODA, while the gravimetric analysis indicated a 76% increase in 

adsorption from 0 ppm to 50 ppm ODA. What this suggests is that the addition of 

50 ppm ODA appears to lead to the deposition rather than more or spatially more 

extensive deposits. Note that the Cr 2p signal is still visible (Figure 83), so much 

of the surface must still be free from thick adsorbate overlayers, which is in line 

with the SEM/EDX observations. Further increasing the ODA concentration to 

500 ppm and 1000 ppm does not seem to affect the C content at the surface 

(Figure 83), which is also in line with the gravimetric and SEM/EDX analysis (vide 

supra), suggesting that more ODA merely increases the thickness of the deposit 

islands. At 2000 ppm the C surface concentration rises significantly (by about 
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15%). This is in line with the SEM/EDX findings from Figure 81, which suggest 

that the ODA concentration carried over from solution exceeds the amount of 

ODA that can be stabilised alongside the dry gum, so phase separation may take 

place and migration of ODA, ultimately adsorbing in the regions of the surface 

between the thick deposits. As the ODA will adsorb with the C18 hydrophobic tail 

pointing away from the surface this may explain the additional C 1s signal 

intensity. This would also be compatible with the observation that the Fe 2p and 

Cr 2p signals are attenuated after 2000 ppm ODA treatment, compared to 500 

ppm and 1000 ppm: the additional C18 hydrocarbon overlayer would absorb a 

significant amount of these electrons in the regions in between the gum/ODA 

deposits. 

It is important to note here that any such adsorbed ODA does not stem from 

adsorption of free ODA from solution. For the ODA concentration range 

investigated here, the difference UV-Vis spectra indicated a linear relationship 

between the intensity of the additional light absorption and the ODA 

concentration, suggesting that even at 2000 ppm there was no free ODA in the 

solutions. 

To summarise briefly, the XPS analysis based on the C 1s intensities suggests 

that two competing processes are taking place: (i) deposition of heavy gum and 

gum/ODA aggregate from solution and (ii) adsorption of released ODA in the 

otherwise nearly clean (apart perhaps from thin adsorbed hydrocarbon solvent 

molecules and adventitious contamination) substrates areas in between the thick 

carbonaceous gum/ODA islands. This mechanistic hypothesis shall now be 

examined further by looking at the photoemission intensities from the other 

elements. 

First, the N content on the surface was determined from the N 1s emission line, 

and found to be relatively higher for the low ODA concentration (0, 50, and 500 

ppm) and then strongly reduced for 1000 and 2000 ppm ODA. It should perhaps 

be noted also that the N 1s emission is quite weak for the untreated reference 

substrate (Figure 82). However, as discussed previously, the intrinsic N 1s 

emission intensity across the 316 SS surfaces was generally found to be 

extremely variable, with some areas of the substrates even exhibiting no N 1s 

emission at all, so this observation should not be overinterpreted. The high 

concentration for 0 ppm ODA must be intrinsic to the 316 SS substrate, as there 

are no other sources of N in the system. It appears that for 50 and 500 ppm ODA 

the N 1s signal intensity from the co-deposited ODA approximately cancels out 

the decrease in the N 1s substrate emission by the gum/ODA overlayer. Only 

1000 and 2000 ppm ODA lead to further attenuation of the N concentration 

(Figure 83), with the system at 2000 ppm likely attenuating the substrate signal 
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completely due to the proposed adsorption of ODA in the areas between the 

islands of gum/ODA. The low N 1s emission intensity for 1000 ppm ODA appears 

to be an outlier, as neither the C 1s nor the O 1s (see below) intensities nor any 

of the other analytical results (SEM/EDX, gravimetry) indicated a major change 

for this sample. The anomaly of this result may be related to the abovementioned 

patchiness of the N distribution in the substrate, since the magnitude of the 

deviation from the trend is compatible with this. More studies would be needed to 

confirm this. 

Turning to the O concentrations (Figure 83), which were determined from the O 

1s emission intensities, they follow the same trend as the N concentrations, 

because O can stem from either adsorbed gum or the 316 SS substrate. For 0, 

50, 500 and 1000 ppm there appears to be a fairly stable O concentration due to 

a balance of additional O from gum adsorption and attenuation of the substrate 

O signal by the adsorbed gum/ODA islands. At 2000 ppm ODA, significant 

attenuation of the O 1s signal is in line with the proposed adsorption of ODA in 

the surface areas intervening the gum/ODA islands, further supporting the 

proposed model. 

Finally, the Fe concentration (determined from the Fe 2p emission) is most 

attenuated for gum deposition in the presence of 0 ppm and 50 ppm ODA. For 

0 ppm this is in line with the observation of the larger number of irregularly shaped 

and thinner islands observed by SEM/EDX. It appears that 50 ppm ODA addition, 

while associated with a strong increase in adsorption (as shown by the 

gravimetry), is guiding the extra mass covering the surface into increasing the 

thickness of the gum/ODA islands, while limiting the surface area they are 

covering, perhaps by minimising the area through creating circular shapes, and 

beginning to build up thick deposit surface areas during drying as rings. This may 

explain why the Fe 2p substrate signal remains constant, even though gravimetry 

indicates a significant increase in adsorbed mass. For 500 and 1000 ppm ODA, 

it appears that this limiting effect due to morphology control by the ODA is 

maximised, leading to the exposure of more Fe emission intensity. Note in this 

context that the observed Fe concentrations are still small, a few % compared to 

those of C and O, so the observed variations are compatible with the variations 

in C, N and O contents. At 2000 ppm the Fe 2p signal seems to be attenuated for 

the same reason as the Cr 2p and the O 1s – ODA may adsorb in the surface 

regions between the gum/ODA islands and thereby attenuate the Fe 2p signal 

significantly. One should perhaps also keep in mind that this analysis assumes 

that no intermixing of Fe from the substrate and the overlayers can take place. It 

may well be the case that some Fe ions migrate into the overlayer to form 

compounds. Based on the available data this cannot be ruled out completely. 
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Figure 82 XPS survey spectra of immersed coupons compared to reference 

substrate. All spectra were scaled to the same arbitrary intensity of 1x106 a.u. 
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Figure 83 Elemental composition of major surface elements as a function of 

ODA concentration. Data retrieved from Figure 82. 

 

 

ODA was blended with oxidised TRF surrogates and analysed with UV-Vis. The 

resulting solutions indicated strong interaction between gum and ODA. Even at 

2000 ppm ODA, there was no free ODA in solution – all ODA appears to be bound 

to gum. The CMC point of ODA in gum-free solution was determined by DLS and 

found to be  100 ppm (w/v). Likewise, contact angle measurements show that 

ODA adsorption from gum-free solutions can take place with the associated 

changes in the hydrophobicity of the metallic substrate surfaces. SEM images 

revealed gum deposits on the order of 100 μm radius across the surface. ODA 

appears to change the morphology of these deposits into spherical/circular 

shapes, forming ultimately rings during drying. The morphology change 

minimises the area of the surface covered in gum while allowing the build-up of 

thicker overlayers in the areas where gum is adhering. EDX elemental mapping 

of the gum deposits indicated dominant composition of C and O of these deposits. 

The N signal in EDX shows that ODA is strongly associated with the deposited 

gum. XPS analysis of the elemental composition of the surface are in line with 

the proposed morphology and composition model, but appears to indicate also 

that at the highest ODA concentration (2000 ppm) phase separation between 

gum and ODA takes place during drying, with a fraction of ODA migrating and 

adsorbing in the surface regions in between the gum/ODA deposits islands. 
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These results suggest that for the investigated system the ‘deposit elimination by 

surface passivation’ vs. ‘capture and wash’ scenario may be too simplistic to 

describe the actual interactions and structure formation taking place. The main 

action of ODA in solution seems to associate with gum and possibly stabilise it 

colloidally, as in the ‘capture and wash’ model. The effect of the solubilisation 

seems to be a minimisation of the surface area of the gum colloids by forming 

spherical micellar shapes. Not predicted by ‘capture and wash’ is that these can 

deposit on the surface forming circular and ring-shape deposits of considerable 

thickness, leaving the remaining steel surface almost entirely clean. At very high 

concentrations, some ODA appears to be released on drying and covers the 

remaining steel surface as in the ‘deposit elimination by surface passivation’ 

model. However, this may or may not passivate the remaining surface against 

further gum deposition. The evidence from this study suggests that the affinity 

between gum and ODA is very high, and it may well be that the adsorbed ODA 

layer attracts additional gum, associates with it, and minimises surface coverage 

by rolling it up into 3D rather than 2D deposits.  

Based on the promising preliminary results in this chapter, further systematic 

approach was designed to better understand ODA effects on gum adsorption. In 

the next chapter, XPS will be applied much more systematically as a surface 

sensitive technique to extensively probe the surfaces and examine chemical 

speciation as a function of ODA.  
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In the previous chapters, the formulation, oxidation, characterisation of TRF 

surrogate fuel and gum, the impact of model detergent (ODA) on oxidised TRF, 

and an initial study of deposition on 316 SS surfaces have been examined. A 

mechanistic hypothesis for the detergency effect of ODA on gum was derived. To 

better understand the associated interfacial chemistry, the model system will now 

be investigated in more detail and more systematically. At the centre of this work 

will be the measurements of chemical shifts in XPS. Three series of experiments 

were carried out to gain a better understanding of the adsorption, detergency, 

and surface chemical interactions in the 316 SS-gum/TRF/ODA system. All 

experiments were performed by immersion of stainless steel coupons in TRF 

blends containing ODA, gum, ODA and gum, or none. The flow-chart scheme 

illustrated in Figure 84 summarises the performed experimental work.   

 

 

Figure 84 Colour-coded flow chart detailing the experimental design of the XPS 

work carried out in this chapter. 
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All coupons were characterised by XPS prior to immersion (i.e. Blank SS), after 

each stage of immersion in the case of ‘adsorption’ and ‘detergency’, and after 

immersion in ODA/gum/TRF solutions in the case of ‘interactions’. Each 

experiment in a sequence was carried out using the same coupon. All immersions 

were carried out at room temperature for 24 h in tightly closed vials. As illustrated 

in Figure 84, blank SS coupons, ODA, and gum were key components in the 

experimental design. Consequently, it was vital to obtain XPS data of these 

components as a reference for understanding their surface chemistry and 

chemical states prior to any immersion or interaction processes. 

 

 

 

As discussed in the literature review (section 2.3), grade 316 stainless steel 

(316 SS) was chosen to be the model substrate material. Since the main 

objective of the research was to understand adsorption behaviour, it was critical 

to ensure realistic bonding and adsorption capacity of the model substrate. 

Various studies have demonstrated that surface treatment processes such as grit 

blasting (mechanical), acid etching, or plasma treating (chemical) can contribute 

to surface free energy, by increasing surface area, and consequently result in 

more adsorption, especially on surfaces with μm scale roughness. (156, 193) As 

discussed and illustrated in chapter 3.5.2, the established polishing method 

significantly decreased surface roughness to less than 1% of the value for the 

untreated (as received) coupon, from 1.15 to 0.01 μm. The as received (denoted 

in this chapter as ‘unpolished’) stainless steel coupons had been grit blasted and 

glass bead finished by the manufacturer (RCSL corrosion monitoring). Wide 

range XPS survey scans were collected for two reference coupons before and 

after the in-house mirror-polishing, as per the parameters in Table 33. This 

allowed for better quantification of changes in surface elemental composition as 

a function of surface roughness. Both coupons were kept as references and were 

never used as part of any immersion study during this project.  

Table 33 XPS scanning parameters used to analyse the surface of the reference 

coupons.  

Scan range 
Pass energy 

(eV) 

Dwell time 

(s) 

Step size 

(eV) 

Number of 

scans 

Survey 100 0.1 1 1 
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Figure 85 and Figure 86 show the survey spectra and elemental compositions of 

the unpolished and polished reference coupons. 

