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Abstract

Software Defined Networking (SDN) is developing as a new solution

for the development and innovation of the Internet. SDN is expected

to be the ideal future for the Internet since it can provide controllable,

dynamic and cost-effective networking. The emergence of SDN pro-

vides a unique opportunity to achieve network security in a more effi-

cient and flexible manner. One key advantage of SDN, as compared to

traditional networks, is that by virtue of centralized control, it allows

better provisioning of network security. Nevertheless, the flexibility

provided by the SDN architecture manifests several new network se-

curity issues that must be addressed to strengthen SDN security. The

SDN has original structural vulnerabilities, which are the centralized

controller, the control-data interface and the control-application inter-

faces. These vulnerabilities can be exploited by intruders to conduct

several types of attacks.

Network Intrusion Detection System (NIDS), which is an important

part of network architecture, is used to detect network intrusions and

secure the whole network. In this thesis, we propose an SDN-based

NIDS (DeepIDS) using Deep Learning (DL) algorithms to detect

anomalies in the SDN architecture. Firstly, we evaluate the potential

of DL for flow-based anomaly detection with different flow features.



Through experiments, we confirm that the DL approach has the po-

tential for flow-based anomaly detection in the SDN environment.

Secondly, we propose a Gated Recurrent Unit Recurrent Neural Net-

work (GRU-RNN) to improve the detection rate of the DeepIDS. Our

experimental results show that the proposed GRU-RNN model im-

proves the detection rate significantly without deteriorating network

performance. The performance of our system in terms of accuracy,

throughput, latency and resource utilization shows that DeepIDS does

not affect the performance of the OpenFlow controller, and so is a fea-

sible approach.

Finally, we introduce an unsupervised approach (SAE-1SVM) to solve

an unlabeled and imbalanced dataset problem. This approach yields

a high detection rate while maintaining a significantly low process-

ing time. Through extensive experimental evaluations, we conclude

that our proposed approach exhibits a strong potential for intrusion

detection in the SDN environments.
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Chapter 1
Introduction

The motivation behind this work is presented. Some challenges of intru-
sion detection are introduced, and then the critical research questions are
identified. Finally, the contributions of the work are given along with the
organization of the thesis.

In This Chapter:

1.1 Motivation

Software Defined Networking (SDN) is a developing architecture that is dynamic,

manageable, cost-effective, and adaptable, thus making it ideal for the high-

bandwidth, dynamic nature of today’s applications and networks. SDNs are cur-

rently being deployed in many network environments, from home and enterprise

networks to datacenters (e.g., IBM, Cisco, Google WAN B4 [9], Huawei carrier

network [10]). As can be seen in Figure 1.1, the SDN market has grown to more

than a $9.5 billion market in 2019 and is predicted to continue to grow to $13.8

billion by 2021. The capabilities of SDN (e.g., logically centralized controller,

1



1.1 Motivation

and global network overview) help to solve several security issues in a traditional

network and bring the ability to control network traffic at a fine-grained level.

However, the SDN architecture itself also introduces some new attack threats

and security vulnerabilities. Kreutz et al. [11] introduced seven threat vectors in

SDN. Several attacks can be conducted in the SDN architecture. For instance,

Distributed Denial of Service (DDoS) attacks can overwhelm an SDN controller

and a communication channel with artificial service calls. A Man-in-the-Middle

attack can break links between the controller and the switches and claim control

of the network.

Figure 1.1: The SDN Market Size Prediction [1]

Because of the wide variety of types of SDN deployments, SDN security is a

serious concern and has recently been extensively researched - see [12] and [13] for

more detail. Therefore, there is a need to develop an efficient network intrusion

2



1.1 Motivation

detection system (NIDS). NIDS is one of the most crucial parts of network archi-

tecture. Several machine learning (ML) approaches have been proposed to secure

the SDNs. Given a set of training data, ML algorithms learn non-linear patterns

of training data and then detect attacks inside the SDNs. These algorithms can be

statistical [14] [15], probabilistic [16] or Support Vector Machine [17] [18]. Despite

the high accuracy and performance obtained in several fields, ML algorithms used

in intrusion detection tend to have some limitations as mentioned in [19]. These

include the difficulty of determining the discriminator, the availability of labelled

datasets for classification and evaluation, the high cost of errors and the diversity

of network traffic. In recent years, ML has been used by many researchers for

intrusion detection in the SDN environments. However, these techniques usually

lead to a high rate of false positives that is a significant concern for practical

NIDSs.

Recently, Deep Learning (DL) has emerged and achieved significant success in

the field of speech recognition [20], image recognition [21], and natural language

processing [22] [23]. DL is capable of automatically finding correlations in raw

data, and so it can improve the intrusion detection rate. Motivated by the devel-

opment of DL, we extended this research trend to a DL-based intrusion detection

approach for the SDN context. We believe DL is a promising method for the next

generation of intrusion detection. DL can be used, and so we can acquire a high

detection rate. The flow-based and programmable natures of SDNs also facilitate

the development of NIDSs.

3



1.2 Challenges

1.2 Challenges

In general, there are a few challenges for flow-based intrusion detection in the

SDN architecture as follows:

• Network traffic is dynamic, diverse and constantly changing. In addition,

network attacks keep evolving and become more intelligent and aggressive.

The dynamic nature of network traffic makes intrusion detection extremely

challenging.

• Traditional NIDSs use a large number of hand-crafted features to improve

intrusion detection accuracy. However, an SDN provides us with a limited

number of raw flow features. Therefore, it is a challenge to improve intrusion

detection accuracy with these limited raw flow features.

• NIDS is supposed to provide real-time intrusion detection and mitigation.

Therefore, computational complexity and network overheads also need to

be seriously considered.

• For ML/DL intrusion detection approaches, the network data is signifi-

cantly important. These datasets are used for training and testing systems

for intrusion detection. The availability of labelled network datasets is a

big problem. The SDN architecture is still a new technology, so network

datasets for it are either quite rare and/or unpublished. As a result, it is

difficult to train and evaluate a model in a supervised manner to detect

intrusions in the SDN network.
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1.3 Objective and Scope of the Thesis

In the previous sections, we have given the motivation and some of the challenges

in the field. The primary objective of this thesis is to develop a NIDS under the

context of SDN using DL. Figure 1.2 describes the overview of our NIDS that

uses DL to detect intrusions in SDN networks. The details of the proposed NIDS

will be presented in Chapter 4.

Raw
Network
Traffic

Network
Flow

Features

Feature
Pro-

cessing

Deep
Neural

Network
Build-
ing/
Opti-
mizing

Results

Figure 1.2: The Overview of the NIDS

We present four main research questions as follows:

• Does the SDN facilitate the development of a flow-based NIDS?

• Can we improve the intrusion detection accuracy with limited raw features

in the SDN architecture using DL?

• How do we take advantage of DL to solve the dataset problem in SDNs?

• Can we develop an end-to-end system to effectively detect intrusions in the

SDN paradigm?

1.4 Limitations and Constraints

In the proposed methods, we have a few limitations and assumptions.
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• In this thesis, we have to adapt some conventional datasets to the SDN

architecture. This adaption may not be close enough to a real SDN-based

dataset but many researchers in the same field still use it. In Chapter 4 and

5, the packet-based NSL-KDD dataset is adapted for our experiments. This

adaption may affect the generalization and application of our approach in

the SDN context. However, we selected some most basic network features

having similar characteristics in both packet-based and flow-based datasets

to minimize this gap. We assume that these network features are inter-

changeable for both traditional and SDN-based networks.

• Because of the use of published datasets, all the attacks concerned in this

thesis are just related to network and application layers (i.e., L2, L3 and

L7). This thesis does not consider any kind of attacks related to L1 physical

layer which is also an important part of the network. In addition, because of

the nature of pulished datasets, we have not considered all types of network

topologies in our experiment.

1.5 Thesis Outline and Contributions

This PhD thesis describes the research carried out in the development of a NIDS

in the SDN environment using DL. Chapter 2 discusses the SDN architecture

and its security issues. A literature overview about DL is presented in Chapter 3.

Chapter 4 looks at the potential of applying DL for intrusion detection in the SDN

and the effect of different features on the detection rate. Chapter 5 is devoted to

the use of a Deep Recurrent Neural Network to improve the detection accuracy

of an SDN-based NIDS. A hybrid unsupervised approach for Distributed Denial
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of Service (DDoS) attacks detection in SDN is proposed in Chapter 6. Chapter

7 concludes the thesis and gives further research directions.

The content of each chapter is summarized below:

Chapter 2: Software Defined Networking

In this chapter, we introduce the SDN architecture, and the OpenFlow pro-

tocol. The NIDS and its detection performance evaluation methodology are also

introduced in this chapter. We also present some related work within the use of

DL for intrusion detection in the SDN.

Chapter 3: Deep Learning

Chapter 3 presents a literature overview of the DL algorithm. At the end of

this chapter, we introduce network datasets used in this thesis.

Chapter 4: DeepIDS: Deep Learning Approach for Intrusion Detec-

tion in Software Defined Networking

In this chapter, we propose an SDN-based NIDS (DeepIDS). We answer the

following research question: Does the SDN facilitate the development of a flow-

based NIDS? We implement a DL approach for intrusion detection in the SDN

architecture. A deep neural network (DNN) is created for binary classification.

Through experiments, we confirm that the DL approach has the potential for

flow-based anomaly detection in the SDN environment. We also evaluate the

performance of our system in terms of throughput, latency and resource utiliza-

tion. Our test results show that DeepIDS does not affect the performance of the

OpenFlow controller, and so is a feasible approach.

Chapter 5: Deep Recurrent Neural Networks for SDN-based Intru-

sion Detection Systems

In this chapter, we address the following research question: Can we improve

7



1.5 Thesis Outline and Contributions

the intrusion detection accuracy with limited raw features in the SDN architec-

ture using DL? To improve the detection accuracy, in this chapter, we propose a

Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion

detection for SDN. The proposed approach was tested using several datasets,

and we achieved a quite high detection accuracy with low dimensional feature

sets that can be extracted at SDN controllers. We also evaluated network per-

formance of our proposed approach in terms of throughput and latency. Our

test results show that the proposed GRU-RNN model does not deteriorate the

network performance. Through extensive experimental evaluation, we conclude

that our proposed approach exhibits a strong potential for intrusion detection in

the SDN environment.

Chapter 6: Deep Learning Approach Combining Stacked Autoen-

coder with One-class SVM for DDoS Attack Detection in SDNs

Recently, several ML/DL intrusion detection approaches have been proposed

to secure SDN networks. However, these approaches cannot deal adequately with

imbalanced and unlabeled datasets. So, the goal of this chapter is to detect the

network attacks in an unsupervised manner by using the flow table information.

In this chapter, we propose a hybrid approach using the Stack Autoencoder and

One-class Support Vector Machine (SAE-1SVM) for DDoS attack detection. The

experimental results show that the proposed algorithm can achieve an average

accuracy of 99.35% with a small set of flow features. The SAE-1SVM shows that

it can reduce the processing time significantly while maintaining a high detection

rate. In summary, the SAE-1SVM can work well with imbalanced and unlabelled

datasets and yields a high detection accuracy. The research question “How do we

take advantage of DL to solve the dataset problem in SDNs?” has been addressed
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in this chapter.

Chapter 7: Conclusions and Future Work

In this chapter, we provide a summary of the work in the thesis. We also give

final conclusions and discuss some drawbacks and limitations of this work. Then

further extensions and future research directions are also presented.

1.6 Publications

The work undertaken in this thesis has resulted in the following publications.

• Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M.

(2016, October). Deep learning approach for network intrusion detection

in software defined networking. In Wireless Networks and Mobile Commu-

nications (WINCOM), 2016 International Conference on (pp. 258-263).

IEEE.

• Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M.

(2018, June). Deep recurrent neural network for intrusion detection in SDN-

based networks. In 2018 4th IEEE Conference on Network Softwarization

and Workshops (NetSoft) (pp. 202-206). IEEE.

• Tang, T. A., McLernon, D., Mhamdi, L., Zaidi, S. A. R., & Ghogho,

M. Intrusion Detection in SDN-based Networks: Deep Recurrent Neural

Network Approach. In: Tang M ed. Deep Learning Applications for Cyber

Security. (In Press)

Finally, as a result of the WINCOM paper (and its 111 citations as of 10/06/2019),

Tuan Anh Tang was offered a three-month internship at the world-famous BT
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labs in Martlesham Heath, Ipswich to work on a project “Anomaly Detection

for the Internet of Things Devices using Software Defined Networking and Deep

Learning”.
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Chapter 2
Software Defined Networking

Firstly, the SDN architecture and its security issues are described in detail.
Secondly, an overview of the NIDS is introduced, and some related works
are also discussed. Finally, we demonstrate a toy example of SDN-based
NIDS in detecting DoS attacks.

In This Chapter:

2.1 Software Defined Networking

2.1.1 Definition

Modern networks were developed many decades ago and remain mostly un-

changed over the past decade. It is mainly decentralized, autonomous and built

from a large number of network devices such as routers, switches and numerous

types of middleboxes (e.g., firewall, and load balancing) with several complex pro-

tocols implemented on them. This network equipment is traditionally developed

by several manufacturers. Each manufacturer has its own designs, firmware, and
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software to operate their own hardware in a proprietary and closed way. Network

operators have to configure policies to respond to a wide range of network events

and applications. They have to manually transform these high-level policies into

low-level configuration commands with very limited tools. In fact, network de-

vices are usually vertically-integrated black boxes that make network management

and performance tuning quite challenging and error-prone. Because of its vast

development base and its essential role in our society’s critical infrastructure,

the modern network has become extremely difficult to evolve both in term of its

physical infrastructure as well as its protocol and performance. In practice, it is

quite difficult to deploy a new version of an existing protocol (e.g., IPv6). These

issues lead to a need for a new network paradigm that makes the network more

scalable, dynamic and easier to manage and configure.

The idea of “programmable networks” has been proposed as a way to facili-

tate the evolution of current networks. The concept of programmable networks

and decoupled control logic has been around for several years. In the past, vari-

ous technologies were developed to enable the programmability of communication

networks. In the mid-1990s, Active Networks (AN) [24] were developed with the

basic idea of injecting program into data packets. Switches extract and execute

programs from data packets so that new routing mechanisms and network ser-

vices can be implemented without the modification of the forwarding hardware.

However, AN did not gain much attention because of its security and performance

concerns. Also in mid 1990s, Devolved Control of ATM Network (DCAN) [25]

was aimed at designing and developing the necessary infrastructure for scalable

control and management of ATM networks. The premise of DCAN is that con-

trol/management functions of the various network devices (e.g., ATM switches)
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should be decoupled from the device themselves and delegated to external entities

dedicated to that purpose. In the first half of the 2000s, the separation of the con-

trol and data plane had been considered as one of the central points of simplifying

network design. Forwarding and Control Element Separation (ForCES) [26] is a

pioneer in this area. ForCES classified the network components into two distinct

types which are the forwarding element and the control element. The forwarding

element only forwards and filters traffic. The control plane provides instructions

for processing packets. These elements communicate with each other via a stan-

dardised open interface, which is considered to be a core feature of the ForCES

protocol. Although ForCES is still under active development, it is not widely

adopted by major vendors. The IETF Network Configuration Working Group

proposed NETCONF [27], which is a management protocol for modifying the

configurations of network devices, in 2006. Network devices can expose an API

that helps to send and to retrieve extensible configuration data. However, there

is no separation between control and data planes. In 2006, the SANE/ Ethane

project [28] proposed a new architecture for enterprise networks. Ethane focuses

on using a centralized controller to manage policy and security in a network. It

can be said that Ethane is the predecessor and the foundation for what would

become SDN today.

SDN is proposed as a solution for all network challenges. SDN is based on the

idea of decoupling the control plane and data plane and producing less sophisti-

cated data plane devices. In general, SDN is built under four principles:

• Separation of control and data plane: these planes must be logically

separated and connected via an interface. The control aspect is removed

from forwarding devices and delegated to an external entity.
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• Network programmability: The provision of an open API is a core

aspect of the SDN architecture. Software and scripts should be able to

access, configure, and modify network elements with ease.

• Network abstraction: the view of the network is virtualized for any ele-

ments of a higher hierarchy. Services and applications are aware of the state

of the whole network, but physical attributes and resources are irrelevant

for configurations and computations.

• Logically centralized control: all forwarding devices of a domain are

linked to a controlling entity and are subjected to its enacted policies

This way, SDN provides network-wide visibility and flexible programmability

to network administrations. This also removes the differences, makes the network

administration independent of data plane devices vendors and allows network

administrators to design and control the network with their own applications and

respond quickly to changing business needs. SDN opens up the means for new

innovation and applications.

SDN is defined by the Open Networking Foundation (ONF) which was founded

in 2011 by Microsoft, Google, Facebook, Yahoo, Verizon and Deutsche Telekom.

As of 2015, the organization has more than 150 industry members and receives

endorsement by several network equipment vendors such as Cisco, Dell, Brocade

and HP. An SDN architecture decouples the network control and forwarding

functions enabling the network control to become directly programmable. The

separation of the control plane from the data plane lays the ground for the SDN

architecture. Network switches become simple forwarding devices, and the control

logic is implemented in a physical or logical centralized controller. The logically
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centralized controller dictates the network behaviour and offers several benefits.

Firstly, it is simpler and less error-prone to modify network policies through

software from a single place without reconfiguring individual devices. Secondly, a

control program can automatically react to dynamic changes in the network and

thus maintain the high-level policies in place. Thirdly, the centralised control

logic has global knowledge of the whole network, including the network topology

and the state of the network resources, thus giving flexibility and simplifying the

development of more sophisticated network functions. For example, the controller

can dynamically adjust flow tables to avoid congestion or apply different routing

algorithms to different types of traffic. The ability to program the network to

control the underlying data plane is, therefore, the crucial value proposition of

SDN [11]. The advantages of SDN in various scenarios (e.g., the enterprise, and

the datacenter) and across various backbone networks have already been proven

(e.g., Google B4 [9], Huawei carrier network [10]).

As depicted in Figure. 2.1, SDN architecture is divided into three layers, which

are infrastructure layer, control layer and application layer.

