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A man would do nothing if he waited until he could do 

it so well that no one would find fault with what he 

has done. 

CARDINAL NE", W. 



ABSTRACT 

Steady state and dynamic mathematical models of the fixed bed catalytic 

reactor have been developed for exothermic (or isothermal) reactions which may 

involve consecutive and parallel steps. At the steady state, it is shown that 

a one-dimensional model gives an adequate description of the system for most 

purposes, provided that the overall effective heat transfer coefficient between 

the fluid and coolant is suitably evaluated. 

The models, which are of the continuum type, take account of the hetero- 

geneous nature of the system by modifying the rates of reaction and heat gen- 

eration at each point in the bed to allow for the effects of transport processes 

on the performance of individual catalyst pellets. The models of the catalyst 

pellet have been formulated initially in a fully distributed form, taking 

account of transport resistances around and within the particles, and are then 

simplified by lumping the thermal resistance at the boundary between solid and 

fluid. These simplified models of the pellet are found to give excellent 

results over all controlling regimes for practical ranges of the system para- 

meters, and are capable of very rapid solution. 

The proposed dynamic model of the reactor is one-dimensional and has been 

used to examine the basic transient characteristics of the system. It is 

demonstrated that some unexpected difficulties may arise in attempting to 

control the reactor. In particular, very high peak temperatures may occur 

when the inlet temperature is reduced. These are specifically associated with 

the heterogeneous nature of the model. 

A method has been developed which is capable of determining the ranges of 

fluid conditions over which multiple steady states are possible for the catalyst 

pellet, and it is shown how this may be extended to enable local and global 

stability to be related under steady and transient operating conditions. Whereas 

previous work on non-uniqueness in reacting systems has been concerned either 

with single catalyst pellets, or with quasi-homogeneous reactors subject to 

axial diffusion effects, the present work enables, for the first timesreactor 

stability to be studied in terms of the behaviour of the catalyst pellets, 

Without reference to axial diffusion, which is likely to be unimportant in 

most practical systems. 
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CHAI'i'ER 

INTRODUCTION AND RESF, ARCH OBJECTIVES 

In recent years'an increasing amount of effort has been expended in 

attempting to simulate chemical processes. Simulation has been made 

possible by the wider availability of electronic computers and the work 

has been stimulated by the ever increasing cost of experimental work, 

which is time-consuming and often gives no real insight into the behaviour 

of the process being examined. This is particularly true of complex systems 

when strong interaction occurs between some of the physical or chemical 

phenomena. Such interaction makes optimisation of the process virtually 

impossible using experimental data only, and satisfactory control 

strategies must be developed largely by trial and error. 

Mathematical modelling, however, is relatively inexpensive and it is 

possible to perform many simulations in a relatively short time. Moreover, 

it is necessary to examine at least some of the underlying effects in the 

process, and this enables a greater understanding of the system to be 

developed. In general, the more complex the process, the more benefits are 

potentially available from a successful mathematical model. 

It is unlikely that many processes can be completely and accurately 

modelled without any experimental work being required. When even a simple 

mathematical model is available, however, it is possible to use calculations 

from the model to determine the best way of tackling the experimental work 

so that the maximum benefit can be obtained from the minimum amount of 

practical work. 

If a mathematical model of a process can be developed which is capable 

of solution in a very short time, then it may be possible to incorporate it 

into a control strategy designed to improve the profitability of the system, 

or into an optimisation procedure at the design stage. In general, the 

initial models of processes are unsuited to this type of use, since they 



are primarily designed to provide information about the way the system 

works, and to examine the dominant processes involved. Once this has been 

done, it may be possible to use the results to simplify the model to a stage 

where it can be solved rapidly enough to meet the requirements necessary 

for on line control or optimisation. Such model reduction has been 

attempted in a limited way, and only recently have the results begun to 

look encouraging. 
61 Since these reduced models are primarily designed to 

be put to practical use, it is essential that they are based on realistic 

and accurate mechanistic models of the process. The wider use of reduced 

models will, therefore, tend to increase the number of complex models which 

are necessary, rather than reduce the demand for them. 

In the past, chemical reaction engineering has caused considerable 

problems in both design and operation and has received a corresponding 

amount of attention in the development of mathematical modelling techniques. 

It is on heterogeneous systems in general, and the packed bed catalytic 

reactor in particular, that much of the attention has been focused. 

The packed tubular reactor is particularly useful for carrying out 

exothermic or endothermic catalytic reactions, and has been in widespread 

use for many years. The reactor normally consists of a number of small 

diameter tubes, the external surfaces of which are cooled or heated by a 

flowing or boiling liquid. In the case of endothermic reactions the heat 

is necessary to keep the reaction going at an acceptable rate, and hence 

to keep down the size of reactor required for a given production rate, 

whereas for exothermic reactions the heat removal is necessary either to 

minimise the production of unwanted by-products, or to prevent overheating, 

which may cause damage to the reactor or catalyst. This overheating is 

commonly referred to as "temperature runaway". 

One of the major problems with tubular reactors has been the difficulty 

of predicting the performance of the reactor from mechanistic models, since 



these are necessarily complex, and the system is very sensitive to changes 

in some of the parameters involved. In particular, the addition or removal 

of heat through the tube walls may set up severe thermal gradients in the 

radial direction, and since the chemical rate constants are normally 

highly non linear functions of temperature, their values may vary by an 

order of magnitude across the tube radius. This makes it very difficult 

to work in terms of radial mean values of the state variables, and initially 

at least, a two-dimensional model of the reactor is necessary. The hetero- 

geneous nature of the system may also cause difficulties, since there are 

resistances to heat and mass transfer, both around and within the catalyst 

pellets and this will generally preclude the use of a quasi-homogeneous type 

of model for the reactor. 

Inclusion of the performance of catalyst pellets into a model of the 

reactor also introduces problems of stability, since, under some conditions, 

the pellets may be capable of existing in more than one steady state. In 

these circumstances, a steady state model is insufficient to predict the 

performance of the reactor, since the state of each catalyst pellet depends 

on its previous history, as well as on its environmental conditions. 

A mathematical model of the complexity needed to describe the effects 

which have been mentioned is clearly unsatisfactory for use in either 

optimisation or control and may well require too much computation even for 

routine design problems. There are, therefore, many difficulties to be 

overcome before on-line control becomes feasible for reactors of this type, 

other than by using the conventional 'black-box' type of model. This is in 

many ways an unsatisfactory type of approach, however, particularly since 

there may be internal constraints on the operating conditions, such as the 

maximum temperature, and also because many of the effects in the system are 

of a distributed nature and may not be capable of analysis using the lumped 

parameter model. 



To try to discover the exact nature of the problems involved in 

perfectly general terms, is likely to be an impossibly difficult task, 

because of the large number of degrees of freedom. A more profitable 

approach is to conduct a series of case studies which, hopefully, will 

indicate some general properties. The work reported here covers some 

aspects of such a study and relates to the oxidation of benzene to maleic 

anhydride, which has the following reaction scheme: - 

Ce He + 4.09 -----ý C4 Ha 0,5 + CO + CO2 + 2H2 0 

2C4 Ha 08 + 509 .. - ) 6CO9 + 2C0 + FFa 0 

2CBH6 + 1302 8c02 + 4CO + 640 

These reactions are all highly exothermic and are normally carried out in 

the presence of a large excess of air. The object of the control strategy 

would be to maximise the profitability of the whole process, but this could 

often involve a sub-optimal problem, such as optimising the production rate 

or yield of maleic anhydride from the reactor itself. 

Since the reactions are carried out in a large excess of air, the 

rate of each reaction can be treated as a function of the concentration of 

benzene or maleic anhydride only, and the reaction scheme may be regarded 

as follows: - 
A -----; B ----)C 

o *'-ý 
For the reaction scheme previously outlined, it is clear that C and 

D are the same, but since there may be examples of other reaction schemes 

where this is not the case, or where B is not the desired product, the 

scheme shown above will be considered in order to retain as much generality 

as possible. 

The requirements of a mathematical model to be used in design and 

control are somewhat different. The control model must be capable-of very 

rapid solution, but may only need to be applied over a narrow range of 

conditions. The design model, however, must have general application over 

-4- 



a wide range of conditions although the solution time is less critical. 

The control model may be obtained from the design model, using model 

reduction techniques at present being developed as another aspect of the 

overall case study 
61 

The basic groundwork for the design model has been done by Cresswell 5 

who confined his attention to developing the numerical techniques suitable 

for solving the steady state model for the A)B reaction, and to 

developing some approximation methods for describing the behaviour of 

catalyst pellets. 

The aim of this research is to extend the mathematical models to cover 

the complex reaction scheme outlined above and to develop a transient model 

of the reactor. It is also intended to investigate the regions of potential 

operating difficulties with particular reference to the occurrence of 

multiple steady states for the catalyst pellet, to determine the conditions 

under which this can occur, and to examine the implications on the global 

stability of the reactor. 



CHAPTER 2 

PREVIOUS WORK AND THE BASIS OF THE PROPOSED MODELS 

2.1 General literature 

In recent years, a wealth of literature has been published on hetero- 

geneous catalysis and its relevance to reactor design. Among the books 

covering general aspects of the subject are those by Denbigh3, Frank- 

Kamenetskii53, Thomas and Thomas', Satterfield and Sherwood55, Aris56, 

and Petersen29. The more notable review articles covering the field are 

those by Fromont2 and Carberry57. A general discussion of the selection 

and application of mathematical models to chemical reactors has recently 

been published by Valstar72. 

The methods of obtaining data for the models are not discussed in detail 

within this thesis, since there have been several excellent reviews 

published. All the data required in the proposed models (other than 

kinetic and thermodynamic data) can be found or estimated using information 

in the books or papers by Satterfield and Sherwood55, Hougen1, Beek62, 

Carberry26 and Paris and Stevens76. 

Since the majority of published work has been concerned only with 

specific aspects of reactor modelling or catalysis, it is convenient to 

discuss the main body of the work under headings which reveal the structure 

of the problem and the significance of relevant contributions. 

2.2 Single pellet studies 

Recent work on the performance of single catalyst pellets has been 

concerned with non-isothermal systems, particularly those where the rates 

of reaction are different from those which would be expected from purely 

kinetic considerations. These variations are normally caused by the 

transport resistances in the system, and the most general models have 

been devoloped to include the following effects: 
35 
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(1) A resistance to mass transfer through the pores of the catalyst pellet, 

expressed by means of an effective pore diffusion coefficient. 

(2) A resistance to mass transfer across the boundary layer surrounding 

the pellet, expressed by means of a film mass transfer coefficient. 

(3) A resistance to heat transfer within the pellet, expressed by means of 

an effective thermal conductivity. 

(ý. ) A resistance to heat transfer across the boundary layer surrounding 

the pellet, expressed by means of a film heat transfer coefficient. 

In contrast to these sophisticated models which have become potentially 

useful since the general availability of electronic digital computers, the 

early models were relatively simple. The effects of transport phenomena on 

the performance of catalyst pellets were initially studied to help the 

experimentalist in his efforts to measure true kinetic rates, so that the 

kinetic constants might be calculated. It is clearly desirable to measure 

rates undisturbed by transport effects, and much of the early work was 

therefore concerned with developing criteria for operating conditions where 

diffusion is unimportant. It is only comparatively recently that the 

emphasis has changed towards using models of catalyst pellets in the design 

of a reactor. 

The influence of diffusion (effect (i) above) on the performance of an 

isothermal catalyst was first examined by Thiele 
8 

and Zeldowitsch. 19 The 

studies were extended by Wheelers9 and by Woisz and Prater20 who suggested 

a criterion for avoiding regions where diffusion changed the rate of 

reaction by more than 5%. Weisz2i'22 also examined non-first order reactions, 

and developed a criterion for predicting an upper bound on the Thiele 

modulus, below which the effectiveness factor would vary from unity by loss 

than a specified amount. Those criteria were shown by Schneider and 

Mitschka93 to be inappropriate for reactions subject to product inhibition, 

such as those obeying a Langmuir-Hinsholwood type of rate expression. 



However, Hudgins showed that a similar criterion could be developed which 

is valid for any type of kinetic expression and any order reaction. The 

criterion reduces to the Weisz-Prater form for first order reactions. 

A model of the catalyst pellet which has a non-uniform pore structure 

was proposed by Mingle and Smith82 The pellet was considered to have a 

system of micro-pores branching from macro-pores, and the authors succeeded 

in evaluating the effectiveness factor for a single irreversible first order 

reaction. This type of model is particularly useful for catalysts made by 

forming powder into pellets. The treatment of Mingle and Smith was extended 

by Carberry to include reversible 
83 

and consecutive reaction schemes. 

Non-isothermal systems have been studied by a number of authors and in 

many cases effectiveness factors much larger than unity have been reported 

(e. g. 26,30) 33). Wheeler75 and Prater23 considered pellets subject to 

effects (1) and (3) and demonstrated the possible existence of severe thermal 

gradients. The latter showed that for given surface conditions, the conc- 

entration and temperature within the catalyst pellet are linearly related, 

and that this relationship is independent of pellet geometry and of the form 

of the kinetic rate expression. 

The effect of reaction order in exothermic systems was examined by 

Tinkler and Metzner38 who showed that, in general, second order reactions 

are much less sensitive to temperature than are first order. fstergaard97 

studied the effect of fluid temperature on the apparent reaction rate, and 

demonstrated that the apparent activation energy can be very sensitive to 

small changes when the reactions are exothermic. The exothermic case was 

also studied by Carberry, 26 including for the first time the interphase 

resistances (effects (2) and (4)). For this work, a numerical procedure was 

used which was subsequently reported by Carberry and Wendel AO The same 

numerical procedure was also used by Butt in a study of exothermic 

consecutive reactions in which the interphaso resistances were neglected. 



The models proposed by Carberry26 and Butt3l give rise to simultaneous 

sets of non-linear two-point boundary value differential equations, the 

solution of which can only be obtained by finite difference methods. Besides 

requiring a large amount of computation, the numerical method used to solve 

the two-point boundary value problems is by no means simple to apply, since 

convergence of the finite difference representation can only be obtained 

with care. Neglecting adequate precautions has given rise to the publication 

of some results of doubtful validity Even before these models were proposed, 

it was apparent that a considerable amount of computation would be necessary, 

and for this reason attempts had already been made to make assumptions which 

would simplify the model. 

The vast majority of published work has been concerned with systems 

where the interphase resistances (2) and (4) may be ignored. This is 

unfortunate, since in most practical cases the interphase heat transfer 

resistance is considerable, and often controls the behaviour of the system. 

The resistance to mass transfer is relatively small, however; " and can often 

, 
be ignored without serious loss of accuracy. Inclusion of a heat transfer 

resistance (4) between the phases means that, for most of the published work, 

it is necessary to find the appropriate surface conditions by an iterative 

procedure such that they satisfy the boundary condition: - 

I 
Kp dd h(Tf - Tps 

_b 
) 

s =b s =b . 
This clearly adds considerably to the computational effort required to 

solve pellet models which do not already include this resistance, even if 

such a solution is feasible. For simple reactions, inclusion of the inter- 

phase mass transfer resistance adds no difficulties, since the surface conc- 

entration may be found from the heat balance: - 

h(Tp$-, 
b 

Tf) = kcA(CfA - CPAAg 
=b 

) (- ýý) 

Calculation of CpA (etc. ) from Tps`b for more complex reaction 
s=b 



schemes is not possible, since the rate of heat generation cannot be 

predicted from one surface concentration. (This point is pursued in 

Chapters 3 and 4. ) In general it can be considered that, for a single 

reaction, ignoring the interphase resistances means that the proposed 

pellet model forms only part of a complete model of the pellet and must be 

solved simultaneously with the appropriate interphase transport equations. 

In the case of complex reactions, ignoring the interphase transport resist- 

ances can only be construed as an attempt at mathematical or model simplif- 

ication, and must be regarded with suspicion for non-isothermal systems. 

Another simplification is to evaluate the performance of the catalyst 

pellet as if it were isothermal and at the fluid temperature. While such 

simplifications are not common among the proposers of mathematical models, 

the results from isothermal cases have been applied to non-isothermal 
94. 

systems68' without any apparent attempt to use the criterion for negligible 

heat effects developed by Weisz and Hicks; or indeed any attempt at 

justification whatsoever. 

Several methods of simplification have been proposed, other than the 

ones mentioned above. Schilson and Amundson 24,25 
considered the pellet 

under non-isothermal conditions, approximating the heat generation function 

by one or two straight lines. The method was found to be fairly good for 

the system they considered but is unsuitable for extension to complex 

reactions where interphase transport resistances are present. Beek27 

considered a system where the interphase heat transport resistance is 

included. The model can be solved very rapidly, but is based on the 

assumption that the reaction rate varies linearly with temperature, and this 

severely restricts the range of application over which the model is valid. 

Peterson28'29'92 used the relationship developed by Prater23 as the basis 

of an approximation method which is asymptotically valid under conditions 

of diffusion control, where the reactant concentration falls to zero in the 

outer layers of the catalyst pellet. This method was extended by McGreavy 

-10- 



and Cresswe1132'33'35 to the case where interphase transport resistances 

are important. Hatfield and Aris8' have also used this approach in a 

general parametric study of the catalyst pellet. Gunn65 assumed that the 

temperature profile within the pellet could be represented by a straight 

line and Tinder and Pigford 
66 

allowed for small, but significant, temp- 

erature rises by using a perturbation series technique. Both these methods 

are only useful over a narrow range of conditions. 

Numerical computations performed by Cresswell35 have shown that, over 

the whole range of practical operating conditions (when the fluid is a gas), 

the catalyst pellet is essentially isothermal, the temperature rise between 

fluid and pellet centre being concentrated almost entirely in the inter- 

phase region. This result was anticipated by Beek 27 
and also suggested 

from the results of Hutchings and Carberry3.4 Cresswe1135 proceeded to 

assume isothermality within the pellet itself, thus allowing analytic 

solution of the mass transport equation for a first order reaction. This 

method is attractive, as it was shown to have a wide range of validity and 

it enables the performance of the pellet to be evaluated very rapidly by 

solving a single non-linear algebraic equation. 

While considerable effort has gone into attempts to simplify description 

of the single catalyst pellet, a few attempts have been made to relax some of 

the assumptions on which even the more complex models are based. In part- 

icular, the shape of the pellets has received some attention. Most studies 

reported in the literature have been concerned with spherical pellets, but 

AriJ 0 
showed that by using the volume/surface ratio as a characteristic 

dimension, the asymptotes of effectiveness factor charts (i. e. kinetic 

control and pore diffusion control) coincided for various shapes. Extensive 

calculations have been performed by Gunn for finite and hollow cylinders, 

and by Luss and Amundson for finite cylinders and parallelpipeds. Their 

results have been summarised and compared by Rester and Arise 3 Attempts to 



simulate the effects of particle shape away from the asymptotes have been 

made by Rester 4' et al. 

Whereas all previous papers had assumed spherical symmetry in the 

fluid conditions, Copelowitz and Aris95 considered the behaviour of a 

pellet situated in steep gradients in the axial direction. Solution of 

the relevant equations is not straightforward, and introduction of inter- 

phase transport resistances would increase the difficulty. Moreover, steep 

axial gradients commonly imply steep radial gradients (in the fluid) and, 

in this case, not even axial symmetry can be assumed in the fluid phase. 

It therefore seems unlikely in the foreseeable future that such models will 

be used in reactor design. 

Very little experimental work has been carried out on single catalyst 

pellets, and the results are somewhat contradictory. This is not surprising 

since the experimental difficulties are great, particularly in the measure- 

ment of intraparticle temperature profiles. Cunningham et a195 demonstrated 

the existence of large temperature differences between the fluid and the 

pellet centre, and found experimental values of the effectiveness factor 

as high as 25" Miller and Deans86 also reportod large temperature rises 

and effectiveness factors greater than unity. Probably the most reliable 

work on radial temperature gradients was reported by Irving and Butt87 who 

carried out measurements on several pellets using extremely fine thermo- 

couples (0.001 in. diameter). Very large temperature rises across the 

boundary layer were measured, with relatively small ones occurring within 

the pelmet. This work shows the same features as that of Fulton and 

Crosser88 who demonstrated the importance of film resistance by using 

catalyst pellets of various sizes. They also report the work of Ramaswami89 31 

who is alleged to have obtained fluid film temperature rises of up to 120°C. 

Transient models of the catalyst pellet have received little attention. 

McGuire and Lapidus16 used a transient single pellet model within a transient 
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model of the reactor. Wei 
37 

also examined the transient problem and showed 

that the maximum temperature achieved may be considerably greater than the 

steady state maximum which is predicted by the Prater23 relationship. 

2.3 Multiple solutions of the catalyst pellet model. 

The existence of possible multiple steady states for the catalyst 

pellet creates considerable difficulties in reactor design and operation, 

since the performance of the reactor is uncertain unless the history of 

each pellet is known. The reactor is also likely to be unstable in the 

transient case, since the pellets tend to change from one state to another 

under these conditions. Even more important, however, is the fact that the 

reaction rate at one steady state is often several orders of magnitude 

greater than at another. This can lead to several undesirable results, 

such as bad selectivity, catalyst deactivation, or reactor burn-out. The 

primary motive for determining limits on uniqueness is so that operating 

conditions can be kept within these bounds, thus avoiding undesirable 

effects. For models developed which include interphase resistances, there 

appear to be three possible steady states, of which the middle one is 

metastable. (Note: There has been evidence published which indicates the 

possibility of 5 steady states existing 
81 

These results lie outside the 

practical range of operating conditions and occur only over a very narrow 

range of parameters. In such cases, all the even numbered steady states 

are metastable. ) 

As was the case with the single pellet models previously discussed, 

the vast majority of published literature has been concerned with systems 

subject to Dirichlet boundary conditions (i. e. no interphase resistances). 

This is particularly unfortunate, since the results are of no practical 

use whatsoever. It has already been stated that the Dirichlet formulation 

of single pellet models is at least potentially useful for single reactions, 

since this can be solved iteratively to match up with the appropriate 



boundary conditions. In the case of multiple solutions predicted by the 

Dirichiat problem, however, this extension to include boundary effects 

cannot be done, since each of the steady states corresponds to a different 

total reaction rate. Now the total reaction rate for a catalyst pellet is 

given by: - 

Total rate of consumption of A= 4'Rb'kcA(CfA - CpAs=b). 

Each different steady state predicted from the Dirichlet formulation 

therefore corresponds to a 
. 
different fluid concentration, and a similar 

result applies for temperature. 

There have been several elegant treatments of the Dirichlet problem 

but, since they cannot be extended to the Neumann problem, they are of 

academic interest only. Some of the results obtained from mathematical 

analyses of the equations are rather surprising. For instance, Copelowitz 

and Aria 50 have shown that as many as 14. ' solutions are possible for a first 

order irreversible reaction, and Horn et al. 
96 have shown that some 

asymmetrical solutions exist in the multiple solution region, even when the 

pellet is in a constant environment. Aris39 has reviewed and discussed 

many of the published criteria in a recent paper. 

Of the analyses which have included interphase resistances.. Hlavacek4.9 

et al. considered a system where these were equal for heat and mass transfer 

(i. e. Nu' = Sh'A). Since the value of Sh'A/Nu' is commonly of the order of 

1000 for real systems, this method is not really of any more use than the 

solutions of the Dirichlet problem. Cresswe1135 has also worked on the 

problem whero interphase resistances are present, and developed a method 

for predicting the bounds on the non-unique region for single reactions. 

The method can be applied to cases where the order of reaction is an integer, 

or certain fractions for which in inte hl is tabulated. The method is 

unsuitable for extension to more complex reaction schemes, and it is not 

feasible to use it for an analysis of the global stability of the reactor. 
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2.4 The tubular reactor. 

2.1+. 1 One-dimensional models. 

Many of the problems encountered with reactors are due to the high 

temperature sensitivity of the reaction rate constants. Bilous and 

Amundson' examined the response of an unpacked tubular reactor to a 

sinusoidal input perturbation, and found that small changes in the system 

parameters produced large variations in performance. They referred to this 

phenomenon as 'parametric sensitivity'. The results from a large number of 

steady state runs were examined by Barkelew, and he suggested that the 

transient response of the reactor should be stable if the region around 

the steady state does not display parametric sensitivity. Coste6 and co- 

workers examined the sensitivity of the reactor to random fluctuations in 

the inlet conditions, and defined the sensitivity of the system as the 

ratio of the standard deviation of the input to that of the output. 

Liu and Amundson7'8 studied the stability of a heterogeneous system 

in which a reaction occurred on the outer surface of the catalyst pellets. 

Although account is taken of the transport resistances to the pellet, the 

model is essentially quasi-homogeneous in character. The reactor was shown 

to have multiple steady states, and the model was tested to see if the 

profiles return to their initial steady states after the removal of a 

perturbation. The models used for these studies were adiabatic, and the 

latter 8 
included the effect of axial mixing. Liu at al: carried out a 

similar study on the non-adiabatic reactor without axial mixing. 

Carberry and Wendel1C developed a model of the fixed bed reactor 

which was the first attempt to contain any distributed effects due to the 

heterogeneous nature of the system. The catalyst model which was used 

within the reactor modal included inter- and intra-phase resistances to 

mass transfer and an interphase resistance to heat transfer. The results 

showed that axial diffusion in the reactor is unimportant except for very 
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short reactors. 

A model of the reactor was proposed by Vanderveen et al., 
1 

which 

considered it to be composed of a series of stirred tanks, and the model 

therefore contains no derivatives in the axial direction. The effect of 

coupling between pellets was examined. Representing the reactor as a series 

of stirred tanks is equivalent to writing the differential equations of the 

continuum model in finite difference form102 and the continuum and finite 

stage models can therefore be regarded as intrinsically similar. 

The stability of an adiabatic reactor was examined analytically by 

Crider and Foss; o3 but the reaction was assumed to take place in the gas 

phase and the packing was considered merely as a heat capacitance. An 

adiabatic study of stability was also performed by Agnew and Narsimham1 a' 

for a non-catalytic reaction occurring between a solid and a gas. Both 

these papers103'iO'; ' considered locally linearised rate constants and this, 

as well as the assumption of adiabatic conditions, severely limits the 

range of applicability, even for the systems for which they were intended. 

2.4.2 Two-dimensional models. 

When heat is removed through the walls of a tubular reactor, radial 

temperature gradients are set up, and these cause radial concentration 

profiles to develop. The system can therefore only be described in detail 

by a model which is at least two-dimensional. The first models proposed 

were concerned with homogeneous or quasi-homogeneous systems. Von Rosenberg 

described tho use of a Crank-Nicholson method for solving the reactor 

equations and investigated the effect of step sizes in this type of system. 

Froment12 also used the Crank-Nicholson method for solving the equations, 

but in the inlet region a semi-analytic solution was used, to overcome any 

potential difficulty caused by a singularity at the point z=0, r= 1- 

Beek62 gives an excellent review of the design of reactors based on quasi- 

homogeneous models, and also discusses some of the transport effects which 
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occur in the models. Mickley and Lettsl3 extended the model to include 

multiple reactions with arbitrary rate terms and stoichiometry. An attempt 

was made to discover the size of yield losses due to radial mixing and 

failure to withdraw the reactant stream at the points where local yields 

are at their maximum. A two-dimensional transient model of the homogeneous 

reactor was solved analytically by Amundson; 9 but since the rate of reaction 

was assumed to be independent of the concentration and linearly dependent 

upon temperature, the solution can be considered to be of mathematical 

interest only. 

McGreavy and Cresswell14'35 proposed a heterogeneous model. The 

equations describing the behaviour of the system were of a quasi-homogeneous 

form, but the rate terms were modified at each point in the bed to take 

account of the influence on the reaction rate of the resistances to heat 

and mass transfer in and around the catalyst pellets. The results were 

shown to be significantly different from those predicted by models taking 

account of pure kinetic rates only. In particular, it was shown that in 

many cases where the quasi-homogeneous model predicts temperature runaway, 

the heterogeneous model predicts stable profiles. 