 

Figure 85 Survey spectra of reference stainless steel coupons (unpolished vs  

polished), showing significant differences in iron and chromium intensities. 

Spectra were scaled to the same arbitrary maximum intensity (37500 a.u.). 

 

For easier comparison, a table showing changes in composition for each element 

was visualised as a bar chart in Figure 86. It can be easily seen that polishing the 

surface has increased the Cr (Cr 2p3/2) and iron (Fe 2p3/2) emission intensities; in 

contrast, the unpolished surface mainly consisted of adventitious C, N, O, and Si. 

Similar observations for untreated 316 SS have been reported previously. (156) 

As in the present case, Si (Si 2p) was present in a relatively high concentration 
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on both unpolished and polished coupons (3.07 at% and 1.35 at%, respectively). 

These Si deposits are likely the results of the glass bead finishing and the use of 

silicon carbide papers during polishing. Although more than 1 at% of sodium 

(Na 1s) was detected on the surface of the unpolished coupon, this was likely 

due to surface contamination. Besides the Na 1s peak at 1072 eV, Na was also 

evident through an intense Auger peak (Na KLL) at 497 eV. (146) In line with 

being a surface contaminant, polishing the coupons removed all Na 

contamination.  

 

 

Figure 86 Surface elemental composition of as received vs treated coupons, as 

calculated from survey spectra. The table at the top right corner compares 

compositional changes in at% using directional icons (green - higher vs 

red - lower) for each element across the two measured coupons. 

 

Prior to embarking onto detailed analysis and discussion of the high-resolution 

spectra, it was sensible to estimate the probing depth (or signal escape depth) of 

the analysis. This allows for more meaningful interpretation of the acquired data 

and establishes an understanding of the binding energies and chemical 

interactions at the interface. As mentioned in chapter 3.4.2, emitted 

photoelectrons come from the upper 5 nm of the surface. (144) Consequently, 

probing the solid-liquid interactions at the interface by XPS requires adsorbed, or 

adventitious, layers of less than a few nm thickness. The carbon (C 1s) layer 

thickness was calculated as per the following estimation method proposed in 

(194): 



121 
 
Equation 14 

𝑑 =  −𝐶1𝑠,𝐶 cos 𝜃 ln (1 −  
𝑥

100
)  

 

Where d  is layer thickness in nm, C 1s,C  is carbon effective attenuation length in 

the adventitious layer, approximately 3 nm (156),   is electron take-off angle, 

which was 0° (bulk angle), and x is the elemental composition of carbon within 

the sample in at%.  

Using the above equation and the data tabulated in Figure 86, the adventitious 

carbon layer thickness for the unpolished and polished coupons was estimated 

to be 3.3 and 1.4 nm, respectively. In comparison, superior treatment methods 

such as plasma cleaning was able to decrease adventitious carbon layer from 

4.5 nm (as received) to 0.6 nm (treated for 5 min) on similar substrate’s material. 

(156) On the other hand, the oxide (O 1s) adventitious layer on metal substrates 

was thoroughly reviewed in (195). It was concluded that in XPS applications, 

metal oxides can be easily distinguished from other oxygen species by the peak 

around  530 eV. Moreover, aerobic oxidation of metallic surfaces at room 

temperature and atmospheric pressure, which is the case in the present work, 

typically results in a maximum layer thickness of approximately 2 nm. (196-198) 

By linking the above calculated thicknesses to the reproducibility studies 

discussed in chapter 3.5.3, it was estimated that the thickness of the combined 

adventitious carbon and oxide layers, on all clean substrates used for the present 

work, was approximately 3 – 4 nm.  

High-resolution spectra were acquired for the main surface elements, namely 

carbon, nitrogen, oxygen, and iron (2p 3/2). This set of elements was covered 

throughout the subsequent sections as they regularly make up 90 - 95% of all 

examined surfaces. XPS measurements were performed as per the instrumental 

parameters described in Table 21 (chapter 3.5.2.3), with a change in pass energy 

and dwell time to 30 eV and 0.2 seconds, respectively. Moreover, due to the 

criticality and importance of obtaining reliable binding energy values and 

chemical states of nitrogen (N 1s) species on the surface, N 1s spectra were 

collected at a pass energy of 50 eV to improve the signal to noise ratio.   

Carbon (C 1s) spectra were collected over the range from 270 – 300 eV and the 

binding energy scale was calibrated to the aliphatic C-C peak component at 

285.0 eV. (109, 110) Adventitious carbon species were deconvoluted into three 

main peaks, namely C-C, C-O, and C=O for both polished and unpolished 

coupons. Such species are commonly found on metallic surfaces. (156, 199-201) 

Their relative abundance, however, may vary depending on the history and state 

of the sample. Adventitious hydrocarbon from the atmosphere reacts almost 
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instantaneously with oxygen and H2O molecules, resulting in oxidised carbon 

species, C-O. (199) Concentration of C-O species were found to be more than 

doubled at the unpolished surface, which suggests that adventitious hydrocarbon 

species on rough surfaces are more susceptible to oxidation reactions. In 

smoother surfaces, however, metallic species are more exposed to the 

atmosphere and thus more metal oxides are typically found. (195) Correlation 

between C-O (C 1s) and hydroxides (OH, O 1s) levels in the unpolished sample 

was found to be in good agreement with the aforementioned statements. In the 

case of the polished coupon, significantly higher content of metal oxides was 

found on the surface. Table 34 lists the binding energies, intensities, and at% for 

each component deconvoluted from the carbon (C 1s) and oxygen (O 1s) spectra, 

followed by XPS spectra (Figure 87). 

 

Table 34 C 1s and O 1s XPS core level binding energies, FWHM, intensities, and 

composition of the reference coupons. 

 Unpolished coupon Polished coupon 

C 1s 

Species B.E 

(eV) 

FWHM Peak 

area 

at% B.E 

(eV) 

FWHM Peak 

area 

at% 

C-C 285.0 1.4 301.33 50.12 285.0 1.1 201.85 70.03 

C-O 286.0 1.8 237.29 39.47 286.5 1.3 50.83 17.64 

C=O 288.8 1.7 62.62 10.41 288.6 2.0 35.57 12.34 

O 1s 

Metal 

oxides 
529.9 1.3 3.47 1.82 530.1 1.2 125.22 38.26 

OH 532.0 1.9 127.01 66.60 -- -- -- -- 

SiO2 532.9 2.2 60.22 31.58 -- -- -- -- 

Na KLL 536.5 2.5 N/A* N/A* -- -- -- -- 

C-O -- -- -- -- 531.5 1.9 146.39 44.73 

C=O -- -- -- -- 532.9 2.0 55.66 17.01 

* Na KLL Auger peak overlapping with O 1s peaks was given RSF value of 0; as it does not 
contain any oxygen atoms and thus should not be calculated as part of the O 1s spectra. -- 
Species not found. 
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Figure 87 C 1s (left) and O 1s (right) XPS high-resolution spectra showing 

chemical species on the surfaces of the reference coupons  

(unpolished – top vs polished – bottom). 

 

It can be seen that polishing the surface has resulted in a totally different surface 

composition, especially for oxygen species. Addressing the O 1s spectra (Figure 

87, right), all peaks were fitted to Lorentzian function line shape, LF(1,1,25,280). 

The peak at the lower B.E value of  530 eV is characteristic of metal oxides 

species (O2-). (131, 202, 203) The massive increase in content (1.82 vs 38.26 

at%) was attributed to mechanical polishing, which exposed core metal surface 

to atmosphere resulting in an instantaneous formation and adsorption of the oxide 

layer. (129, 195) The peak at B.E  532 eV in the unpolished spectra was 

assigned to hydroxide species (OH) resulting from adventitious hydrocarbon on 

the surface. (199, 202, 204, 205) The polished sample showed no evidence of 

hydroxide species on the surface. The C-O and C=O (O 1s) on the polished 

surface are attributed to the adventitious hydrocarbon layer commonly found on 

metallic surfaces. (156, 199-201) Moving towards higher B.E, the peak at 532.9 

eV was assigned to silicon oxide and C=O in the unpolished and polished spectra, 

respectively. (206) Although both species had the same centroid energies, 

considerable concentration of elemental silicon (Si 2p) was found on the 

unpolished surface which in turn contributed to the formation of silicon oxides 
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(SiO2). The assignment of SiO2 peak was verified by calculating the ratio of silicon 

to oxygen (i.e. Si 2p/SiO2) which was found to be 0.50 (1:2), confirming the 

expected stoichiometry of SiO2 species. However, it could very well be that the 

C=O and the SiO2 peaks are overlapping at the same centroid energy, especially 

that C=O environments were clearly evident in the C 1s spectrum. Finally, the 

peak located at 536.5 eV in the unpolished sample was assigned to sodium Auger 

peak (Na KLL). (146) The sodium peak disappeared completely after polishing, 

indicating contamination removal (Figure 87, right).  

Moving on to the assignments of the C 1s spectra (Figure 87, left), all peaks were 

fitted to Gaussian-Lorentzian line shape, GL(30). The peak at the lowest B.E 

(285.0 eV) is conventionally assigned to adventitious carbon in XPS applications 

of polymeric and hydrocarbon materials. This aliphatic C-C peak was used as a 

charging reference to calibrate the B.E scale. In both reference coupons, the 

peaks at  286 and  288.7 eV were assigned to oxidised hydrocarbon species, 

C-O and C=O, respectively. (156, 199-201) However, the concentration of C-O 

species was found to be significantly higher in the unpolished sample. One 

possible explanation is that it might be a combination of C-O and C-N peaks; 

which both were reported at B.E  286 eV. (146, 207) Another explanation is that 

polar hydrocarbon, C-O in this case, may easily deposit in the valleys of rough 

surfaces. As shown in chapter 3.5.2.2, average of maximum valley depth values 

(Rv) and average maximum profile heights (Rt) for the unpolished reference were 

3.52 and 9.78 μm, respectively. Whereas the average values of the three polished 

coupons were 0.04 and 0.12 μm for Rv and Rt respectively. Such significant 

reduction in surface valleys depth has resulted in more surface area for non-polar 

hydrocarbons to be better adsorbed. (156, 193) Concentration of aliphatic C-C 

has increased by 40% following sample treatment. When high concentration of 

such long chain molecules are adsorbed onto the uppermost layers of the 

surface, lesser content of smaller species (e.g. C-O) will be able to penetrate to 

deeper layers. Figure 88 illustrates the hierarchy of layers on metallic substrates 

based on surface free energy. (195) 
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Figure 88 Schematic representation of surface layers on metallic substrates 

adapted from (156). Comments between brackets refer to the present system. 

 

Iron (Fe 2p) was in the B.E window from 690 – 740 eV. Although metals are 

typically fitted into Doniach-Sunjic line shape, all Fe 2p peaks in this work were 

fitted to Gaussian-Lorentzian line shape, GL(30), for simplicity. The Fe 2p3/2 peak, 

typically 705 – 715 eV, was used for analysis and quantification. (146) Moreover, 

it is important to establish that the fitting method applied on all Fe 2p3/2 peaks 

throughout this PhD followed the technique of deconvoluting each oxidation state 

into a single peak (132, 204, 208, 209), in contrast to splitting the Fe2+ and Fe3+ 

peaks into multiplets (210). As shown in Figure 86, the concentration of Fe 2p on 

the surface of the unpolished reference was at minimal (0.1 at%) and therefore 

high-resolution spectra did not produce any quantifiable features (Figure 89, left). 

