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Abstract

In this thesis, I develop and demonstrate a system for monitoring fluctua-

tions in the speed of Greenland ice sheet outlet glaciers with high temporal

frequency from imagery acquired by a range of satellite missions. This

work is motivated by an ambition to utilise a new era of operational satel-

lites to better understand how environmental changes are affecting the flow

and mass of Greenland’s outlet glaciers. First, I exploited the systematic

and frequent acquisition schedule of the Sentinel-1 satellite constellation to

track weekly variations in the speed of four fast-flowing, marine-terminating

glaciers - Jakobshavn Isbræ, Petermann Glacier, Zachariæ Isstrøm and

Nioghalvfjerdsfjorden - between 2015–2017. By combining the Sentinel-1

data with an eight-year time-series derived from TerraSAR-X, I produced a

decadal record of variations in glacier flow. On a technical level, I was able

to demonstrate the value of Sentinel-1’s 6-day revisit time for glaciology,

because it leads to an increase in the degree of correlation between consec-

utive images and also to improved tracking of movement near to the glacier

calving fronts. On a scientific level, I was able to demonstrate that a strong

correlation exists between iceberg calving events and glacier speedup, and

to show for the first time that Jakobshavn Isbræ has begun to slow down.

Next, I assessed the capability of the Sentinel-1 constellation to detect and

chart seasonal changes in the speed of five slow-flowing glaciers situated in a

14,000 km2 land-terminating sector of central-west Greenland. These new

measurements offer significantly improved spatial and temporal resolution

when compared to previous missions, in all seasons. I was able to show

that there are marked differences in the degree of seasonal speedup of the

five glaciers – with summertime increases in ice flow ranging from 21 to 49

% - reinforcing the need for comprehensive monitoring and the challenges

of making regional extrapolations. Thanks to the high temporal frequency



afforded by Sentinel-1, I was also able to document for the first time the

detailed spatial pattern of speedup persistence, and to show that short-

lived peaks of melting match transient spikes in glacier velocity. Finally,

I explored the added value and complementarity of the Sentinel-2 multi-

spectral instrument (MSI) for tracking ice motion. I was able to combine

measurements acquired by Sentinel-1 and Sentinel-2 to detect short-term

changes in iceberg drift, iceberg calving, ice motion, and supraglacial lake

area at Jakobshavn Isbræ. I also showed that measurements of glacier flow

determined from both satellites are in good agreement, and that the spatial

coverage they afford is greatest in opposing seasons, illustrating the promise

of Sentinel-2 for glaciology.
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Chapter 1

Introduction and Background

In this chapter, I will start with an overview of the relationship between ice sheets and

climate, reviewing the contribution of the two main ice sheets, Greenland and Antarc-

tica, to mean sea level rise over the past decades. I will then summarize how changes

in atmospheric and ocean temperatures affect ice motion, before focusing specifically

on Greenland and the observed changes in ice motion over the past 25 years. I end the

chapter by outlining the aims, objectives and structure of my thesis.

1.1 Ice sheet and Climate

In last two decades the Greenland and Antarctic Ice Sheets have lost ice at increasing

rates (Shepherd et al., 2018; McMillan et al., 2016; Rignot et al., 2019). The losses and

gains in ice sheet mass are determined by the total mass balance, which it is determined

as the net effect of the surface mass balance and ice discharge exported from the ice

sheet (van den Broeke et al., 2009). Surface mass balance is defined as the sum of

the surface accumulation, mass gain from solid and liquid precipitation and water

vapour deposition, and ablation, mass loss via surface runoff and sublimation (Vernon

et al., 2013). Between 1993–2010, studies based on a combination of observations

and modelling showed that the global mean sea level (GMSL) increased at a rate

of 3.2 mm yr−1 (Church et al., 2013). During this same period, ice loss from the

Greenland and Antarctic ice sheets contributed an average of 0.33 mm yr−1 and 0.27

mm yr−1, respectively, to global sea-level rise (Church et al., 2013). This estimate of

the contribution of Greenland to sea level rise was based upon satellite observations
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1.1 Ice sheet and Climate

of ice sheet mass loss, which showed that between 1992 and 2011 the Greenland Ice

Sheet lost mass at an average rate of 142±49 Gt yr−1 (e.g. Shepherd et al. (2012)).

Subsequently, mass loss was estimated to have increased to 269±51 Gt yr−1 between

2011 and 2014 (McMillan et al., 2016). In Antarctica, the average rate of mass loss

between 1992 and 2017 was estimated to be 109±56 Gt yr−1 (Shepherd et al., 2018).

For both ice sheets, ice mass loss was a response to warmer ocean and air temperatures

to which they have been exposed (Rignot and Kanagaratnam, 2006; Joughin et al.,

2012b). Rates of ice loss from Greenland have been higher in during the last two

decades than at any time in the past 350 years (Trusel et al., 2018), due to increased

surface melting and ice discharge (Figure 1.1 - Shepherd et al. (2012); McMillan et al.

(2016)). Between 1991–2015, Greenland lost 60 % of its mass due to surface melting

and runoff (Enderlin et al., 2014; van den Broeke et al., 2016). The complexity of

a glacier’s response to environmental change challenges efforts to model their future

evolution (Joughin et al., 2012a; Bondzio et al., 2017) and, therefore, frequent and

systematic monitoring is essential to understand the processes governing their dynamic

stability and contribution so future mean sea level rise (Joughin et al., 2010; Shepherd

et al., 2012).
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1.1 Ice sheet and Climate

Figure 1.1: (a) Greenland ice sheet integrated meltwater runoff, as simulated by regional

climate models (Trusel et al., 2018). (b) Greenland mass balance and its components

surface mass balance (SMB) and discharge (D) (van den Broeke et al., 2009).
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1.2 Glaciological factors influencing ice motion

Changes in glacier flow provide a key indicator of the role that the air-ice-ocean in-

teraction plays in ice-sheet stability. In Greenland, the speedup of marine- and land-

terminating glaciers has been associated with rises in the regional air and ocean tem-

peratures (Holland et al., 2008; Hanna et al., 2012). Inland, meltwater that forms at

the ice surface can either accumulate in topographic depressions, forming supraglacial

lakes (Leeson et al., 2013) that often drain (McMillan et al., 2007), or it can flow di-

rectly into the ice sheet through moulins or crevasses (Chu, 2014). Once it has entered

the ice sheet, meltwater can feed the englacial drainage system and, after reaching

the ice-bedrock interface, can enhance ice flow via basal lubrication in marine- and

land-terminating glaciers (Hoffman et al., 2011; Chu, 2014). Near to the ocean margin,

marine-terminating glacier flow is also highly-influenced by seasonal changes in the po-

sition of their calving front, which periodically alters lateral and basal resistive stresses

at the terminus (Joughin et al., 2014; Moon et al., 2014, 2015). Calving front retreat

can also occur over longer timescales through episodic calving of ice-bergs, and their

melting contributes up to 50 % of the total fresh-water ice sheet mass loss (Enderlin

et al., 2014).

1.2.1 Atmospheric influence

In Greenland, the majority (60 %) of recent ice loss (1991–2015) has been due to surface

melting and runoff (van den Broeke et al., 2016), which have risen as summers have

warmed (Hanna et al., 2012, 2014). In addition to the direct impact on loss of ice

due to runoff, increased surface melting has also been linked to increases in the speed

of ice flow through basal lubrication predominantly in land-terminating glaciers, but

also occurring in marine-terminating glaciers (Figure 1.2 - (Zwally et al., 2002; Hoffman

et al., 2011; Chu, 2014; Moon et al., 2014; Joughin et al., 2014). Rising air temperatures

lead to increased surface melting, which can in turn lead to an increase in the amount

of water feeding into the subglacial drainage system (Chu, 2014) after supraglacial

lakes drain or moulins open (Hoffman et al., 2011; Chu, 2014). As a consequence

of this excess meltwater, subglacial water pressure rises, which reduces the effective

pressure between the ice-bedrock interface and leads to enhanced basal sliding (Harper

et al., 2005; Nienow et al., 2005; Andrews et al., 2015). During the melting season,
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frictional heating caused by water flow enlarges the conduits of the subglacial hydrologic

system, allowing a greater volume of water to be accommodated (Bartholomew et al.,

2010; Cowton et al., 2013). As a consequence, from mid-season to the end of the

melt season, the drainage system transmission capacity exceeds the meltwater input,

draining water efficiently through low-pressure channels (Schoof, 2010; Cowton et al.,

2013), slowing down the glaciers up to winter velocities (e.g. Zwally et al. (2002);

Bartholomew et al. (2010)). Furthermore, due to the efficiency to drain meltwater

easily, previous study demonstrated that despite the high correlation between seasonal

variation of surface melting enhancing basal sliding, the speedup persistence is three

times longer during colder than warmer summers in the western sector of Greenland

(Sundal et al., 2011). Moreover, over the same region, Tedstone et al. (2015) showed

that despite an increase of 50 % in the meltwater production between 1985–1994 and

2007–14, the land-terminating glaciers slowed down 12 % over the same period.

Figure 1.2: Elements of the hydrological system of a land-terminating glacier in Green-

land. The dashed line represents the equilibrium line, the limit between the accumula-

tion and ablation regions, and the vertical profile the superficial (Vs) and basal (Vbs)

velocities. Extracted from Zwally et al. (2002).
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1.2.2 Oceanographic influence

In the previous section I described how basal lubrication is the predominant mecha-

nism to enhance land-terminating, and marine-terminating, glaciers through ice surface

melting. Over marine-terminating glaciers, however, observation and modelling stud-

ies have been demonstrating that calving events have more influence on the glaciers’

speedup (Howat et al., 2005; Nick et al., 2009). Because marine-terminating glaciers

are exposed to the adjacent ocean dynamics and circulation, their velocity can be di-

rectly influenced by melting at the ice-ocean interface. The intrusion of warm water

into the fjord can lead to glacier terminus thinning and retreat, which reduces resistive

stresses, and consequently drives velocity fluctuations (Joughin et al., 2008a,b, 2012b,

2014; Bondzio et al., 2017). Resistive stresses are exerted between the ice-bed, in tide-

water glaciers, and between the lateral- and side-wall of the fjord, if an ice shelf exists

(Cuffey and Paterson, 2010; Joughin et al., 2012a). Furthermore, warmer sub-surface

ocean waters affect the sea-ice thickness and ice mélange adjacent to glaciers termi-

nus, which also influence the calving regime by exerting mechanical resistive stresses

(Joughin et al., 2008b; Cassotto et al., 2015). Figure 1.3 shows a schematic illustra-

tion of the processes influencing the flow of a marine-terminating glacier in Greenland.

Warmer waters are represented by the North Atlantic Current (NAC), presented here

as the mixture of the Irminger water (IW), acting on the western and southeastern

regions, and Atlantic water (AW) elsewhere (Joughin et al., 2012a).

During the satellite era, the largest changes in marine glacier response have been ob-

served at Jakobshavn Isbræ. Previous studies of Jakobshavn Isbræ, western Greenland,

showed that during the late 1990s, the ice tongue experienced successive break up events

and the glacier began to speedup, exhibiting annual increases in speed of 7 % per year

from 2004 and 2007 (Joughin et al., 2008a, 2012a, 2014). Until 2012 and 2013, the

speed up continued, reaching maximum velocities in excess of 17 km yr−1 (Joughin

et al., 2012b, 2014). Jakobshavn Isbræ is susceptible to changes in the adjacent ocean

and Holland et al. (2008) have shown that warm water originating in the Irminger

Sea likely enhanced basal melting and weakened the floating ice tongue, triggering its

break up in 1997. Furthermore, Gladish et al. (2015) showed that subsequent changes

which, occurred between 2001–2014, were mainly triggered by changes in Ilulissat Ice-
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fjord water temperatures adjacent to the glacier. Ocean forcing is the main driver, but

it has been suggested (van de Wal et al., 2015) that the speedup over this period in the

southwest of Greenland might have been enhanced by anomalously high melting across

the ice sheet surface (Tedesco et al., 2013).

Figure 1.3: Schematic illustration presenting the North Atlantic Current (NAC) influ-

encing marine-terminate glaciers in Greenland. Adapted from Joughin et al. (2012a).

1.3 Observations of Greenland ice motion during the satel-

lite era

Ice velocity variability in Greenland has been observed over a range of timescales, vary-

ing from daily (e.g. Das et al. (2008); Shepherd et al. (2009); Bartholomew et al.

(2012)), seasonal (Joughin et al., 2008a, 2012b, 2014; Bartholomew et al., 2010, 2011)

to interannual variations (Sundal et al., 2011; Joughin et al., 2008b, 2012b, 2014). Our
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understanding of the timescales and mechanisms underpinning the processes that con-

trol fluctuations in the Greenland ice sheet flow has been dramatically improved by

the availability of frequent and systematic satellite observations (Moon et al., 2012;

Joughin et al., 2014; Nagler et al., 2015; Hill et al., 2018; Joughin et al., 2018). These

observations are important indicators of how the cryosphere has been affected by cli-

mate change during recent decades than at any time in the past 350 years (Trusel et al.,

2018), as a result of higher surface melting and ice discharge (Shepherd et al., 2012;

McMillan et al., 2016). Glacier velocities, in particular, have been routinely tracked

in repeat optical (Rosenau et al., 2015; Fahnestock et al., 2016; Gardner et al., 2018)

and synthetic aperture radar (SAR) imagery (Goldstein et al., 1993; Lucchitta et al.,

1995; Joughin et al., 2010; Rignot et al., 2011; Nagler et al., 2015). Although both

techniques can yield high-quality measurements of ice sheet flow, they are also affected

by changing environmental conditions. In the case of optical imagery, clouds frequently

interfere, and in the case of SAR imagery, surface melting can be especially problematic.

A combination of the two methods is therefore likely the best approach for continu-

ous and consistent monitoring. The systematic acquisition cycle of Sentinel-1a/b is

able to provide averaged velocity measurements every 6 days and, in conjunction with

Sentinel-2a/b, providing measurements every 3 days over the polar regions, offers the

potential to monitor average ice flow every 2 days, which is unprecedented during the

satellite era. Going forward, the novel combination of operational satellite missions at

the continental scale is essential for the systematic identification of short-term changes

of numerous glaciological features, and for understanding the processes that drive ice

velocity change.

The central-east and southeast coast of Greenland is mostly composed of marine-

terminating glaciers, presenting rapid ice loss through accelerated flow (Enderlin et al.,

2014), known as dynamic thinning, followed by increase in speed between 2000–2010

(Joughin et al., 2010; Moon et al., 2012). Helheim glacier (66.4oN, 38oW) is the fastest

flowing glacier in this sector, with ice speed reaching ∼ 11000 m yr−1 (Howat et al.,

2005). The northeast sector largely flows at slow rates of ∼200 m yr−1, with the ex-

ception of Nioghalvfjerdsfjorden and Zachariæ Isstrøm glaciers (Joughin et al., 2010)

(Figure 1.4). These two glaciers together drain more than 10 % of the Greenland Ice

Sheet (Rignot and Mouginot, 2012). Their maximum velocities are found near the
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grounding line, and the average velocity reaches ∼1400 m yr−1 and ∼2600 m yr−1 in

Nioghalvfjerdsfjorden and Zachariæ Isstrøm, respectively, the first had a slight acceler-

ation of 12 % whilst the later tripled its ice speed from 2007 to 2015 (Mouginot et al.,

2015; Hill et al., 2018). In the Northwest (Figure 1.4), Petermann Glacier is the fastest

glacier in the sector, and has an average velocity of ∼1100 m yr−1 at its grounding

line which remains relatively stable since the 1990s (Rignot, 1996; Rignot and Steffen,

2008; Hill et al., 2018) and a multi-annual trend (2006–2010) in flow speed of 30 m

yr−2 (Nick et al., 2012).

The western margin of Greenland is regarded as the major source of recent mass losses

from the ice sheet, and was responsible, between 2011–2014, for 41 % of the total mass

imbalance (McMillan et al., 2016). Jakobshavn Isbræ, for instance, is the fastest glacier

in Greenland (Enderlin et al., 2014; Joughin et al., 2014), draining ∼ 6.5 % of the ice

sheet (Joughin et al., 2004). Since the 1950s it has been experiencing several retreat

events of the ice tongue before the complete disintegration in 2003 (Joughin et al.,

2008b), and observations show that, in response, the glacier has been thinning contin-

uously since the early 2000’s (Sørensen et al., 2018). Between 2004–2011, Jakobshavn

Isbræ sped-up by 4.4 % (Joughin et al., 2012b), and these fluctuations in the calving

front position have been identified as the main trigger for seasonal and inter-annual

changes in its speed, as it leads to reduced basal and lateral resistive stresses (Joughin

et al., 2012b, 2014, 2018). The south west sector of Greenland is, in its majority, formed

by land-terminating glaciers, and presented, through global position system and satel-

lite measurements, a decrease in the inter-annual velocity by 10 % between 1990–2007

(van de Wal et al., 2008), and 12 % from 1985–1994 compared to 2007–2014 periods

(Tedstone et al., 2015), respectively. In contrast, Narsap Sermia, a marine-terminating

glacier in the same sector, sped-up by 60 % between 2005–2010 (Moon et al., 2012).
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Figure 1.4: Ice velocity mosaic generated from multi-missions dataset acquired between

1992 and 2016 in Greenland. Extracted from Mouginot et al. (2017).

Seasonal changes in ice flow around Greenland have been observed at both fast-

moving marine-terminating and slow-moving land-terminating glaciers (Figure 1.5 -

Rignot and Kanagaratnam (2006); Joughin et al. (2008a); Shepherd et al. (2009);

Palmer et al. (2011); Sundal et al. (2011); Joughin et al. (2013); Moon et al. (2014)). In

the North-western sector, Petermann Glacier, one of the remaining glaciers in Green-

land with a floating ice tongue, has been observed to increase its speed by 25 % in
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summer, relative to the winter velocity (Nick et al., 2012). Despite being a marine-

terminating glacier, the seasonal cycle which has been observed at both Petermann

and other marine-terminating glaciers in this region, is predominantly controlled by

changes in basal traction, induced by the penetration of surface melt water to the bed

(Nick et al., 2012; Moon et al., 2014, 2015). In the western sector of the ice sheet,

the marine-terminating Jakobshavn Isbræ also undergoes a clear seasonal modulation

in speed. The amplitude of Jakobshavn’s seasonal acceleration varies from year-to-

year. For example, in 2013 the seasonal increase in velocity was 30 % to 50 % greater

than previous summers due to the retreat of the ice front into deeper water, which

enhanced ice frontal melting and increased ice speed and thickness of the terminus

(Joughin et al., 2014). Seasonal velocity variations are not just limited to fast-flowing

marine-terminating glaciers. For example in the south-western region of the ice sheet,

the Russel Glacier sector has received a relatively high amount attention due to the

propensity of its glaciers to exhibit seasonal speedup and its ease of access for field-

based research. In-situ GPS observations have shown that seasonal velocity variations

are strongly linked to changes in surface melting (Shepherd et al., 2009; Bartholomew

et al., 2010, 2011, 2012; Chandler et al., 2013; Sole et al., 2013; van de Wal et al.,

2015). Satellite measurements have provided a large-scale perspective of changes in ice

flow (Joughin et al., 2008a; Palmer et al., 2011; Sundal et al., 2011; Fitzpatrick et al.,

2013) and in the seasonal evolution of supraglacial lakes (Leeson et al., 2012; Howat

et al., 2013; Leeson et al., 2013, 2015). Together, these measurements, in conjunction

with numerical ice flow modelling, have led to an improved understanding of the link

between regional hydrology, supra-glacial lake drainage and sub-annual changes in ice

flow (Clason et al., 2015; Koziol and Arnold, 2018).
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Figure 1.5: Seasonal velocity variation of the western sector of Greenland of August

2006 relative to the September 2004 to December 2006 mean speed. Extracted from

Joughin et al. (2008a).
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The observed acceleration of many glaciers in Greenland over the last decade is

understood to have been driven by rises in air and adjacent ocean temperatures, which

have enhanced the surface melting and terminus retreat (Holland et al., 2008; Moon

et al., 2014, 2015). The associated increases in basal sliding and calving of their ice

fronts in turn has produced enhanced discharge, leading to dynamical imbalance and

additional ice loss (Joughin et al., 2010, 2014). Glacier speed is, however, highly vari-

able in space and time (Howat et al., 2010; Moon et al., 2012; Enderlin et al., 2014),

due to the geometry of individual glaciers (Felikson et al., 2017), and the high spatial

variability in the forcing mechanisms (Jensen et al., 2016; Carr et al., 2017). This com-

plexity in glacier response challenges efforts to model their future evolution (Joughin

et al., 2012b; Bondzio et al., 2017) and, therefore, frequent and systematic monitoring is

essential to understand the processes governing their dynamic stability. Only through

advancing our understanding of the velocity response of Greenland’s glaciers over a

range of timescales will we be able to confidently estimate their future contribution

to future mean sea level rise (Joughin et al., 2010; Price et al., 2011; Shepherd et al.,

2012).

1.4 Aim

The aim of my thesis is to develop high frequency monitoring of Greenland glacier

dynamics using new multi-mission satellite datasets acquired by the Sentinel-1 and

Sentinel-2 constellations, in order to assess how ice velocity variability relates to local

environmental change across a range of timescales.

1.5 Objectives

In order to address the aim of this thesis, I defined the following objectives:

1. Assess the ability of the new operational satellite mission, Sentinel-1, to system-

atically and continuously track Greenland glacier motion;

2. Systematically map the ice speed of several of the key marine- and land-terminating

glaciers in Greenland throughout the year and with high temporal frequency, from

two to twelve days intervals;
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3. Establish the different factors affecting seasonal and inter-annual velocity varia-

tions at land- and marine-terminating glaciers in Greenland;

4. Increase the temporal and spatial coverage of ice velocity measurements by using

estimates from multi-mission satellites.

1.6 Thesis Structure

Following this introductory chapter, in Chapter 2, I provide an overview of the methods

and datasets used in my thesis to achieve these objectives. This is followed by 3

chapters that describe the main results from my thesis. In Chapter 3, I analyse seasonal

and inter-annual changes in the velocity of four key marine-terminating glaciers across

Greenland. In Chapter 4, I generate and analyse seasonal changes in the velocity of

five land-terminating glaciers in the Central-west sector of Greenland. In Chapter 5, I

analyse combined measurements from both synthetic aperture radar, from the Sentinel-

1 satellites, and optical, from Sentinel-2 constellation, to evaluate their complementarity

for tracking ice features and motion at Jakobshavn Isbræ, Greenland. The final chapter

provides a synthesis of the findings of this thesis, placing my results within a wider

context, and discussing and outlining the potential avenues for future research.
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Chapter 2

Tracking Ice motion in Greenland

In this Chapter, I begin by describing the different methods for tracking ice motion,

including remote sensing and in situ techniques. Then, I focus on the techniques and

satellite platforms used to make measurements in the microwave part of the spectrum,

namely satellites Sentinel-1a and b, that I used within Chapters 3 and 4 of the thesis.

Then, I describe the multi spectral images of Sentinel-2a and b satellites used in Chapter

5, followed by the feature tracking technique using optical images, finishing with a

discussion of the relative advantages and limitations of both techniques.

2.1 Introduction to tracking ice motion

Ice motion measurements are essential for monitoring ice sheet dynamics and ice dis-

charge, and for assessing an ice sheet’s mass budget (Joughin et al., 1995). Different

techniques have been employed to estimate glaciers’ velocities, using both in situ and

remote monitoring platforms. Thanks to the systematic acquisitions at high spatial

and temporal resolution, images from spaceborne sensors are, currently, widely used to

identify and monitor glaciological features. Optical imagery, which operates in the vis-

ible and near-infrared electro magnetic spectrum, has been used to observe the Earth’s

surface since the launch of the Landsat constellation in 1972 (Wulder et al., 2012).

Using these optical instruments, velocity changes have been systematically monitored

(Rosenau et al., 2015; Fahnestock et al., 2016). These records are now important indi-

cators of how the cryosphere has been affected by variations in the surrounding climate

system. Early in the satellite era velocity tracking tended to be manual and small
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2.1 Introduction to tracking ice motion

scale (Goldstein et al., 1993; Lucchitta et al., 1995), but more recently this process

has become more automated and routinely tracked in repeat optical (Rosenau et al.,

2015; Fahnestock et al., 2016; Gardner et al., 2018) and synthetic aperture radar (SAR)

imagery (Joughin et al., 2010; Rignot et al., 2011b; Nagler et al., 2015), which operates

in the microwave region of the electro magnetic spectrum, between 1 and 12 GHz .

Although both SAR and optical instruments can yield high-quality measurements of

ice sheet flow, they are also affected by changing environmental conditions. In the

case of optical imagery, clouds frequently interfere, partially or completely masking the

ice surface. In the case of SAR imagery, surface melting can be especially problem-

atic as it changes the backscattering properties of the ice sheet. A combination of the

two methods is therefore likely to be the best approach for continuous and consistent

monitoring.

In situ measurements of ice motion

During the early glaciological studies of the 1960s, field campaigns were organized with

the objective of forming a better understanding of the internal stresses and strains of

glaciers flow under gravity. For instance, in order to measure surface motion, a network

of stakes had to be installed and monitored daily, and in some occasions hourly, and

the distance displaced was measured with a reference point and a theodolite (e.g. Iken

and Bindschadler (1986); Kamb and Engelhardt (1987)). As technology advanced, for

example to exploit Global Position Systems (GPS), glaciologists further benefited from

these new forms of in situ measurements (e.g. Zwally et al. (2002); Shepherd et al.

(2009); Joughin et al. (2010)). Substantial advances were achieved, such as the near

coincidence of the ice acceleration with the duration of surface melting, followed by

deceleration after the melting ceases, which indicates that glacial sliding is enhanced

by rapid migration of surface meltwater to the ice-bedrock interface (Zwally et al.,

2002; Shepherd et al., 2009). Nonetheless, field data tends to be limited in space and

time and so it is difficult to derive comprehensive, ice sheet wide observational datasets

from field data alone. The high cost and the difficulty of field campaigns has led to

alternative methods of analysis, and specifically those which utilize satellite data.
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2.1 Introduction to tracking ice motion

Satellite measurements of ice motion

At present, the only way to systematically monitor ice velocity at a continental scale

is through satellite imagery. Glacier velocities were first measured using Landsat satel-

lite data acquired during the 1980s through digital optical image comparison (Lucchitta

and Ferguson, 1986). Currently, optical images are still largely used for mapping glacier

velocity at large scale (e.g. Dehecq et al. (2015); Fahnestock et al. (2016); Armstrong

et al. (2017)). However, due to the dependency of optical data upon daylight con-

ditions, cloud-free skies and the limited acquisitions across the polar regions, the use

of Synthetic Aperture Radar (SAR) images has become common since the launch of

ERS-1 in 1991. In the following decades, these data have been used to monitor dynamic

processes occurring across remote areas such as the Greenland and Antarctic ice sheets,

using the techniques of Interferometric Synthetic Aperture Radar (InSAR) and SAR

feature tracking (Joughin et al., 2010; Rignot and Mouginot, 2012; Nagler et al., 2015;

Mouginot et al., 2017).

The Interferometric Synthetic Aperture Radar technique has been used since the 1970’s

(e.g. Graham (1974)), when data from airborne campaigns were first used to generate

topographic maps. After the launch of the first European Remote Sensing (ERS-1)

satellite in 1991 by the European Space Agency (ESA), Goldstein et al. (1993) was the

first to apply the InSAR technique for the purpose of remote glaciological study. They

applied the InSAR technique to SAR imagery of the Rutford Ice Stream, Antarctica, to

measure ice flow and grounding line position. A synthetic aperture radar is a coherent

imaging system, containing information relating both to the amplitude (magnitude)

and phase of the radar echo received during acquisition. Pulses of electromagnetic

radiation are transmitted by the antenna of the SAR system, and the backscattered

energy received depends on the surface morphology and roughness, dielectric proper-

ties and absorption of the target, and its range from the satellite. The interferometric

technique uses phase difference information from at least two complex SAR images

acquired over the same region but from a different position, time, or both (Bamler

and Hartl, 1998), in order to determine topography and surface motion information

(Joughin et al., 1996). In so-called satellite repeat-pass interferometry, where acqui-

sitions are typically separated in space and time, the phase difference contains both

28



2.2 SAR intensity tracking

topography and displacement information. If the surface topography is known, for

example from an external Digital Elevation Model, then the topographic phase compo-

nent can be simulated and removed, in order to isolate the surface motion information.