• Infrastructure layer (Tier-1): This layer consists of the forwarding

hardware such as switches/routers and all software interfaces and hard-

ware components in the forwarding hardware. OpenFlow switches can be

classified into two types: Software-based and Hardware-based implementa-

tion. Software switches are typically well-designed and comprise complete

features. Software switches are emerging as one of the most promising

solutions for data centers and virtualized network infrastructures. Ex-

amples of software-based OpenFlow switches include ofsoftswitch13 [29],

Open vSwitch [30], Pantou [31], and Pica8 [32]. Hardware-based Open-

15



2.1 Software Defined Networking

Figure 2.1: A three-layer SDN Architecture [2]

Flow switches are typically implemented as Application-Specific Integrated

Circuits (ASICs). They provide line rate forwarding for large numbers of

ports but lack the flexibility of software implementations. Various commer-

cial vendors are supporting OpenFlow in their hardware switches (e.g., HP,

Pronto, Cisco, Dell, Intell, NEC, and Juniper).

• Control layer (Tier-2): Network intelligence is installed in a software

base logically centralized SDN controller. The control layer regulates and

manages forwarding hardware, i.e., Tier-1. The controller is the core of

SDN networks. It lies between the network devices at the one end and the

16



2.1 Software Defined Networking

applications at the other end. An SDN controller takes the responsibility

of establishing every flow in the network by installing flow entries on switch

devices. One can distinguish two flow setup modes: Proactive vs Reac-

tive. In proactive settings, flow rules are pre-installed in the flow tables.

Thus, the flow setup occurs before the first packet of a flow arrives at the

OpenFlow switch. The main advantages of this approach is a negligible

setup delay and a reduction in the frequency of contacting the controller.

However, it may overflow the flow table of the switches. With respect to a

reactive approach, a flow rule is set by the controller only if no entry exists

in the flow tables and this is performed as soon as the first packet of a flow

reaches the OpenFlow switch. Thus, only the first packet triggers a commu-

nication between the switch and the controller. The control plane acts as

an intermediary layer between the application and data plane. The control

plane in SDN is called a controller; it communicates with the application

plane via the northbound communication channel and with the switches

via the southbound communication channel. In this thesis, we focus on

an OpenFlow-related controller because OpenFlow is prominently success-

ful, whereas other approaches are not as successful in practice. To date,

various OpenFlow controllers have been publicly released, and most of the

controllers currently support OpenFlow version 1.0 [33]. The controllers are

summarized in Table 2.1.

• Application layer (Tier-3): Application and services take advantage

of control and infrastructure layers. Conceptually, the application layer

is above the control layer, and this enables easy development of network
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Controller Open Source Language Origin
NOX [34] Yes C++/Python Nicira Networks
POX [35] Yes Python Nicira Networks

Maestro [36] Yes Java Rice University
Beacon [37] Yes Java Stanford University
SNAC [38] No C++/Python Nicira Networks
RISE [39] Yes C and Ruby NEC

Floodlight [40] Yes Java Big Switch Networks
McNettle [41] Yes Nettle/Haskell Yale University

MUL [42] Yes C KulCloud
RYU [43] Yes Python NTT OSRG and VA Linux

OpenDaylight [44] Yes Java Multiple contributors
ONOS [45] Yes Java Multiple contributors

Table 2.1: SDN Controllers

applications. These applications perform all network management tasks .

Some examples of SDN application are load balancers, network monitors,

and intrusion detection systems (IDS).

2.1.2 OpenFlow Protocol

The OpenFlow protocol [46] is one of the first standardized protocols for SDNs.

Even though OpenFlow is not the only available protocol (e.g., Extensible Mes-

saging and Presence Protocol XMPP [47], ForCES [26], Open vSwitch Database

(OVSDB) [48], OpFlex [49]), it is considered as standard and supported by mul-

tiple companies in their SDN ready solution. OpenFlow was first proposed by

McKeown et al. with an objective to enable easy network experiments in campus

networks [46] and is currently used in most practical SDNs.

Different versions of the OpenFlow protocol specification are available. The

most widely deployed version of OpenFlow is OpenFlow version 1.0 [33], which

was released on 31st December 2009. Other versions are 1.1 [3], 1.2 [50], 1.3 [51],
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1.4 [52] , and 1.5 [53]. A detailed list of changes included in every version is

available in the OpenFlow 1.5.1 specification document [54].

The OpenFlow specification describes an open protocol to allow software ap-

plications to program the flow table of different switches. An OpenFlow consists

of three mains components: An OpenFlow-compliant switch, a secure channel

and a controller. Switches use flow tables to forward packets. A flow table is a

list of flow entries. Each entry has match fields, counters and instructions.

According to SDN architecture, an OpenFlow switch is a simple forwarding

device that processes incoming packets based on its flow table. As illustrated

in Figure 2.2, OpenFlow Switch consists of one or more flow tables and a group

table, which perform packet lookups and forwarding, and an OpenFlow channel

to an external controller. The switch communicates with the controller, and the

controller manages the switch via the OpenFlow protocol.

Figure 2.2: OpenFlow Switch [3]
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In the OpenFlow switch, flow tables consist of flow entries, each of which

determines how packets which belong to a flow, will be processed and forwarded.

As illustrated in Table 2.2, flow entries typically consist of three fields:

Match fields Counters Instructions

Table 2.2: Main Components of a Flow Entry

• Match fields: used to match incoming packets. Match fields may contain

information found in the 15-tuple packet’s header. The packet’s header

fields are listed in Table 2.3.

• Counters: used to collect statistics for a particular flow, such as the number

of received packets, number of bytes and duration of the flow.

• Instructions: a set of instructions or actions, to be applied upon a match;

they dictate how to handle matching packets. Two example instructions

are forwarding or dropping the packet.

The match fields describe with which packets this entry is associated. They

include the ingress port and some specific header fields of packets, such as IP

address and Mac address. These fields are set by the network administrator from

the controller. They can be set with a specific value or can be wild-carded to

match with any flow.
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Table 2.3: Match Fields in OpenFlow

Figure 2.3 illustrates the packet processing of the pipeline. Before the pipeline

begins, the metadata field and the action set for the incoming packet are initial-

ized as empty. The matching process starts from the first flow table (Table 0)

to the last flow table (Table n). The packet is matched against the consecu-

tive flow tables from each of which the highest-priority matching flow entry is

selected. The pipeline ends when no matching flow table entry is found or no

“Goto” instruction is set in the matching flow table entry. At each flow table,

the packet will be processed in three steps. Firstly, the packet will be matched

with highest-priority matching flow entry. Secondly, a set of instructions will be

applied to the packet as seen in Figure 2.3. Finally, the matched packet will be

sent to the next flow table for further actions.
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The details of the matching process are explained in Figure 2.4. When a

packet arrives at an OpenFlow switch, packet header fields are extracted and

matched against the matching fields portion of the flow table entries. If any

matching entries are found, the switch will select the highest prioritized entry,

and it applies the appropriate set of instructions, or actions, associated with the

matched flow entries. If the flow table look-up procedure does not result in a

match, the action taken by the switch will depend on the instructions defined by

the table-miss flow entry. This particular entry specifies a set of actions that will

be performed when no match is found for an incoming packet, such as dropping

the packet, continue the matching process on the next flow table, or forwarding

the packet to the controller over the OpenFlow channel. As for the default action,

the switch will send an OFPT PACKET IN message to the controller to request

for a rule or a specific action for the packet. After that, the controller will issue

either an OFPT FLOW MOD or an OFPT PACKET OUT message containing

the instructions on how the switch should process that packet.

An essential aspect of SDN architecture is the link between the control and

data planes. As forwarding elements are controlled by an open interface, it is im-

portant that this link remains available and secure. The control and data planes

exchange control messages with each other via the southbound interface using

standardised protocols. The OpenFlow protocol, which is standardised by the

ONF, is one of the most popular implementations of controller-switch interac-

tions. An OpenFlow switch has to initiate a communication channel with the

controller for exchanging control messages. This connection can use plain TCP

or be encrypted with TLS. When the connection is established successfully, the

switch and the controller send an OFPT HELLO message to each other to ne-
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Packet In
Start at table 0

Match in
table n?

Table-
miss flow

entry
exists?

Update counters
Execute instructions:

• update action set

• update packet match set fields

• update metadata

Goto
table
n+1?

Execute
action set

Drop packet

No

Yes

Yes

No

No

Yes

Figure 2.4: OpenFlow Packet Matching Process [3]

gotiate the protocol version for the communication channel. An OFPT ERROR

will be sent to the recipients if any failure happens. After the switch and the

controller have configured the channel successfully, OpenFlow messages can be

exchanged over the channel.

The OpenFlow controller is responsible for managing the whole network. It

consists of one or more software controllers. It controls the forwarding table,

gathers information from the data plane and provides information to the services

and applications in the application tier about the network operations. Network

statistics monitoring is one of the most critical factors of SDN. An OpenFlow
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switch calculates statistics of the network traffic and provides the information

to the controller as requested. In OpenFlow version 1.0, the network statistics

consist of flow statistics, table statistics, port statistics, and queue statistics. In

the latest OpenFlow version 1.5.1 [54], the switch can also provide other types

of statistics and meters to support network monitoring, such as group statistics,

action bucket statistics, and per-flow meter. With all of these statistics, the

network administrator can know the traffic status of each switch and link and

can adjust the network efficiently.

2.1.3 Security in SDN

The SDN concept was initially designed with significant advantages over the tra-

ditional network. One of the crucial benefits of SDN is to make the highly vul-

nerable traditional network more secure and robust. By centralizing the control

plane, SDN considerably simplifies the way that we integrate security mechanisms

into our network. The evolution of networking brings several advantages, but it

also brings the development of the network attacks. Attacks can be initiated

from malicious management applications, the controller, and compromised hosts

or switches. The main causes of concern lie in the SDN’s main benefits: network

programmability and control logic centralization. These capabilities introduce

new faults and attack planes, which open the doors for new threats that did not

exist before or are harder to exploit. The security issues of SDNs has been re-

searched extensively in [11], [12], [13] and [55]. According to Kreutz et al. [12],

there are seven main potential threat vectors identified in SDN and summarized

in Table 2.4.
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No. Threat Vector
1 Forged or faked traffic flow
2 Attacks on vulnerabilities in switches
3 Attacks on control plane communications
4 Attacks on and vulnerabilities in controllers
5 Lack of mechanisms to ensure trust between the controller

and management application
6 Attacks on and vulnerabilities in administrative stations
7 Lack of trusted resources for forensics and remediation

Table 2.4: SDN Threat Vectors

Among these seven threat vectors, number 3,4 and 5 are not present in the

traditional network. They are specific to SDNs as they arise from the separation

of the control and data plane and the logical centralization of the controllers.

Other vectors were already presented in traditional networking. Threat vector

number 5 would have the most severe impact on the SDN architecture because

it could affect the entire network. Attacks in SDNs can be categorized into

three categories: Control plane specific, Data plane specific and Communication

channel specific. All of these attacks are summarized in Table 2.5. More details

about these attacks can be found in [55].

Attack Plane Attack Type

Control Plane

DoS
Network overview manipulation
Unauthorized network mangement
Network service neutralization

Communication Channel
Eavesdropping
Man-in-the-Middle

Data Plane
Flow table flooding
Malformed control message injection
Data leakage

Table 2.5: SDN Attack Summary
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The controller emerges as a potential single point of attack. Attackers can

attack vulnerabilities of controllers and run several dangerous scripts. Therefore,

if there are no security settings to protect the controller, it would be under the

control of attackers. The controller provides an interface for SDN applications

to manage the network. However, this also gives chances for malicious SDN

applications to take over the network because of the lack of trust between the

controller and SDN applications. Malicious hosts also can cause severe damage

to the SDN architecture. Malicious hosts can perform Denial of Service (DoS) or

Distributed Denial of Service (DDoS) attacks to controllers and other hosts. DoS

and DDoS attacks are some of the most dangerous attacks in SDN. It can be done

by flooding the network with a large number of forged packets. These packets

would trigger the switches to send a large number of requests to the controller for

new flow rules. Therefore the control channel bandwidth and the controller CPU

resources will be heavily consumed. As a result, the controller would respond

slowly to legitimate requests. At the same time, the switches would also suffer

from traffic congestion because the packets could quickly exhaust the memory of

the flow table storage in the switches. Compromised switches not only have the

same capabilities as the malicious hosts, but they are also capable of performing

more dynamic and severe attacks. Firstly, they can be used for traffic eavesdrop-

ping. Both data and control flows passing through the compromised switches can

be replicated and sent to the attacker for further processing. Furthermore, the

attacker can interfere with the control traffic passing through the compromised

switches to perform man-in-the-middle attacks. By doing so, the attacker can act

as the controller to some target switches.

The research in the field of SDN and general security in SDN is still in the
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early phase. Currently, there are several papers analyzing the security aspect

of SDN and proposing new security solutions in the SDN environment. Most

of them focus on the security analysis of SDN applications or network policy

verification.

2.2 Network Intrusion Detection System

Intrusion detection is the process of monitoring events occurring in a computer

or network and analysing them for signs of intrusion. These signs of interventions

can be referred to as anomalies. Anomalies can be put into three categories as

follows:

• Point Anomalies: A point anomaly is an object that is considerably

different from other data points.

• Collective Anomalies: If there are some linked objects observed as an

anomaly against other objects, then they are collective anomalies. Individ-

ually observed they might appear normal.

• Contextual Anomalies: If an object is abnormal viewed in a defined

context (e.g., temporal or spatial attribute), it is regarded as a contextual

anomaly.

An Intrusion Detection System (IDS) is based on the hypothesis that an

intruder’s behaviour will be noticeably different from legitimate behaviour and

so it is detectable. The IDS identifies illegal behaviours or attacks and report on

them. The IDS has been studied for over 40 years since Anderson’s report [56].
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Basically, there are six types of intrusions: attempted break-ins, masquerade

attacks, penetration of the security control system, leakage, denial of service and

malicious user. An overview of an IDS is depicted in Figure 2.5.

Intrusion Detec-
tion System (IDS)

Classification
Intrusion Detection

Technique

NIDS

HIDS

Anomaly-based

Signature-
based

Figure 2.5: Overview of Intrusion Detection System

There are two popular types of IDS: network-based IDS (NIDS) and host-

based IDS (HIDS). In a host-based IDS, some applications will be installed on

the individual host or the device on the network and monitor the character of

the single host such as the integrity of the system, file changes, network traffics

and system logs. Host-based IDS can access information in the host so that it

can make more accurate decisions about attacks. However, this system can add

performance overheads to the host and thus degrade the overall performance. In

network-based IDS, the system will monitor all the network traffic and analyse

it for signs of intrusions. It tries to detect malicious activities such as DoS at-

tacks, DDoS attacks and other network attacks. Network-based IDS includes a

number of sensors to monitor packet traffic and a number of servers for network

management functions.

Based on what data is actually processed, the IDS can be categorized into

either signature-based detection or anomaly-based detection. Signature-based
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detection generally takes intrusion behaviour as patterns and establishes a signa-

ture database based on these known patterns. This method then monitors and

matches the user’s behaviour with the database to detect intrusion. Known at-

tacks can be detected well this way with a low false alarm rate. However, this

method cannot detect zero-day attacks which are new and unknown. On the

other hand, anomaly-based detection creates a normal behaviour baseline model

and then tries to identify any behaviour that deviates from this baseline model.

Thus, this method can detect zero-day attacks. The majority of current NIDSs

is signature-based IDS. There are several reasons for this reluctance to switch,

including the high false alarm rate, difficulty in obtaining reliable training data

and network dynamics.

In this thesis, we focus on the development of an anomaly-based Network In-

trusion Detection System (NIDS). One of the significant challenges of developing

a NIDS is ensuring robustness and effectiveness.

2.2.1 Signature-based Detection

Signature-based detection is the process of detecting packets that have a signature

(a pattern of known attacks) in the network traffic corresponding to the rules es-

tablished in the IDS. Well-written signature rules can perform detection of known

attacks with high probability and without mistake. Snort [57] is an open source

and well-known example of a signature-based IDS. A signature-based system is

at the heart of most commercial IDSs. In an IDS, there are typically at least

several thousand rules that are used for detecting potentially malicious attacks

and codes. These signatures also help network administrators easily recognize
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what kind of attack the system is under.

However, a signature-based detection system also has some drawbacks. It

cannot detect unknown attacks or known attacks with small variations, so the

database must be updated frequently. Many variations of one signature can also

make the database grow big and slow down the whole system. It also takes time

to create signatures for new exploits. A new attack must be analyzed before

developing any new signature to detect it. Attackers will take advantages of this

time-lapse, and this can cause serious problems. Therefore, IDS manufacturers

have to rush the signature to the market and update their systems regularly.

Signature-based IDS can also be bypassed when the attackers encrypt the code.

For a higher detection rate, signature-based detection is commonly combined

with packet-based detection. In packet-based detection, also named “Deep Packet

Inspection” (DPI), both header and payload of a packet are scanned to determine

whether a packet is an intrusion or not. All common kinds of known attacks

and intrusions can be detected with DPI if the data source delivers an entire

network packet for analysing. Header information is mainly helpful to detect

attacks aiming at vulnerabilities of the network stack. Payload information is used

for detecting attacks aiming at vulnerable applications. To process all payload

information, packet-based IDS requires a considerable amount of resources for

computation, and it is very time-consuming. These are the disadvantages of

packet-based IDS. Several researchers have expended much effort to design an

efficient packet-based IDS.

Signature-based intrusion detection systems are implemented using four tech-

niques: pattern matching techniques, rule-based techniques, data mining tech-

niques, and state-based techniques. Pattern matching techniques are commonly
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deployed on network intrusion detection systems. The attack patterns are usually

modelled based on packet headers, packet contents or both of them and then the

IDSs to match and identify them. Pattern matching is computationally expensive

since there are new types and varied forms of attacks emerging every day. A rule-

based technique is one of the earliest used methods for signature-based intrusion

detection. The intrusion scenarios are encoded as a set of rules, which are then

matched to a network or host traffic data. IDES [58] (Intrusion Detection Expert

System) is a rule-based system. IDES is trained to detect known intrusions, vul-

nerabilities. NIDES [59] (Next-generation Intrusion Detection Expert System)

is an extension of the IDES system. NIDES is a hybrid system that has both

a rule-based component and a statistical model component for anomaly detec-

tion. MIDAS [60] (Multics Intrusion Detection and Alerting System) is an expert

system that was developed to perform real-time intrusion detection and misuse

detection for Dockmaster, the National Computer Security Center (NCSC) net-

worked mainframe system. State-based techniques use system states and state

transitions to detect intrusions. They require finite state machine construction

for depicting the states and transitions. The states depict the IDS states, and

transitions characterize events that cause the IDS states to change.

2.2.2 Anomaly-based Detection

Anomaly-based detection is an alternative to signature-based detection. It uses

the tendency of the attack traffic to determine whether an attack is occurring

or not. It will compare definitions of normal activities against observed events

to find deviations. According to Maxion and Tan [61], “An anomaly is an event
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(or object) that differs from some standard or reference event, in excess of some

threshold, in accordance with some similarity or distance metric on the event”.

