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Neural trajectory analysis has become widespread in neuroscience as a means
to investigate population phenomena that transcend the single neuron [34, 81].
The interpretation of the results, however, remains controversial [31]. Given the
complexity and magnitude of the data, it is not clear what aspects of the trajectory
are side effects of the method of choice and which are informative of the underlying
mechanisms of the studied behaviour.

The ideas behind neural trajectories are closely related to that of dimensiona-
lity reduction [24]. They have been useful, for example, in situations in which a
few surrogate variables seem to describe the dynamics of the population[13]. The
underlying concepts in this case come from dynamical systems theory; the space
is the phase space of some system whose (partial) behaviour is observed. In this
sense, a dynamical approach is reasonable because, given observations of the dy-
namical system (i.e. the recorded neuron’s activity), it is possible to reconstruct
its evolution law by means of linear algebra techniques [68].

This approach, even though has been instrumental in gaining insights about
neural population dynamics in some other instances [21], is unsatisfactory or, at
least, incomplete for 2 reasons. Firstly, it assumes some sort of asymptotic behav-
ior, like an attractor, towards which the system tends. This is made patent in some
of the methods in which a proper dynamical system is fit to the low dimensional
trajectories and used as a surrogate of the original population [21]. This however
is not the case in most experimental situations in which only transients in response
to an external stimulus are observed [58].

Secondly, and more important, the low dimensional trajectories in the case of
PCA, which are the focus of this work, do not meet the assumptions that most
dynamical system approaches require. On one hand, they display pathological
features like irregularities (the curve stops or backtracks) and they can be non-
simple (i.e. have self-crossings). On the other hand, the trajectories’ shape has
natural constraints that come from the PCA computation itself. In this work we
spend a good deal of effort in studying the normal and pathological aspects of the
shape and elucidating the mentioned restrictions.

The study of trajectories faces then major difficulties in the interpretation
that go along with wrong intuitions, for example, about the relationship between
the individual firing rates and the geometry. When seeing a sharp turn in the
trajectory, most people will be inclined to think that they come from an equally
sharp pattern in the firing rate. This is not true in most of the cases as we explain
in this work. We show that the curvature and other aspects of the trajectory
depend critically on the nature of the overlap between the firing patterns.

Along with the study of the trajectories, other related mathematical concepts
have come to the attention of the neuroscience community. That is the case of
subspaces. They have become effectively the unit of computation proposed for
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some mechanisms like the preparation of movement [48]. To this end, important
questions to be asked are whether the underlying subspaces are orthogonal or not
[81]. In this respect, orthogonal subspaces enjoy the property of minimizing the
errors when decoding different messages [23].

Hence, an effort is also made in understanding the high dimensional aspects
of the trajectory and the underlying subspaces in the basal ganglia. It is widely
known that phenomena in high dimensions can be counter intuitive and paradoxical
at best [28]. However, it has been recently recognized that despite the curses
of dimensionality, a dominant feature of high dimensional phenomena, that of
clustering, can make them remarkably simple [65]. The clustering endows the high
dimensional space with a tree structure that, in the case of PCA, is instrumental
in the understanding of the individual principal components and their relations.

Instead of applying the dynamical system approach directly, we use then the
more pragmatic view of neural ensembles [5, 55]. Neuronal assemblies or ensem-
bles turn out to be very convenient in relation to PCA as linear dependence of
the inputs influence the underlying PCA subspaces. We combine our study with
the development of a framework as rigorous as possible from the mathematical
point of view. Such framework leverages state of the art techniques drawn from
differential geometry, combinatorics, analysis and algebra that are widely available
to mathematicians but might be unknown for other scientist.

The focus of this study is on the neural populations of the basal ganglia for
which no current description of the trajectories is known. We study the population
activity around movement initiation and use the insights developed about the
shape and ensemble (clustering) structure to understand aspects of the code and
computation performed mainly at the output stage. We propose a computational
interpretation based on parallel channels with minimal cross talk for a well learned
stereotypical behavior.This makes sense as the process of learning might be thought
as a process of dimensionality reduction that finds orthogonal subspaces for the
movement involved minimizing the errors in the execution [7].

An outline of this work is as follows. In chapter 2 we introduce the main as-
pects related to the basal ganglia and neural codes that will be important in the
understanding of this work. Chapter 3 develops the main mathematical themes
recurring in this thesis. The three following chapters are the main results chap-
ters. Chapter 5 develops an in depth study of the shape of the trajectories from
different aspects and theoretical frameworks. In chapter 6 we occupy ourselves
in the development of a major connection between PCA and some combinatorial
objects called Catalan objects. Finally, chapter 7 provides a complete analysis of
the population dynamics using the framework and tools just developed.
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2.1 Basal ganglia, population codes and neural space analyses

2.1.1 The basal ganglia

The basal ganglia comprise a highly preserved collection of subcortical nuclei in-
volved in a variety of motor and non motor functions. In this section we focus on
general structural and functional motor related aspects mostly in the rodent and
macaque instances of such regions.

Decision making

The basal ganglia have a clear role in decision making that has been evidenced
by several studies[60]. The action selection hypothesis of the basal ganglia[76]
leverages the structural properties of the inhibitory networks in the basal ganglia
to suggest a winner take all mechanism for selection of the desired action outcome.
This is accompanied by a suppression of unwanted options in a center surround-like
organization similar to the observed in the visual system[60].

Basal ganglia inspired models of decision making can be readily implemented
suggesting that the proposed mechanisms are, to viable from a functional perspec-
tive [54, 39]. This view has been challenged, or at least complemented, by evidence
of complementary roles of the basal ganglia with respect to the motor/frontal cor-
tices. One account suggests that the output nuclei provide a vigor[92] signal that
controls the movement gain.

From a phenomenological point of view, it is clear that neurons in the basal
ganglia show phasic and tonic activity that is modulated by movement and by the
behavioral outcome. Specific cell subtypes show a variety of responses to movement
[33] some of them directly related to the decision target. Activity in those neurons
has been related to other movement related aspects like urgency [91] and action
suppression [83, 82]

Other functions

The basal ganglia are heavily involved in habit formation [99] and, in close relation-
ship, in repetitive behaviors associated with tics [61] and higher order dysfunctions
like Obsessive Compulsive Disorder [63] or addiction. The functional aspects that
intervene in those behaviors are central in the ability of sequence learning, en-
coding and, potentially to a lesser extend, execution [42]. The sequence learning
aspects of the basal ganglia is a rich area that is beyond the scope of this work.

Dopaminergic, serotoninergic and collinergic signals modulate learning and mo-
tivation in the corresponding behavioral output. There is evidence of value and
reward related information encoding in some of the nuclei (see next sections).
Dopaminergic input is instrumental not only for the learning aspects of the task
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but also for the smooth execution of the movements; indeed, dopamine disregula-
tion is the universally recognized substrate of Parkinsonian symptoms in patients
[77].

Finally, the functionality associated with there regions seems to be recruited
abstractly in higher order non motor functions like language production [10], ex-
ecutive functions, working memory among others. For example, higher level of
abstraction in action execution seem to be achieved by action chunking or repre-
senting full sequences as a single entity at the same level of the single movement
[36].

2.1.2 Architecture

The basal ganglia have appealing architectural features that have attracted all
sort of computational hypotheses. A manifest aspect of their connectivity is that
it is largely inhibitory and its ultimate effect in downstream regions is that of a
disinhibition [19].

The basic architectural plan is shown in figure 2.1. The inputs to the basal
ganglia come mainly from the cortex and some nuclei in the thalamus, apart from
the modulatory input from the dopaminergic centers in the Substantia nigra pars
compacta and the ventral tegmental area. In the striatum, two pathways are
recognized. The direct pathway sends inhibitory projections to the output stages,
internal globus pallidus (GPi) and the Substantia nigra pars reticulata (SNr). The
indirect pathway projects to the external globus pallidus which, in turn projects
to the output stages through the STN.

Note that the indirect pathway has as a ultimate result, when activated (i.e.
neurons fire), is a disinhibition of the SNr while the direct pathway’s inhibits the
output stages. Also notable about the indirect and direct pathways is the existence
of differences in the kind of receptor expressed by their projection neurons (D2, D1
subtypes respectively[85]); they also have other neurochemical differences, notably,
enkephalin vs. substance p neuropeptide expression. Finally, a hyperdirect path-
way provides fast excitation to the different nuclei by means of the subthalamic
nucleus (STN) [66].

Another architectural property of the basal ganglia is its organization in parallel
nested loops [75]. For example, the outputs of the basal ganglia that target the
thalamus are partially fed back to the striatum by structures like the parafascicular
nucleus, which we study in this work. Also, in a broader loop, the thalamo-cortical
pathways feed back to the striatum through the mentioned cortical input. The
parallel aspect of the loops is, as shown in figure2.2, the segregation of the functions
of the basal ganglia in different cognitive domains related with different functions.

Finally, a conspicuous feature of the inter nuclei connectivity is that of funneling
[64]. The afferents from the cortex are much more numerous than the targets in the
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Figure 2.1: Gross architecture of the basal ganglia. The input stages Striatum and
STN receive excitatory input from the cortex. Inhibitory pathways are shown in
green, excitatory ones in red. See text for details (Taken from [26])

Figure 2.2: Parallel and nested loops in the basal ganglia. To the left, the basic
network architecture is shown. To the right, different domains have loops with
similar architecture but different functional and behavioral outcomes. (Taken from
[92])
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striatium. In turn, the connections to the following structures in the feedforward
neuron display reductions that are thought to be instrumental in the compression
and decorrelation of the input patterns [97]

Input stage: The striatum

The input stage to the basal ganglia is the striatum. The main cell type in this
region are the Medium spiny neurons (MSNs) which show sparse patterns of fir-
ing, broad arborization, collateral but sparse inhibition; these are the projection
neurons. The second group of cells are inhibitory interneurons called Fast Spiking
Interneurons (FSIs) which are thought to directly drive the MSNs by their fast
firing rates. Finally there are other types of neurons (like TANs) whose study goes
beyond the scope of this work.

The striatum has different domains which go from motor (dorsal) to limbic
(ventral) and shows somatotopy to some extent [66], and has spatial organization
into domains called striosomes with and external matrix called matriosome [85].
With respect to movement initiation, principal neurons in the dorsolateral striatum
differentiate between contra and ipsilateral movement by a fast increase in firing
rate [83], moreover, the FSIs show diverse individualized patterns of activity which
differ according to the nature of the decision (ipsi or contralateral)[33]. Some of
the striatal movement related neurons show later modulations in the firing rate
due to potential stop or pause signals coming from the GPe [82].

The Globus pallidus and the Subthalamic Nucleus

The subthalamic-pallidal network, globus pallidus external segment (GPe) and
subthalamic nucleus (STN), is characterized by high firing rates in its principal
neurons (≈ 40spikes/second in the GPe and ≈ 20 spikes/second in the STN [85]).
This network is usually thought as an oscillator that generates the β rhythms and
their response to movement initiation is better thought as a synchronization/de-
synchronizaton of the oscillation in this frequency band [53, 62].

The GPe nucleus is inhibitory with inhibitory feedforward, convergent connec-
tions to the STN and the output nuclei, inhibitory collaterals with high influence
on proximal neurons and some backward projections to the striatum[85]. Neurons
in the STN have fewer collaterals and their influence is excitatory with divergent
connectivity onto the GPe. Two different cell types stand out in the GPe neurons.
Prototypical neurons project to the STN and SNr/GPi in the patterns described
before. Arkypallidal neurons are the source have dense connectivity with striatal
interneurons and are thought to cancel actions in three-way model of movement
cancellation: hyperdirect stop signals provide a pause mechanism that allows the
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continuation of the started action in some occasions while the akrypalliday path-
way is the source of a stronger, definitive cancellation of movements [82].

Output: The subtantia nigra/ GPi

The influence of the basal ganglia is exerted through the output nuclei: the subtan-
tia nigra pars reticulata and the globus pallidus internal segment; both differ in the
output targets (i.e. different thalamic nuclei, superior colliculus among others for
the SNr; lateral habenula, other subcortical nuclei, etc. for GPi) but have similar
neurophysiological responses [85]. The firing rate response to cortical excitation
is characterized by an initial excitation, a pause and a subsequent excitation [85].
Firing rate pauses are the hallmark of the disinhibition model of basal ganglia with
the intermediate pause dominated by the striatal direct pathway [19].

The parafascicular nucleus

The thalamus is the target but also the source of many topographically organized
afferents to the striatal network. Inputs coming from the central lateral nucleus
target the spines of MSNs, have high firing rates and exhibit bursts, while inputs
coming from the parafascicular nucleus target mainly the dendritic shaft of in-
terneurons in the striatum along with spines of MSNs, have lower firing rates and
are less bursty[85].

2.2 Neural codes and ensembles

The idea that neurons form highly connected groups is central to the neuron
doctrine [8]. They were first introduced in the seminal work of donald hebb [40]
and, since then, evidence of them as a functional and organizational principle of
the neural code have been found in different brain regions [16]

Neurons in the brain encode information at the single neuron level, for example
in their firing rate (rate code) or in the spike timing (temporal code). When the
information is encoded by a group of neurons, the code is called a population
code. A famous example of such code is the population vector in which, it was
shown, linear combinations of neuron activities in the motor cortex could be used
to decode the direction of movement in monkeys [35]; this class of readouts are
called linear decoders.

The responsiveness of a neuron to a feature of a stimulus or an event[71], like
direction or orientation, is called selectivity. Sensory codes are usually studied
creating what are called tuning curves [15], however, such procedure is not possible
or well defined for other brain regions like the striatum. Neurons display, addi-
tionally, a feature called mixed selectivity [78], which implies that a neuron may
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respond to different features or in different aspects of the task. Mixed selectivity
justifies the novel analysis developed in this work as neurons participating in an
ensemble at some point in time might be regrouped for later aspects of the neural
processing.

2.2.1 Heterogeneity sparseness

Two main features, apart from selectivity, of a neural code are heterogeneity and
sparseness. Heterogeneity is related to the fact that brain regions are diverse.
Firstly, there are a variety of cell types with differing chemical and morphological
features. Secondly, even in morphologically homogeneous networks like the cortex,
firing patterns are diverse and shared with neurons within ensembles [45]. This
heterogeneity has implications in the population code: it limits the usefulness of
linear readouts [84].

Some measures of heterogeneity or diversity have been developed in the context
of graph theory and population dynamics, many of them, like the Simpson’s D
index [69] use the Shannon entropy in their formulation. A neuroscience example
is found in [89] where a similar measure like the one proposed in this work is
used to characterize the population activity. It turns out that the main feature
of a diversity measure is convexity [74] and its measurement is related to the
dimensionality of the population in question.

Sparseness or sparsity, on the other hand, is related to the number of neurons
being active or participating in the encoding of a certain feature. In studies of the
receptive fields in the visual system, it was found that the emerging patterns of
activity where sparse [67]; indeed many other regions are naturally sparse (like the
MSNs in the striatum) while others are characterized by a more dense firing.

Some measures of sparseness have been developed before. An ideal measure of
sparseness will maximize the contrast in the pattern of firing, for example by using
the L1 norm of the population vector. A widely used measure is the treves-roll
sparseness [96] defined as

sp(X) = 1− 1

n

[
∑

i ri]
2∑

i r
2
i

, (2.1)

where ri = ‖xi‖1 =
∑

k |xik| is the 1-norm of the neuron’s i z-score. This index
has [0, 1] as its range. Another alternative is to use entropy again and the fact
that it is a measure of the width of a distribution.

2.2.2 Neural code and computations in the basal ganglia

One of the main computations ascribed to the basal ganglia is that of dimensiona-
lity reduction [7], more precisely, reinforcement driven dimensionality reduction.
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In this framework, the funneling architecture presented before has as an ultimate
consequence the emergence of patterns of activity in the output regions that closely
resemble PCA. Indeed, neural networks with similar Converging (Ctx → SNr) -
diverging (SNr→ Ctx) architecture have been shown to span the same low dimen-
sional subspace than the principal components[12].

This dimensionality reduction aspect of computation is closely related to the
compression or “chunking of action repertoires” [36] that is observed in this regions.
Indeed, ensembles of MSNs in the striatum have been shown to encode specific
actions or behaviors [49]. Ensemble or assembly formation is one of the observed
features of striatal spatio temporal dynamics [72] and it is natural to assume
that the topology of locally compact bumps of activity is preserved in some way
downstream in the basal ganglia hierarchy.

Based upon the timing and polarity (either increases or decreases) of the re-
sponses at the different stages in the basal ganglia, a model of the computations
performed in the selection of an action is that of a center-surround processing in
3 steps[66]. It has been known that the inhibitory networks are ideal for com-
petition and selection in a winner-take-all fashion, however, this model provides
specific roles for each for the three main pathways in these nuclei.

Firstly, a fast, broad excitation to the output regions (SNr/GPi), through the
hyperdirect pathway, shuts all the potential actions down by inhibiting their tar-
gets in the thalamus. Secondly, a focused inhibition through the direct pathway
“frees” the targets corresponding to the desired action while holding the unde-
sired ones; finally an excitation coming through the indirect pathway restores the
inhibitory hold on the thalamus. Although most likely oversimplified, this model
provides a physiologically realistic framework for understanding the observed firing
patterns (figure 2.3).

2.3 The neural trajectories

The neural trajectory formalism has been widely used in neuroscience to under-
stand neural activity and population coding from a dynamical systems perspective.
In the neural space each coordinate axis corresponds to the firing rate of one neu-
ron and the population activity at certain time corresponds to a point in that n
dimensional space. The activity in a given interval of time traces a curve associ-
ated with the dynamics of the population in relation to a given internal or external
event[34, 24].

The neural trajectories appear, in general, to be constrained to a low dimen-
sional manifold of the high dimensional space, therefore, they can be studied by
constructing appropriate surrogate variables obtained either by constructing lin-
ear combinations (i.e. projecting them in a low dimensional space), finding hidden
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Figure 2.3: Center surround model of action selection in the basal ganglia. Taken
from [66]. A.The three pathways and B. The different roles played based upon the
timing of their responses

variables or reconstructing the said manifold by local approximations (i.e. LLE)
[24].

The low dimensional activity, at first, seems to be in direct contradiction of
the mixed selectivity - state dependent computation framework [78], in there, the
neural activity must live in a high dimensional space in order to be able to perform
rich computation tasks like discrimination. Such contradiction however disappears
when noticing that such manifold is embedded in a very high dimensional space and
its low dimensionality is a global property (although, locally, the manifold behaves
as the high dimensional space itself); it comes from constraints imposed on the
dynamics by connectivity, computation and the existence of neural ensembles[57].

Functional substrates of those manifolds have been found in a variety of brain
regions and systems. For example, what are called rotational patterns have been
associated to the coding of movement parameters like direction or preparation in
the motor cortices [21]. The trajectory of the neural population has been asso-
ciated to decision making tasks in which the trajectories diverge at the moment
the decision is made [13]. Classical work also associate the visited points of the
trajectory with the identity of distinct odors in the locust brain[58].

This last study gave rise to a computational interpretation of the trajectory
in terms of saddle points instead of attractors. In that framework, the trajectory
visits a sequence of states that are saddle points in the evolution of the dynamical
system but it does not stops or “tends” to a specific point in the limit. This set of
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states are the starting point of our view of the trajectories in terms of ensembles
or faces of the high dimensional hyperplane arrangement. Indeed, an approach
that has been fruitful in the past is to keep track of the activated ensembles along
the trajectories, for example, to decode sleep activity in the c. elegans [47].

Churchland, Cunningham, Null space [48]

2.4 Related work

Principal Components Analysis (PCA, see next section) has been widely used in
the study of neural trajectories as was elaborated in the previous section [13, 24];
the extraction of low dimensional trajectories by other means is reviewed elsewhere.
The traditional analysis can be done either by averaging over all trials for a given
condition as is done in this work, extending the method to higher order structures
like tensors [95] or partially averaging over different conditions to de-mix condition
specific patterns [50]. We refer the reader to the original paper for details about
these more specialized variations of PCA.

The approach taken in this work is that of neural ensembles. PCA has been
related to clustering algorithms like k-means before [27] although their approach is
not as rigorous and the relation is at best restricted to specific cases. The identi-
fication of ensembles based on the components of the eigenvectors has thoroughly
studied in [17, 55]; they concluded that, although it is possible to use them for
that purpose, it is not clear how the ensemble information is mixed in subsequent
PCs, a question for which our work proposes an answer.