Iron content on the treated surface, however, was significantly higher as a result 

of mechanical polishing (6.9 at%). Fe 2p3/2 region was deconvoluted into two 

main peaks, namely metallic Fe (Fe0) at B.E  707.1 eV (FWHM 1.2, at% 16.47) 

and iron oxide Fe2O3 (Fe3+) at B.E  710.9 eV (FWHM 3.9, at% 83.53). The 

difference in oxidation state contributes to the shift towards higher binding energy, 

where more electrons are found. Although Fe 2p spectra are conventionally 

attributed to three oxidation states Fe0, Fe3+, and Fe2+, it was believed that the 

Fe2+ peak arising from this sample was much weaker than the Fe3+ peak due to 

high concentration of iron oxide (Fe2O3) on the surface. Figure 89 shows the Fe 

2p3/2 high-resolution spectra for reference coupons. 
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Figure 89 XPS high-resolution spectra of iron (Fe 2p) for the unpolished vs 

polished reference coupons, scaled to the same arbitrary intensity (4500 a.u.). 

 

Addressing the nitrogen (N 1s) spectra, data were collected over the energy 

range from 395 – 415 eV for reference coupons and peaks were fitted with 

Gaussian-Lorentzian line shape, GL(30). For both references, the peak at B.E  

400 eV was assigned as ‘adsorbed N2’ which corresponds to nitrogen species 

adsorbed onto stainless steel surfaces. The exact chemical state, however, was 

ambiguous and challenging to identify, especially in the unpolished sample. Since 

surface elemental composition of iron was at minimal, it seems possible that the 

detected nitrogen was associated with the adventitious carbon layer (i.e. C-N), 

not the metal bulk. (211) This correlates with the considerable concentration of 

C-O/C-N found on the unpolished reference (Figure 87, top left). Comparable 

studies have attributed the peak at 400 ± 0.5 eV to anionic nitrogen in nitro 

compounds such as NO- and NO2
-. (124, 208, 212) However, such species would 

typically result in another characteristic feature at slightly higher B.E  

404 – 406 eV, which was not the case in here (Figure 90, left). (36) Organic 

nitrogen compounds such as alkylamines (C-NH2) were also reported to be found 

at B.E  400 eV. (86, 111) Yet, no such species were believed to be on the 

surface of the unpolished substrate. The peak at the lower B.E (397.5 eV) in the 

polished reference, however, was arising from nitrogen species bonded to 

metallic iron, denoted as ‘Fe-N’ in this work. (123, 124, 157)   
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Figure 90 XPS high-resolution spectra of nitrogen (N 1s) for the unpolished vs 

polished reference coupons, scaled to the same arbitrary intensity (1500 a.u.). 

 

The fact that the Fe-N peak was only found in the polished substrate correlates 

well with the composition and chemical species found on the surface, namely  

Fe 2p3/2, Cr 2p3/2, and Fe2O3 (Figure 86 and Figure 89). In other words, polishing 

the surface has indeed exposed more of the bulk metal (Figure 88), resulting in 

a totally different surface chemistry. Table 35 compares the centroid energies, 

FWHM, intensities, and at% of the assigned peaks. 

 

Table 35 N 1s XPS core level binding energies, FWHM, intensities, and 

composition of the reference coupons 

 Unpolished coupon Polished coupon 

Species 
B.E 

(eV) 
FWHM 

Peak 

area 
at% 

B.E 

(eV) 
FWHM 

Peak 

area 
at% 

Ads. N2 400.5 2.4 40.84 100 400.4 2.2 10.88 71.12 

Fe-N --* -- -- -- 397.5 2.1 4.42 28.88 

* -- Species not found.  
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The data shown in Figure 86 and Figure 90, as well as the cited literature, 

indicated that nitrogen is an integral component of the stainless steel bulk, not 

only the surface. Furthermore, by looking into stainless steel manufacturing 

processes, it was found that introducing inert gases such as argon and nitrogen 

is an essential stage of the process which aids to hinder undesirable aerobic 

oxidation. One conventional application of purging nitrogen gas into the melt is to 

enhance performance properties such as strength and corrosion resistance. 

(213, 214) Other motivations to purge nitrogen, or nitrogen containing gases, 

include cost effectiveness and producing nickel-free stainless steel, by 

substituting nickel with nitrogen to prevent contact dermatitis from nickel. (215) 

Nevertheless, as part of the reproducibility study conducted for this work (Figure 

44 and Figure 47), it was well established that nitrogen content across the 

examined stainless steel substrates was non-uniformly distributed. Figure 91 

depicts our understanding of how nitrogen is distributed on the SS surfaces.  

 

 

Figure 91 Visual representation of nitrogen island (green) on stainless steel 

substrates (grey), at micrometre scale. 

 

 

XPS data of pure ODA were acquired with an EnviroESCA™ electron 

spectrometer (SPECS™ Surface Nano Analysis GmbH) under near ambient 

pressure (NAP-XPS). The sample was manually pressed into a pellet and 

measurements were conducted in an analysis chamber pressure of 9 mbar. High 

purity Argon (Ar 4.8, ≥ 99.998%) was used at a flow rate of 1 ml/min to 

compensate for sample charging. High-resolution XPS spectra of carbon (C 1s) 

and nitrogen (N 1s) were collected at analysis windows of 275 – 300 eV and 

394  – 410 eV, respectively. C 1s peaks were fitted to Lorentzian function line 

shape, LF(1,1,25,280); as they were too narrow for the conventional GL(30). 

Pass energy, dwell time, and step size were kept at 50 eV, 0.1 s, and 0.1 eV 

respectively for both elements. Number of scans was increased from 4 (C 1s) to 

25 (N 1s) to enhance signal to noise ratio. The following figure shows real images 

of the analysed ODA pellet inside the analysis chamber. 
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Figure 92 High-resolution images taken using the digital microscope cameras 

fitted within the EnviroESCA™ of a) side-view showing analyser nozzle, ODA 

pellet, and specimen stub (top-middle-bottom), b) top angle-view of the sample, 

and c) scanned site indicated by the red laser point. 

 

Addressing the C 1s spectra, data were deconvoluted into four peaks namely 

aliphatic C-C, C-N, C-O, and COOH. (86) The area of the peak arising from the 

polar head (C-NH2) was constrained to a ratio of 1/17 from the aliphatic C-C peak. 

FWHM of C-N, C-O, and COOH peaks was constrained to 0.8 – 1.2. Table 36 

lists the B.E values, FWHM, peak areas, and at% of the assigned peaks. 

Table 36 C 1s deconvolution parameters of pure ODA XPS spectra. 

Species B.E (eV) FWHM Peak area Conc. (at%) 

Aliphatic C-C 285.0 1.2 61.79 89.56 

C-N 286.0 0.8 3.63 5.27 

C-O 287.1 1.2 2.03 2.94 

COOH 288.8 1.2 1.55 2.24 

 

Although ODA is solely carbon and nitrogen (and undetectable H), it is well 

established that ODA and similar long chain alkylamines (C12  – C18) undergo 

carbamation process once exposed to atmospheric CO2, even at room 

temperature. (86, 89, 216) The chemical reaction is reversible, depending on the 

presence of CO2, as per the equation proposed in (86).  The reaction, however, 

is time-dependent and only prolonged exposure of CO2 may permanently 

produce alkyl carbamates (R-NH-COOH). (86, 216)  

 

 

 

In addition to purging the analysis chamber with inert gas, extra measures were 

taken to maintain minimal exposure time when analysing pure ODA for this work. 
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Thus, it was believed that the collected XPS spectra was of ODA although traces 

of C-O and COOH environments were detected on the surface.  

 

Figure 93 XPS high-resolution spectra of the carbon C 1s (left) and nitrogen 

N 1s (right) regions for pure ODA. 

 

Nitrogen XPS spectra were deconvoluted into two main peaks, C-NH2 arising 

from the amine head group at 399.3 eV and gas phase nitrogen at 405.5 eV. (86, 

148, 217) The FWHM of these peaks was 1.7 and 0.8 eV, respectively. In 

previous XPS studies of alkylamine systems, the C-NH2 peak was reported at the 

same B.E value of 399.3 eV for gold nanoparticles capped with dodecylamine 

(DA, C12) and ODA (93), at 399.4 eV (FWHM 1.8) for pure ODA (86), 399.5 eV 

for solid DA (96), 399.0 eV for primary amines (128), and in the range of 399.1 – 

399.6 eV for aminosiloxane and aminothiolates deposited on silicon and gold 

substrates, respectively (113). On the other hand, protonated amine species 

(-NH3
+) were reported at B.Es of 401.1 eV (90), 401.2 eV (93), 401.3 eV (86), 

401.9 eV (112), and in the range of 400.9 – 401.7 eV as reported in (113). 

Nevertheless, the N 1s spectra in the present study never featured multiple peaks 

within the reported range, indicating that positively charged amine groups were 

not formed on the surface. However, due to the carbamate species found on the 

surface, nitrogen to carbon ratio, C-NH2 (N 1s) to C-C (C 1s), was found to be 

approximately 2%.  
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An attempt was made to better quantify carbamate species on the surface by 

collecting oxygen (O 1s) high-resolution XPS spectra of pure ODA. However, no 

quantifiable features were attained and thus data was not included in this section.  

 

 

The surface chemistry of the synthesised gum was probed with NAP-XPS on the 

EnviroESCA™, as per the instrumental parameters detailed in 6.2.2. Samples 

were smeared onto a TAM-cleaned, polished stainless steel coupon (Figure 94) 

and measured for survey, carbon (C 1s), and oxygen (O 1s). Table 37 lists the 

XPS scanning parameters applied. The elemental composition from the survey 

scan (Figure A 7) showed that the surface of the synthesised gum was made up 

of carbon and oxygen in the ratio of  16:1 (94.0 and 6.0 at% respectively). 

Purging gas (Ar) as well as traces of gas phase nitrogen and oxygen were also 

evident in the spectra, but did not significantly affect sample’s composition or 

quantification. More importantly, no indications of the substrate’s bulk (i.e. Fe, Cr, 

or metal oxides) were detected in the spectra, which confirms that the measured 

sample was purely gum.  

 

Figure 94 Digital microscope images of the analysed sample inside the analysis 

chamber showing a) side-view of analyser nozzle, SS coupon, and specimen 

stub (top-middle-bottom), b and c) top angle-views of the analysed sample 

showing thick, polymeric gum and nozzle reflection on the polished substrate. 

 

Table 37 XPS scanning parameters used to investigate the surface of 

synthesised gum. 

Scan range 
Pass energy 

(eV) 

Dwell time 

(s) 

Step size 

(eV) 

Number of 

scans 

Survey 100 0.1 1 1 

C 1s 30 0.1 0.1 4 

O 1s 30 0.1 0.1 4 
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C 1s spectra were deconvoluted into three main peaks, aliphatic C-C at 285.0 

eV, C-O at 286.4 eV, and C=O at 287.8 eV. (36, 146, 201, 211) By comparing 

aliphatic C-C peak area of ODA to that of gum (Table 36 and Table 38), it was 

estimated that gum molecules on the surface had a chain length of C16, which 

correlates with the ratio of carbon to oxygen calculated from survey scan. O 1s 

spectra, on the other hand, were fitted by Lorentzian line shapes, LF(1,1,25,280) 

and deconvoluted into C=O at 532.5 eV and OH at 533.4 eV. (36, 112, 128, 129) 

The two chemical groups assigned in the O 1s spectra correlate with the ATR-

FTIR assignments of carbonyl (C=O) and hydroxyl (OH) vibration stretch 

observed at 1707 cm-1 and 3446 cm-1, respectively (Figure 62 and Figure 63).  

 

 

Figure 95 XPS high-resolution spectra of the carbon C 1s (left) and oxygen 

O 1s (right) regions for the synthesised gum. 
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Table 38 Carbon (C 1s) and oxygen (O 1s) core level XPS binding energies, 

FWHM, peak areas, and concentration of species found on tshe surface on the 

surface of the analysed gum sample.  