Despite the use of interferometry to measure glacier velocity (Pritchard et al., 2005;

Joughin et al., 2004; Howat et al., 2005; Rignot and Kanagaratnam, 2006; Joughin

et al., 2008, 2010), the technique is restricted to short (typically 1-3 days) temporal

baselines, which reduces its use on a wider scale (Paul et al., 2015). InSAR is a co-

herent processing technique and, contrary to optical and intensity tracking techniques,

the phase information in the SAR image must be sufficiently stable to enable its use

(Joughin et al., 2010). Decorrelation (phase instability) occurs due to locally steeper

terrain slope, changes in the backscattering properties of the surface being imaged, or

the spatial or temporal baseline increasing (Massom and Lubin, 2006; Joughin et al.,

2010). Temporal decorrelation is a particular issue in the cryosphere field, due to the

rearrangement of snow grains near the surface during compaction, areas of high accu-

mulation and melting, and movement due to flow and snow drifting (Joughin et al.,

2010). While InSAR has been widely used in the glaciological field, it can be limited by

coherence levels and spatial coverage. For these reasons, the technique of SAR inten-

sity tracking has become widely used in cryospheric study. In essence, this technique

matches nearly identical features, such as crevasses, between sequential images (Strozzi

et al., 2002). In this thesis, the intensity tracking technique has been primarily used

and is described in further detail in section 2.2.

2.2 SAR intensity tracking

Sentinel-1 platform

Sentinel-1 mission is a constellation formed by Sentinel-1a, launched in April 2014, and

Sentinel-1b in April 2016. Each satellite has a repeat cycle of 12 days and 180 degrees

orbital phasing difference, resulting in a revisit time of 6 days over the same area after

the Sentinel-1b launch (Figure 2.1). The Sentinel SAR instruments operate at c-band

in the radar region of the electromagnetic spectrum, with a centre frequency of 5.405

GHz, corresponding to a wavelength of 5.55 cm. Their scanning modes are Strip Map

(SM), Extra-Wide swath (EW), Wave mode (WV), and the Interferometric Wide swath
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2.2 SAR intensity tracking

(IW), which are represented in the Figure 2.2. To map ice velocity, I used the IW mode

due to its swath coverage of 250km and spatial resolution of 5 m in ground range and

20 m in azimuth. Moreover, The IW mode acquires data divided into 3 sub-swaths,

using the Terrain Observation by Progressive Scan (TOPS) mode imaging technique,

providing larger swath width at ground resolution with enhanced image performance,

as all targets are acquired by the entire azimuth antenna pattern (Geudtner et al.,

2014). Each IW sub-swath consists of a series of bursts, which have to be re-sampled

to a common pixel spacing in range and azimuth with burst synchronisation and phase

preservation (Torres et al., 2012).

Figure 2.1: Illustration of the revisit frequency of Sentinel-1a and b, combining as-

cending and descending acquisitions, expressed in days per revisit. Extracted from

European Space Agency (ESA) website.
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2.2 SAR intensity tracking

Figure 2.2: Illustration of different imaging modes of Sentinel-1. Extracted from Geudt-

ner et al. (2014).

Summary of the satellite and ancillary data used

To map ice velocity for the studies described in Chapters 3 and 4, I used single look com-

plex (SLC) synthetic aperture radar images acquired in the interferometric wide swath

mode from the Sentinel-1a and Sentinel-1b satellites. The Level-1 data from Sentinel-1

is available in single look complex imagery and ground range detected imagery (GRD).

The ground range detected products are focused SAR data that have been detected,

multi-looked and projected to ground range using an Earth ellipsoid model, and the

resulting product has approximately square spatial resolution and square pixel spacing
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2.2 SAR intensity tracking

with reduced speckle due to the multi-look processing. Here, I use single look complex

images in order to exploit the original backscatter statistics for speckle filtering and

classification, and to perform terrain-corrected geocoding using high resolution digital

elevation models. Moreover, for the intensity tracking processing, when coherence is

retained, the speckle pattern of the two images is correlated, and intensity tracking

with small image patches can be performed more accurately (Strozzi et al., 2002). The

dataset used in Chapter 3 was acquired over the period spanning from October 2014 to

February 2017 and from October 2016 to February 2017, for Sentinel-1a and Sentinel-

1b, respectively, providing a total of 187 ice velocity maps. During co-registration and

the geocoding step, explained in the next section, I used the precise orbits provided

by the European Space Agency (Sentinels POD Team, 2013), and the Greenland Ice

Mapping Project (GIMP) digital elevation model (DEM) posted on a 90 m grid (Howat

et al., 2014), respectively. To map the bedrock, I used the bed elevation from the Ice-

Bridge BedMachine Greenland V2 product (Morlighem et al., 2015). Furthermore,

to evaluate my ice velocity measurements, I used independent estimates derived from

TerraSAR-X (TSX) SAR imagery through the speckle tracking technique (Joughin,

2002), which has a repeat period acquisition of 11 days and spatial resolution up to

3 m, from January 2009 to January 2017 (Joughin et al., 2016). The ice front posi-

tions were extracted from Joughin et al. (2014), and ESA Greenland Ice Sheet Climate

Change Initiative (CCI) project (2017). In Chapter 4, the SLC IW Sentinel-1 images

were acquired between January 2016 and December 2017, generating 96 individual ice

velocity maps. I then computed positive degree days (PDDs) as a measure of the sur-

face melting using air temperatures recorded at the nearby KAN L automatic weather

station and distributed by the Programme for Monitoring of the Greenland Ice Sheet

(PROMICE, https://www.promice.dk/WeatherStations.html).

Methodology applied

Synthetic aperture radar intensity tracking is a robust technique and has been widely

applied throughout Greenland and Antarctica to estimate ice motion (Strozzi et al.,

2002; Luckman et al., 2003; Pritchard et al., 2005; Luckman et al., 2007; Sundal et al.,

2011; McMillan et al., 2014; Nagler et al., 2015; Hogg et al., 2017). In contrast to In-

SAR, the intensity tracking technique is able to estimate offsets in both slant-range (the

line-of-sight of the satellite) and azimuth (along the orbit of the satellite) directions,
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2.2 SAR intensity tracking

through a cross-correlation algorithm of image real-valued (amplitude) SAR intensity

images patches (Strozzi et al., 2002; Pritchard et al., 2005). The temporal baseline

interval used for SAR intensity tracking procedure is roughly between days to few

weeks and thereby more extensive than the period required for InSAR. This opens up

a greater volume of data suitable for scientific investigation (Paul et al., 2013). Longer

temporal baseline intervals typically produce lower coherence between a pair of images

(decorrelation), caused by, e.g. meteorological conditions (ice and snow surface melt-

ing, snowfall, and wind).

I use the SAR intensity tracking technique (Strozzi et al., 2002), in GAMMA-SAR

software (GAMMA REMOTE SENSING, 2015), to estimate surface ice velocities due

to glacier flow, assuming that the ice flow occurs parallel to the surface slope. The inten-

sity tracking algorithm generates slant-range and azimuth displacements (2D compo-

nents) and, in order to obtain a 3-D displacement map, both components are combined

with a digital elevation model (DEM) assuming the ice flow is parallel to the surface

slope. This method uses a cross-correlation algorithm applied to image patches (Strozzi

et al., 2002; Pritchard et al., 2005; Paul et al., 2015) to estimate offsets between similar

features, such as crevasses and radar speckle patterns, in two co-registered SAR images

(Figure 2.3). Images are co-registered using the precise orbit information, available 20

days after the image acquisition, establishing a co-registration accuracy of 5 cm 1-σ

(Sentinels POD Team, 2013). The elimination of the orbital offsets isolates displace-

ment due to the glacier movement (Strozzi et al., 2002). To estimate ice flow, I then

used windows sizes of 350 pixels in ground range (∼1.7 km) and 75 pixels in azimuth

(∼1.5 km) for each glacier, to produce series of velocity maps with spatial resolution of

388m in ground range and 320m in azimuth. The window and step size used was based

on sensitivity testing of a range of values, where a trade-off between the spatial resolu-

tion, spatial coverage and measurement accuracy of the output result was considered.

For an individual pair, the quality of the resulting velocity field depends on the nature

of the ice flow, the change in snow surface properties between the processed images, the

associated correlation of the speckle pattern, and the scale of the local features observed.

In the processing chain used in this thesis, image matches with low certainty, defined as

returning a normalized cross-correlation (NCC) of less than 5 % of its maximum peak,
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were rejected and the results are then converted into displacement in ground range

coordinates using the Greenland Ice Mapping Project digital elevation model posted

on a 90m grid (Howat et al., 2014). Along- and across-track displacement components

were then combined to determine the displacement magnitude, which is then converted

to an estimate of annual velocity using the temporal baseline of each image pair. Final

velocity products were posted on 100m by 100m grids. Post-processing of ice velocity

data allows the opportunity to reduce noise and remove outliers (Paul et al., 2015), so I

apply a low-pass filter (moving mean) twice to the data, using a kernel of 1 km by 1 km,

and reject values where the deviation between the unfiltered and filtered velocity mag-

nitude exceeds 30 %, which causes large deviation from the original measurement and,

therefore, it is unreliable. I apply a labelling algorithm, based on the image histogram,

to identify and classify regions with similar values, and use this to exclude isolated

pixels which exhibit a spatially non-coherent pattern of velocity. This same approach

is also used to remove areas where the classified region was smaller than 1/1000th of

the processed image size (Figure 2.3).
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2.2 SAR intensity tracking

Figure 2.3: Intensity tracking processing chain using IW SLC Sentinel-1 images.

Error source and budget for the SAR measurements

Errors in velocity estimates arise primarily through inexact co-registration of the SAR

images, uncertainties in the digital elevation model used in the terrain correction, and

fluctuations in ionospheric activity and tropospheric water vapour (Nagler et al., 2015;

Hogg et al., 2017). Synthetic aperture radar sensors are sensitive to snow and ice

conditions on the glacier surface, especially due to the presence of liquid water, reducing

the quality of the results (Paul et al., 2017). Here, I present three different methods

to estimate errors associated to the ice velocity measurements. It is possible to have

an estimative of the matching accuracy by measuring the mean local offsets in range
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2.3 Optical feature tracking

and azimuth on flat and stable areas, such as bedrock and ice-free ground regions

(Pritchard et al., 2005; Paul et al., 2017). Another method is by stacking the velocity

measurements and observe the consistency of velocity time series, providing statistical

estimates, such as the temporal mean and standard deviation (Rignot et al., 2011a;

Rignot and Mouginot, 2012). To estimate the accuracy of my Sentinel-1 average velocity

data I computed pixel-by-pixel errors based on the signal-to-noise ratio (SNR) of the

cross-correlation function (Hogg et al., 2017). The SNR is the ratio between the cross-

correlation function peak (Cp) and the average correlation level (Cl) on the tracking

window used to estimate the velocities (de Lange et al., 2007). In general, due to

the non-uniform flow, lack of stable features, and geometry distortions, glaciers exhibit

higher errors across their faster flowing and steeper areas, and along their shear margins.

In addition, where localized rates of surface elevation change are high, the surface

slope may have evolved away from that of the DEM used during the processing. For

instance, in Chapter 3, I assess the sensitivity of my velocity estimates to this effect at

the Jakobshavn Isbræ site, where glacier thinning is most pronounced. I used airborne

estimates of elevation change from IceBridge and pre-Icebridge data acquired from the

NASA Airborne Topographic Mapper (ATM) (Studinger, 2014) to update the DEM. I

found that in an extreme case, the large thinning rates (∼12 m yr−1) may introduce an

additional uncertainty of ∼ 3 %, which may bias the velocity estimates in the region,

albeit it is limited to the first 10 km upstream of the grounding line. Moreover, over

floating ice tongues, uncompensated vertical tidal displacement may also introduce

additional uncertainty of 2-4 % into velocity estimates.

2.3 Optical feature tracking

Sentinel-2 platform

Sentinel-2 is an optical imaging component of the European Commission’s (EC) Coper-

nicus Earth Observation satellite program, built and launched in partnership with the

European Space Agency. The first of the satellites, Sentinel-2a, was launched in June

2015, followed by, Sentinel-2b, which was launched in March 2017. The main sensor on

each Sentinel-2 satellite is the Multi-Spectral Instrument (MSI), which acquires images

within 13 different spectral bands and with a spatial resolution that varies from 10 to

60 m (Table 2.1 – European Space Agency (ESA) (2015)). Sentinel-2 Level-1C (L1C)
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images are recorded as top-of-atmosphere reflectance, with ground footprints of 109

by 109 km. The L1C images products are orthorectified using the PlanetDEM digital

elevation model (DEM), posted in a 90 x 90 m grid (European Space Agency (ESA),

2015). Both satellites follow sun-synchronous orbits, ensuring a consistent angle of

sunlight on the Earth’s surface. Although each satellite has a 10-day orbital repeat

period, when combined they provide repeat sampling every 5 days because their orbits

are offset. The actual frequency of repeat acquisitions however depends on the capacity

of the entire system, which is defined in an image acquisition plan. At higher latitudes

where the imaging swaths from neighbouring orbits overlap, the revisit time offered by

the constellation is even shorter than 5 days (Figure 2.4 - Kääb et al. (2016)).

Table 2.1: Spatial resolution, central wavelength and bandwidth of the different bands

acquired by Sentinel-2. Adapted from ESA, 2015.

Sentinel-2a Sentinel-2b

Band

Number

Spatial

resolution

(m)

Central

wavelength

(nm)

Bandwidth

(nm)

Central

wavelength

(nm)

Bandwidth

(nm)

1 60 442.7 21 442.2 21

2 10 492.4 66 492.1 66

3 10 559.8 36 559 36

4 10 664.6 31 664.9 31

5 20 704.1 15 703.8 16

6 20 740.5 15 739.1 15

7 20 782.8 20 779.7 20

8 10 832.8 106 832.9 106

8a 20 864.7 21 864 22

9 60 945.1 20 943.2 21

10 60 1373.5 31 1376.9 30

11 20 1613.7 91 1610.4 94

12 20 2202.4 175 2185.7 185
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Figure 2.4: Density of acquisitions from Sentinel-2a/b between 03-Dec-2016 to 03-Dec-

2017. Extracted from Petr Ševč́ık EOX IT Services GmbH (2018).

Methodology applied

The derivation of ice velocity measurements using optical datasets was first demon-

strated in the 1980s (e.g. Lucchitta and Ferguson (1986)). At that time, the method was

based on photogrammetric techniques and visual comparison between two co-registered

images. When applied to glacier surfaces, this technique of optical image feature track-

ing relies on the detection of coherent visible features such as crevasses and calving

fronts in temporally-separated images, in order to determine ice motion (Lucchitta

and Ferguson, 1986; Scambos et al., 1992). Initially, this was done by visual compar-

ison using in a smaller scale, and this limited the scope and precision of the resulting

estimates of ice motion (Bindschadler and Scambos, 1991; Scambos et al., 1992). Nowa-

days, the feature-tracking technique commonly applies the cross-correlation method to

automatically detect the motion of small areas (chips). This is essentially the same as

the method used for SAR intensity tracking, albeit requiring optically visible features

and good visual contrast between the images used (Rosenau et al., 2015; Fahnestock

et al., 2016). There exist different methods for image matching, such as the normalized

cross-correlation applied in the spatial domain, the one applied in the frequency domain

through Fast Fourier Transform, and other four methods applied in the phase domain
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Heid and Kääb (2012). In this thesis, I estimate ice motion using a normalised cross-

correlation feature tracking algorithm (GAMMA REMOTE SENSING, 2015) applied

to Sentinel-2 L1C near-infrared Band 8 images with 10 m spatial (Table 2.1), follow-

ing the methodology applied in Kääb et al. (2016) and described in Heid and Kääb

(2012). First, the images are co-registered using a cross-correlation algorithm applied

after masking out areas of known fast ice flow (Figure 2.5). The co-registration of two

images from a repeat orbit reduces the final offset field containing geo-location noise

and biases due to shifts and jitter Kääb et al. (2016). I then track movement using

patches of 75 x 75 pixels, corresponding to areas of 750 m by 750 m on the ground.

From these data I estimate ice velocity by assuming that the ice flows parallel to the

surface slope. Finally, I apply a median filter using a kernel of 100 m by 100 m to

remove outliers (Figure 2.5).
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Figure 2.5: Feature tracking processing chain using L1C Sentinel-2 images.

Error source and budget for optical

The major limitation when tracking ice motion using optical images is the need for day-

light acquisitions, which restricts their use during night-time or in winter. Furthermore,

glaciers are often located in relatively steep, or mountainous, regions, and the presence

of clouds and shadows created by the terrain topography also limit the performance
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of optical feature tracking (Kääb et al., 2016; Paul et al., 2016, 2017). Clouds, and

their shadows, for example, are often found to obscure portions of Sentinel-2 scenes,

which can limit the image coverage, and can introduce errors due to false matches in

the tracking caused by false matches. Although an automatic cloud mask is included

in all Sentinel-2 L1C imagery, based on a ratio of the reflectance recorded in differ-

ent bands (European Space Agency (ESA), 2015), the algorithm is not designed for

glaciated terrain and performs poorly in some cases. This is not surprising, as snow

covered regions are known to be a challenge for cloud detection algorithms (Paul et al.,

2016; Frantz et al., 2018). Systematic errors associated to the satellite jitter, which

affects the geometric accuracy of high-resolution images, can be statistically modelled

and corrected (Paul et al., 2017). Displacements over stable ground can provide an

estimative of the digital elevation model errors that propagate into the orthorectified

images, and are difficult to be removed or removed (Paul et al., 2017). Furthermore,

the major error source in ice velocity estimation using optical images is the inexact

co-registration linked to the digital elevation model used to orthorectify the images

(Jeong and Howat, 2015). Therefore, in order to minimize mismatches due to orthorec-

tification, it is recommended to use only image pairs that are acquired on the same

satellite path (Kääb et al., 2016). I estimate individual velocity error maps based on

the signal to noise ratio (SNR) of the cross-correlation algorithm, being the ratio of

the cross-correlation function peak (Cp) and the average correlation level (Cl) within

the used patch (de Lange et al., 2007), thereby maintaining a consistent metric to that

used in the SAR intensity tracking velocity estimates.
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Chapter 3

Ice velocity of Jakobshavn Isbræ,

Petermann Glacier,

Nioghalvfjerdsfjorden and

Zachariæ Isstrøm, 2015-2017,

from Sentinel 1-a/b SAR imagery

Authors: Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E.

Hogg, Emma Hatton and Ian Joughin

Abstract

Systematically monitoring Greenland’s outlet glaciers is central to understanding the

timescales over which their flow and sea level contributions evolve. In this study we use

data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps,

covering 4 key outlet glaciers in Greenland; Jakobshavn Isbræ, Petermann Glacier,

Nioghalvfjerdsfjorden and Zachariæ Isstrøm. These data provide a new high temporal

resolution record (6 days averaged solutions) of each glacier’s evolution since 2014, and

resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet
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3.1 Introduction

glacier speed with an estimated certainty of 10 %. We find that since 2012, Jakobshavn

Isbræ has been decelerating, and now flows approximately 1250 m yr−1 (10 %) slower

than 5 years previously, thus reversing an increasing trend in ice velocity that has

persisted during the last decade. Despite this, we show that seasonal variability in ice

velocity remains significant; up to 750 m yr−1 (14 %) at a distance of 12 km inland of

the terminus. We also use our new dataset to estimate the duration of speedup periods

(80-95 days), and to demonstrate a strong relationship between ice front position and

ice flow at Jakobshavn Isbræ, with increases in speed of ∼1800 m yr−1 in response to

1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25

% (2015) and 18 % (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively.

This study provides a first demonstration of the capacity of a new era of operational

radar satellites to provide frequent, and timely, monitoring of ice sheet flow, and to

better resolve the timescales over which glacier dynamics evolve.

3.1 Introduction

Between 1992 and 2011, the Greenland Ice Sheet lost mass at an average rate of 142±49

Gt yr−1 (Shepherd et al., 2012), increasing to 269±51 Gt yr−1 between 2011 and 2014

(McMillan et al., 2016). Ice sheet mass balance is determined from the surface mass

balance and ice discharge exported from the ice sheet (van den Broeke et al., 2009). In

2005, dynamic imbalance was responsible for roughly two-thirds of Greenland’s total

mass balance, making an important contribution to freshwater input into the ocean and

0.34 mm yr−1 to the global sea level rise at that time (Rignot and Kanagaratnam, 2006).

Despite the anomalous atmospheric warming events, especially in 2012 (Tedesco et al.,

2013), presenting a more spatially extensive and longer lasting surface melt during this

period, marine-terminating outlet glaciers in Greenland still contributed with roughly

30 % (2000–2012) of total mass loss (Enderlin et al., 2014). The observed acceleration

of many marine-based glaciers in the western and northern regions of Greenland over

the last decade may have been driven by rises in air and adjacent ocean temperatures,

which enhanced the surface melting and terminus retreat (Holland et al., 2008; Moon

et al., 2014, 2015). The associated increases in basal sliding and calving of their ice

fronts in turn produce enhanced discharge, leading to dynamical imbalance and addi-

tional ice loss (Joughin et al., 2010, 2014). Acceleration of marine-terminating glaciers
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is, however, highly variable in space and time (Howat et al., 2010; Moon et al., 2012;

Enderlin et al., 2014), due to the geometry of individual glaciers (Felikson et al., 2017),

and the high spatial variability in the forcing mechanisms (Jensen et al., 2016; Carr

et al., 2017). This complexity in glacier response challenges efforts to model their fu-

ture evolution (Joughin et al., 2012; Bondzio et al., 2017) and, therefore, frequent and

systematic monitoring is essential to understand the processes governing their dynamic

stability and contribution so future mean sea level rise (Joughin et al., 2010; Shepherd

et al., 2012).

Ice motion measurements are essential for monitoring ice sheet dynamics and ice dis-

charge, and for assessing an ice sheet’s mass budget (Joughin et al., 1995). At present,

the only way to monitor ice velocity at a continental scale is through satellite imagery.

Glacier velocities were first measured using Landsat satellite data acquired during the

1970s through digital optical image comparison (Lucchitta and Ferguson, 1986). Cur-

rently, optical images are still largely used for mapping glaciers velocity at large scale

(e.g. Dehecq et al. (2015); Fahnestock et al. (2016); Armstrong et al. (2017). However,

due to the dependency upon daylight conditions and the limited acquisitions across the

polar Regions, the use of Synthetic Aperture Radar (SAR) images has become common

since the launch of ERS-1 in 1991. In the following decades, these data have been used

to monitor dynamic processes occurring across remote areas such as the Greenland and

Antarctic ice sheets (Joughin et al., 2010; Rignot and Mouginot, 2012; Nagler et al.,

2015; Mouginot et al., 2017). More recently, after the launch by the European Space

Agency (ESA) of the Sentinel 1-a and 1-b satellites, in April 2014 and April 2016 re-

spectively, many key ice margin areas are systematically monitored every 6 to 12 days.

This novel dataset provides the opportunity to systematically monitor the dynamical

process driving glacier ice velocity over periodic and short temporal scales. Here we use

the Sentinel SAR archive to investigate the temporal variation in ice flow since October

2014 at four large outlet glaciers of the Greenland ice sheet.

3.2 Study Areas

In this study, we map ice velocity of the Jakobshavn Isbræ (JI), Petermann Glacier

(PG), Nioghalvfjerdsfjorden (79-G) and Zachariæ Isstrøm (ZI), which are four of the
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largest marine-based ice streams in Greenland. Combined they contain ice equivalent

to 1.8 m of global sea-level rise (Mouginot et al., 2015; Jensen et al., 2016), and drain

∼21.5 % of Greenland’s ice (Rignot and Kanagaratnam, 2006; Rignot and Mouginot,

2012; Münchow et al., 2014).

Jakobshavn Isbræ terminates in the Ilulissat Icefjord in western Greenland (Figure

3.1a), and is the fastest glacier draining the ice sheet (Enderlin et al., 2014; Joughin

et al., 2014). During the late 1990s, the ice tongue experienced successive break up

events and the glacier began to speedup, exhibiting annual increases in speed of 7 % per

year from 2004 and 2007 (Joughin et al., 2008b, 2012, 2014). Until 2012 and 2013, the

speed up has continued, reaching maximum velocities in excess of 17 km yr−1 (Joughin

et al., 2012, 2014). It has been suggested (van de Wal et al., 2015) that the speedup

over this period in the southwest of Greenland might be enhanced by anomalously high

melting across the ice sheet surface (Tedesco et al., 2013). Jakobshavn Isbræ is suscep-

tible to changes in the adjacent ocean and Holland et al. (2008) have shown that warm

water originating in the Irminger Sea likely enhanced basal melting and weakened the

floating ice tongue, triggering its break up in 1997. Furthermore, Gladish et al. (2015)

showed that subsequent changes occurred between 2001–2014 which were mainly trig-

gered by changes in Ilulissat Icefjord water temperatures adjacent to the glacier. At

present, JI is a tidewater glacier and has a bimodal behaviour, retreating by ∼3 km

during summer and advancing by a similar amount during winter seasons (Cassotto

et al., 2015). Moreover, as showed by Jensen et al. (2016) through analysis of optical

images from 1999 to 2013, it has not exhibited an unusually large change in area (-10.3

km2 yr−1).

Petermann Glacier flows into the Hall Basin in the Nares Strait in Northwest Green-

land (Figure 3.1b), and has a perennial floating ice tongue of 1280 km2 in area (Hogg

et al., 2016). PG is grounded on bedrock ∼300 m below sea level and, therefore, is also

influenced by the adjacent ocean (Münchow et al., 2014; Hogg et al., 2016). The retreat

of the ice stream calving front led to an area decrease of 352 km2 from 1959 to 2008,

270 km2 in 2010 and 130 km2 in 2012 (Johannessen et al., 2013). It is considered a

dynamically stable marine-terminating glacier despite several grounding line advancing

and retreating events between 1992 and 2011, with a terminus retreat rate of 25.2 m
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yr−1 (Hogg et al., 2016). PG has an average velocity of ∼1100 m yr−1 at its grounding

line since the 1990s (Rignot, 1996; Rignot and Steffen, 2008) and a multi-annual trend

(2006–2010) in flow speed of 30 m yr−2 (Nick et al., 2012). The ice shelf is thicker than

100 m and it is 15 km wide, with low resistive stresses along flow due to the limited

attachment to the fjord walls, diminishing the velocity response after calving events

(Nick et al., 2012).

Nioghalvfjerdsfjorden and Zachariæ Isstrøm are situated in the northeast of Green-

land (Figure 3.1c and Figure 3.1d respectively). The two glaciers together drain more

than 10 % of the Greenland Ice Sheet (Rignot and Mouginot, 2012), and their maximum

velocities are found near the grounding line. They have exhibited different behaviour

in recent years, although located in the same region. 79-G underwent a modest ve-

locity increase of ∼150 m yr−1 between 2001 and 2011 at the grounding line (Khan

et al., 2014). In contrast, during the same period, ZI exhibited a much larger increase

in speed greater than 600 m yr−1 (Khan et al., 2014). The ice thinning rates above

the grounding line varies from 5.1 m yr−1 in ZI (2010–2014) to 1.4 m yr−1 in 79-G

(2012–2014) (Mouginot et al., 2015). Between 1999 and 2013, ZI has undergone an

average area change of -26.0 km2 yr−1, due to break off of the ice tongue and is now a

tidewater glacier (Khan et al., 2014; Jensen et al., 2016). In contrast, 79-G had a much

lower average area change during the same period of -4.7 km2 yr−1 and still retains a

small ice shelf (Jensen et al., 2016), although recent ice shelf thinning (Mouginot et al.,

2015) may increase vulnerability to break up in the future.
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Figure 3.1: Time-averaged ice velocity magnitude maps for the period

Oct/2014–Feb/2017 (a) Jakobshavn Isbræ (JI; 69oN, 50oW), (b) Petermann Glacier

(PG; 81oN, 62oW), (c) Nioghalvfjerdsfjorden (79G; 79oN, 20oW) and Zachariæ Isstrøm

(ZI; 78oN, 20oW) glaciers, derived from Sentinel-1 SAR images. Velocities are shown on

a logarithm scale and overlaid on a SAR backscatter intensity image and thin grey lines

represent elevation. The along-flow profiles are indicated by solid green lines scaled in

kilometres, the solid black lines show the across-flow transects, the red triangles repre-

sent the locations at which velocity time series are extracted and the thick solid and

dashed black lines represent the ice front locations (IF) and the grounding lines (GL),

respectively. The inset figures show the location of each glacier

3.3 Data and Methodology

To map ice velocity, we used Single Look Complex (SLC) Synthetic Aperture Radar

images acquired in the Interferometric Wide swath (IW) mode from the Sentinel-1a

and Sentinel-1b satellites. Data used in this study were acquired in the period span-
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ning from October 2014 to February 2017 and from October 2016 to February 2017, for

Sentinel-1a and Sentinel-1b respectively (Figure S3.2 and Table S3.1). Each satellite

has a repeat cycle of 12 days and 180 degrees orbital phasing difference, resulting in a

revisit time of 6 days over the same area after the Sentinel-1b launch. The Sentinel SAR

instruments operate at C-Band, with a centre frequency of 5.405 GHz, corresponding

to a wavelength of 5.55 cm. The IW mode has a 250 km swath and spatial resolution

of 5 m in ground range and 20 m in azimuth. It has burst synchronization for inter-

ferometry and acquires data in 3 sub-swaths, each containing a series of bursts, which

are acquired using the Terrain Observation with Progressive Scans SAR (TOPSAR)

imaging technique (Yague-Martinez et al., 2016). We followed the workflow described

below to derive 187 ice velocity maps from pairs of Sentinel-1a/b SAR images over

Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden and Zachariæ Isstrøm,

using the GAMMA-SAR software (GAMMA REMOTE SENSING, 2015).