The key of our answer is an hierarchical approach to disentangling the multiple
interactions between ensembles. Similar observations have led to the development
of algorithms to identify highly correlated groups which in other fields are called
communities [56]. Those algorithms are based in a sequence of thresholdings of
the covariance matrices in the process of the construction of the nested groups in
a similar guise to ours. Detailed studies of the commonalities in high dimensional
data has led researchers to the conclusion that high dimensional spaces tend to have
a natural hierarchical structure that can be exploited in favor of better methods
of analysis [52].

As a final remark, it is important to note that the field of neuroscience is not
the only one that has realized the usefulness of PCA in the construction of low
dimensional approximations. Notable mentions of such methods are the essential
dynamics of proteins [4] and the proper orthogonal decomposition in the study
of turbulence [18]. Both methods use PCA or its probabilistic counterpart, the
Karhunen-Loeve transformation to identify an essential subspace that simplifies
the otherwise complex dynamics of either the chemical reactions or the coherent
structures in the fluid.
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3.1 Algebra and geometry basics

In this section we develop basic terminology and concepts that will be used in the
treatment of PCA from the algebraic point of view. The most important concept in
this section is that of eigen-decomposition as the principal components are defined
in terms of the eigenvectors and eigenvalues of the sample covariance matrix [43].

A n dimensional vector is a n tuple v = (v1, v2, . . . , vn) of numbers called
scalars, with vi ∈ R or C. The space of all real vectors is denoted Rn. A matrix is
an arrangement A of scalars in n rows and m columns, where the element in the
row i and the column j is denoted Aij. The space of all matrices is denoted by
Rn×m. The matrix B such that each Bij = Aji is called the transpose of A and is
denoted by AT . The columns of A are denoted by A∗j and the rows are Ai∗.

A linear combination of the vectors v1,v2, . . . ,vm is defined as the sum u =
α1v1+α2v2+. . .+αmvm, with αi ∈ R. The vectors are called linearly independent
if u = 0 if and only if 1 αi = 0 for all i. The span of a set of vectors is the set of
all their linear combinations. A line is the span of a single vector and a ray in the
direction of a vector v is the set of all u = αv with α ≥ 0.

The multiplication of a matrix and a vector can be seen as a linear combination
of its columns:

Av = v1A∗1 + v2A∗2 + . . .+ vmA∗m

And matrix multiplication C = AB can be seen as the result of multiplying A
by each of the columns of B

AB = (AB∗1,AB∗2, . . . ,AB∗m)

Matrix multiplication is not commutative in general. A matrix is square if
n = m. A square matrix is invertible or nonsingular if there exists a matrix A−1

such that AA−1 = In. A matrix is symmetric if AT = A, a matrix is unitary if
A−1 = A; a matrix is idempotent if A2 = A. The rank of a matrix is the minimum
number of columns that are linearly independent.

For two vectors u and v, the product uTv is called the inner product. The
two vectors are called orthogonal if uTv = 0. A set of orthogonal vectors B =
{b1,b2, . . . ,bn} is called a basis of Rn if its span is the whole Rn. The function
‖u‖ =

√
uTu is called the norm of u. A vector is a unit vector if ‖u‖ = 1. For a

unit vector u and an arbitrary vector v, the vector p = (vTu)u can be seen also as
the projection or shadow of u onto v. The matrix P = uuT is called a projector.

1abbreviated as “iff” from now on
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Eigendecomposition

Given a square matrix A, the pairs (λ,v) for which Av = λv are called the
eigenvalues and eigenvectors of the matrix A. The eigenvalues are real if the matrix
is symmetric. If the matrix is invertible A−1v = λ−1v for the same eigenpair (λ,v).
The set of eigenvalues of a given matrix A is called the spectrum and is denoted
by σ(A). Two matrices A and D are similar if there exist a matrix P such that
A = P−1AP, in particular, if the matrix is similar to a diagonal matrix it is called
Diagonizable.

Finally, we close the section by stating the spectral theorem which guaranties
the existence of the principal components:

Theorem 1 (Spectral theorem). Every symmetric matrix A with spectrum σ(A) =
(λ1, λ2, . . . , λn) and associated eigenvectors v1,v2, . . . ,vn, can be decomposed as

A =
n∑
i=1

λiGi, (3.1)

where Gi = viv
T
i are the spectral projectors.

3.1.1 Vector spaces

The concepts introduced before apply to a wider range of objects that behave
like vectors (for example, functions), in that general case, matrices are replaced
by linear transformations. This generalization is necessary because the objects
we are dealing with when analyzing firing rates of neurons are functions of time;
this has important consequences that constraint the geometry and the spectrum,
ultimately affecting the shape as we will see in the next section.

A vector space V is a 4-tuple (X,F,+, ·). X is a set whose elements are called
vectors, F is a field or a set of numbers called scalars, and, + and · are operations
called vector addition and multiplication by a scalar that satisfy a set of axioms
that can be found in any linear algebra textbook [59]. During this work we assume
F = R unless otherwise stated. The spaces Rn and Rn×m introduced before are
vector spaces.

A subspace is a subset S ⊂ X that is a vector space in itself. The dimension of
a vector space is the minimum number of basis vectors that span it. A vector space
is finite dimensional if dim(V ) = n <∞, otherwise it is infinite dimensional. It is
called a inner product space if there is an inner product 〈u, v〉 defined on it, the
more important inner product spaces are Hilbert spaces : spaces that are complete
all the limits of sequences of elements inside the space converge to an element of
the space. An inner product induces a norm as we saw in the previous section.
The distance between two objects in a normed space is given by d(u, v) = ‖u− v‖.

21



Apart from the euclidean space Rn, other spaces used in this text are

• Ck(R), The space of continuous functions on R with k continuous derivatives.
When k =∞, its elements are called smooth functions

• Lp(R), The space of integrable functions with norm

‖f‖ =

(∫
R
fp(s)ds

)1/p

.

Given two elements f and g in a linear vector space X, the line between them,
given in parametric form, is

L(t) = tf + (1− t)g, (3.2)

for t ∈ [0, 1]. A subset S is called convex if for every f, g ∈ S, the line L(t) ∈ S
for all t. It is called open if it does not contain its boundary. For example, the
set {(x, y) ∈ R2 s.t. x > 0 and y > 0} is open because it does not contain all the
points in the coordinate axes. A more rigorous definition can be found in any book
of topology. If a set is not open, then it is closed.

3.1.2 Groups, maps and actions

Now we turn to some basic concepts about groups and group actions. Groups are
used in chapter 5 to encode the sort of transformations a shape is invariant to.
For example, a rotated triangle is still a triangle, so we say that the group action
of the group of rotations on the triangle leaves the shape invariant[86].

The Cartesian product of two sets A and B is denoted by A × B. A map or
function is relation, (i.e. a subset of A×B) with no repeated elements from A. A
map is injective or into if no two elements from A are mapped to the same element
in B. It is onto or surjective if all the elements of B have a preimage on A. A map
is a bijection or is one to one if it is into and onto. We use bijections to prove the
equivalence of two seemingly unrelated mathematical objects like the eigenvector
systems and the Catalan trees (see chapter 6).

An equivalence relation ∼ is a relation that is reflexive (a ∼ a), symmetric
a ∼ b = b ∼ a and transitive a ∼ b and b ∼ c implies a ∼ c. An equivalence
relation partitions a set into classes. If the element a ∈ A is a representative of a
class, the set of all elements equivalent to it is denoted by [a]. For example, the
shape of an object is the equivalence class of all the objects with similar shapes.

A group is a set G along with an operation · that satisfies the following axioms

• Closure: For all x, y ∈ G, x · y ∈ G

22



• Identity: There is an identity element e such that e · x = x for all x inX

• Associativity: For all x, y, z ∈ G, (x · y) · z = x · (y · z)

• Inverse: For each x ∈ G there is an element x−1 ∈ G such that x · x−1 = e

When the group satisfies the commutative axion( x · y = y · x) it is called
Abelian. Given a set X, the action of G on X is given by a map g · x, g ∈ G and
x ∈ X, that satisfies i. e · x = e, where e ∈ G is the identity element of the group,
and ii. g · (h · x) = (g · h) · x for g, h ∈ G. The set O(x) = {g · x for g ∈ G} is
called the orbit of x.

Examples of groups are the group of invertible matrices GL, the set of rotation
matrices in n dimensions SO(n) and the symmetric group Sn or the group of
permutation of n elements.

3.2 Singular Value Decomposition and Principal Components

Analysis

PCA will be used to mean Principal Component Analysis, taking analysis in its
dialectic sense, that is, as a decomposition of our data matrix in individual con-
stituents and not just the method of reducing dimension itself which is only a
consequence of it.

We will work with a n ×m matrix X called the data matrix. We assume, as
this is our case, that each row of the matrix corresponds to an unit or neuron
and each column to a sampling point of the estimated firing rate for that neuron.
The symmetric matrix C = 1

m
XXT will be called the (sample) covariance matrix

or simply covariance matrix. The dual matrix G = 1
n
XTX is called the time-

covariance matrix.

Definition 1 (Principal Component Analysis). The principal component analysis
of a data matrix X is the triplet (V,D,Z), where V is the matrix whose columns
are the eigenvectors of the (sample) covariance matrix, D is a diagonal matrix
with the corresponding eigenvalues λ1, λ2, . . . , λn, sorted such in a descending way,
and Z is the matrix with the projections of the the population on the basis given
by V as rows, that is:

Z = VTX. (3.3)

Z is called the matrix of principal components (PC).

There is a dual decomposition based upon the time covariance matrix. Let
(U,D′W be the eigenvectors, eigenvalues and projections with respect to G (W =
XU), then the following relations are held:
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D = D′ (3.4)

U = ZTD−1/2 (3.5)

W = D−1/2VT (3.6)

The matrix V and U are unitary, they, along with the eigenvalues also form
the Singular Value Decomposition of X:

Definition 2 (Singular Value Decomposition). The SVD of X is a triplet (V,Λ,U)
with U,V unitary, such that

X = VΛUT (3.7)

The matrix U and V are the same as before and Λ =
√

D. This means that
each data element can be written as a linear combination of the PCs:

xi(tj) =
∑
k

vkzk(tj) (3.8)

In practice, the data matrix is often centered before the decomposition. The
matrix C = Im − 1

m
1m1Tm is called the centering matrix and X̃ = XC is the

centered version of X. The mean subtracted or centered PCA is then applied to
this new matrix.

It is often convenient to replace the covariance matrix C (G) with a normalized
version called the correlation matrix C̃ defined as:

C̃ = S−1/2X̃X̃TS−1/2, (3.9)

where S is the matrix with the standard deviations σi of each neuron in the
diagonal. In general, the first PC passes through the centroid of the data if the
mean is not subtracted, however, the same is not true for block matrices (matrices
with clusters).

3.2.1 Characterization and interpretations of PCA

We now focus on useful facts and properties of PCA.

Best low rank approximation of the data

An important property of PCA, and the one that mostly justifies this work, is the
following. Remember that the space of matrices is a vector space. There we can
define a norm and a distance.
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Definition 3 (Frobenius norm). The map ‖ · ‖2 : Rn×m → R, given by

‖X‖2 =

(∑
i

∑
j

X2
ij

)1/2

is called the Frobenius norm.

The induced distance d(X,Y) = ‖X−Y‖2 is just the sum of square errors of
all the elements.

Given a data matrix X, the PCA provides the rank k best approximation to
the data in terms of the Frobenius distance, that is, let Xk be the reconstructed
matrix obtained by truncating the sum in (3.8) at the k-th term (or alternatively,
by selecting the first k columns of V, D, and U in the SVD), then

f(Y) = d(X,Y) = ‖X−Y‖22 (3.10)

where Y is a rank k, n×m matrix, reaches a minimum precisely at Xk. That
is, the data reconstructed from the first k PCs is as close to the data as it can be.

The minimization of (3.10) can be restated as a problem of training a neural
network with 1 hidden layer with k units and inputs and outputs layers with n
units so that the output tracks as closely as possible the input. This configuration
is called an Autoencoder and the space spanned by the weights is the same as the
PC subspace obtained by taking the first k eigenvectors [12].

Geometrical objects associated to PCA

PCA also gives the orthogonal directions of maximal variance in the data. In-
deed, the variance of each of the principal components is given by var(zk) =
(vTk X)(vTk X)T = vTk Cvk = λk. It can be shown, for example, by the method of
Lagrange multipliers, that of all possible orthonormal sets of directions (vectors
ui such that ‖u‖ = 1 and uTi uj = 0 for i 6= j), the eigenvectors vk are those which
maximize the quadratic form q(x) = xTCx.

A quadratic form is a polynomial of degree two given, as seen before, by the
equation q(x) = xTCx. When C is the covariance matrix, the level curve q(z) =
zTC−1z = 1 is the best fitting ellipsoid to the rotated data (zk). Its major axis
(first eigenvector) shows the direction of greater variance or the line of best fit,
while its minor axis (last eigenvector) shows the direction of least variance or worst
fitting line.

Another geometrical object associated to PCA is the quadratic form in itself.
For covariances matrices it is a paraboloid, however, for correlation matrices, the
associated quadric is an hyperbolic paraboloid (figure 3.1) as shown by the follow-
ing theorem
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Figure 3.1: Geometrical objects associated to the PCA. Left. Sphere of orthonor-
mal directions, the eigenvectors are those directions that maximize variance sub-
ject to the orthogonality constraint. Middle. The paraboloid is the graph of the
quadratic form itself (see text). Right. When the correlation matrix is used in-
stead, the space is a hyperbolic paraboloid.

Theorem 2 (Correlation hyperboloid). The associated quadric, for normalized
(zscored) data is an hyperbolic paraboloid.

Proof. Developing the matrix equation of the quadratic form we have

q(x) =
∑
i

∑
j

cijxixj,

this sum can be split however into 2 terms:

q(x) =
∑
i

ciix
2
i +

∑
i 6=j

cijxixj.

The first term is constant because all the data elements are normalized to have
unit variance and so

q(x) = a+
∑
i 6=j

cijxixj.

which is the equation for an hyperbolic paraboloid. The relationship of this hy-
perboloid and the corresponding paraboloid is shown in figure (figure 3.1).

Therefore, for each data matrix X there is an associated ellipse, an sphere of
unit directions, a paraboloid and, for correlation matrices, an hyperbolic paraboloid.
These are all natural manifold in which the PC “live” and to which they are con-
strained. We use this fact as a guiding principle for developing our theory of null
shapes in chapter 5. The observation that the natural spaces and the previous
theorem, despite their simplicity have not been found in the literature before.

Finally, associated to PCA there is also a hyperplane arrangement. This last
geometrical object will be treated later in chapter 6.
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Optimal compression

How many basis vectors are necessary to represent a given data point? The answer
to this question is related to the optimal approximation issue dealt with before.
This time however, we adopt a coding approach. Imagine the basis vectors as
symbols and each data points as words. We associate here and in chapter 6 the
problem of finding the PCA to the problem of finding a code with minimum average
length (i.e. a Huffman code) [23]

Consider a set of vectors X = {x1, x2, . . . , xn}, their length entropy is defined
as

H(X) =
∑
i

‖xi‖ log ‖xi‖. (3.11)

It was shown in [88] that it is V, the matrix of eigenvectors of the covariance
matrix of X, the element of SO(n), the group of rotation matrices, that minimizes
that functional. The minimal value is reached then at

H(C) =
∑
i

λi log λi, (3.12)

where λi are the eigenvalues of the covariance matrix. This turns out to be the
Von Neumann entropy of the data

H(C) = Tr(C log C), (3.13)

So PCA gives a code with minimum average length for the data points when
they are taken as codewords and the basis vectors as symbols.

PCA as a sequence of rank one updates

The covariance matrix can be written as a sequence of rank one updates, this point
of view allows to understand how the eigenvectors and eigenvalue change as new
samples of the population vector are added. Rank one update to a matrix A is a
the matrix that results from adding a rank one matrix B = uuT to A where u is
a column vector; that is A′ = A + uuT . Therefore, for a covariance matrix C we
have

C =
1

m

∑
j

XjX
T
j (3.14)

where Xj is the jth column of the data matrix, that is, a snapshot of the
population activity (population vector) at time j. Because the data that occupy
us in this work is composed of smoothed time series, we can assume that the data
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is continuous and also differentiable. So, for m large enough, we can define the
function:

C(t) =

∫ t

0

x(s)x(s)Tds (3.15)

where x ∈ Rn is the population trajectory. Its derivative is the rank one matrix:

Ċ(t) = x(t)x(t)T . (3.16)

Now, consider the modified eigenvalue-eigenvector problem:

C(t)v(t) = λ(t)v(t), (3.17)

Differentiating we can find the following formal equations for the instantaneous
change in the eigenvalues and eigenvectors as new samples arrive:

λ̇i(t) = (vTi x(t))2 (3.18)

v̇i(t) = (vTi x(t))
∑
j 6=i

vTj x(t)

λi − λj
vj (3.19)

where vi ∈ (S)n (is constrained to the n dimensional sphere). We see there-
fore that the amount of change in an eigenvalues when a new sample is added is
proportional to how similar the pattern in the population vector is to the given
eigenvector, while the change in direction of the eigenvectors is higher the closer
the eigenvalues. This evidence a repulsion phenomenon in which 2 eigenvalues can
not be very close unless the data is orthogonal along those directions.

3.2.2 PCA of random matrices

It might be tempting to think, for example when developing the heterogeneity
measures of chapter 6, that the spectrum of a randomly distributed matrix has
a similar distribution as the variables. For example, how does the spectrum of a
data matrix where the entries are samples of a Gaussian distribution looks like? It
turns out that the spectrum has a specific shape that is independent of the nature
of the data.

When the entries of our data matrix are drawn from a probability distribution,
the matrix is a random matrix. Let’s assume each data entries xik are iid real
random variable, xik ∼ N (0, σ2), then, the sample covariance matrix is, as before
(we use the notation of [6]),

Sn =
1

n
XXT , (3.20)
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where X is a p × n matrix. We assume, as is usual in the theory of high
dimensional statistics, that p is proportional to n, or in other words p/n→ y <∞
as n tends to infinity.

In the context of high dimensional random matrices, the mean is not subtracted
due to the fact that this is a rank one modification with no relevant impact on the
basic properties. The Empirical Spectral Distribution of Sn is defined as

F (x) =
1

m
#{j ≤ m : λj ≤ x}, (3.21)

Then we have the following

Theorem 3 (Marchenko-Pastur). The ESD of the sample covariance matrix (3.20)
has a density function (i.e. its derivative)

p(x) =

{
1

2πxyσ2

√
(b− x)(x− a) if x ∈ [a, b]

0 otherwise ,
(3.22)

where a = σ2(1 −√y)2 and b = σ2(1 +
√
y)2. That is, all the eigenvalues are

restricted in a bounded domain that depends upon the dimensions (there is a point
mass at the origin too for y > 1).

3.2.3 Functional PCA

The technically correct form of PCA for our data is called functional PCA, after
all, the firing rates are functions of time which implies that the columns of the
data matrix are statistically dependent; we use this fact for analytical purposes
as many problems become tractable once put in terms of integral operators which
are the natural objects in this context. A linear integral operator in a space of
functions X (like Lp seen before) is a map A on that space given by:

A[u](x) =

∫ n

R
W (x, y)u(y)dy, (3.23)

with u ∈ X, where the function W (x, y) is called the kernel. If each row of our
data lives in a function space, we define the covariance kernel as

C(t, s) =
∑
i

xi(t)xi(s), (3.24)

where xi are our data functions. The functional PCA eigenvalue problem is set
up then as ∫

R
C(t, s)φk(s)ds = µkφk(t). (3.25)

This will be expanded in out analysis of the null shapes in chapter 5.
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3.3 Differential geometry

Now we focus on the study of curves as they are our main object of interest
in this thesis. A curve is a continuous map γ : [a, b] → Rn given by γ(t) =
(γ1(t), γ2(t), . . . , γn(t)), t ∈ [a, b] is called the parameter. If it is infinitely differen-

tiable we call it smooth. A curve is regular if ‖ ˙γ(t)‖ > 0 for all t ∈ [a, b]. A curve
is closed if γ(a) = γ(b), otherwise is open. If the curve does not cross itself it is
called simple. We assume without lost of generality that [a, b] = [0, 1].

3.3.1 Parametrization

The length of a curve γ or arc length between [0, t], t ∈ [0, 1], is given by

s(t) =

∫ t

0

‖γ̇(τ)‖dτ ; (3.26)

The total length of the curve is then L = s(1). A continuous monotonically
increasing (bijective) function φ : [0, 1] → [a, b] is called a homeomorphism. The
curve γ(t) is the same as γ̃(s) = γ(φ(t)) seen as a set of points, i.e. it traverses the
same path. We say that γ̃ is a reparametrization of γ. Reparametrization gives
rise to the equivalence relation α ∼ β iff there exists φ, homeomorphism, such that
α(t) = β(φ(t)) for all t.