Anomaly-based IDS was originally proposed by Denning in her report [62]. It is

based on the idea that intrusion behaviors differ from legitimate behaviors and

are detectable.

A variety of techniques are used for anomaly detection. However, they can be

categorized into two main techniques: statistical analysis and ML. ML approaches

build models of normal data and then attempt to detect deviations from the

normal model in the observed data. ML approaches can be categorized into two

strategies: supervised learning and unsupervised learning. Supervised anomaly

detection algorithms require a set of labeled network data from which they train

their model. However, we do not have either labeled or purely normal data readily

available! We must deal with huge volumes of network data, and it is difficult to

classify it manually. If the data contains some mislabeled intrusions buried within

the training data, future instances of the attacks which will be assumed ”normal

data” and so may not be detected. We can obtain labeled data by simulating

intrusions, but then we would be limited to the set of known attacks. Thus

our detection system is restricted to identify only known attacks. Unsupervised

anomaly detection takes a set of unlabelled data as input and attempts to find

intrusions buried within the data. The basic idea is that since the intrusions

are both different from normal and rare, they will be detected as outliers in

the data. These algorithms have the major advantage of being able to process

unlabelled data and identify some of the intrusions. Anomaly-based IDS can

detect a variety of abnormal patterns such as attempted break-ins, DoS attacks,

worm, and scanning. This method can help detect unknown attacks, but it
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also has some disadvantages such as complexity, low detection rate, and a high

false alarm. Figure 2.6 shows some common ML techniques for classification of

intrusive and non-intrusive behavior.

Nowadays, with the constant increasing of network traffic and network speed,

it is challenging for traditional packet-based NIDSs to work well. In high-speed

environments, flow-based approaches are introduced as a way to solve this prob-

lem. A flow is a set of IP packets that have a set of common properties. The

common properties are called flow keys which are the source and destination ad-

dresses, source and destination port numbers and IP protocol. The NIDS looks

at aggregated information of related packets of network traffic in the form of flow,

so the amount of the data to be analyzed is reduced, and network overhead is

minimized. The flows provide information about the network connection, which

can be represented in a few bytes, to be analyzed rather than packet payload.

Flow-based supports anomaly-based NIDS to have the ability to detect anomalies.

Flow-based methods focus mostly on DoS attack, scan, worm, and viruses.
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2.3 Intrusion Detection in the SDN

Researchers have employed classical ML approaches such as Support Vector Ma-

chine (SVM), K-Nearest Neighbour (KNN), artificial neural networks (ANNs),

and Random Forest for intrusion detection for several years. These proposed

methods have achieved various degrees of success while also exhibiting some in-

herent limitations. These techniques had a quite high false alarm rate and asso-

ciated computational cost as mentioned in [19]. Researchers have adopted these

techniques for intrusion detection under the context of SDN. For anomaly-based

detection approaches, SOM and SVM are frequently used because of their high

detection accuracy. Braga et al. [63] present a lightweight approach using a Self

Organizing Map (SOM) to detect Distributed Denial of Service (DDoS) attacks

in the SDN. This approach based on six traffic flow features (Average of Packets

per flow, Average of Bytes per flow, Average of Duration per flow, Percentage of

Pair-flows, Growth of Single-flows, Growth of Different Ports) gives a quite high

detection accuracy. Nam et al. [64] propose an approach combining SOM and K-

Nearest Neighbors to detect several kinds of DDoS attacks in SDN. This approach

can reduce computational overheads while maintaining a suitable ACC of 98.24%.

In [14], the authors use four traffic anomaly detection algorithms (threshold ran-

dom walk with credit-based rate limiting, rate limiting, maximum entropy and

NETAD) in the SDN environments. The experiments indicate that these algo-

rithms perform better in the SOHO (Small Office/Home Office) network than in

the ISP (Internet Service Provider) and they can work at line rates without in-

troducing any new performance overhead for the home network. In [17] and [18],

SVM is introduced to detect DDoS attacks quite efficiently. Winter et al. [65]
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train a one-class SVM with a malicious dataset in order to reduce the false alarm

rate. K-Nearest Neighbour and graph theory are combined to classify DDoS at-

tacks from benign flows in SDNs by AlEroud et al. in [66]. In [16], Mukherjee et

al. investigated the combination of Correlation-based Feature Selection, Informa-

tion Gain and Gain Ratio for feature reduction. Then the reduced dataset was

classified by a Naive Bayes algorithm that yields an accuracy of 97.78%. Javaid

et al. [67] used a self-taught learning algorithm on the NSL-KDD dataset for

intrusion detection. They used soft-max regression as a classifier and achieved

an accuracy of 92.98%. Gabriel et al. [68] combined neural networks and danger

theory for DDoS attack resiliency.

Entropy is used to detect DDoS attacks quite effectively in [15], [69] and [70].

S. M. Mousavi proposed in [15] an early detection method for the DDoS attacks

against the SDN controller. This method is based on the entropy variation of

the data flows’ destination IP addresses. It assumes that the destination IP

addresses are evenly distributed in the normal flows, while the malicious flows are

destined for a small number of hosts. The entropy will drop dramatically when an

attack happens. In [69], a distributed algorithm for entropy-based DDoS attack

detection is introduced to reduce the communication overhead. Trung et al. [71]

combined hard thresholds of detection and a fuzzy inference system to detect

the risk of DDoS attacks based on the real traffic characteristics (Distribution of

Inter-arrival Time, Distribution of Packet Quantity per Flow and Flow Quantity

to a Sever) under normal and attack states. In order to improve the scalability

of the native OpenFlow protocol, a combination of OpenFlow and sFlow had

been proposed in [72] for effective and scalable anomaly detection and mitigation

mechanism in an SDN environment. SPHINX was introduced in [73] to detect
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both known and potentially unknown attacks within an SDN by leveraging the

novel abstraction of flow graphs, which closely approximate the actual network

operations.

Recently, DL has developed as an important research trend in the field of

intrusion detection. Yin et al. [74] propose a DL approach using recurrent neural

networks for detection intrusion. They got an accuracy of 83.28% with their

experiments on the NSL-KDD dataset. Fu et al. [75] propose an IDS using Long

short term memory RNN (LSTM-RNN). They achieved an accuracy of 97.52%

with the NSL-KDD dataset. An autoencoder (AE) - a form of Artificial Neural

Network - is extensively exploited by many researchers for anomaly detection in

SDNs. Zhang et al. [76] propose a method combining Sparse Autoencoder and

Xgboost algorithms to deal with a high-dimensional and unlabelled dataset. They

achieve an F1-measure of 91.97%, but their precision is still quite low compared

to other state-of-the-art approaches. In [77], the authors propose a DL based

approach using a stacked autoencoder (SAE) for detecting DDoS attacks in the

SDN. A Non-symmetric deep AE and Random Forest algorithm are combined

to detect DDoS attacks in [78]. The authors claim that they can obtain a good

classification result whilst significantly reducing the training time.

Nowadays, current research trends focus on detecting DDoS attacks which are

some of the most dangerous attacks in SDNs. The controller is a single point of

failure in the SDN architecture. Therefore, if intruders trigger the DDoS attacks

on the controller and take control of it, they can also control the whole network.

In this thesis, our approach aims to detect all types of attacks and discover zero-

day attacks in SDNs.
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2.4 Intrusion Detection Performance Evaluation

The performance and effectiveness of the NIDS are evaluated by several metrics.

A confusion matrix is a table that is often used to describe the performance of

the NIDS. A binary confusion matrix is described in Table 2.6.

Predicted Classes

Anomaly Legitimate

Actual Classes
Anomaly True Positive (TP) False Negative (FN)

Legitimate False Positive (FP) True Negative (TN)

Table 2.6: A Binary Confusion Matrix

• TP: the number of anomaly records correctly classified.

• TN: the number of normal records correctly classified.

• FP: the number of normal records incorrectly classified.

• FN: the number of anomaly record incorrectly classified.

For the evaluation purpose, Accuracy (ACC), Precision (P), Recall (R) and

F1-measure (F1) metrics are applied. These metrics are calculated as follows:

• Accuracy (ACC): shows the percentage of true detection over total traffic

trace,

ACC =
TP + TN

TP + TN + FP + FN
× 100%. (2.1)

• Precision (P): shows how many intrusions predicted by a NIDS are actual

intrusions. The higher P then the lower false alarm is:

P =
TP

TP + FP
× 100%. (2.2)
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• Recall (R): shows the percentage of predicted intrusions versus all intru-

sions presented. We want a high R value,

R =
TP

TP + FN
× 100%. (2.3)

• F1-measure (F1): gives a better measure of the accuracy of a NIDS by

considering both the precision (P) and the recall (R). We also aim for a

high F value,

F1 =
2

1
P

+ 1
R

× 100%. (2.4)

A Receiver Operating Characteristic (ROC) curve is also used to evaluate the

detection performance. The ROC curve is created by plotting False Positive Rate

(FPR) against True Positive Rate (TPR). The FPR and TPR are calculated as

follows:

FPR =
FP

FP + TN
× 100%. (2.5)

TPR =
TP

FP + TN
× 100%. (2.6)

The area under the ROC curve (AUC) is a standard measure for classifier

comparison. The higher the AUC, then the better is the performance of the

method. Figure 2.7 shows an example of the ROC curve in which the AUC is the

area below the yellow curve. In practice, we expect to get high AUC and TPR

values.
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Figure 2.7: The ROC Curve Example. The closer the ROC curve to the top
left corner, the better the result is

2.5 SDN-based NIDS: An Example

In this section, we present a simple example of SDN-based NIDS to show the

flexibility of SDN in network monitoring and detecting intrusions. As mentioned

in the previous sections, the DoS attack is one of the most severe attacks in the

SDN. During the DoS attack, many spoofed packets with fake source IP addresses

are sent to one host or one specific destination IP address. Therefore, in this

experiment, we monitor one type of network information that is the IP destination

addresses. As described in the previous section, any unmatched packet will be

sent to the SDN controller for routing advice. The IP destination address will be
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extracted from PACKET IN messages sent to the SDN controller.

Entropy is commonly used to detect randomness. The less the randomness is,

the less the entropy is and vice versa. Therefore, entropy-based approaches have

significant advantages in DoS attack detection ( [15], [69], [70]). When legitimate

traffic is sent in a network, the entropy values are relatively close and smooth. In

the case of DoS attacks, the entropy values will drop significantly when a large

number of packets are attacking one host or a subnet of hosts.

Let I be a set of destination IP addresses and let W be the window containing

a packets’ destination IP address x and the occurrence number y. Then, the

probability of xi happening in W is pi and the entropy is denoted as H.

I = {x1, x2, x3, ....., xn} (2.7)

W = {(x1, y1) , (x2, y2) , (x3, y3) , ......, (xn, yn)} (2.8)

pi =
yi
n

(2.9)

H = −
n∑
i=1

pi log pi (2.10)

The entropy will be at its maximum if all elements have equal probabilities.

If an element appears more than others, the entropy will be lower. As mentioned

above, a non-match packet will be sent to the controller for further processing. In

DoS attacks, hackers usually use spoofed IP packets so that these packets will be

sent to the SDN controller for forwarding advice. The controller can calculate the
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entropy with information extracted from these packets and detect DoS attacks.

2.5.1 Experimental Setup

In this experiment, Mininet [79] is used to virtualize a complete SDN network.

Mininet is an open-source network emulator which runs a collection of end-hosts,

switches, routers and links on a single Linux kernel. A large network with different

topologies can be emulated and tested with Mininet. Mininet network behaves

just like a real network, so the code developed in Mininet can be applied to any

real network. Mininet also supports OpenFlow version 1.0, so it is quite easy

for us to do SDN experiments. In this experiment, a small scale network with 1

controller, 9 switches and 64 hosts is emulated by Mininet (see Figure 2.8). A

POX controller [35], which is written in Python, is used in this experiment to

control the emulated SDN network and collect network information. Scapy [80]

is used here for packets and spoofing IP address generation.

Figure 2.8: The Emulated Network Topology

As seen in Figure 2.8, all the OpenFlow switches are controlled by the POX
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controller (c0). The POX controller controls traffic flows between hosts in the

emulated network.

In all test cases, Scapy sends randomly 4000 UDP packets to 64 hosts in

the network to create legitimate traffic. DoS attacks are generated by Scapy by

sending 500 UDP packets to a single host (i.e., 10.0.0.1) in the network. Every

50 PACKET IN messages will be parsed for their destination IP address, and the

entropy of the list will be computed. Normal traffic is run on all switches with

randomly generated packets going to all hosts. Attack traffic is run manually

from one host. Each test case was run ten times to get mean values. Two types

of attack rate are tested in this experiment.

• In the first test case, an attack with 25% rate attack is performed. This

results in having about 12 attack packets in a window of 50 packets.

• In the second test case, an attack with 75% rate attack is performed. This

results in having about 39 attack packets in a window of 50 packets.

2.5.2 Simulation Results

In this section, we examine the result of the attack. Figure 2.9 is a result of

10 runs with 4000 packets per test. Each point on the horizontal axis shows a

window of 50 packets and the vertical axis indicates the entropy for that window.

The graph’s data are the mean values over ten runs.

In Figure 2.9, the differences among legitimate, 25% rate attack and 75%

rate attack traffic are shown clearly. When the DoS attack begins, the entropy

starts dropping and remains quite low during the attack. The entropy drops

significantly so that we can identify the time and duration of the attack easily.
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Comparing the 25% rate attack and 75% rate attack entropies, it can be seen that

the entropy drops deeper. The window of the attack is also narrower compared to

25% rate DoS attack. Because of the increase of the attack rate, the randomness

of the attacked IP address decreases and the entropy drops dramatically. In this

graph, we can see that legitimate and attack traffic are significantly different from

each other. A threshold which is 1.3 can be set for attack detection. With this

threshold, all attack packets can be detected with 100% detection rate.

Figure 2.9: Entropy Comparision for Legitimate, 25% Rate DDoS Attack and
75% Rate Attack Traffic

The entropy method is quite lightweight and flexible for detecting some sim-

ple networks attacks but it cannot detect more complex attacks. Although the

entropy algorithm can identify the attack patterns, there are some benign net-

work anomalies, which affect the network metrics in the same way of malicious

anomalies. For example, a Flash Crowd anomaly would cause a massive drop

in the destination IP and destination port metric, like a DDoS. These benign

network anomalies can increase the false positive rate of the detection system. In

another case, Slow DDoS attacks can be performed by attackers. These attacks
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use slow traffic that mimics legitimate traffic, so they are tough to detect and

mitigate. Besides, choosing a proper hard threshold is also a big problem for this

method. It requires significant pre-knowledge about the network to decide the

alarm threshold. Network traffic is dynamic and constantly changing so the hard

threshold cannot detect attacks effectively.

2.6 Conclusion

In this chapter, we discussed in detail the SDN architecture and the OpenFlow

protocol. Some major security concerns in the SDN architecture are also pre-

sented in this chapter. This chapter also provided an overview of the NIDS and

some related work in SDNs. The flow-based NIDS will be focused as the primary

research of the thesis. We describe and explain the use of some metrics in evalu-

ating the performance of the DL algorithm as well as the NIDS. At the end of this

chapter, we introduced an example of SDN-based NIDS to show the flexibility of

the SDN paradigm in monitoring and detecting network attacks.
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Chapter 3
Deep Learning

The DL overview is introduced for easy understanding of this thesis. In
addition, we also introduce the evaluation methodology and the network
datasets used in this thesis.

In This Chapter:

3.1 Notations

Throughout this thesis, we use the following mathematical notations. In general,

the following rules are used for number and arrays:

• Non-bold letters (e.g., x, y, I) are for scalars.

• Bold small letters (e.g., w) denote column vectors. A row vector is denoted

by its transpose (e.g., wT ).

• Bold capital letters (e.g., W) denote matrices.
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3.2 Introduction

In recent years, DL has emerged as one of the hottest technologies and somewhat

of a buzzword. So what is DL? And what is the difference between Artificial

Intelligent (AI), ML and DL? Figure 3.1 shows the relationship of these terms.

As we can see, DL is a subset of ML, and then ML is a subset of AI.

Figure 3.1: The AI, ML and DL Relationships [5]

AI is a broad concept that means incorporating human intelligence into ma-

chines. The intention of ML is to give machines the ability to learn and make

decisions by themselves using the provided data. ML was inspired by the struc-

ture and function of the human brain which is a highly interconnected system of

neurons. A neuron is a basic computational unit of the human brain. Figure 3.2

shows a drawing of a biological neuron and how it works in practice. The neuron
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receives input signals from its dendrites and then produces output signals through

its axon. The axon connects to dendrites of other neurons, so the output signals

of this neuron will become the input signals of the others.

Figure 3.2: A Drawing of a Biological Neuron [6]

A common model of an artificial neuron is described in Figure 3.3. The

artificial neuron also receives inputs and then computes an output as the human

neuron.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

xn wn

Weights

Bias
b

Inputs

Figure 3.3: The Single Artificial Neuron Structure

The working of a neuron can be presented mathematically as in Equation 3.1.
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y(x) = f(wTx + b), (3.1)

where f(·) is a non-linearity activation function, w is a weight vector, x is an

input vector and b is a bias. Table 3.1 shows some of the most common activation

functions.

Function f(x) Definition Range

Sigmoid
1

1 + e−x
(0,1)

Tanh
ex − e−x

ex + e−x
(-1,1)

Rectified Linear Units (ReLU) max(0, x) (0,∞)

Table 3.1: Definitions of Activation Function

The history of ML development can be dated back to 1957 with an intro-

duction of the perceptron learning algorithm by Frank Rosenblatt. However,

this perceptron algorithm could not solve some simple non-linear problems at

that time. This lead to a period of time called “The first AI Winter”. In 1986,

the Multi-layer Perceptron (MLP), which is a neural network with many hidden

layers, was introduced in [81] to solve non-linear problems. The MLP attracted

many researchers at that time, but several problems like lack of processing power,

lack of data, overfitting and vanishing gradient prevented the development of the

MLP. Besides, traditional MLP algorithms are limited in their ability to process

raw data. Considerable domain expertise is required to design features as inputs

for the MLP system. Despite some achievements in this period, “The second AI

Winter” happened, and many researchers changed their focus to Kernel Machine

methods like Support Vector Machine. In 2012, Convolutional Neural Networks
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(CNN) were introduced in [82] and have had achieved many achievements since

then [21] [83] [84].

