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Abstract  
 

Two limiting conditions of burning rate are considered, culminating in either 

flame extinction, or transition to a detonation. A 2D schlieren technique, for 

flame imaging of quenching kernels has been employed, supported by 3D 

swinging sheet measurements. The study was able, for the first time, to 

determine the kernel mean diameters at the point of quench. It was found that 

the burning regime on the U/K diagram covered higher values of 𝐾 and strain 

rate Markstein numbers,𝑀𝑎𝑠𝑟 than previously reported. 

Hydrogen, methane, n-butanol and i-octane air mixtures were studied at 

different pressures and temperatures, up to 1 MPa and 365 K. Kernel mean 

diameters are normalised with laminar flame thicknesses, and correlated, 

through measurement of turbulent length scales, with 𝐾 and 𝑀𝑎𝑠𝑟 . It is also 

shown how the quenching, through blow-off, of jet flames is closely related to 

that of single kernel quenching of premixed flames. Just as excessive air 

entrainment causes quenching of jet flames, entrainment of pilot flame gases 

by a highly turbulent mixture, can ensure its survival. 

As a part of the assessment of H2 as a fuel, its autoignition and transition to 

detonation were studied, with emphasis on laminar flow. This necessitated 

micro-tubes for flame acceleration. Stoichiometric H2/O2 mixtures were 

studied at pressures where autoignition delay times are short.    

The probability of a purely laminar propagation leading to a detonation is 

marginal only when the initial temperature is raised to 375 K, do purely laminar 

detonations become possible, in tubes of between about 0.5 and 1.35 mm 

diameter. The tendency of mildly turbulent mixtures to auto-ignite, for an initial 

temperature of 300 K is greater than with laminar flames on the same initial 

conditions and tube sizes. A further related study demonstrates a proposed 

detonation engine for the laminar transition to detonation, but this reveals 

practical design limitations. 
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Chapter 1 - Introduction 

1.1 Foreword and Motivation  

In 2015, United Nations Environment Programme (UNEP), sought a 

worldwide agreement to apply the framework towards negative values of 

greenhouse gas emissions from fossil fuels consumption by 2100 (UNEP, 

2018).  Despite many developed countries dependence on coal as a cheap 

fuel, which is the main source of emissions and pollution, increasing the 

efficiency related to carbon capture and storage (CCS) and control of 

conventional power generation has become one of the core challenges 

concerning increased uptake.  

To address the challenges of power generation and the future environmental 

demand, alternative fuels have been used, such as biofuels, synthetic liquids 

and hydrogen. Hydrogen is environmentally supporting the reduction in fossil 

fuels energy and increase the thermal efficiency when employed in engines. 

Recently, the production of NOx from lean-burn hydrogen  operated  engines 

was reported as nominal (Ravi et al., 2016).  

Producing hydrogen can be achieved using renewable resources, such as 

solar (Jericha et al., 2010) and wind energy (Alabbadi, 2012). The electrolysis 

of water separates stoichiometric hydrogen and oxygen. This method can lead 

to zero greenhouse gas emissions. The produced hydrogen is fed into the fuel 

cell which converts the chemical into an electrical energy. This process would 

only utilise the hydrogen resulted from the electrolysis and the oxygen would 

vented out and wasted or used in a propulsion systems (de Groot et al., 1997). 

Instead this mixture of hydrogen and oxygen (HHO) can be used as an 

alternative to fossil fuels to generate steam at a very high temperature and 

serves as a feed to a steam turbine so as to generate electricity (Alabbadi, 

2012).  

Although fuel cells give high thermal efficiency, it is expensive in power 

generation compared to conventional power generation cycles, Jericha et al. 

(2010) proposed a hybrid plant with steam and use twelve fuel cells give 2.5 
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MW each integrated with a combined cycle give 110 MW. The overall net 

efficiency of the plant was very high 73.8%.  

As an effect of this clean fuel on the performance of a gasoline spark ignition 

engine, Musmar and Al-Rousan (2011) showed that improvement on the 

brake thermal efficiency at different engine speeds as seen in Fig. 1.1.  

 

Figure 1.1 Effect of HHO on Brake thermal efficiency of Spark ignition 
engine (Musmar & Al-Rousan, 2011). 

 

Biofuels, such as ethanol and n-butanol, are produced from renewable 

sources and represent a viable alternative fuel for conventional engines. N-

butanol is considered the second generation alcohol fuel as its vapor pressure 

is lower than gasoline, thus making it safer to use by producing fewer organic 

emissions (Wu et al., 2008). In terms of future sources of viable energy, this 

is a promising fuel as it has a higher energy density and a higher calorific value 

(Xue et al., 2013). 
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As it is attractive, hydrogen can be produced from butanol using steam and 

dry reforming thermochemical techniques due to the higher hydrogen content 

of butanol (13.51 wt.%) compared to methanol and ethanol (Cai et al., 2012). 

Such fuels like hydrogen and n-butanol are investigated in the present work 

including the burning rates. 

Because of its growing importance, H2 plays a key role in the thesis. This 

thesis examines two aspects of the use of H2. Electrolysis produces H2/O2 in 

its stoichiometric proportions and the burning velocity and autoignition delay 

times are reviewed in a study of whether it is possible for the mixture to 

detonate in a laminar flow. This leads to the study of the detonation 

characteristics of such mixtures. Also, because of the good efficiency and low 

noxious emissions of lean burn hydrogen engines, values of the lean burn 

flammability limit, as well as this limit for other fuels, are explored 

experimentally in the Leeds fan-stirred vessel. Quenching limits to flame 

propagation are studied in terms of limiting stretch rates and limiting flame 

kernel sizes. All these parameters will be discussed in the following sections. 

1.2 Deflagration 

A deflagration wave is a subsonic combustion wave in which the flame front 

is dominated by the chemical reactions with propagation aided by molecular 

transport of energy and species. Deflagration wave can be laminar or 

turbulent. Laminar deflagration is initiated by the ignition of fresh mixture. The 

burning rate is controlled by the chemical kinetics of the chain reactions, 

diffusion coefficients of species and thermal conductivity. Fuel type is also 

determinant factor. The pressure and density decrease across the 

deflagration wave.  

1.2.1 Laminar Deflagration and Flame Structure 

The basic structure of laminar deflagration has been summarised by Griffiths 

and Barnard (1995) as the temperature and concentration profiles for a one 

dimensional premixed adiabatic flame, as shown in Fig. 1.2. Four zones are 
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presented, comprising cold reactants, preheated (pre-flame zone), reaction 

and products zone. 

 

Figure 1.2 Concentration and temperature profiles associated with one-
dimensional, premixed adiabatic flame (Griffiths & Barnard, 1995). 

 

The reactants are preheated from the unburned temperature, 𝑇𝑜 in the pre-

flame zone where heat conduction increases the temperature of the reactants. 

A density gradient forms across the flame. Mass diffusion is also involved in 

this zone. The enthalpy and Gibbs free energy for reactions control the 

chemical reactions in the reaction zone. In this zone, the temperature 

increases further, and the chemical reaction rate rapidly increases due to the 

chain reactions. Finally, the products reach the adiabatic flame temperature, 

𝑇𝑏.  

1.2.1.1 Laminar Flame Thickness 

Griffiths and Barnard (1995) define the laminar flame thickness (denoted by  

𝛿𝑙 ) as the reaction zone depth where the release of the bulk heat occurs.  

Essentially, within the flame thickness, the temperature changes from 𝑇𝑜 of 

the cold reactants to 𝑇𝑏 of the products.  
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There are different definitions for the laminar flame thickness; based on the 

temperature gradient defined as thermal flame thickness involving the 

diffusion based upon the species production and consumption with (Ciccarelli 

& Dorofeev, 2008; Clavin, 1985; Matalon & Matkowsky, 1982; Tamadonfar & 

Gülder, 2014) and based on the hydrodynamic length given by (Abdel-Gayed 

et al., 1989; Bradley et al., 1998c; Shy et al., 2000) as follows: 

𝛿𝑙 = 𝜈 𝑢𝑙⁄  ,               (1.1) 

where 𝜈 is the kinematic viscosity of the cold reactants and  𝑢𝑙 is the laminar 

burning velocity. This definition is used in Sections 3.2 and 3.3, and it is also 

suitable in the turbulent combustion flow parameters as it linked with the 

transport coefficient represents in the kinematic viscosity. Generally, it is an 

important property of the flame because its value is indicative of how much 

turbulence is interacting with the flame front.  

1.2.1.2 Laminar Burning Velocity 

Both laminar and turbulent burning velocities are relevant to quenching in the 

present work. The laminar flame speed, 𝑠𝑛, in a spherical explosion is defined 

as the rate of the increase of the flame radius, 𝑑𝑟 𝑑𝑡⁄ . It is the summation of 

laminar burning velocity, 𝑢𝑙 , and gas velocity ahead of flame front, 𝑢𝑔, due to 

the volume increase from the gas expansion. Laminar burning velocity is an 

important physico-chemical parameter. It is the flame velocity relative to the 

unburned gas and it travels normal to a one-dimensional planar flame surface 

(unburned gas velocity normal to the reaction zone). This velocity is expressed 

by: 

𝑢𝑙 = 𝑠𝑠 − 𝑢𝑔.                         (1.2) 

Laminar burning velocity, 𝑢𝑙, can be also expressed as a function of the un-

stretched laminar flame speed, 𝑆𝑠, and burned to unburned gas density, 𝜌𝑏 𝜌𝑢⁄  

(Bradley et al., 1998c): 

𝑢𝑙 = 𝑆𝑠 𝜌𝑏 𝜌𝑢 .⁄               (1.3) 

The variations of burning velocity of different fuel/air mixtures with the 

equivalence ratio, 𝜑, at atmospheric conditions, are shown in Fig. 1.3. 
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Hydrogen, ethylene and acetylene are highly reactive gases due to the higher 

molecular diffusivity and chemical kinetics. 

It is clearly shown in the figure how high the laminar burning velocity is for 

hydrogen, ethylene, and acetylene-air mixtures compared to other fuel/air 

mixtures.  

 

Figure 1.3 Laminar burning velocity, SL, for various fuels/air at 1 atm, 
298 K from (Gibbs & Calcote, 1959; Zabetakis, 1965). In the notation of 
the present work SL is ul. 

1.2.1.3 Flame Stretch Rate 

A flame is generally exposed to strain and curvature that change its frontal 

area, 𝐴. The stretching rate of the flame was studied by Karlovitz et al. (1953) 

and the flame stretch and curvature relationship by Markstein (1964). The 

effects of stretch rate on laminar burning velocity have been interpreted by 

Candel and Poinsot (1990). 

An aerodynamic material surface of area, 𝐴, experiences a total stretch rate 

given by:  
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𝛼 =
1

𝐴

𝑑𝐴

𝑑𝑡
 .               (1.4) 

In combustion 𝐴 is the flame surface area, and 
𝑑𝐴

𝑑𝑡
 is the rate of change in 

element area 𝐴 of the total surface area (Williams, 1985). Consquently, in 

spherical symmetrical flames with 𝐴 = 4𝜋𝑟2, the flame stretch is a function of 

the stretched flame speed, 𝑆𝑛 =
𝑑𝑟

𝑑𝑡
, 

𝛼 =
2

𝑟
𝑆𝑛.               (1.5) 

The effect of strain rate and curvature on the flame front gives the total stretch 

rate, 𝛼:    

𝛼 = 𝛼𝑠 + 𝛼𝑐,                         (1.6) 

where 𝛼𝑠, 𝛼𝑐, are the flame stretch due to aerodynamic strain and curvature, 

respectively.  

The stretch rate components were defined in (Bradley et al., 1998c) as follow: 

𝛼𝑠 =  
2𝑢𝑛

𝑟
                           (1.7) 

𝛼𝑐 =  
2𝑢𝑔

𝑟
                                            (1.8) 

To characterise the effect of stretch on the burning rate, a characteristic length 

defined as burned gas Markstein length, 𝐿𝑏, represents the flame speed’s 

sensitivity to stretch rate, and is conveniently measurable. It is the length 

which shows a near - linear relation between the flame speed and the flame 

stretch rate (Clavin, 1985) :  

𝑆𝑠 − 𝑆𝑛 = 𝐿𝑏𝛼.                  (1.9) 

This length is found from the slope of the plot of laminar flame speed against 

flame stretch rate. Its value can be positive or negative. The un-stretched 

flame speed, 𝑆𝑠, is found from the linear extrapolation of the same plot at zero 

𝛼. 

Stretching of the flame front has an effect on the burning rate, expressed by 

the dimensionless Markstein number for strain rate, 𝑀𝑎𝑠𝑟 , as: 
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𝑀𝑎𝑠𝑟 = 𝐿𝑠𝑟 𝛿𝑙⁄ .            (1.10) 

Markstein length for strain rate denoted by 𝐿𝑠𝑟 and the value of this length was 

calculated from multiple regression equations described in (Bradley et al., 

1996) as a function of 𝐿𝑠 and 𝐿𝑏 as : 

𝐿𝑠𝑟 =  
𝐿𝑏−𝐿𝑠

(𝜌𝑢 𝜌𝑏)−1⁄
            (1.11) 

where 𝐿𝑠 is Markstein lengths for strain and it is a function of  𝛼𝑠.   

A positive Markstein number, decelerates the burning rate and tends to 

stabilise the flame. In contrast, negative values accelerate the flame. As 

flames develop, so do flame surface instabilities wrinkling the flame. This is 

more marked with a negative Markstein number. 

1.2.2 Turbulent Deflagration 

The key parameter affecting the turbulence is the heat release and the 

interaction between it and the flame. Simply, the bounded acceleration of a 

laminar deflagration leads to the generation of turbulence. Different sources 

used to accelerate the flame with turbulence generators. In spherical vessels, 

stirring of the fans generates near isotropic turbulence. In burners, are the 

slotted plates (Bédat & Cheng, 1995; Skiba et al., 2015; Wabel et al., 2017). 

In closed end-tubes, spiral coil (Shchelkin, 1940) and obstacles (Ciccarelli et 

al., 2005) are the source of turbulence or turbulence induced due to the high 

reactivity of the mixture and the formation of a turbulent boundary layer ahead 

of the flame in smooth tubes (Kuznetsov et al., 2005b; Wu et al., 2007).   

Large turbulent eddies wrinkle the flame front causing an increase in flame 

surface area and the burning rate. As the turbulent flame is more complex 

than the laminar flame, it can be characterised by different parameters; the 

root mean square of the fluctuation velocity, 𝑢′, and integral length scale, 𝑙, 

and there are a variety of length scales as the turbulent kinetic energy is 

dissipated due to molecular viscosity. 

The turbulence scales, the turbulent combustion regimes and the correlations 

of the turbulent burning velocity are discussed in the next section. 
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1.2.2.1 Turbulence Parameters and Scales 

The near largest scale is the integral length scale, 𝑙, and the smallest is the 

Kolmogorov scale, 𝜂, (Kolmogorov, 1941) where the turbulent kinetic energy 

is dissipated as heat by molecular viscosity. This is defined by Kolmogorov 

(1991):  

𝜂 = (𝜈3 ε⁄ )0.25,            (1.12) 

where, ε , is the dissipation rate and ,𝜈, is the kinematic viscosity. 

Another length scale, associated with mean strain rate, 𝑢′ 𝜆⁄ , is the Taylor 

length scale 𝜆. This scale lies between the integral and the Kolmogorov scale. 

It is related to the Kolmogorov scale by: 

𝜆 = 151/4𝑅𝜆
1/2

𝜂,            (1.13) 

where 𝑅𝜆 is the Taylor scale Reynolds number, given by:  

𝑅𝜆 = 𝑢′ 𝜆 𝜈⁄ .                       (1.14) 

Another important dimensionless group is the turbulent Reynolds number, 𝑅𝑙, 

defined by: 

𝑅𝑙 = 𝑢′ 𝑙 𝜈⁄  .             (1.15) 

A chemical time can be considered as the laminar flame thickness, divided by 

the laminar burning velocity, 𝛿𝑙 𝑢𝑙⁄ , while a turbulent eddy lifetime is 𝜆 𝑢′⁄ . The 

ratio of chemical to eddy lifetime is known as the Karlovitz number, 𝐾, and is 

expressed by:  

𝐾 = (𝛿𝑙 𝑢𝑙⁄ )/( 𝜆 𝑢′⁄ ).            (1.16) 

There is a range of length scales and when 𝐾 is small, the chemical reaction 

occurs within the eddy, and when it is large, it is not completed during the 

eddy lifetime. Flame quenching as discussed in Chapter 3 is associated with 

high 𝐾, namely high ratio of chemical to eddy lifetime. Eddy lifetime is the 

reciprocal of strain rate. Sometimes, the turbulent length and velocity scale 

are chosen to be 𝜂 and 𝑢𝜂 , respectively, and are expressed as the Karlovitz 

number, 𝐾𝑎 (Bray, 1996; Peters, 2000): 
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𝐾𝑎 =
𝛿𝑙 𝑢𝑙⁄

 𝜂 𝑢𝜂⁄
,             (1.17) 

where 𝑢𝜂 is the turnover velocity on the Kolmgorov scale, given by: 

𝑢𝜂 = 𝑢′ 151/4 𝑅𝜆
1/2

⁄ .            (1.18) 

Peters (2000) defined turbulent Karlovitz number as a function of Kolmogorov 

length scale as: 

𝐾𝑎 =
𝜏𝑐

𝜏𝜂
                       (1.19) 

The mean strain rate,𝑢′/𝜆, is defined by Taylor (1935) as a function of the 

energy dissipation rate, 𝜀, as follows : 

(𝑢′ 𝜆⁄ )2 =   𝜀 15𝜈⁄              (1.20) 

For isotropic turbulence, 𝑙,  and  𝜆 are related by: 

𝑅𝜆
2 = 𝐴𝑅𝑙 ,                 (1.21) 

where 𝐴 is a numerical constant and equal to 16 (McComb, 1990) and Eq. 

(1.21) is expressed by: 

𝑅𝜆 = 4𝑅𝑙
0.5.             (1.22) 

For isotropic turbulence, integral length scale and taylor microscale can be 

related as followed: 

𝜆2

𝐿
=

𝐴𝜈

𝑢́
              (1.23) 

With 𝛿𝑙 expressed by 𝜈 𝑢𝑙⁄ , and 𝐴 =16, it follows (Bradley et al., 2005): 

𝐾 = 0.25 (
𝑢′

𝑢𝑙
)

2

𝑅𝑙
−0.5.            (1.24) 

These dimensionless groups are employed in many correlations of turbulent 

combustion. Equations for 𝐾 and 𝐾𝑎 where employed in Table 3.8 and 3.9. 

1.2.2.2 Turbulent Burning Velocity 

Turbulent burning velocity does not have a specific defintion (Driscoll, 2008). 

It has been defined differently according to the mass rate of engulfment of 

unburned gas, or the mass rate of production of burned gas where the 
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pressure pulse is increasing and this enhances the heat release rate (Abdel-

Gayed et al., 1988; Gillespie et al., 2000). It is complex to give a precise 

definition to the turbulent burning velocity because, generally the mass 

burning rate is a function of the density, burning rate and the flame area, 

therefore, any variation in these parameters causes a change in its value 

(Bradley et al., 2003b). Many correlations based upon experimental work 

helped to evaluate the turbulent burning velocity based on assumptions and 

length scales. 

It is well established that an increase in the rms turbulent velocity, 𝑢′, can lead 

to an increase in turbulent burning velocity, 𝑢𝑡, as shown in Fig. 1.4 from 

(Abdel-Gayed et al., 1985). These values were obtained in a Leeds fan-stirred 

bomb, in which 𝑢′ increases linearly with fan speed. The turbulent burning 

velocity, 𝑢𝑡, increases with 𝑢′, attains a maximum value, then decreases in 

what is called the bending phenomenon (Abdel-Gayed et al., 1984).  

 

Figure 1.4 Turbulent burning velocity for propane-air mixture at different 
equivalence ratio against rms velocity (Abdel-Gayed et al., 1985). 
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Ultimately the flame is extinguished by the high stretch rate. This occurs when 

the ratio of chemical to eddy life time becomes too large. With a different 

explanation, the flame diffuses due to turbulence quicker than the generation 

of new products via chemical reactions. The decline in 𝑢𝑡 may reduce the 

pressure generated at any shock wave ahead of the flame propagated in a 

duct, which is sufficient to prevent auto-ignition, and any detonation (Abdel-

Gayed et al., 1985). 

In the early stages of spherical explosive flame propagation, the flame can 

only be wrinkled by eddies with a length scale less than the size of the flame 

kernel. The effective rms velocity is 𝑢𝑘
′ ,  less than 𝑢′.  The smallest scales of 

turbulence spectrum, 𝑢𝑘
′ ,  start to wrinkle the flame front. The flame continues 

to develop until it exposes to the full spectrum of turbulence when 𝑢’𝑘 equals 

to 𝑢′, the rms velocity at the full spectrum.  

Evaluation of 𝑢𝑘
′ /𝑢′ is by integrating the non-dimensional power spectral 

density, given in (Bradley et al., 2009b, 2011), over the relevant range of 

wavelengths, as follows:  

𝑢’𝑘 =  𝑢′ [
√15

𝑅𝜆
∫ 𝑆̅(𝑘̅𝜂)𝑑𝑘̅𝜂

𝑘̅𝜂2

𝑘̅𝜂1
]

0.5

                                                  (1.25)  

where 𝑘̅𝜂 is a dimensionless wave number, 𝑅𝜆 is the turbulent Reynolds 

number based on Taylor microscale and it equals to (𝑢′𝜆 𝜈⁄ ). The lower limit, 

𝑘̅𝜂1 =
2𝜋𝜂

𝑛𝐿
, is the maximum wavelength for wrinkling the flame and it is close 

to the diameter of the flame while the upper limit corresponds to the minimum 

wave length defined in Gibson scale, 𝑙𝐺, as 𝑘̅𝜂2 =
2𝜋𝜂

𝑙𝐺
.  

where  𝑛  is the number of integral length scales and : 

 𝑙𝐺 = 0.133𝐿(
𝑢′

𝑢𝑙
)−3            (1.26) 

 𝑆̅(𝑘̅𝜂) is a non-dimensional power spectral density from (Scott, 1992) to a 

measured spectra of a wide ranges of 𝑅𝜆 as : 

𝑆̅(𝑘̅𝜂) =
0.01668𝑅𝜆

2.5+3.74𝑅𝜆
0.9−70𝑅𝜆

−0.1

1+(0.127𝑅𝜆
1.5𝑘̅𝜂)5/3+(1.15𝑅𝜆

0.622𝑘̅𝜂)4+(1.27𝑅𝜆
0.37𝑘̅𝜂)7                  (1.27)   
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1.2.2.3 Turbulent Combustion Diagrams 

Turbulence wrinkles the flame causing a change in the surface area. At the 

same time, there are interactions between the flame and the eddies. These 

interactions are addressed in a combustion diagram. Many diagrams have 

been introduced to show various combustion regimes (Abdel-Gayed et al., 

1989; Borghi, 1985; Peters, 1988; Poinsot et al., 1991; Williams, 1985) as a 

function of some dimensionless groups represented in length, velocity, time 

scales involving dimensionless groups. 

Laminar flame thickness, 𝛿𝑙, and chemical lifetime, 𝜏𝑐, are the length and time 

scales participated by the flame in the combustion regimes. Integral, 𝑙, Taylor, 

𝜆 and Kolmogorov, 𝜂, length scales and eddylife time, 𝜏𝐾 are introduced by 

turbulence in the regimes as well. 

In the beginning, there was an attempt by Barrere (1974) to establish the 

difference between flame types. This study was a step to classify the turbulent 

flames and relate it with same types of dimensionless groups as well. These 

groups link the turbulent flame parameters to some physical-chemical 

parameters for laminar flame. Barrere (1974) evidenced four different 

regimes: pseudo laminar flames; wrinkled flames; volumetric combustion; and 

pocket flames. However, the turbulent combustion nature then  well-discussed 

in (Borghi, 1985) and (Abdel-Gayed et al., 1989). 

For the development to the regime, Peters (1988) studied the entering of 

laminar flamelets through turbulent flow field for premixed and non-premixed 

combustion: showing how the length scale and flame thickness play an 

important role for composing thin layers of embedded flamelets. Combustion 

regime developed by Peters (2000), is shown in Fig. 1.5.  
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Figure 1.5 Turbulent combustion regime from (Peters, 1999), In the 
notation of the present work, the y axis is u’/ul and the x axis is l/δl. 

Several regimes have been identified: 

• Laminar flame regime 

Where the Reynolds number, 𝑅𝑒, is low, i.e. the flow is laminar. The line 

denoted by 𝑅𝑒=1, is the border between the laminar and turbulent flames. 

• Flamelet regime 

In this regime, laminar flamelets starts to introduce into the turbulent 

environment, and it consists of two sub-domains: wrinkled and corrugated 

flamelets, characterised by 
𝑢′

𝑢𝑙
.  