We used the SAR intensity tracking technique (Strozzi et al., 2002) to estimate surface

ice velocities due to glacier flow, assuming that the ice flow occurs parallel to the sur-

face. This method uses a cross correlation algorithm applied to image patches (Strozzi

et al., 2002; Pritchard et al., 2005; Paul et al., 2015) to estimate offsets between similar

features, such as crevasses and radar speckle patterns, in two co-registered SAR images

(Table S3.1). Images were co-registered using the precise orbit information, available

20 days after the image acquisition, establishing a co-registration accuracy of 5 cm 3D

1-sigma (Sentinels POD Team, 2013). The elimination of the orbital offsets isolates

displacement due to the glacier movement (Strozzi et al., 2002). To estimate ice flow,

we then used windows sizes of 350 pixels in ground range (∼ 1.7 km) and 75 pixels in

azimuth (∼1.5 km) for each glacier, to produce a series of velocity maps with spatial

resolution of 388 m in ground range and 320 m in azimuth.
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Figure 3.2: Average velocities (2014–2017) extracted from along- and across-flow pro-

files of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden and Zachariæ Is-

strøm. Figures a–d present along-flow profiles of ice velocity (solid black lines), surface

elevation from the GIMP DEM (Howat et al., 2014); dashed blue lines and bed eleva-

tion from the IceBridge BedMachine Greenland V2 product (Morlighem et al., 2015);

dashed yellow lines. The location of each profile is shown in Figure 3.1 (green lines).

The grey shaded area represents the floating regions, and the light grey dashed line

the ice front positions. The blue, black and red markers represent the locations of the

across-flow profiles. Figures e–h show the across-flow velocity profiles (solid white lines

in Figure 3.1), centred on the main profile (solid green line).
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Image matches with low certainty, defined as returning a normalised cross-correlation

of less than 5 % of its maximum peak, were rejected and the results were then con-

verted into displacement in ground range coordinates using the Greenland Ice Mapping

Project (GIMP) digital elevation model (DEM) posted on a 90 m grid (Howat et al.,

2014). Along- and across- track displacement components were combined to determine

the displacement magnitude, which was then converted to an estimate of annual veloc-

ity using the temporal baseline of each image pair. Final velocity products were posted

on 100 m by 100 m grids. Post-processing of ice velocity data reduces noise and removes

outliers (Paul et al., 2015), so we applied a low-pass filter (moving mean) twice to the

data, using a kernel of 1 km by 1 km, and we reject values where the deviation between

the unfiltered and filtered velocity magnitude exceeds 30 %. We apply a labelling al-

gorithm, based on the image histogram, to identify and classify regions with similar

values, excluding isolated pixels with a non-coherent area of velocity values, or where

the area of the classified region was smaller than 1/1000th of the processed image size.

Errors in our velocity estimates arise primarily through inexact co-registration of the

SAR images, uncertainties in the digital elevation model used in the terrain correction,

and fluctuations in ionospheric activity and tropospheric water vapour (Nagler et al.,

2015; Hogg et al., 2017). To estimate the accuracy of our Sentinel-1 average velocity

data (Figure 3.1 and Figure 3.3) we computed pixel-by-pixel errors based on the signal

to noise ratio (SNR) of the cross correlation function (Hogg et al., 2017). The SNR is

the ratio between the cross-correlation function peak (Cp) and the average correlation

level (Cl) on the tracking window used to estimate the velocities (de Lange et al., 2007).

We then averaged these estimates across all images in our temporal stack to determine

the percentage errors associated with our mean velocity maps (Figure 3.3). Although

in isolated areas the error exceeds 30 %, the mean error across the whole imaged area

were approximately 10 % for JI, 7 % for PG, and 8 % for 79G and ZI. Due to the

non-uniform flow, lack of stable features and remaining geometry distortions, the four

glaciers exhibit higher errors across their faster flowing and steeper areas, and along the

shear margins. Where localised rates of surface elevation change are high, the surface

slope may have evolved away from that of the GIMP DEM used in our processing.

To assess the sensitivity of our velocity estimates to this effect, we selected the JI site

where thinning is most pronounced, and used airborne estimates of elevation change
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from IceBridge and Pre-Icebridge data acquired from the NASA Airborne Topographic

Mapper (ATM) (Studinger, 2014) to update the DEM. We find that in this extreme

case, the large thinning rates (∼12 m yr−1) may introduce an additional uncertainty of

200-300 m yr−1 which may bias the velocity estimates in this region, albeit limited to

the first 10 km upstream of the grounding line (Table S3.2). Over floating ice tongues,

uncompensated vertical tidal displacement may also introduce additional uncertainty

into our velocity fields. The sensitivity of our results to this effect was assessed based

upon a net 50 cm tidal displacement over 6-12 day repeat period and a centre swath

incidence angle of 35 degrees. We estimate that such a tidal signal would introduce

∼20–40 m yr−1 additional uncertainty into the ground range component of our velocity

fields. In the context of this study, this uncertainty does not affect the results at JI or

ZI, and it is limited only to the floating sections of PG and 79G.

58



3.3 Data and Methodology

Figure 3.3: Time-averaged (2014–2017) uncertainty in ice velocity at each site expressed

in percentage, based on the signal to noise ratio (SNR) for (a) JI, (b) PG, and (c) 79G

and ZI.

To provide an independent evaluation of our ice velocity dataset, we finally com-

pared them (Table S3.1) to independent estimates derived from TerraSAR-X (TSX)

SAR imagery through the speckle tracking technique (Joughin, 2002), which has a re-

peat period acquisition of 11 days and spatial resolution up to 3 m (Joughin et al.,

2016). The TSX data consist of 444 image pairs covering Jakobshavn Isbræ over the

period January 2009 to January 2017, 18 pairs at Petermann Glacier over the period

November 2010 to December 2016, and 17 pairs at Nioghalvfjerdsfjorden over the pe-

riod March 2011 to December 2016. In general, the temporal evolution of the S1-a/b

measurements matches very closely with the TSX estimates. At JI, we are able to

compare S1 and TSX datasets at three different locations to assess their consistency
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(Figure 3.4). Even though the flow speed at these sites is high, which typically proves

more challenging for feature tracking techniques, we find good agreement between the

two datasets, especially at the J1 and J2 sites, with mean differences of 40 m yr−1 and

76 m yr−1 respectively. However, nearer to the calving front (site Jif), the S1-a/b mea-

surements tend to give significantly higher velocities than TSX with a mean difference

of 489 m yr−1 (5 % of the mean velocity) between the two datasets.

Figure 3.4: Comparison between co-located and contemporaneous Sentinel 1-a/b (6 to

12 days average) and TerraSAR-X (11 days average) Jakobshavn Isbræ velocity mea-

surements at Jif, J1 and J2 locations (blue, black and red dots respectively), together

with root mean square (rms) and correlation coefficients (R2).
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3.4 Results and Discussions

We used our complete Sentinel-1a/b dataset (Table S3.1) to generate contemporary,

time-averaged velocity fields at each of our study sites (Figure 3.1). To investigate

spatial and temporal variations in ice velocity, we then extracted profiles in the along-

and across-flow directions, together with time series at fixed glacier locations (Figure

3.1). Our velocity profiles in Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjor-

den and Zachariæ Isstrøm reached maximum mean speeds, along the stacked dataset

(averaged over period 2014–2017), of approximately 9 km yr−1, 1.2 km yr−1, 1.4 km

yr−1, 2.7 km yr−1, respectively. The location of the velocity maxima varied between

glaciers, as a result of their differing geometries. For JI and ZI, neither of which have

a significant floating tongue, we find a progressive increase in ice velocity towards the

calving front (Figures 3.2a and 3.2d). For PG, the maximum velocity is reached at the

grounding line and remains steady along the ∼46 km of ice tongue (Figure 3.2b). In

contrast, although 79G also reaches its maximum velocity close to the grounding line,

its speed then diminishes by ∼ 50 % (Figure 3.2c) near the ice front location where the

ice flow divides into two main portions before it reaches several islands and ice rises

(Figure S3.1b). Furthermore, it is interesting to note that, despite being located in the

same region, the adjacent glacier ZI flows ∼60 % faster in comparison. JI, PG and ZI

glaciers show velocity increases progressively downstream across the transverse profiles.

The four glaciers, JI, PG, 79G and ZI respectively reduce their maximum velocity to

half at distances of 12 km, 22 km, 18 km, and 12 km inland of their grounding lines,

highlighting the importance of resolving glacier velocities within their near terminus

regions.
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Table 3.1: Speedup Persistence and seasonal percentage increase in speed relative to

winter and annual background for each glacier for the Sentinel-1 dataset. Speedup

persistence has an uncertainty of ± 12 days due to the image acquisition interval of

Sentinel-1a.

Speedup Persistence Speedup Persistence Summer speedup (%) Vannual/Vwinter(%)

JI (J1)
95 days (2015) 14% 6%

80 days (2016) 9% 4%

PG (P1)
25 days (2015) 25% 0%

55 days (2016) 17% 6%

79G (F2) 45 days (2016) 10% 1%

ZI (Z1) 45 days (2016) 18% 3%

Next, we used the Sentinel-1a/b and TerraSAR-X velocities to assess the seasonal

and longer-term variations in Jakobshavn Isbræ ice velocity over the period 2009–2017.

Our Sentinel-1a/b velocity estimates at JI resolve clear seasonal velocity fluctuations,

superimposed upon longer term decadal scale variability, which continues observations

made by previous satellite instruments (Joughin et al., 2012, 2014). At site J1 we find

an average seasonal change in speed of 750 m yr−1, or 14 % between 2014 and 2015 and

a speedup persistence of 80-95 days, being twice longer than for the other three glaciers

(Table 3.1). Inland, the amplitude of seasonal variability diminishes, to an average of

300 m yr−1 (8 %) at J2. Our near-continuous, decadal-scale record clearly shows that

the amplitude of the seasonal signal has evolved through time. At J1, for example, the

average seasonal variability in ice speed was 400 m yr−1 during 2009–2011, increasing

by more than a factor of 3, to 1400 m yr−1 between 2012 and 2013 and then diminishing

to 750 m yr−1 between 2015–2017.
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Figure 3.5: Temporal evolution of Jakobshavn Isbræ (a) ice front position extracted

from Joughin et al. (2014), ESA Greenland Ice Sheet Climate Change Initiative (CCI)

project (European Space Agency (ESA), 2017), and Sentinel-1a/b SAR images repre-

sented in blue, black and magenta dots respectively, where higher values correspond to

ice front retreat. Changes in ice velocity through time is also shown (b, c), extracted

at the locations indicated in Figure 3.1. The velocity data derived from TerraSAR-X

(11 days - Joughin et al. (2016)) are shown as grey squares, and the data from Sentinel

1-a/b (6 to 12 days) as coloured triangles.
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Turning to the longer term evolution of JI (Figure 3.5; time series location shown in

Figure 3.1), fitting a linear trend to the data suggests an annual acceleration since 2009

of ∼218 m yr−1 at Jif, diminishing inland to ∼128 m yr−2 at J1, and ∼102 m yr−2 at

J2. Although this provides a simple characterisation of the longer-term evolution in ice

speed, it is clear from our time series that computing a linear trend does not capture

the full decadal scale variability in ice velocity. In particular, we note that much of

the acceleration occurred between 2011 and 2013 (Figures 3.5b and 3.5c), and since

then there has been a notable absence of multi-annual acceleration as earlier records

suggest (Joughin et al., 2014). Computing trends in ice velocity since 2012 near the

glacier terminus (Jif), for example, shows a modest decline in speed of 321 m yr−2

over the 5-year period (Figure 3.5b). The calving front position migration has been

suggested as the trigger to the stresses regimes variations and consequently the main

driver to the JI velocity fluctuations (Joughin et al., 2008b,a, 2012, 2014; Bondzio et al.,

2017). After successive and gradually increased rate of the ice front retreat until 2012

(Figure 3.5a), the JI grounding line is now located on a higher bed location (Joughin

et al., 2012; An et al., 2017). This may be acting to stabilise the grounding line, and

in turn contribute to the glacier deceleration, although the main cause remains to be

determined and further investigations is necessary. We used our observations of calving

front position to assess the correlation between ice speed and calving front location,

relative to their respective long term means (Figure 3.6). Based on the linear regression

(Figure 3.6), our dataset indicates correlation coefficients (R2) of 0.62 (2009–2011) and

0.79 (2012–2017), and velocity changes by 1100 and 1600 m yr−1 per kilometre of

calving front retreat, respectively.
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Figure 3.6: Comparison between Jakobshavn Isbræ ice velocity and calving front po-

sition anomalies at the Jif site, 0.8 km upstream of the calving front, between 2009

and early 2017. Positive values correspond to ice front retreat and speed up respec-

tively. The red and black lines represent the linear regression through the 2009-2011

and 2012-2017 periods, respectively, together with the correlation coefficients (R2).

At Petermann Glacier we extracted two velocity time series at P1, located ∼45

km downstream of the grounding line and close to the calving front of the ice tongue;

and P2, ∼10 km upstream of the grounding line. These locations were chosen to

examine any differences in velocity evolution over the grounded and floating portions

of the glacier. Our P1 time series starts in early 2015 because it is not covered by

the TerraSAR-X dataset (Figure 3.7a). We observe that, in general, ice at P1 flows

∼400 m yr−1 faster than P2. Fitting a linear trend to the longer P2 dataset indicates

no significant trend in ice velocity since 2011, although the precision of this trend is
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hampered by the sparse data coverage during the early part of this period. Continued

monitoring by Sentinel-1 will improve our confidence in resolving any decadal scale

variability. The improvement in temporal sampling provided by Sentinel-1 at this site

is clear (Figure 3.7a), allows us to resolve the seasonal cycle in velocity since 2015 and

helps to delimit the duration of the speedup period. At P1, we detect a seasonal change

in speed of ∼ 300 m yr−1, equivalent to a 25 % increase relative to its winter velocity

(Table 3.1). Despite the high seasonal change, the relation between P1’s annual mean

and winter velocity is 0 %, likely due to the short speedup period (25 days - Table 3.1).

This provides further evidence of a seasonal velocity cycle which has been observed at

both Petermann and other glaciers in this region, and is understood to be predominantly

controlled by changes in basal traction, induced by penetration of surface melt water

to the bed (Nick et al., 2012; Moon et al., 2014, 2015). This is further supported by

our analysis of changes in calving front position (Figure S3.1a) which shows that, in

contrast to JI, seasonal acceleration does not coincide with ice front retreat. Specifically,

we found that during the summers of 2015 and 2016, the calving front of PG advanced

∼1 km during the speedup (Figure S3.1a). These observations are consistent with

previous modelling results, which did not find evidence of acceleration driven by large

calving events in 2010 and 2012 (Nick et al., 2012; Münchow et al., 2014), suggesting

that the ice shelf exerts low backstress on the glacier. More recently, we note that since

September 2016 PG has developed a new crack near the ice front, which has continued

to grow in length up to the present day.
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Figure 3.7: Temporal evolution of ice velocity at the locations indicated in Figure 1

over (a) Petermann Glacier, (b) Nioghalvfjerdsfjorden and (c) Zachariæ Isstrøm. The

data derived from TerraSAR-X (11 days - Joughin et al., 2016) and Sentinel 1-a/b (6

to 12 days) are represented as grey squares and coloured triangles, respectively.

At 79-G, we again extracted velocity time series over the ice shelf (F1, ∼20 km

downstream of the grounding line) and at the grounding line (F2). In contrast to PG

and due to the steeper surface gradient upstream of the grounding line (Figure 3.2c),
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ice flow is slower on the floating tongue than at the grounding line location (Figure

3.7b). We observe a seasonal speed up of ∼10 % at F2 during summer 2016 (Table

3.1), although evidence of the same acceleration on the ice shelf is not clear given the

magnitude of the signal and the precision of our data. Fitting a linear trend to our

data returns an annual change in velocity of 15 m yr−2 since 2011, although assessing

the significance of this result is difficult given the limited data sampling early in the

period. Turning to Zachariæ Isstrøm, we extract time series at two locations slightly

upstream of the grounding line in order to observe different temporal responses be-

tween them (Figure 3.7c). At this glacier, no observations are available within the TSX

dataset and so our time series is limited to the period December 2015 to January 2017.

Nonetheless, like its neighbour ZI, we again find evidence of a summer speed up during

2016, equating to around 400 m yr−1, or 18 % (Table 3.1). Given the short period of

observations we do not attempt to derive a longer-term trend in ice velocity at this site.

We compared our estimates to the results of previous studies to assess the level of

stability relative to past work. At Petermann, we have observed increases in ice veloc-

ity of ∼10 % at P1 and ∼8 % at P2 between the 2015/2016 and 2016/2017 winters,

matching in percentage with the observations made by Münchow et al. (2016) between

2013/14 and 2015/16. Furthermore, the Sentinel-1a/b dataset indicates a multi-annual

acceleration of ∼32 m/yr2 between 2015-2017 at P1, which is similar to the ∼30 m/yr2

reported by Nick et al. (2012) based upon observational measurements over a longer

period, from 2006 to 2010. The same authors also show seasonal variations of ∼20–25

% over the same location, similar to the ∼22 % shown by the Sentinel-1 dataset. At

79-G, Mouginot et al. (2015) showed a speedup of 8 % from 1976 to 2014 with the main

changes occurring after 2006, similar to our estimates which also suggest a slight multi-

year trend of ∼16 m yr−2 (∼8 %) for F2 between 2015 and 2017. Zachariæ Isstrøm

shows seasonal variation up to 15 % between 2015 and 2017 in the Sentinel-1 dataset,

agreeing with seasonal variation up to 20 % estimated by Mouginot et al. (2017) using

Landsat-8 optical images during 2014–2016. Overall, our Sentinel 1 results shows a

close agreement with previous studies using different techniques and demonstrated to

be a powerful tool for monitoring the cryosphere.
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3.5 Conclusions

We have presented a new, high temporal resolution record of ice velocity evolution for

four important, and with high discharge, marine based glaciers in Greenland, updated

to the present day (October 2014 to February 2017). Using SAR data acquired by

the Sentinel-1a/b constellation, with its 250 km wide swath and frequent revisit time,

we have produced 187 velocity maps, which, in combination with 479 maps from the

TerraSAR-X satellite, provide detailed spatial and temporal coverage of these key sites.

Importantly, the systematic acquisition cycle of Sentinel-1a/b, which now provides av-

eraged measurements of all of these sites every 6 days allows for detailed monitoring

of both seasonal and multi-annual velocity fluctuations, and allow us to demonstrate

the speedup persistence in a higher resolution. The short revisit time of 6 days, made

possible since the launch of Sentinel-1b in April 2016, particularly benefits the retrieval

of velocity signals across fast flowing regions close to the ice front, due to a reduction

in the decorrelation occurring between image pairs. Using this new dataset, we confirm

evidence of intra-annual variations in ice velocity and clear seasonal cycles occurring

over the past few years at JI, PG, 79G and ZI. Of the sites studied here, JI exhibits

the largest velocity variations, as demonstrated in other studies, which we show are

strongly correlated with the evolution of the position of its calving front. Notably,

however, in the last 5 years the longer-term ice speed has started to decrease (321 m

yr−2). This study demonstrates the utility of a new era of operational SAR imag-

ing satellites for building systematic records of ice sheet outlet glacier velocity and its

good agreement with TerraSAR-X products, which indicates Sentinel-1 can confidently

extend the times series that began with other sensors. Looking to the future, these

datasets are key for the timely identification of emerging signals of dynamic imbalance,

and for understanding the processes driving ice velocity change.
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Figure S3.1: Ice front location extracted from Sentinel-1 images on (b) Petermann Glacier and (b) 

Nioghalvfjerdsfjorden. 
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Figure S3.2: Number of images used separated per month. 

 

Table S3.1: List of Sentinel-1 images used. 

Glacier Scene 1   Scene 2 
Satellite day month year   Satellite day month year 

JI 

S1A 4 Nov 14  S1A 16 Nov 14 
S1A 16 Nov 14  S1A 28 Nov 14 
S1A 28 Nov 14  S1A 10 Dec 14 
S1A 10 Dec 14  S1A 22 Dec 14 
S1A 22 Dec 14  S1A 3 Jan 15 
S1A 3 Jan 15  S1A 15 Jan 15 
S1A 27 Jan 15  S1A 8 Feb 15 
S1A 8 Feb 15  S1A 20 Feb 15 
S1A 20 Feb 15  S1A 4 Mar 15 
S1A 4 Mar 15  S1A 16 Mar 15 
S1A 16 Mar 15  S1A 28 Mar 15 
S1A 28 Mar 15  S1A 9 Apr 15 
S1A 9 Apr 15  S1A 21 Apr 15 
S1A 21 Apr 15  S1A 3 May 15 
S1A 3 May 15  S1A 15 May 15 
S1A 27 May 15  S1A 8 Jun 15 
S1A 8 Jun 15  S1A 26 Jul 15 
S1A 26 Jul 15  S1A 7 Aug 15 
S1A 7 Aug 15  S1A 19 Aug 15 
S1A 19 Aug 15  S1A 31 Aug 15 
S1A 31 Aug 15  S1A 12 Sep 15 
S1A 12 Sep 15  S1A 24 Sep 15 
S1A 11 Nov 15  S1A 23 Nov 15 
S1A 5 Dec 15  S1A 17 Dec 15 
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S1A 17 Dec 15  S1A 29 Dec 15 
S1A 29 Dec 15  S1A 10 Jan 16 
S1A 10 Jan 16  S1A 22 Jan 16 
S1A 22 Jan 16  S1A 3 Feb 16 
S1A 3 Feb 16  S1A 27 Feb 16 
S1A 15 Feb 16  S1A 27 Feb 16 
S1A 27 Feb 16  S1A 10 Mar 16 
S1A 10 Mar 16  S1A 3 Apr 16 
S1A 3 Apr 16  S1A 15 Apr 16 
S1A 15 Apr 16  S1A 27 Apr 16 
S1A 27 Apr 16  S1A 9 May 16 
S1A 27 Apr 16  S1A 21 May 16 
S1A 9 May 16  S1A 21 May 16 
S1A 21 May 16  S1A 2 Jun 16 
S1A 2 Jun 16  S1A 14 Jun 16 
S1A 14 Jun 16  S1A 8 Jul 16 
S1A 14 Jun 16  S1A 1 Aug 16 
S1A 20 Jul 16  S1A 1 Aug 16 
S1A 1 Aug 16  S1A 13 Aug 16 
S1A 13 Aug 16  S1A 25 Aug 16 
S1A 25 Aug 16  S1A 6 Sep 16 
S1A 6 Sep 16  S1A 18 Sep 16 
S1A 18 Sep 16  S1A 30 Sep 16 
S1A 30 Sep 16  S1B 6 Oct 16 
S1B 6 Oct 16  S1A 12 Oct 16 
S1A 12 Oct 16  S1B 18 Oct 16 
S1B 18 Oct 16  S1A 24 Oct 16 
S1A 12 Oct 16  S1B 30 Oct 16 
S1A 24 Oct 16  S1B 30 Oct 16 
S1B 30 Oct 16  S1A 5 Nov 16 
S1B 30 Oct 16  S1B 23 Nov 16 
S1A 5 Nov 16  S1B 11 Nov 16 
S1B 11 Nov 16  S1A 17 Nov 16 
S1A 17 Nov 16  S1B 23 Nov 16 
S1B 23 Nov 16  S1A 29 Nov 16 
S1A 29 Nov 16  S1B 5 Dec 16 
S1B 5 Dec 16  S1A 11 Dec 16 
S1A 11 Dec 16  S1B 17 Dec 16 
S1B 17 Dec 16  S1A 23 Dec 16 
S1B 10 Jan 17  S1A 16 Jan 17 
S1A 16 Jan 17  S1B 22 Jan 17 
S1B 22 Jan 17  S1A 28 Jan 17 
S1A 28 Jan 17  S1B 3 Feb 17 
S1B 3 Feb 17  S1A 9 Feb 17 
S1A 9 Feb 17  S1B 15 Feb 17 
S1B 15 Feb 17  S1A 21 Feb 17 

                    

PG 

S1A 23 Jan 15  S1A 4 Feb 15 
S1A 4 Feb 15  S1A 16 Feb 15 
S1A 23 May 15  S1A 4 Jun 15 
S1A 4 Jun 15  S1A 16 Jun 15 
S1A 16 Jun 15  S1A 28 Jun 15 
S1A 28 Jun 15  S1A 10 Jul 15 
S1A 10 Jul 15  S1A 15 Aug 15 
S1A 15 Aug 15  S1A 27 Aug 15 

3.6 Supplementary Material

72



S1A 27 Aug 15  S1A 8 Sep 15 
S1A 8 Sep 15  S1A 20 Sep 15 
S1A 20 Sep 15  S1A 2 Oct 15 
S1A 2 Oct 15  S1A 14 Oct 15 
S1A 14 Oct 15  S1A 26 Oct 15 
S1A 26 Oct 15  S1A 7 Nov 15 
S1A 1 Dec 15  S1A 13 Dec 15 
S1A 13 Dec 15  S1A 6 Jan 16 
S1A 6 Jan 16  S1A 18 Jan 16 
S1A 23 Feb 16  S1A 6 Mar 16 
S1A 6 Mar 16  S1A 18 Mar 16 
S1A 18 Mar 16  S1A 30 Mar 16 
S1A 30 Mar 16  S1A 23 Apr 16 
S1A 23 Apr 16  S1A 5 May 16 
S1A 29 May 16  S1A 10 Jun 16 
S1A 10 Jun 16  S1A 4 Jul 16 
S1A 4 Jul 16  S1A 28 Jul 16 
S1A 28 Jul 16  S1A 9 Aug 16 
S1A 9 Aug 16  S1A 2 Sep 16 
S1A 2 Sep 16  S1A 14 Sep 16 
S1A 14 Sep 16  S1A 26 Sep 16 
S1A 26 Sep 16  S1B 2 Oct 16 
S1B 2 Oct 16  S1A 8 Oct 16 
S1A 8 Oct 16  S1B 14 Oct 16 
S1B 14 Oct 16  S1B 7 Nov 16 
S1B 7 Nov 16  S1A 13 Nov 16 
S1A 13 Nov 16  S1B 1 Dec 16 
S1B 1 Dec 16  S1A 7 Dec 16 
S1A 7 Dec 16  S1B 13 Dec 16 
S1B 13 Dec 16  S1A 19 Dec 16 
S1A 19 Dec 16  S1B 25 Dec 16 
S1B 25 Dec 16  S1A 31 Dec 16 
S1A 31 Dec 16  S1B 6 Jan 17 
S1B 6 Jan 17  S1A 12 Jan 17 
S1A 12 Jan 17  S1B 30 Jan 17 
S1B 30 Jan 17  S1A 5 Feb 17 
S1A 5 Feb 17  S1B 11 Feb 17 
S1B 11 Feb 17  S1A 17 Feb 17 

                    

79-G and 
ZI 

S1A 6 Aug 15  S1A 30 Aug 15 
S1A 30 Aug 15  S1A 11 Sep 15 
S1A 11 Sep 15  S1A 23 Sep 15 
S1A 23 Sep 15  S1A 5 Oct 15 
S1A 5 Oct 15  S1A 10 Nov 15 
S1A 4 Dec 15  S1A 16 Dec 15 
S1A 16 Dec 15  S1A 28 Dec 15 
S1A 28 Dec 15  S1A 9 Jan 16 
S1A 9 Jan 16  S1A 21 Jan 16 
S1A 21 Jan 16  S1A 2 Feb 16 
S1A 2 Feb 16  S1A 26 Feb 16 
S1A 26 Feb 16  S1A 9 Mar 16 
S1A 9 Mar 16  S1A 2 Apr 16 
S1A 2 Apr 16  S1A 14 Apr 16 
S1A 14 Apr 16  S1A 8 May 16 
S1A 8 May 16  S1A 20 May 16 
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S1A 20 May 16  S1A 1 Jun 16 
S1A 1 Jun 16  S1A 13 Jun 16 
S1A 13 Jun 16  S1A 19 Jul 16 
S1A 19 Jul 16  S1A 31 Jul 16 
S1A 31 Jul 16  S1A 12 Aug 16 
S1A 12 Aug 16  S1A 24 Aug 16 
S1A 24 Aug 16  S1A 5 Sep 16 
S1A 5 Sep 16  S1B 5 Oct 16 
S1B 5 Oct 16  S1A 11 Oct 16 
S1A 11 Oct 16  S1A 23 Oct 16 
S1A 23 Oct 16  S1B 4 Dec 16 
S1B 4 Dec 16  S1B 16 Dec 16 
S1B 16 Dec 16  S1B 28 Dec 16 
S1B 28 Dec 16  S1A 3 Jan 17 
S1A 3 Jan 17  S1B 9 Jan 17 
S1B 9 Jan 17  S1B 21 Jan 17 
S1B 21 Jan 17  S1B 2 Feb 17 
S1B 2 Feb 17  S1A 8 Feb 17 
S1A 8 Feb 17  S1B 14 Feb 17 

 

 

• Table S3.2: Velocity magnitude differences of JI using surface elevation rate of change information 

derived from IceBridge and Pre-Icebridge data acquired from the NASA Airborne Topographic Mapper 

(ATM) [Studinger, 2014] for terrain correction, and velocity magnitude without using thinning 

correction. 

