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Abstract

Infectious disease is rife throughout the world, with species at risk of in-

fection at every level, from bacteria to humans. These diseases can have

devastating effects on populations, which has led to a rich biological and

mathematical literature on this topic. There are many factors that can af-

fect the spread and impact of an infectious disease, including environmental

heterogeneity and host-parasite evolution. The combination of infection dy-

namics, heterogeneous environments and evolution could provide powerful

insights into real-world systems; however, this has yet to be explored in

much detail with regards to temporally heterogeneous environments.

In this thesis I use mathematical models and experimental techniques to in-

vestigate the effect of temporally fluctuating environments on host-parasite

evolution. Throughout the mathematical analysis, I use the adaptive dy-

namics framework to study evolution, and implement temporal heterogene-

ity through a periodic host birth rate. First, I consider host-only evolution

through avoidance, and consider how increasingly variable environments af-

fects the end-point of evolution. Second, I investigate the potential for host

diversity through three different defence mechanisms in a seasonal environ-

ment, with a particular focus on evolution through mortality tolerance. I

then conduct an experimental evolution study using the bacteria P. fluo-

rescens SBW25 and its parasitic bacteriophage SBW25Φ2, where environ-

mental heterogeneity is implemented through oscillating nutrient concentra-

tions. The results from the experiment are reinforced by a coevolutionary

model, which incorporates seasonality through evidence-based assumptions

on the bacterial growth.

The work in this thesis is part of a growing field of research investigat-

ing temporal environments and evolution in host-parasite systems. It con-

tributes some important results to the field, and demonstrates the power of

developing experimental and theoretical work together, which can result in

a more cohesive understanding of host-parasite evolution.
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Chapter 1

Introduction

§ 1.1 Hosts and Parasites

Infectious disease is rife throughout the world, with species at risk of infection at every

level, from bacteria to humans. Infection can have devastating effects on populations,

which has led to a rich literature on the spread of infectious diseases, including possible

ways to control or limit the detrimental effects of a disease (Colditz et al., 1994; Shepard

et al., 2006). This is still an active area of research today, and the field has been

expanded to consider many other problems, for example pests in agriculture (Landis et

al., 2000; Berg, 2009), conservation (e.g. red squirells, Haller et al., 2014; White et al.,

2016), and antibiotic resistance (Neu, 1992; Levy & Marshall, 2004). While the study

of infectious disease has a long history, there are many influential aspects that are yet

to be fully explored and understood.

Mathematical modelling of infectious diseases has long been used to understand and

predict the spread and impact of outbreaks. This approach allows us to consider various

drivers and outcomes of infectious diseases theoretically, and can be used to determine

effective prevention strategies before they are implemented in real-world situations.

This is often done by splitting the interacting species into ‘hosts’ and ‘parasites’. Hosts

are species that can be infected, for example humans, bacteria, plants, etc. Many cur-

rent infection models split these hosts into classes depending on their infectious status,

an assumption which is based on the susceptible-infected-recovered (SIR) framework

developed by Kermack & McKendrick (1927, 1932, 1933) (see also Anderson & May,

1981). On the other hand, parasites are species that infect and potentially harm hosts,

for example bacteria, viruses and fungi. Parasites can be further divided into ‘mi-

1
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croparasites’ and ‘macroparasites’. Microparasites are characterised by small size, short

generation times and high multiplication rates within hosts (Anderson & May, 1979,

1981), e.g. viruses and bacteria. In this case, the parasite is only modelled through the

number of infected hosts as there can be thousands of individual microparasites within

one infected host. In contrast, macroparasites are larger and tend not to multiply

within hosts, for example flatworms and nematodes, and so the parasite is modelled

as a separate entity since different hosts will have different numbers of parasites (May

& Anderson, 1979). The work here will focus on microparasites that are not modelled

explicitly, but others have considered the infection dynamics of macroparasites (Fenton

et al., 2006a; Crossan et al., 2007; Taylor et al., 2015; McCallum et al., 2017; Orlofske

et al., 2018). With these definitions for hosts and parasites, a model can be created

to describe a general or specific infection system. Further, empirical data can provide

estimates of parameters (Ferguson et al., 2006; Smith et al., 2008; Reynolds et al.,

2013; Taylor et al., 2015; Macpherson et al., 2016) which could lead to more accu-

rate infection predictions or information about the system that could not be measured

experimentally.

Often we want to know the circumstances that can lead to an endemic infectious dis-

ease, whereby a parasite survives and persists in a given host population. This can

usually be characterised by how many susceptible hosts are infected by one infectious

individual, as this number indicates the relative speed at which the disease can spread

through a host population. Many use the basic reproduction number R0, which is de-

fined to be the number of secondary cases from one infected individual in an otherwise

susceptible population (Diekmann et al., 1990). A parasite can invade a population,

and potentially become endemic, if R0 > 1, i.e. if an infected individual infects more

than one susceptible host. Equally, if R0 < 1, the parasite will not spread through the

population and so does not usually invade or become endemic (but see, for example,

Roberts, 2007). The basic reproduction number is often used to predict if a disease will

spread through a population, and can be calculated from models or data (Diekmann

et al., 1990; Roberts, 2007; Imai et al., 2016; Inaba, 2016; Guerra et al., 2017; Klinken-

berg et al., 2018; Zhang & Iacono, 2018; Zhou et al., 2019). For example, Measles is

estimated to have reproduction number 12–18 (Anderson & May, 1982), making it one

of the fastest spreading diseases among humans. However, Measles is not endemic due

to wide spread vaccination against the disease. Hence, while the reproduction number

is a useful quantity to consider, a closely related, but perhaps more indicative, measure

of the spread of a disease is the ‘effective’ reproduction number (Re), which estimates

the number of secondary cases from one infected individual when there is some level of
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immunity in the host population. Many factors can influence the value of the effective

reproduction number, for example vaccination and age-structure (Anderson & May,

1985; Diekmann et al., 1990; Cai et al., 2017), with Inaba (2016) finding that when re-

infection is possible, bifurcations of the infection dynamics mean that attaining Re < 1

through vaccination may not be enough to prevent the transmission of a disease. Given

that the factors which determine R0 and Re can be specific to particular diseases or

locations, estimates of either reproduction number may need to be redetermined for a

given population or area (Johansson et al., 2011; Biggerstaff et al., 2014; Guerra et al.,

2017).

While the SIR framework is common throughout infection modelling literature, models

have been extended in many different ways to incorporate various aspects of host-

parasite dynamics. For example, some have increased complexity by additional species

(Venturino, 2001, 2002; Sofonea et al., 2015), while others have used this framework

to evaluate the efficacy of different prevention methods (Lipsitch et al., 2003; Ferguson

et al., 2006; Porter et al., 2012; Smith? et al., 2017; Dı́ez-Delgado et al., 2018). When

modelling a specific disease, we often need to consider how it is transmitted in order

to achieve realistic predictions. Generally transmission is assumed to be horizontal

through a ‘mass-action’ principle, whereby the population is well mixed and any in-

fected host can infect any susceptible host (McCallum et al., 2001; Begon et al., 2002).

However this is not always accurate, and alternative methods are sometimes needed to

reflect the biology of different infections. For example, some parasites are transmitted

vertically, whereby infected parents can directly transmit the parasite to their offspring,

resulting in an extra infected birth term in differential equation models (Hurst et al.,

1994; Teixeira et al., 2008; Jaenike et al., 2010; Fenton et al., 2011; Jones et al., 2011).

Alternatively some parasites are transmitted via vectors, which are modelled by adding

extra equations to denote the susceptible and infected vector populations (Alizon & van

Baalen, 2008; Hartemink et al., 2008; Porter et al., 2012; Simmons et al., 2012; Wil-

son et al., 2017). Of particular importance for bacteria-phage systems, parasites are

often transmitted horizontally but can only infect specific host genotypes (Poullain et

al., 2008; Poland et al., 2009), which can be modelled using genetic based methods or

through an almost “all-or-nothing” transmission function (Forde et al., 2008; Boots et

al., 2009, 2014; Best et al., 2010b, 2017b). Hence, while there are various factors that

ought to be considered when studying a specific disease, the way in which transmission

is modelled will have important consequences for infection dynamics.

Two other important factors that could impact disease are heterogeneous environments
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and evolution. For the former, temporal and spatial changes in environmental condi-

tions can lead to infection dynamics that are periodic in time (Kamo & Sasaki, 2002),

spatially distributed (Bhatt et al., 2013), or some combination of both (Dhondt et al.,

2005, 2012). Equally, evolution of host defence and/or parasite infectivity means that

infection dynamics can change through time purely due to the interaction between the

species (Brockhurst et al., 2014). Both of these factors can can have a significant effect

on the spread and impact of a disease, and as such will be discussed in more detail.

§ 1.2 Heterogeneous Environments

Many species live in heterogeneous environments, with spatial and temporal changes in

climate and resources common throughout the world. This variation can lead to space-

or time-dependent life-history traits, and thus determines the ecological dynamics of

the species. For example, high migration rates in spatial environments can potentially

destabilize metapopulations of Drosophila or bacteria (Dey & Joshi, 2006; Vogwill

et al., 2009). Elsewhere, Fennoscandian voles have been shown to have multi-year

population cycles with periods that depend on their location (Hansson & Henttonen,

1988; Bjørnstad et al., 1995), which can be explained by changes in the abundance of

predators at different latitudes (Hanski et al., 1991), or by the length of the breeding

season (Taylor et al., 2013). The effect of heterogeneous environments on populations

extends to infection dynamics, meaning that outbeaks can be periodic in time and/or

spatially distributed (Kamo & Sasaki, 2002; Dhondt et al., 2005, 2012; Bhatt et al.,

2013).

Many environments vary spatially, with different habitats and climate conditions de-

pendent on location. The effect of this type of environmental heterogeneity on infection

dynamics can be observed empirically. For example, Wommack & Colwell (2000) de-

scribe how virioplankton numbers depend on location, and in particular that abundance

can peak at certain depths in open-ocean waters due to different processes that deter-

mine production and loss. The virioplankton have a significant impact on microbial

food webs through infection of bacteria and algae populations, and so the spatial distri-

bution of virioplankton is an important determinant of the infection dynamics in water

systems. Additionally, migration between different environments can change population

dynamics, and thus will affect the spread of infection (Daversa et al., 2017). Infection

dynamics in spatial environments can be modelled using a variety of methods (Keeling

& Eames, 2005; Ferguson et al., 2006; Webb et al., 2007), with many incorporating em-
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pirical data in order to deduce influential factors in the spread of a particular disease

(Bhatt et al., 2013; Gog et al., 2014; Griffiths et al., 2014; Macpherson et al., 2016;

White et al., 2016; Charu et al., 2017; Klinkenberg et al., 2018). For example, it has

been shown that the spread of influenza in the US is often dominated by short-distance

interactions (Gog et al., 2014; Charu et al., 2017). However, a study of Measles in the

Netherlands showed that school holidays could lead to a shift towards longer-distance

transmission (Klinkenberg et al., 2018). Spatial heterogeneity can also impact how

prevention strategies are best implemented. For example, White et al. (2016) found

that high intensity control of grey squirrels in key infection corridors could prevent the

spread of Squirrel-pox Virus from Southern to Central Scotland, which is predicted

to be more effective than previous control methods. Hence spatially heterogeneous

environments have an important effect on infection dynamics, which has prompted a

range of theoretical research on the topic (Keeling & Eames, 2005; Webb et al., 2007;

Griffiths et al., 2014; Parratt et al., 2016; Daversa et al., 2017), including host-parasite

evolutionary studies (Hochberg & van Baalen, 1998; Boots & Sasaki, 1999; Haraguchi

& Sasaki, 2000; Nuismer & Kirkpatrick, 2003; Thrall & Burdon, 2003; Kamo et al.,

2007; Débarre et al., 2012; Horns & Hood, 2012).

Many species live in temporal environments, where changes in conditions can be sea-

sonal and/or stochastic. These temporal changes can affect population sizes (Rowan,

1938; Wommack & Colwell, 2000; Gehrt, 2005; Ketterson et al., 2015; Ewing et al.,

2016; Furness, 2016), hence variability in these environments will have an important

effect on infection dynamics. Outbreaks of infectious diseases can be seasonal due to

temporal changes in a range of different ecological and epidemiologcal processes, in-

cluding transmission (Turell et al., 2001; Altizer et al., 2006; Jian et al., 2014; White et

al., 2014), and life-history traits of either species (London & Yorke, 1973; Fine & Clark-

son, 1982; Fels & Kaltz, 2006; Fenton et al., 2006b; Smith et al., 2008; Begon et al.,

2009; Knowles et al., 2012; Reynolds et al., 2013). Alternatively direct environmental

factors, such as resource availability or rainfall, can drive seasonal infection dynamics

(Maurice et al., 2015; Baracchini et al., 2016). Mathematical models of these infection

outbreaks will not be accurate if the seasonal peaks and troughs do not occur. Hence

many have modelled seasonal diseases by including time-dependent parameters as a

proxy for environmental fluctuations, which are often implemented through regular,

deterministic oscillations (Dietz, 1976; Aron and Schwartz, 1984; Olsen and Schaffer,

1990; Choisy et al., 2006; He & Earn, 2007; Lello et al., 2008; Smith et al., 2008;

Uziel & Stone, 2012; Best, 2013). Of particular importance, it has been found that

small perturbations in these models can lead to a switch between distinct attractors
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(Smith, 1983; Schwartz, 1985; Keeling et al., 2001; Kamo and Sasaki, 2002; Greenman

et al., 2004). In addition, increasing the amplitude of the temporal forcings can lead to

chaotic dynamics (Grossman, 1980; Schwartz & Smith, 1983; Greenman et al., 2004;

Grassly & Fraser, 2006; Childs & Boots, 2010), although this occurs less often when the

forcing is through the host birth rate compared to the transmission rate (White et al.,

1996; Begon et al., 2009; Duke-Sylvester et al., 2011; Dorélien et al., 2013; Peel et al.,

2014). Similarly to spatial environments, the effectiveness of prevention strategies may

depend on when and how they are enforced, but also on the strength of the seasonal

fluctuations. For example, Lee & Chowell (2017) showed that some treatments perform

equally well in constant and seasonal environments, whereas others can increase the

size of the epidemic when transmission is seasonal. Therefore temporal environments

have an important effect on infection dynamics, and thus should be taken into account

in mathematical models.

Heterogeneous environments, both spatial and temporal, can have a significant impact

on infection dynamics empirically and theoretically. Therefore mathematical models

may need to include some form of environmental heterogeneity in order to produce

accurate predictions for real-world infection systems. In this thesis I focus on sea-

sonal environments since few have considered host-parasite evolution with temporal

heterogeneity, while evolution in spatial environments has been relatively well studied

(Hochberg & van Baalen, 1998; Boots & Sasaki, 1999; Brockhurst et al., 2003, 2006;

Thrall & Burdon, 2003; Forde et al., 2004; Kerr et al., 2006; Boots & Mealor, 2007;

Vogwill et al., 2008, 2010, 2011; Lopez-Pascua et al., 2010, 2012; Su & Boots, 2017).

§ 1.3 Host-Parasite Evolution

Host-parasite systems are generally governed by the interactions between the two (or

more) species, which has important consequences for population and epidemiological

dynamics. These interactions are often antagonistic, and as such promote adaptation

in defence/infectivity strategies in response to each other. This results in changes in

the species’ traits through evolution, as famously described by Darwin in 1859 (see

also Darwin & Wallace, 1858). Empirically it has been shown that, for a range of

different species, hosts can evolve various defence strategies against parasitism (Fuxa

& Richter, 1989; Simms & Triplett, 1994; R̊aberg et al., 2007; Zbinden et al., 2008;

Gerardo et al., 2010; Rohr et al., 2010; Boots, 2011; Medina & Langmore, 2016; Howick

& Lazzaro, 2017; Klemme & Karvonen, 2017). It has also been shown that parasites
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can evolve different methods to infect hosts (Thrall & Burdon, 2003; Boots & Mealor,

2007; Crossan et al., 2007; Samson et al., 2013), and that in many cases the host

and parasite co-evolve in response to each other (Forde et al., 2004; Kerr et al., 2006;

Brockhurst et al., 2007, 2014; Laine, 2009; Obbard & Dudas, 2014; Barraclough, 2015;

Zeller & Koella, 2017). Therefore evolution is a fundamental process that influences

infection dynamics, with one of the most widely recognised problems being the rise

of drug-resistance in human and animal diseases (Livermore, 2003; Levy & Marshall,

2004; Davies & Davies, 2010). Hence evolution should be included in mathematical

models, as without it theoretical predictions run the risk of missing a key component

that may significantly change infection dynamics.

Mathematically, evolution can be studied in a number of different ways. Many use

genetic based methods with qualitative traits, where a fixed number of genes are con-

sidered that have an associated fitness. These genes are generally categorized into a

fixed number of qualitative traits, for example resistant/susceptible for the host, and

virulent/avirulent for the parasite. The most common genetic-based approaches are

the gene-for-gene (GFG) and matching allele methods (MA; Flor, 1956; Jayakar, 1970;

Burdon, 1987; Thompson & Burdon, 1992; Sasaki, 2000; Agrawal & Lively, 2002; Thrall

et al., 2016), although these can be extended to investigate more complicated genetic

interactions (Fenton & Brockhurst, 2007; Fenton et al., 2009, 2012; Engelstädter, 2015;

Ashby et al., 2019). Other evolutionary methods consider quantitative traits, an exam-

ple of which is the “adaptive dynamics” approach. For this method, a parameter from

a set of ecological equations is chosen as the trait that evolves, and a dynamic fitness

is derived which determines how the quantitative trait changes through time (Marrow

et al., 1996; Dieckmann & Law, 1996; Metz et al., 1996; Geritz et al., 1998). I use this

method to study evolution in this thesis, and is described in more detail in Chapter 2.

First, let us consider the evolution of host defence. Hosts can defend themselves against

parasitism through many different mechanisms. These are often classified as: (i) resis-

tance, where the host prevents initial infection or recovers once infected (Lambrechts

et al., 2006; Poland et al., 2009; Svensson & R̊aberg 2010; Boots, 2011); (ii) tolerance,

such that the host reduces any harmful effects of the parasite (Strauss & Agrawal, 1999;

Boots, 2008; Baucom & de Roode, 2011; Hayward et al., 2014; R̊aberg, 2014; Medina &

Langmore, 2016); (iii) acquired immunity, whereby the host cannot be reinfected by the

same parasite once recovered from an initial infection (Deerenberg et al., 1997; Zuk &

Stoehr, 2002; Gerardo et al., 2010). Any (or all) of these defences can evolve, and there

is a wide range of theoretical research on the evolution of each of these defence types
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(Boots & Haraguchi, 1999; Boots & Bowers, 1999, 2004; Boots et al., 2009; Débarre et

al., 2012; Horns & Hood, 2012; Best et al., 2013, 2015, 2017a; Ashby & Bruns, 2018),

including when there are multiple interacting species (Bonsall & Raymond, 2008; Hoyle

et al., 2012; Yang et al., 2012; Toor & Best, 2015, 2016; Donnelly et al., 2017). In gen-

eral, it has been found that infection prevalence, as a proxy for the force of infection,

drives selection for host defence (Roy & Kirchner, 2000; Boots et al., 2009). Moreover,

changes in ecological and epidemiological model parameters that increase the prevalence

of the parasite, for example increased growth rate or transmission, mean that the host

invests more in defence (Boots & Haraguchi, 1999; Boots & Bowers, 1999, 2004; Best

et al., 2017a). However, the drivers of resistance evolution can be more complicated.

For example, when infected hosts are able to reproduce, increasing infected fertility

leads to a decrease in selection for resistance, thus lowering evolved defence, despite an

increase in the infected population size (Toor & Best, 2015; Best et al., 2017a). This is

due to the fact that the overall cost of being infected is lower, as reproduction can still

occur even if a higher proportion of the population is infected. Overall there has been

little work investigating the evolution of acquired immunity (Boots & Bowers, 2004;

Donnelly et al., 2017), possibly due to the long-standing belief that invertebrates and

bacteria do not have this type of defence (Rimer et al., 2014). Despite the knowledge

that immune priming can occur in plants and invertebrates (Schmid-Hempel, 2005;

Jung et al., 2012), this has also recieved little theoretical attention with respect to host

evolution (Best et al., 2013). Hence there are many mechanisms through which hosts

can evolve defence against parasitism, however, the level of defence critically depends

on the specific ecological and epidemiological conditions.

A fairly general result, in a constant environment, is that tolerance and resistance give

qualitatively different evolutionary behaviours (Roy & Kirchner, 2000; Boots & Bow-

ers, 1999; 2004; Miller et al., 2005, 2007). This is due to the fact that an increase in

resistance negatively impacts the parasite through reduction in growth, while an in-

crease in tolerance either neutrally or positively impacts the parasite through increased

infectious period. A common difference between these mechanisms is the occurrence of

diversity in host defence. For resistance, diversity has been observed in both theoretical

and empirical studies (Frank, 1993; Spiers et al., 2000; Niaré et al., 2002; Lazzaro et al.,

2004, 2006; Boots et al., 2012, 2014; Klemme & Karvonen, 2017), with polymorphism

found to be more likely in a population with high intrinsic productivity (Boots & Bow-

ers, 1999), although this behaviour is highly dependent on the cost structures involved

(Boots & Haraguchi, 1999; Boots & Bowers, 2004; Best et al., 2015). For tolerance,

diversity can be observed experimentally (Koskela et al., 2002; Kover & Schaal, 2002;
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R̊aberg et al., 2007; Blanchet et al., 2010; Kause et al., 2012; Sternberg et al., 2012;

Hayward et al., 2014; Mazé-Guilmo et al., 2014) but is generally not found theoretically

(Roy & Kirchner, 2000; Miller et al., 2005; Best et al., 2014, 2017a) unless there is a

trade-off between resistance and tolerance or evolution is through ‘sterility tolerance’

(Fornoni et al., 2004; Best et al., 2008, 2010a; Carval & Ferriere, 2010). In addition,

resistance and tolerance can be linked in some species (R̊aberg et al., 2007; Howick &

Lazzaro, 2017; Klemme & Karvonen, 2017; but see Sternberg et al., 2012; Mazé-Guilmo

et al., 2014). This has been studied theoretically (Fornoni et al., 2004; Best et al., 2008;

Carval & Ferriere, 2010), with Restif & Koella (2004) finding that, similarly to above,

resistance and tolerance respond differently to changes in model parameters. Therefore

when modelling host defence it is worth considering the evolution of both resistance

and tolerance, as evolution through each mechanism can lead to different outcomes

which will have important effects on real-world infection dynamics.

Parasites can evolve different strategies to infect hosts (Thrall & Burdon, 2003; Boots

& Mealor, 2007; Crossan et al., 2007; Samson et al., 2013), which has led to the math-

ematical study of parasite evolution in a range of different contexts (Levin & Pimental,

1981; Bremermann & Pickering, 1983; Bremermann & Thieme, 1989; Boots & Sasaki,

1999; Miller et al., 2006; Gog, 2008; Heilmann et al., 2010, 2012; Morozov & Best, 2012;

Bernhauerova, 2016; Su & Boots, 2017). In some cases, the evolution of a parasite can

be determined by maximization of the reproduction number R0 (May & Anderson,

1983; Kucharski & Gog, 2012; Vale et al., 2014), as R0 is a measure of parasite growth,

and therefore can be used as a proxy for parasite fitness. This is not always the case,

particularly when R0 is difficult to calculate or when there are certain environmental

feedbacks (Lion & Metz, 2018). Evolutionary frameworks, based on the maximisation

of R0 or other methods, can be used to predict the circumstances that may lead to

highly virulent parasites (Haraguchi & Sasaki, 2000; Fenton et al., 2006b; Svennungsen

& Kisdi, 2009; Best & Hoyle, 2013), with Boots & Sasaki (1999) finding that, in a spa-

tial model, parasites evolve higher virulence when transmission is increasingly global.

Alternatively, parasites can evolve to evade certain drug treatments (Livermore, 2003;

Levy & Marshall, 2004; Davies & Davies, 2010), and theoretical studies can determine

how best to manage parasite evolution in this context. For example, Restif & Grenfell

(2007) found that the persistence of a pathogen is minimised when vaccines provide

some level of cross-protection against multiple strains, while Bernhauerova (2016) found

that the level of evolved virulence depended on how the parasite evolved to evade the

effects of a vaccine. Elsewhere, it has been observed that some parasites can confer

resistance to the host against a second parasite (Michalakis et al., 1992; Hughes et al.,
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2011; Sternberg et al., 2011; Vorburger & Gouskov, 2011; Ford & King, 2016). Recent

theoretical studies of this phenomenon have shown that evolution of host protection

by a parasite can occur for a wide range of parameters, although the exact outcome

will depend on certain characteristics of the species (Jones et al 2011) or the shape and

strength of the underlying trade-off (Ashby & King, 2017). Therefore mathematical

models of parasite evolution can provide us with a deeper understanding of the condi-

tions that lead to particularly virulent or transmissible parasites. Models can also be

used to explore observed host-parasite interactions, and importantly can warn us about

potentially unwanted evolutionary outcomes from infection prevention strategies.

While the study of single-species evolution is useful, many hosts and parasites coevolve

due to their interaction with each other, with both species constantly adapting to

changes in the other. This has been observed in a wide range of species (Laine, 2009;

Bérénos et al., 2011; Obbard & Dudas, 2014; Edger et al., 2015; Zeller & Koella, 2017),

including bacteria-phage systems (Buckling & Rainey, 2002; Paterson et al., 2010; Hall

et al., 2011; Lopez-Pascua et al., 2014). For example, Lopez-Pascua & Buckling (2008)

found that the rate of coevolution between the bacteria P. fluorescens SBW25 and its

parasitic bacteriophage SBW25Φ2 depended on the productivity of the environment,

with greater productivity leading to higher rates of coevolution. As coevolution is such

a wide-spread phenomenon, many have studied it theoretically through genetic-based

(Leonard, 1977; Sasaki, 2000; Agrawal & Otto, 2006; Fenton & Brockurst, 2007; Peters

& Lively, 2007; Tellier & Brown, 2007; Kouyos et al., 2007, 2009; Ashby & Gupta,

2014) and ecology-driven methods (van Baalen, 1998; Gandon & Day, 2009; Best et

al., 2010a,b, 2014, 2017b; Carval & Ferriere, 2010; Boots et al., 2014; Ashby & Boots,

2015; Kada & Lion, 2015). Many have observed that results from coevolutionary studies

aren’t necessarily predictable from single-species evolution (Restif & Koella, 2003), and

in fact that coevolution can lead to more highly virulent parasites when compared to

parasite-only evolution (Best et al., 2009). Sometimes coevolution can be categorized as

“arms race dynamics” (ARD; selection for increasing resistance and infectivity ranges)

or “fluctuating selection dynamics” (FSD; selection varies through time). These two

types of dynamics can be observed experimentally and theoretically, with costs often

determining the extent to which these dynamics play a role in coevolutionary systems

(Gomez & Buckling, 2011; Hall et al., 2011; Harrison et al., 2013; Lopez-Pascua et

al., 2014). Overall coevolution is a key process in many host-parasite systems which

can determine the level of resistance and infectivity obtained. Hence the inclusion of

coevolution is often needed in mathematical models to produce accurate evolutionary

and epidemiological predictions.
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It is commonly observed that underlying ecological dynamics affect evolutionary out-

comes. Host-parasite studies often find that the infected population size (or disease

prevelence) influences the level of evolved host defence, as this is the predominant se-

lection pressure on the host (van Baalen, 1998; Boots & Haraguchi, 1999; Donnelly et

al., 2015). However the opposite can also be true, whereby evolution of the host and/or

parasite changes the ecological dynamics of the two species, which in turn affects the

evolutionary dynamics and results in “eco-evoutionary feedbacks” (Roy & Kirchner,

2000; Restif & Koella, 2004; Miller et al., 2005, 2007; Boots et al., 2009; Best et al.,

2017b; Theodosiou et al., 2019). In some cases, evolution can even drive the underlying

ecological dynamics into a parameter region with population cycles that have a differ-

ent period, which can cause discontinuities in the evolutionary outcomes (Hoyle et al.,

2011; Best et al., 2013). Many genetic-based theoretical studies of evolution do not

include population or epidemiological dynamics (Leonard, 1977; Sasaki, 2000; Agrawal

& Otto, 2006; Peters & Lively, 2007; Tellier & Brown, 2007), and while these studies

have important results, it is likely that the addition of ecological dynamics, and there-

fore eco-evolutionary feedbacks, would change the evolutionary outcomes (Ashby et al.,

2019). Therefore models of species that involve variation in population sizes over space

or time should take the ecological dynamics into account when studying evolution, as

eco-evolutionary feedbacks are likely to play an important role in these environments.

While hosts and parasites evolve greater defence/infectivity, it is often assumed that

this comes at a cost in some other life-history trait. The functions that describe these

costs are known as trade-offs, and can be observed empirically for both hosts and

parasites (Boots & Begon, 1993; Kraaijveld & Godfrey, 1997; Koskela et al., 2002;

Thrall & Burdon, 2003; Mealor & Boots, 2006; Poullain et al., 2008; Boots, 2011;

Karve et al., 2016; Bartlett et al., 2018; Acevedo et al., 2019; Rafaluk-Mohr, 2019). It

is often difficult to evaluate the exact nature of the trade-off experimentally, however it

is common to use these costs in theoretical studies as they are important factors that

influence host-parasite evolution. Therefore many have considered a range of different

trade-off functions to capture all possible evolutionary outcomes, and in fact it has

been found that the shape of the trade-off can have an important impact on the type

of evolution observed (Boots & Haraguchi, 1999; de Mazancourt & Dieckmann, 2004;

Bowers et al., 2005; Kisdi, 2006; Bonsall & Raymond, 2008; Hoyle et al., 2008, 2011;

Svennungsen & Kisdi, 2009; Lin et al., 2016). For example, Best et al. (2015) showed

that increasing the degree of polynomial trade-offs in the host birth rate can lead to loss

of diversity in a host population. Elsewhere, Bonsall & Raymond (2008) found that,

when a host is exposed to a lethal pathogen and a non-lethal synergist, the structure
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of the underlying trade-offs is critical for the maintenance of polymorphisms in host

resistance. Trade-offs can have a significant impact on theoretical evolution results,

but since it is difficult to deduce a specific function from experimental data, we have

to be careful about our choice of trade-off function and ensure that it is biologically

plausible. This can be done by considering empirical evidence when developing trade-

off functions, and including enough flexibility within trade-offs to encompass a range

of potential scenarios.

Evolution and epidemiological dynamics are closely related and are involved in a contin-

uous feedback with each other. It has been demonstrated that the underlying ecology

can often determine host-parasite evolution, which in turn can alter infection dynamics.

This can be shown empirically and theoretically, and so it is often crucial to include evo-

lution when modelling infection. This is especially true in heterogeneous environments,

as discussed below.

§ 1.4 Evolution in Temporally Hetergeneous Environments

Individually, heterogeneous environments and evolution are important aspects of infec-

tion systems, hence the combination and interaction of these two factors could provide

even more insight into real world infection dynamics. Many have aready considered

the intersection between evolution and spatial environments both experimentally and

theoretically (Hochberg & van Baalen, 1998; Boots & Sasaki, 1999; Damgaard, 1999;

Haraguchi & Sasaki, 2000; Brockhurst et al., 2003, 2006; Nuismer & Kirkpatrick, 2003;

Thrall & Burdon, 2003; Forde et al., 2004; Kerr et al., 2006; Boots & Mealor, 2007;

Kamo et al., 2007; Vogwill et al., 2008, 2010, 2011; Heilmann et al., 2010, 2012; Lopez-

Pascua et al., 2010, 2012; Débarre et al., 2012; Horns & Hood, 2012; Ashby et al., 2014;

Su & Boots, 2017), but overall temporal evironments have received less attention. Here

I summarize the current experimental and theoretical literature about host-parasite evo-

lution in temporal environments, and consider where there may be gaps in this growing

area of research.

Experimentally, some have considered how temporal abiotic environmental factors

affect (co)evolution in various different species (Blanford et al., 2003; Laine, 2007;

Blanchet et al., 2010; Friman et al., 2011; Friman & Laakso, 2011; Hiltunen et al.,

2012, 2015 Dallas & Drake, 2016; Mazé-Guilmo et al., 2016), including bacteria-phage

systems (Zhang & Buckling, 2011; Harrison et al., 2013; Duncan et al., 2017). These

studies range from wild populations in stochastic heterogeneous environments (Blanchet
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et al., 2010; Mazé-Guilmo et al., 2016) to populations in experimentally altered peri-

odic conditions (Hiltunen et al., 2012, 2015; Harrison et al., 2013; Duncan et al., 2017),

and so provide an array of experimental evidence as to how temporal environments

may affect host-parasite evolution. The type of environmental fluctuations can have

different effects on coevolution of the same host-parasite species depending on how the

fluctuations affect the individuals or their interaction. For example, for the bacteria

P. fluorescens SBW25 and its parasitic bacteriophage SBW25Φ2, rapid fluctuations in

resource concentration significantly affects the bacteria population sizes and constrains

coevolution (Harrison et al., 2013). In contrast, oscillations in temperature primarily

affect the phage population sizes, and coevolution is constrained for slower oscillations

(Duncan et al., 2017). For many different infection systems, experimental studies gener-

ally find that temporal environments have an effect on host-parasite evolution, however

there has been a lack of attention paid to how the amplitude of regular oscillations

in conditions may impact evolution. This is possibly due to the comparatively large

number of individual conditions that are needed to make up the oscillating environ-

ments, which could be limited by equipment and resource availablility. However, the

consideration of seasonal amplitude is particularly important for real-world infection

systems, as natural seasonal variations are more likely to vary in amplitude than pe-

riod. Only Blanford et al., (2003) consider this, finding that pea aphids, Acyrthosiphon

pisum, evolved greater resistance against a fungal pathogen, Erynia neoaphidis, when

periodically exposed to high temperatures, although how the level of resistance changed

as amplitude increased varied between pea aphid clones. Hence there is plenty of scope

for more experimental work that considers host-parasite evolution in temporal environ-

ments, in particular focussing on the potential effects of increasing the amplitude of

regular environmental fluctuations.

Mathematically, both parasite-only evolution (Koelle et al., 2005; Sorrell et al., 2009;

van den Berg et al., 2010, 2011; Hamelin et al., 2011; Donnelly et al., 2013; Baker et al.,

2018) and host-parasite coevolution (Nuismer et al., 2003; Mostowy & Engelstädter,

2011; Poisot et al., 2012; Gibson et al 2018) have been considered in a temporal envi-

ronment. These studies use genetic- or ecology-based methods to study evolution, and

temporal heterogeneity is incorporated in a variety of different ways. Given the small

number of studies that exist, the main results are summarised below.

First let us review the theoretical literature on parasite-only evolution in temporal en-

vironments. When considering an increasingly variable climate implemented through

transmission, Koelle et al. (2005) found that the parasite evolved lower sensitivity to en-
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vironmental variability in transmission and virulence as climate fluctuations increased,

i.e. the parasite evolved such that fluctuations in transmission due to the environment

were dampened as the amplitude increased. Elsewhere, Sorrell et al. (2009) investigated

the evolution of covert infection as a parasite strategy, finding that covert infection does

not evolve in a constant environment, but seasonal host birth rate or transmission can

select for low levels of covert infection for high enough amplitudes. In many plant-

parasite systems, seasonal conditions mean that the plant host is regularly absent, so

the parasite has to survive in the environment for a certain period of the year. Some

have theoretically studied the evolution of parasite transmission in such a system (van

den Berg et al., 2010, 2011; Hamelin et al., 2011), finding that evolutionary divergence

of the parasite can occur (Hamelin et al., 2011), and that the type of trade-off (vir-

ulence or inter-season survival) determines the direction of selection as the length of

host absence is varied (van den Berg et al., 2011). In a similar vein, Donnelly et al.

(2013) considered how a fluctuating host birth rate affected parasite evolution through

transmission and virulence. Initially they found that the parasite was not affected

by the seasonality, although the inclusion of density-dependent virulence meant that

high amplitudes could lead to greater parasite investment in transmission. Alterna-

tively, parasites can evolve to evade treatment strategies, and it has been suggested

that pulsed management schemes could be used to exploit competition between dif-

ferent strains (Garrison et al., 2014; Enriquez-Navas et al., 2016; Hackett & Bonsall,

2016). Baker et al. (2018) considered this in relation to antibiotic resistance, finding

that reducing treatment pulse duration led to lower levels of drug-resistance in the par-

asite, although high dose concentrations were needed to decrease pathogen load within

individual hosts. All of these studies consider different types of parasite evolution in a

range of temporal environments, and generally find that the amplitude and/or period

of the fluctuations has a significant effect on parasite evolution.