𝐾𝑎 in this regime is lower than 1 and this means that the chemical time scale 

𝜏𝑐 is smaller than the eddy time scale 𝜏𝑘, and there is no effect on flame inner 

structure, and flame seems to be still laminar-like with little wrinkling. The 

flame thickness is smaller than the smallest turbulent scale 𝜂.  
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➢ Wrinkled flamelet regime 

When 
𝑢′

𝑢𝑙
< 1, so turbulence intensity is small, and the flame structure is slightly 

wrinkled because the large eddies are not big enough to stop the chemical 

reaction represented in 𝑢𝑙 which is dominating in this regime.  

➢ Corrugated flamelet regime 

This occurs when  
𝑢′

𝑢𝑙
> 1 and 𝑅𝑒>1 also, thus the wrinkling in the flame 

structure starts to be more credible. Nevertheless, 𝐾𝑎 is still lower than unity.  

• Thin reaction zone  

The boundary between the flamelets regime and the thin reaction regime is 

characterised by 𝐾𝑎=1, Klimov-williams criterion (Williams, 1985) where the 

flame thickness is equal to  𝜂. 

At 𝑅𝑒 >1, 𝐾𝑎 >1, flames is said to be in the thin reaction zone. The smallest 

eddies of turbulence can penetrate the preheat zone thickness and some 

pockets of fresh and burnt gases are formed. The flame structure is 

convoluted. 

• Broken reaction regime  

In this regime, 𝐾𝑎 > 100, Chemical reaction time scale, 𝜏𝑐, is longer than 

turbulent characteristic time scale. Mixing in this regime is enhanced. Thus, 

Kolmogorov eddies can penetrate the reaction zone and fragments of flame 

occur and the flame extinguish. 

The thin reaction and broken reaction regimes are of the interest in the present 

work. 

1.2.2.4 Turbulent Burning Velocity Correlations 

Due to such variations in turbulent burning velocity, it is important to know how 

to evaluate it. There are many correlations and empirical formulas to estimate 

the turbulent burning velocity. Some of these correlations have been 

presented for specific fuels hydrocarbons and hydrogen or specific conditions 

low or high pressure in different applications: burners or constant volume 
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vessels (Abdel-Gayed & Bradley, 1981; Bradley et al., 1992; Bray, 1990; 

Koroll et al., 1993; Muppala et al., 2005; Shy et al., 2000; Tamadonfar & 

Gülder, 2014). 

Damköhler (1940) early model relates the burning velocity to the surface area, 

showing that the turbulence effect on burning rate is due to the wrinkling of 

the thin reaction layer. The velocity ratio, 𝑢𝑡 𝑢𝑙⁄  is proportional to the area ratio 

for turbulent and laminar flame, 𝐴𝑡 𝐴𝑙⁄ .  

Kobayashi et al. (2005) derived a correlation for the turbulent burning velocity 

of methane-air mixtures for a wide range of initial pressures, 𝑃𝑜 of 0.1: 1 MPa, 

in a high pressure cylindrical burner. It was found that as the pressure 

increases, the turbulent burning velocity also increases. The correlation 

shows the effect of pressure on the turbulent burning velocity: 

𝑢𝑡

𝑢𝑙
= 5.04 [(

𝑃

𝑃𝑜
) (

𝑢′

𝑢𝑙
)]

0.38

           (1.28) 

The correlation of (Gülder, 1991) was developed for wrinkled flamelets 

experimentally as a function of 𝑅𝑙 as follows: 

(𝑢𝑡 𝑢𝑙) − 1 =⁄ 0.6(𝑢′ 𝑢𝑙)⁄
1/2

𝑅𝑙
1/4

.          (1.29) 

Zimont (2000) developed a similar correlation from his experimental and 

theoretical study, but employed a different constant instead of 0.6 in the 

Gülder formula. This adjustable constant was in the range of 0.5-0.7 for H2 

and 0.5 for all hydrocarbons. Bradley et al. (2003b) employed simultaneous 

laser sheet Mie-scattering experiments with propane and methane air 

mixtures explosion in a spherical vessel to study the radial distribution of 

burned and unburned gas in a spherical turbulent flame, as shown in Fig. 1.6. 

An important aspect is what 𝑢𝑡 means. In particular terms, it is required to 

express the mean rate of burning. 
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Figure 1.6 Spherical explosive propagation at instant showing the 
reference radii and masses of burned and unburned gas (Bradley et al., 
2003b). 

 

Different radii were defined, in terms of the associated burned and unburned 

gas boundaries. Three radii are shown in the figure. The outermost radius is 

that of the spherical tip radius, 𝑅𝑡, and the innermost radius is the root radius, 

𝑅𝑟. Any general radius is defined as 𝑅𝑗.  This general radius can be defined in 

different ways, related to volume and mass. The problem is to decide upon 

the most appropriate radius to define the area associated with 𝑢𝑡. Masses 

shown in the figure are the masses of burned gas inside, 𝑚𝑏𝑖 and outside, 

𝑚𝑏𝑜 , of the sphere of radius, 𝑅𝑗. Also, the masses of unburned gas inside, 𝑚𝑢𝑖 

and outside, 𝑚𝑢𝑜 of the same sphere.  

There is a large difference between engulfment and mass burned turbulent 

burning velocities. It is shown in (Bradley et al., 2003b) that when the general 

radius 𝑅𝐽  is equal to a radius, 𝑅𝑣 , at which the total volume of burned gas 

outside the sphere is equal to total volume of unburned gas inside it, the mass 

burned turbulent burning velocity is given by: 

𝑢𝑡(𝑅𝑣) =
𝜌𝑏

𝜌𝑢
.

𝑑𝑅𝑣

𝑑𝑡
.            (1.30) 

However, schlieren measurements are more convenient than sheet 

measurements, it is shown that there is a linear relationship between, 

(𝜌𝑏 𝜌𝑢)(⁄ 𝑑𝑅𝑠𝑐ℎ/𝑑𝑡) from schlieren experiments and 𝑢𝑡(𝑅𝑣) from Mie 
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scattering, as shown in Fig. 1.7 from (Bradley et al., 2003b). The gradient of 

this line demonstrates that the mass burned turbulent burning velocity is equal 

to:  

𝑢𝑡𝑟 =
1

1.11
 
𝜌𝑏

𝜌𝑢

𝑑𝑟𝑠𝑐ℎ

𝑑𝑡
,            (1.31) 

where 𝑟𝑠𝑐ℎ, is the flame radius measured by schlieren technique.  Equation 

(1.31) is employed in Section 3.4.   

 

Figure 1.7 Linear relationship between Mie-scattering, ut(Rv) and 
schlieren images (ρb/ρu)(drsch/dt). Filled symbols for lean mixtures and 
open symbols for rich mixtures (Bradley et al., 2003b). 

 

A comprehensive correlation of normalized value of 𝑢𝑡, in terms of 𝐾 and 𝑀𝑎𝑠𝑟 

up to a pressure of 3.5 MPa is given in (Bradley et al., 2013). Relationships 

are expressed in the form: 

𝑈 =
𝑢𝑡

𝑢𝑘
′ = 𝛼 𝐾𝛽 ,            (1.32) 

as  𝛼, 𝛽 are constants, defined according to 𝑀𝑎𝑠𝑟, in (Bagdanavicius et al., 

2015) with : 

 
𝛼 = {

0.09(7 −  𝑀𝑎𝑠𝑟)      𝑓𝑜𝑟 𝑀𝑎𝑠𝑟 < 0

0.023(30 − 𝑀𝑎𝑠𝑟)     𝑓𝑜𝑟 𝑀𝑎𝑠𝑟 > 0
          

      (1.33) 
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𝛽 = {

0.0103(𝑀𝑎𝑠𝑟 − 30)      𝑓𝑜𝑟 𝑀𝑎𝑠𝑟 > 0

−0.008(𝑀𝑎𝑠𝑟 + 30)     𝑓𝑜𝑟 𝑀𝑎𝑠𝑟 < 0
           

      (1.34) 

These relations cover different combustion phases, based upon a wide range 

of experimental data for different fuels.   

These workers related the turbulent burning velocity to the wrinkled surface 

area of the flame, 𝐴, to the area, 𝑎, associated with 𝑢𝑡 and the probability of 

flame propagation, 𝑃𝑏
0.5 in: 

𝑢𝑡 𝑢𝑙 =
𝐴

𝑎
𝑃𝑏

0.5.⁄             (1.35) 

This work used experimental data from the Leeds spherical bomb and a 

Cardiff high speed burner. It showed the effect of Markstein number on the 

probability of burning and the value of turbulent burning velocity. A positive 

Markstein number revealed the decrease in probability of flame growth and, 

in turn, the turbulent burning velocity. 

Tamadonfar and Gülder (2014)  developed two correlations for turbulent 

burning velocity at the leading edge of a Bunsen burner and at half-burned 

gas region of methane/air mixture, at different equivalence ratios, giving a 

highest turbulence intensity 𝑢′/𝑢𝑙=24.  

(𝑢𝑡 𝑢𝑙)⁄
𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑒𝑑𝑔𝑒

=  1 + 7.6 𝜑−1.87(𝑢′ 𝑢𝑙⁄ )0.62(𝑢 𝑢𝑙⁄ )−0.52(𝑙 𝛿𝑙⁄ )−0.52 ,   (1.36)

  

(𝑢𝑡 𝑢𝑙)⁄
ℎ𝑎𝑙𝑓 𝑏𝑢𝑟𝑛𝑒𝑑

=  1 + 0.018 𝜑−4.03(𝑢′ 𝑢𝑙⁄ )0.62(𝑢 𝑢𝑙⁄ )−0.36(𝑙 𝛿𝑙⁄ )1.35,        (1.37) 

where 𝑢 is the main flow velocity in the burner. 

1.3 Flame Quenching 

In orthodox engines, lean burn of H2 is a possible strategy, and in a domestic 

heating CH4 might be replaced by H2. In both these instances, lean burn flame 

quenching is an important consideration and these gases rise to a 

comprehensive study of quenching limits for both premixed and jet flames in 

the present work. 
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Flame quenching and extinction of a flammable mixture usually occurs as a 

result of compositional change, high aerodynamic strain rate, or heat loss: all 

of which make the mixture less reactive.  

Flame quenching has been studied under varied experimental conditions, in 

burner (Ji et al., 2010; Law et al., 1988; Law et al., 1981; Yang & Shy, 

2002),test tubes (Chomiak & Jarosiński, 1982), orifices (Kuznetsov et al., 

1999; Thibault et al., 1982) and closed vessels (Abdel-Gayed et al., 1987; Al-

Khishali et al., 1983; Bradley et al., 1996; Bradley et al., 2007b). 

Figure 1.8 reproduces a sketch from (Abdel-Gayed et al., 1989). Burning 

stages are shown, followed by extinction. Fragments from the flame front are 

seen as small parts, indicative of intermittent burning. The flame shown finally 

disintegrates. 

 

Figure 1.8 Flame front disintegration and quenching (Abdel-Gayed et al., 
1989). 

1.3.1 Extinction Stretch Rates 

Flames exposed to a local quench when the flame stretch approaches the 

extinction stretch (Poinsot et al., 1991). Flames near to stoichiometry are 

difficult to quench (Law et al., 1988) and this means that the extinction stretch 

is higher for those flames. Extinction stretch rates are divided into laminar and 

turbulent extinction stretch rates. 
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1.3.1.1 Laminar Extinction Stretch Rates 

Flame quenching is usually associated with high values of the stretch rate, 

with a dependence on Markstein number. Whilst extinction stretch rates, 𝛼𝑞, 

have been measured under steady state conditions, these can be exceeded 

in short time transients, without ensuing extinctions (Donbar et al., 2001). In 

practical combustion, extinctions limit the volumetric heat release rates that 

can be obtained. 

Extinction stretch rates, in laminar flows have been measured by Law et al. 

(1988), over wide ranges of stretch rates, fuels and equivalence ratios in 

symmetrical counter-flow, twin- flame configurations. In (Law et al., 1981) the  

roles of diffusion, conductivity and Lewis number, 𝐿𝑒, were emphasised in the 

extinction of laminar flames. 

Here the key parameter is the Lewis number, 𝐿𝑒, which relates the thermal to 

mass diffusivity across the flame front by:  

𝐿𝑒 =  𝑘 (𝜌𝐶𝑝𝐷)⁄ ,            (1.38) 

where, 𝐷, is the diffusion coefficient for the deficient reactant. 

More generally, Lewis and Markstein numbers, in combination with flame 

stretch rate, also influence burning velocities (Bradley et al., 1992; Dixon-

Lewis, 1988) 

In (Bradley et al., 1992), the experimental extinction stretch rates (Law et al., 

1988) were compared with the chemical kinetic computed values of(Dixon-

Lewis, 1988; Kee et al., 1989; Stahl & Warnatz, 1991; Stahl, 1988). For CH4 

and C3H8 these numerical results tended to over-predict 𝛼𝑞. It is thus 

convenient to generalise extinction in terms of a Karlovitz laminar flame 

extinction stretch factor, 𝐾𝑞𝑙, equal to: 

𝐾𝑞𝑙= 𝛼𝑞 𝛿𝑙 𝑢𝑙⁄ .             (1.39) 

Egolfopoulos and co-workers have studied extinctions of both premixed and 

diffusion counter-flow flames. Values of 𝛼𝑞 were measured (Dong et al., 2005; 

Holley et al., 2006; Ji et al., 2010; Park et al., 2011; Veloo et al., 2010; Wang 
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et al., 2009; Wang et al., 2011), and modelled through chemical kinetics 

(Egolfopoulos, 1994; Egolfopoulos & Campbell, 1996; Kee et al., 1989). 

Experimentally in (Holley et al., 2006), it was found that lean i-octane and n-

heptane was more readily quenched than lean alcohol flames. In (Veloo et al., 

2010), quench stretch rates of n-butanol are predicted, based upon 

mathematical modelling, in (Sarathy et al., 2009; Westbrook et al., 2009), and 

also in experiments. Comparisons are also made between ethanol and n-

butanol/ air mixtures. These showed similar extinction trends for both fuels. 

Experimental studies of non-premixed flames (Holley et al., 2007) with single 

component hydrocarbons, surrogates, and jet fuels, found the higher carbon 

fuels to be less resistant to quench. A comparative study (Bradley, 2008), 

showed H2/air mixtures (Dong et al., 2005) to be the most resistant to quench, 

in comparison with i-octane (Holley et al., 2006), CH4 and C3H8 (Law et al., 

1988). 

Extinction stretch rates of aromatic hydrocarbon and jet fuel mixtures, have 

been measured at elevated temperatures, and atmospheric pressures, in the 

counter flow twin-flame configuration (Hui et al., 2012; Kumar & Sung, 2007), 

and compared with the formulation of Kee et al. (1989). 

1.3.1.2 Turbulent Extinction Stretch Rates 

Kuznetsov (1982) employed a chemical to the eddy lifetime criterion , but with 

the latter given by 𝑙/𝑢′, whilst Abdel-Gayed et al. (1989) employed 𝜆/𝑢′ for this 

parameter as discussed in Section 1.2.2.1.  

This demonstrated the nature of turbulent flame quenching through schlieren 

images of fragmenting and quenching flame kernels in a cylindrical explosion 

vessel, with fan-generated turbulence. Their correlation of available 

experimental flame quench data showed a dependence upon 𝐿𝑒 in one of the 

two quench regimes: 

𝑢′ 𝑢𝑙⁄ ≥ 0.71𝑅𝑙
0.5                                  𝑓𝑜𝑟  𝑅𝑙 < 300,                  (1.40)

           

𝑢′ 𝑢𝑙⁄ ≥ 3.1(𝑅𝑙 ⁄ 𝐿𝑒2)                        𝑓𝑜𝑟 𝑅𝑙 > 300.                  (1.41) 
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Meneveau and Poinsot (1991) evaluated the stretch rate of flamelets using 

detailed numerical simulations of vortex-flame interaction and a model of 

intermittent turbulence. The onset of flame quenching was expressed in plots 

of 𝑢′ 𝑢𝑙⁄  against 𝑙/𝛿, with high values of 𝑢′ 𝑢𝑙⁄ , being required or 𝑙/𝛿 ≤ 10. They 

sensibly cautioned that quenching is a strong function of heat losses and that 

these are difficult to estimate in experiments. Both Abdel-Gayed et al. (1989) 

and Poinsot et al. (1991) show the Klimov-Williams criterion overestimates the 

flame quenching. 

A probability density function, (pdf), of strain rates was derived from direct 

numerical simulations by Yeung et al. (1990). This enabled pdfs of flame 

stretch rate to be generated (Bradley et al., 2003a). With the lower (negative) 

and upper (positive) stretch rate limits, these could yield theoretical values of 

flame propagation probabilities. 

Bradley et al. (1998b) reproduced the upper and the lower limits of quenching 

on extended Borghi diagram as seen in Fig. 1.9. The upper limit is resulted 

from DNS work of Poinsot et al. (1991) and the lower limit is Klimov-Williams 

theory (Bray, 1980; Williams, 1985).  The constant 𝐾 lines are extracted from 

(Abdel-Gayed et al., 1989). This diagram is discussed in the present work for 

the quenching limits for the comparison of the premixed and jet flames in 

Section 5.5. 
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Figure 1.9 Extended Borghi diagram showing the upper limit of 
quenching reproduced from (Bradley et al., 1998b). 

 

Further details of flame extinctions were obtained experimentally in (Bradley 

et al., 2007b) from the Leeds fan-stirred explosion vessel with values of 𝑢’  up 

to 7 m/s, with different fuel air mixtures at pressures up to 1.5 MPa measured 

probabilities of flame propagation, as distinct from extinction. Both pressure 

and 𝜑 had probabilities of 80% (𝑝0.8) and 20% (𝑝0.2) for flame propagation 

were expressed as a function of 𝐾 and 𝑀𝑎𝑠𝑟by: 

𝐾(𝑀𝑎𝑠𝑟 + 4)1.4 = 37.1      𝑎𝑡    − 3 ≤ 𝑀𝑎𝑠𝑟 ≤ 11      (𝑓𝑜𝑟 𝑝0.2)      (1.42)

          

𝐾(𝑀𝑎𝑠𝑟 + 4)1.8 = 34.4      𝑎𝑡    − 3 ≤ 𝑀𝑎𝑠𝑟 ≤ 11      (𝑓𝑜𝑟 𝑝0.8)      (1.43)

           

Experimental values of the probability of flame propagation are presented and 

compared with theoretical flame propagation probabilities in (Bradley et al., 

2007b), derived by integrating the flame stretch rate probabilities between the 

appropriate limits. However, theoretical limitations arise from uncertainties in 

the positive and negative flame extinction stretch rates, whilst optical 
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diagnostics have shown flame extinctions do not necessarily occur when 

localised stretch rates briefly exceed the extinction stretch rates (Donbar et 

al., 2001). Following the earlier quenching laws for the two regimes (Abdel-

Gayed & Bradley, 1985), and according to the results as the flame propagation 

probability is 80%, then at 𝑅𝑙 ≥ 300, the flame would quench if 𝐾𝐿𝑒 > 2.4, 

although predictions based on 𝑀𝑎𝑠𝑟 were preferred. 

Turbulent combustion diagram shown in Fig. 1.10 has been reproduced from 

(Bagdanavicius et al., 2015) and composed of three regimes: regime (A), 

regime , (B) and regime (C). 

 

Figure 1.10  Turbulent combustion regime (U/K) diagram 
(Bagdanavicius et al., 2015). 

The turbulent burning velocity, 𝑢𝑡, is normalised by 𝑢𝑘
′ , to give 𝑈. The strain 

rate influences upon 𝑈 are expressed by 𝐾, and those of the strain rate 

Markstein number, 𝑀𝑎𝑠𝑟, are shown in Fig. 1.10, from (Bradley et al., 2013), 

with 𝑀𝑎𝑠𝑟 = 0 added from (Bagdanavicius et al., 2015). The different regimes 

of premixed turbulent burning are also indicated. Regime (B) covers both 

positive and negative 𝑀𝑎𝑠𝑟 . It is one of normal turbulent flame propagation, 

whilst regime (C) is one in which flames are extinguished by excessive stretch 

rate. The present study re-examines the extent of the latter in Section 3.6. 
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1.4 Auto-ignition and Detonation 

A plentiful economic supply of H2/O2 from water in stoichiometric proportions 

could lead to those gases being used auto-ignitively in units that include 

burning and auto-ignition.    

1.4.1 Auto-ignition 

Auto ignition is a spontaneous combustion without any external source of 

ignition (Lefebvre et al., 1986). It is a self-sustained reaction of the flammable 

mixture. The time for its occurrence is the autoignition delay time, 𝜏𝑖. If  𝑃 and 

𝑇 are rapidly generated in this time, autoignition occurs. Examples of values 

of 𝜏𝑖 are given in Fig. 1.11.  

Spadaccini and Colket Iii (1994) defined it as the interval time between the 

mixture shock heating and the start of the quick reaction phase. Induction, or 

auto-ignition delay time, is tabulated for homogeneous mixtures for different 

temperatures, 𝑇 and pressures, 𝑃 as shown in Fig. 1.11 whereas the 

variations in 𝜏𝑖 for different mixtures with 𝑃 and 𝑇. 

 

Figure 1.11 Auto-ignition delay time for different mixture against 1000/T 
(Bradley & Kalghatgi, 2009). 
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When the heat released by the auto-ignition, on a short enough excitation time 

scale, 𝜏𝑒 , is fed into the associated pressure pulse a damaging detonation 

wave can be created. Ignition delay times in the present work are discussed 

in Section 4.3 on stoichiometric H2/O2 mixtures.  

Ignition delay time is measured predominately in either shock tubes (Ciezki & 

Adomeit, 1993; Lifshitz et al., 1971; Pang et al., 2009; Zhang et al., 2012) or 

Rapid Compression Machines (RCMs) (Griffiths et al., 1993; Mittal et al., 

2006; Strozzi et al., 2012).  

In shock tubes, a transmitted shock waves produce in a tube with two sections 

as shown in Fig. 1.12, one section is at high pressure and works as a driver 

to the high-pressure gas through the tube and the other section is the driven 

section which contains the test gas at low pressure. These sections are 

separated by a diaphragm (barrier). 

The shockwaves form once the diaphragm removed or ruptured as the high-

pressure gas moves into the lower pressure gas section. The strength of this 

shockwave depends on the differential pressure increase. This strengthened 

shock wave initiates the auto-ignition of the test gas in the driven section. 

 

Figure 1.12 Shock tube basic concept. 

1.4.2 Detonation 

Detonation occurs when a shock wave and chemical reaction are coupled. 

Unlike deflagration discussed in Section 1.2, detonation waves are dependent 

upon the propagation of shock waves and the elevations of temperature and 

pressure they produce. Consequently, they are more dangerous than 

deflagration waves. The detonation propagation velocity is approximately two 

kilometres per second for hydrocarbons and roughly less than three 

kilometres per second for highly reactive mixtures such as stoichiometric 
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hydrogen-oxygen, ethylene-oxygen and acetylene-oxygen mixtures. The 

present study is of the conditions that can give rise to a detonation, rather than 

of detonation interactions. Nevertheless, it is useful briefly to review the 

structure and interactions of detonation waves. 

Detonations often have a three-dimensional structure, a train of shock waves 

and reaction zones that move with a supersonic speed. The structure of a 

detonation wave is shown in Fig. 1.13. The detonation wave consists of 

incident shock, transverse waves and Mach stems. The Mach stem is created 

by the intersection of the incident shock and the transverse wave and it shows 

higher post-shock temperature and pressure than the incident shock. The 

three waves intersect at a point called the triple point.  

The detonation can be single headed or multi-headed, depending on the 

number of transverse waves. The resulting cellular structure of a detonation, 

shown in the figure, refers to the trajectory of the triple point created. 

Increasing the number of cells means that the detonation is more destructive. 

The detonation cell size is termed the detonation width, 𝜆. 

Because the Mach shock is much stronger than the incident shock, the 

induction time behind it is low compared to that of the incident shock. As 

depicted in the figure, there is a layer called the shear layer. This layer 

separates the gas behind the Mach and incident shock and it is formed due to 

the difference in gas velocity between both shocks. At the triple point, the 

Mach stem is coupled with the chemical reaction zone, which in turn reduces 

the induction time and as the Mach stem moves, it decays and decouples from 

the chemical reaction zone, decreasing its strength and transforming it into an 

incident shock. 
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Figure 1.13 Detonation pattern composed of Mach stem, incident shock and 
transverse shock (J. Lee, 2008). 

1.4.3 Autoigntion Velocity and ε- ξ Detonation Peninsula  

Autoignition triggered by hot spots. These hot spots form a cause of 

flammable gas inhomogeneity or temperature gradients. Reactivity gradient 

mechanism by Zel'dovich et al. (1970), developed at hot spots in the 

unreacted mixture ahead of the flame, showed that this gradient, increases 

what is called autoignition velocity, 𝑢𝑎. Detonation triggers when the pressure 

pulse, resulted from the autoignition, is high enough. This occurs when the 

autoigntion velocity is close to the speed of sound, 𝑎. At that time the heat 

release rate is suffiicent to induce a detontion.  

