
Robotic navigation and inspection of

bridge bearings

Harriet Anne Peel

School of Civil Engineering

School of Computing

University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

March 2019

Declaration

The candidate confirms that the work submitted is their own, except where work which

has formed part of jointly authored publications has been included. The contribution of

the candidate and the other authors to this work has been explicitly indicated below. The

candidate confirms that appropriate credit has been given within the thesis where reference

has been made to the work of others.

The work in Chapter 4 of the thesis has appeared in publication as follows:

Localisation of a mobile robot for bridge bearing inspection; H. Peel, S. Luo, A.G. Cohn, R.

Fuentes Automation in Construction 94 (2018) 244–256.

I was responsible for the majority of the work, including data collection, data processing

and writing the paper. The contribution of the other authors was in help with data collection

(by Dr Shan Luo, mentioned in the associated text) and academic contribution through

ideas, editing and reviewing the paper. A copy of this paper has been included as an Appendix

to this thesis.

This copy has been supplied on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement The right

of Harriet Anne Peel to be identified as Author of this work has been asserted by him in

accordance with the Copyright, Designs and Patents Act 1988.

Harriet Anne Peel

March 2019

Acknowledgements

I would like to thank the many people who have contributed to the work in this thesis in

various ways.

First, to my supervisors Professor Raul Fuentes and Professor Anthony Cohn. I would

like to thank them for the continuous support and commitment to this project and to my

personal development; I am very grateful for the many valuable opportunities that they have

extended to me. I would also like to thank the ESPRC and University of Leeds for providing

the funding that has enabled me to do this project.

I would also like to thank those who have also contributed academically to this project

including: Shan Luo, Mohammed Abdellatif, Jason Liu and Leo Pauly and to Mohannad Al

Omari for his advice in the early stages of my project.

Thank you my fellow doctoral students in the School of Computing, the School of Civil

Engineering and the Robotics at Leeds PGR Network for their friendship, encouragement

and conversation (and their company at the pub) during the last four years.

Finally, I would like to thank my family and Hugh, my best possible friend, for their love

and support.

Abstract

This thesis focuses on the development of a robotic platform for bridge bearing inspection.
The existing literature on this topic highlights an aspiration for increased automation of
bridge inspection, due to an increasing amount of ageing infrastructure and costly inspection.
Furthermore, bridge bearings are highlighted as being one of the most costly components
of the bridge to maintain.

However, although autonomous robotic inspection is often stated as an aspiration, the
existing literature for robotic bridge inspection often neglects to include the requirement of
autonomous navigation. To achieve autonomous inspection, somemethods for mapping and
localising in the bridge structure are required. This thesis compares existing methods for
simultaneous localisation and mapping (SLAM) with localisation-only methods. In addition,
a method for using pre-existing data to create maps for localisation is proposed.

A robotic platform was developed and these methods for localisation and mapping were
then compared in a laboratory environment and then in a real bridge environment. The
errors in the bridge environment are greater than in the laboratory environment, but re-
mained within a defined error bound. A combined approach is suggested as an appropriate
method for combining the lower errors of a SLAM approach with the advantages of a locali-
sation approach for defining existing goals. Longer-term testing in a real bridge environment
is still required.

The use of existing inspection data is then extended to the creation of a simulation
environment, with the goal of creating a methodology for testing different configurations of
bridges or robots in a more realistic environment than laboratory testing, or other existing
simulation environments.

Finally, the inspection of the structure surrounding the bridge bearing is considered,
with a particular focus on the detection and segmentation of cracks in concrete. A deep
learning approach is used to segment cracks from an existing dataset and compared to
an existing machine learning approach, with the deep-learning approach achieving a higher
performance using a pixel-based evaluation. Other evaluation methods were also compared
that take the structure of the crack, and other related datasets, into account.

The generalisation of the approach for crack segmentation is evaluated by comparing
the results of the trained on different datasets. Finally, recommendations for improving the
datasets to allow better comparisons in future work is given.

Table of contents

List of figures xiii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Automation of bridge bearing inspection 1

1.2 The state of the art in robotic bridge inspection 6

1.3 Sensors for bridge inspection . 12

1.4 Robotics for other inspection applications 14

1.5 Summary . 16

1.6 Problem statement, aims and scope . 18

1.7 Thesis structure . 19

2 Sensors, SLAM and localisation 21

2.1 A review of sensors for robotic navigation 21

2.1.1 Exteroceptive sensors . 22

2.1.2 Thermal camera . 24

2.1.3 Proprioceptive sensors . 26

2.2 Methods for autonomous navigation – SLAM 27

2.2.1 Filter-based approaches: the Extended Kalman Filter 32

2.2.2 Graph-based SLAM . 35

Table of contents

2.2.3 Particle filters for SLAM . 37

2.3 Map representation . 40

2.4 SLAM implementations . 42

2.4.1 SLAM implementation using a 2D LiDAR 43

2.4.2 SLAM implementations for camera data 45

2.5 Localisation-only approaches to navigation 48

2.6 Structure-from-Motion . 51

3 Robotic platform and system development 55

3.1 Description of the inspection environment 55

3.2 Qualitative review of sensors and SLAM . 58

3.3 Summary of SLAM methods . 60

3.4 Choice of sensors for navigation and inspection 62

3.5 Camera calibration . 64

3.6 Robotic platform description . 65

3.7 The Robot Operating System . 68

3.8 Robot motion and data collection . 70

3.9 Adapting the robotic platform for simulation 74

4 Localisation for a bridge bearing inspection robot 77

4.1 Introduction . 77

4.2 Maps for localisation . 82

4.3 Generating maps from point cloud data . 83

4.4 Scaling the SfM point cloud . 88

4.5 Results from the laboratory environment 90

4.6 Evaluation of ORB SLAM . 102

4.7 Summary of findings in the laboratory environment 105

4.8 Data collection in the bridge environment 106

4.9 Validation of SfM data against 3D terrestrial LiDAR data 108

4.10 Results and discussion for the bridge environment 110

x

Table of contents

4.11 A combined approach for localisation . 116

4.12 Using inspection data in a simulated environment 118

4.13 Creating the simulation environments . 119

4.14 Results from the simulated environment . 123

4.15 Summary and scope for future work . 133

5 Application of computer vision techniques to visual inspection tasks 137

5.1 Crack detection using computer vision methods 137

5.2 Method overview: deep learning . 147

5.3 The HED network architecture . 150

5.4 Summary of the Structured Forest Approach 153

5.5 Description of existing datasets . 155

5.5.1 Dataset 1: The Crack Forest segmentation dataset 155

5.5.2 Dataset 2: Concrete Structure Spalling and Crack segmentation

dataset . 155

5.6 Creating Training and Testing Datasets . 158

5.6.1 Data preprocessing and augmentation 159

5.7 Training the Networks . 160

5.7.1 Parameters for training the networks 160

5.8 Methods for testing and evaluating the networks 163

5.8.1 Pixel-based evaluation . 163

5.8.2 Structure-based evaluation . 166

5.9 Overview of experiments . 169

5.10 Results and discussion . 170

5.10.1 Comparison of HED and SFA . 170

5.10.2 Evaluating the side-outputs of HED 180

5.10.3 Cross-dataset testing . 184

5.10.4 Varying image resolution when training HED 192

5.11 Incorporating features from blood vessels for the segmentation of cracks . 195

5.12 Discrepancies in dataset quality . 206

xi

Table of contents

5.13 Summary and scope for future work . 209

6 Summary and conclusions 213

6.1 Robotic localisation and mapping for inspection environments 213

6.2 Deep learning for crack segmentation . 218

6.3 Scope for future work . 222

References 223

Appendix A Simulation parameters 245

A.1 Defining the robot URDF . 245

A.2 Additional robot parameters for simulation 251

A.3 Defining the 2D LiDAR in simulation . 252

Appendix B Parameter sweep for training parameters for HED network 253

B.1 Varying base learning rate and step-size . 253

B.2 Varying weight decay . 259

B.3 Varying number of training iterations . 260

xii

List of figures

1.1 A diagram of a bridge bearing with example load transfers. 2

2.1 A depiction of the essential SLAM problem 28

2.2 A comparison of online and full SLAM . 31

2.3 A schematic showing the steps of the EKF algorithm 34

2.4 A schematic showing the Graph SLAM algorithm 35

2.5 A schematic showing the steps of the FastSLAM algorithm 38

2.6 An example of 2D occupancy maps . 41

2.7 An example of the front-end and back-end in a typical SLAM system 42

2.8 An overview of the mapping and navigation elements in Hector SLAM . . . 44

2.9 An example implementation of ORB SLAM 47

2.10 An example output from the AMCL algorithm 50

2.11 Figure showing how SfM works and an example point cloud 52

3.1 Photographs of the bridge bearing inspection environment 56

3.2 Photographs of the bridge bearing enclosure 57

3.3 A photograph of the robotic platform . 66

3.4 A schematic of the coordinate system for the robotic platform 67

3.5 An overview of the system architecture . 69

3.6 An overview of the architecture of the system hardware 71

3.7 An example of the robot motion for SfM data collection 73

3.8 An overview of the breakdown of the tasks performed by different software

modules in ROS. 74

xiii

List of figures

3.9 An example of the URDF of robot in simulation 76

4.1 Creating 2D occupancy maps from 3D point clouds for robotic localisation. 84

4.2 Example occupancy maps created from SfM data 87

4.3 Example SfM data from the real bridge bearing enclosure with the control

point selection required for scaling the point clouds. 89

4.4 Variation in the covariance ellipse for AMCL as the certainty in position of

the robot increases. 92

4.5 A comparison of different trajectories generated using AMCL with different

initial maps . 93

4.6 The error and covariance plots for AMCL with different initial maps in the

laboratory environment . 95

4.7 Error plots for the robot trajectory when using AMCL with different initial

maps . 96

4.8 The pictorial result of AMCL-SfM plotted in RVIZ showing the 2D map

created from the SfM point cloud, the position of the robot and the current

sensor readings from the 2D LiDAR labelled in the figure. 98

4.9 A comparison of AMCL for different initial maps in the bridge environment 100

4.10 Error and covariance plots for the global implementations of AMCL 101

4.11 The trajectory of the robot resulting from implementation of ORB SLAM . 103

4.12 A comparison of ORB SLAM for different resolutions of the ZED stereo

camera. 104

4.13 Occupancy maps created using different approaches 107

4.14 A comparison between terrestrial LiDAR and SfM data for the bearing en-

closure. 109

4.15 A comparison of the trajectories calculated using AMCL in the bridge en-

vironment . 111

4.16 Error and covariance plots for AMCL local in the bridge environment . . . 112

4.17 AMCL in the bridge environment . 114

4.18 Error plots for varying map resolution . 115

xiv

List of figures

4.19 Error plot for the combined localisation and SLAM approach 117

4.20 An overview of the main steps required to create the simulation environment121

4.21 The robotic platform inside the final simulation environment 122

4.22 A comparison of different trajectories generated in the simulation environ-

ments . 124

4.23 A comparison of the trajectories calculated using AMCL in the bridge en-

vironment . 125

4.24 The error plot for the combined localisation and SLAM approach 126

4.25 Error and covariance plots for AMCL local in the bridge environment. . . . 127

4.26 Comparison of the original and cropped maps for AMCL-LiDAR in simulation129

4.27 A comparison of the maps used for AMCL-LiDAR in both the real bridge

environment (i) and simulation environment (i and ii). The approximate

region of motion available to the robotic platform has been highlighted. . . 130

4.28 A comparison of the trajectories calculated using wheel odometry and

odometry from the 2D LiDAR . 132

4.29 The difference between the odometry calculated using simulated wheel en-

coders and the simulated 2D LiDAR . 132

5.1 Example structure of the VGG-16 network architecture 148

5.2 Network architecture and DSN outputs of the HED network 152

5.3 Schematic of The Structured Forest Approach 154

5.4 Examples from datasets of cracks in concrete material 156

5.5 The qualitative results of the SFA algorithm and HED network on the CF

dataset . 171

5.6 A precision-Recall curve comparing the results of SFA and HED 173

5.7 The qualitative results of the SFA algorithm and HED network when differ-

ent thresholds are applied . 176

5.8 The qualitative results of the SFA algorithm and HED network when post-

processing is applied . 177

5.9 A comparison of SSIM, S-measure and 𝐹1 score for SFA 179

xv

List of figures

5.10 A comparison of SSIM, S-measure and 𝐹1 score for HED 179

5.11 The qualitative results of the side-outputs of the HED network when tested

on the CF Dataset . 181

5.12 A precision-Recall curve comparing the side-outputs of the HED network . 182

5.13 A comparison of SSIM, S-measure and 𝐹1 score for the side-outputs of HED 183

5.14 Reference RGB and ground truth labels of data from the CF dataset and

CSSC dataset. 186

5.15 A qualitative comparison of the results from different training datasets when

tested on the CF dataset. 188

5.16 A precision-Recall curve comparing different training datasets when tested

on the CF dataset. 189

5.17 A qualitative comparison of the results from different training datasets when

tested on the CF dataset. 190

5.18 A precision-Recall curve comparing different training datasets for crack seg-

mentation when tested on the CSSC dataset 191

5.19 A qualitative comparison of the results from HED when using different im-

age resolutions . 192

5.20 A precision-recall curve comparing the results of HED when trained using

different image resolutions . 193

5.21 Example images from the retinal blood vessel datasets 196

5.22 Example ground truth labels from the datasets of the retina compared to

labels from the crack datasets . 198

5.23 An example of an image and associated ground truth label in the CSSC

dataset which contains a crack that has a high percentage of image pixels

containing cracks . 199

5.24 Example images from the HRF dataset . 202

5.25 A qualitative comparison of the results from different training datasets in-

cluding features from blood vessels when tested on the CF dataset. 203

xvi

List of figures

5.26 Precision-Recall curve comparing the results of HED when trained on dif-

ferent datasets containing cracks and blood vessels 204

5.27 Decorrelation stretch algorithm applied to the CF dataset 207

5.28 Comparison of the activation of layers inside the HED network when trained

on images from the CF dataset. 208

B.1 Comparing the training losses for a base learning rate of 1e-06. 254

B.2 Comparing the training losses for a base learning rate of 1e-07. 254

B.3 Comparing the training losses for a base learning rate of 1e-08. 255

B.4 Comparison the training losses for a base learning rate of 1e-07 and 1e-08. 255

B.5 A comparison of the precision-recall curves 1e-07. 256

B.6 A comparison of the precision-recall curves 1e-08. 257

B.7 A comparison of the precision-recall curves for 1e-07 and 1e-08. 258

B.8 Comparing the training losses for a base learning rate of 1e-07 for different

values of weight decay. 259

B.9 Comparison the training losses for a base learning rate of 1e-08 for different

values of weight decay. 260

B.10 A comparison of the precision-recall curves for different training iterations

for a base learning rate of 1e-07. 261

xvii

List of tables

1.1 Bridge bearing inspection requirements . 4

1.2 A review of the literature for robotic inspection of bridges. 9

3.1 A summary of the sensor attributes for common sensors 59

3.2 A summary of the sensor attributes for the RPLiDAR 2D LiDAR 63

3.3 A summary of the sensor attributes of the ZED stereo camera 63

3.4 A summary of the sensor attributes for the Raspberry Pi monocular camera 63

4.1 Assumed scenarios for robotic bearing inspection 79

4.2 A summary of the methods compared in Chapter 4 81

5.1 A summary of the literature review for detection of cracks using computer

vision. 138

5.2 A summary of the original datasets of cracks in concrete and asphalt 157

5.3 The parameters for fine tuning HED with stochastic gradient descent . . . 162

5.4 Table of experiments for the datasets of cracks 169

5.5 The percentage of pixels corresponding cracks in the CF datasets for two

image resolutions . 194

5.6 A summary of the recent retinal datasets 196

5.7 The percentage of pixels corresponding to blood vessels or cracks in the

different crack and retinal datasets. 200

5.8 Table of experiments for the datasets of cracks and eyes 201

xix

Abbreviations

Datasets

BSDS Berkeley Segmentation DataSet

CF Crack Forest

CSSC Concrete Structure Spalling and Crack

DRIVE Digital Retinal Images for Vessel Extraction

HRF High Resolution Fundus

STARE STructured Analysis of the Retina

Hardware, Software and Sensors

BIM Building Information Modelling

CAD Computer Aided Design

CCD Charged Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

DSLR Digital Single-Lens Reflex

EKF Extended Kalman Filter

ER electrical resistivity sensor

XML Ground-Penetrating RADAR

GPS Global Positioning System

IMU Inertial Measurement Unit

IR Infra-Red

xxi

Abbreviations

IRT Infra-Red Thermography

LiDAR Light Detection and Ranging

LWIR Long-Wave Infra-Red

RGB-D Red Green Blue-Depth

ROS The Robot Operating System

UAV Unmanned aerial vehicle

URDF Unified Robot Description Format

XML eXtensible Markup Language

Other

2D Two dimensional

3D Three dimensional

AUC Area Under Curve

DoF Degree of Freedom

FN False Negative

FOV Field of View

FP False Positive

fps frames per second

HD High Definition

RGB Red-Green-Blue

TN True Negative

TP True Positive

Methods and Algorthims

AMCL Adaptive Monte Carlo Localisation

CNN Convolutional Neural Network

DEMs Digital Elevation Models

xxii

Abbreviations

DSN Deeply Supervised Network (layers of HED)

FCN Fully Connected Network

HED Holistic Edge Detection

ICP Iterative Closest Point

kNN k-Nearest Neighbour

MVS Multi-View Stereo

ORB Orientated Rotated Brief

RANSAC Random sample consensus

ROC Recall Operator Characteristic

SFA Structured Forest Approach

SfM Structure from Motion

SGD Stochastic Gradient Descent

SLAM Simulateous Localisation and Mapping

SSIM Structural Similarity Measure

SGD Support Vector Machine

xxiii

Chapter 1

Introduction

1.1 Automation of bridge bearing inspection

Bridge bearings are mechanical components in a bridge that constrain unwanted movement

and allow the transfer the loads from the superstructure of bridges (e.g., the deck) to the

abutments or intermediate supports of the bridge, which then transfer these loads to the

bridge foundations. An example diagram of load transfer in a bridge bearing is shown in

Figure 1.1.

Bearings are therefore an integral part of bridge structures, providing the critical link

between the superstructure and substructure of the bridge (Ryan et al., 2012), and their fail-

ure can have considerable impact on the life of the bridge (J. S. Cho et al., 2014; Niemierko,

2016), leading to the overall failure of the entire structure (Aria and Akbari, 2013). It is not

uncommon for bridge bearings to be replaced at high costs and disruption (e.g., Yanagihara

et al. (2000)).