 C 1s O 1s 

Species 
B.E 

(eV) 
FWHM 

Peak 

area 
at% 

B.E 

(eV) 
FWHM 

Peak 

area 
at% 

C-C 285.0 1.1 54.46 80.80 --* -- -- -- 

C-O 286.4 1.1 7.70 11.42 -- -- -- -- 

C=O 287.8 1.1 5.24 7.78 532.5 1.2 8.73 65.05 

OH -- -- -- -- 533.4 1.5 3.91 29.11 

* -- Species not found. 

 

 

This section is devoted to analysing the immersion experiments as per the 

experimental design summarised in Figure 84. XPS measurements of stage one 

(i.e. blank SS) and two (i.e. immersion in 2000 ppm ODA or gum) were conducted 

on the EnviroESCA™, whereas stage three (i.e. immersion in 1000 ppm ODA, 

gum, or in neat TRF) were measured on a conventional ultrahigh vacuum (UHV) 

XPS (due to an unforeseen malfunction in the EnviroESCA). Full explanation of 

experimental conditions and data analysis procedures for accurate quantification 

can be found in Appendix 3. Since different XPS instruments were utilised, 

scanning parameters were optimised for each instrument as per Table 39. 

Nitrogen (N 1s) high-resolution scans were further optimised to reduce signal to 

noise ratio and consequently improve the collected data.  
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Table 39 XPS scanning parameters used throughout all measurements 

conducted as part of the adsorption and detergency studies for this chapter.  

Scan 

range 

Pass energy 

(eV) 

Dwell time 

(s) 

Step size 

(eV) 

Number 

of scans 

Analysis 

window (eV) 

EnviroESCA 

Survey 100 0.1 1 1 -3 – 1387 

C 1s 30 0.1 0.1 4 275 – 300 

N 1s 50 0.1 0.1 25 394 – 410 

O 1s 30 0.1 0.1 4 520 – 540 

Fe 2p 30 0.1 0.1 4 695 – 735 

UHV-XPS* 

Survey 50 0.2 0.5 1 -3 – 1387 

C 1s 50 0.2 0.1 4 275 – 300 

N 1s 50 0.2 0.1 16 or 32 385 – 420 

O 1s 50 0.2 0.1 4 520 – 540 

Fe 2p 50 0.2 0.1 4 695 – 735 

* Charging correction was performed using ions flood gun at a moderate 2 eV energy, 25 μA 
electron emission, and a filament current of 2.1 A.  

 

It is also important to mention that since ODA and gum molecules are 

predominantly carbon-containing species, data from C 1s high-resolution spectra 

were extensively analysed in the following sections. Trends and observations 

from other elements complementing the C 1s data were also discussed.  

 

 

In these experiments, the ‘stick and eliminate’ hypothesis was investigated by 

deliberately adsorbing ODA molecules onto a stainless steel substrate via 

immersion in a TRF solution containing high concentration of ODA (2000 ppm 

w/v) for 24 h. The same substrate was then immersed in a TRF solution 

containing 1000 ppm of gum (w/v) to examine the elimination process proposed 

in literature. This experiment was titled as ‘ODA in gum’ throughout this chapter. 

To further validate the findings, a complementary experiment was conducted 

addressing the behaviour of adsorbed ODA in neat TRF solutions. Thus, another 
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stainless steel coupon was immersed in ODA/TRF solution of the same high 

concentration and then immersed in a neat TRF solution. This experiment was 

titled as ‘ODA in neat TRF’ throughout this chapter. Such work should set the 

scene to answer the fundamental dilemma of whether detergents remain 

adsorbed onto metal surfaces in fuel systems, as the hypothesis proposes, or 

they would dissolve and migrate from the surface.  

 

 

Analysis of survey scans revealed consistent surface elemental composition, 

namely C, N, O, Cr, Fe, F, Ca, and Na across all immersion stages. Calcium (Ca 

2p) species were found to be present in minimal concentrations of 0.5 at% of the 

surface. Sodium (Na 1s) species, however, were found at a concentration of 

approximately 3 at% on the gum-covered sample, which was measured in the 

UHV XPS. Consequent experiments showed similar concentration of sodium on 

the surfaces of all samples stored during the transition between the EnviroESCA 

and UHV. Therefore, it was considered an extrinsic contamination and only C, N, 

O, Cr, and Fe were considered to be major surface elements. 

Addressing elemental composition from survey spectra (Figure 96), immersing 

the substrate in 2000 ppm ODA resulted in a 16.8 at% increase in carbon (C 1s) 

contents on the surface as well as a 1.7 at% increase in nitrogen (N 1s) contents. 

On the other hand, oxygen (O 1s) and iron (Fe 2p3/2) species were reduced by 

12.5 and 3.07 at% respectively. The formation of carbon and nitrogen in 

conjunction with the reduction in oxygen and iron levels, which are mainly bulk 

components, were all a positive indication of a newly-formed ODA layer on the 

surface. However, C:N ratio, oxidation states, and other chemical information 

were yet to be verified by the high-resolution spectra. By linking this experiment 

to the hypothesis in question, one would expect the surface to withhold the same 

compositional ratios once exposed to a gum-containing environment to eliminate 

deposition, or at least a significant reduction in iron levels which signifies gum 

deposition on top of the ODA layer. Yet, data from post-immersion experiment 

(1000 ppm gum) revealed that iron (Fe 2p) content has increased by 1.6 at% and 

nitrogen (N 1s) levels decreased to levels below that of the blank, which suggests 

no ODA layer on the surface.  
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Figure 96 Composition of major surface elements from survey spectra of ‘ODA 

in gum’ experiment. Legend is displayed in order of immersion. 

 

Peaks from high-resolution spectra were deconvoluted and assigned as per 

Table 40. Sodium contamination was evident in the N 1s and O 1s spectra of the 

gum-immersed sample. Upon deconvoluting all peaks, it was believed the 

contaminant was in the form of sodium nitrate (NaNO3) based on the 

characteristic peak at B.E  407.0 eV. Therefore, some peaks were challenging 

to identify and could not be assigned. Yet, we can confirm that the integrity of this 

work was not compromised as a result of this contamination. 

Since at% does not account for intensity changes across different samples, 

chemical changes as a function of immersion were quantified as a percentage of 

change (%change) using peak areas, as per the following equation.  

Equation 15 

%𝑐ℎ𝑎𝑛𝑔𝑒 = [
𝐴 − 𝐴0

𝐴0
] ∗ 100  

Where: A0 = Peak area before immersion and A = Peak area after immersion.  

The proposed equation allowed for a meaningful comparison between 

reoccurring chemical species in different samples. By examining the C 1s high-

resolution spectra (Figure 97), it was found that aliphatic C-C composition has 

increased by 16.5% (Table 41) following immersion in ODA. Moreover, The peak 

at B.E 285.6 eV (FWHM 0.9, at% 3.46) was assigned to C-N environment arising 

from the ODA amine head group (C-NH2), which was comparable in 
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characteristics to the C-NH2 observed at B.E 286.0 eV in pure ODA (Table 36). 

Findings correlate with the literature cited in 6.2.2 for alkylamines and ODA 

adsorption. Moreover, nitrogen to carbon ratio, C-NH2 (N 1s) / C-C (C 1s), was 

found to be 5.54%, which is close to the ratio of N:C in ODA molecules (5.56%).  

Table 40 XPS core level B.E for all species assigned in the high-resolution 

spectra, showing actual shifts in reoccurring peaks across all stages of the 

adsorption and detergency studies. Error margin in B.E was estimated to be 

± 0.3 eV.  

Element Species 
Position 

(eV) 

Shift 

(eV) 
References 

C 1s 

C-C/C-H 285.0 N/A* (109, 110) 

C-N 285.85 (± 0.25) (146, 207) 

C-O 286.4 (± 0.3) (156, 199-

201) C=O 288.55 (± 0.15) 

N 1s 

Adsorbed N2 399.95 (± 0.15) (211) 

C-NH2 399.5 (± 0.4) (86, 111) 

FeN 397.65 (± 0.95) 
(123, 124, 

157) 

NO- 402.2 --+ (124, 208, 

212) NO3
- 407.0 --+ 

O 1s 

Metal oxides 529.75 (± 0.25) 
(131, 202, 

203) 

C-O 531.2 (± 0.6) 
(156, 199-

201) 

NO3
- 532.2 --+ 

(124, 208, 

212) 

C=O/C-OH 532.75 (± 0.55) 
(156, 199-

201) 

Na KLL 536.05 (± 0.55) (146) 

Fe 2p 

Fe metal 706.8 (± 0.3) 

(132, 204, 

208-210) 
FeO 710.25 (± 0.15) 

Fe2O3 711.4 (± 0.4) 

* Position used for B.E scale calibration. + -- Contamination. 
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Furthermore, a clear shift in B.E was observed in the O 1s spectra following ODA 

immersion, especially for the C-O and C=O species (-0.4 and -0.8 eV, 

respectively). Typically, negative shifts in B.E indicate electrons gain within the 

studied system. Number of studies have been conducted to explore adsorption 

behaviour of organic molecules onto metallic substrates. (130, 195, 218) It was 

suggested that ‘back bonding’ via electron donation from the metal may 

contribute to the extent of adsorption stability. However, no comparable shift was 

observed in the Fe 2p spectra (Figure 97). Thus, it was believed that ODA was 

adsorbed onto the substrate via bonding to the oxide layers sitting on top of the 

bulk material (Figure 88). The central peak at  400 eV (N 1s) exhibited an 

increase in intensity of ca. 14% due to ODA adsorption. This increase was 

accompanied by an attenuation in total iron (Fe 2p) and metal oxide (O 1s) 

contents by approximately 25% and 27% respectively, which agrees with the 

trends observed in C 1s and N 1s spectra. Analyses followed from gum-

immersion stage (i.e. +1000 ppm gum), revealed disappearance of the C-N (C 

1s) peak as well as a clear attenuation in nitrogen (N 1s) contents. Moreover, by 

overlaying the C 1s spectral profiles, it can be clearly seen that the intensity of 

the C-O and C=O species were still higher than that of the two previous stages 

(Figure 98). Nevertheless, when comparing intensities of the aliphatic C-C 

species, a slight increase was found. Observations suggest that gum molecules 

have displaced ODA on the surface to a certain extent, which explains the hazy 

layer seen on the substrate (Figure 98, c). Overall increase in carbon content was 

found to be approximately 22% (blank to +1000 ppm gum), indicating a residual 

layer on the surface. Experiments to follow where designed to address whether 

ODA has dissolved in the TRF or migrated from the surface to capture the 

dissolved gum species.  
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Table 41 C 1s core level binding energy, corrected peak area, and concentration 

(at%) as a function of immersion. ▲ and ▼ indicate change in chemical species 

compared to previous stage.  

Sample Species Position (eV) Area at% 

SS coupon 

(Blank) 

C-C/C-H 285.0 3345.67 64.20 

C-O 286.6 830.83 15.94 

C=O 288.7 1035.83 19.86 

2000 ppm ODA 

C-C/C-H 285.0 ▲3899.10 58.84 

C-N 285.6 229.27 3.46 

C-O 286.1 ▲1641.70 24.77 

C=O 288.7 ▼857.99 12.94 

1000 ppm gum 

C-C/C-H 285.0 ▲3974.14 63.26 

C-O 286.5 ▼1114.07 17.73 

C=O 288.5 ▲1193.82 19.00 
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Figure 97 C 1s, N 1s, O 1s, and Fe 2p XPS high-resolution spectra of the ‘ODA 

in gum’ experiment, as a function of immersion. Each elemental spectrum was 

scaled to the arbitrary intensity shown on their relevant figure. 
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Figure 98 Overall attenuation profile of the C 1s, N 1s, O 1s, and Fe 2p spectra 

as a function of immersion (data retrieved from Figure 97). Legend is displayed 

in order of immersion. Microscope images represent a) blank substrate, b) 

substrate after immersion in 2000 ppm ODA, and c) substrate after immersion 

in 1000 ppm gum, where a thin, hazy layer of adsorbed gum was observed on 

the surface (circled in red). 
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Analysis of survey scans (Figure 99) showed comparable elemental composition 

of the blank (before) substrate to that of the previous sample (6.3.1.1). Following 

immersion in ODA/TRF solution, significant concentration of carbon (C 1s) was 

found on the surface. Nitrogen (N 1s) content also had increased, which indicates 

a thick layer of ODA. In line with this, oxygen, chromium, and iron have attenuated 

by 58%, 77%, and 64% respectively. The adsorbed ODA was visually observed 

as a white, cloudy layer on the surface (Figure 101, a). Interestingly, elemental 

composition on the surface was almost restored following neat TRF immersion. 