The natural reparametrization for a curve is given by the arc length and it
is called the arc length parametrization. Indeed, the map s : [0, 1] → [0, L] is
a homeomorphism and therefore has an inverse that can be used to find a valid
reparametrization [37]. We assume, from now on, that the curves are arc length
parametrized unless otherwise stated.

3.3.2 Frenet frame

The tangent to a curve γ(s) is given by its first derivative τ(s) = γ′(s) (we use
′ = d

ds
, s the arc length parameter); it is by definition a unit vector. The second

derivative is orthogonal to the tangent vector and therefore defines the normal
n(s) to the curve at each point. The ordered pair (τ(t), n(t) span a moving coor-
dinate system and are called together the Frenet frame.

The vector differential equation with variable coefficients called Frenet equation
is (

τ̇(s)
ṅ(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
τ(s)
n(s)

)
; (3.27)
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it completely defines the evolution of the curve in terms of the moving frame.
The function κ(s) is called the curvature and its inverse 1/κ(s) is called the oscu-
lating circle; the best fitting circle to the curve at that point.

If θ(s) is the angle of τ(s) with a basis vector, then the curvature is defined as
the rate of change of that angle κ(s) = θ′(s). In the general case

κ(t) =
det(γ̇(t), γ̈(t))

‖γ̇(t)‖3
(3.28)

This equation also works for higher dimensions. For higher dimensions, say,
n, we have n − 1 curvatures. The Frenet framework also works in that case and
the curvatures can be computed iteratively [38]. The osculating plane is, in some
sense, the best low dimensional approximation to the curve locally, for that reason
it does not come as a surprise that it is related to PCA as, indeed, is proved in [3]
where it is shown that, for points in a small neighborhood of a point of a curve,
the PCA space is the same as the osculating plane.

3.3.3 Contact of curves: Vertices and flat regions

Singularity theory [14] gives us a framework to rigorously define the points of
interest in a curve and develop tests for their identification. We now expose the
basic concepts used the chapter 5 to define vertices and flat regions.

Given a functional F : Rn → R and a curve γ(t), we study the function g(t) =
F (γ(t)). γ and F−1 have k-fold contact at g(t0) if g(i)(t0) = 0 for i = 0, 1, . . . , k−1

but g(k) 6= 0; g(i) = dig
dti

and g0(t) = g(t). We focus in two important functions:

• F (x) = ‖x−u‖−‖u−p‖, the circle with center u and radius p. The contact
with this function tell us how circular the curve is at t0

• F (x) = (x− p)Tu, the line passing trough p, orthogonal to u. It tell us how
flat the curve is at t0.

A vertex is a point of a curve for which there is a circle having 4 (ordinary
vertex) or at least 5 (higher vertex) contact with the curve at that point. Vertices
are points in which the curve is rounder than the surrounding points. A flat point
is one in which the curve has 3 fold contact (ordinary) or 4 fold contact (higher)
with the tangent line at that point.

The circle function gives rise to the square distance function f(s) = ‖γ(s)−u‖2.
By studying the derivatives of this functions, we can conclude that the unique
circle with 3 point contact is the osculating circle. Also, that for the osculating
circle to have higher contact, we need κ(s) 6== 0, κ′(s) = 0 (4 point contact) and
κ′(s) = κ′′(s) = 0 (higher contact).
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By studying the height function h(s) = γT (s)u we can conclude that sufficient
and necessary conditions for a flat point (inflections) are κ(s) = 0 (ordinary) and
κ(s) = κ′(s) = 0 (higher)

3.4 Semiorders

A semiorder is a kind of order relationship that arises often in science [98]. Consider
the problem of comparing 5 means from 5 different samples. We want to know
which ones differ significantly and which ones do not. Let us assume, that our
statistical tests give the result shown in figure 3.2. All the means covered by a line
are statistically equal, this is what is called the symmetric part of the semiorder;
it is an equivalence relation. No line is completely covered by another one because
this relation is transitive.

μ1 μ2 μ3 μ4 μ5

Figure 3.2: Left. The problem of comparing means. Right. The corresponding
decision pattern

Suppose, in addition that you sort the means from left to right in a descending
way. That is the asymmetric part of the semiorder. It is a partial order in that
it is transitive and reflexive but antisymmetric. Therefore any ordering having
a symmetric and an antisymmetric part is a semiorder. In our case, given that
during a putative response to an event, neurons can interact at some time segments
but not at others, the semiorders is the most natural structure to keep track of
whether they do interact or, on the contrary, fire with different patterns.

In the case of three neurons, for example, responding to an event, there are 5
ways in which they can respond. They can either completely overlap, be disjoint
or partially overlap having some of them belonging to two ensembles at the same
time. One possible scenario in which this can happen is in the mixed selectivity
framework [78] (neurons being selective to more than one feature of the stimulus;
neurons sharing the feature they are selective to)

3.5 Heat equation and diffusion

In order to analyze the PCA structure of the covariance matrices we will make
use of then spectral theory of the Laplace operator. Therefore, we will assume
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Figure 3.3: All the possible interactions for 3 neurons

a continuous time domain and, therefore, technically the results concern what is
called functional PCA. The discretization, however, does not affect our conclusions.

3.5.1 The laplacian

L

k = 1

k = 2

k = 3

u(x,t)

x

Figure 3.4: Left. Physical situation - a string fixed on its extremes. Right. Eigen-
functions of the Laplacian

It is convenient to introduce the laplacian operator in the context of the fa-
miliar physical situation of a string fixed at its extremes. Consider figure 3.4, the
vibrations of the the string fixed at x = −L/2 and x = L/2 are described by the
wave equation. Let u(x, t) be the height of the string at position x and time t,
then, the vibration is described by the equation

∂xxu =
ρ

T
∂ttu (3.29)

where we adopt the convention ∂tt = ∂2

∂t2
for the differential operator. ρ is the

density of the string and T is the tension. For a derivation of this equation see
[32]. The situation of the string fixed at both extremes is represented by the initial
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conditions
u(x, t) = 0, for x = ±L/2 for all t (3.30)

In order to solve this equation we use the separation of variables technique, that
is, we look for solutions of the form

u(x, t) = φ(x)ψ(t). (3.31)

Replacing into the equation (3.29) we get

ψ(t)
d2

dx2
φ(x) =

ρ

T
φ(x)

d2

dt2
ψ(t), (3.32)

which after reorganizing the terms becomes

1

φ(x)

d2

dx2
φ(x) =

ρ

T

1

ψ(t)

d2

dt2
ψ(t) = µ. (3.33)

As a consequence of that, we can solve for the time and spatial components of the
equation separately. In this paper we are only interested in the spatial part which
gives what are called standing waves which, incidentally, will be our principal
components in the forthcoming sections. The spatial part from equation (3.33),

d2

dx2
φ(x) = µφ(x) (3.34)

is the eigenvalue problem for the Laplacian operator ∆ = d2

dx2
which is pervasive

in many areas of the basic and applied sciences. The solutions have the form

φ(x) = A sin(
√
µx) +B cos(

√
µx), (3.35)

subject to the initial conditions φ(±L/2) = 0. Replacing the initial conditions in
the solution (3.35) we find that one of the following equations must be satisfied
(but not both). Either

A sin(

√
µL

2
) = 0, B = 0

or

B cos(

√
µL

2
) = 0, A = 0.

This implies
√
µL/2 = kπ/2, k = 1, 2, 3, . . . or

µ =
k2π2

L2
. (3.36)
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The eigenfunctions or modes of vibration are, in turn

φk(x) =

{
B cos

(
kπ
2

)
, k = 1, 3, 5, . . .

A sin
(
kπ
2

)
, k = 2, 4, 6, . . .

(3.37)

Note that the spectrum is discrete even though the problem is continuum, this is
a basic fact of harmonic analysis due to the fact that the domain is bounded. The
eigenfunctions are shown in figure 3.4.

3.5.2 Relationship with the heat kernel

Another physical situation that comes into this analysis and that is closely related
with the previous one is that of the finding the distribution of temperatures in a
given material over time. The dynamics of such phenomena is described by the
heat equation

∂tu− κ∂xxu = 0 (3.38)

where ∂tu = ∂u
∂t

and κ is the thermal diffusivity. We will use this equations in more
than one context in this paper. Now we will focus on its solutions. Again, we use
the separation of variables technique to find

d

dt
ψ(t) =

κ

φ(x)

d2

dx2
φ(x) = µ, (3.39)

which again, contains the laplacian eigenvalue problem in its spatial part.

3.6 Further reading

Detailed treatment of the matrix theory and advanced linear algebra can be found
in [59]. There are many nice accounts on the properties of PCA, a good starting
point is a recent review by Joliffe and Cardima [44] and the classical book on the
topic [43] although the authors find the development in [17] more than satisfactory.
The details about hyperplane arrangements can be found in [2] and [11].
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Chapter 4

Description of the physiological data
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4.1 Experimental setup and methods

We used data from previous studies of decision making[33] and action suppression[83].

4.1.1 Data collection

The data collection process has been described elsewhere in detail [83]. Subjects
(adult male Long-Evans rats) were trained in the task described in the following
section. After achieving stable performance (> 70% correct choices on Go trials),
the data collection was performed. Wide band signals were recorded from 21
implanted tetrodes that targeted basal ganglia structures: Striatum (Str), globus
pallidus (GP), subthalamic nucleus (STN) and Substantia Nigra pars reticulata
(SNr), and the parafascicular nucleus in the thalamus.

4.1.2 Task structure

During the task, hungry rats were in an operant chamber with 5 nose poke holes
on the wall and a food dispenser opposite to it (figure 4.1). In Go trials, the rat
should poke its nose in one of the central holes(Nose In) illuminated at random
(Light On). After a variable delay, 500ms to 1200ms, the Go cue (GO, 65dB,
50ms) instructed it to move swiftly (Nose Out - Side In) either to the left (1kHz
tone) or to the right (5kHz tone). A limited holding period encouraged the rats to
respond fast. Correct trials, those where the movement is done within the holding
time and in the right direction, were immediately rewarded.

For some analyses we used the stop trials in which a second signal after the
go cue instructs the rat to cancel the movement. Correct and failed stop trials
are determined according to whether the stopping was successful. Those trials
where compared with fast and slow go trials determined using the reaction time
distribution (see [94]).

4.1.3 General methods

All the analyses were performed in Matlab R2018a. After manually spike sorting
and cell type classification, the spike trains where pooled across trials, sessions and
subjects, and aligned to the event of interest (correctgo) for the contralateral side
in most of the analyses performed in this work. The PSTH (PETHs, technically,
Peri-Event, Time Histograms) of the aligned spike trains was computed, averaging
over trials and computing the spike counts with bin size of 50ms with step size of
10ms and smoothed with a square moving window of 20ms. We performed the
analyses under different pre-processing conditions as part of the analysis in the
following sections.
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c.a. b.

Figure 4.1: a. Task structure (for details, see [83]). Go trials. at the start of the
trial the rat pokes its nose into a give port (Nose In). After the go cue is given,
the rat moves (Nose out) its nose into the left or right ports; a reward is given in
correct trials. Stop trials. In some trials, after the go cue a second signal indicates
the cancellation of movement. b. Chamber configuration with the nose and food
(reward) ports. c. Fast and slow trials are determined by choosing the fast and
slowest parts of the reaction time distribution. RT: reaction time. MT: movement
time.
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Notably, the results do not change with other firing rate estimation methods like
SDF or BARS [46]; or the parameters like window or step size. The estimated firing
rates were finally cut in a symmetric 1s interval around the event and organized
in a data matrix with neurons as rows and time as columns. Other methods are
developed as part of the forthcoming sections.

4.2 Overview of the PCA information for the basal ganglia

around movement initiation

For the computation of PCA we arranged the mean firing rates into a matrix as
described in the previous section; each row corresponding to a neuron and the
covariance, eigenvectors and projections were computed as in section 3.2. Figure
4.2 shows the summary PCA information for the different regions in the basal
ganglia.
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Figure 4.2: Summary of the PCA of the data. A. Heat maps showing the z-
score of each population sorted by the components of the first eigenvector of the
covariance matrix. The first and second principal components (PCs) are shown in
thick and thin black lines. Dashed white lines indicate 100ms intervals. The firing
rates are aligned to movement initiation as indicated before. B. Two dimensional
trajectories. Movement time is marked by a big circle. 100ms intervals along the
trajectory are indicated by white dots. c. Percentage of explained variance for
each region. Each panel contains the total number of recorded neurons.
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Chapter 5

The geometry of neural trajectories

5.1 Chapter overview

In this chapter we study the main aspects of the shape of the low dimensional PCA
neural trajectories, which we call the principal trajectories, in the basal ganglia
during movement initiation.

We start by introducing a rigorous account of the aspects that influence the
shape but are outside traditional frameworks of shape analysis (see for example
[86]). Doing this considerably simplifies our endeavor in the forthcoming section
and give us a feeling of what aspects to pay attention to in the analysis.

It is important, for example, to understand what are we expecting to see in
the average firing rate in terms of the firing rate patterns of individual trials; it
turns out that the patterns in the average data are low pass filtered versions of
the single trial patterns and the filtering depends, as expected, of the distribution
of the individual events in each trial. In general, we find out that events far away
only contribute irregular/sharp points that are irrelevant due to the fact that the
corresponding explained variance is negligible.

A very important and almost always ignored aspect in the study of these tra-
jectories is the presence of irregularities; such fact invalidates any other analysis
that depends on the differential geometry of curves. We show how to avoid these
difficulties.

In section 5.3 we develop a novel account on curvature. It turns out that
curvature is the most conspicuous aspect of the shape of the trajectories (others
being, for example, the speed). We study how the covariance or overlap between
the individual patterns in simplified situations contribute to the curvature; the re-
sults, some of which are counter-intuitive, pave the way for the future multivariate
approach in terms of ensembles.

We develop then in section 5.4 the main study of the shape in terms of com-
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plementary views of the shape information. We reserve the term shape to account
for the aspects of the trajectories that are invariant to certain transformations or
group actions (i.e. rotations should not change the shape). We coin the term
“form” to local aspects of the shape like points of interest.

Finally, the question of the constraints on the shape by the PCA computation
is approached reaching important conclusions about the expected trajectories and
eigenvalue distributions for random firing rates. This result has not been previously
published in the literature.

5.2 Preliminary aspects of the shape of the principal trajec-

tories

5.2.1 The geometric nature of the neural trajectory

Understanding the geometric nature of the principal trajectories should be the
first step in the study of their shape. By geometric nature we mean, where, in
the mathematical landscape dictated by geometry, do they lie as mathematical
objects. The main result here is that they are not curves in the traditional use of
the term: they contain irregularities.

Definition 4 (Neural trajectory). The neural trajectory is defined as the set of
points traversed by the firing rates of n recorded neurons in the neural space.
Mathematically, it is given by the map γ : [a, b]→ Rn, expressed in coordinates as

γ(t) = (γ1(t), γ2(t), . . . , γn(t))T , (5.1)

where we assume a = −ε and b = ε.

For the purposes of this work we understand each coordinate of the curve as the
estimated firing rate of the ith neuron in some interval [−ε, ε] around an alignment
event. More specifically, our input data is the result of three different operators
applied to the raw spike trains: Alignment, Expectation and Filtering:

γ̂i(t) =

〈∫ ∞
−∞

Ae[K(t− τ)s(τ)]dτ

〉
, (5.2)

where
s(t) =

∑
k

δ(t− tk) (5.3)

is the spike train at a given trial and 〈·〉 is the expectation operator. The filter-
ing kernel is usually Gaussian or square, or a composition of both. The conven-
tional choice, the Gaussian kernel, has immediate consequences that are stated
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Figure 5.1: Averaging effect of responses locked to a event occurring at times
drawn with a normal (left) and gamma (right) distributions with mean µ = 0.3
and standard deviationσ = 0.2. The red trace is the average of 200 trials, the
black trace is the original pattern. Activity outside the dotted lines is not locked
to any particular event.

as a lemma below and whose proof can be easily deduced from the regularizing
properties of Gaussian convolutions or the heat kernel (this means, it takes any
discontinuous functions and makes it smooth)

Lemma 1. If the kernel K(t, s) is Gaussian, then the map γ(t) is continuous and
smooth with high probability

Therefore, such map satisfies the definition of a smooth curve given in chap-
ter 3. The alignment operator is given by a translation in the time domain
Ae[f(t)] = f(t − te). A consequence of this is that neural responses to an event
present at some time ta, relative to the alignment time te and drawn from some
probability distribution, will be low-pass filtered versions of the putative stereo-
typical response of that neuron.

As an example, consider figure 5.1. Inside the region bounded by the dotted
lines there is a simulated neural response locked to an event occurring at times ta
drawn from a normal (left) and gamma (right) distribution. The red trace is the
average over trials and the black trace is the original pattern; note that the former
is a low pass filtered version of the later. The gamma distribution was chosen
to approximate the reaction time distributions which are usually asymmetric [83].
Patterns with no particular time locked response will cancel out (region outside
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Figure 5.2: Time-Covariance matrices of the different regions. Each element of
these matrix corresponds to the dot product of two population vectors at different
time points.

the dotted lines).

The resulting firing rate will be composed then of patterns with different degree
of filtering and attenuation depending upon how well time-locked are they to the
alignment event. Our trial structure, shown in figure 4.1, gives a series of potential
alignment events; details can be found in [83]. For the purpose of this chapter, we
align the firing rates to the Nose out event and, hence, the responses to GO will
be filtered by the distribution of reaction times (RT). Accordingly, the responses
to side in will be filtered by the distribution of movement times (MT).

The effects of such filtering can be seen in the Autocovariance operator G (fig-
ure 5.2). the diagonal of the matrix is given by the length of the population vector
at each time (i.e. Gii = ‖γ(ti)‖2); we call this the activity mass at time ti. Prior
to the movement event (t = 0), the activity mass is small compared to the time
around movement, additionally, the extend of the correlations is greater for times
close to movement. This has the consequence that activity prior to movement is
bound to explain less variance relative to the activity around movement.

Also from the covariance matrix we can describe broadly the patterns of ac-
tivation of different regions during movement. Those range from approximately
uniform mass around and after movement (GP, protos, STN), point masses (MSN,
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STN, Arkys) and broad, concentrated masses (STN, Str). This preliminary obser-
vation will be refined later in the chapter.

5.2.2 The low dimensional PCA trajectories can be irregular

Now we focus on pathological aspects of the trajectories. The main one observed
in our data set is irregularity.

Definition 5 (PCA trajectory). Let u,v ∈ Rn be the eigenvectors of the covari-
ance matrix C associated with the two largest eigenvalues. The PCA trajectory
associated to the neural trajectory γ(t) is the projection of the later in the subspace
spanned by u and v, that is

z(t) = (uTγ(t),vTγ(t))T . (5.4)

The PCA trajectory is then two dimensional. Remember that a regular curve
is one in which the tangent vector ‖γ̇(t)‖ never vanishes (a point traveling along
the trajectory never “stops”). It turns out that PCA trajectories are, in general,
irregular. It is imperative then to deal with violations to regularity at the outset if
we want to be able to use the bulk of results from differential geometry 1 available
in the literature as they apply, invariably, only to regular curves (for example, the
curvature is undefined at those points).

What are the sources of irregularity in the PCA trajectory? Trivially, any mo-
ment in which the high dimensional population goes silent is an irregular point.
That is an unlikely situation with real data as neurons have a nonzero probability
of firing at any time in the interval during each trial.

A more troublesome source of irregularity comes from the situation illustrated
in figure 5.3, we call this the dimensionality cathastrophe alluding to a similar situ-
ation found in the singularity theory of differentiable maps [14]. It comes from the
fact that, by definition, some of the variance of the curve will be along directions
orthogonal to the PCA plane and therefore, their images will be overlapping in
the low dimensional projections (see figure 5.3).

There are two qualitatively different situations in which this occurs in our data
and which will be dealt with differently.

Definition 6 (Minor singularities). Minor singularities are due to responses locked
to distant events. This are called minor because they are unlikely to contribute in

1There is a beautiful theory of irregular curves but its use is not considered necessary and,
therefore, goes beyond the scope of this monograph
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Figure 5.3: Irregularity coming from singularities due to low dimensional projec-
tions. The curve in blue is γ(t) = (t, t2, t3). The low dimensional projection onto
the plane x = 0 (orange) displays a type of singularity called a cusp. There, the
tangent vector vanishes.
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any significant way to the PCA trajectory. Contributions to the trajectory are
understood in terms of arc length (see below).