One of the main problems affecting bridge bearings are reflected by changes to ge-

ometry, regardless of the source of the problem or the type of bearing (Freire and de

Brito, 2006; Freire et al., 2014). These problems include: out-of-position translation, rota-

tion or deformation of the bearing. Current methods to measure changes in the bearing

geometry are somewhat rudimentary and involve inaccurate and non-repeatable measure-

ments such as (Freire et al., 2014): metric tapes, gap gauges, air bubble levels, quadrant

1

Introduction

Figure 1.1: A diagram of the function of bridge bearing for load transfer from the
superstructure to the substructure of the bridge. This figure is taken from Ryan et al.

(2012).

rulers, compasses and verniers, levelling and topographic surveys or direct visual obser-

vations. Other, more sophisticated, systems include displacement transducers (Shibasaki

et al., 2016), tell-tales (Shiau et al., 2008) and other instruments that do not measure geom-

etry but measure the actual effect of changes on the bearing or structure directly (e.g., cells

and strain gauges (Aria and Akbari, 2013; Freire et al., 2014), fibre optics (J. Liu et al., 2012),

radar interferometries (Maizuar et al., 2017), magnetorheological elastomers (Behrooz et

al., 2016)), but these are typically outside the norm, with the primary method of inspection

being a visual inspection performed by humans (Rossow, 2006; Ryan et al., 2012).

Other anomalies in bridge bearings are related to deterioration and degradation of

the structural material in and surrounding the bearing. Similar to other civil engineering

structures, these anomalies typically manifest as corrosion (Hoeke et al., 2009), cracks

or crushing (Freire and de Brito, 2006) that are visible during visual inspections. Such

information also has the potential to be extracted from vision sensors (Noh et al., 2017;

Prasanna et al., 2016). In addition, a visual inspection will also record additional anomalies,

such as build up of debris and vegetation growth (Freire et al., 2014).

2

1.1 Automation of bridge bearing inspection

As described by Freire et al. (2014), the service life of a bridge is typically over 50
years, but the designed service life of a bridge bearing is shorter. In addition, the service

and maintenance period of a bridge’s life-cycle is estimated to be 88–92 % of the life of a

bridge (T. Chen, 2017), with some bridge bearings, such as support bearings in road bridges,

frequently accounting for the major part of the maintenance budget of a bridge (Freire et

al., 2014). Furthermore, the manufacture of a bearing may be discontinued or a bearing

may become obsolete but remain in service. Hence, there is a need to inspect, maintain

or replace bearings throughout the life of a bridge and detecting small anomalies early can

prevent serious damage and cost (Freire et al., 2014). Some authors (e.g., Baimas and

McClean (1998) and Spuler et al. (2015)) have shown, through a life-cycle cost analysis,

that replacement of bearings due to poor maintenance can be partially prevented through

appropriate inspection methods. A description of the required stages of bridge bearing

inspection are outlined in Table 1.1.

3

Introduction

Table 1.1: A description of different types and intervals of inspection methods for bridge
bearing inspection, with information taken from Freire et al. (2014) and BS-EN-1337

(2003).

Type of inspection Details

Initial inspection Carried out at the beginning of a bridges life to give a

reference for initial state of support bearing.

Regular inspection “close visual inspection without measurements, spaced at equal,

reasonably frequent, intervals” (BS-EN-1337, 2003)

Carried out regularly when no anomalies are expected.

Around 15 months for roadways with significant traffic or
older bridges (12 months with 3 month lag to allow inspection

in different seasons).

Principal inspection “similar to regular inspection but in more detail and including

precise measurement” (BS-EN-1337, 2003)

Carried out every 60 months.
Mostly visual with some simple measurement equipment.

Measure translations and rotations of support bearings.

Detect and evaluate existing anomalies.

Requires qualified personnel.

Special inspection Required if something is found in a routine or principal inspection

that requires further attention.

Also carried out after events caused by severe weather or due

to collision e.g., with structural members.

4

1.1 Automation of bridge bearing inspection

Sutter et. al describes how the number of bridges is increasing faster than the capacity

to perform inspections (Sutter et al., 2018). Moreover, the time between subsequent in-

spections of a bridge vary from country to country with examples in the literature varying

from two years (Javadnejad et al., 2017) to five years (Sutter et al., 2018), and for specific

components, such as bridge bearings, visual inspection is required every 15 months (Freire
et al., 2014). Methods for increasing the efficiency of inspecting bridges and bridge bearings

has been researched for a number of years, with solutions ranging from database systems to

robotic systems. For example, Sommer et al. (1993) describe methods for improving effi-

ciency in bridge inspections using probabilistic methods. Sommer et al. (1993) also highlights

the variation between countries in the number and period for the required inspections, with

visual inspection requirements varying from four times a year to once every five years for

visual inspection. In more recent literature, data management systems with damage cor-

relation studies (Freire et al., 2014) are being developed for bridge inspection/evaluation

to incorporate building information modelling (BIM), remote sensing data, 3D geometry

detection into a damage detection tool (Sacks et al., 2018; Javadnejad et al., 2017). Agnis-

arman et al. (2019) explores the state-of-the-art for visual inspection systems that include

some automated and some human-controlled elements, with applications in infrastructure

inspection. Bridge inspection was found to be a key area of interest for automation of visual

inspection, with 20 of the 53 papers reviewed by Agnisarman et al. (2019) focusing on this
topic.

In recent years, there has been a growing interest in using robotics for the task of bridge

inspection. The literature presents clear motivations for researching and developing auto-

mated and robotic systems for bridge and bridge bearing inspection which include (Lattanzi

and Miller, 2017; Jahanshahi et al., 2017; Agnisarman et al., 2019): increased safety for

inspection of infrastructure that is difficult to access; improved reliability, reduced subjec-

tivity and increased repeatability of inspection results; decreased cost and the increased

frequency of inspection or reduced cost of inspection of infrastructure.

5

Introduction

1.2 The state of the art in robotic bridge inspection

Lattanzi and Miller (2017) summarise the progress, limitations and challenges in the litera-

ture for robotic infrastructure inspection systems. The literature reviewed by Lattanzi and

Miller (2017) is multidisciplinary and multifaceted in nature and shows that there is not a sin-

gle correct solution to the problem of infrastructure inspection. One inspection example,

such as bridge inspection, not only has different focuses for the target of the inspection (e.g.,

bridge deck (H. La et al., 2013) or the underside of the bridge (C. Yang et al., 2015)), but can

be solved using different platforms (e.g., an unmanned aerial vehicle (UAV) (S. Chen et al.,

2011) or ground-based vehicles (Van Nguyen et al., 2018)) and sensors (e.g., cameras (Kim

et al., 2014) or ground penetrating radar (Le et al., 2017)). In general, the literature for

robotic inspection of infrastructure has three key focuses: the specific application or target

of the inspection (e.g., bridges (K. Cho et al., 2013; Pham and H. La, 2016), roads (Varad-

harajan et al., 2014), tunnels (Victores et al., 2011; Protopapadakis et al., 2016)), the robotic

platform development (e.g., Takada et al. (2017)) and the development of sensing systems

to go on-board the robotic platforms (e.g. Kim et al. (2014)). Table 1.2 summarises the

different approaches in the literature that focus on bridge inspection, with a summary of

the type of robot, sensors and the focus of the robotic inspection.

Much of the recent research for bridge inspection incorporates the use of UAV tech-

nology (see Table 1.2,), partly because off-the-shelf UAVs are becoming cheaper and more

readily available (Lattanzi and Miller, 2017). The use of UAVs has many advantages for infras-

tructure inspection since UAVs with cameras are useful as an extension of a human visual

inspection system, particularly for high structures that are difficult to access, which gives

the benefit of being most accessible to engineers who most understand the requirements

of the inspection. Furthermore, many different sensors (e.g., thermal cameras, LiDARs) can

be attached as a payload to the UAV depending on the inspection tasks required. How-

ever, although UAVs are becoming a mature technology area, development is still required

to increase flight time and payload capacity, and there are current legislation/certification

issues, which need considering (Hoffer et al., 2017). Besides, some UAVs are unable to get

close enough to the underside of the bridge due to problems with global positioning system

6

1.2 The state of the art in robotic bridge inspection

(GPS) sensors (Hoffer et al., 2017) and turbulence and wind gusts that occur around built-

up structures, where it is possible that the human operator may not be able to take control

quickly enough to maintain stability in these situations (Darby and Gopu, 2018), especially

in areas where the operator has to move around to maintain eye-of-sight contact with the

UAV (Hallermann and Morgenthal, 2014). These factors may make the UAV unsuitable for

specific tasks, such as the inspection of the bearings of a bridge.

As well as UAV-based platforms, there are alternative approaches using legged walking

robots (Mazumdar and Asada, 2009), a flying-walking combination robot (Ratsamee et al.,

2016) and swarm robots (Jahanshahi et al., 2017). In one example, Akutsu et al. (2017)

present a suction-based solution that was small enough to enable passage through narrow

spaces in-between bridge trusses. The platform can move on both concrete and steel

surface types (including surfaces that had peeled due to corrosion) using six air pads, with

air provided by an air supply connected to an air pump and compressor on the ground. The

authors also perform testing in a real bridge environment using a charged coupled device

(CCD) camera to inspect the surface of truss members on the bridge as the robot moves

along. However, there is a trade-off for these climbing and crawling systems: although they

can reach more inaccessible locations in a bridge structure, the locomotion systems are

more complex than the wheeled alternatives, which tend to have more cost and power

requirements associated with them and also require further research to understand their

long-term feasibility and reliability (Lattanzi and Miller, 2017).

Currently for robotic bridge inspection, the majority of research using ground-based

robots focus on the application of bridge deck inspection. All but one of the ground-based

examples in Table 1.2 are related to the same project (see examples marked with an asterisk

in Table 1.2), where bridge deck inspection was implemented using off-the-shelf platform

and sensors on-board a robotic platform (Lim et al., 2011; H. La et al., 2013; Gibb et al.,

2017; Van Nguyen et al., 2018). In this research, sensors such as ground penetrating radar

(GPR), electrical resistivity (ER) sensor and thermal and visual cameras are used to automate

non-destructive testing with applications in crack detection and classification in images of

concrete (H. La et al., 2014; Van Nguyen et al., 2018). The other wheeled platform in

7

Introduction

Table 1.2 is a ground-based platform with magnetic wheels which allow the platform to

attach to bridge girders. The main focus of this work was testing the magnetic system,

although other sensors are integrated for localisation in future research (Pham and H. La,

2016).

Other reported research using ground-based platforms fall into the category of ‘snooper

truck’ (Lattanzi and Miller, 2017). A snooper truck is a road or rail driven vehicle with an

articulating arm and platform that allows visual inspection of the underside of the bridge.

Robotic alternatives to this platform use the snooper truck as the basis for the platform, but

a hydraulic boom was attached to the articulating arm that allows scanning or photography

of the underside of the bridge. Oh et al. (2007) design a robotic system, mounted with cam-

eras, to attach to this boom. Similarly, B. Lee et al. (2012) uses several remote controlled

devices attached to the boom (also mounted with cameras) to perform crack detection.

Sutter et al. (2018) conducted similar research, but developed a semi-autonomous robotic

trolley to which the boom was mounted. In autonomous mode, the robotic trolley col-

lects sensor data whilst moving along the bridge, using wheel encoders to monitor distance

moved and a laser range finder to monitor distance to the edge of the bridge deck.

8

1.2 The state of the art in robotic bridge inspection

Table 1.2: A review of recent literature that focuses on bridge inspection and automation
using robotics or computer vision based approaches. Related projects are marked with *.

Literature Summary
Year Reference On-board Description of approach

sensors
Aerial
vehicle
2011 S. Chen et al.

(2011)
Camera Photo-stitching with the application of

detecting cracks on a bridge deck
2014 Hallermann and

Morgenthal
(2014)

Camera Evaluating flight paths, used camera
images for 3D reconstruction of
structure

2015 C. Yang et al.
(2015)

Camera Tested flight near a bridge, collected
photographs

2016 Ellenberg et al.
(2016b)

Camera Bridge bearing deformation and crack
and corrosion
assessment of surrounding structure

2016 Ellenberg et al.
(2016a)

Infrared
thermography
(IRT)

Detection of potential areas of
delamination using IRT

2017 Hoffer et al.
(2017)

Camera Detection of cracks in concrete
structure.

2017 Sanchez-Cuevas
et al. (2017)

None Testing ground effect on UAV control.

2017 Eschmann and
Wundsam
(2017)

Camera,
two-dimensional
(2D)
LiDAR,
long-wave
infrared (LWIR)

3D, geo-referenced reconstruction of
a bridge, crack detection, humidity
detection using LWIR.

2018 Hiasa et al.
(2018)

HD camera, IRT Detection of simulated cracks
(printed on paper) on bridge deck,
IRT not used for detection
application.

2018 Khaloo et al.
(2018)

Two cameras 3D model produced from images
taken on a drone and compared to
3D terrestrial LiDAR data.

9

Introduction

Continuation of Table 1.2
Year Reference On-board Description of approach

sensors
Wheeled
2011 Lim et al.

(2011)*
LiDAR,
high resolution
camera

Crack detection in bridge deck

2014 H. M. La et al.
(2013)*

Ultrasound,
Ground
penetrating radar
(GPR), electrical
resistivity sensor
(ER)

Developing localisation for bridge
deck inspection

2014 H. La et al.
(2013)*

Ultrasound, GPR,
electrical
resistivity sensor
(ER)

Crack detection in bridge deck

2013 H. La et al.
(2014)*

LiDAR, GPR,
panoramic
camera, GPS,
surface camera,
acoustic array.

Crack detection in bridge deck

2017 Le et al. (2017)* GPR,
camera, ER

GPR for detection of corrosion of
rebar in bridge deck, ER for corrosion
and concrete deterioration

2018 Van Nguyen
et al. (2018)*

GPR, camera, IRT Crack detection on bridge deck using
deep learning

2016 Pham and H. La
(2016)

Depth camera,
camera, LiDAR

Tested effectiveness of magnetic
wheeled platform. Initial steps
towards mapping using LiDAR

Gibb et al.
(2018)

CNN with
genetic
algorithm to
optimise CNN
structure

Patch-based
classification
Asphalt

Developed own dataset, but perhaps
made comparison to Y.-J. Cha et al.
(2017) 3, 000 ∶ 1, 500 for testing,
1, 500 for training 256 × 256

10

1.2 The state of the art in robotic bridge inspection

Continuation of Table 1.2
Year Reference On-board Description of approach

sensors

‘Snooper
truck’
2012 B. Lee et al.

(2012)
GPS, cameras,
ultrasound

Road vehicle with actuated boom.
Remote control devices fitted with
cameras are attached to the boom
and are used to inspect the underside
of the bridge.

2018 Sutter et al.
(2018)

Motorised
cameras

Mobile vehicle for road or train
bridge with actuated boom, fitted
with cameras, to inspect underside of
bridge. Extensive testing and
certification performed.

Other
2011 R. R. Murphy

et al. (2011)
Cameras, sonar Unmanned marine vehicle, used to

create map of corrosion
2013 K. Cho et al.

(2013)
None Build and testing control system of

robot to move along suspension
cables

2014 Ward et al.
(2014)

Depth camera Testing control system of magnetic
robot and obtaining 3D
reconstructions of the environment.

2016 Ratsamee et al.
(2016)

None Testing control system of hybrid flying
crawling robot.

2017 Jahanshahi et al.
(2017)

2017 Takada et al.
(2017)

Camera Development of a magnetic tracked
robot for steel bridge inspection.
Camera used for autonomous
navigation

11

Introduction

Continuation of Table 1.2
Year Reference On-board Description of approach

sensors
Computer
vision
2008 J. H. Lee et al.

(2008)
Camera Machine vision system for crack

detection in concrete bridge structure
2014 Kim et al.

(2014)
Camera Machine learning for rust detection in

steel bridge structures
2014 L. Li et al.

(2014)
Camera Image processing for crack detection

in structural concrete
2014 Lattanzi and

Miller (2015)
Camera 3D reconstruction of bridge pillar

2015 Sakagami (2015) IRT Crack detection in metal bridge
structure using thermal images

2017 L. Yang et al.
(2017)

Camera Deep learning with fine-tuning for
crack detection in concrete bridge
structure

2017 Y. J. Cha et al.
(2018)

Camera Deep learning for corrosion detection
in metal bridge structures

2017 Hoskere et al.
(2018)

Camera Deep learning for automated bridge
component recognition

2018 Sato (2018) DSLR Camera Image processing using V-shaped
detector for segmentation of cracks
in concrete bridge pier

2019 S. Chen et al.
(2018)

Camera Outlier detection in point clouds of
bridges

1.3 Sensors for bridge inspection

As outlined in Table 1.1, the European Standard (BS-EN-1337, 2003) describe regular in-

spection as: “close visual inspection without measurements, spaced at equal, reasonably

frequent, intervals”, with inspections occurring at least as often as the bridge structure is

assessed. Specifically, the standard requires that the bearings are assessed for visible defects

12

1.3 Sensors for bridge inspection

including: cracks, incorrect position of the bearing, unforeseen movements and deforma-

tions of the bearing and visible defects on the bearing or surrounding structure (BS-EN-

1337, 2003).

Of the approaches and platforms described in the literature summarised in Table 1.2,

the sensor most commonly used is a monocular RGB camera, which was used in every

case except where the focus of the paper was the development of the control system of a

novel platform (e.g., Ratsamee et al. (2016) and K. Cho et al. (2013)). The use of a camera

sensor matches the requirement for visual inspection of bridges, as camera data can be

reviewed later by a human operator for visible defects. In addition, three-dimensional (3D)

reconstructions of the environment were a desirable outcome of inspection data from

camera sensors. For example, Lattanzi and Miller (2015) and Khaloo et al. (2018) used

Structure from Motion (SfM) to reconstruct structural elements of bridge, Ward et al.

(2014) used a depth camera to obtain a 3D point cloud of the environment and Eschmann

and Wundsam (2017) used SfM to create a geo-referenced reconstruction of the bridge

for digital inspection, which was then added to a database with other defect information

relating to bridges.