Coevolution between hosts and parasites has also been studied theoretically in a tempo-

ral environment. Nuismer et al. (2003) considered stochastic fluctuations between mu-

tualistic and antagonistic interactions between the host and parasite. Using a genetic-

based method, they found that matching traits coevolved when the geometric mean of

the interaction was mutualistic, but otherwise there was trait mismatching and possibly

coevolutionary cycles. In another study, Mostowy & Engelstädter (2011) introduced

deterministic environmental variation through the specificity of the interaction between

the host and parasite. They found that, when the velocity of the environmental change

was high, the impact of the oscillations on coevolution could be seen through both

short- and long-term effects, which could produce rapid allele fluctuations. For slower
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environmental oscillations, the short- and long-term effects merged, and the coevolu-

tionary dynamics became similar to those observed in a constant environment. While

the results from the two studies above are important, they both use genetic-based

evolutionary methods without population dynamics, despite the fact that ecological

dynamics have an important effect on coevolution (Papkou et al., 2016; Ashby et al.,

2019). In contrast, Poisot et al. (2012) used a genetic evolution method within an

ecological infection framework, with temporal heterogeneity incorporated through the

input of a dynamic host resource. They found that high amplitude and duration of

the productive season led to large host and parasite investment in defence and infec-

tivity when there is no recovery, with minimal investment in host defence occuring at

intermediate amplitudes.

The studies above considered evolution through a range of different mechanisms in

temporal environments, and generally found that these environments have a signifi-

cant effect on evolution. Therefore predictions of infection outbreaks should take both

evolution and temporal environments into account, as their interaction can have im-

portant consequences. However, I found no theoretical studies of host-only evolution

in a temporal environment, no adaptive dynamics studies of coevolution, and limited

studies on parasite-only evolution, so there is clearly more scope for theoretical work

in this area, especially investigating the effects on host defence. In the experimental

literature, many either consider pulsed environments with fixed amplitude and period

(Friman et al., 2011; Friman & Laakso, 2011; Hiltunen et al., 2015) or temporal envi-

ronments with different periods (Harrison et al., 2013; Dallas & Drake, 2016; Duncan

et al., 2017). Only Blanford et al. (2003) consider how the amplitude of environment

impacts evolution, so more empirical research could be done to explore this further.

Given the importance of infection dynamics, and the influence of evolution and tempo-

ral environments on infection, more research could be done in this area to fill the gaps

in our current knowedge. Therefore, I use a mathematical infection model to study

host-parasite evolution in a temporal environment, and conduct an experimental study

to investigate the effect of the amplitude of environmental oscillations on coevolution

in a bacteria-phage system.

§ 1.5 Thesis Outline

In this thesis, I investigate the effects of temporally heterogeneous environments on

host-parasite evolution, specifically through a fluctuating birth rate in the host species.
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I consider different mechanisms of host defence, present an experimental bacteria-phage

study, and explore coevolution of the host and parasite. This work contributes to the

growing field of host-parasite evolution in temporally heterogeneous environments, rein-

forcing the argument that temporal environments should be considered more generally,

and generates further questions for future research.

In Chapter 2, I introduce the mathematical methods used throughout this thesis. I

formulate a mathematical model of the infection dynamics and explain how seasonality

is incorporated into this model, with a brief discussion on how the temporal hetero-

geneity affects the epidemiological dynamics. I then describe the adaptive dynamics

method that I use to study host evolution, using trade-off functions to represent costs

of defence in reproduction. I detail the numerical procedures used to adapt this method

for the time-dependent infection equations, which are used in Chapters 3, 4 and 6.

In Chapter 3, I consider evolution of host defence through avoidance. I find that sea-

sonality does in fact have a quantitative effect on evolution, with avoidance decreasing

as the amplitude of seasonality increases. The effect of seasonality on evolution criti-

cally depends on the presence or absence of recovery, with the qualitative behaviour of

evolved host defence changing in the absence of recovery. I also find regions of bista-

bilty between two different defence strategies, which often occurs in conjunction with a

period-doubling bifurcation in the population dynamics. This means that the bistable

defence strategies often give different periods of oscillation in the population dynamics,

highlighting the importance of eco-evolutionary feedbacks in temporally heterogeneous

systems.

In Chapter 4, I investigate how seasonality affects the possibility for the evolution of

diversity through branching processes. I consider three types of host defence, namely

avoidance, recovery and tolerance, as previous theoretical work has found qualita-

tively different evolutionary behaviour for resistance (avoidance/recovery) and tolerance

mechanisms (Roy & Kirchner, 2000; Boots & Bowers, 1999, 2004; Miller et al., 2005,

2007). I find that, while tolerance branching does not occur in a constant environment,

seasonality allows for diversity in tolerance to emerge. In a seasonal environment, toler-

ance continues to have qualitatively different evolutionary behaviours when compared

to the two resistance mechanisms, and in particular that greater seasonal amplitudes

appear to ‘stabilise’ tolerance evolution while having the opposite effect on resistance.

To test the model predictions from Chapter 3, in Chapter 5 I present a bacteria-phage

evolution experiment where the nutrient resource oscillates between high and low con-

centrations. I measured the resistance of the bacteria at the end of the evolution
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experiment, finding that highest bacterial resistance and phage infectivity evolved at

intermediate amplitudes due to differences in growth rates in the various resource con-

centrations. This result is reinforced by a theoretical coevolution model, but only when

the seasonal forcing is based on the bacterial growth rates in the individual environ-

ments.

In Chapter 6, I give more details about the coevolutionary model that is introduced

in Chapter 5, incorporating three different types of seasonality and a specific infection

process. I find that for symmetric seasonality functions, the host and parasite evolve

monotonically decreasing defence and infectivity as the amplitude of oscillations in-

crease, which does not match the results for the bacteria and phage. The model only

replicates the experimental evolution results when evidence-based growth rates are in-

corporated into the model. This has important consequences for future modelling, as I

show that individual environments within the oscillating environment can have a large

impact on evolutionary outcomes.

Some of the work in this thesis has previously been published or has been submitted

for publication at international journals:

• Chapter 3: Ferris C, Best A. 2018 The Evolution of Host Defence To Parasitism

in Fluctuating Environments. Journal of Theoretical Biology. 440, 58–65. (doi:

10.1016/j.jtbi.2017.12.006)

• Chapter 4: Ferris C, Best A. Can temporal fluctuations select for diversity in host

tolerance to parasitism? Submitted.

• Chapter 5: Ferris C, Wright RC, Best A, Brockhurst MA. The intensity of host-

parasite coevolution peaks in seasonal environments that oscillate at intermediate

amplitudes. In prep.



Chapter 2

Mathematical Methods

In this chapter, I give a thorough discussion of the mathematical methods used for

the majority of the work produced in this thesis. First, I consider how to form an

appropriate infection model that incorporates seasonality. Second, I define trade-offs

within the model so that there are costs/benefits as evolution occurs. Third, I provide a

detailed explanation of the adaptive dynamics method used to investigate host evolution

within the infection model framework, with a focus on the system with time-dependent

coefficients. Additional details are given in Chapters 3, 4 and 6, with further discussion

of the method when applied to coevolution provided in Chapter 6.

§ 2.1 Infection Model

In infection modelling, a common approach is to separate the host population into

categories depending on their infection status (Anderson & May, 1981). Susceptible

(S) and infected (I) hosts are those which are susceptible to infection or are currently

infected with a parasite. Other categories can be defined, for example immune or ex-

posed (infected but not infectious) hosts, or infection and demographic related parasite

categories. I do not consider these categories here, as I assume that the host does

not have acquired immunity, that there is no exposed stage of infection, and that the

parasite can be considered to be uniform and is transmitted horizontally by contact

between infected and susceptible hosts. These assumptions simplify the initial model

that I build upon later. I define parameters to describe the rate at which individuals

enter, leave and transfer between the susceptible and infected categories, Figure 2.1,

and use this framework to build the mathematical model below.

18
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Figure 2.1: Flow chart demonstrating the infection system, modelled by the differential
equations (2.1), (2.2).

The population is modelled using an SIS (susceptible-infected-susceptible) framework

with the following set of ordinary differential equations:

dS

dt
= a(1− qN)S − bS − βSI + γI, (2.1)

dI

dt
= βSI − (b+ α+ γ)I, (2.2)

where S and I are the susceptible and infected population sizes respectively, and N =

S + I is the total population size (Anderson & May, 1981; Ferris & Best, 2018). All

offspring are born susceptible at rate a, and only susceptible hosts are able to reproduce,

i.e. the parasite renders the host (temporarily) sterile (this assumption can be relaxed,

see Boots & Bowers, 1999; Best et al., 2008; Tidbury et al., 2012; Best, 2013). The

births are limited by density with crowding coefficient q, so that birth rate is low when

competition is high. All hosts die at baseline mortality rate b, with an additional

infected death rate α. The parasite is transmitted to susceptible hosts at rate βI due

to contact with infected individuals. I assume a mass-action infection process, although

other types of infection exist (Anderson & May, 1981; Childs & Boots, 2010; Strauß &

Telschow, 2015; Cai et al., 2017). Hosts recover from the parasite at rate γ and return

to the susceptible class with no acquired immunity. These parameters are summarized

in Table 2.1, and default values are given for each model in Chapters 3, 4 and 6.

For this model there are three equilbria: (i) the extinction state (0, 0), (ii) the disease-

free state (S∗0 , 0) = (a−baq , 0), and (iii) the positive infection equilibrium (S∗, I∗):

(S∗, I∗) =

(
Γ

β
,
bΓ− aΓ(1− qΓ

β )

(γ − Γ)β − aΓq

)
(2.3)
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where Γ = α + b + γ. To guarantee that infection is maintained in the population,

we need to find parameters such that the extinction state and disease-free equilibrium

are unstable while the positive infection equilibrium is stable. The stability of the

extinction and disease-free equilibria can be determined by considering the eigenvalues

of the Jacobian of equations (2.1) and (2.2) evaluated at each equilibrium. If at least one

of the eigenvalues is positive, then the equilibrium point is unstable. For the extinction

state, the Jacobian has eigenvalues λ1 = a− b, λ2 = −Γ, so the equibirium is unstable

for a− b > 0. The first eigenvalue for the disease-free equilibrium is λ1 = b− a, which

is negative as long as S∗0 > 0. Therefore for (S∗0 , 0) to be unstable, we need the second

eigenvalue λ2 to be positive, i.e.:

λ2 =
(a− b)β
aq

− Γ > 0. (2.4)

To determine if the positive infection equilibrium (S∗, I∗) is stable, we can consider

the basic reproduction number R0, defined to be the number of secondary cases from

one infected individual in an otherwise susceptible population (Diekmann et al., 1990).

Infection persists in the population for parameters where the parasite can grow in the

population, i.e.:

R0 =
βS∗0
Γ

=
β(a− b)
aqΓ

> 1 . (2.5)

Parameter Definition

a0 Average birth rate
â0 Relative size of the average birth rate
p Gradient of the average birth rate
c Curvature of the average birth rate
α Virulence/additional death rate due to parasite
β Transmission coefficient
γ Recovery Rate
s Evolving parameter (α, β or γ)

smin Minimum value of s (α, β or γ)
smax Maximum value of s (α, β or γ)
δ Amplitude of the oscillating birth rate
ε Period of the oscillating birth rate
q Crowding coefficient acting on births
b Baseline mortality rate

Table 2.1: Parameter definitions for the general infection model, where different pa-
rameters are allowed to evolve (namely β, α or γ).
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Condition (2.5) is actually the same as (2.4), therefore for parameters that satisfy a > b

and (2.4), the population always tends towards the positive-infection equilibrium.

§ 2.2 Seasonality

Periodic birth rates have been observed in a large number of species (Rowan, 1938;

Ketterson et al., 2015), and a sinusoidal function has been used many times to model

a time-varying birth rate (He & Earn, 2007; Donnelly et al., 2013; Dorélien et al.,

2013) or transmission rate (Schwartz & Smith, 1983; Grassly & Fraser, 2006; Childs &

Boots, 2010). Complex dynamical behaviour is often associated with time-dependent

coefficients in differential equations, although it has been shown to occur less frequently

for forcings in the birth rate compared to the transmission rate (White et al., 1996;

Begon et al., 2009; Duke-Sylvester et al., 2011; Dorélien et al., 2013; Peel et al., 2014).

Therefore I incorporate seasonality through the birth rate a by letting it depend on

time t periodically. I assume that seasonality occurs on the ecological timescale in the

following way:

a = a(t) = a0(1 + δ sin(2πt/ε)), (2.6)

where a0 is the average birth rate, δ ∈ [0, 1] is the amplitude and ε > 0 is the period

of the forcing. This function causes continuous fluctuations in the birth rate, which in

turn impacts the population dynamics. For δ > 0, equations (2.1),(2.2) are non-linear

with time-dependent coefficients and I cannot find the limit cycle of the population

dynamics analytically, although numerically this is less of a challenge. Nevertheless,

I can find the average population sizes semi-analytically. Let T be the period of the

host dynamics (generally some integer multiple of ε) such that S(t + T ) = S(t) and

I(t+ T ) = I(t). Taking the average of equations (2.1), (2.2) over this period gives:

1

T

∫ P1

P0

dS

dt
dt = [S(t)]P1

P0
= 0 , (2.7)

1

T

∫ P1

P0

dI

dt
dt = [I(t)]P1

P0
= 0 , (2.8)

where P1 = P0 + T for some arbitrary time P0 > 0 after the population has reached a

dynamic attractor. Similarly, I can also find that:

1

T

∫ P1

P0

1

S

dS

dt
dt = [ln(S(t))]P1

P0
= 0 . (2.9)
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1

T

∫ P1

P0

1

I

dI

dt
dt = [ln(I(t))]P1

P0
= 0 . (2.10)

By using equations (2.2) and (2.10), the average susceptible population size Ŝ can be

found as follows:

0 =
1

T

∫ P1

P0

1

I

dI

dt
dt (2.11)

=
1

T

∫ P1

P0

βS − (α+ b+ γ)dt (2.12)

= βŜ − (α+ b+ γ) , (2.13)

giving

Ŝ =
1

T

∫ P1

P0

S(t)dt =
α+ b+ γ

β
. (2.14)

Using equations (2.2) and (2.8), the average infected population size Î can be found

semi-analytically:

0 =
1

T

∫ P1

P0

dI

dt
dt (2.15)

=
1

T

∫ P1

P0

[βSI − (α+ b+ γ)I] dt (2.16)

=
β

T

∫ P1

P0

SIdt− (α+ b+ γ)Î , (2.17)

giving

Î =
1

T

∫ P1

P0

I(t)dt =
β

(α+ b+ γ)T

∫ P1

P0

S(t)I(t)dt . (2.18)

From equations (2.7) and (2.18), there is an alternative form for Î:

Î =
1

(α+ b)

[
1

T

∫ P1

P0

{a(t)S(t)(1− qN(t))} dt− bŜ
]
. (2.19)

Note that the equation for the average susceptible population (2.14) is valid for all

values of the seasonal parameters δ and ε. For the average infected population size

Î, there is no fully analytic expression for positive amplitudes (δ > 0) as I cannot

compute the integral in equation (2.18) or (2.19), so numerical methods must be used

to calculate this average.

The population averages above change with the model and seasonal parameters, as
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Figure 2.2: Average population sizes as model parameters vary when there is no trade-
off. (a) Average birth rate a0; (b) Crowding factor q; (c) Baseline mortality rate b;
(d) Transmission coefficient β; (e) Recovery rate γ; (f) Virulence α. Blue: Average
susceptible population Ŝ; Red: Average infected population Î; Black: Average total
population N̂ . Parameters: a0 = 10, q = 0.1, b = γ = α = 1, β = 3, δ = 0.5, ε = 1.

plotted in Figures 2.2 and 2.3. These plots are for when there is no trade-off (see section

2.3), although the qualitative behaviour is generally the same when one is included in

the model. In Figure 2.2, the average susceptible population behaves as expected from

equation (2.14), with no change for varying a0 or q, a linear increase with b, γ and α,

and a monotonic decrease for increasing β. The average infected population Î is largest

for high a0, or low q, b and α. This is due to increased numbers of susceptible hosts

that can become infected (a0, q, b), or greater infectious period (b, α). For varying

transmission coefficient β, Î peaks at a relatively small value then gradually decreases

as β is increased. This decrease occurs because there is a decrease in the number of

susceptibles that are able to reproduce, but also an increase in the number of hosts

that die from infection. When the recovery rate γ varies, Î is largest for intermediate

values, as the loss of infected hosts through recovery is balanced by the increased size

of the susceptible population that can become infected.

The effects of changing the seasonal parameters on the average population sizes can be

seen in Figure 2.3. The average susceptible population size Ŝ is constant as both sea-

sonal parameters vary, as they do not appear in equation (2.14). Generally, Î increases
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with the amplitude of seasonality δ (Figure 2.3(a)), and hence the average prevalence(
1
T

∫ P1

P0

I(t)
N(t)dt

)
of the parasite also increases since Ŝ is constant. When the period ε is

varied, for the parameter values specified in Figure 2.3, Î increases to a peak at ε ≈ 1.25

due to resonance with the unforced system, then decreases as ε continues to increase.

This peak may occur at a different value of ε when the parameters are altered, as the

inherent period of the unforced system is likely to change. The behaviour of the average

population sizes may impact evolution of the host in different seasonal environments,

which is discussed further in Chapters 3, 4 and 6.

Figure 2.3: Average population sizes as seasonal parameters vary when there is no
trade-off. (a) Amplitude δ; (b) Period ε. Blue: Average susceptible population Ŝ;
Red: Average infected population Î; Black: Average total population N̂ . Parameters:
a0 = 10, q = 0.1, b = γ = α = 1, β = 3, δ = 0.5, ε = 1.

For most parameter sets, the period of the population dynamics is equal to that of

the forcing in the birth rate, i.e. T = ε. However, there are regions where the popula-

tion undergoes a period-doubling bifurcation, whereby a small change in a parameter

causes the dynamics to switch to a cycle with double the period of the original system

(Kuznetsov, 1998). The bifurcations mean that in some parameter regions I find pop-

ulation cycles of period T = λε, where λ is some positive integer. There can also be

cases of multiple attractors, often with different periods, which can have an effect on

host evolution (Chapter 3).

§ 2.3 Trade-Offs

It is important to remember that species cannot invest in every aspect of their survival

simultaneously, meaning that evolution of a particular fitness trait is constrained by

reduction in some other life-history trait (Stearns, 1992; Roff, 2002). For example, hosts
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may trade-off investment in defence against a parasite with some other life-history

trait, and there is empirical evidence for such a trade-off between host defence and

reproduction (Boots & Begon, 1993; Kraaijeveld & Godfray, 1997; Koskela et al., 2002;

Mealor & Boots, 2006; Bartlett et al., 2018). Approximations of these trade-offs are

regularly used in theoretical literature (Miller et al., 2007; Carval & Ferriere, 2010;

Toor & Best, 2015, 2016; Donnelly et al., 2015, 2017), however it is often hard, if not

impossible, to deduce the exact nature of the trade-off experimentally. The choice of

trade-off function can have a large impact on evolution (Boots & Haraguchi, 1999; de

Mazancourt & Dieckmann, 2004; Bowers et al., 2005; Kisdi, 2006; Best et al., 2015;

Ashby & King, 2017), so it important to be able to consider different trade-off shapes

to capture the full range of possible evolutionary outcomes.

Suppose the host evolves defence through trait s, which has lower and upper limits

fixed at smin and smax respectively (i.e. s ∈ [smin, smax]). I let the average birth rate

a0 depend on this evolving parameter so that there is a cost of defence against the

parasite. I use the following trade-off function, based on that used by White et al.

(2006) (see also Ferris & Best, 2018):

a0 = a0(s) = â0 − p
(1 + s−smin

smax−smin
)

(1 + c s−smin
smax−smin

)
, (2.20)

where a0(s) has relative size â0, gradient p and curvature c such that as the host invests

in defence against the parasite, less can be invested in reproduction. The parameter

â0 determines the relative size of the average birth rate a0. I can use the trade-off

parameters to pick a particular shape for the trade-off function depending on biological

and theoretical constraints. Figure 2.4 shows a few examples of the possible trade-

off shapes I can choose from, including positive/negative gradients with accelerating

or decelerating costs. This trade-off function is used in Chapters 3, 4 and 6 when

considering host-only evolution or coevolution of the host and parasite.

§ 2.4 Adaptive Dynamics

I use the adaptive dynamics method to model evolution of host defence in the host-

parasite system (2.1), (2.2) (see Chapter 6 for coevolution with parasite infectivity).

The method was originally developed from a game theoretic point of view, using the

concept of an evolutionary stable (unbeatable) strategy ESS (EUS) which is a fitness

optimum (Hamilton, 1967; Maynard Smith & Price, 1973). This theory was developed
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Figure 2.4: Trade-off function a0(s) for positive (top row) or negative (bottom row)
gradients, with decelerating (left column) or accelerating (right column) costs of de-
fence. In all cases, the limits on s were fixed at smin = 0 and smax = 10. Top left:
â0 = 12, p = 6, c varied between 1 (blue) and 5 (red) with gaps of 0.5. Bottom left:
â0 = 1, p = −15, c varied between 1 (blue) and 5 (red) with gaps of 0.5. Top right:
â0 = 1, p = −5, c varied between −0.7 (blue) and 0 (red) with gaps of 0.1. Bottom
right: â0 = 35, p = 5, c varied between −0.7 (blue) and 0 (red) with gaps of 0.1.

further to include convergence stability (Eshel, 1983; Taylor, 1989; Christiansen, 1991;

Abrams et al., 1993), which has resulted in the adaptive dynamics method that is

commonly used today (Marrow et al., 1996; Dieckmann & Law, 1996; Metz et al., 1996;

Geritz et al., 1998). This approach has been used to study evolution in a wide range of

contexts since its development, including predator-prey systems (Abrams, 2000; Geritz

et al., 2007; Litchman & Klausmeier, 2008), spatially structured populations (Doebeli &

Ruxton, 1997; Kisdi & Geritz, 1999; Ernande & Dieckmann, 2004) and coevolutionary

host-parasite models (van Baalen, 1998; Best et al., 2009; Kada & Lion, 2015; Ferris et

al., in prep). I give key details of the method in relation to the models studied in this

thesis, including key assumptions and definitions that are used in Chapters 3, 4 and 6.



CHAPTER 2. MATHEMATICAL METHODS 27

2.4.1 General Method and Assumptions

The adaptive dynamics method is a way to track long-term evolutionary changes in a

trait value. The resident population is defined as that which currently exists with trait s,

and a mutant is a similar population with trait sm which arises due to a small mutation

in the resident trait. It is assumed that all mutant population sizes are initially small

(rare), and that the resident remains at its equilibrium or limit cycle as long as this

is the case (Geritz et al., 1998). I assume that mutations occur infrequently so that

the population reaches the dynamic attractor of the population dynamics (generally

a limit cycle here) before the next mutant is introduced (Geritz et al., 1998), giving

a separation of timescales between the ecological and evolutionary dynamics. I also

assume that hosts reproduce clonally such that offspring have the same trait as the

parent.

The method itself involves repeatedly adding rare mutants with traits close to that of

the resident population and following the growth of these mutants. For host evolution

in the infection model here, this means that I add a rare host with defence very close to

that of the resident. I then use the mutant’s fitness (exponential growth rate; sections

2.4.2 and 2.5.1) to determine what happens next. For positive fitness, the mutant grows

and invades the current population, resulting in survival of either both populations or

only the mutant. If the mutant’s fitness is negative, the population dies out and only the

resident remains. Another mutant is then added to the current resident population, and

the process repeats. The evolutionary trajectory can be found by tracking the changes

in the defence parameter through time, for example through simulations (section 2.6).

2.4.2 Fitness

To analyse how the host evolves, I consider the mutant’s fitness r, defined as the long-

term exponential growth rate of the mutant in the current environment (Metz et al.,

1992). When there is no seasonality, i.e. amplitude δ = 0 in equation (2.6), I can find

the fitness as follows (see section 2.5.1 for δ > 0). As an example, let the host evolve

defence through lowered transmission β with an associated cost in birth rate a0(β), such

that a mutant will have transmission coefficient βm and birth rate a0(βm). Adding this

mutant to the resident population, I can write equations to describe the dynamics of

the mutant susceptible and infected populations Sm, Im:
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dSm

dt
= a0(βm)(1− q(N∗ +Nm))Sm − bSm − βmSm(I∗ + Im) + γIm, (2.21)

dIm

dt
= βmSm(I∗ + Im)− (b+ α+ γ)Im, (2.22)

where Nm = Sm + Im is the total mutant population, and S∗, I∗ are the stable equi-

librium resident population sizes evaluated before the mutant is introduced (equation

(2.3)). Assuming that the mutant population is initially small (Nm � N , section 2.4.1),

the mutant equations become:

dSm

dt
= a0(βm)(1− qN∗)Sm − bSm − βmSmI

∗ + γIm +O(N2
m), (2.23)

dIm

dt
= βmSmI

∗ − (b+ α+ γ)Im +O(N2
m), (2.24)

where O(N2
m) indicates that the error in the differential equations after linearization is

of order of magnitude N2
m � N2, and can therefore be ignored. As these equations are

approximately linear with constant coefficients, they can be rewritten in the form:

dX

dt
= AX, (2.25)

where X = (Sm(t), Im(t)) and A is the 2 x 2 matrix containing the coefficients from

equations (2.23), (2.24), i.e. A is the Jacobian matrix of (2.23), (2.24). The solution of

equation (2.25) is of the form X = c1e
λ1tv1 + c2e

λ2tv2, where c1, c2 are constants, λ1,

λ2 are non-equal real eignvalues of A, and v1, v2 are the corresponding eigenvectors.

Therefore the mutant fitness (exponential mutant growth rate) is the maximum of the

eigenvalues λi for i ∈ {1, 2}. For both λi negative, the mutant population decays to

zero and is eliminated. If one of the λi is positive, then the mutant population grows

and potentially takes over the resident population.

Alternatively, I can use the negative determinant of the matrix A as a proxy for the

fitness, as it is sign equivalent to the maximum eigenvalue but is simpler to calculate

(Hoyle et al, 2012; Toor & Best, 2015). This can be seen by considering the Jacobian

matrix A:

A =

(
a0(βm)(1− qN∗)− b− βmI

∗ γ

βmI
∗ −(b+ α+ γ)

)
=

(
B C

D E

)
, (2.26)

where C > 0, D > 0, E < 0, and the sign of B is unknown. The eigenvaues of A are
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given by:

λ+, λ− =
1

2

[
B + E ±

√
(B + E)2 − 4(BE − CD)

]
(2.27)

=
1

2

[
B + E ±

√
(B − E)2 + 4CD)

]
. (2.28)

Due to the sign of C and D, the discriminant is always positive and so there are two

distinct real eignevalues. First, consider the sign of λ−. Since E < 0, if B < 0, then it

follows that λ− < 0. If B ≥ 0, we know that |B + E| ≤ |B − E|, and so again λ− < 0.

Hence λ− is always negative. Given that λ+ > λ−, we know that λ+ is the largest

eigenvalue and so it is the mutant fitness r. We can use the property Det(A) = λ+λ−

to show that:

• if fitness r = λ+ > 0, then Det(A) < 0;

• if fitness r = λ+ < 0, then Det(A) > 0.

Therefore the negative determinant is sign equivalent to the fitness and we can use it

as a proxy. It can be shown that derivatives of the fitness and the negative determinant

are also sign equivalent, which will be important when considering singular points and

the type of evolutionary behaviour observed (section 2.4.3). Hence for no seasonality

(δ = 0) and evolving transmission coefficient β, I have host fitness:

r = r(β, βm) = −Det(A) = (b+ α+ γ) [a0(βm)(1− qN∗)− b] + (b+ α)βmI
∗. (2.29)

It is worth noting that for equal resident and mutant traits (here β = βm, generally

s = sm) the fitness is always zero (i.e. r(s, s) = 0), since the introduced mutant is the

same as the resident and so the population remains at equilibrium with no change in

the mutant dynamics.

The fitness in equation (2.29) can only be used when there is no seasonality in the model.

For positive amplitudes (δ > 0), the assumption of the form of the solution to (2.25)

is no longer correct because the matrix A is time-dependent. Therefore I developed an

alternative method to find the fitness in seasonal environments, as detailed in section

2.5.
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2.4.3 Singular Points

When studying evolution theoretically, I want to find end points of evolution, traits

that promote divergence, etc. This is done by finding singular points s∗, defined as the

value of the evolving trait where the fitness gradient with respect to the mutant trait

sm is zero, i.e.:
∂r

∂sm

∣∣∣∣
s=sm=s∗

= 0. (2.30)

The value of the singular point s∗ can be demonstrated using a pairwise invasion plot

(PIP). In these plots, both the resident and mutant traits are varied and the sign of

the fitness plotted for each point, for examples see Figure 2.5. There are often two zero

fitness lines in a PIP, with one always at s = sm as the fitness is zero by defnition on

this line. The value of s where these lines cross is the singular point s∗, since the fitness

gradient with respect the mutant trait changes sign at this point.

In the case where the fitness gradient in equation (2.30) is never zero, the singular

point s∗ does not exist and the population evolves towards smax for positive fitness

gradients (maximisation) or smin for negative gradients (minimisation). In the PIP,

this behaviour occurs when there is only one zero-fitness line, or the lines do not cross

(Figure 2.6).

Equation (2.30) can be used to find the singular point, but this does not tell us how

evolution proceeds. The type of the singular point must also be determined, which can

be done using second order derivatives or the PIP. I focus on four different types of

singular point, which are determined by two stability conditions: evolutionary stability

and convergence stability.

The singular point is defined to be evolutionarily stable (ES) if no nearby mutant can

invade a resident population with trait s∗. Mathematically, this is defined:

∂2r

∂s2
m

∣∣∣∣
s=sm=s∗

< 0. (2.31)

This condition means that the singular point is a fitness maximum with respect to the

mutant trait. In the PIP, this can be seen by looking at the vertical line through the

singular point in the neighbourhood of s = sm (e.g. Figure 2.5, top left). If the line

passes through only white (negative) regions, then the singular point is ES as it is a

fitness maximum. However, if the line passes through the blue (positive) region near

the singular point, then a nearby mutant can invade and the singular point is not ES



CHAPTER 2. MATHEMATICAL METHODS 31

Figure 2.5: Examples of PIPs for the four different types of evolutionary behaviour
described, where blue indicates positive mutant fitness, and white negative mutant
fitness. The red line shows s = sm where the mutant fitness is zero by definition,
and s∗ is the point where the two zero fitness lines cross. Top left: CSS point and
ES condition, showing that no nearby mutant can invade the current population at
the singular point. Top right: Branching point and CS condition, showing that the
population trait moves towards the singular point. Bottom left: Garden of Eden point
and when the CS condition isn’t satisfied, showing that the population trait moves
away from the singular point. Bottom right: Repeller point and when the ES condition
isn’t satisfied, so a nearby mutant can invade the resident population at the singular
point. Left column: ES condition satisfied; Right column: ES condition not satisfied;
Top row: CS condition satisfied; Bottom row: CS condition not satisfied.
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Figure 2.6: Examples of PIPs for maximisation (left) and minimisation (right), where
blue indicates positive mutant fitness, and white negative mutant fitness. The red line
shows s = sm where the mutant fitness is zero by definition. In these two cases, a
singular point s∗ does not exist.

(i.e. it is a fitness minimum; Figure 2.5, bottom right).

The singular point is convergence stable (CS) when evolution of the trait is driven

towards the singular point. Mathematically, this is defined:

∂2r

∂s2
m

+
∂2r

∂s∂sm

∣∣∣∣
s=sm=s∗

< 0, (2.32)

or alternatively
∂2r

∂s2
m

− ∂2r

∂s2

∣∣∣∣
s=sm=s∗

< 0. (2.33)

This means that the fitness is a locally decreasing function of the resident trait s, such

that the singular point is a local minimum. In the PIP, this is true if there is a blue

positive fitness region just above the s = sm line for s < s∗ and below the line for s > s∗

(e.g. Figure 2.5, top right). This can also be seen by considering how the population

evolves from an initial point along the s = sm line. For example, choose a resident

population with s < s∗. A mutant introduced with sm < s has negative fitness and

so the mutant dies out. For a mutant with trait sm > s, the fitness is positive, so

the mutant invades the resident population and a single population survives with trait

s = sm. This continues, with s increasing over time and eventually the population

has trait s = s∗. Equally, an initial population with s > s∗ can be considered, and

following a similar process the population evolves gradually lower trait values and again

ends up with trait s = s∗. When the singular point is not convergence stable, the same
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argument can be used to demostrate that the trait evolves away from the singular point,

potentially leading to a population with an extreme trait that depends on its initial

value (Figure 2.5, bottom left).

The combination of these two conditions (ES and CS) leads to four main types of

singular point, namely:

• Continuously Stable Strategy (CSS): the singular point satifies both ES and CS

conditions. The population evolves towards s∗ and remains there for all time (top

left in Figure 2.5).

• Branching point: The singular point is continuously stable but not evolutionarily

stable (CS but not ES; top right in Figure 2.5). The population evolves towards

the singular point, which is a fitness minimum, then ‘branches’ and becomes a

dimorphic population with two distinct traits.

• Repeller point: the singular point doesn’t satisfy either stability condition. Evo-

lution drives the trait away from the singular point (bottom right in Figure 2.5).

• Garden of Eden (GoE): the singular point is ES but not CS. The population

evolves away from s∗, unless the initial population has trait s0 = s∗, in which

case it will remain there for all time (bottom left in Figure 2.5). In practice, this

type of point acts like a repeller as the population is unlikely to start with trait

value at the singular point.

§ 2.5 Evolution when parameters are time-dependent

2.5.1 Fitness in a Seasonal Environment

For the model here, I introduced seasonality through a time-dependent birth rate.

This means that I cannot find the fitness through conventional methods (e.g. via the

Jacobian in section 2.4.2) as the assumption of the solution to the mutant equations

does not hold. Instead, I use Lyapunov exponents as the mutant fitness (Metz et al.,

1992; Klausmeier, 2008; Ferris & Best, 2018), which are found numerically as detailed

below.

Above I showed the case for host defence evolving through β when there is no seasonality

(section 2.4.2). As an alternative example, here I describe how to find the fitness

when the host evolves defence through tolerance by reducing the infected mortality α,
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although the case for evolving recovery γ can easily be extended from these examples.

First, I add a rare mutant with susceptible and infected population sizes Sm, Im and

virulence αm close to the resident virulence α, with a trade-off in the average birth rate

a0(αm). This gives equations for the mutant population:

dSm

dt
= a0(αm)(1+δ sin(2πt/ε))(1−q(N∗+Nm))Sm−bSm−βSm(I∗+Im)+γIm, (2.34)

dIm

dt
= βSm(I∗ + Im)− (b+ αm + γ)Im, (2.35)

where Nm = Sm + Im is the total mutant population, and S∗ = S∗(t), I∗ = I∗(t),

N∗ = N∗(t) are the resident dynamics from equations (2.1), (2.2) evaluated on the

limit cycle found before a mutant is introduced. Equations (2.34) and (2.35) can be

simplified using the assumption that the mutant is initially rare (Nm � N), giving:

dSm

dt
= a0(αm)(1 + δ sin(2πt/ε))(1− qN∗)Sm − bSm − βSmI

∗ + γIm +O(N2
m), (2.36)

dIm

dt
= βSmI

∗ − (b+ αm + γ)Im +O(N2
m). (2.37)

For δ ≥ 0, the mutant’s growth is determined by the largest Lyapunov exponent, which

I use as the fitness (Metz et al., 1992; Klausmeier, 2008; Ferris & Best, 2018). This is

found in the following way (see also Klausmeier, 2008; Ferris & Best, 2018).