As we saw, responses locked to distant events (i.e. GO) are bound to explain
less variance as they are attenuated by the corresponding relative event times dis-
tributions. Therefore, most of this variance will live in the orthogonal complement
of the principal subspace. The practical consequence of this is a high frequency
oscillation characterized by many irregular points where the trajectory stops as
it traverses the corresponding hidden dimensions (figure 5.4). Minor singularities
are, therefore, expected byproducts of the alignment process.

Definition 7 (Major singularities). Major singularities are all those singularities
that are not explained by the averaging process.

A pragmatic definition characterization of singularities, amenable to numerical
purposes, is given now. Remember that the arc length function of the curve z is
given by

z(t) =

∫ t

−ε
‖ż(τ)‖dτ. (5.5)

The total length L of the curve is then z(ε). We characterize singular points
by a slowing down of the curve below a threshold given as a fraction of the total
length of the curve

Definition 8 (Irregular point). An irregular point of the curve z is a ti ∈ [−ε, ε]
such that

‖ż(ti)‖ < ηL. (5.6)

The irregular points of the trajectories for each region are shown in figure 5.4.
The names irregular point and singularity are used interchangeably in this text.
It is worth asking where slow down comes from. From now we can partially an-
swer that question by observing the arc length function of the PCA trajectory in
comparison with the arc length function of the full trajectory (figure 5.5).

The initial slowing down, due to the low pass filter mentioned above is ob-
served in the high dimensional trajectory (dotted line), however, it does not stop
when the PCA trajectory does, suggesting that at those times the trajectory visits
dimensions that are not accounted for the principal subspace.

5.2.3 Geometric pre-processing: reparametrization and smoothing

We now eliminate the singular points for the rest of the analysis. Furthermore, we
ignore any speed information as it does not contribute to the shape of the curve (as

47



-200 -100 0 100
-150

-100

-50

0

50

100

150
Str

Singular

-40 -20 0 20 40 60
-40

-20

0

20

40
MSN

Singular

-100 0 100 200
-150

-100

-50

0

50

100

150
FSI

Singular

-100 -50 0 50 100 150
-100

-50

0

50

100

150
GP

Singular

-100 -50 0 50
-100

-50

0

50

Protos

Singular

-100 -50 0 50
-40

-20

0

20

40
Arkys

Singular

-300 -200 -100 0 100 200
-200

-150

-100

-50

0

50

100
SNr

Singular

-100 0 100 200
-150

-100

-50

0

50

100
STN

Singular

-200 -100 0 100
-150

-100

-50

0

50

100
thal

Singular

Figure 5.4: Singularities of the different regions for η = 0.01, that is, points
that contribute less than 1% to the length of the curve. Some of them, the ones
corresponding to the initial segments will be removed in future analyses
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it is well known, see chapter 3). We preserve, nevertheless, the profiles in figure 5.5
as a guideline about how to traverse the shape once analyzed in the forthcoming
sections. The algorithm for reparametrization of the curve is given in section 3,
now we concentrate in the question of how such procedure affects the individual
firing rates and, more importantly, the covariance structure of the data.

Consider figure 5.6. The arc length reparametrization algorithm gives a map
φ : [0, L] → [−ε, ε] such that ‖ż(t)‖ = 1 for all t ∈ [−ε, ε]. Now we show the
following theorem:

Theorem 4. The covariance matrix C remains unchanged after reparametriza-
tions.

Proof. The entry Cij of the covariance matrix is given by

Cij =

∫ ε

−ε
γi(τ)γj(τ)dτ.

but τ = φ(s), s ∈ [0, L]. Note that L = φ−1(ε) and 0 = φ−1(−ε) (because the
reparametrization is invertible, section 3), therefore

Cij =

∫ L

0

γi(φ(s))γj(φ(s))φ̇(s)ds =

∫ ε

−ε
γi(t)γj(t)dt,

the last term due to the substitution rule of integration.

Consequently, the eigenvectors are the same and the principal components are
just reparametrizations of the original PCA. From now on we will assume arc-
length parametrized curves. In figure 5.6, we show the result of the reparametriza-
tion of the STN’s trajectory. The distortion due to the reparametrization in the
firing rate is shown in the right most panel. Observe that this distortion is only
due to a warping of the time domain; the previous result should be apparent from
the fact that the warping is the same for all neurons.

As it turns out, shape is a low frequency phenomenon [90], therefore, we remove
high frequency details of the trajectory. This is done by the following procedure.
First we compute the angle function of the curve θ(t). It is defined as the angle
made by the tangent vector and the abscissa at each time point. As can be seen
in figures 5.7, 5.8 and 5.9, the angle shows high frequency oscillations at the be-
ginning of the curve and here and there in the middle. Filtering those out will
give a bandlimited version of the trajectory [9] and will leave the shape unchanged.
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Figure 5.6: Effect of the reparametrization on the firing rates. Left. Original
curve, the dots show the non-uniform parametrization. Center. Reparametrized
curve traversed at a unit speed. Right. The reparametrization map

Also in the middle panels of those figures, we can observed jumps in the turning
angle; those correspond to sharp points that will be defined later. The procedure
of low pass filtering is performed then iteratively using an Savitzky–Golay filter.
The iterations are made through segments bordered by the sharp points. This
avoid higgs-like artifacts in those locations and allows us to preserve the sharp
points for future analysis.

Let θ′(t) be the filtered angle function, the curve can be recovered then by
integration

x = cx +

∫
cos(θ(s))ds

y = cy +

∫
sin(θ(s))ds
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Figure 5.7: Simplification of GP trajectory. Left, original trajectory showing the
sharp points and high frequency features. Center. Angle function and its smoothed
version using a Savitzky–Golay filter of frame size 11 and degree 3. Right. Sim-
plified curve.
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Figure 5.8: Simplification of SNr trajectory. Note that the sharp points are pre-
served.
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Figure 5.9: Simplification of STN trajectory
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5.3 The curvature

Our interest is mainly on the shape of curves from the perspective of neural codes.
Representing a neural code as a trajectory or a curve means that we are inter-
preting each neuron as a dimension and, in the curve, as a coordinate of the given
parametric curve z(t). However, many geometric quantities are not readily acces-
sible to an interpretation from the coordinate point of view. That is the case of the
curvature for which there is no formula, to the best of our knowledge, that relates
the two coordinates in a simple, intuitive way. We are interested, in particular, in
the relation between curvature and the degree of “overlap” between the individual
patterns displayed by the individual coordinates (i.e. firing rates, principal com-
ponents).

In this section we focus in the arc-length parametrized, simplified, 2 dimen-
sional PCA trajectory. The curvature is defined as the rate of change of the angle
function, that is the angle between the tangent t(s) and an arbitrary vector, with
respect to the length s.

Definition 9. Given a vector u, the function

k(s) =
dθ

ds
(5.7)

is called the curvature of the curve γ ⊂ R2, with tangent γ′(s) = dγ
ds

. θ(s) is the
angle between u and γ′(s), that is θ(s) = cos−1〈γ′(s),u〉

when taking u = ei, equal to one of the canonical basis vectors, we get

cos θ(s) = 〈γ′(s), e1〉 = γ′1(s),

that is, for a unit speed curve, the cosine of the angle with the first canonical basis
vector is the first component of the tangent to the curve. Therefore

d cos θ

ds
(s) = − sin θ

dθ

ds
(s) =

d2γ1
ds2

(s) = γ′′1 (s),

But, in the unit speed curve,
sin θ = γ′2(s),

and, consequently

k̂(s) = −γ
′′
1 (s)

γ′2(s)
, (5.8)

which we name the coordinate description of the curvature because it helps
understanding how the individual profiles of the the components produce the final
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observed curvature (The standard formula is discussed in the preliminaries). An
immediate insight is that, in terms of neurons and firing rates, increases of curva-
ture happen when one of the neurons’ firing rates accelerates faster than the other.
Of course there is a dual definition based in the complementary ratio

k̂∗(s) = −γ
′′
2 (s)

γ′1(s)
,

The relation between these two curvatures becomes apparent by the fact that the
tangent and the normal to a unit speed curve are othogonal, therefore

γ′′1γ
′
1 + γ′′2γ

′
2 = 0,

from which we get
γ′′1
γ′2

= −γ
′′
2

γ′1

or k(s) = −k∗(s) for all s.

About the sign of the curvature Depending upon the agreed direction of positive
curvature, the appropriate fraction should be used that correspond to the desired
sign.

Note that either function becomes undefined at the extreme values of each of the
coordinates γ′1,2(t

∗) = 0 and therefore, neither of them is an accurate representation
of the curvature at those points, however, it is possible to recover the original
curvature by inserting the appropriate points instead of the singularities

k(s) =

{
k̂(s), if γ′2(s) 6= 0

−k̂∗(s), otherwise
(5.9)

In the following examples we will study different scenarios for 2 dimensional
curves.

Example 1. The circle is the only curve that accelerates as fast as it speeds.
Indeed, for the unit circle parametrized by γ(t) = (cos t, sin t),

k(s) = −− cos t

cos t
= 1,

as expected.
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Arbitrary parametrizations For an arbitrary parametrization γ = γ(t(s)), we have
dγ
ds

= dγ
dt

dt
ds

= 1
‖γ̇‖

dγ
ds

(which can be also derived from the traditional formula for the

cosine), therefore
γ̇2
‖γ̇‖

dθ

ds
=

d

ds

(
1

‖γ̇‖
γ̇1

)
. (5.10)

Example 2. For a general circle parametrized by γ(t) = (R cos t, R sin t),

k(s) =
1

R
− − cos t

cos t
=,

1

R
,

where R is the radius of curvature.

Example 3. Whenever γ1(t) = ±γ2(t), 1
‖γ̇‖

dγ1
dt

= sgn(γ1), therefore,

k(s) = 0.

Example 4. A slightly more complicated but yet analytically treatable example,
comes from assuming partially overlapping firing rates shaped as cosine bumps:
γi(t) = cos(t− µi), t ∈ (−π/2, π/2 + µ). Setting µ1 = 0 and µ2 = µ, replacing in
equation 5.10, we get

k(s) = −〈γ̇, γ̈〉 sin t− ‖γ̇‖
2 cos t

‖γ̇‖3 sin(t− µ)
,

which, after some massaging becomes

k(s) = −sinµ

‖γ̇‖3
, (5.11)

with

‖γ̇‖2 = 1 + cosµ[cosµ− 2 cos t cos(t− µ)]

= 1 + cosµ[cosµ− 2γ1(t)γ2(t)] (5.12)

The theoretical and computed curvatures are shown in figure 5.10. The extreme
curvature points coincide with the extreme points of the covariance function C12 =
γ1(t)γ2(t) of the two neurons. Indeed,

dk

dt
= 0⇒ cos(2t− µ) = 0

therefore, in the selected domain,

t =
πn+ µ

2
, n ∈ {−1, 0, 1}

are the values at which the extreme points lie for both functions. The latter is the
crossing point between the two bumps (see figure 5.10)
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Figure 5.10: Curvature of bumps. For simple bumps the curvature reflects the
covariance functions to some extent.

The corresponding trajectory in example 4 is shown in figure 5.12. To fully ap-
preciate our interpretation of curvature in the example, we need to reparametrize
the curve (see preliminaries). The reparametrization is shown in figure 5.11. Note
that the reparametrization map (left) induces a distortion of each of the compo-
nents of the trajectory (i.e. the individual firing rates), in order to traverse it at
unit speed; it is nevertheless, the same curve (Aspects of invariance are studied in
previous section).

Under this map, it can be seen that the normal (right, dashed line) is always
smaller (in absolute value) than the tangent in points with low curvature; this can
be also seen in figures 5.12 and 5.13. The numerator on k̂(s) can be seen as the
”desire” of the curve to turn in the new direction. The denominator can be seen
as its par with respect to continuing or keep going. The dual k̂∗(s) is interpreted
along the same lines thinking about the numerator as the desire of ”not turning”,
heralded by the activity of the first neuron vs the ”desire” of not keep going. In
both cases the balance of those forces gives a perfectly circular trajectory.

5.3.1 Simulation of specific patterns of curvature

The curvature of the trajectory reflects the nature of the overlap between the
individual firing rates. Consider idealized gaussian bumps as neural activations.
We parametrize the different patterns using 5 parameters: width σ, amplitude A,
relative phase φ, orientation, asymmetry and number of bumps. Of those, the
asymmetry is the only one that will not be modeled by a gaussian distribution;
instead, a specific distribution will be created for that purpose. In this section we
study the behavior of the curvature as one firing rate pattern changes its phase
with respect to another, under different values of the mentioned parameters.
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Figure 5.11: Details on the interpretations of the curvature. Continuous colored
lines correspond to the tangent’s coordinates. Dashed lines the normal. The red
region corresponds to a part in which the direction of comparison is inverted due
to a change in direction.

General shifts The simplest simulation is, again, cosines overlapping. We already
saw that the curvature is related to the covariance in some cases. In the general
case, formula 5.9 allows to tell when the curvature is going to be high: when the
speed of change is slow in one coordinate but there is an extrema in the other.

Simple gaussians By fixing all the parameters and changing only the overlap, in
a gaussian bump, we obtain general intuitions of the behaviour of the curvature
as a function of the overlap (figure 5.15).

Different widths The case of bumps with different widths is illustrated in figure
5.17. In this case, the thin one will drive the curvature on top of the slowest change
of the wide one.

More than one bumps and different amplitudes Different amplitudes shear the shape
towards the coordinate with more mass. The effect of multiple bumps can be
ambiguous but when they are of higher frequency than the single pattern it reduces
to the previous case (figure 5.16)

Asymmetric The asymmetry in shape drives the curvature in different ways de-
pending of the part that is overlapping with the symmetric pattern (figure 5.18)
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Figure 5.12: Trajectory of the overlapping cosine bumps trajectory. The points of
high curvature are characterize by a normal that is bigger than the corresponding
tangent. The tangent represents the “desire” to keep going in the same direction
while the normal is the “desire” to turn.
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Figure 5.15: Two gaussian bumps with different overlaps. The trajectory is shown
to the left. Observe that the trajectory at first, when the two bumps have almost
not overlap, has two branches which are irregular, that is, the trajectory stops and
backtracks to return to the origin as each traverses each bumps. A different kind
of irregularity appears when the two bumps are completely correlated, there the
trajectory is a line that is traversed forward and back depending upon the specifics
of the firing rate.
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Figure 5.16: Two bumps against one. In this case note that the curvature of the
trajectory reflects the second fast changes of the thin bumps at some times. The
parts that are fully synchronized with the wide bump reflect a line but the part
that is our if sync has a smaller curvature
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Figure 5.17: Two bumps of different widths
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Figure 5.18: One symmetric bump against an asymmetric one
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5.4 The shape of the neural trajectories

In this section we study the shape and the form of the trajectories. The difference
is made on account of two different purposes and underlying theories with overlap-
ping schools of thought. The former adopts a geometric invariance point of view
[86], the later stems from the study of singularities or catastrophes in differentiable
maps [90].

The shape is then defined as what is left once all the non-shape related infor-
mation is factored out ; its aim is global in the sense that each shape is a point in an
abstract space[86]. This factoring out is rigorously implemented by grouping the
trajectories in equivalence classes that are invariant to transformations encoded as
group actions[86].

The form is local, focused on the specific features like sharp points, singularities
or flat regions. It is discrete in the sense that focuses in the points of interest but
continuous in the sense that it studies the behavior of the trajectory in the vicinity
of those points. From the point of view of this chapter, the shape approach will be
used with comparison purposes while the form will guide the study of the activity
of specific ensembles in relation to a putative population code.

5.4.1 Low dimensional invariance

We deal now with the shape of the low dimensional PCA trajectory. We created
already in the previous section our first equivalence class. The shape is invari-
able to reparametrizations, therefore, all the reparametrizations of a given curve
have the same shape; are in the same class. The class is characterized as fol-
lows: Given two trajectories z1, z2 ∈ C([−ε, ε],R2), if there exist a diffeomorphism
φ : [−ε, ε] → [−ε, ε] such that z1(t) = z2(φ(t)) for all t, then z1 and z2 have the
same shape. The arc length parametrization is our representative of the class.

This condition is sufficient but not necessary; there are other transformations
that preserve the shape and that should be accounted for. They are illustrated in
figure 5.19. The first step in that direction is to choice an appropriate represen-
tation of the shape that facilitates the construction. If we accept the arc length
parametrization as an acceptable preprocessing step, the angle function φ(t) intro-
duced in the previous sections constitutes a natural choice for the representation.

We now construct what is called the pre-shape space by dealing with the dif-
ferent group actions.
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Figure 5.19: Example of shape preserving transformations for the GP. From top left
clockwise. The translations of the trajectory, the rotations, scaling and reflections;
all give an equivalent shape
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Translation group:

The angle function is already invariant to translations. Indeed, let z1(s) = z2(s)+c,
c ∈ R2. Then, the tangent vectors coincide ż1(s) = ż2(s) for all s.

Scaling group:

The quotient with the scaling group is taken by normalizing all curves to have
length L = 2π.

Rotation group:

Rotations act like translations of the angle function [86], that is, a rotation by an
angle φ0 is given by φ′(t) = φ(t) + φ0. We normalize then so that the average
rotation is π, that is

1

2π

∫ 2π

0

φ(s)ds = π. (5.13)

Symmetric group:

Not all the reflections should be identified. A more detailed account on reflections
will be give in the next section. The reflection group of interest is the one generated
by taking the canonical basis as root vectors. It is isomorphic to Z2. We account
for this invariance by constructing the orbifold of the given space including in the
representation all 22 reflections in the corresponding mirrors or by picking up a
representative using the results of future section about concave/convex shapes.

We have constructed then the following space:

Definition 10 (PCA trajectory preshape space). The space

O = {φ ∈ L([0, 2π],R) :
1

2π

∫ 2π

0

φ(s)ds = π.} \ Z2 (5.14)

is called the PCA preshape space.

We use this space to make comparison between shapes and to do statistics on
shapes. In order to compute the similarity between shapes we need to measure
the length of geodesic paths between them. Fortunately, we have the following
theorem [86].

Theorem 5. Geodesics between shapes φ1 and φ2, in the space O, are given by
straight lines of the form

α(τ) = (1− τ)φ1 + τφ2, (5.15)
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Figure 5.20: Path between Str and GP. The fact that the transformation is barely
noticeable implies that they are close in the shape space
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Figure 5.21: Path between GP and STN. The transformation between the GP and
STN is more dramatic, notice that this is the shortest path in the shape space

with τ ∈ [0, 1].

Geodesic path between Str and GP is shown in figure 5.20. The smooth tran-
sition between them mean that they are close in the shape space. On the other
hand, the transition between STN and GP is forced to pass through a line in or-
der to get to the other shape. Even though discontinuous functions are perfectly
allowed in the definition of the space, this behavior could be an artifact caused the
sharp point in the STN (artifact in the sense that the geodesic is forced to go out
of the space). By smoothing out the sharp points we found that the showed paths
remain unchanged.

The pairwise comparison of shapes shown in figure 5.22 reveal an interesting
pattern and is the more important result of this section: The trajectories form
to clear groups, STN, SNr, Arkys and MSNs against GP, Str, FSIs, Protos and
Pf. Interestingly The FSIs and the whole striatum have indistinguishable shapes.
Similarly, GP and Protos have indistinguishable shapes. Both cases refer as a
subpopulation having the same shape than the whole.

In order to gain a better understanding of those shape relations we turn now
to a more detailed study of the shape. We aim to answer the following questions
in the sections to come: What are the defining aspects of those groups? Could
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Figure 5.22: Left. Dissimilarity matrix of the trajectories in the shape space.
Right. Multidimensional embedding in a two dimensional plane that approxi-
mately preserves the distances. Note the 2 clusters and the overlap between sub-
population and super populations in proto-GP and FSI-Str

those similarities in shape be interpreted in terms of the neural code?

Elastic shapes and spheres

One important caveat that can be observed in figure 5.21 is that the path that
includes a shape with a sharp point is forced to open up and the close again.
This phenomenon might make the path longer that it should be, intuitively, and is
caused by the rigidity in the parametrization. Other examples of theoretical shape
spaces are studied in the appendix

5.4.2 The form of the trajectory: salient features.

Now we study the form, the salient features of the shape of each trajectory. The
more important information about a curve, as was seen before, is the curvature; it
does not come as a surprise then that the morphology of the trajectory is studied
by taken a closer look at the curvature. We assume that points at which the
curve turns are points of interesting events in the population code. In particular
we are interested in 4 kinds of points that, along with the singular points studied
before, give a complete account of the different features of the curve: sharp points,
vertices, flat points and arcs.
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Definition 11 (Sharp points). A sharp point is defined as a discontinuity in the
turning function φ(s). Specifically, a value of the parameter s = s0 such that

lim
s→s0−

= φ1 6= φ2 = lim
s→s0+

. (5.16)

This theoretical definition is rarely satisfied but a more practical description
comes in terms of the derivative:

Definition 12 (Sharp point criterion). A sharp point is a point φ(s0) that satisfies

φ̇(s0) > δ/h, (5.17)

where δ is an arbitrary angle and h is the step size for a given partition of the
interval [−ε, ε].