The substrate appeared visually cleaner as well (Figure 101, b). The XPS data 

indicate some residual ODA layer on the surface, but not much. Comparison 

between the ‘neat TRF’ sample (in blue) against the ‘2000 ppm ODA’ from the 

previous experiment (in green) showed good correlations in carbon, oxygen, and 

iron contents (46 vs 50 at%, 40 vs 39 at%, and 7.4 vs 7.5 at% respectively). 

These observations along with the relatively high concentration of nitrogen 

(1.8 at%) suggest similar adsorbed ODA layers in both cases. Further analysis of 

the high-resolution spectra could give deeper insight into the surface chemistry. 

 

 

Figure 99 Composition of major surface elements from survey spectra of ‘ODA 

in neat TRF’ experiment. Legend is displayed in order of immersion. 
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High-resolution spectra were therefore analysed as per Table 40. Following 

immersing the substrate in a 2000 ppm ODA/TRF solution, the C 1s spectra 

revealed C-N and COOH peaks at B.Es of 285.9 and 288.2 eV, respectively. 

These values are comparable to those of pure ODA (286.0 and 288.8 eV). N 1s 

spectra showed three distinctive peaks which were assigned to unreacted C-NH2 

at 396.5, C-NH2 at 399.1 eV, and NH3
+ at 400.9 eV. (86, 90, 111, 113) The distinct 

increase in aliphatic C-C concentration (Table 42), along with the observation of 

unreacted amine groups on the surface suggest that the surface contained some 

ODA in a second layer on top of the chemisorbed first layer. Furthermore, the 

carbon to nitrogen ratio was found to be very similar to what was observed for 

pure ODA, 2.2%. Similar B.E shifts as in the previous experiment were observed 

in the O 1s spectra. Metal oxides, C-O, and C=O signals all appeared chemically 

shifted by -0.9, -0.8, and -0.4 eV, respectively. In the Fe 2p spectra, a chemical 

shift of -0.9 eV was evident.  

After immersion in neat TRF in the absence of gum, C 1s spectra revealed a 

composition similar to that of the blank substrate, with an exception for the C-N 

peak at 286.1 eV. C 1s and N 1s data presented in Figure 101 showed 

comparable profiles to that of the blank sample, yet with a higher intensity. The 

overall increase in carbon content relative to the blank sample was found to be 

approximately 16%, confirming the residual ODA layer on the surface that was 

suggested based on the survey spectra. The O 1s and Fe 2p profiles were 

accordingly attenuated.  

Several studies have discussed the adsorption behavior of long-chain 

alkylamines onto various substrates. The proposed adsorption mechanisms have 

included ‘back bonding’ to metal oxide species on the surface (90, 113, 130, 195), 

or ‘protonation’, where the -NH2 head group interacts with oxygenated species 

(e.g. C=O and OH) to form hydrogen bonds. (86, 96) The former mechanism was 

experimentally observed on metal surfaces, unlike the latter where surfaces such 

as mica and silicates were considered. Although no experimental evidence for 

adsorption via protonation was found in (86), both mechanisms seem viable and 

their confirmation will require thorough, more systemic research. In the literature, 

there seems to have been an inclination to support ‘back bonding’ mechanism, 

especially on metallic substrates. For the systems investigated here, no 

experimental evidence of adsorption via protonation was found. The B.E shifts 

observed for O 1s and Fe 2p3/2 as a function of ODA immersion, along with the 

increase in aliphatic C-C and nitrogen contents, were all indicative of adsorption 

via ‘back bonding’ to metal oxides.  

 



144 
 

Table 42 C 1s core level binding energy, corrected peak area, and concentration 

(at%) as a function of immersion. ▲ and ▼ indicate change in chemical species 

compared to previous stage. 

Sample Species Position (eV) Area at% 

SS coupon 

(Blank) 

C-C/C-H 285.0 15903.50 73.60 

C-O 286.4 3058.86 14.16 

C=O 288.6 2645.04 12.24 

2000 ppm ODA 

Adventitious 

carbon 
284.15 7221.30 8.10 

C-C/C-H 285.0 ▲74064.90 83.10 

C-N 285.9 4118.01 4.62 

COOH 288.2 3720.92 4.17 

Neat TRF 

C-C/C-H 285.0 ▼19122.62 76.26 

C-N 286.1 ▼1124.41 4.48 

C-O 286.7 1872.07 7.47 

C=O 288.6 2956.51 11.79 

 



145 
 

 

Figure 100 C 1s, N 1s, O 1s, and Fe 2p XPS high-resolution spectra of the 

‘ODA in neat TRF’ experiment, as a function of immersion. Each elemental 

spectra was scaled to the arbitrary intensity shown on their relevant figure. 

 

 

 



146 
 

 

Figure 101 Overall attenuation profile of the C 1s, N 1s, O 1s, and Fe 2p 

spectra as a function of immersion (data retrieved from Figure 100). Legend is 

displayed in order of immersion. Microscope images represent a) substrate 

immersed in 2000 ppm ODA, b) substrate after immersion in neat TRF, showing 

significantly cleaner surface. 
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In these experiments, two stainless steel substrates were immersed in separate 

TRF solutions containing 2000 ppm gum each. One coupon was then immersed 

in a TRF solution containing 1000 ppm of ODA, whereas the other was immersed 

in neat TRF. The former experiment, titled as ‘gum in ODA’, was designed to 

understand gum adsorption behaviour on metallic surfaces and consequently 

ODA detergency mechanism. The latter, termed ‘gum in neat TRF’, was 

performed to gauge gum dissolution in surrogate fuel systems, without the aid of 

nitrogen-based compounds. Combining the results from both experiments will 

provide insight into the ODA detergency effects in oxidised surrogate fuels.    

 

 

Analysis of survey scans (Figure 102) showed similar surface chemical 

composition to previous experiments (6.3.1.1). The concentration of adsorbed 

gum found on the surface was, however, significantly higher than that of adsorbed 

ODA. Following gum immersion, the carbon content had increased by 67%, 

compared to 51% for ODA. Nitrogen, oxygen and iron contents all showed 

noticeable changes of -100%, -25%, and -51% respectively, due to the adsorbed 

gum layer, which can be clearly seen in Figure 104, b. It was expected that 

oxygen will show the least reduction; as the change was mainly attributed to 

attenuation in metal oxide species only (Figure 103, O 1s).  

Immersing the coupon in ODA/TRF solution reduced the carbon content by 23%. 

Visually, the coupon’s surface appeared significantly cleaner (Figure 104, c). 

However, the concentration was still higher than that of the blank sample (45 vs 

35 at%, respectively) indicating residual carbonaceous deposits on the surface. 

Analysis of the high-resolution spectra should reveal more information about the 

chemical nature (see below). The substrate was more exposed as indicated by 

the high chromium and iron emission signals, but still less than that of the blank 

sample due to the residual overlayer. The nitrogen content provides insight into 

the amount of ODA in the residual layer. The nitrogen concentration on the 

surface was found to be only slightly less than the values for the blank (1.0 vs 1.1 

at%), suggesting that not much ODA is present and indicating that the ‘elimination 

via passivation’ hypothesis for amine-based detergents is unlikely to be the cause 

for detergency. This conclusion will also be borne out by the following analysis of 

the corresponding high-resolution spectra.  
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Figure 102 Composition of major surface elements from survey spectra of ‘gum 

in ODA’ experiment. Legend is displayed in order of immersion. 

 

In the high-resolution spectra, all peaks have been fitted and assigned as per the 

literature cited in Table 40. Upon deconvoluting the C 1s spectra, significant 

increase was observed in the concentration of C-O species as a result of gum 

adsorption (Table 43). A similar increase was also observed in the C-OH peak 

from O 1s spectra, with noticeable attenuation in metal oxide and iron (Fe 2p3/2) 

levels indicating thick layers of gum on the surface (Figure 103). Moreover, the 

intensity of the aliphatic C-C and C=O (C 1s) peaks increased by 31% and 36%, 

respectively. Comparable shift of -0.5 eV was observed in the binding energies 

of O 1s and Fe 2p3/2 species, which may be indicative of electron donation to the 

metal core due to gum adsorption.  

Following the second stage immersion, oxygenated gum species in C 1s spectra 

(C-O and C=O) attenuated by 73% and 43% respectively, indicating very effective 

detergency by ODA (Figure 104). The aliphatic C-C composition, however, did 

not exhibit similar attenuation and no C-N peak was observed. To further 

investigate the passivation hypothesis, the total nitrogen content (as peak areas) 

was quantified and found to be 12% less than that of the blank sample. Moreover, 

nitrogen to carbon ratio was lower than what would be expected for ODA (1.1% 

vs 5.6% respectively) suggesting the nitrogen signal was intrinsic to the substrate, 

as previously found for the reference coupons (section 6.2.1). Consequently, all 

indications suggest that the residual carbon layer was not ODA and no 

passivation has occurred. With that being said, the data also suggest that ODA 
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interacts with the adsorbed gum molecules at their C=O sites, in a similar way 

discussed in the ‘ODA in gum’ experiment (6.3.1.1), which strengthen the 

aforementioned migration scenario.  

 

Table 43 C 1s core level binding energy, corrected peak area, and concentration 

(at%) as a function of immersion. ▲ and ▼ indicate change in chemical species 

compared to previous stage. 

Sample Species Position (eV) Area at% 

SS coupon 

(Blank) 

C-C/C-H 285.0 3275.41 59.77 

C-O 286.2 780.41 14.24 

C=O 288.5 1425.68 25.99 

2000 ppm gum 

C-C/C-H 285.0 ▲4282.56 40.96 

C-O 286.1 ▲4233.00 40.47 

C=O 288.6 ▲1943.20 18.57 

1000 ppm ODA 

C-C/C-H 285.0 ▲4876.01 68.16 

C-O 286.4 ▼1163.33 16.26 

C=O 288.5 ▼1114.83 15.58 
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Figure 103 C 1s, N 1s, O 1s, and Fe 2p XPS high-resolution spectra of the 

‘gum in ODA’ experiment, as a function of immersion. Each elemental spectra 

was scaled to the arbitrary intensity shown on their relevant figure. 
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Figure 104 Overall attenuation profile of the C 1s, N 1s, O 1s, and Fe 2p 

spectra as a function of immersion (data retrieved from Figure 103). Legend is 

displayed in order of immersion. Microscope images represent a) blank 

substrate, b) substrate after immersion in 2000 ppm gum (circled in red), and c) 

substrate after immersion in 1000 ppm ODA, showing significantly cleaner 

surface. 
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Having established the ODA detergency effects, it was crucial to understand 

whether gum has been removed solely by ODA, or if the TRF solution has also 

contributed. Analysis from the survey spectra (Figure 105) showed very similar 

and comparable trends to the gum-immersion stage in the previous sample 

(6.3.2.1). Thus, this section will mainly focus on the TRF immersion stage. Data 

showed that carbon content was attenuated by 17% (compared to 23% with 

ODA). The residual carbon concentration was also higher than that of the blank 

substrate (44 vs 33 at% respectively). The bulk elements signals increased when 

some of the gum was removed. However, both chromium and iron levels were 

found to be lower than the values before treatments. The extent in which ODA or 

TRF has contributed to the exposure of bulk elements is a crude measure of 

detergency effectiveness. The percentage of change comparing the increase in 

iron contents, as a function of ODA vs. neat TRF, was calculated and found to be 

42% and 34% respectively, suggesting higher effectiveness for ODA. Although 

the iron concentration has increased, oxygen levels (mainly arising from metal 

oxides) have slightly attenuated indicating residual gum on top of the oxides layer. 