Of the papers reviewed in Table 1.2, the main focus of inspection was the structural

condition or material degradation (Noh et al., 2017; Prasanna et al., 2016; Yeum and Dyke,

2015; Akutsu et al., 2017; Pham and H. La, 2016; C. Yang et al., 2015) of the bridge, typ-

ically through detection of cracks or corrosion in photographs. One specific application

was crack detection in the structure of the bridge and the bridge deck. In the most basic

approaches to crack detection, the robotic platforms were used to collect photographic

data that was later reviewed by a human operator (S. Chen et al., 2011; Hoffer et al., 2017;

Hiasa et al., 2018). More sophisticated approaches implemented image processing and com-

puter vision methods, such as median filtering of grey-scale images (Ellenberg et al., 2016b)

or edge detection using a Laplacian of Gaussian filter or the Canny algorithm (L. Li et al.,

2014). Variability of lighting conditions caused shadows and poorly illuminated images and

vibrations of the UAV robotic platform caused image blurring (Hallermann and Morgenthal,

2014; Hoffer et al., 2017; S. Chen et al., 2011). Van Nguyen et al. (2018) implemented a

13

Introduction

method for classification of image patches that contain cracks using a convolutional neural

network (CNN). In research for crack detection in concrete and asphalt pavements, ma-

chine learning approaches (including CNNs) has become a common approach; the literature

for crack detection in concrete structures will be reviewed further in Chapter 5.

Only one of the reviewed papers developed an approach specifically for bridge bearing

inspection (Ellenberg et al., 2016b). Ellenberg et al. (2016b) used a small UAV equipped with

two different cameras and a laboratory-based set-up of a bridge bearing to monitor the de-

flection of a rubber bearing and a steel bearing by manually counting pixels in frames before

and after a deflection to the bearing had been applied. The laboratory set-up was useful

for replicating the predicted defects in the bearing, although very few experimental results

were reported in this instance. In the same paper, the authors also conducted experiments

for monitoring corrosion and cracking in the structure around the bearing (Ellenberg et al.,

2016b), although most of the results were gathered on surfaces, such as brick and breeze

block walls, which are not representative of the structure surrounding a bridge bearing.

1.4 Robotics for other inspection applications

The use of robots for inspection is also developing in several other research fields. For

example, robotic platforms have been used in the nuclear industry for half a century, with

much of the research focused on investigating the geometry and condition of unknown en-

vironments. Many of the robotic applications in nuclear inspection are also tele-operated,

although the literature presents some work for introducing autonomous navigation using

LiDAR (M. Lee et al., 2018), although successful use is still limited. In addition, use of

tools such as the Robot Operating System (ROS) (see Section 3 for more details) were

trialled (Jalón-Monzón et al., 2016) and showed potential benefits for integrating the local-

isation and mapping algorithms into the robotic system.

Autonomous robotic navigation has also been evaluated in the agriculture research field.

Agricultural environments also tend to be unstructured and changeable and there are some

requirements for human interaction (Bechar and Vigneault, 2016). However, since the

14

1.4 Robotics for other inspection applications

environments in which these robots are required to operate tend to be open agricultural

environments, there are many opportunities for deploying off-the-shelf ground vehicles.

Post et al. (2017) develops a robotic system for autonomous navigation of agricultural fields

using open-source modules developed using ROS for their robotic system. GPS, a 2D laser

scanner, a stereo camera and IMU are mounted on a robotic ground platform. Sensor fusion

was used to combine visual odometry, laser-based odometry and wheel odometry using an

Extended Kalman Filter, which was used for localisation of the robotic platform. 3Dmapping

was implemented using a simultaneous localisation and mapping (SLAM) approach called

RTAB-MAP, but was found to produce poor reconstructions in outdoor environments (Post

et al., 2017).

Ground-based platforms are often used in tunnel inspection due to the planar motion

that is required when moving through the tunnel. An autonomous system has been devel-

oped as part of the ROBO-SPECT project for tunnel inspection (Protopapadakis et al., 2016;

Menendez et al., 2018), where a mobile platform with automated crane is mounted with a

robotic arm, 3D vision system, laser profiler, ultrasonic sensors and tele-operated cameras.

Non-destructive evaluation, including crack, spalling and efflorescence detection, of the tun-

nel was performed using contact sensors mounted on the robotic arm and cameras. Au-

tomated navigation of the mobile platform was implemented by combining a wall-following

approach with SLAM of the tunnel using laser data and beacons that are placed along the

tunnel. Again ROS was used for integration of sensor communications and Gazebo, a sim-

ulation environment (Koenig and Howard, 2004), was used to perform initial experiments.

The system has been trialled alongside moving traffic without human intervention (Menen-

dez et al., 2018).

Due to a lack in maturity of the research in automation of robotic systems for civil

infrastructure inspection, the main use for robotic systems presented in the literature are

aids to current human inspectors. Of the papers reviewed by Agnisarman et al. (2019),

most of the robotic systems were tele-operated although UAV platforms were able to

use GPS way-points for autonomous operation. Where localisation was addressed, the

Extended Kalman Filter (EKF) algorithm was used to improve dead-reckoning approaches

15

Introduction

using ultrasound or GPS as the main navigation sensor (Gibb et al. (2017) and Ridao et al.

(2010), respectively), although EKF has also been performed with various sensors, includ-

ing surveying-grade optical sensors in McLoughlin et al. (2018). Lattanzi and Miller (2017)

states the reasons for lack of autonomy in civil inspection environments is because the field

of navigation in general robotics requires further development to become sufficiently ma-

ture, but also due to difficulties of the inspection environments, such as hazards, obstacles

and variable environmental conditions. However, autonomous navigation has not been ad-

dressed comprehensively in the current literature and further research is required to better

understand the current limitations of navigating autonomously in these environments.

D. Liu et al. (2014) also summarises the research and engineering challenges that exist

for the use of robotics in infrastructure inspection. D. Liu et al. (2014) states that a key

research barrier for robots to operate autonomously for civil infrastructure is: ‘robot en-

vironmental awareness, localisation and mapping of true 3D complex environments such

as trusses’. Other research and engineering challenges highlighted by D. Liu et al. (2014)

include: navigation of infrastructure such as bridges, which are complex, but also compact,

3D environments; the robotic system needs to be able to deal with uncertainty, such as

collision avoidance in real time and have a fail-safe design; the robots may need to interact

with humans, either operators or the public; the robots to be able to perform tasks with

high payloads but to maintain dexterity in complex environments.

1.5 Summary

Existing literature presents a need for the development of more efficient approaches to

bridge inspection to meet the increasing demands of inspection due to ageing infrastruc-

ture (Freire et al., 2014) and an increasing number of bridges (Sutter et al., 2018), with

many researchers proposing opportunities for robotic bridge inspection. Maintenance and

inspection of bridge bearings is the major part of the budget for bridge maintenance (Freire

et al., 2014) but, although there is interest in increasing the efficiency of this process, there is

16

1.5 Summary

very little focus on automating this inspection in the literature, though it is often highlighted

as a long-term goal.

Technology is developing to allow inspection of civil structures to be performed re-

motely, mainly using visual sensors. The main tool used in the literature for robotic in-

spection of the bridge is the monocular RGB camera, which is then commonly used for 3D

reconstruction using methods including SfM or for detection of material degradation, such

as cracks. In addition, the use of robotic platforms and UAVs is allowing the development

of inspection methods of structures that are otherwise difficult or dangerous to reach for

human inspectors.

Although the literature suggests an interest in the development of robotic or auto-

mated inspection of bridges, there is limited research in this area, particularly for navigation

of robots in inspection environments, although autonomous navigation was stated as a de-

sirable goal for future research. Of the research into aided bridge inspection, only a couple

of examples consider autonomous navigation as an area of research, most research focused

primarily on the platform development or computer vision methods for inspection. Ad-

vances in automated infrastructure inspection often rely on laboratory-based environments

and there is limited comparison to real-world environments. Therefore, research is needed

to develop the methods that are used for navigation in these structures.

17

Introduction

1.6 Problem statement, aims and scope

Reflecting on the literature reviewed in this chapter, this thesis will focus on the devel-

opment of a robotic platform for bridge bearing inspection. Specifically, this thesis will

focus on evaluating the effectiveness and suitability of existing methods for localisation and

mapping for navigating in a real bridge inspection environment, using tools that are imple-

mented more generally in robotics research, but not tested for bridge inspection applica-

tions. Computer vision approaches for inspection of the bridge bearing environment will

also be considered, with a focus on crack detection in concrete and 3D reconstructions of

the environment, both using 2D camera images.

In order to meet this aim, the following will be undertaken:

• Investigate and identify existing sensors and methods for localisation and mapping
that could be used for navigating in a real inspection environment.

• Develop a robotic platform for the purpose of testing localisation and mapping algo-
rithms in a real bridge environment.

• Use existing tools that are commonly used in robotics research for inspection appli-
cations (e.g., the Robot Operating System).

• Develop a mapping approach that can make use of existing surveying data.

• Test existing state-of-the-art localisation and mapping techniques in a real environ-
ment and compare to laboratory experiments.

• Use existing data from bridge surveys to develop a simulation environments in order
to test and prototype in different bridge configurations.

• Test machine learning and deep learning approaches for segmentation of cracks in
photographs of concrete.

• Identify evaluation metrics from the literature and use these metrics for the evaluation
of the machine learning and deep learning methods for crack segmentation.

• Identify and compare different datasets and the effects of training and testing using a
mixture of these datasets on the chosen methods.

18

1.7 Thesis structure

1.7 Thesis structure

This thesis is organised into six main chapters, split into two primary research topics which

cover the localisation and mapping of a robotic platform in a bridge bearing enclosure fol-

lowed by the inspection of the structure surrounding a bridge bearing. A summary of the

chapters in this thesis is as follows:

Chapter 1 : Introduction.
A review of the current literature for robotic inspection, with a focus on bridge
inspection.

Chapter 2 : Sensors, SLAM and localisation.
Sensors that are used in robotic navigation are reviewed in this chapter, followed by
an overview of the background and methodology of SLAM and a description of the
SLAM and localisation approaches that are tested in this thesis.

Chapter 3 : Robotic system development.
A description of the robotic platform that was used in this work, including the choice
of sensors and hardware and a description of relevant tools.

Chapter 4 : Localisation for a bridge bearing inspection robot.
Existing localisation and SLAM approaches are evaluated and compared using the
robotic platform described in Chapter 3 in both a laboratory environment and a real
bridge environment. In addition, existing inspection data was used to generate sim-
ulation environments for testing navigation algorithms to provide a proof-of-concept
approach for testing robots in different configurations of bridge structures.

Chapter 5 : Application of computer vision techniques to visual inspection tasks.
In this chapter, existing literature for crack detection in concrete was reviewed.
Crack detection was then performed through the application of deep-learning al-
gorithms to segmentation of cracks in photographs of cracks, including investigation
of mixed datasets using a retinal image database.

Chapter 6 : Summary and Conclusions.
This chapter summarises the results and findings of Chapters 4 for mapping and lo-
calisation and the findings of Chapter 5 for crack detection.

19

Chapter 2

Sensors, SLAM and localisation

2.1 A review of sensors for robotic navigation

Sensors on-board robots typically have one of two roles (Agnisarman et al., 2019): to aid

data collection for some task (e.g., inspection of infrastructure) or for robotic navigation.

In both cases, external information about surroundings is collected. For navigation, the

robot uses the data collected from these sensors to understand the features in its current

environment to find its position and, depending on the application, to create a map of the

environment for future use. Many different sensors can be used to provide information

about the robot’s environment. However, the choice of sensor is highly dependent on the

operating environment of the robot with other relevant factors including sensor range and

resolution, power consumption, weight or size of the sensor, navigation algorithms and

sensor price (Zaffar et al., 2018).

In general, sensors used for autonomous navigation can be defined as exteroceptive or

proprioceptive, where exteroceptive sensors collect information about the surroundings

external to the robot and proprioceptive sensors collect information internal to the robot

(e.g., speed, rotation, acceleration or displacement, but also battery levels or robot arm

positions). Sensors are also classified as passive or active, where active sensors emit en-

ergy into the environment and measure the reaction from the environment (Everett, 1995).

Generally, proprioceptive sensors cannot be used for reliable long-term navigation due to

21

Sensors, SLAM and localisation

accumulation of errors (K. Murphy, 2000). External information from the environment can

be used to correct these errors, but they are often used to assist or improve the position

estimates made using exteroceptive sensor information (Everett, 1995). In general, pro-

prioceptive are used for dead reckoning approaches to navigation, whereas exteroceptive

sensors are used with map-based methods, although many approaches combine the two. In

this chapter, the main types of sensors used for navigation are described and the main fac-

tors that should be considered when choosing a sensor for robotic navigation are outlined;

methods for navigation are then described.

2.1.1 Exteroceptive sensors

Ultrasonic sensors

Ultrasonic sensors are time of flight sensors that transmit ultrasonic pressure waves and

measure the time between the emitted pulse and the returning signal (that has been re-

flected off some surface in the environment), to calculate the distance to landmarks in the

environment (Everett, 1995). Generally, these sensors are used to give point distance mea-

surements (e.g., Peel et al. (2016)), but can be arranged as an array of multiple sensors

rotated to detect objects in a 360° range (e.g., Großmann and Poli (1999)). Sound waves
from the ultrasonic sensor propagate in a cone like manner, which can affect the detection

of obstacles in the environment because the cone increases with distance from the sensor.

Measurements from ultrasonic sensors are also affected by specular reflection and crosstalk

with other ultrasonic sensors and may also be affected by environmental conditions such

as changes in temperature and strong winds (Vivet et al., 2013). A similar technology that

is less affected by environmental conditions is RADAR (RAdio Detection And Ranging),

which propagates electromagnetic waves rather than sound waves. RADAR is less com-

mon in robotic applications but can also be used for robotic navigation (e.g., Vivet et al.

(2013)).

22

2.1 A review of sensors for robotic navigation

LiDAR

One of the main types of Light detection and Ranging (LiDAR) sensors used in robotics

is triangulation LiDAR (as opposed to phase-shift LiDARs or time-of-flight measurements).

A point of light (e.g., laser or infrared) is reflected off objects in the environment. These

reflections are measured at the detector, which comprises of a charged coupled device

(CCD) sensor; the angle of the incoming beam is determined from its position on the

sensor and the angle of the out-going light. This laser beam can then be rotated to obtain

the position of objects in the environment in a 360° sweep. Since the beam has small

divergences over large distances, LiDAR sensors are more precise and tend to have a higher

range than ultrasonic sensors (Siegwart and Nourbaksh, 2011). Typically, LiDAR sensors

contain a mirror that is rotated mechanically and are available for mobile robots in 2D,

2.5D or 3D configurations (Markom et al., 2016; Arth et al., 2015; Nüchter et al., 2018)

(where 2.5D typically incorporates rotation of a 2D LiDAR to obtain 3D information), with

fields of view up to 360°, 2D LiDAR can also be used for 3D sensing by tilting the LiDAR

(e.g., Chong et al. (2013)). There are some limitations for using LiDAR when surfaces

in the environment are highly reflective because it causes coherent reflection of the light

energy (Siegwart and Nourbaksh, 2011) or with materials such as glass where the emitted

light defracts through the surface. The required spatial resolution and dimensionality (i.e.,

2D or 3D) leads to an increase in power consumption and cost of the sensors (Zaffar et al.,

2018). The mechanical components in LiDARs may also wear out over time, which should

be taken into consideration when designing a system for long-term use. (Zaffar et al., 2018)

Monocular camera

A monocular camera refers to a single camera sensor (e.g., an Red Green Blue (RGB)

camera sensor) and is a common choice of sensor on-board a robotic platform because

visual camera data has many uses, including inspection applications. Monocular sensors

also tend to be compact, cheap and have low power requirements (Zaffar et al., 2018). As

described by Siegwart and Nourbaksh (2011), visual sensors may be affected by changes in

23

Sensors, SLAM and localisation

lighting and glare and reflection off surfaces in the environment, a monocular camera also

cannot recover depth in a scene without additionally provided scale information.

RGB-D camera

Red Green Blue-Depth (RGB-D) cameras combine a typical monocular camera with an

infrared (IR) transmitters and receivers in order to provide estimated depth information at

each pixel of the RGB camera image. The RBG-D sensor was not developed with robotics

in mind, but has been used in many applications in recent years, particularly for robot

navigation in indoor environments (e.g. Henry et al. (2012)). There are two main types

of RGB-D camera, one which uses the time-of-flight of infrared and one which uses a

structured light approach. The time-of-flight RGB-D cameras work in a similar way to

the LiDAR by calculating the time taken for the infrared light to bounce off objects in the

environment. The structured light sensors work by interpreting the distortion of a pattern

of infrared light when projected onto objects in the environment when compared to a

reference pattern at a known depth. Although RGB-D sensors have a range of up to 4.5 m,
their performance in outdoor environments can be poor since bright sunlight can obscure

the infrared light (Kulich et al., 2017).

2.1.2 Thermal camera

Thermal cameras use infrared radiation emitted from objects to create images, rather than

detecting light that bounces off an object (as in a monocular camera), can be used in low-light

or no-light environments and have been used for inspection applications such as power line

monitoring Luque-Vega et al. (2014). Although RGB-D sensors also use infrared, thermal

cameras are different to RGB-D sensors: RGB-D sensors emit a structured infrared pattern

in the near-infrared range (700 nm to 1400 nm), whereas thermal imaging detects radiation
with wavelengths between 5500 nm to 14 000 nm (visual light is in the range of 400 nm to

700 nm). In general, thermal cameras work in a similar way to a monocular camera, with
an array of infrared sensitive sensors that can then be interpreted as pixels in an image.

However, sensor resolution tends to be much lower (for the same cost) compared to

24

2.1 A review of sensors for robotic navigation

typical monocular camera sensors. In addition, thermal sensors are sensitive to heat in the

environment – more accurate thermal use active cooling (Nilsson, 2008).

Stereo camera

In contrast to a monocular camera, a stereo camera has two sensors mounted at a separa-

tion (known as the stereo baseline) in order to use the disparity between the two captured

images to calculate the depth information of a scene; this configuration is inspired by the

human vision system (Everett, 1995). Unlike monocular cameras, stereo cameras can use

the disparity of the two images to calculate the scale of the scene. To calculate the depth,

features are detected in the camera scene, these features are then matched between the left

and right stereo cameras and epipolar geometry is used to triangulate the depth of these

features in the scene (Everett, 1995). The length of the stereo baseline is important since

the disparity of the scene can only be calculated where the field of views of the two cam-

eras overlap (Everett, 1995). Problems may also arise due to occlusion of objects, where

objects are only visible in one of the two cameras, similarly stereo cameras are also affected

by changes in lighting conditions and surface glare (Siegwart and Nourbaksh, 2011).