The autoignitive velocity, is given by (Bates et al., 2016; Bradley, 2012; 

Bradley & Kalghatgi, 2009; Bradley et al., 2012): 

𝑢𝑎 = (𝑑𝑟 𝑑𝜏𝑖⁄ ) = (𝑑𝑟 𝑑𝑇⁄ )(𝑑𝑇 𝑑𝜏𝑖⁄ ) = (𝑑𝑟 𝑑𝑇⁄ )(𝜏𝑖𝐸 𝑅𝑇2⁄ )−1      (1.44) 

where 𝑟 is the distance along the temperature gradient, 𝑑𝑟 𝑑𝑇⁄  is the reciprocal 

of the reactivity gradient in (mm/K) and 𝐸 is the activation energy. Low values 

of autoignition delay times, 𝜏𝑖, causes an increase in  𝑢𝑎 values.   
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A critical value of the temperature gradient, (𝑑𝑇 𝑑𝑟⁄ )𝑐 is attained when 𝑢𝑎 is 

equal to the acoustic velocity, 𝑎, and: 

𝑎 = (𝑑𝑟 𝑑𝑇⁄ )𝑐(𝜏𝑖𝐸 𝑅𝑇2⁄ )−1 ,                     (1.45) 

To see the interaction between the speed sound and autoignition velocity , a 

dimensionless group, 𝜉, (Bates et al., 2016; Bradley, 2012; Bradley & 

Kalghatgi, 2009; Bradley et al., 2012) was found as: 

𝜉 = 𝑎 𝑢𝑎 = (𝑑𝑟 𝑑𝑇⁄ )/⁄ (𝑑𝑟 𝑑𝑇⁄ )𝑐                    (1.46) 

This group is a function of ignition delay time, 𝜏𝑖,  and expresses the pressure 

pulses effect on the ignition. Thereofore, if  𝜉  is close to unity, the ignition is 

strong and a developing detonation induces. Low values of 𝜉 occur at high 

auto-ignition velocity, 𝑢𝑎.  

If the radius of the hot spot is 𝑟𝑜 and the excitation time for heat release is 𝜏𝑒 

then: 

𝜀 = (𝑟𝑜 𝑎𝜏𝑒⁄ ).              (1.47) 

This is the ratio of the residence time within the hot spot of the pressure pulse 

that is generated by the rate of change of the heat release rate, to the duration 

for the heat release, the excitation, time,𝜏𝑒, (Bates et al., 2016; Gu et al., 2003) 

and it expresses the energy transferred into the acoustic wave moves through 

the hot spot. 

In a detonation, reaction might decouple from the shock and it has been found 

that the coherence and stability of a detonation are enhanced by low values 

of (𝜏𝑖 𝜏𝑒)(𝐸 𝑅𝑇) = 𝐸̅⁄⁄    (Liang et al., 2007; Short & Sharpe, 2003; Sirmas & 

Radulescu, 2017).  

To this product can be added 𝑙𝑛𝑇 𝑑𝑟̅⁄  (Bradley, 2012), the dimensionless 

gradient at a hot spot, and it follows that: 

𝜉𝜀 = 𝐸̅(𝑑𝑙𝑛𝑇 𝑑𝑟̅)⁄ .            (1.48) 

where 𝑟̅ = 𝑟/𝑟𝑜 , 𝐸  is the local global activation energy in (J/mol), 𝑅 is the gas 

constant in (J/mol.K).   
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Detonation peninsula plots the ratio of acoustic to autoignitive velocity,𝜉, 

against 𝜀 as shown in Fig. 1.14. This plot shows the upper and lower limits, 

𝜉𝑢, 𝜉𝑙, for detonation. This peninsula is employed in Section 5.1 in the 

discussion of auto-ignition of H2/O2 mixtures. 

In general, the figure shows that the developing detonation peninsula is 

associated with low values of 𝜉  (close to unity) and high values of 𝜀.  

When 𝜉  is lower than unity, thermal explosion induces where the reaction 

wave is supersonic but at the same time it is not coupled with pressure waves. 

Deflgration occurs at higher  𝜉 than the upper limit, 𝜉𝑢, outside the detonation 

peninsula. Subsonic autoignition regime located where 𝜉 equals or a bit higher 

than the upper limits. Lower values of  𝜉𝜀  indicate a developing detonation 

where 𝐸̅(𝑑𝑙𝑛𝑇 𝑑𝑟̅)⁄  is low. This means a stable and strong detonation.  

 

Figure 1.14 Detonation Peninsula reproduced from (Bates et al., 2017a). 

1.5 Deflagration to Detonation Transition (DDT)  

Full understanding of the deflagration to detonation transition (DDT) is still 

incomplete, this is one of the main problems facing combustion theory. It can 

occur in different combustion applications such as coal mines, gaseous 
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explosions in pipes; and engines. It indicates an abrupt change of a 

deflagrating wave into a supersonic detonation wave. It is one of the key 

factors of the present work as discussed in Section 4.6. 

When a combustible mixture ignites at one end of a tube, a laminar flame can 

initially be observed which accelerates and changes into a turbulent structure 

generating a shockwave, and ultimately DDT can occur, this features as a 

violent explosion, as seen in Fig. 1.15.  

 

Figure 1.15 Detonation initiation in stoichiometric hydrogen/oxygen 
mixture in the early study of Urtiew and Oppenheim (1966). 

 

The deflagration to detonation transition arises from a flame propagating in a 

duct when the burning velocity is sufficiently high to create a shock wave 

strong enough to trigger autoignition discussed in Section 4.1. The heat 

release from this which feeds into the pressure wave created by the originating 

rate of change of heat release rate, may be sufficient to create a detonation. 

A precursor for the onset a detonation is the flame acceleration process (FA). 

This process will lead to a fast deflagration which eventually gives an enough 

pressure rise to trigger a detonation. This fast deflagration can lead to the 

formation of hot spot (Khokhlov et al., 1999; Lee, 1977) discussed in Section 

1.4.3. With more flame acceleration, this would induce a detonation. This 

process is called deflagration to detonation transition (DDT). 
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1.5.1 Pulse Detonation Engines (PDEs) 

An application to DDT is the pulse detonation engines. It is going to be an 

effective approach for propulsion systems as it offers a higher thrust to weight 

ratio, low cost and higher thermal efficiency.  

The difference between the pulse detonation engines and pulse jet engines is 

the combustion wave. Pulse jet engines produce deflagration wave as a 

subsonic wave unlike pulse detonation engine which produce detonation 

wave (supersonic). 

Simply, pulse detonation engine is a tube closed at one end filled with a fuel-

air mixture and ignite similarly to the model proposed by Bradley et al. (2008). 

Detonation wave produces and the combustion products leave out the tube’s 

open end resulting in a thrust. The operating cycle is shown in Fig. 1.16. In 

the first stage, all reactants must have been purged from the previous cycle 

before the entrainment of the fresh mixture.  

 

Figure 1.16 Stages of pulse detonation cycle (PDE) reprduced from 
(UTA, 2011). 

 

A fuel is mixed with air in the PDE in the second stage until the tube is filled 

with the required amount of the mixture then, the mixture is ignited at the 

closed end. The flame acceleration initiates and the flame travels in a 



Chapter 1:               Introduction 

 

34 

 

subsonic wave till the flame speed becomes higher than acoustic velocity and 

shock waves form. 

The interaction of the shockwave and flame front is the key process of DDT. 

A detonation wave is produced with a speed exceeding 1 km/s and high 

pressure ratio. The final stage is the purging of the products before repeating 

the cycle and this produces the thrust. Purging occurs by injection air without 

fuel to ensure the full burning of the fresh mixture. A proposed detonation 

engine of the present DDT results in Chapter 4 is discussed in Section 5.2. 

1.6 Review on Possible Laminar Deflagration to Detonation 

Transition  

The present work involves numerical studies of the probability of a laminar 

deflagration to detonation transition of a stoichiometric H2/O2 mixture. This 

requires a detailed knowledge of laminar burning velocities of the mixture, as 

well as of the auto-ignition delay times at high temperatures and pressures.  

Interestingly, evidence as to whether such a laminar transition is possible has 

not been clearly demonstrated experimentally. It is unclear whether both the 

burning velocity of stoichiometric H2/O2 and the flame front area can be 

sufficiently high, whilst the tube diameter might have to be so small to maintain 

laminar flow that the associated stretch rate and heat loss would extinguish 

the flame. Quantitatively, study of this possibility is not assisted by the 

confusing spread, over orders of magnitude, of both measured and chemical 

kinetically modelled values of ignition delay times, 𝜏𝑖, at different pressures 

and temperatures, and, to a lesser extent, the values of laminar burning 

velocity, 𝑢𝑙.  

Usually laminar burning velocities are insufficient to generate a shock wave 

strong enough to autoignite the mixture ahead of the flame, and DDTs occur 

more readily with turbulent flames. To generate a rapid DDT, turbulence has 

been created by roughened tubes which have an enhancing effect on flame 

propagation, due to the induced flame wrinkling (Dorofeev et al., 1996; Lee et 

al., 1985; Obara et al., 1996; Schmidt et al., 1953). In addition, the use of 
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restrictive obstacles was pioneered by Chapman and Wheeler (1926) who 

increased the flame speed by inserting rings. Subsequently, (Shchelkin, 1940; 

Shchelkin, 1947), introduced a spiral coil inside the tube, which effectively 

shortened the run-up distance to DDT, a particularly important consideration 

in detonation engines. Such coils develop vortices and generate turbulence, 

with more rapid acceleration of the flame.  

In contrast, many experimental (Kuznetsov et al., 2005b; Kuznetsov et al., 

2010; Liberman et al., 2010a; Liberman et al., 2010b; Meyer & Oppenheim, 

1971; Nagai et al., 2009; Urtiew & Oppenheim, 1966; Wu et al., 2007) and 

numerical studies (Han et al., 2017; Ivanov et al., 2011a; Ivanov et al., 2011b; 

Ivanov et al., 2013; Liberman et al., 2010b; Liberman et al., 2012) have 

analysed DDT in a smooth duct. Urtiew and Oppenheim (1966) conducted 

DDT studies with reactive mixture, of equi-molar and stoichiometric H2/O2 in 

a rectangular smooth duct, 3.81 x 2.54 cm, closed at one end. They 

photographically recorded the “explosion within the explosion”, attributed to 

the interaction of the flame with the walls of the tube. A train of compression 

waves created from this interaction indicated a DDT, developing between the 

turbulent flame front and shock wave. A “strong ignition” was characterised by 

low values of 𝜕𝜏𝑖 𝜕𝑇 ⁄  by Meyer and Oppenheim (1971). 

Kuznetsov et al. (2005b) exploded stoichiometric H2/O2 mixtures in a smooth 

tube, at different initial pressures ranging from 0.02 to 0.8 MPa, and suggested 

that a growing turbulent boundary layer controlled the turbulence and the 

onset of DDT. The numerical simulations of Fukuda et al. (2013)  revealed the 

role of the boundary layer in smooth tubes on the transition to detonation of 

stoichiometric H2/O2. High shear rates can be generated in viscous sub-

layers, which might initiate autoignition, aided by weak transverse waves from 

hot spots (Sivashinsky, 2002). 

Liberman and co-workers suggested that in such highly reactive mixtures; as 

stoichiometric H2/O2, ethylene/oxygen and acetylene/oxygen, the DDT could 

be triggered by laminar combustion (Ivanov et al., 2013; Kuznetsov et al., 

2010; Liberman et al., 2010a; Liberman et al., 2010b), while for less reactive 
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mixtures, such as those of  methane-air, turbulence was necessary (Kessler 

et al., 2010). In their experimental studies  of stoichiometric H2/O2,. Kuznetsov 

et al. (2010) and Liberman et al. (2010a) suggested it was uncertain whether 

a DDT followed the Zel’dovich reactivity gradient mechanism, developing at 

hot spots in the unreacted mixture ahead of the flame.  

Liberman et al. (2010a), in their studies of DDTs of stoichiometric H2/O2 and 

ethylene/oxygen, mixtures considered the upstream flow to remain laminar up 

to the transition to detonation. In experiments with stoichiometric H2/O2, in a 

duct of 50 x 50 mm cross section, Kuznetsov et al. (2010)  reported the flow 

ahead of the flame remained laminar in the bulk. Furthermore, in their 3D 

computational study of the DDT of stoichiometric H2/O2  at 298K and 0.1 MPa, 

in a duct of 10 x 10 mm cross-section, Ivanov et al. (2013) wrote that “the flow 

remains laminar everywhere in the channel ahead of the flame all the time till 

the transition to detonation.‘’ Optical imaging suggested the onset of a 

turbulent flame pattern at the transition. Here the problem is whether a 

configuration that requires a high flow velocity to create strong enough shock 

waves, can maintain laminar flow with practical duct sizes.  

The high reactivity of such mixtures, particularly at low pressure, suggests 

transitions to detonation may not require significant turbulence to accelerate 

the flame. In their experimental study with stoichiometric ethylene/oxygen in 

micro tubes of 0.5, 1 and 2 mm diameter at 0.1 MPa, Wu et al. (2007) 

observed, for the first time, transition to detonation in micro-tubes. Laminar 

flame accelerations were very rapid, but values of Reynolds number 

suggested that the initial flame became turbulent. 

A key factor in the flame acceleration, in the absence of flame wrinkling due 

to turbulence, is the elongated parabolic gas velocity distribution ahead of a 

laminar flame. This increases the ratio of flame area, 𝐴, to that of the cross-

sectional area of flow, 𝑎. In a numerical study of laminar flame propagation in 

stoichiometric acetylene-oxygen mixtures in a narrow channel  with adiabatic 

walls, Gamezo and Oran (2006) showed that high values of 𝐴/𝑎 were rapidly 

attained, in the absence of strong shock. The relatively rapid attainment of 
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high velocities ahead of the flame is a valuable characteristic for micro-

propulsion devices. Even with intense turbulence, the generation of DDTs with 

CH4/air can only be achieved with large diameter tubes (Kuznetsov et al., 

2002; Zipf et al., 2013). 

1.7 Aims of the Present Work 

The present work aims to study the mechanism of the propagation of H2/O2 

mixture to know whether the gas flow created by stoichiometric H2/O2 laminar 

flames can create sufficiently strong shock wave to auto-ignite the mixture. 

The analysis based on a one-dimensional DDT model, and the work relies on 

collecting comprehensive data on ignition delay times, 𝜏𝑖, and laminar burning 

velocities, 𝑢𝑙, at different pressures and temperatures.   

Using chemical kinetics to simulate the ignition delay times of stoichiometric 

H2/O2 at different pressures and temperatures and applying empirical 

correlations to predict the laminar burning velocities at high pressures is one 

of the aims that couples with the discussion of the data collected. The study 

discusses the possible sizes of the tubes to induce a laminar DDT. 

The present work aims to discover the other behaviour of the flames 

expressed in quenching via an experimental investigation to the effect of 

higher stretch rate on the turbulent flame and the probabilities of quenching. 

Interestingly the critical size for flame quenching and the length scales 

associated with it for different mixtures including hydrogen and n-butanol 

mixtures and the limits for the flame propagation have been discovered.  
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1.8 Structure of the Thesis 

The thesis consists of six chapters, this first chapter has presented an 

introduction on the background and motivation of the study, introducing all the 

main aspects of it. 

Chapter 2 describes the experimental test rig and the measurement 

techniques employed in the present work. Normal safety procedures and the 

techniques for processing the data are discussed as well.  

Chapter 3 presents the experimental results for laminar and turbulent burning 

velocity of H2/O2/N2 mixtures and the results of flame quenching for different 

fuel mixtures including hydrogen, n-butanol, methane, i-octane mixtures at 

different conditions. 

Chapter 4 describes a modified one-dimensional DDT model integrated with 

substantial range of laminar burning velocity and ignition delay times of 

stoichiometric H2/O2 mixture obtained from the literature and via modelling to 

study the laminar and turbulent DDT of stoichiometric H2/O2 in a closed end 

tube. 

Chapter 5 offers a discussion for the results obtained in Chapter 3 and 4. 

Ultimately, Chapter 6 presents the summary of the present work and the future 

work recommendations. 
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Chapter 2 - Experimental Apparatus and Measurement 

systems 

2.1 Introduction 

All experiments for laminar, turbulent and quenching flames were conducted 

in a fan-stirred constant volume spherical vessel. Such vessels have the 

merits of being able to generate turbulence that is close to isotropic and 

homogeneous; and have no difficulties of flame stabilisation. Global and 

partial flame quenching for different fuel-air mixtures under different initial 

pressures, temperatures and equivalence ratios are possible when facilitated 

by the large vessel with optical windows.  

2.2 Leeds MKII Combustion Vessel  

Leeds spherical explosion, fan-stirred vessel (MKII). It is manufactured from 

stainless steel (SAE316) (Bradley et al., 2009a; Vancoillie et al., 2014) shown 

in Fig. 2.1. The internal diameter is 380 mm with a volume of 0.03037 m3 

which is capable of sustaining pressures and temperatures resulting from 

combusted mixtures at initial pressures and temperatures of up to 1.5 MPa 

and 600 K.  

Three orthogonal pairs of quartz, windows of 150 mm diameter and 100 mm 

thickness are mounted in the bomb. These provided excellent optical access 

for the measurement techniques.  

Turbulence was generated by four identical steel eight bladed fans, driven by 

four 8 kW controllable speed induction motors (Vancoillie et al., 2014). Speeds 

range from 250 to 10,000 rpm. This allows values of 𝑢′ between 0.25 and 11 

m/s. 
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Figure 2.1 Leeds MKII fan-stirred bomb, top frame is reproduced from 
Tripathi (2012). 

 

The rms turbulence velocity, 𝑢′, is related to the fan speed by:  

𝑢′ (m/s) = 0.00119 𝑁𝑓  ,             (2.1) 
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where 𝑁𝑓  is the fan speed in rpm. The integral length scale of the bomb had 

been found by two point correlation (Nwagwe et al., 2000) as 20 ± 1 mm.  

Some turbulence properties from Lawes et al. (2012) are given in Table 2.1. 

These turbulence macro and micro length scales were measured at different 

pressures and rms velocity. It can be seen that these scales reduce with 

pressure and rms velocity except the integral length scale, 𝑙, which is 

independent of speeds from 1000 to 10,000 rpm.  

Table 2.1 Experimental turbulence properties in the study of Lawes et al. 
(2012). 

 𝑢’ (m/s) P (MPa) 𝑙 (mm) 𝜆(mm)  𝜂 (mm) 

1 0.1 20 2.6 0.12 

4 0.1 20 1.3 0.042 

0.5 0.5 24 1.6 0.06 

1 0.5 20 1.2 0.035 

2 0.5 20 0.82 0.021 

4 0.5 20 0.58 0.012 

6 0.5 20 0.47 0.0092 

1 1 20 0.82 0.021 

4 1 20 0.41 0.0074 

2.3 The Auxiliary Systems 

The bomb is equipped with auxiliary systems for pressure and temperature 

measurements in addition to the ignition and triggering systems. These 

auxiliary systems are used in the mixture preparation.  

2.3.1 Ignition System  

The variable energy ignition unit was designed to generate a spark energy of 

23 mJ (Bradley et al., 1998b). Spark electrodes are shown in Fig. 2.2 

composed of centrally 1.5 mm diameter steel electrode represents the anode 

in the circuit. This anode was sheathed by a ceramic insulation within a 

stainless-steel sleeve comprising the cathode. Both anode and cathode are 

contained within a 6.35 mm stainless-steel tube. The ignition circuit was 
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earthed via a cable connection between cathode and the anode. This system 

was mounted centrally through the wall of the vessel to ensure that no 

uncontrolled ignition resulted from residual ignition energy (Kondo et al. 1997).  

All the mixtures that schlieren system observed were ignited centrally with this 

unit with a minimum ignition energy (MIE) as a function of initial pressures, 

fuel and equivalence ratio. 

By adjusting the spark plug gap using a feeler gauges, it was feasible to set 

the minimum ignition energy for different pressures. Therefore, low pressure 

experiments at 0.1 MPa, the spark plug gap was 0.7 mm and at higher 

pressure up to 1 MPa, it was 0.3 mm throughout all the experiments. 

 

Figure 2.2 Spark tip and plug used in the experimental work 

2.3.2 Temperature Measurements and Controls 

Heating the mixtures inside the vessel was achieved by two 2 kW electric 

heating coils placed at opposite faces of the vessel’s plates to provide uniform 

heating.  

Prior to ignition, the temperature inside the vessel was adjusted and monitored 

using a (CAL320) PID temperature controller on a control panel in the 

protected area in the laboratory. A K-type thermocouple, 25 µm Chrome-
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Alumel wire, encased in a 1.5 mm diameter stainless steel was placed 

diagonally 75 mm from the inner surface wall of the vessel.  

In order to carry out experiments requiring high initial temperature, the 

temperature controller was set on a temperature that is quite higher than the 

desired to enhance the heating rate and therefore, reduce the time for heating 

up the vessel.  

 The fan maintained a uniform temperature within a few degrees higher than 

the desired temperature prior to mixture preparation and ignition process.  

2.3.3 Pressure Measurements 

A static pressure transducer (Druck PDCR 911) connected to a display in the 

protected area of the laboratory, monitored the pressure changes during 

partial pressure mixture preparations. A swage lock ball valve protected this 

transducer prior to combustion. Ensuring an accurate equivalence ratio for 

any mixture, a calibrating process to this transducer was performed on a 

weekly basis against a mercury barometer located in the vessel’s room at 

atmospheric pressure.  

Another pressure transducer (Kistler 701A) for dynamic pressures was 

positioned on the inner surface of the vessel as shown in Fig. 2.3. This 

transducer was connected to charge amplifier (Kistler 5007) to amplify the 

charge into an analogue voltage signal. Digitising the signal was via a NI6361 

DAQ analogue to digital converter (ADC), connected to the charge amplifier. 

Interpreting the signal was achieved using a virtual instrument (VI) simulation 

created using LabVIEW from National Instruments at 50 kHz frequency for 

250,000 samples in each experiment. A pressure trace was then recorded to 

give the peak pressure values for each explosion.10 Volts output from the 

charge amplifier with a 0.1 MPa/Volt, 0.5 MPa/Volt and 1 MPa/Volt for initial 

pressures of 0.1, 0.5 and 1 MPa, respectively.   
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Figure 2.3 Kistler 701A dynamic pressure transducer ranges from 0:25 MPa. 

2.4 Imaging Techniques  

Schlieren (Bradley et al., 2013) and Mie scattering techniques were employed 

in the experimental work. The first technique is schlieren system and it 

depends upon density difference between burned and unburned gases. The 

second technique gives Mie-scattered images of flames using a high repetition 

rate laser. 

2.4.1 Schlieren System 

The Schlieren image depends upon the density gradient. Basically, collimating 

a light source on the area of interest causes a refraction to this light in different 

angles, due to the density gradient in the area of interest. This refracted light 

is amplified and received on a pinhole, or knife-edge, and directly onto a 

camera for recording the high and low density regions. 

A high speed Phantom Miro M310 camera was used for the schlieren system 

and an 80 mm Nikon lens recorded the maximum field of view field of a 150 

mm, optical window diameter, with a resolution of 768 x 768 pixels and 

Flush-mounted on the inner 

surface 
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sampling rate of 5400 Hz. This resulted in a recorded square view of 159 x 

159 mm with a pixel size of 0.20708 mm/pixel. The exposure time was 

adjusted to 6μs. The light source was a 20 mW class 3B diode laser with 

centre wavelength of (𝜆= 635 nm).  

Two plano-convex lens of (𝑓 =1000 mm) were used in the system. The first 

expanded the laser light beam, collimating 150 mm beam through the bomb, 

and the other lens focused the laser beam through a knife-edge of 0.5 mm 

directly onto the high-speed camera (see Fig. 2.4). The flame images are 

saved in (.bmp) format. 

 

Figure 2.4 Plan view of the schlieren image photography system on the 
spherical vessel 

 

2.4.1.1 Calibration of the Schlieren System and the Repeatability of the 

Experiments 

Collimation of the laser beam expanded from the plano-convex lens was 

checked daily in addition to the pixel size. This required a 10 mm x 10 mm 

grid imprinted onto a transparent sheet. This was mounted in the collimating 

beam area in front and behind the vessel’s windows. The high-speed camera 

to captured images for that placed sheet. The beam collimation was assured, 

if the images in front and behind the vessel windows were showing the same 

grid size, see Fig. 2.5. The pixel size was checked via an image analysis tool 
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in MATLAB. This tool superimposed a best fit grid as a reference size and 

pixel resolution over the grid imprinted sheet.  

 

Figure 2.5 Calibration of schlieren image photography system 

 

Five experiments were performed for both laminar and turbulent explosions to 

check the repeatability error. The consistency of the experiments was 

confirmed from all pressure records measured. 