In summary, a sharp point is a point that turns and angle higher than δ in a
single step (in terms of the arc length) of size h.

We give now a characterization of the next feature of interest in terms of 3
equivalent definitions

Definition 13 (Vertex). A vertex is a point with 4 order contact with its osculating
circle

The details in this definition can be seen by plotting the osculating circles at
each point of the curve 5.23; at this points the trajectory is rounder and they are
indications of turns that are less obvious than the sharp points. A device useful
for the identification is called the evolute which is the locus of all the centers of
curvature; more details about evolutes are given in the preliminaries.

Figure 5.24 shows the evolute of all the target trajectories and the correspond-
ing vertices. The following result is apparent

Lemma 2. The vertices are singular (sharp) points of the evolute.

Also apparent from the figure is the fact that the different regions have different
vertex structure. Vertices at the end of the curve are likely due to filtered out
activity of future events. In order to identify the vertices we look for maxima of
the curvature which, in the case of a unit speed curve is the magnitude of the
acceleration. The figure 5.25 shows the identified vertices of the regions. Those of
greater interest are the ones that are not close to the extremes we will call then
internal. Based on internal vertices we have this characterization:

• No vertices: SNr, STN: We do not count points twice, therefore, the points
classified as irregular are not included
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Figure 5.23: Contact with the osculating circles. The osculating circles are tangent
circles with radius 1/k where k is the curvature of the curve. Circles with higher
contact are accentuated.
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Figure 5.24: Evolute of the different regions. The evolute is generated as the
envelope of the normals to the curve at each point. Due to the complex structure
of the trajectories, an explicit computation of the evolute is unfeasible.
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Figure 5.25: Vertices of the different trajectories. Internal vertices are more likely
to be related to a putative neural code.

• Two vertices: Str, MSN and FSI

• Three vertices: GP, Protos and Arkys. Importantly, while the 3 vertices
of the GP are convex, both, in protos and arkys there are concave regions
bordered by 2 vertices that we are counting here as 1.

The rest of the points in the curve are classified either as flat or generic.

Definition 14 (Flat point). Flat points are points with high contact with the
tangent line at that point.

A flat point is then points where the trajectory is very similar to a line. Qual-
itatively it is important to know whether the flat points are inflection points or
higher flat points. A good criteria was developed in the preliminaries and is stated
here;

Definition 15 (Flat point criterion). A flat point s0 is an inflection point iff

k(s0) = 0 and k̇(s0) > 0. (5.18)
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Figure 5.26: Flat regions

It is a higher flat point iff

k(s0) = 0 and k̇(s0) = 0. (5.19)

The flat points of the regions are shown in figure 5.26. Inflection points are
plotted as open circles, higher points as filled ones. The SNr, GP and Pf stand out
as having flat regions. Their significance in the code will be studied in the next
section.

Definition 16 (Generic arcs). Points not classified either as singular, vertex or
flat, are called generic arcs.
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5.5 Null shapes

In this section we address the question: what is the expected shape for a random
trajectory? We argue that such shape is heavily constrained by the correlations
induced in the time domain. We start by exploring significant and analytically
tractable situations some of which could be considered the null model for the
trajectory. We then derive precise formulas for the principal components and
the eigenspectrum under two different null models: Gaussian and exponential
covariance matrices. We show to which extend the data fits into each of those
models.

The general strategy followed in this analysis is to transform the functional
PCA problem into an equivalent heat or diffusion equation and apply the know
harmonic theory of the laplacian operator to find a solution.

5.5.1 PCA of gaussian SDFs

The computation of the Spike Density Function of a spike train can be seen as
some sort of cooling of point heat sources in a spatial domain. Consider figure
5.27. In the usual physical situation, we start with a spike of high temperature at
a given position of space x and want to know what is the distribution of heat after
a time t. Let such distribution be u(x, t), (x, t) ∈ R× (0,∞), then the problem is
solved by finding the solutions to the partial differential equation

∂tu− κ∂xxu = 0 (5.20)

where ∂tu = ∂u
∂t

and κ is the thermal diffusivity. We assume that the spatial
domain is one-dimensional.

r

r

Sm
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Figure 5.27: The concept of heat kernel smoothing.
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In order to put the problem of smoothing in terms of the heat equation we
treat the time relative to a given event (cue, movement, etc...) as a spatial domain
and call it r. The new “time domain” will be the kernel bandwidth σ. In those
terms, the initial value problem for a firing rate u(r, σ) (firing rate at position r
relative to the event and smoothing level σ) becomes

∂σu− κ∂rru = 0 (5.21)

u(r, 0) = f(r) (5.22)

The function f(r) is our initial, unsmoothed spike train. It is known that the
general solution to this equations has the form

u(r, σ) =

∫
K(r − r′, σ)f(r′)dr′, (5.23)

where

K(r − r′, σ) =
1√

4πκσ
exp(−(r − r′)2/κσ) (5.24)

is the heat kernel. Notice that for σ = σ′2, u(r, σ) is the SDF of our spike train.

We now study the effect of smoothing on PCA. For simplicity, we will smooth
Gaussian noise, the previous observations apply just as well. For a population of N
noisy neurons with i.i.d spike counts xi(r) with Exi = 0 and Exi(s)xi(t) = δ(s−t),
the covariance function of the corresponding SDFs is

C(r, r′, σ) =
1

N
E
∑
i

∫
K(r − τ, σ)xi(τ)dτ

∫
K(r′ − τ ′, σ)xi(τ

′)dτ ′

=
1

N

∑
i

∫ ∫
K(r − τ, σ)K(r′ − τ ′, σ)E[xi(τ

′)xi(τ)]dτdτ ′

which, due to the i.i.d assumptions becomes

C(r, r′, σ) =

∫
K(r − τ, σ)K(r′ − τ, σ)dτ.

The integral can be evaluated on the interval τ ∈ (−∞,∞) to get

C(r, r′, σ) =
1

4
√

2πσ
exp(−(r − r′)/2σ) (5.25)

which is again a heat kernel. The advantage of this approach is now obvious. From
the last section we know that the heat kernel can be decomposed as
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C(r, r′, σ) =
1

c

∑
k

e−λkσφk(r)φk(r
′), (5.26)

where φk(r) are eigenfunctions of the Laplace operator. They are also our principal
components. More precisely, it is clear that they are solutions to the eigenvalue
equation ∫

C(r, r′, σ)φk(r
′)dr′ = µkφk(r), (5.27)

with eigenvalue µk = e−λkσ. The principal components are therefore

γk(r) =
√
µkφk(r). (5.28)

It can be shown that computing the population covariance and projecting the
firing rate on the principal directions is equivalent to this result. In order to get
specific eigenfunctions, we need to consider the interval around the event and some
boundary conditions on the extremes.

Theorem 6. For an interval of length L with boundary conditions u(−T/2, σ) = 0
and u(T/2, σ) = 0, for all σ > 0, the eigenvalues and eigenfunctions are

λk =
k2π2

L2
(5.29)

and

φk(n) =
2

L
sin

(
kπn

L

)
. (5.30)

Note that the frequency of the eigenfunctions do not depend upon the prop-
erties of the kernel. In order to test the theoretical predictions we simulated
N = 100 noisy neurons in T = 100 trials and computed the covariance function
and the eigenfunctions. The theoretical and empirical results agree as expected
(see figures 5.28 and 5.29).

The trajectories and eigenvalues are shown in figure 5.30. For sufficiently large
number of samples/neurons, the empirical trajectories approach the theoretical
result.

PCA of a random walk

The previous analysis can be extended or even interpreted as the case in which
the population, as a high dimensional trajectory, makes a random walk in the
high dimensional neural space. In that case, as can be seen from figure 5.31,
the eigenfunctions and eigenvalues behave as solutions of the Laplacian eigenvalue
problem.
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Figure 5.28: Empirical(left) and theoretical(right) covariance of smoothed noise
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Figure 5.29: Empirical(left) and theoretical(right) eigenvectors. From left to right,
first, second and third eigenvectors. The discrepancy is due to finite size effects.

5.5.2 Two models of autocorrelation

Now we want to obtain a more general result. We postulate two models of covari-
ance matrix and for each one we present the process of relating it to the Laplacian
operator.

78



-0.5 0 0.5 1 1.5
2nd PC

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Trajectory Eigenvalues

0 20 40 60 80 100
Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data
Theory

Figure 5.30: Trajectory (left) and eigenvalues (right). Both agreeing asymptoti-
cally with the theory
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Figure 5.31: PCA of a random walk. Left. Covariance matrix of the random
walk. Center. The eigenvectors are clearly Laplacian eigenfunctions. Right. The
eigenvalues show exponential decay

Gaussian autocorrelation

The case of a Gaussian autocorrelation is illustrated by a traveling bump in the
population and it can be approached analytically building upon the tools devel-
oped in the previous section. Traveling bumps or traveling waves are a common
occurrence in the brain as well as in models of the brain, so it is convenient that
precise theoretical predictions can be obtained related to the speed of the bump.
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Specifically, we are considering a data matrix with patterns similar to the one
shown in the figure 5.32. Our goal is to describe the covariance matrix and its
eigenvectors, to finally understand the neural trajectories obtained from this kind
of data.
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Figure 5.32: A traveling bump in the population

The traveling bump satisfies the following partial differential equation called
the transport equation:

∂ru+ c∂nu = 0 (5.31)

u(r, 0) = g(r). (5.32)

Remember that we treat our relative time (r) as an spatial domain and the
evolution in the equation treats the neuron index as a continuous time domain so
the equation is interpreted as moving a bump (g(r)) centered at r = −1 for neuron
n = 0 to r = 1 for neuron n = 50 (in the example of figure 5.32) with speed c.
The solution to this equation has the form

u(r, n) = g(r − cn) (5.33)
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The population covariance matrix has the form

C(n,m) =

∫ ∞
∞

g(r − cn)g(r − cm)dr, (5.34)

which, as we show now, have the form C(n,m) = C(|n −m|) for a Gaussian
initial condition. It is isotropic and depends only on the distance between neurons
at positions n and m.

Theorem 7. Let g(r) = (1/
√

2πσ2) exp(−r2/(2σ2)), then the population covari-
ance matrix is

C(n,m) = C(|n−m|) =
1

2
√
πσ

exp(−c2(n−m)2/(4σ2)) (5.35)

Proof. First, making the change of variables r′ → r − cn and using the Gaussian
in the equation 5.34, we get

C(n,m) =
1

2πσ2

∫ ∞
−∞

exp(−r′2/(2σ2)) exp(−[r′ + c(n−m)]2/(2σ2))dr (5.36)

=
1

2πσ2
exp(−c2(n−m)2)

∫ ∞
−∞

exp(−r′2/(2σ2)) exp(−cr′(n−m)/(2σ2))dr,

(5.37)

which is integrated to

C(n,m) =
1

2
√
πσ

exp(−c2(n−m)2/(4σ2)). (5.38)

This function, along with the empirical one from the data in figure 5.32, are shown
in figure 5.33.

In the same manner as in the previous section, this covariance matrix can be
interpreted as the heat kernel

K(τ, n,m) =
1

c

1

4πτ 2
exp(−|n−m|2/4τ), (5.39)

with τ = σ2/c2. Also, as before, it can be decomposed as

K(τ, n,m) =
1

c

∑
k

e−λkτφk(n)φk(m), (5.40)

where {λk, φk} are eigenpairs of the Laplace-Beltrami operator. Specifically, for
the appropriate initial conditions, they have the form

λk =
k2π2

L2
(5.41)
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Figure 5.33: Covariance matrix of the traveling bump. Left is the profile of the co-
variance matrix as a function of the distance between neighboring neurons. Right.
The diagonal form of the covariance matrix

and

φk(n) =
2

L
sin

(
kπn

L

)
. (5.42)

Note that the frequency of the eigenfunctions does not depend of the specifics of
population. The corresponding theoretical and empirical eigenfunctions are shown
in figure 5.34
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Figure 5.34: Eigenvectors of the covariance matrix
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The eigenvalues are therefore

λk = e−µkσ (5.43)

The trajectories, given by the projections

γ(r) =

∫ ∞
−∞

φ(n)u(n, r)dn (5.44)

have a stereotypical shape reminiscent of the Lissajou curves (figure 5.35).
Indeed, they are Lissajou curves for the appropriate relationship between the eige-
function index and the size of the domain L.
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Figure 5.35: Left. Stereotypical shape of the trajectory. Right. The eigenvalues
as given by the theory

Exponentially decaying covariances

The previous section showed similar eigenfunctions for different kind of data. Why
is that? What is common in those scenarios? The answer is: the time covariance
matrix display short range correlations, therefore, another reasonable assump-
tion about the time correlation functions is that it decays exponentially with the
distance between two given points. More specifically, we assume a model time
correlation matrix of the form

C(r, s) = C(|r − s|) = K exp(−σ|r − s|), (5.45)
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then, the eigenvalue problem is

K

∫ ∞
−∞

C(|r − s|)φk(s)ds = λ̃kφk(r), (5.46)

this can also be expressed more succinctly as

C ∗ φk = λkφk, (5.47)

where C ∗φ represents the spatial convolution and λk = λ̃k/K. Remember that
we still treat the time domain as a spatial domain. This equation is also deeply
connected with the Laplacian eigenvalue problem studied before but in a slightly
different way; it is the Laplacian eigenvalue problem in disguise. In order to see
this, let us apply the Fourier Transform (FT) on both sides

Ĉ ∗ φk = Ĉφ̂k = λkφ̂k, (5.48)

where we used the properties of the FT of the convolution. The FT of the
covariance function in (5.45) is known to be Ĉ(ξ) = 2σ/(ξ2 + σ2), therefore, we
can express equation (5.48) as

ξ2φ̂+ σ2φ̂ =
2σ

λk
φ̂. (5.49)

We can now apply the inverse FT to get the following differential equation

− d2

dr2
φk(r) =

(
σ

λk
− σ2

)
φk(r) = µkφk(r), (5.50)

which is the one dimensional eigenvalue problem for the Laplacian operator. It
is known (see section 2) that on a bounded domain of length L (for example in
an interval around a given event in our case), the spectrum is discrete and the
eigenfunctions are given, again, by

φk(x) =

{
B cos

(√
µkt
)
, k = 1, 3, 5, . . .

A sin
(√

µkt
)
, k = 2, 4, 6, . . .

(5.51)

and

µk =
k2π2

L2
. (5.52)

The eigenvalues of the integral operator can therefore be obtained from

λk =
2σ

µk + σ2
. (5.53)
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In figure 5.36 we show the eigenvectors for a simulated covariance matrix with
the proposed exponential structure. As it can be seen, they correspond with the
theoretical results.
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Figure 5.36: Eigenvectors of a exponentially decaying covariance matrix

The principal components, properly scaled, are therefore

γk(r) =
√
λkφk(r), (5.54)

which, along with the spectrum (eigenvalues) are well explained by the theory
(figure 5.37). The trajectory again has the stereotypical shape seen before.

5.5.3 The basal ganglia trajectories behave like laplacian eigenfunctions

Firing rates will surely show the phenomenon just described as they are, after all,
functions of time. One way to check to which degree they behave like the null
functions presented before is by observing whether their principal components
satisfy the Laplacian eigenvalue problem, that is, whether their second derivative
is a multiple of themselves.

Figures 5.38, 5.39 and 5.40, show the degree of matching between the first
PCs and their derivatives. The agreement is higher for later PCs (figure 5.40 for
comparison). The striatum and striatal subpopulations (MSNs and FSIs) behave
more like null shapes for all PCs. By the 3rd PC, the equation is satisfied almost
everywhere except, and the same is true for later eigenvectors, in the initial segment
that precedes movement in which the correlations are destroyed or attenuated.
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Figure 5.37: Trajectory and eigenvalues
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Figure 5.38: By plotting the each principal component along with their second
derivative , the degree of satisfaction of the Laplacian eigenvalue problem can be
assessed. Each panel correspond to the first PC for each trajectory.

This observation suggests two methods to develop null spectra for each of the
regions. The first one is to fit one of the two model covariance matrices presented
in the previous sections to the data and compute the eigenvalues that correspond
to each of the theoretical eigenfunctions by using equations 5.43 or 5.53. The
second one is to fit the second derivative to one of the PCs times the eigenvalue
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Figure 5.39: Laplacian eigenvalue satisfaction PC2
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Figure 5.40: Laplacian eigenvalue satisfaction PC3

and then use that information to derive the rest of the relevant information.
We summarize the theoretical formulas obtained in this section:

• Eigenfunctions: for measurement interval of length L the eigenfunctions are:

φk(x) =

{
B cos

(√
µkt
)
, k = 1, 3, 5, . . .

A sin
(√

µkt
)
, k = 2, 4, 6, . . .

(5.55)
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Figure 5.41: Laplacian eigenvalue satisfaction PC5. Later PCs have greater degree
of matching. They behave more as null shapes

• The kth Laplacian eigenvalue µk is:

µk =
k2π2

L2
(5.56)

• If the null covariance model is assumed to be exponential (circus tent func-
tion), and λk is the Laplacian eigenvalue, then the eigenvalues of the PCA
are

λk =
2σ

µk + σ2
. (5.57)

• If the null covariance model is assumed to be Gaussian, and µk is the Lapla-
cian eigenvalue, then the eigenvalues of the PCA are:

λk = e−µkσ (5.58)

The theoretical fits for the different brain regions are shown in figure 5.42.
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Figure 5.42: Empirical (bars) and theoretical (lines) spectra.
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Chapter 6

Population interpretation and neural
ensembles
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6.1 Chapter overview

In this chapter we argue that the best approach to understand the structure of the
principal components and, by extension, that of the low dimensional trajectories, is
hierarchical. Such a hierarchy, in general, is not equivalent to the one a traditional
clustering algorithm might find; instead we show that it is a very specific one that
has important mathematical properties.

The most important result of this section is a bijection between the principal
components and combinatorial entities called “Catalan objects”. Not only we show
that there is a one to one correspondence between the eigensystem of an Hermitian
matrix and those objects, but also that such relation has physiological significance
in terms of neural ensembles or assemblies. To the knowledge of the authors, these
results are new in the literature.

The importance of such bijections lies in the fact that now the principal com-
ponents are associated to more than 200 mathematical objects and concepts amply
described in the literature [87]. This opens up a new way of studying and visual-
izing population codes. Indeed, the mathematical properties of those objects are
immediately transferred to the principal components by means of the bijection,
providing a change in perspective that can provide insights about the data that
will be hidden otherwise.

From a more practical standpoint, we use this methodology to attain the fol-
lowing goals:

1. Identify the groups or ensembles that drive the trajectory in different direc-
tions in the phase space

2. Quantify the contributions of each group to the each eigenvalue

3. Identify orthogonal or overlapping subspaces for the evolution of the popu-
lation trajectory

We start by showing how the neural ensemble view is important and instru-
mental in understanding the curvature of the neural trajectories. We proceed then
to present the theoretical grounds for the hierarchical approach to the principal
components. In section 6.3 we show a recursive interpretation of PCA thanks
to an important theorem in linear algebra. Then, in sections 6.4 and 6.4.1 we
present the main motivations and concepts behind the PCA ensembles; this is just
a geometrical reading of the sign changes of the eigenvectors of the covariance
matrix.

In section 6.5 we finally present out proof of the bijection. This is done in a
constructive way, i.e. by providing a specific set of rules that yield a unique Catalan
object from a particular system of eigenvectors and the other way around. The
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chosen Catalan entity is a semiorder. This has the advantage of endowing the
population with a natural ordering structure in terms of explained variance and
overlaps. The discovery of this relation is one of the main contributions of this
work.

We end the chapter by relating the semiorder to the way the low dimensional
subspace is arranged in the high dimensional one and addressing the issue of mean
subtraction. We argue that mean subtraction adds a new dimension to the analysis
but it has to be dealt with carefully because it also complicates the interpretation
of the components of the eigenvectors.

92



6.2 Neural ensembles are important for the understanding of

curvature

As a first step in understanding the relation between the shape and the pop-
ulation activity, remember that the curvature of a high dimensional arc-length
parametrized curve γ(s) is the magnitude of the acceleration, that is,

k(s) = ‖γ′′(s)‖ =
√

(γ′′1 (s))2 + (γ′′2 (s))2 + . . .+ (γ′′n(s))2. (6.1)

Additionally, for a n dimensional curve, there are n− 1 generalized curvatures.
Two observations are in order.