In contrast to the continuum models which have been described so far, 

Deans and Lapidus15 proposed a mixing cell model in which the reactor is 

treated as a two-dimensional network of stirred tanks. Each cell has the 

dimensions of one catalyst pellet and its associated bed voidage. An 

external surface reaction was assumed. McGuire and Lapidus16 extended this 

model to include diffusion and reaction within the catalyst pellets, and 

the stability with respect to input disturbances was examined. Although 

this type of model offers certain advantages in the numerical analysis, 

the computing time was found to be excessive, making it impractical for use 

on routine problems. Crider and Foss77 used a mixing cell model to examine 

a liquid phase non-catalytic reaction occurring under transient inlet 
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conditions. It was found that sometimes the concentration initially moved 

in a direction away from the final steady state value. For the system and 

operating conditions they considered, the effect of axial mixing was found 

to be small, but radial mixing was almost complete, indicating that a simple 

one-dimensional continuum model is satisfactory for describing the behaviour 

of the reactor. 

In spite of the apparent differences between the continuum models and 

the mixing cell models, they are essentially the same, since it may be shown 

that the latter corresponds to a finite difference representation of the 

continuum model. Carberry and White74' considered a two-dimensional model of 

the reactor for the A. _. _^? B)C reaction. The model is based on several 

simplifications relating to the evaluation of the rate of production of the 

intermediate. In particular, events within the catalyst pellet have been 

examined in terms of the rate constants evaluated at the fluid conditions, 

and the heat of reaction of the B! _.. 3 C stage appears to have been 

ignored. The model is also based on the assumption that radial gradients 

of concentration do not affect the rate of production of the intermediate, 

and recent worlc61 indicates that there are many cases where this will not 

hold. 

A two-dimensional transient heterogeneous model of the reactor has 

recently been proposed by Feick and Quon? 
9 

which is the most comprehensive 

yet reported in the literature. The model includes radial and axial diffusion 

of heat and mass in the fluid phase, and resistances to heat and mass transfer 

in and around the catalyst pellets. Unfortunately the computing time is 

excessive, about 90 minutes being required on an IBM 360/67. Even this 

time is optimistic, however, since the stop size used in the finite 

difference network within the catalyst pellet was too large. In fact, the 

step size was at least eight times as large as that which is required to 

obtain convergence of the equations under the reactor conditions described, * 

* see Appendix j. 
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I where there was a 200°C temperature difference between the fluid and the 

pellet centre. The long computing time was unfortunate in that it 

prevented the authors from carrying out more than one or two runs, and no 

detailed results are available. At the present time there is therefore 

little information about the transient behaviour of reactors, except for 

very special situations, and this information is clearly necessary for a 

better understanding of the way the system works. 

2.5 Concluding comments on previous work. 

The widespread use of high speed computers has enabled increasingly 

sophisticated models of chemical reactors to be solved, and some novel 

features to be tested. Paris and $tevens58 have suggested controlling the 

hot spot by using a cooling jacket in several sections at different temp- 

eraturos. Calderbank59 at al. have attempted to optimiso the temperature 

profile through the reactor by diluting the bed with inert pellets. Some 

of the computations for this were done using a three-dimensional stochastic 

model, and another stochastic modal was proposed by van den Bleek at alt 

Although the trend has been towards increasingly complex models, it 

seems likely that in the future, the emphasis will be on the development 

of model reduction techniques and the application of models to the design 

or improvement of practical systems. Hawthorn at all()' have shown that it 

is possible to got good agreement between theory and practice. Model 

reduction techniques are aimed at reducing the complexity of the system 

by approximating certain properties by algebraic expressions, while 

retaining the detailed description which is associated with moro complex 

models. Preliminary attempts have met with some success, and have enabled 

substantial reductions in computing time to be made 
o'61 
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2.6 The assumptions on which-the-proposed models are based. 

(7) The packed bed reactor may be represented by a continuum model. 

The packed bed reactor is essentially discrete in character and an 

exact model would need to describe the fluid on a microscope scale, taking 

into account the spatial distribution of individual catalyst pellets. A 

rigorous analysis on this scale, which would take account of the discontinuous 

nature of the bed, is impossible at the present time. In practice the fluid 

must follow the random passages in the bed, whereas the chemical reaction 

occurs only within the catalyst pellets. The problem is therefore best 

tackled as if the properties of the bed were averaged out to give a pseudo- 

homogeneous structure. The transport of heat and mass within the bed may 

then be described in terms of differential equations, using 'effective' 

transport parameters. (Note: These models are still referred to as hetero- 

geneous, since they distinguish between conditions in the fluid and solid 

phases. Although the bed properties are space averaged, the equations 

describing the heat and mass transfer within the catalyst pellet are solved 

for the actual size of pellet being used. ) 

(2) The rates of reaction and heat production per unit volume may be 

calculated at any point in the reactor, as if a catalyst pellet and 
its associated voidage were acting at that point. 

This assumption is necessary as a consequence of assumption (1), 

although similar assumptions are still necessary for non-continuum models. 

For example, in the finite stage (mixing cell) models1o5'16 a catalyst pellet 

is assumed to be situated at the centre of each cell. The assumption implies 

that every point on the external surface of the catalyst pellet is in contact 

with fluid of constant composition and temperature and that each point is 

equally accessible for the purposes of heat and mass transfer. 

In practice the concentration and temperature will be non-uniform 

around individual catalyst pellets, and the resistance to both heat and mass 
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transfer will increase in the direction of flow. The validity of the 

assumption is clearly doubtful in the presence of steep gradients, but 

for most cases it should be a fairly good assumption. If it does not hold, 

then the profiles within the catalyst pellet will be asymmetrical and solution 

of the resulting differential equations would be extremely difficult, even 

if they could be formulated. 

(3) The catalyst pellets are assumed to be spherical and of constant size 
throughout the bed. 

If the catalyst pellets are not in fact spherical, it may still be 

possible to define an effective radius, as is shown by Petersený9 If it is 

not possible to define an effective radius, it may be difficult to set up 

or solve the appropriate differential equations, particularly if the catalyst 

pellets have no symmetry. 

Having catalyst pellets of non-uniform size present no real problems, 

provided that each size is known and is confined to a particular section of 

the bed. For example, it may be desirable to have larger catalyst pellets 

near the hot spot, since this will tend to slow the reaction down. If the 

catalyst pellets come in a continuous range of sizes, however, or in a 

random mixture of specific sizes, greater problems arise, since in general 

it will be shown that the performance of the reactor is very sensitive to 

the pellet size. Using the mean value is therefore unlikely to be satis- 

factory. It may be necessary, in this case, to solve the pellet equations 

for each size of pellet at each point in the reactor, and then to apply an 

appropriate weighting factor to each of the results. This process would 

increase the computation time roughly in proportion to the number of pellet 

sizes used. 

(1+-) The reactions are irreversible and obey rate expressions of the 

Arrhenius type: - 

ki = Ai exp - gEý9TTP 



This form of the rate expression has been used throughout the present 

work. There are no problems involved in using other types of rate 

expression, although it would not be possible to use the simplified pellet 

model described in Chapter 4, unless the rate of reaction was (approximately) 

linearly dependent upon concentration. 

(5) The reactions may be treated as first order (Chapter 4 only). 

This assumption applies only to the method used for simplifying the 

model of the catalyst pellet, and is not as restrictive as it might appear 

at first sight. It is only necessary that a pseudo-first order rate constant 

may be defined, which is valid over the range of concentrations existing 

within any single catalyst pellet. It is not necessary to define a pseudo- 

first order rate constant which applies throughout the reactor. 

For this reason, all the reactor models have been developed for reactions 

of any order, whereas the pellet approximation has been developed only for 

first order reactions. 

(6) The rate of reaction along any path depends on the concentration of one 

reactant only, (i. e. the reactant being consumed in that step), and the 

reaction scheme may then be represented by: - 
A ---) B -----) C 

ý 
D 

where species A and B are the limiting 

steps in which they are consumed. 

reactants for the reaction 

This reaction scheme is typical of many reactions of industrial 

importance. It is often the case that all but one of the reactants involved 

in a particular step are present in excess. Examples of this are the vapour 

phase partial oxidation of hydrocarbons, where there may be an explosive 

(or other) limit on the concentration. (This is often less than 2% in air. ) 

(7) Diffusion of heat and mass in the axial direction may be neglected. 

Carberry and Wendeli0 showed that axial dispersion could be ignored if 

the bed length is greater than 50 particle diameters, and a similar result 

was obtained by Marek and Hlavaoek. -1 If this assumption is relaxed, the 
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computational effort required to solve the reactor model increases con- 

siderably. 

(8) Radial heat transfer within the bed is due only to convection caused 
by mixing of the fluid stream. 

The components which make up the effective radial conductivity of packed 

beds have been identified by Yagi and Kunii? 0 Kunii and Smith36 analysed 

the static components, such as conduction between pellets at the point of 

contact, and radiation. They developed a complex expression for the total 

effect of the static components, but this is small compared with the dynamic 

contribution' for conditions found in industrial catalyst beds. 

Where temperature runaway is predicted by the models, it is possible 

that radiation may become important. Since one of the reasons for developing 

models of the reactor is to help to avoid conditions which lead to temp- 

erature runaway, it is not essential to be able to predict exactly what 

does happen in this case. It is usually sufficient to know that the resulting 

conditions are undesirable. 

(9) All physical and chemical properties are independent of position, 

concentration and temperature. 

This is a fairly common assumption to make in systems of this nature, 

since in general any errors caused by neglecting variations in the properties 

are small when compared with the overall errors due to uncertainty in the 

data. In practice, relaxation of this assumption would introduce few 

problems for parameters such as the heats of reaction, but more serious 

problems would arise if the pressure were allowed to vary, since the mass 

and heat balances must be accompanied by a momentum balance. 

There is also some doubt about the validity of assuming constant bed 

voidage, and if this is not constant, then the velocity, radial conductivity 

and radial diffusivities will also vary. Thierney71 has shown that for 

regularly shaped pellets, the porosity is greatest at about two pellet 

diameters from the tube wall. The exact distribution of the voidage was 
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shown to be very dependent upon the ratio of pellet/tube diameters, the 

exact shape of the pellets, and the way in which the tube was packed. For 

a given mass flowurate the velocity profile will be deformed, since the flow 

will tend to take place along preferred directions (i. e. where the voidage 

is highest), and the velocity is reduced in the region of the tube axis. 

As this is the hottest part of the tube, it is to be expected that in real 

systems the conversion will be greater than that predicted using the 

assumption of plug flog. Valstar72 imposed a velocity profile on a model 

of the reactor and suggested that the results were sufficiently different 

from those obtained for plug flow to warrant further investigation. In the 

absence of satisfactory data on the actual radial velocity profile likely 

to arise in any given situation, it is not possible at present to draw any 

positive conclusions as to the best way to approach this problem. This is 

particularly true in the presence of heat generation, since this also tends 

to alter the velocity profile, as the fluid nearest the axis of the tube 

expands most. This would tend to counteract the variation in the bed 

voidage, but since even the order of magnitude of these effects are unknown, 

any cancellation of errors in this way cannot be relied on. In the light 

of present knowledge, however, there seems to be little alternative to using 

the assumption of plug floe. 

(10) The coolant temperature is constant along the length of the reactor. 

This assumption commonly applies in practice, particularly when the 

coolant is flowing perpendicular to-the tube axis or when it is a boiling 

liquid. Relaxation of this assumption introduces no new difficulty, 

however, since any (known) coolant profile can easily be incorporated into 

the finite difference solution of the reactor model. When cooling is by 

co-current flow, a heat balance must be carried out on the coolant, and the 

same applies to countercurrent-flow, but in the latter case an iterative 

process is needed, since it is then necessary to assume a coolant temperature 



J 

at the reactor inlet (z = 0) and then to match the inlet coolant temperature 

with its known value at the reactor exit (z = J). 

(11) In the transient models it is assumed that the catalyst properties 

are independent of time. 

This assumption of no catalyst deactivation etc. would hold well under 

normal operating conditions, since the transient changes predicted by the 

model take place over a period of minutes, whereas deactivation usually 

occurs over a period of days, months or years. An exception to this might 

be where the model predicts temperature runaway. In this case there is a 

possibility of rapid deactivation occurring, but it is probably sufficient 

to know that temperature runaway has occurred and that the transient change 

which brought it about is undesirable. 

2.7 The effect of relaxipZ the assumptions. 

In the event of sufficient information being available, it is clearly 

possible to relax some or all of the assumptions which have been made in the 

formulation of the models. In general, dropping each of the assumptions 

makes the model more complex and increases the computational effort required 

to reach a solution. An even more important consideration, however, is the 

large additional quantity of data which is required as the model becomes 

more complex. 

At the present time, very little of the data which would be necessary 

is available in any general form and much of the information would be 

extremely difficult to acquire even for specific systems. This may be seen 

by considering the two examples outlined below. 

1. The velocity profile. For a specific system, it may be possible 

to determine the velocity profiles fairly well over a wide range of 

conditions and hence to develop some form of algebraic representation. 

Any results obtained in this way would only apply to the system under 

consideration and would have no general applicability. 
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2. The mass transfer coefficient. For a single pellet situated in 

a flowing fluid, the mass transfer coefficient would be expected to vary 

around the surface, since there is no reason why the boundary layer should 

have the same thickness at each point. In general, it could be anticipated 

that the value would be lower on the downstream side of the pellet, but it 

would be extremely difficult to devise an experiment to measure the variation 

in this parameter. It would be practically impossible to do so in the 

presence of other pellets, and a comprehensive model of the pellet would 

need to take into account such things as variations in flow patterns around 

the points of contact with other pellets. 

The second example is, perhaps, rather extreme but it indicates the 

kind of difficulties which could arise. Even if the relaxation of assumptions 

were restricted to parameters or properties which could be measured 

experimentally for a specific system (such as the radial velocity profile), 

then the greatest advantage of using mathematical modelling techniques 

would be lost, since these are primarily designed to reduce the amount of 

costly experimental work which needs to be done in order to achieve a 

desired result. 



CHAPTER 

A FULLY DISTRIBUTED STEADY STATE MODEL OF THE CATALYST PELLET 

3.1 Introduction. 

The equations describing the behaviour of catalyst pellets in terms 

of the kinetic and transport parameters have been solved for various reaction 

schemes and boundary conditions. The models originally proposed were for 

isothermal systems and single first order reactionsi7'18 The isothermal 

treatment was also applied to more complex reaction schemes; 
9 but recently 

most attention has been focused on non-isothermal systems, since it is for 

these cases that the tubular reactor is particularly well suited. Among the 

more recent workers, Butt considered a system of two consecutive exothermic 

reactions with Dirichlet boundary conditions (i. e. surface conditions are the 

same as adjacent fluid conditions) and Cresswell35 considered a single 

reaction where Neumann (i. e. flux) boundary conditions were used. It was 

shown by Cresswell that the interphase transport resistances, particularly 

that for heat transfer, exerted a strong influence on the behaviour of the 

particle. 

All the models of catalyst pellets so far reported in the literature 

have been inadequate for describing many reactions of industrial importance, 

either because they have been restricted to simple reaction schemes or have 

used inappropriate boundary conditions which induce misleading conclusions. 

The treatment which follows will deal with a reaction scheme of the type: 

A ---ý B -4c 
ýD 

and will include flux boundary conditions. 

Whon the reaction rate constants obey an Arrhenius type rate expression 

or any other non-linear form), the resulting mathematical model comprises 

a set of non-linear differential equations which must be solved by finite 
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difference techniques. It is to be expected that the solution obtained in 

this way will require considerable computational effort, and may therefore 

be too time-consuming to use on a routine basis within a mathematical model 

of the reactor itself. Nevertheless, the finite difference solution is the 

only method which can produce an 'exact' solution and must therefore be 

solved as a standard against which simpler and more approximate methods can 

be judged. 

3.2 Formulation of the Equations. 

For the reaction scheme AB ---j C, three differential equations 

D 

describing independent heat and mass balances must be solved to determine 

the behaviour of the system. They are: - 

2 Dpa dsa ýý- C pA kß CpAý =0 
ds 

( 

dsA . 

1 Dp$ d ('sa dCpB j+ ki CPA - ks CPB ý 
2-0 

8 
ds ds 

,J 

(3"1) 

(3"2) 

RP 
t 

sa 
saäs+kl 

Cp 
"' 

+ (-a "a )ka CPB' + )k9 CPA _0 

where ki =A exp - 
Ei (3"3) 

iý ZTp J 

These equations are subject to the boundary conditions: - 

dCpl, 
= 

dCpý dTp 
_ ds da T da 0 ats=0 

kcA(CfA - CpA) = DpA ddC 
spA 

kOB(CfB - CpB) = DPB aCsg 

h(Tf - Tp) = Kp dTp 
da 

i 
ats= b 

(3"4) 

(3.5) 

Solution of these equations gives the radial profiles of Tp, CPA and 

CpB. If it is required to know the total rate of production of species C 
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or D, this may be obtained by integrating the rate of production through- 

out the pellet. For example: rb 
nz 

Rate of production of C= Iý. YT k2 CpB ss ds 

0 

(3.6) 

Once equations (3.1), (3.2) and (3.3) have been solved, k2 and CpB 

are known functions of position within the catalyst pellet, and this 

integral may be evaluated by any of the normal methods, such as Simpson's 

Rule. 

Equations (3.1) to (3.3) are most conveniently solved in dimensionless 

form. They may be rewritten as follows: - 

d' cA 
dy' 

da ý{#1 CB -2a. CB tý 01 C`ý 
dya 1 '-y äy 

ý *a na 
6. ý OB =0 

dat 
-2 

dt (+xac ri 
+ iaýa*a na *acý 

=0 ý1Yu+ Hý ý °B + HB ýAý 

ý 
dy 

do 
dy 

dc it 
dy 

ý_t 
-0 aty=1 dY 

ý (CA CA 

2 
(cB - CB) at y=0 

_ o1 Cý 1-A* CA =0 

dt Nu' (t - T) 77 2 

where the dimensionless parameters are define d by: - 

ý 
ýC 

0 
C. _ -C-fA li C 

0 
ý 

CB =ý 
0 Co 

t= RTT) 
IF 

Y=1 -s/b 

T=ITf, 

(3.7) 

(3"8) 

(3"9) 

(3.10) 

(3"11 ) 
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H= 
ý- LýIý ) DpA Co Rg 

Kp Fi 

9i #z 

o. a 
1 

=9i axp 

--ba Ai 

DPA 

Sh '= 2b1cOA 
Aý DPA 

(- lli El "ý t 

Co 
ni -1 

Shßý = 
2bkCB 
Dp B 

Nu, = 
2bh S= DpA 
Kp DP B 

_ 
(- &ý ) ý^ (- oxl) 

Pb = (- 4F) 
(- ý1) 

Co is an arbitrary reference concentration. For the steady state 
-It " 

study of the single pellet, this is often the fluid concentration of 

component A, making CA = 1, whereas for reactor studies it would normally 

be the inlet concentration of component A. 

3.3 Selection of the dimensionless groups. 

If approximations to the generalized model are to be used, they must 

be shown to have validity over a wide range of operating conditions. For 

complex reaction schemes, the number of variables is clearly too large to 

enable the whole range of each parameter to be studied. Butt examined 

a consecutive reaction scheme for which he assumed Dirichlet boundary 

conditions (i. e. Nu' = Sh' = ShB = 00 ). Even so, the number of parameters 

made it difficult to draw any general conclusions. With the system of three 

reactions considered here, and with Neumann boundary conditions, the number 

of parameters is even greater. The preferred method of approach is to 

consider specific systems over a wide range of operating conditions. 

In the literature, most attention has boen given to single first order 

reactions, and results have normally been presented in terms of the groups 
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E3. 
_ - the activation factor 

1 Rg Tf 

(-pI jDpA CfA 
- the therraicity factor 

KpTf 

yli =b ___ 
i- 

the Thiele modulus DPA 

It may be seen that this is not a very convenient set of parameters 

for the examination of specific systems, since variation of Tf and CfA causes 

all three dimensionless parameters to°change. The extension to the complex 

reaction scheme is even more unsatisfactory, since 9 dimensionless parameters, 

Pi) äi (i o 1,2,3), vary simultaneously as Tf. CfA and CfB change. 

Using the set of dimensionless parameters suggested in the previous 

section, the maximum number of parameters is fixed by specifying the catalyst, 

reaction rate expressions and transport coefficients. This means that for a 

given reactor operating at a particular flowrate, it would only be necessary 

to examine the effect of 3 variables, CA, CB and T. It will be shown later 

that the use of 0 instead of 0 has particular advantages in stability analysis. 

3.4+ Numerical solution of the equations. 

Equations (3.7), (3.8) and (3.9) represent a highly non-linear system. 

The equations are coupled through the exponential dependence of the rate 

constants on temperature, and the dependence of the rate of production of 

intermediate, B, on the rate of reaction of species A. Carberry and 7endel1C 

demonstrated a method for the solution of equations of this type, in which 

the derivative terms in both the equations and the boundary conditions are 

replaced by their central difference approximations. Expressing equations 

(3.7), (3.8) and (3.9) in this way result in three sets of simultaneous non- 

linear algebraic equations each having a tridiagonal matrix of coefficients. 

Matrices of this type may be efficiently inverted by the well known Thomas 

method described by Bruce63 



The non-linear terms are included in the matrix by defining (dimension- 

less) pseudo-first order rate constants k*i (e. g. 042 cAni-1 ) which are 

allowed to lag one iteration, and the final solution is obtained by 

iterating on an initial assumed solution. If the reactions are first 

order it is only necessary to assume a temperature profile. The finite 

difference solution is examined in detail in Appendix 1. 

Great care must be taken in the solution, since it is found that the 

step size and type of finite difference network necessary to obtain a 

converged solution depend on the form of the profiles, This means that the 

problem must be solved twice. The initial solution is an approximate one 

and in the light of the results an appropriate form of the finite difference 

network can be chosen. The method is therefore time-consuming and it is 

not easy to devise an efficient automatic procedure for calculating the 

correct results. 

3.5 The effectiveness factor and selectivity. 

The effectiveness factor is defined as the ratio of the actual rate of 

reaction in the pellet to the kinetic rate calculated at the fluid conditions. 

For any order reaction this may be written as: - 

1.5 Sh'A (CA - cAs) (3"12) 
Crý +ý'CAn° A 

where 0 i2 =912 exp 
Ei 

- E1 T (3"13) 

and =c CA 
s Ay--O 

The selectivity for reactant B may be defined as the ratio of the.; rate 

at which B is produced to the rate at which A is consumed: - 

ShB ( cBs - C$ ) 

ýShÄ (CA - cAs) 

where cc Bs - ByoO 

(3.1 4. ) 
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It has been customary to define 11 and I in terms of gradients at 

the pellet surface instead of the intorphase transport rates used here. 

The two forms are equivalent, since they represent opposite sides of the 

boundary conditions, but evaluation of the gradients introduces additional 

convergence problems (see Appendix 1) and great care must be taken to 

ensure that the correct answers are obtained. In general the forms used 

in equations (3.12) and (3.14. ) are more convenient to evaluate and since 

they produce more accurate answers, they will be used throughout the 

following work. 

3.6 Prediction of maximum temperature. 

In many practical situations there is a constraint on the maximum 

temperature which can be allowed to exist within a catalyst pellet. This 

is usually imposed by the properties of the catalyst itself, such as the 

conditions under which a phase or chemical change occurs, resulting in 

deactivation. It is therefore necessary to be able to predict the temp- 

erature rise which occurs between the fluid and the pellet centre. Although 

the actual temperature rise must be calculated from the numerical solution 

of the differential equations, it is possible to obtain bounds on the 

maximum temperature rise by inspection of the differential equations and 

boundary conditions. This has been done for the A----- B reaction by Prater23 

who showed that concentration and temperature within the catalyst pellet are 

related by: - 
t= tg+H(cAs -cA) (3"15) 

For tho case where the intorphase resistances to heat and mass transfer 

are zero (i. o. Nu' = CO, Sh' = 00), then cC, t=T and equation (3.15) 
A As As 

becomes: - 
t=T+H(CA-cA) 

This is a maximum when cA = 0, 

i. (3. tý=T+HCA 

(3. ý 6} 

(3.17) 
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Cresswe1135 combined equation (3.15) with a heat balance between the 

catalyst pellet arxi the surrounding fluid giving: - 

t=T+HCASh'A-Hc- Hc 
Nu' 

A As ý N-0 

This expression suffers from the disadvantage that it is required to 

know cAs if Nu'ý ShA' . This can only be obtained from a numerical solution 

of the differential equations and any advantage which may be gained from 

being able to use an expression such as eq. (3.18) is therefore lost. The 

maximum possible temperature which can be reached is given by: 

tmax =T+ HCA ý 

Nu 
(3-19) 

It is not possible to extend the relationship between concentration 

and temperature to cover the system of combined series and parallel reactions, 

since the ratio of the rates of reaction along the paths A----- )B and 

A ----4 D tirill vary through the pellet as the temperature changes, depending 

on the point values of or and 03'2. 

If there are series reactions only (i. e. 0) it is possible to ' O3 ý` 
= 

extend the treatment as follows. The heat and mass balances are described 

by the equations: 

IV 2 cA +0'CA =0 

IV aCB ýs c 
B, 

ý= 
A 0 

Vat - O*'0AH -w' cBHI- =0 

These equations can be combined to give: - 

17 2 (H(1 +4 )cA + liH2 cB + t) =0 

(3.20) 

(3.21 ) 

(3.22) 

If the concentration and temperature are constant at all points on 

the external surface, then by the maximum-minimum property63: - 



H(1 +H )cA + HIýcB +t= constant. 

i. e* t=is+H(1 +I-)(cA8- CA)+M (cBs-cB) (3.23) 

If the interphase transport resistances are zero, then cAs = CA, 

OB 
s= 

CB, and is = T. and equation (3.23) becomes: 

t=T+ H(1 +4 )(CA - cA) + Hi-; (CB - OB) (3.24) 

The maximum value of t occurs when cA=0and cB =0 : - 

max =T+ H(1 + IL)CA + IcB (3.25) 

If the interphase transport resistances are not zero, then equation (3023) 

can be combined with a heat balance on the catalyst pellet giving 

t= T+Sh' CAH(1 +Iia) +ý ShB HHaC -H(1 +FLa)c 
Nu Nu' BA 

-H(1 + Iia ) cAs 
{Nut 

-1 CB CB 
Jc 

Nuý - ýý (3.26) 

This equation suffers from the same disadvantage as equation (3.18), 

namely that the surface concentrations are unknown. These would need to be 

evaluated numerically if ShJ 74- 1 and 
5 ShB It is, however, possible 

Nu' Nu' 

to calculate an upper bound on the temperature as: - 

tmax =T+S CAH(1 + fla +S 
ShB HHaCB 

Nu' 1ýü 
(3.27) 

For the combination of series and parallel reactions modified forms 

of equations (3.25) and (3.27) can be used to give a conservative estimate 

of the upper bound. They are respectively 

Max 
t=T+ HH*CA + HH2CB 

C and 
m 
t 

ax 'T+ 
Sh-(ý' C Aý# + ShB FiH6 
Nu NB 

(3.28) 

(3.29) 

where H* is the larger of (1 + H6) and Ha. In practice, products C and D 

are often the same, in which case I+ Iii =} and these values of t are 
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not conservative. 

The derivation of the equations in this section involved no assumptions 

about the pellet geometry, and the results therefore apply to particles of 

any shape. 