•  
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Chapter 4

Seasonal Variations in the Flow

of Land-Terminating Glaciers in

Central-West Greenland Using

Sentinel-1 Imagery

Authors: Adriano Lemos, Andrew Shepherd, Malcolm McMillan and Anna

E. Hogg

Abstract

Land-terminating sectors of the Greenland ice sheet flow faster in summer after surface

meltwater reaches the subglacial drainage system. Speedup occurs when the subglacial

drainage system becomes saturated, leading to a reduction in the effective pressure

which promotes sliding of the overlying ice. Here, we use observations acquired by

the Sentinel-1a and b synthetic aperture radar to track changes in the speed of land-

terminating glaciers across a 14,000 km2 sector of west-central Greenland on a weekly

basis in 2016 and 2017. The fine spatial and temporal sampling of the satellite data

allows us to map the speed of summer and winter across the entire sector and to

resolve the weekly evolution of ice flow across the downstream portions of five glaciers.
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4.1 Introduction

Near to the ice sheet margin (at 650 m.a.s.l.), glacier speedup begins around day 130,

persisting for around 90 days, and then peaks around day 150. At four of the five

glaciers included in our survey the peak speedup is similar in both years, in Russell

Glacier there is marked interannual variability of 32% between 2016 and 2017. We

present, for the first time, seasonal and altitudinal variation in speedup persistence.

Our study demonstrates the value of Sentinel-1’s systematic and frequent acquisition

plan for studying seasonal changes in ice sheet flow.

4.1 Introduction

In recent decades the Greenland Ice Sheet has lost ice at an increasing rate, rising by

89% between 2011–2014 relative to 1992–2011 (Shepherd et al., 2012; McMillan et al.,

2016). The majority (60%) of this ice loss has been due to surface melting and runoff

(Enderlin et al., 2014; van den Broeke et al., 2016), which have risen as summers have

warmed (Hanna et al., 2012, 2014). Between 2011 and 2014, 41% of all ice loss from

Greenland (269 ± 51 GT yr−1; (McMillan et al., 2016)) was from the south-western

sector alone, where changes in the degree of surface melting have been pronounced

(Crozier et al., 2018).

In addition to the direct impact on runoff, increased surface melting has also been

linked to increases in the speed of ice flow through basal lubrication (Zwally et al.,

2002; Hoffman et al., 2011; Chu, 2014). Rising air temperatures lead to increased sur-

face melting, which can in turn lead to an increase in the amount of water feeding into

the subglacial drainage system (Chu, 2014) after supraglacial lakes drain or moulins

open (Hoffman et al., 2011; Chu, 2014). As a consequence of this excess meltwater,

subglacial water pressure rises, which reduces the effective pressure between the ice-

bedrock interface and leads to enhanced basal sliding (Harper et al., 2005; Nienow et al.,

2005; Andrews et al., 2015). During the melting season, frictional heating caused by

water flow enlarges the conduits of the subglacial hydrologic system, allowing a greater

volume of water to be accommodated (Bartholomew et al., 2010; Cowton et al., 2013).

As a consequence, from mid-season to the end of the melt season, the drainage system

transmission capacity exceeds the meltwater input, draining water efficiently through

low-pressure channels (Schoof, 2010; Cowton et al., 2013).
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4.1 Introduction

Seasonal changes in ice flow have been observed in both fast-moving and slow-moving

glaciers (Rignot and Kanagaratnam, 2006; Joughin et al., 2008; Shepherd et al., 2009;

Palmer et al., 2011; Sundal et al., 2011; Joughin et al., 2013; Moon et al., 2014). In

south-west Greenland, the summertime speedup of land-terminating glaciers is widespread

and is widely interpreted as being driven by seasonal changes in the degree of basal

lubrication (Zwally et al., 2002; Sole et al., 2011; Sundal et al., 2011). At low elevations

(under 1000 m), seasonal changes in the movement of Greenland’s glaciers are thought

to be dominated by short-term events, typically lasting between 1 day to 1 week dur-

ing the summer (Bartholomew et al., 2012; van de Wal et al., 2015), with ice speeds

increasing by 100 to 150% relative to winter (Sundal et al., 2011; Fitzpatrick et al.,

2013). Resolving such changes has been a challenge, because observations of ice sheet

flow have historically been made using episodically acquired satellite imagery (Crozier

et al., 2018; Harper et al., 2005; Nienow et al., 2005) and GPS sensors installed at point

locations on the ice sheet (Shepherd et al., 2009; Bartholomew et al., 2010, 2012). Sys-

tematically monitoring seasonal variations in ice flow is therefore an important task

as it will improve our understanding of the present and likely future response of the

Greenland Ice Sheet to a changing climate.

Since the 1970s, the speed of glacier flow in the polar regions has been measured

with repeat optical satellite imagery (Lucchitta and Ferguson, 1986). However, despite

their ongoing use (Dehecq et al., 2015; Fahnestock et al., 2016; Armstrong et al., 2017;

Gardner et al., 2018), optical images are daylight dependent which limits their utility

outside of the summer season. Unfortunately, satellite imagery may also be obscured by

clouds. Synthetic aperture radar (SAR) images do not suffer from either limitation and

have also been extensively used to measure ice speed since the launch of the European

Remote Sensing Satellite 1 (ERS-1) in 1991 (Goldstein et al., 1993; Joughin et al.,

1995; Lucchitta et al., 1995; Joughin et al., 2010; Rignot et al., 2011). A persistent

obstacle to the use of both optical and SAR satellite imagery for tracking ice motion

has been the episodic nature of acquisitions. Since the launch of the Sentinel-1a (S1a)

and Sentinel-1b (S1b) SAR constellation in April 2014 and April 2016, respectively,

it has become possible to systematically measure changes in ice speed every 6 days

(Nagler et al., 2015; Joughin et al., 2018; Lemos et al., 2018). Here, we use a sequence
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4.2 Study Area

of Sentinel-1a and 1b SAR images to track seasonal changes in ice sheet flow across a

land-terminating sector of the Greenland Ice Sheet between 2014 and 2017.

4.2 Study Area

Our study focusses on a 14,000 km2 sector of central-west Greenland between 66.6oN

– 67.4oN (Figure 4.1). The study area includes five glaciers; Isorlersuup Glacier (IG),

Ørkendalen Glacier (ØG), Russell Glacier (RG) and Isunnguata Sermia (IS), and an

unnamed outlet glacier which we refer to as Glacier 1 (G1). The area has received a

relatively high amount attention due to the propensity of its glaciers to exhibit seasonal

speedup. In-situ GPS observations have shown that seasonal velocity variations are

strongly linked to changes in surface melting (Shepherd et al., 2009; Bartholomew

et al., 2010, 2011, 2012; Chandler et al., 2013; Sole et al., 2013; van de Wal et al.,

2015). Satellite measurements have provided a large-scale perspective of changes in

ice flow (Joughin et al., 2008; Palmer et al., 2011; Sundal et al., 2011; Fitzpatrick

et al., 2013) and in the extent of supraglacial lakes (Leeson et al., 2012; Howat et al.,

2013; Leeson et al., 2013, 2015). Together, these measurements, in conjunction with

numerical ice flow modelling have led to an improved understanding of the link between

regional hydrology and changes in ice flow, for example the role of supra-glacial lake

drainage (Clason et al., 2015; Koziol and Arnold, 2018).
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4.2 Study Area

Figure 4.1: Average ice velocity in (a) summer (May–Jul), (b) winter (Aug–Apr), and

(c) the difference between summer and winter, derived from Sentinel-1 (S1) synthetic

aperture radar (SAR) imagery. The uncertainties in the maps associated with the sum-

mer, winter, and difference between the summer and winter ice speeds are also shown

(d–f, respectively). Velocities and the uncertainties are overlaid on a SAR backscatter

intensity image. Also shown are elevation contours (thin grey lines), profiles along (solid

black lines) and across (dotted black lines) the centre of five glaciers. The location of

the KAN L weather station is also mapped (red dot, a).
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4.3 Data and Methods

4.3 Data and Methods

Previous studies have demonstrated the capability of Sentinel-1 (S1) for mapping ice

sheet flow (Nagler et al., 2015; Joughin et al., 2018; Lemos et al., 2018). Here, we

use single-look complex (SLC) synthetic aperture radar (SAR) images acquired in the

interferometric wide swath (IW) mode to investigate the detailed patterns of seasonal

glacier velocity change. The images used were acquired between January 2016 and

December 2017, with a revisit time of 6 or 12 days due to the repeat cycle of 12 days

and the 180 degree orbital phase difference between the two satellites. We used the

GAMMA-SAR software (GAMMA REMOTE SENSING, 2015) to generate 96 individ-

ual ice velocity maps from different pairs of Sentinel-1a (S1a) and Sentinel-1b (S1b)

SAR images.

Ice velocities were computed using a feature tracking technique applied to SAR backscat-

ter intensity images (Strozzi et al., 2002), assuming that the ice flow occurs parallel

to the surface and at a constant rate during the image acquisition period. This is a

well-established technique, measuring the displacement of similar SAR image features

(e.g., crevasses and speckle patterns) based on a cross correlation algorithm applied

to image segments (windows) in two co-registered SAR images (Strozzi et al., 2002;

Pritchard et al., 2005; Paul et al., 2015; Lemos et al., 2018). The window and step size

used was based on sensitivity testing of a range of values, where a trade-off between

the spatial resolution, spatial coverage and measurement accuracy of the output result

were considered. For an individual pair, the end results depend on the change in snow

surface properties between the processed images, the correlation of the speckle pattern,

and the scale of the local features observed. For the present study, ice motion was esti-

mated using window sizes of 350 x 75 pixels in ground range and azimuth, respectively,

corresponding to dimensions of approximately 1.7 and 1.5 km. We used the Green-

land Ice Mapping Project (GIMP) digital elevation model (DEM) (Howat et al., 2014)

to geocode the displacements, and the final velocity measurements were posted on to

a regular 100 m grid. The post-processing to remove poor quality data followed the

methodology of Lemos et al. (2018). We applied a low-pass filter twice, using a kernel

of 1 km by 1 km, rejecting values where the deviation between the unfiltered and fil-

tered speed magnitude exceeded 30%. Finally, we apply a labelling algorithm based on
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4.4 Results and Discussions

the image histogram, identifying regions with similar values and rejecting non-coherent

velocity magnitudes and isolated measurements with an area smaller than 1/1000th of

the processed image size.

Errors in ice velocity measurements derived from repeat satellite imagery can be caused

by inaccurate image co-registration, mis-modelled terrain correction (Nagler et al., 2015;

Hogg et al., 2017) and atmospheric interference, including changes in ionospheric prop-

erties and in tropospheric water vapour (Liao et al., 2018). To estimate velocity errors,

we scale each individual velocity map by the time-averaged signal to noise ratio (SNR)

of the cross-correlation function (Lemos et al., 2018). The SNR is determined as the ra-

tio between the cross-correlation function peak (Cp) and the average correlation level

(Cl) on the tracking window used to estimate the velocities (de Lange et al., 2007).

Typically, the estimated velocity error is ∼10% across the majority of the study area,

rising to 20% in regions lacking stable features (Figure 4.1d–f).

4.4 Results and Discussions

First, we generated average summer and winter regional velocity maps (Figure 4.1a,b,

respectively) in each calendar year using images that fell within the average periods of

the start and end days of speedup in the sector (Table 4.1). The velocity coverage is

better in winter than summer, especially over the slow-moving inland ice, due to the

absence of melting. During winter, the scattering properties of the snowpack are rela-

tively stable and this allows radar speckle to be tracked over the otherwise featureless

terrain (Strozzi et al., 2002; Paul et al., 2015). In contrast, the retrieval of summer

velocities is limited to within ∼30 km of the ice sheet margin where there is a sufficient

amount of persistent physical features to be able to track motion. Nevertheless, be-

cause of the relatively large number of individual velocity maps, we were able to resolve

the seasonal pattern of speedup with unprecedented detail and show, for example, that

speedup is clearly concentrated towards the centre of each glacier (Figure 4.1).

The maximum recorded winter speed ranges from 121 ± 5 m yr−1 at IS to 296 ±
22 m yr−1 at ØG, and the maximum recorded summer speed ranges from 196 ± 18

89



4.4 Results and Discussions

T
a
b

le
4.

1:
S

ea
so

n
a
l

ve
lo

ci
ty

,
sp

ee
d

u
p

,
sp

ee
d

u
p

p
er

si
st

en
ce

,
ic

e
th

ic
k
n

es
s

an
d

su
rf

ac
e

sl
o
p

e
of

th
e

fi
v
e

g
la

ci
er

s
av

er
a
ge

d
in

tw
o

el
ev

at
io

n
s

b
an

d
s

(P
1,

b
et

w
ee

n
65

0
a
n

d
7
50

m
.a

.s
.l

.;
P

2,
ov

er
82

0
m

.a
.s

.l
.)

.

L
o
ca

ti
o
n

S
u
m

m
er

sp
ee

d

(m
y
r−

1
)

W
in

te
r

sp
ee

d

(m
y
r−

1
)

S
p

ee
d
u
p

re
la

ti
v
e

to
w

in
te

r

(%
)

S
u
m

m
er

v
el

o
ci

ty

p
ea

k

(m
y
r−

1
)

A
n
n
u
a
l

m
ea

n

v
el

o
ci

ty

(m
y
r−

1
)

S
p

ee
d
u
p

st
a
rt

d
ay

S
p

ee
d
u
p

en
d

d
ay

S
p

ee
d
u
p

P
er

si
s-

te
n
ce

(d
ay

s)

M
ea

n

th
ic

k
n
es

s

(m
)

M
ea

n

sl
o
p

e

(%
)

G
la

ci
er

1
P

1
1
8
7
±

1
3

1
2
5
±

9
4
9
%

2
1
4
±

1
3

1
3
3
±

1
0

1
3
6

1
9
6

6
0

4
7
0

2
.2

%

P
2

1
5
4
±

1
8

1
0
9
±

1
0

4
1
%

1
7
6
±

1
8

1
1
6
±

1
1

1
5
3

2
1
6

6
3

6
5
0

2
.0

%

Is
o
rl

er
su

u
p

P
1

2
2
0
±

1
1

1
5
6
±

8
4
1
%

2
5
7
±

1
1

1
6
6
±

9
1
3
4

2
0
9

7
5

5
1
6

2
.2

%

P
2

1
4
8
±

1
7

1
1
9
±

1
0

2
4
%

1
6
9
±

1
7

1
2
4
±

1
1

1
4
3

2
1
2

6
9

6
1
2

1
.6

%

Ø
rk

en
d
a
le

n
P

1
2
4
6
±

1
6

2
0
3
±

2
2

2
1
%

2
5
9
±

1
6

2
1
2
±

2
2

1
1
3

1
9
8

8
5

3
9
0

2
.8

%

P
2

1
6
3
±

1
7

1
1
1
±

9
4
7
%

2
0
5
±

1
7

1
1
8
±

1
1

1
5
5

2
1
2

5
7

6
2
3

1
.5

%

R
u
ss

el
l

G
.

P
1

1
2
1
±

1
3

8
7
±

5
3
8
%

1
3
9
±

1
3

9
3
±

7
1
3
7

2
1
1

7
4

5
5
9

2
.2

%

P
2

1
5
6
±

1
8

1
1
3
±

1
0

3
8
%

1
7
7
±

1
8

1
1
8
±

1
1

1
6
0

2
1
5

5
5

6
9
2

1
.9

%

Is
u
n
n
g
u
a
ta

S
.

P
1

1
0
3
±

9
9
3
±

6
1
1
%

1
1
2
±

9
9
5
±

7
1
3
6

2
0
1

6
4

6
1
5

2
.1

%

P
2

1
2
1
±

2
1

7
9
±

5
5
3
%

1
4
5
±

2
1

8
7
±

7
1
7
8

2
5
0

7
1

8
0
2

1
.5

%

S
ec

to
r

P
1

1
7
5
±

2
8

1
3
2
±

2
6

3
2
%

1
9
6
±

2
8

1
4
0
±

2
8

1
3
1

2
0
3

7
2

5
1
0

2
.3

%

P
2

1
4
8
±

4
1

1
0
6
±

2
0

4
0
%

1
7
4
±

4
1

1
1
3
±

2
3

1
5
8

2
2
1

6
3

6
7
6

1
.7

%

90



4.4 Results and Discussions

m yr−1 at RG to 359 ± 18 m yr−1 at ØG. In general, the degree of speedup at each

glacier is quite variable, in agreement with the findings of a previous survey based on

TerraSAR-X measurements acquired in 2009 and 2010 in the same region (Fitzpatrick

et al., 2013). Locally, we observe numerous regions where the seasonal speedup is

greater than 100 m yr−1, for instance reaching 150 m yr−1 (∼75%) near to the glacier

fronts of IG and RG (Figure 4.1c). Our results agree well with previous studies in the

same region. For example, seasonal velocity changes of 50–100% between 2004 and 2007

have been reported (Joughin et al., 2008), and (Sundal et al., 2011) reported speedup

in the range of 50–125% between 1993 and 1998. Not all glaciers, however, show such

a large degree of speedup. The neighbouring glacier ØG, for example, exhibits a much

lower seasonal speedup of ∼30 m yr−1 (21%), and maintains relatively high rates of ice

flow even during winter months near the ice margin.

We examined the geometrical configurations of each glacier to investigate the possi-

ble reasons for the heterogeneous speedup (Figure 4.2) using surface and bed elevations

from GIMP-DEM (Howat et al., 2014) and IceBridge BedMachine Greenland, Version

3 (Morlighem et al., 2017), respectively. Although the surface slopes of the glaciers

are relatively uniform (2.8% at ØG and 2% elsewhere), their average thicknesses are

considerably more variable (from 390 m at ØG to 802 m at IS). The five glaciers also

present different flow regimes and, in contrast to marine-terminating glaciers (Lucchitta

et al., 1995; Goldstein et al., 1993), reach their peak speeds at distances between 8 and

18 km inland. At G1, IG and ØG, this location is approximately 650 m.a.s.l. The

relative speedup is non-uniform and excluding IS where the velocity profile is incom-

plete, ranges from 21 to 49% (Table 4.1). Despite being the fastest glacier, ØG had

the lowest seasonal variation of all the studied glaciers (Table 4.1), which suggests that

its flow was predominantly driven either by gravity with a low sensitivity to transient

increases in basal lubrication, or it had been influenced by non-uniform basal motion

due to friction at the bed-ice interface (Ryser et al., 2014; Armstrong et al., 2016).

91



4.4 Results and Discussions

Figure 4.2: Mean summer and winter ice velocity (a–e) and geometry (f–j) along central

profiles of five glaciers in west-central Greenland (see Figure 4.1 for glacier locations) in

2016 and 2017. Surface and bed elevations are from the Greenland Ice Mapping Project

digital elevation model (GIMP-DEM) (Howat et al., 2014) and IceBridge BedMachine

Greenland, Version 3 (Morlighem et al., 2017), respectively.
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4.4 Results and Discussions

Our velocity maps have sufficient spatial coverage to provide continuous profiles

of summer and winter ice speed across the central flow unit of each glacier (Figure

4.3). Speedup is primarily confined to the central, fast flowing parts of each glacier

and at ∼600 m.a.s.l., peaks in the range of 22% (ØG) to 66% (RG). At this altitude

all of the glaciers sit in distinct bedrock depressions where the ice is far thicker than in

the slower flowing neighbouring regions. In general, speedup is largely confined to fast-

flowing glaciers or their tributaries (e.g., at 25–30 km and 58–60 km along the transect).

Local variations in the input and routing of surface melt water may be responsible for

this heterogeneity in the degree of seasonal ice speedup. With the exception of RG, the

regional glaciers do not show inter-annual variations in the degree of summer speedup.

At RG, however, summer rates of ice flow were 32% faster in 2016 than in 2017. This

indicates that changes in a single glacier system are not always indicative of wider

patterns, highlighting the value of large-scale systematic satellite monitoring. The

only other place of significant inter-annual difference in seasonal speedup is the slow

flowing sector between RG and IS. Here, however, ice flowed faster in 2017 than in 2016.

A unique benefit of the S1 constellation is its systematic and high temporal sampling,

which supports continuous, multi-year records of ice motion. For each of the glaciers

in our study region, we explored this novel capability by charting their speed every 6

days across two full seasonal cycles (Figure 4.4). We then analysed the velocity time-

series within two distinct elevation bands: 650–750 m.a.s.l. (P1) and above 820 m.a.s.l.

(P2) to investigate differences in their seasonal flow at high and low altitudes (Table

4.1). There is clear heterogeneity in the seasonal flow of the five principal glaciers in

this sector of the ice sheet (Figure 4.4). G1, IG and RG exhibited coherent speedup

periods during summer time at both altitudes. ØG showed a clear seasonal cycle at

high elevations, but at lower elevations the seasonality was much less pronounced and

is characterized by a longer duration speedup over the winter months, and at IS there

was no apparent summer speedup at either location. However, the velocity data in

these regions is generally of poorer quality than elsewhere due to the absence of clear

persistent features in the SAR imagery, limiting our ability to draw firm conclusions

about seasonal changes in ice flow in these glaciers. At the three glaciers where a co-

herent seasonal cycle is resolved, in all cases our data show that lower elevations (P1)

speed up first, followed by the upper elevations (P2).
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Figure 4.3: Ice velocity (Top), with uncertainty ranges represented by the light shading,

and geometry (Bottom) along an across-flow profile of the study area (see Figure 4.1

for location) in 2016 to 2017.
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Figure 4.4: Seasonal changes in ice flow at two different elevations bands on each glacier.

Actual measurements are represented by the dots, spline fits as continuous lines, and

speedup periods the intervals between the consecutive coloured dotted lines.

We analysed the velocity data to determine the persistence of speedup, and the
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start and end day of the summer season across the sector. To do this, we first applied a

spline fit to each velocity time-series and identified local maxima using the precompiled

MATLAB function ‘findpeaks’. We then identified the peak speedup, rejecting locations

under a prominent peak threshold of 25 m yr−1. After testing thresholds of 25, 50 and

70 m yr−1 we found that this threshold provided a reasonable balance between spatial

coverage and consistent speedup persistence, even in slow-moving areas. We also found

the number of prominent peaks per pixel which are on average between 1 and 3, as

well as consistent speedup persistence results. The persistence of the summer season is

defined by the duration of the width of the peak, shown as the time interval between

the dotted lines in Figure 4.4. For time-series which exhibit multiple and consecutive

prominent peaks, we calculate the speedup persistence as the sum of each peak width.

However, when this occurs, we calculate the start and end dates of the summer season

using the first and last prominent peaks, respectively (Figure 4.5b,c). We applied the

method to spatially-averaged time-series within discrete elevation bands (P1 and P2,

Figure 4.4) and also at individual locations to resolve the spatial pattern (Figure 4.5).

Figure 4.5: Persistence of ice speedup (a), the start (b) and end date (c) of the summer

season.

Across all glaciers, the persistence of seasonal speedup ranges from 72 to 63 days
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at P1 and P2, respectively (Table 4.1). The persistence of speedup is shorter at higher

elevations on all glaciers except G1. At RG, our estimated persistence of 55 days at

P2 is lower but similar to the 66 day estimate made by Palmer et al. (2011) for the

period of 2004–2007 at the same location. For the first time we are able to map spatial

variations in the pattern of summer speedup persistence (Figure 4.5). The persistence

of summer speedup shows clear altitudinal variation at all glaciers, ranging from 60 to

90 days and from 50 to 70 days, respectively, at P1 and P2. At IG, speedup generally

has a duration of around 75 days, but persists for 80 days at isolated locations in the

fastest flowing section of the glaciers (around 700 m.a.s.l.). In general, at lower alti-

tudes (< 500 m.a.s.l.), speedup persists for a significantly shorter period (∼40 days).

Lower regions are likely to have relatively high surface melting, potentially supplying

more water to the subglacial drainage system, allowing channels to develop sooner and

thereby shortening the speedup period (Schoof, 2010; Cowton et al., 2013). We esti-

mated the start and end dates of the summer season using the date of peak speedup

and the persistence, assuming the period is symmetrical. Near to the ice sheet margin

(P1), summertime speedup begins around day 130 and lasts for around 90 days (Table

4.1 and Figure 4.5). The summer duration affects a wider section of the ice sheet up to

25 km inland, however the onset date is delayed by approximately 25 days on average

at higher elevations (P2).

To investigate the relationship between seasonal velocity changes and environmen-

tal forcing in more detail, we compared the regional variation to a local estimate

of surface melting. For this comparison, we computed the mean velocity of G1, IG

and RG in 2017, when a continuous 6-day sampling was possible (Figure 4.6). ØG

and IS were excluded due to their unusual geometry (high slope) and relatively poor

tracking coverage, respectively. We then computed positive degree days (PDDs) as

a measure of the surface melting (Figure 4.6) using air temperatures recorded at

the nearby KAN L (670 m.a.s.l., Figure 4.1a) automatic weather station and dis-

tributed by the Programme for Monitoring of the Greenland Ice Sheet (PROMICE,

https://www.promice.dk/WeatherStations.html). PDD’s were integrated over six day

periods to match the sampling of the satellite velocity measurements.
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Figure 4.6: Averaged speed of three glaciers (G1, IG, and RG) with similar geometry

and data sampling at two elevations bands during 2017. Also shown are daily tem-

perature and positive degree days (PDDs) recorded at the nearby KAN L automatic

weather station (670 m.a.s.l.) and distributed by the Programme for Monitoring of the

Greenland Ice Sheet.

The onset of speedup begins shortly after the first PDDs was recorded at KAN L

on day 125. Onset began on day 130 at P1 and on day 140 at P2. The high speeds

were sustained for ∼90 days at P1 and ∼80 days at P2. The seasonal speedup, likely
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caused by melt-induced acceleration (Zwally et al., 2002; Bartholomew et al., 2010;

Hewitt, 2013), starts in P1 shortly after the melt onset possibly reaches the bed (e.g.,

through moulins or crevasses), followed by P2, located at higher elevation and then

undergoing less melting (Joughin et al., 2008; Bartholomew et al., 2010; Chu, 2014;

Moon et al., 2014). Future investigations using the SAR backscatter information will

improve the characterization of the surface melt days. After the maximum PDDs were

reached on day 207, the ice speed at P1 and P2 began to slow down rapidly at similar

rates, returning to near winter levels by day 220. Two further speedup events then

occur around days 244 and 268 and these coincide with isolated short-lived melt events

evident within the PDD record. Later spikes in velocity, enhanced by short-term basal

sliding, are likely to happen due to excess amount of water input combined with the

time required for the drainage system to accommodate the extra melt-water, since the

size of cavities adjusts progressively in time (Bartholomew et al., 2010; Schoof, 2010).

4.5 Conclusions

We have computed seasonal changes in the motion of five land-terminating glaciers in

the central-west sector of the Greenland Ice Sheet using Sentinel-1a and-1b synthetic

aperture radar imagery. The systematic acquisition schedule of Sentinel-1 provides a

capacity to track ice motion with significantly greater spatial and temporal sampling

than previous satellite missions. In our study, we were able to produce 96 unique ice

velocity maps over a two-year period, which corresponds to approximately four times

the sampling frequency of previous studies (Palmer et al., 2011; Sundal et al., 2011;

Fitzpatrick et al., 2013). The high data volumes allow us to study spatial and temporal

changes in ice flow across this sector of the Greenland ice sheet. Despite being located in

the same sector and being exposed to similar environmental conditions, the five glaciers

we have surveyed show different patterns of speedup; peak summer speedup for example

ranges from 21% (Ørkendalen) to 49% (Glacier 1) relative to winter. Speedup is clearly

concentrated along the central portions of each glacier, with only isolated instances

elsewhere. For the first time we mapped spatial variations in the seasonal speedup

persistence cycle. In this sector, the start date of the speedup period ranges from day

113 to 178, and the end date ranges from day 196 to 250, leading to a persistence
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ranging from 55 to 85 days. Our study highlights the unique value of the Sentinel-1

mission for tracking short term changes in ice motion.
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Chapter 5

The combined use of Sentinel-2

and Sentinel-1 imagery to track

features in the Central-west

sector of Greenland

Authors: Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E.