Firstly, the results of [3] suggest that, for a very small interval around the
event of interest (i.e. movement initiation), the principal subspace is very similar
to Frenet frame of the curve at the time of movement. Therefore, non-zero higher
curvatures suggest higher dimensionality of the curve itself.

Secondly, the presence of ensembles implies that the curvature could be approx-
imately explained by the local pattern of firing of the ensemble. By local we mean
that they have effectively the same curvature at the point s but can differ later.
To see this, let us assume that there are k � n patterns in the individual neurons,
say γ̃1(s), γ̃2(s), . . . , γ̃k(s), and Gi neurons displaying the pattern i, i = 1, 2, . . . , k,
then

k(s) ≈
√

(G1γ̂′′1 (s))2 + (G2γ̂′′2 (s))2 + . . .+ (Gkγ̂′′k(s))2. (6.2)

Moreover, based upon the observations in the previous chapter and as a pre-
liminary study of the data, we can group the neurons in those with high and small
curvature, again, locally. Three cases will be of interest. Either all the curvatures
are equal and constant, which gives a circle (a vertex); either they are zero (all
patterns are changing slowly ( a flat region); or there are two subgroups, one slow
and one fast (a sharp point).

Even so, as we will see, the trajectories are not two dimensional in general and
they will have significant torsion or higher curvatures at times; in those times, an
additional dimension is necessary to fully explain the data (irregular points).

6.3 Preliminary insights in the hierarchical nature of PCA

The previous observations justify study of the ensembles contributing to the cur-
vature in the PCA. We will see that the similitude in firing is encoded in the
components of the eigenvectors of the covariance matrix, however, before studying
them we should recognize the hierarchical structure of PCA. The starting point
is the Courant-Fisher theorem [59] which provides a recursive definition of the
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eigenvalues of an Hermitian matrix, which the covariance matrix happens to be.
We just state the min-max, real version of it:

Theorem 8 (Courant-Fisher). The eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn of a hermitian
matrix C are

λi = min
dim X=n−i+1

max
x∈X , ‖x‖=1

xTCx. (6.3)

When i = 1, X = Rn, that is, the full euclidean space.

This seemingly complicated statement implies the following: Eigenvectors of
the covariance matrix can be computed recursively as follows (figure 6.1)

• If the matrix is a block matrix, separate the different blocks.

• For each block, compute the largest eigenvalue

• Project the data into the n−1 dimensional subspace (hyperplane) orthogonal
to the corresponding eigenvector

• Repeat the procedure for the projected data.

Therefore, in each iteration you compute the eigenvectors for the projected
data which has lost one dimension. We obtain this way a sequence of subspaces
each of which has some percentage of the explained variance left on it.

First problem 1 = 0.72 Second problem 2 = 0.12a. b.

Figure 6.1: a. The original data in black with n = 3, the first eigenvector is shown
in blue, the orthogonal subspace is shown in light blue with the data projected on
it. b. The first eigenvector of the projected data is the second eigenvector of the
original data.

The trees that we will build in the forthcoming sections contain the structure
of such recursion but, in order to find an algorithm to construct them we need
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to analyze the structure of the eigenvectors. In the next section we, additionally,
relate this to the ensemble structure of the population. In order to do so, it is
convenient to assume that the mean is not subtracted from the data.

Observe that, if the data is not subtracted, the first eigenvector will pass
through the centroid of the data [70] and the projection onto the first hyperplane in
the previous procedure will be equal to the mean subtraction. Not subtracting the
mean, however allows to single out cases in which the matrix has a block structure
(completely independent patterns) which is important for the proof bellow.

6.4 The induced system of hyperplanes

The definition of PCA in terms of eigenvectors or directions of maximal variance
implies a dual view of a best fitting system of hyperplanes; the traditional one is in
term of eigenvectors (i.e. one dimensional subspaces), the dual one is in terms of
n−1 dimensional subspaces. This view was indeed present in the first major works
about the topic, in pearson’s 1901 paper [70] and in Hotelling’s comprehensive
work [41]. In this section we use this fact to study the ensemble structure of the
population code. We start by clarifying in which sense we mean that a system of
hyperplanes is best fitting to the data.

Given a set of basis vectors B = {v1, v2, . . . , vn}, the induced system of hy-
perplanes is defined by the equations vTi x = 0, i = 1, 2, . . . , n; it is central and
essential [2] (we refer the reader for the preliminaries section for the fundamentals
about hyperplanes). A good way of measuring how fit a point x ∈ Rn is to basis
B and, by extension, to the induced system of hyperplanes is by the following
distance function introduced in [22].

ε2(x) = −
∑
i

z2i log z2i , (6.4)

where zi = vTi x are the coordinates of the point in the basis B. In [22] it is
considered the “distance” between the point and the basis. This function reaches
a maximum when the vector has a 45◦ angle with all the hyperplanes and that is
the farthest it can be from all of them at once. It turns out that PCA minimizes
the average distance of all the data points from the given hyperplane arrangement.

Theorem 9. Give an set of points X = {x1, x2, . . . , xm}, the basis given by the
principal directions minimizes the average distance given by

f(X) =
1

m

∑
k

ε2(xk) = − 1

m

∑
k

∑
i

|zki |2 log |zki |2, (6.5)

with zki given as before.
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Proof. The proof follows from Jensen’s inequality. The function ε2(x) is concave
and therefore it satisfies ε2(

∑
i xi) ≥

∑
i ε

2(xi) or

− 1

m

∑
k

∑
i

|zki |2 log |zki |2 ≤ −
1

m

∑
k

(∑
i

|zki |2
)

log

(∑
i

|zki |2
)
,

observe that
∑

i |zki |2 = ‖zk‖2. We can replace then the original problem with the
equivalent one of minimizing the right hand side of the previous expression, so the
new optimization problem can be stated as:

min
V ∈SO(n)

f̂(X) = −
∑
k

‖zk‖2 log ‖zk‖2, (6.6)

which by the minimal average length property of the PCA (chapter 3), is reached
when

f̂(X) = −
∑
k

λk log λk (6.7)

[88], where λk is the k-th eigenvalue of the covariance matrix of X and V is the
matrix of eigenvectors.

This best fitting hyperplane system can be seen as sequence of linear decoders
that partition the set of neurons (coordinate axes) into different classes, the neural
(geometrical) ensembles. We will come back to that interpretation later but first
we will develop some tools to understand its high dimensional structure. This is
instrumental in understanding the journey of the trajectory in the high dimensional
space; the parts of the hyperplane arrangement that it visits will correspond to
the neural ensembles.

First we find out where in this hyperplane arrangement lie each neuron (i.e.
coordinate), then we study the locations of groups of neurons. Remember that
a hyperplane Hi divides the space into two half spaces {H+

i , H
−
i }, we follow the

convention as in [2] and assume that half spaces are closed.
Given a system of hyperplanes H, a face is the intersection of the half spaces

taking either 1 or the 2 half spaces for each hyperplane. Maximal faces are called
chambers. Each face F has an opposite face F̄ , the set {F, F̄} is called a projective
face. We select a set of positive faces as the set of faces that are in H+

1 , that is,
in the positive half space associated to the first eigenvector. The hyperplanes that
border a chamber are called walls.

In the neural space we associate each canonical basis vector of the euclidean
space to a neuron (i.e neuroni = ei), that is, each coordinate axis is a neuron. We
have the following important observation.

Lemma 3. Each maximal positive chamber of the induced system of hyperplanes
is occupied by a single neuron (figure 6.2)
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Chamber

Figure 6.2: Induced hyperplane arrangement and neuron locations. The shaded
hyperplanes are the induced hyperplane arrangement. The location of the neurons
is shown in red. Blue lines represent single neurons.

Proof. Let us assume that two canonical basis vectors belong to the same maximal
chamber. If they are not in any of the walls, their angle with each of the walls
should be acute and therefore the angle between the two of them should be acute
too but that is a contradiction of the fact that they are elements of the canonical
basis.

The relation between neurons and chambers suggest an encoding of the popula-
tion activity. Associated which each chamber there is a sign sequence that uniquely
identifies it. This sign sequence reflects the different half spaces intersected that
result on that chamber. We have therefore, the definition

Definition 17 (Chamber code). A chamber code for a neuron is a sequence of +s
and −s that uniquely identify the chamber that neuron lies on.

We will use this to locate the ensembles participating in a given point of interest
of the curve.

6.4.1 A change in perspective: neural ensembles as faces of the hyper-
plane arrangement

Last showed that single neurons occupy chambers or maximal faces of the induced
hyperplane arrangement. If single axis represent a single neuron then the subspace
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(plane) spanned by two canonical vectors represent the joint firing of two neurons,
etc. Those subspaces are faces of the canonical coordinate arrangement. It differs
from the induced hyperplane arrangement in that it is generated by the canonical
vectors and not the eigenvectors of the covariance matrix.

Definition 18 (Geometrical ensemble). Given k indexes i1, i2, . . . , ik, k ∈ [n], a
geometrical ensemble is the cone p = α1ei1 + α2ei2 + . . . + αkeik with all αj ≥ 0,
that is, the linear combinations of the corresponding canonical vectors with positive
coefficients.

Each geometrical ensemble is a face of the canonical hyperplane arrangement.
It represents a group of neurons or, in terms of the newly developed concept of
combinatorial codes[25], a codeword. Additionally, belonging to a geometrical
ensemble is an equivalence relation. Examples of geometrical ensembles are the
first octant in the 3 dimensional euclidean space, the plane x = 0, the x-axis.

(3,2,0)

-1

4

0

ne
ur

on
3

1

2

2 4

2

(2,0,0)

neuron2
0

neuron1
0

-2
-2

-4 -4

Figure 6.3: Example of a geometric ensemble. The point (3, 2, 0) represents the sit-
uation of neuron 1 having a firing rate of 3spiles/sec and the neuron 2, 2spikes/sec.
The shaded area is the face corresponding to the geometric ensemble. Any point
in that area corresponds to the coactivation of neurons 1 and 2 and not the neuron
3. The point (0, 0, 2) and the hole ray parallel to the z-axis, corresponds, similarly,
to the activation of only one neuron: neuron 3.

Consider a point in the interior of a face. In terms of firing rates, it corresponds
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to the situation in which the corresponding neurons are firing together. For ex-
ample, the point p = (3, 2, 0) in figure 6.4 means that neuron 1 has firing rate 3,
neuron 2 has firing rate 2 and neuron 3 is not firing at all, hence, it represents the
ensemble 12. That ensemble is also represented by any positive multiple of p or
any point with nonzero values in the first and second component and zero in the
third.

Note that each hyperplane of the induced hyperplane arrangement separates
two geometrical ensembles by itself, one on each half space. Thinking about each
hyperplane as a linear classifier, it divides the set of canonical basis vectors in
to two groups. It is important to note here the change of perspective; instead of
separating points, as in traditional classification problems, we separate axes or,
more specifically, coordinate rays of the high dimensional space.

The traditional view of separating points is not very informative because those
points, in our case, are part of a curve and, consequently, no ad-hoc classes can
be assigned to them individually. On the other hand, the fact that a subset of
coordinate rays is separated from another indicates a partition of the population
into two ensembles; therefore, the trajectory on each side is said to be visiting the
corresponding ensembles.

a. Traditional b. Ensemble

h h
x

y

z
γ

Figure 6.4: Example of the change of perspective in relation to the view of the
induced hyperplane arrangement as a set of linear classifiers. a. In the traditional
classification problem, hyperplane h separate the classes of points, green and blue.
b. In the geometric ensemble perspective, the hyperlane separates sets of coor-
dinates. Here, xy is an ensemble that has been selected out by h. In black, the
trajectory visits the corresponding ensembles (xy and z)

As a final fact about the geometrical ensembles, it is important to note that
the set of geometrical ensembles, as the set of faces has a partial order (see chapter
3) given by inclusion. So, we say that the ensemble S1 ≤ S2 iff S1 ⊂ S2, that is, if
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S1 is contained in S2. For example, for ensembles 12 and 123, we have 12 ≤ 123. If
we restrict ourselves to the positive orthant of the high dimensional space, we say
that the partial order is a lattice (has a maximum and minimum element). The
case of the positive orthant is the one in which we work with firing rates which
are, by definition, positive.

6.5 Catalan objects: overlap trees and the neural semiorder

As seen in the previous section, interpreting the classification in terms of the
ensembles allows us to study the dimensionality reduction aspects of PCA from a
new perspective: By studying the ensembles that are singled out by adding each
hyperplane of the induced hyperplane arrangement one at a time. This process
can be encoded in 3 related tree structures.

6.5.1 The difference tree

The difference tree, associated to a hyperplane arrangement A is defined recur-
sively by the algorithm 1 which receives the eigenvectors vi, i = 1, 2, . . . , n as an
input. The iteration is performed for all eigenvector of until certain k that obeys
a specified threshold (like a minimum amount of explained variance).

Algorithm 1 Difference tree

1: belonging← node0 for all neurons
2: nodes← node0
3: for i = 0 to k ≤ n do
4: for all nodes do
5: u← neurons in current node
6: h+ ← j s.t. vi,j > 0 for j ∈ u
7: belonging[h+] = new node
8: add new node to current node as a child

During the algorithm, each node contains a subset of the indexes corresponding
to the neurons in the data; each neuron can only belong to a unique node, this
restriction is enforced by having the relationship encoded in the variable belonging.
At the beginning the tree has only one node which contains all the indexes. The
neurons with positive coefficients in the ith eigenvectors are assigned to a new
node that is then attached as a (right) child of the current node. The ambiguity
of sign is resolved by assigning the choosing the half space with higher compound
contribution.
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Figure 6.5: Growing of the difference tree assuming a population that at each step
has neurons on both sides of all the hyperplanes

Definition 19 (Compound contribution). The Compound contribution of a set of
neurons (indexes) I to a specific eigenvector u is given by

c =
∑
i∈I

|ui|2 (6.8)

From the hyperplane perspective, each steps encodes which geometrical en-
sembles occupy each chamber in a sequence of sub-arrangements of the original
hyperplane arrangement. For example, in the first step of the first for loop, the
hyperplane arrangement consists of a single hyperplane, the one corresponding to
the first eigenvector. For data with positive firing rates, all the components of
the eigenvector will be either zero or positive, therefore, the first step creates a
new node with all the neurons, again. Geometrically, this means that the first
eigenvector will be in the positive octant and the orthogonal plane will have all
the coordinate rays, the whole octant, on the same side.

The next hyperplane will divide this group into 2 subgroups. Those in the
positive half space will explain more variance as their dimension is higher. The
next step, for the 3rd eigenvector will create 4 groups, two children; one child for
every node whose neurons happen to be on the positive half space generated by this
hyperplane. Geometrically, this encodes the way in which that hyperplane cuts
the corresponding face of the previous subarrangement. The process of growing at
each step is shown in figure 6.5.

Because being part of an ensemble is an equivalence relation, we can think
of each node as representing a single, ideal neuron with a specific pattern in the
firing rate. The relationship between the ensembles in the tree turns out to be
very informative; it imposes a special kind of order in the ensembles: A semiorder.
The basic properties of semiorders are presented in the chapter 3.

Theorem 10 (The ensemble semiorder). The difference tree define a semiorder
or a decision pattern on the set of neurons.
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Proof. We have to show that there is a bijections between the set of semiorders and
that of the trees generated by this procedure. Using the common representation of
semiorders[98], the bijection, shown in figure 6.6 for all possible trees with n = 4
neurons, is done as follows:

tree =⇒ semiorders:

1. Starting from the leftmost child, write the nodes as labeled until you reach
a branching point.

2. If the branching point is the root, start a new, disjoint line and repeat the
algorithm for the remaining nodes

3. Apply the algorithm recursively to the next child the branch and extend the
initial line to overlap as many nodes as the leftmost branch of this sub tree
has.

4. Repeat this process for all the branches to the right.

5. Write the common ancestor last, along with the ancestors immediately on
top that are not branching points and connect them with a new line that
overlaps as many nodes as children of the leftmost branch in the right most
children of the branching point.

semiorders =⇒ trees:

• Draw a root node

• Draw as many children as non-overlapping lines there are

• For each set of overlapping set of lines draw a new child with as many
branches as overlapping lines there are

• For each set of points completely covered by a line, create a chain of nodes.

This procedure creates a unique tree for each semiorder (“into”) and every tree
will be created by a given semiorder (“onto”).

The significance of the semiorder is thus that it unfolds the dependencies be-
tween the non-independent principal components. It provides also a natural clus-
tering of the population into ensembles that fire together at some point of the
measurement interval; we call them life time ensembles.

One of the interesting consequences of this bijection is that the principal com-
ponents are blind to Crossing relationships, that is, a relationship of the form
shown in figure 6.7. In this pattern, A and B belong to an ensemble as well as C
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Figure 6.6: Semiorder bijection

and D, however, part of the first ensemble, A, also belongs to an ensemble with C.
The same applies to B and D and not to B and C or A and D. The implicit logic
in the trees forces us to conclude that all 4 neurons belong to a single ensemble,
more details will be given when studying specific examples.

Another consequence of the bijection and the particular way in which we chose
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A B C D

Figure 6.7: Crossing patterns are not represented in the semiorder

the rules is that the presented semiorder underlines two kinds of relationships.
First the equivalence relation ∼ in which A ∼ B iff A and B belong to the same
ensemble. Second, an ordering that shows how much variance each of the ensembles
contributes to the total variance of the population. In order to understand the
ordering and the proposed bijection better, consider the examples in figure 6.8.

Because the way the positive direction is chosen (see before), we can say that
b > a in the first tree to the left. The corresponding semiorder or decision pattern
is clear (there are only 2 options for n = 2). For the others, following the fact
that each descendant is greater that its parent with respect to the contribution
and following the rules established in the bijection proof, it is easy to see how the
ensembles are sorted according to their compound, overlapping contributions to
the principal vectors.

We finish this part by underlying the fact that, incidentally, we have given a
new proof of a well know fact about semiorders:

Corollary 1. The number possible full ensemble semiorders for n neurons is the
nth Catalan number Cn

Indeed, the trees just obtained are called rooted trees and the total number of
rooted trees with n + 1 nodes is known to be Cn[87]. Some examples of the trees
and the corresponding semiorders are given in figure 6.9

6.5.2 The compound tree

The difference tree algorithm describes in fact a family of trees, one for each
eigenvector we apply the given rules to. Each set of ensembles thus obtained is a
valid ensemble in itself but it is also contained in the ensemble represented by the
node it grew from; by preserving all the ensembles in each generation we obtain
the Compound tree:

The compound tree can be seen as a coarse graining of the population activity
and is related to the process of renormalization used in physics.
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d > c > e > b > a

Figure 6.8: Examples of the ordering and the bijection

6.5.3 Coding tree

A final tree associated with the set of principal components is a binary tree called
the coding tree. In this tree, instead of leaving behind the neurons in the closure of
the negative half space as in the previous algorithms, those are also put in a new
node; as a result, each step brings about two new children for each node. When
a single neuron is reached, the rules can either stop growing (compressed tree) or
continue adding redundant levels (full code).

Figure 6.10 illustrates the growing of the binary trees. It also shows how each
node in the compressed tree has a natural binary code by following the path from

Algorithm 2 Compound tree

1: node0 ← all neurons
2: nodes← node0
3: for i = 0 to k ≤ n do
4: for all nodes do
5: u← neurons in current node
6: h+ ← j s.t. vi,j > 0 for j ∈ u
7: new node← h+

8: add new node to current node as a child
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Figure 6.9: Example trees

the root and writing down 1 for right turns and 0 for left turns. The code, in
the full tree, also points to the chamber (a chamber code) where the trajectory is
expected if that ensemble is active.

Finally, it is important to add that there is a natural bijection of the rooted
trees presented in before and these trees, more detailed treatment of these trees
and their relationships can be found in [93]. An alternative bijection identifies
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Algorithm 3 Coding tree

1: node0 ← all neurons
2: nodes← node0
3: for i = 0 to k ≤ n do
4: for all nodes do
5: u← neurons in current node
6: h+ ← j s.t. vi,j > 0 for j ∈ u
7: h− ← j s.t. vi,j <= 0 for j ∈ u
8: new node R← h+

9: new node L← h−

10: add new node R to current node as a right child
11: add new node L to current node as a left child

H+1 H-1

H+2H-2 H+2 H-2

1. 2.