3.7 Discussion of the Results. 

Fig. 3.1 shows how the effectiveness factor varies with fluid temp- 

erature for two typical cases. In region (1) the reaction is kinetically 

controlled, and as the temperature is increased, the diffusional resistance 

within the pellet assumes increasing importance (2). For some ranges of 

parameters (i. e. at high rates of heat generation), it is possible for a 

region of multiple solutions to exist, in which case the solution in region 

(3) is metastable and cannot, therefore, be regarded as a solution of any 

practical importance. At high temperatures, and hence high values of the 

rate constant, it is possible for the reaction rate to be limited by film 

mass transfer as shown in region (4). In this region, the surface concentr- 

ation of reactant falls towards zero and the limiting value of the effective- 

ness factor may be obtained from equation (3.12) as 

1.5S9AÄ 

CA 1+ P3 CA 
(3.30) 

The numerical solution shows that the effectiveness factor does in fact 

approach very closely to this value in the mass transfer controlled region, 

and the maximum temperatures agree with the values predicted by the equations 

in section (3.6). These temperatures are not likely to be realised in 

practice, however, since the value of max is often so high that the 

assumption that radiation can be ignored no longer holds. Nevertheless, 

is useful since it would at least enable an approximate knowledge of tmax 

the importance of radiation to be assessed, or regions of undesirable 

operating conditions to be determined. 
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I Kinetic control 
2 Diffusion control 
3 Metastable steady state 
4 Film mass, transfer control 

---> T 

FIG. 3.1 - Schematic diagram showing typical relationships between 

effectiveness factor and fluid temperature for large and small 

heat effects. 

0.05 

t 
A 

. 045 

0 

0.04 
Y 

FIG. 3.2 Radial concentration and temperature profiles within the 

catalyst pellet. Data as given in Table 3.1. 



ni 1 .0 

AI 3"64-x108 sec'' el 2.09x108 

A2 7.99 x 106 " ý2 3.10 x 103 
A3 1 . 60 x 10s e3 1 . 39 x 103 

El 32 kcal/g. mole H 6.27 x 10-a 

Fý2 21 it Ha 0.695 
E3 18 it 4 1.695 
(-13H1 ) 367 of 4 A1 0.656 

(- ýa ) 255 " Fa/El 0.563 
(- 4. ii3 ) 622 Nu' i. 0 

DPA, DPB 3.66 x 10-3 cm8/sec ShA' 500 

kcA, kcB 4.36 cm/sec ShB 500 

Kp 5.04. x 10-4 cal/cm/sec/°K 
S 

j. 0 

h 1 .2x 10-3 cal/cma /sec/°K CA 1.0 

C 3.82 x 101 g. moles/cm3 C 0.0 
o 

b 0.21 cm ß 
(1 ) 6.27 x 10-6 

c 

Pýx(2) 1.0 g, 102 KT(2) 
ýs. s ? 

1.55 secs. 

e 0.4. 

Cp4` O. j77 cal/g/°K Kc 4.95 secs. 

TABLE 3.1 A typical set of data used in the solution of the 

catalyst pellet models. 

(i) Used in Chapter 4. 

(2) Used in Chapter 7. 



Typical concentration and temperature profiles are shown in Figure 

3.2 for the data in Table 3.1. As would be expected, the concentration 

of species A falls as the distance from the surface increases, whereas 

the concentration of B rises to a maximum value and then declines. The 

concentration of B falls since, in the centre of the pellet, species B is 

reacting to form C but is only being replenished slowly due to the low 

concentration of A. The temperature is almost constant throughout the 

pellet, due to the high interphase resistance to heat transfer, and this 

forms the basis of a simplified model which is discussed in the following 

chapter. 

The simplified model will be shown to give good agreement with the 

fully distributed model, and to be capable of solution many times faster. 

It is clearly unprofitable in terms of computer time to pursue an 

investigation of pellet performance using the more complex model, and this 

will therefore be deferred until Chapter 4 where the simplified model is 

developed. 



CHAPTER 14. 

A LUMPED THERMAL RESISTANCE APPROXIMATION TO THE FULLY 

DISTRIBUTED STEADY STATE MODEL OF THE CATALYST PELLET 

4.1 Introduction. 

The finite difference solution of the steady state pellet model 

described in the previous chapter is very time-consuming, requires an 

excessive amount of computer storage, and involves computational difficulties. 

The possibility of using an approximation to the fully distributed model is 

therefore very attractive and several alternatives have been used in the past. 

Most of the methods have been applied to systems in which the interphase 

resistances to heat and mass transfer were neglected (i. e. Shj = Sh B= 

Nu' 00 ). Schilson and Amundson21'''25 approximated the heat generation 

function by one or two straight lines, while Gunn 
65 

assumed that the temp- 

erature profile in the pellet could be represented by a straight line. 

Tinkler and Pigford66 allowed for small, but not negligible, temperature 

rises by using a perturbation series technique. Petersen29 developed an 

asymptotic method which applies when the reaction is confined to a region 

near the external surface of the catalyst pellet. 

It is clear that the methods used by Gunn and Tinkler and Pigford are 

only of limited applicability, since in general the heat effects may be 

large and the system is usually highly non-linear. The method of Schilson 

and Amundson involves iteration, and if the method is extended to include 

interphase transport resistances, another unknown quantity (i. e. the surface 

concentration) enters the problem. Petersen's asymptotic method, however, 

has been extended35 to include interphase resistances. For the A"--. -, ) B 

reaction the temperature and concentration within the pellet can be related 

in terms of the fluid conditions and the unknown surface concentration. 

(This has previously been shown - see equation 3.18). The surface conc- 

entration may then be obtained by iteration. The method is unsuitable for 
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either consecutive or parallel reactions. For consecutive reactions there 

are two unknown concentrations at the surface, and in the case of parallel 

reactions the concentration and temperature cannot be related since the 

heat generated at any point within the pellet will depend on the relative 

magnitudes of the rate constants. An alternative method of approximation 

has been suggested by Cresswell35 which is based on the magnitudes of the 

interphase transport resistances likely to arise in practice. For a typical 

case, Hutchings and Carberr 
34 

noted that: 

kcA 
--^- 1000 h 

DpA Kp 

This implies that most of the resistance to mass transfer is within the 

catalyst, whereas the heat transfer resistance is concentrated around the 

pellet, which is then almost isothermal. This has been shown in Figure 3.2. 

The value of the pellet conductivity, Kp, which was used, is at the lower 

end of the practical range of values67 and higher values would make the 

pellet even closer to isothermality. The effect of varying Kp is shown in 

Figure 4.1, from which it is apparent that the pellet is isothermal over the 

whole range of pellet conductivities likely to arise in practice. If the 

temperature within the catalyst pellet is constant and the reactions are 

assumed to be first order, then the differential equations describing mass 

transport within the pellet are linear and may be solved analytically. 

An additional assumption is therefore made, namely that the reactions 

are assumed to be first order with respect to the main reactant at each 

step, or are capable of being approximated by a first order expression over 

the range of conditions existing within a single catalyst pellet. 



0.06 

Fluid film temperature rise 

Ix Kp 

10 xKp 

t 
T 

"055º 

0-25 x 

T=O"0530 

The practical range of pellet 
conductivities. 

O"25 x KP 
ý, ý 

ý 

0.05 

v 

IoxKp 
Fluid film temperature rise 

T=0.0490 

O"5 
> Y 

Kp=5.04xIC4cc I/ 
cm. sec. OK 

i iI 
1"O 

FIG. 4.1. The effect of pellet conductivity on the temperature 

profile within the catalyst particle. Data as given 

in Table 3.1. 



4.2 The modified equations. 

For first order reactions, equations (3.7) and (3.8) become: 

d ý1 
ý": - (kl + ke* )cA 

1 -7 
Z' 

& c$ dc 
+Ä *c 

- 21Y ýY ýAý ýB -ý 

Subject to the boundary conditions 

do $ =0 aty=1 

ý~S, 2 (CA - CA ) 

} at y=0 

dy 
S2B (eB - CB, 

= ýi*2 where ki = Ais exp - 
Et. ý ý 

ý, 

(4.1 ) 

(1.. 2 ) 

(4.3) 

(4.1+) 

If the temperature throughout the pellet is constant, then ki* is 

constant, and the equations are linear and may be solved analytically. The 

solution gives the concentration profiles in terms of the unknown temp- 

erature t, which must be obtained by choosing a value to satisfy a heat 

balance on the pellet: - 

$ (ShÄ (1 -C 
ý* 

Ike* 
(1 ++k 

Ice* 
S 

Ai 

CBS 

A 

CB 
ýA)HB) -t+T= 0 

(4"5) 

where B= Bo x CA 

Ba = (- 4H1 )CaDpABg 

2bhE1 

CA °Ay = 0' CBS °By 
=0 

1+. 3 The analytic solution for the concentration profiles. 

Defining the variable: - 

ZA = CA (1 - Y) (4.6) 
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equation (lr.. 1) may be written as: - 

dazA` (kl + ltý* 
di -y 

ý zA 

subject to the boundary conditions 

zA =0 at y=I 

and 
dzA 

= 
Sh 

C-ZA -1ý 
d(1 - Y) 2AA2 

The general solution of equation (4.7) is 

zA =P sinh(ý+ (1 - y)) +Q cosh( ki + Ire* (1 - Yýý 

(4-7) 

(468) 

Q+-9) 

(4.10 ) 

where P and Q are arbitrary constants. Applying the boundary conditions 

(4.8) and (L.. 9), and rearranging, the solution for cA may be obtained: - 

0 
F1 F 

A=T, -- -D 

where F1 

ainh ( lT+ 4(1 -y)) 

sinh l7 + ka 

ý CA 

ShÄ 
-1+ kl'0 + 11 coth ki + k3* 

2 

(4. "11 ) 

(4+. 12 ) 

Defining the variable 

2B = 0B (1 - Y) (4-13) 

and substituting the r. h. s. of equation (1+. 11) for cA, equation (4. ß, ) becomes 

da ZB - 
Skä ZB o- 

ölti* Fi sinh ( lcl* + kfl*(1 - Y)) 
d(1 -y sinh ki + ko* 

subject to the boundary conditions 

zB =0 at y=1 

and dzB 
= 

Sh. j'3 CB ZB ( Shg 

d (i Y2BB2 

i4.14; 

(4.. 15) 

-1) (4.16) 



Equation (4.14) is a non-homogeneous linear differential equation. 

The solution may be obtained by adding a particular solution of the non- 

homogeneous equation to the general solution of the homogeneous part. The 

8 
particular solution may be obtained from standard mathematical tables0 

_ 
Ski* Fi sinh( 

ýlc, 4ý + ký.,; (1 Y)) ZB 
(k*1 +4- ö1sQ*) sinh 

(4.17) 

The general solution of the homogeneous equation is 

ZB sinh(J oxä (1 - y)) +Q cosh( aka*(1 - Y)) (4.18) 

Adding the right hand sides of equations (4.17) and (4.18), applying 

the boundary conditions (4.15) and (4.16), and rearranging, we obtain 

o (F3 sinh ( bka*(1 -Y)) 
- Fa 

sinh ( icl* +4 (1-Y)) 
(4-19) 

B- `i sine k, ý* sinh ki* + kß 

where F, 2 = 
S* Fl (1+. 20) 

k*1 + kfl* - 6I4 

Sh'B C+ Fa ((ShOB 
-1 ý+ J klý` + keý coth 

F4 
+ kaý`) 

F3 = `2 B2 t+. 21) 
(B- ý) + Slca* coth Ska# 

Although equation (1+. 19) represents the most general form for c8 

it is not suitable for handling all values of the system parameters, since 

the denominator of F2 will be zero if Sk; = 1c1* + Ica . By applying 

Lhopital's rule, equation (4.19) may be manipulated to give: 

F Binh ( ki + 1c (1 Y)) cosh (J4 + ka* (1-Y)) (4-23) cBý) -F4 
sieh ki + 40 osh kl + k3 * 

where Fa = 
Ski Fl 

(4. PJ+) 2 47 
+ lto"` tanh. 9 

+ kß 

and F 
'B CB + F4 (V + ki + kß"` tann kl"` + ltß"`) 

s ' (S2B 
-1) + #+koýcoth ki +1ýý` 

(4.2J+) 
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It may be seen that 

n 

°A = F1 
S 

cB = F3 - F2 when kl* + 

or c� = Fx - F. when k. '` + ký = 80 
s 

(4.25) 

(4.26 ) 

(4.27) 

These expressions may now be substituted in equation (1+. 5), the overall 

heat balance on the pellet. The root of this equation can be found by the 

Newton-Raphson procedure or by the method of false position. The different- 

iation of equation (4.5) is rather tedious so the latter method would be 

preferable. However, the derivative of this equation is required for the 

work on stability (see Appendix 5), and it is therefore convenient to use 

the Newton-Raphson method, which in general has better convergence 

characteristics than the method of false position. 

4.4 Comparison of models of the catalyst pellet. 

Figures 4.2 to 4.5 show how the lumped thermal resistance model, and 

two othor models which have been commonly used in the past, compare with 

the fully distributed model described in the previous chapter. These 

graphs show the effect of fluid temperature on the effectiveness factor 

and selectivity. The first two are drawn for CB =0 and the second two 

for CB = J. 

It is apparent that the curves, numbered (i) on the graphs, which 

correspond to overall isothermality, and the curves, numbered (2), which 

correspond to no intorphase heat or mass transfer resistances (Nu' _ Shy' 

ShB = 00) show completely different characteristics from curves (4) which 

are obtained from the solution of the fully distributed model. The curves 

numbered (3), however, show very close agreement with (4) over the whole 

range of regimes from kinetic control to film mass transfer control. 
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Not only is the lumped thermal resistance model simple to use, in that 

there are no numerical difficulties, but the method also has the additional 

advantages of being capable of solution in a very short time (about one 

fortieth of the time required for the fully distributed model), and of 

requiring only a small amount of computer storage. 

(Note: There may be no apparent justification for including the overall 

isothermal model (curves (1)) in a critical comparison with other models, 

since it has never been directly stated that this model could be used for 

exothermic systems. Nevertheless, results for isothermal models have been 

quoted68 in justifying the conclusions drarm from kinetic experiments and 

these curves are therefore included for the sake of completeness. Models 

corresponding to curves (2) have been used in the majority of published 

literature. ) 

4.5 The influence of transport resistances on the behaviour of the catalyst 
eQllet. 

When a reaction is occurring within a catalyst pellet, the reactant 

must be replenished by transfer from the surrounding fluid. This process 

occurs by diffusion across the boundary layer and through the catalyst pores, 

and can only occur in the presence of a concentration gradient. The conc- 

entration within the pellet is therefore always lower than in the fluid 

phase and this tends to cause the reaction rate to fall below the value 

calculated at the fluid conditions. At low temperatures (and hence low 

reaction rates) the decrease in concentration is small, but as the temp- 

erature increases, so does the concentration gradient and the actual reaction 

rate tends to deviate from the kinetic rate by an increasing amount. In 

Figure 4.6, this effect causes the kinetic or quasi-homogeneous curve (1) 

to change to a position corresponding to curve (2). (As is normal in work 

of this kind, the actual rate is most conveniently expressed using the 

effectiveness factor (11) which is the ratio of the actual rate to the 

-'5- 



f. O 

A 

Effect of 

mass transfer 

resistances 

Effect of heat 

transfer resistance 

(1)9(1A) Quasi-homogeneous model 
(2), (2A) Model including mass transfer effects 

(-Ii) -0. 
(3), (3A), (3B) Model including heat and mass transfer 

effects 

a5 

O"2 

0.03 

i"o 

Effect of - 

heat transfer 
/\ 

o"i 004 

3Q 
I 

Effect of 
mass transfer 

resistances 

3 

2 

0.02 

t-T 

0-01 

0"O . 
0"05 0.06 
--; T 

FIG. 4.6. An example of the influence of heat and mass transfer effects 

on the behaviour of the pellet at various fluid temperatures. 

Data as given in Table 3.1 . 

resistance 



kinetic rate - see Equation 3.12. ) 

In the case of exothermic reactions, a temperature difference must be 

set up so that heat can be removed from the pellet. This increase in temp- 

erature, to a value above that existing in the fluid phase, tends to cause 

the reaction rate to rise above the value calculated at the fluid conditions. 

These concentration and temperature effects therefore act in opposite 

directions and it is found that either may predominate, depending on the 

parameters in the system. In Figure 4.6 for example the temperature effects 

cause 'curve (2) to change to a value corresponding to curve (3). 

The selectivity for species B is decreased by the presence of mass 

transfer resistances, since these will hinder the escape of B into the 

surrounding fluid and some will then be destroyed by reaction. This causes 

curve (1A) in Figure 4.6 to change to (2A). The effect of the heat transfer 

resistance on the selectivity is not quite as straightforward, however, 

since even the quasihomogeneous selectivity may increase or decrease as the 

temperature changes, depending on the relative magnitudes of the activation 

energies for the different reaction steps. The quasibomogeneous selectivity 

is defined by the expression 

Y" 
_ 

ki CA - kal CB 

(kl + k3, ) CA 

If the values of the activation energies are such that an increase in 

temperature tends to increase the quasihomogeneous selectivity (as is the 

case in Figure L.. 6), then the inclusion of a heat transfer effect will also 

increase the selectivity over some of the temperature range. Beyond a 

certain temperature, however, (corresponding to strong diffusion influence, 

or external mass transfer control), the thermal resistance reduces the 

selectivity. In this region the increasing temperature does not provide 

any more of species B since A is already reacting as fast as it can be 

supplied across the surrounding fluid film, but the rate constant for the 
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consumption of B continues to rise and less can therefore escape from the 

catalyst pellet before reacting to give the undesirable product C. This is 

illustrated by curve (3A) in Figure 4.6. 

-If the values of the activation energies are such that an increase in 

temperature reduces the quasihomogeneous selectivity, then inclusion of the 

heat transfer' resistance will always reduce the selectivity below the 

isothermal value. 

As would be expected, the temperature difference between the pellet 

and surrounding fluid increases as the fluid temperature increases. This 

is shown by line (3B) of Figure 4.6. It is apparent that in the region of 

maximum selectivity the pellet temperature is very sensitive to changes in 

fluid temperature. In practice, them will often be a constraint on the 

maximum permissible pellet temperature and this may limit the range of 

operating conditions and the maximum selectivity that can be obtained in 

specific systems. 

4.. 6 Tho influence of some of the parameters of the model. 

In models such as the one considered here, it is difficult to draw 

general conclusions about how the system behaves; since many of the effects 

are coupled together, and they may operate in opposite directions. The 

highly non-linear nature of the kinetic rate expressions, as given by the 

Arrhenius type of equation, means that the dominant effects may change 

rapidly with small changes in the system parameters, and it is therefore 

hazardous to attempt to extrapolate results, and in some cases it may even 

be dangerous to interpolate. However, since there are so many parameters 

involved in the model, it is essential to attempt to examine the behaviour 

of the system in some methodical way which does not involve covering all 

possible sets of values of the dimensionless groups. This examination is 

best carried out using the 'case study' approach, where a realistic set of 

parameters is chosen and the behaviour predicted by the model is examined 
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as one or more dimensionless group is varied at a time. The advantage of 

this approach is that only a finite amount of computing is necessary, and 

provided that care is taken, both in the selection of the data and in 

physical consideration of the system, it should be possible to demonstrate 

most of the phenomena which could occur if all possible sets of data were 

to be run. Although it is normal to investigate the influence of state 

variables and physical parameters separately, this is not convenient for 

the present study, since in particular B is a combination of a state 

variable and physical parameters. 

Figure 4.7 shows the effect of varying parameter B when CB = 0. Now 

B_ 
(- 4IL) CfA DpA Rg 

, and since all its constituents, besides CfA and 
2bhE, 

h, occur in other dimensionless groups, changing B alone amounts to examining- 

the effect of 
Pf 

. In physical terms, this moans that the same pellet 

temperature, t, would result if either the amount of heat available were 

doubled or if the resistance to heat escaping (i. e. 
h) doubled. 

The graph shows that over some parts of the range of B, the pellet 

performance is very sensitive to changes in any of the parameters of the 

system. At high values of B there is also a tendency for multiple solutions 

of the pellet model to exist over certain ranges of fluid temperature. These 

effects are undesirable at any point in a reactor since if multiple steady 

states exist, a steady state reactor model is insufficient to predict the 

performance of the reactor, which would then also depend upon the history 

of each of the catalyst pellets. This problem is discussed in more detail 

in Chapter 9. The existence of multiple solutions and regions of high 

sensitivity are clearly due to the increasing difference between the temp- 

eratures of pellet and fluid, caused by increasing CfA or decreasing h, 

since in an isothermal system the effectiveness factor is independent of 

concentration. 
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FIG. 4.7. The effect of the value of parameter B on the 

effectiveness factor (j) and selectivity (') at various 

fluid temperatures. Data as given in Table 3.1 . 



In the kinetically controlled region (i. e. at low fluid temperatures) 

a high value of selectivity is favoured by increasing the temperature, and 

therefore increases as parameter B increases. In the higher range of fluid 

temperatures, whore the conversion rate of species A is controlled by 

interphase mass transfer limitations, changes in the pellet temperature 

have no effect on the rate at which A is consumed, whereas the rate constant 

for the consumption of B rises with increasing pellet temperature. This 

means that a decreasing proportion of B then manages to escape into the 

fluid phase before further reaction occurs giving the undesired product C. 

The selectivity therefore falls as the value of B increases. 

Since, over much of the range of T, the behaviour of the pellet is 

sd sensitive to B (and hence to h), it appears to be necessary to obtain 

the value of the heat transfer coefficient to a much better accuracy than 

is generally available from correlations in the literature. Whether this 

is in fact necessary will depend upon the conditions existing in the reactor 

and on the part of the curve on which these conditions lie. Clearly under 

conditions of kinetic or mild diffusion control the value of I is not very 

sensitive to B and the normal correlations may be sufficiently accurate. 

This aspect will be discussed in the chapter on the one-dimensional steady 

state reactor model. 

Figure 1+. 8 shows the effect of an increase in the concentration of 

species B in the fluid phase. If the reaction B---) C was isothermal, 

the effectiveness factor would be independent of CB, and any change in q 

which does occur in the non-isothermal case is therefore initiated by the 

additional heat produced by this reaction. The heat generated by this 

reaction would, in fact, increase the heat generated by all the reactions 

since each of the reaction rates would be increased by the higher pellet 

temperature. It can be seen from the graph that increasing CB raises the 

sensitivity of the system and also makes the existence of a multiple solution 
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region more likely. 

'Whereas the effectiveness factor is exclusively a reflection of the 

heterogeneous effects in the system, the selectivity is not, since its value 

arises also as a consequence of the kinetic and concentration effects in the 

system. In Figure 4.8 the broken lines for Y show these quasi-homogeneous 

effects, and the continuous lines are drawn for the heterogeneous model. 

The distance between the broken and continuous lines is therefore a measure 

of the effect of heterogeneity on the selectivity. As was previously the 

case, the selectivity is adversely affected by the heterogeneous effects 

and this becomes increasingly so as the fluid temperature rises. In the quasi- 

homogeneous case, high concentration of B leads to poor selectivity and this 

is also true in heterogeneous systems. Moreover, increasing concentration 

of B lead to higher temperature differences across the fluid film at the 

pellet surface, and interphase mass transfer control occurs at decreasing 

fluid temperatures, again resulting in poor selectivity. 

The effect of the external film resistances to mass transfer (i. e. 

SB) is illustrated in Figure 4.9. As would be expected, the lower 

the value of ShA and Sh ý, the lower the temperature at which they become 

important. In the mass transfer controlled region, the quantity of heat 

generated within the catalyst pellet is increased by increasing the Sherwood 

numbers, and this makes the pellet less sensitive to changes in the fluid 

temperature. As a result, high values of Sh'A, Sh'B stabilise the film mass 

transfer controlled region, which can then exist at lower fluid temperatures. 

This also has the effect of making the existence of multiple steady states 

more likely. The effect of Sh'A and Sh'B on the selectivity appears to be 

small unless the values are very low in which case T is decreased due to 

the difficulty which species B has in escaping into the fluid phase before 

reacting along the path B .4 Co 
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Figure 1. j 0 shows the influence of the value of , which is the ratio 

DpA of the intraparticle diffusivities 

DpB 
. The variation of 6 from a value 

of unity would normally be a consequence of the relative molecular weights 

of reactant and product. The primary effect of a change in $ is to change 

the selectivity, but since this also changes the amount of heat produced, 

the effectiveness factor also changes slightly. In practice it seems unlikely 

that Ö would vary from 1.0 by an amount large enough to cause any significant 

variations in the behaviour of the catalyst pellet. 

4.7 Conclusions. 

A method has been described for reducing the complexity of the single 

pellet model of the catalyst pellet to an extent which makes it feasible to 

incorporate it into a model of the fixed bed reactor. The simplifications 

apply to reactions which can be represented by first order rate expressions 

and arise out of the high interphase resistance to heat transfer which occurs 

in real systems. This enables the catalyst pellet to be treated as isothermal, 

with the temperature rise being concentrated across the fluid film surrounding 

the pellet. Agreement with the fully distributed model has been shown to be 

good over all controlling regimes, and there appear to be no numerical 

-difficulties. 

The main effects occurring in the system have been examined, and the 

sensitivity of the model to some of the parameters investigated. The model 

exhibits high parametric sensitivity over some ranges of conditions, and this 

is usually found to be associated with a change in the controlling mechanism. 

Parametric sensitivity is commonly encountered with systems of this type, 

and implies that the availability of accurate physical and chemical data may 

be a critical factor in the successful application of the mathematical model. 

This aspect of the problem cannot be examined in isolation, but is best studied 

when the pellet model is used within a model of the packed bed reactor. It is 

then possible to see what interaction there is in the system, and whether 

operating conditions are such that accurate data for the pellet model is essential. 
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CHAPTER 5 

A 770-DI1 NSIONAL STEADY STATE MODEL OF THE P. EACTOR 

5.1 Introduction. 

The amount of published work on mathematical modelling of fixed bed 

catalytic reactors has been steadily increasing in recent years. The models 

which have been proposed may conveniently be divided into two groups: those 

models which include intraparticle effects, known as heterogeneous models, 

and those which do not. The latter type of model is commonly referred to 

as quasi-homogeneous, and this name will be used to cover true homogeneous 

systems and heterogeneous systems which are treated as homogeneous. In 

general the results obtained from quasi-homogeneous models may easily be 

predicted from heterogeneous models by letting the values of the effectiveness 

factor and selectivity approach their values under kinetic control: - 

I=1, T _ 
02 CAll _ ýa CBzla 

ýfis Cri, + gä CA s 

It is therefore unnecessary to consider quasi--homogeneous reactors as 

a class on their own, although in practice it would be preferable to 

formulate as a quasi-homogeneous model any system which behaves in this way, 

since the computer storage requirements and solution time are less than those 

required for the heterogeneous model. Many catalytic systems of industrial 

importance, however, do involve transport effects which cause appreciable 

alteration to the reaction rate under normal operating conditions, and 

heterogeneous models are therefore essential. 

The heterogeneous models which have been considered in the literature 

have been expressed in two forms: continuum models, which have been the most 

widely used, and finite stage models, also referred to as mixing cell models. 

If radial temperature gradients occur across the reactor tube, a two- 

dimensional model is necessary which must be solved either by finite 
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difference methods, or by applying model reduction techniques. Finite stage 

models have been proposed by Lapidus and co-workers11,15,16 and are essentially 

similar to the finite difference representation of the continuum model, 

except that the step size is the pellet diameter, whereas for continuum 

models the step size is reduced until the solution converges to a constant 

result. 

For the following work, a continuum model is proposed which includes 

heat and mass transport in the radial direction as well as the intraparticle 

effects which have been discussed in the previous chapters. 