Hogg, Heather Selley

Abstract

Increased discharge of ice from marine-terminating glaciers is responsible for approxi-

mately one half of the current mass loss from the Greenland ice sheet. Recently, the

availability of systematic, short-repeat satellite acquisitions has improved the under-

standing of the timescales and mechanisms that control high frequency fluctuations in

these glaciers’ flow. However, the orbital configuration of single-sensor satellites – such

as the Sentinel-1A/B constellation – limits acquisitions to, at best, weekly repeats,

and under sub-optimal conditions the sampling frequency can be further degraded. In-

creasing the monitoring frequency beyond this limit is, however, theoretically possible,

through the combination of data from different sensors, operating across different parts
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of the electromagnetic spectrum. In this study, we investigate the glaciological applica-

tion of near-coincident data acquired at optical (Sentinel-2) and microwave (Sentinel-1)

frequencies, to assess the complementarity and consistency of these different satellite

platforms. Specifically, we use co-located, contemporaneous Sentinel-1 and Sentinel-2

imagery of Jakobshavn Isbræ in west-central Greenland to monitor iceberg drift, the

evolution of supraglacial lakes, marine glacier calving, ice front position and ice sheet

motion. The fine spatial and temporal sampling of the data allowed us to track, during

a 14 day interval, icebergs drifting at 250 m day−1 and glacier calving rates of 15 m

day−1. The sharpness of the Sentinel-2 images allowed us to estimate subtle changes

in the area of two supraglacial lakes of 23 % and 24 % during the same period. The

combined use of the two missions to track ice velocity allowed us to achieve unparal-

leled year-round spatial coverage (> 97 %) and summertime temporal sampling (2-3

days), which, until now has been impossible from a single sensor alone. These re-

sults demonstrate that by combining results from multiple operational satellite sensors,

unprecedented sampling of the polar regions can now be achieved.

5.1 Introduction

Rates of ice loss from Greenland have been higher in recent decades than at any time

in the past 350 years (Trusel et al., 2018), due to increased surface melting and ice

discharge (Shepherd et al., 2012; McMillan et al., 2016). At the western coast of

Greenland, the speedup of marine-terminating glaciers has been triggered by ice front

retreat and surface melting (Joughin et al., 2014; Moon et al., 2014, 2015), which are

in turn associated with rises in the regional air and ocean temperatures (Holland et al.,

2008; Hanna et al., 2012). Meltwater that forms at the ice surface can either accumulate

in topographic depressions, forming supraglacial lakes (Leeson et al., 2013) that often

drain (McMillan et al., 2007), or it can flow directly into the ice sheet through moulins

or crevasses (Chu, 2014). Once it has entered the ice sheet, meltwater can feed the

englacial drainage system and, after reaching the interface ice-bedrock, can enhance

ice flow via basal lubrication (Hoffman et al., 2011; Chu, 2014). Marine-terminating

glacier flow is also highly-influenced by seasonal changes in the position of their calv-

ing front, which periodically alters lateral and basal resistive stresses at the terminus

(Joughin et al., 2014; Moon et al., 2014, 2015; Lemos et al., 2018b). Calving front
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retreat can also occur over longer timescales through episodic creation of ice-bergs, and

their melting contributes to up 50 % of the total fresh-water mass loss in Greenland

(Enderlin et al., 2014). Our understanding of the timescales and mechanisms under-

pinning these and other processes that control fluctuations in the Greenland ice sheet

flow has been dramatically improved by the availability of continuous and systematic

satellite observations (Joughin et al., 2014, 2018; Hill et al., 2018; Lemos et al., 2018b).

Images from spaceborne sensors have been widely used to identify and monitor

glaciological features. Optical imagery has been used to observe the Earth’s surface

since the launch of the Landsat constellation in 1972 (Wulder et al., 2012). Thanks

to optical missions and glacier inventories (Rastner et al., 2012; Pfeffer et al., 2014),

velocity changes have been systematically monitored (Joughin et al., 2010; Rignot et al.,

2011; Nagler et al., 2015; Rosenau et al., 2015; Fahnestock et al., 2016). These records

are now important indicators of how the cryosphere has been affected by climate change.

Glacier velocities, in particular, have been routinely tracked in repeat optical (Rosenau

et al., 2015; Fahnestock et al., 2016; Gardner et al., 2018) and synthetic aperture radar

(SAR) imagery (Goldstein et al., 1993; Lucchitta et al., 1995; Joughin et al., 2010;

Rignot et al., 2011; Nagler et al., 2015). Although both techniques can yield high-

quality measurements of ice sheet flow, they are also affected by changing environmental

conditions. In the case of optical imagery, clouds frequently interfere, and in the case of

SAR imagery, surface melting can be especially problematic. A combination of the two

methods is therefore likely the best approach for continuous and consistent monitoring.

Here, we present an assessment and inter-comparison of ice sheet motion at Jakobshavn

Isbræ (JI) in west-central Greenland tracked in optical and SAR imagery. To do this, we

use near-coincident optical and SAR imagery acquired by the Sentinel-2 and Sentinel-1

constellations to monitor changes in the movement of ice-bergs, supraglacial lakes, the

glacier calving ice front position and the wider pattern of ice sheet flow.

5.2 Study Area

Jakobshavn Isbræ is a marine terminating glacier located in the west-central sector of

the Greenland Ice Sheet. Western Greenland is regarded as the major source of recent

mass losses from the ice sheet, and was responsible, between 2011–2014, for 41 % of the

total mass imbalance (McMillan et al., 2016). JI drains ∼ 6.5 % of the ice sheet and

111



5.3 Data and Methods

terminates in the Ilulissat Icefjord (Joughin et al., 2004). Since the 1990s it has been

experiencing successive retreat (Joughin et al., 2008b), and observations show that, in

response, the glacier has been thinning continuously since the early 2000’s (McMillan

et al., 2016; Sørensen et al., 2018). Although in the recent past JI maintained a floating

ice tongue, this broke up in 2003, and as a result JI is now a tidewater that calves di-

rectly into the ocean (Joughin et al., 2004, 2014; Enderlin et al., 2014). In terms of the

forcing mechanisms that have driven JI acceleration, enhanced basal-sliding triggered

by surface meltwater has a small contribution to JI speedup in comparison to calving

events (Joughin et al., 2008a). Although supraglacial lakes are observed to form season-

ally within the JI catchment, their draining is more widely linked to transient increases

in the velocity of land-terminating sectors (Joughin et al., 2008a). Nonetheless, the in-

fluence of lake drainage on freshwater discharge, upwelling and enhanced ocean melting

at the calving front, is a process that is relatively poorly understood, and its influence

on ice dynamics remains uncertain (Nick et al., 2013). Historically, JI has had a dy-

namic ice front that advances and retreats by ∼3 km during each winter and summer,

respectively, significantly contributing to the glaciers iceberg discharge (Joughin et al.,

2004, 2012, 2014). In addition to these seasonal changes, there has also been several

retreat events of the calving front since the 1950s before the complete disintegration

in 2003 (Joughin et al., 2008b). Fluctuations in the calving front position have been

identified as the main trigger for seasonal and inter-annual changes in JI’s speed, as it

leads to reduced basal and lateral resistive stresses (Joughin et al., 2012, 2014, 2018;

Lemos et al., 2018b). Since 2012, however, JI has started to slow down (Lemos et al.,

2018b), and systematic monitoring of the glaciers speed and geometry should help to

identify the underlying cause.

5.3 Data and Methods

Sentinel-2 is the optical imaging component of the European Commission’s (EC) Coper-

nicus Earth Observation satellite program, built and launched in partnership with the

European Space Agency (ESA). The first of the satellites, Sentinel-2a, was launched in

June 2015, followed by Sentinel-2b, which was launched in March 2017. The main sen-

sor on each Sentinel-2 satellite is the Multi-Spectral Instrument (MSI), which acquires

images within 13 different spectral bands and with a spatial resolution that varies from

112



5.3 Data and Methods

10 to 30 m. Sentinel-2 Level-1C (L1C) images are recorded as top-of-atmosphere re-

flectance, with ground footprints of 109 by 109 km. The L1C images are orthorectified

using the PlanetDEM digital elevation model (DEM), posted in a 90 x 90 m grid. Al-

though each satellite has a 10 day orbital repeat period, when combined they provide

repeat sampling every 5 days because their orbits are offset. The actual frequency

of repeat acquisitions however depends on the capacity of the entire system, which is

defined in an image acquisition plan. At higher latitudes where the imaging swaths

from neighbouring orbits overlap, the revisit time offered by the constellation is even

shorter than 5 days (Kääb et al., 2016). Here we use six Sentinel-2 images to track

the movement of Jakobshavn Isbræ using an automated software (GAMMA REMOTE

SENSING, 2015), and we contrast the motion to estimates determined from Sentinel-1

SAR imagery (Lemos et al., 2018b).

Table 5.1: List of Sentinel-2 and Sentinel-1 used in this study

Satellite Platform
Product type Time (UTC) Velocity

Tracking

Sentinel-2 Multi-Spectral L1C

12-09-2016 15:28:22
Autumn

26-09-2016 15:09:52

04-05-2017 15:09:11
Spring

27-05-2017 15:19:11

13-07-2017 15:09:11
Summer

23-07-2017 15:11:15

Sentinel-1 Single Look Complex

30-09-2016 20:46:48
Autumn

06-10-2016 20:46:34

22-01-2017 20:46:31
Winter

28-01-2017 20:47:13

04-05-2017 20:47:12

Spring04-05-2017 20:46:48

10-05-2017 20:46:33

15-07-2017 20:47:18

27-07-2017 20:47:19
Summer

02-08-2017 20:46:37
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When applied to glacier surfaces, optical image feature tracking relies on the de-

tection of coherent visible features such as crevasses, calving fronts and supraglacial

lakes in consecutively acquired images to determine ice motion (Lucchitta and Fergu-

son, 1986; Scambos et al., 1992). Initially, this was done by visual comparison using

individual pixels, and this limited the scope and precision of the resulting estimates

of ice motion (Bindschadler and Scambos, 1991; Scambos et al., 1992). Nowadays,

the feature-tracking technique commonly applies the cross-correlation method to auto-

matically detect the motion of small areas (chips), and requires good visual contrast

between the images used (Rosenau et al., 2015; Fahnestock et al., 2016). The major

limitation when tracking ice motion using optical images is the availability of sunlight,

which restricts their use during night or in winter. Furthermore, glaciers are usually

located in relatively steep regions, and the presence of clouds and shadows created by

the terrain topography are also a limit on the performance of optical feature tracking

(Kääb et al., 2016; Paul et al., 2016, 2017). In this study, we estimate ice motion

using a cross-correlation feature tracking algorithm (GAMMA REMOTE SENSING,

2015) applied to Sentinel-2 L1C Band 8 images (10 m resolution). First, the images

are co-registered using a cross-correlation algorithm applied after masking out areas of

known fast ice flow (Lemos et al., 2018b). The co-registration of two images from a

repeat orbit reduces the final offset field containing geo-location noise and biases due

to shifts and jitter Kääb et al. (2016). We track movement in patches of 75 x 75 pixels,

corresponding to areas of 750 m by 750 m, and from these data we estimate ice velocity

by assuming the ice flows parallel to the surface slope and at a constant pace between

the image acquisition dates. Finally, we apply a median filter using a kernel of 100 m

by 100 m to remove outliers. The major error source in ice velocity estimation using

optical Landsat, and then Sentinel-2 images, is the inexact co-registration linked to the

digital elevation model used to orthorectify the images (Jeong and Howat, 2015). In

order to minimize mismatches due to orthorectification, we use pairs of Sentinel-2 im-

ages acquired from the same path (Kääb et al., 2016). We estimate individual velocity

error maps based on the signal to noise ratio (SNR) of the cross-correlation algorithm

(Lemos et al., 2018b,a). Here, SNR is the ratio of the cross-correlation function peak

(Cp) and the average correlation level (Cl) within the used patch (de Lange et al.,

2007).
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5.4 Results

Optical images have two main limitations over the polar regions; the absence of light

during winter at the time of the satellite overpass, and the presence of clouds (Kääb

et al., 2016; Paul et al., 2016). A comparison of Sentinel-2 optical and Sentinel-1 SAR

imagery acquired on the same day, separated by about five hours, illustrates the impact

of clouds (Figure 5.1). In this example, a true-colour composite is generated by merging

bands 2, 3 and 4 recorded by Sentinel-2 to provide sharper discrimination (Figure 5.1a),

and the merger of Sentinel-1 SAR images acquired in neighbouring tracks and cropped

to provide similar spatial coverage (Figure 5.1b). Clouds, and their shadows, obscure

the northernmost portion of the Sentinel-2 scene. For simplicity, we classify the clouds

in two main categories, dense and opaque Cumulus and thin and translucent Cirrus.

Neither are easy to detect in optical imagery over JI as the scene contrast is relatively

low, but on close inspection the Cumulus are most easily identified because they are

highly reflective and because they obscure glacial features. Although an automatic

cloud mask is included in all Sentinel-2 L1C imagery, based on a ratio of the reflectance

recorded in different bands (European Space Agency (ESA), 2015), the algorithm is not

designed for glaciated terrain and performs poorly in this example (Figure 5.1a). This is

not surprising, as snow covered regions are known to be a challenge for cloud detection

algorithms - especially for Cirrus clouds (Paul et al., 2016; Frantz et al., 2018). In

contrast, clouds do not affect the SAR imagery at all (Figure 5.1b) as they present

little interference to the radar signal.
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Figure 5.1: Optical true-color composite Sentinel-2 L1C (a) and SAR Sentinel-1 (b)

same-day image comparison. The solid green contour represents cloud mask provided

by ESA, and the coloured squares are insets of Figures 5.2–5.5.
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In order to analyse the influence of clouds on the Sentinel-2 imagery in more detail,

we extracted two areas of interest (see Figure 5.1a). At these locations, we compared a

cloudy image (Figure 5.2a,b) acquired on 4th May 2017, with a cloud-free image (Figure

5.2c,d) from a different day (13th July 2017). The zoomed regions in Figures 5.2a and 2b

show in more detail the combination of Cumulus and Cirrus clouds, and their shadows.

We observe in Figure 5.2a that clouds can limit our ability to monitor the seasonal

evolution of supraglacial lakes by, for instance, hiding a supraglacial lake (∼1 km long)

observed in Figure 5.2c, in the upper left region of the image, since supraglacial lakes

are usually formed on the same area, due to the topography (Chu, 2014). Despite being

an inconvenience for automated feature tracking processing to estimate ice velocity by

obscuring stable features which are pre-requisite for the processing, the cloud-shadowed

regions present less impact for visual analysis, if compared to Cumulus cloud regions.

For instance, it is still possible to observe a sequence of crevasses on the shadowed

region, located in the lower area of Figure 5.2a. The Cirrus clouds present in Figure

5.2b have similar visual impact as the shadowed areas (Figure 5.2d). Although the

region is nebulous, features of the ice surface are still visible, but they are not as

sharp as in a cloud-free image. Shadows and Cirrus clouds can cause cross-correlation

mismatches if automated feature tracking algorithms are applied. Cumulus clouds,

however, completely hide features in the ice surface and therefore have to be masked

out.
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Figure 5.2: Zoom of cloud coverage (a-b) and cloud free areas (c-d) subsets extracted

from Figure 5.1a inside the red and blue squares. The images are acquired in different

days of the year as indicated in their upper left corner.

Next, we investigated the ability and the complementarity of the Sentintel-1 and

Sentinel-2 missions for tracking, at high temporal frequency, the evolution of glacio-

logical features, namely (1) iceberg drift, (2) marine glacier ice front migration, and

(3) supraglacial lake evolution. Specifically, we focused on Sentinel-1/2 acquisitions
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made during a two week period between 13th July 2017 and 27th July 2017 (Figures

5.3–5.5; Table 5.1). The image sequence shown in Figure 5.3 tracks the displacement

of icebergs in the Ilulissat Icefjord. The icebergs in the mélange region flow at high

rates (∼250 m day−1), induced by the Fjord’s ocean circulation and wind momentum

transferred (Sundal et al., 2013). The icebergs are clear in the images acquired by both

satellites, but the finer resolution (10 m) of Sentinel-2 resolves more clearly-defined

edges in comparison to the SAR Sentinel-1 imagery (5 m in ground range and 20 m in

azimuth). The calving front of JI is a very dynamic and complex region, which flows

at speeds of ∼12 km yr−1 and exhibits a very crevassed ice surface (Joughin et al.,

2014; Lemos et al., 2018b). The sharpness of the optical true-colour composition helps

us to identify, more easily, the ice front location (Figure 5.4). We can observe subtle

changes in the Sentinel-2 sequence (Figures 5.4a,b) that it is not clear between the

Sentinel-1 images (Figure 5.4c,d). During the 14 days, the ice front advanced at an

average rate of ∼15 m day−1. The use of high temporal and spatial resolution images

are extremely important for monitoring calving dynamics over short time periods. For

this reason, the combined use of Sentinel-1 and Sentinel-2 is valuable, because it allows

us to identify systematically, and remotely, changes in calving front location every 2

days.
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Figure 5.3: Tracked icebergs in the Ilulissat Fjord using true-colour composite Sentinel-

2 (a-b) and SAR Sentinel-1 (c-d) images. The subsets were extracted in the yellow

square from Figure 5.1b. The gridline is spaced by 750 m x 750 m. Solid green and red

lines represent digitized features from the scenes a,c and b,d respectively.
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Figure 5.4: Calving front locations using true-colour composite Sentinel-2 (a-b) and

SAR Sentinel-1 (c-d) images. The subsets were extracted in the cyan square from

Figure 5.1b. The gridline is spaced by 750 m x 750 m. Solid green and red lines

represent digitized features from the scenes a,c and b,d respectively.

Supraglacial lakes form in the ablation zone of the Greenland ice sheet when surface

runoff accumulates in topographic depressions (Leeson et al., 2013; Chu, 2014). The

location of supraglacial lakes is highly influenced by the subglacial topography, and

they usually are formed over the same places every season (Chu, 2014). As summer
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progresses, the area and volume of water stored in supraglacial lakes increases until

either melting ceases or drainage occurs (McMillan et al., 2007; Leeson et al., 2013,

2015) - a process that has been linked to basal lubrication of ice flow (Hoffman et al.,

2011; Chu, 2014). Several supraglacial lakes are present in our study area, and we

focus on two - a northern and a southern lake (see Figure 5.5) - that are visible in

both the Sentinel-1 and Sentinel-2 imagery. Both lakes have similar areas when traced

manually in the optical and radar imagery acquired on similar dates (13th and 15th

July, respectively). However, across the 14 day period of our satellite imagery, the

northern and southern lakes increase in area by 24 % and 23 %, respectively (Table

5.2). The lakes are clearer in the Sentinel-2 imagery, and it is possible to observe

supraglacial channels that are not present in the SAR scenes. Another potential use

of the Sentinel-2 imagery is for estimating the depth of lakes due to their varying

opacity, through a combination of different spectral bands (Pope et al., 2016). On

the other hand, the SAR images have the potential to differentiate snow conditions

through distinct backscatter values, such as the water content (Rau et al., 2001; Cuffey

and Paterson, 2010), and the increases in intensity between the two images may be

indicative of a change in the degree of surface melting.
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Figure 5.5: Supraglacial lakes observed in true-colour composite Sentinel-2 (a-b) and

SAR Sentinel-1 (c-d) imagery (see magenta square in Figure 5.1b for location). The

gridline is spaced by 750 m x 750 m. Solid green and red lines represent digitized

features from the scenes a,c and b,d respectively.
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Table 5.2: Changes in the area of supraglacial lakes records in Sentinel-1 and Sentinel-2

imagery (see Figure 5.5 for lake locations).

Date Sensor Northern lake Southern lake

Area (km2) Area (km2)

13-07-2017 Sentinel-2 0.95 0.68

15-07-2017 Sentinel-1 0.95 0.69

23-07-2017 Sentinel-2 1.09 0.79

27-07-2017 Sentinel-1 1.18 0.84

When applied to the Sentinel-2 imagery, the cross-correlation feature tracking tech-

nique produces a pattern of ice flow that is consistent with that determined from

Sentinel-1 imagery (Lemos et al., 2018b), though with different spatial sampling (Fig-

ure 5.6). To compare the optical and radar estimates of ice motion in detail, we selected

pairs of cloud-free Sentinel-2 images acquired during the seasons of complete or par-

tial sunlight; i.e. spring, summer and autumn (Table 5.1). For comparison, we chose

Sentinel-1 velocity maps (Lemos et al., 2018b) based on the proximity of the Sentinel-2

dates and, additionally, a map recorded during winter (Figure 5.6a). Although both

satellite image classes have the ability to track ice motion on the fast and slow moving

regions of JI and the surrounding ice sheet, there are marked differences in the quality

of data recorded in each season (Figure 5.6). Sentinel-1 produces more extensive ve-

locity maps in winter than in summer (Lemos et al., 2018b,a), because the near-stable

scattering properties of the snowpack during winter allows the intensity-tracking algo-

rithm to perform well (Strozzi et al., 2002; Paul et al., 2015), with poorer coverage in

other seasons. In contrast, the Sentinel-2 velocity maps show near-complete coverage

during the height of summer (Table 5.3) with deteriorating sampling at other times and

none in winter due to darkness. The optical and radar imagery are therefore highly

complementary for tracking ice motion, leading to improvements in both the coverage

and frequency of observations.
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5.4 Results

Figure 5.6: Seasonal variations in the speed of Jakobshavn Isbræ and the surrounding

ice sheet estimated using Sentinel-1 (a–d) and Sentinel-2 (e–g) imagery.
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Table 5.3: Common areas of the ice sheet covered by velocity tracking for each season.

Coverage Winter Spring Summer Autumn

Sentinel-1 98 % 30 % 47 % 88 %

Sentinel-2 0 % 60 % 93 % 59 %

S1 and S2
98 % 67 % 97 % 93 %

combined

We assess the ability of Sentinel-2 to track changes in ice flow by comparing the

results with estimates determined from near-coincident Sentinel-1 imagery over the

fast-flowing region of JI (Figure 5.7). In general, there is good agreement between the

spatial and temporal variations in ice flow recorded in the two data sets, and the average

difference in speed between near-coincident Sentinel-1 and Sentinel-2 data across the JI

is 128 ± 435 m yr−1 (Table 5.4). The Sentinel-2 data perform best in summer, where

the coverage exceeds by 46 % that afforded by Sentinel-1 (Table 5.3), and where the

ice speeds are in close agreement (224 ± 136 m yr−1 m/yr, on average) with those

determined from Sentinel-1 (e.g. Figure 5.8). At other times, however, Sentinel-2 fails

to track ice motion across the downstream 10 to 15 km section of the JI (Figures 5.7c,d

and Figures 5.8c,d). Although Sentinel-2 fails to track the fastest section of ice flow

in Spring, the remainder is also in close agreement (100 ± 72 m yr−1, on average)

with estimates determined from Sentinel-1. In Autumn, however, there is relatively

poor agreement between the two datasets, and differences in excess of 293 ± 309 m

yr−1 are common. Possible explanations for the poor agreement include the presence

of translucent clouds in the Sentinel-2 imagery or errors in their initial co-registration

(Paul et al., 2015). The ability of Sentinel-1 to track ice motion near the calving front

of JI improved significantly after the launch of Sentinel-1b, because the revisit time

reduced from 12 to 6 days which leads to improved coherence (Lemos et al., 2018b).

Over the polar regions, Sentinel-2a/b themselves are able to track ice motion every three

days, and in conjunction with Sentinel-1a/b images offers the potential to monitor ice

flow every 2 days.
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5.4 Results

Figure 5.7: Ice velocity variation at the main trunk of Jakobshavn Isbræ in a logarithm

colour scale. We present Sentinel-1 in winter, and Sentinel-2 (upper) and Sentinel-1

(lower) images in spring, summer and autumn. The solid black lines along and across

the glacier represent the profile and ground line location, respectively, used in Figure

5.8.
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5.4 Results

Figure 5.8: Velocity profiles extracted over the main trunk of Jakobshavn Isbræ. Black

and red lines represent Sentinel-1 and Sentinel-2 profiles, respectively. The profile and

ground line location are represented as solid black lines along and across the glacier,

respectively, in Figure 5.7.
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5.4 Results

Figure 5.9: Differences in the velocities from Sentinel-2 and Sentinel-1 data in common

areas of the ice sheet covered by velocity tracking for each season.
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5.5 Discussions

In this study, we have presented the first analysis of the complementarity of near-

coincident SAR and optical imagery, acquired by Sentintel-1 and Sentinel-2 satellites

respectively, for a range of glaciological applications. Specifically, our assessment has

focussed on tracking iceberg drift, marine glacier ice front migration, supraglacial lake

evolution and ice surface flow at high temporal resolution.

Monitoring iceberg drift is important not only because it provides a direct measure

of fjord circulation, but also because the melting of drifting ice provides a key freshwater

input into the ocean. This information is required to inform the boundary conditions

for fjord models, and also our understanding of the drivers of submarine melting at

the grounded ice’s calving front (Moon et al., 2018). Enderlin et al. (2016), for ex-

ample, found that the total freshwater input into the Ilulissat Icefjord was dominated

by mélange melting all year around. Although it is possible to monitor icebergs by

installing time-lapse photography cameras to acquire images at high spatial-temporal

resolution (Cassotto et al., 2015), such efforts are expensive and logistically arduous,

which limits the routine, large-scale application of this method. Here we have demon-

strated the potential of Sentinel-2, in conjunction with Sentinel-1, to monitor iceberg

drift at rates of 250 m day−1. The future automation of these techniques has the po-

tential to provide systematic measurements of fjord circulation and meltwater input at

the continental scale.

Similarly, although marine glacier front migration can also be monitored using field

based surveys, it is again much more efficient to do this from space. For glaciers such

as JI, which are highly dynamic in nature, it is important to be able to do this in a

high temporal sampling frequency, in order to provide observational datasets that can

be used to constrain and test calving laws and models (Benn et al., 2017). Here we find

that the Sentinel-1/2 satellites combined can resolve calving rates during July 2017 of

∼15 m day−1, which is consistent with the average rates of ∼10 to 40 m day−1 resolved

by Joughin et al. (2012). In a wider context, satellite-based studies have demonstrated

that JI speedup has been triggered by calving events (Joughin et al., 2012, 2014), and

can increase its speed by ∼1800 m yr−1 in response to 1 km of retreat (Lemos et al.,

2018b), thus highlighting the importance of continuous near-real-time monitoring of

the calving front location.

131
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The locations and dynamics of supraglacial lakes have been extensively monitored

by optical imagery over Greenland (Sundal et al., 2009; Selmes et al., 2011; Leeson

et al., 2013). These lakes have been observed to drain at different rates (McMillan

et al., 2007; Selmes et al., 2011), varying from days (Selmes et al., 2011) to hours

(Das et al., 2008) and via a range of mechanisms, including crevasse hydrofracture and

overtopping into nearby moulins. In this study, we have demonstrated the value of

Sentinel-2, working in conjunction with Sentinel-1, to increase the time sampling (up

to 2 days) of supraglacial lakes at high spatial resolution (10 m). Specifically, we have

mapped two filling lakes during a 14 day period, showing area changes of 24 % and 23

%. Expanding this type of mapping to the ice sheet scale holds the potential to greatly

improve the observational datasets that are available for monitoring and understanding

these lakes’ seasonal evolution, and their corresponding impact upon ice dynamics.

Short-term environmental changes at marine-terminating glaciers are known to trig-

ger responses in glacier dynamics, and associated ice mass loss and thinning (Joughin

et al., 2012, 2014; Sundal et al., 2013). The highly variable patterns of seasonal and

inter-annual speed changes of JI that have been observed over recent decades (Lemos

et al., 2018b), highlight the importance of continuous monitoring with both high cov-

erage and temporal resolution (Rosenau et al., 2015). Here, we have demonstrated

the ability of Sentinel-2 to track ice motion in different seasons, and when combined

with Sentinel-1, to improve the regularity with which ice speed estimates can be made

to up to 2 days. Over common regions of JI, by combining velocity data from both

Sentinel-1 and Sentinel-2, we have demonstrated that improved coverage of 97 % can

be achieved in summer (Table 5.3). In winter, when the optical imagery has limited

performance to track ice motion, Sentinel-1 is still able to provide 98 % of coverage

(Table 5.3). This demonstrates that, through the combination of sensors, it is possible

to achieve a high degree of year-round coverage, that is impossible from a single sensor

alone. Furthermore, the new Sentinel-2 velocity products show good agreement with

estimates from Sentinel-1 along the main flow profiles, as demonstrated in figure 5.8.