...
A B C D A

D_ +

_ _+ +

X

Y

B

C

Figure 6.10: Growing of the coding trees

the each node with the corresponding one during the growth process of the tree
(figure6.11)

6.6 The semiorder gives information about the embedding of

neural low dimensional subspaces in the high dimensional

space

Connecting back to the insights from section 6.3, the semiorder gives additional
information about the positioning of the low dimensional subspace in the ambient
space. As seen is the mathematical preliminaries, every semiorder has a symmetric
and an antisymmetric part. The symmetric part can be interpreted as giving the
different ways the data can be put in subspaces inside the high dimensional space.
As an illustration, consider the case of 3 neurons. There are only 4 possibilities
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Figure 6.11: Bijection between the difference trees and the coding trees

(figure 6.12):

• 1 + 1 + 1: The 3 neurons are independent

• 1 + 2: Two neurons are correlated and one independent

• 1 + 1: The neurons lie in a proper subspace

• 1: The neurons visit all the space

The patterns can be continued for higher dimensions. All the patterns in figure
6.12 are symmetric and so correspond to the same semiorder, except 2 + 1, which
could also be 1 + 2, giving a total of 5 possible patterns. In general, the number
of patterns is, again, the nth Catalan number [87].

6.7 Mean subtraction and the center surround interpretation

Until now we have assumed that no mean subtraction is performed in the PCA
but every analysis of data does, in general includes this pre-processing step. Al-
gebraically, it is not important, after all, the resulting covariance matrix is only a
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Figure 6.12: Possible ways in which the neuron activity can lie in the high dimen-
sional space. Form left to right, The three neurons can be disjoint meaning that we
are ultimately embedding 3 one dimensional subspace in the 3 dimensional space.
2 neurons can be correlated but one uncorrelated; in this case we are embedding a
2 dimensional and a 1 dimensional subspaces. The three neurons can be linearly
dependent with the 3 of them spanning a 2 dimensional subspace. All the neurons
are correlated and span the whole space. Those are the only possibilities

rank one perturbation of the non mean subtracted one. However, mean subtraction
has interesting yet subtle consequences that are the topic of this section.

Remember the differential formula for the eigenvectors given in chapter 3

v̇i = vTi x(t)
∑
i 6=j

vTj x(t)

λi − λj
vj (6.9)

This is a complicated differential equation that is coupled to the corresponding
for the eigenvalues, however, it can be used to try to understand the location
of the first eigenvector in the mean subtracted population. As seen in figure
6.13, when the mean is subtracted, the first eigenvector is positive, as expected
for positive definite or semidefinite matrices. Mean subtraction positions this
vector in an interesting position. Equation 6.9 suggest that neurons that display a
predominantly negative firing rate will end up with negative coefficients in the first
eigenvector while neurons with positive firing rates will have a positive coefficient.

The main aspects of the method remain valid, however, two consequences need
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Figure 6.13: The effect of mean substraction on the first eigenvector. In the right
figure, the component corresponding to the neuron y indicates that this neuron
has predominantly negative firing rates.

consideration. First, as illustrated in figure 6.14, in the developed algorithms the
groups of positive and negative firing rates will be disjoint in the construction and
therefore could be treated as separate groups. Second, and more importantly, if the
population has symmetric firing rates, that is, one in which patterns of increases
are mirrored by patterns of decreases, the two trees will capture this symmetries
effectively separating the population in a group that we will refer to as the center
and another that we will call the surround. The nature of the center (surround),
whether it is the positive or the negative, depends of the physiological properties
of the given neural population /region.
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+ -
Figure 6.14: Paralell tree growing. Left and right branches are separated through
the whole growing process, representing patterns that mainly increase or decrease
the firing rates. To the right is the corresponding semiorder representation
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Chapter 7

Neural ensembles and trajectory shape in
the basal ganglia
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7.1 Chapter overview

In this chapter we relate the shape of the trajectories as studied in chapter 5
to aspects of the population code in the basal ganglia, reflected in its ensemble
structure. We attempt to answer the questions:

1. How does the population code changes in the different regions?

2. What aspects of the population activity generate the morphological features
seen before in the principal trajectories?

3. What is the coding scheme at the output of the basal ganglia?

We start by showing, in section 7.2, that the activity at the output stage
(SNr) is homogeneous and low dimensional. By means of a simple population
vector approach, we study how similar is the code along the trajectory in the time
interval around movement initiation. Moreover, the intrinsic1 population features
suggested by the so called trajectory anatomy are studied quantitatively by the
development of 2 novel measures of heterogeneity and sparseness.

We then move forward to identify the specific patterns present in the population
by means of the geometric ensembles approach developed in the previous chapter.
We show that the population code is simplified along the processing pipeline of
basal ganglia regions, with simpler, compressed signals at the output and complex
signals at the input. The later as revealed by the presence of mixed selectivity
neurons with complex responses to different stimuli. In terms of the geometry,
we give interpretations to the sharp points, flat regions, vertices and irregularities
observed in the different regions.

Overall, the results of this chapter confirm long standing hypotheses about the
computational role of the basal ganglia in dimensionality reduction and compres-
sion of the signals/commands coming from the motor cortex.

7.2 The basal ganglia output behaves as a low dimensional

gate for movement

Evidence of dimensionality reduction can be seen in the spectrum of the covariance
matrix for each of the regions. In figure 7.1, the proportion of explained variance is
shown for each of the studied regions. It is readily apparent that the SNr explains
more variance with the first three eigenvalues (AOC = 9.5) than all the other
regions. Even more, a large proportion of it is explained only by the first principal
component.

1Intrinsic as opposed to extrinsic ones like selectivity to an external stimuli, see [73]
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Among the subpopulations, the Arky subgroup of the GP has an equally large
first principal component but a slow increase in the explained variance, making
it higher dimensional that the Protos for the chosen (arbitrary) threshold. MSNs
are lower dimensional than FSIs.

We now focus on the aspects of the population code that make regions like SNr
and STN lower dimensional while others like Str and GP higher dimensional.
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Figure 7.1: Explained variance in each of the basal ganglia regions studied includ-
ing sub populations. The bars are the normalized eigenvalues of the covariance
matrix. The solid lines are the cumulative spectra. The dashed line indicates an
arbitrary threshold of 90% explained variance. SNr shows the fastest increase in
explained variance per eigenvalue, followed by STN.

7.2.1 The anatomy of the principal trajectories suggests characteristic
time resolved ensemble structures for each region

The anatomy of the trajectory is a methodology inspired by similar work in chem-
istry [51] and, more recently, in the study of the population code of the C. elegans
[47]. It allows us to visualize how the population vector changes along the trajec-
tory. Highly clustered, homogeneous and low dimensional trajectories are expected
to show minimal changes in the population vector with time.
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Method

Figures 7.2 is constructed as follows. The insets show the similarities of the pop-
ulation vector at each point in the trajectory. First, the vector of firing rates at
each time point x(t) ∈ Rn is binarized based upon whether each neuron fires above
certain threshold or not. Then, the matrix of hamming distances between those
vectors is build and used to produce a multidimensional embedding in 2 dimensions
in such a way that close points in the plane will reflect patterns that are close in
the hamming distance sense.

The insets are then the result of choosing equally spaced time points and plot-
ting the corresponding points naming each pattern with a letter in alphabetical
order. Those points could be considered different states of the population in the
phase space and the final inset, a state diagram. The size of the circles is propor-
tional to the number of active neurons at that point.

In the trajectory, the black points represents movement onset and the diamond
is the starting point 500ms before movement. Three dimensional trajectories are
used for reasons that will become apparent later in the chapter.

Anatomy of the different regions around movement initiation

Str displays rather different patterns at each time points suggesting a high di-
mensional trajectory and that 3 dimensions are unlikely to capture all the details
of the population activity. The equally spaced points starting at D mean that
the ensembles are constantly changing but none is particularly different from the
others. The trajectory before that is homogeneous due mostly to the effect of the
filtering of the go cue distant in the past.

The other regions display 2 mayor branches with different ensembles separated
by what can be interpreted as a “transition” point (around F in GP, E in STN,
G in SNr and F again in Pf). In SNr and STN, the transition point is markedly
sparse, as evidenced by the size of the corresponding circle. In those areas, the
patterns before and after the transition point are markedly different.

Note that the transition points in SNr and STN, translate directly into sharp
points of the trajectory (see later). The three patterns of the GP, on the other
hand translate into a “polygonal” shape with 3 vertices (see chapter 5). Other
aspects of the trajectory in relation to the trajectory will be studied later.

What are those patterns and where does the abrupt change before an after the
transition come from? Are there any behavioral relevant events that can be asso-
ciated with each “branch” of the trajectory? We start gaining more information
about the firing patterns in the population by studying its ensemble structure in
the next sections but first we want to quantify the observations made here in terms
of number of patterns (heterogeneity) and number of active neurons (sparseness).
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STN

Str

GP

SNr

Figure 7.2: Anatomy of the trajectory for regions STN, GP, Str and SNr. The
input region (Str) evolves traversing more or less equally sized ensembles, equally
spaced in the phase space. This is in contrast with the sharp transition between
two states in the output stage (SNr). The STN has two sections, one with ho-
mogeneous evolution and one with heterogeneous one similar to the Str. GP has
three distinguishable ensembles separated by large changes (More detail in the
main text)
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7.2.2 The observed low dimensionality comes from separated but ho-
mogeneous clusters
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Figure 7.3: Evidence of dimensionality reduction in the basal ganglia. From top to
bottom and left to right. The silhouette index reveals highly coherent clusters in
the SNr and STN after for two clusters. The RMSSTD index suggest comparable
distances between clusters but a sharp decrease is noticeable for the SNr after the
second cluster. The R2 statistic and the PCA cumulative spectrum provide similar
information about the quality of the clustering. Colors of the lines correspond to
the color code used through the thesis for the different regions.

In order to quantify the observations made in the previous section we use two
approaches. First, by means of a conventional clustering algorithm and measures
of clustering performance [80], we show that the intuitions behind our analysis
are sound. Then, we introduce new measures of the population properties de-
rived directly from the PCA structure, reaching similar conclusions in a more self
contained analysis.

Figure 7.3 shows the result of applying k-means clustering algorithm[29] to the
set of population vectors (states) traversed by the trajectory. The silhouette index
[79] peaks earlier for the SNr followed by STN, indicating the population pat-
terns fit well into 3-4 clusters (high coherence). The separation between clusters,
as measured by the Root Mean Square Standard Deviation (RMSSTD) remains
comparable among regions but has a sharp drop after 3 clusters for the SNr and
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is slightly higher for the Str, conforming to the observations made in the previous
sections.

A common measure of the quality of clustering is the R2 statistic [80]. Again, it
raises faster for the SNr and STN indicating cluster with higher internal coherence.
Notice the similarity of the this measure with the cumulative spectrum from PCA
(figure 7.3, bottom right). We conclude that the differences in dimensionality
between regions arise as a consequence of separated homogeneous clusters in the
state space.

7.2.3 Heterogenerity and sparseness measures support the dimensiona-
lity reduction view of the basal ganglia

Among the different features of a population code (see chapter 2), heterogeneity
and sparseness are of particular interest from both the modeling and the expe-
rimental points of view. They are in direct relation with information theoretical
concepts like the compression rate of traditional codes. They also constraint the
dynamics, representations and computations performed by a given population [1].
It is interesting to see how these properties vary across different basal ganglia re-
gions and how they relate to the observed shape and clustering features previously
described.

Heterogeneity

Formulas (6.4) and (6.7) suggest a way of measuring how heterogeneous the firing
patterns of the neurons are. Remember that they are related to how fit a set of
points is to the given basis. If the points are very close to the coordinate axes,
they will be, by definition, well explained by each PC and therefore, we say that
the population is homogeneous. If they are far from the basis, they are called
heterogeneous.

One caveat to the last interpretation is that, if we decide to use formula (6.7)
as a measure of heterogeneity, the usual maximum of this convex function will
not correspond to a population of maximal entropy. Indeed, the eigenspectrum of
the covariance matrix gets constrained by the time correlations in a way that was
treated analytically in chapter 5.

Definition 20 (Life time Heterogeneity). The lifetime heterogeneity of a matrix
of firing rates is defined as the divergence[23] between the empirical spectrum and
the theoretical one, {ηi}, derived in chapter 5 for an exponential or Gaussian null
covariance matrix model. That is

H(X) =
∑
i

λi log

(
ηi
λi

)
(7.1)

118



If the null covariance model is exponential, then

H(X) = −
∑
k

λk[(a− log bk)− log λk], (7.2)

with a = log(2σ/L2) and bk = k2π2 − L2σ2. If the covariance model is Gaussian,
then

H(X) =
∑
k

λk(ck + log λk), (7.3)

with ck = k2π2σ/L2. In both cases, L is the length of the measurement interval
and σ the width of the fitted null autocovariance.

Therefore, the life time heterogeneity gives a measure of how many different
patterns there are in the whole interval around the alignment event. We propose
also a time resolved version of that measure. As was seen in chapter 3, the time-
covariance matrix can be seen as a function of time on the interval around the
even. The rate of change of its eigenvalues is proportional to the square of the
similarity between the corresponding eigenvector and the population vector at that
time, then we have

Definition 21 (Instantaneous heterogeneity). The instantaneous heterogeneity is
defined as

∆H(t) =
∑
i

λ̇i(t) log

(
1

λ̇i(t)

)
=
∑
i

(vTi x(t))2 log

(
1

(vTi x(t))2

)
=
∑
i

z2i (t) log

(
1

z2i (t)

)
, (7.4)

where zi(t) is the ith PC.

In each of the entropy expressions, the arguments must be appropriately nor-
malized to be a probability distribution. Intuitively, the instantaneous heterogene-
ity tell us the dimensionality of the face that the trajectory is visiting at each time
step. Note that each PC contributes to the instantaneous heterogeneity as long as
the trajectory is far enough along that axis at the specific instant.

Population sparseness

In the same guise, we can study the sparseness or sparsity of the neural activity
around movement. In this case, do sparse ensembles contribute to the shape?
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The 2 first PCs represent broad patterns that tend to hide sparse responses unless
the are strong enough to capture enough variance. In any case, a measure that
captures the intuitions behind counting the number of neurons contributing to the
aligned event is

Definition 22 (Population sparseness). The population sparseness is defined as

S(X) = −
∑
i

‖xk‖2

K
log
‖xk‖2

K
, (7.5)

where ‖xk‖ =
∫
x2k(t)dt is the norm in the space of functions and K = Tr C is

the normalization constant.

The population sparseness, being an entropy (other entropy functions could be
used like Rényi entropy), tells you the width of the distribution of activation of
the neurons in the whole interval. A sparse population will have low entropy or,
in other words, will be very thin. A dense population will have the activity spread
across all neurons and, therefore, will be wide. In practice, all neurons tend to be
activated at some point in the interval and therefore, have a total activity different
from zero. A more useful measure of sparseness is the instantaneous sparseness.

Definition 23 (Instantaneous sparseness). The instantaneous sparseness is de-
fined as

∆S(t) = −
∑
i

x2k(t) log x2k(t), (7.6)

which gives a measure of the width of the instantaneous population distribution
of firing rates. Note that the last expression (equation 7.6) differs from equation
7.4 in that the former can be seen as measuring the distance of the data to the
canonical basis, the canonical basis represents single neurons. Being very close to
the canonical basis is a signature of sparseness. Equation 7.4, in contrast, measures
the distance of the data to the PCA basis or to the best fitting hyperplane; the
PCA axes represent ensembles as we have already seen.

Heterogeneity and sparseness in the basal ganglia

In figure 7.4 we show the heterogeneity and sparseness of each of the studied regions
in the heterogeneity sparseness plane on the left. On the right, we make sure that
the observed differences are not due to the size of the corresponding populations.

The GP and their subpopulations are the most heterogeneous. As seen before,
the subpopulations with sharp points consist of relatively few patterns of activation
before, around and after movement in our measurement interval; they are therefore
more homogeneous. As we saw before, these regions share the feature of a sharp
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point that is due to disjoint ensembles related with different aspects of movement.
Although this measure is theoretically well justified, it can be seen as an lower
bound (due to Jensen’s inequality) of the total time resolved heterogeneity that
we investigate now.
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Figure 7.4: Basal ganglia regions in the Heterogeneity-sparseness plane (left). The
(lack of) correlation of the measures with the size of the population(right). Neurons
with sharp points are closed in this space. The MSNs are sparse as expected along
with arkys and protos. No correlation between the size of the population and the
measures’ values is observed.

In figure 7.5(a), we show the instantaneous heterogeneity and sparseness for
each region. Two aspects become apparent. In some regions (black arrows for
example) the heterogeneity and sparseness are uncorrelated; the more neurons
have different patterns (high heterogeneity), the more neurons become active for
those patterns (low sparseness). On the contrary, in some segments of the SNr,
STN and GP for example, increases in heterogeneity are co-occur with increases
in sparseness (white arrows). That situation corresponds to the pauses (center)
and increases (surround) that potential allow/inhibit movements [66].

Movement initiation is associated with a drop in sparseness meaning that most
neurons respond. That response is markedly heterogeneous in subpopulations like
the Arkys and FSIs and is homogeneous in the SNr and MSNs. After that the
population response diversifies in ways that we will see in the next section.

Note that drop is early in the Str and later in the STN and Pf. This is re-
lated to the dimensionality reduction approach to PCA in that, while the input
structures have high dimensionality (remember that heterogeneity tells indirectly
the dimension of the face the population is visiting), the output ones visit lower
dimensional subspaces (see later). Note that in the case of the SNr, the population
behaves differently at the end of the interval.

Another way to visualize the compound heterogeneity and sparseness is to
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Figure 7.5: a. Time resolved Heterogeneity and sparseness. Heterogeneity: Solid
colored line, Sparseness: White line with colored dots. b. Average life-time het-
erogeneity and sparseness. The ellipses around each point indicate the standard
deviation for each of the measures.

study the mean and standard deviation of the instantaneous measures (figure 7.5
b). This paints a slightly different picture than the one given in figure 7.4. Here,
the SNr is the more homogeneous one capturing the phenomenon found in the
clustering. The ellipses show the variability smaller in SNr, protos and GP.

In conclusion, the measures of heterogeneity and sparseness provide a intrinsic
description of the properties of the code. An extrinsic description [73] would
require knowing the specific map of actions / event to codewords, this is unlikely
to be achieved any time soon in the basal ganglia (i.e. which pattern encodes
which action). The trees, along with those measures, are therefore a reasonable
characterization of the coding scheme of each region.

122



7.3 Movement initiation occurs through parallel channels with

specific functional roles at the basal ganglia output

We now delve more into the nature computation in the basal ganglia, the origin
of the low dimensional activity at the output and the reason behind the geometric
features observed. We use the geometry as a guiding principle in studying the
ensemble structure of the population. One of the striking observations of this work
is that sharp points do not always come from sharp changes in the underlying firing
rates; more often they reveal aspects of the underlying population subspaces.

7.3.1 The singularities are associated with orthogonal subspaces of the
population trajectory

Interest in the neural trajectories has come with an increase interest in the under-
lying geometrical subspaces [81]. Often, telling whether the involved subspaces are
orthogonal or “overlapping” is of interest. Here we show that orthogonal subspaces
are involved in the generation of movement. The main indication of orthogonality
are singularities2 in the low dimensional trajectory. There are three main popula-
tions with singularities (sharp points) in the data set: SNr, STN and Pf. Those
sharp points are qualitatively different and reveal different population phenomena.

As it can be seen from the 3D trajectory (figure 7.6, left), the singularity of Pf
is stable or high dimensional. This means that it is preserved under perturbations
of the projection angle. This is likely and indication of sharp increase in the
firing rate itself but it will not be studied further in this work. For SNr and STN
however, the singularity is unstable; it reveals instead two salient features of those
populations.

For the SNr, evolution around movement initiation happens in the plane spanned
by PCs 1 and 3. Evidence of this is the one dimensional evolution, parallel to the
line “L”, that is preserved under rotations around PC 2 (figure 7.6, right). For
STN, evolution happens in two different subspace orthogonal to each other. Note
that the projections are always parallel to the lines “L” and “M” around the
singularity.

7.3.2 The population dynamics in the SNr is driven by minimally over-
lapping ensembles

Where does this orthogonality come from? Theoretically, subspaces derived from
PCA can only be orthogonal if the underlying population vectors are uncorre-

2Remember that sharp points and irregular points can be indication of singularities.
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Figure 7.6: Stability of the singularities in the basal ganglia. Left. 3 Dimen-
sional PCA trajectory showing evolution restricted to orthogonal subspaces in
some stretches of the curve. Right. The stability of the singularities can be stud-
ied by rotating the trajectories and projecting them back to two dimensions. The
only stable singularity is Pf’s. For SNr and STN the orthogonal subspaces are
revealed by the lines “L” and “M”
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lated. We study now the patterns of firing in the population to determine if such
independence is present at the level of the neuronal ensembles.