5.2 Formulation of the equations. 

The heat and mass balances at a point within the bed are described by 

the equations: - 

DfA x ýx 
(x 

aXf 
)_ uä 11 _(1 e e) ýý CfÄ 1+ kg CfÄ )'ý =0 

(5"1) 

DfB 1. ý(x Xf )- u üif + 
eý (k1 CfA 1+ k3 CfÄ s)ý 0 

x ýx a (5.2) 

Kf 1. 
-3- 

(X Tf, )-? uc 
Tf 

+ 
(1 -e) Jh (T - Tf) =0 (5.3) 

xý ti 3X p al ebs 

subject to the boundary conditions 

Cf 
= 

Cf$ 
DZ- 2x 

Cf c1 Cf TA -A - axB 

Tf 
3X 

=o 

=0 at x= 0p 1>0 

ITf u 
-3x 

+e Iif 
(Tf - To) =0 

and the initial conditions: 

I 
t 

(5"4) 

at x=R, 1>0 (5.5) 

CfA = CfA(r), CfB = CfB(r) and Tf = Tf(r) at 1=0,0 ý. X <1 

These equations are most conveniently expressed in dimensionless form as 

follows: - 
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raý 
+rä 

rA 
- Gl 

ý- 
G3. Ga ý( fýl Cýý + ýa CÄ 3ý_0 

atr=1, z? 0 

bar$+1 
'ý - G4 

ý+G 
Gad ýiaCý + ýs Gý 0 (5"7) 

ýr'' rý ýZ 1----ý( AA 

'ä 2T 
a1-2 + rýr" 

G3 
aZ+ 

G3G4 (t " T) - o (5.8) 

the boundary conditions being 

r-iý 
= 

ärß 
= 

är 
=0 at r=0, z>0 

ý= 

dx 
+ rr17(T-Tý)=0 

The inlet conditions are I 
CA = CA(r), CB = CB(r) and T= T(r) at z=0,0 -< r` 

The additiornal dimensionless 

1 

(5.6) 

(5.9) 

Q) i5"1 

quantities which have been introduced are 

defined as foli osrs: - 

r /L =X 
1 /R z= 

G_ _ 
Ra u=ý Pe__ G., _ 

ýý 'eýL DpA 
-1 T)f T. 7-hT. - "M 

--A- _ý_ -- V ue 

G3 = -- ý -nu 
* 

nR? 
pev G4 = 

(i -e 3hL 

KfL LDl' n beue C 

ý 
ý 

Nu = w 
RU 
eKf = 

RUPeH 

2b e üeCp 

T=TcFg Pe = 
2bu Pe _ 

2bu Q Cp 
0 El M- DfA H kf 

4b 

The groups G1 , G3 and Nuw have been. expressed above in two forms. In 

general they are most conveniently evaluated in the second of the forms, using 

the Peclet numbers for radial heat and mass transfer, since the radial heat 

and mass transfer coefficients are related to the velocity in such a way that 

PeM and PeH remain constant78 having a value of approximately JO. Moreover 



it may also be assumed that the radial diffusivities are equal for each 

component in the fluid phase, making A=1. This occurs because dispersion 

is caused mainly by mechanical disturbance of the streamlines under conditions 

of turbulent flow. 

5.3 Solution of the equations. 

The solution of the equations may be obtained using an iterative Crank- 

Nicholson method. The finite difference approximation to the differential 

equations is described in detail in Appendix 2. The solution is accomplished 

as follows. 

1" Assume radial profiles for CA, CB and T at the first (or next) axial 

position. 

2. Using these values, solve the single pellet model at each node of the 

finite difference network to obtain 71, '' and t. 

3. Use these values to evaluate the non-inear terms in the differential 

equations (5.6) to (5.8) at each node. 

4.. Solve the algebraic equations for CA, CB and T consecutively using the 

method described in Appendix 2. 

5. Testfor convergence by comparing values with those used in step (2). 

If unsatisfactory, repeat from step (2) using the new values of the state 

variables. 

6. If satisfactory repeat from stop (1) while z<J. 

No difficulties are usually encountered in obtaining the solution in this 

way. Stop (i) of the above scheme is carried out by projecting the values of 

the state variables from the previous two axial positions. (This cannot be 

done for the first step in the reactor) in which case the assumed values are 

those at the inlet. ) In this way, a fairly good initial estimate is obtained, 

and only one iteration is required through most of the reactor, although in 

the region of the hot spot this may rise to between two and five iterations. 

-55- 



Tests on typical sets of data indicated that 200 axial and 20 radial 

steps are sufficient to ensure convergence, and. for this size of network, 

a solution time of 10 - 15 minutes on an ICL KDF9 computer is to be 

expected. 

5.4 Discussion of the Results. 

In the next chapter, a simpler model of the reactor is proposed, for 

which the computing time is considerably less than for the present two- 

dimensional model. It is therefore more efficient, in terms of computer 

time, to carry out most of the examination of reactor performance using the 

simpler model, which is one-dimensional and works in terms of radial mean 

values of the state variables. This model is unable to predict anything 

about the radial variations in concentration, effectiveness factor and so 

on, but the model does depend upon an assumed radial temperature profile. 

In this section, therefore, discussion of the results will be confined to 

examination of features which relate specifically to the radial direction, 

and a consideration of other phenomena is included in Chapter 6. 

For the reasons discussed in Chapter 4 with reference to the single 

pellet model, the general characteristics of the system are best examined 

by considering a specific set of data and using this to assess the importance 

of each of the parameters. This basic set of, data is given in Table 5.1. 

The solution takes the form shown in Figures 5.1 to 5.3, where the radial 

concentration and temperature profiles have been plotted at various long- 

itudinal positions. It is apparent that the concentration gradients in the 

radial direction are fairly mild and that radial mixing is sufficiently 

rapid to keep the concentration difference across the tube small. In the 

case of temperature, however, the profile is often steep. This is caused 

by the removal of heat through the wall of the reactor, and by the non- 

linear nature of the chemical rate expression which tends to increase the 
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fluid temperature at points where it is already high. The presence of 

steep thermal gradients implies that a simplified model which takes no 

account of them is unlikely to be satisfactory. The difficulty may be 

overcome by assuming an algebraic form for the temperature profile, which 

leads to a modification of the wall Nusselt number, as will be seen in 

section 6.3. 

Figure 5.4 shows a comparison of the concentration and temperature 

profiles predicted by the heterogeneous and quasi-homogeneous models. The 

profiles obtained from the two models are completely different, and quasi- 

homogeneous model predicting temperature runaway, while the heterogeneous 

results show no sign of such instability. This may be explained by 

examining Figures 5,5 and 5.6 which show the radial profiles of effective- 

ness factor and selectivity at various positions in the reactor. The values 

of the effectiveness factor show that the diffusional resistances to mass 

transfer within the catalyst pellet cause a reduction in the actual rate of 

reaction to a value well below the kinetic rate. The effectiveness factor 

becomes oven smaller as the fluid temperature rises since the relative 

importance of the diffusional resistance increases as the kinetic rate 

increases. Thus diffusion limits the rate at which reactant is consumed 

and also the rate at which heat is produced, whereas in the quasi-homogeneous 

case there is no such limitation and the predictions therefore diverge at an 

increasing rate as the reaction proceeds. 

From Figure 5.5 it may be seen that the effectiveness factor begins to 

rise again after the temperature pea's has been passed, and if the reactor 

were long enough, it would eventually rise to a constant value across the 

radius. This value would be that for an isothermal system existing at the 

coolant temperature, which in the case considered here is such that I= 

0. ä4. This can be seen from Figuro 4.7 for the curve where the concentration 

tends to zero (i. e. B --) 0). 
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Al 3.62 x 103 3ec-1 e1 2.09 x 105 

A2 7.99x106 sec 1 ea 3.10x103 

A3 1 . 60 x 106 sec-1 A3 1 . 39 x 109 
E1 32 kcal/g. mole B 5.01 x 10-5 o 
E2 21 kcal/g. mole fla 0.695 

E3 13 kcal/g. mole Ii5 1.695 

(- G 1-ý ) 367 kcal/g. mole 
Ea ý 0.656 

(-4, -% Hs ) 255 kcal/g. mole re 0.563 

(- dI-is ) 622 kcal/g. mole Sh'A 500 

DpA, DpB 3.66 x 10'3 cm3/sec Sh'B 500 

Nu' 1.0 

k, k 
° tý. 36 cm/sec 

s 1.0 
B cA L1 1.0 

h 1 .2x 10"9 cal/cmasec°XZ G1 0.84. 

b 0.21 cm G3 0.09x+9 

L 125 cm ' 
° 

ý 
Kp K 5.014. X 10"4 cal/cm/sec/ G3 0.84. 

u 
i 

164 cm/sec 1 G4 76.85 

R 2.1 cm 1 rtuw 1 2.0 

U 6.7 x 10' cal/cm2/sec/°K CA (inlet) 1.0 

e 0.4 CB (inlet) 0.0 

C 0.25 cal/g/°K T (inlet) 0.0408 
p 

C 3.05 x 10, g. moles/cm9 T 0.0408 
o o 

Tf (inlet) 660 °K * (1 ) 
Nu 1.33 

° 
w 

To 660 K (2) 
PeH, Pet3 10 IiT 1.55 secs. 

P* (2) 
1.0 g/cm9 G5 0.64. secs. 

C 0 . }77 cal/g/°K Gß 0.64. secs. p 

TABLE 5.1 A typical set of data used in the solution of the reactor 

models. 
(1) Used in Chapter 6 

(2) Used in Chapter 8. 

-58- 



I 
r. 
0 
Y, +3 i 

s`° .r +3 
0a E7 
vE 

ýä 

i+a 
f* 4 
0 

0) s + 

OR 
e 

ý 

UA 

N 
G. 



O"9 
z-O-O 

ý=0.7 
O 05 1.0 

r 
FIG. 5.5 Radial profiles of the effectiveness factor at various 

axial positions. Data as given in Table 5.1. 
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FIG. 5.6 Radial profiles of selectivity at various axial positions. 

Data as given in Table 5.1. 



Figure 5.6 shows the radial profiles of selectivity at various long- 

itudinal positions. Near the beginning of the reactor the selectivity is 

higher on the tube axis, and this is to be expected in the present system, 

since it has already been shown in Figure 4.7 that high temperature tends 

to increase the selectivity under conditions of kinetic or diffusion control. 

It has also boon shown in Figure 4.8, however, that a high concentration of 

species B lowers the selectivity. (This is also apparent from kinetic 

considerations. ) The effects of variations in T and CB therefore act in 

opposite directions and gradually the effect of CB increasing becomes 

dominant. At some point in the reactor this causes the selectivity to 

become negative and species B begins to be consumed faster than it is 

produced. This situation would clearly be undesirable if B was the desired 

product, and in practice the reactor would terminate at a point corresponding 

to z 0.7 for the given data. 

The effect of radial mixing is shown in Figure 5.7. For fixed bed 

reactors the value of the radial Peclet numbers for heat and mass transfer 

is normally approximately J0, with the possible range being 8 ---911. 

(Perfect mixing occurs when PeH = PeM = 0). The results show that the 

performance of the reactor is relatively insensitive to the Peclet number 

within the practical range, and the assumed value of 10 is therefore likely 

to give results well within the accuracy to be expected from other data. 

Letting PeH = PeM _. 0 effectively reduces the model to a one-dimensional 

form and this results in profiles which differ considerably from the curve 

for PeH = PO11 = 10. The equivalent one-dimensional model is based on the 

assumption of flat radial concentration and temperature profiles, and is 

clearly inappropriate for systems where heat is removed through the reactor 

wall. An alternative to this assumption of flat profiles based on a 

modified wall heat transfer coefficient is discussed in the following chapter. 

-59- 



. -: 

aiý a 
a 
x 

aý a 
r 
ý a 

ý 

14 

t* 
1c; 



5.5 Conclusions. 

A model of the fixed bed catalytic reactor has been developed which 

takes account of radial and longitudinal gradients in the fluid phase, and 

radial gradients within the catalyst pellet. The parameters of the model 

are physical, chemical and thermodynamic quantities which are readily 

identifiable and can be obtained from simple experiments or correlations 

in the literature. For a finite difference network with 200 steps in the 

axial direction and 20 in the radial direction, about 15 minutes computing 

time is required on an ICL KDF9 computer. For all sets of data run for the 

heterogeneous system, the numerj'cal procedure was found to converge quickly, 

although for the quasi-homogeneous reactor difficulties can be encountered 

in cases whare temperature runaway occurs. 

For many purposes, a computing time of 15 minutes is quite unacceptable, 

particularly for optimisation or control studios. Also, since dynamic models 

tend to involve a series of pseudo-steady state solutions, the dynamic model 

based on this steady state version would require a prohibitive amount of 

time for solution, as 15 minutes computing would be required for each time 

step. An alternative model is required which is capable of solution in a 

considerably shorter time than the present two-dimensional model. Preliminary 

rune on the latter model have shown that neither an assumption öf quasi- 

homogeneity nor one of perfect radial mixing leads to results which are 

sufficiently close to those from the complex model to enable these 

assumptions to be used as the basis of a simpler model. This is in agree- 

ment with previous published work. The main difficulty is apparently caused 

by the pronounced thermal gradients which occur across the reactor radius, 

and it appears that any simplification will need to take account of these. 



CHAPTER 6 

A ONE-DIMENSIONAL STEADY STATE MODEL OF THE REACTOR 

6.1 Introduction. 

While some mathematical modelling of fixed bed catalytic reactors 

has been carried out as an aid to the experimentalist working on kinetic 

problems, the main attraction has been the possibility of using the models 

in the design, optimisation and control of reactors. In the previous chapter a 

two-dimensional model of the reactor was described, which required about 15 

minutes for solution on an ICL KDF9 digital computer. This is clearly 

excessive for arty of the uses outlined above, except perhaps for a design 

problem which involved no optimisation. It is therefore desirable to develop 

either a more rapid method of computation or a simpler model of the reactor. 

More efficient computing techniques, while always desirable, are unlikely to 

reduce the computing time sufficiently, and attention must, therefore, be 

given mainly to developing an alternative mathematical model. Before 

attempting this development, however, it is worthwhile setting down some of 

the desired features to be aimed for in the new model. 

In many catalytic systems there are constraints. These are often 

imposed for exampleby the explosive limit on the concentration of reactant, 

or by the maximum operating temperature for the catalyst, above which do- 

activation occurs. Another constraint might be that fluid conditions, which 

lead to multiple solutions of the single pellet model, must be avoided. 

Although concentration restrictions are usually easy to overcome, because 

they can be applied to the inlet conditions, the constraints involving 

temperature are internal, as the maximum temperature generally occurs between 

the inlet and outlet of the reactor. The main implication of this is that a 

"black box" type of model is basically unsuitable for describing the 

behaviour of the reactor, sinco it is unable to predict any of the distributed 



characteristics of the system. The other main disadvantage of this typo 

of model is that all the parameters must be determined by moans of curve- 

fitting techniques, using the results obtained from experiments or computed 

from the two-dimensional model. Because of the highly non-linear nature of 

the system, these parameters will only apply over a narrow range of 

conditions and it would, therefore, be necessary to switch from one parameter 

set to another, as the operating conditions change. A major advantage of 

the mechanistic type of model over the black box model is that it is much 

easier to obtain a physical understanding of the way the system behaves and 

this is likely to make further simplification of the model easier. 

The question of how accurate the model should be depends very much on 

the use to which the results will be put, and on the accuracy of the available 

data. Probably the best approach is to develop a model and then to assess 

any limitations on its use, or to suggest possible ways of using it to its 

best advantage in any given situation. This aspect will be considered in 

more detail later in the chapter. 

At this point it is worth considering the general characteristics upon 

which selection of the appropriate model might depend. Clearly, it is not 

profitable to employ a mathematical model which is more elaborate than is 

necessary to satisfy the minimum requirements of accuracy and description 

in any given situation. Two considerations are relevant here. The first of 

these is the discrepancy between solutions obtained from different models 

of the system. For example, where only longitudinal gradients of conc- 

entration and temperature arc considered (in the steady state), the system 

will be represented by a set of ordinary differential equations. Whore 

radial gradients are included, partial differencial equations result. 

However if the results do not differ significantly over the practical range 

of operating conditions, then the simpler model should be used, provided 

that the necessary parameters can be satisfactorily predicted. The second 
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consideration is the need to relate the parameters of the model to 

physically identifiable processes. This is usually possible in complex 

models, but in the case of simpler models, the parameters may not be readily 

identifiable. 

While approximations have often been made, they tend to be the result 

of mathematical convenience. Froment2 has demonstrated, by defining a 

suitable wall heat transfer coefficient, that the difference between the 

one and two-dimensional quasi-homogeneous models is small over a wide range 

of operating conditions, but that the one-dimensional model is inadequate 

in regions near temperature runaway. Physical interpretation of models is 

of particular importance and McGreavy and Cresswell14 have shown that the 

major differences between models are between quasi-homogeneous and hetero- 

geneous, rather than between one and two-dimensional models. (Note: The 

distinction here is essentially one of degree. Clearly an fixed bed reactors 

are heterogeneous. When the conditions inside the catalyst pellet are assumed 

not to differ significantly from those in the fluid phase, it is normal to 

treat each element of reactor volume as quasi-homogeneous. However when 

there are appreciable differences between conditions in the bulk fluid and 

catalyst pellet and these are included in the model, the term heterogeneous 

is used. ) 

If the reactor behaves in a quasi-homogeneous manner, it is possible to 

make considerable savings in the computing time required for solution of the 

model, since it is then unnecessary to solve the pellet equations and the 

selectivity can be obtained explicitly. However, this simplification cannot 

be used as a general method of approach, as can be seen from Figure 5.4, 

where the profiles of concentration and temperature predicted by the quasi- 

homogeneous and heterogeneous models are compared for a typical sot of data. 

Since it is essential to retain the description of the reactor in the 

longitudinal direction, the simplified model which is proposed is one- 
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dimensional and takes account of the radial temperature profile by assuming 

an algebraic form for it. This results in a modification of the Nussalt 

number for heat transfer at the wall and the heat removed through the rail 

can than be expressed in terms of an overall driving force based on the 

radial mean temperature. 

6.2 Formulation of the equations. 

Using the same nomenclature as for the two-dimensional model, the 

equations become: - 

dC 
+ G, 01 ch+ 03 GA% ý =0 

ý-ý Gý'ý f (ýli Cý+ Y9a CAý )=0 

W 
dz - Ga (t - T) +2 

Nu 
G9 

(T - Tc )=0 

subject to the initial conditions 

T-Tz=0CA- CAz=0 CB _ CBz=O 

(6. i) 

(6.2) 

(6.3) 

where Nu* 
T 

is an effective overall wall Nussolt number which enables the 

heat removed to be calculated from the mean fluid temperature. The way in 

which Nu* 
w 

is obtained will be discussed in the next section. 

It should be noted that the state variables occurring in equations 

(6. j) - (6.3) are all radial moan values. The reaction rates are also 

radial moan values and this is likely to raise problems of evaluation, since 

for non-linear functions the radial moan value is not the same as the value 

at the radial mean conditions. Methods of tackling this difficulty are 

discussed later in the chapter, but as an initial policy, the rate may be 

evaluated by solving the catalyst pellet model at the radial mean conditions. 

This is clearly the most desirable method of evaluating the mean rate and is 

the one which has been used exclusively in the literature. 



6.3 Solution of the equations. 

Equations (6.1) to (6.3) all have tho form 

af 
+ Rif + R" 

=0 az 

In finite difference form this becomes 

- xf 
k + (1 - Q) x R' xf + (i - Q) xR" + QR'f + QR" =0 

where Q is a constant 0<Q<, 

and the prefix 'x' denotes the value of a variable at the previous axial 

position, i. e. it is known. 

In this equation, the unknowns are f, R' and R". Solution is 

accomplished by working from the inlet to the outlet as follows. 

1) 

2) 

3) 

4) 

Assume values of f for fä CA, CB, T at the first (or next) position 
where they are unknown. 

Use these values to solve the catalyst pellet model (giving 

* and t) and thus evaluate the non-linear terms. 

Calculate the new values of CA, CB and T. 

Test against the previous value (used at step (2)) for satisfactory 

convergence. If unsatisfactory, repeat from step (2). 

5) If satisfactory and z<1, repeat from step (14). 

It can be seen from section 5.3 that the method of solution is basically 

the same as for the two-dimensional model, but no simultaneous equations 

arise from radial derivatives and the solution is therefore more straight- 

forward. As for the two-dimensional case, the initial assumed values of 

the state variables used in step (1) were obtained by extrapolation from 

the previous axial position. 

6.4 Evaluation of the offectivo overall wall heat transfer coefficient. 

The moan temperature of the fluid in the radial direction is given by 

Tm =2rTr dr (6.4) 

Jo 
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Integrating twice by parts 

Tm' Tr 
-1 

0 
Now the boundary conditions on tho two-dimensional model are 

(ar) = 
r=0 

är) 
r =ý 

_L (ý) 
r =1 

-N Üw (Tr 
=, - T0) 

(6.5) 

(6.6) 

The simplest polynomial which will fit the boundary conditions is a quad- 

ratio of the form 

T -ara a 

and hence dT 
__ 

d'T ýdrr 

=1 
d = -2a 

The integral in equation (6.5) can now bo evaluated 

1 
xý d' T dr =ý (drT ) dzý 12 

r =1 0 

Thereforo equation (6.5) becomes 

.. 
1 T=T (0-T) 

mr =j 1+ dr 
r =1 

An overall wall Nussolt number can be defined such that 

Nu*(Tm - Tc) = Nur (Tr=1 - Tc) 

Equations (6.6) and (6.10) can be combined to give 

(dT) = 
NuwNu ý (T -T) d_ ----- r =l m 

r =1 Nu - Nu* 
ww 

Substituting this in equation (6.9) yields the 

Nu* _ w 
4Nuw 

4 +Nuý 

1 

+r r3 d2 T 
dradr J3 n 

result 

(6.7) 

ý 

(6.8) 

(6.9) 

(6. io) 

(6. j j) 
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Although this result is similar to that obtained by Froment2, who 

considered the transfer of heat in a heat exchanger (i. e. no heat generation), 

it is important to recognise the significantly different interpretation to be 

placed on the results. In the case of heat transfer with no reaction, the 

value of the wall Nusselt number is over-estimated, and the prediction of 
60 

the radial moan temperature profile is only approximate. The extension to 

a system where reaction is occurring is difficult to justify, since in this 

cases heat is being generated within the solid phase, and is being trans- 

mitted to the surrounding fluid at a rate which is determined by the, inter- 

phase temperature difference. Even if this temperature difference were 

constant, which would correspond to a fixed rate of heat generation at each 

point across the radius, considerable distortion of the heat exchanger 

temperature profiles would occur. In real systems, however, the rate of 

heat transfer to the fluid commonly varies by an order of magnitude (or 

more) across the tube radius. For example, consider the radial cemperaturo 

profile for z=0.6 in Figure 5.3, where the temperatures of the fluid on 

the axis and at the wall are approximately 0.063 and 0.049 respectively. 

At these temperatures, the rate constants for the A -. -. -) B reaction are 

considerably higher than those for the A ---} C stage, and the relative 

rate constants for the consumption of species A at the tube axis and wall 

are given by: 
1c, (axis) exP (- 

0.063) 
-. ý. ... _.. ... _ kl wall eXp 

0.04.9 
90 

The effectiveness factor at the tube wall is about five times the value 

on the axis, so that the effective rate constants are in the ratio of 

approximately 1: 18. Taking into account the concentration variation across 

the radius (Figure 5.1), the ratio of the rates of reaction becomes about 

1: 10, and since the selectivity is almost constant at z=0.6 (Figure 5.6), 

the rates of heat production arc also in the ratio of approximately 1: 10. 



A variation of this order of magnitude in the rate of heat generation 

could make the temperature profile vary greatly from the type of profile 

obtained for heat transfer only. This makes it hazardous, in the absence of 

other information, to apply results obtained for systems with no heat 

generation to those where heat is being generated. Although the assumption 

made by Froment leads to the same result as that which is produced on the 

basis of a parabolic temperature profile, the assumptionson which the latter 

are based are clearly defined, whereas, in the former case, conceptual 

difficulties arise when the reacting system is examined in detail. 

6.3 Reconstruction of the radial temperature profile. 

Since the radial temperature was assumed to have the form 

T=Ta - a? 

this may be substituted in equation (6.4) and the integral evaluated giving 

T-T-a 
nýA2 

(6.1 2) 

From equations (6.6), (6.7) and (6.10) 

Nu*(T0 - Tm) =()_ -2a 
r=1 

Using this relationship to substitute for a in equation (6.12) gives 

* 
Ta_Tm+ 

Nuý (Tm - To) (6.13) 

Combining equations (6.12) and (6.13) gives an expression for the 

radial temperature profile in terms of the mean temperature: 

Nu* * 
T= Tm+ ý (Tm - To) -N2u (Tm-TQ)x-I (6.11+) 

This result clearly indicates the advantage of assuming a temperature 

profile, rather than extending the solution of the heat exchanger problem, 

since with the latter approach it is impossible to draw any conclusions about 

the temperature profile or to predict what the maximum temperature will be. 
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6.6 Comparison of the models and improvement of the ono-dimensional model. 

6.6. j General comments. 

It was found that in all cases where models were compared, good agree- 

mont between the temperature profiles resulted in. good agreement between 

the concentration profiles, and similarly for poor agreement. For this 

reason, when models are being compared, only the mean temperatures will be 

used. 

The results from the ono-dimensional model, which is proposed hero, 

show moderately good agreement with those obtained from the two-dimensional 

model, as shown by lines numbered (2) in Figures 6. '. For many purposes this 

order of accuracy may be sufficient, since it shows all the qualitative 

features of the two-dimensional model and in quantitative terms it may be 

well within the accuracy of available experimental data. However, in some 

cases better agreement may be required, particularly when working close to 

constraints or in the region of optimum operating conditions. If an attempt 

is to be made to improve the prediction of the model, it is first necessary 

to understand some of the ways in which errors can arise. 

From Figure 6. i it is apparent that either the reaction rate is being 

underestimated or the heat removal is being overestimated, or both. Since 

the two oases are likely to lead to similar effects, it appears that the 

model can be improved by adjusting either one of them in a suitable way. 

6.6.2 Improvement of the evaluation of rate terms. 

Since the kinetic rate expressions are highly non-linear functions of 

temperature, the reaction rate evaluated at the mean conditions is lower than 

the true moan rate. Within the main reaction zone of the reactor, the results 

for the simple model therefore represent a lower bound on the possible 

temperature profiles. In order to improve the estimate, it is necessary to 

make some broad assumptions, namely that the moan concentration exists over 
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the whole of the radius and that the effectiveness factor and selectivity are 

also constant over the radius, at a value calculated at the mean conditions. 

The mean rate term for the conversion of species A is then 

ri 
2l( A 2C A% + 0, saCAno 

)r ar 
J0 

r 

21 ( 61 exp(- 
T)CArý 

Jo` 
+ Aga oxp (_ n 3 

El T)c A ) rdr (6.15) 

and since T is a known function of r, as given by equation (6.11+. ), the 

integral can be evaluated numerically. This may be conveniently done by 

applying Simpson's rule at each axial step through the reactor. 

The results obtained. using this method are shown as lines (3) in Figure 

6.1. The temperature profiles give higher values than those predicted from 

the two-dimensional model, and in fact this is to be expected from an 

examination of the assumptions mentioned above. The dimensionless rate 

constants (i. e. 0i) can vary across the tube radius by an order of magnitude, 

as has already been shown. The highest rates and therefore the most critical 

values of concentration and effectiveness factor occur on the tube axis. In 

fact, it has been demonstrated that at this point the concentration and 

effectiveness factor are considerably lower than the moan values (Soo Figures 

5.1 and 5.5) and within the main reaction zone the results obtained from the 

model may, therefore, be regarded as an upper bound on the temperature profile, 

The one-dimensional model is thus capable of giving both an upper bound 

and a lower bound on the longitudinal temperature profile within the reactor. 