Spatially, we observe velocities differencing by 224 ± 136 m yr−1 (29 %) in summer

(Table 5.4), and up to 1000 m yr−1 near to the ice front in autumn (Figure 5.9). De-

spite the slight slow-down in speed that has been observed since 2012 (Lemos et al.,

2018b), JI remains the single highest glacier contributor to Greenland mass imbalance

(Joughin et al., 2012), requiring continuous and frequent monitoring.
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5.6 Conclusions

This study has demonstrated the utility of new multi-spectral imaging satellites for

building systematic records of glacier and ice sheet evolution. The use of high spatial

resolution images, acquired with a high sampling frequency, are extremely important

for monitoring iceberg drift, calving front location, supraglacial lakes and ice dynamics.

We have shown here that the sharpness and fine spatial resolution of the Sentinel-2

true-colour composite images allows us to identify and track all of these features, and

thus provide complementarity with other sensors, such as Sentinel-1. One of the main

disadvantages of optical images is their sensitivity to the presence of clouds, which affect

the capability to reliably track surface features, and are a source of errors during the

co-registration procedure that is required to align images. Nonetheless, when clouds

are absent, we find that Sentinel-2 offers several advantages relative to Sentinel-1. We

observed subtle changes in the calving dynamics over a short period of time using

Sentinel-2 images, that were not clear between the Sentinel-1 SAR images, especially

during summer due to the high backscatter levels in the latter. The supraglacial lakes

were also clearer in the optical imagery, and it was possible to observe more defined

edges, thereby lending greater certainty to lake area estimates. The cross-correlation

feature tracking applied to the Sentinel-2 imagery produced patterns of ice flow that

were consistent with previous work in the same region (Lemos et al., 2018b). The optical

velocity products presented near-complete coverage in summer, complementing the

near-complete coverage achieved by SAR in winter, and improving both the year-round

coverage and frequency of observations. Despite JI being a challenging region, the good

agreement we find between Sentinel-2 and Sentinel-1 velocity estimates, indicates that

Sentinel-2 can potentially extend the existing time series of ice velocity in conjunction

with other sensors. The systematic acquisition cycle of Sentinel-2a/b is able to provide

averaged velocity measurements every 3 days over the polar regions and, in conjunction

with Sentinel-1a/b products, offers the potential to monitor average ice flow every

2 days, which is unprecedented during the satellite era. Going forward, the novel

combination of operational satellite missions at the continental scale is essential for the

systematic identification of short-term changes of numerous glaciological features, and

for understanding the processes that drive ice velocity change.
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Chapter 6

Discussions, Conclusions, and

Future work

The aim of my thesis was to develop satellite measurements of Greenland glacier ice

velocity fluctuations with higher temporal frequency than has been previously possible,

as an indicator of environmental change. In the preceding chapters I met this aim using

imagery acquired by the new Sentinel-1 and Sentinel-2 satellite constellations. I first

produced and analysed new seasonal and inter-annual changes in the velocity of four

key marine-terminating glaciers across Greenland (Chapter 3). I then produced and

analysed seasonal changes in the velocity of five land-terminating glaciers in Central-

west sector of Greenland (Chapter 4). Finally, I combined measurements from both

missions to evaluate their complementarity for tracking ice motion of Jakobshavn Isbræ

(Chapter 5). In this final chapter I will describe how my thesis has met the original

motivations for conducting the research, by providing first a summary and then a

synthesis of the work completed and the principal science results presented in each

chapter. I will also discuss promising areas for future research that have emerged as a

result of my thesis work.

6.1 Summary of main results

Fluctuations in marine-terminating glacier flow using Sentinel-1

In Chapter 3, I demonstrated, for the first time, the ability of the Sentinel-1a/b syn-

thetic aperture radar constellation to track changes in the velocity of four marine-
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6.1 Summary of main results

terminating glaciers in Greenland with high temporal resolution, marking the start of

a new era of operational monitoring. These marine-terminating glaciers are large, fast-

flowing, units responsible for a sizeable fraction of the ice sheet discharge (Enderlin

et al., 2014), and are known to respond quickly to changes in the surrounding ocean

(Holland et al., 2008; Carr et al., 2017). I presented both seasonal and inter-annual

velocity fluctuations, and I computed the persistence of summertime speedup thanks

to the frequent temporal sampling of the Sentinel-1 data with mean errors going from

7 % to 30 % in isolated areas. In order to confidently build on existing ice velocity

datasets developed from other satellite sensors, I first evaluated the Sentinel-1 veloc-

ity measurements using contemporaneous estimates derived from TerraSAR-X, which

has finer spatial resolution and therefore greater precision. In this comparison, there

was good agreement between the two ice velocity datasets at Jakobshavn Isbræ, with

mean differences of 40 m yr−1 and 76 m yr−1 at sites J1 and J2 respectively, which

are situated ∼12 and ∼17 km inland. At a third site, Jif, the mean difference was

much higher (489 m yr−1); however, this location is close to the ice front where speeds

exceed 15 km yr−1 in 2012-2013 and is an extremely challenge region to track ice flow

(Figure 3.4). I then demonstrated the benefit of the Sentinel-1a/b constellation’s short

(6-day) revisit time, which improves the degree of correlation between consecutively

acquired images, and the value of the resulting measurements for tracking flow near

to the calving front of Jakobshavn Isbræ (Figure 6.1). Using the extended velocity

dataset, I quantified inter-annual variations and the seasonal cycle of ice motion at all

four marine-terminating glaciers. Through this analysis, revealed the deceleration of

Jakobshavn Isbræ by 321 m yr−1 over the last 5 years, after a 15 years period of pro-

gressive speedup, and I demonstrated the that seasonal changes in the glaciers speed are

correlated with seasonal changes in its calving front position (Figure 3.6). Moreover,

I estimated seasonal changes of 25 % and 18 % in Petermann Glacier and Zachariæ

Isstrøm, respectively.
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6.1 Summary of main results

Figure 6.1: Copy of Figure 3.5. Temporal evolution of Jakobshavn Isbræ (a) ice

front position extracted from Joughin et al. (2014), ESA Greenland Ice Sheet Cli-

mate Change Initiative (CCI) project (European Space Agency (ESA), 2017), and

Sentinel-1a/b SAR images represented in blue, black and magenta dots respectively,

where higher values correspond to ice front retreat. Changes in ice velocity through

time is also shown (b, c), extracted at the locations indicated in Figure 3.1. The veloc-

ity data derived from TerraSAR-X (11 days - Joughin et al. (2016)) are shown as grey

squares, and the data from Sentinel 1-a/b (6 to 12 days) as coloured triangles.

Fluctuations in land-terminating glacier flow using Sentinel-1

In Chapter 4, I extended my analysis of Sentinel-1a/b images to track the motion of five

land-terminating glaciers in a 14,000 km2 sector of central-west Greenland. Glaciers in

this and other land-terminating sectors of the ice sheet are known to exhibit seasonal

variations in flow that are related to the degree of surface melting through a process of

basal ice lubrication (Bartholomew et al., 2010; Hoffman et al., 2011; Chu, 2014), and

are therefore a sensitive indicator of changing atmospheric conditions (Sundal et al.,
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2011; Bartholomew et al., 2012). Land-terminating glaciers flow, however, relatively

slowly, and so tracking seasonal changes in their speed has proven to be a challenge

with satellite data. I presented the capability of the new constellation, compared to

previous missions, to track ice motion with significantly improved spatial and temporal

resolution. I generated ice velocity maps for both summer and winter, with uncertain-

ties around 10 % across the majority of the study area. These show different patterns

of speedup between individual glaciers (Figure 4.1 and 4.2), and also differences in the

spatial sampling that can be achieved in summer and winter due to the effects of surface

melting. Despite being located in the same region, seasonal speedup at the five glaciers

varies considerably, from 21 % and 49 % (Table 4.1). Russell Glacier, however, was

the only glacier in the sector to present interannual variability in flow, amounting to a

32 % speedup between 2016 and 2017 (Figure 4.3). I also mapped, for the first time,

the detailed spatial variation in speedup, revealing a marked altitudinal variation in

the persistence of fast flow during summer (Figure 6.2). Altogether, my work on land-

terminating glaciers has demonstrated the unique benefit of Sentinel-1’s high temporal

sampling for track short-term changes in speed due to surface melting (Figure 4.6).

Figure 6.2: Copy of Figure 4.5. Persistence of ice speedup (a), the start (b) and end

date (c) of the summer season.

Fluctuations in marine-terminating glacier flow using Sentinel-2

Chapter 4 demonstrated the potential of the Sentinel-2 constellation, a multi-spectral

imager, to complement and continue systematic records of glacier and ice sheet motion
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determined from other sensors. I showed the influence of clouds and shadows in the

optical images (Figures 5.1 and 5.2), and how they impact on the capability to iden-

tify and track the movement of different glaciological features. The combined use of

the Sentinel-2 constellation with Sentinel-1 not only shows how high spatiotemporal

resolution of images is essential for tracking subtle changes in motion, but also the

value in obtaining frequent observations of the polar regions all year-round. I first used

the Sentinel-2 imagery to track the drift of icebergs in the ocean, drifting at 250 m

day−1 (Figure 5.3), variations in the position of a marine-terminating glacier calving

front (Figure 5.4), and changes of 0.23 km2 in the extent of supraglacial lakes (Figure

6.3). The sharpness and fine spatial resolution of the Sentinel-2 true-colour composite

images better define the ice front and lake edges when compared to Sentinel-1 SAR im-

agery. Furthermore, in order to assess Sentinel-2’s performance for tracking ice motion,

I generated surface ice velocity maps in spring, summer, and autumn, using cloud-free

images and a cross-correlation feature tracking algorithm. Sentinel-2 performed very

well at the Jakobshavn Isbræ when compared to measurements recorded by Sentinel-1

and presented in Chapter 2. The Sentinel-2 ice motion maps show near-complete cover-

age in summer (93 %), complementing the near-complete (98 %) coverage of Sentinel-1

in winter (Figures 5.6 and 5.7). Finally, I demonstrated the value of the combined use

of Sentinel-1 and -2, which together offer - for the first time in the satellite era - the

opportunity to map changes in glacier dynamics every 2 days.
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Figure 6.3: Copy of Figure 5.5. Supraglacial lakes observed in true-colour composite

Sentinel-2 (a-b) and SAR Sentinel-1 (c-d) imagery (see magenta square in Figure 3.1b

for location). The gridline is spaced by 750 m x 750 m. Solid green and red lines

represent digitized features from the scenes a,c and b,d respectively.

6.2 Synthesis of the main conclusions

A core aim of this thesis was to explore the potential of Sentinel-1, a relatively new

satellite mission, for tracking ice motion in the polar regions. In all three results chap-

ters, I explored the unique characteristics of the mission and how it can help us to

better monitor and analyse the flow of the Greenland ice sheet. The Sentinel-1 constel-

lation offers, for the first time in the history of synthetic aperture radar missions, the

opportunity for systematic sampling every 6-days across the entire ice sheet marginal

zone. Different sectors of the ice sheet are known to respond differently to the environ-

mental forcing they experience. In my thesis, I demonstrated the value of Sentinel-1

for tracking both seasonal and interannual changes in ice motion over marine- and
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land-terminating sectors of the ice sheet. Moreover, I showed Sentinel-1’s ability to

determine changes in the speed of both slow- and fast-flowing glaciers, with velocities

ranging from ∼200 m yr−1 to 12,000 m yr−1. The short-period acquisition also allowed

me to track motion at the ice front of Jakobshavn Isbræ, which is exceptionally fast

in glaciological terms. Furthermore, the availability of multiple acquisitions helped me

to map, for the first time, the start and end dates of the summer speedup period in

a land-terminating sector of central-west Greenland, highlighting marked differences

among the regional glaciers. Overall, my thesis has demonstrated that the Sentinel-1

mission is capable of continuing the observational records that began with other sen-

sors, identifying signals of dynamic imbalance, and helping us to understand the factors

which drive short- and long-term changes in ice motion.

A second aim of this thesis, as well as the third objective, was to assess how variations

in glacier flow relate to and reflect local environmental change over short (i.e. seasonal)

and intermediate (multi-annual) timescales. In Chapter 3, I demonstrated the strong

influence of calving events in triggering seasonal changes of ice motion over the last eight

years in Jakobshavn Isbræ. Using Sentinel-1 data I showed, for example, that for every

kilometre of calving front retreat the speed of Jakobshavn Isbræ increases by 1800 m

yr−1 (Figure 6.4a). This forcing has both a seasonal cycle as the calving front advances

and retreats in winter and summer, respectively, plus a longer-term signal associated

with progressive collapse and retreat of the glaciers floating ice tongue (Joughin et al.,

2008, 2012, 2014). However, since 2012, after consecutive years of retreat and speedup,

I showed that Jakobshavn Isbræ has finally started to slow down, exhibiting a 321 m

yr−2 decrease in speed. The underlying cause of this deceleration requires further in-

vestigation. However, Khazendar et al. (2019) linked the fact to the intrusion of cooled

ocean current in Disko Bay. Although the land-terminating glaciers studied in Chapter

4 also showed seasonal changes in flow, this is due to changes in their inland hydrology.

In west central Greenland, I showed that the seasonal speedup persisted for around 90

days, mirroring the seasonal cycle of melting at the ice sheet surface as estimated from

air temperature measurements recorded at a nearby weather station (Figure 6.4b). On

detailed inspection, the glaciers presented later spikes in velocities matching short-lived

peaks of melting, further supporting my conclusion that the speedup is driven by the

excess of meltwater input in the ice sheet bed. Finally, although changing oceanic
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conditions are generally assumed to control the flow of marine-terminating glaciers,

Petermann Glacier exhibited unusual behaviour. The glacier presented the highest sea-

sonal changes in speed among the marine-terminating glaciers included in my survey –

a 25 % increased over a 25-day period, despite a ∼1 km advance of its calving front.

This suggests that, in contrast to other marine-terminating glaciers, changes in basal

lubrication could be the dominant control on flow variability at Petermann Glacier.

(a) (b)

Figure 6.4: Copy of (a) Figure 3.6 and (b) Figure 4.6. In (a): Comparison between

Jakobshavn Isbræ ice velocity and calving front position anomalies at the Jif site, 0.8 km

upstream of the calving front, between 2009 and early 2017. Positive values correspond

to ice front retreat and speed up respectively. The red and black lines represent the

linear regression through the 2009-2011 and 2012-2017 periods, respectively, together

with the correlation coefficients (R2). In (b): Averaged speed of three glaciers (G1,

IG, and RG) with similar geometry and data sampling at two elevations bands during

2017. Also shown are daily temperature and positive degree days (PDDs) recorded at

the nearby KAN L automatic weather station (670 m.a.s.l.) and distributed by the

Programme for Monitoring of the Greenland Ice Sheet.

The modern era of satellite-based earth observation is unique. Since the launch of

the Sentinel-1 and Sentinel-2 constellations, the planet’s surface has been systemati-

cally and frequently monitored by multiple sensors. Because synthetic aperture radar

and optical images have different strengths and weaknesses, the optimal approach to
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monitoring glacier flow is to combine their measurements, to reduce the dependency

on mission-specific limitations. In Chapter 3, I produced a three-year time series of

Greenland glacier flow variations using Sentinel-1a/b and merged these with an eight-

year time series produced from TerraSAR-X to create a single and consistent record of

change. In Chapter 5, I illustrated the added value of Sentinel-2’s multi-spectral sen-

sor for tracking features in high spatial resolution, and in augmenting measurements

developed from Sentinel-1 SAR imagery. Overall, there is good agreement between

automated estimated of ice motion determined from repeat imagery acquired by each

mission, and when combined they offer improved temporal sampling. The combined

use of multiple missions increases the capability for monitoring subtle and short-term

changes and movement of numerous glaciological features. Examples of this shown in

Chapter 5 include the drift of icebergs, the movement of glacier calving fronts, and

the growth in area of supraglacial lakes. Each of these features changes rapidly, and

through combination can be surveyed every 2 days using both Sentinel-1 and Sentinel-2.

Finally, I have shown that Sentinel-2 optical data prove to be a promising product for

extending existing time-series of ice motion determined from Sentinel-1 SAR imagery,

as the two image classes perform best in opposing seasons - thereby increasing the

temporal sampling.

6.3 Recommendations for future work

In Chapters 3 and 4, I demonstrated Sentinel-1’s capability to derive velocity on fast-

and slow-moving glaciers in Greenland all year around. Because the constellation mis-

sion is a 20-year operational program, its measurements can be relied upon over the

long-term. Because of this, operational services such as the Centre for Polar Observa-

tion and Modelling near-real-time ice velocity data portal (http://www.cpom.ucl.ac.uk

/csopr/iv/) can reliably be extended to include slow moving sectors of Antarctica and

Greenland, in addition to the principal outlet glaciers. Moreover, I would recommend

the use of the extra-wide swath mode (EW) mode along the margins, which has simi-

lar as the interferometric wide swath mode. This will require only modest changes to

processing systems to tailor the tracking procedure to detect slow movement. Frequent

and long-term velocity measurements would then allow us to better understand seasonal

and interannual variations in ice flow. For instance, the Austfonna ice cap in Svalbard
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increased its discharge by 45-fold, and over the last twenty years, changed the velocity

regime flow (McMillan et al., 2014). Furthermore, I would extend the systematic ice

motion estimation to the northern region of the Antarctic Peninsula. This region has

demonstrated, thought a multi-mission analysis until late 2014, different responses in

motion due to ice front variation (Seehaus et al., 2018), leading to a detailed and con-

tinuous monitoring in order to understand the main causes. The estimated errors can

be improved by applying high-pass spatial-frequency filter prior to the main process

chain, as suggested by de Lange et al. (2007). In Chapter 4, I produced example maps

of documenting spatial variations in the persistence of summertime ice speedup; this

is a promising area for future research given than systematic observations with high

temporal frequency will continue to be routine. The new technique still needs improve-

ment in order to be more robust and then can be applied to other polar regions. In the

first instance, the technique could be extended to determine the persistence of speedup

in other sectors of the ice sheet, such as the marine-terminating glaciers presented in

Chapter 3, Petermann Glacier, Nioghalvfjerdsfjorden and Zachariæ Isstrøm. Similarly,

identifying the start and end dates on which speedup occurs at individual glaciers will

inform on how they evolve in time. Such measurements will be of additional value both

for identifying emerging signals of dynamic imbalance and for understanding processes

driving velocity change.

Sentinel-2 is also a long-term mission with a systematic data acquisition strategy,

and the complementarity of its images for tracking ice motion makes it a promising

dataset for monitoring glacier change. The mission increased both the frequency and

seasonality of temporal sampling, overcoming some weakness of tracking motion with

synthetic aperture radar imagery. Sentinel-2’s relatively fine spatial resolution is par-

ticularly suited to estimate ice motion in challenging regions, mainly due to irregular

terrain, such as the Antarctic Peninsula and High Mountain glaciers in Asia, as has been

demonstrated by Gardner et al. (2018) and Dehecq et al. (2019), using Landsat imagery.

Moreover, mountainous glaciers in South America, such as Patagonia and the Andes,

are also challenging regions to extract velocity data due to temporal decorrelation and

high slope terrains (Mouginot and Rignot, 2015). The continuous monitoring of these

regions would allow us to better understand not only the dynamics of these glaciers but

also their seasonality, which is of wider importance because mountain communities rely
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on glaciers as a water resource. I showed that optical images are, however, affected by

the presence of clouds and shadows, which are extremely challenging to be identified

over snowy regions (Paul et al., 2016). Thus, I would recommend further investigation,

in order to improve the automated method to detect clouds and shadows, which will

facilitate the use of the optical images during a processing chain to estimate ice ve-

locity, or identify glaciological features. In addition to tracking ice motion, Sentinel-1

and Sentinel-2 images support the detection of other glacier features such as the for-

mation of supraglacial and pro-glacial lakes; more frequent monitoring of these targets

may help local communities and operators to avoid risk – for example from glacier lake

outburst floods which are responsible for the sudden release of large volumes of water

(Grabs and Hanisch, 1993; Carrivick and Tweed, 2016). I also recommend expanding

the work presented in Chapters 5 to use Sentinel-1 and Sentinel-2 to monitor glacier

change with high temporal sampling. For instance, frequent monitoring iceberg calving

will inform on glacier boundary conditions and also on potential shipping hazards.

In this thesis I have shown that high temporal acquisition frequency provided by the

new satellite missions are valuable tool for the large-scale analysis of the ice sheet

surface, in order to understand how it responds to regional environmental changes.

The new Sentinel-1 and Sentinel-2 data sets are extremely valuable resources that can

and should be used to extend ice motion time series measurements back to the early

1990s, and provide an unprecedented opportunity to monitor ice discharge over several

decades.
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Abstract. Systematically monitoring Greenland’s outlet
glaciers is central to understanding the timescales over which
their flow and sea level contributions evolve. In this study
we use data from the new Sentinel-1a/b satellite constel-
lation to generate 187 velocity maps, covering four key
outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann
Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These
data provide a new high temporal resolution record (6-day
averaged solutions) of each glacier’s evolution since 2014,
and resolve recent seasonal speedup periods and inter-annual
changes in Greenland outlet glacier speed with an estimated
certainty of 10 %. We find that since 2012, Jakobshavn Is-
bræ has been decelerating, and now flows approximately
1250 m yr�1 (10 %), slower than 5 years previously, thus
reversing an increasing trend in ice velocity that has per-
sisted during the last decade. Despite this, we show that sea-
sonal variability in ice velocity remains significant: up to
750 m yr�1 (14 %) at a distance of 12 km inland of the ter-
minus. We also use our new dataset to estimate the dura-
tion of speedup periods (80–95 days) and to demonstrate a
strong relationship between ice front position and ice flow at
Jakobshavn Isbræ, with increases in speed of ⇠ 1800 m yr�1

in response to 1 km of retreat. Elsewhere, we record signifi-
cant seasonal changes in flow of up to 25 % (2015) and 18 %
(2016) at Petermann Glacier and Zachariæ Isstrøm, respec-
tively. This study provides a first demonstration of the capac-
ity of a new era of operational radar satellites to provide fre-
quent and timely monitoring of ice sheet flow, and to better
resolve the timescales over which glacier dynamics evolve.

1 Introduction

Between 1992 and 2011, the Greenland Ice Sheet lost mass
at an average rate of 142 ± 49 Gt yr�1 (Shepherd et al.,
2012), increasing to 269±51 Gt yr�1 between 2011 and 2014
(McMillan et al., 2016). Ice sheet mass balance is determined
from the surface mass balance and ice discharge exported
from the ice sheet (van den Broeke et al., 2009). In 2005, dy-
namic imbalance was responsible for roughly two-thirds of
Greenland’s total mass balance, making an important contri-
bution to freshwater input into the ocean and 0.34 mm yr�1

to the global sea level rise at that time (Rignot and Kana-
garatnam, 2006). Despite the anomalous atmospheric warm-
ing events, especially in 2012 (Tedesco et al., 2013), pre-
senting a more spatially extensive and longer lasting surface
melt during this period, marine-terminating outlet glaciers in
Greenland still contributed with roughly 30 % (2000–2012)
of total mass loss (Enderlin et al., 2014). The observed ac-
celeration of many marine-based glaciers in the western and
northern regions of Greenland over the last decade may have
been driven by rises in air and adjacent ocean temperatures,
which enhanced the surface melting and terminus retreat
(Holland et al., 2008; Moon et al., 2014, 2015). The as-
sociated increases in basal sliding and calving of their ice
fronts in turn produce enhanced discharge, leading to dynam-
ical imbalance and additional ice loss (Joughin et al., 2010,
2014). However, acceleration of marine-terminating glaciers
is highly variable in space and time (Howat et al., 2010;
Moon et al., 2012; Enderlin et al., 2014), due to the geome-
try of individual glaciers (Felikson et al., 2017), and the high
spatial variability in the forcing mechanisms (Jensen et al.,
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2016; Carr et al., 2017). This complexity in glacier response
challenges efforts to model their future evolution (Joughin et
al., 2012; Bondzio et al., 2017) and, thus, frequent and sys-
tematic monitoring is essential to understand the processes
governing their dynamic stability and contribution so future
mean sea level rise (Joughin et al., 2010; Shepherd et al.,
2012).

Ice motion measurements are essential for monitoring ice
sheet dynamics and ice discharge, and for assessing an ice
sheet’s mass budget (Joughin et al., 1995). At present, the
only way to monitor ice velocity at a continental scale is
through satellite imagery. Glacier velocities were first mea-
sured using Landsat satellite data acquired during the 1970s
through digital optical image comparison (Lucchitta and Fer-
guson, 1986). Currently, optical images are still largely used
for mapping glaciers velocity at large scale (e.g. Dehecq et
al., 2015; Fahnestock et al., 2016; Armstrong et al., 2017).
However, due to the dependency upon daylight conditions
and the limited acquisitions across the polar regions, the
use of synthetic aperture radar (SAR) images has become
common since the launch of ERS-1 in 1991. In the follow-
ing decades, these data have been used to monitor dynamic
processes occurring across remote areas such as the Green-
land and Antarctic ice sheets (Joughin et al., 2010; Rignot
and Mouginot, 2012; Nagler et al., 2015; Mouginot et al.,
2017). More recently, after the launch by the European Space
Agency (ESA) (2017) of the Sentinel 1-a and 1-b satellites, in
April 2014 and April 2016, respectively, many key ice mar-
gin areas are systematically monitored every 6 to 12 days.
This novel dataset provides the opportunity to systematically
monitor the dynamical process driving glacier ice velocity
over periodic and short temporal scales. Here we use the Sen-
tinel SAR archive to investigate the temporal variation in ice
flow since October 2014 at four large outlet glaciers of the
Greenland Ice Sheet.

2 Study areas

In this study, we map ice velocity of the Jakobshavn Isbræ
(JI), Petermann Glacier (PG), Nioghalvfjerdsfjorden (79-G)
and Zachariæ Isstrøm (ZI), which are four of the largest
marine-based ice streams in Greenland. Combined they con-
tain ice equivalent to 1.8 m of global sea-level rise (Moug-
inot et al., 2015; Jensen et al., 2016) and drain ⇠ 21.5 %
of Greenland’s ice (Rignot and Kanagaratnam, 2006; Rignot
and Mouginot, 2012; Münchow et al., 2014).

Jakobshavn Isbræ terminates in the Ilulissat Icefjord in
western Greenland (Fig. 1a) and is the fastest glacier drain-
ing the ice sheet (Enderlin et al., 2014; Joughin et al., 2014).
During the late 1990s, the ice tongue experienced succes-
sive break-up events and the glacier began to speed up, ex-
hibiting annual increases in speed of 7 % per year from 2004
and 2007 (Joughin et al., 2008a, 2012, 2014). Until 2012 and
2013, the speedup continued, reaching maximum velocities

in excess of 17 km yr�1 (Joughin et al., 2012, 2014). It has
been suggested (van de Wal et al., 2015) that the speedup
over this period in the southwest of Greenland might be en-
hanced by anomalously high melting across the ice sheet sur-
face (Tedesco et al., 2013). Jakobshavn Isbræ is susceptible
to changes in the adjacent ocean and Holland et al. (2008)
have shown that warm water originating in the Irminger Sea
likely enhanced basal melting and weakened the floating ice
tongue, triggering its break up in 1997. Furthermore, Glad-
ish et al. (2015) showed that the subsequent changes, which
occurred between 2001 and 2014, were mainly triggered
by changes in Ilulissat Icefjord water temperatures adjacent
to the glacier. At present, JI is a tidewater glacier and has
a bimodal behaviour, retreating by ⇠ 3 km during summer
and advancing by a similar amount during winter seasons
(Cassotto et al., 2015). Moreover, as showed by Jensen et
al. (2016) through analysis of optical images from 1999 to
2013, it has not exhibited an unusually large change in area
(�10.3 km2 yr�1).