2.4.1.2 Synchronisation and Triggering Systems  

To capture the schlieren images simultaneously with pressure rise, the timing 

for the dynamic pressure recording through VI, the high-speed camera for 

recording the flame propagating images and the spark system for giving the 

spark energy had to be synchronised. A +5V TTL trigger signal gave rising 

and falling edges via an ignition switch. From the onset of triggering time, the 

high-speed camera starts writing data on the memory and the dynamic 

pressure transducer initiates recoding. A +12V CMOS pulse was then 
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introduced through the falling edge to initiate the spark. The actual time for 

any explosion was recorded, along with the time prior to the spark generation. 

There was nearly 3 ms for camera recording until the real captured flame 

propagating images. This ensured all the data from the ignition frame to the 

final propagating frame of the flame were recorded. All these frames were 

saved in the PC at specific extensions. These images evaluated the flame 

radii and the burning rates to be determined.  

2.4.2 3D Laser Swinging Sheets System   

A novel technique of capturing laser sheet images of Mie scattering in 

explosion flames was developed by Harker et al. (2012), in what has become 

known as the swinging sheet laser imaging system is shown in Fig. 2.6.   

This technique depends on the generation of a number of separated laser 

sheet images from a high-repetition rate laser, synchronized with a rotating 

mirror to generate separate sheets, and a high-speed camera to capture the 

images. Details of this technique are described in (Harker et al., 2012) and the 

modified technique in (Thorne, 2017). 

 

Figure 2.6 Schematic diagram of swinging sheets imaging experiment 
(Harker et al., 2012). 
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A number of thin slices of 532 nm Nd:YAG laser sweep through the flame 

propagates as shown in Fig. 2.7 for the updated system. This system is 

employed in flame quenching studies. 

The laser has an adjustable repetition rates ranging from 5 kHz to 30 kHz with 

a pulsing energy ranging from 13 mJ to 1.9 mJ, respectively. These repetition 

rates are generated from only one cavity of the laser source.  

Typically, laser sheet images can be generated in one sweep through a 

propagating flame via a 5-12 Hz rotating mirror, RM, with multiple facets (16), 

powered by an 8-pole synchronous hysteresis 6A motor and 30V AC. These 

comprises 1 µm diameter olive oil with a density of 970 kg/m3 (Melling, 1997) 

atomisation occurs inside the bomb using a particles generator. Images are 

captured using a high speed digital Phantom camera V2011 (PCC 2.7), at a 

frequency of 54 kHz, with an image resolution of 512 x 512 pixels. 

2D Images were recorded at each position, within about 1mm apart. The laser 

sheet in each sweep and a 3D constructed flames were then built. The 60 kHz 

maximum output frequency from the laser passes through an array of the 

convex lenses of focal length, f, 38.1 and 25 mm to attain a very thin sheet in 

the centre of the bomb, with a height of 100 mm.   

Ignition of the mixtures is by a New Wave solo Nd:YAG  ignition laser at a 

frequency of 532 nm, with a variable frequency up to 15 Hz  with 120 mJ of 

pulse energy. Triggering and synchronising the system is described in detail 

in (Thorne, 2017). Since the present study focuses on the quenching of the 

flame, therefore, it was necessary to choose mixtures that have a low laminar 

burning velocity. 

For the present work the imaging laser and the ignition laser were pulsed at 

51 up to 54 kHz and 12 Hz, respectively. Typically, 73 to 78 sheets were 

recorded in each sweep of 1.44 ms.
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Figure 2.7 Laser Swinging sheets system (Bradley et al., 2019) 
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2.5 Safety Procedures and Fuel Mixtures Preparation  

Table 2.2 shows all the liquid and gaseous fuels used in the present flame 

quenching studies. Dealing with gaseous fuels such as: H2, O2, N2, and CH4 

required secured and restricted regulations; in accordance with normal safety 

procedures. All cylinders housed outside of the school laboratory in a safety 

cage and are checked regularly via internal and external gauges. Control 

valves and micro switches are connected to the vessel through the inlet ports 

and are checked each day. 

In the mixing of H2 with O2 and N2, partial pressures for them were well-

controlled through three valves. Changes in pressure were immediately 

monitored on the static pressure display described in Section 2.3.3.  

Table 2.2 Fuels used in the current work. 

 

Liquid fuels were stored in 250 ml glass bottles at 5oC outside the combustion 

room in a refrigerator. Prior to use, they were taken to a fume cupboard and 

left until thermal equilibrium with room temperature. This took about 30 

minutes, but, it guaranteed that the thermodynamic properties were at room 

temperature; as it was employed in the fuel volume calculations. A Hamilton 

glass gas tight syringes of different volumes of 5 and 10 ml with a 1 mm 

Fuel  Supplier  Purity (ppm)  Density  

(g/ml @ 25°C)  

Molecular 
Mass 
(g/mol)  

H2 BOC 99.99% 0.069 2.02 

O2 BOC 99.95% 
No data 

available 
32 

N2 BOC 99.998% 0.97 28.01 

CH4 BOC 99.5% 0.6 16.04 

I-Octane Fisher Scientific 99.91% 0.619 114.23 

n-Butanol Fisher Scientific 99.89% 0.810 74.14 
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needle’s diameter were available to measure an accurate volume for injection 

and premixing procedure. All syringes and bottles using the same fuel were 

labelled by different distinguished colours. 

2.6 Procedures of Experiments 

Monitoring the static pressure in the vessel was necessary before doing any 

laminar or turbulent experiment, so as to avoid leakage. Therefore, for 

experiments that require high or low initial temperatures, the bomb was 

pressurised to the required initial pressure with dry air and check the sealing 

for five minutes.  

The vessel was vacuumed twice to 0.0014 MPa from atmospheric pressure, 

before and after each experiment. This ensured that there were no residuals 

from gaseous mixtures. These checks were done regularly, as shown in Figs 

2.8 & 2.9. The pressure and temperature were monitored for 5 minutes at fan 

speed of 250 rpm.  

 

Figure 2.8 Experimental check for the vessel at 5 bar and 363 K fan 
speed at 250 rpm. 
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Figure 2.9 Experimental check for the vessel at 5 bar and room 
temperature with fan speed at 250 rpm. 

 

In preparing fuel mixtures for the experiment, volumes of fuels were calculated 

according to the ideal gas assumption. Volumes of gaseous fuels needed 

were calculated directly from partial pressures.  Liquid fuels volumes with the 

ideal gas assumption were also calculated knowing the fuel composition, 

density of the fuel at room temperature and volume of the vessel. Getting the 

number of moles of fuel at the required initial pressure and temperature will 

result in getting the volume of liquid fuel needed to be measured in the scaled 

suitable syringes with 0.5 % manufacturer accuracy. 

Delivering the gaseous fuels occurs through tubes directly attached to the 

vessel with control valves. Liquid fuels were injected from the syringes through 

the vessel’s fuel inlet port attached to a needle valve. Prior to the delivery of 

the fuels, the vessel was vacuumed to 0.0015 MPa and the gaseous fuels 

were entering to the vessel from their specific ports and then the dry air was 

added to reach the required initial pressure. Liquid fuels were injected and 

drawn into the vessel which was under the same vacuum. During fuels 
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delivery to the vessel, the pressure was monitored until the explosion. 

Temperature prior to the fuel drawing with higher than required high initial 

temperature with +8 K and the fans were running at speeds of 426 rpm for 

high initial temperature experiments and at 250 rpm for room temperature 

experiments to enhance the fuel vaporisation and mixing.  

After that, the temperature was observed until it reaches the required initial 

condition and at that moment for laminar experiments, the fans were switched 

off and left for about 15-20s to assure  the equilibrating of the mixture. During 

these seconds, remotely closing ball valves (for the static pressure and air 

supply) were closed and a final check to the initial pressure and temperature 

values, dynamic pressure tracing LabVIEW (VI) software was active to save 

data and then ignite the mixture. 

In turbulent experiments, the fans continued to run and the turbulence 

intensity was gradually increased to the required u’ during the dry air supply 

before ignition. Low temperature with highly turbulence experiments required 

much attention in controlling the fan speed taking a tolerance of +5 K of 

temperature before ignition. 

In cases of room temperature experiments, the vessel was left to cool down, 

or the heaters were reactivated again for the high temperature experiments; 

then, it was kept under vacuum again for the next experiments.  

2.7 Data Processing 

All the data recorded with the high-speed cameras were saved whilst 

processing them required some MATLAB codes for laminar, turbulent and 

quenching experiments. During the processing of this data, some 

thermodynamic properties for the fuel mixtures were required to run these 

codes. Laminar codes for getting the flames radii and evaluation the laminar 

burning velocity and strain rate Markstein number, 𝑀𝑎𝑠𝑟, are discussed in 

Section 2.7.2. For turbulent and quenching turbulent experiments, the 

procedures for processing these data are discussed in Section 2.7.3. 
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2.7.1 Properties of All Fuel Mixtures 

For central outwardly propagating flames, the thermodynamic properties of all 

reactants and products in the bomb were pre-calculated using Gaseq, a 

chemical equilibrium software, for windows created by Morley (2005).Two 

database libraries for thermodynamic data (Thermdat.tdd) and (BURCAT.tdd) 

were employed in the present work. The software has the ability to do the 

calculations at various conditions. In the present work, the calculations were 

done at constant pressure conditions and adiabatic temperature assumption 

by neglecting any rise in the pressure during the flame propagating close to 

the vessel’s windows. Unburned and burned gas densities were calculated 

knowing the mole fractions of the fuel-air mixture, initial pressure, initial 

temperature and equivalence ratio. 

2.7.2 Processing of Laminar Images from Schlieren System 

Two codes used for laminar images resulted from the schlieren image 

photography system. In Section 2.7.2.1, the first MATLAB code was described 

to get the radii for the flame from the time of ignition to the time when the flame 

reaches the edges of the vessel’s windows, flame speed, 𝑠𝑛, and the stretch 

rate, 𝛼. Calculating the Markstein number for strain rate achieved with a 

second MATLAB code depending on some inputs produced from the first 

code; as discussed in Section 2.7.2.2. 

2.7.2.1 Determination of Schlieren Flame Radii, Flame Speeds and 

Stretch Rates  

Different cases for flame edge, clear or faint especially in hydrogen flames 

were processed depending on a MATLAB code created by Sharpe (2011). 

Directly before the ignition, a schlieren image was saved and the location of 

the tip of the spark plug and the window’s edge were specified before any 

flame interaction. A masking-off process of the sparkplug was identified to 

mitigate the sparkplug disturbance produced. The dimensions of the image 

(and all fixed location) were saved, and the same ones were then employed 

as a reference to the next frames containing the propagation flame. Flame 

edge was specified from the last frame where the flame was close to the 

vessel’s windows; after that, the referenced masking off process and the 
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window’s edge were superimposed on the last frame and the other frames in  

this reversed sequence in what is called level set technique (Tripathi, 2012). 

 Consequently, the burned and unburned regions were specified, and the 

average flame radii were calculated via a best fit circle for all frames with time. 

Then, the code plotted the radii vs time and flame speed, 𝑠𝑛 vs radius and 

stretch rate, 𝛼 from Section 1.2.1.3. An extrapolation to zero stretch rate was 

performed in the code to get the un-stretched flame speed, 𝑆𝑠.  

2.7.2.2 Determination of Markstein Number for Strain Rate 

A multiple regression method described in (Edwards, 1984) was employed in 

the study of Bradley et al. (1996) for calculating Markstein lengths. These 

lengths relied upon the experimental data of flame speeds and radii; which 

were already calculated in Section 2.7.2.1. Calculating the stretch rate; two 

components; strain rate, 𝛼𝑠, and curvature, 𝛼𝑐; were evaluated according to 

the available experimental data of laminar burning velocity and the density 

ratio defined in Section 1.2.1.3. The code was developed by Bradley et al. 

(2018). This code was employed to calculate Markstein numbers according to 

this multiple regression method. 

2.7.3 Processing of Turbulent and Quenching Flame Images 

from Schlieren System 

A MATLAB batch processing tools developed by Mansour (2010) consists of 

multiple scripts was employed in the present work for processing the turbulent 

flame images. The first script written was functioned to delete the pre-flame 

images recorded by phantom Mira M310 camera and create a zeros matrix 

equal to the size of the first image. 

Following this, other scripts worked on subtracting the pre-flame image from 

the other images where the flame propagates without any interaction of the 

sparkplug. The grey images were converted into binary images distinguishing 

the flame from the surrounded unburned gases (as seen in Fig. 2.10) for 

turbulent rich iso-octane flames. A spherical flame assumption yielded the 

flame area from the pixels of the flame and the mean radius was calculated 

accordingly. This script is used in Section 3.4. 
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Another MATLAB code was developed to obtain the flame area from the 

binary images produced from the first code (on the same assumption of a 

spherical flame). Flame radius was evaluated for quenching flame cases in 

Section 3.5 as shown in Fig. 2.11 for lean n-butanol flames (Appendix A). 

 

  

(a) Raw image (b) Binary image (rotated by 225.5o) 

Figure 2.10 Turbulent i-octane air mixture at 𝜑= 1.35, 0.5 MPa, 365 K and 

u’= 3 m/s with rsch= 50.594 mm. 

  

(a) Raw image (b) Binary image 

 

Figure 2.11 Quenched n-butanol air mixture at 𝜑 = 0.8, 0.5 MPa, 365 K and 

u’= 2 m/s with D = 6.2 mm.
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Chapter 3 - Turbulent Burning Velocity of H2/O2/N2 mixtures 

and Flame Quenching of Different Fuel Mixtures 

3.1 Introduction 

The schlieren image photography technique described in Section 2.4 enabled 

studies of turbulent flame structure, quenching and the measurement of 

turbulent burning velocities.  

The measurement of 𝑢𝑙 and 𝑀𝑎𝑠𝑟 is first determined. This is followed by 

measurements of 𝑢𝑡𝑟 and 𝐾 with regard to the studies of turbulent flame 

quenching, limiting values of 𝐾 were found and also the size of the flame 

kernel measured for flame quenching. 

Section 3.2 and 3.3 present measurements of the laminar flame speed and 

burning velocity of H2/O2/N2 and n-butanol mixtures employed throughout the 

present study, using the schlieren imaging technique described. Section 3.4 

presents the schlieren images of H2/O2/N2 flames at high turbulence and the 

possibilities of flame quenching. In Section 3.5 and 3.6, the quenching data 

analysis and correlations are presented. 

The experimental work is divided into two stages. In the first stage, the 

schlieren technique is used to calculate the mass burned turbulent burning 

velocity and Karlovitz stretch factor, at different fan speeds until quenching. 

During this stage, different fuel mixtures are used, and the probability of flame 

propagation is identified. The second stage focuses on the quench analysis 

and employs the 3D Laser swinging sheet technique for near- quench flames 

alongside a comparison between this technique and schlieren system.  

3.2 Experimental Results of Laminar H2/O2/N2 Mixtures 

Using Schlieren Image Technique 

H2 mixtures have a strong resistance to quenching and were studied for this 

reason initially necessary to determine the fundamental parameters. As 

shown in the experimental matrix of Table 3.1, the experiments were carried 

out on a lean mixture (𝜑 =0.5) of hydrogen-oxygen-nitrogen mixture 
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(H2/N2/O2), with different three volume fractions of N2/O2. Laminar and 

turbulent velocities are measured at a flame radius, 𝑟𝑠𝑐ℎ of 30 mm, and at an 

initial temperature and pressure 300 K and 0.1 MPa. 

Table 3.1 Experimental work matrix for lean hydrogen/oxygen/nitrogen 
mixtures. 

Fuel mixture Temperature 

(K) 

Pressure 

(MPa) 

Equivalence 

ratio 

H2+0.118O2+0.882N2 300 0.1 0.5 

H2+0.115O2+0.885N2 300 0.1 0.5 

H2+0.11O2+0.89N2 300 0.1 0.5 

3.2.1 Stretched Laminar Flame Speed with Stretch Rate for 

H2/O2/N2 Mixtures 

Figure 3.1 to 3.3 show the variation of 𝑆𝑛 against 𝛼 of the different volume 

fractions. These variables were calculated from schlieren images using the 

method described in Section 1.2.1.3. The laminar burning velocity, 𝑢𝑙, is 

calculated for five explosions, as a function of the un-stretched laminar flame 

speed, 𝑆𝑠.  Via extrapolating the resulting curve to a theoretically zero stretch 

rate, the unstretched flame speed, 𝑆𝑠 was evaluated. 
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Figure 3.1 A typical graph of the variation of stretched laminar flame 
speed, sn, with stretch rate, for H2/0.118 O2/0.882 N2 at 300 K, 0.1 MPa 
and φ = 0.5. Solid blue and black lines denote linear and 
nonlinear relationships for 𝐿𝑏 through data points. 

 

Figure 3.2 A typical graph of the variation of stretched laminar flame 
speed, sn, with stretch rate, for H2/0.115 O2/0.885 N2 at 300 K, 0.1 MPa 
and φ = 0.5. Solid blue and black lines denote linear and 
nonlinear relationships for 𝐿𝑏 through data points. 
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Figure 3.3 A typical graph of the variation of stretched laminar flame 
speed, sn, with stretch rate, for H2/0.11 O2/0.89 N2 at 300 K, 0.1 MPa and 
φ =0.5. Solid blue and black lines denote linear and 
nonlinear relationships for 𝐿𝑏 through data points. 

3.2.1.1 Stretched Laminar Flame Speed with Flame Radius 

The flame speed was high at small radii, this is because of the boosting of the 

flame due to the ignition energy used (Tripathi, 2012). It reduced to a stable 

value as the flame grows as shown in Figs 3.4 to 3.6. 

 

Figure 3.4 A typical graph of the variation of stretched laminar flame 
speed with flame radius, for H2/0.118 O2/0.882 N2 at 300 K, 0.1 MPa and 
φ = 0.5, laminar. 
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Figure 3.5 A typical graph of the variation of stretched laminar flame 
speed with flame radius, for H2/0.115 O2/0.885 N2 at 300 K, 0.1 MPa and 
φ =0.5. 

 

Figure 3.6 A typical graph of the variation of stretched laminar flame 
speed with flame radius, for H2/0.11 O2/0.89 N2 at 300 K, 0.1 MPa and φ 
=0.5. 
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Over five experiments, the average value of 𝑀𝑎𝑠𝑟 was calculated for the 

different fuel mixtures of O2/N2 fraction of 0.118/0.882, 0.115/0.885 and 

0.11/0.89, respectively. Eqs. (1.10) and (1.11) were employed in the multiple 

regression method discussed in Section 2.7.2.2. All the parameters used in 

the present study are given in Table 3.2. 

Table 3.2 All parameters calculated for H2/O2/N2 mixtures at 300K, 0.1 MPa 
and φ =0.5. 

Fuel 
𝑙 

(m) 
𝜈 (m2/s) 𝜌𝑢 𝜌𝑏⁄  

𝛿𝑙 
(mm) 

𝑢𝑙 
(m/s) 

𝑀𝑎𝑠𝑟 

H2+0.118O2+0.882N2 0.02 1.77E-05 3.61 0.143 0.124 -0.4 

H2+0.115O2+0.885N2 0.02 1.77E-05 3.56 0.16 0.111 -0.1 

H2+0.11O2+0.89N2 0.02 1.76E-05 3.47 0.18 0.0975 0.03 

 

3.2.1.2 Comparison of Laminar Burning Velocity of H2/O2/N2 Mixtures 

The average laminar burning velocity of present mixture is calculated but at 

the same time it is important to compare these values with the literature. The 

current volume fractions and conditions are not studied in the literature; 

however, the pressure, temperature and equivalence ratio were the same. A 

higher and lower fraction of (O2/O2+N2) were found in the study of 

Egolfopoulos and Law (1991) and Aung et al. (1998). The conditions studied 

in these references are shown in Fig. 3.7 and they showed a reasonable trend 

with the present conditions. 
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Figure 3.7 Comparison of laminar burning velocity of H2/O2/N2 mixture 
at different O2/(O2+N2) fraction. 

3.3 Experimental Results of Laminar n-butanol/air Mixtures 

Using Schlieren Imaging Technique 

N-butanol/air mixture was studied for certain cases where the laminar burning 

velocity is low. This occurred for lean butanol/air mixtures, (𝜑 =0.7) at 0.5 MPa 

and 1.0 MPa. The mixtures have been studied at 360 K as shown in Table 

3.3.  

Table 3.3 Experimental work matrix for lean n-butanol/air mixtures. 

Fuel mixture Temperature 

(K) 

Pressure 

(MPa) 

Equivalence 

ratio 

n -butanol/air 360 0.5 0.7 

n -butanol/air 360 1 0.7 

0.10 0.11 0.12 0.13 0.14 0.15

0.0

0.1

0.2

0.3

0.4

0.5

 Present  points

(Egolfopulos & Law, 1991)

 (Aung et al., 1998)

u
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m
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3.3.1 Stretched Laminar Flame Speed with Stretch Rate for n-

butanol Mixtures 

Using the same procedure which applied in Section 3.2.1.1, the unstretched 

laminar burning velocity is determined using 𝑠𝑛, 𝛼  plot for the cases. Figures 

3.8 and 3.9, show the effect of flame stretch rate on the flame speed. The 

linear extrapolation of the curve gives the unstretched laminar burning 

velocity, 𝑆𝑠. 

 

Figure 3.8 A typical graph of the variation of stretched laminar flame 
speed with stretch rate, for n-butanol/air mixture at 360 K, 0.5 MPa and 
φ =0.7. Solid red line denote linear relationship for 𝐿𝑏 through data points. 
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Figure 3.9 A typical graph of the variation of stretched laminar flame 
speed with stretch rate, for n-butanol/air mixture at 360 K, 1 MPa and φ 
=0.7. Solid red line denote linear relationship for 𝐿𝑏 through data points. 

The laminar burning velocity for the two cases were calculated using Eq. (1.3) 

knowing the density ratio, 𝜌𝑏 𝜌𝑢 ,⁄  using the Gaseq code (Morley, 2005). As 

mentioned in Section 1.2.1.3, the effect of stretch rate on laminar burning 

velocity is characterised by Markstein number for strain rate, 𝑀𝑎𝑠𝑟. 

From five explosions, the average 𝑀𝑎𝑠𝑟 is calculated for n-butanol at 0.5 MPa 

and 1 MPa. It is evaluated to be 9 for n-butanol/air mixture at 0.5 MPa and 6 

at 1 MPa. All the parameters are listed in Table 3.4. 

Table 3.4 All parameters for n-butanol/air mixtures at 360K, 0.5 and 1 MPa 
and φ =0.7. 

Fuel 
P 
(MPa) 

𝑙 
(m) 

𝜈 (m2/s) 𝜌𝑢 𝜌𝑏⁄  𝛿𝑙 (mm) 𝑢𝑙  (m/s) 𝑀𝑎𝑠𝑟 

n-
butanol/air  

0.5 0.02 4.27E-6 

 

5.61 0.029 

 

0.147 

 

9 

1 0.02 2.14E-6 

 

5.61 0.0225 

 

0.095 

 

6 
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3.4 Experimental Results of Turbulent Expanding H2/O2/N2 
Flames 

Experiments were performed for rms velocities,𝑢′, ranging from 6 to 10 m/s to 

see the effect of excessive flame stretch on the structure of the flame and 

probability of quenching. As shown in Table 3.2, the laminar burning velocities, 

𝑢𝑙, of the three mixtures are low and this is the reason why these mixtures are 

employed. Therefore, it will be able to check the probability of flame 

propagation at high turbulence. 

Five experiments were conducted for the three mixtures at different 𝑢′. In 

essence, the increase in turbulence led to a higher value of Karlovitz numbers, 

𝐾. 

Particularly, in these turbulent experiments, it was difficult to maintain a 

constant room temperature at high fan speed and atmospheric pressure. 

Temperatures could only be maintained with a tolerance of ±5K. Schlieren 

images are captured for all experiments at time intervals between frames of 

0.1852 ms as the sampling rate is 5400 fps.  

At 𝑢′ =10 m/s, H2/0.118O2/0.882N2 mixture has a probability of propagation, 

of 40%, 𝑝0.4, and this percentage is highest among the three mixtures. For 

H2/0.115O2/0.885N2, the flame propagated only once from five experiments, 

𝑝0.2, whilst there was no propagation for H2/0.11O2/0.89N2. This is the limiting 

rms velocity for the spherical vessel, which we cannot go beyond. At lower 

values of 𝑢’, the probability of the flame propagation varies for different 

mixtures and consequently, turbulent burning velocity are calculated. 

Schlieren frames are presented in Figs. 3.10 to 3.13 for the different mixtures 

at different 𝑢′ and time from ignition. It is clearly seen how increasing 𝑢′ , 

enhances the wrinkling of the turbulent flames. 
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Figure 3.10 Turbulent flame propagation in lean H2/0.118O2/0.882 N2 
mixture, φ = 0.5, 300±5K, 0.1 MPa at 𝒖′ =7,9,10 m/s and different t.  
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Figure 3.11 Turbulent flame propagation in lean H2/0.115O2/0.885N2 
mixture, φ = 0.5, 300±5K, 0.1 MPa at 𝒖′ =6,7,9 m/s and different t. 
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Figure 3.12 Turbulent flame propagation in lean H2/0.115O2/0.885N2 

mixture, φ = 0.5, 300±5K, 0.1 MPa at 𝒖′  = 10 m/s and different t. 
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Figure 3.13 Turbulent flame propagation in lean H2/0.11O2/0.89N2 
mixture, φ = 0.5, 300±5K, 0.1 MPa at 𝒖′ = 6,7,9 m/s and different t. 
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Figures 3.14 to 3.16 show the change of 𝑢′𝑘 with 𝑢𝑡𝑟 at different rms velocity, 

𝑢’. It is shown that 𝑢𝑡𝑟  is increasing with 𝑢′𝑘 at different 𝑢’.It is also presented 

that erratic behaviour starts to progress due to the high turbulence even the 

flame kernel was convected from the spark gap it is still difficult to propagate 

easily due to the flame stretch at higher rms velocity.  