First, suppose that I have a fundamental solution X(t) = (Sm(t) Im(t)) of the simplified

mutant equations (2.36), (2.37) (Grimshaw, 1990, pp. 27). I can then rewrite the

problem as:
dX(t)

dt
= A(t)X(t) (2.38)

where A(t) is a 2 x 2 matrix containing the periodic coefficients. This is similar to

equation (2.25), except that here A is time-dependent rather than constant. The so-

lution X(t) may not be periodic, but I can write the linearly independent solutions to

(2.38) in the form:

Xi(t) = eµitpi(t) (2.39)

where i ∈ {1, 2}, the pi are unknown periodic vector functions with period T , T is the

period of the resident population dynamics, and the constants µi determine the extent

of growth or decay of the population (Grimshaw, 1990, pp. 50). The mutant fitness

is therefore the largest of the µi: if the µi are both negative, the mutant ultimately

dies out; if at least one is positive, the mutant grows. As I cannot solve the equations
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analytically, I use numerical methods to find the growth rate µi. Hence the growth of

the mutant depends on the sign of the fitness, i.e. if max{µ1, µ2} is greater or less than

zero.

Using the form of the solution in equation (2.39), I can write:

X(t+ T ) = X(t)C ∀ t ≥ 0, (2.40)

where C is a non-singular constant 2 x 2 matrix (Grimshaw, 1990, pp. 47) that can

be found numerically, with eigenvalues denoted ρ1, ρ2. The fitness is related to the

eigenvalues of C by ρi = eµiT from (2.40), therefore I can use the maximum of these

eigenvalues as a proxy for the fitness, since the sign of µi is equivalent to considering

whether or not ρi is greater or less than 1. Therefore I define the fitness for the seasonal

system as the largest eigenvalue of C minus 1.

I cannot find the eigenvalues of C analytically because the mutant equations cannot be

solved analytically (Klausmeier, 2008). However, I can find C numerically by setting t =

0 in (2.40), then choosing two linearly independent initial conditions X(0). By running

the linearised mutant equations with the current resident dynamics for these initial

conditions, I can find four equations for the elements of C in the numerically found

components of X(T ). The simplest initial conditions to implement are (S(0), I(0)) =

(1 0), (0 1), which are what I use in this thesis. The fitness can then be found from this

numerically acquired C by finding its eigenvalues.

Often the transient dynamics of the linearised mutant equations are not representative

of the actual growth, and so it is useful to be able to run the dynamics for longer than

one period. Therefore I run the mutant dynamics up to time kT for some positive

integer k, which still finds the correct sign for the fitness. To understand this, we

begin by noting that C is a non-negative matrix, as its components are determined by

exponentials from equations (2.39) and (2.40). Hence the Perron-Frobenius theorem

applies and the largest eigenvalue ρ of C is non-negative. I set t = t′ + (k − 1)T in

equation (2.40) to obtain:

X(t′ + kT ) = X(t′)Ck ∀ t′ ≥ 0. (2.41)

By setting t′ = 0, I can find the elements of Ck numerically by running the mutant

dynamics up to time kT . From linear algebra results, I know that the eigenvalues of

Ck are ρki . The fitnesses (ρ−1) and (ρk−1) obtained from equations (2.40) and (2.41)

respectively are of the same sign when ρ is non-negative, hence I find the correct sign for
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the fitness when the mutant dynamics are run up to time kT for some positive integer

k. I also have the correct sign for the fitness derivatives needed to find the singular

point and evaluate ES and CS conditions (Table 2.2). For the second order derivatives,

the fitness obtained from Ck gives the same sign as that from C when evaluated at the

singular point ( ∂ρ
∂sm

∣∣∣
s=sm=s∗

= 0).

Quantity Eigenvalue from C Eigenvalue from Ck Same sign?

r ρ− 1 ρk − 1 X

∂r
∂sm

∂ρ
∂sm

kρk−1 ∂ρ
∂sm

X

∂2r
∂s2m

∣∣∣
s=sm=s∗

∂2ρ
∂s2m

∣∣∣
s=sm=s∗

kρk−1 ∂2ρ
∂s2m

∣∣∣
s=sm=s∗

X

∂2r
∂s∂sm

∣∣∣
s=sm=s∗

∂2ρ
∂s∂sm

∣∣∣
s=sm=s∗

kρk−1 ∂2ρ
∂s∂sm

∣∣∣
s=sm=s∗

X

Table 2.2: Table showing that the signs of the fitnesses and its derivatives obtained from
C and Ck are the same, where k is some positive integer and ρ is a positive eigenvalue
of C. Note that the second-order derivatives have the same sign at the singular point,
which is where I evaluate them for the ES and CS conditions.

2.5.2 Singular Points in a Seasonal Environment

I can use the numerical method above to approximate the fitness gradients needed to

find singular points and the CS and ES conditions. To find the fitness gradient with

respect to the mutant trait, I use the following scheme:

1. Pick a trait value s and run the resident population dynamics (2.1), (2.2) to

equilibrium (or limit cycle).

2. Set sm = s, and find the fitness r(s, s) using the numerical methods above, which

should find r(s, s) = 0.

3. Set sm = s+ ∆ for small ∆, and find the fitness r(s, s+ ∆).
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4. Approximate the fitness gradient with respect to the mutant trait as follows:

∂r

∂sm

∣∣∣∣
s=sm

≈ r(s, s+ ∆)− r(s, s)
∆

+O(∆). (2.42)

5. Repeat steps 1 - 4 for multiple values of s until there is a change in the sign of

the fitness gradient. This gives the approximate position of the singular point s∗.

I use a similar method to approximate the second order derivatives needed to evaluate

the ES and CS conditions from section 2.4.3, specifically:

∂2r

∂s2
m

∣∣∣∣
s=sm

≈ r(s, s+ 2∆)− 2r(s, s+ ∆) + r(s, s)

∆2
+O(∆) , (2.43)

and

∂2r

∂s∂sm

∣∣∣∣
s=sm

≈ r(s+ ∆, s+ ∆)− r(s+ ∆, s)− r(s, s+ ∆) + r(s, s)

∆2
+O(∆) . (2.44)

§ 2.6 Simulations

In order to confirm the evolutionary results, I ran stochastic simulations in MATLAB of

the evolutionary process that relax the separation of timescales assumption. Initially,

there is a single population with trait s0. The dynamics are run for a fixed length

of time, by the end of which the population should have reached an equilibrium or

limit cycle. At this point, a mutant is added with small population size and trait

value close to s0 (50% chance the trait is above or below s0). The dynamics for the

whole population (resident and mutant) are run for a fixed length of time. At the end

of the run, if the size of one of the populations is lower than a given threshold then

that population is removed. Another mutant is added, and the process is repeated

until a fixed number of evolutionary time steps have been completed. If more than

one population persists at the end of a run, no populations are removed and the new

mutant trait is weighted by the relative densities of the remaining populations, i.e. the

mutant trait is more likely to be close to the trait belonging to the largest population.

Examples of the output from this method can be found in Chapters 3, 4 and elsewhere

(Bowers et al., 2003; Hoyle et al., 2011; Ashby & King, 2017; Best et al., 2017b).



Chapter 3

The evolution of host avoidance

to parasitism in fluctuating

environments

In this chapter, I consider evolution of host defence through avoidance. This mechanism

is a form of resistance, and involves defending against a parasite by preventing infec-

tion, i.e. by avoiding the parasite through changes in physiological traits or behaviour.

Here the focus is on evolution of a continuous phenotype through the transmission

coefficient β, such that higher defence leads to lower transmission, which is generally

more applicable to changes in physiological traits rather than avoidance behaviours.

In particular, I consider how a fluctuating host birth rate affects evolution through

transmission. The majority of this work has previously been published (Ferris & Best,

2018).

§ 3.1 Introduction

Given the ubiquity of infectious diseases in natural systems there is strong selection

pressure on host organisms to evolve costly defence mechanisms. A wide range of the-

oretical work has been developed to understand the evolution of host defence against

parasitism, with much of this work focused on the ecological/epidemiological feed-

backs that drive selection of quantitative host defence (van Baalen, 1998; Boots &

Haraguchi, 1999; Boots & Bowers, 1999, 2004; Restif & Koella, 2003; Miller et al.,

2005, 2007; Bonds, 2006; Best et al., 2008, 2009; Carval & Ferriere, 2010). These

38
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studies have explored how long-term, stable investment in host defence varies with eco-

logical/epidemiological parameters, as well as determining the conditions that can lead

to coexistence of strains through evolutionary branching. However, the vast majority

of these studies assume that the populations live in a temporally static environment. In

reality, almost all natural systems are subject to some degree of temporal environmen-

tal heterogeneity, in particular fluctuations caused by seasonality. For example, many

natural species exhibit seasonal reproductive strategies driven by regular environmental

fluctuations (Rowan, 1938; Stawski et al., 2014; Ketterson et al., 2015; Furness, 2016).

It is therefore essential to consider the impact of fluctuating environmental conditions

on the evolution of host defences.

It is well established that variable climates affect ecological systems (Taylor et al., 2013;

Ketterson et al., 2015; Ewing et al., 2016), including the spread and impact of diseases

(Fine & Clarkson, 1982; Finkenstädt & Grenfell, 2000; Wommack & Colwell, 2000;

Altizer et al., 2006; Knowles et al., 2012). Many theoretical studies have considered

the effects of seasonality in purely epidemiological models (i.e., non-evolutionary), often

through a periodic transmission rate (Schwartz & Smith, 1983; Aron & Schwartz, 1984;

Olsen & Schaffer, 1990). Increasing the amplitude of the transmission rate can generate

sub-harmonic oscillations or cause the population dynamics to move through a series of

period-doubling bifurcations, eventually leading to chaotic dynamics (Grossman, 1980;

Schwartz & Smith, 1983; Greenman et al., 2004; Grassly & Fraser, 2006; Childs &

Boots, 2010). Small perturbations in these seasonal models can also trigger the system

to switch between distinct attractors, often due to resonance, potentially leading to

significant changes in the population dynamics and different patterns of outbreaks

(Smith, 1983; Schwartz, 1985; Keeling et al., 2001; Kamo & Sasaki, 2002; Greenman

et al., 2004). These complex dynamics have been found to exist less frequently when

seasonality is assumed to occur in the host birth rate rather than transmission (White

et al., 1996; Begon et al., 2009; Duke-Sylvester et al., 2011; Dorélien et al., 2013; Peel

et al., 2014), and so evolutionary dynamics may be more tractable when birth rate

rather than transmission rate is assumed to be periodic. Predictions about the impact

of a disease are likely to be more accurate when either of these types of seasonality are

included in the model (White et al., 1996; Kamo & Sasaki, 2002), so it follows that

evolutionary results from these seasonal models may also be more reliable.

There is an increasing appreciation of the importance of temporal heterogeneity in

host-enemy interactions within the experimental evolution literature (Blanford et al.,

2003; Friman & Laakso, 2011; Hiltunen et al., 2012), for example showing that rapidly
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fluctuating environments constrain co-evolutionary arms races in a bacteria-phage sys-

tem (Harrison et al., 2013). Theoretically, however, evolution and seasonality have

rarely been studied together in a host-parasite context. The few studies that do exist

have either investigated evolution of only the parasite (Koelle et al., 2005; Sorrell et

al., 2009; Donnelly et al., 2013), or used a genetic-based, rather than ecology-driven,

model for coevolution between the host and parasite (Nuismer et al., 2003; Mostowy

& Engelstädter, 2011; but see Poisot et al., 2012). For example, seasonality in the

host’s birth rate does not affect the evolution of the parasite’s transmission/virulence

strategy unless a density-dependence is applied to virulence (parasite-induced mortal-

ity) (Donnelly et al., 2013). This occurs because the average susceptible density, and

therefore the parasite fitness, doesn’t depend on the seasonal parameters unless this

density-dependence is included. Elsewhere, step-wise environmental variation imple-

mented through a dynamic resource was found to change the coevolutionary outcomes

in a gene-for-gene based host-parasite system (Poisot et al., 2012). In particular, they

found that both the host and parasite invest more in resistance and infectivity respec-

tively for higher amplitudes in the seasonality. However, currently there is no theory

specifically addressing the impact that seasonality has on the evolution of host defence

to parasitism.

Here I investigate the impact of a continuous seasonal birth rate on the evolution of

quantitative host avoidance through small mutation steps using an evolutionary inva-

sion (adaptive dynamics) method, as detailed in Chapter 2. I focus on how the ampli-

tude and period of the implemented seasonality impacts the ecological/epidemiological

dynamics, and therefore the evolution of the host. I find that recovery plays an im-

portant role in avoidance evolution, and in particular that at very low recovery rates

a period-doubling bifurcation can exist for high amplitude oscillations that may result

in evolution driving the population dynamics to a different ecological attractor.

§ 3.2 Methods

In this chapter I use the methods as described in Chapter 2, specifically an SIS model

for the infection dynamics and adaptive dynamics to investigate evolution. Here I give

details specific to this chapter, including model parameter values, the trade-off used,

and an additional discussion of the fitness when recovery is absent.
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3.2.1 General Model Specifics

Here I investigate the evolution of host avoidance through reduction in the transmission

coefficient β. I let the average birth rate depend on the transmission coefficient as a

trade-off, so that there is a cost to resisting the parasite, using the following trade-off

function (Chapter 2; see also White et al., 2006; Ferris & Best, 2018):

a0 = a0(β) = â0 − p
(1 + β−βmin

βmax−βmin
)

(1 + c β−βmin
βmax−βmin

)
, (3.1)

where â0 > 0, 0 < p < â0, c > 1 and β ∈ [βmin, βmax]. The birth rate a0(β) has

minimum â0 − p, and parameters p, c determine the gradient and curvature of the

trade-off, which needs to have positive gradient: as the host invests in defence against

the parasite (β decreases), less can be invested in reproduction (a0(β) decreases) (Boots

& Haraguchi, 1999; Geritz et al., 2007). The constraints on the trade-off parameters

give accelerating costs of defence, so that it is more costly to invest in resistance when

defence is already high
(
d2a0(β)
dβ2 < 0

)
. Figure 3.1 shows this trade-off function against

transmission coefficient β, showing that increased defence (lower β) leads to a decrease

in the birth rate a0, and that defence becomes more costly as it increases. Accelerating

trade-offs generally lead to evolutionary attractors (Hoyle et al., 2008), which will be the

focus in this chapter (but see Chapter 4 for discussion of other behaviours). Parameter

values for this chapter are defined in Table 3.1.

Figure 3.1: Trade-off function a0(β) as defined in equation (3.1) for varying transmission
coeffieicnt β and different values of c increasing from 1.5 (blue) to 3 (red) in steps of
size 0.5. Otherwise default parameters from Table 3.1 were used.

Here I only consider continuously stable strategies (CSSs) unless stated otherwise, i.e.
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singular points that are both evolutionarily stable (ES) and convergence stable (CS) as

defined by Geritz et al. (1998) which lead to long-term evolutionary attractors. This

behaviour was confirmed using pairwise-invasion plots (PIPs) and simulations over a

range of parameters, an example of which is given in Figure 3.5 for γ > 0.

Parameter Definition Default Value

a0 Average birth rate Varies
â0 Relative size of the average birth rate a0(β) 108
p Gradient of the average birth rate a0(β) 103.75
c Curvature of the average birth rate a0(β) 1.5
β Transmission coefficient Varies
βmin Minimum transmission coefficient 0.5
βmax Maximum transmission coefficient 10
B Avoidance (βmax − β) Varies
δ Amplitude of the birth rate forcing Varies
ε Period of the birth rate forcing 1
q Crowding coefficient acting on births 0.1
b Baseline mortality rate 1
γ Recovery Rate Varies
α Virulence/additional death rate due to parasite 1

Table 3.1: Parameter definitions and default values.

3.2.2 Evolution for No Recovery (γ = 0)

In the case where γ = 0, the fitness can be found analytically for δ ≥ 0. Infected

mutants cannot re-enter the suscepetible mutant class due to the lack of recovery, and

as such act as a sink for the mutant population. Therefore the infected mutants do

not contribute to the host fitness, which can be derived from the single equation for

the mutant susceptible hosts. Using the assumption that the mutant population is

small (Nm � N) with transmission coefficient βm, the equation for the dynamics of

the mutant susceptible hosts can be simplified to give:

dSm

dt
= a0(βm)(1 + δ sin(2πt/ε))(1− qN∗)Sm − bSm − βmSmI

∗ +O(N2
m), (3.2)

where I∗ = I∗(t) and N∗ = N∗(t) denote the resident infected and total population

densities on their limit cycle. Equation (3.2) can be used to read off the time-varying

growth rate r(t) of the mutant host:

r(t) = a0(βm)(1 + δ sin(2πt/ε))(1− qN∗(t))− b− βmI
∗(t) , (3.3)
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where dSm
dt = r(t)Sm. Following the method from Donnelly et al. (2013), the mutant

fitness can be found by taking the average of this over one period:

r =
1

T

∫ P1

P0

r(t)dt =
a0(βm)

T

∫ P1

P0

{[
1 + δ sin

(
2πt

ε

)]
[1− qN∗(t)]

}
dt−b−βmÎ , (3.4)

where T is the period of the system, P0 is an arbitrary time after the resident dynamics

have reached a limit cycle, P1 = P0 + T and Î is the average of the resident infected

population over one cycle (equation (2.18)). The integral can be simplified further by

using the fact that sin is a periodic function. This gives:

r = a0(βm)

[
1− qN̂ − δq

T

∫ P1

P0

sin

(
2πt

ε

)
N∗(t)dt

]
− b− βmÎ , (3.5)

with derivatives of the fitness given by:

∂r

∂βm
=
∂a0(βm)

∂βm

[
1− qN̂ − δq

T

∫ P1

P0

sin

(
2πt

ε

)
N∗(t)dt

]
− Î , (3.6)

∂2r

∂β2
m

=
∂2a0(βm)

∂β2
m

[
1− qN̂ − δq

T

∫ P1

P0

sin

(
2πt

ε

)
N∗(t)dt

]
. (3.7)

∂2r

∂β∂βm
=
∂a0(βm)

∂βm

[
−q∂N̂

∂β
− δq

T

∫ P1

P0

sin

(
2πt

ε

)
∂N∗(t)

∂β
dt

]
− ∂Î

∂β
. (3.8)

When equation (3.6) is set to zero with β = βm, this gives the position of the singular

point β = β∗. When equation (3.7) is evaluated at β = βm = β∗, its sign determines

if the singular point is evolutionarily stable (ES if ∂2r
∂β2

m

∣∣∣
β=βm=β∗

< 0; Chapter 2).

For my default parameters with β ∈ [βmin, βmax] and δ ∈ [0, 1], the term inside the

square brackets in equation (3.7) is positive. Given that I have already chosen trade-off

parameters such that d2a0(β)
dβ2 < 0, the second-order gradient (3.7) is negative, and so

the singular point is ES for all values of the amplitude δ and period ε with the default

parameter set.

For the convergence stability (CS) condition to hold, the sum of equations (3.7) and

(3.8) evaluated at β = βm = β∗ needs to be negative (equation (2.32)). For my default

parameter set, the gradients of N̂ and N∗(t) with respect to β are negative (Figure

2.2), hence the first term in equation (3.8) is positive since a′0(βm) > 0. The sign of the

last term − ∂Î
∂β depends on the relative position of the singular point and the peak in
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the average infected population size as β varies (Figure 2.2). Hence the singular point

β∗ may not be convergence stable for all δ and ε, and so should be checked numerically.

§ 3.3 Results

In this section I consider how the seasonal parameters δ (amplitude) and ε (period) af-

fect evolution of the host, and investigate if the inclusion of seasonality alters previously

found trends in a constant environment. I separate results when there is no recovery

(γ = 0), and generally find that the interaction between recovery and the amplitude of

seasonality plays an important role in the evolutionary dynamics. For clarity, I present

the results in terms of avoidance B = βmax − β (i.e. reduction in transmission), where

βmax is the maximum value of β.

3.3.1 Evolution for No Recovery

When there is no recovery (γ = 0) and the amplitude δ is increased from 0, the

average infected population increases and so does the investment in defence, shown by

an increase in B∗ in Figure 3.2(a),(b). This is what we would naively expect: as the

average infected population increases (Figure 3.2(b)), the host has to invest more in

resistance against the parasite to reduce the proportion of infected individuals (Boots

& Haraguchi, 1999; Boots et al., 2009).

In Chapter 2 it was mentioned that for particular parameter sets, period-doubling

bifurcations and bistability between different attractors in the population dynamics

can occur. Figure 3.2(c),(d) shows an example of this phenomenon together with host

selection. I found that for varying amplitude δ, the 1-year population dynamics solution

(black line in Figure 3.3(a)) remains stable up to δ = 0.63, at which point it undergoes

a period-doubling bifurcation (and the 1-year solution is then unstable). The red curve

that emerges in Figure 3.3 is the 2-year solution. This is stable for a very short time

but then has a fold, becomes unstable, and goes back until about δ = 0.57 where

another fold produces the stable 2-year solution that continues up to δ = 1. The stable

solutions each give different singular points, and bistability between the 1- and 2-year

cycles or between the two different 2-year cycles for δ ∈ (0.57, 0.63) causes overlap of

the singular points given by each cycle, giving a discrete change in the CSS resistance

B∗ and the average infected population, Figure 3.2(c),(d). This jump in the average

infected population and singular point occurs whenever a period-doubling bifurcation
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Figure 3.2: Change in (a),(c) the singular point B∗ = βmax − β∗ and (b),(d) the
average infected population for B = B∗ as the amplitude of seasonality δ varies for
γ = 0. Default parameters were used in (a),(b), with lower birth rate (â0 = 104) in
(c),(d). In (c),(d), on the left only the 1-year solution is stable, and on the right only
the 2-year solution. In the centre there is bistability between the 1- and 2-year cycles
or between the two different 2-year cycles. Blue: period T = 1; Red: period T = 2.

and bistability between attractors exists for γ = 0. Singular points from the unstable

solutions in Figure 3.3 could not be shown due to the numerical method used, as this

relies on the population converging to a limit cycle which cannot be found if it is

unstable.

Both singular points were found to be CSSs, although for amplitudes within the bista-

bility region, the T = 2 singular point can only be reached by evolution from initial

avoidance B0 lower than the upper bound of the bistability region in Figure 3.3(b).

This is due to the fact that for initial B0 greater than this point, the population never

reaches the period-doubling bifurcation and so it doesn’t switch between the attractors,

and hence the host evolves towards the higher singular point with period T = 1.

Overall the impact of the amplitude of seasonality δ on the singular point for γ = 0

is weak for a wide range of parameters as seen in Figure 3.2. Seasonality has a much
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Figure 3.3: (a) Stability of solutions to the population equations (2.1), (2.2) when
amplitude δ varies. Black lines - solution with period 1; Red lines - solution with period
2; Solid lines - stable solution; Dashed lines - unstable solution. (b) 2D bifurcation plot
of avoidance B vs amplitude δ. The region inside the blue lines indicates where there
is bistability between the 1- and 2-year solutions or between the two different 2-year
solutions. Red: period-doubling bifurcation; Blue: fold bifurcations. Both graphs use
â0 = 104 and γ = 0, with B = 7.13 in (a) and otherwise default parameter values.
These graphs were created using AUTO-07p (Doedel & Oldman, 2009).

stronger effect for higher recovery rates, as discussed below.

3.3.2 Evolution with Recovery

In the last section, there was no recovery and so I could use a semi-analytic version

of the host fitness (section 3.2.2). In contrast, when there is recovery (γ > 0), the

form of the solution to the mutant equations cannot be found analytically, so I use a

numerical approximation to find the host fitness (method in Chapter 2). When γ is

relatively close to zero, I find one singular point B∗ such that avoidance increases with

δ, as seen in section 3.3.1. However for positive but small values of γ, this behaviour

changes direction. The singular point B∗ starts to decrease while the average infected

population increases (e.g. Figure 3.4 for γ = 1). This in contrast to the case of no

recovery γ = 0, where the trends go in the same direction. As recovery increases,

selection for defence is weakened, and so at this small recovery maintaining a large

population size through births becomes more important than resistance to the parasite,

causing the change in evolutionary direction.

As the recovery rate continues to increase, there is a region of γ values where three

singular points exist, two CSSs with a repeller between them, for examples see Figures

3.5 and 3.6(a),(b). Here there is evolutionary bistability between two CSSs, with the

evolutionary behaviour near the singular points confirmed using PIPs and simulations,
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Figure 3.4: Change in (a) the singular point B∗ and (b) the average infected population
for B = B∗ as the amplitude of seasonality δ varies for γ = 1. Otherwise prameters
were fixed at default values.

Figure 3.5: (a) Pairwise-invasion plot, where blue indicates positive mutant fitness, and
the red line is B = Bm. The PIP shows that three singular points exist, specifically
two CSSs (B∗H = 6.9059 and B∗L = 2.6236) separated by a repeller (B∗R = 4.6489).
(b)–(e) Simulations of the evolutionary behaviour for initial resident avoidance (b)
B0 = 1.5, (c) B0 = 4, (d) B0 = 6 and (e) B0 = 8. The simulations confirm the singular
point types seen in the PIP, with the host evolving towards B∗L for initial avoidance
B0 < B∗R (Figures (b) and (c)) and towards B∗H for B0 > B∗R (Figures (d) and (e)).
Darker squares indicate a higher proportion of the population with the corresponding
avoidance B. Parameters were set at default values except â0 = 104, γ = 0.03 and
δ = 0.75.
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Figure 3.6: (a),(b) Change in the singular points B∗ as δ varies for â0 = 104 and (a)
γ = 0.005 or (b) γ = 0.0001. Blue lines indicate the CSS points, red dashed lines
the repeller point and black dashed lines the switch between attractors. The period of
the population dynamics is 2 in the shaded region and 1 (ε) elsewhere. (c) Simulation
example corresponding to (a) with initial transmission coefficient B0 = 9.3 and δ = 0.9,
which evolves towards the highest CSS B∗H = 4.933. Darker squares indicate a higher
proportion of the population with avoidance B, and the dashed line marks the point
where evolution drives the population to switch to an attractor with period T = 2.
(i)-(iii) correspond to sample population dynamics of the resident strain shown in (d),
with blue for the susceptible population S and red for the infected population I at
evolutionary times (i) 10, (ii) 20 and (iii) 100.

as shown in Figure 3.5. For certain parameter sets, the bistable CSSs have different

cycle lengths due to the stability of the attractors in the population dynamics, e.g.

Figure 3.6. In this case the host could start in a 1-year cycle, but evolution would drive

it into a 2-year regime, i.e. evolution can drive changes in the population dynamics,

Figure 3.6(c),(d). There can also be the situation where all three singular points give

period two population dynamics (Figure 3.6(b)), so that the final population dynamics

after evolution will have a 2-year period for any initial avoidance B0.

Figure 3.7 shows two-dimensional contour plots for two bistable CSS points in the
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Figure 3.7: Two-dimensional contour plots showing the change in the two bistable CSS
points that occur as γ and δ vary for default parameters. (a) B∗H, the highest CSS
point; (b) B∗L, the smallest CSS point. White areas indicate where each singular point
does not exist.

parameter regions where they occur. Both CSS points decrease as the amplitude δ

increases, as argued above, but they move in opposite directions as γ increases. This

occurs because at high levels of defence (Figure 3.7(a)), selection for even higher de-

fence weakens as recovery increases, and so the host decreases its resistance. However,

when the host has a relatively low level of defence (Figure 3.7(b)), the susceptible hosts

become infected more quickly and an increase in recovery raises the infected popula-

tion further, hence there is strong selection for defence and the host invests more in

resistance. Recovery therefore has a much more complicated effect on evolution when

seasonality is included in the model, since most of these bistability regions occur for

large amplitudes.

As γ is increased further, the size of the interval of δ values where bistability occurs

decreases to zero. For all γ values above this point, there is only one singular point B∗

that decreases as δ increases, Figure 3.8(a), for the same reasons as explained above.

Figure 3.8(a) shows a two-dimensional contour plot for the singular point B∗ as δ and γ

vary in the region where one singular point exists. For the majority of amplitudes, the

average infected population decreases with increasing recovery (not shown), and hence

the host invests less in defence. However, there is slightly more complicated behaviour

for high δ. Initially the host increases defence B∗, then at an intermediate recovery the

trend turns and the host decreases its defence. This behaviour is due to changes in the

average infected population, which peaks for intermediate γ since initially the increase

in susceptible individuals available to be infected outweighs the loss from recovery (e.g.

Figure 2.2).
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Figure 3.8: Two-dimensional contour plots showing the value of the singular point B∗

as amplitude of seasonality δ and (a) recovery rate γ, (b) crowding factor q and (c)
virulence α vary. Other parameters were fixed at default values from Table 3.1 with
γ = 1.

Alterations to other model parameters also cause variation in the host’s evolution.

Figure 3.8(b) shows the change in the singular point B∗ as δ and the crowding coefficient

q are varied. As above, host defence B∗ decreases as δ increases for all values of

q. As q is increased for fixed δ, the infected population size decreases. Therefore,

we would expect the host to invest less in defence as q increases, which is exactly

what I found for most values of δ. However, for very high amplitudes the level of

defence has a more complicated relationship with q, and in particular that defence is

minimal for intermediate and very high values of q. For low q, the average infected

population decreases as q increases, hence the host invests less in defence as for lower

δ. However, there comes a point where the susceptible population is relatively low due

to the decreased resistance, and so the host invests more in defence rather than births

to increase the average susceptible population. As q continues to increase, the average

infected population becomes small enough that selection for defence is weakened, and

so the host returns to its previous behaviour and invests less in defence for very high q.

I find similar results when the virulence α varies, Figure 3.8(c). As α increases, the

average infected population decreases and the host can afford to invest less in defence,

which is exactly what I found for δ up to intermediate values. However, as for varying

q, the trend becomes more complicated for highly seasonal birth rates. In this region,

there is a large trough in B∗ for an intermediate value of α, followed by a peak and a

small decrease in B∗ for high α. For small and very large α, the decrease in defence is

due to the average infected population decreasing and therefore the host can afford to

invest less in defence. However, the behaviour at small α causes the total population

to decrease, leading to a region of α values where the host needs to evolve in such

a way that the population size increases. Therefore the host has to balance changes
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in the infected and total population sizes, giving the more complicated evolutionary

behaviour for high amplitudes.

3.3.3 Longer-lived Hosts

The results discussed above are for a parameter set where the host lifespan is equal to

the period of the forcing (one year). In this section I let the parameters take default

values with baseline mortality rate decreased to b = 0.5 (longer-lived hosts).

Figure 3.9: Two-dimensional contour plots showing the change in the singular point B∗

as amplitude δ and (a) recovery rate γ, (b) crowding factor q and (c) virulence α vary.
Other parameters were fixed at default values from Table 3.1 with γ = 1 and b = 0.5.

Figure 3.9 shows the CSS singular point B∗ for varying amplitude δ with recovery

rate γ, crowding factor q and virulence α (corresponding to Figure 3.8 for short-lived

hosts). In this case, the evolutionary behaviour of the host as parameters vary remains

the same for all values of δ and is caused by changes in the average infected population

in all three cases. These results are in contrast to those above (Figure 3.8), where I

found that the evolutionary behaviour changes for high amplitudes. Note in particular

that the host evolves highest defence for an intermediate virulence for all values of δ

as seen elsewhere (van Baalen, 1998), although the peak is smaller for low amplitudes

(Figure 3.9(c)).

Therefore, the effects of a seasonal environment on host evolution seen in section 3.3.2

are dampened for longer lived hosts (smaller b), and there can even be no difference

in the evolutionary behaviour with γ, q or α at different amplitudes. Hence the effect

of the amplitude on the host’s evolutionary behaviour with other parameters depends

on context. In particular, for short-lived hosts we cannot rely on the evolutionary

behaviour remaining the same when the amplitude of the birth rate is increased.
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3.3.4 Varying the Period of the Forcing ε

Figure 3.10: (a) Change in the CSS singular point B∗ as ε varies for default parameters
with δ = 0.5 and γ = 1. (b) Change in the size of the bistability region in recovery
rate γ as ε varies. Blue: γ value where bistability starts; Red dashed: γ value where
bistability ends.

The population dynamics have period determined by that of the forcing ε, as discussed

in Chapter 2. It is worth investigating how changing this period over a wide range of

values affects the evolution of the host, Figure 3.10(a), although in many systems a

1-year cycle (ε = 1) may be the most appropriate. I found that there is a peak in the

average infected population (Figure 2.3), with a corresponding trough in the singular

point B∗, caused by resonance with the natural timescale of the model. After this

point, the average infected population decreases slowly as ε is increased further, with

defence B∗ gradually increasing. Hence for rapidly changing environments (ε low), any

alteration to the period would have a significant impact on the host’s evolution. In

comparison, for slowly varying environments any change in the period barely alters the

host’s evolution. This behaviour with ε stays roughly the same for all parameters tested.

Similarly, when both the period and other parameters are varied simultaneously, the

period doesn’t affect the evolutionary behaviour found as other parameters change and

vice versa.

The bistability region studied in section 3.3.2 changes in size for varying period ε.

Figure 3.10(b) shows this, indicating that the region of γ values that gives bistability is

largest for ε ≈ 1, slightly lower than the peak seen in Figure 3.10(a). Above and below

this value the bistability region decreases in size and quickly disappears. The period of

the seasonality therefore has a large impact on whether or not these bistability regions

occur.
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§ 3.4 Discussion

In this chapter I have shown that seasonality in the ecological dynamics, specifically

the birth rate, has a clear quantitative and qualitative effect on the evolution of host

resistance against a parasite. The relative size and nature of the impact depends

crucially on the underlying epidemiological model, and particularly on the potential for

recovery from infection. I found regions of parameter space where there is bistability

between two distinct evolutionary strategies (CSS points), which can occur alongside a

switch between attractors in the population dynamics. In these regions, evolution could

drive the population to a different attractor, fundamentally altering the population

dynamics the host experiences. Crucially, I also found that well known patterns for

the host’s evolutionary strategy in a constant environment don’t necessarily hold for

variable birth rates, particularly when the amplitude of fluctuations is high.

For the model presented here, I found that the amplitude of seasonality and recovery

rate are key processes affecting the evolution of the host’s defence for a seasonal host

birth rate. When recovery is absent, the host invests more in defence as the amplitude

of seasonality increases as this leads to an increase in the average infected population

and thus selection for increased defence. The trends observed were weak, but are

consistent with existing theory on the evolution of avoidance in the absence of recovery

(Boots & Haraguchi, 1999; Donnelly et al., 2015). When the host can recover from

the parasite, the evolutionary dynamics become more complicated. The trend of host

investment with the amplitude of seasonality switches direction at a low recovery rate,

above which the host decreases its defence as the amplitude increases, since the host

is now balancing reduced transmission against the increased contribution to fitness

made by infected hosts through recovery. These results emphasise the importance of

recovery in host-parasite infections as they prevent the parasite from being a ‘functional

predator’ (Boots, 2004; Donnelly et al., 2015; Best et al., 2017a). It should also be noted

that the results with recovery for host evolution are similar to the findings of Donnelly

et al. (2013) for parasite evolution, where the parasite invests more in infectivity as

the amplitude of seasonality increases. This suggests a robust result that in many

systems increased seasonal amplitude will lead to higher transmission, though a full

coevolutionary study that includes recovery would be needed to confirm this, which I

will explore later (Chapter 6).

There has been a lack of attention to how seasonality might affect host evolution in

theoretical studies, even though it has been shown that epidemiological dynamics can
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be greatly impacted by a variable environment (Altizer et al., 2006; Grassly & Fraser,

2006). In addition, it is well known that a wide range of species reproduce seasonally

due to environmental fluctuations, for example in bats (Stawski et al., 2014), killifish

(Furness, 2016) and birds (Ketterson et al., 2015). The theoretical studies that do

consider seasonality are generally co-evolutionary with a gene-for-gene based infection

interaction (Nuismer et al., 2003; Mostowy & Engelstädter, 2011; Poisot et al., 2012).

Of particular relevance to this study, Poisot et al. (2012) include explicit ecological dy-

namics in their model, using an additional resource variable with discrete fluctuations to

implement seasonality, as well as a partial gene-for-gene infection mechanism. Despite

these different underlying assumptions, they too find that the host invests more in de-

fence when the amplitude of the seasonality is high and there is no recovery. Moreover,

in an experimental study, Blanford et al. (2003) showed that pea aphids, Acyrthosiphon

pisum, evolved higher resistance against a fungal pathogen, Erynia neoaphidis, when

periodically exposed to higher temperatures. Since the fecundity of aphids varies with

temperature (Ramalho et al., 2015) and aphids lack many of the genes associated with

immune response to microbes (Gerardo et al., 2010), these results agree with the the-

oretical results found here and by Poisot et al. (2012), that increased seasonality leads

to increased resistance in the absence of recovery (but see Chapter 6).