In general, DL is an ML approach. DL algorithms use a neural network (NN)

to learn associations between inputs and outputs. DL refers to creating a deep

NN (DNN) that has a huge amount of hidden layers. The NN consists of several

artificial neurons arranged in a series of layers. The most common type of the

NN is a fully-connected NN in which neurons between two adjacent layer are fully

connected. A basic structure of the fully-connected NN can be seen in Figure 3.4.

x1

x2

x3

h1

h2

h3

h4

h5

h6

ŷ1

ŷ2

Input
layer

Hidden
layer

Output
layer

W1 W2

Figure 3.4: The NN Architecture with an Input Layer, a Hidden Layer and an
Output Layer

The first layer, known as the input layer, receives information (x1, x2, x3) from

the outside environment for the learning process. On the opposite side, the last
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layer of the NN, known as the output layer, gives us responses (y1, y2) to the

learned information. In between the input and output layers are hidden layers.

The connection from one neuron to another is represented by a number called a

weight.

The DL algorithm can be categorized into different types based on its ar-

chitectural designs. Figure 3.5 presents an overview of DL algorithms that are

categorized into two categories: Generative and Discriminate Architectures.

DL Algorithms

Generative
Architectures

Discriminate
Architectures

Deep Belief Network
(DBN)
Deep Boltzmann Machine
(DBM)
Recurrent Neural Network
(RNN)
Deep Auto Encoder
(DAE)

Recurrent Neural Network
(RNN)
Convolutional Neural Net-
work (CNN)

Figure 3.5: Overview of The DL Algorithm

The DL yields state-of-the-art results for a wide range of applications such as

speech recognition [20], natural language processing [22], and image classification

[82]. The success of DL has been facilitated by several factors: better hardware

including GPUs, bigger datasets, better regularization and optimization methods.

The DL algorithm is expected to improve the field of intrusion detection.

52



3.3 Advantages and Disadvantages of DL

3.3 Advantages and Disadvantages of DL

DL has the ability to learn high-level representations automatically from raw

data, while ML requires handcrafted features as input. Each layer in a DNN is a

non-linear module that transforms the representation at one layer to a more com-

plex/abstract level. By that way, very complex functions can be learned. With

the development of the DL, we now no longer spend time for feature engineering

and focus on optimizing the DNN architecture. This is one of the main benefits

of DL over traditional ML algorithms. The difference between the ML and the

DL is depicted in Figure 3.6.

Figure 3.6: The Difference Between Traditional ML and DL Algorithms

However, DL also has several disadvantages as follows:

• DL algorithms require much more data than traditional ML algorithms.

• DL algorithms are computationally expensive. DL needs high-performance

hardware and much more time to train compared to traditional ML algo-

rithms.
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• DL is a “Black Box” in nature. It means that we cannot explain what

happens inside the DNN and how it comes up with its outputs.

3.4 Styles of Learning

ML/DL algorithms can be categorized into two groups by their learning style as

follows:

• Supervised Learning: Input data or training data has a known label

associated with each sample. Given a set of data points {x1, x2, ..., xn}

associated to a set of outcomes {y1, y2, ..., yn}, we want to build a classifier

that learn how to predict y from x. During the training process, an ML/DL

model will be optimized to minimize the distance (or error) between the

known label and the predicted label.

• Unsupervised Learning: Input data or training data does not have any

known label. Given a set of unlabeled data points {x1, x2, ..., xn}, we want

to find hidden patterns of the data. During the training process, an ML/DL

model will try to learn structures, patterns or general rules of the input data.

3.5 Training and Testing Neural Networks

One of the most common forms of ML/DL is supervised learning. The NN train-

ing process of supervised learning can be separated into six steps as follows:

• Collecting and Processing Training Data: Training data is a crucial

part of preparing for the training process. All the collected data must be

cleaned, normalized and labeled.
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• Defining the NN Architecture: The number of neurons at each layer

must be determined at this step. For the input layer, the number of neurons

is picked based on the size of input data (features). The number of neurons

at the output layer represents the class label of the training data. The

number of hidden layers and the number of neurons in each hidden layer can

be varied to find the best architecture for each task. There is no architecture

that fits for all different tasks.

• Feed forward Process: Given a training set {(x1,y1), ..., (xp,yp)} con-

sisting of p ordered pairs of n− andm−dimensional vectors, which are called

the inputs and outputs. The input xi is fed into the NN and propagated

through the network to compute the output ŷi. Referring to Figure 3.4, the

output ŷi can be computed by

h = f(W1xi), (3.2)

ŷi = f(W2h), (3.3)

where f(·) is a nonlinearity function, and W1 and W2 are weight matrices.

During the training process of supervised learning, a loss function is intro-

duced to compute the distance (or error) between the predicted output and

the desired output. The most common loss function is the Mean Square

Error (MSE) which is computed in Equation 3.4.

MSE =
1

N

N∑
i=1

(yi − ŷi)2, (3.4)

where N is the number of observations, yi and ŷi are the true and predicted
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values respectively.

• Backpropagation Process: The goal of the training process is to min-

imize the loss function by modifying the NN’s internal adjustable param-

eters (or weights). Let J(W,b,X,Y) is a loss function in which W is a

weight matrix, b is a bias vector, and X,Y are matrices of input and out-

put samples respectively. The gradient is computed by the backpropagation

procedure [81] which uses the chain rule to compute the derivative. In prac-

tice, a stochastic gradient descent (SGD) is a commonly used optimization

algorithm to compute errors, gradients and then adjust the weights. The

weight will be adjusted in the opposite direction to the gradient vector as in

Equation 3.5. For a large dataset, computing the loss and gradient over the

whole dataset is infeasible. Therefore, in practice, data is normally divided

into small batches for training.

Wt+1 = Wt − α
∂J

∂Wt

, (3.5)

where α is a scalar variable called learning rate.

The weight is computed and updated backwards from the output layer to

the input layer. That is the reason why it is called backpropagation.

• Validation Process: After training, another set of samples (testing set)

is used to evaluate the trained model performance. This testing set is not

used for training. Thus, the model performance on the testing set shows

the generalization of then trained model. It is expected to achieve high

accuracy on both training and testing sets.
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• Hyper-parameter Tuning: All parameters like learning rate, batch size,

number of neurons, and number of layers are termed as hyper-parameters.

After the validation process, hyper-parameters can be tuned to achieve

better performance for the NN. Tuning network hyper-parameters is a quite

challenging task and is one of the main research of the DL. Choosing the

learning rate is an important step in the training process. It takes a lot

of time and many experiments to decide the best learning rate for each

problem.

During the training process, we usually have to encounter an overfitting prob-

lem. Overfitting happens when the model tries to fit all the training data in-

cluding noise (see Figure 3.7). As a result, the trained model performs well on

the training data but very poor with new data. In order to solve this problem,

several techniques have been introduced such as regularizer, dropout, and early

stopping. Dropout technique is one of the most common methods among them.

A predefined percentage of NN will be terminated randomly at each epoch in

Dropout technique.

Figure 3.8 describes the complete training and testing processes of ML/DL

algorithms.

3.6 Network Datasets

Anomaly detection techniques require large numbers of existing benign and sus-

picious activities to build detection models. Currently, there are only a few pub-

lic datasets available for intrusion detection evaluation (e.g., the KDD Cup 99

dataset [85], the NSL-KDD dataset [86], DAPRA [87], the ISCX 2012 Intrusion
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Figure 3.7: The green line represents an overfitted model, and the black line
represents a regularized model. While the green line best follows the training
data, it is too dependent on that data, and it is likely to have a higher error rate
on new unseen data, compared to the black line [7]

Detection [88] and the CICIDS2017 dataset [89]). In this thesis, the NSL-KDD

and CICIDS2017 datasets are chosen for evaluation purposes.

3.6.1 NSL-KDD Dataset

Among the above datasets, the KDD Cup 99 dataset and the NSL-KDD dataset

have been commonly used in the literature to assess the performance of NIDSs.

The KDD Cup 99 dataset is one of the most popular datasets and is widely

applied to evaluate the performance of intrusion detection systems. However,

this dataset suffers from the redundancy of records that makes the classifier fail

to deliver better accuracy. The NSL-KDD dataset is introduced by Tavallaee et

al. to resolve this redundancy issue.

SDNs are a new environment, and so the dataset for them are still very rare

and unpublished. The NSL-KDD dataset is still considered as a state-of-the-art
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Figure 3.8: ML/DL Training and Testing Phase

dataset by many researchers to evaluate their approaches, and so we also choose it

for our experiment. This dataset contains 125,973 records for training and 22,544

records for testing. Details about the distribution of this dataset are presented

in Table 3.2. The number of legitimate and anomaly traffic is balanced to make

sure that the ML/DL algorithms can be trained properly.

Dataset Legitimate Traffic Anomaly Traffic
KDDTrain+ 67,343 58,630
KDDTest+ 9,711 12,833

Table 3.2: The NSL-KDD Dataset Distribution

Each traffic sample in this dataset has 41 network features (see Table 3.3) that
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are categorized into three types of features: basic features (1 - 9), content-based

features (10 - 22) and traffic-based features (23 - 41). The details of these features

can be found in [86].

No. Feature Name No. Feature Name
1 Duration 22 Is guest login
2 Protocol type 23 Count
3 Service 24 Serror rate
4 Flag 25 Rerror rate
5 Src bytes 26 Same srv rate
6 Dst bytes 27 Diff srv rate
7 Land 28 Srv count
8 Wrong fragment 29 Srv serror rate
9 Urgent 30 Srv rerror rate
10 Hot 31 Srv diff host rate
11 Num failed logins 32 Dst host count
12 Logged in 33 Dst host srv count
13 Num compromised 34 Dst host same srv rate
14 Root shell 35 Dst host diff srv rate
15 Su attempted 36 Dst host same src port rate
16 Num root 37 Dst host srv diff host rate
17 Num file creations 38 Dst host serror rate
18 Num shells 39 Dst host srv error rate
19 Num access files 40 Dst host error rate
20 Num outbound cmds 41 Dst host srv rerror rate
21 Is host login

Table 3.3: The NSL-KDD Dataset Features

Attacks in the dataset are divided into four categories according to their char-

acteristics. The details of each category are described in Table 3.4. Some specific

attack types (written in bold) in the testing set do not appear in the training set,

and that makes the detection task more realistic.

The DNN requires each record in the input data to be represented as a vector

of real numbers. Thus, every symbolic feature in a dataset is first converted into
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Category Training Set Testing Set
DoS back, land, neptune, pod,

smurf, teardrop
back, land, neptune, pod,
smurf, teardrop, mail-
bomb, processtable,
udpstorm, apache2,
worm

R2L fpt-write, guess-passwd,
imap, multihop, phf, spy,
warezclient, warezmaster

fpt-write, guess-passwd,
imap, multihop, phf,
spy, warezmaster, xlock,
xsnoop, snmpguess, sn-
mpgetattack, httptun-
nel, sendmail, named

U2R buffer-overflow, loadmod-
ule, perl, rootkit

buffer-overflow, load-
module, perl, rootkit,
sqlattack, xterm, ps

Probe ipsweep, nmap, portsweep,
satan

ipsweep, nmap, portsweep,
satan, mscan, saint

Table 3.4: Attacks in The NSL-KDD Dataset

a numerical value. The NSL-KDD dataset contains both numerical and symbolic

features. These symbolic features include the type of protocol (TCP, UDP, and

ICMP), the service type and the TCP status flag. After converting all symbolic

attributes into numerical values, every feature within each record is normalized

by the respective maximum value and therefore falls into the same range of [0-1]

by Min-Max scaling. Its mathematical equation is given as:

x
′
=

x−min(x)

max(x)−min(x)
, (3.6)

where x
′

is the normalized value, and x is the original value.

In Table 3.5, we give some examples of the NSL-KDD dataset for more un-

derstanding.
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3.6 Network Datasets

3.6.2 CICIDS2017 Dataset

As mentioned in [89], most of the current network dataset are out-of-date and not

reliable enough, so the CICIDS2017 dataset was proposed as a new benchmark

dataset. The CICIDS2017 dataset is claimed to be most updated with all common

attacks and real-world traffic. This dataset covers seven types of common attack

families (i.e., Brute Force Attack, Heatbleed Attack, Botnet, DoS Attack, DDoS

Attack, Web Attack, and Infiltration Attack). This dataset contains seven small

datasets with different attack scenarios. All of these datasets are labeled and

saved in CSV format. Each flow sample in the CICIDS2017 dataset contains 80

flow features which are defined and explained in detail in [90].

In this thesis, we choose Wednesday and Friday datasets focusing on DoS,

Heartblead, Slowloris, Slowhttptest, Hulk, GoldenEye, and DDoS attacks. These

types of attacks are on the rise and are major threats to the SDN architecture.

The Wednesday dataset will be used for training and testing purposes. The Friday

dataset will be used for testing purposes only. The details of each dataset are

described in Table. 3.6.

Dataset Legitimate Traffic Anomaly Traffic
Wednesday Dataset 439,683 251,723

Friday Dataset 183,877 41,834

Table 3.6: The CICIDS2017 Dataset Description

This dataset is also normalized into the range of [0-1] by the Min-Max scaling

as Equation 3.6.

In Table 3.7, we give some examples of the CICIDS2017 dataset for more

understanding.
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3.7 Conclusion

In this chapter, we have presented some background knowledge about the DL.

The process of training and testing the DNN has been demonstrated to make

the work in this thesis clearer and easier to understand. In the last section of

this chapter, network datasets that are used to train the DL algorithm are also

introduced in this chapter.
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Chapter 4
DeepIDS: Deep Learning

Approach for Intrusion Detection

in Software Defined Networking

An SDN-based NIDS is introduced with three core modules: The Collec-
tor, The Anomaly Detector and The Counter Measure Deployment. In this
chapter, we focus on developing the Anomaly Detector module in which DL
algorithms are implemented. We evaluate the potential of DL in detecting
network anomaly with different learning rates and feature sets. Experimen-
tal results show that a simple DNN can detect network anomalies effectively
with just some basic network features. Network overheads are an important
factor when designing the NIDS, so they are also evaluated in detail in this
chapter.

In This Chapter:
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4.1 Introduction

4.1.1 Motivation

The SDN architecture decouples the network control and forwarding functions

enabling the network control to become directly programmable and the under-

lying infrastructure to be abstracted for applications and network services. The

SDN controller is centralized and separated from its underlying switches, and so

it simplifies network management and facilitates network evolution. Instead of

deploying a hardware-based NIDS as in the traditional network, we can imple-

ment a software-based NIDS on the SDN controller and then take the advantages

of SDNs. We can now collect network information, detect any sign of intrusions

and then deploy a flow rule to mitigate attacks in a real-time manner. Consider-

ing the success of DL in many fields [20] [22] [82], a combination of SDN and DL

can improve the NIDS performance and then secure the network better.

In this chapter, we present the structural design and implementation of DeepIDS

(a flow-based anomaly detection system using DL) in the SDN architecture. The

attack detection mechanism is the main research contribution of this chapter. A

comparison with several machine learning algorithms proves the enhancements

offered by our approach.

4.1.2 Contribution

Our main contributions are summarized in the following points:

• We propose and implement an SDN-based NIDS with three core modules:

The Collector, The Anomaly Detector and The Counter Measure Deploy-
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ment.

• We have implemented a Deep Neural Network (DNN) model in DeepIDS.

We trained and evaluated the model with different sets of features of the

NSL-KDD dataset [86]. Through experiments, our model yields a detection

ACC of 80.7% using just six basic network features among the 41 features

of this dataset.

• This method is scalable, and the structure of the DNN can be changed

according to the characteristic of the data features, which makes our method

applicable to detect other kinds of attack.

• We have also evaluated the network performance of DeepIDS in the SDN

environment. We implemented our DeepIDS in a POX controller, and stress

tested DeepIDS through extensive simulation. The test results demonstrate

that our approach does not degrade the POX controller’s performance.

4.1.3 Chapter Organization

This chapter is structured as follows: In Section 4.2, we present the implemen-

tation details of the proposed DeepIDS with respect to data gathering, anomaly

detection and mitigation. The experimental methodology is introduced in Section

4.3. Section 4.4 presents the detection performance of our DL approach. Sec-

tion 4.5 describes our network performance evaluation experiments and results.

Finally, Section 4.6 concludes the work.
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4.2 DeepIDS System Architecture

In this section, we propose an SDN-based NIDS architecture (DeepIDS) as de-

picted in Figure 4.1. Our DeepIDS consists of three main modules: the Collector,

the Anomaly Detector and the Counter Measure Deployment. The DeepIDS is

written in Python programming language and deployed as an application in the

SDN controller.

Data Plane

Control Plane
SDN Controller

The Collector

The Anomaly 
Detector The Counter 

Measure 
Deployment

OFP.FLOW_STATS_REQUESTOFP.FLOW_STATS_REPLY OFP.FLOW_MOD

Network Traffic

DeepIDS

Figure 4.1: The DeepIDS Architecture

The DeepIDS is designed to fulfil the following properties:

• Flexibility: The DeepIDS is developed as an application for ease of de-

ployment, configuration and interaction. It can be implemented on top
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of any SDN controller. Our DL models can be modified and optimized

based on network requirements. New threat models can also be easily

added/updated.

• Scalability: The DeepIDS is designed with a goal to facilitate not only small

scale networks but also large scale networks. The overhead of our approach

does not degrade the performance of the whole network. The overhead on

the SDN controller is evaluated with different network sizes.

For ease of understanding, details of the network intrusion detection frame-

work are presented in Figure 4.2. This framework describes a complete cycle of

data flow in the DeepIDS.

Network Traffic

Data Collection

Feature Extraction

Labelling
Network Dataset

Training Set Testing Set

DL Algorithms

Intrusion 

Detection 

Predictor

No Attack 

Detected

Attack Detected

The Counter 

Measure 

Deployment

The Anomaly Detector

T
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Network Intrusion Detection Framework (DeepIDS)

Offline Training Online Detection

Figure 4.2: Network Intrusion Detection Framework

At the first stage of the intrusion detection process, The Collector collects

network information and then extracts flow features from them. These flow fea-

tures are inputs of the DL algorithm. Some examples of flow features are shown

70



4.2 DeepIDS System Architecture

in Table 4.1. For the DL algorithm training purpose, these flow features will be

cleaned, labeled and saved as a network dataset.

No. Flow Feature
1 Source IP Address
2 Destination IP Address
3 Source Port
4 Destination Port
5 Number of Flow per Second
6 Number of Packet per Second
7 Packet Duration
8 Bytes per Packet

Table 4.1: Flow Feature Examples

After preparing the network dataset, we will move to the second stage which

is the most critical part of intrusion detection and also is the primary research

of this thesis. At this stage, we will train the DL algorithm to detect all types

of network attacks. As mentioned in Chapter 2, the network dataset will be

separated into two subsets: Training Set and Testing Set. The training set will

be used for training, and the testing set will be used for evaluating trained models.