 

Figure 3.14 Variation of u’k with utr at different u’ for H2/0.118O2/0.882N2. 

 

Figure 3.15 Variation of u’k with utr at different u’ for H2/0.115O2/0.885N2. 
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Figure 3.16 Variation of u’k with utr at different u’ for H2/0.11O2/0.89N2. 

3.4.1 Calculated and Measured Turbulent Burning Velocity  

The calculated turbulent burning velocity is evaluated as a function of 𝑈 using 

𝐾 and 𝑀𝑎𝑠𝑟. Eqs. (1.32) to (1.34) have been used knowing the values of 𝐾 

and calculated 𝑀𝑎𝑠𝑟 from laminar experiments data. These calculated 𝑈 have 

been compared with the experimental ones. All the results are listed in Tables 

3.5 to 3.7. The error evaluated between the calculated and measured values 

is about 15:20% due to the extreme turbulence.  

The probability of burning is evaluated for all mixtures at different u’. The 

results showed that the probability of burning, 𝑃𝑏 at the highest 𝑢′ =10 m/s was 

0.4 for H2/0.118O2/0.882N2 and 0.2 for H2/0.115O2/0.885N2. Also, the 

probability of burning at 9 m/s was 0.8, 0.6, and 0.2 for H2/0.118O2/0.882N2, 

H2/0.115O2/0.885N2 and H2/0.11O2/0.89N2, respectively.  

Table 3.5 Experimental result for turbulent explosion of lean 
H2/0.118O2/0.882N2 at 0.1 MPa and 300 K. 

𝑢′ (m/s) 7 9   10  

𝐾  9.014 13.14 15.39 

𝑈  calculated 0.473 0.432 0.416 
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Table 3.6 Experimental result for turbulent explosion of lean 
H2/0.115O2/0.885N2 at 0.1 MPa and 300 K. 

  

Table 3.7 Experimental result for turbulent explosion of lean H2/0.11O2/0.89N2 
at 0.1 MPa and 300 K. 

3.5 Flame Quench Analysis 

Using schlieren image photography, it was possible to capture continuous 

record of flames starting from the ignition until quenching. A mixture of i-

octane/air,𝜑=0.8 at 0.5 MPa, and 360 K was recorded from the point of ignition 

till the point of quenching where the rms velocity, 𝑢’ was 6 m/s. Four frames 

at different times from ignition are shown in Fig. 3.17. As seen, the flame 

propagates and then starts disintegration after 4 ms. 

𝑈 experimental 0.559 0.36 0.32 

𝑃𝑏  1 0.8 0.4 

𝑢′ (m/s) 6 7 9  10  

𝐾  8.87 11.284 16.451 19.267 

𝑈  calculated 0.474 0.448 0.410 0.395 

𝑈 experimental 0.561 0.426 0.34 0.27 

𝑃𝑏  1 0.8 0.6 0.2 

𝑢′ (m/s) 6  7 9 

𝐾  11.46 14.445 21.1 

𝑈  calculated 0.446 0.423 0.386 

𝑈 experimental 0.46 0.38 0.343 

𝑃𝑏  0.8 0.6 0.2 
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3.52 ms 4.07 ms 

  

4.8 ms 6 ms 

Figure 3.17  Quenching of lean iso-octane/air mixture, 𝜑 =0.8, at 0.5 MPa and 
360 K with 𝑢′ = 6 m/s,𝑝0.6. 

Here the mixture seems to quench due to the excessive stretching. The high 

turbulence counters the propagation of the flame and ultimately leads to 

extinction. 

Conversely, another mixture of methane/ air as shown in Fig. 3.18 at 𝜑=1.35 

at 0.5 MPa, and 365 K with 𝑢′= 3 m/s had a different behaviour. Differently, 

the flame propagates and it was about to quench after 2 ms before it continued 

growing as a normal propagating turbulent flame. The flame after 4 ms had a 

curl like-shape and it kept continuously propagating. Ultimately, this flame did 

not quench. 
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2.2 ms 3.33 ms 

  

4.81 ms 5.55 ms 

  

6.7 ms 7 ms 

Figure 3.18 Propagation of rich methane/air mixture, 𝜑=1.35, at 0.5 MPa and 

360 K with 𝑢′= 6 m/s, 𝑝0.8. 
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From those frames shown in Figs 3.17 &3.18, it is seen that the probability of 

burning, 𝑝𝑏 has a role on flame quenching but, at the same time, the stretch 

rate and the flame size also were found to be playing a biggest role. 

To obtain the equivalent diameters of the schlieren image flame kernels, the 

2-D projected areas were measured using MATLAB code, and the flame 

surface areas calculated from the black pixels in the binary images (Section 

2.7.3).  

A criterion has been applied to examine different fuel mixtures, whether they 

will quench or propagate. The measurements of turbulent quenching 

diameters and stretch rates have been carried out and correlated. A critical 

flame kernel diameter to thickness ratio is then defined for quench.  These will 

be presented in the next subsections. 

3.5.1 Preheat Zone Flame Thickness 

At the start of the analysis, it was necessary to calculate the laminar flame 

thickness for the correlation as are presented in Göttgens et al. (1992). This 

chemically inert preheat zone thickness is: 

𝛿𝑘 =
(

𝐾

𝐶𝑝
)𝑇𝑜

𝜌𝑢𝑢𝑙
,                                  (3.1) 

where 𝑘 and 𝑐𝑝 are the thermal conductivity and specific heat at constant 

pressure at the inner layer temperature, To. The unburned gas density is 𝜌𝑢. 

Values of all the required physicochemical data were obtained from the Gaseq 

code (Morley, 2005). 

The inner layer temperatures, for CH4 and H2, 𝑇𝑜 , were evaluated from 

(Göttgens et al., 1992) at the different pressures. For i-octane, To was 

evaluated from (Müller et al., 1997). Due to the lack of data for n-butanol, 𝑇𝑜 

was estimated from the data for methanol and ethanol (Müller et al., 1997; 

Röhl et al., 2009). With 𝑢𝑙  and 𝜌𝑢, it was possible to find 𝛿𝑘. 

3.5.2 Flame Quenching  

An example of the evolution of quenching kernels, revealed by 2D schlieren 

images, is shown by the continuous curve in Fig. 3.19. Values of 𝑑, normalised 

by 𝛿𝑘  are plotted against the time from ignition. Two images are shown, one 
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just after kernel generation, the other of the quenching kernel. A scaling bar 

for 15 mm of kernel size is shown. Soon after ignition the flame develops until 

it reaches a maximum value of 𝑑, the critical value, 𝑑𝑘, after which the flame 

starts to disintegrate and ultimately quench. The broken curve is of 𝑢′𝑘, 

obtained from the measured 𝑢′ and Eq. (1.25).  

Derived equivalent diameters of flame kernels, 𝑑, are going to be normalised 

by the corresponding values of 𝛿𝑘.  

These thicknesses are obtained from the expression of Göttgens et al. (1992). 

This identifies an inner layer, the thickness of which is defined by the location 

of a temperature To, below which there is no reaction.  

 

Figure 3.19 Temporal variation of d/δk and u’k from ignition, for quenching of 
a CH4/air kernel at 0.5 MPa and 365 K at φ =0.6, K = 11.6. 

3.5.3 Collected Experimental Results 

Numerous experiments were performed for different fuel mixtures at the 

conditions of quenching.  All the experimental data are listed in Table 3.8. 

Conditions were employed, at pressures of 0.1, 0.5, and 1.0 MPa. 

Temperatures were 300, 360 and 365 K. Laminar burning velocity of H2/O2/N2 

and n-butanol air mixtures data are used from Table 3.2 and 3.4 alongside 

with 𝑀𝑎𝑠𝑟.The probability of burning for all data is presented. Owing to the 
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importance of the smaller length scales in quenching, it might be thought 

advantageous to plot these values against a Karlovitz number, 𝐾𝑎, based 

upon the smaller Kolmogorov eddy time scale. This anticipation holds no 

advantage, principally because it can be shown that 𝐾𝑎/𝐾 ≈150.5. Values of 

𝐾𝑎 are given in the Table 3.8. 
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Table 3.8 Experimental Quench Data from schlieren imaging technique. 

  

Fuel/air mixture Method 
𝑇 
(K) 

𝑃 
(MPa) 

𝜑 
𝑢′ 
(m/s) 

𝑢𝑘
′  

(m/s) 

𝑑𝑘

𝛿𝑘
 

 To 

(K) 

𝑢𝑙  

(m/s) 

𝜈  

(m2/s) 
𝐾 𝑀𝑎𝑠𝑟 𝐾𝑎 𝑝𝑏 

H2/0.11 O2/0.89 N2 

s
c
h

lie
re

n
 s

y
s
te

m
 

300 0.1 0.5 6 2.14 16 1003 0.0975 1.76E-05 11.46 0.03 48 0.8 

H2/0.115O2/0.885 N2 300 0.1 0.5 7 3.062 17 1003 0.111 1.77E-05 11.28 -0.1 46 0.8 

H2/0.11 O2/0.89 N2 300 0.1 0.5 7 2.8 21 1003 0.0975 1.76E-05 14.45 0.03 58.6 0.6 

H2/0.118 O2/0.882N2 300 0.1 0.5 9 3.38 23 1003 0.124 1.77E-05 13.14 -0.4 53.3 0.8 

H2/air 365 0.5 0.15 2.25 0.82 24 1172 0.036  

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

 

4.79E-06 10.08 
 
-2 

 

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

 

39.7 0.8 
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Table 3.8 : Cont’d 

 

 

 

 

 

 

Fuel/air mixture Method 
𝑇 
(K) 

𝑃 
(MPa) 

𝜑 
𝑢′ 
(m/s) 

𝑢𝑘
′  

(m/s) 

𝑑𝑘

𝛿𝑘
 

 To 

(K) 

𝑢𝑙  

(m/s) 

𝜈  

(m2/s) 
𝐾 𝑀𝑎𝑠𝑟 𝐾𝑎 𝑝𝑏 

n-C4H10O/air 

s
c
h

lie
re

n
 s

y
s
te

m
 

360 1 0.7 0.6 0.121 62 1500 0.095 2.14E-6 0.121 6 0.39 0.8 

n-C4H10O/air 360 0.5 0.7 2 0.66 76 1400 0.147 4.27E-06 0.478 9 1.89 0.4 

n-C4H10O/air 360 0.5 0.7 2 0.61 80 1400 0.147 4.27E-06 0.478 9 1.89 0.4 

i-C8H18/air 365 0.5 0.8 6 2.3 125 1320 0.2 

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7

b
) 

 

4.37E-06 1.344 
5  
 

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7

b
) 

 

5.47 0.6 

i-C8H18/air 365 0.5 0.8 6 2.34 127 1320 0.2 4.37E-06 1.344 
5  
 

5.47 0.6 

i-C8H18/air 365 0.5 0.8 6.5 2.57 131 1320 0.2 4.37E-06 1.516 
5  
 

6.51 0.4 

CH4/air 365 0.5 1.35 3 0.83 37 1328 0.095  4.60E-06 2.183 
6  
 

8.54 0.8 
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3.5.4 Variations of d/δk for Different Quenching Flames During 

Time 

In Fig. 3.20, the n-butanol/air, 𝜑 = 0.7, schlieren images at 360 K and 0.5 MPa 

are of interest, in that the kernel is about to extinguish at d/𝛿𝑘 = 55. Then 

propagation revives, with extinction finally occurring at 𝑑𝑘/𝛿𝑘 = 77. 

 

Figure 3.20 Temporal variation of d/δk and u’k from ignition for n-
butanol/air at 360 K, 0.5 MPa, φ =0.7 and u' = 2 m/s, K= 0.478, p0.4. 

 

Figure 3.21 is of interest in showing how, for the same conditions, temporal 

profiles of d/𝛿𝑘 can differ yet yield similar values of 𝑑𝑘/𝛿𝑘.. While Fig. 3.22 

shows combustion of H2 to be the most rapid, with the smallest values of 𝑑𝑘. 

The hydrogen flame fragments were smaller and took a longer time to 

disappear than those of CH4. 
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Figure 3.21 Contrasting temporal variations of d/δk and u’k with time from ignition from two experiments of the same mixture of i-
C8H18/air mixtures at the same conditions of 365 K, 0.5 MPa, φ = 0.8 and u’= 6 m/s, K=1.34, p0.6. 
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(a) H2/0.11O2/0.89N2 mixtures at 300 K, 0.1 MPa, 𝜑 = 0.5 and 

𝑢′ = 7 m/s, 𝐾= 14.4, 𝑝0.6. 

(b) H2/air mixtures at 300 K, 0.5 MPa, 𝜑 = 0.15 and 𝑢′ = 2.25 

m/s, 𝐾= 10.08, 𝑝0.8. 

Figure 3.22 Variation of d/δk with time from ignition for Hydrogen mixtures. 
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3.5.5 Comparison between 2D Schlieren, and 3D Swinging Sheet 

Flames 

Well time-resolved, detailed, sequences of flame quenching could only be 

captured using schlieren photography. But with a maximum 60 kHz laser 

imaging repetition frequency too low for the swinging sheet technique to 

record fully a detailed quenching sequence. Therefore, only near-quench 

flames were employed using swinging sheet technique.  

Comparison between the two techniques were carried-out for near-quench 

flames. Figure 3.23 compares the changing values of 𝑑/𝛿𝑘 from both 2D 

schlieren, and 3D swinging sheet, images for CH4/air, 𝜑 = 1.35 at 365 K and 

0.5 MPa, for 𝑢′ = 3 m/s in (a), and 2 m/s in (b). In Fig 3.23(a) the earlier images 

reflect their origin around an electric spark. The five images show the initial 

establishment of a predominantly laminar flame that makes a transition to a 

turbulent flame.  

 

 (a) Schlieren 2D images, 𝑢′ = 3 m/s. 

 

(b) Laser swinging sheet 3D images, 𝑢′ = 2 

m/s. 

Figure 3.23 Temporal variations of d/δk from ignition for CH4-air at 365 
K from (a) schlieren, and (b) laser swinging sheets.  Complete mixture 
details on the figures. (Bradley et al., 2019)  

 

A near-spherical core of burned and burning gas supports the propagating 

flame. The flame is close to quench, but survives. However, it resides in a 
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regime located at the edge of a new quench regime that was previously 

addressed on U/K diagram in Fig. 1.10. Figure 3.23(b) are two sets of 3D 

swinging sheet images. These give more spatial information on flame 

structure, although the schlieren images give a more continuous record, on 

account of the shorter time interval between the adjacent sheets.  

The 3D images clearly show, for both flames, a struggle for survival against 

increasing turbulence. The lower flame kernels with a broken cusp/like shape 

at 6 ms, reflect this more acutely, but both of the marginal flames in Fig. 

3.23(a) and (b) survived unquenched. 

An interesting observation in the comparison of Fig. 3.23(a) and the upper 

curve in Fig. 3.23(b) was that both the techniques yielded similar 𝑑𝑘 values in 

the early stage of flame development up to critical times for quench. 

3.5.5.1 Experimental Data for Laser Swinging Sheet 

Experimental data extracted from laser swinging images on 𝑑𝑘/δ𝑘 are for 

near-quench flames as mentioned. Table 3.9 presents this data in a similar 

form of Table 3.8. With the available data points of Karlovitz stretch factor, 𝐾, 

and 𝑑𝑘/𝛿𝑘 from both schlieren and swinging sheet techniques, Fig. 3.24 shows 

the interrelationships of this data and other key parameters. 

Figure 3.24 shows the 𝑑𝑘/𝛿𝑘 data points and the continuous curves are plots 

of these against 𝐾, for H2, CH4, and the grouping of the higher hydrocarbons, 

listed in Tables 3.8 and 3.9. Unique symbols are used for each fuel category. 

The hydrocarbons display similar values of 𝑑𝑘/𝛿𝑘, although they are more 

conveniently correlated in terms of 𝑝0.4.The regime of flame quenching lies 

beneath these plotted curves for all the different fuels. 

The hydrocarbons are the most easily quenched, at the lowest values of 𝐾, 

and are associated with the highest values of 𝑀𝑎𝑠𝑟. Hydrogen mixtures are 

the most difficult to quench, at the highest values of 𝐾, and these are 

associated with the lowest and negative values of 𝑀𝑎𝑠𝑟 Methane mixtures 

have intermediate 𝑀𝑎𝑠𝑟 values.
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Table 3.9 Near-quench experimental data from Laser swinging sheet technique (Bradley et al., 2019).  

 

Fuel/air 

mixture 
Method 𝑇 (K) 

𝑃 

(MPa) 
𝜑 

𝑢′ 

(m/s) 

𝑢𝑘
′  

(m/s) 

𝑑𝑘

𝛿𝑘
 

 To 

(K) 

𝑢𝑙  

(m/s) 

𝜈  

(m2/s) 
𝐾 𝑀𝑎𝑠𝑟 𝐾𝑎 𝑝𝑏 

CH4/air 

S
w

in
g

in
g

 s
h

e
e

ts
 s

y
s
te

m
 

365 0.1 0.6 2 0.588 22 1220 0.189  

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

2.28E-5 0.668 2  
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ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

2.65 0.9 

CH4/air 365 0.1 0.6 2 0.6 24 1220 0.189  2.28E-5 0.668 2  2.65 0.9 

CH4/air 300 0.1 1.3 2 0.64 25 1220 0.16  

(B
ra

d
le

y
 

e
t 

a
l.
, 

1
9

9
6

) 1.63E-05 0.788 4  

(B
ra

d
le

y
 

e
t 

a
l.
, 

1
9

9
6
 3.06 0.8 

CH4/air 300 0.1 1.3 2 0.69 32 1220 0.16  1.63E-05 0.788 4  3.06 0.8 

CH4/air 365 0.5 1.35 2 0.728 68 1328 0.095  

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

4.60E-06 1.188 6  

(B
ra

d
le

y
 

e
t 

a
l.
, 

2
0

0
7
b

) 

5.06 0.8 

CH4/air 365 0.5 1.35 2 0.74 77 1328 0.095  4.60E-06 1.188 6 5.06 0.8 
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3.5.6 Quenching of Lifted Jet Flames 

Turbulent fuel jets of lifted jet flames entrain air, and the leading reaction zone 

is the most reactive region, where the local mixture attains the maximum 

laminar burning velocity, 𝑢𝑙𝑚, (Bradley et al., 1998a). Thereafter, with 

increasing fuel jet velocity more air is entrained and its reaction with the fuel 

is aided by the mixing with the hot gases created in the initial most reactive 

zone. Eventually the jet entrains more than sufficient air for reaction, the flame 

quenches, and blows off the burner.  

For a given fuel jet velocity, pipe diameters, 𝐷, that are less than a critical size, 

cannot maintain a flame. This size represents the critical jet flame diameters 

before blow-off for the given conditions. It is normalised by the jet flame 

laminar flamelet thickness of the most reactive mixture, to give (𝐷𝑏/𝛿𝑘). The 

fuel jet flow rate is characterised by a dimensionless flow number, 𝑈∗ = 

(𝑢/𝑢𝑙𝑚)( 𝛿𝑘/D)0.4(𝑃𝑖/𝑃𝑎). Values of 𝑈∗ at blow-off are 𝑈𝑏
∗. Values of  𝐷𝑏/𝛿𝑘, are 

plotted against 𝑈𝑏
∗ in Fig. 3.24, with values taken from (Palacios & Bradley, 

2017).  

From its derivation, it is apparent that the flow number has a similarity with the 

Karlovitz stretch factor, 𝐾 (Palacios & Bradley, 2017; Williams, 1985). 𝑈𝑏
∗ 

therefore, appears as the secondary x-axis, against which the present 

experimental values of 𝐷𝑏/𝛿𝑘, on the secondary y-axis, are plotted by the 

dotted curves, for different values of 𝑝𝑏. For both CH4 and hydrocarbons, 

choked jet flow, develops above about 𝑈𝑏
∗= 200. 

Although the limiting values of 𝑑𝑘/𝛿𝑘 and 𝐷𝑏/𝛿𝑘 in the two sets of diverse 

results are rather different, they reflect the underlying similarity between 

premixed and jet flamelet structures and are similarly influenced by 𝑀𝑎𝑠𝑟. A 

striking aspect of both sets of curves is the sharp increases in 𝑑𝑘/𝛿𝑘 and 𝐷𝑏/𝛿𝑘 

with 𝐾 and 𝑈𝑏
∗, respectively. This implies that large increases in u' and u can 

create high burning rates, only if they are accompanied by large 

commensurate increases in, respectively, explosion vessel sizes and burner 

diameters. 
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Figure 3.24 Symbols show probabilities of flame propagation for dk/δk 

and K. Dotted curves show jet flame Db/δk values at U*b from (Palacios 

& Bradley, 2017). Numbers adjacent to symbols are pb values. Flame 

quenching occurs beneath the curves. Symbols: (), for hydrocarbons, 

(), for CH4, and, (), for H2 (Bradley et al., 2019). 

3.6 Flame Quenching on the U/K Diagram 

The flame quenching regime, indicated by (C) in Fig. 1.10, was re-examined 

in the light of the data in Bradley et al. (2007b) and Tables 3.8 and 3.9. The 

procedure adopted was, initially, to plot all the 𝑝0.8  data from these sources in 

Fig. 3.25 and then derive, the best fit curve of 𝑀𝑎𝑠𝑟 against 𝐾. Figure 3.25 

shows values of 𝑀𝑎𝑠𝑟 , for 𝑝0.8, plotted against 𝐾, for the different mixtures. The 

open symbols show the data taken from Bradley et al. (2007b), whilst filled 
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symbols are from the present study. The dotted curve shows the best fit curve 

through the data from Bradley et al. (2007b), given by the Eq. (1.43), and the 

solid curve is the best fit through all the data points, including the present 

ones. This gives,  

𝑀𝑎𝑠𝑟 = -2.24 ln (𝐾) +3.8                                           (3.2) 

Unsurprisingly, the quenching tendency is increased with an increase in 𝐾, 

whilst at the larger values of 𝐾, negative values of 𝑀𝑎𝑠𝑟 become necessary 

for flame survival. No flame quenching was observed for H2/air at 𝑀𝑎𝑠𝑟  = -2.8 

(Bradley et al., 2007b), even when 𝑢′ was increased to 10 m/s, the maximum 

attainable value with the present fan-stirred vessel. 

 

Figure 3.25 Measured K values at p0.8 as a function of Masr. Open 
symbols from (Bradley et al., 2007b), and solid symbols from the present 
study (Bradley et al., 2019). 

These correlations contribute to the revised form of Fig. 1.10, with the plot of 

𝑈 against 𝐾 for different 𝑀𝑎𝑠𝑟 in Fig. 3.26. Mindful that values of 𝑀𝑎𝑠𝑟 are not 

known with high accuracy, the plots of 𝑈 against 𝐾 for different 𝑀𝑎𝑠𝑟 were 
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expressed by the bold curve in Fig. 3.26 as a new quenching regime 

boundary. The onset of flame quenching is defined by 𝑝0.8. In addition to the 

influences of the correlations in Fig. 3.25, due regard was paid to the observed 

sustainability of near-marginal flames, such as those in Fig. 3.23, in 

constructing the curve for the onset of quenching. This curve is obtained by 

using a best fit curve through the experimental quench points shown by solid 

symbols and an empirical correlation is evaluated. Since 𝑈 is a function of 

𝑀𝑎𝑠𝑟 and 𝐾, the best fit curve presented in Fig. 3.25 should also hold good for 

the quench limit, shown by the solid line in Fig. 3.26. The quench regime now 

covers higher values of 𝐾 and 𝑀𝑎𝑠𝑟. Using the 𝑀𝑎𝑠𝑟/ 𝐾 correlation of Fig. 

3.25, the 𝑀𝑎𝑠𝑟 values for different 𝐾 from Eq. (3.2), were used to calculate 𝑈 

values for different 𝐾, using Eqs. (1.32) to (1.34).  

 

Figure 3.26 Diagram of turbulent combustion, including the new limits of 
quenching for p0.8. Dashed curve is the limit reported in (Bradley et al., 
2013). Symbols show the present experimental points (Bradley et al., 
2019). 
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3.7 Frames of Partial Quenching Flames Resulted from 

Laser Swinging Sheet 

Figure 3.27 gives an example of a consequence of centre sheet image of 

partially quenched lean H2/air mixture, 𝜑 =0.15 at 0.5 MPa, 365K and 𝑢’= 3 

m/s where this data point is located on the new quenching border on U/K 

diagram at 𝐾=15.5 and 𝑀𝑎𝑠𝑟 = -2. It was not possible to reconstruct this flame, 

despite this case being approached after long trials of capturing a fully 

quenching flame, due to the high distortion. Flame edges cannot be 

addressed here. These trials could be enhanced using an imaging laser with 

a higher reputation rate than the currently available one. 