Interestingly, I found that evolutionary bistability can exist between two convergence

stable strategies for small recovery rates. When the amplitude of the birth rate is

high, the host may evolve towards either of two levels of defence depending on initial

conditions. This bistability only occurs for a finite range of amplitudes, meaning that a

small change in the amplitude could lead to a large change in the level of defence that

the host evolves. Furthermore, the bistability can occur in conjunction with a switch

between attractors with different cycle lengths. In many cases the higher level of

defence tends to give a regime of two-year cycles in the population dynamics, whereas

the lower defence tends to be in a one-year regime, meaning that evolution can in

fact drive the population dynamics into a cycle with a different period. This effect of

evolution moving host-parasite systems into regions of qualitatively different population

dynamics has also been shown in systems which assume a constant environment but

population cycles occur naturally (Hoyle et al., 2011; Best et al., 2013). These results

emphasize that ecology/epidemiology and evolution are involved in a two-way feedback,

as not only does ecology drive selection, but evolution can determine the nature of the

population dynamics.

There have been many studies considering the evolution of host defence against para-
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sites that did not include seasonality (van Baalen, 1998; Boots & Bowers, 1999; Boots

& Haraguchi, 1999). I have shown here that many classic results are likely to be true

in a weakly seasonal system, but may not hold for an increasingly variable birth rate.

For example, as virulence varies, investment in resistance decreases as found previously

(van Baalen, 1998; Boots & Haraguchi, 1999; Best et al. 2017a) for low amplitudes of

seasonality, but at high amplitudes is maximized at either minimum or relatively high

virulence. Similar behaviour can be observed for varying crowding factor, in that the

results here agree with those found by Boots & Haraguchi (1999) for low amplitudes,

but disagree for high amplitudes. These differences are a result of complicated feed-

backs between seasonality, population sizes and selection which alter the costs/benefits

of resistance and births. However, I have shown that this effect is dampened for hosts

with longer lifespans, returning to the behaviours seen in previous work for all ampli-

tudes of the seasonality (see section 3.3.3). It is clear that while many results found for

constant environments remain true when the birth rate is variable in time, this may not

be the case when the amplitude is particularly high, especially for short-lived hosts.

I also investigated the impact of changing the period of the forcing on the evolution

of the host’s defence. I found that changing the period induces a peak in the infected

density, caused by resonance in the population dynamics with the unforced system.

Naively we would expect this to lead to a maximum level of investment in defence,

however, as with varying amplitude in the presence of recovery, the host evolves towards

a minimum level of defence in order to maintain a large overall population size through

increased birth rate. Near the peak, small alterations in the period will lead to relatively

large changes in the evolutionary investment in defence. Away from the peak, the curve

is almost flat and so the host’s evolution is barely affected by changes in the period

when it is already large. In an experimental study, Harrison et al. (2013) found that

resistance of P. fluorescens SBW25 to a phage was constrained most strongly in rapidly

fluctuating environments, while Duncan et al. (2017) showed that resistance of the same

bacteria evolved more quickly in environments with rapidly fluctuating temperatures.

It is unclear to what extent my theoretical results agree with these experimental studies,

in part due to these systems being co-evolutionary with genetic specificity, and in part

because it is difficult to ascertain which side of the resonance peak these studies may be

focusing on. It is clear, though, that the time-frame of the fluctuations has important

consequence to the evolutionary outcome.

Temporal heterogeneity, including seasonal fluctuations, is a fundamental aspect of all

natural ecological systems. However, both experimental and theoretical studies have
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rarely investigated the impact of fluctuating environments on evolutionary patterns.

Here I have shown that a seasonal birth rate has a significant qualitative impact on the

evolution of host defence in an SIS model, which is highly dependent on the presence

and size of recovery. It is clear that key features of evolutionary dynamics may be

missed by assuming a constant environment, and therefore it is important to consider

how seasonality may impact host-parasite evolution more widely.



Chapter 4

Can temporal fluctuations select

for diversity in host tolerance to

parasitism?

In this chapter I consider evolution of host defence through tolerance, whereby the host

alleviates harmful effects of the parasite. Here I do this through the parasite-induced

mortality rate α, where increased tolerance leads to lower infected mortality. I consider

how seasonal fluctuations in the host birth rate affects the possibility for evolutionary

branching, and compare tolerance evolutionary results to two resistance mechanisms

(avoidance and recovery). The majority of the results from this chapter have been

submitted for publication (Ferris & Best, submitted).

§ 4.1 Introduction

Understanding the processes that create and maintain diversity in host defence and

parasite infection is extremely important given its implications at both the popula-

tion (Lively, 2010a) and evolutionary (Schmid-Hempel, 2011) scales. This has led to a

wide range of both empirical (Laine, 2009; Lazzaro & Little, 2009; Wolinska & King,

2009; Bérénos et al., 2011; Penczykowski et al., 2016) and theoretical studies (Frank,

1993; Boots & Haraguchi, 1999; Sasaki, 2000; Miller et al., 2005; Tellier & Brown,

2007; Best et al., 2009, 2010b, 2017a,b; Boots et al., 2014) focussed on the evolutionary

drivers of diversity in host-parasite interactions. Many natural communities live in spa-

tially and/or temporally heterogeneous environments, and it has been suggested that

57
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this heterogeneity could maintain variation in a population if different environmental

conditions select for certain traits (Thompson, 1994; Byers, 2005; Lazzaro & Little,

2009). Although this may apply in general contexts, theoretically there is conflicting

evidence for this hypothesis with regards to temporal heterogeneity, with studies show-

ing delayed diversification (Johansson & Ripa, 2006), or the promotion of diversity in

the population (Ives et al., 1999; Fuentes & Ferrada, 2017) when there are stochastic

fluctuations. Additionally, increased plasticity and bet-hedging are alternative evolu-

tionary outcomes to polymorphism (Leimar, 2005; Rueffler et al., 2006). However, I

am unaware of any studies that investigate the effect of experimentally determined

regular fluctuations on the static diversity of host defence (i.e. a polymorphism of dif-

ferent strains that is maintained through time). Hence it remains unclear how this type

of temporal environmental variation affects population-level diversity, as models may

oversimplify important biological processes, while experiments with wild species have a

possibly unknown evolutionary history that will impact current levels of diversity, and

as such observers might only observe a snapshot of the full evolutionary trajectory.

Hosts may defend themselves from parasitism through a number of different mecha-

nisms, which can be broadly classified as either tolerance or resistance (Boots & Bowers,

1999; 2004; Strauss & Agrawal, 1999; Roy & Kirchner, 2000; Boots et al., 2009). Re-

sistance mechanisms are usually defined as those that directly decrease the prevalence

of the parasite, for example through decreased transmission or increased recovery (by

decreasing the infectious period). However, here I focus on defence through tolerance

where a host alleviates some of the harmful effects of a parasite, for example by de-

creasing infected mortality, but with no deleterious impact on parasite growth. In fact,

‘mortality tolerance’ has a positive effect on parasite fitness by increasing the infec-

tious period, hence the parasite prevalence increases which in turn selects for higher

tolerance in the host. This induces a positive feedback between host defence and par-

asite prevalence, with theoretical studies showing that this leads the host to evolve

to extremes (in the absence of costs) or to an optimal monomorphic strategy (Roy &

Kirchner, 2000; Miller et al., 2005; Best et al., 2008, 2014, 2017a). Only a few the-

oretical studies of tolerance have found the potential for diversification, for example

when ‘sterility tolerance’ evolves (Best et al., 2008; 2010a), or when trade-offs between

resistance and tolerance are included with an additional life-history cost (Fornoni et

al., 2004; Best et al., 2008; Carval & Ferriere, 2010). Therefore it seems that under

standard assumptions, including a constant environment, theory predicts that diversity

in host tolerance is usually not expected to emerge.



CHAPTER 4. CAN TEMPORAL FLUCTUATIONS SELECT FOR
DIVERSITY IN HOST TOLERANCE TO PARASITISM? 59

There is a growing field of experimental studies of tolerance to parasitism in both

plant and animal systems. In contrast to the theory, while some studies have found

fixation of tolerance (Lefèvre et al., 2011; Parker et al., 2014), genetic variation in

tolerance within populations has been observed across a wide range of different species

(Koskela et al., 2002; Kover & Schaal, 2002; R̊aberg et al., 2007; Kause et al., 2012;

Sternberg et al., 2012), including when the environment is heterogeneous for sheep and

wild fish populations (Blanchet et al., 2010; Hayward et al., 2014; Mazé-Guilmo et al.,

2014). Reconciling the theoretical and experimental results is clearly important for

understanding of the drivers of diversity in host populations, especially for accurate

predictions of the effects of external changes to these populations. One interesting

theory put forward, based on empirical evidence, is that variation in host defence may

be maintained through temporal environmental heterogeneity (Thomas & Blanford,

2003), at least temporarily (Lazzaro & Little, 2009). Many studies, both theoretical

and empirical, have shown that temporally varying environments affect host-parasite

evolution (Blanford et al., 2003; Koelle et al., 2005; Sorrell et al., 2009; Friman &

Laakso, 2011; Donnelly et al., 2013; Harrison et al., 2013; Hiltunen et al., 2015; Duncan

et al., 2017), however very few theoretical studies have considered host evolution, and

all of those have focussed on resistance (Nuismer et al., 2003; Mostowy & Engelstädter,

2011; Poisot et al., 2012; Ferris & Best, 2018; Chapter 3). Since resistance and tolerance

often lead to qualitatively different evolutionary outcomes (Boots & Bowers, 1999; Roy

& Kirchner, 2000; Miller et al., 2005; Best et al., 2017a), it is still unclear how a

temporally fluctuating environment will affect host tolerance evolution and diversity.

In this chapter, I analyse the mathematical model from Chapter 2 to investigate how

seasonal temporal variation in the environment, specifically through a periodic host

birth rate, impacts the potential for diversification through evolutionary branching and

sustained polymorphism in host tolerance to parasitism. I focus on how increasing the

amplitude of seasonality changes the evolutionary behaviours observed, and consider

evolution of the host through two resistance mechanisms, namely avoidance (Chapter

3) and recovery, as a comparison to tolerance.

§ 4.2 Methods

In this chapter I closely follow the model and methods from Chapter 2, the main

difference being evolution through different parameters with a focus on the type of

evolutionary behaviour found. Here I highlight parts of the methods given in Chapter
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2 that will influence the evolutionary results in section 4.3.

4.2.1 Trade-Offs and Other Parameters

I assume that the host evolves defence through reduced virulence α, lowered transmis-

sion β, or increased recovery γ separately, as seen elsewhere for a constant environment

(Boots & Bowers, 1999; Roy & Kirchner, 2000; Miller et al., 2005; Best et al., 2017a).

I let the average birth rate a0 depend on the evolving parameter so that there is a cost

of defence against the parasite (equation (2.20)), to reiterate:

a0 = a0(s) = â0 − p
(1 + s−smin

smax−smin
)

(1 + c s−smin
smax−smin

)
, (4.1)

where a0(s) has relative size given by â0, the gradient and curvature of a0(s) are

determined by p and c, s ∈ {α, β, γ}, and s takes values between smin and smax. Trade-

off parameter values are chosen such that the gradients a′0(α), a′0(β) > 0 and a′0(γ) < 0,

since increasing α or β results in lower defence and therefore higher investment in

births, while increasing γ improves defence and so the host has a lower birth rate.

Figure 4.1 shows how this trade-off changes with each of the evolving parameters for

fixed trade-off parameters â0 and p with varying c.

Figure 4.1: Trade-off function a0(s) for each of the three evolving parameters. (a)
Virulence α varies for â0 = 12, p = 6 and c taking values between 1 (blue) and 5 (red).
(b) Transmission coefficient β varies for â0 = 1, p = −10 and c taking values between 0
(blue) and 1 (red). (c) Recovery rate γ varies for â0 = 1, p = −15 and c taking values
between 1 (blue) and 5 (red).

I chose default parameter values such that for evolving α and β, the trade-off is ac-

celerating (a′0(s) > 0 and ∂2a0(s)
∂s2

< 0). This is so that, as more is invested in defence

(i.e. α, β decrease), it becomes increasingly costly to the host and the gradient of the

trade-off is steeper. Additionally, I chose accelerating trade-offs for these evolving pa-

rameters because decelerating trade-offs in constant and seasonal environments give
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singular points that are always repellers when evolution is through tolerance, or only

gives repellers and branching points for evolution through avoidance (Figure 4.13). In

particular, branching in tolerance only appears if I assume the trade-off is accelerating

(Figure 4.3).

For evolution through recovery rate γ, I chose parameters so that the trade-off is decel-

erating (a′0(γ) < 0 and ∂2a0(γ)
∂γ2

< 0). In this case, I would normally choose parameters

such that the trade-off is accelerating for the biological reasons given above. However,

for this model I find only CSS behaviour for accelerating trade-offs, and more inter-

esting behaviour (e.g. repellers, branching, etc) only occurs for decelerating trade-offs

(Figure 4.13). As branching behaviour is the focus of this study, I used a decelerating

trade-off for recovery. Biologically, decelerating trade-offs could arise through defence

mechanisms that, while costly to produce, lead to small additional costs as defence

is increased further (Boots & Haraguchi, 1999), hence giving increasingly less costly

defence.

Default parameter values for this chapter are given in Table 4.1.

Parameter Definition α Model β Model γ Model

a0 Average birth rate Varies Varies Varies
â0 Relative size of the average birth rate a0(s) Varies Varies Varies
p Gradient of the average birth rate a0(s) 6 -10 -15
c Curvature of the average birth rate a0(s) 2.7 0.2 3.7
α Virulence/additional death rate due to parasite 3 1 1
β Transmission coefficient 3 3 3
γ Recovery Rate 1 1 3
A Tolerance (αmax − α) 7 - -
B Avoidance (βmax − β) - 7 -
s Evolving Parameter (α, β or γ) 3 3 3

smin Minimum value of s (α, β or γ) 0.5 0.5 0.5
smax Maximum value of s (α, β or γ) 10 10 10
δ Amplitude of the oscillating birth rate 0.5 0.5 0.5
ε Period of the oscillating birth rate 1 1 1
q Crowding coefficient acting on births 0.1 0.1 0.1
b Baseline mortality rate 1 1 1

Table 4.1: Parameter definitions and default values for each model.
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4.2.2 Notes on the Evolutionary Method

In Chapter 2, I detailed how to find host fitness using a numerical method by assuming

that the linearly independent solutions of the simplified mutant equations were of the

form Xi(t) = eµitpi(t) for i ∈ {1, 2} (Grimshaw, 1990). I take the largest µi as the

mutant fitness, as this governs the overall growth. Note that Xi(t) is composed of a

bounded fluctuating vector pi(t) multiplied by an exponential eµit, and so the coefficient

of the exponential term µi (host fitness) describes the envelope that the mutant cycles

are encased in (Figure 4.2). This will be used to explain some of the evolutionary

results in section 4.3.

Figure 4.2: Trajectory of the susceptible mutant population Sm(t) (blue) through time
for initial conditions Sm(0) = 1, Im(0) = 0 with resident virulence α = 4 and mutant
virulence (a) αm = 3.5, (b) αm = 4.5. Black lines show how the trajectories are bounded
by peµt from equation (2.39), where p is the periodic function evaluated at the maximum
or minimum of its cycle, and µ is the fitness. (a) µ = 0.0016 > 0, pmax = 3.1332 and
pmin = 0.7193; (b) µ = −0.0011 < 0, pmax = 3.4374 and pmin = 0.7512. Otherwise
parameters were fixed at default values from Table 4.1. Similar limits can be observed
when the mutant infected population is plotted rather than the susceptible population.

In this chapter I am primarily interested in the creation and maintenance of diversity,

which theoretically arises through evolutionary branching. A summary of the condi-

tions under which this occurs was given in Chapter 2, but I reiterate here. Branching

behaviour occurs when the host initially evolves towards an intermediate defence strat-

egy (i.e. the singular point s∗) which is a fitness minimum and so any phenotypically

similar mutant may coexist with the current resident. This is defined by s∗ being

convergence stable (CS; the population evolves defence such that s gets closer to s∗)

but not evolutionary stable (not ES; any mutant with defence sm close to the resident

defence s = s∗ can invade/coexist with the resident population) (Geritz et al., 1998).
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I also find different behaviours (continuously stable strategy (CSS), garden of eden

(GoE) and repeller), definitions and examples of which can be found in Chapter 2.

§ 4.3 Results

In this section I present results for evolving host tolerance (reduction in virulence),

concentrating on the potential for evolutionary branching points. I find that branching

can occur for positive amplitudes (δ > 0), explaining why and when this happens. I

also consider resistance evolution, specifically avoidance (Chapter 3) and recovery, and

investigate how the seasonal environment affects the type of evolutionary behaviour

observed. I compare the resistance and tolerance results, finding that, similar to con-

stant environment studies, there are many qualitative differences between the defence

mechanisms.

I assume that the host evolves through parameters α, β or γ as stated above, but for

clarity I present the results in terms of tolerance A = αmax−α (reduction in additional

infected death rate), avoidance B = βmax − β (reduction in transmission coefficient),

or recovery γ, where αmax, βmax denote the maximum values of α, β respectively.

4.3.1 Tolerance Branching Can Exist in Seasonal Environments

In a constant environment, i.e. when the amplitude of seasonality δ = 0, there is no

branching behaviour in tolerance for any parameter values or trade-off shapes (i.e.

for any gradient and curvature of the trade-off a0(α) determined by p and c). This

is shown in Figure 4.3(a) for fixed singular point A∗ = αmax − α∗ = 7, where blue

regions indicate continuously stable strategies (CSS; CS and ES), red repellers (not CS

and not ES) and black Garden of Eden points (GoE; ES but not CS). Therefore host

evolution through tolerance in a constant environment will result in a monomorphic

population with minimum, intermediate or maximum defence depending on the shape

of the trade-off and initial tolerance.

Once I introduce seasonality in the birth rate, branching for tolerance evolution can

occur for a small range of trade-off parameters, shown in Figure 4.3(b),(c) by the ap-

pearance of the light blue areas. This behaviour can be demonstrated through PIPs

and simulations, for example see Figure 4.4 for high amplitude δ = 1. For these accel-

erating trade-offs, the singular point is (locally) convergence stable so the host evolves

towards the branching point A∗. However, the singular point is not evolutionarily sta-
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Figure 4.3: Evolutionary behaviour as the curvature of the trade-off c and the gradient
of the trade-off p vary, with the value of â0 determined at every point (c, p) by the singu-
larity condition such that the singular point A∗ = 7. The amplitude of the seasonality
is taken to be (a) δ = 0 (without seasonality), (b) δ = 0.5 (intermediate amplitude
seasonality), and (c) δ = 1 (high amplitude seasonality). Otherwise parameters were
set at default values. Dark blue - CSS; Red - Repeller; Light blue - Branching; Black -
GoE.

Figure 4.4: (a) PIP where blue indicates positive fitness for a mutant with tolerance
Am = αmax−αm in a resident population with tolerance A. The red line shows A = Am,
and the thick black line shows the evolutionary path after the population has reached
the branching point. (b) Region of protected dimorphisms, where the thick black line
indicates the evolutionary path taken by the population from the branching point,
and the thin black lines are the nullclines. Arrows show the direction of evolution.
(c) Evolutionary simulation starting from a monomorphic population with tolerance
A0 = 5.8, where darker squares indicate a higher proportion of the population with
tolerance A. Throughout, A∗ = 7, δ = 1, p = 8, c = 2, â0 = 12.4007, but otherwise
parameters were set at default values.

ble, i.e. a mutant with similar tolerance Am can coexist with the resident population at

the singular point, hence the population branches and a dimorphic population emerges

(Figure 4.4(c)). It should be noted that if the population does not start within the

basin of attraction for the branching point (i.e. between the repeller points in Figure

4.4(a)), the population will converge towards one of the boundary strategies A = 0 and

A = 9.5 and stay there for all time. As such, these strategies are potentially important
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end-points of evolution.

Once there is a dimorphic population, there are two possible outcomes. The most

common outcome for this model with tolerance evolution is where one branch eventu-

ally dies out, giving a monomorphic population again. This was determined through

simulations, all of which showed extinction of a branch as seen in Figure 4.4(c) when

the limits on α take default values. In this case, polymorphism is transient and even-

tually the resulting monomorphic population tends towards maximum or minimum

defence. To understand this, consider the region of protected dimorphisms (red region

in Figure 4.4(b)), i.e. the combinations of traits that can coexist, and the evolutionary

trajectory of the dimorphic population through this region. For an evolutionary stable

coalition to exist, the nullclines in this region need to cross. However here, as seen in

the example shown, the nullclines do not cross within the protected dimorphism (red)

region, and hence there is no evolutionary stable coalition. Therefore, after branching

the host evolves towards the edge of the dimorphic region, at which point one of the

branches dies out, leaving only one tolerance strain. By looking at the PIP where the

monomorphic population emerges, the model predicts that it will evolve towards min-

imum tolerance, as shown in the simulation in Figure 4.4(c). This is a common result

for the default limits on α (∼ 4
5 simulations result in a monomorphic population with

minimum tolerance, ∼ 1
5 result in maximum tolerance), which is to be expected since

the basin of attraction for A = 0 is much larger than that for A = 10 (Figure 4.4(a)).

The second possible outcome from a branching event is fixation of the dimorphic popu-

lation, often with extreme trait values, as seen elsewhere for this evolutionary behaviour

(Boots & Haraguchi, 1999; Kisdi, 1999). While this behaviour is not common for the

default parameter set, when the limits on α are altered some evolutionary branching

simulations can demonstrate fixation of the dimorphic population, Figure 4.5. For the

example shown, the evolutionary trajectory after branching does not leave the region of

protected dimorphisms (Figure 4.5(b)), and so both branches survive. Hence there are

cases where variability is maintained, although these are predominantly when there are

tighter restrictions on the range of tolerance values allowed, which could be determined

by physiological/biological limits.

4.3.2 Why Does Seasonality Allow for Branching in Tolerance?

Given that branching in tolerance has generally not been observed for simple models

in constant environments (Figure 4.3(a); Roy & Kirchner, 2000 Miller et al., 2005), it
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Figure 4.5: (a),(d) PIP where blue indicates positive mutant fitness, the red line is A =
Am and the black dots show where the simulations start from in (c). The thick black line
shows the evolutionary path taken from the branching point. The square indicates the
region that is enlarged in (d) to demonstrate the presence of a branching and repeller
point in close proximity. (b),(e) Regions of protected dimorphisms, where the thick
black line indicates the evolutionary path taken by the population from the branching
point and arrows show the direction of evolution. The square indicates the region that is
enlarged in (e). (c) Evolutionary simulations starting from a monomorphic population
with tolerance A0 = 1 (top), A0 = 3 (middle) and A0 = 4 (bottom). Darker squares
indicate a higher proportion of the population with tolerance A. Parameters were fixed
at δ = 0.85, p = 8, c = 1.3, â0 = 11.9484, αmin = 1 and αmax = 6, with default values
used otherwise.

is important to understand why seasonality can allow for this behaviour. I discuss two

mechanisms below, the first being strictly mathematical, while the second provides a

more intuitive explanation.

The appearance of branching in tolerance is due to saddle-node bifurcations of the

singular points from adaptive dynamics when the amplitude of seasonality δ is large

enough. This is demonstrated in Figure 4.6(a), where numbers denote the number

of singular points that exist, the dashed black lines the saddle-node bifurcations, and

the light blue region where branching points occur. Branching predominantly occurs

in parameter regions where there are three singular points, although note that it can

also be found for fewer points if one or both of the repellers move out of the tolerance

values considered (i.e. outside [0, Amax] where Amax = αmax−αmin, e.g. Figure 4.6(b)).
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Figure 4.6: (a) Number of tolerance singular points A∗ ∈ [0, Amax] for varying trade-off
parameter â0 and amplitude δ, where Amax = αmax − αmin. Populations in the regions
with zero singular points either evolve towards maximum or minimum tolerance as
labelled. Black lines show the boundaries of the different regions, with the dashed lines
showing the saddle-node bifurcations. Light blue shading indicates where branching
occurs, and the dark blue dotted lines the values of â0 used for (b)-(d). (b)-(d) Variation
in the tolerance singular point(s) A∗ as the amplitude δ varies with trade-off parameter
(b) â0 = 11, (c) â0 = 11.5308, and (d) â0 = 12.5. Arrows show the direction of
evolution, including minimization/maximization of tolerance when no singular points
exist. Red solid - repeller; Light blue dotted - branching point; Dark blue dotted -
CSS; Black dashed - maximum tolerance Amax = 9.5. Parameters were otherwise fixed
at default values.

Therefore there can be three singular points occuring simultaneously, with the outer

points being repellers while the central point is a branching point or a CSS (e.g. Figure

4.4). For parameters near the bifurcations, two new singular points will emerge as the

amplitude δ is increased, while the second fold at higher δ values removes two singular

points (Figure 4.6(b),(c)). For parameter values away from the bifurcations, there may

be only one singular point as δ increases (Figure 4.6(d)). Note that in all three cases

shown in Figure 4.6, the trade-off has exactly the same shape but with a greater value
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as â0 is increased. Also note that the predominant direction of evolution depends

on the amplitude δ, whereby low amplitudes tend to give evolution towards A = 0

(completely intolerant), while high amplitudes lead to evolution towards A = Amax

(completely tolerant; Figure 4.6).

I have considered how the trade-off parameter â0 alters the saddle-node bifurcations

(Figure 4.6), but changing other model parameters also affects this behaviour. Figure

4.7 shows how varying other model parameters and the amplitude δ changes the saddle-

node bifurcations observed in the singular point. In all cases, branching can occur

between the bifurcations near the cusp where three singular points exist. Examples of

how the singular point changes with each parameter are shown to exhibit the saddle-

node bifucations. Therefore, the bifurcations leading to branching can be found for

a range of different parameter values, so tolerance diversity appears more generally

for δ > 0. Additionally, when there are no singular points, high amplitudes tend to

give maximization of tolerance, suggesting that highly variable environments promote

populations that are completely tolerant to the parasite.

Intuitively, it is generally understood that evolutionary branching occurs when there

is a negative feedback between host defence and parasite prevalence (Roy & Kirch-

ner, 2000; Miller et al., 2005; Boots et al., 2009). Mortality tolerance often induces

a positive feedback with disease prevalence in constant environments (increasing tol-

erance increases disease prevalence), and so branching is rarely observed theoretically.

However, here I found a non-linear relationship between tolerance and the maximum

infected density on a cycle when the amplitude δ is large enough, giving a negative feed-

back in certain regions (Figure 4.8(a)). For tolerance near the singular point (A ∼ 7),

as defence increases the maximum infected population decreases, which in turn selects

for lower tolerance and increases the maximum infected population, thus creating a

negative feedback. This can be seen in Figure 4.8(a), as the gradient of the maximum

infected population size with tolerance A is negative near the branching singular point.

This infected maximum impacts host evolution through the assumption of the form

of the mutant’s trajectory. In Chapter 2, I assumed that the solution of the mutant

equations is given by X(t) = eµtp(t), where p(t) is a periodic vector with fixed am-

plitude and µ is the host fitness. Therefore the exponential term eµt determines the

limits of the mutant dynamics (Figure 4.2), and as such the fitness µ is impacted by

the maximum infected population size. Hence the maximum infected population size

gives a significant negative feedback in the host fitness that can lead to branching in

tolerance, which is backed up by simulations that are purely multi-strain population
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Figure 4.7: Left column: Number of singular points A∗ ∈ [0, Amax] for varying param-
eters and amplitude δ. Otherwise parameters took defualt values with â0 = 11.5308
throughout. Populations in the regions with zero singular points either evolve maxi-
mum or minimum tolerance as labelled. Black lines show the boundaries of the different
regions, with the dashed lines showing the saddle-node bifurcations. Light blue shad-
ing indicates where branching occurs, and the blue dotted lines the value of δ used for
the singular point trends on the right. Right column: Variation of the singular points
A∗ with (A) baseline mortality rate b for δ = 0.5, (B) crowding factor q for δ = 0.3,
(C) transmission coefficient β for δ = 0.35 and (D) recovery rate γ for δ = 0.75. Ar-
rows show the direction of evolution, including minimization/maximization of tolerance
when no singular points exist. Red solid - repeller; Light blue dotted - branching; Dark
blue dotted - CSS; Black dashed - maximum tolerance Amax = 9.5.
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dynamics (Figure 4.4). Note that I also considered the average infected population

size, which increases with amplitude δ but does not provide a negative feedback with

tolerance (not shown), however this does not directly influence the host fitness and so I

do not focus on it. For parameters where branching doesn’t occur, I found that either

the negative feedback didn’t appear (e.g. Figure 4.8(b), the gradient of the maximum

infected population size with tolerance A is always positive), or the singular point didn’t

enter the negative feedback region and so didn’t become a branching point (e.g. Figure

4.8(c)).

4.3.3 When does Branching in Tolerance Occur?

So far I have established that branching can occur for evolution in tolerance when

seasonality is included in the model. However, this behaviour is dependent on the

choice of parameters. Figure 4.9 shows the regions of parameter space where there

exists at least one trade-off of the form in equation (4.1) such that the singular point

A∗ is a branching point. This was done by creating behaviour graphs such as in Figure

4.3 for each parameter combination shown, then categorizing the point as ’Branching’

if a light blue region appeared in the graphs, or ‘Not Branching’ if no light blue region

appeared. Examples of these graphs can be seen in Figures 4.10 and 4.11, which are

expansions of Figures 4.9(a) and (d), where I show a number of behaviour plots for

different parameter sets. The graphs within the dark grey lines show where branching

is possible (indicated by the presence of light blue areas), i.e. the top left corner for

Figure 4.10 and the top right corner for Figure 4.11, imitating the regions shown in

Figure 4.8: Maximum infected population size as tolerance A and amplitude of season-
ality δ vary. Parameters were otherwise fixed at (a) â0 = 11.5308 and default values
(branching), (b) â0 = 12.1 and crowding factor q = 0.2 (no branching), or (c) â0 = 18.7
and baseline mortality rate b = 2 (no branching). Thick black lines show the path of
the singular point(s) A∗, with red lines showing where it is a branching point in (a).
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Figure 4.9: Regions of parameter space where there exists at least one trade-off function
of the form defined in equation (4.1) such that branching in tolerance occurs, i.e. there
are some values of â0, p and c such that A∗ is a branching point (A∗ = 7 in all but
(e)). Amplitude δ varies with (a) baseline mortality rate b, (b) crowding factor q, (c)
recovery rate γ, (d) transmission coefficient β, (e) tolerance singular point A∗, and (f)
period ε. Otherwise parameters were fixed at default values.

Figure 4.9.

The parameter regions where branching can occur coincides with relatively high average

infected population size (low b, q, γ and ε, intermediate/high β and A∗ - see Figures 2.2

and 2.3), suggesting that the size of the infected population could be a driver of host

diversity in tolerance in a seasonal environment. This is reinforced by the expanded

graphs (Figures 4.10 and 4.11), since the branching area (light blue) increases in size as

mortality rate b decreases and as the transmission coefficient β increases, corresponding

to relatively large infected population sizes.

Another important feature of the branching regions is that once the amplitude reaches

a certain threshold δT, then for δ ≥ δT I can always find a trade-off such that A∗ is a

branching point. This is due to how the maximum infected population changes with

tolerance A and amplitude δ. Above I showed that branching occurs when there is a

negative feedback between tolerance and the maximum infected population size. Figure

4.8(a) demonstrates this, but it also shows that the non-linear trend with tolerance

appears near the singular point value A∗ = 7 for all δ greater than some threshold.



72

Figure 4.10: Exanded version of Figure 4.9(a), showing evolutionary behaviour as trade-
off coefficients p and c vary, with â0 determined by the singularity condition at each
point (c, p) such that A∗ = 7 throughout. Amplitude δ varies vertically and baseline
mortality rate b varies horizontally. Grey lines show the branching boundary from
Figure 4.9(a). Bottom row: δ = 0; Middle row: δ = 0.5; Top row: δ = 1. Left column:
b = 0.5; Middle left column: b = 1 (default); Middle right column: b = 1.5; Right
column: b = 2. Dark blue - CSS; Red - Repeller; Light blue - Branching; Black - GoE.

This threshold (likely) corresponds to that in Figure 4.9, so above the threshold I am

always able to find a trade-off that gives branching behaviour at the singular point.

For parameters where there is no branching, either the negative feedback does not exist

(e.g. Figure 4.8(b)), or it occurs for tolerance values greater than the singular point

(e.g. Figure 4.8(c)).

4.3.4 Branching Still Occurs if the Trade-Off is in Baseline Mortality

Rate

One possible explanation for why I found evolutionary branching is that I have the

trade-off and the environmental fluctuations in the same term (i.e. the birth rate). I

can check this by considering trade-offs in other parameters, and investigate if branching

still occurs. For example, I instead put the trade-off in the baseline mortality rate b
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Figure 4.11: Expanded version of Figure 4.9(d), showing evolutionary behaviour as
trade-off coefficients p and c vary, with â0 determined by the singularity condition
at each point (c, p) such that A∗ = 7 throughout. Amplitude δ varies vertically and
transmission coefficient β varies horizontally. Grey lines show the branching boundary
from Figure 4.9(d). Bottom row: δ = 0; Middle row: δ = 0.5; Top row: δ = 1. Left
column: β = 1.5; Middle left column: β = 3 (default); Middle right column: β = 6;
Right column: β = 9. Dark blue - CSS; Red - Repeller; Light blue - Branching; Black
- GoE.

using the following function:

b = b(α) = b̂− pb
(1 + α−αmin

αmax−αmin
)

(1 + cb
α−αmin

αmax−αmin
)
, (4.2)

where, similarly to the trade-off function in the average birth rate, pb and cb determine

the gradient and curvature of the trade-off, and b̂ is chosen such that A∗ = 7. In this

case, I still find branching in host tolerance evolution for δ > 0. Figure 4.12 shows

how the PIPs change for increasing δ, with A∗ = 7 a repeller in (a), branching point

in (b),(c) and finally a CSS in (d). This means that branching in host tolerance can

occur more generally when seasonality is included in the model, and isn’t necessarily

dependent on where the cost of defence is implemented.
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Figure 4.12: PIPs for trade-off in baseline mortality rate b = b(α), with A∗ = 7 for (a)
δ = 0.25, b̂ = −2.0935 (repeller), (b) δ = 0.275, b̂ = −2.0615 (branching), (c) δ = 0.35,
b̂ = −1.9555 (branching) and (d) δ = 0.375, b̂ = −1.9175 (CSS - singular point is CSS
for all δ values above this). The b̂ values were chosen such that A∗ = 7 with β = 6,
a0 = 6, pb = −4 and cb = 1.75, but otherwise default parameters were used.

4.3.5 Resistance Evolution in a Seasonal Environment

Previously, I have considered avoidance evolution in a fluctuating environment (Chapter

3; Ferris & Best, 2018), however I primarily investigated the behaviour of CSS points

(end points of evolution) as seasonal parameters varied. Here I consider evolution of

both avoidance and recovery, and investigate all four types of behaviour, with a focus

on how seasonality affects the occurrence of branching.

For constant environments, branching occurs for decelerating trade-offs when evolution

is through either resistance mechanism (avoidance B or recovery γ), Figure 4.13(a),(b).

Once seasonality is introduced, branching behaviour can still occur, although the be-

haviour regions move and trade-offs that previously gave branching may now give CSS

or repeller behaviour (Figure 4.13(c),(d)). For avoidance evolution, seasonality means

that I can now find branching for both decelerating and accelerating costs (for the

values of p considered, c < 0: decelerating costs; c > 0: accelerating costs). For re-

covery evolution, branching only occurs for decelerating costs at all amplitudes (for

the values of p considered, c > 0: decelerating costs). In both cases, seasonality has

a stronger effect on the evolutionary behaviour for large negative p, i.e. for steeper

trade-off functions.

4.3.6 Tolerance vs Resistance Evolution in a Seasonal Environment

In a constant environment, it has been shown that evolution through resistance mech-

anisms (i.e. avoidance and recovery) gives qualitatively different results to evolution

through tolerance (Boots & Bowers, 1999; Miller et al., 2005; Best et al., 2010, 2017a).