All results taken together suggest that ODA was more effective than neat TRF in 

cleaning the surface. Very thin layers of gum was observed visually on the 

surface (Figure 107, c).  

 

 

Figure 105 Composition of major surface elements from survey spectra of ‘gum 

in neat TRF’ experiment. Legend is displayed in order of immersion. 

 



153 
 

C 1s high-resolution spectra (Figure 106) showed noticeable attenuation in the 

C-O and C=O peaks by 75% and 38% respectively (Table 44). Since ODA 

interacts with gum molecules at the C=O sites, it was expected to find lower C=O 

%change in the absence of ODA. Moreover, total carbon content (as peak areas) 

was quantified and found to be 19% higher in the case of TRF immersion, 

indicating weaker cleaning effectiveness compared to ODA.  

Turning to a discussion of these results, several studies have discussed and 

established the positive effects of nitrogen-based detergents on SI engine 

deposits. (2, 6, 8, 61) As discussed previously, the mechanistic basis for deposit 

formation and cleaning mechanisms are yet to be fully understood. (5, 17) The 

work discussed in chapter 4.3 already addressed gum formation mechanisms in 

fuel systems. It appears that the carbonyl (C=O) groups within the gum (Figure 

62) are of central importance to achieving detergency, by acting as a receptor to 

the solubilising detergent molecules. (18, 19) Findings from this work correlate 

with literature in this regard and verify the cleaning efficacy of ODA in the 

presence of gum. By comparing the C 1s overall profiles illustrated in Figure 104 

and Figure 107, we can clearly see the effects of ODA in attenuating the 

oxygenated species levels, especially C=O. Overall gum contents %change 

calculated from C 1s values in Table 43 and Table 44 were found to be -32% and 

-18% respectively, clearly underlying the efficacy of ODA vs neat TRF. In other 

words, the presence of ODA has helped in ‘lifting’ 44% more gum off the surface, 

yet with no concomitant build-up of carbon or nitrogen species.  

Table 44 C 1s core level binding energy, corrected peak area, and concentration 

(at%) as a function of immersion. ▲ and ▼ indicate change in chemical species 

compared to previous stage. 

Sample Species Position (eV) Area at% 

SS coupon 

(Blank) 

C-C/C-H 285.0 4173.62 69.81 

C-O 286.6 606.69 10.14 

C=O 288.6 1199.02 20.04 

2000 ppm gum 

C-C/C-H 285.0 ▼4026.20 38.9 

C-O 286.2 ▲3613.72 34.9 

C=O 288.4 ▲2713.75 26.2 

Neat TRF 

C-C/C-H 285.0 ▲5934.24 69.65 

C-O 286.6 ▼907.38 10.65 

C=O 288.4 ▼1679.00 19.71 
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Figure 106 C 1s, N 1s, O 1s, and Fe 2p XPS high-resolution spectra of the 

‘gum in neat TRF’ experiment, as a function of immersion. Each elemental 

spectra was scaled to the arbitrary intensity shown on their relevant figure. 
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Figure 107 Overall attenuation profile of the C 1s, N 1s, O 1s, and Fe 2p 

spectra as a function of immersion (data retrieved from Figure 106). Legend is 

displayed in order of immersion. Microscope images represent a) blank 

substrate, b) substrate after immersion in 2000 ppm gum (circled in red), and c) 

substrate after immersion in neat TRF, showing residual gum on the surface. 
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In these experiments, six different TRF solutions were prepared by adding 

various ODA concentrations, ranging from 0 to 1500 ppm, to 1000 ppm of gum 

to understand the interactions between the two components within the formulated 

surrogate fuel system. Unlike the previous studies in 6.3.1 and 6.3.2, only one 

immersion stage was performed in this part; as both ODA and gum were added 

at the same time. XPS measurements of all ‘before’ spectra were performed on 

the EnviroESCA, whereas immersed coupons were measured on the UHV-XPS. 

Correction factors were applied as per the normalisation method explained in 

Appendix 3. XPS parameters for the survey and high-resolution scans were 

identical to the parameters listed in Table 39.  

Interactions between ODA and gum were evaluated by calculating the change in 

elemental composition as a function of immersion (Figure 108). Overall change 

in carbon (C 1s) content exhibited the expected hump-effect pattern in such 

systems, where low dosage of detergent results in higher depositions. (22) 

Moreover, noticeable reduction from 12.9 to 2.1 at% was observed despite 

multiplying ODA concentration by approximately 30 folds (i.e. 50 – 1500 ppm). 

The apparent increase, however, from 0 – 50 ppm was believed to be due to 

unreacted ODA and gum species on the surface. It was also indicative that 

adsorption of gum species was obstructed by ODA molecules even at 1:4 and 

1:2 ODA to gum ratios. Only at ratios of 1:1 and above, ODA molecules were 

capable of reducing the change in carbon content to values below that of the 

100% gum sample. The reduction trend in composition change signifies the ability 

of ODA molecules to capture gum species in the bulk and consequently minimise 

their susceptibility towards adsorption. Moreover, the change of C 1s and O 1s 

signals on the surface mirrored each other as a function of ODA concentration, 

which in turn suggests strong association between ODA and gum species on the 

surface. Changes in Fe 2p content on the surface were also of significant 

importance to this argument. Data revealed that beyond 250 ppm of ODA, change 

in iron contents decreased incrementally to the point where a positive value was 

achieved, indicating a cleaner post-immersion substrate. 
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Figure 108 Change in composition of the major elements on the surface as a 

function of ODA concentration (0 – 1500 ppm w/v). Top right corner: Illustration 

of the hump-effect observed in carbon (C 1s) content on the surface. 

 

However, it is important to mention that these hypotheses are not conclusive 

without fully understanding the behaviour of C 1s and Fe 2p individual species 

such as oxygenated environments (C-O and C=O) and iron oxides (Fe3+). A 

deeper discussion of these issues will follow below in this section, linking to 

observations from high-resolution spectra. For the experiments described in this 

section, nitrogen content could not be quantified in three out of six blank coupons 

(Table 45), and thus any change in N 1s species was not attributed to ODA 
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adsorption unless other complementary data such as C:N ratio or aliphatic C-C 

increase were found to be indicative.  

 

Table 45 Concentration of major surface elements in at% before (B) and after (A) 

immersion as a function of ODA concentration (0 – 1500 ppm w/v). Higher vs  

lower values are distinguished by ▲ and ▼ respectively.  

Element 
0 50 250 500 1000 1500 

Composition (at%) 

C 1s 
B: ▼35.09 

A: ▲39.78 

▼31.31 

▲44.18 

▼29.58 

▲39.06 

▼34.26 

▲40.39 

▼33.70 

▲36.39 

▼35.43 

▲37.49 

N 1s 
▲1.05 

▼0.92 

▼0.00* 

▲0.74 

▼0.00 

▲0.98 

▼0.00 

▲1.25 

▼0.60 

▲0.88 

▲1.18 

▼0.62 

O 1s 
▲51.91 

▼42.39 

▲54.83 

▼39.51 

▲55.62 

▼44.00 

▲51.08 

▼41.76 

▲53.98 

▼46.49 

▲48.56 

▼42.98 

Cr 2p 
▼0.00 

▲0.51 

▲2.84 

▼1.84 

▲1.01 

▼0.55 

▼2.29 

▲2.34 

▼0.00 

▲0.66 

▲3.16 

▼2.47 

Fe 2p 
▲7.79 

▼6.99 

▲7.91 

▼6.11 

▲10.54 

▼7.41 

▲8.29 

▼6.51 

▲8.73 

▼8.22 

▼7.20 

▲7.82 

* Values shaded in red were not found in survey scans due to non-uniform distribution of surface 
elements.  

 

In the high-resolution spectra, raw and envelope (fitted) data of pre- and post-

immersion measurements were normalised to the same baseline and plotted 

against each other for comparison. Peak areas %change was then calculated for all 

chemical species to quantify changes on the surface as a function of  immersion. 

In all C 1s data, ‘before’ and ‘after’ spectra were deconvoluted into three main 

peaks namely aliphatic C-C at 285.0 eV, C-O at  286.5  (± 0.1 eV), and C=O at 

 288.6 (± 0.3 eV). The overall profile of carbon regions showed clear attenuation 

to the features arising from gum species (C-O and C=O), as a function of ODA 

concentration (Figure 109, left). The attenuation pattern was further 

complemented by the iron (Fe 2p) overall profile, which indicated restoration of 

iron content on the surface at higher ODA concentrations (Figure 109, right). 

Moreover, visual evidence of reduced gum adsorption was observed on 

substrates immersed in ODA-containing solutions, when compared to the 

substrate immersed in 1000 ppm gum only. The substrate immersed in 1500 ppm 

ODA is shown in Figure 110 as an example. 
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Figure 109 Left: Carbon C 1s raw and envelope data (dotted vs solid line) 

showing post-immersion (after) reduction of gum species (C-O and C=O), as a 

function of ODA concentration. Spectra scaled to arbitrary intensity of 4000 a.u. 

Right: Iron (Fe 2p3/2) data showing positive effects of ODA in restoring iron 

species on the surface to blank’s levels (before). Spectra scaled to 4750 a.u. 
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Figure 110 Digital microscope images showing the effect of 1500 ppm ODA in 

cleaning surface-adsorbed gum observed as a thin, hazy layer (circled in red). 

 

The %change in aliphatic C-C species exhibited typical hump-effect phenomena at 

50 ppm followed by a steady state at higher ODA concentrations (500, 1000, and 

1500 ppm). Beyond 50 ppm, summation of gum species (C-O and C=O) showed 

significant reduction on the surface as a function of ODA. Remarkably, this 

reduction was not associated with any build-up in aliphatic C-C species, indicating 

no ODA on the surface. In addition, more iron species from the substrate’s bulk 

(Fe2O3) were exposed to the surface as a function of ODA concentration (Figure 

111). Such observations correlate well with the trends observed in Figure 108 

and strongly suggest that ODA molecules have hindered gum adsorption via 

‘capture and wash’ mechanism while in solution, not by surface passivation. Data 

in Figure 111 were derived from Table A 7 (Appendices).  

 

Figure 111 Percentage of change in iron oxide (Fe3+), aliphatic C-C, and total 

gum (C-O and C=O) species as a function of ODA concentration. 
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The hump-effect observed at 50 ppm for aliphatic C-C species correlate well with 

the UV-Vis absorption spectra shown in Figure 73 (chapter 5.3.1). In both cases, 

it was believed that ODA molecules remained inactive at low concentrations, 

causing lower UV absorption in solution and higher adsorption on the surface. At 

sufficient concentration, however, strong association between gum and ODA was 

observed, as suggested by the SEM/EDX data in chapter 5.4.3. Although 

adsorption of long-chain alkylamines and saturated fatty acids on iron oxides 

have been well demonstrated in literature (91, 92, 219), the presence of 

oxygenated molecules has been notorious for adding to the complexity. (220) In 

a comparable study using iso-octane as a fuel model, the adsorption isotherm 

profile of a Mannich base surfactant with a C12 tail on hematite (α-Fe2O3) was 

examined with and without the presence of ethanol (C2H5OH). Results revealed 

logarithmic rise of adsorption isotherm as a function of surfactant’s concentration. 