GNSS and GPS

Global Navigation Satellite System (GNSS) is the over-arching term for systems that use data

from satellites to determine their current position. GNSS calculate the current position

of the receiver through trilateration using the synchronised position and time information

broadcast from satellites orbiting the earth. Therefore, GNSS is a passive exteroceptive

sensor because it uses external landmarks to determine the position of the robot (Sieg-

wart and Nourbaksh, 2011). A minimum of four satellites are required to find the current

position. Global Positioning System (GPS) is one implementation of GNSS that uses the

NAVSTAR constellation of satellites (Parkinson and Gilbert, 1983). The accuracy of typical

GPS sensors is of the order of metres (around 5 m for a smart phone GPS in 2015 (van

Diggelen and Enge, 2015)), but accuracy of the order of millimetres to centimetres (relative

to a known base station) can be obtained using real-time kinematic methods (e.g., Heinrich

25

Sensors, SLAM and localisation

et al. (2018)). However, GNSS and GPS technology is limited when navigating in indoor or

obstructed environments (Siegwart and Nourbaksh, 2011).

2.1.3 Proprioceptive sensors

Inertial sensors

An inertial measurement unit (IMU) typically combines a gyroscope and an accelerometer

to give measurements of rotational velocity and linear acceleration in six degrees of free-

dom; these sensors can also be combined with a magnetometer to give heading measure-

ments (Ahmad et al., 2013). The combination of these sensors is used to reduce drift in the

individual sensor errors. Accelerations are measured in each of the three directional axes

and integrated over time to calculate position and velocity. The accelerometer is used to

calculate linear acceleration, a Gyroscope preserve their orientation relative to a fixed refer-

ence frame and are used in the IMU to calculate angular velocity and rotational angle (pitch,

roll and yaw) (Ahmad et al., 2013). The magnetometer is also used to calculate rotational

angle in yaw and angular velocity, but can be affected by nearby ferromagnetic material (Ah-

mad et al., 2013). More recent applications in robotics have implemented micro-electrical

IMUs, which tend to be low-cost, compact and have low processing power (Ahmad et al.,

2013).

Odometry

In order to create a motion model of the robot (see Section 2.2), some means of describing

the motion of the robot is required. Wheel encoders are placed on the robot and as

the wheels rotate the sensors monitors the change in light shone through the encoder

disk and translates this rotational movements into the equivalent forward motion of the

robot. Although the optical encoders tend to have accuracies close to 100 % (Siegwart

and Nourbaksh, 2011), errors can be introduced due to the robot wheels slipping on the

surface or moving over rough terrain (Everett, 1995); hence odometry alone is not reliable

for robust navigation of the robot.

26

2.2 Methods for autonomous navigation – SLAM

2.2 Methods for autonomous navigation – SLAM

Simultaneous Localisation and Mapping (SLAM) is a fundamental problem in robot navi-

gation in which a robot builds a model of an unknown environment whilst concurrently

determining the state of the robot within that environment. State typically refers to the

pose and orientation of the robot (for a robot operating on a planar surface, the current

configuration of the robot can be described using the 2D cartesian coordinates 𝑥 and 𝑦 and
the orientation in yaw, 𝜃), but may include variables such as the velocity of the robot and
the location of landmarks in the surrounding environment (Siciliano and Khatib, 2016). A

depiction of the SLAM problem is shown in Figure 2.1. The robot begins at the position

labelled 1 (see Figure 2.1) and make measurements of landmarks 𝑚𝑖 and 𝑚𝑗 using onboard

sensors (corresponding to 𝑧𝑖,𝑡−1 and 𝑧𝑗,𝑡−1) and, using this information, estimates its posi-

tion in the environment (shown in green in Figure 2.1). The robot then moves to position

‘2’ using control input 𝑢𝑡−1. As the robot moves through the environment (from ‘1’ to ‘4’
in Figure 2.1) noise in the measurements made by the robot causes a divergence in the

estimated and true positions of the robot and landmark positions. The true position of

the landmarks and the robot’s position relative to these landmarks is never known, only

estimated from sensor measurements and the control inputs given to the robot (Durrant-

Whyte and Bailey, 2006) and SLAM algorithms are required to minimise the error between

the true and estimated position of the robot.

27

Sensors, SLAM and localisation

Figure 2.1: This image is based on the figure from Durrant-Whyte and Bailey (2006) and
shows a robot moving through a scene over four subsequent stages (from ‘1’ at 𝑡 − 1 to ‘4’
at 𝑡 + 2) using a set of control inputs (𝑢𝑡−1–𝑢𝑡+2) and making estimates about its location
based on observations of features in the environment (𝑚𝑡) from on-board sensors (𝑧𝑡) at
each time step. The estimated position of the robot and landmarks is shown in green and
the true position is shown in purple. The location of landmarks and the control inputs are
estimated and there is error between the true robot position and the estimated robot
position due to inherent noise in the control inputs and sensor measurements, which

diverges over time. SLAM algorithms can be used to improve the error between the true
and estimated positions of the robot and landmarks in the environment.

In Figure 2.1, the control input to the robot does not match the true motion of the robot

due to inherent uncertainties caused by environmental factors, such as higher than expected

floor friction or un-detected obstacles. Similarly, there are errors in sensor measurements;

for example, errors occur for range-based sensors (i.e., a LiDAR or ultrasonic sensor) from

cross-talk or reflection of the emitted energy off of an object, which introduces uncertainty

with respect to the position of objects and number of objects in the environment. To

28

2.2 Methods for autonomous navigation – SLAM

account for these uncertainties, the SLAM problem is defined in a probabilistic manner as

follows (Grisetti et al., 2010; Durrant-Whyte and Bailey, 2006):

𝑝(𝑥𝑡, 𝑀 ∣ 𝑧0∶𝑡, 𝑢0∶𝑡, 𝑥0) (2.1)

where 𝑥𝑡 is the state of the robot at time 𝑡, 𝑀 is the map as a vector of landmarks

(𝑚𝑖, 𝑚𝑗 … 𝑚𝑙), 𝑢0∶𝑡 is the set of control inputs from the first to current time step, 𝑧0∶𝑡

is the set of observations of the environment from the sensor data over all time steps, 𝑥0

is the initial robot state and 𝑝(𝑥𝑡, 𝑀 ∣ 𝑧1∶𝑡, 𝑢1∶𝑡) is the conditional probability of a particular
robot state and the position of set of landmarks in the environment at time 𝑡 given the
control inputs and sensor readings from the initial time step to the current time step 𝑡.
This probability posterior is also referred to as the belief of the robot, which reflects the

internal estimate of the current pose of the robot and the surrounding landmarks (Siciliano

and Khatib, 2016).

The Bayes filter algorithm can be used to calculate belief distributions from control

data and measurement inputs (Siciliano and Khatib, 2016). This algorithm has two main

stages: a prediction stage and a correction stage. During the prediction stage, the control

input is applied to the robot state to give the new estimated state; then in the correction

stage, sensor measurements are used to correct the error in the estimated state. In order

to compute the posterior in Equation 2.1, two models that describe the motion of the

robot and the expected sensor measurements are required. The motion model (also called

the state transition probability (Siciliano and Khatib, 2016)), is required to represent the

control input to the robot between two states, and a measurement model, specifies how

the measurements at a given point in time are generated from a given environment. The

general formulation for the motion model is:

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) (2.2)

In practice, there are two commonly used motion models: one generated using odom-

etry and one generated using velocity information. An odometry motion model typically

29

Sensors, SLAM and localisation

requires a wheel encoder sensor (although other sensors such as LiDAR can be used) to

estimate the distance travelled for a control input, and a velocity-based model uses the input

velocity commands to the robot and the time taken to complete the motion to calculate

the distance travelled based on dead-reckoning, i.e., accumulating the velocity commands

from a start location.

Next, the measurement model is considered. The general formulation of the measure-

ment model for filter based SLAM is defined as:

𝑝(𝑧𝑡|𝑥𝑡, 𝑀) (2.3)

Sensor models can be developed from the known characteristics of particular sensors.

For range-based sensors, a sensor model can be defined that includes expected noise, such

as measurement noise, unexpected obstacles, random measurement and maximum range

errors as a mixture of probability densities (Siciliano and Khatib, 2016).

There are two alternative formulations for SLAM (Siciliano and Khatib, 2016). The

posterior in Equation 2.1 involves estimation of variables at the current time, 𝑡, and is

referred to as online SLAM; the alternative is full SLAM where the posterior is calculated

over the full robot path, together with the map, rather than at a single point in time, i.e.,:

𝑝(𝑥1∶𝑡, 𝑚 ∣ 𝑧1∶𝑡, 𝑢1∶𝑡) (2.4)

The difference between online SLAM and the full SLAM problem is represented in Figure

2.2 by the highlighted nodes in the Bayesian network representation of the SLAM problem.

In addition, the online SLAM solution can be obtained incrementally integrating out poses

from the full SLAM problem as follows:

𝑝(𝑥𝑡, 𝑀 ∣ 𝑧1∶𝑡, 𝑢1∶𝑡) = ∫ ∫ … ∫ 𝑝(𝑥1∶𝑡, 𝑀 ∣ 𝑧1∶𝑡, 𝑢1∶𝑡)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑡−1 (2.5)

The difference between the full and online representations of SLAM is important when

implementing algorithmic solutions. For example, EKF SLAM, which will be addressed in

30

2.2 Methods for autonomous navigation – SLAM

(i): Bayesian network of the online representation of SLAM

(ii): Bayesian network of the full representation of SLAM

Figure 2.2: This image is adapted from Siciliano and Khatib (2016) and shows two Bayesian
network representations of SLAM. ut are the control inputs, 𝑧𝑡 are the sensor readings, 𝑥𝑡
is the robot position in time and depends on the current robot pose and control input
and m is the map which depends on the observed readings over time. In Figure 2.2i, for
online SLAM the posterior is estimated over the current pose, whereas for full SLAM, in

Figure 2.2ii, all of the poses over time are used to calculate the posterior.

31

Sensors, SLAM and localisation

Section 2.2.1, is an online SLAM implementation and is characterised by an incrementally

updating solution, whereas FastSLAM, addressed in Section 2.2.3, is a type of full SLAM and

uses particles to test many different possible solutions at once. In addition, different SLAM

algorithms make different assumptions about the nature of the environment in which the

algorithm is used. For example, one common assumption is that the world is static, so

that none of the landmarks in the environment move and that the past and future states

are independent if the current state, 𝑥𝑡, is known. Another assumption may be that the

correspondence between sensing data and landmarks (i.e., the data association problem) in

the environment is known. Other differences between SLAM implementations include: the

type of map that is generated (feature-based or metric-based), the number of robots that

can be used (i.e., single-robot and multi-robot SLAM) and active and passive approaches,

where path-planning is used to increase the accuracy of the map.

It is infeasible to directly calculate the full posterior in Equation 2.1, as the parameter

space of poses of the robot and map landmarks is highly dimensional; there are also a large

number of discrete correspondences between landmarks that have to be calculated (Si-

ciliano and Khatib, 2016). Therefore, solutions to the SLAM problem find appropriate

representations of the motion and measurement models in order to allow efficient and

consistent computation of the posterior distribution. The solutions to the SLAM prob-

lem, are often split into three categories, which then form the building blocks of other

methods. Namely, these three categories are: filtering methods, graph-based methods and

particle-based methods, which will be described in turn in the following sections.

2.2.1 Filter-based approaches: the Extended Kalman Filter

In the review of robotic inspection of infrastructure in Chapter 1, a common approach for

both localisation and SLAM were based on the Extended Kalman Filter (Cox and Wilfong,

1990). EKF SLAM (Smith et al., 1987; Moutarlier, 1989; Philippe and Chatila, 1990) and

other filter-based methods, were some of the first methods for SLAM, but have become

less popular recently due to limitations for computational properties (Cadena et al., 2016;

32

2.2 Methods for autonomous navigation – SLAM

Siciliano and Khatib, 2016) related to the number of landmarks that can be tracked in the

environment at one time.

EKF requires a landmark based representation of the environment, where objects can

be represented as points in space. A single state vector is used to estimate the locations

of the robot and the set of features in the environment. A covariance matrix is used to

represent the uncertainty in the estimates of the robot and feature locations (Siciliano and

Khatib, 2016; Durrant-Whyte and Bailey, 2006). The state estimates are represented by a

multivariate Gaussian:

𝑝(𝑥𝑡, 𝑀, 𝑐𝑡 ∣ 𝑧1∶𝑡, 𝑢1∶𝑡) = 𝒩 (𝜇𝑡, Σ𝑡) (2.6)

where 𝜇𝑡 is the vector containing the estimate of the position of the robot and landmarks

in the environment and Σ𝑡 is the covariance matrix of the expected error in 𝜇𝑡. In addition,

non-linear functions with Gaussian noise are used to define the measurement and motion

models. The motion and measurement models are then linearised about the current state

estimate using Taylor series expansions. However, linearising the non-linear motion models

can lead to divergence in the errors in estimated position, so that convergence is only

guaranteed in the linear case (Durrant-Whyte and Bailey, 2006).

A schematic example of EKF SLAM for online SLAM is given in Figure 2.3. The robot

moves through the environment starting from a known pose (Figure 2.3i). Initially, the

uncertainty (shown by coloured ellipses: yellow for the robot uncertainty, purple for the

landmark uncertainty) of the robot position and the landmark positions are small. As the

robot progresses through the environment, these uncertainties grow (Figure 2.3ii–iii). In

Figure 2.3iv, the first landmark is detected again in the environment and the uncertainties of

the robot position and landmarks decrease. This update in uncertainty is then propagated

to all landmarks in the environment.

33

Sensors, SLAM and localisation

Figure 2.3: EKF applied to an online SLAM problem. A robot moves through the
environment from Figure i to iv sequentially, where the path of the robot is shown by a

dotted line and the uncertainties of observed landmark and sequential robot positions are
shown by ellipses. Initially, the position uncertainties are small in i, but grow from ii–iii
until the first landmark is sensed again iv. At this point, the uncertainty in all landmark

positions decreases, as does the current robot pose.

Since landmarks in the environment are assumed to be stationary, false associations

from sensor observations can lead to the divergence of the solution (Fuentes-Pacheco et

al., 2012). Similarly, data association, especially loop closure, is difficult (Durrant-Whyte and

Bailey, 2006) and can also be due to accumulation of errors in position estimates (Hidalgo

and Braunl, 2015). Computational efficiency can also be an issue for EKF SLAM because all

landmarks and the relationship between landmarks are updated for each new observation;

hence the computation cost grows quadratically with the number of landmarks (Fuentes-

Pacheco et al., 2012).

34

2.2 Methods for autonomous navigation – SLAM

2.2.2 Graph-based SLAM

An alternative way of representing the SLAM problem is through a graphical representation

and is shown in Figure 2.4. Graph-based SLAM represents the SLAM problem as a sparse

graph, where the nodes of the graph correspond to robot pose and landmark positions,

and the graph edges represent spatial constraints obtained from measurements from on-

board sensors (Grisetti et al., 2010), with a probability distribution defined by the sensor

measurement model. In graph-based SLAM, a graph is built and an optimisation approach

is used to minimise the error introduced by the spatial constraints.

Figure 2.4: A schematic showing the Graph SLAM algorithm. The nodes, 𝑥𝑖, and 𝑥𝑘
represent two (non consecutive) robot poses. Edges between the nodes marked 𝑢

represent odometry between two robot poses. The node 𝑧𝑖𝑘 represents a landmark with
position calculated from sensor measurements taken from the robot pose at 𝑥𝑖, and 𝑥𝑘.
̂𝑧𝑖𝑘, is a virtual measurement which represents the estimated position of 𝑥𝑘 as seen from
𝑥𝑖. 𝑒𝑖𝑗 is the error between the expected measurement and real measurement of the

environment between nodes 𝑥𝑖 and 𝑥𝑗 . Ω𝑖𝑗 is the information matrix of the measurement
𝑧𝑖𝑗 which accounts for the uncertainty in the sensor and odometry measurements.

35

Sensors, SLAM and localisation

In Figure 2.4, a robot is moved from position 𝑥𝑖 to 𝑥𝑖+1. Each of these states is rep-

resented by a node in the graph and the edge between these nodes represents odometry

information from sensors. At some other robot pose 𝑥𝑗 , the same part of the environment

is observed that was also observed at the robot pose 𝑥𝑖. Another edge called a ‘virtual

measurement’ (̂𝑧𝑖𝑘 in Figure 2.4) can be made between nodes 𝑥𝑖 and 𝑥𝑘 that represents the

position of 𝑥𝑘 as seen from 𝑥𝑖. An error function, 𝑒𝑖𝑘, is defined that describes the differ-

ence between the expected and real measurement of the landmark 𝑧𝑖𝑘, where the expected

measurement is determined from the transformation between the two nodes 𝑥𝑖 and 𝑥𝑘.

This expected measurement has a Gaussian distribution (Grisetti et al., 2010). A cost func-

tion can then be defined that is dependent on the error function and the uncertainty of the

virtual measurement (Grisetti et al., 2010). The edge constraints and node locations in the

graph are considered as a spring-mass model (Siegwart and Nourbaksh, 2011; Siciliano and

Khatib, 2016), where finding the solution to the SLAM posterior is equivalent to computing

the minimal energy of the spring-mass model, i.e.,:

𝑥∗ = arg min
𝑥 ∑

𝑖𝑘
𝑒𝑇

𝑖𝑘Ω𝑖𝑗𝑒𝑖𝑘 (2.7)

where 𝑥∗ is the set of poses that minimises the log-likelihood of the observations (∑𝑖𝑘 𝑒𝑇
𝑖𝑘Ω𝑖𝑗𝑒𝑖𝑘).

𝑒𝑖𝑘 is the error between the expected displacement and real displacement and Ω𝑖𝑘 is the

information matrix that accounts for the uncertainties in the position estimates.

Optimisation techniques (such as Levenberg–Marquardt, Least Squares or Gauss-Newton

(Grisetti et al., 2010)) can then be used to minimise the error function by adjusting the

overall position of the nodes in the graph to find which arrangement gives the best repre-

sentation of robot position.