Here I compare how varying the amplitude of seasonality δ and other parameters change
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Figure 4.13: Evolutionary behaviours for resistance as trade-off parameters p and c vary,
with â0 chosen at each point (c, p) such that the singular points B∗ = βmax−β∗ = 7 and
γ∗ = 3. Left: Avoidance B evolution; Right: Recovery γ evolution; Top row: Constant
environment δ = 0; Bottom row: High amplitude environment δ = 1. Parameters were
otherwise fixed at respective default values. Dark blue - CSS; Red - Repeller; Light
blue - Branching; Black - Garden of Eden.

the regions of branching behaviour for all three defence mechanisms.

For the tolerance model, increasing the amplitude δ appears to stabilise evolution, and

CSSs are more likely to appear for very high amplitudes, Figure 4.14(a). In contrast, for

fixed trade-off shapes that do not give branching behaviour in a constant environment,

increasing the amplitude of seasonality δ can destabilise resistance evolution and cause

the host to evolve to extreme defences via branching or repeller behaviour. This can

be seen in Figure 4.13, where the introduction of seasonality leads to larger regions of

parameter space that give branching or repeller points rather than CSS evolutionary

behaviour. Figure 4.14(b),(c) also shows this, as CSS behaviour is more likely at lower

amplitudes. Therefore intermediate defence strategies are more likely to evolve through

tolerance in a highly variable environment, whereas intermediate resistance can evolve

in a wide range of varying environments.
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Figure 4.14: Evolutionary behaviour as the amplitude of seasonality δ and crowding
factor q vary, for defence through (a) tolerance A, (b) avoidance B, and (c) recovery γ.
The trade-off parameter â0 varies such that the respective singularity conditions hold
at each point (A∗ = B∗ = 7, γ∗ = 3), but otherwise parameters were fixed at default
values in all three models. The trade-off is accelerating for (a),(b) and decelerating for
(c). Dark blue - CSS; Red - Repeller; Light blue - Branching; Black - Garden of Eden.

I can also consider how varying other model parameters affects the evolutionary out-

comes, as seen in Figure 4.14 for varying crowding factor q and Figure 4.15 as other

parameters vary. As crowding increases, all three models agree that branching occurs

at higher amplitudes. However, the size of the branching region decreases in the tol-

erance model, whereas in the resistance models it either increases (avoidance) or stays

a similar size (recovery) until it disappears at δ = 1. This could be related to the size

of the infected population, in that less branching occurs for tolerance as the infected

population decreases (q increases), whereas the resistance mechanisms act oppositely.

The models also disagree as to the behaviour that occurs in a highly competitive envi-

ronment: for resistance, high crowding leads to a CSS and therefore intermediate levels

of defence for all amplitudes, whereas for tolerance the singular point is a repeller and

so the host will evolve to minimum/maximum defence.

Similar to varying crowding factor q, the models for evolving resistance and tolerance

often disagree when considering changes in other parameters. Figure 4.15 shows how

changing the model parameters affects the evolutionary behaviour found for each of the

defences studied. Generally, as stated above, I find that as the amplitude δ increases

CSS are more likely to occur for evolving tolerance across a wide range of parameter

scenarios. In contrast, for evolution in either of the resistance mechanisms, repellers

and branching points are more likely for high amplitudes. This reinforces the result

above over a wide range of parameters, that increased amplitude ‘stabilises’ tolerance

evolution, but destabilises resistance evolution.

It is worth considering in more detail how the seasonal period ε alters the evoutionary
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Figure 4.15: Evolutionary behaviours for varying amplitude δ and other model param-
eters for evolution through each of the three defence mechanisms studied. Trade-off
parameter â0 was chosen at each point such that the respective singularity conditions
hold, but otherwise parameters were fixed at default values. Left column: Evolution
in tolerance A; Middle column: Evolution in avoidance B; Right column: Evolution in
recovery γ. A: Baseline mortality rate b; B: Virulence α; C: Transmission coefficient β;
D: Recovery rate γ; E: Seasonal period ε. Dark blue - CSS; Red - Repeller; Light blue
- Branching; Black - Garden of Eden.
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behaviour of all three defence mechanisms, Figure 4.15E. Similar to results from Chap-

ter 3 (Figure 3.10), intermediate ε values lead to a greater range of amplitudes that give

CSS behaviour for tolerance, and repeller or branching behaviour for resistance. Note

that branching only occurs for low ε when evolution is through tolerance, compared to

the wide range of periods that give branching through resistance. This suggests that

only rapidly oscillating environments promote branching in tolerance (see also Figure

4.9), while branching in resistance is more likely to occur in environments with rela-

tively slow fluctuations. It should also be noted that in the right hand column of row

E, the irregular dark blue region inside the light blue area is likely due to numerical

inaccuracies in the approximations used for the computations.

§ 4.4 Discussion

The aim of this chapter was to determine whether a temporally variable environment

may create and maintain polymorphism in host tolerance, as suggested by empirical

literature (Thomas & Blanford, 2003; Lazzaro & Little, 2009). This is in contrast

to standard theoretical models which often find no branching to polymorphism in a

constant environment (Roy & Kirchner, 2000; Miller et al., 2005; Best et al., 2008,

2014, 2017a). I found that branching in tolerance indeed emerged when a temporally

varying environment was introduced through a seasonal birth-rate, and that sufficiently

high amplitudes are needed to observe this behaviour. Mathematically, the branching

occurs due to saddle-node bifurcations in the evolutionary dynamics, similar to those

found in Chapter 3 for avoidance evolution (Ferris & Best, 2018). These bifurcations

cause two singular points to simultaneously appear, thus creating a region where three

singular points can exist (two evolutionary repellers surrounding a branching or CSS

point). In line with previous work, a negative feedback can be associated with the

branching behaviour (Roy & Kirchner, 2000; Miller et al., 2005; Best et al., 2008; Boots

et al., 2009). Usually this is through the parasite prevalence, but due to the fitness

method used here, it emerges in the maximum infected population on a cycle when the

amplitude of seasonality is large enough. In this region, increasing tolerance leads to

a decrease in the maximum infected population size. This selects for lower tolerance,

which in turn gives a greater maximum infected population, hence a negative feedback

emerges and branching is possible.

Interestingly, I observed that the dimorphic population resulting from branching is

often temporary and so there is no long term guarantee of diversity, as predicted by
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Lazzaro & Little (2009). Here this is due to the high cost of defence in the birth rate,

so the branch with larger tolerance is often unable to maintain a high enough popula-

tion size and dies out. Additionally, the high tolerance population will have a longer

infectious period, resulting in a greater proportion of the population being infected

and thus fewer susceptible hosts that can reproduce. The branch with lowest defence

frequently survives in the long term, despite having higher overall mortality rate, be-

cause the larger investment in birth rate can keep up with the additional deaths from

infection. Extinction of branches has also been observed for constant environments,

for example when resistance evolves with sufficiently complex trade-offs (Best et al.,

2015). The potential for both monomorphic and dimorphic populations agrees with

the range of experimental literature on tolerance, including those that find diversity, as

these populations may fixate or eventually lose their diversity (Blanchet et al., 2010;

Sternberg et al., 2012; Hayward et al., 2014; Mazé-Guilmo et al., 2014; Parker et al.,

2014). Evolutionary branching is very slow theoretically, so the population modelled

here would remain dimorphic for a very long time on ecological timescales before any

eventual extinctions. However, it is possible that stochastic processes may remove a

strain prematurely and thus shorten the time spent as a polymorphic population. It

is also worth noting that evolutionary branching through adaptive dynamics is only

one way to describe diversity in empirical systems, and that this method often results

in two (or more) genotypes that are very different. There are alternative methods,

such as population or quantitative genetics, which describe diversity as the number of

genetic characteristics or phenotypes within a species. Each of these approaches may

be more suited to different empirical studies, depending on how diversity is measured

and whether or not this results in major or minor differences between the genotypes.

In this chapter I have shown that variation in host tolerance is more likely in a fluc-

tuating environment when the average infected population is high. In these regions,

the maximum infected population has a significant impact on the mutant fitness and

therefore the negative feedback can cause branching. When the infected population

size is low, if the negative feedback appears it doesn’t have as large an influence on

the fitness (compared to, say, the maximum susceptible population) and so branching

is less likely to occur. Theoretically, it is unclear how influential infected population

size is to the potential for tolerance branching more generally since few studies have

found mortality tolerance diversity in a constant environment. However, Best et al.

(2010a) found that a wider range of trade-off shapes give branching behaviour at low

mortality rates for evolving sterility tolerance. This leads to high infected population

sizes, and therefore agrees with the result here for mortality tolerance. This relation-
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ship has also been shown in an experimental study by Blanchet et al. (2010), where

they found more variation in host tolerance when parasite burden was high in a wild

dace population. However, I found no other experimental studies that relate tolerance

diversity and parasite burden explicitly, mainly due to the fact that tolerance is often

defined as the slope of host fitness against infection intensity (Simms & Triplett, 1994;

Koskela et al., 2002; R̊aberg et al., 2007; Hayward et al., 2014). Since linear statistical

methods are commonly used to analyse empirical data, results do not consider how

infection intensity may impact the variation in tolerance, only stating whether or not

diversity is present. Infected population size is a driver of host evolution in general,

and specifically for tolerance diversity, although more empirical and theoretical work

needs to be done to confirm this relationship.

The differences between host tolerance and resistance have been theoretically and em-

pirically studied in great depth (Boots & Bowers, 1999; Strauss & Agrawal, 1999; Roy &

Kirchner, 2000; Miller et al., 2005; R̊aberg et al., 2009; Baucom & de Roode, 2011; Best

et al., 2017a), but not yet in a temporally varying environment. Here I showed that the

amplitude of seasonality can have qualitatively different effects on the two defences: for

tolerance, temporal variation stabilises evolution and intermediate strategies are more

common; for resistance, higher amplitudes destabilise evolution and extreme traits are

more likely to occur (see also Chapter 6). I found no empirical tolerance studies in a

fluctuating environment, but predictions here may relate to those conducted in a tempo-

rally stationary environment by considering variation in other parameters, for example

Sternberg et al. (2012) found a relationship between tolerance and mortality rate in

Monarch butterflies reared on different species of plant. However, since I have shown

that seasonality may change evolutionary outcomes, it is unclear how comparable the

results are in these environments. There are more experimental studies that consider

how a temporally fluctuating environment influences resistance evolution (Blanford et

al., 2003; Friman & Laakso, 2011; Friman et al., 2011; Harrison et al., 2013; Hiltunen

et al., 2015; Duncan et al., 2017), but diversity of resistance is rarely measured. Only

Harrison et al. (2013) consider the variation in evolved resistance, finding that when

bacteria P. fluorescens SBW25 are competed against phage from different treatments,

those grown in rapidly oscillating resource evolved the narrowest range of resistance.

This outcome broadly agrees with my result for avoidance evolution, that there is less

diversification in fluctuating environments with small periods (Section 4.3.6).

The work in this chapter provides theoretical support for the hypothesis that hetero-

geneous environments may maintain polymorphic host defences. Specifically, I found
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that a periodically oscillating birth rate makes diversity in host tolerance possible, and

that this environment has qualitatively different effects on host tolerance and resis-

tance evolution. Given this and the lack of previous work on how tolerance evolves in

a fluctuating environment, there is plenty of scope for future theoretical and empirical

work in this area. In particular, the effect of infected reproduction or joint evolution

of resistance and tolerance could be investigated, which may give more insight into

potential drivers of diversification.



Chapter 5

The Intensity of Host-Parasite

Coevolution Peaks in Seasonal

Environments That Oscillate at

Intermediate Amplitudes

In this chapter I present a joint experimental and theoretical study of host-parasite

coevolution in an oscillating environment, with particular attention paid to how the

amplitude of the oscillations changes the evolutionary outcomes. I use a bacteria-phage

experimental system with oscillations in the concentration of the nutrient resource,

and measure the resistance of the bacteria at the end of the evolution experiment.

I model the experiment with a theoretical coevolution model, which I then use to

explain the experimental evolutionary results. The model is briefly summarized here,

with more details given in Chapter 6. A version of this chapter will soon be submitted

for publication (Ferris et al., In prep.).

§ 5.1 Introduction

It has long been recognised that environmental factors affect host-parasite coevolution,

with experimental evidence showing that host defence, parasite transmission, and the

type of evolutionary dynamics observed can be influenced by the environment (Fels &

Kaltz, 2006; Vale et al., 2008; Lopez-Pascua et al., 2012; 2014; Zeller & Koella, 2017).
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One important feature of many eco-systems is that the environment is heterogeneous,

often varying in both space and time. This heterogeneity has been shown to have direct

implications for host-parasite coevolution both empirically (Laine, 2009; Wolinska &

King, 2009; Koskella & Brockhurst, 2014; Brunner & Eizaguirre, 2016; Parratt et al.,

2016) and theoretically (Hochberg & van Baalen, 1998; Best et al., 2011; Mostowy &

Engelstädter, 2011; Poisot et al., 2012). While the impact of spatial heterogeneity on

host-parasite coevolution has been intensively studied (Rand et al., 1995; Haraguchi

& Sasaki, 2000; Thompson, 2005; Gandon et al., 2008; Laine, 2009; Best et al., 2011;

Débarre et al., 2012), the effects of temporal heterogeneity have received less attention,

especially theoretically. This is despite the fact that many species experience seasonal

oscillations in environment, which can lead to time-dependent effects upon infection

rates (Altizer et al., 2006; Fine & Clarkson, 1982; Finkenstädt & Grenfell, 2000), and

life-history traits such as reproduction (Rowan, 1938; Stawski et al., 2014; Ketterson et

al., 2015; Furness, 2016) and mortality (Summers-Smith, 1956; Gehrt, 2005; Gogarten

et al., 2012).

In host-parasite systems, temporally heterogeneous seasonal environments can affect

coevolution in a number of different ways. For example, hosts may evolve greater re-

sistance against a pathogen when exposed to oscillating temperatures (Blanford et al.,

2003), but this may come at a cost to host survival (Dallas & Drake, 2016). However,

different types of environmental oscillations can result in other evolutionary outcomes,

and it has been reported that oscillations in resources can constrain antagonistic coevo-

lution in two different predator-prey systems (Friman & Laakso, 2011; Hiltunen et al.,

2015), and that such oscillations may skew the symmetry/asymmetry of coevolution by

imposing stronger selection on one of the species (Friman et al., 2011). Even within the

same study system, different environmental oscillations can change how the interacting

species evolve. For the bacterium Pseudomonas fluorescens SBW25 and associated

lytic bacteriophage SBW25Φ2, Harrison et al. (2013) showed that rapidly oscillating

nutrient resource levels constrained coevolution, whereas Duncan et al. (2017) showed

the opposite effect for the same species in oscillating temperature environments. Many

of these studies only consider how different periods of oscillation in environmental vari-

ables affect evolutionary outcomes for fixed amplitudes (but see Blanford et al., 2003),

however natural seasonal variations are more likely to differ in amplitude than period,

yet the effect of the former remains untested. An important unanswered question is,

therefore, how the amplitude of environmental oscillation affects host-parasite coevo-

lution.
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As well as empirical work, there is a growing body of mathematical modelling of host-

parasite coevolution in temporally heterogeneous seasonal environments. Ecologically

based models have shown that oscillating environments affect both host (Ferris & Best,

2018, submitted ; Chapters 3 and 4) and parasite evolution (Koelle et al., 2005; Sorrell et

al., 2009; Donnelly et al., 2013), with both amplitude and period impacting evolutionary

outcomes. For example, Donnelly et al. (2013) found that parasite evolution is not

affected by fluctuations in the host birth rate in a standard model, but the inclusion

of density-dependent virulence leads to an increase in the parasite’s transmission as

the amplitude of oscillations increases. Elsewhere, coevolution of both the host and

parasite has been considered using genetic based methods that do not account for

ecological factors (Nuismer et al., 2003; Mostowy & Engelstädter, 2011; but see Poisot

et al., 2012). Of particular relevance, Poisot et al. (2012) showed that, for step-wise

environmental oscillations implemented through a dynamic resource, the host evolved

lowest resistance for intermediate amplitudes. This is in contrast to my results from

Chapter 3 (Ferris & Best, 2018), where I found that, for a continuously varying birth

rate in the presence of recovery, the host evolves monotonically decreasing resistance

as amplitude increases. The differences between these predictions is likely due to how

increasing the amplitude changes the environmental oscillations: in Chapter 3, the

average birth rate stays the same while both the minimum and maximum change with

amplitude; in Poisot et al. (2012), the minimum resource input remains the same for all

amplitudes while the maximum, and therefore the average, increases with amplitude.

Either prediction could be correct for different species under certain environmental

oscillations, but the effect of amplitude on evolution has yet to be explored thoroughly

in an experimental context.

In this chapter, I consider how a temporally oscillating nutrient resource affects coevo-

lution of the bacterium P. fluorescens SBW25 with the lytic phage SBW25Φ2 (Buckling

& Rainey, 2002; Brockhurst et al., 2007). I focus on the effect of changing the amplitude

of environmental oscillations on coevolution of bacterial resistance and phage infectiv-

ity, using constant and oscillating treatments with the same mean resource level but

increasing difference between the high and low nutrient concentrations. Recent theory

predicts that the bacterial host would evolve monotonically decreasing resistance as

amplitude increases (Chapter 3; Ferris & Best, 2018), and that the effect of resource

oscillations on parasitic phage evolution would be indirect and mediated via the effect

on the host (Best et al., 2010b; Donnelly et al., 2013). I also extend the model from

Chapter 2 to include coevolution and growth rate parameters from the experiment,

and then compare the new predictions with the experimental results. I found that, in
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both the experiment and the coevolutionary model, the amplitude of environmental

oscillations determines the degree of resistance evolution and counter adaptation by

the phage, with greatest resistance and infectivity evolving at intermediate amplitudes

of resource oscillation.

§ 5.2 Methods

In this section I describe the bacteria-phage experiment, where the oscillating environ-

ment is implemented through oscillating nutrient resource. I also introduce a coevolu-

tionary model of host defence and parasite infectivity, which is investigated further in

Chapter 6.

5.2.1 Culture Techniques

Cultures were grown in 30ml glass microcosms with loose plastic lids containing 6ml of

King’s Media B (KB) in M9 salt solution, incubated at 28oC with orbital shaking at

180rpm. A gradient of nutrient concentrations, chosen by influence on growth kinetics

(see section 5.2.2), were prepared by diluting KB into M9 salt solution. Bacterial

densities were measured as colony forming units (CFU/ml) by plating diluted cultures

on standard KB agar plates, and phage densities as plague forming units (PFU/ml) by

plating a serial dilution of filtered phage on a soft agar (0.8% agar) lawn of ancestral

bacteria.

5.2.2 Resource Choice

Before beginning the evolution experiment, I produced growth curves for ancestral bac-

teria grown with ancestral phage in various media concentrations. This was to ensure

that the resource concentrations chosen for the evolution experiment covered a range of

bacterial growth kinetics. Three replicates of ancestral bacteria and phage populations

were grown in a 96-well microtitre plate containing a range of concentrations of KB

media in M9 salts (final volume 150µl). Bacterial overnight cultures were prepared

from glycerol stocks by innoculation into microcosms containing the standard concen-

tration of KB media for 24h (180rpm, 28oC). Phage cultures were innoculated from

glycerol stocks into microcosms containing ancestral bacteria for 24h (180 rpm, 28oC)

then filtered (0.22µm) to prepare phage stocks. Bacteria and phage were added to the
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microtitre plate to achieve a 10−1 dilution from overnight cultures. The absorbance at

OD600nm was measured every 30 minutes after 1 minute of shaking for 24h.

Figure 5.1 shows the mean maximum measured absorbance against log10(Resource Con-

centration). The minimum resource concentrations used for the evolution experiment

described in section 5.2.3 are marked on the graph, showing a range of different growth

potential.

Figure 5.1: Mean maximum absorbance at OD600nm ± standard error (SE) for an-
cestral bacteria grown with ancestral phage against log10(resource concentration). The
minimum and constant resources used for the evolution experiment described in section
5.2.3 are marked (minimum resources: 0.01, 0.05, 0.1, 0.25; contant resource: 0.5 KB).

5.2.3 Experiment Design

I used five treatments consisting of one constant (0.5KB constant) and four oscillating

treatments with the same mean resource level but different magnitudes of oscillation be-

tween high and low nutrient concentrations, alternating every transfer (0.25/0.75KB,

0.1/0.9KB, 0.05/0.95KB, 0.01/0.99KB). Independent clones of the bacteria P. fluo-

rescens SBW25 and bacteriophage SBW25Φ2 were used to inoculate initial populations

(6 replicates) with ∼ 108 P. fluorescens SBW25 cells and ∼ 107 SBW25Φ2 particles.

Phage were isolated from entire populations by filtration (0.22µm). One percent of the

volume (60µl) was serially transferred every 48 hours into new media, with a total of 24

transfers. Population densities were measured every third transfer, whereupon samples

of the whole population, phage population and 20 bacterial clones were collected for

each replicate and frozen at −80oC in 20% glycerol.

During the course of the experiment, some phage populations fell below detection levels
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(minimum 200 PFU/ml) and densities could not be measured using the PFU method,

and as such are shown as having zero phage particles in plots. In some cases, these

phage populations later recovered to densities above the detection threshold. Phage

populations that recovered in a later transfer were re-isolated from the undetectable

time point for use in cross-infection assays by growth from frozen stocks with ancestral

bacteria for 24h.

5.2.4 Population Density Analysis

The fluctuations in bacteria and phage population densities were analysed for magni-

tude of variation using the Fluctuation Index (FI, Vogwill et al., 2009):

FI =
1

TN̂
ΣT−1
t=0 |N(t+ 1)−N(t)| (5.1)

where N(t) is the population density at transfer t, and N̂ is the mean population over T

transfers. I also analysed the synchrony of the bacteria and phage population densities,

i.e. how much the oscillations in densities between replicates were in time with each

other. For this I define a synchrony measure φN (Loreau & de Mazancourt, 2008):

φN =
σ2
Nsum

(ΣiσNi)
2 (5.2)

where Ni(t) is the population density time-series (i = 1, 2, ..., S), S is the number of

populations being compared, Nsum(t) = ΣS
i=1Ni(t), and σ2

Ni
is the variance of Ni(t).

For the synchrony of the bacteria and phage population densities, I calculated the

synchrony between replicates pairwise (S = 2), then found the mean and standard

error (SE) of the resulting φN values for each treatment. For synchrony between the

bacteria and phage populations, I calculated the synchrony measure φN per replicate

population (S = 2), then averaged over all replicates for each treatment. Replicates

where the phage died out were excluded where relevant.

5.2.5 Cross-infection Resistance Assay

Cross-infection assays were conducted to compare the resistance of the bacteria to phage

from different treatments. As phage survival was variable across treatments (section

5.3.2), I selected 4 treatments where phage survived to the endpoint in at least 4 out

of 6 replicates. For 4 replicates per treatment, I measured the resistance of end-point
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bacterial clones against whole phage populations from each treatment and replicate (16

phage populations in total).

To measure resistance, 20 bacterial clones and whole phage populations were grown

in 96-well microtitre plates containing the standard concentration of KB media in M9

salts (final volume 150µl). Bacterial overnight cultures were prepared directly from

glycerol stocks by inoculation into KB 96 well microtitre plates, incubated for 24h

at 28oC, 80% humidity, static. Phage cultures were inoculated from glycerol stocks

into microcosms containing ancestral bacteria for 24h (180 rpm, 28oC) then filtered

(0.22µm) to prepare phage stocks. Bacteria were added to achieve a 10−2 dilution and

phage a 10−1 dilution from overnight cultures, to ensure phage density was greater than

bacterial density (i.e. multiplicity of infection > 1). Bacterial growth was measured as

the change in absorbance at OD600nm over 20h. Relative bacterial growth (RBGij) for

bacteria i and phage j provides a metric of resistance to phage infection by describing

growth in the presence versus absence of phage (Poullain et al., 2008; Wright et al.,

2016). This is given by the following equation:

RBGij =
Absij(t = 20)−Absij(t = 0)

Absi control(t = 20)−Absi control(t = 0)
, (5.3)

where Absij(t) denotes the absorbance for bacteria i grown with phage j at time t, while

Absi control(t) denotes the absorbance for bacteria i grown in the absence of phage at

time t. RBG values were adjusted to restrict values to [0, 1] to keep within biologically

meaningful ranges (negative values suggest negative growth, while values greater than

1 suggest growth higher than the reference bacteria without phage).

5.2.6 Time-Shift Assay

Time-shift assays were conducted to measure the rate of coevolution between the bac-

teria and phage during the course of the experiment. Bacteria from transfers 6, 12 and

18 were grown with phage from the same population but three transfers in the past, the

same transfer, or three transfers in the future. This was done for four replicates of four

treatments where phage survived until the end of the experiment (note that different

replicates were used for each treatment due to differences in phage survival). Bacteria

overnight cultures were prepared as above for the cross-resistance assays. Phage cul-

tures were inoculated from glycerol stocks into deep 96 well plates containing ancestral

bacteria for 24h (28oC, 80% humidity, static), then filtered via centrifuge (0.22µm)

to prepare phage stocks. As above, bacterial growth was measured as the change in
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absorbance at OD600nm over 20h, giving a relative bacterial growth measure RBG as

a metric of resistance to phage infection (equation (5.3)).

5.2.7 Growth Curves

To assess the impact of phage resistance on adaptation to different resource levels,

I compared growth kinetics of the ancestral bacteria to phage-resistant mutants of

SBW25 (previously isolated by Harrison et al., 2013). Three independent clones of

each strain were pre-conditioned in 12 different resource concentrations for 48h, then

diluted by 10−2 in these KB concentrations into a 96-well microtitre plate (150µl final

volume). The absorbance at OD600nm was measured every 30 minutes after 1 minute

of shaking for 48h. The maximum growth rate was calculated as the maximum rate of

increase in optical density within 48h.

5.2.8 Statistical Analysis

I use statistics to analyse the data collected during the experiments detailed above. I

use linear mixed effect models, as these models allow for both fixed (parameters that are

fixed) and random effects (parameters that may contribute to randomness in the data).

These models are also useful when there is some non-independence within the data,

for example here the replicates in each treatment are all from the same original colony

and so are not independent. In these models, the response variable is the quantity

that we have measured that we want to explain using fixed and random variables from

the experiment. Here, I used the lmer program from the lme4 package in R to form

statistical models as described below.

The quantities used to analyse the population densities (Fluctuation Index FI and

synchrony φN , equations (5.1) and (5.2) respectively) were statistically analysed with

linear mixed effect models, with Fluctuation Index and synchrony as the response

variables, bacteria and phage resource amplitudes fitted as fixed effects, and replicate

as a random effect.

Linear mixed effect models were used to analyse the resistance assay data with RBG

as the response variable. In plots, RBG is used for bacteria resistance, while 1− RBG

represents phage infectivity. Bacteria and phage resource amplitudes were fitted as

linear and quadratic fixed effects with no interaction, and replicate as a random effect,

with phage replicate nested within bacteria replicate.
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An individual linear mixed effect model was used to analyse the time-shift assay data

with RBG as the response variable. Transfer, treatment, phage time-shift and their

interactions were fitted as fixed effects and replicate as a random effect.

The maximum growth rates were analysed using a mixed effects model, with maximum

growth rate as the response, resource concentration and phage resistance as fixed effects,

and replicate as a random effect (no interaction between resource concentration and

phage resistance was included, as the model was better without it: AIC = −474.4 with

interaction, AIC = −474.6 without interaction).

To determine if the fixed effects explain a significant trend in the data, I used the glht

program from the multcomp package in R to find p-values. These values describe the

probability that, when the null hypothesis is true, the actual statistic is greater than or

equal to the observed results. In the models described above, the null hypothesis is that

none of the fixed effects (variables) describe the data. Very low p-values (usually less

than 0.05) suggest that the null hypothesis is wrong, and thus the effect being tested

plays a significant role in the collected data. In this chapter I also quote t-values from

the mixed effect models, which are calculated as the model parameter over the standard

deviation of that parameter, therefore giving a relative size of the impact of an effect in

the model. These values are linked to p-values, in that large t-values provide evidence

against the null hypothesis and thus suggest that the effect being tested is significant.

When discussing phage survival in section 5.3.2 I use Z-values which describe how many

standard deviations an observation is above or below the mean value of what is being

observed. The null hypothesis is rejected if the Z-value is large, but is accepted if the

Z-value is close to zero.

5.2.9 Mathematical Model

In this section I sketch a mathematical model to describe the bacteria-phage experiment

above. This model is described in more detail in Chapter 6, including how the adaptive

dynamics method from Chapter 2 is extended to study coevolution.

As the bacterial population dynamics are affected by the amplitude of resource oscil-

lations (Figure 5.2), I use an ecological model for this interaction. I use a standard

SIS infection model (Susceptible-Infected-Susceptible; Anderson & May, 1981; Ferris &

Best, 2018; Chapter 2), which is described by the following equations:

dS

dt
= aS(1− qN)− bS − βSI + γI (5.4)
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dI

dt
= βSI − (α+ b+ γ)I (5.5)

where S, I are the susceptible and infected populations, and N = S + I is the total

population. The parameters are described in Chapters 2 and 6, with default values for

this chapter given in Table 6.1. I assume that infected hosts cannot reproduce and that

the bacteria can recover from infection (γ > 0). These assumptions are appropriate

for this experimental study system, as bacteria infected with actively replicating phage

are unlikely to divide (but see Ripp & Miller (1997) where this is not the case), and

bacteria can ‘recover’ from infection (Westra et al., 2012; Koskella & Brockhurst, 2014).

I checked the case where the bacteria cannot recover from infection (γ = 0), finding

the same results as in the presence of recovery (Figure 6.10).

To imitate the oscillating media used in the experiment, I let the birth rate a depend

on time through a periodic step function:

a = a0(1 + births(t)) (5.6)

where a0 is the ‘average’ birth rate, and the function births(t) is a step function between

a minimum and maximum (representing the low and high resource environments).

Details about the function births(t) are given in section 5.3.5, where births(t) is defined

in terms of the amplitude δ (equation (5.11)), and is plotted in Figure 5.8(a). An equal

amount of time is spent in each environment, with the period of the oscillations equal

to ε. The parameter a0 only takes the average value of the birth rate a when the

seasonal forcing births(t) is symmetric around zero, which is generally not the case

here (equation (5.11)). However, a0 is labelled the ‘average birth rate’ for consistency.

To model coevolution of the host and parasite, I use a range model that has been used

previously to model eco-evolutionary dynamics with specificity in infection (Best et

al., 2010b, 2017b; Boots et al., 2014). I use the following form for the transmission

coefficient, incorporating evolutionary traits host defence u and parasite infectivity v:

β = β(u, v) = β0(v)

(
1− 1

1 + e−κ(u−v)

)
, (5.7)

where β0(v) describes a trade-off between broadness of infection and efficacy of trans-

mission for the parasite, and κ denotes the steepness of the function. This transmission

function allows for specificity in infection to occur. For example, when parasite infec-

tivity v is large, the transmission coefficient is positive for most host defence strategies

u, and so the parasite can infect a wide range of hosts. Similarly, when host defence u is
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large, transmission β(u, v) is low or zero for most parasite infectivities v, and the host

can defend against a range of parasites. Chapter 6 gives more information about the

transmission coefficient β(u, v) and the trade-off functions β0(v), a0(u) (Figure 6.1).

I use the adaptive dynamics method to model coevolution (Geritz et al., 1998), in-

vestigating how the end-point of evolution varies with amplitude, i.e. I only consider

singular points in the trait space that are both convergence stable and evolutionarily

stable (Geritz et al., 1998) and are thus long-term attractors of evolution. In a coevo-

lutionary context, a singular point (u∗, v∗) is defined as the point where both the host

and parasite fitness gradients with respect to a rare mutant are zero, i.e.:

∂rH

∂um

∣∣∣∣
u=um=u∗

= 0 (5.8)

∂rP

∂vm

∣∣∣∣
v=vm=v∗

= 0 (5.9)

where rH = host fitness, rP = parasite fitness, um = mutant host resistance and vm =

mutant parasite infectivity (Best et al., 2010b). Second-order conditions on the two

fitnesses for evolutionary and convergence stability can be found in Best et al. (2010b)

(see also Chapter 6). The host fitness is found in the same way as in Chapter 2, using

numerical Lyapunov exponents for 0 ≤ δ ≤ 1 (Metz et al., 1992; Ferris & Best, 2018).

For the parasite fitness, I use the averaging method from Donnelly et al. (2013) and

the equilibrium susceptible resident population Ŝ = (α+ b+ γ)/β(u, v) to find:

rP = (α+ b+ γ)

(
β(u, vm)

β(u, v)
− 1

)
(5.10)

for all values of amplitude δ in [0, 1] (see Chapter 6 for full derivation). Note that the

parasite’s evolution only depends on seasonality through the host’s resistance, u.

§ 5.3 Results

In this section I present population density and evolutionary results from the bacteria-

phage experiment. I found that only the bacteria population sizes were affected by the

amplitude of the oscillating resource, and that the bacteria and phage evolved highest

resistance/infectivity in the intermediate amplitude treatments. The coevolutionary

model results match those from the experiment when bacterial growth rates in each

environment are included in the seasonal forcing, and as such the model can be used
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to explain the bacteria-phage evolutionary results.

5.3.1 Bacterial population dynamics were affected by resource

amplitude

To quantify the effect of resource oscillations on the ecological dynamics of host and

parasite populations I measured population densities of both species at every third

transfer. The extent of fluctuation in bacterial population densities varied according

to the amplitude of resource oscillations, such that density fluctuations increased with

the amplitude of resource oscillations (Figure 5.2; Amplitude effect on bacteria density

fluctuations: t = 14.171, p < 10−16) whilst also becoming more synchronous among

replicate populations (Figure 5.2; Amplitude effect on bacteria replicate synchrony:

t = 10.35, p < 10−16). By contrast, phage population densities were not significantly

affected by resource amplitude either in terms of fluctuation (Figure 5.2; Amplitude

effect on phage density fluctuations: t = 1.103, p = 0.27) or synchrony (Figure 5.2;

Amplitude effect on phage replicate synchrony: t = 0.547, p = 0.585). Previously it has

been shown that phage population sizes do not depend on resource quality (Harrison et

al., 2013), and so it is perhaps unsurprising that phage densities were not significantly

affected by the fluctuating resource concentrations. There was also no significant effect

of amplitude on the synchrony between the bacteria and phage populations (Figure 5.3;

Amplitude effect: t = 1.33, p = 0.184). Taken together, these data show that bacterial

population dynamics were driven by the resource oscillations, whereas phage densities

were not, suggesting that resource oscillations have a more direct effect on bacterial

ecological dynamics.

5.3.2 Phage Survival

Phage survival was analysed using a survival model (fitted to a Weibull distribution)

on the time of extinction given by the first transfer at which phage were undetectable

using PFUs and were later unrecoverable, taking into account phage that survived

until the end of the experiment. Phage death occurred in two or three replicates in

each fluctuation regime (Figure 5.4), but treatment was not found to be a statistically

significant factor (effect of treatment: Z = −0.18, p = 0.85).
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Figure 5.2: Effect of resource oscillation amplitude on the ecological dynamics of bac-
teria and phage. First row: Bacterial population dynamics. Second row: Phage pop-
ulation dynamics. Left column: Mean log10 population densities per ml ±SE. Grey
shading indicates timepoints with high resource levels, whereas white shading indicates
timepoints with low resource levels. Middle column: Mean fluctuation index FI ±SE
(equation (5.1)). Right column: Mean synchrony between replicates ±SE (equation
5.2). Analysis of phage densities omitted extinct phage replicates.

Figure 5.3: Mean pairwise synchrony (equation 5.2) between bacteria and phage pop-
ulations ± SE as the difference in resources (amplitude) increases.
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Figure 5.4: Proportion of surviving phage replicates against transfer number for each
treatment. The dashed line indicates the treatment that was not used for the resistance
assays due to fewer than four surviving phage replicates at the final transfer.