If there is any attack detected, the Counter Measure Deployment module will be

activated to mitigate the attack.

4.2.1 The Collector

We consider network traffic logs as a time series. For each time interval in a

series, we extract various per-flow information. Based on this information, flows

transferred during each time interval are classified. For this reason, the analysed

time period is divided into equal overlapping time bins of length T . The length

of each time bin should be selected in such a manner that it contains enough
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information to detect anomalies. Notice also that the optimal selection of the

detection loop period is a complex problem. If the selected period is too large,

then the response time will be long, which makes the controller and the switches

handle an enormous amount of attack packets and even destroys the controller

and the switches. If the period is too small, the attack detection will occur

more frequently, which incurs significant overheads for the controller in terms of

resource efficiency. While several researchers [91] - [92] focus on traffic monitoring

and sampling, this is not the main focus of our work in this thesis. In this thesis,

we are focusing on improving the anomaly detection rate. In addition, because of

a lack of network facilities, most of the experiment at the early stage of this work

are done in an offline manner. All the ML/DL models are trained and tested

with pulished datasets. Therefore, we are not focusing on this process now.

Currently, most approaches use the periodic trigger to start the detection of

the attack based on inspection of flow entries, whereby, the collection of flow

entries is performed at predetermined time intervals by the controller. It is hard

to choose the time interval, but the system also gives the network manager the

right to change that time interval to suit the network. In our experiment, the

time interval is set at T = 1 second for stress testing the controller.

The Collector module is responsible for collecting flow information and pe-

riodically exporting it to the Anomaly Detector module. The OpenFlow pro-

tocol provides us with a proactive way to collect network information. An

OFP FLOW STATS REQUEST message will be sent to all switches by the con-

troller after a fixed time-window to request the network statistics. The OpenFlow

switches will reply with an OFP FLOW STATS REPLY message. All the statis-

tics in the OFP FLOW STATS REPLY message will be extracted and recorded
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by the Collector module. The 6-tuple basic feature willbe prepared as an input

for the DL model in the Anomaly Detector module.

4.2.2 The Anomaly Detector

Data produced by the Collector is subsequently fed to the Anomaly Detector. In

this module, we choose the DL algorithm as a core of the module. The DL model

can be trained offline and can be deployed for online detection. In addition, we

can update our model anytime without interfering with real-time detection. For

every time-window, the Anomaly Detector module inspects all the flow entries

to identify any potential attack traffic. As soon as an anomaly is detected in the

network, our algorithm will record all the network metrics of the identified attack

for further forensics and send all related information to the Counter Measure

Deployment module.

4.2.3 The Counter Measure Deployment

The Counter Measure Deployment module aims to neutralize identified attacks.

All information about detected attacks (e.g., source IP address, destination IP

address, source port and destination port) is collected from the Anomaly Detector

module. Then, this information will become an input for the Counter Measure

Deployment module. This module will insert new flow-entries into the flow table

or modify current flow-entries of the OpenFlow switch to drop all the malicious

traffic from attacking source IP addresses. A new flow rule can be sent from

the controller to the switches with an attack IP address in a matching field and

an ”of.OFPP DROP” action in an action field to drop all attack packets. The
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attacking packet can be redirected to a honey pot with a specific destination IP

address in the same way. A warning message will also be sent to the network

administrators for further actions. The complete process for countermeasure

deployment is summarized in Algorithm. 1.

Algorithm 1 The Counter Measure Deployment

1: for all Anomaly Packets do
2: msg = of.ofp packet out() . Create packet out message
3: msg.buffer id = event.ofp.buffer id
4: msg.in port = packet in.in port
5: msg.match = of.ofp match.from packet(packet)
6: action = of.ofp action output(port = of.OFPP DROP) . Add an action

to drop the packet
7: msg.actions.append(action)
8: self.connection.send(msg) . Send message to switches
9: end for

4.3 Experimental Methodology

4.3.1 DL Experimental Setup

In this chapter, we implement a fully-connected DNN model which is presented

in Chapter 3 and is the simplest form of DL algorithms. The DNN will be

trained with flow features, and it then classifies network traffic as legitimate traffic

or anomaly traffic. The anomaly traffic includes all types of network attacks

appearing in the training set. The number of hidden layers and the dimension of

each hidden layer can be varied to find the best structure for intrusion detection.

In our experiment, six input features will be used, so we define an input

layer with six neurons. As introduced in Chapter 3, the KDDTrain++ and KD-

DTest++ of the NSL-KDD dataset are used for training and testing the DNN
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respectively. We use Keras [93] to implement the DNN model. Details of all

initiated parameters of the DNN model can be seen in Table 4.2.

Variable Parameters
Input Layer 6

Hidden Layer 5,4,3
Output Layer 2

Activation Function Tanh
Loss Function Mean Squared Error

Batch Size 10
Epoch 1000

Table 4.2: The DNN Model Structure

In general, the DNN is constructed with an input layer, three hidden layers

and an output layer as described in Figure 4.3.
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Figure 4.3: The DNN Structure
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Under the SDN context, we just focus on the basic features and traffic-based

features. For traditional networks, an anomaly-based NIDS is trained with a huge

amount of features including packet content-based features. This consumes a lot

of computer resources and time. Many researchers have developed feature selec-

tion algorithms to reduce the feature dimension and gain higher detection ACC.

However, the packet content is not directly accessible in the current OpenFlow

protocol, and so we do not employ any content-based features of this dataset.

In our experiment, we created three distinct sub-datasets that contain traffic

samples with six features extracted from the NSL-KDD dataset:

• Basic Feature Set: contains basic features of individual TCP connections

• Traffic Feature Set: contains features of network traffic

• Mixed Feature Set: contains both basic features and traffic-based features

The main purpose of these subsets is to evaluate the role of each type of

features to the detection performance. Details of each feature set can be found

in Table 4.3.

Feature Set Description
Basic Feature
Set

duration, protocol type, src bytes, dst bytes, land,
wrong fragment

Traffic Feature
Set

count, srv count, same srv rate, dst host count,
dst host same srv rate, dst host same src port rate

Mixed Feature
Set

duration, protocol type, src bytes, dst bytes, srv count,
dst host same src port rate

Table 4.3: Feature Set Description
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4.3.2 Network Performance Evaluation Setup

Cbench [94] is a standard tool used for evaluating SDN OpenFlow controllers.

In this chapter, Cbench is used to evaluate the overheads of the DeepIDS on

the SDN controller. We measured the performance of the controller in terms of

throughput and latency. Cbench tests can run in either throughput or latency

mode.

• In throughput mode, Cbench sends a stream of PACKET IN messages to

the controller for a specified period of time and then records the number

of responses (PACKET OUT messages) for the request that it has sent to

the controller. Throughput data reflects the average number of flows the

controller could treat per second in each switch.

• In latency mode, Cbench sends a PACKET IN message to the controller

and waits for the response (PACKET OUT message) before sending another

packet. The latency results represent the average number of milliseconds

that a flow consumes to be installed in each switch.

Figure 4.4 shows the flow diagram of network performance evaluation process.

At the beginning of the evaluation process, Cbench will be connected to the SDN

controller. Cbench emulates a network topology by itself, then sends PACKET IN

messages to the SDN controller and waits for PACKET OUT messages from the

SDN controller.

We tested the controller’s throughput and latency with a different number

of virtual OpenFlow switches emulated by Cbench. We evaluate the network

performance in six scenarios. Details about network parameters of each scenario
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Cbench

The SDN Controller
DeepIDS

PACKET IN PACKET OUT

Figure 4.4: The Network Evaluation Process

are described in Table 4.4. In all the testing scenarios, each switch is connected

with a thousand host in a star topology. Then all the switches are connected to

the SDN controller.

Number of Switches Number of Hosts in Each Switch
8 1000
16 1000
32 1000
64 1000
128 1000
256 1000

Table 4.4: Network Parameters

Each Cbench run consists of 10 test loops with a duration of 10 seconds. We

ran the controller with a typical layer 2 learning switch application. The obtained

results are the average values of the 10 tests. We evaluate the performance of the

controller in the following scenarios.

• The SDN controller runs stand-alone. This scenario serves as a baseline for

our evaluation.

• The SDN controller runs with DeepIDS or other ML algorithms being en-

abled.
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4.4 Detection Performance Evaluation

4.4.1 Effect of The Learning Rate

The DNN architecture is a very flexible architecture that consists of several layers

with a different number of neurons. Different network architectures and hyper-

parameter setting will yield different results. Tuning the DNN architecture and

hyper-parameters is a challenging task. The learning rate is one of the most

important hyper-parameters that we have to tune in each training process.

In this section, we firstly analyze the effect of different learning rates on detec-

tion performance. Thus, we tried to optimize the model by varying the value of

the learning rate in a range of {0.1, 0.01, 0.001, 0.0001}. When training the DNN

model, we tried to minimize the loss and maximize the ACC (see Equation 2.1).

Learning Rate
Train Set Test Set

Loss ACC (%) Loss ACC (%)
0.1 11.49 88.04 31.26 72.05
0.01 8.41 90.9 20.15 73.03
0.001 8.26 91.62 15.51 80.7
0.0001 7.45 91.7 20.3 74.67

Table 4.5: Loss and Accuracy Evaluation for Different Learning Rates

By comparing the loss and ACC of the training phase (see Table 4.5), we can

see that along with the decrease of the learning rate, the loss will decrease, and

the ACC will increase. However, in the testing phase, when we lower the learning

rate to 0.0001, the results are not as good as the learning rate of 0.001. This

is because if the learning rate is too small, the NIDS model will be trained too

accurately and the overfitting problem starts happening. That is the reason for

the best results in the training phase of the learning rate of 0.0001. Because of
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this too accurate training phase, the model cannot generalize the characteristic

of the training samples well. So while the model can easily catch the intrusion

instances in the training set, it cannot capture the new intrusion instances in the

testing set. As a result, DNN performance decreases in the testing phase. In

practice, the ACC of the testing phase is one of the most important evaluation

criteria. The higher testing ACC is, the better the DNN model is. This is to make

sure that the trained model can work well with new data and unseen attacks.

Secondly, we evaluate the P, R, and F1 (see Equations 2.2, 2.3, and 2.4) of the

model for more details. The performance of the DNN algorithm was evaluated

using the test data provided. The performance of the model with each learning

rate is shown in Table 4.6. As we can see, the learning rate of 0.001 gives us the

best results among the four learning rates in all evaluation metrics. All evaluation

metrics are in a growing trend when we decrease the learning rate from 0.1 to

0.001, but the metrics suddenly decrease at a learning rate of 0.0001. From

evaluating the evaluation metrics, the loss, and the ACC, we can see that the

performance of the DNN model decreases when the learning rate is decreased to

0.0001.

Learning Rate P (%) R (%) F1 (%)
0.1 79 72 72
0.01 82 73 72
0.001 85 81 81
0.0001 83 75 74

Table 4.6: Accuracy Metrics for Different Learning Rates

From the above evaluations, we can see that the learning rate has a substantial

impact on DNN performance. It must be analyzed carefully at the beginning of

the training process. In this chapter, the learning rate of 0.001 will be taken as
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the best parameter for other evaluations.

4.4.2 Effect of The Feature Set

We first analyze the impact of different feature sets on the ACC metric. The

performance of the model for each feature set is shown in Table 4.7. As we can

see, the Mixed Feature Set gives us the highest ACC with 80.7%. The ACC of

the Traffic Feature Set is quite low compared to others. The Basic Feature Set’s

ACC is just slightly smaller than that of the Mixed Feature Set.

Feature Set ACC (%)
Basic Feature Set 80
Traffic Feature Set 71
Mixed Feature Set 80.7

Table 4.7: Accuracy Evaluation for Different Feature Set

Table 4.8 gives you a more detailed view about the performance of DNN on

each feature set. As seen in Table 4.8, the R and P values of the Mixed Feature

Set are higher than the other sets. The evaluation result shows that with just a

small set of basic network features, we still can achieve high detection ACC. The

DNN shows its power in learning network characteristics from raw features. The

combination of basic and traffic features helps improve the DNN performance.

However, the traffic feature above does not give much information about the

network and attack characteristic, so the detection ACC is low.

In the following, ROC curves and their AUC are presented in Figure 4.5.

Figure 4.5 shows that the Mixed Feature Set gives the best result with the highest

AUC. The Basic and Traffic Feature Sets have quite high FPRs. As we can see, the

combination of basic features and traffic features helps reduce the FPR that is an
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Feature Set P (%) R (%) F1 (%)
Basic Feature Set 84 80 80
Traffic Feature Set 77 73 72
Mixed Feature Set 85 81 81

Table 4.8: Performance Metric Evaluation of Three Feature Sets

essential factor of NIDS. The high FPR means that there will be many legitimate

traffic classified as attacks. Therefore, our network will be more vulnerable. For

the Traffic Feature set, we can conclude that the difference between legitimate and

anomaly traffic is not significant, so the DNN cannot learn their characteristics

well. This leads to a very high FPR.
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Figure 4.5: ROC curve comparison for different feature sets. The Mixed Feature
Set achieves the best result with highest AUC and lowest FPR
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In the next experiment, we evaluate the sensitivity of each feature set with

some existing algorithms: Naive Bayes (NB), Decision Tree (DT) and SVM. The

NB and DT are quite simple and cost-effective. The SVM was proposed by Phan

et al. [18] for DDoS detection in SDNs. They used their own dataset, and so we

have to regenerate the results on the considered NSL-KDD dataset. The ROCs

of each test case are shown in Figure 4.6, 4.7 and 4.8. Each feature set has a

different effect on the performance of each algorithm.

For the Basic Feature set, all the algorithms perform quite well and are com-

parable to each other. The SVM yields a slightly better result than the others.

As mentioned in Chapter 2, The SVM is a popular intrusion detection approach

and has shown good results in detecting intrusion. Thus, the results in Figure 4.6

are expected. However, the SVM also has some drawbacks that will be discussed

in the next sections.

For the Traffic Feature set, following the results of previous evaluations, the

AUC results are quite low for all the algorithms except the NB. This phenomenon

is quite common in the field of ML/DL. One algorithm can work well with one

dataset but it can be bad for another dataset. Therefore, we had to experiment

with different algorithms to find the most suitable one for our problem.

In the case of the Mixed Feature set, the DNN and SVM have the same AUC

result and are the best amongst all the algorithms. In this case, we can see

that the overall FPR is quite low compared to those of other feature sets. This

confirms our conclusion about the contribution of basic and traffic features in

improving detection ACC.

All in all, NB achieves a quite high AUC in the case of the Traffic Features

Set. Despite the high AUC of the NB, its FPR is quite high and not feasible for
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Figure 4.6: ROC Curve Comparison of Different Algorithms for Basic Feature
Set

the NIDS. In general, the DNN works quite well with all of the feature set, with

quite low FPR and high AUC. SVM also achieves a quite high AUC, but it also

has some drawbacks like high FPR and low computational efficiency. We will

discuss the effectiveness of these algorithms in due course. The Mixed Feature

Set gives us the best combination of AUC and the FPR.

From the above evaluation, we can see the potential of DNN for intrusion

detection. The Mixed Feature Set will be chosen for further evaluation. We also

evaluated the P, R, and F1 of the model for more understanding. The performance

of the model is described in Table 4.9. As we can see, our model performs well

in the training phase with high ACC. However, the ACC decreases in the testing
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Figure 4.7: ROC Curve Comparison of Different Algorithms for Traffic Feature
Set

phase. This is because several attacks in the testing set are new and complex.

These attacks cannot be fully generalized by our existing DNN model using just

six basic network features. The R result of the testing phase shows that our DNN

model can detect almost all the attack mentioned in the KDDTest++ set, and

our results are significantly promising with a high P of 85%.

Dataset P (%) R (%) F1 (%)
Training Set 96 96 96
Testing Set 85 81 81

Table 4.9: Performance Metric Evaluation of the Mixed Feature Set

Table 4.10 gives us an overview of the ACC comparison amongst popular in-
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Figure 4.8: ROC Curve Comparison of Different Algorithms for Mixed Feature
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trusion detection algorithms. The proposed DNN gives the best results amongst

all the algorithm. This is because of the limitation of traditional ML meth-

ods. Without a large set of carefully hand-crafted input features, traditional ML

methods perform very poorly compared to the DL method.

In addition, we compared our results with the result in [86] from different ma-

chine learning algorithms. In [86], the authors train and test different algorithms

with a full training and testing set of forty-one features. From these experiments,

the authors can evaluate the performance of these algorithms in their dataset.

From Table 4.11, the DNN approach gives quite good ACC compared with other

algorithms. The most accurate machine learning algorithm is the NB tree with
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Algorithm Accuracy (%)
NB 45
DT 74

SVM 70.9
DNN 80.7

Table 4.10: Accuracy Comparison for Different Algorithms Using the Mixed
Feature Set

82.02%. This is the ACC obtained from the full feature training set, and so the

NB tree algorithm can generalize the characteristics of the normal and anomaly

traffic very well.

Algorithm Accuracy (%)
J48 81.05

Naive Bayes (NB) 76.56
NB Tree 82.02

Random Forest 80.67
Random Tree 81.59

Multi-layer Perceptron 77.41
Support Vector Machine (SVM) 69.52

DNN 80.7

Table 4.11: Accuracy comparison of different algorithms. The DNN uses the
Mixed Feature Set with 6 features. The others use 41 features

In our experiments, it must be noted that only the six basic features in the

Mixed Feature Set are used for training and testing. This sub-feature set is quite

small compared to the full feature set, so it cannot provide enough information for

our DNN algorithm to generalize the characteristics of some sophisticated or new

attacks. However, it can be seen that the DNN performs reasonably compared

with other algorithms.

In summary, we have demonstrated that our proposed DNN approach can

generalize and abstract the characteristics of the normal and anomaly traffic
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with a small number of features and gives us a promising ACC. The result of DL

algorithm facilitates the development of flow-based NIDS under the SDN context.

All the basic network feature, that can be collected easily in the SDN architecture,

can be used directly by the DL algorithm without any feature engineering process.

4.4.3 Efficiency Evaluation

We also evaluate the efficiency of our model compared to other algorithms by

comparing the training time and the testing time of these algorithms. Table 4.12

provides relevant parameters for these algorithms. The NB and DT algorithms

have really low training and testing times in ms compared to the SVM and our

DNN. However, they also yield low detection ACC. The SVM is one of the most

popular algorithms in the field of intrusion detection, but it is not fast enough

for real-time detection, especially under SDN architectures. The total processing

time takes around 2.5 hours. Our DNN works much faster than the SVM and

also gives a better detection ACC, and so it is feasible for real-time detection in

SDNs.