36

2.2 Methods for autonomous navigation – SLAM

2.2.3 Particle filters for SLAM

Particle filters, also known as recursive Monte Carlo sampling (Durrant-Whyte and Bailey,

2006), have also been used to solve the SLAM problem, particularly through the application

of Rao-Blackwellised particles (K. Murphy, 2000). The individual map errors are condi-

tionally independent for each of the particles, hence the posterior can be factorised as

follows (Siciliano and Khatib, 2016) :

𝑝(𝑥0∶𝑡, 𝑀|𝑧1∶𝑡, 𝑢0∶𝑡) = 𝑝(𝑥0∶𝑡|𝑧1∶𝑡, 𝑢1∶𝑡)
𝑀

∏
𝑛=1

𝑝(𝑚𝑛|𝑥0∶𝑡, 𝑧1∶𝑡) (2.8)

The first part of the factorisation in 2.8 (𝑝(𝑥0∶𝑡|𝑧1∶𝑡, 𝑢1∶𝑡)) allows the SLAM problem to

be split into a localisation problem, which assumes a known map and can be solved using a

method such as Monte-Carlo Localisation. Using the pose estimates from the localisation

calculation, the mapping step of SLAM is then performed with respect to each pose. This

factorisation also allows each of the landmarks in the environment to be represented by

separate, low-dimensional, EKFs rather than a single Gaussian that represents all of the

features jointly, as for EKF SLAM, and allows efficient computation by particle-based meth-

ods Siciliano and Khatib (2016). These landmarks can then be represented and summed

using a set of 𝑀 particles (i.e., for ∏𝑀
𝑛=1).

37

Sensors, SLAM and localisation

Figure 2.5: A schematic showing the FastSLAM particle-based SLAM algorithm for three
exemplar particles. Initially (left), the position of the particles is updated using odometry
information. Next, information of the location of landmarks from previous steps is used
to estimate the position of landmarks in the environment at the current step. Using
current sensor information, weights are calculated based on the probability that the

particle is at the true robot location and the mean and covariance of observed landmarks
is updated. Figure adapted from Figures in Siciliano and Khatib (2016).

38

2.2 Methods for autonomous navigation – SLAM

A specific application of Rao-Blackwellised particle SLAM, known as FastSLAM (Monte-

merlo et al., 2002), represents the belief of the robot by randomly sampling the probability

distribution over the full path of the robot. Each of the particles stores an estimate for the

pose of the robot, a known map with respect to the particle, a set of Kalman filters with

mean and covariance for each of the features in the map. A schematic of the FastSLAM

algorithm is depicted in Figure 2.5. The first step in the FastSLAM algorithm is retrieval,

where the pose of the particle at the previous time step is obtained. Next a prediction step

occurs, based on the current odometry information, to obtain a new pose for each of the

particles. Then, a measurement update is performed, where the correspondence of the

current sensor information for each of the observed features is identified and incorporated

into the EKFs of the landmarks by updating the mean and covariance of the position uncer-

tainty. The importance weight is then calculated for each particle, which is based on the

probability that the particle position is the true robot position. Finally, the re-sampling stage

occurs, where the number of particles is maintained by replacing, removing and updating

particles according to their value of importance factor (Siegwart and Nourbaksh, 2011),

normalising the particle weighting to add up to one (Sim et al., 2005).

A set number of particles are maintained at each time step (Siegwart and Nourbaksh,

2011). Each particle contains an estimate of the robot path (Siegwart and Nourbaksh, 2011)

with estimates for the landmarks represented by a probability distribution function. Due

to the sampling process, non-linear models can be used. The particles will populate areas

of the system space where the real state is more likely (Dueñas, 2015). The use of random

sampling means that no linearisation of the motion model is required and so non-Gaussian

distributions can be used (Siegwart and Nourbaksh, 2011).

Complexity grows logarithmically, rather than quadratically as for EKF (Siegwart and

Nourbaksh, 2011). The key issue is that it is not possible to determine how many particles

are required to accurately estimate the robot position, as a result more particles than

required may be used which can impact performance due to memory requirements, but

using too few particles also impacts accuracy (Fuentes-Pacheco et al., 2012) A key property

39

Sensors, SLAM and localisation

of FastSLAM is that the observed landmarks are independent because separate EKFs are

used for each landmark (Fuentes-Pacheco et al., 2012).

2.3 Map representation

As described above, a representation of the landmarks in the environment for SLAM to

inform further tasks, such as path-planning is needed, and this representation is typically

described as a map. Two common methods of map representations are grid-based and

feature-based. Feature-based methods were discussed previously, where a landmark is

represented as a point in the parameter space.

In grid-based mapping methods, the world is split into regular, rigid cells and each cell

is assumed to either represent occupied or unoccupied space. One such grid-based rep-

resentation is an occupancy mapping; an example is shown in Figure 2.6. Each cell in the

occupancy map is updated by a binary Bayes filter, using a sensor model to update the prob-

ability that the cell is either occupied or unoccupied. It is assumed that the occupancy of

each cell in the map is independent of the other map cells, that the robot poses are known

and that the map is static. Occupancy maps are useful in representing environments such

as floor plans as they describe a 2D slice of a 3D world. If the probability that a cell is

occupied by an object is high, the cell is filled in black, whilst white shows free space and

grey is unknown as it is outside of the mapped area, i.e., areas out of the sensor range. This

approach reduces the effect of transient objects, such as people, in the map. The uses of

occupancy maps will be considered further in Chapter 4.

40

2.3 Map representation

+

+

+

+

+

+

(i): Incremental update of an occupancy map.

(ii): An example occupancy map with grid cells.

Figure 2.6: This image is adapted from Siciliano and Khatib (2016) and shows an example
of the incremental update of a 2D occupancy map. The upper left image shows the initial
map and the lower right image shows the finished map. An example occupancy map with
grid cells is shown in 2.6ii. The black map cells corresponds to occupied regions, the

white regions show unoccupied space and the darker grey region shows regions outside
the map.

41

Sensors, SLAM and localisation

2.4 SLAM implementations

The architecture of current SLAM systems is often composed of two main parts: the front-

end and the back-end. The front-end is responsible for abstracting the sensor data into

models that are suitable for state estimation and the back-end performs inference on the

abstracted data from the front end (Cadena et al., 2016). For example, in a graph-based

SLAM approach, range or visual data can be used to construct the graph of the environment

in the front-end and optimisation of the graph to minimise the error in position estimate

would occur in the back-end (see Figure 2.7).

Figure 2.7: This image is adapted from Cadena et al. (2016) and shows the front-end and
back-end in a typical SLAM system. The front end takes in and abstracts sensor data, the
back end performs inference about the environment using the abstracted features and
feedback is provided between the back and front ends for loop closure and verification.

42

2.4 SLAM implementations

2.4.1 SLAM implementation using a 2D LiDAR

Hector SLAM

Hector SLAM (Kohlbrecher et al., 2011; Kohlbrecher et al., 2014) is primarily a 2D SLAM

approach that incorporates 2D LiDAR scans into a planar occupancy map. The contribution

of Hector SLAM is as a frontend-only SLAM, with no backend optimisation of the pose-

graph being required (see Figure 2.8). Hector SLAM does not require any external method

of odometry (e.g., wheel encoders), but uses fast scan matching approaches to provide this

information. Traditionally, scan matching is done using Iterative Closest Point (ICP) which

is computationally expensive. In Hector SLAM however, a fast scan-matching approach is

used, which takes advantage of the low distance measurement noise and high scan rates of

modern LiDAR (Kohlbrecher et al., 2011). The endpoints of the LiDAR beams are aligned

with the occupancy map generated by Hector SLAM and a Gauss-Newton approach is used

to find the transformation of the current scan that best minimises a cost function to find

the correct alignment of the scan to the map. Using this approach, the data association

problem is avoided and an exhaustive search of the pose of the robot is not required since

matching takes into account the previous poses used to generate the current map. To

allow pose estimation in six degrees of freedom, an EKF is used to combine velocities

and position estimates from gyroscopes and accelerometers with the 2D LiDAR and range

sensor to estimate height from the ground. Exemplar results generated using Hector SLAM

are shown in Figure 2.8b.

43

Sensors, SLAM and localisation

(i): Hector SLAM method overview.

Map

Current robot
position

Robot path

(ii): Hector SLAM output

Figure 2.8: An overview of the SLAM and navigation subsystems in the Hector SLAM
package (2.8i), where the dashed lines show optional information, this figure is adapted
from Kohlbrecher et al. (2011). And an example of the output from Hector SLAM (2.8ii).
The robot’s path over time, the robot position and the map generated using 2D LiDAR

data are annotated.

44

2.4 SLAM implementations

2.4.2 SLAM implementations for camera data

ORB-SLAM

Orientated Rotated Brief SLAM (ORB-SLAM) was identified for use in this work because

it has been implemented in real-time with the Raspberry Pi (Ponnu et al., 2016) and has

both monocular and stereo implementations1. In addition, ORB-SLAM has a ROS package

called ORB-SLAM2 that can be configured to run on many platforms and has also been

tested in a wide range of environments including datasets from indoors, micro-UAVs and

a car in an urban setting (Mur-Artal and Tardos, 2017). Both the stereo and monocular

implementations of ORB-SLAM will be tested in this thesis, hence the methods for the

monocular and stereo implementations are considered here.

ORB-SLAM is an open-source, feature-based technique that uses a monocular camera

implementation (Mur-Artal et al., 2015) and also stereo and RGB-D camera implementa-

tions (Mur-Artal and Tardos, 2017). A brief overview of the method is given here, but full

details of the implementation can be found in Mur-Artal et al. (2015) and Mur-Artal and

Tardos (2017).

In the monocular implementation of ORB-SLAM, the process falls into three main pro-

cesses: tracking, local mapping and loop closing. For an initial input image frame from a

video feed, ORB feature detection is performed, with ORB features being chosen for their

invariance in rotation and scale, which allows them to be recognised both quickly and with

invariance to view-point (Mur-Artal et al., 2015).

The tracking step allows localisation of each new frame by matching features to a local

map. Certain input image frames from a video feed are selected as keyframes (which store

the camera pose camera parameters andORB features) and bundle adjustment is performed

on these key-frames rather than all the dataset, which allows large environments to be

mapped (Mur-Artal and Tardos, 2017). A process for culling redundant keyframes and map

points can also be implemented to retain only high-quality keyframes and points. Next,

loop closing is performed to reduce any accumulated drift errors in the map. A fourth

1https://github.com/raulmur/ORB_SLAM2 (Date last accessed:01/02/19)

45

Sensors, SLAM and localisation

process can be launched after loop-closing to perform a bundle adjustment on the full map

in parallel to the standard mapping and localisation process before the resulting updates

are merged. A map is created of 3D world coordinates and a place recognition module

named Bag of Words (DBoW2) (Galvez-López and Tardos, 2012) is implemented to allow

re-localisation in previously mapped scenes. For re-localisation, a visual vocabulary is initially

created offline by extracting ORB-descriptors from a large set of images to create a database

of general scenes that can be used for multiple environments (Mur-Artal et al., 2015). In

addition, keyframes are added to the database with the most recent frames are stored most

recently and in the event of loss of position, the current frame is turned into a bag of words

representation and the Bag of Words database is checked against to find the last known

keyframe.

In the stereo implementation, the ORB features are extracted in both images and points

from the left image are matched with the horizontal coordinate of points in the right image.

The features that are extracted from the images are labelled as far keypoints (greater than

40 times the stereo baseline) and near keypoints. Close keypoints can be triangulated from

one frame and far keypoints are triangulated if they appear in many views. Using the far

keypoints gives a good estimation of rotation. One important difference between the stereo

and monocular implementations is that the real scale of a scene can be determined from

triangulation of the stereo points; as a result, there is reduced drift in scale in the stereo

implementation (Mur-Artal and Tardos, 2017).

46

2.4 SLAM implementations

(i): ORB SLAM method overview.

(ii): Monocular ORB SLAM implementation

Figure 2.9: An overview of the ORB SLAM algorithm (2.9i) adapted from Mur-Artal et al.
(2015) and an example implementation of monocular ORB SLAM (2.9ii). Figure 2.9ii

shows the detection of the ORB features (green squares) that are tracked in the current
frame. These features are mapped into 3D space as cartesian points, where the black

points in Figure 2.9ii were detected in previous frames and the red points are visible in the
current image frame. Blue rectangles in Figure 2.9ii shows the position of the key frames.

47

Sensors, SLAM and localisation

2.5 Localisation-only approaches to navigation

The key difference to the SLAM methods described in Section 2.2 is that the map of the

environment already exists, which reduces the complexity of the SLAM problem. In the

simplest case, localisation can be performed using only odometry calculations, with the

current position of the robot being determined with respect to an initial position. How-

ever, over long periods of time, the position estimate can drift. Data from sensors (such

as LiDAR, ultrasound, camera, etc.) can be used to recognise landmarks (such as walls,

corners, etc.) to reduce the drift of the robot’s position within the map. The position

estimate can be improved using filtering techniques such as Kalman Filters. For example,

Moore and Stouch (2016) implement an EKF that combines sensor information from mul-

tiple GPS and IMU devices to vastly improve on the dead-reckoning position estimation

of a robot. Without GPS, EKF localisation allows the combination of sensors to improve

position tracking, which is important for accurate navigation, but they do not necessarily

allow re-localisation if the position of the robot is lost. Global localisation (when the robot

is placed in the map with no guess for the current location) is possible if GPS is available

or when using grid-based methods, such as Markov Localisation (Burgard et al., 1998) and

Monte-Carlo localisation (Fox et al., 1999).

Adaptive Monte-Carlo localisation

Monte-Carlo localisation (Fox et al., 1999; Thrun et al., 2005) is similar to the particle filter

methods for SLAM seen in Section 2.2.3, but a map of the environment already exists. The

knowledge that the robot holds about its environment is represented by a set of particles,

where a particle represents a ‘guess’ for the pose of the robot. In the prediction step,

the motion commands given to the robot are applied to the particles using some form of

odometry, updating their position in the map. At the new particle locations, measurements

to map landmarks are obtained and are compared to the expected values from the current

particle positions. The set of particles begin with a uniform belief of the true location, but

are then re-weighted depending on the probability that a given particle could obtain the

48

2.5 Localisation-only approaches to navigation

current sensor readings in its current location. The particles are then re-distributed for

the next time-step based on this probability. The estimated position of the robot at the

current time step is centred on the accumulative probability mass of the particles (Thrun

et al., 2005).

If the starting position of the robot in the map is unknown, the particles are spread

across the map used for localisation, with each particle representing a potential position

and orientation for the robot. Alternatively, a known starting location can be given as an

input, around which the particles spread. The first of these cases is referred to as global

localisation and the second as local localisation.

Adaptive Monte-Carlo Localisation (AMCL) is a version of Monte-Carlo Localisation

where the number of particles are adapted over time using Kullback-Leibler Divergence

Sampling to determine the number of particles that are required at each time step (a detailed

description of the approach is given in Thrun et al. (2005)). Particles are added to the map

until a statistical bound is satisfied, where the error between the true pose and the sample-

based approximation is less than a fixed value. Changing the number of particles over time

allows better computational efficiency, since fewer particles are required if many particles

have a similar belief about the robot’s position. The number of particles required tends

to decrease over time as the robot moves around the map and the belief regarding the

current position improves Thrun et al. (2005). An example of the initial and final steps of

AMCL, after the number of particles has reduced due to increased certainty, is shown in

Figure 2.10. The implementation of AMCL used in this thesis is an existing ROS package2

based on the work in Thrun et al. (2005).

2http://wiki.ros.org/amcl (Date last accessed:01/02/19)

49

Sensors, SLAM and localisation

(i): AMCL at initial time step

(ii): AMCL after several time steps

Figure 2.10: Example of the AMCL algorithm at an initial time step (2.10i), where there
the uncertainty in the robot’s current state is high, and at a later time step (2.10ii) where

the uncertainty has decreased along with the number of particles.

50

2.6 Structure-from-Motion

2.6 Structure-from-Motion

Structure-from-Motion (SfM) uses two-dimensional image data from photographs, or video

frames, to find the three-dimensional geometry (the structure) of a scene, or an object, by

taking the photographs from several different physical locations (the camera has motion),

see Figure 2.11i. The aim of SfM is to find the relative positions of the cameras and features

seen in the camera views. In Chapter 1, SfM was a common approach used in inspection

of infrastructure using RGB camera information. In this thesis, SfM will also be used as

part of robotic data-collection and the point clouds generated using SfM and Multi-View

Stereo (MVS) will be used for map creation, inspection applications and improving robotic

simulation environments.

Before the SfM calculations can begin, suitable data capture is required. The data should

be in the form of many overlapping images or video frames taken from several locations,

with suggestions for number of photos in the order of tens to hundreds for higher accu-

racy (Micheletti et al., 2015). The data collection requires some careful consideration since

it is recommended by several sources (e.g., Micheletti et al. (2015) and Leberl et al. (2010))

that at least 60 % overlap is required between images.

The SfM pipeline consists of the following steps (Toldo et al., 2015): data capture, key-

point detection, keypoint matching, computing 3D points from corresponding points in mul-

tiple images (also known as intersection), calculation of the camera matrices from known

2D-3D correspondences (also known as resection), relative orientation (finding the relative

camera poses and orientations), combining these triangulated and resected views and then

optimising the results using bundle adjustment. The SfM process is often followed by MVS,

in which the sparse information from SfM is embellished by extracting extra image features

to create a dense point cloud.

51

Sensors, SLAM and localisation

(i): The reconstruction of an SfM point cloud from the image features

(ii): An example point cloud data generated using SfM

Figure 2.11: Figure to show the basic principal of Structure-from-Motion (2.11i, adapted
from http://theia-sfm.org/sfm.html, date accessed: 01/02/19), where motion of a camera
taking 2D images can be used to reconstruct the 3D environment. An exemplar 3D

Cartesian point cloud data generated using SfM is also shown (2.11ii).

52

http://theia-sfm.org/sfm.html

2.6 Structure-from-Motion

The point clouds produced using SfM and MVS are initially unscaled. For applications

such as construction and inspection, some form of scaling that is representative and accurate

of the object or area is required. There are several ways to obtain these coordinates

depending on the level of accuracy required for the application.

The methods discussed in this chapter will be implemented on a robotic platform and

evaluated in a laboratory environment, a real bridge environment and a simulated environ-

ment in Chapter 4. Chapter 3 will describe the development of the robotic platform.

53

Chapter 3

Robotic platform and system

development

3.1 Description of the inspection environment

The bridge and associated bearings that form the experimental environment in this thesis

are located at The Millennium Bridge Leeds, UK. Millennium Bridge (Figure 3.1i) is a cable-

stayed footbridge crossing the River Aire, spanning approximately 57 m. Only the bearings
on the north side of the river are studied in this work; these bearings are located in a space

approximately 2.8 m by 1.2 m, which has a total height of 0.5 m. The layout of this site gives
an enclosed region to be referred to as bearing enclosure, see Figure 3.1ii. Bridge bearings

tend to be located on the underside of a bridge, where the weather conditions and lighting

conditions may be variable or poor. The bearing enclosure used in this thesis is compact

and narrow, there are also steep drops and uneven terrain and obstacles to overcome. A

representative example of a bridge bearing enclosure is shown in Figure 3.1ii and Figure 3.2.