The next logical stop is to use a value between those two, and in fact the 

mean of the two rates taken at each axial step, gives the curves numbered (1+) 

in Figure 6.1. It can be seen that agreement with the two-dimensional model 

is very good, and this was found to be so for all cases tested. If good 

agreement could be guaranteed as a general rule, the method would be 
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attractive, since it requires very little more computational effort than 

the simple one-dimensional model. However the method is not based on a 

rigorous foundation, and it would therefore be dangerous to say that it is 

generally applicable. Nevertheless it could be very useful if applied with 

discretion. 

(Note: In discussing the upper and lower bounds on the temperature profile, 

it has been emphasised that these apply within the main reaction zone. It 

is necessary to specify this, since the temperature profiles obtained from 

different models of a given system almost invariably cross one another when 

the reaction of species A is (almost) complete. This is to be expected, 

since the model which predicts the fastest reaction rate gives the highest 

peak temperature and the greatest rate of heat transfer to the coolant. In 

each of the temperature profiles of Figure 6. j which have a maximum (i. e. 

those for CA = 1.0) the total production of heat is almost constant, and 

the variation in exit temperature thus reflects only the amount of heat 

removed by the coolant. Therefore, a model which overestimates the temp- 

erature in the region of the peak will give a low estimate of the exit 

temperature, and can only be said to provide an upper bound on the temp- 

erature profile as far as some unspecified point beyond the peak. ) 

6.6.3 Improv©nont of tho modifiod rail Nussalt number. 
6o 

It has been shown by McGreevy and Turner that for heat transfer in 

the absence of reaction, the effective overall wall Nusselt number is over- 

estimatod. If this is also the case when reaction is occurring, it could 

well lead to the kind of discrepancy between the two models which has beon 

shown. It is therefore possible that for any system, a suitable value of 

Nu*, can be found by comparing the results from the two models for various 

values of Nu* and then choosing the one which gives the best agreement. 

The results of this type of trial and error experiment are shown in Figuro 
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6.2. It can be seen that a value of Nu* = 1.22 gives good agreement for 

both inlet concentrations using the given set of data. 

This approach suffers from the disadvantage that, for a given system, 

some results from a two-dimensional model must be available. The method is 

not a particularly elegant one, but is attractive since it is easy to use and 

gives excellent results. The development of the modification to Nu* , as 

presented here, is not very rigorous and in the absence of other infoxmation, 

it could not be considered generally applicable. However Turner61 has shown 

that it is always possible to correct Nu* to give good agreement with the 

two-dimensional model, and has developed a technique for calculating the 

correction term without reference to any results for the more complex model. 

6.6.1. Comparison of radial temperature profiles and maximum tcnporatures. 

Figure 6.3 shows comparisons, at two longitudinal positions, of the 

radial temperature profiles predicted by the two-dimensional model with the 

parabolic profiles predicted from equation (6.11+). The parabolic profiles 

(in this figure only) are based on the moan temperature obtained from the 

two-dimensional model and have been constructed for two values of the 

effective overall wall Nusselt number (Nu*w). It appears to be fairly 

general, for exothermic reactions, that the parabolic profile gives a flatter 

shape for the temperature than is actually the case, and that the radial 

temperature profile is fairly insensitive to the value of Nu*, for a given 

mean temperature, T. (In the reactor, however, Tm will be very dependent 

on Nu* since this determines how much heat is removed through the wall. ) 

One result of the flattening of the radial temperature profile is that the 

value of the axial temperature (Ta) predicted by equation (6.13) is too loti7, 

and therefore the value of Ta would be in error even if Tm could be estimated 

exactly. 

Figure 6.4 shows the longitudinal profiles of Ta predicted by the two- 

dimensional model and by using equation (6.13) with various forms of the 
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FIG. 6.3 Comparison of radial temperature profiles predicted by the 
two dimensional model with those predicted by equation (6.11. ) 

using the same mean temperature (Tm). Data as given in Table 5.1. 
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FIG. 6.4 Comparison of axial temperatures (r-O) predicted by various 
forms of the one dimensional nadel using equation (6.13) with that 

predicted by the two dimensional model. Data as given in Table 5.1. 
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ono-dimensional model. The 'basic' one-dimensional model (in which 

Nu*w = 
4+ N, and the reaction rate is evaluated at the mean temperature) 

usr 

considerably underestimates the value of Ta throughout the main reaction 

zone (curve 1), but this could have been anticipated since it has been shown 

in Figures 6. j and 6.2 that the moan temperature itself is underestimated. 

The improvements to the basic model, which ware suggested in sections 6.6.2 

and 6.6.3, give better estimates of Ta, the best estimate being given by 

the modification suggested in section 6.6.2, where the rate constants are 

altered to take account of the parabolic temperature profile. Since the 

maximum temperature, for a given m, is relatively insensitive to Nu*w, the 

difference between curves (2) and (3) of Figure 6.4 is clearly a reflection 

of the difference in the values of Tm predicted by the two models. Comparing 

curve (4) in Figure 6.1 with that for Nu* = 1.22 in Figure 6.2, it can be 

seen that the former overestimates the radial mean temperature is the region 

of the hot-spot and this to some extent cancels out the underestimation of 

the axial temperature by equation (6.13). 

In Figure 6.4, therefore, the better fit given by curve (3), compared 

with curve (2), is caused by a fortuitous cancellation of errors and in 

general this cannot be guaranteed. Since the errors could be cumulative 

instead of cancelling (as they would be for an inlet concentration of 0.81 

(see Figure 6.1)), the method represented by curve (2) is more reliable for 

general use. 

6.7 Discussion of the Results. 

6.7.1 General continents. 

In discussing the results, a case study approach is again used for the 

reasons outlined in previous chapters. The results were computed using a 

value of Nu*w = 1.33. This value arises from the data used in the previous 

chapter (Nur = 2.0) if it is assumed that the exact form of the expression 

I 
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for Nu* holds: 

Nu* _4 
Nýr 

w4 +NUW 

Alternatively 1.33 may be regarded as the true value of Nu w, which has been 

chosen as the best one for a particular reactor, using the results from the 

two-dimensional model. The way in which this value of Nu*w is viewed is, 

in a sense, unimportant in the present context, since for the purposes of a 

case study, any realistic value would be satisfactory. 

For most of the profiles considered, the conversion of species A was 

almost complete. It was found that in this case the higher the peak temp- 

erature, the lower the exit temperature, indicating that the exit temperature 

is useless as a means of predicting what happens to the temperature profile 

at other points in the bed. Another interesting feature of the profiles is 

that the peak temperature always occurred after the peak in CB. A large 

number of sets of data were run, varying all the parameters of the model, 

but providing the exothermity of the B --3 C reaction was of the same order 

of magnitude as that for the A ----; B reaction, it was not found possible to 

got the peak of T in front of that for CB. This indicates that under 

optimum conditions, where the peak in CB occurs at the reactor exit, the 

maximum temperature will also be at the reactor exit, and any constraint 

on the temperature can therefore be applied to the outlet conditions. 

6.7.2 The effect of some of the parameters of the model. 

Although it is very convenient to formulate models and examine their 

behaviour in terms of dimensionless groups, it is important to remember that 

these groups are made up of physical, chemical and thermodynamic data which 

must be supplied before the model is of any use for describing specific 

systems. (An exception to this is the Peclet number, which has beon discussed 

earlier. ) At this stage, therefore, it is worthwhile to examine the 

importance of some, of the individual items of data, and to attempt to assess 

the accuracy required so that any potential sources of difficulty may be 



identified. 

Since one of the main attractions of mathematical modelling is to reduce 

the amount of experimental work which is required to produce a desired 

result, attention will be given primarily to those parameters which must be 

estimated from correlations or chosen in an appropriate way. Clearly, some 

experimental work is always necessary to determine the kinetic data and 

catalyst characteristics, but much of the benefit of simulation will be lost 

if it is also necessary to measure properties such as transport coefficients. 

Many of these are fairly well correlated in the literature, but have often 

been obtained under idealised coflditions such as in isothermal or non- 

reacting systems, and some of the results may not be reproducible (such as 

those obtained for randomly packed beds). It is therefore desirable to 

know how important each parameter is, in order to assess whether the available 

method for obtaining data is adequate. 

Studies on single catalyst pellets do not always provide sur'ficient 

information on which to base such an assessment, since, in the end, it is 

only the effect on the overall performance of the reactor which is important, 

and this is the result of interactions between the kinetic and heat and mass 

transport phenomena. The effects of some of the parameters of the model 

have already been discussed, such as the radial Poclet numbers for heat and 

mass transport, and the overall effective wall Nusselt number, and these will 

therefore not be discussed further. 

Figure 6.5 shows the influence of pallet radius on reactor performance, 

and the system is clearly very sensitive to the value of b. It is necessary 

to include pellet radius in the list of 'uncertain' data, since it will 

often be the case that the pellets are not perfect spheres of constant 

radius. It is quite likely that, in practice, the pellets will be cylinders, 

irregularly shaped, or in a range of sizes. Whatever is the case, it is 

obviously essential to get a very good estimate of the effective pellet 
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radius. Aris4° has shown that it is possible to define an effective radius 

for catalyst pellets subject to Dirichlet boundary conditions, but no such 

analysis has been carried out for Neumann boundary conditions. The reason 

for the high sensitivity of the present system to the pellet radius is that 

the operating conditions lie within the region of appreciable pore diffusion 

influence (see Figure 5.5) and in this region increasing the radius merely 

increases the amount of the pellet which is wasted, since very little reactant 

can diffuse through the outer layers of catalyst before reacting. This 

lowering of the effectiveness factor is also caused by reducing the effective 

pore diffusion coefficient for similar reasons (see Figure 6.6). In isotherms; 

29 
systems the effectiveness factor under diffusion control is proportional to 

Dp 
A and it is therefore to be expected that the reactor is more 

IC, +ka 

sensitive to pellet radius than to diffusivity. This is confirmed by 

Figures 6.5 and 6.6. It is apparent that the diffusivity must b9 estimated 

fairly accurately, although for any permissible error in the performance of 

the reactor the error in diffusivity can be about twice that which would be 

acceptable in the pellet radius. As DpA increases, there is an increasing 

tendency towards temperature runaway, and this once again emphasises the 

need for using heterogeneous models. 

Figure 6.7 shows the effect of varying the bed voidage while keeping the 

superficial velocity (u x e) constant. Any variation in performance is then 

a reflection only of the volume of catalyst in the bed (per unit length). 

Since the performance is fairly sensitive to voidage it is necessary to 

estimate e by weighing the catalyst before packing the tube, rather than 

using the correlations for voidago which are given in the literature. 

The sensitivity of reactor performance to changes in the heat transfer 

coefficient at the pellet surface is rather loss . than might be anticipated 

from single pellet studies, as is shown in Figure 6.8. Although the 

i 
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temperature difference between pellet and fluid is inversely proportional 

to Nu', so is the difficulty of heat removal, and the amount of heat leaving 

the pellet is unaffected for a given reaction rate. Clearly in a real 

system, an increase in pellet temperature caused by reducing Nu' also 

increases the reaction rate and the amount of heat generated. In general, 

however, the temperature rises across the film are only a few degrees, 

except in regions near temperature runaway, and the reaction rate therefore 

does not change greatly. Figure 6.8 indicates that for the present data a 

10% error in h would probably be acceptable. 

Since the effectiveness factor profiles given in Figure 5.5 show that 

the operating conditions are well away from regions where film mass transfer 

is controlling, it is to be expected that the reactor performance would not 

be very sensitive to the mass transfer coefficients (kcA, koB) at the pellet 

surface, and this is confirmed by Figure 6.9. A 100ö change in these para- 

motors only changes the temperature rise by about 7% and putting 

kcA = koB = 00 changes the temperature rise by about 1 O. It appears that 

no problems are likely to arise in obtaining sufficiently accurate values of 

these coefficients. 

6.7.3 The effect of the inlet conditions. 

Raising the inlet temperature or concentration increases the maximum 

temperature and brings the peaks in the temperature and concentration of B 

nearor to the reactor inlet. Apart from this the profiles are very 

similar to those which have already been drawn. In the optimisation of 

reactor performance, it is often desirable to optimise the yield or 

concentration of species B, and for a given reactor, this would most 

conveniently be done by adjusting the inlet conditions. For the data given 

in Table 5.1 it is found that increasing T and CA increases the maximum value 

of CB over a wide range of both these parameters, but since species A is 

likely to be expensive, it might be desirable to optimise the yield 
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CB 
max This is realistic at the design stage of the reactor, because CA(inlet) 

the reactor length could be chosen so that CB(max) coincided with the 

outlet, z=1. The coolant temperature is clearly another possible control 

variable, but for simplicity it will be assumed that this is adjusted so 

that the inlet and coolant temperatures are equal. Figure 6. i0 shows the 

yield of species B as a function of T and CA at the inlet. Those curves 

are not accurate, since the maximum occurs between two of the finite 

difference nodes, but they give a good indication of the way the system 

beI'aves. For any inlet temperature, there is an optimum inlet concentration, 

but the yield in this system generally increases as the temperature increases 

while simultaneously decreasing the concentration. Some of the contours of 

constant 
CB(max) 

are shown in Figure 6.11 . It is apparent that the best 
CA(inlet) 

yields will be obtained at high temperatures and low concentrations. 

Figure 4.1 indicates that yields of around 0.7 could possibly be obtained 

at high enough inlet temperatures, but in general the resulting temperature 

profiles are likely to violate constraints on the system. 

It therefore appears that an unconstrained optimisation is impossible 

for the present system and that the optimum performance would be obtained 

by working as near to the temperature constraint as possible. 

6.8 Conclusions. 

A one-dimensional model has been developed which predicts the reactor 

behaviour in fairly good agreement with the two-dimensional model. Modifi- 

cations to the one-dimensional model are possible which can give oven better 

agreement. The simplifications are based on an assumed parabolic temperature 

profile which enables the maximum radial temperature to be predicted, and 

this also agrees fairly well with the two-dimensional prediction. The major 

advantage of the one-dimensional model is the relatively small amount of 
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computation which is required for solution - about one twentieth of that 

required for the solution of the two-dimensional model. 

The model has been used to examine the performance of the reactor, 

particularly regarding the sensitivity to some of the parameters. It appears 

that very good estimates are required of the effective pellet radius, the 

pore diffusion coefficient and the effective overall wall Nusselt number, 

but that other parameters arc less critical. In particular, the performance 

is relatively insensitive to the interphase mass transfer coefficient. 

The model displays the expected parametric sensitivity in most ways, 

but this is less extreme than is the case for quasi-homogeneous systems. 

The results also indicate that unconstrained optimisation would be un- 

satisfactory for the system considered, and that this could also be true for 

other systems where the desired product is destroyed by further reaction, 

particularly if the activation energy for the AB reaction is high, 

making high temperature operation desirable for a good selectivity. 

Since the optimal performance of the reactor is likely to be realised 

when operating very close to constraints, it is apparent that accuracy of 

the mathematical model is essential in the region of the optimum. Great 

advantage can clearly be gained by using the correct approach to the 

optimisation, particularly with regard to the use of one- and two-dimensional 

models. The best strategy would appear to be to use the one-dimensional 

model to locate the optimum within some predetermined limits, and than to 

use the two-dimensional model to refine the estimate as required. Uaod in 

this way, absolute accuracy of the one-dimensional model is not of paramount 

importance. It is the time of solution which is critical in this context. 



CHAPTER 

DYNAMIC MODELS OF THE SINGLE CATALYST PELLET 

7.1 Introduction. 

In order to develop a dynamic mathematical model of the heterogeneous 

catalytic reactor, it is first necessary to have available a dynamic model 

of the single catalyst pellet. McGuire and Lapidus16 proposed such a model 

of the catalyst pellet, ignoring the interphase resistances to heat and mass 

transfer. This type of model has been shown to be inappropriate for the 

steady state modelling of exothermic reactions, and it is therefore also 

unsatisfactory for dynamic modelling. 

In this chapter a dynamic model of the catalyst pellet will be 

developed which includes the interphase resistances to heat and mass transfer. 

It will be seen that the dynamic model can be simplified in a similar way to 

that used for the steady state model, and that the behaviour of the pellet 

may be predicted from the solution of one first-order ordinary differential 

equation. 

It has been shown in Chapter 4 that the selectivity is no more sensitive 

to changes in the system parameters than is the effectiveness factor, and 

this means that any simplifications which can be developed for the A --'-a 

reaction can equally well be applied to the more complex reaction scheme. 

It is therefore proposed to examine initially a system in which only one 

reaction is occurring, and then to extend the results to the set of 

consecutive and parallel reactions. 

7.2 The fully distributed model for the A- =: - B reaction. 

7.2.1 Formulation of the equations. 

Using the same nomenclature as in the previous chapters, the equations 

describing the heat and mass balances on an element of the pellet become 

-80- 



a-ý2Yýcý= Kc 
ya d'ýC 

22t 2atý%at 
2 y2 -1 _y 2y +H ýl ý= KT 2'r 

(7.2) 

(Note: y .= dimensionless distance from the pellet surface, l - 
sib 

Subject to the following boundary and initial conditions: 

)c t 
_=0 at y=1, Ti0 

;y dy 

= 
S-ý-i1 (CA - CA) 

Y 

Zt Nu' 
ýy - 

cA - cAý 
=0j 

2 
(t - T) 

t=tr 
=01 

whero 
K= 

c 
b2 o'ý 
DpA 

Ic T=P 
*bZ C 

Kp 

1 
J 

at y=0, i>0 

at 0.. 0>y ýý 

The external variables causing disturbances may be concentration, 

temperature and flowrate, making CA, T, Nu' and Sh'A functions of time ("r`). 

7.2.2 Solution of the equations. 

Equations 7. i and 7.2 may be solved using the same method as for the 

tyro-dimensional steady state reactor model, since the form of the differential 

equation is basically the same in each case. The main differences between 

the two finite difference formulations are that, for the transient pellet, 

a finite difference network containing two step sizes must be used, and the 

external conditions and boundary transport coefficients may change with time. 

(In the tubular reactor case, this would correspond to a variation in the 



coolant temperature and wall heat transfer coefficient along the length of 

the reactor. ) The varying external or boundary phenomena cause no 

computational problems, however, and can easily be incorporated into the 

finite difference formulation of the equations, as shorn in Appendix 3. 

The solution of the differential equation may be accomplished using a 

procedure similar to that for the two-dimensional reactor model, except that 

the non-linear terms can be obtained explicitly, whereas for the reactor it 

is first necessary to obtain '"t and j' by solving the pellet model at each 

node of the finite difference network. In the latter case, the computation 

also has a specific end (i. e. when z= i) whereas for the transient pellet 

it is continued as long as required. Subject to these differences, the 

equations can be solved using steps 1 and 3-6 in section 5.3, replacing 

'axial' by 'time' and 'CA, CB and T' by 'cA, t'. As for the tubular reactor, 

the profiles assumed at step (1) were obtained by a linear projection of the 

two previous profiles, except at the first time step, where the assumed 

profile is the initial boundary condition. 

7.2.3 Modification of the model. 

Before computing any results from the model, it is possible to draw 

some conclusions about the characteristics of the system from a further 

examination of the differential equations. Equations (7.1) and (7.2) may 

be written in the form: - 

V, 20 
A- 01'° CA 

dc 
a K0 ar 

(7.3) 

p at + Hec rl, ý ýt 
aIr 

(7.4) 

In order to examine the magnitudes of the terms in these equations on 

a comparable basis, it is convenient to multiply equation (7.3) by H giving. - 

HV 2C 
A- Hföl'2 c. = HKc A (7.5) 
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Equations (7.4-) and (7.5) now have a term in common, He cÄ 1, and 

since the equations apply under all conditions, it may be postulated that 

the terms in each of the equations have the same order of magnitude. The 

dynamic characteristics of the equations are then comparable and 

xT a-t ^. H Xý 
a (7.6) 

where ' has been used to indicate an order of magnitude relationship. 

From equation (7.6) 

dt 

i. e. 
KTT 

= ?- ýr 

P-. # lý 

HK 
c 

de 
CA N 

K, 
r 

t 

dt 
t 

'IT 

c 

ffi{ccA HICcCA (s x0 
(7.7) 

In practice the upper bound on f 
is 10"2 and is more commonly 10-3. 

is typically around 0.3. Equation (7.7) therefore implies that, on a 

relative basis, the concentration changes at least 30 times faster than 

temperature. Within the catalyst pellet t>T and cA < CA making this 

estimate very conservative in many cases. 

This result conflicts with the basic assumption which led to equation 

(7.6) and the dynamic characteristics of the two equations are not of 

comparable magnitudes. In a system where two coupled transient effects are 

occurring, as is the case here, it is only necessary to consider both 

phenomena if the relative rates of change are of the same order of magnitude. 

If this is not the case, then the faster change will enable one of the 

variables to reach a pseudo-steady state, and the response will depend only 

on the transient event having the longest time constant. 

In the case considered here, the relative rates of change of concentration 

I 



and temperature are such that the concentration change is very fast compared 

with the change in temperature, and can be regarded as being at a pseudo- 

steady state which depends only on the instantaneous temperature profile. 

As an example of the rate at which the concentration changes, consider 

the case of an isothermal reaction, where the concentration is constant 

(= Co) throughout the pellet at 0. In the period immediately following 

1'*= 0, there will be no radial gradients in concentration and equation (7.1) 

becomes, for a first order reaction 

Rc dcA 
=-* OA 

where 

dT 

cA =1 at Z'`=0 

(7.8) 

This equation will only apply over an infinitesimal time after 'k*= 0, 

since concentration gradients will immediately begin to develop when the 

imposed concentration profile is relaxed due to diffusion of reactant into 

the pellet from the surrounding fluid. Nevertheless, equation (7.8) can be 

used to give some indication of the response over a limited period, the 

solution being: 
* 

ck = exp(`ý ý-ýºý 

c 

Expanding this and neglecting high order terms: 

cA =1 -ý 
*s'r 

2 cK 

0C 
(7.9) 

If the initial gradient 
dcA 

was used in assessing the concentration 

'1^ =0 
dT 

after time Sr , the value of cIt would be given by: 

cA = 1- 
K* 

sr (7. ý o) 

The error caused by using equation (7.10) is therefore 

. I# S , Na 2k ( 
ý 



and the rate of growth of the error is 

I (K )S 7' x 100 per cent per unit time (7.11 ) 
0 

Taking typical values of ki = 3, Kc = 1.95 seconds and imposing an 

upper limit of 0.1 % per second on the rate at which the error is penmitted to grow, 

equation (7.11) gives the required S' as 

$'r < 5.4 xi 0l seconds. 

This is clearly a very short step to take, and a one second response 

using only 100 radial increments in the pellet would require about five times 

as much time as the whole quasi-homogeneous steady state reactor model (i. e. 

about 30 minutes on an ICL KDF9 computer). The method used to derive 6r 

is clearly not very rigorous, since it is in fact based on an, impossible 

initial condition, and in practice it is found that the result is optimistic, 

particularly for an exothermic reaction. It is usually found necessary to 

use step sizes in the range 10-4 to 10-6 seconds to obtain satisfactory 

convergence. 

Assuming that the concentration profile reaches a pseudo-steady state, 

the equations describing the transient response of the pellet become 

22 
ý' 

12Y 
aý 

' ýýAý =ý (7"12) 

Ö2 t 
ýý 

2 at 
+ 1-Y 3Y ýý ýt aý (7.13) 

The boundary conditions and method of solution are the same as those 

for equations (7.1) and (7.2), although it is of course unnecessary to 

specify an initial concentration profile. A time step of 0.1 seconds is 

usually sufficient to ensure convergence of the solution of these equations, 

confirming the conclusion that equation (7.7) is conservative. 

Although the computation time required to solve equations (7.12) and 

-85- 



(7.13) shows considerable improvement over that which would be required to 

solve equations (7.1) and (7.2), it is still too long to enable incorp- 

oration of the pellet model into a dynamic model of the reactor, and this 

is likely to be true of any fully distributed model of the pellet. 

7.3 The lumped thermal resistance model for the A. ----4B reaction. 

A typical solution of equations (7.12) and (7.13) is displayed in 

Figure 7.1, where the radial temperature profiles have been drawn, showing 

the effect of a step change in the fluid temperature from 0.0408 to 0.045. 

(For an activation energy of 32,000 cal/g. mole, this would represent about 

68°. C increase in temperature. ) It is apparent from the diagram that, for 

a short time, the step change induces a significant thermal gradient at the 

pellet surface (y 0). After 0.5 seconds the gradient has flattened 

considerably, and after 1.5 seconds the pellet is again almost isothermal. 

These profiles indicate that a lumped thermal resistance model is again 

likely to be useful, especially in real systems, where step changes in 

temperature are uncommon. The assumption of a lumped thermal resistance 

implies that the pellet is isothermal, and the differential equations 

describing the mass transport can be solved analytically. The solution of 

equation (7.12) has been given in Chapter 4. for the complex reaction scheme, 

and the solution for the single reaction can be found by putting k5* =0 in 

equation (4.11). 

If t is constant throughout the pellet, equation (7.13) may be replaced 

by a heat balance on the whole pellet: 

-ý __ 
xý At T-t+ BoSh'A(CA °A -33 Nu' d'ti' 

subject to the initial condition 

t=tv 
_ý 

(7.14. ) 
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in response to a step change in the dimensionless fluid temperature 
from 0,0408 to 0.045 . 
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where 
OAS = 

Sh IA 
C. 

2 A 

ýA 
-ý )+ý coth J ý' 

* kl _ ý*2 
1 

(from equation 1+. 11 

Equation (7. j4. ) may be solved by any of the normal techniques. For 

the following work, the solution was actually accomplished using the Runge- 

Kutta-Merson algorithm which is available as a library program69 

Figure 7.2 shows a comparison of the temperatures and effectiveness 

factors predicted by the distributed and lumped parameter models. Comparison 

of the models, in terms of temperature, is not straightforward in the period 

immediately following the step change, since the actual temperature profile 

is not flat, and therefore no single temperature characterises the perform- 

ance of the pellet in the distributed case. In the diagram, the maximum 

and minimum temperatures, at the surface and centre, are shown. Even using 

the mean temperature would not be a satisfactory method of judging how good 

the agreement is between the two models, since the importance of the temp- 

erature at any point is related to the concentration at that point. This 

problem is not difficult to overcome, however, because the effectiveness 

factor itself provides a complete representation of the performance of the 

pellet, since it is effectively an integration of the rate of reaction 

throughout the pellet. This can therefore be regarded as the means of 

judging the overall performance of the pellet, and it is clear that agreement 

between the two models is excellent. 

It is not surprising that the lumped thermal resistance model gives 

good agreement with the distributed model, since the relative magnitudes 

of the resistances to heat transfer inside and outside the pellet are the 

same as for the steady state, and a similar accuracy of the models could 

therefore be expected. 
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7.4 The lumped thermal resistance model for the complex reaction scheme. 

Equation (7. j .) may easily be extended to the case where complex 

reactions are occurring, since a heat balance on the catalyst pellet gives: - 

CAs kl 1% * ýB ýB B(Sht A(1 - CAý* (1 +hi )+ý ýýxH° Sh'B(ýAg - A)Ka )'t+T= 

KT at 
3 Nu' d'r (7-15) 

(cf. equation (4.. 5)). 
The expressions for cA and cB are given by equations (4.25) to (4.27). 

ss 

Equation (7.15) may be solved in the same way as equation O. W. The 

computation is very rapid, and may often be faster than the steady state 

solution, since the latter involves an iterative process which requires 

several evaluations of the left hand side of equation (7.15). The solution 

time is therefore short enough for the model to be incorporated 3. nto a 

dynamic model of the reactor such as that proposed in Chapter 8. 