 

 

  

(a) (b) (c) 

        Figure 3.27 Centre sheets of three consecutive sweeps for a partially 
quenched H2/air mixture, φ = 0.15 at 0.5 MPa, 365 K and u’= 3 m/s, K 
=15.5. 
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Chapter 4 - Results of Deflagration to Detonation Transition 

(DDT) in Stoichiometric H2/O2 Mixture 

4.1 Introduction 

The analysis is based on a one dimensional DDT, as in (Bradley et al., 2008), 

and indicated by Fig. 4.1, with an accelerating flame that creates an ever-

stronger shock wave. Major factors for the attainment of laminar flow DDT are 

low values of 𝜏𝑖, combined with high values of 𝑢ℓ and kinematic viscosity, 𝜈. 

This schematic diagram depicts the propagation of the flame from the closed 

end of a duct, generating a shock wave ahead of it.  

 

Figure 4.1 Flame and shockwave propagation in an open-ended tube. 
Ignition initiated from the closed end (Bradley et al., 2008). 

The analytical approach requires a detailed knowledge of 𝑢ℓ of the mixture, 

as well as of 𝜏𝑖, both at high temperatures and pressures. Limitations of the 

approach are the one dimensionality, incomplete and insufficiently accurate 

data on 𝑢ℓ and 𝜏𝑖, and no allowance for transverse weak shock waves. 

In (Bradley et al., 2008),  it is shown that the flame speed in the duct is given 

by: 

𝑆𝑓 = (𝐴 𝑎)𝜎𝑢ℓ⁄ ,                     (4.1) 

in which 𝐴 is the flame surface area, 𝑎  the cross sectional area of the duct, 

and 𝜎 the ratio of unburned to burned gas density. The gas velocity ahead of 

the flame, towards the shock, 𝑆𝑔, is given by: 

𝑆𝑔 = (𝐴 𝑎)(𝜎 − 1)𝑢ℓ⁄ .                (4.2) 

Close to the shock wave, if 𝑆ℎ is the shock wave speed along the duct, and 

𝑢2, the gas velocity relative to the shock wave, away from it and towards the 

flame, then, 

𝑆𝑔 =  𝑆ℎ − 𝑢2.                (4.3)  
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The increased temperature and pressure due to the confinement and shock 

increase 𝑢ℓ, which also elongates the flame area, both of which further 

increase 𝑆𝑔 and strengthen the shock. 

It is assumed that there is no gas velocity just ahead of the shock wave, where 

conditions of the unburned gas are designated by the suffix 1. The unburned 

gas velocity, 𝑢1, into the shock wave, and relative to it, must be equal to 𝑆ℎ. 

The shock wave equations (Bradley et al., 2008) give the ratio of velocities 

into and out of the planar shock wave as:  

𝑢2

𝑢1
=

2+(𝛾−1)𝑀1
2

(𝛾+1)𝑀1
2  .              (4.4) 

Here 𝑀1 is the Mach number associated with the speed of the shock wave 

along the duct, given by 𝑢1 𝑎1⁄ , with 𝑎1, the acoustic velocity ahead of the 

shock.  

Equation (4.3), with 𝑆ℎ = 𝑢1, yields: 

𝑆𝑔 𝑢1⁄ = 1 − 𝑢2 𝑢1⁄  ,               (4.5) 

which, with Eq. (4.4), gives 

𝑆𝑔 = 
2(𝑀1

2−1)𝑎1

(𝛾+1)𝑀1
 .               (4.6) 

Equations (4.2) and (4.6) give a quadratic equation in 𝑀1 with a real solution: 

𝑀1 = (𝑐 2⁄ ) + (1 + 𝑐2 4⁄ )1/2, where                     (4.7) 

𝑐 = (𝑆𝑔 𝑎1⁄ )(𝛾 + 1)/2 = (𝐴 𝑎)⁄ 𝑢𝑙(𝜎 − 1)(
𝛾+1

2𝑎1
).          (4.8) 

The pressure and temperature ratios at the planar shock wave are given by: 

𝑝2

𝑝1
=

2𝛾𝑀1
2

𝛾+1
−

𝛾−1

𝛾+1
 , and                      (4.9) 

𝑇2

𝑇1
= (

2𝛾𝑀1
2−(𝛾−1)

(𝛾+1)
)(

2+(𝛾−1)𝑀1
2

(𝛾+1)𝑀1
2 ) .          (4.10) 

The 𝑐 parameter provides a link to the flame equations. A high value of 𝑐 

implies high values of 𝑀1 and of the pressure and temperature ratios at the 

shock, with a consequent increased propensity for autoignition. 
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4.2 Evaluating the Laminar Burning Velocity of 

Hydrogen/oxygen Mixture 

To understand the acceleration of this mixture, it is essential to know the 

relevant properties. As the flame propagates, a shock wave forms in front of 

it as the gas velocity ahead of the flame increases. After the shock, values of 

pressures and temperatures can be high, so that there is a dearth of values 

of 𝑢ℓ, not least because of the increased hazard in making measurements. 

Bartholomé (1949) measured 𝑢ℓ for stoichiometric H2/O2 at 298 K and 0.1 

MPa, using a burner. Koroll and Mulpuru (1988)  later made measurements 

under atmospheric conditions for the stoichiometric mixture with diluents using 

a nozzle-burner. 

Gelfand et al. (2012) reviewed the variations of 𝑢ℓ with temperature for 

stoichiometric H2/O2 at atmospheric pressure, using burner results from (Edse 

& Lawrence, 1969) and the computations of (Kusharin et al., 1995). The 

experimental measurements were confined to maximum values of about 500 

K. Computed values covered a wider range. Kuznetsov et al. (2005a) 

calculated 𝑢ℓ for the mixture using the FP code (Gavrikov et al., 2001)  in the 

pressure range 0.02 to 0.8 MPa, at 300 K.  

Numerical and experimental evaluations of 𝑢ℓ for stoichiometric H2/O2 mixture 

in (Kuznetsov et al., 2011) have different proportions of steam between 0.1 

and 7.2  MPa and temperatures from 383 to 573 K. Steam concentrations 

were between 0 and 80% H2O. The highest 𝑢ℓ values without steam were 29.8 

and 24.9 m/s at 1 and 7.2 MPa, respectively, and 573 K. The burning velocity 

was calculated using four different H2/O2 kinetic mechanisms. Computed 𝑢𝑙 

data, using the reduced mechanism of Boivin et al. (2011), extending to 10 

MPa and 750 K, have been presented by Mari et al. (2016). These data 

included in Fig. 4.2, show the effect of temperature, up to about 800 K, at 

atmospheric pressure, for stoichiometric H2/O2, along with data from six 

different studies. 



Chapter 4:              Results of DDT in 2H2/O2 Mixture 

 

95 

 

 

Figure 4.2 Measured and computed values of ul for stoichiometric H2/O2 
at atmospheric pressure. 

 

Although these available data on laminar burning velocity are valuable, they 

are not enough as they are limited to less than 800 K and extrapolation of 

these values is necessary. 

Values of 𝑢ℓ  at 𝑇 and 𝑃 are empirically correlated over a given range of 𝑇 and 

𝑃 by: 
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𝑇0
)𝛼(
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)𝛽,                      (4.11) 

with 𝛼 and 𝛽 numerical constants, and 𝑇0 and 𝑃0 a reference temperature and 

pressure. The value 𝑢ℓ0 is the laminar burning velocity at the reference 
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𝛽 were plotted against against maxima of 𝑃 or 𝑇 over the respective ranges 

and these values were extrapolated to values at higher 𝑃 and 𝑇. The 

associated extrapolated values of 𝑢ℓ are shown by the broken curve, up to 

1100 K, in Fig. 4.3.  

 

Figure 4.3 Best fit curve and extrapolated values of ul for stoichiometric 
H2/O2 at atmospheric pressure. 

 

The effect of pressure is shown for different temperatures in Fig. 4.4. The 

computed data in (Kuznetsov et al., 2011) extended to 7.2 MPa and employed 

a variety of different reaction mechanisms. The mechanism of  (Lutz, 1988) 

was recommended in (Kuznetsov et al., 2011), due to its good agreement with 

that of (Maas & Warnatz, 1988). Gelfand et al. (2012) employed kinetic 
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Fig. 4.4 in the form of different isothermal values of 𝑢ℓ as a function of the 

pressure, 𝑃2.  

 

Figure 4.4 Measured and computed values of ul for stoichiometric H2/O2 
for different temperatures up to 750 K from different sources. 

 

Figure 4.5 presents an extensive range of experimental, theoretical, and 

extrapolated values of 𝑢ℓ plotted against pressure for different isotherms 

relevant to the present work. Temperatures extend to 1100 K and pressures 

to 7.2 MPa. Extrapolated values are indicated by dotted curves. There is 

clearly a dearth of data at the higher temperatures, with excessive reliance on 

extrapolated values. An essential role of the 𝑢ℓ data is, for a given value of 𝑐, 

the derivation of the minimal value of 𝐴/𝑎 for autoignition from Eq. (4.8). This 

value, along with that of 𝜎, also enable 𝑆𝑓 to be found from Eq. (4.1). 
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Figure 4.5 Variations of ul for stoichiometric H2/O2 with pressure and 
temperature. Extrapolated values indicated by dotted curves (Bradley & 
Shehata, 2018). 

 

4.3 Calculating the Values of Autoignition Delay Times of 

Stoichiometric Hydrogen/oxygen Mixtures 

To evaluate the probability of detonation, auto-ignition delay time data should 

be available. Detonation and autoignition delay time are inversely related. If 

the autoignition delay time is short enough as mentioned in Section 1.4, 

detonation will be facilitated. Bradley et al. (2008), estimated that the 

attainment of a DDT in a duct of 7 m length would require a value of 𝜏𝑖 of less 

than 3.8 ms. The procedure adopted was to identify the values of 𝑐 and the 
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Bearing in mind the practical length of a detonation tube, autoignition delay 

times,  𝜏𝑖, of the order of 1 ms might be necessary for the onset of autoignition 

and a DDT, without excessive tube lengths.  

Many chemical kinetic modelling studies (Ivanov et al., 2011a; Ivanov et al., 

2011b; Kiverin et al., 2013; Liberman et al., 2012; Meyer & Oppenheim, 1971; 

Smirnov et al., 2013; Voevodsky & Soloukhin, 1965) have yielded 𝜏𝑖 values 

for stoichiometric H2/O2 at different pressures and temperatures. In an early 

study, Voevodsky and Soloukhin (1965)  measured 𝜏𝑖 in a shock tube at 0.1, 

0.2 and 0.3 MPa, and compared these values with those from a chemical 

kinetic model. The comparison showed discrepancies at low temperatures. In 

a later experimental study on explosion limits with strong and weak 

autoignition, Meyer and Oppenheim (1971) employed the kinetic schemes of 

Skinner and Ringrose (1965) and (Gardiner & Wakefield, 1969) to obtain 𝜏𝑖 at 

different temperatures, in the pressure range 0.02 to 0.2 MPa. 

Ivanov et al. (2011b) studied the effect of the width of the no-slip wall duct at 

different diameters on the onset of detonation for stoichiometric H2/O2. The 

study was performed under atmospheric conditions with different chemical 

kinetics in six reaction schemes (Bokhon et al., 1998; Gal’burt et al., 2007; 

Popov, 2007; Shatalov et al., 2009; Smith et al., 1999; Starik & Titova, 2003) 

and a one-step Arrhenius kinetic scheme. 

Liberman et al. (2012)  studied the effect of initial temperature non-uniformity 

on the initiation of chemical reaction and propagation of combustion waves, 

and employed a detailed chemical kinetic model to compute 𝜏𝑖 for 

stoichiometric H2/O2 and H2/air mixtures between 0.001 to 5 MPa. Values of 

𝜏𝑖 for stoichiometric H2/O2 at sub-atmospheric pressures were included in the 

mathematical model of Smirnov et al. (2013) in the range 0.01 to 10 MPa. 

These values of 𝜏𝑖 for stoichiometric H2/O2 from (Liberman et al., 2012) and 

(Smirnov et al., 2013) at different temperatures, for pressures above 

atmospheric, are shown in Fig. 4.6. Also shown, are the earlier computed and 
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lower experimental (triangle symbol) data of Voevodsky and Soloukhin 

(1965).  

Of particular interest is the sharp decrease in 𝜏𝑖 at the highest temperatures 

when the pressure falls to 0.3 MPa. Figure 4.7 shows values of 𝜏𝑖 at sub -

atmospheric pressures, and the same trend continues down to about 0.04 

MPa, when it is reversed, and 𝜏𝑖 increases with pressure decrease. 

 

Figure 4.6 Autoignition delay time of stoichiometric H2/O2 mixture at 
different temperatures and pressures > 0.1 MPa. 
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Figure 4.7 Autoignition delay time of stoichiometric H2/O2 mixture at 
different temperatures and sub-atmospheric pressures. 
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temperatures in Fig. 4.8. All of these values are computed, except the 

experimental results of Voevodsky and Soloukhin (1965), which again are 

significantly less than the modelled values. The modelled results of Liberman 

et al. (2012), and Smirnov et al. (2013) are also shown.  
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Figure 4.8 Autoignition delay time of stoichiometric H2/O2 at different 
temperatures at 0.1 MPa. 

 

The low pressure data in Fig. 4.9 compare earlier values of Meyer and 

Oppenheim (1971) with the current computations using the data of Varga et 

al. (2015) at pressures of 0.04, 0.06 and 0.08 MPa (Appendix A). Low 

pressures, combining low values of 𝜏𝑖 and high values of 𝜈 are conducive to 

laminar DDT.  
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Figure 4.9 Comparison of ignition delay time between Meyer and 
Oppenheim (1971) and the present simulation using Varga et al. (2015) 
mechanism. 

 

The review in Olm et al. (2014) favours that of Kéromnès et al. (2013), 

optimised by Varga et al. (2015), and based on the CHEMKIN code ("Design 

Reaction, CHEMKIN  ", 2013). This was employed in the present work, after 

review of the results shown in Figs. 4.9 to 4.12. These current computations 

give values close to the average of all the data in Fig. 4.11. 
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Figure 4.10 Autoignition delay time of stoichiometric H2/O2 mixture at 
high pressures compared with present simulation at 1 MPa. 
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Figure 4.11 Autoignition delay time of stoichiometric H2/O2 mixture at 0.1 
MPa compared with present simulation. 

Figure 4.12 shows values of 𝜏𝑖, and utilised in the present work. The lowest 

values of 𝜏𝑖 occur at the highest temperatures between 0.01 and 0.04 MPa. 

Below 1000 K, values of 𝜏𝑖 peak between 0.1 and 0.3 MPa and then decrease 

with decreasing 𝑃 down to about 0.06 MPa. They then increase with further 

decrease in the pressure. From Fig. 4.12, a regime of minimal 𝜏𝑖 exists below 

0.08 MPa and above 900 K, characterised by low 𝜏𝑖 and activation energies, 

given by: 

𝐸 𝑅⁄ = 𝜕 𝑙𝑛𝜏𝑖 𝜕(1 𝑇⁄ )⁄ .           (4.12) 

where the auto-ignition delay time is expressed by : 

𝜕𝜏𝑖

𝜕𝑇
= 𝜏𝑖(

𝐸

𝑅𝑇2)             (4.13) 
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Figure 4.12 Autoignition delay times of stoichiometric H2/O2 employed in 
the present work (Bradley & Shehata, 2018). 

The present analysis is for a variety of conditions, with the initial pre-shock 

temperature, 𝑇1, equal to either 300 or 375 K. It is necessary to derive values 

of 𝑐 for the different values of 𝜏𝑖. For a given 𝜏𝑖, associated values of 𝑇2  and 

𝑃2  are identified in Fig. 4.12. For the given value of 𝑇2, because 𝑇1 is known, 

𝑀1 can be found from Eq. (4.10). This enables 𝑐 to be found from Eq. (4.7). 

Values of 𝑐 are consequently a function of 𝑇2 only.  

In the same way, with the same value of 𝑀1, because 𝑃2 is known, the pre-

shock pressure, 𝑃1, can be found from Eq. (4.9). This approach enables 

isobars to be constructed based on different values of 𝑃2 and 𝑃1, as shown in 
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Fig. 4.13 for 𝑇1 = 300 K. The isobars are labelled with the value of 𝑃1. Values 

of 𝑐 are shown for different values of 𝑇2 to the right of the 𝑃1 = 0.1 MPa isobar. 

 

Figure 4.13 Different isobars, showing the T2/P2/c relationship for T1= 
300 K, and 𝝉𝒊 values of 1 and 5 ms. Values of c on the right of P1= 0.1 
MPa isobar. 
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Section 
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increase in flame area is entirely due to the increasing elongation of the flame 

front accompanying increases in 𝑢ℓ, both of which increase 𝑆𝑔. Values of 𝐴/𝑎 

are significantly larger than for turbulent flames. 

The explosive growth in 𝐴/𝑎 results in a very rapid acceleration in 𝑆𝑔 as 

autoignition is approached. The numerical simulations of Gamezo and Oran 

(2006)  of flame propagation of stoichiometric acetylene/oxygen in hypodermic 

tubes revealed rapidly accelerating flames that attained values of 𝐴/𝑎 of up to 

30 in 0.5 ms in channel lengths of up to 8 cm. As the boundary layer 

developed, so did the velocity profile across the channel and the shape of the 

flame was similar to the velocity profile. With such a similarity the flame length 

is proportional to 𝑆𝑔. 

In a study of the more sedate transition of a laminar flame from a spherical 

kernel to a finger-shaped front at the entry to a tube, Bychkov et al. (2007)  

derived an approximate expression  for 𝐴/𝑎:  

𝐴 𝑎⁄ =
2𝜎2

𝜎+1
            (4.14) 

As the flame thickness tended to zero, 𝐴/𝑎 tended to 14. 

With a larger diameter, of 21 mm, Kerampran et al. (2001) observed a rapid 

acceleration of a stoichiometric propane/air flame as it rapidly elongated, 

attaining an an 𝐴/𝑎 value of 9.3 after 12 ms in a duct length of 1.6 m.  

With a parabolic distribution of the flow velocity, 𝑢, at radius, 𝑟, in a tube of 

diameter, 𝐷, is given by Massey (1989): 

𝑢 = 2𝑆𝑔(1 − 4 𝑟2 𝐷2⁄ )           (4.15) 

The maximum velocity is 2𝑆𝑔 at the centre of the tube, and the flow strain rate 

is a maximum at the tube walls, given by:  

(𝑑𝑢 𝑑𝑟⁄ )𝑚 = 8 𝑆𝑔 𝐷⁄             (4.16) 
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4.5 Flame Extinguishing of H2/O2 Mixtures and the 

Possibility of Laminar Autoignition 

Although the explosive increases in both 𝑢𝑙 and 𝐴/𝑎 very effectively increase 

𝑆𝑔, the increasingly high strain rate at the tube walls due to 𝑆𝑔  can lead to 

localised flame extinctions there and flame flashback. 

To assess this possibility for laminar flames a generalised laminar extinction 

Karlovitz stretch factor, 𝐾𝑞𝑙+ has been employed in an attempt to generalise 

the accumulated data on such extinctions. This is the hydrodynamic strain rate 

normalised by a chemical time, given by the laminar flame thickness, 

expressed by 𝜈 𝑢ℓ ⁄ , divided by 𝑢ℓ (Bradley et al., 2007b), Hence, 

𝐾𝑞𝑙+ = (8 𝑆𝑔 𝐷⁄ ) 𝜈 𝑢ℓ
2 ⁄ .           (4.17) 

For strain rate Markstein numbers between -2 and +2, 𝐾𝑞𝑙+ is approximately 

unity. Because of the difficulty of generating and measuring extinguishing 

stoichiometric H2/O2 flames, no data are known to the author for stoichiometric 

H2/O2 extinction, but some data are available for lean H2/air flames (Dong et 

al., 2005). An extensive extrapolation of these data to the stoichiometric H2/O2 

conditions suggested a value of 𝐾𝑞𝑙+ of about 2. While a degree of quenching 

might be tolerated, an increase in 𝐷 would be necessary to reduce it. Close to 

this limit, it was calculated that the viscous dissipation term in the energy 

equation showed the mixture could be sufficiently heated to autoignite, 

although heat loss to the wall would reduce this. For some time there has been 

strong evidence for such boundary layer-induced autoignitions (Sivashinsky, 

2002). 

Numerical simulations for H2/O2 mixtures (Dziemińska & Hayashi, 2013) show 

the shock wave heating the boundary layer. This is followed by secondary 

shock waves, between the main shock and the flame, further heating the 

boundary layer, to the point of autoignition, with transition to detonation. 
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In contrast, with micro tubes the heat loss will be significant, although 

insufficient to inhibit strong flame acceleration and possible transition to 

detonation. In the earlier stages, the effect would be to require a longer 

transitional distance. In the final stage of a transition to auto-ignition, there is 

a similar effect.  

4.6 Results of the Laminar Deflagration to Detonation 

Transition 

The crucial limiting conditions for autoignition in laminar flow rest upon the 

attainment of the limiting Reynolds number, 𝑅𝑒𝑐 = 2300 for such flow. The 

corresponding critical values of 𝐷 are 𝐷𝑐. These are are listed in Tables 4.1 

and 4.2 for 𝑇1 = 300 K, with 𝜏𝑖 =1 and 5 ms, and in Table 4.3 and 4.4 for the 

more reactive conditions of 𝑇1 = 375 K with 𝜏𝑖 = 0.1 and 0.05 ms. All Tables 

cover the same three different values of 𝑃2, whilst Tables 4.1 and 4.2 

additionally cover two further values. Tables 4.1& 4.2 tend to be characterised 

by higher values of 𝑐 and lower values of 𝑇2, and Tables 4.3 & 4.4 by lower 

values of 𝑐 and higher values of 𝑇2.  

The parameters are presented, reading from left to right, in the order they are 

presented at the ends of Sections 4.2 and 4.3. Values of Dc are found from 

the values of 𝑆𝑔 and 𝜈. In addition to 𝑅𝑒𝑐, 𝐾𝑞𝑙+ can be a limiting factor, and 

these values comprise the final listing in the Tables. Values of  𝜎, 𝛾 and 𝜈 were 

found from the GasEq code (Morley, 2005) and those of 𝑆𝑔 were found from 

the different values of 𝑐 and Eq. (4.8).  

Bearing in mind the restrictive influences of high values of 𝐾𝑞𝑙+ and the 

practical problems of values of Dc less than 0.4 mm, only four conditions seem 

practical for autoignition in laminar flow. These conditions are identified by A, 

B, C, D, adjacent to the final 𝐾𝑞𝑙+ column. This is rather restrictive, because, 

in practice, the generation of some turbulence is favourable and will be 

discussed in Section 4.7.  
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4.6.1 Analysis of the Possibilities of Laminar Deflagration to 

Detonation Transition 

A key factor is that 𝑆𝑔 must be large enough to create autoignition and, yet not 

so large as to exceed Rec. As a consequence, for laminar autoignition, 𝜈 

should be large in order to make 𝐷 as large as possible. This also beneficially 

reduces 𝐾𝑞𝑙+.   

From Table 4.1, for 𝑇1 = 300 K and 𝜏𝑖 =1 ms, if the value of 𝐾𝑞𝑙+ = 4.5, which 

exceeds the extrapolated limit of 2, were to be accepted then 𝐷 could be 1 

mm. The corresponding value of 𝐴/𝑎 of 18 is rather high but might be 

attainable. More cautiously, a lower value of 𝐷 = 0.43 mm would probably be 

more practical, with 𝐾𝑞𝑙+= 2.6 and 𝐴/𝑎 = 14.7. In practice, if Rec were to be 

exceeded, micro-turbulence would develop on the large flame area, 𝐴, 

increasing the burning velocity and further strengthening the shock. Flame 

imaging of such flames suggests their appearance would initially be 

indistinguishable from that of a laminar flame.  

It is difficult to know the upper limit to 𝐾𝑞𝑙+, because of the uncertainty in the 

extrapolated value and the degree of quenching that might be tolerated, yet 

partially countered by dissipation-induced autoignition, with an upper limit of 

2.6, only the bottom three entries in Tables 4.1 and 4.2 would support a purely 

laminar autoignition. Tables 4.3 and 4.4 cover more reactive mixtures, 

resulting from preheating to 375 K. For 𝜏𝑖 = 0.05 ms, a maximum value of 𝐷𝑐 

of about 1.3 mm is possible, albeit at a low value of 𝑃1 and high value of 𝐴/𝑎. 

At the higher values of 𝑃2 of 0.3 MPa, higher values of 𝑆𝑔 are required, and 𝐷 

becomes impractically smaller.  