55

Robotic platform and system development

(i): A photograph of Millennium Bridge

Low
wall

Electrical
cables

Bridge
bearing

Trough

Mortar
bed

Metal
plates

Debris

(ii): Exemplar bridge bearing enclosure

Figure 3.1: Photographs of the bridge (Figure 3.1i) and bridge bearing enclosure
(Figure 3.1ii) used for testing purposes in this thesis. The bridge bearing, surrounding

structure and potential obstacles in the environment are annotated. More photographs of
the bearing enclosure are shown in Figure 3.2.

56

3.1 Description of the inspection environment

Figure 3.2: Photographs of the bridge bearing enclosure taken from on-board the robotic
platform described in this Chapter. The arrows in the image show the sequence the

photographs were taken in.

57

Robotic platform and system development

3.2 Qualitative review of sensors and SLAM

As described Chapter 2, on-board sensors are required to measure the control input to

the robot and the landmark information in the surrounding environment. The qualitative

advantages and disadvantages of the sensors described in Chapter 2 are summarised in

Table 3.1.

Odometry information is required for SLAM algorithms to provide updates for the

motion model. Odometry can be provided by wheel encoders, GPS, monocular camera,

stereo camera and LiDAR. Alternatively, velocity information can be provided to the mo-

tion model from the inertial measurement unit or from dead reckoning of known velocity

commands. The odometry information available from LiDAR sensors tends to have higher

accuracy and precision than for wheel encoders (Kohlbrecher et al., 2011). GPS was used

in many of the literature examples reviewed in Chapter 1, but is not sufficient for navigation

in the bridge bearing enclosure, mainly due to the obstruction from the bridge structure

to the GPS signal. Of the reviewed sensors, 3D LiDAR is the most robust for navigating in

variable conditions. However, the bearing inspection area is compact, which limits the size

of the robotic platform that can be used. 2D LiDAR is more compact and has lower power

requirements than 3D LiDAR and can be used for both mapping and odometry purposes.

Since the primary purpose for developing a robotic platform is to perform inspection

of the bridge bearings, some sensors for inspection are required. The literature review in

Chapter 1 highlighted that a camera is the most popular sensor for bridge inspection since

it provides intuitive information that can be reviewed by human inspectors and can aid the

requirements for visual inspection. Since a camera is required for inspection, there may be

utility in using the camera information to aid localisation and mapping of the bridge bearing

enclosure. It is possible to calculate odometry information using a stereo camera, although

it requires more computation than 2D LiDAR (Kohlbrecher et al., 2011). However, 3D

data can also be obtained from the camera sensors, which may be beneficial for object and

debris detection in the inspection environment. Hence, a 2D LiDAR, stereo camera and

monocular camera are considered for navigation purposes in this thesis, with the camera

sensors serving a dual purpose by providing inspection information.

58

3.2 Qualitative review of sensors and SLAM

Table 3.1: A summary of the sensor attributes for common sensors.

Summary of sensors

Sensor Advantages Disadvantages

Ultrasonic
Sensor

Low cost, lightweight, compact, low
power consumption.

Data is affected by cone angle of the
sensors and specular reflection

2D LiDAR Higher accuracy and range than ul-
trasonic sensors, with up to 360°.
More compact than 3D LiDAR. Typ-
ically used for occupancy grid map-
ping, with outdoor SLAM imple-
mentations.

Data is affected by reflective and
transparent surfaces.

3D LiDAR Higher accuracy and range than ul-
trasonic sensors. Greatest depth
range of SLAM sensors. Sensor
data can be used for inspection and
navigation purposes.

High power consumption and
bulky. Data is affected by reflective
and transparent surfaces.

Monocular
camera

Low cost, lightweight, compact.
Existing odometry and SLAM im-
plementations in outdoor environ-
ments. Data is also useful for in-
spection.

Data is affected by vibrations and
changes in lighting conditions.
Some method of scaling is required
to provide 3D data.

RGB-D
camera

Many SLAM implementations for in-
door applications, with occupancy
mapping output. Gives 2D and 3D
data.

Not reliable in outdoor conditions.

Stereo
camera

Sensor data can be used for inspec-
tion and navigation purposes. Gives
2D and 3D data. Data can be used
to provide odometry.

Required image processing has
higher computational cost than
other sensors.

GPS Has been used in outdoor robotic
research for localisation and SLAM.

Doesn’t work in GPS-denied envi-
ronments

59

Robotic platform and system development

Continuation of Table 3.1

Sensor Advantages Disadvantages

Wheel
encoders

Low cost, lightweight, compact, low
power consumption.

Data is affected by wheel slip and
rough terrain. Cannot be used for
SLAM without other sensors.

IMU Low cost, lightweight, compact, low
power consumption

Drifts over time. IMU with magne-
tometer affected by ferromagnetic
material. Cannot be used for SLAM
without other sensors.

3.3 Summary of SLAM methods

Cadena et al. (2016) states that for an indoor environment, the SLAM problem is considered

largely solved for a robot with wheel encoders and laser moving in a 2D map, with examples

now appearing in industrial settings. Both Fabresse (2018) and Filatov et al. (2018) compare

2D LiDAR packages in ROS for unknown indoor environments for metrics such as: map

quality (structural similarity and nearest neighbour measure to ground truth for Fabresse

(2018) and corner count, proportion of occupied cells compared to ground truth and num-

ber of enclosed map regions for Filatov et al. (2018)), CPU load and memory load (Fabresse,

2018). In Filatov et al. (2018), Cartographer, Gmapping, Hector SLAM and tinySLAM were

reviewed, and Fabresse (2018) reviewed Cartographer, Gmapping and Karto SLAM were

reviewed.

Fabresse (2018) found that Cartographer, Gmapping and Karto SLAM provided con-

sistent maps, but that Cartographer needed tuning to specific parameters for different en-

vironments. With tuning, Cartographer provided the best quality maps, but without tuning,

Cartographer failed in all test scenarios, whereas Gmapping and Karto SLAM succeeded.

Filatov et al. (2018) found that Gmapping gave the best map quality for indoor environ-

60

3.3 Summary of SLAM methods

ments. However, Kohlbrecher et al. (2011) reported problems for Gmapping for when

roll and pitch motions were required. Hector SLAM has been used for outdoor applica-

tions(Kohlbrecher et al. (2011) and Droeschel et al. (2017)), and was originally designed to

compete in the RoboCup competitions for robotic post-disaster search and rescue applica-

tions in challenging urban environments (Kohlbrecher et al., 2014). The Hector SLAM ROS

implementation1 also has support for full six degrees of freedom (DOF) with the addition

of an IMU.

Visual SLAM uses a camera (e.g., monocular, stereo or RGB-D) as the primary sensor.

Example implementations of visual SLAM include PTAM (Klein and Murray, 2007), RTAB-

mapping (Labbe et al., 2014) and ORB-SLAM (Mur-Artal et al., 2015). Giubilato et al. (2018)

compared common visual SLAM implementations and found that ORB SLAM was more

robust than RTAB-mapping and PTAM and drifted less than LibViso2. ORB SLAM has also

been implemented in outdoor environments (Mur-Artal et al., 2015) and in real-time on

the Raspberry Pi (Ponnu et al., 2016) and NVidia TX1 (Giubilato et al., 2018).

For localisation in a known map the most common approaches use Monte-Carlo local-

isation. Adaptive Monte Carlo is more efficient than the original implementation due to

the method for reducing the number of particles when not required (Thrun et al., 2005).

AMCL has also been used for long term navigation of indoor environments (Nitsche et al.,

2014) and in urban environments (Rohde et al., 2016).

1https://github.com/tu-darmstadt-ros-pkg/hector_slam

61

Robotic platform and system development

3.4 Choice of sensors for navigation and inspection

After reviewing the available sensors and SLAMmethods, the following sensors were chosen

for use with SLAM, localisation, map creation and inspection applications in this thesis:

• A 2D LiDAR, called RPLiDAR, of size of 7×10× 5 cm with a range of 6 m. See Ta-
ble 3.2 for sensor attributes. The LiDAR is used in this thesis to collect data for

testing mapping algorithms and to provide odometry for the SLAM and localisation

algorithms.

• Raspberry Pi Camera V2, an 8MegaPixel RGB complementary metal-oxide-semiconductor

(CMOS) camera. See Table 3.4 for sensor attributes. This camera is used in this work

to collect data for testing mapping algorithms and for SfM for mapping and inspection

purposes.

• The stereo camera, called ZED, which can used from 640 pixel × 480 pixel at 100 frames-
per-second (fps) to 1920 pixel × 1080 pixel at 15 fps. See Table 3.3 for sensor at-
tributes. This camera is used to collect data for testing mapping algorithms in this

thesis.

62

3.4 Choice of sensors for navigation and inspection

Table 3.2: A summary of the attributes for the RPLiDAR 2D LiDAR 2

Sensor attribute Value

Distance Range 0.15 m to 6 m
Angular Range 0° to 360°

Distance Resolution ⩽ 1 % of the distance
Angular Resolution ⩽ 1°

Scan Rate Min 1 Hz, Typical 5.5 Hz, Max. 10 Hz
Sample Frequency ⩾2000 Hz

Weight 190 g
Power 100 mA / 5 V

Dimensions 98.5 mm × 70 mm × 55.1 mm

Table 3.3: A summary of the sensor attributes of the ZED stereo camera 3.

Sensor attribute Value

Video resolution 2×1920 pixel × 1080 pixel, 30 fps
(side by side) 2×1280 pixel × 720 pixel, 60 fps

2×640 pixel × 480 pixel, 100 fps
Field of View Max. 110°
Depth Range 1 m to 15 m
Baseline 120 mm

Focal Length 2.8 mm
Weight 159 g
Power 380 mA / 5 V

Dimensions 175 mm × 30 mm × 33 mm

Table 3.4: A summary of the sensor attributes for the Raspberry Pi monocular camera 4.

Sensor attribute Value

Resolution 8 Mpixel
Still image 3280 pixel × 2464 pixel
resolution

Video resolution 1920 pixel × 1080 pixel, 30 fps
1280 pixel × 720 pixel, 60 fps
640 pixel × 480 pixel, 90 fps

Focal Length 3.04 mm
Weight 159 g
Power 200 mA to 250 mA

Dimensions 23.86 mm × 25 mm × 9 mm

63

Robotic platform and system development

3.5 Camera calibration

For the visual SLAM methods tested in this thesis, camera calibration is required. The

monocular and stereo cameras were calibrated using the chess-board method. The camera

calibration script from ROS 5 was used to calibrate both the Raspberry Pi monocular camera

and the ZED stereo camera. An 8x6 chessboard printed on A3 paper was placed on a planar

surface and the camera was moved to obtain different viewpoints. The calibration software

indicates when sufficient samples have been collected to perform a calibration. However,

further samples were taken until the software indicated that the samples taken were above

a ‘good’ threshold for translation in x, y and skew (indicated in a traffic light system from red

to green). This number of samples translates to around 120 readings, which is comparable

to the calibration samples collected for ORB SLAM in (Ponnu et al., 2016).

5https://github.com/ros-perception/image_pipeline/ (Date last accessed:01/02/19)

64

3.6 Robotic platform description

3.6 Robotic platform description

A robotic platform was developed using off-the-shelf technology and sensors. This platform

is described in this chapter and are used in subsequent chapters for testing localisation and

mapping algorithms in a real bridge environment. Of the platforms reviewed in Chapter 1,

the most commonly used platform is the unmanned aerial vehicle (UAV). UAVs are com-

mercially available platforms, with little hardware development required, the payload can

also be changed depending on the inspection application. However, the aerodynamics un-

derneath a bridge can lead to a tunnelling effect that can make the UAV difficult to fly and get

close to the bridge bearings to perform an inspection. Many alternative approaches were

summarised in Chapter 1, including magnetic wheeled platforms and platforms with suc-

tion, however more research is required before these are viable platforms for inspection.

(Lattanzi and Miller, 2017) state that for highly unstructured or unstable environments, or

in situations that only require planar motion, wheeled platforms may be a preferable option

because of improved robot balance and stability. In addition, bearing enclosures typically

allow planar motion (see Figure 3.2), and wheeled platforms are readily available and the

on-board sensors for data collection can be adapted. Since the focus of this work is test-

ing localisation and mapping for bridge inspection, a stable, wheeled ground platform was

identified as a suitable option.

The robotic platform used in this work is a commercial product, the PiBorg Diddy-

Borg6. The platform is a six wheeled robot with a Perspex chassis, that is built around the

Raspberry Pi single-board computer, which allows the adoption of tools such as the Robot

Operating System (see Section 3.7). The DiddyBorg platform is compact, approximately

25 × 18×23 cm in size, see Figure 3.3.

6https://www.piborg.org/blog/diddyborg-overview (Date accessed: 01/02/19)

65

Robotic platform and system development

RPLiDAR
(2D LiDAR)

ZED
(stereo camera)

NVIDIA
Jetson TX1

Raspberry
Pi boardRaspberry

camera

Figure 3.3: A photograph of the modified DiddyBorg robotic platform used in this work,
with the relevant on-board sensors labelled in the image.

The DiddyBorg platform was modified to accommodate additional sensors and hard-

ware. The RPLiDAR and ZED camera are mounted on top of the robot, and the Raspberry

Pi camera was mounted on the front (see Figure 3.3). Both cameras are used to evaluate

visual SLAM methods and the Raspberry Pi camera was also used for inspection applica-

tions (see Section 5). The on-board processing, required for sensor operation and data

collection, was provided by the Raspberry Pi and NVIDIA Jetson TX1 which was added

to the platform to allow real-time visual processing. Both of these boards were running

an Ubuntu-based Linux operating system, in order to interface with the Robot Operating

System (see Section 3.7).

66

3.6 Robotic platform description

Figure 3.4: A schematic of the coordinate system for the robotic platform used in this
thesis. 𝑥𝑟, 𝑦𝑟 and 𝑧𝑟 are defined relative to the robotic platform, 𝑥𝑐 , 𝑦𝑐 and 𝑧𝑐 are defined
relative to the camera frame and 𝑋𝑤 and 𝑌𝑤 are defined relative to the world frame.

Figure 3.4 shows the reference system defined for use with the robotic platform. The

defined convention follows the right-hand rule with 𝑥𝑟 forward relative to the robotic plat-

form, 𝑦𝑟 left relative to the robotic platform and 𝑍𝑟 is upwards relative to the robot, this

convention was the same for the 2D LiDAR sensor. A second reference frame was de-

fined for the camera sensors where 𝑧𝑐 is forward, 𝑥𝑐 is right and 𝑦𝑐 is down relative to the

camera.

67

Robotic platform and system development

3.7 The Robot Operating System

The Robot Operating System (ROS) 7 is an open-source meta-operating system for robots,

with a large on-line, open-source community. ROS was originally designed and implemented

for projects developing large-scale service robots (Quigley et al., 2009; Quigley et al., 2007;

Kramer and Scheutz, 2007). Software is available as packages or stacks that can be dis-

tributed, shared and developed in multiple languages with the aim of allowing code reuse in

robotics research and development (Quigley et al., 2009). The software is usually created

as groups of independent processes called nodes; nodes communicate by connecting to

a master service and by sending messages that are organised into named topics. Nodes

can send information by publishing messages on a topic and other nodes can listen for and

subscribe to messages coming from topics. There are defined message types that can be

used for specific purposes such as lasers scan messages, camera messages and geometry

messages for navigation. ROS also provides tools for visualising and monitoring data and

tools for logging and recording data that can be re-played as though running in real-time on

the robot system.

For the platform used in this thesis, the ‘ROS Kinetic’ distribution of ROS was used to

facilitate data collection. Sensor data was transferred as messages to different machines

(the Raspberry-Pi, TX1 and a laptop), for processing using a wide variety of open-source

algorithms or for recording data for later use. An overview of the software architecture,

including an example of the software modules used with the 2D LiDAR scan data in ROS,

is given in Figure 3.5.

7http://www.ros.org/ (Date last accessed:01/02/19)

68

3.7 The Robot Operating System

ROS on
PC

ROS on
Raspberry Pi

velocity
command

RPLiDAR

2D scan

ZED camera
SDK

Hector
SLAM

Robot
Localisation

Data collection
on-board the
robotic platform.

ROSbag
record

AMCL

Odometry

Map for
localisation

2D scan

User
interface

Jetson TX1

Record stereo
footage

map_
server

a)

b)

2D scan
Other

ROSbag
record

2D scan

2D scan

Figure 3.5: a) An overview of the tasks completed by hardware and software on-board
the robot in data-collection. b) An overview of the different types of data collection and

processing used with the localisation methods in this work.

69

Robotic platform and system development

As well as the reference coordinate system defined in Section 3.6, there are reference

frames that are defined for use with mapping, navigation and other tasks in ROS. The rele-

vant frames used in this thesis are as follows (Meeussen, 2010):

• base frame: a reference frame that is attached rigidly to the robot and is defined in

Section 3.6.

• odometry frame: is a reference frame fixed in the world-fixed frame and provided

by odometry sensors can be used as an accurate short term reference, although it

drifts over time. However, the position of the robot is guaranteed to be continuous

without jumps.

• map frame: is a reference frame fixed in the world-fixed frame. The robot position

should not drift in the map frame, but may be subject to jumps and discontinuities

3.8 Robot motion and data collection

The robotic platform has six wheels, with three on each side of the robot. Most of the

experiments in this work were carried out using tele-operation, using a motion script writ-

ten in Python8 to interface with the motors of the DiddyBorg 9. During testing in the lab

and bridge testing environments, motion commands were provided from a laptop or phone

device via a local WiFi network. Figure 3.6 shows where data was transferred on-board

the robot: sensor data from the 2D LiDAR and Monocular camera was transferred to the

Raspberry Pi board; sensor data from the stereo camera was transferred to the Jetson TX1

board; both boards are in contact with the base-station to start and stop data recording and

motion control was provided from the base-station and the Raspberry Pi to the motors.

Although tele-operation was used for most experiments in this thesis, a differential drive

controller was implemented in ROS using the default navigation packages. This controller

8https://www.python.org (Date accessed: 01/02/19)
9http://www.piborg.org/downloads/picoborgrev/examples.zip (Date last accessed:01/02/19)

70

3.8 Robot motion and data collection

was required for autonomous navigation, but was used primarily for simulation purposes in

Chapter 4.