However, the adsorption rate has significantly changed following ethanol 

addition. (92) 

 

Figure 112 Adsorption isotherm profile of the Mannich base surfactant (denoted 

as A1) with and without the presence of ethanol. (92) 

 

The aforementioned study agree with the findings that ODA would prefer to 

migrate from the surface in the presence of gum. Once in solution and at sufficient 

concentration, polar head groups (-NH2) start to interact with the gum molecules 

at the carbonyl site (C=O) in order to capture the gum via reverse micellisation.  
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In this chapter, we have employed a systematic approach to investigate the 

adsorption, detergency, and interaction behaviours of ODA as a model detergent. 

The adsorption and detergency studies summarised in Figure 84 were able to 

replicate the double-mode of action reported for gasoline detergents (i.e. keep 

clean and clean-up mechanisms), but revealed finer mechanistic details not 

captured by these simple models. XPS analysis from the adsorption study 

revealed a high tendency for ODA to adsorb onto stainless steel substrates. The 

newly formed C-N peak at B.E 285.85 (±0.25) eV along with the B.E shift 

observed in the O 1s spectra for metal oxides, C-O, and C=O indicated adsorption 

of ODA (-NH2) to metal oxides via ‘back bonding’ as previously suggested (90, 

113, 130, 195). The overall increase in carbon contents for the gum and neat TRF 

immersion experiments was found to be 22% and 16%, respectively. Analysis 

from high-resolution spectra confirmed that the 22% was mainly due to residual 

gum layer on the surface, eradicating the ‘stick and eliminate’ hypothesis.  

Results from the detergency study, on the other hand, confirmed high adsorption 

affinity of gum for stainless steel surfaces. Clear and distinct detergency effects 

of ODA were illustrated in Figure 104 when compared to Figure 107 (neat TRF). 

Overall gum contents (C 1s, as %change) were attenuated following immersion in 

ODA and neat TRF, by 32% and 18% respectively. It is hypothesised that polar 

head groups within the model detergent (-NH2) lift off the adsorbed gum 

molecules by binding to the carbonyl (C=O) sites. Although no evidence of 

hydrogen bonding (-NH2 +/C=O -) was found in this study, it was still believed 

to be the case for ODA detergency mechanism. (18, 19)  

The interactions studies revealed an interesting pattern for ODA and gum 

molecules as a function of concentration. At a low concentration of 50 ppm, a 

hump-effect was clearly observed in both the survey and high-resolution spectra 

of C 1s intensities from the adsorbed layers, indicating deposition of ODA and 

gum molecules on the surface. It was remarkable to see the steady state of 

aliphatic C-C species (Figure 111) in conjunction with the reduction in gum 

species (C-O and C=O). Such observations strongly confirm the effects of ODA 

in hindering gum adsorption while in the liquid phase via ‘capture and wash’ 

mechanism. Once ODA was attached to the gum, it was believed that ODA 

formed reverse micelles to trap gum molecules and remain in solution. Further 

work is needed to thoroughly investigate the liquid-liquid interactions to 

complement the postulated hydrogen bonding and micellisation hypotheses.  

Brief concluding remarks along with schematic illustrations of the aforementioned 

mechanisms are summarised in Table 46 and Figure 113.  
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Table 46 Concluding comments on all studies conducted to examine ODA and 

gum behaviour in surrogate fuel systems as depicted in Figure 113. 

Figure 
Experiment title 

(Area of study) 
Remarks 

a ODA immersion 

ODA adsorbed onto the stainless steel substrate 

via ‘back bonding’ to the metal oxide layer 

(Figure 97). (90, 113, 130, 195) 

b 
ODA in gum 

(Adsorption) 

ODA migrated from the surface to capture the 

gum molecules dissolved in TRF solution (Figure 

97). (92) 

c 
ODA in neat TRF 

(Adsorption) 

ODA dissolved in TRF solution, yet residual ODA 

also found on the surface (Figure 100). (86, 90, 

91) 

d Gum immersion 
Significant amount of gum adsorbed onto the 

substrate. (Figure 103) 

e 
Gum in ODA 

(Detergency) 

ODA molecules interacted with gum on the 

surface via ‘lifting mechanism’, resulting in a 

cleaner surface (Figure 104). (18, 19) 

f 
Gum in neat TRF 

(Detergency) 

Gum dissolved in TRF solution in a lesser extent, 

compared to ODA ‘lifting mechanism’. (Figure 

107) 

g 
No ODA 

(Interactions) 

Significant amount of gum adsorbed onto the 

substrate (Figure 109).  

h 
Low ODA 

(Interactions) 

Unreacted ODA species were found on the 

surface along with gum molecules, causing the 

observed hump-effect (Figure 111). (22) 

i 
Medium ODA 

(Interactions) 

ODA molecules start to interact with gum species 

potentially via hydrogen bonding (Figure 111). 

(18, 19) 

j 
High ODA 

(Interactions) 

Most gum content was ‘captured’ once sufficient 

ODA concentration was present, resulting in a 

cleaner surface (Figure 109 and Figure 111). (18, 

19, 92) 
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Figure 113 Schematic flow chart depicting ODA and gum behaviour under each stage of the investigated areas of study. Description of 

figures a – j can be found in Table 46. Substrates g – j were immersed in solutions containing 1000 ppm gum. 
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Some conclusions and graphical summaries of the research outcomes were 

already presented at the end of Chapter 4, Chapter 5, and Chapter 6. This 

chapter brings these previous conclusions once more together and provides an 

overall summary of the research outcomes.  

Broadly, the research reported in this thesis can be divided into work on (i) the 

selection and synthesis of the TRF/gum model system, (ii) its interaction with 

ODA, and (iii) the interaction of the ODA/gum/TRF systems with stainless steel 

surfaces. 

 

 

Chapter 4 described a reproducible method for the formulation of a gasoline 

surrogate with significant gum content. Olefin and aromatic contents of the 

formulated TRF were optimised in accordance with the British and European 

standards of unleaded petrol (EN-228). ATR-FTIR spectroscopy was employed 

to validate the TRF formulation and aerobic oxidation methods. The use of a 

radical initiator, tert-butylhydroperoxide (tBHP), to oxidise the mono- and diolefin 

components in the surrogate fuel showed positive results. The presence of 

oxidation products with carbonyl (C=O) and hydroxyl (OH) functional groups in 

the oxidised TRF blends was confirmed by FTIR. GC-MS and TGA were 

employed to further characterise the synthesised model gum. The molecular 

weight and decomposition profiles correlated well with gum formed in practical 

gasoline fuels. This synthesis method therefore provides a reproducible 

surrogate fuel for gum deposition studies, extending traditional applications of 

formulated TRFs in engine combustion modelling and simulation studies. (39, 42) 

The novelty of this method is the ability to produce synthetic gum from low boiling 

point surrogate fuels (i.e. < 110°C). In previous adsorption studies, gum was 

produced from the higher fraction of the fuel (boiling point 100 – 220°C), where 

the lower fraction is typically stripped via evaporation in pre-treatment steps. (36)  

 

 

In chapter 5, it was shown that the interaction of a model amine detergent (ODA) 

with the oxidised components in TRF surrogate fuel depends on its concentration. 

UV-Vis spectroscopy revealed characteristic interactions between ODA and the 
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carbonyl components of gum in the surrogate fuel. DLS showed that ODA forms 

colloidal structures in gum-free fuels at concentrations above the CMC point, at 

approximately 100 ppm, which was in agreement with theoretical values. (186) 

Contact angle measurements and XPS indicated that ODA adsorbs strongly on 

steel surfaces in the absence of gum. Combined SEM, EDX, and XPS studies of 

mirror-polished 316 stainless steel substrates exposed to mixtures of ODA and 

TRF/gum systems revealed that the morphology and composition of the 

carbonaceous deposits depend strongly on the ODA concentration. Without 

ODA, there is a strong gum adsorption leading to deposits in irregularly-shaped, 

thick patches. The combined SEM/EDX/XPS data showed clearly that addition, 

or increasing concentrations, of ODA to 500 and 1000 ppm leads to circular 

deposits in the form of distinct multilayer rings on the substrate surface, while  

keeping much of the surface clear from multilayer deposits. Gum and ODA are 

strongly associated with each other in these deposits, likely reflecting the affinity 

already observed in solutions. These phenomena were already partially 

apparent, but not fully developed, at ODA concentrations as low as 50 ppm ODA. 

EDX and XPS indicate that the affinity between gum and ODA is strong to the 

extent that direct ODA adsorption on the steel substrate only begins to compete 

when ODA is present in excess (likely when the number of binding sites available 

in the gum is exceeded), as observed for systems with 2000 ppm ODA. These 

data indicated for the first time that the structure evolution at the ODA/gum/TRF 

interface was more complex than the ‘capture and wash’ or ‘stick and eliminate’ 

models employed in previous research. (5, 21, 27)  

 

 

XPS was extensively employed as a main surface sensitive technique in order to 

investigate the solid-liquid interactions at the model system interfaces 

(i.e. SS – TRF/gum/ODA). The experimental design summarised in Figure 84 

allowed for a structured, systematic approach to challenge the ‘stick and 

eliminate’ and ‘capture and wash’ hypotheses (Figure 2), as a function of ODA 

concentration, from three main angles: adsorption, detergency, and liquid-liquid 

interactions. 

Adsorption studies have tested the ‘stick and eliminate’ hypothesis, where a TAM-

cleaned, mirror-polished SS coupon was immersed in a TRF solution containing 

high concentration of ODA (2000 ppm w/v) to ‘stick’ thin ODA films on the surface 

and subsequently test their ‘elimination’ ability by immersion in a TRF solution 

containing 1000 ppm of gum (w/v). Analysis of XPS high-resolution spectra 

revealed that ODA molecules adsorbed onto the surface via back bonding to the 
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metal oxide layer (Fe2O3). Once oxygenated species (gum) was present in the 

system, aliphatic C-C levels (C 1s) attenuated to approximately original levels 

and C-N species from adsorbed ODA have almost disappeared from the surface. 

These observations have confirmed that ODA molecules were no longer 

adsorbed onto the surface. C-O and C=O compositions have suggested minimal 

gum deposition. However, by comparing the C 1s levels of gum introduced 

following ODA adsorption against levels of gum adsorbed directly onto the 

surface, the detergency effect of ODA on minimising gum adsorption was evident. 

However, no evidence of inhibition via passivation (i.e. ‘stick and eliminate’) was 

found. In other words, interactions between gum and ODA in solution appear to 

dominate over the additional surface effects 

Under the detergency studies, the mechanism of ‘cleaning up’ gum layers 

adsorbed on SS substrates from TRF solutions, with and without ODA, was 

explored. Two prepared SS substrates were immersed in TRF solutions 

containing 2000 ppm of gum (w/v), and then immersion in ODA/TRF solution 

(1000 ppm w/v) was compared to immersion in neat TRF. XPS data revealed 

high affinity for gum to adsorb on SS substrates. Following the immersion in the 

ODA/TRF solution, carbon content had attenuated by  13.1 at%, indicating ODA 

detergency. Chemical speciation showed significant reduction in C-O and C=O 

content (73% and 43%, respectively). Most importantly, no evidence of ODA 

adsorption was found. On the other hand, the neat TRF solution showed much 

lesser efficacy in removing adsorbed gum layers form the surface. 