The laminar flames become more elongated with increasing 𝑢ℓ, leading also 

to an associated increase in 𝐴/𝑎. Consequently, autoignition is enhanced, not 

only by a high value of 𝑢ℓ, but also by the associated increase in flame surface 

area.  

Of the different values of 𝐷𝑐 listed in the Tables, only those four between 0.42 

and 0.52 mm would seem to be in any way practical for laminar autoignition. 
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With 𝜏𝑖 = 1 ms, autoignition is probable and practical. At the higher values of 

𝑆𝑔, 𝐷𝑐 becomes impractically small, with values of less than 0.1 mm. 

It is estimated for Condition B, in Table 4.4, with 𝐷𝑐= 0.494 mm, that in the 

critical region between the shock wave and the flame, heat transfer would 

reduce the mixture temperature by about 36 K from 997 K. In practice, this 

would require further flame acceleration and compression before autoignition. 

If the large value of 𝐾𝑞𝑙+ proved to be not so inhibiting, the condition labelled 

E in Table 4.3, would have a reduced heat transfer rate due to the larger 𝐷𝑐 

of 1.35 mm. In this case, the mixture temperature 1131 K would only fall by 8 

K (Appendix A).
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Table 4.1 Autoignitions of stoichiometric H2/O2 with 𝝉𝒊= 1 ms at T1= 300 K. 

𝑇1  

(K) 

𝑃2  

(MPa) 

𝑇2  

(K) 

𝑐 𝑀1 𝑃1 (MPa) 𝑆𝑔  

(m/s) 

𝑢ℓ (m/s) 𝐴/𝑎 𝜎 𝜈  (m2/s) 𝑆𝑓  

(m/s) 

𝐷𝑐   

(mm) 

𝐾𝑞𝑙+  

300 0.01 941.9 3.07 3.37 0.00076 1381 22.3 38 2.62 2.6E-3 2231 4.3 13.3  

300 0.04 888 2.9 3.23 0.0033 1313 36.5 19 2.9 5.8E-4 2007 1 4.4  

300 0.1 936 3.06 3.36 0.0077 1374 50.7 14.7 2.83 2.6E-4 2123 0.43 2.6 C 

300 0.3 1040 3.33 3.61 0.02 1498 73 12.3 2.67 1.0E-4 2394 0.16 1.5  

300 1 1043.8 3.34 3.62 0.066 1502 80 10.7 2.76 3.0E-5 2355 0.05 1.2  

Table 4.2 Autoignitions of stoichiometric H2/O2 with 𝝉𝒊= 5 ms at T1 = 300 K. 

𝑇1  

(K) 

𝑃2  

(MPa) 

𝑇2  

(K) 

𝑐 𝑀1 𝑃1 (MPa) 𝑆𝑔  

(m/s) 

𝑢ℓ (m/s) 𝐴/𝑎 𝜎 𝜈  (m2/s) 𝑆𝑓   

(m/s) 

𝐷𝑐   

(mm) 

𝐾𝑞𝑙+  

300 0.01 822 2.72 3.05 0.00094 1224 17.6 35.3 2.96 2.1E-3 1848 3.87 16.7  

300 0.04 851 2.81 3.13 0.0036 1264 35 18 3 5.5E-4 1895 0.997 4.5  

300 0.1 920 3.01 3.31 0.008 1354 49 14.6 2.9 2.5E-4 2074 0.42 2.6 D 

300 0.3 1000 3.23 3.5 0.021 1451 67 12.3 2.77 9.5E-5 2273 0.15 1.6  

300 1 973 3.16 3.45 0.073 1419 70 10.4 2.94 2.7E-5 2150 0.044 1.4  
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Table 4.3 Autoignitions of stoichiometric H2/O2 with 𝝉𝒊= 0.05 ms at T1 = 375 K. 

𝑇1  

(K) 

𝑃2  

(MPa) 

𝑇2  

(K) 

𝑐 𝑀1 𝑃1 (MPa) 𝑆𝑔  

(m/s) 

𝑢ℓ (m/s) 𝐴/𝑎 𝜎 𝜈  (m2/s) 𝑆𝑓  

(m/s) 

𝐷𝑐   

(mm) 

𝐾𝑞𝑙+  

375 0.04 1131 2.97 3.27 0.0032 1488 57.7 19.5 2.323 8.8E-4 2614 1.35 2.3 E 

375 0.1 1061 2.81 3.13 0.0089 1407 64.23 14.3 2.532 3.2E-4 2325 0.517 1.7 A 

375 0.3 1092 2.88 3.19 0.026 1443 78.6 11.8 2.556 1.1E-4 2371 0.175 1.2  

Table 4.4 Autoignitions of stoichiometric H2/O2 with 𝝉𝒊 = 0.1 ms at  T1 = 375 K. 

𝑇1  

(K) 

𝑃2  

(MPa) 

𝑇2  

(K) 

𝑐 𝑀1 𝑃1 (MPa) 𝑆𝑔  

(m/s) 

𝑢ℓ (m/s) 𝐴/𝑎 𝜎 𝜈  

(m2/s) 

𝑆𝑓  

(m/s) 

𝐷𝑐  

(mm) 

𝐾𝑞𝑙+  

375 0.04 1031.7 2.73 3.06 0.00372 1371 48 18.8 2.52 7.5E-4 2272 1.26 2.8  

375 0.1 997 2.65 2.98 0.0098 1327 56.9 13.9 2.678 2.8E-4 2118 0.494 1.9 B 

375 0.3 1072.6 2.83 3.15 0.0263 1420 75.8 11.73 2.597 1.1E-4 2309 0.173 1.2  



Chapter 4:              Results of DDT in 2H2/O2 Mixture 

 

115 

 

4.7 Laminar with Mild Turbulence Autoignition of 

Stoichiometric H2/O2 Mixture 

Introducing turbulence makes the mixture easier to autoignite than laminar 

flames.  Computations for turbulent autoignition were carried out for the less 

reactive conditions in Tables 4.1 and 4.2 at 𝑇1 = 300 K. Here the transition 

regime of laminar flamelet/turbulent instabilities shown in Fig. 4.14 as regime 

(A). As described, the diagram is expressed as a function of a particularly 

important parameter, 𝑀𝑎𝑠𝑟 

Markstein number for H2/O2 was not well covered in the literature except for 

diluted H2/O2 mixtures reported by (Kwon & Faeth, 2001) and diluted 

H2/30%O2/70%N2 by Qiao et al. (2005) and steam diluted H2/O2 by Kuznetsov 

et al. (2011). 

Kuznetsov et al. (2011) reported 𝑀𝑎 for undiluted stoichiometric H2/O2 at 573 

K and 1 bar as 0.144. Comparing this case to the studied case at 300 K and 

sub-atmospheric pressure, 𝑀𝑎 was predicted to be about 1 at a location 

denoted by (F) in Fig.4.14.   

 

Figure 4.14 Turbulent combustion regime (U/K) diagram (Bagdanavicius 
et al., 2015) with laminar/turbulent condition (F). 
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Equations (4.2) and (4.8) in addition to the turbulent to laminar burning velocity 

ratio (Bradley et al., 2008) is readily shown that: 

𝑢𝑡 𝑢ℓ⁄ = 𝑈(
𝑢𝑘

′

𝑢′)(4𝐾)
2

3(
𝑢𝑙𝑙

𝜈
)1/3,           (4.18) 

where 𝑙 is the integral length scale of turbulence in the tube. This value was 

evaluated as a function of tube diameter as follows (Laufer, 1951): 

𝑙 = 0.1 𝐷             (4.19) 

Using Eqs. (1.24) & (4.8): 

𝐾 = 0.25(𝑢′ 𝑢ℓ)⁄ 3/2
(𝜈 𝑢ℓ𝑙)⁄ 1/2

,          (4.20) 

and 

𝑐 = (
𝐴

𝑎
) 𝑈 [

𝐾

0.25
(

𝑢ℓ𝑙

𝜈
)0.5]

2

3
𝑢ℓ(𝜎 − 1) (

𝛾+1

2𝑎1
).                    (4.21) 

The study based on comparing the laminar cases with the mild turbulent case 

at initial temperature 300 K in a similar tube size. 

The calculations are characterised by: 

i. Selecting a value of 𝑐 for initial conditions that can give a required value 

of 𝜏𝑖 at a particular 𝑃2 and 𝑇2. 

ii. By replacing 𝑢ℓ with 𝑢𝑡 in Eq. (4.8) and using Gaseq code (Morley, 

2005) for equilibrium properties for the mixture to find 𝑢𝑡. 

iii. Deciding the value of 𝑙 and duct diameter, 𝐷, recognising the coupling 

between them. 

iv. Finding 𝑠𝑔 from Eq. (4.8) and deriving 𝐾𝑞𝑙+. 

All properties and the results for laminar/turbulent mixture are listed in Table 

4.5.  
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Table 4.5 Laminar-turbulent autoignitions of stoichiometric H2/O2 with 𝝉𝒊=0.4 
ms at T1 = 300 K. 

Case F 

𝑇1  (K) 300 

𝑃2  (MPa) 0.11 

𝑇2 (K) 950 

𝑐  3.27 

𝑀1  3.56 

𝑃1 (MPa) 0.0077 

𝑆𝑔  (m/s) 1500 

𝑢ℓ (m/s) 53.6 

𝐴/𝑎  8.5 

𝜎    2.8 

𝜈 (m2/s) 2.37E-4 

𝑙 (mm) 0.2 

𝐷 (mm) 2 

𝐾𝑞𝑙+  0.018 

 

Results show that turbulence facilitated autoignition for H2/O2 to auto-ignite at 

the same temperature and similar tube size of the laminar cases C and D in 

Tables 4.1 and 4.2 with an ignition delay time of 0.4 ms. 𝐴/𝑎 ratio was 8.5 

comparing to cases C and D.  𝐾𝑞𝑙+ was low enough to resist the quenching of 

the flames. 
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Chapter 5 – Discussion of DDT and Flame Quenching 

5.1 Discussions of Laminar and with Mild Turbulent Auto-

ignition 

In case of laminar autoignition, the four most probable conditions, A-D, had 

been established in Tables 4.1 to 4.4 in Section 4.6.1, the likelihood of a 

detonation remains to be assessed alongside the laminar/mild turbulent 

autoignition, condition, F (Section 4.7). Unlike condition C and D, condition F 

is more reactive as they all have the same initial temperature, and pressure 

despite in the mild turbulence condition, the tube size is a bit bigger but, it is 

still comparable. 

In addition to a developing detonation, the other possibilities, following upon 

autoignition, include continuing normal flame propagation, and thermal 

explosion. These regimes were located relative to the detonation peninsula 

shown in Fig. 5.1. This plots the ratio of acoustic to autoignitive velocity, 𝜉, 

against 𝜀  as described in Section 1.4.3. 

Values of 𝜏𝑖 and 𝐸/𝑅 at 𝑃2 and 𝑇2, for the five conditions A to F, were obtained 

from Fig. 4.12 of autoignition delay times of H2/O2 at different pressures and 

temperatures. Those of 𝜏𝑒 were found by computing the temporal heat release 

rates, as outlined in (Bates et al., 2017b), using the Cantera code (Goodwin, 

2005). The pressure, 𝑃2, for the five selected diameters was the same and 

equal to 0.1 MPa, but the temperatures, 𝑇2, were variable. The values of these 

parameters, from which they are derived, are given in Table 5.1. A value of 

(𝑑𝑇 𝑑𝑟⁄ )𝑐  =  1 K/mm, occurred at 𝑇2 = 1040 K.  

To evaluate 𝜉, it was necessary to attribute a general value to (𝑑𝑇 𝑑𝑟⁄ ) in Eq. 

(1.44). This value is determined less by the physico-chemical parameters and 

more by micro-flow patterns and energy transfers that are variable, and 

stochastic. A value of -2 K/mm was chosen, on the basis of engine and other 

measurements (Bates et al., 2017b). Values of 𝐸̅ are given in Table 5.1 for an 

assumed hot spot radii of 5 mm. 
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Table 5.1 Autoignition parameters for atmospheric stoichiometric H2/O2 mixture at dT/dr = -2 mm 

 

 

 

 

𝑇1 

(K) 

𝑇2 

(K) 

𝜏𝑖 
(ms) 

𝜏𝑒   

(µs) 

𝜏𝑖

𝜏𝑒 
 

𝐸

𝑅
 

(K) 

𝐸

𝑅𝑇
 𝐸̅ 

𝑎 

(m/s) 

𝐸

𝑅𝑇2
 

(K-1) 

(
𝑑𝜏𝑖

𝑑𝑇
)−1 

(
𝑑𝑇

𝑑𝑟
)

𝑐
 

(K/mm) 

𝑢𝑎 

(m/s) 
ξ ε 

𝑑𝑙𝑛𝑇

𝑑𝑟̅
 

𝐸̅ 𝑑𝑙𝑛𝑇

𝑑𝑟̅
 

A 375 1061 0.05 2 25 9,519 8.97 225.2 995.8 0.0085 2,355,785 2.37 1178 0.85 2.5 0.0094 2.11 

B 375 997 0.1 1.98 52 17,149 17.2 895 966.8 0.0173 562,733 0.58 281.3 3.44 2.6 0.0099 8.93 

C 300 936 1 1.93 504 44,141 47.16 23,760 938.1 0.0504 20,413 0.012 10.21 91.9 2.7 0.0106 253 

D 300 920 5 1.8 2778 59,161 64.28 178,568 930.5 0.0698 2863 0.003 1.432 650 2.9 0.0108 1930 

F 300 950 0.4 1.94 206 41,137 43.3 8928.87 944.8 0.0456 54,847.3 0.058 27.42 34.4 2.7 0.0105 94 
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5.1.1 ε/ξ Detonation Peninsula  

In Fig. 5.1, low values of 𝜉𝜀 are indicative of stable developing detonations. At 

the high values, autoignitive propagation begins to fail and be replaced by 

normal flame deflagrations.  

The five chosen conditions for both laminar and laminar/mild turbulent 

autoignition studied are labelled A, B, C, D, F in Tables 4.1 to 4.5 in Sections 

4.6 and 4.7, as depicted in Table 5.1. Their coordinates in the 𝜉 𝜀⁄  diagram 

are shown in Fig. 5.1.  

For laminar conditions, each point lies in a different one of the four, contrasting 

regimes. For mild turbulent condition, point F, it lies in the regime where 

combustion would be by autoignitive propagation, like point C, as 𝑇1 = 300 K. 

Point F has a lower 𝜉 than point C due to its higher reactivity. Whilst in D, 𝑇1 

= 300 K, there would probably be normal flame deflagration.  

Of these, A and B, with 𝑇1 = 375 K lie in the most reactive regimes, culminating 

in a thermal explosion and a developing detonation.  

 

Figure 5.1 Detonation peninsula diagram showing ξ/ε variations, and 
regime points A, B, C,D and F. 
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As a further check on the propensity to undergo a laminar DDT, the marginal 

conditions for 𝐷𝑐= 1.35 mm in Table 4.3, with rather high values of 𝐴/𝑎  and 

𝐾𝑞𝑙+, were examined. If autoignition were to occur in this otherwise reactive 

mixture, either a thermal explosion or a detonation would develop. This would 

suggest the possibility of a laminar DDT, in hypodermic tubes of between 0.5 

and 1.3 mm diameter, with 𝑇1 = 375 K.  

Laminar/mild Turbulent autoignition would occur with lower 𝐴/𝑎 ratio and 𝐾𝑞𝑙+. 

For the condition studied, the flame would auto-ignite at  𝐷𝑐= 2 mm, with 𝑇1 = 

300 K. 

5.2 Findings on H2/O2 Autoignition and Detonation  

The limitations to the induction of detonation in laminar flames are well 

established in Section 4.6. After the study of whether a laminar flow might 

induce detonation, it is an interesting question whether such a detonation is 

of practical value. One application could be in a pulse detonation engine for 

space flight. The question remains whether the principle might be applied in a 

stationary power unit, Fig. 5.2 is a diagram of the cycle for such a unit. The 

exhaust heat from the turbine could be used to preheat the H2 and O2. 

 It is proposed that the turbine should operate between 0.1 and 0.005 MPa. 

The pressure on moon is about 3x10-16 MPa and on Mars 0.0006 MPa. 

Despite the apparent simplicity of such engines, this technology is yet to be 

established due to the difficulties in stabilising a sustainable continuous 

detonation front in the detonation chamber. 

The high reactivity of hydrogen-oxygen mixtures and the occurrence of DDT 

in hypodermic tubes in laminar or near laminar flows is the basis of a 

detonation engine using the laminar DDT results in Section 4.6.  Conditions A 

and B in Tables 4.3 and 4.4 are employed in this brief study. The power unit 

as seen in Fig. 5.2 is comprised of: 
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• Gas cylinders of H2 and O2. 

• An array of hypodermic tubes for the mixture, diameter 0.5 mm. 

• An initial mixing chamber (Mix 1) for H2 and O2. 

• A second mixing chamber (Mix 2) at the exit of the detonation tubes. 

• A pressure compounded multi-stage impulse turbine. 

• Exhaust of cooled burned gases to atmosphere. 

 

 

Figure 5.2 (H2-O2) proposed detonation cycle 

 

H2 and O2 gases are mixed stoichiometrically in the mixing chamber (1) at 

0.01 MPa. The mixture ignites in an array of many 0.5 mm diameter 
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hypodermic tubes subjected in an in-line arrangement to generate 

shockwaves and ultimately trigger the transition to detonation.  

The exhaust gases are then mixed in the mixing chamber (mix 2) prior to 

isentropic expansion in multi-stages impulse turbines from 0.1 to 0.005 MPa, 

in which the gas velocity changes and the power output is obtained. The 

exhaust gases preheat the H2 and O2 via heat exchange in the detonation 

tubes. 

5.2.1 Proposed Detonation Cycle. 

For the case B in Table 4.4 of the laminar DDT study in Section 4.6, the 

velocity of the detonated gases at 997 K and 0.1 MPa is 𝑆𝑔= 1327 m/s. This 

mixture enters the first nozzle of the multi-stage turbine with this velocity 

where it increases through the nozzle before it starts dropping through the 

moving blades in the first stage. The velocity then increases in the nozzle of 

the following stage before dropping again. The pressure drop occurs through 

number of stages as shown in Fig. 5.3.  

  

Figure 5.3 Multi-stage pressure compounding impulse turbine with 
pressure and velocity profiles (Dakshina Murty, 2018). 
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Applying the steady adiabatic flow energy equation between point (2) and 

point (3): 

ℎ2 +
𝑉2

2

2
= ℎ3 +

𝑉3
2

2
+ 𝑊𝑡             (5.1) 

 where 𝑉2 = 𝑆𝑔.  

Assuming the isentropic efficiency of the moving blades are 88%. 

The efficiency of the nozzle, 𝜂𝑖𝑠𝑒𝑛, is defined as:  

𝜂𝑖𝑠𝑒𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 𝑐ℎ𝑎𝑛𝑔𝑒  

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 
 = 

∆ℎ𝑎𝑐𝑡

∆ℎ𝑖𝑑𝑒𝑎𝑙
                                    (5.2) 

where ∆ℎ𝑖𝑑𝑒𝑎𝑙 = ℎ2 − ℎ3𝑠 (kJ/kg), ℎ3𝑠 is the exit enthalpy of isentropic 

expansion. ∆ℎ𝑖𝑑𝑒𝑎𝑙 is calculated using Gaeq code (Morley, 2005). 

At this point, ∆ℎ𝑎𝑐𝑡 would be 1246 kJ/kg. The tube diameter is 0.5 mm for this 

condition. All the data of the cycle is given in Table 5.2. 

The work output from the turbine is then calculated as a function of stage 

loading coefficient, 𝜓,  (Ingram, 2009):  

𝜓 =
𝑊

𝑈𝑚
2                  (5.3) 

where, 𝑈𝑚 is the rotational speed of the moving blades and is equal to 

(Ingram, 2009): 

𝑈𝑚 = 𝜔. 𝑟             (5.4) 

where 𝜔 and 𝑟 are the blade angular velocity and radius, respectively. As an 

impulse turbine with repeating stages, axial velocity, then  𝜓 =2.  

Assuming the blade radius 𝑟 = 1 m and rotating at 3000 rpm, then, 

𝑊= 197 kJ/kg/ stage. 

To evaluate the number of stages, 𝑁𝑠𝑡𝑎𝑔𝑒𝑠, (Ingram, 2009): 

𝑁𝑠𝑡𝑎𝑔𝑒𝑠 =
∆ℎ𝑎𝑐𝑡

𝑊
              (5.5) 

Using Eq. (5.1) then, 𝑉3 = 1374 m/s 

Knowing that the mass flow rate of the exhaust gas per tube, 𝑚., is defined: 
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𝑚. = 𝜌2𝑆𝑔𝑎              (5.6) 

where 𝑎 is the cross-sectional area of the tube, 𝜌2 is the density of the 

exhaust gas = 0.1449 kg/m3. 

The power output from the cycle/ tube is then calculated with:  

𝑃 = 𝑚.𝑊𝑡             (5.7) 

where 𝑊𝑡 is the total work output. 

Table 5.2 Initial conditions of the proposed detonation engine. 

𝑃2 

(MPa) 

𝑇2 

(K) 

𝑃3 

(MPa)  

𝑇3 

(K) 

ℎ2 

(kJ/kg) 

ℎ3𝑠 

(kJ/kg) 

𝑑 

(mm) 

𝜂𝑖𝑠𝑒𝑛 𝜓 𝑟 

(m) 

𝑁 

(rpm) 

0.1 997 0.005 443 1770.53 354.7 0.5 0.88 2 1 3000 

The main concern in the cycle is that the exhaust gas (4) which it leaves at a 

pressure lower than 0.005 MPa. This couldn’t be implemented on the 

atmospheric pressure on earth. Therefore, per each cycle, a 45 W/tube is 

produced from the multi-stage turbine as shown in Table 5.3 while the exhaust 

gas (4) is rejected to the atmosphere in Mars or moon. 

Table 5.3 Performance of the proposed detonation engine. 

𝑚. (g/s) 𝑉3 (m/s) 𝑁𝑠𝑡𝑎𝑔𝑒𝑠 𝑊  

(kJ/kg/stage) 

𝑊𝑡 

(kJ/kg/tube) 

𝑃𝑜𝑤𝑒𝑟  

(Watt/tube) 

0.0377 1374 6 197 1182 45 

5.3 Effect of Varying the Initial Pressure on the Autoignition 

of Turbulent Stoichiometric H2/O2 Mixture 

In Section 4.7, the main purpose was to compare the autoignition of 

laminar/mild turbulent flames with laminar flames in similar hypodermic tube. 

In this study, the effect of changing the initial pressure has been studied on 

the autoignition of turbulent flames. Three turbulent cases have been studied 
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at different initial pressure, 𝑃1, and same temperature, 300 K. The size of the 

tube was kept the same in the three cases, 12 mm. Three cases are located 

on regime (B) in U/K diagram as shown on Fig. 5.4 where the normal turbulent 

flame propagation is. At certain 𝐾 value, the three cases have been defined 

according to the initial pressure; 0.02, 0.07 and 1.0 MPa. Markstein number 

in this case is changing due to the change in 𝑃1. 

 

Figure 5.4 U/K diagram (Bradley et al., 2013) showing the turbulent 
conditions studied. 

 

As mentioned in Section 4.7, due to the lack of information on Markstein 

number at different pressures, their values were estimated according to the 

effect of increasing pressure on the decreasing Markstein number reported in 

(Bradley et al., 2007a; Bradley et al., 2007b). Table 5.4 show the three cases 

studied, the first case where the initial pressure is the lowest among the 
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others, 0.02 MPa while the third case has the highest pressure, 0.1 MPa. 

Same calculation procedures used in Section 4.7, were employed in this 

study. 

It is found that increasing the initial pressure will result in dropping 𝐴/𝑎 ratio 

and the delay time for auto-ignition. Therefore, the more reactive the mixture 

is, the less 𝐴/𝑎 ratio occurs. 

Table 5.4 Effect of changing the initial pressure on the turbulent flame 
acceleration and auto-ignition. 

Condition (1) (2) (3) 

𝑇1  (K) 300 300 300 

𝑃1 (MPa) 0.02 0.07 0.1 

𝑃2  (MPa) 0.3 1 1.54 

𝑇2 (K) 995 995 995 

𝑐  3.4 3.4 3.4 

𝑀1  3.67 3.67 3.67 

𝑆𝑔  (m/s) 1580 1562 1555 

𝑢ℓ (m/s) 66 72 73 

𝐴/𝑎  3 1.7 1.4 

𝜎  2.78 2.89 2.92 

𝜈  (m2/s) 9.09E-05 2.63E-05 1.84E-05 

𝐷𝑐  (mm) 12 12 12 

𝐾𝑞𝑙+  0.022 0.0053 0.0036 

𝑀𝑎𝑠𝑟  0.8 0.5 0.2 

𝜏𝑖 (ms) 10 3.46 3.01 

The ignition delay times for condition 1 and 2 are evaluated from Fig.4.12, 

while the ignition delay time at 1.54 MPa is calculated using current 

computations using the (Varga et al., 2015) model. 
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5.4 Flame Quenching and Annular Pilot Flames   

In the discussion of quenching in Section 3.5.6,  the crucial rate of entrainment 

of air by fuel jets is briefly described. A similar entrainment of hot gases from 

a pilot flame of a turbulent burned flame can prevent it quenching at high levels 

of turbulence. 