Raspberry Pi

Motor control

Laptop
base-station

Jetson TX1

Wifi
Router

Monocular
camera

Robotic platform

Stereo
camera

2D LiDAR

Figure 3.6: A schematic giving an overview of the architecture of the system hardware for
the robotic platform. Arrows show the transfer of data to and from sensors and

hardware, such as the computational boards on the robot and the laptop base-station.
Pictures of 2D LiDAR (sensor images from https://www.stereolabs.com/zed/,

https://coolcomponents.co.uk/ and https://www.raspberrypi.org/; date accessed: 01/02/19)

In order to test the SLAM and localisation algorithms in this work, sensor data was

collected in both the bridge and lab environments. This sensor data was collected whilst

tele-operating the robotic platform. Sensor data consisted primarily of RGB images from

the monocular camera and stereo cameras and data from the 2D LiDAR and this data was

stored in rosbags. Rosbags are a data collection format provided by the Robot Operating

System (ROS) that allows real-time play-back of the sensor data. RViz (ROS visualisation

software) will also be used to visualise data collected and processed using ROS.

Structure-from-Motion (SfM) (see Chapter 2, page 51) was required for map creation

for localisation (Chapter 4) and inspection applications (Chapter 5). SfM uses multiple

2D image views to find the 3D geometry (i.e., the structure) of a scene or an object by

taking images from different viewpoints (i.e., the camera has motion). The images that are

71

https://www.stereolabs.com/zed/
https://coolcomponents.co.uk/
https://www.raspberrypi.org/

Robotic platform and system development

collected do not need to be organised/ordered, nor do the camera locations need to be

planned.

When collecting data for SfM reconstructions, a specific motion of the robotic platform

was required to provide sufficient overlap between images (see Section 2.6). To ensure

sufficient image overlap for the reconstructions, the robotic platform was rotated on the

spot by a small increment, then stopped before capturing the next photo (see Figure 3.7).

This method may not be optimal for SfM reconstructions in general, which typically requires

motion around the object being constructed, rather than on the spot rotation 10. However,

the motion used in Figure 3.7 was required when space is limited such as in bearing enclo-

sures. An alternative method of collecting data for SfM might be using a camera mounted to

the side of the robotic platform. However, in this work the data from the camera was also

considered for inspection applications, which is better suited to a front-mounted camera.

The photographic data was then processed using SfM software to create a dense 3D point

cloud of the enclosure and scaled using known measurements. The resulting point cloud

was then made into the map (see Chapter 4, page 83).

10http://3dflow.net/zephyr-doc/3DF%20Zephyr%20Manual%202500%20English.pdf
(Date last accessed: 01/02/19)

72

3.8 Robot motion and data collection

Figure 3.7: The method used by the robot to collect photographs for SfM
reconstructions. The figure does not represent how many photos were taken through this

process, only the manner in which the photos were collected.

73

Robotic platform and system development

3.9 Adapting the robotic platform for simulation

Simulation

Robot ControlRobot Description

Robot Navigation

o Load simulated
 environment
 (see Chapter 4)
o Load Robot description
 into simulation
o Define sensor
 parameters for
 simulation

o Differential drive
 controller
o Path planners
o Predefined motion
 commands

o Definition of the URDF

o Visualisation of the
 robot for RVIZ

o Responsible for SLAM
 and localisation
 packages:

 - AMCL
 - Hector SLAM
 - ORB SLAM

o Control robot motors
 and sensors

o Activate ROS master

Robot Base

Figure 3.8: An overview of the breakdown of the tasks performed by different software
modules in ROS. The simulation module is added to define the robot and environment in

simulation. The remaining modules are used on the robot in the real environment.

In order to develop the robotic platform in simulation (see Chapter 4, page 119), some

means of simulating the sensors onboard the robot was required. The general architec-

ture of the different software elements that are used in this work is shown in Figure 3.8.

Some understanding of creating the robot in simulation was developed using the work by

Husarion’s ROSbot11.

11https://github.com/husarion/rosbot_description (Date accessed: 01/02/19)

74

3.9 Adapting the robotic platform for simulation

As can be seen in Figure 3.8, different tasks such as control of the motors and sensors

is separated from the ROS packages that are responsible from localisation and mapping.

Using this approach means that the software for different tasks can be implemented on

different configurations of robots. In addition, the robot description can be replaced by

the simulation module to create the definition of the robot in simulation, whilst using the

same ROS packages that can be used with the real robotic platform. Further details of the

parameters used to define the robot geometry and the sensors in simulation is given in

Appendix A.

In Figure 3.8, the robot definition is created using the unified robot description format

(URDF). The URDF of the robot can be used to define the kinematics, collision elements and

visual representations of the robot. URDF is an eXtensible Markup Language (XML) format

that allows the definition of mechanical elements of a robot using joints and links. Links

represent the rigid body elements of the robot and are used to describe solid properties

such as mass and inertia of parts of the robot and also constrain where parts of the robot

will collide. The connection between these links is represented by joints. Joints can be

moveable as in the case as a robot with a manipulator or can be fixed and can be used to

represent the location of sensors on-board the robot. Figure 3.9 shows the robotic platform

defined using URDF. The links are represented as markers showing the reference system

of the robot at each joint and sensor and the joints are shown as yellow lines connecting

the links. The geometry of the robot has also been defined for visualisation.

75

Robotic platform and system development

Figure 3.9: The URDF for the robotic platform used in this work. A CAD model has been
defined for visualisation of the robotic platform, wheels and sensors on-board the robot
during operation using ROS and Gazebo. The URDF allows the definition of collision

objects and the location of the sensors on-board the robot. Elements such as wheels and
sensors have cartesian coordinates defined, the position of which are defined shown

(annotated).

76

Chapter 4

Localisation for a bridge bearing

inspection robot

4.1 Introduction

The review of current literature in Chapter 1 presented a need for the development of more

efficient approaches for bridge inspection, to meet the increasing demand in the amount

of inspection due to ageing infrastructure and increasing number of bridges (Sutter et al.,

2018). Many researchers highlighted opportunities for robotic bridge inspection (e.g. Pham

and H. La (2016), Van Nguyen et al. (2018), and M. Lee et al. (2018)). For automated bridge

bearing inspection, Ellenberg et al. (2016b) developed a small UAV equipped with two cam-

eras and used a laboratory-based set-up of a bridge bearing to monitor the deflection of a

rubber bearing and a steel bearing. A laboratory set-up is useful for replicating the common

defects in and around the bearing, although very few experimental results were reported

by Ellenberg et al. (2016b). In addition, many examples in the literature show that UAVs

may not be suitable for navigating close to the bridge structure due to difficult aerodynamic

conditions (Hallermann and Morgenthal, 2014), failure of navigation sensors, such as GPS

and magnetometers (C. Yang et al., 2015; Hiasa et al., 2018) and certification issues; hence

ground-based platforms may be more suitable for bridge bearing inspection (Lattanzi and

Miller, 2017; Pham and H. La, 2016).

77

Localisation for a bridge bearing inspection robot

SLAM is a fundamental problem in robot navigation in which a robot builds a model

of an unknown environment whilst concurrently determining the state of the robot within

that environment (see Chapter 2, page 27). Robotic localisation is a reduced version of this

problem where a pre-existing map is utilised, and only the position of the robot requires

calculation. For inspection applications it is potentially beneficial to have a pre-existing map.

On one hand, the robotic platform can be directed to a specific location in the environment

and, for infrastructure applications, there is often existing inspection or surveying data that

can be utilised to create maps for robot localisation. On the other hand, localisation in a

known map has its own disadvantages, since the environment is changeable and the map

may become inconsistent with the real environment. In this chapter, a method for map

creation using existing point cloud data is established and tested using localisation algorithms

and compared to SLAM methods, where the map was created using sensors on-board the

robotic platform.

Of the papers reviewed in Chapter 1, localisation was implemented on the ground-

based platform using an EKF by combining sensor information from a GPS, an IMU and

wheel odometry (H. M. La et al., 2013; H. La et al., 2013), which showed better localisation

results than using GPS only when navigating around a university campus (Gibb et al., 2017).

In addition, Pham and H. La (2016) integrated sensors for localisation and mapping, and high-

lighted that the development of visual-inertial odometry to support autonomous navigation

was an important step in required future work for their magnetic wheeled platform, but

no localisation or mapping was investigated in their current research. The majority of UAV

platforms reviewed in Chapter 1 used GPS for localisation, typically by setting way-points

for the UAV to follow (C. Yang et al., 2015), and had one or two human operators, whom

were required when turbulence around the bridge caused difficult flying conditions (Haller-

mann and Morgenthal, 2014) and, in the case of Hiasa et al. (2018), when the metal railings

on the bridge caused errors in the magnetometer readings. Using GPS for localisation was

also found to be insufficient when inspecting underneath the bridge, where the GPS signal

was weak (C. Yang et al., 2015).

78

4.1 Introduction

In this chapter, it is assumed that there is some mechanism in place for transporting the

robotic platform to the bearing enclosure. This transportation could take many forms, such

as using a combined robotic system using a UAV to drop the robotic off or deployment by

the bridge inspectors using a system similar to a snooper truck, or perhaps installing the

robot permanently at the bridge. None of these scenarios have been researched in this

chapter, and they would require addressing as part of the future development of the robotic

platform. It is also assumed that the majority of the inspection environments where the

robotic platform could be deployed would be of a known type, and that the type of bearings

present in these environments are also known. Table 4.1 outlines a set of scenarios, with

the suggestion that the robotic platform could be deployed in scenarios where the bearing

enclosure and environment are known and include certain features, such as adequate lighting

and a level floor plane on which the robot would traverse. It is also assumed that some

method of initially mapping the environment (e.g., through terrestrial LiDAR, SfM or using

existing CAD data) is in place, which could also be used as an opportunity to check the

suitability of the environment and type of bearing in the environment.

Table 4.1: Assumed scenarios for robotic bearing inspection.

Enclosure Type

Unknown Known

Bearing Type
Unknown 0% 5%

Known 20% 75%

79

Localisation for a bridge bearing inspection robot

In Chapters 2 and 3, the different types of sensors that are commonly used for au-

tonomous robotic navigation were described and the most suitable sensors for the appli-

cation of bridge bearing inspection were chosen, i.e., the 2D LiDAR and monocular and

stereo cameras. The SLAM and localisation approaches that can be used with each sensor

were reviewed and Hector SLAM, ORB SLAM and AMCL were selected. The methodology

for these approaches was described in Chapter 2, on page 42. To summarise, these choices

were made because:

• Hector SLAM, ORB SLAM and AMCL have been demonstrated in urban environ-

ments (e.g., Kohlbrecher et al. (2011), Kohlbrecher et al. (2014), Rohde et al. (2016),

and Mur-Artal et al. (2015)).

• Hector SLAM and ORB SLAM can be used to create maps of the environment.

• AMCL can be used to localise a robot in a pre-existing map.

• The data from the 2D LiDAR can be compared to existing point cloud data and used

for both Hector SLAM and AMCL and to provide odometry.

• Hector SLAM, ORB SLAM and AMCL methods have been demonstrated on the

Raspberry-Pi or the Nvidia Jetson TX1 (e.g., Kurtzer et al. (2017), Ponnu et al.

(2016)).

This chapter describes a process for creating a map using existing inspection data for the

purpose of robotic localisation in inspection environments. Existing SLAM and localisation

algorithms for different sensors in a real inspection environment will be evaluated and these

approaches will be compared in a real bridge environment. In addition, the inspection data

will be used to create an environment for simulating the real bridge environment. Finally,

further recommendations are made for how this approach can be extended to autonomous

robotic navigation for bridge bearing inspection.

80

4.1 Introduction

Table 4.2: A summary of the methods compared in this Chapter.

Method (map) Sensor Environment / Localisation Section

Hector SLAM 2D LiDAR Laboratory environment Section 4.5

AMCL-SfM 2D LiDAR Laboratory environment Section 4.5

AMCL-Hector 2D LiDAR Laboratory environment Section 4.5

ORB SLAM Stereo and
Monocular
camera

Laboratory environment Section 4.6

Hector SLAM 2D LiDAR Bridge environment Section 4.8

AMCL-SfM
(map from SfM)

2D LiDAR Bridge environment Section 4.8

AMCL-LiDAR
(map from terrestrial LiDAR)

2D LiDAR Bridge environment Section 4.8

AMCL-Hector
(map from Hector SLAM)

2D LiDAR Bridge environment Section 4.8

81

Localisation for a bridge bearing inspection robot

4.2 Maps for localisation

In Chapter 2, the requirement for the creation of a map for robotic navigation was de-

scribed. Map creation can either be performed at the same time as localisation (i.e., SLAM)

or can be be performed in advance (i.e., localisation only). These maps are often repre-

sented in either a topological format, where the map is decomposed into significant places

in the environment, or a metric representation, where the map is decomposed into fine-

grained cells of uniform size (Thrun et al., 2005).

Of the SLAM methods described in Chapter 2, ORB-SLAM, uses a topological map

to represent the environment, using a sparse land-mark based map of key features in the

environment. In contrast, Hector SLAM creates a metric map, where the environment is

split into grid cells that contain the probability that each cell is occupied by an object in the

real world. This approach is known as occupancy mapping and is described in Section 2.3.

Example maps were shown in Chapter 2 on pages 47 and 44 for ORB SLAM and Hector

SLAM, respectively.

The localisation method AMCL also uses an occupancy map for localisation. Both topo-

logical and metric map representations can be used for localisation by the same sensors

that created them, but they can also be created using other approaches. For example, Be-

hzadian et al. (2015) successfully performed localisation in simulated environments using

hand-drawn maps and Monte-Carlo Localisation for areas where no accurate maps were

available. In the inspection environment it may not be possible to create maps using sen-

sors on-board a robot since tele-operation of the platform may be required, which may be

difficult in some environments. An alternative approach to obtaining maps for localisation

in the inspection environment is described in 4.3.

In addition to finding the current position of the robot, a map of the environment may be

useful for providing navigation goals to a robotic platform. Furthermore, maps have other

uses for tasks where a human operator may be involved, such as visualisation by a human

operator (Cadena et al., 2016). However, in general it is expected that the bridge inspection

environment is a dynamic environment, which may cause localisation problems if changes

82

4.3 Generating maps from point cloud data

in the environment occur and the pre-defined map no longer represents the environment.

The effectiveness of localisation using pre-defined maps will be investigated in this chapter.

4.3 Generating maps from point cloud data

As discussed in Chapter 1, camera data is commonly collected as part of robotic bridge

inspection tasks (e.g., Ellenberg et al. (2016b), Le et al. (2017), and Sutter et al. (2018)).

This data is often reviewed by human inspectors for aiding visual inspection and may be

processed to monitor the degradation of a structure (e.g., Kim et al. (2014)) or to recover

the geometry of the structure, especially using 3D reconstruction methods such as SfM

(see Chapter 2, page 51) and creating photo-mosaics (Lattanzi and Miller, 2015; S. Chen

et al., 2011). Other examples in the literature show the use of laser scanning (Sacks et

al., 2018; Javadnejad et al., 2017) and CAD drawings (Sutter et al., 2018) to supplement

bridge inspection tasks. Since the data collected from terrestrial LiDAR scanning and SfM

is typically represented as a 3D point cloud, it lends itself to map creation using occupancy

mapping since points representing objects in the environment can be discretised into a

grid-based representation. The conversion of 3D point clouds into 2D occupancy maps

will form the basis of the map creation method in this chapter.

In this chapter, occupancy maps created using Hector SLAM are compared to occupancy

maps created from terrestrial LiDAR or SfM data, both in a laboratory environment and a

real bridge environment. First, in order to collect data for SfM, photographs were collected

by tele-operating the robot around the test enclosure while taking photographs at multiple

locations using the approach shown in Figure 3.7, page 73. Next, the photographic data

was processed using SfM software to create a dense 3D point cloud of the enclosure and

scaled using known measurements (Section 4.4). The method for obtaining data for SfM was

described further in Chapter 3 on page 70 and the external and internal camera parameters

were calculated in the SfM software. The approach for collecting 3D terrestrial LiDAR data

is described in Section 4.9. A summary of the methods used in this Chapter, the sensor

data they use and the relevant sections is given in Table 4.2.

83

Localisation for a bridge bearing inspection robot

++

1) Initial 3D point cloud

 3) Segmentation:
after floor level is removed
 the segmentation height is
set to the same height as

the 2D LiDAR.

2) Scan after cropping
and levelling to floor

 of enclosure.

--

-

4) Beginning of
segmentation

 process in
CloudCompare.

5) Finished
segmentation.

6) Resulting occupancy
 map at a resolution of

5cm/pixel.

Figure 4.1: An overview of the steps for converting a 3D point cloud (either from SfM or
a 3D terrestrial LiDAR) into a 2D occupancy map for use in 2D localisation using Adaptive

Monte-Carlo Localisation.

84

4.3 Generating maps from point cloud data

Next, the process for converting the 3D SfM and terrestrial LiDAR point clouds into

a 2D occupancy map is described. The steps performed to create the occupancy maps

from 3D point cloud data are as follows (also depicted in Figure 4.1): the 3D point cloud

was cropped to the area of interest around the bearing enclosure using the point cloud

manipulation software CloudCompare1; the floor level of the point cloud was determined

using the levelling tool in CloudCompare by manually selecting points that are at floor level

(see step 2 in Figure 4.1); from this level a constant height of the LiDAR in the environment

is assumed and a slice through the point cloud was extracted (using the segmenting tool)

corresponding to the location of the 2D LiDAR on the robot (see steps 3 and 4 in Figure 4.1).

This slice was three-dimensional, with two dimensions corresponding to the plane of the

sensor data collected by the 2D LiDAR and a third dimension, of approximately the same

height from the floor of the bearing enclosure as the 2D LiDAR sensor is on the robot, in

order to ensure that the majority of points that could be detected by the 2D LiDAR are

included in the map. Finally, a binary occupancy grid was extracted from this point cloud

slice using the BinaryOccupancyGrid function in the MATLAB Robotics Systems Toolbox2

(see step 6 in Figure 4.1). Example occupancy maps created using this process are shown

in Figure 4.2.

An occupancy map is split into uniform grid cells representing locations in the real-

world. It was possible to vary the resolution of the occupancy maps created in this chapter

by varying the grid size, e.g., to 1 cm/pixel or 1 mm/pixel (highest available resolution for the
BinaryOccupancyGrid function). For the SfM point clouds, scaling must be applied before

creating the occupancy map, see Section 4.4. For Hector SLAM, the occupancy maps had

a resolution of 5 cm/pixel, so that each grid cell represents 5 cm in the real-world (higher

resolutions were tested, but gave noisy results that were unsuitable).