In the interactions study, various concentrations of ODA were dissolved in TRF 

solutions containing 1000 ppm of gum to explore ODA effects over gum 

adsorption. Analysis revealed clear trends of reduction in gum species with ODA 

concentration. A distinctive hump-effect in aliphatic C-C content was evident at 

low concentrations (50 ppm). Remarkably, it was followed by a steady state 

accompanied by an attenuation in gum species and an increase in iron contents 

on the surface, which strongly contradicts the ‘stick and eliminate’ hypothesis.  
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The results presented in this thesis have provided a new insight into the molecular 

basis of aliphatic amine detergents in preventing gum deposition on steel 

surfaces. They challenge the dichotomic ‘inhibition via passivation’ hypothesis for 

gasoline detergents, suggesting that surfactant behaviour is a lot more complex 

than just colloid vs interfacial passivation film formation. Amine surface 

passivation did not seem to occur in the presence of oxygenated model gum 

species. Solubilisation of gum as a colloid appears to take place in solution, in 

part shifting the adsorption equilibrium towards retaining gum in the liquid state, 

but not preventing adsorption altogether. Rather, colloid formation appears to 

result in the minimisation of the substrate surface areas affected by gum 

deposition. The mechanistic picture is summarised in Figure 114.  

 

Figure 114 Schematic representation of the solubilisation hypothesis proposed 

for the detergency mechanism of DCAs in gasoline fuels. 

 

Based on these research findings, deeper and more systematic research into the 

liquid-liquid interactions is strongly recommended to better understand the 

complex detergency mechanism of DCAs in gasoline fuels. More advanced 

characterisation techniques, e.g. in situ X-ray absorption spectroscopy of liquids 

and interfaces may be employed to investigate such systems in greater detail. 

(221, 222) Molecular dynamic simulations could be used to generate a more 

dynamic molecular-level view of the underpinning physical processes, and to 

integrate with findings from the experimental solid-liquid and liquid-liquid interface 

studies. Validation studies using real-world components (i.e. gasoline fuel and 

commercial detergents) are of great importance to verify the findings from the 

proposed fundamental studies. Using this methodology, we can now realistically 

hope to achieve a molecular-level understanding of DCA action in gasoline fuels. 
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Chapter 3 Experimental materials and methods 

Appendix 1 TRF blend composition calculation at RON = 95 and P = 0.5 using 

Maple 18. Where X, Xio, and Xnh are the volume compositions of toluene, iso-

octane, and n-heptane respectively. chi = X 
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Appendix 2 Maple calculation of RON value at any TRF blend composition. 

Sensitivity equation can also be applied for validation. Example shown is for 60%, 

20%, 20% v/v of toluene, n-heptane, and iso-octane respectively. 
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Figure A 1 GC-MS calibration curve of iso-octane (2,2,4-Trimethylpentane) concentration in the calibration standards. 
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Figure A 2 GC-MS calibration curve of toluene (methylbenzene) concentration in the calibration standards. 
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Figure A 3 GC-MS calibration curve of n-heptane concentration in the calibration standards.
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Table A 1 Composition of surface elements in atomic percentage (at%) 

calculated from survey scans (Figure A 4 and Figure A 5). Averages shaded in 

green fall within an error margin of ± 1 σ (St. Dev.) from total average (blue). 

Coupon C 1s N 1s O 1s F1s Ca 2p Cr 2p 3/2 Fe 2p3/2 

Blank 1 - Site 1 35.09 1.05 51.91 2.93 1.23 0.00 7.79 

Blank 1 - Site 2 30.23 0.84 55.59 2.67 1.08 0.98 8.61 

Avg. Blank 1 32.66 0.95 53.75 2.80 1.16 0.49 8.20 

Blank 2 - Site 1 31.31 0.00 54.83 2.59 0.52 2.84 7.91 

Blank 2 - Site 2 38.21 0.00 47.46 3.90 0.00 2.78 7.65 

Avg. Blank 2 34.76 0.00 51.15 3.25 0.26 2.81 7.78 

Blank 3 - Site 1 29.58 0.00 55.62 3.26 0.00 1.01 10.54 

Blank 3 - Site 2 28.64 0.00 56.92 3.27 0.00 0.83 10.34 

Avg. Blank 3 29.11 0.00 56.27 3.27 0.00 0.92 10.44 

Blank 4 - Site 1 34.26 0.00 51.08 3.05 1.04 2.29 8.29 

Blank 4 - Site 2 37.05 0.00 49.06 3.17 0.65 2.74 7.32 

Avg. Blank 4 35.66 0.00 50.07 3.11 0.85 2.52 7.81 

Blank 5 - Site 1 33.17 1.33 52.69 3.42 0.67 0.00 8.72 

Blank 5 - Site 2 33.70 0.60 53.98 2.80 0.18 0.00 8.73 

Avg. Blank 5 33.44 0.97 53.34 3.11 0.43 0.00 8.73 

Blank 6 - Site 1 35.43 1.18 48.56 3.81 0.67 3.16 7.20 

Blank 6 - Site 2 35.58 1.09 49.05 3.13 0.98 2.76 7.40 

Avg. Blank 6 35.51 1.14 48.81 3.47 0.83 2.96 7.30 

Average 33.52 0.51 52.23 3.17 0.59 1.62 8.38 

St. Dev. 2.24 0.51 2.50 0.20 0.39 1.18 1.02 
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Figure A 4 Survey spectra measured for six TAM-cleaned, polished coupons at 

site 1. 
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Figure A 5 Survey spectra measured for six TAM-cleaned, polished coupons at 

site 2 
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Chapter 4 Oxidative formation of gum in model surrogate fuel 

Table A 2 Table of characteristic IR absorption bands of 2,2,4 tri-methyl pentane 

(iso-octane). Reference IR regions retrieved from (160). 

 

Table A 3 Table of characteristic IR absorption bands of n-heptane. Reference 

IR regions retrieved from (160). 

 

 

Material Region (cm-1) Frequency (cm-1) Assignment 

Iso-octane 

∼ 970 979 CH3 rock  in –C(CH3)3 

1165-1175 1168 C-C stretch in C(CH3)2 

1165-1225 1206 C-C rock in –C(CH3)3 

1245-1255 1247 C-C rock in –C(CH3)3 

1350-1395 1365 2,2, CH3 symmetric bend 

1350-1395 1393 2,2, CH3 symmetric bend 

1435-1475 1468 CH3 vibration in –C(CH3)3 

2865-2875 2870 CH3 symmetric stretch 

2840-2940 2900 CH stretch CH(CH3)2 

2950-2975 2954 CH3 asymmetric stretch 

Material Region (cm-1) Frequency (cm-1) Assignment 

n-heptane 

720-725 723 Rock vibration in –(CH2)n 

1370-1390 1378 Symmetric –CH3 rock 

1440-1465 1467 Asymmetric –CH3 bend 

2840-2870 2858 Symmetric –CH2 stretch 

2865-2885 2873 Symmetric –CH3 stretch 

2915-2940 2924 Asymmetric –CH2 stretch 

2950-2975 2958 Asymmetric –CH3 stretch 
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Table A 4 Details of characteristic IR absorption bands of methyl benzene 

(toluene). Reference IR regions retrieved from (160). 

 

 

Figure A 6 ATR-FTIR spectra of the oxidised TRF blends and oxidation 

products. 

Material Region (cm-1) Frequency (cm-1) Assignment 

Toluene 

670-710 693 

=CH out of plane 

vibration 

720-820 727 

=CH out of plane 

vibration 

1000-1040 1030 =CH in plane vibration 

1050-1085 1080 =CH in plane vibration 

1430-1470 1457 –C=C– (mono benzene) 

1470-1525 1495 –C=C– (mono benzene) 

1590-1625 1604 –C=C– stretch (in ring) 

2865-2875 2879 CH3 stretch 

2840-2940 2939 CH stretch 

3000-3105 3030 =CH stretch 
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Chapter 6 Systematic studies of interfacial behaviour by XPS 

 

Figure A 7 XPS survey scan of the synthesised gum showing composition 

solely consisted of carbon and oxygen. Regions of purging gas (Ar2p) as well 

as gas phase N2 and O2 are also shown. 
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Appendix 3 XPS data correction method (chapter 6.3). 

Until scanning time was available on the UHV-XPS, samples remained intact on 

their stubs by placing them in a paper pin-mount storage box which was stored 

inside a desiccator at room temperature to avoid humidity and contamination. 

Due to the variations in vacuuming capabilities as well as other instrumental 

parameters between the UHV and the EnviroESCA, intensity of the collected 

photoelectrons was approximately an order of magnitude higher in the UHV. 

Thus, a normalisation method had to be factored in for each single experiment to 

achieve a meaningful comparison across the three immersion stages (e.g. 

before, ODA, gum). The normalisation factor was calculated based on average 

intensity of 5 eV, where possible, at the lower binding energy of the ‘before’ 

spectra (i.e. blank SS). Average intensities of 5 eV from the other two stages 

were then normalised to the ‘before’ average to have the same baseline at the 

lower binding energy for all three spectra. Correction of the ‘gum in ODA’ 

experiment from the detergency study is illustrated in below as an example. 

 

Table A 5 Correction factors used to normalise the intensities and baselines of 

stage two and stage three spectra. 

Sample 

(immersion stage) 

Average 5 eV intensity 

(a.u.) 

Correction factor 

(Avg. sample/Avg. before) 

Before (Blank SS) 960.57 1.00 

2000 ppm gum 740.39 0.77 

1000 ppm ODA 645.25 0.67 

  

Similarly, individual peaks were normalised using the same correction factor to 

have comparable peak areas and consequently meaningful quantification.  
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Table A 6 Raw area vs. corrected area of all identified species. Corrected areas 

were used throughout all derived quantifications.  

Sample Species Raw area 
Corrected area 

(Raw area/correction factor) 

Before 

C-C/C-H 3275.41 3275.41 

C-O 780.41 780.41 

C=O 1425.68 1425.68 

2000 ppm gum 

C-C/C-H 3300.90 4282.56 

C-O 3262.70 4233.00 

C=O 1497.77 1943.20 

1000 ppm ODA 

C-C/C-H 48244.00 4876.01 

C-O 11510.20 1163.33 

C=O 11030.30 1114.83 

 

By obtaining corrected intensities, baselines, and peak areas, it was possible to 

quantify the changes as a function of immersion stage for all spectra. Figure A 8 

shows the obtained XP spectra before and after correction. 
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Figure A 8 Raw (dotted line) and envelope (solid line) data of the C 1s spectra 

pre- and post-correction (left vs. right) using the normalisation factors calculated 

in Table A 5. 

 

Once all spectra were normalised to a comparable baseline, it was much easier 

to observe and quantify changes as a function of immersion. For instance, it can 

be clearly seen from the corrected spectra in Figure A 8 that gum immersion has 

significantly contributed to the intensities of C-O and C=O species. Moreover, 

ODA immersion was able to attenuate the C-O and C=O peaks and reduce their 

levels to approximately ‘before’ levels. 
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Table A 7 Peak areas of the C-C, C-O, C=O, and Fe2O3 species described in 

Figure 111 before (B) and after (A) immersion, as a function of ODA concentration 

(0 – 1500 ppm w/v). Higher vs  lower values are distinguished by ▲ and ▼ 

respectively. 

Species 
0 50 250 500 1000 1500 

Peak area 

C-C/C-H 

(C 1s) 

B: ▼3426 

A: ▲4468 

▼2551 

▲4058 

▼2741 

▲4062 

▼3766 

▲4403 

▼724 

▲865 

▼3442 

▲4105 

C-O  

(C 1s) 

▼679 

▲1209 

▼638 

▲1119 

▼726 

▲1017 

▼796 

▲1117 

▲256 

▼223 

▲1013 

▼918 

C=O  

(C 1s) 

▼1422 

▲1594 

▼1233 

▲1258 

▼1075 

▲1409 

▲1302 

▼1204 

▲298 

▼247 

▲1343 

▼1033 

Fe2O3 

(Fe 2p) 

▲8011 

▼7427 

▲5036 

▼2120 

▲9531 

▼6749 

▲8582 

▼7305 

▲2090 

▼1876 

▼7237 

▲8815 
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