Wabel et al. (2017) have employed a burner configuration as shown in Fig. 

5.5 with some similarities to a jet flame; in that it employs a lean mixture flame 

that entrains hot products from a surrounding pilot flame. By these means, the 

pilot flame is able to sustain a central highly turbulent flame and avoid 

quenching. This is achieved through an increase in the burning velocity of the 

burner reactants through their entrainment of pilot flame gases.  

 

Figure 5.5 Hi-pilot Michigan burner by (Driscoll et al., 2017). 

 

The essential principle governing the use of pilot flames to support burner 

flames that are closer to extinction is that the mixing of the pilot flame gases 

will make the burner flame more resistant to extinction by being less prone to 

dilution by surrounding air and more reactive due to admixture with hot pilot 
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flame gases. The essential mechanism can be simplified in a simple mixing 

theory of pilot flame burned gas with the burner reactants. 

Adiabatic mixing is expressed by:  

𝑚𝑢
. 𝑐𝑝𝑏(𝑇𝑚 − 𝑇𝑏) = 𝑚𝑝

. 𝑐𝑝𝑝(𝑇𝑝 − 𝑇𝑚)              (5.8)  

where 𝑚𝑢
.  is the flow rate of reactants to the burner, 𝑇𝑏 ,the temperature of the 

burner reactants, 𝑐𝑝𝑏, the specific heat at constant pressure of the burner 

reactants, 𝑇𝑚, the temperature of the mixture, 𝑚𝑝
. , the flow rate of pilot flame 

gases, 𝑐𝑝𝑝, the specific heat at constant pressure of pilot flame gases, and 𝑇𝑝 

the adiabatic temperature of the pilot flame gases. 

If 𝑚𝑢
.  is the mass fractional flow rate of unburned burner reactants, and 𝑚𝑝

. , 

the mass fractional flow rate of burned pilot flame gas.  

Clearly, 𝑚𝑢
. +𝑚𝑝

. = 1.0. The proportion of pilot flame hot gases, the dilution f, in 

the mixture is 𝑚𝑝
. /(𝑚𝑝

. + 𝑚𝑢
. ) and this ranges from f = 0 for undiluted cold 

reactants, with no admixture of pilot flame gas,  to f = 1.0 for the hot products 

at the adiabatic flame temperature. 

In the present study to identify the underlying mechanism, a simplified model 

is employed, in which the same mixture is supplied to both burners. It has two 

aspects. The first involves the existing data of Sidey et al. (2014) on the 

burning velocities of the mixtures that arise when the burned gases from a 

CH4 flame, are adiabatically mixed with the original  unburned reactants. In 

the present case, it is assumed that burned pilot flame gases are adiabatically 

mixed with the burner reactants. Figure 5.6 and 5.7 show Sidey et al. (2014) 

calculated mixing temperatures and laminar burning velocities of CH4 flame at 

𝜑= 0.6,1 and 1.3 for different dilution levels. 
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Figure 5.6 The change in mixing temperature with dilution level at φ 
=0.6,1,1.3 for methane/air mixture extracted from (Sidey et al., 2014). 

  

Figure 5.7 The change in laminar burning velocity, 𝒖𝒍,with dilution level 
at  φ =0.6,1,1.3 for methane/air mixture extracted from (Sidey et al., 
2014). 
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The second aspect of the study is to employ relevant piloted burner 

hydrodynamic data from the Michigan Hi-pilot burner (Wabel et al., 2017) for 

three different operational modes, A, B, and, C. In each of these the same 

CH4/air mixture is supplied to the main and pilot burners. The three different 

mass fractions, f = 0.1, 0.2, and 0.3, of pilot flame gases, adiabatically burned, 

are mixed with the burner reactants. The three burner Modes operational 

details from (Wabel et al., 2017) are given on the left of Table 5.5, and the 

modelling details on the right. 

The burner and pilot entry mixture was CH4/air at 𝜑 = 0.75, atmospheric 

pressure, and 298 K, for all three operational modes, and 𝑢𝑙 was 0.23 m/s 

(Wabel et al., 2017). Unfortunately, no data for 𝑢𝑙   and its own product gases 

were available in (Sidey et al., 2014) for 𝜑  = 0.75. 

Table 5.5 Effect of different fractions of pilot flame entrainments on K values, 
for Hi-pilot burner  in (Wabel et al., 2017). 

Michigan Hi-pilot burner (𝜑 = 0.75) (Wabel et al., 

2017) 

𝐾 values from Model 

(Sidey et al., 2014) 

(𝜑 = 0.8) 

Mode 𝑢′ 

(m/s) 

𝐿  

(mm) 

𝑅𝐿 𝑢 

(m/s) 

Burner 𝐾 𝑓= 0.1 𝑓= 0.2 𝑓= 0.3 

A   37 41 99,000 78  20.9 6.6 3.3 1.8 

B 29 12 22,300 72 27.1 8.5 4.2 2.4 

C 38 17 40,900 89 33.3 10.7 5.3 3.0 

 

The temperatures and laminar burning velocities used in the present study are 

computed from Sidey et al. (2014) at  𝜑 = 0.8 as shown in Figs 5.8 and 5.9.  
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Figure 5.8 Mixing temperature of lean methane/air mixture (φ =0.8) 
averaged from (Sidey et al., 2014). 

 

 

Figure 5.9 Mixing laminar burning velocity of lean methane/air mixture 
(φ =0.8) averaged from (Sidey et al., 2014). 
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The resulting temperatures of the mixtures and their burning velocities, from 

(Sidey et al., 2014), are given in Table 5.6 at  f = 0.1, 0.2, and 0.3. 

Table 5.6 Values of  ul from (Sidey et al., 2014) for three mass fractions ,f , of 
burned mixture. 

f 𝑇𝑢 (K) 𝑢𝑙 (m/s) 

0.1 496 0.51 

0.2 681 0.83 

0.3 854 1.22 

The temperature increases of the original mixtures also increase the mixture 

laminar burning velocities, to a greater extent than the dilution with burned gas 

decrease them as seen in Figure 5.8 and 5.9. 

From the appropriate values of 𝑢𝑙 for the different mixtures, it was possible to 

derive burner entry values of 𝐾 from Eq. (1.24), and these are given in Table 

5.5. With the possible exception of Case A, a burner with 𝐾 =20.9, the burner 

entry 𝐾 values are high enough to suggest from Fig. 3.26 that the flames 

would be quenched. However, when allowance is made for pilot flame 

entrainment, the highest Model entrainment 𝐾 value is 10.7 for Mode C, at 

which, with an estimated value of 𝑀𝑎𝑠𝑟 of 2 from Fig. 3.26, would be just in 

the quench regime. The other listed model values suggest the pilot flame 

would ensure the occurrence of normal flame propagation. 

5.5 Turbulent Flame Quenching and the Borghi Diagram 

The bold curve in Fig. 3.25 shows the new experimental data to have 

extended the limits of flammability to higher values of both 𝐾 and 𝑀𝑎𝑠𝑟. This 

is particularly marked above 𝐾 =1 where, compared with Fig. 1.10, there is a 

marked reduction in the quench regime, (C). However, the new data extend 

only to 𝑀𝑎𝑠𝑟 = -3, due to the difficulty of quenching those mixtures with more 

negative values of 𝑀𝑎𝑠𝑟, usually associated with the higher pressures and 

temperatures.  
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This study is coupled with the generalisation of critical kernel sizes and Fig. 

3.24 innovatively couples this premixed flame study with the extinction of jet 

flames.  It is fruitful to employ the extended Borghi diagram from (Bradley et 

al., 1998b), to add to Figs. 3.24 and 3.26 as descriptors of flame regimes. 

Such a diagram is shown in Fig. 5.10, the upper bold DNS curve is from 

(Poinsot et al., 1991), with the lower limit given by the Klimov-Williams line. 

As with Fig. 3.24, values of 𝑀𝑎𝑠𝑟 do not appear on this figure. In descending 

order of 𝑢′/𝑢𝑙 , are the values for H2, CH4, and mixed hydrocarbons. As on Fig. 

3.24, these are in ascending order of 𝑀𝑎𝑠𝑟. The largest differences between 

premixed and jet flame data in Fig. 3.24, might be associated with the larger 

values of 𝑀𝑎𝑠𝑟. Interestingly, Fig. 5.10, like Fig. 3.24, also shows that a larger 

length scale, through the increase in 𝑅𝑙 , combats flame quenching. 

The quenching regime performance of the Hi-pilot burner, when based solely 

on the Mode C burner flame, unaffected by the pilot flame, 𝐾 = 33.3, in Table 

5.5 is indicated by a solid star C(33.3) in Fig. 5.10. With an 𝑀𝑎𝑠𝑟 value of about 

2.7 (Gu et al., 2000), this suggests flame quenching. However, based on the 

modelled composition of the incoming CH4/air burner mixture, as affected by 

the pilot flame, for f = 0.1, again for Mode C, the value of 𝐾 would be 10.7. 

This condition is indicated by an open star C(10.7). If the pilot flame gas 

entrainment were to be increased to f = 0.3, 𝐾 in Mode C would be reduced 

to 3.0 indicated by open star C(3.0) in the figure. Clearly, the entrainment of 

pilot flame gases reduces the quenching tendencies. 
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Figure 5.10 Extended Borghi diagram (Bradley et al., 1998b) showing the 
boundary for p0.8 flame quenching and the influence of a pilot flame. 

() for H2, () for CH4, () for hydrocarbons. Pilot flame burner. (★), 

indicates Mode C Burner K = 33.3 in Table 5.5. (☆), indicates Mode C  

Model K = 10.7 and 3.0. 
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Chapter 6 - Conclusions and Recommendations for Future 

Work 

6.1  Quenching of Premixed and Jet Flames  

High speed schlieren photography, in combination with swinging sheet 

3D flame kernel imaging, has revealed the detailed nature of turbulent 

flame quenching. This has enabled normalised quenched premixed 

flame kernel mean diameters to be correlated with the Karlovitz stretch 

factor, 𝐾, and strain rate Markstein number, 𝑀𝑎𝑠𝑟. The scope of the 

study was extended further to cover, for the first time, the quenching of 

lifted jet flames. In this case, the quenching was correlated with a 

parameter 𝑈∗, related to 𝐾, demonstrating the commonality of premixed 

and jet flame quenching. There are, however, differences in detail in 

that, with premixed combustion, 𝑑𝑘 is the mean diameter of a flame 

fragment, whereas in jet flames, 𝐷𝑏 is the minimal jet pipe diameter for 

sustaining a flame. Generalised quench data, acquired in this way, 

covered new fuels such as n-butanol, hydrogen, and more 

conventional fuels. The H2 mixtures are of interest in not being easy to 

quench, even with high turbulence. 

 

6.2  Extension of Quenching Limits 

The existing limit on the U/K diagram for the onset of premixed 

turbulent flame quenching has been found to extend by the study to 

higher values of 𝐾 and 𝑀𝑎𝑠𝑟. The results also show that ever-larger 

explosions and burners are required to sustain flames at increasing 

Karlovitz stretch factor and flow number. Conversely, to extend 

quenching in explosion flames require smaller flame kernels, and, to 

extend flame trap quenching, require ever-smaller tubes. The low 

values of 𝑑𝑘/𝛿𝑘 for premixed flames, show the flame distance scales to 

be close to Kolmogorov scales. However, the associated values of the 

Kolmogorov Karlovitz number, remain closely related to 𝐾. 
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6.3  Pilot Flame Entrainments 

The mechanisms by which premixed flames on a burner are able to 

survive quenching, when burner mixture values of 𝐾 suggest 

quenching would occur, in the presence of a peripheral pilot flame, 

have been analysed. This demonstrated that the entrainment of pilot 

flame gas, into the burner mixture, made it more reactive and more 

resistant to turbulent flame quenching. When allowance was made for 

the entrainment process, values of 𝐾 became lower, and in several 

cases were low enough to explain why extinction did not occur.  This 

has been quantified on both 𝑈/𝐾 and Borghi diagrams. 

 

6.4  Modelling Effective Detonation with Laminar Flames  

Difficulties were posed in this computational study because of the large 

uncertainties, and even non-availability, in the values of 𝜏𝑖 and 𝜏𝑒. 

Values of the last were computed chemical kinetically. There were 

greater uncertainties concerning values of laminar burning 

velocities, 𝑢ℓ, of stoichiometric H2/O2 mixtures, particularly at high 

pressures and temperatures. Clearly further experimental and 

computational studies are necessary to resolve this problem. 

A motivation of the study was whether a DDT could be achieved with 

laminar combustion. Small bore hypodermic tubes proved to be 

necessary for this. 

The flame area increase associated with the laminar propagation in 

such tubes is greater than that with turbulent flames. Even without 

detonation, very high gas velocities can be generated. There is 

significant heat loss from such tubes, which is countered by an increase 

the tube length before the laminar conditions for DDT occur. 

The important conclusion is that, with the present stoichiometric data, 

only when the initial temperature is raised to 375 K, do purely laminar 
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developing detonations become possible in hypodermic tube diameters 

between 0.5 and 1.35 mm.  

 

Turbulence will be generated with larger diameters. Laminar/mild 

turbulent autoignition might occur in a 2 mm diameter tube with an initial 

temperature of 300 K. Allowance was made in the computation for the 

transition to mildly turbulent flow, and a brief indication has been given 

of the possible practicality of the extended regime. Increasing the initial 

pressure in turbulent flame propagation, reduces the autoignition delay 

times and will result in reduction in 𝐴/𝑎 ratio. When the gas flow ahead 

of the H2/O2 accelerating flame causes 𝑅𝑒 to exceed 𝑅𝑒𝑐, the flame 

image continues to be elongated and appears to be laminar for some 

time. This may explain why transitions with lower turbulence have been 

described as laminar. 

 

6.5 Proposed Detonation Engine 

Although the low pressure DDT gives the closest approach to a laminar 

burning DDT, it has the practical disadvantage of requiring exhaust to 

be at sub-atmospheric pressure. A power generation cycle based on 

this is briefly analysed. It is doubtful whether such a cycle has any 

advantages over more conventional ones. Detonation, and near-

detonation, power units are most likely to be applied in space 

propulsion.  
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Appendix A 

 

This Appendix presents some of the codes and calculations used in the work. 

Section A.1 and A.2 present the MATLAB codes for evaluating the radii for a 

globally quenched flame from the time of ignition to the final extinction and the 

multiple regression method for calculating the strain rate Markstein number 

for the present work.  

Section A.3, A.4, and A.5 present some of the calculations used in the laminar 

H2/O2 study, in addition to the simulation results of auto-ignition delay times at 

different pressures and temperatures employed in the present work. 
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A.1 Radii for Quenching Images 

 

% A code to read in a sequence of images in a folder 

and get the radii%. 

%this code should be used with black and white 

images 

  

% DOI:  

clear all 

close all 

clc 

  

% Import a sequence of images and process: 

  

tifFiles = dir('*.bmp');  

numfiles = length(tifFiles); 

mydata = cell(1, numfiles); 

i=1; 

for k = 1:numfiles 

  tic 

    I = imread(tifFiles(k).name); 

    %I = im2single(I); 

  % I = I(:,:,1:3);  

 % I = rgb2gray(I); 

   % BW = im2bw(I); 

    BW = I(:,:,1); 

    BW = imcomplement(BW); 

  %A(i,:) = I(i,:); 

  %AB = edge(A, 'log'); 

  %AC = imfill(AB, 'holes'); 

total = bwarea(BW); 

area(i,:)=total 

act_area(i,:)=area(i,:)*0.1961*0.1961; 

radii(i,:)= sqrt(act_area(i,:)/3.14159); 

i = i+1; 

plot(radii,'--b'),xlabel('images'), 

ylabel('radius(mm)'); 

 toc 

   

end 
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A.2 Calculations of Markstein Number for Strain Rate 

Using the Multiple Regression Method  
 

% A code, authored by P. Shaik. This code calculates 

Markstein lengths and Markstein numbers using 

multiple regression method% (Bradley et al., 2018) 

 

close all; 

clear all; 

clc; 

  

fileID = fopen('C:\Users\Moustafa\Desktop\markstein 

number\masr-890-4.txt','r'); 

formatSpec = '%f %f'; 

sizeSnr = [2 Inf]; 

Snr = fscanf(fileID,formatSpec,sizeSnr); 

Snr = Snr';   

Sn = Snr(:,1); 

%Sn = Sn.*1000; 

ru = Snr(:,2); 

alpha = (2.*Sn)./ru; 

alpha_m = mean(alpha); 

Sn_m = mean(Sn); 

a = alpha-alpha_m; 

b = Sn-Sn_m; 

ab=a.*b; 

sumab = sum(ab); 

sumaa = sum(a.*a); 

Lb = -1.*(sumab./sumaa); 

%fprintf('\nThe value of Lb is %f\n\n', Lb); 

Dl = input('\nEnter the value of laminar flame 

thickness, Dl = '); 

Mab = Lb./Dl; 

fprintf('\nThe value of burned gas Markstein number, 

Mab is %f\n\n', Mab); 

D_r = input('\nEnter the value of density ratio 

rho_u/rho_b, D_r = '); 

S = 1+1.2.*((Dl./ru)*(D_r.^2.2))-

0.15.*(((Dl./ru)*(D_r.^2.2)).^2); 

Un = (Sn.*S)./D_r; 

Un_m = mean(Un); 

alpha_c = (2.*Un)./ru; 

alpha_c_m = mean(alpha_c); 

alpha_s = alpha-alpha_c; 
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alpha_s_m = mean(alpha_s); 

  

A11 = sum((alpha_s-alpha_s_m).^2); 

A22 = sum((alpha_c-alpha_c_m).^2); 

A12 = sum((alpha_s-alpha_s_m).*(alpha_c-alpha_c_m)); 

A10 = sum((alpha_s-alpha_s_m).*(Un-Un_m)); 

A20 = sum((alpha_c-alpha_c_m).*(Un-Un_m)); 

  

fprintf('\nThe value of Lb is %f\n\n', Lb); 

%fprintf('\nThe value of burned gas Markstein 

number, Mab is %f\n\n', Mab); 

  

Ls = -1.*(((A10.*A22)-(A20.*A12))/((A11.*A22)-

(A12.*A12))); 

Lc = -1.*(((A20.*A11)-(A10.*A12))/((A11.*A22)-

(A12.*A12))); 

  

fprintf('\nThe value of Ls is %f\n\n', Ls); 

fprintf('\nThe value of Lc is %f\n\n', Lc); 

Lsr = (1/(D_r-1)).*(Lb-Ls); 

fprintf('\nThe value of Lsr is %f\n\n', Lsr); 

Masr = Lsr./Dl; 

fprintf('\nThe value of strain rate Markstein 

number, Masr is %f\n\n', Masr); 
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A.3 Calculations of Heat Loss in Micro Tubes of H2/O2 

Mixture. 

 
m = u_1*rho_1*dt*(PI/4)*D^2   [kg] "The mass at dt [s]" 
 
"Heat balance at the shock wave"  
 
L*rho_2* (PI/4)*D^2= u_1*rho_1*dt*(PI/4)*D^2 
 
 
u_1= M_1*a_1        "mixture velocity at condition (1)" 
 
G = h*(T_2-375)*PI*D*L        "heat loss to the walls" 
 
N_u= h*D/K           "Nusselt number" 
 
G1= (m/dt)*h_2       "heat transfer due to the shock" 
 
DeltaG =  G1 - G   
 
"Temperature drop" 
  
DeltaT= DeltaG*dt/(c_p*m) 
 

End 

 
"===============================================" 
 
"Main Program " 
"++++++++++++" 
 
P_1 = 0.01 [MPa] 
T_1 = 375 [K] 
P_2 = 0.1 [MPa] 
T_2 = 997 [K] 
rho_1 = 0.039 [kg/m3] 
rho_2 = 0.1449 [kg/m3] 
a_1 = 601.6 [m/s]      "acoustic velocity at condition (1)" 
M_1= 2.98         "Mach number at condition (1)" 
h_2 = 1769.81*10^3 [J/kg] 
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L_cm= L*100 
 
$ifnot a parametric table 
dt= 0.0001 [s]   
$endif 
c_p= 2545 [J/kg.K]      "Heat capacity at average 
temperature 0.5(T1+T2)" 
 
K=0.163 [W/m.K]       "Thermal conductivity at average 
temperature" 
"===============================================" 
D= 0.0005 [m]       "diameter of the tube"   
   
"===============================================" 
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A.4 One Dimensional Shockwave Theory 

 
"Shockwave equations" 
 
"gas velocity along the duct" 
 
 
Sg_g= (2*(M1^2-1)*a1)/((Gamma+1)*M1)                                                 
 
"Mach number of the shockwave" 
 
M1= (c/2)+(1+c^2/4)^0.5                                                                   
 
c= (sg/a1)*(gamma+1)/2                                                                                      
c= A_a*ul*(sigma-1)*((gamma+1)/ (2*a1)) 
 
 
"Pressure and temperature ratios" 
 
P2/P1= ((2*gamma*M1^2)/(gamma+1))-((gamma-1)/(gamma+1))                                                                  
"Pressure ratio across the shockwave" 
 

T2/T1= (((2*gamma*M1^2)-(gamma-1))/(gamma+1))*((2+(gamma-

1)*M1^2)/((gamma+1)*M1^2))              "Temperature ratio across the 

shockwave" 

 

$ifnot a parametric table 
sf= A_a*ul*sigma 
$endif 
 
 

sg_1=A_a*ul*(sigma-1) 

 

End 
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A.5 Ignition delay times using Varga mechanism (Varga 

et al., 2015) at different pressures and 

temperatures. 

 

 

P= 0.04 MPa 

End time max step time T (K) time (s) 𝜏𝑖(𝑚𝑠) 

0.1 sec 0.005 msec 840 0.070515 70.515 

0.05 sec 0.005 msec 860 0.00567 5.67 

0.05 sec 0.005 msec 880 0.00147 1.47 

0.05 sec 0.005 msec 900 6.38E-04 0.638 

0.05 sec 0.005 msec 920 4.37E-04 0.437 

0.05 sec 0.005 msec 940 3.27E-04 0.327 

0.05 sec 0.005 msec 960 2.57E-04 0.257 

0.05 sec 0.005 msec 980 2.09E-04 0.209 

0.05 sec 0.005 msec 1000 1.70E-04 0.17 

0.05 sec 0.005 msec 1050 1.17E-04 0.117 

0.05 sec 0.005 msec 1100 8.40E-05 0.084 

 

 

P= 0.06 MPa 

End time max step time T (K) time (s) 𝜏𝑖(𝑚𝑠) 

0.1 sec 0.005 msec 860 0.096121 96.121 

0.1 sec 0.005 msec 880 0.012352 12.352 

0.05 sec 0.005 msec 900 0.001185 1.185 

0.05 sec 0.005 msec 920 4.61E-04 0.461 

0.05 sec 0.005 msec 940 2.87E-04 0.287 

0.05 sec 0.005 msec 960 2.06E-04 0.206 

0.05 sec 0.005 msec 980 1.59E-04 0.159 

0.05 sec 0.005 msec 1000 1.27E-04 0.127 

0.05 sec 0.005 msec 1050 8.15E-05 0.0815 

0.05 sec 0.005 msec 1100 5.71E-05 0.0571 
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P= 0.08 MPa 

End time max step time T (K) time (s) 𝜏𝑖(𝑚𝑠) 

0.1 sec 0.005 msec 880 0.057157 57.157 

0.05 sec 0.005 msec 900 0.009387 9.387 

0.05 sec 0.005 msec 920 0.001086 1.086 

0.05 sec 0.005 msec 940 3.35E-04 0.335 

0.05 sec 0.005 msec 960 1.99E-04 0.199 

0.05 sec 0.005 msec 980 1.40E-04 0.14 

0.05 sec 0.005 msec 1000 1.07E-04 0.107 

0.05 sec 0.005 msec 1050 6.47E-05 0.0647 

0.05 sec 0.005 msec 1100 4.41E-05 0.0441 

 

 

P= 1 MPa 

End time max step time T (K) time (s) 𝜏𝑖(𝑚𝑠) 

0.05 sec 0.005 msec 950 0.008649 8.648823 

0.05 sec 0.005 msec 970 0.005394 5.393899 

0.005 sec 0.005 msec 980 0.004278 4.277823 

0.005 sec 0.005 msec 1000 0.002708 2.708498 

0.005 sec 0.005 msec 1020 0.001725 1.725077 

0.005 sec 0.005 msec 1040 0.001101 1.100789 

0.005 sec 0.005 msec 1060 7.00E-04 0.700385 

0.005 sec 0.005 msec 1070 5.57E-04 0.557003 

0.005 sec 0.005 msec 1080 4.42E-04 0.441527 
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