Some typical transient responses are indicated in Figure 7.3, which 

shows the response to ramp changes in. T occurring at three different rates. 

For an activation energy of El = 32,000 cal g. mole, the initial temperature 

of T=0.04 corresponds to 64.6°K and the temperature on the right hand side 

of the graph is 924. °K. For the three responses, the temperature rise 

across the graph (278°C) was allowed to take place over periods of 100,10 

and I seconds. It can be seen that the responses are very different, the 

slowest change naturally giving rise to a response which is closest to the 

steady state curves. The pellet appears to be capable of following a 

transient change of about 3°C per second so that the pellet performs as if 

it were at steady state. Even if this could be applied as a general rule, 

ho: rever, there would be no advantage in solving the steady state pellet 
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model instead of the transient model since it has already been stated that 

the transient pellet model can be solved at least as rapidly as the steady 

state model. Moreover, it is the small deviations from the steady state 

which give the reactor its dominant transient characteristics as will be seen 

in the following chapter. 
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CHAPTER 8 

A ONE-DIMENSIONAL DYNAMIC MODEL OF THE REACTOR 

8. j Introduction. 

There has been relatively little work done on dynamic modelling of 

fixed bed catalytic reactors, compared to that which has been done on steady 

state modelling and most has been concerned with quasi-homogeneous systems 

(e. g. 7,8,9) 79). 

Heterogeneous dynamic models have been proposed by McGuire and Lapidus' 

and by Feick and Quon99 but in each case the models were two-dimensional 

and required such a great amount of computational effort that no detailed 

examination of the reactor performance was possible. In the absence of arty 

useful information on the characteristics of the dynamic behaviour, it 

would be instructive to carry out a case study of the reactor and to examine 

the response under transient conditions. The reactor model which is 

proposed is one-dimensional and may be regarded as being based on the 

assumption of an effective overall wall heat transfer coefficient. Although 

this gives an excellent prediction of steady state performance, there is no 

prior reason to presume that it will remain valid in the transient case, 

but it should nevertheless be possible to obtain satisfactory estimates of 

reactor performance and hence to obtain an understanding, which is lacking 

at the present time, of the dynamic characteristics of packed bed tubular 

reactors. 

8.2 Formulation and solution of the equations. 

Using the same nomenclature as for the one-dimensional steady state 

model of the reactor, the equations representing heat and mass balances may 

be written in dimensionless form as follows: 



0 (s, j) 

C 
az - Ga (1ý1 aCý 

+ '03,2 
C%)1ý+s0 (8.2) 

az + 2(NG-ý* )(T - Tc) - G4 (t - T) + (G3) ý=0 (8.3) 

where GS - 
Ra e 

- 2bu 

Go = 
Ra e 
2bu 

Pe (= Gl Le) seconds 
mu 

Pe (= G3 Le) seconds 
Hu 

The initial conditions are: 

cA= cA(t^ ), cB = cB(7" ), T= T('' ) at z=O>0 

CA = CA(z), CB = CB(z), T= T(z) at Y'= 0z0 

The equations may be solved by a marching technique, starting from 

the reactor inlet and working through to the outlet at each time step, 

using the finite difference formulation described in Appendix 4.. This 

appendix also contains a chock on the accuracy of the integration for an 

adiabatic reactor under transient conditions. 

The finite difference formulation involves the values of CA, CB, To 

t, 'j and at four nodes of the network. Two of these nodes are at the 

previous time step, for which the complete axial profiles (and hence to 
l 

- 

and T) are known, and one node is at the time step under consideration. 

This node is at the previous axial position for which CA, CB, T, to *1 

and 
ý 

are also known. The only unknowns, therefore, are CA, CB etc. at 

the axial and time node under consideration and the solution can be 

obtained as follows: - 

(1) Assume valuos of CA, CB and T at the first (or next) axial position 

where they are unknown. 



(2) Integrate the equations describing the transient behaviour of the 

catalyst pellet (Equation 7.15) to give t, NI and 
ý 

at this position. 

(3) Evaluate CA, CB and T at the position where they are unknown and compare 

the values with those used in step (1). If agreement is satisfactory, 

continue to step (14. ), otherwise repeat from step (2). 

(1+) Repeat from step (1) while z1 (i. e. until the reactor outlet is 

reached). 

(5) Repeat the whole computation for the next time step and continue as 

long as necessary. 

Step (2) can be accomplished using the Runge-Kutta-Merson algorithm 

which is available as a standard library procedure69 For the purposes of 

this algorithm it is necessary to be able to specify the values of the 

state variables, at points other than the starting and finishing points, 

within any given time step. This is done by assuming that the changes in 

fluid conditions are linear over one time step and that the pellet is 

effectively subject to a ramp change in fluid conditions. This is a reason- 

able assumption to make since the finite difference representation of the 

difforontial equation is based on the assumption that any changes are linear 

over one step. The only point where this representation is not used is at 

the reactor inlot, if the reactor is subject to a stop change in inlet 

conditions. In this case the transient pellet model can be solved for the 

exact change which is occurring. 

8.3 Discussion of the results. 

Despite the fact that the postulated model represents the simplest 

case which is typical of the class of highly exothermic homogeneous reactors, 

it is still not possible to give a perfectly general solution which will 

cover all possible types of behaviour. Even by confining attention to the 



practical ranges for the dimensionless groups occurring in the differential 

equations, it is only feasible to attempt to investigate the kind of response 

for particular problems and to try to find some pattern or special features 

which will characterise the system. This is the kind of information which 

is useful in deciding on the control strategy to be used, (i. e. what variables 

will be manipulated, measured and controlled). Furthermore, any unusual 

behaviour will be invaluable when deciding how near to the limit of stability 

the reactor can work. In short, the simulation should provide a basis for 

knowing what effects to take into account when designing a reactor. 

A simple reactor model such as the one considered here, although rigorous 

in identifying the rate limiting processes, is not necessarily accurate in 

detail, particularly with regard to the radial temperature profile which can 

be reconstructed from the assumption of a parabolic form (see equation 6.14). 

In the following discussion most attention will be paid to the longitudinal 

temperature profiles, because this is the major variable which limits the 

long term behaviour of the system and the safety and satisfactory operation 

of the fixed bed catalytic reactor. 

Table 5.1 gives the values of the data and the corresponding values of 

the dimensionless groups used in the simulation discussed here. Even with 

this limited set of parameter values, which are based on data for benzene 

oxidation, the general problems can be demonstrated well, and particularly 

the dangers of relying on intuition based on a superficial analysis. 

Preliminary computed results indicate that the capitance of the fluid 

to absorb heat and mass is negligible in comparison with the thermal capacity 

of the catalyst pellets. In other words, the transient response of the 

reactor is slow compared to the residence time and the fluid equations can 

be solved as if they were at a pseudo-steady state. This may be seen from 

Figure 8.1 where the temperature profiles are compared at two times in response 
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ionless inlet temperature. Data as given in Table 5.1. For the 
given El this change represents approximately 13°C. 



to a step decrease in the inlet temperature for G6 = G8 =0 and G5 = Ge = 

0.639 . The difference between the curves is negligible in comparison with 

the magnitude of the changes which are occurring. Treating the reactor 

fluid as being at a pseudo-steady state enables great savings in comput- 

ational effort to be made, particularly when step changes in concentration 

occur at the inlet, since it would then be necessary to take very small 

steps in the time direction to follow the disturbance through the reactor. 

Normally time steps of 0.25 to 5 seconds are sufficient to ensure convergence 

of the solution, but to follow a step change in concentration through the 

reactor when G5 = GB iE 0 would require a step size at least two orders of 

magnitude smaller than this. 

The danger of relying on a lumped parameter element to represent the 

reactor in the control loop is illustrated in Figure 8.2, which shows the 

response of the reactor following decrease in the inlet temperature. This 

change causes the outlet temperature to fall slightly for a time, followed 

by a large rise to a value which overshoots the final steady state and then 

the temperature falls to its final value. However, the most surprising 

thing is the behaviour of the peak temperature inside the reactor. In the 

early stages it moves towards the entrance, increasing in magnitude, then 

moves back towards the position of the original steady state peak temp- 

erature, still continuing to increase and finally settles down to a lower 

peak value nearer the reactor exit. 

At first sight this is most unexpected, but on closer examination is 

perfectly reasonable, as can be seen by reference to Figure 8.3 and 

comparison with Figure 8.2. In the period immediately following the 

initial drop in the inlet temperature, the most important effect is the 

resulting fall in temperature of the catalyst pellets in the inlet region, 

caused by the cooling effect of the gases entering the reactor. This 
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results in less of the reactant being consumed until it reaches the 

section of the bed which has not yet been cooled but where the initial 

temperature profile was beginning to rise sharply towards the peak. A 

situation thus arises where an increasing concentration is reaching parts 

of the bed which are already hot, so that the temperature begins to rise 

rapidly. As the cooled region in the reactor inlet gradually moves into 

the bed, the balance between reaction and heat removal is adjusted until 

the final steady state is reached. 

This type of response is an excellent demonstration of the distributed 

parameter effect and of how an apparently safe action, i. e. reduction of 

the inlet temperature, may give rise to conditions which result in catalyst 

damage from excessively high temperatures. 

A step increase in the inlet temperature could be equally misleading 

if the peak temperature alone is monitored, as can be seen from Figure 8.4.. 

The effect of an increase in the inlet temperature is to cause a new 

temperature peak to begin to form nearer to the inlet than the old peak, 

while the latter begins to decay and move towards the reactor outlet. As 

would be expected, the final peak temperature is greater than the initial 

value. Some oscillation of the outlet temperature is found, although in 

general the movement of temperature is in the opposite direction to the 

input. However, this depends on the length of the reactor, and in a 

shorter one the outlet temperature could increase monotonically. Although 

monitoring the peak could induce misleading conclusions, the response to 

a stop increase in inlet temperature is basically what would be expected 

from intuitive considerations. Closer examination of the temperature 

differences between pellet and fluid, as shown in Figure 8.5, indicates 

some effects resulting from the thermal capacitance. At the exit of the 

bed, most of the reaction has taken place so it is largely heat transfer 
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increase of 0.0008 in the dimensionless inlet temperature. Data 
as given in Table 5.1. For the given El this change represents 
approximately 13°C. 
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between pellet and fluid, and fluid and coolant, which determines the 

dynamic behaviour here. This figure again indicates the way that dominant 

processes are distributed within the system. In one region it is the heat 

generation from chemical reaction and heat transfer from fluid to the 

coolant; in another region it is the residual heat being transferred from 

pellets, which were at the reactor hot spot, into the fluid and heat transfer 

to the coolant, and in the exit region it is mainly a balance between heat 

transfer effects from the fluid to pellet and coolant. Generally, the 

relative importance of each effect varies with time as well as with position. 

A step change is obviously extreme so it is useful to see how the 

behaviour just examined is modified by less drastic disturbances. The 

effect of a ramp decrease in the inlet temperature is shown in Figure 8.6. 

The non-linear character of the system means that it would not be reasonable 

to expect the behaviour to be the same as a sequence of step changes. 

Nevertheless, the same qualitative features are apparent. A wave of the 

peak temperature, of increasing amplitude, passes along the bed and finally 

out. There is no general trend towards the inlet but the peak temperature 

may become very high before leaving the reactor. The response to a much 

slower ramp change is found to be generally smoother, since the system 

has effectively more time to settle down after each infinitesimal change, 

resulting in a gradual monotonic decline in the temperature peak which 

moves towards the reactor exit and eventually out of the reactor. In this 

case, the outlet temperature rises monotonically as the temperature peak 

approaches the reactor outlet and then declines monotonically after the 

peak passes out. 

Further evidence of the necessity of incorporating allowance for all 

relevant transport effects is provided by examination of the result of an 

increasing ramp input temperature as shown in Figure 8.7. At first, the 
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peak temperature decreases, then moves towards the inlet and begins to 

increase until it is appreciably higher than the initial steady state peak. 

For the case shown in Figure 8.7, the outlet temperature falls monotonically, 

but cases have been found where it rises before falling, so it is not merely 

related to the input and is not easily incorporated into a simple control 

strategy. 

Changing the inlet concentration leads to the type of response which 

might be expected on intuitive grounds. In general, increasing the conc- 

entration causes a monotonic increase in the peak temperature and a move- 

ment of the peak towards the inlet. Decreasing the concentration reduces 

the temperature monotonically and moves the peak towards the outlet. 

Manipulating the concentration therefore represents a much more attractive 

way of controlling the system, when compared with using the temperature, 

since the responses are largely monotonic and in general behave much more 

predictably than responses to temperature changes. However, increasing 

the inlet concentration does tend to reduce the outlet temperature, 

confirming the conclusion reached in Chapter 6 that this is an unreliable 

indication of reactor performance. 

8.4 Conclusions. 

The results from the dynamic model of the reactor indicate clearly 

the necessity for a detailed investigation of the system under consider- 

ation. In general the behaviour of the reactor is controlled by a 

combination of chemical and thermal effects, the relative magnitudes of 

which may change considerably with time and position in the bed. This 

results in dynamic responses which are not easily predicted without 

extensive simulation. The complex interactions which are present emphasise 

the importance of the multivariable approach, especially when deciding on 

the structure of a control system. 



It is important to note that many of the unexpected responses arise 

from the distinction between the solid and the fluid phases, i. e. they are 

caused by the heterogeneous nature of the system. A quasi-homogeneous 

model would not take into account the resistance-capacitance stage for 

the solid to fluid heat transfer, which causes thermal effects to be 

delayed and irregular behaviour of the temperature profiles to occur. 

The proposed model is suitable for preliminary investigations in 

stability and control studies, since the computational load is not 

excessive and it is therefore reasonable to expect to be able to carry 

out extensive simulations on any particular system being studied. 



CHAPTER 

MULTIPLE SOLUTIONS AND TIC IR EFFECT ON STABILITY 

9.1 Introduction. 

It is well known that the solution of the steady state model of a 

catalyst pellet can exhibit multiple solutions under certain conditions. 

Since such conditions indicate potential instability, considerable effort 

has been expended in the examination of these problems as a first step in 

the stability analysis of the reactor as a whole. Most of the work has been 

done on systems with Dirichlet bcundary conditions, assuming that the 

conditions at the pellet surface are the same as those in the surrounding 

fluid. This type of problem was discussed by Aris39 who reviewed and 

compared some of the criteria which have been developed. In all practical 

systems, the interphase transport resistances are important, but no 

satisfactory method has yet been developed which enables the range of 

operating conditions, over which multiple solutions can occur, to be 

determined. Cresswell52 has examined the phenomenon of multiple solutions 

using a model with flux boundary conditions, but the criterion which was 

developed is unsuitable for application to specific systems. This is 

discussed in greater detail in section 9.5. At the present time there is no 

method available for relating the local and global stability within reactors, 

and one reason for this may be that the problem has invariably been studied 

in a way which is basically unsuitable for solving the problem. 

A major source of difficulty has been the fact that the usual form of 

effectiveness chart, as expressed in terms of the Thiele modulus (0), the 

thermicity factor (ß) and the activation factor (Ö ), only applies under one 

set of conditions. This means that the existence of multiple solutions can 

only be investigated by considering each point in the reactor individually. 

Analysis in terms of these groups has not been achieved satisfactorily even 
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for the reaction A--) B. In the case of more complex reactions the 

problem is even more formidable using comparable dimensionless groups, 

since the values of an even larger number of these groups change simult- 

aneously as the temperature and concentration vary. 

The analysis which follows in this chapter deals only with the single 

first order reaction A)B, since general conclusions may be drawn 

which apply to all appropriate systems. The extension to complex reaction 

schemes and non-first order reactions is given in Appendix 5. 

9.2 Calculation of the bounds on the non-uniguo region. 

For the single reaction A-_--) B, equation (1+. 5), the heat balance on 

the catalyst pellet, reduces to 

T=t - BOSh'A (CA-cA ) (9.1) 

and from equations (1+. 11) and (1+. 12), for first order, or pseudo-first order 

reactions 

shý 9 
OA A = 2ý c 

s (S2 I A+ r* 

where r* =JK, 6i exp(- 
2t ý 

g= tanh(r*) 

Substituting for cA in equation (11.1 ): - 
s 

T=t-BSh' 

where 

rý`- g 
SZ' A -1 )g +r'ý 

(' .ü III )CfADpARB 
B=BOxCA ý 

2bhD, i 

(9.2) 

(9.3) 

Equation (9.3) is a condition for the stoady state to occur and for any 

value of t, a steady state exists at some value of T, the dimensionless 

fluid temperature. Fig. 9.1 shows graphically the relationship between t 

and T for three typical sets of reaction parameters. As would be expected, 
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a region of three steady states may exist in some cases, the middle one 

being metastable. It is apparent from considering Figure 9.1 that if a 

region of multiple steady states does exist, then the bounds on the fluid 

temperature, T, within which the multiple solutions lie, may be found 

from the solution of the equation 

dt 
dT - 

or in a more convoniený form 

dT 
ät - 

OD ' 

ý (9.4) 

Differentiating equation (9.3) and using equation (9.4-) gives the 

condition for a bound on the non-unique region: - 

1 
BS rg - r'ý + r*g 

= (9-5) 

, ý_ti 
((-h--: -1 )g + r')a 

( slýý r- 

This equation may easily be solved by any of the standard procedures 

such as the Newton-Raphson method. 

9.3 Characteristics of the multiple solution region. 

The solutions of equation (9.5) take th3 foie shown in Figure 9.2, 

where the results are given for a range of the parameter B. The lines (1), 

(2) and (3) correspond to the lines of the same number in Figure 9.1. For 

case (1), starting at point A, the pellet temperature, t, will increase 

slowly as T increases until T reaches a value just above T1 when the pellet 

temperature will rise to a high value corresponding to interphaso mass 

transfer control. This occurs when the surface concentration falls almost 

to zero, and from equation (9.1) we obtain: - 

t =C-- Ta"BSh'ý (9.6) 

If the fluid temperature T is now reduced, equation (9.6) will hold 

until T falls below T2, when the pellet will again be in a region of unique 

solutions, and the reaction rate will once more be controlled by a mixture 
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of kinetics and pore diffusion. In case (2) it is apparent that the lower 

steady state cannot be obtained from the upper steady state by reducing the 

temperature alone. Case (3) is unique at all temperatures and equation (9.4) 

therefore has no real solution for this value of B. 

Figures 9.3 and 9.1ß. show the effect of varying Q and Sh'A respect- 

ively. In a given reactor O is constant and Sh'A can only vary between 

fairly narrow limits, since the mass transfer coefficient c (and hence 
A 

Sh'A) is proportional to the square-root of the flowrate. A set of curves 

similar to those in Fig. 9.1+ will therefore cover all possible operating 

conditions for a given reactor, but since the range of values of Sh'A in any 

one system is very restricted, a single curve will usually be sufficient. 

This is particularly true because the upper arm of the curve is almost 

independent of Sh'A over most of the range. This is much more important 

than the lower arm since, in the multiple solution region, it determines 

when the pellet moves from its lower value to the value predicted by 

equation 9.6. The insensitivity of the upper portion of the curves to 

changes in Sh'A is expected from physical considerations, since this 

represents a region of significant internal diffusion resistance. Therefore, 

provided that the external mass transfer coefficient is not low, it would 

not be expected to have much influence. 

Figure 9.5 was formed by plotting lines similar to the dotted lines of 

Figures 9.3 and 9.1+ for various values of e, and Sh'A. The value of this 

graph is that it gives an immediate indication of a limit on the conc- 

entration (i. e. on B) below which non-unique solutions cannot exist at any 

temperature. Only if it was required to design a reactor to operate to 

the right of the appropriate point on this graph would it be necessary to 

continue to investigate the non-unique region in more detail. 

It is interesting to note that for almost the whole practical range of 

B, no multiple solutions can exist for T>0.125 (i. e. '$ <8 in the 
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conventional notation). This result has recently been confirmed by 

Cresswell52 using a different method of analysis from that suggested here. 

In practice it is not only desirable to avoid regions of multiple 

solutions, but also regions of high sensitivity. In Figure 9.1 for instance, 

curve (3) corresponds to a region just beyond the cusp of the non-unique 

region, as is shown in Figure 9.2. Although this curve has a unique value 

of t for each value of T, there is clearly a region between V and YT where 

the system is likely to exhibit extreme parametric sensitivity, since the 

pullet temperature increases rapidly for small changes in the fluid temp- 

erature. In Figure 9.4, it is found that beyond the cusp for any particular 

value of Sh'A, the curve for Sh'A = 00 continues to predict regions of high 

sensitivity. It may well be desirable in practice, therefore, to use the 

curves for Sh'A = CD in all cases, since they enable all regions of 

potential difficulty to be avoided. In Figure 9.6 these curves have been 

plotted for a wide range of values of Al . 

It has already been mentioned that in the normal effectiveness factor 

charts il is plotted against X, the Thiele modulus evaluated at the-fluid 

conditions. Cressrvell52 has developed a method for calculating the bounds 

on 9, between which non-unique solutions occur. From the method suggested 

in this chapter, it is also possible to calculate these bounds if required. 

This may be accomplished by taking points at constant T from curves similar 

to those in Figure 9.3. Typical results obtained in this way are shown in 

Figure 9.7 for Sh'A = 500. The bounds on O% obtained from Figure 9.7 may 

be used to check the accuracy of the method, since these bounds may also 

be obtained by plotting the results from the numerical solution of the 

fully distributed model of the catalyst pellet described in Chapter 3. A 

comparison of the results is shown in Table 9.1. Agreement is bettor than 

6% in all cases, but since is exponentially dependent upon temperature, 

the accuracy of the predicted bounds on temperature is much better than 6ö. 
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Nu' B 

ßl1 (upper 
bound) 

(lower 
bound) 

Exact From Exact From 
Fig. 9.7 Fig. 9.7 

0.05 10 1 0.005 1.26 1-32 0.82 0.81 
0.01 10 0.2 0.005 1.32 1.32 0.81 0.81 

0.01 20 1 0.0005 2.45 2.45 0.19 0.20 

1 0.02 20 10 0.0001 11 .8 12.5 9.0 8.0 

Table 9. j Comparison of exact bounds on ý,.; between which non-unique 

solutions occur, with those obtained from Figure 9.7. The 

exact bounds are obtained from the numerical solution of the 

fully distributed model of the pellet described in Chapter 3 

(Sh'A = 500). 

An advantage of the method suggested here for determining the bounds 

of non-unique solutions is the simple way in which it can be extended to 

more complex reactions such as the A. ---3 B. -_. -; C, A-----3 D reaction 

scheme. This arises because for complex reactions an equation similar to 

equation (9.3) can be obtained (see Chapter 4. ) and the required bounds on 

the non-unique region can again be calculated by solving equation (9.4). 

9.4 The relationship between local and global stability. 

Analyses of multiple solutions in connection with stability in tubular 

reactor systems have tended to deal with either the quasi-homogeneous reactor 

or with the behaviour of single particles. In the heterogeneous reactor 

there is an interaction between the two which inevitably restricts the 

degrees of freedom in specifying the state variables, and which may tend 

to limit the development of instabilities. This interaction is particularly 

difficult to investigate using the conventional dimensionless groups for 

the pellet (0, )3 , 
I), but the problem is more amenable to analysis using 

the groups A, B and T. A plot of the fluid temperature, T, against the 

{ 

I 
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group B is characteristic of a set of operating conditions and the non- 

unique region can be drawn for a given system as shown in Figure 9.2, where 

the region of non-unique solutions is indicated. If the equations describing 

the heterogeneous two-dimensional catalytic reactor are solved, it is 

possible to plot the longitudinal trajectories for particular radial 

positions on the same chart. Only if any of the curves pass through the 

multiple solution region will the reactor tend to have multiple solutions 

at some point, and therefore by potentially unstable. 

Typical trajectories along the reactor axis (r = 0) are shown in 

Figure 9.8. The influence of coolant temperature is indicated, values 

greater than about 480°K indicating possible instability for the data in 
Table 9.2. 

Figure 9.9 shows longitudinal trajectories for various radial positions 

for a coolant temperature of 4.88°I{. No complete radial profile lies in the 

multiple solution region, so it is possible that instabilities will be 

clamped down. It is apparent from this graph that it may often be 

necessary to use a two-dimensional model when examining stability, since 

it is required to know the radial temperature and concentration profiles. 

Besides indicating where a reactor will tend to be unstable by virtue 

of trajectories passing through the non-unique region, it is possible to 

obtain some idea of how the reactor will behave outside but close to this 

region. In the course of numerical solutions, the criteria provided by 

these charts makes it fairly simple to assess whether undesirable operating 

conditions have been presented. Where the reactor model is part of an 

optimisation procedure, this is very useful. 

For the complex reaction scheme, it is also possible to examine the 

global stability, since instead of obtaining one line which defines the 

nor: -unique region and depending on 81 and Sh'A only, a set of lines will 

result, one for each value of CB. The loci of these lines will also depend 
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E 

(-OH, ) 

DPA 

kCA 

h 

is 

C 
P 

Tf (inlet) 

PeH, PeM 

C 
p 

4 

8.29 x 10 ° sec-1 

26.6 Kcal/g. mole 

500 Kcal/g. mole 

3.66 x 10`3 cm'/sec 

x.. 36 cm/sec 

1.20 x 10-3 cal/em2 /sec/°K 

0.21 cm 

125 cm 

164 cm/sec 

2.1 cm 

6.7 x 10-4 cal/c2a/sec/°K 

0.4 

0.25 cal/g/°K 

2.84. x 101 S. mole s/cmP 

500 °K 

10 

1.0 ö/Cm3 

0.177 cal/g/°K 

5.04. x 10' cal/cm/sec/°K 

S 

e1 1 .0x 10° 

B 7.67 x 10-' 

Sh'A 500 

Nu' 1.0 

0.84 

G, 0.09ti. 9 

G3 0.84 

G4 76.85 

G6 0.8tß. secs 

Gs 0.84. secs 

N uw 2.00 

Nu 
w* 1 . 33 

KT 1.55 secs 

T (inlet) 0.0372 

I 

TABLE 9.2. Data used for the reactor models in Chapter 9. Coolant 

temperatures are as specified in individual graphs. 



on 9, - A3 , , 2/E , E3/E1 , FQ , %, Sh'B and 5, each of which is constant 

for a particular reaction on a given catalyst. It is therefore possible 

to monitor the numerical solution of the reactor model as before, by 

plotting the reactor trajectories in the B-T plane, and to test for 

multiple solutions on one graph, although this is slightly more difficult 

than for the A -. --.. ý B reaction. The details of this are given in 

Appendix 5. 

9.5 The relationship of the present method to that proposed by Cresswell. 

In his recent paper, Cresswell52 developed a criterion for the absence 

of multiple solutions in the single pellet, using a model which included 

the interphase resistances to heat and mass transfer, as well as intra- 

particle effects. A method was also suggested for determining the bounds 

on the non-unique region, if one existed. Since the notation and grouping 

of the parameters are similar to that which has commonly been used in the 

past (i. e. different from the grouping proposed here), it is interesting 

to examine exactly what the methods are capable of predicting, and 

relationship to the current work. 

The criterion for the absence of multiple solution can be rewritten 

in the present notation as: 

B<ý, +8BT 
A 

If this equation is solved as an equality, it predicts the locus of 

the dotted line in Figure 9.3, and the region in which the inequality 

applies is clearly above and to the loft of this line. The criterion is 

therefore very conservative for any given system, for which 9, would be 

fixed. This is particularly important since it excludes the desirable 

range of conditions to the left of the lower curve defining the non-unique 

region for the relevant value of e,., For example, the inlet conditions 
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shown in Figure 9.8 would violate the criterion and could therefore not be 

regarded as permissible, even though in fact the profiles are shown to be 

completely stable for appropriate values of the coolant temperature. 