Algorithm Training Time Testing Time
NB 19.8 ms 4 ms

SVM 2 h 30 min
DT 256.9 ms 2.74 ms

DNN 500 s 811.6 ms

Table 4.12: Running Time Evaluation

As mentioned in [63], the SOM algorithm was used for flow-based intrusion

detection in the SDN context. The SOM algorithm was trained and tested by a 6-

tuple feature (Average of Packets per flow, Average of Bytes per flow, Average of
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Duration per flow, Percentage of Pair-flows, Growth of Single-flows, and Growth

of Different Ports) dataset that consists of 8608 samples and 62888 samples in

the training set and testing set respectively. The system takes about 7.16 hours

for training and 352 ms for testing. Despite the difference of the experimented

systems, our DeepIDS computation cost is really low (with the same number of

features and a larger number of samples) when compared to [63].

4.5 Network Performance Evaluation

In this section, we provide detailed network performance analysis of our DeepIDS

in a POX [35] controller. We also compare the network performance of the

DeepIDS with the SVM algorithm. We also evaluate resource utilization and

briefly discuss our observations in this section.

The DeepIDS is implemented in the POX controller as an application writ-

ten in Python language. Currently, POX supports OpenFlow 1.0 protocol and

includes special support for the Open vSwitch/Nicira extensions. In order to test

the performance of DeepIDS in the POX controller, we used a Virtual Machine

having Intel Core i5-4460 3.2 GHz processor with three cores available and 8 GB

of RAM memory. The evaluation setup for this experiment has been described

in Section 4.3.2.

4.5.1 Throughput Evaluation

For throughput mode tests, we evaluate how many packets a controller can process

in a second. This metric indicates the performance of the controller under heavy

traffic conditions. Figure 4.9 depicts the average response rate of the network in
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three testing scenarios.

Figure 4.9: Throughput Evaluation (log scale on x-axis)

As we can see, the performance of the POX controller itself is quite poor with

a maximum throughput around 4900 responses/s. This is one of the limitations

of the POX controller compared to other SDN controllers. However, the run-

ning stand-alone POX controller still performs best and is taken as a baseline for

performance evaluation in our experiment. Of overall assessment, the bigger the

size of the network then the higher the performance overhead. The throughput

slightly decreases with the increasing network size according to the results in Fig-

ure 4.9. The network performance drops when the number of forwarding devices

increases up to 64, showing that the controller throughput degrades by roughly

3% from 32 to 64 switches. The baseline results for the smallest network scale and

the largest network scale are 4852 responses/s and 4607 responses/s respectively.
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The DeepIDS and SVM overheads are about 2% and 3.12% respectively in the

case of 8 switches.

We can see that in the case of high PACKET IN message rate with 256

switches, DeepIDS’s throughput decreases by 2.7% with 4465 responses/s. The

SVM algorithm’s throughput decreases by about 3.2% in the same situation. The

reason for this behaviour is that the NIDS sends OFP FLOW STATS REQUEST

messages and processes OFP FLOW STATS REPLY messages during processing

PACKET IN messages. When the network size increases, the NIDS has to process

a large amount of OFP FLOW STATS REPLY messages resulting in the over-

head. Figure 4.9 shows that the SVM algorithm has affected the controller and

resulted in the low network throughput in all test cases. As we can see, DeepIDS

performs better than the SVM algorithm in terms of throughput. DeepIDS’s

throughput degradation (which is around 4% on average) is quite low and has

almost no effect on the POX controller’s performance.

4.5.2 Latency Evaluation

For latency mode tests, the controller is evaluated for the length of time it takes to

process a single packet. This metric reflects the performance of the controller in

light traffic conditions. The testing scenarios are the same as the throughput test.

As depicted in Figure 4.10, the latency increases with the increasing network size.

This is expected behavior: increasing the number of devices will increase the load

at the controllers, causing a latency increase. In general, we can see in Figure 4.10

that the SVM always has higher latency than the DeepIDS. The NIDS takes time

to process the PACKET IN message, the OFP FLOW STATS REPLY message
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and detect anomaly flows, and so the performance overhead is unavoidable. The

SVM algorithm takes a longer time to process the information, and thus it results

in a higher latency under high traffic rates. The DeepIDS and SVM overhead are

about 2.6% and 5.8% respectively in the case of 256 switches. The DeepIDS’s

latency degradation is quite low and can be improved in the future.

Figure 4.10: Latency Evaluation (log scale on x-axis)

4.5.3 Resource Utilization

We also evaluate the resource utilization of DeepIDS. The POX controller itself re-

source utilization is a benchmark for our comparison. As we can see in Table 4.13,

DeepIDS does not use a lot of computer resources. In general, DL requires a sig-

nificant computational cost. DL models usually have high-dimensional inputs

and a large number of hidden layers. However, in our experiment, we minimize
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the input with just six basic network features and use three hidden layers. As

a result, our DNN model is quite simple, and so it uses computational resources

optimally.

Algorithm CPU Usage (%) Memory Usage (%)
POX 15 7.5
DNN 17 8.2

Table 4.13: Resource Utilization Evaluation

4.6 Conclusion

In this chapter, we proposed the DeepIDS as an SDN-based NIDS architecture.

We have implemented a DL algorithm for detecting network intrusion and evalu-

ated our DeepIDS. Our results show that our approach has significant potential

and advantages for further development. By comparing the results with those of

other classifiers, we have demonstrated the potential of using DL for the flow-

based anomaly detection system. In the context of the SDN environment, the

DL-based IDS approach is promising. Regarding the above-mentioned evalua-

tions, we can see that our method does not affect network performance signifi-

cantly. Therefore, our approach is quite promising and can be improved in many

ways. With the flexibility of the SDN structure, we can extract features focused

on one specific type of attack, like DDoS, to increase the ACC of the NIDS. As

shown above, our DeepIDS gives the slightly lower ACC than other approaches

that use a full 41 feature NSL-KDD dataset. In the future, we will optimize our

model to improve the detection rate and decrease the false alarm rate.
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Chapter 5
Deep Recurrent Neural Networks

for SDN-based Intrusion

Detection Systems

We introduce a Gated Recurrent Unit Recurrent Neural Network (GRU-
RNN) for time series network traffic classification. As Internet traffic traces
are a kind of time series data, we believe that GRU-RNNs are suitable for
this task. The aim of this chapter is to improve the intrusion detection
ACC on the Internet traffic. We demonstrate through our experiment and
analysis that the GRU-RNN can improve the ACC significantly without
degrading the network performance.

In This Chapter:
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5.1 Introduction

5.1.1 Motivation

The DNN in the previous chapter shows the potential of DL under the context

of SDN. This approach is relatively lightweight, but the detection ACC is quite

low compared to other state-of-the-art results and not applicable for real NIDS.

Therefore, there is a need to improve the detection rate. Recently, Recurrent

Neural Networks (RNNs) have shown great success in language modelling, text

generating and speech recognition [20] [22]. Following the trajectory of current

research, we believe that deep RNNs can potentially offer better solutions for

implementation of IDS under the context of SDN.

Network traffic often shows temporal correlations. As a result, these sequen-

tial traffic traces lead to the generation of time series data. For the DNN, this

temporal information can be lost during the training process. The RNN ad-

dresses this issue. It is a powerful technique that can represent the relationship

between a current event and previous events. Some network anomalies are col-

lective anomalies, so they are difficult to detect by the DNN. We believe that the

RNN enhances the anomaly detection rate. In this chapter, a Gated Recurrent

Unit Recurrent Neural Network (GRU-RNN) is proposed to take advantage of

network time series data to detect anomaly traffic.

5.1.2 Contribution

In summary, the major contributions of this chapter are the following:

• We introduce a NIDS in the SDN environment using GRU-RNN.
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• Our GRU-RNN approach yields a detection rate of 89% in the NSL-KDD

dataset using a minimum number of features compared to other state-of-the-

art approaches. This gives our approach significant potential for real-time

detection. The GRU-DNN achieves an impressive detection rate of 99%

dealing with DDoS attacks in the CICIDS2017 dataset.

• We also evaluate the network performance of our proposed approach in the

SDN environment. The results show that our approach does not signifi-

cantly degrade the SDN controller’s performance.

5.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 5.2 presents an

introduction about RNNs and Gated Recurrent Units (GRU). In Section 5.3, we

give a system description and an analysis of detection performance. Section 5.4

presents the network performance analysis. Finally, Section 5.5 concludes the

chapter.

5.2 Recurrent Neural Networks

An RNN, which is an extension of a conventional NN mentioned in Chapter 3,

makes use of the sequential information. The idea is that the RNN can use

information from previous stages to understand information at the current stage.

This is also the way that the human brain works. The RNN is called a “recurrent”

because it performs the same task for every element of a sequence, with the

output being dependent on the previous computations. Figure 5.1 shows the
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RNN unfolded in time.
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xt−1

ht

yt

xt
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h(...) h(...)

Figure 5.1: The RNN Unfolded in Time

Mathematically, the hidden states and output of the RNN are computed as:

ht = σ(Wxt + Uht−1 + bh), t = 1, 2, . . . , T, (5.1)

yt = σ(Vht), (5.2)

where σ(·) is a non-linearity function, xt is an input vector at time t, ht is a

hidden state vector at time t, W is an input to hidden weight matrix, U is a

hidden to hidden weight matrix, V is a hidden to label weight matrix, and bh is

a bias vector.

The Backpropagation Through Time (BPTT) [95] algorithm is used for train-

ing the RNN. However, BPTT for the traditional RNN is usually difficult due to a

problem known as vanishing/exploding gradient [96]. Long Short Term Memory

(LSTM) [97] networks and GRUs [8] were proposed to solve this problem and are

among the most widely used models in DL algorithms.

GRUs are selected in our research because of their simplicity and faster train-

ing phase compared to LSTMs [98]. Figure 5.2 shows architecture detail of a

single GRU cell.
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Figure 5.2: Gated Recurrent Unit Structure [8]

Reffering Figure 5.2, the activation hjt of each j−th GRU unit at time t is

computed differently from Equation 5.1 as follows:

hjt = (1− zjt )h
j
t−1 + zjt h̃

j
t , t = 1, 2, . . . , T, (5.3)

where an update gate zjt defines how much of the previous memory to keep, h̃jt−1

is the previous hidden state and h̃jt is the candidate activation. The update gate

is computed by

zjt = σ(Wzxt + Uzht−1)
j, (5.4)

where σ(·) is a non-linearity function, Wz and Uz are learned weight matrices.

The candidate activation h̃jt is computed by

h̃jt = tanh(Whxt + Uh(ht−1 � rt))
j, (5.5)
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where a set of reset gates rt determines how to combine the new input with the

previous activation vector, � is an element-wise vector multiplication, and Wh

and Uh are learned weight matrices . The reset gate is computed by

rt = σ(Wrxt + Urht−1), (5.6)

where σ(·) is again a non-linearity function, and Wr and Ur are learned weight

matrices.

5.3 Detection Performance Evaluation

5.3.1 Experimental Methodology

In this chapter, the experimental methodology is the same as Chapter 4. The

Mixed Feature Set, that gave us the best ACC in Chapter 4, is used for training

and testing in this chapter. In addition, the CICIDS2017 dataset is also used

in this chapter for further evaluation. We extract a subset of six features out of

80 features of the CICIDS2017 dataset for our research. These features have an

SDN-related nature and can be extracted easily by SDN controllers. Details of

these features can be seen in Table 5.1.

According to our experiments, A GRU-RNN with three hidden layers gives

the best results in all experimental cases. Therefore, we implemented a GRU-

RNN with three hidden layers in this chapter. A DNN is also implemented with

the same structure as the proposed GRU-RNN for evaluation purposes. We used

Keras [93] to implement our GRU-RNN, DNN, and VanilaRNN models. The

Scikit-learn library [99] is used to implement the SVM algorithm and measure all

99



5.3 Detection Performance Evaluation

Feature Name Description
Source Port Source port of the flow
Destination Port Destination port of the flow
Protocol Protocol type of the flow
Flow Duration Duration of the flow in mi-

croseconds
Flow Bytes/s Number of flow bytes per

second
Flow Packet/s Number of flow packets per

second

Table 5.1: The CICIDS2017’s Feature Description

the evaluation metrics. The details of all models can be seen in Table 5.2.

Algorithm Input
Layer

Hidden
Layer

Output
Layer

Activation
Function

Learning
Rate

GRU-RNN 6 6,4,3 2 tanh, tanh,
tanh, sig-
moid

0.001

DNN 6 6,4,3 2 tanh, tanh,
tanh, sig-
moid

0.001

VanilaRNN 6 4 1 tanh, sig-
moid

0.001

Table 5.2: Neural Network Model Structures

For the training phase, the batch size and epoch number are 100 and 10000

respectively. We use a Nadam optimizer [100] and Mean Squared Error (MSE)

function for the GRU-RNN model. In addition, we added L1-regularization to

our model to prevent overfitting during the training phase.

In general, the RNN architecture is the same as the DNN architecture (as in

Figure 5.3). The main difference is that each neuron is now a GRU cell.
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Figure 5.3: The RNN Structure

5.3.2 Experimental Result Analysis

To start with, we analyze training and testing processes of the GRU-RNN. As

shown in Figure 5.4, it takes us a considerable amount of time to train the GRU-

RNN. At the beginning, we can see that the GRU-RNN achieves a very high ACC

of 95% in training, but the model performance is very poor with testing data.

However, after around 6000 epochs, the GRU-RNN performance starts improving

significantly. We can see that the ACC in training starts dropping gradually, but

the ACC in testing starts increasing significantly. This is what we expect when

training a DNN in general. The GRU-RNN is a quite complex algorithm, so it

takes quite a long time to find its optimal point that gives the highest ACC. In
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the previous chapter, the DNN is quite lightweight and simple, so it just takes

around 1000 epochs to achieve its best result. It is also interesting to see that if

we keep training the GRU-RNN for a longer time, the model performance drops

again. This is the time when overfitting happens.

Figure 5.4: Traing and Testing Phase Evaluation

The best model from our training process will be taken for further evaluation.

The results in Table 5.3 show that our approach outperforms other methods in

terms of detection ACC. The DNN, coming in second place, shows the potential

of the DL approach in anomaly detection. The VanilaRNN gives the worst result

compared with its counterpart GRU-RNN. This is the expected result. As men-

tioned in the previous section, the VanilaRNN suffers from the vanishing gradient

problem that makes the detection ACC becomes worst after a long training time.
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The result of the GRU-RNN shows that it solves the vanishing gradient problem

very well and then improves the ACC significantly.

Algorithm ACC (%)
VanilaRNN 44.39

SVM 65.67
DNN 80.7

GRU-RNN (Proposed Model) 89

Table 5.3: Accuracy Comparison with Other Algorithms

For further evaluation, we present the anomaly detection performance of the

GRU-RNN model in terms of ACC, P, R, and F1 (see Equations 2.1, 2.2, 2.3,

and 2.4) on the NSL-KDD dataset. The performance of each class is calculated

based on the TP and TN of each class. Details of the results given in Table 5.4

show that our GRU-RNN performs well for all the evaluation metrics. Both the

legitimate and anomaly traffic traces are detected really well by the GRU-RNN.

The detection rates of the legitimate and anomaly traffic traces are 89% and 90%

respectively. The anomaly detection ACC of 90% shows that the GRU-RNN is

good at detecting zero-day attacks.

Class Name P (%) R (%) F1 (%)
Legitimate 87 89 88
Anomaly 91 90 90

Table 5.4: Performance Metric Evaluation for the NSL-KDD Dataset

We also compare the performance of our proposed model with other popular

algorithms like VanilaRNN, Support Vector Machine (SVM) and DNN using the

same subset of six features. As we can see in Figure 5.5, the GRU-RNN outper-

forms other algorithms in all the evaluation metrics. The GRU-RNN yields good
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results for both legitimate and anomaly traffic traces, while other algorithms just

work well in only one class. The GRU-RNN outperforms other algorithms in de-

tecting anomaly traffic as we expected. Flooding DDoS attacks in the NSL-KDD

dataset are collective anomalies, so they can be characterized and detected by

the GRU-RNN. These attacks can be missed by the DNN and other algorithms.

Figure 5.5: Performance Metric Comparison

The ROC curve is introduced to evaluate our proposed approach. Figure. 5.6

shows that the proposed GRU-RNN achieves the highest AUC amongst all the

tested algorithms with a TPR of 90% and an FPR of 10%. As we can see,

the GRU-RNN has the lowest FPR which is an essential factor of the IDS. The

VanilaRNN gives the worst result as expected. The VanilaRNN suffers from the

gradient vanishing problem, so it cannot give us a promising result after a long

training time.

The P vs R curve shows the trade-off between P and R for different thresholds.

A high area under the curve represents both high R and high P. An ideal system

with a high area under the curve will return many results, with all results labelled
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Figure 5.6: ROC Curve Comparison for Different Algorithms

correctly. As seen in Figure. 5.7, the GRU-RNN gives us the best results amongst

all the algorithms. As the R threshold increases, the P decreases significantly for

all the algorithms, except for GRU-RNN where increases P increases to 89%.

This means the GRU-RNN can classify the network traffic with a high ACC.

Furthermore, we also compared the performance of our proposed model with

others in the literature. Our GRU-RNN is compared with other state-of-the-art

algorithms like SVM, DNN, and NB Tree algorithms. The NB Tree gave the best

result in [86]. The results in Table 5.5 show that our proposed model outperforms

all the previous methods. Our GRU-RNN performs better than the SVM and
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Figure 5.7: P vs R Curves

NB Tree algorithms that use the whole set of 41 features for training and testing.

Even when we provide more network features, the other algorithms cannot detect

the collective anomalies as good as the GRU-RNN. The GRU-RNN results also

indicate a significant improvement in the ACC compared to the basic DNN in

our previous chapter.

For further investigation, we evaluate the GRU-DNN performance as regards

detecting DDoS attacks in the CICIDS2017 dataset. We compare the proposed

GRU-DNN with DNN and ID3 algorithms. Results of ID3 algorithm are the

best achieved from the CICIDS2017 dataset in [89]. Table 5.6 gives details of

our evaluation. As can be seen, the proposed GRU-DNN has better results in all

the evaluation metrics compared with the best result from [89]. The DNN yields
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Method ACC (%)
SVM [86] 69.52
DNN [101] 75.75

NB Tree [86] 82.02
GRU-RNN (Proposed Model) 89

Table 5.5: Accuracy comparison with previous studies. The GRU-RNN and
DNN use the Mixed Feature Set with 6 features. The SVM and NB Tree use the
NSL-KDD dataset with 41 features

slightly lower results than that of the ID3. The proposed GRU-DNN can work

well with diverse and complex traffic traces and detect almost all types of DDoS

attacks in the CICIDS2017 dataset.