5.3.3 Resistance and infectivity ranges peak at intermediate resource

amplitude

To explore how the amplitude of resource oscillations affected bacterial resistance evo-

lution, I performed a cross-infection experiment using bacteria and phage isolated from

the end of the coevolution experiment. Specifically, for each population I tested the

resistance of multiple bacterial clones against infection by phage populations from all

other treatments, thus gaining an overall measure of the change in resistance and infec-

tivity traits that occurred during the experiment through coevolution. I found that bac-

teria from intermediate amplitude treatments evolved greater resistance against phage

compared to bacteria from constant or high-amplitude oscillating environments (Figure

5.5(a); effect of quadratic bacteria resource amplitude term: t = −2.334, p = 0.0499).

Phage evolved to counter-adapt against increased bacterial resistance, Figure 5.5(b),

such that the highest infectivity arose in phage evolved under intermediate amplitude

resource oscillations (effect of quadratic phage resource amplitude term: t = 2.639,

p = 0.022), with the lowest infectivity observed in phage evolved under the highest

amplitude oscillations.

5.3.4 Rates of Evolution of Resistance

The rate of resistance evolution in the bacteria slowed down through time in all treat-

ments, shown by the decrease in slopes of resistance with phage shift (Figure 5.6; effect
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Figure 5.5: (a) Bacterial resistance (RBG) against phage populations evolved under
four resource oscillation amplitude regimens. The black dashed line indicates the mean
RBG for ancestral bacteria against all phage populations. (b) Phage infectivity (1−
RBG) against bacterial populations evolved under four resource oscillation amplitude
regimens. Circles mark mean resistance/infectivity ±SE for each bacteria and phage
treatment.

of phage shift for all treatments at transfer 6 vs 12: p = 0.0524; 6 vs 18: p = 0.0725).

There was no clear effect of treatment amplitude on the rate of evolution, although the

individual treatments can be compared pairwise. For example, for bacteria at transfer

six, those from the 0.1/0.9KB treatment (intermediate amplitude) were overall more

resistant than bacteria from the high amplitude treatment (0.01/0.99KB; p = 0.0051).

Similarly, for bacteria from transfer eighteen, those from the highest amplitude treat-

ment (0.01/0.99KB) were significantly more resistant than bacteria from one of the

intermediate treatments (0.1/0.9KB; p = 0.0011) and the constant treatment (0.5KB;

p < 0.001). Note that here resistance is measured against phage from the same popu-

lation as the bacteria, and so does not represent the general range of resistance against

different phage (for range of resistance see Figure 5.5). Therefore these results suggest

that bacteria from the high amplitude treatment evolved specific resistance against their

own phage, whereas bacteria from the intermediate amplitude treatment (0.1/0.9KB)

evolved greater range of resistance (Figure 5.5) but lower specific resistance against

their own phage.
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Figure 5.6: Time-shift assays for four treatments (constant 0.5KB, oscillating
0.25/0.75KB, 0.1/09KB, 0.01/0.99KB). Circles denote mean RBG ± SE for bacte-
ria from transfers 6, 12 and 18 against past, contemporary and future phage from the
same population. Grey bars indicate transfers with high resource.

5.3.5 Modelling the Evolutionary Results

In order to model the experimental system above, I adapted an SIS model with fluc-

tuating growth rates (Ferris & Best, 2018) to include coevolution by way of a range

model (Best et al., 2010b, 2017b; Boots et al., 2014). Initially, I assumed that the

maximum (minimum) birth rates increased (decreased) linearly with resource concen-

trations. This model predicted monotonically decreasing investment in resistance and

infectivity as the amplitude of the birth rate oscillations increased (Figures 6.3 and

6.7). However, the patterns of evolved resistance and infectivity traits observed in the

experiment were non-monotonic and therefore this initial model did not capture the

evolutionary behaviour of the system. The initial model will be discussed in more detail

in Chapter 6, but here I will move on to the evidence-based seasonality case.

To better parameterise the model for the experimental system, I next experimentally

measured the effect of resource level on the growth rates of phage-sensitive and phage-
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Figure 5.7: (a) Mean maximum growth rate of ancestral (blue) and phage-resistant
mutant (red) bacteria in the absence of phage grown under different resource concen-
trations ±SE. Grey stripes indicate the resource concentrations used in the coevolution
experiment. (b),(c) Mean maximum growth rates ±SE from (a) against the amplitude
of oscillation, with black lines indicating the fitted birth rates from equation (5.11).
(b) Maximum resources and birth rate function 0.3684δ

30 + 0.029; (c) Minimum resources

and birth rate function −0.0699δ
30(1−0.9225δ) + 0.029.

resistant genotypes of P. fluorescens (Figure 5.7(a)). The phage-resistant genotypes

had lower growth across resource environments (Figure 5.7(a); effect of phage resistance:

t = −3.849, p = 0.0002), but more importantly, the growth rates of both genotypes

increased with resource level (resource effect on bacterial growth rate: t = 10.447, p <

10−10) but not linearly – the growth rate gradient is much steeper at low resource levels

(Figure 5.7(a)). Hence I incorporated the bacterial growth rates into the oscillating

birth rate in the model by choosing functions for the high and low resource birth rates,

that is, the maxima and minima of the function in equation (5.6) that imitate this

trend of bacterial growth rate with resource as per Figure 5.7(a). Specifically, I still

set the high resource birth rate in the model to increase linearly with amplitude, as

this resembles the changes in bacterial growth rate in the high resource concentrations

(resource concentrations ≥ 0.5 in Figure 5.7(a)). However, for the low resource birth

rate in the model, I used a function that allows for changes in gradient with amplitude,

so that it can decrease slowly at low amplitude oscillations (resource concentrations

0.25− 0.5 in Figure 5.7(a)), but rapidly declines at high amplitude oscillations (i.e. as

the resource level decreases further; resource concentrations < 0.25 in Figure 5.7(a)).

These functions relate to the overall trend of both genotypes in Figure 5.7(a), with

resistance costs incorporated through a trade-off in the average birth rate a0 that is

the same for all amplitudes/resources (equation (6.9)).

I used a statistical curve fitting technique to determine the best fit for the maximum

and minimum birth rate functions within a given functional form. This was done by
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first plotting the maximum growth rates from Figure 5.7(a) against amplitude (rather

than resource concentration), Figure 5.7(b), (c). I then assumed that the general form

for the minimum birth rate was xδ
1+yδ + 0.029, and that the maximum was mδ + 0.029,

where 0.029 is the mean maximum growth rate over both bacteria genotypes in the

constant environment (0.5KB concentration). The parameters x, y and m were found

by minimising the sum of squares error with the bacterial growth data of both genotypes

from Figures 5.7(b),(c), with a final error of 0.0023 for both functions. These functions

are plotted against amplitude with the growth data in Figure 5.7(b),(c). To incorporate

the maximum and minimum functions into the mathematical model, the functions

plotted in Figure 5.7(b),(c) were scaled such that the maximum and minimum birth

rates are zero in the constant environment (δ = 0), and take significant values in

the mathematical model. This resulted in the following seasonality function for the

mathematical model:

births(t) = birthsexp(t) =

0.3684δ if nε ≤ t < (n+ 1
2)ε ,

−0.0699δ
(1−0.9225δ) otherwise,

(5.11)

where δ is the amplitude, ε is the period, and n is a non-negative integer. This function

is plotted in Figure 5.8(a). Additional details about the method used to derive these

functions are given in Chapter 6.

I found that as the amplitude of oscillations δ increases, the model predicts that the host

evolves resistance non-monotonically, with highest resistance evolving for intermediate

amplitudes, Figure 5.8(b). This behaviour is similar to that found in the experiment,

Figure 5.5(a), and can be explained by considering the effect of the oscillating birth

rates as amplitude increases.

For low amplitudes in the model, the birth rate in the high resource environment

increases faster than it decreases in the low environment (Figure 5.8(a)). Therefore

the average birth rate over one oscillation increases with amplitude (Figure 5.8(a)),

and so the host can afford to invest more in resistance. The increase in the average

birth rate also increases the size of the infected population (Boots & Haraguchi, 1999;

Ferris & Best, 2018; Figure 2.2), which further amplifies selection for resistance. A

similar argument follows through to the experimental data: at low amplitudes the

low resource environment has similar growth and resistance costs compared to the

high environment (Figure 5.7(a),(b), resource concentrations 0.25 and 0.75), so average

growth is greater than in the constant environment. Similarly to the model, this results

in a high infected population density (Boots & Haraguchi, 1999; Ferris & Best, 2018;
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Figure 2.2) and so greater selection for resistance. Therefore I find higher resistance

evolving for intermediate amplitude oscillations due to increased selection for resistance,

which is (relatively) cheap when amplitudes are low, boosting the selection effect.

Figure 5.8: (a) Change in the maximum/minimum of the oscillating birth rate births(t),
corresponding to growth in the high and low resource environments, as the amplitude
of oscillations δ varies. Maximum = 0.3684δ; Minimum = −0.0699δ/(1 − 0.9225δ)
(equation (5.11)). The black dashed line shows the average birth rate at amplitude δ.
Insert: step function between minimum and maximum, with an equal amount of time
spent in each environment. Insert: step function between minimum and maximum,
with an equal amount of time spent in each environment. (b) Evolved host resistance
u∗ and (c) evolved parasite infectivity v∗ as amplitude δ increases.

For high amplitude oscillations in the model, the birth rate in the low resource environ-

ment decreases faster than it increases in the high environment as the amplitude is in-

creased further, Figure 5.8(a), giving an overall decrease in the average birth rate. This

leads to a lower infected density, and so there is less selection for resistance. Therefore,

as there is also a decrease in reproduction, the host can use the trade-off between birth

rate a0 and resistance u to invest more in growth, and so resistance decreases. For the

bacteria, low resource concentrations at high amplitudes hindered growth in ancestral

and spontaneous phage-resistant mutants (Figure 5.7(a)). This lack of growth means

that the infected density is low and so there is less selection for resistance, but also

that bacteria with high resistance are unlikely to survive the periodically low resource

environment. Hence the overall bacterial resistance decreases at high amplitudes.

The model shows that the parasite’s evolution only depends on the oscillations in host

birth rate through the host’s resistance u (see equation (5.10)), and so the parasite

evolves similarly to the host with highest infectivity evolving for intermediate ampli-

tudes (Figure 5.8(c)). This is similar to what I found experimentally for the phage

(Figure 5.5(b)), i.e. the phage evolve in response to the bacteria only since phage pop-

ulation sizes were unaffected by the oscillating resource (Figure 5.2) and fluctuations in

phage density did not significantly affect infectivity (effect of phage fluctuation index
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on phage infectivity: t = −0.779, p = 0.920). Hence the phage have a similar evolution

profile to bacterial resistance with respect to resource amplitude.

§ 5.4 Discussion

In this chapter I investigated how the amplitude of environmental oscillations affected

the coevolution of host resistance and parasite infectivity both experimentally and the-

oretically. I showed that the bacterium P. fluorescens and its lytic phage SBW25Φ2

evolved highest resistance and infectivity for intermediate amplitude oscillations in nu-

trient resources. I also developed a coevolutionary model that incorporates evidence-

based assumptions on the impact of seasonality on growth, which supported the empir-

ical data by showing maximum investment in host resistance and parasite infectivity

for intermediate amplitudes. The model reinforces the suggestion that the evolutionary

results are due to differential growth costs in the different environments.

I used the theoretical model to explain the empirical results for varying amplitude when

evidence-based growth rates are included in the oscillating birth rate function. The key

to the non-monotonicity in these results is due to how the growth rates in the individ-

ual environments change with amplitude. Starting at low amplitudes, the birth rate

in the high resource environment increases faster than it decreases in the low resource

environment as the amplitude increases, leading to an increase in the average birth rate

compared to the constant environment. This gives higher infected population densi-

ties, therefore increasing selection for resistance. Once the amplitude reaches a certain

value, the birth rate in the low resource environment decreases more rapidly and the

average birth rate decreases. Therefore the infected population size decreases, and so

there is less selection for resistance. The host can no longer afford high resistance due

to the decrease in birth rate, and since there is lower selection for resistance the host

can invest more in births to maintain a large population size. I found this behaviour for

a range of parameter values (Figures 6.10 - 6.13) and so it is not limited to the example

shown. These arguments from the model explain the experimental pattern for bacterial

resistance. Nutrient level determines the growth rate of the bacteria, with largest av-

erage growth rate in the oscillating treatments occurring for intermediate amplitudes.

This, along with low competition for resources between the bacteria, leads to a greater

infected population and therefore increased selection for resistance (Boots & Haraguchi,

1999; Ferris & Best, 2018; Figure 2.2). These factors combine such that bacteria in

resource environments with intermediate oscillations benefit from high nutrient levels
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(greater selection for resistance), but aren’t as limited by low resources (low costs at

low amplitudes), hence resistant mutants are able to survive better than in populations

experiencing high amplitude oscillations of resource levels. The effect of population

sizes can also be considered, with higher resource concentrations sustaining larger pop-

ulations with greater genetic diversity. Therefore resistant mutants are more likely

to occur in high resource concentrations, although their long-term survival depends

on fitness costs in the periodically low resource environments. This result, that the

bacteria evolve higher resistance in an oscillating environment with intermediate am-

plitude, appears contrary to existing evidence that a temporal environment constrains

or has no effect on coevolution (Harrison et al., 2013; Duncan et al., 2017), including

predator-prey interactions (Friman et al., 2011; Friman & Laakso, 2011; Hiltunen et al.,

2015). These studies all use a fixed amplitude of oscillation, while I use a fixed period,

and so there is likely to be an interacting effect of period and amplitude of oscillating

environments on coevolution, although this has yet to be studied empirically.

For the phage, I found that highest infectivity evolved for intermediate amplitudes,

and was limited by very high amplitude oscillations. The phage population sizes were

unaffected by the amplitude of the resource oscillations, which suggests that phage

infectivity was more strongly influenced by the strength of bacterial resistance than by

nutrient availability. Therefore I find a non-linear response in phage infectivity as the

amplitude of resource oscillations increases due to the behaviour of the evolved bacterial

resistance. This result can also be seen in the model developed here. The parasite

fitness is only affected by the oscillating environment through evolution of the host

(equation (5.10), see also Best et al., 2010b; Donnelly et al., 2013), and so maximum

infectivity evolves for intermediate amplitudes. A similar pattern was observed by

Harrison et al. (2013), in that the phage population densities were not affected by the

oscillating resource level and the phage evolved similarly to the host (broader range

of resistance and infectivity in a constant environment). This experimental system

and model are asymmetric in terms of how the oscillating environment impacts each

species, since only the host densities are strongly affected. This in turn influences

how evolution depends on the environment, leading to imbalances in coevolution and

producing the similar evolutionary profiles with resource amplitude. However this

effect, where only the host population is strongly impacted by the oscillations, is unlikely

to be universal. In fact, there are many instances of environmental variation that

strongly affect the parasite only (Mitchell et al., 2005; Fels & Kaltz, 2006; Laine,

2007; Vale et al., 2008; Duncan et al., 2017), both species (Hiltunen et al., 2015), or

their interaction (Zhang & Buckling, 2011; Dallas & Drake, 2016). In these cases, we
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may not expect similar resistance/infectivity evolutionary profiles, and mathematical

models have already shown that such oscillations in environmental conditions can have

a direct effect on parasite evolution (Koelle et al., 2005; Sorrell et al., 2009; Hamelin et

al., 2011; van den Berg et al., 2011). Hence we need to understand how the environment

influences each partner and their interaction in order to accurately predict the effect

on coevolution, especially for use in theoretical models.

Previously, theoretical models have predicted that hosts evolved highest resistance for

either constant or high amplitude oscillations in environment (Poisot et al., 2012; Fer-

ris & Best, 2018; Chapter 3). Despite including a stepped resource and coevolution,

previous models (Poisot et al., 2012) and the initial model extension (Chapter 6) failed

to fully replicate the experimental set-up well enough to reproduce the evolutionary

results. This is primarily due to how the minimum environment changes with ampli-

tude. Poisot et al. (2012) keep the minimum constant while the maximum resource

input increases, which does not match either the resource concentrations or growth

rates in the experiment. For the initial model extension, I assumed that the maximum

and minimum environments changed symmetrically, as this is how I altered the nutrient

concentrations, and the average birth rate remained constant for all amplitudes. Again,

this is not the case in the experiment, as I showed that growth rates decrease more

rapidly as the resource concentration decreases. However, by incorporating experimen-

tally derived growth kinetics, the coevolutionary model predicts evolution of highest

resistance and infectivity at intermediate amplitudes, supporting the experimental re-

sults. Due to the default behaviour of the model, which produces a monotonic decrease

in both traits for symmetric seasonality over a range of parameters (Figures 6.10 - 6.13),

the main difference between the experimental and theoretical results is the predicted

large drop in both resistance and infectivity for very high amplitudes. This could be

due to the experimental oscillations being less extreme than the largest amplitude used

in the model, and in fact the experimental data does suggest such a drop-off may occur,

especially for the phage. This could be tested by using an even lower concentration

of resource in the maximum amplitude environment, although this may come with an

increased risk of phage extinction (Wright et al., 2016). The model could also be made

more specific to the study system, for example by including free-living phage, more

details about the lytic cycle or more realistic parameter values derived from exper-

imental data. These alterations could make predictions more accurate, although the

extra effort may not be necessary if results obtained from a simpler model are adequate.

The co-evolutionary model could be applied to previous oscillating environment stud-

ies, provided that sufficient data about how the different individual environments affect
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both species is available (for example how the period of oscillations affect coevolution

(Harrison et al., 2013; Duncan et al., 2017)).

The vast majority of natural biological systems experience environmental oscillations

due to a range of biotic and abiotic factors, not least regular climate variation. The

impact of this seasonality on population dynamics in infectious disease systems has re-

ceived considerable attention (Altizer et al., 2006). Population densities are crucial to

shaping host-parasite coevolution (Papkou et al., 2016), yet until recently we have had

little understanding of how fluctuating population densities, in any biological context,

impact selection. This is now an emerging field of study; recent theoretical work (Koelle

et al., 2005; Poisot et al., 2012; Donnelly et al., 2013; Ferris & Best, 2018) has laid the

groundwork for us to be able to explore these impacts theoretically, and experimen-

tal tests of coevolution in oscillating environments are also emerging (Harrison et al.,

2013; Duncan et al., 2017). This study has emphasized the importance of identifying

underlying fitness costs to understand and better predict coevolution in a temporally

oscillating environment. These findings suggest that in host-parasite systems where the

hosts population growth dynamics are subject to seasonal forcing, coevolution will be

most constrained in environments with extreme amplitudes of oscillation. Further, for

oscillating environments that do not directly affect the parasite population, infectivity

evolves in response to changes in host defence only.



Chapter 6

Coevolutionary Model of Host

Defence and Parasite Infectivity

§ 6.1 Introduction

In this chapter, I present a more thorough analysis of the coevolutionary model from

Chapter 5, which was used to predict the results from the bacteria-phage experiment

(see also Ferris et al., in prep). The coevolutionary model is an extention of that from

Chapter 2, where I considered evolution of the host only. In reality, both the host and

the parasite are likely to coevolve due to their interaction with each other. This has

been observed in many different host species, including invertebrates (Bérénos et al.,

2011; Obbard & Dudas, 2014), plants (Laine, 2009; Edger et al., 2015) and bacteria

(Lenski & Levin, 1985; Forde et al., 2004; Koskella & Brockurst, 2014) for a range

of different parasite species. In particular, coevolution occurs between the bacteria P.

fluorescens and its bacteriophage, i.e. the species used for the experimental study in

Chapter 5 (Buckling & Rainey, 2002; Brockhurst et al., 2007), with Lopez-Pascua &

Buckling (2008) showing that the rate of coevolution depends on the productivity of

the environment. Therefore, to predict the evolutionary results from my experiment, it

is pertinent to consider coevolution, as has been done elsewhere for these study species

(Lopez-Pascua et al., 2014). Since coevolution is such a wide-spread and well recog-

nised phenomenon, there is a wealth of theoretical research on the subject, from genetic

based methods (Leonard, 1977; Sasaki, 2000; Agrawal & Otto, 2006; Lively, 2010b; En-

gelstädter, 2015) to adaptive dynamics studies (Restif & Koella, 2003; Boots et al.,

2014; Ashby & Boots, 2015; Kada & Lion, 2015) on a wide range of evolutionary topics
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(see Ashby et al. (2019) for an extensive list of theoretical host-parasite coevolution

studies). Mathematically, coevolution of two (or more) species is generally more diffi-

cult than evolution of a single species, but as the results from coevolutionary studies

may not be predictable from single-species evolution (Restif & Koella, 2003; Best et

al., 2009), it is often necessary to include coevolution to obtain accurate predictions.

For example, coevolution can lead to the emergence of more highly virulent parasites

compared to parasite-only evolution due to branching in the host (Best et al., 2009),

and so understanding the conditions that may lead to this scenario will be important

for real world infection dynamics. Hence, while studies focussed on evolution of a sin-

gle species are useful, coevolution is a fundamental process that may alter evolutionary

outcomes.

Evolution studies often assume that host defence and parasite infectivity are ‘univer-

sal’, such that any parasite can infect any host with transmission rate depending on

their overall infectivity and/or defence (Gandon et al., 2002; Bonds et al., 2005; Kada

& Lion, 2015). There is empirical evidence for this assumption (Kover & Schaal, 2002;

Mealor and Boots, 2006; Boots, 2011), however this is not always the case. For many

host-parasite systems infection is specific, where particular parasite strains are able

to infect only a certain range of hosts, and vice versa for host defence (Forde et al.,

2008; Poland et al., 2009). In particular, it has been shown that this is the case for

the interaction between the bacteria and phage in the experimental study in Chapter

5 (Buckling & Rainey, 2002; Poullain et al., 2008), and so a specific infection approach

may be more appropriate for these species. Often, a gene-for-gene, inverse gene-for-gene

or matching alleles method is used to study coevolution with specific infection (Sasaki,

2000; Agrawal & Lively, 2002; Tellier & Brown, 2007; Fenton et al., 2009, 2012; Best

et al., 2014), however these models often exclude ecological factors and population dy-

namics which I showed to be key in the oscillating environment experiment (Chapter

5; Ferris et al., in prep). Instead, I am able to utilise a ‘range’ model, developed by

Best et al. (2010b) and implemented for these study species by Lopez-Pascua et al.

(2014) (see also Best et al., 2014, 2017b; Boots et al., 2014). This approach involves

using an ecological infection model and adaptive dynamics, but also assumes an almost

all-or-nothing infection process which depends on both the parasite infectivity and host

defence traits. Specifically, when the host has high defence there is no transmission of

almost all parasites, whereas a host with low defence can be infected by almost any

parasite. Similarly, a parasite with high infectivity will be able to infect a wide range

of different hosts (generalist), whereas a parasite with lower infectivity will only be

able to infect a few hosts (specialist). Best et al. (2010b) use a continuous function to
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approximate this specific infection process, allowing them to include important ecolog-

ical dynamics and use the continuous evolutionary tools from adaptive dynamics. The

same approach for continuous infection specificity can be found elsewhere (Boots et

al., 2014; Best et al., 2017b), with Boots et al. (2014) finding that both specificity and

incompatability between strains are needed to produce static diversity (i.e. a polymor-

phism of different host and parasite strains that, once evolved, is maintained through

time). The inclusion of specificity makes adaptive dynamics results more comparable

to those from genetic based studies, where it is common to have this type of infection

interaction.

While there have been many theoretical host-parasite coevolution studies in a con-

stant environment, a vast majority of species will experience heterogeneous conditions

that affect life histories and infection dynamics. Investigating the effects of these en-

vironments on host-parasite coevolution is important, and in fact many have focussed

on spatial heterogeneity (Hartvigsen & Levin, 1997; Hochberg & van Baalen, 1998;

Damgaard, 1999; Thompson, 1999; Nuismer & Kirkpatrick, 2003; Moreno-Gámez et

al., 2013). For example, Hochberg & van Baalen (1998) showed that greater disper-

sal can lead to an increase in the spatial range of strains otherwise dominant in the

most productive environments, which decreases overall diversity. However, relatively

few have considered the impact of a temporally variable environment (Nuismer et al.,

2003; Mostowy & Engelstädter, 2011; Poisot et al., 2012), despite arguments that tem-

poral changes in environment and/or population sizes will have an effect on coevolution

(Wolinska & King, 2009; Papkou et al., 2016). These studies of temporal heterogene-

ity use genetic-based methods to study coevolution with specific infection, but only

Poisot et al. (2012) include ecological factors, which could change evolutionary out-

comes through eco-evolutionary feedbacks (Chapter 3; Ferris & Best, 2018; Ashby et

al., 2019). Poisot et al. (2012) found that, for step-wise environmental fluctuations

implemented through a dynamic resource, the host evolved lowest resistance for in-

termediate amplitudes and the parasite invested more in infectivity as the amplitude

increased. While these predictions may hold for certain empirical systems, they cer-

tainly do not match the results from the bacteria-phage experiment in Chapter 5, where

I found maximum investment in host resistance and parasite infectivity at intermediate

amplitude oscillations in resource concentration (see also Ferris et al., in prep). As dis-

cussed in Chapter 5, the main reason for the difference between the experimental and

Poisot et al.’s results is due to how the periodic forcing is implemented in their model,

as it does not reflect the experimental conditions. Similarly the host-only evolution

result, where defence decreases monotonically as amplitude increases (Chapter 3; Fer-
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ris & Best, 2018), does not fit the resistance results from the experiment for the same

reason. A parasite-only evolution prediction of monotonic increasing transmission by

Donnelly et al. (2013) also does not match the empirical results for the phage. There-

fore a reasonable next step would be to consider coevolution of the host and parasite

with recovery, potentially using a specific seasonality function that takes into account

bacterial growth in each individual environment. A model for this was presented in

Chapter 5, which found that once the seasonal forcing is based on empirical data, the

evolutionary outcomes better reflect those from the experiment.

In this chapter, I give a more thorough examination of the coevolutionary model from

Chapter 5 that was used to predict the evolutionary outcomes observed in the bacteria-

phage experiment (maximum resistance/infectivity for intermediate amplitudes; see

also Ferris et al., in prep). I give more background to the development of the coevolu-

tionary range model, based on that by Best et al. (2010b), that incorporates a periodic

forcing in the host birth rate as a proxy for the oscillating resource concentration. Us-

ing previous studies and work from Chapter 3, I predicted that a continuous symmetric

sinusoidal form for the seasonality would give a monotonic decrease in host defence

(Ferris & Best, 2018; see also Chapter 3), and that the parasite’s evolution would not

directly depend on the seasonality (Donnelly et al., 2013). As expected, the host and

parasite evolved monotonically decreasing defence and infectivity as the amplitude of

seasonality increased, even when the seasonal forcing was discretized. As shown in

Chapter 5, to obtain the results from the experiment I introduced a stepped forcing

based on growth rates of the bacteria in each individual environment. This form for

the seasonality produced evolutionary results that are much more similar to those from

the experimental data, emphasizing that specific details about experimental systems

may be needed to be able to predict evolutionary outcomes, especially in heterogeneous

environments.

§ 6.2 Methods

Here I describe the model presented in Chapter 5 in more detail, and give more in-

formation about the coevolutionary method. The model is an extension of that from

Chapter 2 to include a specific transmission process by considering host-parasite range

(Best et al., 2010b, 2017b; Boots et al., 2014). I compare three different forms for the

seasonal forcing in host birth rate, one of which is based on the maximum bacterial

growth rates from the experiment in Chapter 5. In section 6.3, I explore how the sea-
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sonal parameters affect the coevolutionary dynamics for each of the different types of

seasonality.

6.2.1 Infection Model

To begin, I use the same SIS infection equations as in Chapter 2. To reiterate:

dS

dt
= aS(1− qN)− bS − βSI + γI, (6.1)

dI

dt
= βSI − (α+ b+ γ)I, (6.2)

where S, I and N denote the susceptible, infected and total population sizes respec-

tively. Since I am now using these equations to model specific species, I have to be

careful about the underlying assumptions. In the experimental system, the hosts re-

produce asexually (birth rate a; Koch, 2002), and since this is a lytic phage parasite I

assume that once infected the hosts can no longer reproduce (Cairns et al., 2009; but

see Ripp & Miller, 1997). The hosts are limited to a finite population size through

competition for resources (Hui, 2006), which I implement in the birth term through a

crowding coefficient q. The bacteria were transferred to fresh media before they reached

the death phase of their growth (Monod, 1949), and so I assume that all hosts have

a constant intrinsic death rate b (baseline mortality rate). In the model, susceptible

hosts are infected with transmission coefficient β on contact with infected individu-

als using the mass action principle. In reality, the bacteria are infected by free-living

phage particles. The model almost accounts for this discrepancy through the number

of infected bacteria I, which is likely to be proportional to the number of free-living

phage by way of the lytic phage bursting infected cells (but see Bull, 2006; Pagliarini &

Korobeinikov, 2018 for models with free-living phage particles). This bursting process

kills the infected host cells, and so I incorporate this in the model through an additional

infected death rate α. I assume that the host can recover from the parasite and return

to the susceptible class at rate γ, which is appropriate for the experimental system as

there is evidence to suggest that bacteria can ‘recover’ from infection (Westra et al.,

2012; Koskella & Brockhurst, 2014). I also consider the case with no recovery (γ = 0),

finding the same qualitative results (Figure 6.10). Table 6.1 contains descriptions and

default values used for all the parameters in the mathematical model, including those

used in the trade-off functions described below.
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Parameter Definition Default Value

a0 Average birth rate Varies
â0 Relative size of the average birth rate a0(u) 22.7
pu Gradient of the average birth rate a0(u) 5.7
cu Curvature of the average birth rate a0(u) −0.4
β Transmission coefficient Varies
κ Steepness of transmission β(u, v) 2
β0 Efficacy of transmission Varies

β̂0 Relative size of the efficacy of transmission β0(v) 261.4
pv Gradient of the efficacy of transmission β0(v) 194
cv Curvature of the efficacy of transmission β0(v) 0.5
umin Minimum host defence 0
umax Maximum host defence 10
vmin Minimum parasite infectivity 0
vmax Maximum parasite infectivity 10
u Host defence Varies
v Parasite infectivity Varies
δ Amplitude of periodic forcing births(t) Varies
ε Period of periodic forcing births(t) 1
q Crowding coefficient acting on births 0.1
b Baseline mortality rate 1
γ Recovery Rate 1
α Virulence/additional death rate due to parasite 6

Table 6.1: Parameter definitions and default values for the coevolutionary model.

6.2.2 Seasonality

For this model, I focus on three different types of seasonality, namely a continuous sine

function (Chapters 3 and 4, see also Ferris & Best, 2018), a discretized version of the

sine function, and a periodic step function that imitates the bacterial growth rates in

the oscillating resource concentrations (Figure 5.7; Ferris et al., in prep). In order to

do this, I let the birth rate a depend on time through the function births(t):

a = a0(1 + births(t)) (6.3)

where a0 is the ‘average’ birth rate, and births(t) is a periodic function of time. For

the continuous sine function, as in Chapter 2, I use the following:

births(t) = birthscont(t) = δsin(2πt/ε) (6.4)
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where δ is the amplitude and ε the period of oscillations. I also consider a discontinuous

version of this seasonality through a periodic step function. This is so that I can

check the effect of including discontinuities in the seasonal forcing on the evolutionary

outcomes. Hence I use the following:

births(t) = birthsstep(t) =

δ if nε ≤ t < (n+ 1
2)ε ,

−δ otherwise,
(6.5)

where n is a non-negative integer. Here the birth rate alternates between a positive

maximum and negative minimum that depends on the amplitude δ, Figure 6.7(a), with

the average birth rate constant for all δ and an equal amount of time ( ε2) spent in each

environment.

To imitate the bacterial growth rates in the different resource concentrations in the

experiment, I chose to use a step function similar to that in equation (6.5) where

the maximum and minimum birth rate functions were fitted to the maximum bacterial

growth rate data from Figure 5.7. This was done by first plotting the maximum growth

rates against amplitude (rather than resource concentration). I then assumed that the

general form for the minimum birth rate was xδ
1+yδ + 0.029, and that the maximum

was mδ + 0.029, where 0.029 is the mean maximum growth rate over both bacteria

genotypes in the constant environment (0.5KB concentration). These assumptions

result in functions such that the maximum grows linearly with amplitude, while the

minimum is non-linear and decreases more rapidly as the amplitude increases (i.e. less

growth as the resource concentration decreases). The parameters x, y and m were

found by minimising the sum of squares error with the maximum growth data for all

three replicates of both the ancestral and phage-resistant bacteria. This was done by

using the ‘fminsearch’ solver in MATLAB, with final error 0.0023 for both the minimum

and maximum birth rate functions. If I assume that the maximum has the same form

as the minimum (i.e. xδ
1+yδ + 0.029), the sum of squares error with the bacterial growth

rate data is the same as for the linear function, hence I use the linear approximation

for simplicity. The functions are plotted with the mean maximum growth rate data

in Figure 5.7(b),(c). These functions were then scaled such that the maximum and

minimum birth rates are zero in the constant environment (δ = 0), and take significant

values in the mathematical model. The periodic forcing births(t) is then given by the
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following:

births(t) = birthsexp(t) =

0.3684δ if nε ≤ t < (n+ 1
2)ε ,

−0.0699δ
(1−0.9225δ) otherwise,

(6.6)

where, again, n is a non-negative integer. The function birthsexp(t) is plotted in Figure

6.8(a), and an equal amount of time ( ε2) spent in each environment.

6.2.3 Specific Infection and Trade-Offs

In contrast to the models in Chapter 3 and 4, I now define separate evolutionary

parameters that do not immediately appear in the SIS equations above. Let u denote

the level of host defence and v parasite infectivity such that u ∈ [umin, umax] and v ∈
[vmin, vmax] for some pre-defined limits (see Table 6.1). To include a specific infection

process, I need to define the transmission coefficient β such that there is an almost “all-

or-nothing” response where hosts (respectively parasites) can defend against (infect)

only a certain range of parasite infectivities (host defences). Hence I use the following

continuous function for transmission coefficient β (Best et al., 2010b; see also Nuismer

et al., 2007; Boots et al., 2014; Best et al., 2017b):

β = β(u, v) = β0(v)

(
1− 1

1 + e−κ(u−v)

)
, (6.7)

where κ determines the level of specificity (i.e. the steepness of the curve), and β0(v)

describes a trade-off between broadness of infection and efficacy of transmission for

the parasite (see equation (6.8) below). Figure 6.1(a) shows how this β(u, v) function

varies with host defence u for two different parasite infectivity values v. For low u,

transmission β is at its maximum and there is high transmission of the parasite. As

defence increases, the host can defend itself against a wider range of parasites and

so the transmission coefficient decreases, with gradient determined by the steepness κ

(see Figure 6.1(b) for different κ values). Transmission rapidly decreases to zero once

host defence is greater than parasite infectivity, so that for high u the host can defend

against almost all parasites and there is little or no transmission (β ≈ 0). For a parasite

with high infectivity v (red line in Figure 6.1(a)), a broad range of hosts can be infected

but with low efficacy due to the trade-off in β0(v). Meanwhile, a parasite with lower

infectivity v (blue line in Figure 6.1(a)) can infect fewer hosts but with a much greater

rate of success for those hosts. In particular, note that higher infectivity v does not
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Figure 6.1: (a) Change in the transmission coefficient β(u, v) as host defence u varies
for parasite infectivity v = 5 (blue) and v = 9 (red). For higher v, the parasite can
infect a wider range of hosts, but has a low efficacy as a result. Equally, a host with
greater defence u can prevent infection by a wider range of parasites. (b) Change in
transmission coefficient β(u, v) as host defence u varies for parasite infectivity v = 5
and steepness κ varying between 0.5 (blue) and 3 (red) in steps of 0.5. The curve is
steeper for higher κ, giving a more specific infection process. (c) Change in the efficacy
of transmission β0(v) as parasite infectivity v varies for default parameter values with
increasing cv from 0.5 (blue) to 1 (red) in steps of size 0.1. (d) Change in the average
birth rate a0(u) as host defence u varies for default parameter values with increasing
cu from −0.4 (blue) to 0.4 (red) in steps of size 0.1.

guarantee greater transmission depending on the level of host defence (e.g. compare

the two values of v at u = 4 and u = 8).