Petermann Glacier flows into the Hall Basin in the Nares
Strait in northwestern Greenland (Fig. 1b), and has a peren-
nial floating ice tongue of 1280 km2 in area (Hogg et al.,
2016). PG is grounded on bedrock ⇠ 300 m below sea level
and, thus, is also influenced by the adjacent ocean (Münchow
et al., 2014; Hogg et al., 2016). The retreat of the ice stream
calving front led to an area decrease of 352 km2 from 1959 to
2008, 270 km2 in 2010, and 130 km2 in 2012 (Johannessen
et al., 2013). It is considered a dynamically stable marine-
terminating glacier despite several grounding line advancing
and retreating events between 1992 and 2011, with a termi-
nus retreat rate of 25.2 m a�1 (Hogg et al., 2016). PG has had
an average velocity of ⇠ 1100 m yr�1 at its grounding line
since the 1990s (Rignot, 1996; Rignot and Steffen, 2008) and
a multi-annual trend (2006–2010) in flow speed of 30 m yr�2

(Nick et al., 2012). The ice shelf is thicker than 100 m and
it is 15 km wide, with low resistive stresses along flow due
to the limited attachment to the fjord walls, diminishing the
velocity response after calving events (Nick et al., 2012).

Nioghalvfjerdsfjorden and Zachariæ Isstrøm are situated
in the northeast of Greenland (Fig. 1c and d respectively).
The two glaciers together drain more than 10 % of the Green-
land Ice Sheet (Rignot and Mouginot, 2012), and their maxi-
mum velocities are found near the grounding line. They have
exhibited different behaviour in recent years, although lo-
cated in the same region. 79-G underwent a modest veloc-
ity increase of ⇠ 150 m yr�1 between 2001 and 2011 at the
grounding line (Khan et al., 2014). In contrast, during the
same period, ZI exhibited a much larger increase in speed
greater than 600 m yr�1 (Khan et al., 2014). The ice thin-
ning rates above the grounding line vary from 5.1 m yr�1 in
ZI (2010–2014) to 1.4 m yr�1 in 79-G (2012–2014) (Moug-
inot et al., 2015). Between 1999 and 2013, ZI has under-
gone an average area change of �26.0 km2 yr�1, due to break
off of the ice tongue and is now a tidewater glacier (Khan
et al., 2014; Jensen et al., 2016). In contrast, 79-G had a
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Figure 1. Time-averaged ice velocity magnitude maps for the period October 2014–February 2017: (a) Jakobshavn Isbræ (JI; 69� N, 50� W),
(b) Petermann Glacier (PG; 81� N, 62� W), (c) Nioghalvfjerdsfjorden (79G; 79� N, 20� W), and Zachariæ Isstrøm (ZI; 78� N, 20� W)
glaciers, derived from Sentinel-1 SAR images. Velocities are shown on a logarithmic scale and overlaid on a SAR backscatter intensity
image and thin grey lines represent elevation. The along-flow profiles are indicated by solid green lines scaled in kilometres, the solid black
lines show the across-flow transects, the red triangles represent the locations at which velocity time series are extracted, and the thick solid
and dashed black lines represent the ice front locations (IF) and the grounding lines (GL), respectively. The inset figures show the location
of each glacier.

much lower average area change during the same period of
�4.7 km2 yr�1 and still retains a small ice shelf (Jensen et
al., 2016), although recent ice shelf thinning (Mouginot et
al., 2015) may increase vulnerability to break-up in the fu-
ture.

3 Data and methodology

To map ice velocity, we used single look complex (SLC) syn-
thetic aperture radar images acquired in the interferometric
wide swath (IW) mode from the Sentinel-1a and Sentinel-1b
satellites. Data used in this study were acquired in the period
spanning from October 2014 to February 2017 and from Oc-
tober 2016 to February 2017, for Sentinel-1a and Sentinel-
1b, respectively (Fig. S2 and Table S1 in the Supplement).
Each satellite has a repeat cycle of 12 days and 180 degrees
orbital phasing difference, resulting in a revisit time of 6 days
over the same area after the Sentinel-1b launch. The Sentinel
SAR instruments operate at c-band, with a centre frequency
of 5.405 GHz, corresponding to a wavelength of 5.55 cm.
The IW mode has a 250 km swath and spatial resolution of
5 m in ground range and 20 m in azimuth. It has burst syn-
chronization for interferometry and acquires data in three

sub-swaths, each containing a series of bursts, which are ac-
quired using the Terrain Observation with Progressive Scans
SAR (TOPSAR) imaging technique (Yague-Martinez et al.,
2016). We followed the workflow described below to derive
187 ice velocity maps from pairs of Sentinel-1a/b SAR im-
ages over Jakobshavn Isbræ, Petermann Glacier, Nioghalvf-
jerdsfjorden and Zachariæ Isstrøm, using the GAMMA-SAR
software (Gamma Remote Sensing, 2015).

We used the SAR intensity tracking technique (Strozzi et
al., 2002) to estimate surface ice velocities due to glacier
flow, assuming that the ice flow occurs parallel to the surface.
This method uses a cross-correlation algorithm applied to im-
age patches (Strozzi et al., 2002; Pritchard et al., 2005; Paul
et al., 2015) to estimate offsets between similar features, such
as crevasses and radar speckle patterns, in two co-registered
SAR images (Table S1). Images were co-registered using the
precise orbit information, available 20 days after the image
acquisition, establishing a co-registration accuracy of 5 cm
3-D 1-� (Sentinels POD team, 2013). The elimination of the
orbital offsets isolates displacement due to the glacier move-
ment (Strozzi et al., 2002). To estimate ice flow, we then used
windows sizes of 350 pixels in ground range (⇠ 1.7 km) and
75 pixels in azimuth (⇠ 1.5 km) for each glacier, to produce
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Figure 2. Average velocities (2014–2017) extracted from along- and across-flow profiles of Jakobshavn Isbræ, Petermann Glacier, Nioghalvf-
jerdsfjorden, and Zachariæ Isstrøm. Panels (a–d) present along-flow profiles of ice velocity (solid black lines), surface elevation from the
GIMP DEM (Howat et al., 2014; dashed blue lines) and bed elevation from the IceBridge BedMachine Greenland V2 product (Morlighem
et al., 2015; dashed yellow lines). The location of each profile is shown in Fig. 1 (green lines). The grey shaded area represents the floating
regions, and the light grey dashed line the ice front positions. The blue, black, and red markers represent the locations of the across-flow
profiles. (e–h) show the across-flow velocity profiles (solid white lines in Fig. 1), centred on the main profile (solid green line).

a series of velocity maps with spatial resolution of 388 m in
ground range and 320 m in azimuth.

Image matches with low certainty, defined as returning a
normalized cross-correlation of less than 5 % of its maximum
peak, were rejected and the results were then converted into
displacement in ground range coordinates using the Green-
land Ice Mapping Project (GIMP) digital elevation model
(DEM) posted on a 90 m grid (Howat et al., 2014). Along-
and across-track displacement components were combined

to determine the displacement magnitude, which was then
converted to an estimate of annual velocity using the tempo-
ral baseline of each image pair. Final velocity products were
posted on 100 m by 100 m grids. Post-processing of ice ve-
locity data reduces noise and removes outliers (Paul et al.,
2015), so we applied a low-pass filter (moving mean) twice
to the data, using a kernel of 1 km by 1 km, and we reject val-
ues where the deviation between the unfiltered and filtered
velocity magnitude exceeds 30 %. We apply a labelling algo-
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Figure 3. Time-averaged (2014–2017) uncertainty in ice velocity at each site expressed in percentage, based on the signal-to-noise ratio
(SNR) for (a) JI, (b) PG, and (c) 79G and ZI.

rithm, based on the image histogram, to identify and classify
regions with similar values, excluding isolated pixels with a
non-coherent area of velocity values, or where the area of the
classified region was smaller than 1/1000th of the processed
image size.

Errors in our velocity estimates arise primarily through
inexact co-registration of the SAR images, uncertainties in
the digital elevation model used in the terrain correction,
and fluctuations in ionospheric activity and tropospheric wa-
ter vapour (Nagler et al., 2015; Hogg et al., 2017). To es-
timate the accuracy of our Sentinel-1 average velocity data
(Figs. 1 and 3) we computed pixel-by-pixel errors based on
the signal-to-noise ratio (SNR) of the cross-correlation func-
tion (Hogg et al., 2017). The SNR is the ratio between the
cross-correlation function peak (Cp) and the average correla-
tion level (Cl) on the tracking window used to estimate the
velocities (de Lange et al., 2007). We then averaged these es-
timates across all images in our temporal stack to determine
the percentage errors associated with our mean velocity maps
(Fig. 3). Although in isolated areas the error exceeds 30 %,
the mean error across the whole imaged area was approxi-
mately 10 % for JI, 7 % for PG, and 8 % for 79G and ZI. Due
to the non-uniform flow, lack of stable features, and remain-
ing geometry distortions, the four glaciers exhibit higher er-
rors across their faster flowing and steeper areas, and along
the shear margins. Where localized rates of surface elevation

change are high, the surface slope may have evolved away
from that of the GIMP DEM used in our processing. To as-
sess the sensitivity of our velocity estimates to this effect, we
selected the JI site where thinning is most pronounced, and
used airborne estimates of elevation change from IceBridge
and Pre-Icebridge data acquired from the NASA Airborne
Topographic Mapper (ATM) (Studinger, 2014) to update the
DEM. We find that in this extreme case, the large thinning
rates (⇠ 12 m yr�1) may introduce an additional uncertainty
of 200–300 m yr�1 which may bias the velocity estimates in
this region, albeit limited to the first 10 km upstream of the
grounding line (Table S2). Over floating ice tongues, uncom-
pensated vertical tidal displacement may also introduce addi-
tional uncertainty into our velocity fields. The sensitivity of
our results to this effect was assessed based upon a net 50 cm
tidal displacement over 6–12-day repeat period and a centre
swath incidence angle of 35 degrees. We estimate that such
a tidal signal would introduce ⇠ 20–40 m yr�1 additional un-
certainty into the ground range component of our velocity
fields. In the context of this study, this uncertainty does not
affect the results at JI or ZI, and it is limited only to the float-
ing sections of PG and 79G.

To provide an independent evaluation of our ice veloc-
ity dataset, we finally compared them (Table S1) to inde-
pendent estimates derived from TerraSAR-X (TSX) SAR
imagery through the speckle tracking technique (Joughin,
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Figure 4. Comparison between co-located and contemporaneous
Sentinel 1-a/b (6 to 12 days average) and TerraSAR-X (11 days
average) Jakobshavn Isbræ velocity measurements at Jif, J1 and J2
locations (blue, black and red squares, respectively), together with
root mean square (rms) and correlation coefficients (R2).

2002), which has a repeat period acquisition of 11 days and
spatial resolution up to 3 m (Joughin et al., 2016). The TSX
data consist of 444 image pairs covering Jakobshavn Isbræ
over the period January 2009 to January 2017, 18 pairs at
Petermann Glacier over the period November 2010 to De-
cember 2016, and 17 pairs at Nioghalvfjerdsfjorden over the
period March 2011 to December 2016. In general, the tem-
poral evolution of the S1-a/b measurements matches very
closely with the TSX estimates. At JI, we are able to com-
pare S1 and TSX datasets at three different locations to as-
sess their consistency (Fig. 4). Even though the flow speed at
these sites is high, which typically proves more challenging
for feature tracking techniques, we find good agreement be-
tween the two datasets, especially at the J1 and J2 sites, with
mean differences of 40 and 76 m yr�1 respectively. However,
nearer to the calving front (site Jif), the S1-a/b measurements
tend to give significantly higher velocities than TSX with a
mean difference of 489 m yr�1 (5 % of the mean velocity)
between the two datasets.

4 Results and discussion

We used our complete Sentinel-1a/b dataset (Table S1) to
generate contemporary, time-averaged velocity fields at each
of our study sites (Fig. 1). To investigate spatial and tem-
poral variations in ice velocity, we then extracted profiles in
the along- and across-flow directions, together with time se-
ries at fixed glacier locations (Fig. 1). Our velocity profiles
in Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjor-
den, and Zachariæ Isstrøm reached maximum mean speeds,
along the stacked dataset (averaged over the period 2014–
2017), of approximately 9, 1.2, 1.4, and 2.7 km yr�1, respec-

Table 1. Speedup persistence and seasonal percentage increase in
speed relative to winter and annual background for each glacier for
the Sentinel 1 dataset. Speedup persistence has an uncertainty of
±12 days due to the image acquisition interval of Sentinel 1a.

Speedup Summer Vannual/
persistence speedup (%) Vwinter (%)

JI (J1)
95 days (2015) 14 % 6 %
80 days (2016) 9 % 4 %

PG (P1)
25 days (2015) 25 % 0 %
55 days (2016) 17 % 6 %

79G (F2) 45 days (2016) 10 % 1 %

ZI (Z1) 45 days (2016) 18 % 3 %

tively. The location of the velocity maxima varied between
glaciers, as a result of their differing geometries. For JI and
ZI, neither of which have a significant floating tongue, we
find a progressive increase in ice velocity towards the calv-
ing front (Fig. 2a and d). For PG, the maximum velocity
is reached at the grounding line and remains steady along
the ⇠ 46 km of ice tongue (Fig. 2b). In contrast, although
79G also reaches its maximum velocity close to the ground-
ing line, its speed then diminishes by ⇠ 50 % (Fig. 2c) near
the ice front location where the ice flow divides into two
main portions before it reaches several islands and ice rises
(Fig. S1b). Furthermore, it is interesting to note that, de-
spite being located in the same region, the adjacent glacier
ZI flows ⇠ 60 % faster in comparison. JI, PG, and ZI glaciers
show velocity increases progressively downstream across the
transverse profiles. The four glaciers, JI, PG, 79G and ZI re-
spectively reduce their maximum velocity to half at distances
of 12, 22, 18, and 12 km inland of their grounding lines, high-
lighting the importance of resolving glacier velocities within
their near terminus regions.

Next, we used the Sentinel-1a/b and TerraSAR-X ve-
locities to assess the seasonal and longer-term variations
in Jakobshavn Isbræ ice velocity over the period 2009–
2017. Our Sentinel-1a/b velocity estimates at JI resolve clear
seasonal velocity fluctuations, superimposed upon longer
term decadal-scale variability, which continues observations
made by previous satellite instruments (Joughin et al., 2012,
2014). At site J1 we find an average seasonal change in
speed of 750 m yr�1, or 14 % between 2014 and 2015 and
a speedup persistence of 80–95 days, twice as long than
those for the other three glaciers (Table 1). Inland, the am-
plitude of seasonal variability diminishes, to an average of
300 m yr�1 (8 %) at J2. Our near-continuous, decadal-scale
record clearly shows that the amplitude of the seasonal sig-
nal has evolved through time. At J1, for example, the av-
erage seasonal variability in ice speed was 400 m yr�1 dur-
ing 2009–2011, increasing by more than a factor of 3, to
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Figure 5. Temporal evolution of Jakobshavn Isbræ (a) ice front
position extracted from Joughin et al. (2014), ESA Greenland Ice
Sheet Climate Change Initiative (CCI) project (2017), and Sentinel-
1a/b SAR images represented in blue, black, and magenta dots,
respectively, where higher values correspond to ice front retreat.
Changes in ice velocity through time is also shown (b, c), extracted
at the locations indicated in Fig. 1. The velocity data derived from
TerraSAR-X (11 days – Joughin et al., 2016) are shown as grey
squares, and the data from Sentinel 1-a/b (6 to 12 days) as coloured
triangles.

1400 m yr�1 between 2012 and 2013 and then diminishing
to 750 m yr�1 between 2015 and 2017.

Turning to the longer term evolution of JI (Fig. 5; time
series location shown in Fig. 1), fitting a linear trend to
the data suggests an annual acceleration since 2009 of
⇠ 218 m yr�1 at Jif, diminishing inland to ⇠ 128 m yr�2 at
J1, and ⇠ 102 m yr�2 at J2. Although this provides a simple
characterization of the longer-term evolution in ice speed, it
is clear from our time series that computing a linear trend
does not capture the full decadal-scale variability in ice ve-
locity. In particular, we note that much of the acceleration
occurred between 2011 and 2013 (Fig. 5b and c), and since
then there has been a notable absence of multi-annual ac-
celeration as earlier records suggest (Joughin et al., 2014).
Computing trends in ice velocity since 2012 near the glacier
terminus (Jif), for example, shows a modest decline in speed
of 321 m yr�2 over the 5-year period (Fig. 5b). The calv-
ing front position migration has been suggested as the trig-
ger to the stresses regimes variations and consequently the
main driver to the JI velocity fluctuations (Joughin et al.,
2008a, b, 2012, 2014; Bondzio et al., 2017). After a suc-
cessive and gradually increased rate of ice front retreat un-

Figure 6. Comparison between Jakobshavn Isbræ ice velocity and
calving front position anomalies at the Jif site, 0.8 km upstream of
the calving front, between 2009 and early 2017. Positive values cor-
respond to ice front retreat and speedup respectively. The red and
black lines represent the linear regression through the 2009–2011
and 2012–2017 periods, respectively, together with the correlation
coefficients (R2).

til 2012 (Fig. 5a), the JI grounding line is now located on a
higher bed location (Joughin et al., 2012; An et al., 2017).
This may be acting to stabilize the grounding line, and in
turn contribute to the glacier deceleration, although the main
cause remains to be determined and further investigations is
necessary. We used our observations of calving front position
to assess the correlation between ice speed and calving front
location, relative to their respective long-term means (Fig. 6).
Based on the linear regression (Fig. 6), our dataset indicates
correlation coefficients (R2) of 0.62 (2009–2011) and 0.79
(2012–2017), and velocity changes by 1100 and 1600 m yr�1

per kilometre of calving front retreat, respectively.
At Petermann Glacier we extracted two velocity time se-

ries at P1, located ⇠ 45 km downstream of the grounding
line and close to the calving front of the ice tongue; and
P2, ⇠ 10 km upstream of the grounding line. These locations
were chosen to examine any differences in velocity evolution
over the grounded and floating portions of the glacier. Our P1
time series starts in early 2015 because it is not covered by
the TerraSAR-X dataset (Fig. 7a). We observe that, in gen-
eral, ice at P1 flows ⇠ 400 m yr�1 faster than P2. Fitting a
linear trend to the longer P2 dataset indicates no significant
trend in ice velocity since 2011, although the precision of
this trend is hampered by the sparse data coverage during the
early part of this period. Continued monitoring by Sentinel-1
will improve our confidence in resolving any decadal-scale
variability. The improvement in temporal sampling provided
by Sentinel-1 at this site is clear (Fig. 7a) and allows us to re-
solve the seasonal cycle in velocity since 2015, and helps to
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Figure 7. Temporal evolution of ice velocity at the locations indi-
cated in Fig. 1 over (a) Petermann Glacier, (b) Nioghalvfjerdsfjor-
den and (c) Zachariæ Isstrøm. The data derived from TerraSAR-X
(11 days – Joughin et al., 2016) and Sentinel 1-a/b (6 to 12 days)
are represented as grey squares and coloured triangles, respectively.

delimit the duration of the speedup period. At P1, we detect
a seasonal change in speed of ⇠ 300 m yr�1, equivalent to a
25 % increase relative to its winter velocity (Table 1). De-
spite the high seasonal change, the relation between P1’s an-
nual mean and winter velocity is 0 %, likely due to the short
speedup period (25 days – Table 1). This provides further ev-
idence of a seasonal velocity cycle which has been observed
at both Petermann and other glaciers in this region, and is un-
derstood to be predominantly controlled by changes in basal
traction, and induced by penetration of surface melt water to
the bed (Nick et al., 2012; Moon et al., 2014, 2015). This is
further supported by our analysis of changes in calving front
position (Fig. S1a), which shows that, in contrast to JI, sea-
sonal acceleration does not coincide with ice front retreat.
Specifically, we found that during the summers of 2015 and
2016, the calving front of PG advanced ⇠ 1 km during the
speedup (Fig. S1a). These observations are consistent with
previous modelling results, which did not find evidence of
acceleration driven by large calving events in 2010 and 2012
(Nick et al., 2012; Münchow et al., 2014), suggesting that
the ice shelf exerts low backstress on the glacier. More re-
cently, we note that since September 2016 PG has developed
a new crack near the ice front, which has continued to grow
in length up to the present day.

At 79-G, we again extracted velocity time series over the
ice shelf (F1, ⇠ 20 km downstream of the grounding line)
and at the grounding line (F2). In contrast to PG and due to
the steeper surface gradient upstream of the grounding line

(Fig. 2c), ice flow is slower on the floating tongue than at
the grounding line location (Fig. 7b). We observe a seasonal
speedup of ⇠ 10 % at F2 during summer 2016 (Table 1), al-
though evidence of the same acceleration on the ice shelf is
not clear given the magnitude of the signal and the precision
of our data. Fitting a linear trend to our data returns an annual
change in velocity of 15 m yr�2 since 2011, although assess-
ing the significance of this result is difficult given the lim-
ited data sampling early in the period. Turning to Zachariæ
Isstrøm, we extract time series at two locations slightly up-
stream of the grounding line in order to observe different
temporal responses between them (Fig. 7c). At this glacier,
no observations are available within the TSX dataset and so
our time series is limited to the period December 2015 to
January 2017. Nonetheless, like its neighbour ZI, we again
find evidence of a summer speedup during 2016, equating to
around 400 m yr�1, or 18 % (Table 1). Given the short period
of observations we do not attempt to derive a longer-term
trend in ice velocity at this site.

We compared our estimates to the results of previous stud-
ies to assess the level of stability relative to past work. At
Petermann, we have observed increases in ice velocity of
⇠ 10 % at P1 and ⇠ 8 % at P2 between the 2015/2016 and
2016/2017 winters, matching in percentage with the obser-
vations made by Münchow et al. (2016) between 2013/14
and 2015/16. Furthermore, the Sentinel-1a/b dataset indi-
cates a multi-annual acceleration of ⇠ 32 m yr�2 between
2015–2017 at P1, which is similar to the ⇠ 30 m yr�2 re-
ported by Nick et al. (2012) based upon observational mea-
surements over a longer period, from 2006 to 2010. The
same authors also show seasonal variations of ⇠ 20–25 %
over the same location, similar to the ⇠ 22 % shown by the
Sentinel-1 dataset. At 79-G, Mouginot et al. (2015) showed
a speedup of 8 % from 1976 to 2014 with the main changes
occurring after 2006, similar to our estimates which also sug-
gest a slight multi-year trend of ⇠ 16 m yr�2 (⇠ 8 %) for F2
between 2015 and 2017. Zachariæ Isstrøm shows seasonal
variation up to 15 % between 2015 and 2017 in the Sentinel-
1 dataset, agreeing with seasonal variation up to 20 % esti-
mated by Mouginot et al. (2017) using Landsat-8 optical im-
ages during 2014–2016. Overall, our Sentinel 1 results shows
a close agreement with previous studies using different tech-
niques and demonstrated to be a powerful tool for monitoring
the cryosphere.

5 Conclusions

We have presented a new, high temporal resolution record
of ice velocity evolution for four important, high discharge
marine-based glaciers in Greenland, updated to the present
day (October 2014 to February 2017). Using SAR data ac-
quired by the Sentinel-1a/b constellation, with its 250 km
wide swath and frequent revisit time, we have produced 187
velocity maps, which, in combination with 479 maps from
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the TerraSAR-X satellite, provide detailed spatial and tem-
poral coverage of these key sites. Importantly, the systematic
acquisition cycle of Sentinel-1a/b, which now provides av-
eraged measurements of all of these sites every 6 days and
allows for detailed monitoring of both seasonal and multi-
annual velocity fluctuations, and allow us to demonstrate the
speedup persistence in a higher resolution. The short revisit
time of 6 days, made possible since the launch of Sentinel-
1b in April 2016, particularly benefits the retrieval of veloc-
ity signals across fast-flowing regions close to the ice front,
due to a reduction in the decorrelation occurring between im-
age pairs. Using this new dataset, we confirm evidence of
intra-annual variations in ice velocity and clear seasonal cy-
cles occurring over the past few years at JI, PG, 79G, and
ZI. Of the sites studied here, JI exhibits the largest veloc-
ity variations, as demonstrated in other studies, which we
show are strongly correlated with the evolution of the po-
sition of its calving front. However, it is notable that in the
last 5 years the longer-term ice speed has started to decrease
(321 m yr�2). This study demonstrates the utility of a new era
of operational SAR imaging satellites for building systematic
records of ice sheet outlet glacier velocity and its good agree-
ment with TerraSAR-X products, which indicates Sentinel-1
can confidently extend the times series that began with other
sensors. Looking to the future, these datasets are key for the
timely identification of emerging signals of dynamic imbal-
ance, and for understanding the processes driving ice velocity
change.
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Supplementary Material 

Figure S1: Ice front location extracted from Sentinel-1 images on (b) Petermann Glacier and (b) 

Nioghalvfjerdsfjorden. 
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Figure S2: Number of images used separated per month. 

 

 

 

Table S1: List of Sentinel-1 images used. 