Method P (%) R (%) F1 (%)
DNN 97 97 97

ID3 [89] 98 98 98
GRU-RNN (Proposed Model) 99 99 99

Table 5.6: Performance Metric Evaluation for the CICIDS2017 dataset

From the above results, the GRU-DNN shows its strong potential in dealing

with low-dimensional time series traffic. Therefore, it is a potential solution for

intrusion detection in the SDN paradigm.

5.4 Network Performance Evaluation

In this section, we evaluate the effect of our proposed GRU-RNN on the perfor-

mance of the POX controller in the SDN environment. The network evaluation

setup is also as in Chapter 4 (Section 4.3.2).
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5.4.1 Throughput Evaluation

Throughput evaluation indicates the performance of the controller under heavy

traffic conditions. Figure. 5.8 depicts the average response rate of the controller

under three testing scenarios.

Figure 5.8: Throughput Evaluation

As we can see, both the DNN and GRU-RNN cause overhead on the con-

troller. The DNN algorithm is simpler than the GRU-RNN, and so it gives

a slightly better network performance than that of the GRU-RNN. However,

the GRU-RNN outperforms the DNN in terms of the detection ACC. The ef-

fect of the GRU-RNN on the controller performance is predictable. The net-

work throughput decreases slightly when the network size increases from 32

switches to 64 switches. The network performance degrades by about 3.5%
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when the network size is under 32 switches. When we increase the size to

over 64 switches, the throughput drops by about 4%. The GRU-RNN mod-

ule has to send several OFP FLOW STATS REQUEST messages and process

OFP FLOW STATS REPLY messages while processing PACKET IN messages.

Thus, the overhead on the controller of the GRU-RNN module is unavoidable.

However, throughput degradation is quite low and can be improved in the future.

5.4.2 Latency Evaluation

Latency evaluation indicates the length of time that the controller takes to process

one single packet. Figure. 5.9 shows the average response time of the controller

under three testing scenarios. As we can see, the network latency increases along

with increasing the network size. When we increase the network size, the load on

the controller is increased as well and this causes the overhead. The GRU-RNN

still has the highest overhead amongst all. It takes time for the GRU-RNN to

process the OFP FLOW STATS REPLY messages, PACKET IN messages and

detect anomaly flows, so the overhead is unavoidable. The overall degradation is

about 7% in all cases. This overhead is not significant and can be improved in

the future.

All in all, the overhead caused by the GRU-RNN on the SDN controller is

quite low, and so our proposed approach has significant potential for real-time

intrusion detection in the SDN paradigm.
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Figure 5.9: Latency Evaluation

5.5 Conclusion

In this chapter, we presented an Anomaly-based NIDS in the SDN environments

using the GRU-RNN algorithm. We showed that our proposed approach out-

performs other state-of-the-art algorithms with an ACC of 89% and 99% for the

NSL-KDD and CICIDS2017 datasets. Although the GRU-RNN is more complex

and takes a longer time than the DNN in Chapter 3 for training and testing. The

detection ACC has been improved significantly compared to the work in Chapter

3. There is a trade-off between performance and security. However, the perfor-

mance still can be improved in the future. Our scheme uses a minimum number

of features compared to other state-of-the-art approaches so computational costs

can be reduced significantly. In addition, the network performance evaluation
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showed that our proposed approach does not significantly affect the controller

performance. This makes our model a strong candidate for real-time detection.

In the future, we will optimize our model and use other features to increase the

ACC and reduce the overhead on the controller. We will also try to extend our

research to unsupervised intrusion detection approaches.
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Chapter 6
Deep Learning Approach

Combining Stacked Autoencoder

with One-class SVM for DDoS

Attack Detection in SDNs

As mentioned in Chapter 1, the lack of network datasets is one of the main
problems for anomaly detection in SDNs. Currently, most of the proposed
ML/DL intrusion detection approaches are in a supervised manner that re-
quires labelled and well-balanced datasets for training. However, this needs
a lot of time and human expertise to prepare these datasets. Besides, net-
work attacks keep evolving, especially DDoS attacks, so it is challenging to
get good labeled datasets. The goal of this chapter is to detect the DDoS
attacks in an unsupervised manner by using the flow table information. In
this chapter, we propose a hybrid approach using the Stack Autoencoder and
One-class Support Vector Machine (SAE-1SVM) for DDoS attack detection.
The SAE-1SVM shows that it can reduce the processing time significantly
while maintaining the high DDoS attack detection rate.

In This Chapter:
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6.1 Introduction

6.1.1 Motivation

Because of the SDN architecture, the SDN controller is a single point of failure and

a target for attackers. The SDN controller is vulnerable to DoS and DDoS attacks.

These attacks can take down the SDN controller and then the whole network.

Therefore, DDoS attacks directly threaten the network and service availability.

Detecting and mitigating DDoS attacks effectively become an important part of

the NIDS. Several works [66] [15] [77] [78] have been done to tackle this problem

in SDNs. Most of these works are for the supervised approach. This approach

requires balanced and labelled datasets for training. However, these datasets

are not always available for researchers, and they are especially rare under the

context of SDN.

Unlike supervised learning approaches, the unsupervised learning approach

does not need label information for the data and can address the imbalanced

classification problems. One-class Support Vector Machine (OC-SVM) for a long

time has been one of the most effective anomaly detection methods and is widely

adopted in both research and industrial applications. However, the biggest issues

for OC-SVM is the capability to operate with large and high-dimensional datasets

due to inefficient features and optimization complexity. Their training speed is

also heavily affected by the size of the dataset. As a result, conventional OC-

SVM may not be desirable in big data and high-dimensional anomaly detection

applications. Besides, Autoencoder recently emerges as an effective intrusion

detection approach in different fields [102] [103] [104]. In these researches, a

reconstruction error is used to detect anomalies. In this chapter, we propose
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an unsupervised hybrid approach combining Stack Autoencoder with OC-SVM

(SAE-1SVM) for DDoS attack detection in the SDN.

6.1.2 Contribution

Our main contributions are as follows:

• We introduce an unsupervised DDoS attack detection approach in the SDN

paradigm using the SAE-1SVM. To the best of our knowledge, this is the

first attempt to use the SAE-1SVM for DDoS attack detection in the SDN

environment. In our work, the Stack Autoencoder learns the patterns of

legitimate traffic and also compresses input data into a lower dimension.

These lower-dimensional and higher-level data is now more suitable for the

OC-SVM to process.

• Our SAE-1SVM approach yields a detection rate of 99.35% using a mini-

mum number of features compared to other state-of-the-art approaches.

• We also evaluate the computational overhead of the proposed approach.

The results show that our approach has significant potential for real-time

intrusion detection.

6.1.3 Chapter Organization

This chapter is organized as follow. In section 6.2, we introduce DDoS attacks

and its taxonomy. Section 6.3 describes our proposed hybrid approach for DDoS

attack detection. Section 6.4 shows the performance evaluation of our approach.

Finally, conclusions and future work are discussed in section 6.5.
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6.2 Denial-of-Service Attacks

DoS and DDoS attacks are serious threats in current networks. Even though

DDoS attacks have been recognized in networks, since the origins of the Internet

the number of DDoS attacks in today’s networks still increase. The victim of

DDoS attacks can be any business or critical infrastructure. For example, on

23rd October 2015, TalkTalk in England had been hit by a DDoS attack that

allowed the attacker access to banking accounts and personal information of over

four million UK customers. A DDoS attack is an attempt to exhaust a victim’s

bandwidth or disrupt legitimate users’ access to services. This attack is relatively

easy to perform, hard to defend against, and the attacker is rarely traced back

because of the distributed nature of DDoS attacks. The attacker launches a DDoS

attack using a botnet-group of zombies-to generate a vast amount of traffic against

a victim’s web server. Zombies or computers that are part of a botnet are usually

recruited through the use of worms, Trojan horses or back doors. Figure 6.1

describes a topology of DDoS attacks.

The complexity of the attack increases due to the zombies modifying the

packets, commonly spoofing the source. As a consequence, it becomes even more

difficult to trace the origin of the attack. Some well-known bandwidth-consuming

DDoS attacks are UDP flood, TCP flood and SYN flood attack. These high rate

DDoS attacks significantly deviate from the legitimate traffic so we can detect

them comparatively easier. However, unlike bandwidth-consuming DDoS attacks,

the Slowloris attack uses a low amount of bandwidth and mimics the legitimate

traffic, so it is more difficult to detect. DDoS flooding attacks can be classified

into two categories based on the protocol level that is targeted:
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Figure 6.1: DDoS Attack Topology

• Network/transport-level DDoS flooding attacks: these attacks have been

mostly launched using TCP, UDP, ICMP and DNS protocol packets. There

are four types of attacks in this category: flooding attacks, protocol ex-

ploitation flooding attacks, reflection-based flooding attacks, amplification-

based flooding attacks

• Application-level DDoS flooding attacks: these attacks focus on disrupting

legitimate user’s services by exhausting the server resources (e.g., Sockets,

CPU, memory, disk/database bandwidth, and I/O bandwidth). Application-

level DDoS attacks generally consume less bandwidth and are stealthier in

nature compared to benign traffic. However, application-level DDoS flood-

ing attacks usually have the same impact on the services since they target

specific characteristics of applications such as HTTP, DNS, or Session Ini-

tiation Protocol (SIP). There are two types of attacks in this category:
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reflection/amplification based flooding attacks and HTTP flooding attacks.

Within the operation of SDN, there are two options for the handling of new

flow when no flow match exists in the flow table. Either the complete packet or a

portion of the packet header is transmitted to the controller to resolve the query.

In this case, it would be easy for attackers to execute a DoS attack on the node

by setting up many new and unknown flows. As the memory element of the node

can be a bottleneck due to the high cost, an attacker could potentially overload

the switch memory. Therefore attackers might simply flood the flow tables of

the switch using conventional DDoS methods. The controller and data plane

communication channel are also vulnerable to various DDoS attacks. Zombie

hosts generate unknown packets with bogus header fields which switches then

forward to the controller for advice. Because of large amounts of traffic, legitimate

packets might be dropped by the controller, and so there is a possibility to slow the

processing power significantly enough to cause an overload in control operations.

Defending against DDoS attacks is a challenging issue, and in order to do

so, we have to first detect them. There are several methods for detecting DDoS

attacks like statistics-based method [105], and clustering method [106]. DDoS

attacks can be mitigated by some defence mechanisms like firewall, load balancing.

However, these defence mechanisms have their own limitations. Despite all the

effort to tackle these attacks, DDoS attack strategies are evolving, so it is tough

to detect and mitigate all of these attacks. There are several companies providing

commercial DDoS protection services (e.g., Radware, CloudFlare).
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6.3 SAE-1SVM for DDoS Attack Detection

An autoencoder (AE) consists of one input layer, one or more hidden layers and

one output layer. The input and output layers always have the same sizes. A

general structure of an AE is shown in Figure 6.2.
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Figure 6.2: A General Structure of an AE

The AE has two phases which are encoding and decoding. For encoding pro-

cess, input data x is compressed into a low-dimensional representation h and then

the decoder reconstructs the input based on the low-dimensional representation.

h = f(Wx + b), (6.1)

y = f(W′h + b′), (6.2)
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where f(·) is a non-linearity activation function, W and W′ are hidden weight

matrices, b and b′ are biases and y is output vector.

The main goal of training the AE is to minimize the difference between the

input x and output y. Therefore, a MSE loss function is used as follows:

L(x,y) = ‖x− y‖22 . (6.3)

In order to learn feature representations of input data, AEs are stacked suc-

cessively to form a deep AE (SAE). The learned feature representations will be

used as inputs for other classifiers. In this work, the OC-SVM is used as the

classifier for anomaly detection.

The OC-SVM [107] is an unsupervised approach for classification. The OC-

SVM tries to learn a hyperplane that best separates all the data points from the

origin:

f(x) = wTφ(x)− ρ, (6.4)

where φ(·) is a feature projection function that maps an input vector x into a

higher dimensional feature space, w is a decision hyperplane normal vector which

is perpendicular to the hyperplane, and ρ is an intercept term. We can obtain w

and ρ by solving an objective function:

min
ω,ξ,ρ

1

2
‖w‖2 +

1

νn

n∑
i=1

ξi − ρ, (6.5)

subject to: wTφ(xi) ≥ ρ− ξi, ξi > 0,
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where the meta-parameter ν ∈ (0, 1] determines the upper bound on the fraction

of outliers and the lower bound on the number of training samples used as support

vectors, and ξi are non-zero slack variables for penalizing the outliers.

By using Lagrangian techniques and a kernel function for the dot-product

calculations, the decision function becomes:

f(x) =
n∑
i

αik(xi,x)− ρ, (6.6)

where αi is a Lagrange multiplier, and k(xi,x) = φ(xi)
Tφ(x) is a kernel function.

A Radial Basic Function (RBF) kernel is employed in our experiment:

k(xi,x) = e−γ‖xi−x‖2 , γ > 0. (6.7)

In this chapter, we propose a hybrid approach combining SAE with OC-SVM

for DDoS attack detection. Figure 6.3 gives a general structure of the proposed

SAE-1SVM. The SAE-1SVM is trained with legitimate traffic traces. At first, the

legitimate traffic traces are trained with the SAE to extract the low-dimensional

representation, and then the low-dimensional representation is trained with OC-

SVM for DDoS attack classification. Because the SAE-1SVM is trained with the

legitimate traffic only, the anomaly traffic will be considered as outliers and then

detected.
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Figure 6.3: SAE-1SVM System Detail

6.4 Detection Performance Evaluation

6.4.1 Experimental Setup

In our experiment, the SAE architecture is implemented with all hyper-parameters

given in Table 6.1. For the OC-SVM model, the parameters ν and γ are chosen

from the range {10−10, 10−9,...,100}. After the optimizing process, the parameters

ν = 10−2 and γ = 10−2 are choosen for the experiment.
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Variable Parameters
Activation Function Tanh

Loss Function Mean Squared Error
Learning Rate 0.001

Batch Size 10
Epoch 1000

Table 6.1: The SAE Architecture

In this chapter, we just focus on DDoS attack detection, so we only use the

CICIDS2017 dataset for training and testing. This dataset contains the most

recent types of DDoS attacks. In Table 6.2, we describe thirteen features used in

this experiment.

Feature Name Description
Source Port Source port of the flow
Destination Port Destination port of the flow
Protocol Protocol type of the flow
Flow Duration Duration of the flow in microseconds
Total Fwd Packets Total packets in the forward direction
Total Length of
Fwd Packets

Total size of packet in forward direction

Fwd Packet Length
Mean

Standard deviation size of packet in for-
ward direction

Flow Bytes/s Number of flow bytes per second
Flow Packet/s Number of flow packets per second
Flow IAT Mean Mean time between two packets sent in

the forward direction
Flow IAT Std Standard deviation time between two

packets sent in the forward direction
Fwd Packets/s Number of forward packets per second
Subflow Fwd Bytes The average number of packets in a sub

flow in the forward direction

Table 6.2: The CICIDS2017’s Feature Description

Again, these features are selected under the context of SDN architectures.
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As a result, the input and output layers of our SAE contain thirteen neurons

respectively. Details about the number of neurons of each network architecture

used in this experiment are shown in Table 6.3.

Architecture Input Layer Hidden Layer Output Layer
AE 13 2 13

SAE 1 13 6,2,6 13
SAE 2 13 10,8,6,4,2,4,6,8,10 13

Table 6.3: Network Architecture Details

6.4.2 DDoS Attack Detection with a Hard Threshold

The AE is commonly used to detect anomaly with the idea that behaviors of

attacks are different from those of legitimate traffic. Therefore, the AE will

be trained only with the legitimate traffic and then tries to reconstruct them

with the highest ACC. The anomaly traffic is not used for training, so the AE

cannot reconstruct them correctly. We can detect anomaly traffic based on this

difference. In this section, we analyze the effect of network architecture on the

reconstruction performance.

We compare the reconstruction ACC of the AE, SAE 1, and SAE 2 in Ta-

ble 6.4. As we can see, the SAE 2 yields the best reconstruction ACC at 98.6%.

The AE gives a quite low reconstruction ACC at 85%. With just one hidden

layer, we cannot learn good feature representations, so the reconstructed input is

just a lossy version of the original inputs. It shows that a deeper SAE can learn

feature representations better and then reconstructs the inputs with a higher

ACC. Therefore, the SAE 2 will be chosen for further experiment.

As in [102], [103], and [104], we also employ the reconstruction error to detect
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Architecture Reconstruction ACC (%)
AE 85

SAE 1 96
SAE 2 98.6

Table 6.4: Reconstruction ACC Comparison

anomalies. The SAE 2 is trained to minimize the reconstruction error, so the

error rate should be quite small with the legitimate input traffic. If any anomaly

traffic is fed into the SAE 2, the SAE 2 could not recognize it and reconstruct it

correctly. In this case, the reconstruction error is higher than normal, and so we

can detect the network attack.

Figure 6.4 shows the difference in the reconstruction error rate between the

legitimate and anomaly traffic. As seen in Figure 6.4, some anomaly error rates

dramatically deviate from the standard legitimate error rate. It is quite easy

for us to detect these kinds of attacks with a hard threshold. However, we also

can see that some anomaly traffic has quite the same reconstruction error as

the legitimate ones. These attacks cannot be detected with a hard threshold.

The legitimate and anomaly reconstruction error rates are not linearly separated,

so we cannot define any good hard threshold to detect anomaly traffic. If we

set a high hard threshold, the FPR will increase significantly, and our network

will become vulnerable to attacks. If we set a low hard threshold, the FAR

will increase and so the NIDS can block the legitimate traffic. In Table 6.5, we

compare the performance of different threshold values in terms of ACC, P, R,

and F1 (see Equations 2.1, 2.2, 2.3, and 2.4). As we can see, with a higher

threshold, we get a higher detection ACC. However, the other evaluation metrics

drop dramatically with high threshold values. The reason for this trend is that
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more legitimate traffic is classified correctly with a higher threshold, but we also

misclassify anomaly traffic. Even with a small threshold of 0.01, the detection P

is still worst.