As mentioned above, I assume that the parasite evolves infectivity v through the range

of transmission, but I also include a cost in the efficacy of transmission β0(v). I use the
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following equation to describe this:

β0 = β0(v) = β̂0 − pv

1 + v−vmin
vmax−vmin

1 + cv
v−vmin

vmax−vmin

, (6.8)

where pv, cv determine the gradient and curvature of β0(v) and β̂0 − pv is the min-

imum efficacy obtained. I choose parameters such that as the broadness of infection

increases (v increases) the efficacy of transmission β0(v) decreases, as has been observed

empirically (Thrall & Burdon, 2003; Poullain et al., 2008). Hence I need a negative

gradient β′0(v) < 0, which can be obtained by satisfying either pv < 0 and cv > 1, or

pv > 0 and −1 < cv < 1. The parameter β̂0 is chosen such that β0(v) > 0 for all v, i.e.

β̂0 > 2pv/(1 + cv). Default parameters for this trade-off are given in Table 6.1, and this

function is plotted against parasite infectivity v in Figure 6.1(c). Note that since the

cost of increased transmission is through reduced range, there is no infectivity trade-off

with virulence which has commonly been assumed elsewhere (Miller et al., 2006; Best

et al., 2009, 2014; Svennungsen & Kisdi, 2009).

I assume that the host evolves defence u through lowered transmission coefficient β,

however this comes at a cost to the average birth rate a0 (equation (6.3)). Similarly to

the models in Chapters 3 and 4, I use the following trade-off function to describe this

cost:

a0 = a0(u) = â0 − pu

1 + u−umin
umax−umin

1 + cu
u−umin

umax−umin

, (6.9)

where pu, cu determine the gradient and curvature of a0(u) and â0−pu is the minimum

average birth rate. I choose trade-off parameter values such that as host defence u

increases, the average birth rate decreases, giving a negative gradient a′0(u) < 0. For

this to hold, I need to satisfy either pu < 0 and cu > 1, or pu > 0 and −1 < cu < 1. The

parameter â0 is chosen such that a0(u) > 0 for all values of u, giving â0 > 2pu/(1 + cu).

Again, default parameters for this trade-off are given in Table 6.1, and this function is

plotted against host defence u in Figure 6.1(d).

6.2.4 Coevolutionary Adaptive Dynamics

Here I provide details about how adaptive dynamics is used to study coevolution. In

addition to the general assumptions for single-species evolution (Chapter 2; Geritz

et al., 1998), I also assume that the host and parasite mutation speeds are equal.

This assumption simplifies the coevolutionary dynamics, although the effect of different
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mutation rates has been explored elsewhere (Dieckmann & Law, 1996; Haraguchi &

Sasaki, 1996; Marrow et al., 1996; Nuismer et al., 2005; Best et al., 2009, 2010b).

6.2.4.1 Fitness

As for single-species evolution, I need to find the fitness for the host and the parasite

to determine the direction of evolution. The host fitness is calculated in the same way

as explained in Chapter 2. For no seasonality (δ = 0), I use the negative determinant

of the Jacobian to find:

rH = (α+ b+ γ) [a0(um)(1− qN∗)− b]− (α+ b)β(um, v)I∗, (6.10)

where I∗, N∗ denote the equilibrium infected and total population sizes respectively.

This fitness is discussed in more detail in section 6.2.4.4. When seasonality is present

(0 < δ ≤ 1), the form of the general solution to the mutant equations is different due

to time-dependent coefficients, and so I use numerical Lyapunov exponents as the host

fitness (Chapter 2; Metz et al., 1992; Klausmeier, 2008).

For the parasite fitness, I use the averaging method from Donnelly et al. (2013) which

finds a fitness that is valid for all values of the amplitude δ. To start, I introduce a

mutant parasite with infectivity vm:

dIm

dt
= β(u, vm)S∗Im − (α+ b+ γ)Im , (6.11)

where S∗ = S∗(t) is the limit cycle of the susceptible resident host. I can then find the

parasite fitness rP as the average growth of the mutant parasite over one period:

rP =
1

T

∫ P1

P0

1

Im

dIm

dt
dt (6.12)

=
1

T

∫ P1

P0

[β(u, vm)S∗(t)− (α+ b+ γ)] dt (6.13)

= β(u, vm)Ŝ − (α+ b+ γ) , (6.14)

where Ŝ = 1
T

∫ P1

P0
S∗(t)dt is the average susceptible resident population, P0 is some

arbitrarily chosen time, P1 = P0 + T and T is some multiple of the period of the

equilibrium dynamics (usually T = ε). As shown in Chapter 2, I can calculate Ŝ by
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integrating the equilibrium infected host equation over one period:

1

T

∫ P1

P0

1

I

dI

dt
dt = [ln(I)]t=P1

t=P0
= 0 (6.15)

=
1

T

∫ P1

P0

βS − (α+ b+ γ)dt = βŜ − (α+ b+ γ) (6.16)

giving Ŝ = (α + b + γ)/β. Now, substituting this into equation (6.12), I have the

parasite fitness rP for δ ∈ [0, 1]:

rP = (α+ b+ γ)

(
β(u, vm)

β(u, v)
− 1

)
. (6.17)

6.2.4.2 Singular Points

In a coevolutionary context, a singular point (u∗, v∗) is defined as the point at which

both the host and parasite fitness gradients with respect to a rare mutant are zero:

∂rH

∂um

]
u=um=u∗

= 0 (6.18)

∂rP

∂vm

]
v=vm=v∗

= 0 (6.19)

where rH = host fitness, rP = parasite fitness, um = mutant host defence and vm =

mutant parasite infectivity (Geritz et al., 1998; Best et al., 2010b). I find the host

fitness gradient numerically as described in Chapter 2, whereas I can find the parasite

fitness gradient analytically for all δ:

∂rP

∂vm

∣∣∣∣
v=vm=v∗

=

[
(α+ b+ γ)

β(u, v)

∂β(u, vm)

∂vm

]
v=vm=v∗

(6.20)

= (α+ b+ γ)

[
1

β0

∂β0

∂v
− 1

(1− F )

∂F

∂v

]
v=v∗

, (6.21)

where I have simplified the expression using β(u, v) = β0(v)(1− F ) for:

F = F (u, v) =
1

1 + e−κ(u−v)
. (6.22)

For any value of the amplitude δ, the numerical program I use to find the singular point

(u∗, v∗) is slightly altered for coevolution, as I have to find not one but two values. The
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fact that the parasite fitness is analytic for all δ greatly simplifies this issue, and so I

use the following numerical scheme:

1. Pick a value of u and find its associated v∗ using the analytic parasite fitness

gradient in equation (6.20).

2. Using this value of v∗, find the host fitness gradient for the chosen u numerically

(see Chapter 2).

3. Repeat for multiple values of u until the host fitness gradient changes sign. This

gives the singular point (u∗, v∗).

6.2.4.3 Types of Singular Points

In this chapter I primarily consider singular points that are end-points of coevolution,

i.e. the combinations of strategies at which the populations no longer evolve and con-

tinue to have those strategies for all time. These singular points are called CoESSs,

which are similar to CSSs in single species evolution (see Chapter 2). This type of

point occurs when evolutionary stability (ES, no local mutant can invade the current

population) and convergence stability (CS, evolution towards the singular point) are

satisfied for both the host and the parasite (Geritz et al., 1998). Coevolutionary sin-

gular points that do not satisfy these criteria do exist for this model (e.g. branching

points, see Best et al., 2010b), but I do not focus on these outcomes in this work.

The singular point is evolutionarily stable when the following conditions are satisfied

(Gertiz et al., 1998; Best et al., 2010b):

EH =
∂2rH

∂u2
m

∣∣∣∣
u=um=u∗

< 0, (6.23)

EP =
∂2rP

∂v2
m

∣∣∣∣
v=vm=v∗

< 0. (6.24)

For the host, EH can be calculated numerically when δ > 0, as described in Chapter

2. In a constant environment (δ = 0), EH can be found analytically (section 6.2.4.4),

the sign of which is plotted in Figure 6.2(a) for varying host defence u and parasite

infectivity v. This shows where the host singular point is evolutionarily stable for δ = 0,

i.e. where EH < 0 (blue regions). These regions may change for δ > 0.
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Figure 6.2: Sign of (a) EH and (b) EP as host defence u and parasite infectivity v vary
for default parameters. Blue: EH, EP < 0, so host/parasite evolutionary stability is
satisfied. White: EH, EP > 0, so host/parasite evolutionary stability is not satisfied.
The region in (b) holds for all values of δ ∈ [0, 1], while that in (a) is only true for δ = 0.
(c) Overlap of the blue regions shown in (a) and (b), where red indicates the area such
that both EH < 0 and EP < 0, i.e. where the singular point (u∗, v∗) is evolutionarily
stable at δ = 0. White areas show where at least one of the stability conditions is not
satisfied, i.e. EH > 0 or EP > 0.

For the parasite, the derivative EP becomes:

EP =
∂2rP

∂v2
m

∣∣∣∣
v=vm=v∗

(6.25)

= (α+ b+ γ)

[
1

β0

∂2β0

∂v2
− 2

β0(1− F )

∂F

∂v

∂β0

∂v
− 1

(1− F )

∂2F

∂v2

]
v=v∗

. (6.26)

While the middle term is always negative, the sign of the first term (∂
2β0
∂v2

) depends

on the choice of trade-off parameters, and the third term (∂
2F
∂v2

) depends on the sin-

gular point (u∗, v∗). Figure 6.2(b) shows where the evolutionary stability condition is

satisfied for varying defence u and parasite v with default parameters. For all ampli-

tudes δ, singular points inside the blue region satisfy EP < 0 and the parasite trait is

evolutionarily stable.

When there is no seasonality (δ = 0), the singular point (u∗, v∗) must be within the

red region in Figure 6.2(c) for both host and parasite evolutionary stability to hold.

The conditions for convergence stability are more complicated. When I assume that

the species mutate at the same rate, the eigenvalues of the following Jacobian matrix

determine whether or not the singular point is convergence stable (Kisdi, 2006; Best et
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al., 2010b):S∗(EH +MH) S∗AH

I∗AP I∗(EP +MP)

 =

S∗
(
∂2rH
∂u2m

+ ∂2rH
∂um∂u

)
S∗ ∂2rH

∂um∂v

I∗ ∂2rP
∂vm∂u

I∗
(
∂2rP
∂v2m

+ ∂2rP
∂vm∂v

)
 .
(6.27)

Due to the complexity of this condition, I used stochastic evolutionary simulations to

check for convergence stability for all values of δ, including when there is no seasonality.

These simulations were performed as in Chapter 2 with adjustments to incorporate

coevolution:

1. Start with an initial population with traits (u0, v0) and run the population to

equilibrium.

2. Add a rare host or parasite mutant (probability 1
2 each for the first mutant) with

small population size and trait close to u0 or v0 (probability 1
2 above or below).

3. The dynamics of the whole population (initial and mutant) are run for a fixed

length of time.

4. At the end of this run, if one or more of the populations is smaller than a fixed

threshold, the population is removed.

5. A mutant from the other species is added, again with small population size and

trait close to u0 or v0.

6. Steps 3 - 5 are repeated many times, alternating adding host and parasite mutants,

where the traits of new mutants depend on the current population traits and their

relative densities (if more than one strain persists).

7. The traits (u, v) are plotted through time, with shading showing the relative

density of the population with each strain.

Examples of coevolutionary simulation outputs can be found in Figure 6.5 for default

parameters with the continuous seasonal forcing.

6.2.4.4 Example: Coevolutionary Dynamics With No Seasonality

When there is no seasonality (δ = 0) I can find the host fitness analytically, and

therefore the derivatives needed for the coevolutionary dynamics above. To find the
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host fitness, I use the negative determinant of the Jacobian of the simplified mutant

equations (Chapter 2; Hoyle et al., 2012) to obtain:

rH = (α+ b+ γ) [a0(um)(1− qN∗)− b]− (α+ b)β(um, v)I∗, (6.28)

where I∗, N∗ denote the equilibrium infected and total population sizes respectively

(see also equation (6.10)). This then gives the host fitness gradient:

∂rH

∂um

∣∣∣∣
u=um=u∗

=

[
(α+ b+ γ)(1− qN∗)da0(um)

dum
− (α+ b)I∗

∂β(um, v)

∂um

]
u=um=u∗

(6.29)

=

[
(α+ b+ γ)(1− qN∗)da0

du
+ (α+ b)I∗β0(v)

∂F

∂u

]
u=u∗

, (6.30)

where I have simplified the expression for β(u, v) using F (u, v) as defined in equation

(6.22). To determine if the host singular point u∗ is evolutionarily stable, I need to find

the sign of:

∂2rH

∂u2
m

∣∣∣∣
u=um=u∗

=

[
(α+ b+ γ)(1− qN∗)∂

2a0

∂u2
+ (α+ b)I∗β0(v)

∂2F

∂u

]
u=u∗

(6.31)

For this to be negative, and therefore the host singular point to be ES, I need ∂2a0
∂u2

< 0

and/or (2e−2(u−v)F − 1) < 0 for u = u∗ since the rest of the terms are positive. Given

that default pu > 0, the first condition holds for all u when −1 < cu < 0. For the

second condition I need e−2(u∗−v) < 1, i.e. u∗ > v. Therefore I chose default cu to

satisfy the first condition, and u∗ > v∗ at δ = 0 to satisfy the second. The regions

where EH < 0 is satisfied for varying u and v is plotted for default values and δ = 0

in Figure 6.2(a), showing that we either need u > v or v � u for the host strategy

to be evolutionarily stable. Note that I can find u∗ < v∗ such that the singular point

remains ES, for example for increased crowding coefficient q (Figure 6.12), although

the traits have to be very close to each other to satisfy both ES conditions. This is

shown in Figure 6.2(c) for δ = 0, where the traits have to be within the red region to

satisfy both EP < 0 and EH < 0, i.e. for the singular strategy to be evolutionary stable

in both traits.

I used the stability conditions to find an initial singular point at δ = 0 that was both

ES (Figure 6.2) and CS (simulations). From there I explored how seasonality affected

this singular point using the numerical methods detailed above, with simulations to

confirm that the singular point remained a CoESS for all amplitudes. In some cases,
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the singular point changed type as the amplitude increased, for example Figure 6.6,

but this was not explored further as it was not relevent to the experimental study in

Chapter 5.

§ 6.3 Results

Here I use the methodology above to investigate how changing the amplitude of os-

cillations alters host-parasite coevolution for the three types of seasonality defined in

equations (6.4) - (6.6). I focus on singular points that are evolutionarily and conver-

gence stable, which are end points of evolution (CoESSs). I compare the different types

of seasonality with results from the experiment in Chapter 5, where I found maximal

investment in host defence and parasite infectivity for intermediate amplitude oscilla-

tions.

6.3.1 Sinusoidal Seasonality

Figure 6.3: (a) Change in the minimum/maximum of birthscont(t) = δ sin(2πt/ε) (equa-
tion (6.4)) as the amplitude δ varies. Maximum = δ; Minimum = −δ. Insert: sine
function seasonality with symmetric maxima and minima. (b) Evolved host defence u∗

and (c) evolved parasite infectivity v∗ as amplitude δ increases.

First, let us consider the continuous sinusoidal seasonality case birthscont(t), i.e. the

seasonality function used in Chapters 3 and 4. Figure 6.3 shows that for this seasonality,

the host and parasite evolve monotonically decreasing defence and infectivity as the

amplitude δ increases. This is not what I found in the experiment, but it is what I

expected given results from my host-only evolution model with this type of seasonality

and positive recovery (Chapter 3). The parasite infectivity trend is predictable from the

host behaviour: as the amplitude increases, the host invests less in defence and so the

parasite can afford to invest less in the broadness of infection. Overall, the transmission
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Figure 6.4: (a) Change in the transmission coefficient evaluated at the singular
point β(u∗, v∗) as the amplitude of seasonality δ increases for the sinusoidal forcing
birthscont(t). (b) Change in the infectivity singular point v∗ as host defence u varies.
This holds for all forms of births(t) and all values of the seasonal parameters δ and ε.

Figure 6.5: Examples of stochastic simulations used to confirm that the singular point
is ES and CS for multiple values of the amplitude δ. Darker shading indicates a higher
proportion of the population with defence u or infectivity v, and the initial population
had trait values (u0, v0) = (9, 8.9). Left column: Evolution of host defence u through
time. Right column: Evolution of parasite infectivity v through time. Top row: No
seasonality (δ = 0). Bottom row: Maximum amplitude in the seasonality (δ = 1).
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Figure 6.6: (a) Change in host defence u∗ (blue) and parasite infectivity v∗ (red dotted)
as amplitude δ increases, showing where the host ES condition does (solid line) and
does not (dashed line) hold. (b),(c) Stochastic simulations for amplitude δ = 1 for
(b) host defence u and (c) parasite infectivity v. Darker shading indicates a higher
proportion of the population with defence u or infectivity v, and the initial population
had trait values (u0, v0) = (7.6, 7.8). Parameter values were taken to be β̂0 = 86.9,
pv = 39.1, cv = −0.1, â0 = 72.2, pu = 21, but otherwise default values were used.

coefficient at the singular point increases with the amplitude (Figure 6.4(a)), since the

parasite is able to invest more in transmission efficacy as defence decreases (Figure

6.4(b)). As discussed in section 6.2.4.3 above, I used numerical simulations to confirm

that the singular point remained ES and CS as δ increased. Examples can be found in

Figure 6.5 for the default parameter values and different amplitudes, showing that the

host and parasite evolve towards the singular point (u∗, v∗) and stay there for all time.

It should be noted that the overall change in (u∗, v∗) over the range of δ values is not

very large for default parameter values (∼ 0.03 in Figure 6.3). This is largely due to

the use of range transmission rather than universal transmission (Chapter 3), since

small decreases in host defence may lead to relatively large increases in transmission

when u and v are similar (Figure 6.1(a)). Hence there is increasing selection for host

defence, which leads to a smaller selection gradient and lower overall changes in u∗

when compared to host-only evolution. Different trade-off parameter sets can lead

to larger changes in the singular point, however the host ES condition is often lost

at high amplitudes, leading to branching in the host trait. This occurs for all three

types of seasonality considered. An example is shown in Figure 6.6 for the sinusoidal

seasonality, where the change in u∗ from δ = 0 to 1 is approximately 0.6 (compared

to ∼ 0.03 for the default parameters in Figure 6.3). At δ = 0.6 in Figure 6.6, the

host ES condition no longer holds and branching occurs in the host trait, as shown

by simulations for δ = 1 in Figure 6.6(b),(c). This change in behaviour could be due

to the lack of direct dependence of the parasite infectivity on the seasonal amplitude,
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meaning that v∗ changes less than u∗ over the range of δ values. This often leads to

v∗ > u∗ at high amplitudes, which I showed in Figure 6.2 is unlikely to satisfy the host

ES condition. Hence the predominant cases where the singular point is a CoESS for

all δ is for u∗ > v∗ at δ = 0, which results in smaller changes in the singular point over

the range of δ values (e.g. Figure 6.3).

6.3.2 Stepping Seasonality

Figure 6.7: (a) Change in the minimum/maximum of the discontinuous stepping season-
ality birthsstep(t) (equation (6.5)) as the amplitude δ varies. Maximum = δ; Minimum
= −δ. Insert: step function between minimum and maximum, with an equal amount of
time spent in each environment. (b) Evolved host defence u∗ and (c) evolved parasite
infectivity v∗ as amplitude δ increases.

Next, I consider a discontinuous version of the sinusoidal seasonality, i.e. a step function

where the maxima and minima are linear with opposite gradients (±δ; Figure 6.7(a)).

For this seasonality I find that, similarly to the sinusoidal forcing above, both the

host defence and parasite infectivity decrease as amplitude increases. I also found

that transmission at the singular point changes with amplitude in a similar way to the

sinusoidal seasonality above, Figure 6.4(a), where transmission is lowest in a constant

environment when host defence and parasite infectivity are high. The defence and

infectivity outcomes confirm that the experimental results are not due to discontinuous

changes in environment, so I move on to the third, evidence-based, forcing.

From the growth data in Chapter 5, I know that the bacteria grow faster in media with

higher resource concentrations, but importantly that this relationship is not linear.

In particular Figure 5.7 shows that, for low resource concentrations, the growth rate

decreases more rapidly as the concentration decreases. Hence I use the seasonality

function defined in equation (6.6) (Figure 6.8(a)), which is an approximation of this

non-linearity as amplitude δ increases (resource concentration increases in maximum



CHAPTER 6. COEVOLUTIONARY MODEL OF HOST DEFENCE
AND PARASITE INFECTIVITY 125

Figure 6.8: (a) Change in the minimum/maximum of birthsexp(t) from equation (6.6)
as the amplitude δ varies. Maximum = 0.3684δ; Minimum = −0.0699δ/(1− 0.9225δ).
Insert: step function between minimum and maximum, with an equal amount of time
spent in each environment. (b) Evolved host defence u∗ and (c) evolved parasite infec-
tivity v∗ as amplitude δ increases.

environment but decreases in minimum environment).

As shown in Chapter 5, I find that as the amplitude δ increases, the host evolves re-

sistance non-monotonically, with highest defence evolving for intermediate amplitudes,

Figure 6.8(b), matching the empirical results. For low amplitudes, the average birth

rate increases with amplitude, which in turn increases the infected population size (Fig-

ure 2.2). Therefore the host increases defence due to this selection pressure, but also

because the periodically low environment isn’t too costly (Figure 6.8(a)) and so the

host can afford higher resistance. However, once the amplitude reaches a certain point,

the low environment becomes increasingly costly and the average birth rate starts to

decrease. This decreases the infected population size, and thus lowers selection for

defence, which is boosted by greater selection for increased birth rate. Therefore the

host decreases defence for large amplitudes. The parasite’s evolution only depends

on seasonality through the host’s defence u, and so the parasite evolves similarly to

the host with highest infectivity evolving for intermediate amplitudes, again predicting

the empirical results from Chapter 5. Given the evolutionary results when seasonality

changes symmetrically with amplitude (section 6.3.1), it is clear that using the empirical

data for host birth rates is the key difference that enables us to recover the non-linear

evolutionary behaviour observed in the bacteria-phage experiment in Chapter 5.

The combination of these evolutionary changes leads to the transmission coefficient

β(u∗, v∗) also varying with amplitude δ, Figure 6.9. Transmission is smallest for in-

termediate amplitudes where the host defence and parasite infectivity are highest (low

transmission and small transmission efficacy). This and the result for symmetric sea-

sonality suggests that, generally, transmission is largest in environments where evolved
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Figure 6.9: Change in the transmission coefficient evaluated at the singular point
β(u∗, v∗) as the amplitude of seasonality δ increases for the experimentally based forcing
birthsexp(t).

defence/infectivity is highest.

Similar to the sinusoidal seasonality above, the overall change in defence and infectivity

is larger when I use different trade-off parameters or lower specificity of the infection

process. However, very often either the host ES condition is lost at high amplitudes (e.g.

Figure 6.6 for sinusoidal seasonality, discussed above), or the non-monotonic evolution-

ary behaviour changes, with very low steepness κ giving maximum defence/infectivity

at very low amplitudes (Figure 6.14; discussed in section 6.3.3). These parameter sets

no longer recover the evolutionary results from Chapter 5, with the effect of lowered

steepness κ suggesting that weak specificity in the infection process cannot predict the

experimental evolutionary results.

6.3.3 Exploration of the Parameter Space

The results I presented in sections 6.3.1 and 6.3.2 are for a default parameter set defined

in Table 6.1, so it is important to check that these results are robust for alternative

parameter values. Figures 6.10-6.13 show how the singular point (u∗, v∗) changes as

both the amplitude δ and other parameters in the model are varied, with the latter

taking values on both sides of the default parameter set. I consider the sinusoidal and

evidence-based seasonality functions, as the symmetric discontinuous seasonality gives

similar results to the sinusoidal function. All singular points considered are CoESSs,

i.e. final end-points of coevolution.

Overall, I found that the qualitative behaviour of the singular point with amplitude
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Figure 6.10: Contour plots showing host defence u∗ and parasite infectivity v∗ as the
amplitude of seasonality δ and other parameters vary. A: Baseline mortality rate b;
B: Crowding Factor q; C: Recovery rate γ; D: Virulence α. Left column: Sinusoidal
seasonality birthscont(t); Right column: Experimental seasonality birthsexp(t). Default
parameters from Table 6.1 are marked with thick black lines.

δ remains the same for the range of parameters considered in Figures 6.10-6.13. This

suggests that the results presented in sections 6.3.1 and 6.3.2 are robust, i.e. that sym-

metric seasonality leads to monotonic decreasing investment in defence/infectivity as

the amplitude increases, while the experimentally based seasonality leads to maximum

defence/infectivity at intermediate amplitudes.

Figures 6.10-6.13 can also be used to determine which conditions can lead to increased

or decreased levels of resistance and infectivity. These changes in evolutionary end-

point are due to how the parameters affect the underlying population dynamics: for

parameters that increase the size of the infected population (increases in â0 and cu in

Figure 6.11, β̂0 and cv in Figure 6.12), the host invests more in defence to combat the

greater risk of infection. Similiarly, parameters that decrease the infected population
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Figure 6.11: Contour plots showing host defence u∗ and parasite infectivity v∗ as the
amplitude of seasonality δ and trade-off parameters in the average birth rate a0(u)
vary. A: Relative size of the average birth rate â0; B: Gradient of the average birth
rate pu; C: Curvature of the average birth rate cu. Left column: Sinusoidal seasonality
birthscont(t); Right column: Experimental seasonality birthsexp(t). Default parameters
from Table 6.1 are marked with thick black lines.

size (increases in b, q, γ and α in Figure 6.10, pu in Figure 6.11, pv in Figure 6.12) mean

that the host can afford to invest less in defence, and so u∗ decreases. The parasite’s

evolution mirrors that of the host, with infectivity increasing with host defence.

Changing the model parameters can lead to different sensitivities of the evolved traits

(u∗, v∗) to changes in the amplitude δ. Specifically, we can use Figures 6.10-6.13 to

determine the conditions under which alterations to the seasonality will lead to larger

changes in evolutionary outcome. For example, increased b, q, γ and α (Figure 6.10)

lead to larger changes in (u∗, v∗) over the range of δ values. Additionally, increased

efficacy of transmission (larger β̂0 and cv, smaller pv in Figure 6.12), decreased average

birth rate (smaller â0 and cu, larger pu in Figure 6.11) and lower steepness κ (Figure

6.13) give greater changes in (u∗, v∗) over the range of values of δ. Overall, the sensi-

tivity of the evolutionary outcome to changes in amplitude can be determined by how

the size of the infected population is affected. Specifically, changes in parameters that

lower the average infected population size lead to greater sensitivity in the evolutionary

results to alterations in the seasonal amplitude. This is because selection for defence
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Figure 6.12: Contour plots showing host defence u∗ and parasite infectivity v∗ as the
amplitude of seasonality δ and trade-off parameters in the efficacy of transmission β0(v)
vary. A: Relative size of the efficacy of transmission β̂0; B: Gradient of the efficacy of
transmission pv; C: Curvature of the efficacy of transmission cv. Left column: Sinusoidal
seasonality birthscont(t); Right column: Experimental seasonality birthsexp(t). Default
parameters from Table 6.1 are marked with thick black lines.

is lower, which promotes investment in birth rate and thus amplifies the effect of the

seasonal amplitude, giving greater evolutionary sensitivity to changes in δ. Hence the

sensitivity of the evolutionary outcome to changes in the amplitude is due to how the

periodic forcing affects the underlying dynamics, and so eco-evolutionary feedbacks are

important when determining the sensitivity of evolutionary outcomes to changes in the

seasonal amplitude.

We can also determine if constant or highly varying environments lead to larger/smaller

changes in evolutionary outcomes as other parameters vary. I found that, for the

majority of parameters, (u∗, v∗) varies the most in high amplitude environments when

other parameters are altered. The exception to this rule occurs for the parameters in the

efficacy of transmission trade-off β0(v) (Figure 6.12), in which case I find that the most

change occurs in constant environments. Naively, we might expect the most change to

occur in highly variable environments for all parameters, since the maximum infected

population at high amplitudes should be more sensitive to changes in parameters than

in a constant environment, hence impacting evolutionary outcomes. This is not the case
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when considering the efficacy of transmission, because the parasite’s trade-off is through

this term. This means that decreasing v as the amplitude δ increases can give a greater

infected population size at high amplitudes compared to the constant environment.

Thus the selection pressure for host defence increases, leading to lower sensitivity in high

amplitude environments. Hence eco-evolutionary feedbacks are, again, an influential

factor that determines the sensitivity of evolution to changes in parameters.

Using the parasite fitness gradient in equation (6.20), note that the parasite’s evolution

is only directly impacted by changes in the transmission efficacy β0(v) and steepness

κ, with other parameters affecting it indirectly through host defence u. Hence the

contours of v∗ are different to those of u∗ in Figures 6.12 and 6.13 where the fitness

is directly affected, although not enough to change the qualitative behaviour as the

amplitude δ varies. Otherwise the parasite contours are exactly the same as the host

(Figures 6.10 and 6.11).

Figure 6.13: Contour plots showing host defence u∗ and parasite infectivity v∗ as the
amplitude of seasonality δ and the steepness of transmission κ vary. Left column: Si-
nusoidal seasonality birthscont(t); Right column: Experimental seasonality birthsexp(t).
Default parameters from Table 6.1 are marked with thick black lines.

When I increase the steepness of transmission κ, the infected population decreases when

u > v (decrease in transmission, Figure 6.1), and so we might expect the host to invest

less in defence. However, I found that the host invests more in defence (Figure 6.13).

This is due to the fact that when κ is increased, the steepness of β(u, v) is increased

and the infection process is more specialist. Therefore, the host has to invest more in

defence to keep transmission low. As for changes in the other parameters, the parasite

increases infectivity in response to the host increasing defence (Figure 6.13). It is also

worth noting that decreasing κ leads to larger overall changes in the singular point

over the range of δ values, i.e. the seasonality has a larger effect on evolution when

infection is less specific. This is because decreasing defence leads to a smaller increase

in transmission when κ is lower, and so the host has more flexibility to evolve lower

defences without increasing the infected population to such a degree.
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When κ is reduced to 0.5, while the overall change in defence/infectivity is large for

both types of seasonality, the peak for the experimental seasonality moves to smaller

amplitudes and the predominant behaviour is a decrease in defence (Figure 6.14). In

addition, the host evolutionary stability condition no longer holds for either seasonality

function at high amplitudes (dashed lines in Figure 6.14), and thus the host will exhibit

branching behaviour similar to that shown in Figure 6.6. The parasite strategies are

CSSs for all values of δ, even after host evolutionary stability has been lost. This

suggests that weak specificity in the infection process cannot predict the experimental

results from Chapter 5, reinforcing evidence that the interaction between the bacteria

and phage is specific (Buckling & Rainey, 2002; Poullain et al., 2008).

Figure 6.14: Host defence u∗ and parasite infectivity v∗ as the amplitude of seasonality
δ varies for low steepness of transmission κ = 0.5 (default κ = 2). Dashed lines show
where host evolutionary stability condition no longer holds. The parasite strategies
are CSSs for all values of δ. Left column: Sinusoidal seasonality birthscont(t); Right
column: Experimental seasonality birthsexp(t). Parameters were otherwise fixed at
default values from Table 6.1.

6.3.4 Period of the Forcing ε

In the results so far I have considered how the amplitude of the oscillations δ affects

host-parasite coevolution while keeping the period constant (ε = 1). However, I can

also consider how the period ε impacts evolution, as I did for host-only evolution in

Chapter 3. Figure 6.15 shows how investment in host defence varies as the period of

oscillations increases for two different amplitudes and all three seasonality functions

(parasite infectivity behaves similarly). I find that, similarly to host-only evolution,

there is a trough in defence near ε = 2.5 for all types of seasonality due to resonance

with the natural timescale of the model. Overall, Figure 6.15 shows that, when the

amplitude is high, fluctuations with very long periods appear to constrain coevolution

of host defence and parasite infectivity when compared to very short periods, although

intermediate periods (ε ∼ 2.5) appear to constrain coevolution the most. This be-
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Figure 6.15: Evolved host defence u∗ as the period of oscillations ε varies. Solid
line: Sinusoidal seasonality birthscont(t); Dotted line: Symmetric stepping seasonal-
ity birthsstep(t); Dashed line: Experimental seasonality birthsexp(t). Parameters were
otherwise fixed at default values with amplitude δ = 0.5 (blue) or δ = 1 (red).

haviour can also be found for intermediate amplitudes, although it is more difficult to

see in Figure 6.15 because the impact of period on coevolution is much smaller than

at larger amplitudes (see discussion below). The long period behaviour is likely due to

large amounts of time spent in unfavourable conditions, leading to greater investment

in average birth rate rather than defence.

For high amplitudes (red lines in Figure 6.15), there are no singular points for very

high periods. This is because the infected population dies out for these combinations

of seasonal parameters, so the host maximizes investment in births (u = 0, see Chapter

2). However, the main feature of the high amplitude behaviour is that the period ε has

a much larger impact on coevolution than at smaller amplitudes. For high amplitude

oscillations, the changes in the birth rate are more drastic, especially for the discontin-

uous seasonalities, and larger periods mean that a long time is spent at these extreme

reproduction levels. Therefore the underlying dynamics will be affected by changes in

period much more than at lower ampitudes, which in turn influences coevolution, and

so there is a bigger impact of the period ε at higher amplitudes.

It is worth noting that for intermediate amplitudes, evolution in the experimental

seasonality case is hardly affected by changes in the period (blue dashed line in Figure

6.15). This is because, when compared to the other seasonalities, the cost in the low

environment is small. Hence, increasing the period ε means that greater periods of time
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are spent in each of the conditions, which is more detrimental for hosts with the other

seasonality functions that have greater costs at intermediate amplitudes. Therefore the

population dynamics and thus the evolutionary dynamics are hardly altered by changes

in the period ε for the experimental seasonality. This suggests that hosts in this type

of seasonal environment are more able to cope with changes in period, although higher

amplitudes lead to greater coevolutionary changes for all three types of seasonality.

§ 6.4 Discussion

In this chapter, I explored the coevolutionary model of host defence and parasite in-

fectivity initially presented in Chapter 5, incorporating multiple types of seasonality in

the host birth rate. I concentrated on stable end points of coevolution, finding that a

continuous sinusoidal forcing affects evolution as I predicted, with monotonic decreases

in both host defence and parasite infectivity as the amplitude of seasonality increases.

This type of seasonality does not predict the results from the bacteria-phage experiment

in Chapter 5, which instead found that maximum host defence and parasite infectivity

evolved for intermediate amplitudes. When I altered the seasonal forcing to incor-

porate evidence-based assumptions on the seasonality of growth, the model predicted

more accurate evolutionary results when compared to the experimental data.

The aim of this chapter was to investigate further the theoretical coevolution model

from Chapter 5 (see also Ferris et al., in prep). Initially I used a sinusoidal and a

symmetric step-wise seasonality function, with changes in maximum/minimum birth

rate that mimic the resource concentrations from the experiment. For both of these

seasonalities, I found that increasing the amplitude of the fluctuations led to monoton-

ically decreasing host defence and parasite infectivity. This does not agree with the

experimental results, but occurs for similar reasons as in Chapter 3: as the amplitude

increases the minimum host population size decreases, and so the host invests more in

birth rate to maintain a large population size. The parasite then evolves lower infectiv-

ity in response to the host, thus lowering the infected population size and decreasing

selection for defence in the host. When I incorporated bacterial growth rates specific

to the experimental conditions, the coevolutionary model predicts highest evolved re-

sistance and infectivity for intermediate amplitudes and therefore better resembles the

experimental results (see Chapter 5 for a full discussion). The key difference between

the symmetric and experimental seasonalities occurs at low amplitudes (decrease in

defence for symmetric, increase for experimental), which is primarily due to how the
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minimum birth rate affects the host. In the symmetric case, the maximum/minimum

birth rate gradients are the same and so the average birth rate is constant for all

amplitudes. For the evidence-based seasonality, the magnitude of the gradient of the

minimum birth rate is smaller than the maximum at low amplitudes, meaning that

the average birth rate is greater than in the constant environment. This difference in

how the seasonality affects the average birth rate leads to the different evolutionary

outcomes observed, as a larger average birth rate means that there is greater selection

for host defence.

In previous theoretical models of quantitative host defence in a temporal environment,

only Poisot et al. (2012) found non-linear behaviour of evolved defence against ampli-

tude of seasonality. However, they found that the host evolves minimum defence for

intermediate amplitudes, compared to maximum here for the experimental seasonality.