Ensembles responsible for the evolution of the 2D trajectory

Figure 7.7 shows the Catalan ensembles for the SNr. As seen in the previous
chapter, four ensembles contribute to the trajectory in PC1 - PC2 plane. The
dots to the left indicate the pattern of overlaps in the form of a semiorder. The
decreasing and increasing patterns are in different branches of the semiorder as
expected. The distributions at the top indicate that late and early parts of the
interval are associated with the Go cue (orange) and the sideIn movement (blue).
The first two principal components capture therefore broad patterns of firing in
the given interval.
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Figure 7.7: Level 2 ensembles in the SNr. Left. The corresponding semiorder.
z-scores of the neurons are sorted and grouped by the Catalan ensembles. Distri-
butions at the top show the previous and future events in the task. Right. The
coding tree and corresponding trajectory with the ensemble contributions. The
red arrow and border line indicates patterns related to movement initiation. Inside
each leaf of the tree the mean z-score for the corresponding ensemble is shown.
Numbers inside the panels are the number of neurons associated to each ensemble.
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Remember that the principal components and, hence the trajectory, are linear
combination of the original neurons’ firing rates. Grouping those linear combina-
tions by the contributions of the different ensembles gives:

zi(t) =
∑
k

vikxi(t)

=
∑
ib

viibxib(t) +
∑
ic

viicxic(t) +
∑
id

viidxid(t) +
∑
ie

viiexie(t)

≈ ±x̄ib(t) +±x̄ic(t) +±x̄id(t) +±x̄ie(t), (7.7)

so, the position vector of the trajectory is driven by 4 terms, one for each
ensemble; moreover, it can be seen as approximately driven by the pattern (i.e.
mean ±x̄) in each ensemble in the direction given by its sign of the eigenvector.
In the same vein, the tangent vector

żi(t) =
∑
k

vikẋi(t)

=
∑
ib

viibẋib(t) +
∑
ic

viicẋic(t) +
∑
id

viidẋid(t) +
∑
ie

viieẋie(t)

≈ ± ˙̄xib(t) +± ˙̄xic(t) +± ˙̄xid(t) +± ˙̄xie(t), (7.8)

is also decomposed in contributions from each ensemble. Using this information
we can locate the ensembles contributing to the trajectory and ultimately to the
points of interest, as follows.

With this in mind, we use the coding tree to find the ensembles responsible for
the sharp point and irregularity in the SNr. Note that the sharp point in figure
7.7 (bottom right) is in the IV quadrant of the Cartesian plane. According to
the chamber code7.7 (top right) , the two ensembles that are contributing to this
point are e and d. Indeed, around movement, the tangent vector is driven by the
components corresponding to those ensembles.

The first one can be characterized as an increase of firing rate that is persistent,
on average, during approximately 200ms after movement (surround). Ensemble
d is its approximate mirror image, that is, the corresponding movement related
pause (center).

The trajectory can then be described as follows: It starts in quadrant I (++)
driven mainly by the high firing rate in ensemble b and the low firing rate in
ensemble c. It is not far along the first quadrant mainly because of d which is
driving it towards (+-). The decrease in d along with the increase in e bring the
trajectory to quadrant II where it stops. As it was shown in the previous chapter,
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that stop lasts around 100ms and then the trajectory turns towards the (–) driven
mainly by the increase in c and the decrease in b. At the end it makes the hook
style turn as it starts being driven to (+-) by the increase in d and the decrease
in e.

Phenomenological origin of the sharp point in 2 dimensions

From the previous observations we can conclude that before movement initiation,
the trajectory is barely moving as the velocity vector is close to zero. The evolution
of the trajectory after movement is the result of three patterns of activity as illus-
trated if figure 7.8 (b). First a decrease in the firing rate and consequent rebound
(bump no. 1), second, an increase of firing rate at the time of movement (bump
no. 2) and third, a late increase potentially related with subsequent movements.
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Figure 7.8: SNr phenomenological model. a. The energy (magnitude square)
reflect the locations of the time interval they “care about”. A simple model of
there firing rate bumps generate similar looking components (b.), trajectories (c.)
and spectrum (d.).

From the figure it can be seen that such a simple descriptive model generate PCs
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that are similar to the observed ones (figure 7.8(a)). The trajectory generated this
way also displays constrained evolution to the PC1-PC3 plane and singularities.
Finally, the eigenvalue spectrum as a large first eigenvalue similarly as with the
biological population.

Note that both in the model and in the data, the second principal component
is almost independent from the other two. In the region in which they overlap
it only contributes a constant translation to the trajectory. That means that the
second eigenvalue reflects mostly variance coming from this pattern of activity.

7.3.3 The third PC can be used to separate the population into differ-
ent channels with specific computational roles

Is this the case in general? Are the ensembles in the basal ganglia parallel channels
for different behavioral signals? To study the answer to this question we grow the
corresponding Catalan tree one step more (figure 7.9). In doing so we reveal
interesting patterns of activity in the population each one with a characteristic
time evolution.

The super ensemble previously named “e” now separate in two patterns “i” and
“e” (ie). The later is locked at the time of movement while the former happens ear-
lier but before than the next movement recorded (sideIn), therefore its functional
role is uncertain. Super ensemble “c” is now “c” and “g” (cg). “g” has actvity
that is clearly related to the sideIn event. “c” on the other hand has a ramping
behavour towards late aspects of the task.Finally, the super ensemble (bfdh) has
cue related high firing rate and movement related decrease; the sub-ensemble (dh)
has in addition and increase associated to late aspects of the task.

In this case we can also use the coding tree to locate the ensemble activity in
the trajectory. We observe, for example that the irregular part of the singularity,
the part parallel to PC3 is indeed related to the previously described undefined
motor related activity of ensemble “i” and its corresponding mirror image. Overall,
the location of the main firing rate changes allows to partition the trajectory in
different behaviorally related segments (figure 7.10).

Looking through the movement glass

In a more exploratory way and with the aim of strengthening the observations made
before, we perform different alignments to nearby events to study the behaviour
of the Catalan ensembles under different events. Two situations are possible in
this case. If the neurons display mixed selectivity [78], different ensembles should
be randomly assigned to stimulus related computations (i.e. tone or go cue) or
movements. If the are part of a system of parallel channels, each ensemble should
preserve its identity without need to regroup.
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As seen in figure 7.11, the later seems to be the case. Specifically, some of the
ensembles have specific roles and seem to contribute to different aspects of the
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is set up as in the previous figures. S: surround ensemble, C: Center ensemble, M:
Mixed ensemble. L: Late movement component.

behavior. For example, ensemble “e” is a motor ensemble. It has low stimulus
related modulation. Moreover, it forms part of the surround (excitation) for the
“noseCenterOut” event but is part of the “center” for sideIn. Note the similarity
of the firing patterns between noseCenterOut and noseSideOut.

Ensembles “d” and “h” are interesting because the have a very reliable modula-
tion that comes after a sensory stimulation. That signal seems to be evoked again
for the foodHopperClic event (reward delivery). Ensemble “g” is in the center for
the noseCenterOut event but part of the surround for the noseSideIn. The ensem-
ble “i” seems to be related entirely to the mysterious late component between the
two recorded events, coming potentially from unrecorded but stereotypical move-
ments. Finally, note that the ensembles are not completely stable across events.
Sometimes they split, meaning that some neurons can be dynamically reasigned
to different channels.

If this categorization is correct, we might be able to make some predictions.
For example, the activity in (dh) should be independent of different aspects of
movement (direction, speed or stopping). Also, differences in the speed and the
outcome of the movement should be reflected in the dynamics of ensembles like
(bf) or (ec). The fact that they are mostly disjoint, as reflected by the sharp turn
in the trajectory, suggests that there should not be much cross talk between those
computations.

In order to give glimpse as to whether those predictions are correct, studied the

130



activity of the ensembles during slow vs. fast trials and correct stop vs. failed stop
conditions (figure 7.12). As expected, the ensembles showing major modulations
with motor aspects of the behavior where (bf) and (ec). As seen from the correla-
tion matrix, the patterns of activation of those ensembles are more correlated for
slow go and correct stop trials, and between fast go and failed stop trials. This
confirms and adds detail to the physiological similarities observed between those
trial types in previous work [83].
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Figure 7.12: Comparison of the ensemble activity during slow go (sg), fast go (fg),
correct stop (cs) and failed stop (fs) trials.The ensembles highlighted are the ones
showing high modulations between conditions. The correlation matrix shows the
par-wise correlation between the mean firing rates of the ensembles for the different
trial types.

These observations allow us to classify, broadly, the response of the neurons in
the substantia nigra in the following categories:

• Go process: Activity in (dh) is classified as a go-process channel because it
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seems to carry sensory information but it starts late after other neurons have
receive the actual sensory input.

• Sensory-motor: Ensembles (f) (g) and (i)

• Motor related - Ensembles (ec), (b).

7.3.4 The STN is mostly excitation with low dimensional patterns that
reflect mixed selectivity

We now follow a similar procedure to study the nature of STN’s sharp point.
In order to understand this shape we locate the ensembles that are likely to be
contributing by their increases or their decreases. The corresponding ensemble
semiorder and coding trees are shown in figure 7.13. Following the chamber code
we discover that the initial one dimensional evolution is driven almost exclusively
by the increase (decrease) of the ensemble b (e). When the sharp point is reached
the population changes then due to an increase (decrease) in c (d), generating a
one dimensional evolution in an orthogonal direction towards (-+). Finally, after
b (e) decreases (increases) below(above) zero, the trajectory make a slow turn
towards (–).

This observations allows us to propose a phenomenological model as with the
SNr 7.14. The main feature in this case is the ensemble (mixed) that have a wide re-
sponse pattern that covers different movements (noseCenterOut) and (noseSideIn).
This unspecific ensemble is enough to generate the main features of the trajectory
and principal components for the STN. The fact that this ensemble shows nonspe-
cific responses is termed mixed selectivity.

Functional significance of the two branches of the trajectories

The sharp point in the STN is also an irregular one. This is an indication of
some unexplained activity happening in an additional dimension. In this case,
the trajectory is split into two branches (figure 7.15). To understand this behav-
ior, we extend our trees one more generation and plot the surrounding events’
distributions. We split our analysis in two, one for each branch of the trajectory.

First branch

The first branch is composed of movement related increases in (bf) and decreases
in (ie). The ensemble (e) is also responsive to the cue and behaves similarly to the
ensemble (d) in the SNr.
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Figure 7.13: The shape of the STN and its quadrant location. The ensembles,
located using the coding tree, are shown as before.

Second branch

The second branch is characterized by increases (cg) and decreases (dh) after
movement initiation. The increases in (c) are unspecific with respect to the action
(noseCenterOut or noseSideIn). We hypothesize that this ensemble conveys signal
that are independent of the identity of the action to be executed. For that reason
we call that pattern as representing vigor.

Based upon these observations, we can categorize the activity of the STN as
follows:

• Movement related: Increases, (bf) for noseCenterOut and decreases (ie).

• Cue related: Ensembles (dh)

• Vigour or unspecific responses (cg)

We conclude that the geometric features of this trajectory have different un-
derlying population causes than the ones of the SNr. Nevertheless, the ensemble
activity seems to be composed also of simple signals traveling through channels
whose functional significance needs to be further studied.
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as in figure 7.8

7.4 Other regions and features

Each region of the basal ganglia has characteristic ensembles along with some of the
observed patterns to different degrees. A detailed study of each of the population
structures is beyond this work but its understanding is of paramount importance
in order to explain the different geometric features of the population dynamics and
their relation to behaviour.

For completeness, we provide a gallery of the ensemble structure for all the
regions studied in this work.
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Figure 7.15: Level 3 ensemble semiorder for the STN. Same as with the SNr.

7.5 Appendix: The growing of the trees

The difference tree structure is mostly saturated for most regions

The trees associated to each region are shown in figure 7.16. These trees have been
grown for 10 eigenvectors, as you can see, there is already a lot of structure and
branching at this point. Remember that for each eigenvector, children are born at
each node if there is still “unexplained variance” in that node, the fact that all the
trees look similar reveals that there is enough structure in that population. Later
ensembles (rightmost and deep) start showing differences.

It can be appreciated that, for diverse enough data, the trees are fractal. Fig-
ures 7.17 and 7.18; the more diverse, the more self-similar will be those structures
as a consequence of the rules of growing. Those trees are therefore not as use-
ful in providing information about region-specific broad patterns but as providing
“boxes” in which to put neurons with similar patterns of firing rate. This boxes, as
explained before are faces of the PCA hyperplane arrangement that the trajectory
visits for some time.
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Figure 7.16: Trees for the first 10 eigenvectors (Level 10)

The tree growing reveals similar patterns in most regions related with the timing and
breadth of the response

In non mean subtracted data, neurons with very low firing rates, which we call null
neurons, are automatically left behind in the first step of growing. Geometrically,
neurons with very low or zero firing rate lie in the Frobenius hyperplane or the
hyperplane corresponding to the all positive first eigenvector. In mean subtracted
data, the null neurons will be left in the ensemble with least explained variance
which, as a matter of fact, will be always be the top most in the subsequent figures.
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Figure 7.17: Same as figure 7.16 but summed in the leftmost branch

This feature is illustrated, for example, in figure 7.20.
This figure has a layout that will be repeated during this section. To the right

we show the z-scored population activity, which we will always use from now on, as
a heat map with one row per unit and grouped by ensembles (nodes of the tree).
The mean firing rate of each ensemble is overlaid on top of the corresponding
population activity. The time of movement initiation is marked by a dotted line
in the middle and the interval around the alignment event is [−0.5, 0.5].

Figures 7.19 to 7.27 show the evolution of the semiorder procedure introduced
in the last section as it grows, fine graining the population’s patterns. Taking the
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Figure 7.18: Same as figure 7.17 but summed in the leftmost branch

SNr as an example, the process of tree building structures the population in its
natural ensembles based on life time covariance (co-firing in specific parts of the
interval). Each step of the growing adds detail into the clustering. Also apparent
from some of the figures, is the symmetry of regions like the SNr as revealed by
the clusters. Patterns of increases are roughly followed by patterns of decreases.
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Figure 7.19: Structuring the Str population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure. The first step of growing
and therefore the first principal component keeps track of broad increases and
decreases in the firing rate. Those are the parallel subtrees mentioned before for
mean subtracted data.
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Figure 7.20: Structuring the MSN population by growing the semiorder. Again,
patterns with higher variance are in the bottom of the figure. Note that the silent
neurons are exclusively of this subpopulation (compared to the FSIs)
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Figure 7.21: Structuring the FSI population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.22: Structuring the GP population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.23: Structuring the Arky population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.24: Structuring the Proto population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.25: Structuring the SNr population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.26: Structuring the STN population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Figure 7.27: Structuring the Pf population by growing the semiorder. Patterns
with higher variance are in the bottom of the figure.
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Chapter 8

Discussion

In this work we developed a systematic approach to the study of the low dimen-
sional neural trajectories obtained from dimensionality reduction by PCA. The
aspect of shape was approached rigorously from two perspectives. The invariance
approach focused on the problem of comparison of shapes; the singularity one
in the specific features of each shape like sharp points, vertices and flat regions.
We performed a novel study of the curvature, the most important parameter of
a curve, in terms of the coordinates that helps to understand how the overlaps
of covariance between the single coordinates generates different curvature profiles.
Finally we developed for the first time to the knowledge of the authors a rigorous
account on the restrictions imposed by PCA on the shape.

The analysis of the “form” put on a rigorous ground observations about the
shapes of the trajectories associated to each basal ganglia regions. For example,
the fact that some regions have a rounder form while other have polygonal or
hook like shapes with sharp turns. It was found that, in a particular shape space
devised in that section, the trajectories cluster in two large groups that are related
to the presence of absence of sharp points. In the construction of the shape space,
one important aspect was factored out without a fully exposition of its origin:
reflections.

It is well known that the principal components are ambiguous in sign, for that
reason, all possible reflections of a trajectory represent the same shape. This aspect
of PCA has a deeper meaning that the author unfortunately had to postpone for
future work. An observation about the behavior of the reflections sheds light about
their possible causes. If the neurons are randomly permuted in the population,
the trajectory is reflected in one of the many axes in the high dimensional space.
It turns out that the specific reflection coming from a particular permutation can
be understood by the action of the symmetric group on the induced hyperplane
arrangement [11]. A rigorous treatment of the reflections will appear somewhere
else.
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It is possible that the shape space developed in chapter 5 could be improved
in 2 directions. Firstly, as seen in figure 8.1, the trajectory can be though as a
curve in the space of distributions of firing rates or activity in the neurons. Under
this model, the geometry becomes an information geometry. Some strides in that
direction were taken by the author but a full development requires more work.
Secondly, the natural space in which the PCA acts is called a flag manifold[30].
The study of the trajectories in the flag manifold is also an ongoing work.

Figure 8.1: Information geometric space for the population trajectories. The tra-
jectory γ can be thought as the parametrization of a curve in the space of distri-
butions of activity in the neurons

The ensemble approach was developed with the natural geometry of the flag
manifold in mind. Even if it was not complete, the results of this work are a step in
the right direction for a complete understanding of the geometry of the trajectories
in those spaces. As was shown, the ensembles are the main drives of the shape;
indeed, replacing the population by the averages of the ensembles from the tree
preserves the shape as expected. A big part of the effort was put in developing the
method, and understanding and making clear the intended relationships between
the components of the eigenvectors and the Catalan objects.

The bijection and the hyperplane approach bring about theoretical benefits
that can be exploited in future works. It is conceivable that such approach will
help in the understanding of how the trajectory is expected to change by adding
more neurons or extending the time interval around movement. It also puts the
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problem in a combinatorial setting and allows the application of important theorem
developed in that field. For example, each semiorder is in one to one relation with
a high dimensional polytope called the associahedron that encodes the possible
ways in in which parenthesis can be put in a sequence of symbols; the implications
of such relationships have yet to be developed.

The ensemble structure can be used to generate “region -like” activity around
movement to feed computational models input.Conversely, it interesting to see if
existing computational models of the basal ganglia generate a similar gamut of
patterns and trajectories.

An obvious next step for this work is the analysis of the shapes related to other
events in the experimental setup. Of particular interest is the activity around
stopping. What would to be the population signal related to stopping? Would it
be restricted to a single ensemble or is it a concerted population activity. In this
sense, correlates of the go and stop processes could be found in the evolution of the
trajectories and the elusive “point of no return” might identified by such analysis.

With respect to the current analysis of the population activity during move-
ment onset, the change in sparseness/heterogeneity around movement observed in
the SNr and STN bears some resemblance with the quenching of variability around
stimulus onset observed in the cortex [20]. It is interesting that such phenomenon
is not observed in all the regions. It might be related to the section of the action
and suppression of undesired ones. In this sense, the “dense” striatum is a bit
paradoxical; in general, this regions is expected to be sparse, whoever, the multi-
plicity of variables represented in such region (see chapter 2) justifies the presence
of such a variety of patterns.

Indeed, the observed pattern derived from the sharp points fits Nambu’s center
surround model presented in chapter 2. The unspecified signal found in the STN
comes earlier than the two branches of the SNr and presents two peaks that could
be related to the two step computations predicted by this model. Moreover, the
independence of the patterns that gives origin to the sharp point in the SNr can
be interpreted as a form of decorrelation or compression of the high dimensional
activity observed in the striatum fitting in turn the dimensionality reduction model
of computation in the basal ganglia.

The conceptualization of activity in regions, in the basal ganglia in general and
in the SNr and STN in particular, as coming through different regions is not new
[66]. Indeed, signals like go/stop/pause [82], urgency [91] or vigor [92] are part
of the observed features of this network. In the task concerning this study, in
which a highly trained, stereotypical behavior is performed, it makes sense to have
different ensembles with orthogonal patterns of activation dedicated to each step
in the sequence. If that was not the case, activity in the shared neurons in the
ensemble could be wrongly activate undesired movements in down stream regions.
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This methodology has shown to be instrumental in the understanding of the
coding schemes in the basal ganglia. Further analysis are guaranteed to shed light
into the details of the code and how such a network can have such parallel, low
dimensional channels embedded in its dynamics and architecture.
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Chapter 9

Code

All the code is on github under the following projects:

9.1 Population api

The code for generating the trees and ensemble structure from the PCA is made
public under the repository:
https://github.com/aljiro/PopulationAPI

9.2 Curve api

The code for the analysis of the trajectories, reparametrization and differential
geometric operation is made public under the repository:
https://github.com/aljiro/CurveAPI

9.3 TameD library

During this thesis an ongoing project for the analysis the neural data was started
to support the performed analyses. The code can be found and followed at:
https://github.com/aljiro/TameD

9.4 Analyses

The analyses and the code for each of the figures can be found at:
https://github.com/aljiro/AnalysesPhDThesis
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