Threshold ACC (%) P (%) R (%) F1 (%)
0.01 54.9 21 85 33.67
0.03 55.3 13.9 4.3 6.5
0.05 58.2 1.7 0.26 0.45

Table 6.5: Accuracy Metrics for Different Thresholds

The AE approach with a hard threshold for anomaly detection works quite

well in [102], [103], and [104] but it does not perform well in our experiments.

This phenomenon can be because of the complexity of DDoS attacks in the CI-

CIDS2017 dataset. Some DDoS attacks in this dataset try to mimic behaviours

of legitimate traffic, so they are hard to detect. The construction error rate in

Figure 6.4 can explain our theory quite well with the reconstruction error rate of

both legitimate and anomaly traffic are quite close to each other.
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6.4.3 DDoS Attack Detection with the SAE-1SVM

In this section, we analyze the detection performance of the SAE-1SVM. Instead

of using the hard threshold as the previous section, we employ a completely un-

supervised detection approach. The general architecture of the SAE-1SVM has

been described in Figure 6.3. In this experiment, we employ the SAE 2 architec-

ture from the previous experiment for feature representation learning. To begin

with, we present the detection performance of the SAE-1SVM in term of ACC,

P, R and F1 with the Wednesday dataset. We evaluate the proposed model for

binary-classification. We compare the performance of SAE-1SVM with classi-

cal OC-SVM. We also compare the SAE-1SVM with a DL algorithm combined

Convolution Neural Network (CNN) and Long-Short Term Memory (LSTM) pro-

posed by Abdurraman Pektas and Tankut Acarman [108]. They also use the

CICIDS2017 dataset for performance evaluation.

The overall detection performance comparison is depicted in Table 6.6. Ac-

cording to the experimental results shown in Table 6.6, we can see that the SAE-

1SVM outperforms the OC-SVM in all of the evaluation metrics. Specifically,

the SAE-1SVM achieves a much higher P than the OC-SVM. The SAE-1SVM

also achieves better results than the CNN+LSTM algorithm. The main reason

for this high performance is that the OC-SVM in the SAE-1SVM is trained with

the low dimensional representation. The low dimensional representation helps

the OC-SVM characterize the network traffic better, so the detection ACC can

be improved significantly.

For further evaluation, we examine the SAE-1SVM with the Friday dataset.

The details of our evaluation are shown in Table 6.7. The detection ACC for the
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Algorithm ACC (%) P (%) R (%) F1 (%)
OC-SVM 98 96.26 98.21 97.22

CNN+LSTM [108] 98.87 98.89 98.83 98.86
SAE-1SVM 99.35 99.97 98.28 99.11

Table 6.6: The Evaluation Metric Comparison

Friday dataset is 91.43%. This result indicates that the SAE-1SVM can classify

unseen traffic traces as well. The P and R results for this dataset are lower than

those of the Wednesday dataset. Some legitimate samples have been classified as

anomaly samples. This is because the SAE cannot generalize legitimate traffic

traces well enough. The SAE performance can be improved in the future with

further tuning and optimization. However, the overall results still show that the

SAE-1SVM can detect both DoS and DDoS attacks with a high ACC.

Evaluation Metric Result (%)
ACC 91.43

P 88.6
R 71.79
F1 79.31

Table 6.7: The Detection Performane Results with the Friday Dataset

The computational time is an important factor in evaluating the performance

of a classifier. In the era of big data, the classifier has to process a large amount

of data for training and testing. Reducing the computational time is also very

important. The training and testing times of each algorithm are presented in

Table 6.8. As we can see, the SAE-1SVM consumes significantly less time than

OC-SVM in both training and testing processes. The SAE-1SVM is 27 and 6

times faster than the OC-SVM in training and testing respectively. The OC-SVM

module in the SAE-1SVM now only processes 2-dimensional inputs compared to
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13-dimensional inputs in the original OC-SVM, so the processing time has been

reduced significantly. In the SAE-1SVM, the OC-SVM processes more repre-

sentative but lower-dimensional inputs. Therefore, the SAE-1SVM has excellent

potential for real-time NIDS.

Algorithm Traing Time (s) Testing Time (s)
OC-SVM 5110 141

SAE-1SVM 189 26

Table 6.8: The Training and Testing Time Comparison

6.5 Conclusion

In this chapter, we presented a hybrid unsupervised DL approach for DDoS at-

tack detection. The above results show that our proposed approach has strong

potential in detecting DDoS attacks using limited flow features. The experimen-

tal results also show that our SAE-1SVM can deal really well with imbalanced

and unlabeled datasets. Although the final results have a quite high FPR rate,

the SAE-1SVM can be improved in several ways. Several DL approaches can be

applied to the SAE to improve generalizing capability. We can also optimize the

OC-SVM by a grid search algorithm. In future research, we will deploy our pro-

posed approach in a real SDN testbed for more detail analysis. Detecting other

kinds of network attacks will be considered in future research.
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Chapter 7
Conclusions and Future Work

The concluding remarks following from the aforementioned work are now
presented. Some limitations of this thesis are also presented. Additionally,
future directions as a result of this work are identified.

In This Chapter:

7.1 Conclusions

As mentioned in the previous chapters, SDN brings us a critical dilemma: an im-

portant potential evolution of networking architectures, along with a very danger-

ous increase in security problems. SDN introduces new faults, and attack planes

that did not exist before or were harder to exploit. These potential security is-

sues are because of network programmability and control logic centralization in

an SDN. However, an SDN can also be utilized to strengthen network security. In

this thesis, we have implemented an end-to-end NIDS - DeepIDS - for the SDN

architecture. The DeepIDS can be deployed in any SDN and which then takes

advantages of global network overview for intrusion detection. As mentioned in
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Chapter 1, several challenges must be solved when developing a NIDS. Therefore,

in this thesis, we researched approaches to address these problems. In chapters 4

and 5, we studied the potential of supervised DL algorithms for intrusion detec-

tion under the SDN context. In Chapter 4, we focused on examining the effect

of different learning rates and features sets on the detection ACC of the DNN

model. We showed that basic flow-based features obtained from SDN controllers

can be used to detect network attacks effectively by the DNN. The DNN also

does not degrade the overall network performance which is a critical evaluation

factor.

Chapter 5 focused on improving the detection ACC of the DeepIDS. We pro-

posed the GRU-RNN that takes advantage of the time-series nature of network

traffic to enhance the detection ACC. We demonstrated that the GRU-RNN does

improve the detection ACC significantly compared to the DNN. Although the

experimental results showed that the GRU-RNN is more complex and demands

more computational resources than the DNN, the trade-off between the detection

ACC and the network performance is still acceptable.

In chapter 6, we explored the field of unsupervised learning. The SAE-1SVM

was introduced to deal with the unlabeled and imbalanced dataset in Chapter 1.

The SAE-1SVM is designed to learn the characteristic of legitimate network traffic

and then detect anomalies that have a different nature. Another advantage of the

SAE-1SVM is that it overcomes the high complexity problem of the OC-SVM.

The following is a brief summary of the key contributions of this thesis. These

also answer the research questions raised in Chapter 1.

• An end-to-end NIDS has been proposed for the SDN paradigm. This sys-

tem can monitor the whole network and collect all the necessary network
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information. This information can be then used to detect any abnormal

activity and then mitigate it as soon as possible.

• Several DL algorithms from simple to complex have been developed for a

flow-based anomaly detection approach. We have demonstrated that DL

algorithms can achieve high detection ACC without degrading the perfor-

mance of the SDN controller.

• The unlabeled and imbalanced dataset problem has been addressed and

partly solved in this thesis.

7.2 Limitations

There are a few limitations associated with our work in this thesis.

• As mentioned in Chapter 1, the lack of an SDN-based dataset is a huge

problem. Therefore, in this thesis, we have to adapt some conventional

datasets to the SDN architecture. This adaption may not be close enough to

a real SDN-based dataset but many researchers in the same field still use it.

In Chapter 4 and 5, the packet-based NSL-KDD dataset is adapted for our

experiments. This adaption may affect the generalization and application

of our approach in the SDN context. However, we selected some most basic

network features having similar characteristics in both packet-based and

flow-based datasets to minimize this gap. We also try to use a flow-based

dataset (The CICIDS2017 dataset) to fill the gap in our research.

• Because of the use of published datasets, all the attacks concerned in this

thesis are just related to network and application layers (i.e., L2, L3 and
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L7). This thesis does not consider any kind of attacks related to L1 physical

layer which is also an important part of the network.

• Although our proposed approaches have been evaluated in term of through-

put and latency, they have not been deployed in any real SDN testbed yet.

Because of limited facilities and resources, a more detail network perfor-

mance evaluation has not been done yet.

• Hyper-parameters of our DL models such as learning rate, batch size, num-

ber of neurons and number of layers was chosen as some state-of-the-art

literature. We trained the DL models with different combinations of hyper-

parameters to find the best results. However, the training process still can

be further optimized to achieve a better result.

7.3 Future Work

In order to solve the above limitations, several improvements can be implemented

as a part of our future work.

Analysis with Real SDN Testbed and Network Traffic

Currently, all the work has been done in an offline manner. All the DL

algorithms are trained with several datasets to detect intrusion, but some of these

datasets are outdated. In addition, some legitimate and anomaly traffic in these

datasets are synthetic, so they cannot reflect real network scenarios. It would be

better to implement our approach in an SDN testbed with real legitimate and

anomaly traffic for further evaluation. It would be interesting to see how our

method works with real networks and how quickly it can respond to the network
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attacks. Furthermore, taking into account the nature of streaming data, online

ML/DL algorithms should be considered in future work. In addition, our current

work is focused on developing the Anomaly Detection module of the DeepIDS.

The Collector and Counter Measure module development should be done in future

research.

Analysis of Hyper-parameters and Network Features

As can be seen in Chapters 3 and 4, we achieved the results for a potential

NIDS. However, it would be beneficial for us to do an exhaustive grid search to

optimize our DL models with different hyper-parameters. For DL algorithms,

every problem and every dataset require different hyper-parameters, and so the

analysis of hyper-parameters is necessary. But when we deploy the NIDS in a

real network, several network features can be collected for intrusion detection.

Chapter 4 shows that different feature sets have different effects on the detection

ACC, and so we also need to do more research on network feature selection.

Analysis of DL Algorithms

In this thesis, we have implemented several types of DL algorithms which are

both supervised and unsupervised approaches. However, these DL algorithms

(i.e., DNN, RNN, SAE) are just a small part of DL techniques. Various combina-

tions of DL algorithms can be implemented for the anomaly detection problem.

Recently, CNN has yielded significant achievements in the field of image pro-

cessing because of its ability to learn spatial correlations. CNN now has been

gradually adapted to detect network anomalies. For example, RNN and CNN are

combined in [108] to learn both temporal and spatial relations of network data

that can improve the intrusion detection ACC. CNN can be combined with other

DL algorithms for further research. However, network data is not an image, so we
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have to convert network data to an image’s structure. This is not a clear process,

so it would be interesting to see the application of CNN for intrusion detection

in the future.

Exploiting Applications of SDN and DL in Internet of Things Frame-

work

Finally, the Internet of Things (IoT) is an emerging technology and expected

to have around 50 billion devices connected to the Internet by 2020. As the

number of IoT devices is increasing dramatically, they are becoming the primary

targets for hackers. Now IoT devices can be used to attack other networks on

a large scale and then damage them severely. IoT devices generate a massive

amount of network traffic with many types of data that could threaten the security

of the whole network. Last year, Mirai’s IoT DDoS attacks had taken down

several vital services all over the world. These types of attacks are becoming

more and more popular and are very difficult to detect and mitigate in a real-

time manner. A combination of SDN and an IoT framework as in [109], [110]

and [111] can strengthen the network security, so it is also a potential future

research trend. SDN architectures can be used to monitor and collect network

information from IoT networks. DL has the ability to learn valuable information

from complex data, so it has also potential for intrusion detection in IoT networks.

7.4 Final Remarks

In summary, this thesis has introduced the application of DL in detecting intru-

sions under the context of an SDN architecture. According to the experimental

results, we show the strong potential of DL. DL can learn the network’s patterns
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with some limited raw netwok input features. With the use of NSL-KDD and CI-

CIDS2017 datasets, we demonstrate the potential of DL in detecting anomalies

in both small scale networks (i.e., Small Home/Office or Enterprise) and large

networks. Although the achieved results are still far from real-life applications,

this is just some first steps in solving a big problem, and several improvements

can be made in the future.
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Appendix A
Appendix

A.1 Preparing Data

• Data Preprocessing: formatting and cleaning data, removing all missing

values, encoding all categorical values to numbers or one-hot vector.

• Data Transformation: transforming all preprocessed data for ML/DL by

scaling, aggregating.

A.2 Performance Evaluation Processes

After preparing data and training an ML/DL, we need to evaluate the perfor-

mance of the ML/DL model. The evaluation process can be done as the following:

• Training and Testing Datasets: during the training processing, the

ML/DL will not be exposed to the testing dataset. Any prediction result

in the testing dataset indicates the model performance in general. We are

expecting a model with high ACC on the testing set.
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• Performance Measure: the model performance then is further assessed

by evaluation metrics (Section 2.4). These metrics are standard for classi-

fication problems, so they can be used for anomaly classification.

• Literature Comparision: the model performance then will be compared

with some state-of-the-art literature for a final decision. In general, these

literature use the same dataset as us for training and testing ML/DL mod-

els. All the classification problem also uses the same evaluation metrics, so

it is really convenient for comparison.

A.3 Experiment Testbed Setup

The experiment testbed for SDN networks is implemented in an Intel PC using

Mininet. Because of the lack of resources and the ease of experiment, a network

with several switches and hosts in a star topology is emulated for simulation

purpose. The testbed has three main components as seen in Figure A.1.

• SDN Controller: the POX [35] controller is used for SDN networks con-

trolling purpose.

• NIDS Module: the DeepIDS module is written in Python and runs on

top of the POX controller. This module is in charge of monitoring network

traffic, detecting and mitigating anomalies.

• Switches: OpenFlow switches are emulated by Mininet and connected to

the POX controller via OpenFlow protocol.

• Hosts: Several hosts are emulated by Mininet and connected to the switch
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in a star topology. These hosts act as attackers and victims in the simula-

tion.

Figure A.1: The Emulated Network Topology
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ddos defense scheme in sdn,” IEEE Journal on Selected Areas in Commu-

nications, vol. 36, no. 10, pp. 2358–2372, 2018. 37, 42

[71] P. Van Trung, T. T. Huong, D. Van Tuyen, D. M. Duc, N. H. Thanh, and

A. Marshall, “A multi-criteria-based ddos-attack prevention solution using

software defined networking,” in Advanced Technologies for Communica-

tions (ATC), 2015 International Conference on. IEEE, 2015, pp. 308–313.

37

[72] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and

V. Maglaris, “Combining openflow and sflow for an effective and scalable

anomaly detection and mitigation mechanism on sdn environments,” Com-

puter Networks, vol. 62, pp. 122–136, 2014. 37

149



REFERENCES

[73] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting

security attacks in software-defined networks.” in Network and Distributed

System Security (NDSS), 2015. 37

[74] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion

detection using recurrent neural networks,” IEEE Access, vol. 5, pp. 21 954–

21 961, 2017. 38

[75] Y. Fu, F. Lou, F. Meng, Z. Tian, H. Zhang, and F. Jiang, “An intelligent

network attack detection method based on rnn,” in 2018 IEEE Third Inter-

national Conference on Data Science in Cyberspace (DSC). IEEE, 2018,

pp. 483–489. 38

[76] B. Zhang, Y. Yu, and J. Li, “Network intrusion detection based on stacked

sparse autoencoder and binary tree ensemble method,” in 2018 IEEE In-

ternational Conference on Communications Workshops (ICC Workshops).

IEEE, 2018, pp. 1–6. 38

[77] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos

detection system in software-defined networking (sdn),” arXiv preprint

arXiv:1611.07400, 2016. 38, 113

[78] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach

to network intrusion detection,” IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018. 38, 113

[79] Mininet, http://www.mininet.org. 43

[80] Scapy, http://scapy.net/. Accessed 12 Feb 2018. 43

150

http://www.mininet.org
http://scapy.net/.


REFERENCES

[81] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.

50, 56

[82] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105. 51, 52, 67

[83] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for

action recognition in videos,” in Advances in neural information processing

systems, 2014, pp. 568–576. 51

[84] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Medi-

cal image computing and computer-assisted intervention. Springer, 2015,

pp. 234–241. 51

[85] KDDCup99, http://kdd.ics.uci.edu/databases/kddcup99/. Accessed 04 Jul

2018, 1999. 57

[86] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed analysis

of the kdd cup 99 data set,” in Proceedings of the Second IEEE Symposium

on Computational Intelligence for Security and Defence Applications, 2009.

57, 60, 68, 86, 105, 107

[87] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-

Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham et al.,

“Evaluating intrusion detection systems: The 1998 darpa off-line intrusion

151

http://kdd.ics.uci.edu/databases/kddcup99/


REFERENCES

detection evaluation,” in DARPA Information Survivability Conference and

Exposition, 2000. DISCEX’00. Proceedings, vol. 2. IEEE, 2000, pp. 12–26.

57

[88] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward devel-

oping a systematic approach to generate benchmark datasets for intrusion

detection,” computers & security, vol. 31, no. 3, pp. 357–374, 2012. 58

[89] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating

a new intrusion detection dataset and intrusion traffic characterization,”

in Proceedings of fourth international conference on information systems

security and privacy, ICISSP, 2018. 58, 63, 106, 107

[90] “Netflowmeter,” http://netflowmeter.ca/netflowmeter.html. Accessed 19

Feb 2019. 63

[91] D. Raumer, L. Schwaighofer, and G. Carle, “Monsamp: A distributed sdn

application for qos monitoring,” in Computer Science and Information Sys-

tems (FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 961–968.

72

[92] T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim, “Suspi-

cious traffic sampling for intrusion detection in software-defined networks,”

Computer Networks, vol. 109, pp. 172–182, 2016. 72

[93] F. Chollet et al., “Keras,” https://keras.io, 2015. 75, 99

[94] Cbench, https://github.com/mininet/oflops/tree/master/cbench. Accessed

04 Jul 2018, n.d. 77

152

http://netflowmeter.ca/netflowmeter.html
https://keras.io
https://github.com/mininet/oflops/tree/master/cbench


REFERENCES

[95] P. J. Werbos, “Backpropagation through time: what it does and how to do

it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990. 97

[96] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies,” 2001.

97

[97] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997. 97

[98] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014. 97

[99] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-

learn: Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011. 99

[100] T. Dozat, “Incorporating nesterov momentum into adam.(2016),” Dostupné
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