This difference can be attributed to how the periodic forcing is implemented, as dis-

cussed in Chapter 5, and highlights how individual environments within the model can

alter host-parasite coevolution. It is therefore clear that the way in which seasonality is

implemented can have direct effects on coevolution, and so models of specific empirical

systems should take this into account.

In my coevolutionary model, the parasite fitness was only affected by oscillations in

host birth rate indirectly through the host’s defence (equation (6.17)), and so the para-

site’s evolution is strongly determined by that of the host. The dependence of parasite

evolution on that of the host has also been observed in a constant environment. For

a ‘universal’ infection process, the host can limit parasite diversity by not allowing

branching in the parasite trait (Best et al., 2009; Svennungsen & Kisdi, 2009), or the

population is limited to a dimorphism in both traits (Boots et al., 2014). For a specific

infection process, a cascade of branching events can occur, with parasite diversity lim-

ited by the number of host populations that currently exist (Best et al., 2010b; Boots

et al., 2014). Given that parasite evolution can be determined by coevolution with the

host in a constant environment, it is perhaps unsurprising that similar interactions also

occur in fluctuating environments. We can also consider how the host’s evolutionary

behaviour depends on that of the parasite, with the model here suggesting that coevo-

lution may have altered host defence quantitatively, but overall the host’s qualitative

evolutionary behaviour remained the same (decrease in defence as amplitude increases,

compare with Chapter 3). However, other studies have shown that coevolution with

the parasite can impact host evolution (van Baalen, 1998; Restif & Koella, 2003; Best

et al., 2009, 2010b, 2014), so my relatively simple model may miss some interactions,
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perhaps due to the assumption of infected sterility, that could lead to coevolutionary

outcomes where the parasite’s evolution has a more significant impact on the host’s

defence.

I found that seasonality has a larger effect on the co-evolutionary singular point when

infection is less specific. This is due to the fact that, for less specific infection, lowering

defence leads to a smaller increase in transmission, and so the host can afford to invest

even less in defence and more in birth rate. Therefore the level of specificity has an

important impact on coevolutionary outcomes, with highly specific interactions leading

to evolution of greater defence and infectivity. I also found that the non-monotonic

evolutionary behaviour for the experimental seasonality changed at very low specificity,

with maximum investment in defence occuring at lower amplitudes. This is due to very

low specificity increasing transmission (Figure 6.1), therefore increasing the infection

prevalence and decreasing the overall population size (Chapter 2). Therefore selection

for increased birth rate is greater than for more specific infection processes, and so

the amplitude at which investment in births becomes advantageous occurs at smaller

values. This theoretical result reinforces empirical evidence that the interaction between

the bacteria and phage is specific (Buckling & Rainey, 2002; Poullain et al., 2008), as

specificity of infection is needed to predict the evolutionary results from the experiment

in Chapter 5. In other theoretical work, the level of specificity has been shown to

influence static and temporal diversity (Boots et al., 2014; Best et al., 2017b), with

greater specificity leading to more polymorphic populations or unstable evolutionary

fluctuations. Hence the nature of the interaction between hosts and parasites has a

complicated effect on coevolution, and while there has been a great deal of research

from a genetic perspective (Sasaki, 2000; Tellier & Brown, 2007; Best et al., 2014), there

is still plenty of scope to investigate eco-evolutionary feedbacks within this framework

(Ashby et al. (2019)).

I considered varying the period of the oscillations for fixed amplitude, finding that co-

evolution was most constrained in environments at intermediate periods. This partially

agrees with empirical data from Harrison et al. (2013), where they found that bacteria

P. fluorescens evolved lower phage resistance in more rapidly fluctuating environments.

I also found that amplitude and period have an interacting effect on coevolution, with

lowest resistance evolving for high amplitudes and intermediate periods. This has

yet to be investigated empirically, as many studies consider either varying amplitude

(Blanford et al., 2003; Chapter 5; Ferris et al., in prep) or period (Hiltunen et al.,

2012; Harrison et al., 2013; Duncan et al., 2017), so it is unclear how these seasonal
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parameters may interact in experimental systems.

In spatial host-parasite evolution literature, there appears to be a consensus that local

interactions lead to the evolution of less virulent parasites when compared to well-

mixed populations (Hochberg & van Baalen, 1998; Boots & Sasaki, 1999; Haraguchi &

Sasaki, 2000; Kamo et al., 2007; Best et al., 2011; Su & Boots, 2017). It has also been

found that local interactions can lead to the parasite evolving increased transmission

(Read & Keeling, 2003; Ashby et al., 2014), although there may be less variation within

the parasite population (Damgaard, 1999). For host evolution, many have found that

spatial structure gives lower resistance (Hochberg & van Baalen, 1998; Débarre et al.,

2012; Ashby et al., 2014), although Best et al., (2011) found the opposite when trans-

mission and reproduction are localized. A common thread throughout appears to be

that greater spatial heterogeneity generally leads to more infection within the popula-

tion, as lower virulence usually leads to greater infected population sizes (Chapter 2).

This phenomenon extends to temporal heterogeneity studies, with greater amplitudes

of environmental variation leading to more infection (Poisot et al., 2012; Ferris & Best,

2018; but see Donnelly et al., 2013). Greater levels of infection has also observed in

heterogeneous environments for some empirical host-parasite (Brockhurst et al., 2006;

Kerr et al., 2006) and predator-prey species (Friman & Laakso, 2011; Friman et al.,

2011), but there isn’t conclusive experimental evidence that this is a consistent trend.

Indeed, this behaviour is by no means universal, as I found in this chapter that increased

heterogeneity (amplitude) led to lower average infected population sizes despite an in-

crease in transmission. Therefore more theoretical and empirical work could be done

to investigate effect of heterogeneous environments and evolution on the occurrence of

infection, as it could have important repercussions for real-world infection predictions.

In this chapter I made multiple assumptions to simplify the analysis and reduce com-

putational time. First, I assumed that the host and parasite mutate at the same rate,

despite evidence to the contrary for my experimental species (Samson et al., 2013;

Lopez-Pascua et al., 2014). It is unclear how changing these mutation rates will alter

the evolutionary outcomes, although elsewhere it has been shown that evolutionary

cycles can emerge when the host evolves faster than the parasite (Best et al., 2010b;

but see Best et al., 2017b). Second, I only considered CoESS singular points with

parameters close to default values, including trade-off coefficients, even though other

evolutionary outcomes exist that often depend on trade-off choice (Kisdi, 2006; Best

et al., 2009). An extention of this study would be to consider a wider range of param-

eters, and in particular to consider other types of singular points and how seasonality



CHAPTER 6. COEVOLUTIONARY MODEL OF HOST DEFENCE
AND PARASITE INFECTIVITY 137

may affect when they emerge. Third, I only investigated the effects of two types of

discontinuous seasonality specific to my previous theoretical and experimental work.

Alternative forms for the different environments as the amplitude increases are likely

to occur in different contexts, and could produce interesting coevolutionary behaviours

not observed here.

This chapter has investigated host-parasite coevolution in a seasonal environment, with

particular attention paid to incorporating empirically obtained information to predict

experimental outcomes. I found that while coevolution is important, understanding

underlying biological processes can be key to producing accurate predictions through

mathematical modelling. There is plenty of scope to extend this work further, in a

general theoretical context or for application to a different experimental system, but

it is important to consider the impact of individual environments within temporally

varying conditions as they can determine evolutionary outcomes.
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Conclusions

§ 7.1 Summary

Infectious diseases are a global issue, and as such are the focus of a rich area of research,

with applications in public health, agriculture, conservation, and more. There are

many factors that can determine the spread and impact of a disease, two of which are

evolution and heterogeneous environments. Therefore investigating the combination of

all three of these concepts (i.e. infection, evolution and heterogeneous environments) is

likely to have important implications for real-world systems. In this thesis, I studied

host-parasite evolution in a temporally heterogeneous environment, with a focus on

how seasonal parameters change evolutionary outcomes. Previous to this work, there

was little theoretical research investigating the evolution of quantitative host-parasite

traits in seasonal environments, despite the fact that many species experience temporal

environments that can cause fluctuating population and infection dynamics (Fenton

et al., 2006a; Smith et al., 2008; Reynolds et al., 2013; Ewing et al., 2016). Here I

summarize the main results and implications from this thesis, and consider possible

directions for future research.

In Chapter 3 I investigated the evolution of host avoidance when the host birth rate

was periodic in time. I found that seasonality affected host evolution, and that recovery

had a significant interaction with the seasonal amplitude: the absence of recovery led

to an increase in defence with amplitude; the presence of recovery generally gave lower

evolved defence for greater seasonal amplitudes. Of particular relevance to previous

work, the behaviour of host defence as other parameters were varied was not neces-

sarily the same in constant and highly variable environments, although this effect was

138
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dampened for long-lived hosts. In Chapter 4 I conducted a similar investigation, but in-

stead considered evolutionary branching behaviour through three different host defence

mechanisms, with a focus on mortality tolerance. I found that branching in tolerance

could occur in a seasonal, but not constant, environment, and that the majority of

simulations led to a temporary dimorphism (i.e. eventual extinction of a branch). This

branching appeared due to fold-bifurctions in the adaptive dynamics singular point

and a negative feedback with maximum infected population size, and branching tended

to occur in parameter regions where the infected population was high. Similarly to

previous studies that assume a constant environment, the evolutionary behaviour of

resistance and tolerance were qualitatively different. In particular, greater amplitudes

appeared to ‘stabilise’ tolerance evolution, but had the opposite effect for resistance

evolution.

Previous theoretical work has considered how evolved host defence changes in a constant

environment (Boots & Bowers, 1999, 2004; Restif & Koella, 2004), with some consid-

ering the evolutionary differences between long- and short-lived hosts (van Boven &

Weissing, 2004; Lee, 2006; Miller et al., 2007; Boots et al., 2013; Donnelly et al., 2017).

In particular, it has been found that innate resistance (avoidance, recovery or tolerance)

tends to be greater in long- compared to short-lived hosts, although this behaviour can

become more complex due to ecological feedbacks or acquired immunity (Miller et al.,

2007; Donnelly et al., 2015, 2017). The greater investment in innate resistance tends

to occur because long-lived hosts are more likely to become infected, increasing selec-

tion for resistance. However, acquired immunity means that the hosts are also more

likely to recover to an immune class, thus reducing infection prevalence and selection

for resistance, which complicates the evolutionary behaviour with life-span. Similarly,

I found that longer-lived hosts without immunity evolved greater resistance through

avoidance, but also that the effect of seasonality on host evolution was dampened for

long- compared to short-lived hosts (compare Figures 3.8 and 3.9 in Chapter 3). I also

found a similar trend for tolerance evolution, whereby maximization of tolerance was

more likely to evolve for longer-lived hosts (Figure 4.7 in Chapter 4). As above, these

evolutionary behaviours are due to increased selection for defence, as infection preva-

lence is higher for long-lived hosts. This can also explain the dampening of the effect of

seasonality for long-lived hosts. High defence is traded-off against average birth rate, so

long-lived hosts will have a smaller average birth rate than the short-lived hosts. Since

the birth rate multiplies the periodic forcing, the long-lived hosts will have smaller

amplitude oscillations in the population dynamics compared to short-lived hosts with

higher birth rates, and so evolution is less affected by increasing the amplitude of the
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forcing and the seasonal effect is dampened for long-lived hosts. This suggests that

if the forcing or trade-off were to be implemented elsewhere then there might not be

such a clear dampening effect for long-lived hosts, but this remains to be investigated.

Therefore it appears to be a common result that longer-lived hosts evolve greater de-

fence than their short-lived counterparts, even in fluctuating environments. However

this behaviour is easily complicated by eco-evolutionary feedbacks, in particular by the

potential for host immunity to the parasite.

There has been a disconnect between theoretical and empirical work about the possibil-

ity for diversity in host tolerance: empirical studies have often found diversity in host

tolerance to parasitism (Koskela et al., 2002; R̊aberg et al., 2007; Blanchet et al., 2010;

Sternberg et al., 2012; Hayward et al., 2014), whereas theoretical studies generally

do not find polymorphic populations when the host evolves through tolerance (Roy &

Kirchner, 2000; Miller et al., 2005; Best et al., 2014, 2017a; but see Fornoni et al., 2004;

Best et al., 2008, 2010a; Carval & Ferriere, 2010). The work in this thesis suggests that

temporal environments can allow for theoretical diversity in host tolerance, although

whether or not diversity is maintained depends on the range of tolerance traits allowed.

It has already been shown that the underlying ecology is crucial in determining the

level of diversity in host resistance (Boots et al., 2012), so it is perhaps unsurprising

that variable population dynamics can lead to the emergence different evolutionary

behaviours, including branching. However, some experimental studies have found mea-

surable tolerance diversity in a constant environment (R̊aberg et al., 2007; Kause et

al., 2012), so temporal heterogeneity cannot account for this diversity. Therefore, while

temporal heterogeneity may be a driver of tolerance diversity for some hosts, there will

be other factors that have so far been missed in many theoretical models.

Throughout the host-parasite evolutionary literature, it has become clear that eco-

evolutionary feedbacks are a key factor that determine host evolution (Roy & Kirchner,

2000; Restif & Koella, 2004; Miller et al., 2005, 2007; Boots et al., 2009, 2012; Best

et al., 2017b; Theodosiou et al., 2019). I found that this remains the case in temporal

environments for evolution through both resistance and tolerance, with potentially

accentuated implications due to the cyclic nature of the populations. For example, in

Chapter 3 I found that, when recovery was small, evolution in host avoidance could drive

the population through a period-doubling bifurcation, which resulted in population

dynamics with greater period. This has also been observed in constant environments,

where the period-doubling bifurcation can lead to a discrete ‘jump’ in the level of

evolved defence as parameters are varied (Hoyle et al., 2011; Best et al., 2013). For
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evolving avoidance or tolerance, I found that seasonality can lead to the emergence of

fold bifurcations, such that two or three singular points occur simultaneously (Figure

3.6 in Chapter 3, Figure 4.6 in Chapter 4). For avoidance, I found that two of the three

singular points were CSSs (i.e. end-points of evolution), giving bistability between high

and low levels of defence. For tolerance, the main effect studied here is the emergence

of branching behaviour as the central strategy, which is intrinsically linked to these fold

bifurcations. Similar bifurcations have also been observed in a constant environment

as other parameters are varied, with Miller et al. (2007) finding that, with or without

acquired immunity, increasing the host lifespan can lead to bistability between high and

low levels of defence through either avoidance or tolerance. Therefore eco-evolutionary

feedbacks can lead to bistability between different levels of defence in constant and

temporal environments, so the periodic forcing does not eliminate this behaviour. For

tolerance evolution, a key eco-evolutionary feedback is the negative feedback between

tolerance and the maximum infected population size, which allows branching behaviour

to emerge in a fluctuating environment. This result, and those above, emphasizes the

amplified effects of eco-evolutionary feedbacks in seasonal environments, and that these

feedbacks can often lead to complex host evolutionary behaviour that may not have

been observed in a constant environment.

In Chapter 5 I presented an experimental evolution study using the bacteria P. flu-

orescens SBW25 and its parasitic phage SBW25Φ2 that investigated how seasonal

amplitude might alter coevolution, as previous experimental work in temporal environ-

ments had not considered the effects of this seasonal trait (but see Blanford et al., 2003).

I found that only the bacteria population sizes were directly affected by the amplitude

of the oscillations in the resource, and that the bacteria and phage evolved maximum

resistance/infectivity for intermediate amplitude oscillations. I also developed a coevo-

lutionary model for the experimental system, which was introduced in Chapter 5 and

explored further in Chapter 6. I found that bacterial growth rates in the individual

environments and a specific infection process needed to be incorporated into the model

to replicate the experimental results. In particular, maximum resistance/infectivity

evolved for intermediate amplitudes due to changes in the growth rate in the low re-

source environment as the amplitude increased. When I explored the model more gen-

erally, I found that for seasonality functions where the maximum/minimum birth rate

changed symmetrically with amplitude, the model predicted monotonically decreasing

investment in defence and infectivity as the amplitude of seasonality increased, which

is similar to predictions from the host-only evolutionary model in Chapter 3.
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There is growing interest in experimental evolution in temporal environments, although

much of this has focussed on the evolution of antibiotic resistance in parasites when

treatment is applied cyclicly (Brown & Nathwani, 2005; Kim et al., 2014; van den Bergh

et al., 2016). To date there have been few studies exploring host-parasite coevolution

in temporal environments, and many have focussed on pulsed conditions (Friman et al.,

2011; Friman & Laakso, 2011; Hiltunen et al., 2015) or changes in period (Harrison et

al., 2013; Dallas & Drake, 2016; Duncan et al., 2017). In a bacteria-phage experiment,

I found that maximum resistance/infectivity evolved for intermediate amplitude treat-

ments. The coevolutionary model used to explain this result found that the growth of

the bacteria in the individual environments was the main driver of this evolutionary

trend. This suggests that if the experiment were to be repeated with a much lower mean

resource level, then the growth rates of the bacteria in the low and high resource en-

vironments may change more symmetrically as the amplitude increases, which is likely

to produce different evolutionary results (e.g. if the range of resource concentrations

were taken to be ≤ 0.25KB from Figure 5.7 in Chapter 5). In a different tempo-

ral environment study, Blanford et al. (2003) found that pea aphids, Acyrthosiphon

pisum, evolved highest resistance against a fungal pathogen, Erynia neoaphidis, for

high amplitude oscillations in temperature. Similarly to my study, this is due to how

the periodically high temperatures affects the population sizes, with reduced survival

of the pathogen occuring at high amplitudes. Therefore specific details about how the

environmental oscillations impact the host and/or parasite has important implications

for coevolution, as has already been oberved by Harrison et al. (2013) and Duncan

et al. (2017), where two different types of environmental variation led to contrasting

evolutionary results. The relatively unique combination of experiment and theory pre-

sented in this thesis was essential to fully understand the coevolutionary results; the

experimental data alone was indicative, but not conclusive, evidence of the underlying

mechanisms driving coevolution, while the theoretical model may have missed the ex-

perimental results altogether without the specific growth information. In addition, the

study presented here has emphasized the importance of understanding how individual

environments and temporal conditions affect each species, as this will have important

consequences for coevolution.

In previous theoretical coevolutionary work, it has been found that the introduction of

coevolution can lead to outcomes that cannot be predicted from single species evolution

alone (Restif & Koella, 2003; Best et al., 2009). For the model presented in this thesis

with sinusoidal seasonality, coevolution appears to have little effect on the qualitative

behaviour of host defence as the amplitude is increased (i.e. decrease as amplitude
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increases; Chapters 3 and 6), although coevolution does lead to lower parasite infectivity

at high amplitudes (Chapter 6). While it appears that the coevolution results here are

predictable from the host-only results, this is not the whole story. For both cases,

as amplitude increases the transmission coefficient at the singular point increases. In

the host-only evolution model this led to increased infected population, however, for

the coevolutionary model the average infected population actually decreases due to

the specific infection process and changes in the parasite’s infectivity. Therefore, while

the evolutionary dynamics may be similar, the underlying epidemiological dynamics

resulting from host-only evolution and coevolution can be very different, especially in

a highly variable environment.

In relation to parasite evolution, the coevolutionary results here contrast against pre-

vious studies. For example, for parasite-only evolution in a temporal environment,

Donnelly et al. (2013) found that, when virulence is density-dependent, the parasite

evolves greater transmission and virulence as the amplitude increases. Therefore it

appears that coevolution may alter the parasite evolutionary behaviour, although the

inclusion of density-dependent virulence is an important factor which, if addded to the

coevolutionary model here, may lead to different behaviour again. Elsewhere, Best et

al. (2009) found that coevolution led to the emergence of more virulent parasites when

compared to parasite-only evolution due to branching in the host population. Again,

this contrasts against my model. When considering increasing amplitude environments,

I found that the parasite’s infectivity is constant when the host does not evolve, and is

lower in a range of temporal environments when the host coevolves with the parasite.

The differences between these results may be due to the type of infection process used

(range here, universal in Best et al., 2009), or the trade-offs that are included (within

transmission here, between transmission and virulence in Best et al., 2009). Hence

underlying ecological assumptions and whether or not the host coevolves with the par-

asite has an important impact on the level of parasite infectivity that evolves, and so

these factors should be taken into account when predicting the relative virulence or

transmissibility of certain parasites.

In this thesis I have developed a mathematical method to explore evolution in a fluctuat-

ing environment, specifically investigating host-parasite evolution. Overall, the results

here suggest that seasonal environments can have a significant impact on host-parasite

evolution. This can be in terms of the level of evolved defence/infectivity, or the types

of evolutionary behaviour that emerge. Eco-evolutionary feedbacks have already been

shown to be important in constant environments (Boots et al., 2009; Ashby et al.,
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2019), and the results here have demonstrated that these feedbacks can be even more

influential in seasonal environments with oscillating population sizes. In particular,

I found that eco-evolutionary feedbacks can lead to different evolutionary behaviour

in highly variable environments, including bistability and branching, and evolution of

host avoidance can drive the population dynamics through a period-doubling bifurca-

tion into a cycle with a different period. The amplitude of the seasonal environment

changes host-parasite coevolution experimentally and theoretically, and individual con-

ditions within fluctuating environments can have a significant impact on coevolution.

This work could be particularly important in relation to climate change, as it has been

shown that not only are average temperatures increasing, but also that the amplitude

of temporal fluctuations is growing (Schär et al., 2004; Alexander & Perkins, 2013;

Vincze et al., 2017). Therefore models of host-parasite evolution in highly variable

environments may be needed to predict the spread and impact of future outbreaks, es-

pecially in cases where changes in climate have a direct, or indirect, effect on infection

dynamics.

§ 7.2 Future Work

The work in this thesis is part of a growing field of research investigating temporal

environments and evolution in host-parasite systems, and contributes some important

results to the field. However, there is plenty of scope for more theoretical and empirical

explorations into this topic.

Throughout this thesis I considered a regular, deterministic time-varying birth rate

as a proxy for a temporal environment. In reality there are many other types of

temporal environment that can affect host-parasite populations, including, but not

limited to, time-dependent infection (Fine & Clarkson, 1982; Aron & Schwartz, 1984;

Knowles et al., 2012; Baracchini et al., 2016), periodic death (Shaw, 1994; Gehrt, 2005;

Hamelin et al., 2011; van den Berg et al., 2010, 2011), stochastic temporal environments

(Kaitala et al., 1997; Ives et al., 1999; Gómez-Corral & Garćıa, 2014; Fuentes & Ferrada,

2017), varying predation rates (Hilker & Malchow, 2006; Hsieh & Hsiao, 2008; Czaja

et al., 2018), or seasonal vector population sizes (Altizer et al., 2006; Jian et al., 2014;

Ewing et al., 2016). These temporal environments, and more, can influence host-

parasite ecological dynamics, so it is likely that evolution will also be affected. Some of

these environments have previously been investigated by others with regards to parasite

evolution (Koelle et al., 2005; Sorrell et al., 2009; Hamelin et al., 2011; van den Berg
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et al., 2010, 2011) and coevolution (Nuismer et al., 2003), although many still remain

to be explored. In particular, I found no studies of host-only evolution that includes

any of these alternative seasonalities. Unfortunately, the addition of many of these

temporal environments complicates mathematical analysis, meaning that research on

this topic is difficult and can take a long time to complete. For example, time-dependent

transmission rates often lead to chaotic dynamics at high amplitudes (Grossman, 1980;

Schwartz & Smith, 1983; Greenman et al., 2004; Grassly & Fraser, 2006). In this case,

the numerical evolution method presented here is unlikely to work as it relies on the

solution of the mutant population dynamics being a product of an exponential and

a periodic function (but see Metz et al., 1992; Svardal et al., 2015). Alternatively,

adding more dynamic equations to represent fluctuating conditions or vector densities

could greatly improve the accuracy of evolutionary predictions, but this will come at

a cost of increased computational time and, again, could lead to chaotic dynamics.

Despite these potential problems, the investigation of these seasonalities would have

important consequences for many different infection systems, and could be developed

in collaboration with experimental studies in these environments. This could lead to

interesting and unexpected coevolutionary outcomes, but also a deeper understanding

about biological infection systems.

I have assumed that environmental fluctuations impact the species in only one way, i.e.

only through the host birth rate. As detailed above, seasonality can affect host-parasite

dynamics through a number of different mechanisms, which could occur concurrently

(Anderson, 1974; Altizer et al., 2004, 2006; Hosseini et al., 2004). For example, Al-

tizer et al. (2004) found that the seasonal prevalence of Mycoplasma gallisepticum in

house finches (Carpodacus mexicanus) was likely determined by annual changes in host

behaviour, reproduction and environmental effects on immunocompetence. While con-

current seasonality functions have been considered in infection models (Dorélien et al.,

2013; Reynolds et al., 2013; Gómez-Corral & Garćıa, 2014; Baracchini et al., 2016),

no mathematical studies have considered the effect of this type of environment on

host-parasite evolution. Experimentally, only Hiltunen et al., (2015) have investigated

multiple types of seasonality, using the bacteria P. fluorescens SBW25 and the pro-

tozoan T. thermophila 1630/1U with two oscillating environmental forcings that each

impacted one of the coevolving species. They found that the rate of evolution of de-

fence was smaller in oscillating compared to constant environments, but also that lower

defence evolved when both fluctuating stressors were present, suggesting an additive

effect that constrained the evolutionary response. Hence evolution may be affected in

a particular way by one type of environmental fluctuations, but combinations of os-
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cillating forcings may have more complicated effects. In particular, different seasonal

conditions may not always lead to additive effects on evolution, and combinations of

amplitudes/periods/synchronicity of various temporal forcings could affect evolution in

a variety of ways. Therefore the combination of multiple oscillating forcings and evo-

lution could be explored in greater depth, both theoretically and experimentally, and

in particular the effects of seasonalities that impact the host and parasite in different

ways could be investigated.

For the majority of this work, I investigated how stable end-points of evolution (CSSs or

CoESSs) varied with seasonal parameters. However, as seen in Chapter 4, seasonality

could lead to changes in the type of evolutionary behaviour observed, including the

level of diversity in the population. For example, branching in tolerance could only

occur when the amplitude of seasonality was high enough, and increasing the amplitude

generally led to more stable (unstable) evolutionary behaviour in tolerance (resistance).

This was also touched on in Chapter 6, where I found that for alternative trade-off

parameters, the host loses evolutionary stability and branches when the amplitude is

high. I did not investigate this result further as it did not reflect the experimental

data, but there is scope for this to be explored in more detail in a coevolutionary

context. For example, when considering specific infection in a constant environment,

Best et al., (2010b) found that the specificity can lead to a cascade of branching events.

Similarly, Boots et al. (2014) investigated different types of infection specificity, finding

that diversity is limited to dimorphism in both the host and parasite unless there is

some level of incompatability between strains, in which case static polymorphisms of

multiple traits can emerge through branching. However, both of these studies assumed

a constant environment, and so it is unclear if a seasonal environment would have an

effect on these results. In particular, one could consider how seasonality affects the

possibility for coevolutionary branching, the level of diversity obtained, and, similarly

to Boots et al. (2014), the restrictions on the transmission process that lead to static

polymorphisms. Additionally, the branching results for the evolution of host tolerance

presented in Chapter 4 does not take into account coevolution, which could eliminate

or promote tolerance diversity in the population. Hence there are many avenues to

explore the evolution of host-parasite diversity in temporal environments, which could

help to identify circumstances under which diversity is promoted and maintained in

seasonal infection systems, and therefore predict the potential risk of future outbreaks.

Overall, the few studies that consider evolution in fluctuating environments tend to

investigate resistance rather than tolerance (Hiltunen et al., 2015; Poisot at al., 2012;
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Harrison et al., 2013; Duncan et al., 2017). The work in Chapter 4 provides a starting

point for the exploration of tolerance in seasonal environments, especially in terms of

host diversity, but there is plenty more that could be done. In particular, I found

that branching in tolerance occured in parameter regions that gave larger infected

population sizes. Of the previous studies that find branching in tolerance, Best et al.

(2010a) found that low mortality rates, which cause greater infected population sizes,

led to a wider range of trade-offs that give branching behaviour for evolving sterility

tolerance. This suggests that infected population size may be a consistent driver of

tolerance branching in constant and temporal environments, although more evidence

is needed to support this theory. There is also a lack of empirical work studying

the effects of temporal environments on the evolution of host tolerance, which may

provide important information for future modelling work. Hence experimental and

theoretical work could investigate tolerance and seasonal environments further, with

a fully collaborative study potentially providing even more insight into the drivers of

tolerance evolution and diversity.

In this thesis I have concentrated on the evolution of resistance (avoidance and recovery)

and mortality tolerance, but hosts can also evolve through infected sterility tolerance

(Simms & Triplett, 1994; Stowe, 1998; Hochwender et al., 2000; Restif & Koella, 2004;

Best et al., 2008, 2010a) or acquired immunity (Deerenberg et al., 1997; Zuk & Stoehr,

2002; Boots & Bowers, 2004; Gerardo et al., 2010; Donnelly et al., 2017). For example,

in a constant environment, sterility tolerance has distinct evolutionary behaviour when

compared to mortality tolerance (Best et al., 2008), while acquired immunity may

evolve in a similarly way to resistance mechanisms (Miller et al., 2007; Donnelly et

al., 2017). The evolutionary dynamics of these defences has not been explored in a

seasonal context, and may provide different results to those found in this thesis for

resistance or mortality tolerance evolution. In addition, defence mechanisms are often

linked (e.g. resistance and tolerance: Restif & Koella, 2004; R̊aberg et al., 2007; Carval

& Ferriere, 2010; Howick & Lazzaro, 2017; Klemme & Karvonen, 2017), although

experimental studies are sometimes unable to untangle the costs of individual defence

mechanisms (Simms & Triplett, 1994; Frank, 2000), and it has been shown theoretically

that simultaneous evolution of multiple defences can obscure their actual costs (Restif

& Koella, 2004). Therefore it may be pertinent to consider a range of trade-offs between

different types of defence and the environment, which could improve our understanding

of empirical results and determine which mechanisms may be most beneficial in constant

and variable environments.
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In this work I considered temporal environments, but this is only one way in which

habitats and infection dynamics are heterogeneous. Spatial heterogeneity also plays

an important role, and the intersection between time and space is often an influential

factor in infection dynamics. For example, empirical evidence suggests that temporal

spatial clustering of hosts can lead to outbreaks of disease (Dhondt et al., 2005, 2012;

Caillaud et al., 2006; Bharti et al., 2011; Silk et al., 2017). Host-parasite evolution

has yet to be studied in a temporal and spatial environment, however, the theoretical

spatial evolutionary literature has generally found that more localized interactions lead

to lower virulence (Hochberg & van Baalen, 1998; Boots & Sasaki, 1999; Haraguchi

& Sasaki, 2000; Kamo et al., 2007; Su & Boots, 2017) or greater transmission (Read

& Keeling, 2003; Débarre et al., 2012; Ashby et al., 2014), which generally leads to

greater infection in the population. In contrast, when considering host-only evolution

and coevolution in a temporal environment, I found contradictory results as to how in-

creasing the level of heterogeneity (amplitude of the fluctuations) affected the infected

population size. Host-only evolution led to increased infection (Chapter 3), but co-

evolution gave lower infected population sizes (Chapter 6). Therefore an evolutionary

and fully heterogeneous environment model, perhaps with interacting effects of the two

heterogeneities, could be developed to investigate the general effect of heterogeneity on

infection prevalence. Evolution for other ecological systems has been considered in this

type of environment (Cohen & Levin, 1991; Massol, 2013; Massol & Débarre, 2015;

Svardal et al., 2015), and so these studies could be altered to include host-parasite dy-

namics, with the resulting model able to encompass many real-world infection systems.

Alternatively, some have already studied infection models with spatial and temporal

heterogeneity (Sari & Augeraud-Véron, 2015; Hirsch et al., 2016), with Duke-Sylvester

et al. (2011) applying such a model to the spread of raccoon rabies in the USA. They

found that, for spatial patches with synchronous periodic reproduction, changing the

variation in the timing of host births across the patches led to differences in the spatial

synchronization of epidemics. These infection models could be extended to include evo-

lution, however, such complexity would likely come at a cost of increased computational

time and broad simplifying assumptions.

There are number of ways in which the temporal environment experiment presented

in Chapter 5 could be extended to include spatial hetergeneity. For example, it would

be relatively simple to expand the experiment to consider local-interactions through

static microcosms (Brockhurst et al., 2003, 2006; Lopez-Pascua et al., 2012), which

could show if the temporal environment has a larger/smaller impact on coevolution

when host-parasite interactions are locally determined. Alternatively, a more compli-
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cated way to include both temporal and spatial environments would be to combine

the periodic treatment presented in Chapter 5 with spatial heterogeneity specified by

migration between patches (e.g. Vogwill et al., 2008, 2009, 2010, 2011), or by migra-

tion along a productivity gradient (Lopez-Pascua et al., 2010). Great care would be

needed when designing and setting up these migration experiments with temporal en-

vironments, so that the experiment itself is possible practically and the results can be

clearly understood. Therefore, there are a few ways in which evolution could be studied

experimentally in a spatial and temporal environment, although high levels of complex-

ity may reduce tractability and so experiment design will be especially important to

gain clear results.

I found that there is a strong interaction between the amplitude and period of the

seasonal forcing on the host-parasite population dynamics, which influenced the evo-

lution of host defence (Chapter 3 and 4) and coevolution (Chapter 6). However, I did

not find any studies in the experimental literature that considered both varying the

amplitude and period in a temporal environment. While considering these quantities

separately is useful, it is unclear if theoretical results about their interaction are real-

istic. The experiment from Chapter 5 could easily be extended to include additional

treatments that vary both the amplitude and the period of resource oscillations, as

the effect of changing the period alone has already been investigated by Harrison et

al. (2013). This would provide experimental evolution evidence for the interaction of

the seasonal parameters, and could show behaviour that is not obvious from studies

of only one variable. The results could also be compared to theoretical coevolutionary

outcomes from the models presented here and elsewhere (Poisot et al., 2012), which

may prompt the addition of more evidence-based assumptions in order to achieve bet-

ter evolutionary predictions. Such a combination of experimental and theoretical work

could provide a deeper understanding of the drivers of infection dynamics in seasonal

environments, and how the amplitude/period of environmental fluctuations may affect

this.

There are many aspects of infection dynamics and evolution that have yet to be explored

in a seasonal environment. One example is the parasite-mutualist continuum, whereby

some parasite species can be beneficial to the host in certain contexts (Michalakis et

al., 1992; Hughes et al., 2011; Sternberg et al., 2011; Vorburger & Gouskov, 2011;

Ford & King, 2016). This has been studied theoretically in a constant environment,

where trade-offs and characteristics of the species determined the evolutionary outcomes

(Jones et al., 2011; Ashby & King, 2017). However, a seasonal environment could
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change these characteristics and therefore alter the potential for evolved host protection

by a parasite. Alternatively, hosts and parasites can adapt through plasticity, whereby

defence/infectivity can vary quickly in response to ecological or environmental cues

(Via & Lande, 1987; Gillespie & Turelli, 1989; West-Eberhard, 2003; Leimar, 2005;

McLeod & Day, 2015). This could be especially important in fluctuating environments,

as the host and parasite would be able to plastically respond to seasonal changes in

the environment rather than evolve a fixed trait that may only be beneficial for part of

the season. Plasticity has already been studied for other systems in spatial (Ernande

& Dieckmann, 2004; Leimar et al., 2006) and temporal environments (Leimar, 2009;

Herron & Doebeli, 2011; Svardal et al., 2011, 2015), but not yet for host-parasite

coevolution in a temporal environment. Elsewhere, many have considered the evolution

of drug-resistance in parasites when treatment is applied periodically (Baker et al.,

2018), but it may be important to consider the timing of treatment strategies if the

infection system is already seasonal, and how the parasite may evolve in response.

Therefore there are many possible directions that are not explored in this thesis, but

could provide interesting and important predictions for host-parasite coevolution in a

range of different contexts.

The study of host-parasite evolution in temporal environments is an expanding area of

research, with many aspects yet to be explored. The results from this thesis build upon

previous research, and raise questions that could be investigated in the future. In par-

ticular, the work here highlights the benefits of developing experimental and theoretical

work together, which can result in a more cohesive understanding of host-parasite evo-

lution. Further work in this area could deepen our understanding of infection dynamics,

especially in increasingly variable and uncertain climates.
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