 

Glacier Scene 1   Scene 2 
Satellite day month year   Satellite day month year 

JI 

S1A 4 Nov 14  S1A 16 Nov 14 
S1A 16 Nov 14  S1A 28 Nov 14 
S1A 28 Nov 14  S1A 10 Dec 14 
S1A 10 Dec 14  S1A 22 Dec 14 
S1A 22 Dec 14  S1A 3 Jan 15 
S1A 3 Jan 15  S1A 15 Jan 15 
S1A 27 Jan 15  S1A 8 Feb 15 
S1A 8 Feb 15  S1A 20 Feb 15 
S1A 20 Feb 15  S1A 4 Mar 15 
S1A 4 Mar 15  S1A 16 Mar 15 
S1A 16 Mar 15  S1A 28 Mar 15 
S1A 28 Mar 15  S1A 9 Apr 15 
S1A 9 Apr 15  S1A 21 Apr 15 
S1A 21 Apr 15  S1A 3 May 15 
S1A 3 May 15  S1A 15 May 15 
S1A 27 May 15  S1A 8 Jun 15 
S1A 8 Jun 15  S1A 26 Jul 15 
S1A 26 Jul 15  S1A 7 Aug 15 
S1A 7 Aug 15  S1A 19 Aug 15 
S1A 19 Aug 15  S1A 31 Aug 15 
S1A 31 Aug 15  S1A 12 Sep 15 
S1A 12 Sep 15  S1A 24 Sep 15 
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S1A 11 Nov 15  S1A 23 Nov 15 
S1A 5 Dec 15  S1A 17 Dec 15 
S1A 17 Dec 15  S1A 29 Dec 15 
S1A 29 Dec 15  S1A 10 Jan 16 
S1A 10 Jan 16  S1A 22 Jan 16 
S1A 22 Jan 16  S1A 3 Feb 16 
S1A 3 Feb 16  S1A 27 Feb 16 
S1A 15 Feb 16  S1A 27 Feb 16 
S1A 27 Feb 16  S1A 10 Mar 16 
S1A 10 Mar 16  S1A 3 Apr 16 
S1A 3 Apr 16  S1A 15 Apr 16 
S1A 15 Apr 16  S1A 27 Apr 16 
S1A 27 Apr 16  S1A 9 May 16 
S1A 27 Apr 16  S1A 21 May 16 
S1A 9 May 16  S1A 21 May 16 
S1A 21 May 16  S1A 2 Jun 16 
S1A 2 Jun 16  S1A 14 Jun 16 
S1A 14 Jun 16  S1A 8 Jul 16 
S1A 14 Jun 16  S1A 1 Aug 16 
S1A 20 Jul 16  S1A 1 Aug 16 
S1A 1 Aug 16  S1A 13 Aug 16 
S1A 13 Aug 16  S1A 25 Aug 16 
S1A 25 Aug 16  S1A 6 Sep 16 
S1A 6 Sep 16  S1A 18 Sep 16 
S1A 18 Sep 16  S1A 30 Sep 16 
S1A 30 Sep 16  S1B 6 Oct 16 
S1B 6 Oct 16  S1A 12 Oct 16 
S1A 12 Oct 16  S1B 18 Oct 16 
S1B 18 Oct 16  S1A 24 Oct 16 
S1A 12 Oct 16  S1B 30 Oct 16 
S1A 24 Oct 16  S1B 30 Oct 16 
S1B 30 Oct 16  S1A 5 Nov 16 
S1B 30 Oct 16  S1B 23 Nov 16 
S1A 5 Nov 16  S1B 11 Nov 16 
S1B 11 Nov 16  S1A 17 Nov 16 
S1A 17 Nov 16  S1B 23 Nov 16 
S1B 23 Nov 16  S1A 29 Nov 16 
S1A 29 Nov 16  S1B 5 Dec 16 
S1B 5 Dec 16  S1A 11 Dec 16 
S1A 11 Dec 16  S1B 17 Dec 16 
S1B 17 Dec 16  S1A 23 Dec 16 
S1B 10 Jan 17  S1A 16 Jan 17 
S1A 16 Jan 17  S1B 22 Jan 17 
S1B 22 Jan 17  S1A 28 Jan 17 
S1A 28 Jan 17  S1B 3 Feb 17 
S1B 3 Feb 17  S1A 9 Feb 17 
S1A 9 Feb 17  S1B 15 Feb 17 
S1B 15 Feb 17  S1A 21 Feb 17 

                    

PG 

S1A 23 Jan 15  S1A 4 Feb 15 
S1A 4 Feb 15  S1A 16 Feb 15 
S1A 23 May 15  S1A 4 Jun 15 
S1A 4 Jun 15  S1A 16 Jun 15 
S1A 16 Jun 15  S1A 28 Jun 15 
S1A 28 Jun 15  S1A 10 Jul 15 
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S1A 10 Jul 15  S1A 15 Aug 15 
S1A 15 Aug 15  S1A 27 Aug 15 
S1A 27 Aug 15  S1A 8 Sep 15 
S1A 8 Sep 15  S1A 20 Sep 15 
S1A 20 Sep 15  S1A 2 Oct 15 
S1A 2 Oct 15  S1A 14 Oct 15 
S1A 14 Oct 15  S1A 26 Oct 15 
S1A 26 Oct 15  S1A 7 Nov 15 
S1A 1 Dec 15  S1A 13 Dec 15 
S1A 13 Dec 15  S1A 6 Jan 16 
S1A 6 Jan 16  S1A 18 Jan 16 
S1A 23 Feb 16  S1A 6 Mar 16 
S1A 6 Mar 16  S1A 18 Mar 16 
S1A 18 Mar 16  S1A 30 Mar 16 
S1A 30 Mar 16  S1A 23 Apr 16 
S1A 23 Apr 16  S1A 5 May 16 
S1A 29 May 16  S1A 10 Jun 16 
S1A 10 Jun 16  S1A 4 Jul 16 
S1A 4 Jul 16  S1A 28 Jul 16 
S1A 28 Jul 16  S1A 9 Aug 16 
S1A 9 Aug 16  S1A 2 Sep 16 
S1A 2 Sep 16  S1A 14 Sep 16 
S1A 14 Sep 16  S1A 26 Sep 16 
S1A 26 Sep 16  S1B 2 Oct 16 
S1B 2 Oct 16  S1A 8 Oct 16 
S1A 8 Oct 16  S1B 14 Oct 16 
S1B 14 Oct 16  S1B 7 Nov 16 
S1B 7 Nov 16  S1A 13 Nov 16 
S1A 13 Nov 16  S1B 1 Dec 16 
S1B 1 Dec 16  S1A 7 Dec 16 
S1A 7 Dec 16  S1B 13 Dec 16 
S1B 13 Dec 16  S1A 19 Dec 16 
S1A 19 Dec 16  S1B 25 Dec 16 
S1B 25 Dec 16  S1A 31 Dec 16 
S1A 31 Dec 16  S1B 6 Jan 17 
S1B 6 Jan 17  S1A 12 Jan 17 
S1A 12 Jan 17  S1B 30 Jan 17 
S1B 30 Jan 17  S1A 5 Feb 17 
S1A 5 Feb 17  S1B 11 Feb 17 
S1B 11 Feb 17  S1A 17 Feb 17 

                    

79-G and 
ZI 

S1A 6 Aug 15  S1A 30 Aug 15 
S1A 30 Aug 15  S1A 11 Sep 15 
S1A 11 Sep 15  S1A 23 Sep 15 
S1A 23 Sep 15  S1A 5 Oct 15 
S1A 5 Oct 15  S1A 10 Nov 15 
S1A 4 Dec 15  S1A 16 Dec 15 
S1A 16 Dec 15  S1A 28 Dec 15 
S1A 28 Dec 15  S1A 9 Jan 16 
S1A 9 Jan 16  S1A 21 Jan 16 
S1A 21 Jan 16  S1A 2 Feb 16 
S1A 2 Feb 16  S1A 26 Feb 16 
S1A 26 Feb 16  S1A 9 Mar 16 
S1A 9 Mar 16  S1A 2 Apr 16 
S1A 2 Apr 16  S1A 14 Apr 16 
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S1A 14 Apr 16  S1A 8 May 16 
S1A 8 May 16  S1A 20 May 16 
S1A 20 May 16  S1A 1 Jun 16 
S1A 1 Jun 16  S1A 13 Jun 16 
S1A 13 Jun 16  S1A 19 Jul 16 
S1A 19 Jul 16  S1A 31 Jul 16 
S1A 31 Jul 16  S1A 12 Aug 16 
S1A 12 Aug 16  S1A 24 Aug 16 
S1A 24 Aug 16  S1A 5 Sep 16 
S1A 5 Sep 16  S1B 5 Oct 16 
S1B 5 Oct 16  S1A 11 Oct 16 
S1A 11 Oct 16  S1A 23 Oct 16 
S1A 23 Oct 16  S1B 4 Dec 16 
S1B 4 Dec 16  S1B 16 Dec 16 
S1B 16 Dec 16  S1B 28 Dec 16 
S1B 28 Dec 16  S1A 3 Jan 17 
S1A 3 Jan 17  S1B 9 Jan 17 
S1B 9 Jan 17  S1B 21 Jan 17 
S1B 21 Jan 17  S1B 2 Feb 17 
S1B 2 Feb 17  S1A 8 Feb 17 
S1A 8 Feb 17  S1B 14 Feb 17 

 

 

 

• Table S2: Velocity magnitude differences of JI using surface elevation rate of change information derived 

from IceBridge and Pre-Icebridge data acquired from the NASA Airborne Topographic Mapper (ATM) 

[Studinger, 2014] for terrain correction, and velocity magnitude without using thinning correction. 
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Abstract: Land-terminating sectors of the Greenland ice sheet flow faster in summer after surface
meltwater reaches the subglacial drainage system. Speedup occurs when the subglacial drainage
system becomes saturated, leading to a reduction in the effective pressure which promotes sliding of
the overlying ice. Here, we use observations acquired by the Sentinel-1a and b synthetic aperture radar
to track changes in the speed of land-terminating glaciers across a 14,000 km2 sector of west-central
Greenland on a weekly basis in 2016 and 2017. The fine spatial and temporal sampling of the
satellite data allows us to map the speed of summer and winter across the entire sector and to
resolve the weekly evolution of ice flow across the downstream portions of five glaciers. Near to
the ice sheet margin (at 650 m.a.s.l.), glacier speedup begins around day 130, persisting for around
90 days, and then peaks around day 150. At four of the five glaciers included in our survey the peak
speedup is similar in both years, in Russell Glacier there is marked interannual variability of 32%
between 2016 and 2017. We present, for the first time, seasonal and altitudinal variation in speedup
persistence. Our study demonstrates the value of Sentinel-1’s systematic and frequent acquisition
plan for studying seasonal changes in ice sheet flow.

Keywords: Sentinel-1; ice velocity; land-terminating glacier; Synthetic Aperture Radar; Greenland

1. Introduction

In recent decades the Greenland Ice Sheet has lost ice at an increasing rate, rising by 89% between
2011–2014 relative to 1992–2011 [1,2]. The majority (60%) of this ice loss has been due to surface melting
and runoff [3,4], which have risen as summers have warmed [5,6]. Between 2011 and 2014, 41% of
all ice loss from Greenland (269 ± 51 GT yr-1; [2]) was from the south-western sector alone, where
changes in the degree of surface melting have been pronounced [7].

In addition to the direct impact on runoff, increased surface melting has also been linked to
increases in the speed of ice flow through basal lubrication [8–10]. Rising air temperatures lead to
increased surface melting, which can in turn lead to an increase in the amount of water feeding into the
subglacial drainage system [10] after supraglacial lakes drain or moulins open [9,10]. As a consequence
of this excess meltwater, subglacial water pressure rises, which reduces the effective pressure between
the ice-bedrock interface and leads to enhanced basal sliding [11–13]. During the melting season,
frictional heating caused by water flow enlarges the conduits of the subglacial hydrologic system,
allowing a greater volume of water to be accommodated [14,15]. As a consequence, from mid-season
to the end of the melt season, the drainage system transmission capacity exceeds the meltwater input,
draining water efficiently through low-pressure channels [15,16].

Seasonal changes in ice flow have been observed in both fast-moving and slow-moving
glaciers [17–23]. In south-west Greenland, the summertime speedup of land-terminating glaciers

Remote Sens. 2018, 10, 1878; doi:10.3390/rs10121878 www.mdpi.com/journal/remotesensing
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is widespread and is widely interpreted as being driven by seasonal changes in the degree of
basal lubrication [8,20,24]. At low elevations (under 1000 m), seasonal changes in the movement
of Greenland’s glaciers are thought to be dominated by short-term events, typically lasting between
1 day to 1 week during the summer [25,26], with ice speeds increasing by 100% to 150% relative to
winter [20,27]. Resolving such changes has been a challenge, because observations of ice sheet flow
have historically been made using episodically acquired satellite imagery [7,11,12] and GPS sensors
installed at point locations on the ice sheet [14,19,25]. Systematically monitoring seasonal variations in
ice flow is therefore an important task as it will improve our understanding of the present and likely
future response of the Greenland Ice Sheet to a changing climate.

Since the 1970s, the speed of glacier flow in the polar regions has been measured with repeat
optical satellite imagery [28]. However, despite their ongoing use [29–32], optical images are daylight
dependent which limits their utility outside of the summer season. Unfortunately, satellite imagery
may also be obscured by clouds. Synthetic aperture radar (SAR) images do not suffer from either
limitation and have also been extensively used to measure ice speed since the launch of the European
Remote Sensing Satellite 1 (ERS-1) in 1991 [33–37]. A persistent obstacle to the use of both optical and
SAR satellite imagery for tracking ice motion has been the episodic nature of acquisitions. Since the
launch of the Sentinel-1a (S1a) and Sentinel-1b (S1b) SAR constellation in April 2014 and April 2016,
respectively, it has become possible to systematically measure changes in ice speed every 6 days [38–40].
Here, we use a sequence of Sentinel-1a and 1b SAR images to track seasonal changes in ice sheet flow
across a land-terminating sector of the Greenland Ice Sheet between 2014 and 2017.

2. Study Area

Our study focusses on a 14,000 km2 sector of central-west Greenland between 66.6◦N–67.4◦N
(Figure 1). The study area includes five glaciers; Isorlersuup Glacier (IG), Ørkendalen Glacier (ØG),
Russell Glacier (RG) and Isunnguata Sermia (IS), and an unnamed outlet glacier which we refer to
as Glacier 1 (G1). The area has received a relatively high amount attention due to the propensity of
its glaciers to exhibit seasonal speedup. In-situ GPS observations have shown that seasonal velocity
variations are strongly linked to changes in surface melting [14,19,25,26,41–43]. Satellite measurements
have provided a large-scale perspective of changes in ice flow [18,20,21,27] and in the extent of
supraglacial lakes [44–47]. Together, these measurements, in conjunction with numerical ice flow
modelling have led to an improved understanding of the link between regional hydrology and changes
in ice flow, for example the role of supra-glacial lake drainage [48,49].Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 13 

 

 

Figure 1. Average ice velocity in (a) summer (May–Jul), (b) winter (Aug–Apr), and (c) the difference 

between summer and winter, derived from Sentinel-1 (S1) synthetic aperture radar (SAR) imagery. 

The uncertainties in the maps associated with the summer, winter, and difference between the 

summer and winter ice speeds are also shown (d–f, respectively). Velocities and the uncertainties are 

overlaid on a SAR backscatter intensity image. Also shown are elevation contours (thin grey lines), 

profiles along (solid black lines) and across (dotted black lines) the centre of five glaciers. The location 

of the KAN_L weather station is also mapped (red dot, a). 

3. Data and Methods 

Previous studies have demonstrated the capability of Sentinel-1 (S1) for mapping ice sheet flow 

[38–40]. Here, we use single-look complex (SLC) synthetic aperture radar (SAR) images acquired in 
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Figure 1. Average ice velocity in (a) summer (May–Jul), (b) winter (Aug–Apr), and (c) the difference
between summer and winter, derived from Sentinel-1 (S1) synthetic aperture radar (SAR) imagery.
The uncertainties in the maps associated with the summer, winter, and difference between the summer
and winter ice speeds are also shown (d–f, respectively). Velocities and the uncertainties are overlaid
on a SAR backscatter intensity image. Also shown are elevation contours (thin grey lines), profiles
along (solid black lines) and across (dotted black lines) the centre of five glaciers. The location of the
KAN_L weather station is also mapped (red dot, a).

3. Data and Methods

Previous studies have demonstrated the capability of Sentinel-1 (S1) for mapping ice sheet
flow [38–40]. Here, we use single-look complex (SLC) synthetic aperture radar (SAR) images acquired
in the interferometric wide (IW) mode to investigate the detailed patterns of seasonal glacier velocity
change. The images used were acquired between January 2016 and December 2017, with a revisit time
of 6 or 12 days due to the repeat cycle of 12 days and the 180 degree orbital phase difference between
the two satellites. We used the GAMMA-SAR software [50] to generate 96 individual ice velocity maps
from different pairs of Sentinel-1a (S1a) and Sentinel-1b (S1b) SAR images.

Ice velocities were computed using a feature tracking technique applied to SAR backscatter
intensity images [51], assuming that the ice flow occurs parallel to the surface and at a constant rate
during the image acquisition period. This is a well-established technique, measuring the displacement
of similar SAR image features (e.g., crevasses and speckle patterns) based on a cross correlation
algorithm applied to image segments (windows) in two co-registered SAR images [40,51–53].
The window and step size used was based on sensitivity testing of a range of values, where a trade-off
between the spatial resolution, spatial coverage and measurement accuracy of the output result were
considered. For an individual pair, the end results depend on the change in snow surface properties
between the processed images, the correlation of the speckle pattern, and the scale of the local features
observed. For the present study, ice motion was estimated using window sizes of 350 × 75 pixels
in ground range and azimuth, respectively, corresponding to dimensions of approximately 1.7 and
1.5 km. We used the Greenland Ice Mapping Project (GIMP) digital elevation model (DEM) [54] to
geocode the displacements, and the final velocity measurements were posted on to a regular 100 m
grid. The post-processing to remove poor quality data followed the methodology of Lemos et al. [40].
We applied a low-pass filter twice, using a kernel of 1 km by 1 km, rejecting values where the
deviation between the unfiltered and filtered speed magnitude exceeded 30%. Finally, we apply a
labelling algorithm based on the image histogram, identifying regions with similar values and rejecting
non-coherent velocity magnitudes and isolated measurements with an area smaller than 1/1000th of
the processed image size.

Errors in ice velocity measurements derived from repeat satellite imagery can be caused by
inaccurate image co-registration, mis-modelled terrain correction [38,55] and atmospheric interference,
including changes in ionospheric properties and in tropospheric water vapour [56]. To estimate
velocity errors, we scale each individual velocity map by the time-averaged signal to noise ratio (SNR)
of the cross-correlation function [40]. The SNR is determined as the ratio between the cross-correlation
function peak (Cp) and the average correlation level (Cl) on the tracking window used to estimate the
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velocities [57]. Typically, the estimated velocity error is ~10% across the majority of the study area,
rising to 20% in regions lacking stable features (Figure 1d–f).

4. Results and Discussion

First, we generated average summer and winter regional velocity maps (Figure 1a,b, respectively)
in each calendar year using images that fell within the average periods of the start and end days of
speedup in the sector (Table 1). The velocity coverage is better in winter than summer, especially over
the slow-moving inland ice, due to the absence of melting. During winter, the scattering properties
of the snowpack are relatively stable and this allows radar speckle to be tracked over the otherwise
featureless terrain [51,53]. In contrast, the retrieval of summer velocities is limited to within ~30 km of
the ice sheet margin where there is a sufficient amount of persistent physical features to be able to track
motion. Nevertheless, because of the relatively large number of individual velocity maps, w were able
to resolve the seasonal pattern of speedup with unprecedented detail and show, for example, that
speedup is clearly concentrated towards the centre of each glacier (Figure 1c).

Table 1. Seasonal velocity, speedup, speedup persistence, ice thickness and surface slope of the five
glaciers averaged in two elevations bands (P1, between 650 and 750 m.a.s.l.; P2, over 820 m.a.s.l.).

Location
Summer

Speed
(m yr−1)

Winter
Speed

(m yr−1)

Speedup
Relative to
Winter (%)

Summer
Velocity

Peak (m yr−1)

Annual Mean
Velocity
(m yr−1)

Speedup
Start Day

Speedup
End Day

Speedup
Persistence

(days)

Mean
Thickness

(m)

Mean
Slope

(%)

Glacier 1
P1 187 ± 13 125 ± 9 49% 214 ± 13 133 ± 10 136 196 60 470 2.2%
P2 154 ± 18 109 ± 10 41% 176 ± 18 116 ± 11 153 216 63 650 2.0%

Isorlersuup P1 220 ± 11 156 ± 8 41% 257 ± 11 166 ± 9 134 209 75 516 2.2%
P2 148 ± 17 119 ± 10 24% 169 ± 17 124 ± 11 143 212 69 612 1.6%

Ørkendalen
P1 246 ± 16 203 ± 22 21% 259 ± 16 212 ± 22 113 198 85 390 2.8%
P2 163 ± 17 111 ± 9 47% 205 ± 17 118 ± 11 155 212 57 623 1.5%

Russell G.
P1 121 ± 13 87 ± 5 38% 139 ± 13 93 ± 7 137 211 74 559 2.2%
P2 156 ± 18 113 ± 10 38% 177 ± 18 118 ± 11 160 215 55 692 1.9%

Isunnguata S. P1 103 ± 9 93 ± 6 11% 112 ± 9 95 ± 7 136 201 64 615 2.1%
P2 121 ± 21 79 ± 5 53% 145 ± 21 87 ± 7 178 250 71 802 1.5%

Sector
P1 175 ± 28 132 ± 26 32% 196 ± 28 140 ± 28 131 203 72 510 2.3%
P2 148 ± 41 106 ± 20 40% 174 ± 41 113 ± 23 158 221 63 676 1.7%

The maximum recorded winter speed ranges from 121 ± 5 m yr−1 at IS to 296 ± 22 m yr−1 at ØG,
and the maximum recorded summer speed ranges from 196 ± 18 m yr−1 at RG to 359 ± 18 m yr−1

at ØG. In general, the degree of speedup at each glacier is quite variable, in agreement with the
findings of a previous survey based on TerraSAR-X measurements acquired in 2009 and 2010 in the
same region [27]. Locally, we observe numerous regions where the seasonal speedup is greater than
100 m yr −1, for instance reaching 150 m yr−1 (~75%) near to the glacier fronts of IG and RG (Figure 1c).
Our results agree well with previous studies in the same region. For example, seasonal velocity changes
of 50–100% between 2004 and 2007 have been reported [18], and Sundal et al. [20] reported speedup
in the range of 50–125% between 1993 and 1998. Not all glaciers, however, show such a large degree
of speedup. The neighbouring glacier ØG, for example, exhibits a much lower seasonal speedup of
~30 m yr−1 (21%), and maintains relatively high rates of ice flow even during winter months near the
ice margin.

We examined the geometrical configurations of each glacier to investigate the possible reasons
for the heterogeneous speedup (Figure 2) using surface and bed elevations from GIMP-DEM [54]
and IceBridge BedMachine Greenland, Version 3 [58], respectively. Although the surface slopes of
the glaciers are relatively uniform (2.8% at ØG and 2% elsewhere), their average thicknesses are
considerably more variable (from 390 m at ØG to 802 m at IS). The five glaciers also present different
flow regimes and, in contrast to marine-terminating glaciers [34,35], reach their peak speeds at distances
between 8 and 18 km inland. At G1, IG and ØG, this location is approximately 650 m.a.s.l. The relative
speedup is non-uniform and excluding IS where the velocity profile is incomplete, ranges from 21 to
49% (Table 1). Despite being the fastest glacier, ØG had the lowest seasonal variation of all the studied
glaciers (Table 1), which suggests that its flow was predominantly driven either by gravity with a low
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sensitivity to transient increases in basal lubrication, or it had been influenced by non-uniform basal
motion due to friction at the bed-ice interface [59,60].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 13 
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Figure 2. Mean summer and winter ice velocity (a–e) and geometry (f–j) along central profiles of five
glaciers in west-central Greenland (see Figure 1 for glacier locations) in 2016 and 2017. Surface and bed
elevations are from the Greenland Ice Mapping Project digital elevation model (GIMP-DEM) [54] and
IceBridge BedMachine Greenland, Version 3 [58], respectively.

Our velocity maps have sufficient spatial coverage to provide continuous profiles of summer and
winter ice speed across the central flow unit of each glacier (Figure 3). Speedup is primarily confined to
the central, fast flowing parts of each glacier and at ~600 m.a.s.l., peaks in the range of 22% (ØG) to 66%
(RG). At this altitude all of the glaciers sit in distinct bedrock depressions where the ice is far thicker
than in the slower flowing neighbouring regions. In general, speedup is largely confined to fast-flowing
glaciers or their tributaries (e.g., at 25–30 km and 58–60 km along the transect). Local variations in
the input and routing of surface melt water may be responsible for this heterogeneity in the degree
of seasonal ice speedup. With the exception of RG, the regional glaciers do not show inter-annual
variations in the degree of summer speedup. At RG, however, summer rates of ice flow were 32% faster
in 2016 than in 2017. This indicates that changes in a single glacier system are not always indicative of
wider patterns, highlighting the value of large-scale systematic satellite monitoring. The only other
place of significant inter-annual difference in seasonal speedup is the slow flowing sector between RG
and IS. Here, however, ice flowed faster in 2017 than in 2016.

A unique benefit of the S1 constellation is its systematic and high temporal sampling, which
supports continuous, multi-year records of ice motion. For each of the glaciers in our study region,
we explored this novel capability by charting their speed every 6 days across two full seasonal
cycles (Figure 4). We then analysed the velocity time-series within two distinct elevation bands:
650–750 m.a.s.l. (P1) and above 820 m.a.s.l. (P2) to investigate differences in their seasonal flow at
high and low altitudes (Table 1). There is clear heterogeneity in the seasonal flow of the five principal
glaciers in this sector of the ice sheet (Figure 4). G1, IG and RG exhibited coherent speedup periods
during summer time at both altitudes. ØG showed a clear seasonal cycle at high elevations, but at
lower elevations the seasonality was much less pronounced and is characterized by a longer duration
speedup over the winter months, and at IS there was no apparent summer speedup at either location.
However, the velocity data in these regions is generally of poorer quality than elsewhere due to the
absence of clear persistent features in the SAR imagery, limiting our ability to draw firm conclusions
about seasonal changes in ice flow in these glaciers. At the three glaciers where a coherent seasonal
cycle is resolved, in all cases our data show that lower elevations (P1) speed up first, followed by the
upper elevations (P2).
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Figure 3. Ice velocity (Top), with uncertainty ranges represented by the light shading, and geometry
(Bottom) along an across-flow profile of the study area (see Figure 1 for location) in 2016 to 2017.
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Figure 4. Seasonal changes in ice flow at two different elevations bands on each glacier. Actual
measurements are represented by the dots, spline fits as continuous lines, and speedup periods the
intervals between the consecutive coloured dotted lines.

We analysed the velocity data to determine the persistence of speedup, and the start and end
day of the summer season across the sector. To do this, we first applied a spline fit to each velocity
time-series and identified local maxima using the precompiled MATLAB function ‘findpeaks’. We then
identified the peak speedup, rejecting locations under a prominent peak threshold of 25 m yr−1.
After testing thresholds of 25, 50 and 70 m yr−1 we found that this threshold provided a reasonable
balance between spatial coverage and consistent speedup persistence, even in slow-moving areas.
We also found the number of prominent peaks per pixel which are on average between 1 and 3, as well
as consistent speedup persistence results. The persistence of the summer season is defined by the
duration of the width of the peak, shown as the time interval between the dotted lines in Figure 4.
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For time-series which exhibit multiple and consecutive prominent peaks, we calculate the speedup
persistence as the sum of each peak width. However, when this occurs, we calculate the start and
end dates of the summer season using the first and last prominent peaks, respectively (Figure 5b,c).
We applied the method to spatially-averaged time-series within discrete elevation bands (P1 and P2,
Figure 4) and also at individual locations to resolve the spatial pattern (Figure 5).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 13 
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Figure 5. Persistence of ice speedup (a), the start (b) and end date (c) of the summer season.

Across all glaciers, the persistence of seasonal speedup ranges from 72 to 63 days at P1 and P2,
respectively (Table 1). The persistence of speedup is shorter at higher elevations on all glaciers except
G1. At RG, our estimated persistence of 55 days at P2 is lower but similar to the 66 day estimate made
by Palmer et al. [21] for the period of 2004–2007 at the same location. For the first time we are able
to map spatial variations in the pattern of summer speedup persistence (Figure 5). The persistence
of summer speedup shows clear altitudinal variation at all glaciers, ranging from 60 to 90 days and
from 50 to 70 days, respectively, at P1 and P2. At IG, speedup generally has a duration of around
75 days, but persists for 80 days at isolated locations in the fastest flowing section of the glaciers
(around 700 m.a.s.l.). In general, at lower altitudes (<500 m.a.s.l.), speedup persists for a significantly
shorter period (~40 days). Lower regions are likely to have relatively high surface melting, potentially
supplying more water to the subglacial drainage system, allowing channels to develop sooner and
thereby shortening the speedup period [15,16]. We estimated the start and end dates of the summer
season using the date of peak speedup and the persistence, assuming the period is symmetrical. Near
to the ice sheet margin (P1), summertime speedup begins around day 130 and lasts for around 90 days
(Table 1 and Figure 5). The summer duration affects a wider section of the ice sheet up to 25 km inland,
however the onset date is delayed by approximately 25 days on average at higher elevations (P2).

To investigate the relationship between seasonal velocity changes and environmental forcing
in more detail, we compared the regional variation to a local estimate of surface melting. For this
comparison, we computed the mean velocity of G1, IG and RG in 2017, when a continuous 6-day
sampling was possible (Figure 6). ØG and IS were excluded due to their unusual geometry (high slope)
and relatively poor tracking coverage, respectively. We then computed positive degree days (PDDs)
as a measure of the surface melting (Figure 6) using air temperatures recorded at the nearby KAN_L
(670 m.a.s.l., Figure 1a) automatic weather station and distributed by the Programme for Monitoring
of the Greenland Ice Sheet (PROMICE, https://www.promice.dk/WeatherStations.html). PDD’s were
integrated over six day periods to match the sampling of the satellite velocity measurements.
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Figure 6. Averaged speed of three glaciers (G1, IG, and RG) with similar geometry and data sampling
at two elevations bands during 2017. Also shown are daily temperature and positive degree days
(PDDs) recorded at the nearby KAN_L automatic weather station (670 m.a.s.l.) and distributed by the
Programme for Monitoring of the Greenland Ice Sheet.

The onset of speedup begins shortly after the first PDDs was recorded at KAN_L on day 125.
Onset began on day 130 at P1 and on day 140 at P2. The high speeds were sustained for ~90 days at P1
and ~80 days at P2. The seasonal speedup, likely caused by melt-induced acceleration [8,14,61], starts
in P1 shortly after the melt onset possibly reaches the bed (e.g., through moulins or crevasses), followed
by P2, located at higher elevation and then undergoing less melting [10,14,18,23]. Future investigations
using the SAR backscatter information will improve the characterization of the surface melt days.
After the maximum PDDs were reached on day 207, the ice speed at P1 and P2 began to slow down
rapidly at similar rates, returning to near winter levels by day 220. Two further speedup events then
occur around days 244 and 268 and these coincide with isolated short-lived melt events evident within
the PDD record. Later spikes in velocity, enhanced by short-term basal sliding, are likely to happen
due to excess amount of water input combined with the time required for the drainage system to
accommodate the extra melt-water, since the size of cavities adjusts progressively in time [14,16].

5. Conclusions

We have computed seasonal changes in the motion of five land-terminating glaciers in the
central-west sector of the Greenland Ice Sheet using Sentinel-1a and-1b synthetic aperture radar
imagery. The systematic acquisition schedule of Sentinel-1 provides a capacity to track ice motion
with significantly greater spatial and temporal sampling than previous satellite missions. In our study,
we were able to produce 96 unique ice velocity maps over a two-year period, which corresponds
to approximately four times the sampling frequency of previous studies [20,21,27]. The high data
volumes allow us to study spatial and temporal changes in ice flow across this sector of the Greenland
ice sheet. Despite being located in the same sector and being exposed to similar environmental
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conditions, the five glaciers we have surveyed show different patterns of speedup; peak summer
speedup for example ranges from 21% (Ørkendalen) to 49% (Glacier 1) relative to winter. Speedup is
clearly concentrated along the central portions of each glacier, with only isolated instances elsewhere.
For the first time we mapped spatial variations in the seasonal speedup persistence cycle. In this sector,
the start date of the speedup period ranges from day 113 to 178, and the end date ranges from day 196
to 250, leading to a persistence ranging from 55 to 85 days. Our study highlights the unique value of
the Sentinel-1 mission for tracking short term changes in ice motion.
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