Cresswell's criterion predicts the upper limit on B as . "3 x 10-'s for 

T=0.0372, and this is only about 40% of the concentration which has boon 

shown in Figure 9.8 to give a satisfactory trajectory in the B, T plane. 

It can be seen that the criterion, given above, äpproaches T>0.125 

as Sh'A tends to infinity, confirming the results shown in Figure 9.6. 

When multiple solutions do occur, Cresswell devised a method for 

determining the bounds on the non-unique region in terms of upper and 

lower values of 01 
, for fixed values of Sh'A 

Now B= 
ANu 

, and T= 
11 

Nu', P, and O1. 

so fixing the parameters suggested by Cressivell defines a point in the 

B-T plane, such as point P in Figure 9.3, and since 

, d1 = Al exp(- i)= 81 oxp(- 0.5T) 
t 

the method actually predicts the two values of $ (i. e. different systems) 

for which the curves intersect at this point, namely 9ý = 104 and 108. 

Examination of non-uniqueness in this way is clearly inconvenient for any 

given system where the value of ßl would be fixed, and since the method 

cannot be worked in reverse, it is not easy to use it for an examination 

of the global stability of the system. 

9.6 Transient effects relating to non-uniqueness. 

The results obtained from the transient reactor model have shown 

that it is possible to have high concentrations and high temperatures 

existing at some point in the reactor for finite periods of time. Since 

this may drive the reactor into a non-unique region, or across the upper 

bound of the non-unique region, it is necessary to examine how individual 
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pellets behave when subject to transient external conditions, particularly 

those which occur near the bound of the non-unique region. 

For the reaction AjB, the equation describing the transient 

response of the pellet is: - 

dt 9L 
ITT-t+ 

BoSh'A (CA - cA 

Combining equations (9.2) and (9.7) to eliminate cA gives 
s 

* ýLt 

N1, 
d. ý,. =T- t+BSh'A ýh__g 

1` 2ý 1)g+ rý 

where B= Ba x CA 

(9.7) 

(9.8) 

Equation (9.8) is an initial value problem which can be solved by a 

Runge-Kutta procedure. The starting value of t is obtained from the steady 

state solution at the initial conditions. 

Figure 9.10 shows an enlarged view of part of the non-unique region, 

toeother with the pellet temperatures associated with the bounds on non- 

uniqueness. It can be seen by comparing this graph with Figure 9.1 that 

the pellet tends to change its state whenever the pellet temperature enters 

the region enclosed by the dotted lines. 

Figure 9.11, for example, shows the response to a stop change in the 

fluid temperature which takes the value of T to a point just above T1 . 

Initially the normal type of stable response is evident, with the pellet 

temperature apparently approaching asymptotically towards a now steady state 

value. Just before this steady state is reached, however, the pellet temp- 

erature passes the critical value, tl , and begins to rise with increasing 

rapidity until interphase mass transfer controls the reaction rate. The 

temperature of the pellet is then at a value which is predicted by equation 

(9.6), and in a reactor this would result in temperature runaway, with all 

its associated undesirable effects such as catalyst deactivation and poor 

selectivity. 
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FIG. 9.10 An enlarged view of part of the non-unique region, showing the 
pellet temperatures associated with the bounds on the region. 



e=io6 
B=IÖ-4 

ShÄ =500 

O"08 

t 

0.06 

K =1"55 OF 

ý Step change in T 

ao4 io 20 30 40 50 
>'C (seconds) 

FIG. 9.11 The response of the pellet to a step change in the fluid 
temperature which crosses the upper bound of the non-unique region. 



It is possible, however, to pass transiently beyond the limit of non- 

uniqueness if the time in the runaway region is sufficiently short. This 

is best seen by considering the frequency response to a sinusoidal perturb- 

ation. Figure 9.12 shows the effect of perturbing the fluid temperature 

which crosses and recrosses the non-unique bound T1 . The curves have been 

drawn for various periods of oscillation. Not unexpectedly, the response 

to the perturbation with the highest frequency shows the smallest amplitude, 

the least distortion, and has the greatest relative time lag. As the 

frequency is reduced, longer periods are spent above the line XT and the 

pellet becomes less stable. The distortion of the response also becomes 

more noticeable and is due to the highly non-linear effect of temperature 

on the reaction rate causing higher peaks in pellet temperature as the fluid 

temperature rises. At very low frequencies the fluid temperature remains 

above T1 long enough for the pellet temperature to run away, and interphase 

mass transfer control results. In this state, the pellet is unaffected by 

any decrease in temperature which might follow, unless T falls below T2. 

Figure 9.13 shows the effect of perturbing the concentration sinusoidally. 

(This has been shown as a perturbation in B since B=B0X CA). The curves 

are rather similar to those previously discussed for an oscillating temp- 

erature. However, this perturbation was sufficiently large to cross both 

the XY and YZ lines of Figure 9.10 and the pellet therefore reaches the 

lower steady state each time the concentration falls, even after temperature 

runaway has occurred. 

The factors which actually determine which pseudo-steady state is 

reached under oscillating conditions may be examined by plotting the response 

on a graph such as that shown in Figure 9.14. The continuous lines are an 

enlargement of curve (1) in Figure 90. It is apparent from Figure 9.14. 

that the lower steady state could be recovered even after temperature runaway 
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has begun, provided the values of T and t are made to come within the line 

XYZ. This could be done either by changing T very rapidly, or by changing 

the concentration to give a different value of B for which the new locus 

of XYZ would envelop the current point (T, t). 

From the way these responses occur, it is clear that if it were 

possible to obtain an analytic solution of equation (9.8), the benefits 

would be great, since the locus of the response could be examined in 

relation to the steady state solution of the pellet model (i. e. the cont- 

inuous lines of Figure 9.14). If the response intersected the metastable 

steady state line XY, the response would be stable since the heat generated 

would be greater than that removed and the pellet would return to its 

initial state. It would then be possible to determine the critical 

amplitudes and frequency of the perturbation for which the response was 

just stable. However it was found that all attempts to linearise equation 

(9.8), or to convert it into a non-linear form amenable to analysis, resulted 

in the loss of the important characteristics of the response and at tho 

present time, numerical solution seems to be the only satisfactory method. 

The effect of the time lag on the stability of the reactor may also 

be examined in terms of the effectiveness factor, shown in Figure 9.15 for 

the steady state and a typical transient case. The two curves are obviously 

very different, and while the steady state effectiveness factor is multiple 

values over most of the range, the transient value is unique at this 

frequency. In the region of mass transfer control the effectiveness factor 

in the steady state is given by 

_ 

3sh'A 

2 Aa exp(- 
T) 

i 

which in the case considered here gives values between 9.4 and 29.4. 

However for clarity only the smaller values have been included in Figure 9.15. 





The extended troughs in the transient curve are due to the time lag when 

the fluid temperature has begun to rise steeply while the pellet temperature 

is still near its minimum value. The frequency of the perturbation clearly 

has a strong influence on the transient effectiveness factor, since when 

the temperature oscillates at high frequencies the kinetic rate also 

oscillates strongly but the actual rate remains almost constant since the 

pellet temperature hardly changes. 

9.7 General comments. 

A method has been 'developed for determining the range of fluid conditions 

over which it is possible for a catalyst pellet to exist in more than one 

steady state. If the profiles of temperature and concentration should enter 

this region, a steady state model on its own is not capable-, of predicting 

the performance of the reactor, since this will depend also on the history 

of each of the catalyst pellets. Apart from this disadvantage, which could 

possibly by overcome by a careful start up of the reactor, there is nothing 

against operating within the non-unique region, provided that the pellets 

can be maintained at their lower steady state. 

The interactive features of the reactor are extremely difficult to 

investigate, however, and it is possible that, even if one or two pellets 

were to exist at the upper steady state, the system would be stable since 

these pellets could reduce the concentration sufficiently for subsequent 

p¬, llets to experience fluid conditions which lie well outside the non-unique 

region. The only problem which must then be examined is whether the reactor 

can withstand the large temperature gradients and the high temperature rise 

which would occur in this part of the reactor, since there would effectively 

be an adiabatic temperature rise. 



The observations of transient effects have been discussed in an 

attempt to put the steady state criteria for stability in perspective. 

Again, they emphasize the importance of the upper arm of the curves defining 

the non-unique region. In these transient studies, each of the perturbations 

crossed the limit of non-uniqueness (i. ot the upper arm of the curve) by 

only a small amount, yet temperature runaway occurred in a relatively short 

time, usually within about twenty seconds, indicating that the steady state 

stability criteria are not over conservative. In the dynamic case, as for 

the steady state, it is impossible at the present time to say how individual 

pellets will interact, since it may be that the transient instabilities will 

propagate, but it is equally possible that one unstable pellet will merely 

stabilize other pellets downstream. 

Because of the transient effects which occur in the reactor itself, 

a situation may arise where high concentration of reactant reach parts of 

the reactor which are already hot and which at the steady state would be 

receiving lower concentrations. This phenomenon has been discussed in detail 

in Chapter 8, and its relationship to the effects of non-uniqueness may be 

seen from Figure 9.16. It is apparent that although both the initial and 

final steady states are unique and stable, the transient profiles pass through 

th'3 non-unique region and therefore lead to potential instability. Indeed 

i+ +wý+ ..., ^-+ --r- M»a+ 'km +flUan if n rcnn+nr 4a +n 1ýý nrnrn+ýa I 
-V üýlýIG QL 7 y1Lü V &L%= b%' VCb& V_V- V_- -- -_- iv -vv vrvi-Q. yVti 

under conditions giving profiles which pass anywhere near the non-unique 

region, and that all changes in operating conditions should, if possible, 

be carried out sufficiently slowly to give a monotonic change of profiles 

from one steady state to the other. Alternatively a more conservative limit 

on tho inlet conditions might need to be imposed, such as restricting the 

value of B so that it is below the value obtained from Figure 9.5 for the 
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given value of 81 and Sh'A. This would ensure that all transient responses 

would be stable, with regard to non-uniqueness, since the operating 

conditions would always lie to the left of the non-unique region for the 

particular system under consideration. 



CHAPTER 10 

FINAL COMMENTS 

10.1 Summary of the present work. 

Consideration has been given to exothermic reactions where the kinetic 

scheme may be represented by: A---3 B. _.. -) C. For this system, steady 

D 

state and dynamic models of the fixed bed catalytic reactor have been 

developed which specifically take into account the heterogeneous nature of 

the bed. This was accomplished by considering the performance of single 

catalyst pellets in which the reaction rate is not only controlled by the 

reaction kinetics, but may also be influenced by transport processes. A 

method has been proposed for determining regions of potential operating 

difficulties, with particular reference to the bounds on the fluid conditions 

within which the catalyst pellet may exhibit multiple steady states, and a 

means suggested by which the global stability of the reactor may be examined. 

The models of the catalyst pellet have been developed in a way which 

takes account of the resistances to heat and mass transfer within and around 

the pellet. It was demonstrated, for the range of data which is possible in 

real systems, that the thermal resistance between the bulk fluid and the 

pellet centre is concentrated across the fluid film. This enables con- 

siderable simplifications of the model to be made, since the pellet is 

effectively isothermal, a relatively large temperature rise occurring between 

the bulk fluid and the pellet surface. If the rate of reaction for each 

stop may be regarded as first order, with respect to the key reactant being 

consumed in that step, then the equations which describe the mass balances 

in and around the pellet may be solved analytically. In the general case, 

the computing time is reduced considerably by this simplification, to an 
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extent where it is possible to incorporate detailed descriptions of the 

catalyst pellet into models of the reactor. 

Two steady state models of the reactor have been developed, both of 

which are continuum models, i. e. the transport of heat and mass is 

described by differential equations. Solution of the models shows that the 

differences between the behaviour of heterogeneous and quasi-homogeneous 

systems is often large. A notable example of this is that the quasi- 

homogeneous model commonly predicts temperature runaway when the hetero- 

geneous model predicts a completely satisfactory temperature profile, since 

the reaction rate is significantly influenced (i. e. reduced) by mass 

transfer effects. 

In one of the proposed models, the two-dimensional model, both radial 

and longitudinal profiles of concentration and temperature are evaluated, 

whereas, in the other, only longitudinal profiles can be obtained from 

solution of the differential equations. The latter is known as a one- 

dimensional model, even though it is based on an assumed form for the radial 

temperature profile and thus takes some account of the two-dimensional nature 

of the system. In the steady state, the one-dimensional model gives rise to 

ordinary differential equations and the two-dimensional model gives partial 

differential equations. 

It has been shown that the one-dimensional model can predict results 

which are in excellent agreement with those obtained from the more compre- 

hensive two-dimensional model, and since the computing time is considerably 

less, a significant saving in computer time may be made. In spite of this 

reduction in the computational effort required to obtain the solution, the 

time required is much too long to enable the model to be used for controlling 

the reactor and this might have been anticipated from an examination of the 

equations which are involved. For this reason the work described in this 

thesis has proceeded in phase with work on the development of model reduction 
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techniques If successful 'reduced' models are available, then the time 

for solution of the basic models is less critical, since these would only 

need to be solved occasionally as a standard against which the simpler 

models may be judged, or when working in critical regions, such as close to 

the optimum or near constraints. (This comment applies equally well to 

distributed models of the catalyst pellet, since these are the standards 

against which the lumped thermal resistance (i. e. reduced) models may be 

judged. ) 

The most important required features of the more complex models are 

that the solutions should be obtainable in a reasonable time and that the 

numerical methods should be very stable. Variations on the same basic 

numerical method have. therefore been used to solve all the non-linear 

differential equations which arise in the models, since this satisfies both 

the above requirements. Although the method is not particularly elegant, 

the convergence characteristics are known to be excellent. 

Very little information was previously available concerning the dynamic 

behaviour of fixed bed catalytic reactors, since the solutions of models 

proposed in the literature have required such an excessive computational 

effort that very few results could be obtained, and the work may therefore 

be regarded as being almost mathematical or computational exercises. In 

order to examine the general features of the dynamic response, therefore, 

a model of the reactor has been developed for which the computing time is 

short enough to conduct a case study. The proposed model is one-dimensional 

and, although the detailed description of the system cannot be guaranteed, 

several potential difficulties have been identified, which might become 

manifest if an inappropriate control strategy were selected. in particular, 

the inlet temperature is unsuitable as a manipulated variable, since, when 

this is reduced, very high peak temperatures may occur and an unstable 

response is possible. These effects are primarily duo to the heterogeneous 



nature of the system, again demonstrating unsatisfactory features of 

representing the reactor by a quasi-homogeneous model. 

The method developed to determine the ranges of fluid conditions over 

which multiple solutions of the pellet model may occur enables the global 

stability of the reactor to be studied by plotting reactor trajectories on 

a single graph and examining their relationship to the non-unique region. 

The method is particularly well suited to automatic application on a 

computer, in a way which makes it possible to continuously monitor the 

profiles of concentration and temperature during solution of the reactor 

models, and any conditions which could lead to multiple solutions (i. e., 

potential instability) can thus be readily identified. All previous 

analyses of reactor stability have been concerned with quasi-homogeneous 

systems, where the multiple solutions arise as a result cf axial dispersion 

terms. Except for very short reactors, axial dispersion is known to bo 

unimportant and the method proposed here enables, for the first time, an 

assessment of non-unique profiles to be made for the reactor systems likely 

to be important in practice. 

10.2 Suggestions for further work. 

The present work has been entirely theoretical, but it is clear that 

the reliability of the models can only be finally established by comparing 

the predictions of the models with the results obtained from real systems. 

This must therefore be regarded as having a high priority in any future work. 

Parametric tests on the reactor models indicated that some of the 

required data must be known accurately - more accurately in fact than is 

possible using the standard correlations in the literature, and this might 

prevent successful application in some circumstances, oven if the models 

themselves were completely satisfactory. It is therefore necessary to be 

, 
able to identify some of the system parameters, either from preliminary 

experiments or, alternatively, by using the correlations in the literature 



as the basis of the reactor design and then updating the estimates using 

on-line identification techniques. The present state of the art in on-line 

identification is rather unsatisfactory, however, and efforts are required 

to improve the current techniques. 

On the theoretical side, investigation of the system is by no means 

complete. Attention has been given exclusively to analysing results for 

first order. reactions, although the majority of the models are also suitable 

for reactions of other orders. A comprehensive examination of the effect of 

reaction order is desirable, both in single pellet studies and in reactor 

modelling. In analysing the dynamic behaviour of the reactor, attention 

has been confined exclusively to stop and ramp changes in the manipulated 

variables. A more complete understanding of potential control difficulties 

could probably be obtained by examining the response to oscillating input 

conditions or constant values with random 'noise' superimposed. It is also 

desirable to develop a two-dimensional dynamic model of the reactor in order 

to confirm the conclusions reached using the one-dimensional model and to 

enable an assessment of the accuracy to be made. 

The stability analysis of the reactor requires further study, 

particularly with regard to the behaviour when parts of radial profiles pass 

through the non-unique region, and the interaction of the catalyst pellets 

needs to be examined in this case. The dynamic characteristics of the reactor 

when pellets are changing from one steady state to another could also profit- 

ably be examined, in order to see whether instabilities are damped down or 

propagated. A finite stage model of part of the packed bed would probably 

be best for carrying out this study, since this enables the true geometry of 

the system to be considered rather than arbitrarily considering catalyst 

pellets to be placed (or acting) at the nodes of the finite difference network. 

Lastly, it is desirable to continue with the development of model 

reduction techniques, since, no matter what models of the reactor are 

developed, reductions in computational effort will affrays be welcomo. 
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APPENDIX 1 

THE FINITE DIFFERENCE SOLUTION OF THE GENERALISED SINGLE PELLET MODEL 

Al "1 Formulation of the finite difference equations. 

The differential equations describing the behaviour of the pellet have 

been developed in Chapter 3. Equations (3.9), (3.10) and (3.11) are similar 

and may be written as 

da f-2 df + R, f+R,, =0 (A1 
.1) V1Y ay 

where R' and R" are functions of the point concentrations and temperature 

at a distance y from the pellet surface. The boundary conditions for these 

equations are: - 

df =0 aty=i 
dy 

Cif 
dy = K(f-F) at y= 0 

(A1 
"2) 

(Al . 3) 

F is the value of f in the fluid surrounding the catalyst pellet. 

The expressions for K, R' and R" are given in the table below. 

Equation f F R R'' K 

3.9 cA CA -0ýcý 
1- f6ýc 0 SZA 

3.10 cB CB -ýýa ý cB ý1 ý cA -ýB 2 

3 "11 t T 0 fi(0 ýcý+ Hý ý1ý c "'. 12 + Iiý ýl9'°ý cÄ ) N2 ý 

TABLE Al .1. The expression for the general terms in equations 
(A1 . 2) and (Al 3) obtained from equations (3.9), (3.10) and 
(3.11). 

Solution of the three equations represented by equation W. 1) may be 

accomplished by replacing the derivatives by their central difforonco 

approximations and solving the resulting simultaneous non-linear algebraic 
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equations iteratively. It is found that in some cases very steep gradients 

occur near the pellet surface making it impossible, using a uniform finite 

difference grid, to obtain adequate representation of the derivatives. 

Storage limitations normally restrict the number of nodes in the network 

to around 400 which is inadequate over some ranges of the system parameters. 

This problem may be overcome using a finite difference network containing 

steps of two sizes as follows. 

Consider the general point in the finite difference network as shown 

below. 
J-1 i i+1 

Surface E. _- s1j -" " (--- h_. _) " ____: j centre 

The derivatives in equation (A1.1) may be replaced by the following 

finite difference approximations: - 

Cif fi+1 - fi 
-1 ýu -h+j 

da f 
dya 

) 2(jfi+1- (h+J)fi + hfi-i 

hj(h + j) 

The general form of the equation is therefore 

miff+i + pifi + nifi 
-1 - ai 

whore mi -h+j 
(h - 1, 

- yy) 

ni = hh j ýý 

2 
pi -8i hi 

ai= -R' j' 
(1 <i<N-1) 

(Al 
. 4) 

where nodes 0 and N aro at the pellet surface and centre respectively. 

When equation (A1.1) is combined with equation (A1.2), the boundary 

condition at the pellet centre, an indeterminate term is obtained. This 

term may be evaluated by applying Lhöpital's rule, giving 



Lim 2 df 2 d' f 

Y-41 1 -Y dy V 

Substituting in equation (A1.1) gives 

3 d7 
+ R'f + R" =0 (Al. 5) 

In finite difference form obtained by putting fN+1 = fN_, and j=h, 

this becomes 

PNfN + VN 
-1 - aN 

where 
6 

nN 1ý 

PN = Rl 
6 

N ha 

aN =- RlN 

Writing equation (A1.3), 

(Ai .6) 

the boundary condition at the pellet surface, 

finite difference form, We obtain 

fl - P_1 
- x(f 

0- 
F) (A1 

. 7) 
2j 

Eliminating the imaginary point f-, between equations (Al 
. 7) and (M 

. z. ) 

and putting j=h 

mof 1+ Pö 0=a0 
(A1 

"8) 

2 
where mo = 

p0 = RIO3 ;- 2K(ß+1) 

a0 = -R', -2KF(1 +1) 

Equations (Al 
. 4), (Al 

. 6) and (Al 
. 8) represent a system of simultaneous 

algebraic equations, 

Af=a 
_ýý 



where Po . mo 
` %. 

`ý f 
f. .ý 

fýf 
\1 ýý 

ni p1 
ým 

fý A- 

"N PN 

A is a tridiagonal matrix, and if the elements of A and a are known, 

then the equations which give rise to this type of, matrix may be easily 

solved using the computationally efficient algorithm developed by Thomas, 

and described by Bruce et ai63 (This algorithm is also given by Lapidus73) 

However the non-linear terms R' and R" which are involved in the 

elements of A and a are unknown, and an iterative procedure must be used. 

This may be done as follows: If the solution for f is assumed, R' and R" 

may be calculated and after using these values to calculate the elements 

of A and a, a new solution for f can be obtained. R' and R" are again 

evaluated using the new f, and so on until the solution becomes constant. 

For most purposes, the most convenient solution to assume initially is 

that fi=Ff or 0<i <N. 

A1.2 Choice of the finite difference network. 

The finite difference equations have been formulated in a way that 

will enable steps of more than one size to be used. Tables A1.3 and A1.4 

show how the step sizes and the form of the grid affect the effectiveness 

factor and selectivity. These are calculated from equations (A1.10) and 

(Al. 11) respectively. In section (a) of the tables, the step length is 

kept constant throughout the pellet. In section (b), the first 1% of the 

pellet near the surface is subdivided, doubling the number of steps in the 

interval each time, until there are 256. At this point the storage 

requiroments are becoming excessive. The step size is further reduced by 
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halving yI as seen in section (c), keeping the number of steps in the 

surface region at 256. In both sections (b) and (c) the interior of the 

pellet is divided into 100 increments. The data used are given in Table 

Aj. 2. 

ý (-4 

Y=O 

r 
iý 1 

-100 
INCREl'. =S 

0 Y=1 

GROUP VALUE 

A1,62 2.2 x104 

A3 0.0 

H 1.0x10-4 

Ea/El, Iia 1.0 

Nu' j. 0 I 
Sh'A, Sh'B 500 

ä 1.0 

CB 0.0 

TABLE A1.2 The values of dimensionless groups used to test 

convergence of the numerical procedures. 

Figure A1.1 shows the effectiveness factor and selectivity as a 

function of temperature and indicates the controlling regions. From 

Tables A1.3 and A1.4 it may be seen that the region where convergence of 

the numerical procedure is easy to obtain, corresponds to kinetic control. 

As the region of interphase mass transfer control is approached., convergence 

becomes progressively more difficult to obtain. The reason may be easily 
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>- 
T-FIG. Al. 1 Graph of effectiveness factor (TL) and selectivity (sfº) against 

fluid temperature. This shows the range of conditions over which convergence 

of the finite difference network was tested. Data as given in Table A1.2 . 



seen by examining the concentration and temperature profiles for various 

values of the fluid temperature, T, as shown in Figures A1.2, A1.3 and 

Al . 4+. 

In the region of kinetic control (T = 0.05) the gradients are 

relatively shallow and the curvature gentle, allowing a fairly coarse 

grid to be used. As the region of diffusion control is approached (T = 

0.55 - 0.65) the concentration gradients become steeper and the curvature 

increases, necessitating the use of smaller steps throughout the pellet. 

In the region of interphase mass transfer control, the gradients and 

curvatures in the concentration profiles are severe, but only near the 

external surface, enabling the use of a two step sized grid to be used with 

advantage. It may be seen from Figure A1.1+ that the temperature profile 

is unlikely to present any convergence problems in itself, although it is 

high temperatures which are responsible for the steep concentration gradients 

which occur. 

In Tables Al .3 and Al . 2- the results for the diffusion controlled region 

begin to diverge in sections (b) and (c), to approach the values for a step 

size of 0.01. This is to be expected since, in the diffusion region, 

significant concentration gradients exist well into the pellet, while the 

smaller step size is only used near the surface. 

The results discussed above indicate that the numerical solution of 

the equations is not as straightforward as has often been assumed in the 

literature. It is in fact necessary to solve the equations once with a 

relatively coarse grid to determine the step size and grid characteristics 

to be used for an accurate solution of the equations. 

A1.3 Calculation of the effectiveness factor and selectivity. 

The effectiveness factor and selectivity must be capable of accurate 

evaluation, since in a reactor, any small errors are likely to be magnified 
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cA 

>y 
FIG. Al.? - Concentration profiles for species A within the cata33rst pellet 

for various fluid temperatures. Data as given in Table A1.2 



0.5 

CB 

I 
ý 

0.065 

I1 . -"-1--º-__ 1(II1I 
n. 

0.5 l. b 
y 

FIG. AL 3 Concentration profiles for species B within the catalyst pellet 
for various fluid temperatures. Data as givet in Table A1.2 . 



T=o"o75 

O"Q7 

t-T 
T 

0.05 

0055 
O"065 

FIG. Al-4 

0.5 1.0 

>y 
Temperature profiles within the catalyst pellet measured 

relative to the temperature of the surrounding f]ziid (T). 

Data as given in Table A1.2 . 



by the highly non-linear nature of the equations. Although the definitions 

of effectiveness factor and selectivity used by different authors may be 

essentially the same, the method of evaluation may vary, depending on which 

part of the boundary condition is used. For example, the boundary 

condition for component A is 

2= 
Sh'A (cA - CA) (A1 

. 9) 
y= 03 

either: - 

The effectiveness factor and selectivity are therefore defined by 

1.5Sh'A(CA-CAS) 

( ýi + J'33 
) CA 

Sh' 
B( cB -C 

and sB 
äSh'A(CA - CA) 

s 

or 

and 

I 

lp 

3ýý 

tg; +ý' ) ck 

d2B = 
dy 

ý Y=0 

ado 
cvli y=0 

(A1 i 

(Al 
. 11 ) 

f "A1 , 12) 

(Al 
. 13) 

The form which has usually been used in the literature for the 

evaluation of 'q and ý is that given by equations (Al 
. 12) and (Al 

. 13). 

Butt used this method in his treatment of the reaction scheme A ----ý 

B; C, calculating the derivatives by a throe point backward differenoo 

formula. 

df 

1_ -3fo +4 fl - f2 
dy 

Y=O 2j 

It can be seen from Table Al .5 that the results calculated by the 
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two methods can give considerably different answers. The two methods 

agree when very small steps are used and it is apparent that for larger 

stops it is the method using gradient evaluation which gives the 

wrong answers. In some cases, especially in the evaluation of '' 
, the 

results calculated from the gradient form bear no relationship to the true 

values. 

Throughout the work involving effectiveness factors and selectivity, 

71 and T are therefore evaluated from equations (Al 
. 10) and (Al 

. 11) using 

calculated values of the surface concentration. 
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APPE, NDIX 2 

THE FINITE DIFFERENCE FORM OF THE TPTO-DIMENSIONAL STEADY STATE MODEL OF 

THE REACTOR 

Equations (5.6), 

written as follows: - 

(5.7) and (5.8) all have similar form and may be 

a f+L af 
+ K' f+ R'f + R" =0 ar' r )r äz 

subject to the boundary conditions 

ýf 
ar 

ýf 
ýr 

(A2.1 

=0 at r=0, z>0 (A2.2) 

+Kf+KK° =0 atr=1, z>0 (A2.3) 

and the initial condition 

f= f(r) at z= O for 0 r>1 

The parameters in these equations have the values shown in Table A2.1. 

"'quati. on f K' R' I R" Ko 

5.6 CA -Gl Gl Ga'ý (gi CÄ -t+ WCA g 1) i0 
0 0 

5.7 CB 
} 

-G16 0 lGl G6L1lt (01 CA +p3 CÄ 1) CA 0 0 

5.8 
ItT 

-Ga -G3 G4 , G3 G4 t Nuw -Tc 

TABLE A2.1 The expressions for the general terms in equations (A2.1), (A2.2) 

and (A2.3) obtained from equations (5.6), (5.7) and (5.8). 

Equation (A2.1), together with its associated boundary conditions, may 

be solved by a finite difference method. In the method described hero the 

gradients in the radial direction we replaced by their central difference 

approximations while those in the axial direction may be replaced by any first 

order finite difference approximation. 
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The terms in equation (A2.1) may be expressed as follows: - 

aaf l (ý? 
6Y2 

(f - 2f +f)+ (1 -Q)(xf - 2xf + xf )) - ha i+1 ý i-1 i+1 i i-1 

r )r 2hr 
ýý2ifi+1- fi DO( xfi +1 -x fi_1)) 

K' äZ 
= 

k' (fi - xfi) 

R' f= QR' ifi + (1 - A) xR' i xf. 

R" = QR'i + (1 - Q) xR'i 

The prefix 'x' indicates the value of a variable at the previous axial 

position. This is a known value since the equations are initial valued in 

the axial direction. Q is a constant such that 0<Q =i. When Q=0.5 the 

equations reduce to the Crank-Nicholson form and the non-linear terms are 

averaged over the axial step. 

Replacing the terms in equation (A2.9) by the expression given above, 

and rearranging, gives 

mifi+l + piff + ni i 

where mi =Q+ 2hr 

_00 ni - h? ^ 2hr 

= a. 
1 

ý Lo. 
+k+ fýR' i 

ai 

of 

-Aý- 
-+ 

ý--ý xf 
2 (1 

xfi +1 
ý 

ha 2hr 
ý- 

iý ha 
K' 
k + (1 

(A2.1i. ) 

-Q) xRY 

- xfi 
-1 

(Q- 
2hrß 

) .. QR'i ' (1 -Q) XR' 

Those expressions hold for 1<i<N -1 where N and 0 are the numbers 

the finite difference nodes at the tube wall and centre respectively. 

At the tube centre 
6r=0 

so 
r är is indeterminate. Applying 



Lhöpital's rule, equation (A2.1) becomes 

2 ä- + K' 
Q+ 

R'f + R" =0 

and since fý =1 etc., the equation in finite difference form becomes 

m0 f1 + Pofo = as 

where AI 
4Q 

o-ha 

Po ' Yza + 
KI 
k+ QR I 

(A2.5) 

ao - -xf1 xf 0( 
ý+IT-) 

-kt- (1 -ý cý ) xR'o )-ý? R' 
0 -(1 - Q) xRo 

At the tube wall, the boundary condition becomes, in difference form, 

2h 
(ý2(fN+1- fN-1) +(1 Q)(xf'N+1- xfN_j ))+K(QfN +(1 -Q)xfN) + KKo =0 

This equation can be combined with equation (A2.4. ). This results in 

the elimination of the hypothetical function values fN 
+1 and xf,, 

+, 

giving 
pNfN + rý1fN 

-1 = aN 

where rIN = 

(A2.6) 

+ 
K' 

pN 
20 

+ ßR1 - 2Kh(1ý + 2h 

aN=-ýN(_2ý-ý _k'+(ý-Q)ý-2xh(lýA+ýý))-XfN_1(2 -0)., 

QR'N - (1 - Q)xR N+ KKo(2 +1 

Equations (A2.4. ), (A2.5) and (A2.6) represent a system of simultaneous 

algobraic equations 

Af=a (A2.7) 



where 

A= 

pm Q0 
ý 

\f\ 

f\ 

\ 
n. i 

1% 

f 
f 

Pi li 

fý 
ýf fýf 

ýf 

zN pN 
ýý 

This matrix has the same form as that obtained for the pellet model 

in Appendix I and the solution for f can again be obtained using the 

Thomas method63 



APPENDIX 3 

THE FINITE DIFFERENCE FORM OF THE FULLY DISTRIBUTED DYNAMIC MODEL 

OF THE CATALYST PELLET 

For the A __> B reaction, the heat and mass balances in the dynamic 

case are described by equations (7.1) and (7.2). These two equations have 

similar form and may be written as follows: - 

ýaf 2f_ R' äf 
ay" -y ýy ýý' 

Subject to the boundary conditions 

äf 
ay 

af äY 

R' f+ R" =0 (A3.1 ý 

=o at y=1, Y? () 

y=0, ^j'? 0 K(f - F) at 

f= f(y) at ý= 00 <y 

where K and F may be functions of time, '. 

Equation f K' R' R" K F 

7.1 cA Kc - Jý1* 8 cAi 0 Sh'A CA 

7.2 t KT 0 HA1* 2 cÄ 1 Nu' T 

(A3.2) 

iA3.3) 

TABLE A3.1. The expressions for the general terms in equations (A3.1) 

and (A3.3) obtained from equations (7.1) and (7.2). 

Equation (A3.1) and its associated boundary conditions may be solved by 

a method very similar to that described in Appendix 2 for the two-dimensional 

steady state model of the reactor. The finite difference formulation is not 

quite the same, however, since F and K may be functions of time, and the 

finite difference grid must be non-uniform for the reasons discussed in 

Appendix 1 with reference to the steady state solution of the catalyst pellet 

model. 

I 
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The derivatives and other terms in the general form of the equation may 

be replaced as follows: - 

3'f 2 fQ*(jf (j+h)f +hf )+ (1 
by' - (h+jhj i+ý i i-1 - Q#)(j ofi+, -(h + j)ofi+ h 

öf 
= --I_ 

f @*(f -f)+ (i -Q*)(of. 1- of h+ jý i+1 i-1 +1 iý1 öy 
)ý 

R' f=Q *Rif i+ 
(1 -Q *) oRi of ý 

R" = O*R. i' + (1 - Q*) oRi' 

of 
art =1 (fi-ofi) 

These terms have been evaluated at the general point of the grid, i. 

which has a step size of j on one side and h on the other. 

Peilet Pellet 
Surface """" .- Centre 

The prefix 'o' indicates the value of a variable at the previous time 

step (i. e. it is known). 

1 is the step length in the time direction 

Q* is a constant such that 0< Q* < 1. When Q* = 0.5 the equations 

reduce to the Crank-Nicholson fora. 

Replacing the terms in equation (A3.1) by their finite difference 

equivalents gives 

miff +1+ pif i+nifi -I 
ai (A3.1+) 

where m= ý_ (' -i i- h+j hI -y 

r .. i - h+ J '3 ,-1 _y 

Pi 

2Q* 1 

20 * (J_ -I u. A4ý-. -) 

ý hi +Q*Ri, 
1f 

ai - 
2Shý+ 

j*, 
( h+ 

1-yýofi+ý ofi(2(lhja*ý 0$ý _ 
i'ý 

(cont. ) 

I 
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_2 
(1 - @*) (J+ __. J__) 

_ Q, p 
y h+j 

for 1 41 ý< N -1 

(i - Q*) oRi' 

The boundary conditions at y=0 and y=i may be built into the 

finite difference formulation in the same way as for the steady state model 

(see Appendix 1 ). 

At the centre (i = N) 

PNfN + 'VN 
-1 

aN 

where 
6* 

ý_ 

pN __ý+ Qý r 
ir 

aN = oPN(6(ý 
Q*)- (1 - Q*)oRN _ 

K' 6(1 - Q*) 
1 

h2 

At the surface (i = 0) the finite difference form becomes 

mofl + Pofo _- ao 

where 
2A* 

m _- oa J 

r 
Po=' ý* 

+ Q*R' -i -2Q*K( 
ý+1) 

(A3.5) 

(A3.6) 

ao =-2(ý 
Q*) 

of i+ ofol 
2(Ja Q*) 

-(1 -Q*)oR'o- 
1t+2(1- Q*) oIC 

-QR'o -(i -Q*) oR'o' - 2Q*FK(J + 1) -2(1 - Q*) or, oF(3 +1) 

Equations (A3.4) to (A3.6) represent a set of N+1 simultaneous 

algebraic equations which may be written 

Af=b. 

The matrix of coefficients, A, is tridiagonal, the elements being mi, 

ni and pi. Using assumed values of R' and R" the equations may be solved 

to find f, by means of the Thomas algorithm discussed in Appendix 1. 

-u,. o 



APPENDIX 4 

THE SOLUTION OF THE ONE-DIIAENSIONAL TRANSIENT REACTOR MODEL 

A4. i The finite difference representation of the equations. 

Equations (8.1), (8.2) and (8.3) have a similar form and may be 

written 

öP+K'? f+K"f+K* +R'f+R" =0 äZ aT 
(M., ) 

where the parameters are defined in Table A4.1 for each of the equations 

under consideration. 

In implicit finite difference form this equation may be written: 

f(k+ + QQt(K"+ R')) xf(- + Kr(1 ý p) 
+ (1 - A)ýa(Kýý+ ý')) 

- of""( 
k *- ý 

+'Q(1-Qý`)(K, ý + oR')) - oxf(-k#- K'(17-O-) +(1-Q)(1-Qý`)(Ký' + oxR') 

Q(1-Q*)o8" - (1-Q)Q*xR" - (1-Q)(1-Q*)oxR't - oK* 

where the prefix o indicates the value of a variable at the previous time 
position 

x indicates the value of a variable at the previous axial 
position 

ox indicates the value of a variable at the previous time 

and axial positions 

j is the step size in the time (T) direction 

k is the step size in the axial. (z) direction 

Q and Q* are weighting factors defined by: - 

0<Q 

0< Q*ý<1 

A4.2 A check on the heat balance for an adiabatic reactor. 

In order to have some check on the results computed by the transient 

reactor model, a heat balance over the reactor may be carried out. That 
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the heat balance should be confirmed is a necessary, but not sufficient, 

condition for the true solution, but in a highly non-linear system, such as 

the one studied here, it is very unlikely that any computational errors 

would give rise to a solution which satisfies the heat balance. The data 

used for the models are given in Table M.. 2, and are such that they ensure 

complete conversion under all the conditions which arise. 

, Ö1 1 . 01 x 104 G1, G3 0.84 

B 5x 10'a G, 0.094.9 
o 

CA 1.0 G4 76.85 

NI 
1.55 GS , Gs 0 

Sh' i 500 ( 'C 
ý 142 seconds A 

TABLE M3.. 2. The data used for the heat balance on the adiabatic 

reactor. 

The reaction scheme is confined to the A. _--ý B step since this shows 

all the main dynamic characteristics of the more complex reaction scheme. 

The response of the reactor to a stop increase in fluid temperature is shown 

in Figure Al+. q. It is apparent that the same general characteristics as 

shown as for the non-adiabatic system when a similar change in temperature 

occurs. Rather surprisingly (at first sight) the outlet temperature falls, 

but this can be explained as being due to the following effects occurring in 

sequence. 

(i) After the step change, some of the heat of reaction is usod to 

heat the pellets in the inlet region, and less heat is available 

to heat the fluid. There is also heat transferred from the fluid 

to the pellets, and these effects cause the fluid temperature to 
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FIG, Ak. l The temperature profiles in an adiabatic reactor following 

a step increase of 0.001 in the dimensionless inlet temperature 
, Data as given in Table A4.2. For an activation energy of 32 Kcal. 

o .,,, i a +Vo a rhAnae represents approximately 16oC. 
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fall below its initial value. 

(2) In the outlet region of the reactor, there is no reaction and the 

pellet temperature begins to fall as the fluid temperature falls. 

(3) Eventually as an increasing amount of the bed approaches its 

final steady state, the hot fluid begins to reach the pellets 

in the outlet region and the temperature in this region also rises 

towards final steady state. 

Since the reaction goes to completion, the temperature rise through 

the bed would be constant in the absence of any capacitance effects. It is 

some time before the fluid at the outlet reaches its final steady state 

temperature and this 'loss' of heat should correspond to the increase in 

thermal enargy within the bed. 

The heat 'lost' from the fluid stream corresponds to the shaded area 

in Figure 4.2 and is given by 

ry p uCp 
Jo 

(final outlet temperature -outlet temperature) dT 
1o 

The heat gained by the bed is given by 

(1 - e) L Cp* (final pellet temperature -initial pellet 

i0 temperature) 
0 

These expressions should be equal and in the normal dimensionless form 

they may be written 
rT G4 (t -t) (A4.2 ) 

final mean 
3 Nu' moan mean 

outlet outlet final initial 

where the mean values must be obtained by carrying out the integrations 

above. The transient response has been examined over 14+2 seconds in 2-second 

steps and the integration carried out by the trapezoidal rule. 

temperature) dz 

f 
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Mean outlet temperature over 142 seconds = 0.07614.35 

Final outlet temperature = 0.0779860 

1 42 x difference 

Initial mean pellet temperatue in the reactor 

0.261787 (i. e. 1,, h. 3. of 

equation Al}. 2) 

0.0654012 

Final mean pellet temperature in the reactor = 0.0686983 

2 Y-T 
G4 x difference = 0.261831 (i. e. r. h. s. of 3 Nu' 

equation A4.. 2) 

The heat balance is therefore exoellenx, agreement being to within O. 02afo, 

indicating a high order of accuracy on the results of the solution of the 

transient equations. 



APPENDIX 5 

DETERMINATION OF THE BOUNDS ON NON-UNIQUENESS FOR COMPLEX AND 

NON-FIRST ORDER RTCTIONS 

A5.1 Complex reactions. 

In Chapter 9, a method was developed for determining the bounds on 

non-unique solutions of the catalyst pellet model. The condition for the 

bound was shown to be dt 
= 0, where T and t are the dimensionless fluid 

and pellet temperatures respectively. 

For the complex reaction scheme, the same equation must be solved, but 

the relationship between T and t, given by the heat balance on the pellet, 

is more complicated than for the single reaction case. As was shown in 

Chapter 1+, the heat balance may be written 

T=t- B(ShÄ 
ýk 

(1 
ýA. kl + k3* 

ý 
Ha +ký* Fb)-Shý( B8 

- 
ýBj 

CA CA 

(A5.1 ) 

where 

or 

Fi 
s 

cB = F3 - Fa 
s 

cB = Fs - F4 

when ltý + k: * / Sk* 

when 1%! + kj* =S ka* 

F1 to Fb are functions of the pellet temperature, t, and are given by 

equations (11.. 12), ()E. 20), (4.21 ), (4.24) and (4.25). 

Differentiating equation (x"5.1), the bounds on the non-uuiique region 

are obtained by solving the equation, 

+ 112 ) Ice* 
ýI (1 ý_S --HQ 

ýý$ý Ha 
'r" - Kl- . r,. K3 , K7... - ý, Ka. - CAY dt 

(A5,2) 



The expressions for cA and cB (i. e. the functions F1 to FS) are 
ss 

fairly complex functions of the pellet temperature, t, and the fully expanded 

form of equation (A5.2) is even more complex. Differentiation of the terms 

in this equation is basically straightforward, but the resulting expression 

comprises many relatively simple terms, the majority of which occur several 

times. Evaluation of the left hand side of the equation can therefore be 

broken down into a series of simple steps, and this form of calculation is 

ideally suited to a computer. Each of the derivatives needs to be evaluated 

once only for each value of t, and can then be stored and used as often as 

necessary. Clearly, this is extremely efficient when compared to writing 

out the fully expanded form of equation (A5.2) and evaluating each function 

of t as it occurs. The derivatives which occur during the differentiation 

of oý and CB are as follows: - 
ss 

Ei k. * 
dt iý 1 (i =i, 2,3) 

dt 
ýý+k0* 

=2k 
ýat*ä* 

d 
dt s dlca* 

2ý dt 

) 

dt 
(coth 

coth2 kl + lc3* d jki` 
-+k, 

3* 

d (coth J 
-C 7--. COW }ý 

dt 
dt 

d (tanh kl *+ ks'") tanha J23-* + ka 
dt 

)aJ kl* + ko* 
dt 

Ei 
where ki = 9i expp(- Et) El 

Equation (A5.2) may be solved by the method of false position, and 

since the heat generation function represented by Bx(Sh'A ..... etc. ) in 

equation (A5.1) is essentially the same shape as that for the singlo reaction, 



no convergence difficulties should occur. As before, there are two roots 

of the equation, and the one to which the solution finally converges will 

depend on the initial value of t chosen. 

For the simple reaction, the results were plotted in the T, B plane, 

and the locus of the bound on the non-unique region depends only on Al and 

Sh'A, which are constant for a given reactor operating at a fixed flowrate. 

The small number of parameters make it possible to construct graphs which 

cover all possible operating conditions, but this is not so for complex 

reactions. In this case, the majority of the parameters will also be fixed 

for a given reactor (such as Ai, 22/ti 
' Iir etc. ) but CB will not remain 

constant. This means that one curve is no longer sufficient to examine the 

performance of the reactor in terms of uniqueness, but at each point in the 

reactor it is necessary to choose the appropriate CB curie to determine 

whether non-unique solutions are possible. This is illustrated in Figure A5.1 

which shows a reactor profile of temperature against B (i. e. B0 x CA), with 

the values of CB marked on it and the non-unique regions indicated. 

Initially, at the reactor inlet, the catalyst pellets are in a unique state 

since CB =0 and the point lies outside the non-unique region plotted for 

this value of CB. Further down the reactor, however, CB rises to 0.5 (point 

P on the diagram), and at this point it falls within the appropriate non- 

unique region. The concentration of B continues to rise to a maximum value 

and then falls as species B is consumed. When the concentration has fallen 

to 0.5 (point Q on the diagram), the state of the pellet is again unique, 

since Q lies outside the bounds for CB = 0.5" 

This procedure is slightly more laborious than that which is required 

for the single reaction, but presents no problems during solution of reactor 

models, since relatively little storage would be needed to retain the bounds 

on the non-unique region. This would be true oven if several dozen curves 

Were to be stored, since they are made up of very simple shapes which could 

be adequately represented by simple algebraic functions. 



> D= Box CA 

FIG. A5.1 Schematic diagram showing how an examination of global 
stability may be carried out for a complex reaction. 
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FIG. A5.2 Schematic diagram showing the change in the non-unique 
region for a non-first order reaction (assuming that both 
have the same initial value of B at Bo). 



&5.2 Non-first order reactions. 

For reactions other than first order, the analytic solution of the 

pellet equations is only possible if a pseudo-first order rate constant can 

be defined which is sufficiently accurate over the range of concentrations 

occurring between the pellet centre and the 

dimensionless terms this is ki where, 

ki = 8i exp(_ ) Anl-1 

JC2 *= 

ka* = 

9ýa exp( E t) C%-1 
i 

93 exp(_ E3t) CAs"1 

Ei 

surrounding fluid. In 

No problems arise with these reactions since the non-unique region 

can be plotted in terms of a modified Ai, which will be written 9. For 

a given reactor, CA is known for any value of B since B= B0 x CA. Therefore, 

when the bounds on non-uniqueness are calculated at a series of values of B 

(as for the first order reaction), it is only necessary to calculate a new 

value of G. * and the bounds are evaluated as before. G. * is given by 

e! ', 1 
and i=3 

This is illustrated in Figure A5.2, where the non-unique region for 

first order and non-first order reactions are indicated for the A )- B 

reaction. When the full set of complex reactions is occurring, a curve 

must be drawn for each value of CB, as was the case for first order reactions. 

This time, however, not only CB will change, but also 9' where: 

na - 
P2* = 8s* CB2 

Unlike el and G6* this remains constant all along the curve (since this is 

drarm for constant CB). Having drawn the relevant curves, the reactor 

ii 

n-1 B 
ni-1 

- 6i CA 2= ei( B) 
2 for i0 
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trajectories can be examined in the same way as described for Figure (15.1). 

Under the conditions which occur in the region of temperature runaway, 

there may be some doubt about the validity of assuming that a sufficiently 

good pseudo-first order rate constant can be defined over the range of 

conditions existing within and around any one pellet. Under normal 

operating conditions, the concentration gradients across the boundary layer 

and within the pellet are small, but in the non-unique region one of the 

steady states gives rise to characteristically steep gradients. Nevertheless 

the proposed method will still give at least some clue that multiple solutions 

arc likely to exist, and for many purposes, this will be sufficient. 



NOMENCLATURE, 

a Parameter in the expression for a parabolic radial temperature 
profile. 

ai Matrix element in the finite difference formulation of differential 
equations. 

A. Arrhenius pre-exponential factor for reaction i. 

b Pellet radius. 

B 
0 

Dimensionless exothermicity factor 
(- A; )DpA öRg 

2b hEl 

BB xC oA 

CA' CB Dimensionless concentrations within the catalyst pellet -P-M' -2 :1 
00 

011 
s, 

CB 
s 

Surface values of cA and cB 

C1i, CB Dimensionless concentrations within the fluid Cif' 

00 

CfA, CfB Concentrations in the fluid 

CPA, CPB Concentrations within the catalyst pellet 

C0 Reference concentration of reactant A 

Cp, Cp Specific heats of fluid and pellet respectively 

DfA, DfB Effective interstitial radial diffusivities in the fluid 

DpA, DpB Effective radial diffusivities within the catalyst pellet 

e, e* Porosity of the fixed bed and pellet respectively 

Ei Activation energy for reaction i 

f Dependent variable in the general form of the differential equations 

F Fluid phase state variable CA, CB or T 

Fl to F8 Constants in the analytic solution of the single pellet model 

g= tanh(r*) = tanh Jkl* 

G1 to GB are parameters (dimensionless unless otherwise stated) used 
in the models of the reactor, and are defined as follows; - 

G1 I? Pe14 
2bL 

C12 1-QLDA 
b' ue 



Ra Pe ý 
2bL H 

G4 

GS 

Ge 

(1 - e)3 hL 

bQ ueGP 

Rae PeM = G1 Le seconds 2b uu 

Rae Pex = G3 Le seconds 
2bu u 

h Step length in a finite difference grid 

h Pellet to fluid heat transfer coefficient 

H Dimensionless exothermicity factor 
(-'ýH1) 

'ACo ß 
Kp E1 

H2.9 H3 Ratios of heats of reaction 
H2) (- a1 %) respectively 

(-°x,. )' (-a H, ) 
H* The larger of H3 and (1 + Ha ) 

i Reaction number (1,2 or 3) 

i Number of a node in a finite difference network 
Step length in a finite difference grid 

k Step length in a finite difference grid 

ki Rate constant at a point in the catalyst pellet for reaction i 

ki Dimensionless first order (or pseudo-first order) rate constant 

evaluated at the pellet temperature = e1 exp(- 
EEC) 

(for a 
first order reaction). 1 

k! 
1 

K, K°, K', 

KI I JK* 

Dimensionless pseudo-first order rate constant evaluated at the 
n-1 n -I 

fluid temperature = 9i exp(- 
t) 

C (A, B) -i C(A, B) 

Paramoters in the general formulations of differential equations 
(Appendices j to 4). 

' 
K� 'Capacitance' of the catalyst pellet to absorb massb nr 

nnnn"A a ý VýJIý. /QViV(. i11VV Vi VuV vyyya.. r. Jrv j. výýv- ýrv vvvývv ... u. ý.. v ný vVVVaýKy 

V--- ypý 

KIT 'Capacitance' of the catalyst pellet to absorb heat ? *b'C* sooonds 
Kp 

kk 
CA , CB 

Kf 

Kp 

1 

1 

Fluid to pellet mass transfer coefficients 

Effective interstitial radial conductivity in tho fluid phase 
Effective radial conductivity within the catalyst pellet 

Distance from the reactor inlet 

Step size in a finite difference network 



L Reactor length 

in. 1 
Element of the tridiagonsl matrix in the finite difference 

formulation of differential equations 

i 
Order of reaction i 

ni Element of the tridiagonal matrix in the finite difference 

formulation of differential equations 

N Number of radial steps in the finite difference grid (nodes are 
0,1 .... N) 

Nu' Modified Nusselt number for heat transfer between pellet and fluid 

gbh 
Kp 

Nuw Nusselt number for heat transfer between fluid and tube wall = 
RU RU PeH 

Kf a 2b p ueCp 

Nu* Effective overall Nusselt number for heat transfer between fluid 
W 

and tube wall. Used in the one-dimensional model. 

of The value of f at the previous time stop (i. e. known). 

oxf The value of f at the previous time and axial stop (i. e. known). 

Pi Element of the tridiagoral matrix in the finite difference 

formulation of differential equations 

P Cycle time (period) for a sinusodial perturbation 

PeH Radial Poclet number for heat transfer in the fluid phase =C. 
Kf 

Pei Radial Peclet number for mass transfer in the fluid phase = 2bu 
Df 

Qý Q* Weighting constants in the finite difference representation of 
differential equations such that 0<Q, Q* < 1. 

r Dimensionless 

-ý-radial 

position in the reactor X/R 

r* = ,ý xi' 

P, Reactor radius 

P. RNon-linear terms in the general forms of the differential equations 
(Appendices 1 to 14. ). 

Rg The gas constant 

s Distance from the centre of the catalyst pellet 

Sh sS h' Modified Sherwood numbers 
2bkcA, 2bkc 

B 
Dpls Dp B- 

t Dimensionless pellet temperature L2 



is Surface value of t 

T Dimensionless fluid temperature fiE Rg 

i 
T 

a 
To 

Value of T on the reactor axis 
Coolant temperature 

Tc Dimensionless coolant temperature E Rg 
El 

Tf Temperature of fluid 

TM Radial moan value of T 

Tp Temperature of catalyst pellet 

u Interstitial fluid velocity 

U Fluid to coolant overall heat transfer coefficient 

x Distance from the reactor axis 

xf The value of f at the previous axial step (i. e. known) 

y Dimensionless pellet co-ordinate 1- s/b 

YI The value of y where the stop size changes in the finite 
difference network 

z Dimensionless axial position in the reactor 
1 

z! ' ZB Defined by equations (4.6) and (4.13) 



Crook Symbols 

pi 

s 

6 
d 

I 

Exothormicity factor commonly used in the literature = 
(_ 

____ 
°DpA 

Kp Tf 

Activation factor commonly used in the literature 

Ratio of diffusivities within the catalyst pellet 

When used as a prefix indicates a small increment 

= 
Ei 

Rg Tf 

Dp 
Dp$ 

Tfl 
T_L__ _n _'1.! nn. _-S_ 1LJ _- }. t" m "I 1/1 

natiio oi 0.1IIus1V1tle8 ln tne I-luln 

Effectiveness factor 

DfB 

n-I 
8i Reaction-Diffusion modulus b Ai fci 

o D'-A 

9* 
1 

Parameter used in the analysis of multiple solutions to deal with 
non-first order reactions G j* =9 CÄ ni - 1) /2 

for i=1,3- 

6a = AaC 
(%-1 )/2 

p ýp Densities of fluid and catalyst pellet respectively 

'1'' Time (seconds) 

'di T 2i Thiele modulus evaluated at fluid conditions =6 exp(- 2E i 

Thiele modulus evaluated at pellet conditions =9 exp(- 
I Ei 

E1 

ý sý 

T Selectivity for species B. 
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