1http://www.cloudcompare.org/ (Date last accessed:01/02/19)
2https://uk.mathworks.com/products/robotics.html (Date last accessed:01/02/19)

85

Localisation for a bridge bearing inspection robot

Since the slice taken from the point cloud data was 3D, and some method was required

to represent this slice in the 2D occupancy map. A grid cell in the map was considered

occupied if a point from the point cloud was present in the grid cell. Since the grid cell can

only be set as occupied or unoccupied, multiple points in the same grid cell were discarded

to give a 2D map. The effect of varying the resolution of the occupancy maps created from

point clouds will be discussed further in Section 4.10. 2D occupancy maps are required to

work with AMCL, future work could investigate the expansion of this method into 3D.

86

4.3 Generating maps from point cloud data

(i): Example sparse SfM point cloud using data collected in the laboratory environment.

(ii): Example occupancy map, with a resolution of 1 cm using the SfM point cloud shown in
Figure 4.2i.

(iii): Example occupancy map, with a resolution of 1 mm using the SfM point cloud shown in
Figure 4.2i.

Figure 4.2: Example output of SfM data-collection from the laboratory environment (4.2i)
and two example occupancy maps created from SfM data collected in the laboratory
environment with a grid resolution of 1 cm per grid square (4.2ii) and 1 mm (4.2iii).

87

Localisation for a bridge bearing inspection robot

4.4 Scaling the SfM point cloud

The 3D reconstruction software Zephyr-Aerial (Zephyr)3, produced by the company 3DFlow,

was used to generate the 3D point clouds from RGB camera images collected by the robotic

platform. The first output from the software was the SfM point cloud – a sparse point cloud.

More details can be added to the sparse, scaled, point clouds using Multi-View Stereo (MVS),

to create a dense point cloud. SfM is described further in Chapter 3 on page 70. Exemplar

sparse and dense point clouds, which were generated using Zephyr, are shown in Figure 4.3i

and 4.3ii, respectively.

It should be noted that the sparse point clouds generated by SfM are at an arbitrary

scale; therefore some method of scaling was required to recover the global scale of the

point cloud. To scale the point cloud, control points were selected from the photographs

used for the SfM reconstruction using the control point selection software in Zephyr (see

Figure 4.3iii, where control points are shown as red dots). Using this software, multiple

instances of the control point in different images were selected. Each control point must

be selected in a minimum of two image views 4, although accuracy of the control point

location improves if more images are selected.

Visually distinguishable features, such as the corners of the bearing pads in the bridge

environment, were selected as control points (see Figure 4.3iii). The world-scale was re-

covered using measurements taken manually with a tape measure for each control point

from a datum. Approximately eight control points were selected from across the labora-

tory and bridge environments. It is also possible to provide scale to the point clouds using

dimensions from construction drawings. However, it may be challenging to match these

dimensions with visible features from the photographic dataset. Scaling can also be per-

formed directly by matching points in the SfM cloud with points in a terrestrial laser scan,

but this is only possible if laser scan data is available. The effectiveness of this method for

scaling the SfM point clouds is validated against 3D terrestrial LiDAR data in Section 4.9.

3https://www.3dflow.net/ (Date last accessed: 01/02/19)
4http://3dflow.net/zephyr-doc/3DF%20Zephyr%20Manual%202500%20English.pdf
(Date last accessed: 01/02/19)

88

4.4 Scaling the SfM point cloud

(i): Example sparse SfM point cloud using photographs collected in the bridge environment. The
blue triangles show the location of the robot when it collected the photographs.

(ii): Example dense MVS point cloud from sparse SfM data in Figure 4.3i.

(iii): Selection of control points for scaling

Figure 4.3: Example SfM data from the bridge bearing enclosure (4.3i), with dense data
added using MVS (4.3ii) and scaling with control point selection (4.3iii). Control points are

shown as red dots in all three images.

89

Localisation for a bridge bearing inspection robot

4.5 Results from the laboratory environment

The laboratory environment used for testing the localisation approaches was an unfinished,

domestic structure. This environment had similar textures to the bridge environment and

similar lighting conditions, with bare concrete walls, naturally changing lighting conditions

and dark or unlit areas. The testing area was approximately 2.5 m by 1.35 m, which is a
similar size to the bearing enclosure, described in Chapter 3 on page 55. The SLAM and

localisation methods for the 2D LiDAR, described in Chapter 2, will be evaluated in this

chapter using the data collected in this environment.

To compare the different mapping approaches for localisation, the robot was moved

around the test enclosure to collect 2D LiDAR data using pre-programmed velocity com-

mands. A reference trajectory was determined from the robot odometry (which was cal-

culated using the 2D LiDAR processed by the Hector-SLAM ROS package) and velocity

commands. Repetitions of the trajectory were performed to test its accuracy and repeata-

bility. The 2D LiDAR data was then post-processed for use in mapping and AMCL. The

maps tested for localisation with AMCL in the laboratory environment were:

1. A map created from Hector SLAM.

2. A map created from SfM point cloud data.

Predefined motion commands were given to the robot and the associated odometry

information from the 2D LiDAR was used as a reference trajectory to compare the per-

formance of the localisation and SLAM methods and was recorded for each run of the

experiment. The experiments for each type of map were repeated three times, and the

2D LiDAR data was recorded as rosbags, the ROS data collection tool. The SLAM and

localisation algorithms were then applied to the data collected in the rosbags at a later

point.

In the laboratory environment, the trajectories resulting from AMCL when localising

using the map created from Hector SLAM (referred to henceforth as AMCL-Hector) are

plotted against the trajectories from AMCL when localising in the map created from a SfM

point cloud (referred to henceforth as AMCL-SfM), and both trajectories are compared

90

4.5 Results from the laboratory environment

to the reference odometry trajectory for the robot and to the trajectory calculated by

Hector SLAM. As described in Chapter 2, in AMCL, the knowledge the robot holds about

its current location is represented by a set of particles. The current sensor information

is compared to the map of the environment to calculate a guess for the current position

of the robot. The uncertainty that the current pose is correct is represented by a 3-

by-3 covariance matrix and can be visualised as an ellipse by using the eigenvalues of the

covariance matrix to calculate the minor and major axes of the ellipse and the eigenvectors

of the ellipse to calculate the rotation of the ellipse. An example of the covariance ellipses

for the AMCL particles can be seen in 4.4. The dimensions of the ellipses in this work were

calculated using a python script 5.

5https://github.com/joferkington/oost_paper_code (Date accessed: 01/02/19)

91

Localisation for a bridge bearing inspection robot

Figure 4.4: Steps a to d show sequential steps in the trajectory of the robot for local
AMCL in a known map (not shown). As the robot moves, the spread of the particles
(black arrows) decreases showing an increasing certainty in the position estimate. The
spread of the particles can also be represented by an ellipse, the dimensions of which are

calculated from the eigenvalues of the covariance matrix for AMCL.

92

4.5 Results from the laboratory environment

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Distance (m)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 (m
)

starting
position

end
position

A

B

C
D

Robot
Trajectory
AMCL-Hector
AMCL-SfM
Hector SLAM

Figure 4.5: A comparison of the trajectories calculated using local AMCL-SfM and
AMCL-Hector, the trajectory calculated by Hector SLAM and the reference trajectory
calculated from odometry information. The ellipses that represent the covariance of the
pose calculated by AMCL-Hector and AMCL-SfM are also plotted at each step in the
trajectory. The start and end points are marked, alongside locations of interest (A-D).

The associated errors and covariance for each point in the robot trajectory can be seen in
Figure 4.6.

93

Localisation for a bridge bearing inspection robot

For local AMCL, an initial guess for the position and orientation of the robot is required

and was provided by a user-input as a Cartesian map coordinate, and orientation was pro-

vided as an angle with respect to the origin of the map. For global AMCL, particles are

sampled across the full map and no additional input was required to calculate the initial po-

sition of the robot. Furthermore, the spread (i.e., confidence) of the particles in the AMCL

calculations are visualised in Figure 4.5 by plotting ellipses representing the covariance of

the robot pose at each point in the robot’s trajectory and also graphically in Figure 4.6ii,

where a small ellipse represents a small spread of particles in the AMCL calculations.

In Figure 4.5, the initial errors for the local AMCL trajectories and the reference odom-

etry trajectory (errors plotted in Figure 4.6i) are less than 3 cm for all methods. Over

several repetitions (see Figure 4.7) this initial error was as large as 10 cm for AMCL-SfM

and 8 cm and AMCL-Hector (both in the third repetition – see Figure 4.7), where there

was an error in the initial position guess of approximately 4 cm, which causes recalcula-
tion of the robot’s position over the first 10 time-steps before converging to the reference

trajectory. Once the robot began to move, the error remained below 4 cm for all AMCL

methods for the remainder of the trajectory. This error was comparable to Hector SLAM

for all repetitions, which also had a maximum error of 4 cm. Slight peaks in the error value
occurred at points where the robot changes direction, such as the regions labelled B and

C in Figure 4.5.

In Figure 4.6ii, the greatest dimension of the covariance ellipses for AMCL are plotted

for each point in the robot trajectory to show the change in the spread of the particles

over time. The uncertainty of the AMCL particles for local AMCL, are double the initial

trajectory error with values around 6 cm in Figure 4.6ii (3 cm either side of the robot). ,

the The spread of particles was initially large to ensure calculation of the correct position

and the uncertainty increased. Once this position was calculated, the uncertainty and the

number of particles reduced and the covariance value fluctuates around 5 cm for AMCL-

Hector and 3 cm for ACML-SfM for the rest of the robot motion.

94

4.5 Results from the laboratory environment

0 20 40 60 80 100 120
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10
Er

ro
r (

m
)

AMCL-Hector (local)
AMCL-SfM (local)
Hector SLAM

(i): Comparing the errors between the reference trajectory of the robot and the trajectories
calculated by both local AMCL-Hector and AMCL-SfM for each point in the reference robot

trajectory.

0 20 40 60 80 100 120
Sequential points in trajectory

0.00

0.02

0.04

0.06

0.08

0.10

Gr
ea

te
st

 d
im

en
sio

n
of

 th

e
co

va
ria

nc
e

el
lip

se
 (m

)

AMCL-Hector (local)
AMCL-SfM (local)

(ii): Comparing the covariance of the AMCL particles over the duration of the robot trajectory, as
calculated from the greatest dimension of the covariance ellipses seen in Figure 4.5

.

Figure 4.6: A comparison of the error between the trajectories calculated using different
localisation and SLAM approaches and the reference robot trajectory (4.6i) and covariance

plots for AMCL with different initial maps in the laboratory environment (4.6ii).

95

Localisation for a bridge bearing inspection robot

0 20 40 60 80 100 1200.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r
(m

)

AMCL-Hector (local)
AMCL-SfM (local)

Hector SLAM

0 20 40 60 80 100 1200.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r (
m

)

AMCL-Hector (local)
AMCL-SfM (local)

Hector SLAM

0 20 40 60 80 100 120
Sequential points in robot trajectory

0.00
0.02
0.04
0.06
0.08
0.10

Er
ro

r
(m

)

AMCL-Hector (local)
AMCL-SfM (local)

Hector SLAM

Figure 4.7: A comparison of the error between local AMCL-Hector and AMCL-SfM when
compared to the reference robot trajectory for three repetitions of a set of input

commands to the robot.

96

4.5 Results from the laboratory environment

Furthermore, AMCL is robust to small changes in the map. Figure 4.8 shows that the

LiDAR sensor readings (red dots in Figure 4.8) do not entirely overlap with the map points

(black pixels in Figure 4.8). The difference in the map in Figure 4.8 was due to a wall that can

be observed from the 2D LiDAR. However, this wall does not feature in the map because

the camera height was positioned lower than the LiDAR on the robot and the wall was

not visible in the reconstruction. The second difference (Figure 4.8) was due to a change

in the environment layout. Since the environment was made of temporary materials, there

was a slight change in the shape of the enclosure between the collections of photographs

for the SfM dataset and the testing of AMCL using the resulting map. These changes were

caused by slight movements of the temporary structure between experiments (since the

experiments were carried out on several different days). Some robustness is essential for

localisation in an environment which is prone to changes, as is expected for the bridge

bearing environment.

97

Localisation for a bridge bearing inspection robot

Current
LiDAR data

Current robot
position and

AMCL particles
Wall

appears

Map error

Figure 4.8: The pictorial result of AMCL-SfM plotted in RVIZ showing the 2D map created
from the SfM point cloud, the position of the robot and the current sensor readings from

the 2D LiDAR labelled in the figure.

98

4.5 Results from the laboratory environment

Next, the difference between results for global and local AMCL was considered. As

expected, the covariance of the particles was higher for global AMCL than for local AMCL

since the particles begin spread across the map. For Figure 4.9i the error between the global

AMCL-Hector and the reference trajectory started at 1.25 m, with an initial guess for the
robot location at the centre of the map. The current position was recalculated and the

trajectory began to converge to the reference trajectory. After seven time-steps the error

approached a value similar to the error seen in the local localisation approaches. Similarly,

AMCL-SfM also began with a large error of 1.1 m (see Figure 4.10i), which increased as the

robot began to move, before converging to the reference trajectory after 20 time steps. The
initial location calculations can be seen to the right of label B in Figure 4.9i and Figure 4.9ii as

the robot trajectory points and associated ellipses move from the top right of the figure to

the bottom left where the initial starting pose was. Although the error in the robot position

for AMCL-SfM converged after 20 time-steps, it took 80 time-steps for the covariance to

converge (compared to 30 time-steps for AMCL-Hector). Due to the large errors in the

initial time-steps, global localisation will be discounted, since it is not suitable for the bridge

bearing environment.

99

Localisation for a bridge bearing inspection robot

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance travelled by robot (m)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

)

starting
position

end
position

A

B

C
D

Robot
Trajectory
AMCL-Hector
AMCL-SfM

(i): Trajectory of the robot calculated using global AMCL and ellipses to show the uncertainty at
the current pose. Only the ellipses after the pose begins to converge are shown for readability.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance travelled by robot (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

)

starting
position

end
position

A

B

C

D

Robot
Trajectory
AMCL-Hector
(global)
AMCL-SfM
(global)

(ii): Trajectory of the robot calculated using global AMCL

Figure 4.9: A comparison of trajectories from AMCL-Hector and AMCL-SfM to the
reference robot trajectory for the global initialisation of AMCL. Coloured ellipses in

Figure 4.9i show the level of the uncertainty of the particles at the current position. Only
the ellipses from The trajectory without the ellipses is shown in 4.9ii.

100

4.5 Results from the laboratory environment

0 20 40 60 80 100 120
Sequential points in robot trajectory

0.0

0.5

1.0

1.5

2.0
Er

ro
r

(m
)

AMCL-Hector
AMCL-SfM

(i): Discrepancy between trajectories calculated using AMCL-SfM and AMCL-Hector and the
reference robot trajectory.

0 20 40 60 80 100 120
Sequential points in trajectory

0.0

0.5

1.0

1.5

2.0

Gr
ea

te
st

 d
im

en
sio

n
of

 t
he

 c
ov

ar
ia

nc
e

el
lip

se
 (m

)

AMCL-Hector
AMCL-SfM

(ii): Greatest dimension of the covariance ellipse for the AMCL particles over time.

Figure 4.10: The error calculated between the reference trajectory of the robot and the
trajectories calculated by both AMCL-Hector and AMCL-SfM when global localisation is
implemented (4.10i) and the covariance of the AMCL particles over time, as calculated

from the greatest dimension of the covariance ellipses seen in Figure 4.9 (4.10ii)

101

Localisation for a bridge bearing inspection robot

4.6 Evaluation of ORB SLAM

The monocular and stereo ORB SLAM implementations were also tested in the laboratory

environment described in Section 4.5. Data was collected in the same manner as described

in Section 4.5, with the robot using a pre-determined set of velocity commands. Alongside

the 2D LiDAR data, monocular RGB images were also collected from the Raspberry Pi

Camera at a resolution of 1280 pixel × 960 pixel at 30 fps and stereo footage was collected
using the ZED stereo camera at a resolution 1280 pixel × 720 pixel at 30 fps. See Chapter 3
for further description of the sensors. The motion commands were chosen to complement

ORB SLAM, which requires rotational motion to be combined with translational (Mur-Artal

et al. (2015) and Mur-Artal and Tardos (2017)). As a result, no in-place rotation of the robot

was performed and all rotations were performed in arcs and changes in direction were

performed by reversing and turning at the same time before moving in the new direction.

The results for the ORB SLAM in the laboratory environment are shown in Figure 4.11 and

Figure 4.12.

Both implementations of ORB SLAM had a greater discrepancy to the reference trajec-

tory of the robot than Hector SLAM. In Figure 4.11, the error in the scale of the path of the

robot for the stereo implementation is comparable to the monocular implementation, even

though no scale was calculated for the monocular implementation. There are also greater

errors in the shape of the trajectory for the stereo implementation for the same number

of frames per second as the monocular approach, with gaps occurring in the motion path

due to loss of tracking of key points by ORB SLAM. This discrepancy was likely due to the

greater camera resolution used in the monocular implementation for the same number of

frames per second so that more ORB features can be reliably tracked over time.

To further evaluate the effect of camera resolution on the results of ORB SLAM, the

stereo implementation was tested for three different camera resolutions on a new set

of input commands. This set of motion commands was repeated three times, once for

each of the three available resolutions of the ZED stereo camera, and the resulting robot

trajectories are shown in Figure 4.12.

102

4.6 Evaluation of ORB SLAM

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance travelled by robot (m)

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Di

st
an

ce
 tr

av
el

le
d

by
 ro

bo
t (

m
)

starting
position

end
position

A

B

CD

Hector SLAM
ORB SLAM (mono)
 unscaled
ORB SLAM (stereo)
Robot
Trajectory

Figure 4.11: A comparison of the trajectories calculated from the monocular and stereo
implementations of ORB SLAM, Hector SLAM and the robot odometry. The stereo
implementation used data recorded at a resolution of 1280 pixel × 720 pixel, 30 fps.

Figure 4.12 shows that the resulting trajectories for all camera frame rates and res-

olutions were incorrect when compared to the reference robot trajectory. The lowest

resolution of the ZED stereo camera was 640 pixel × 480 pixel at 100 fps. For this camera
resolution, the initial part of the robot motion was recovered, but was lost at the region

labelled C in Figure 4.12. It is possible that there was a change in the lighting conditions that

caused the loss in tracking of the ORB features at C in Figure 4.12, since before the robot

position was lost the higher frame rate of 60 fps, meant there were more points in the mo-
tion path from the implementation of ORB SLAM at a resolution of 640 pixel × 480 pixel.
Another reason for the loss in recorded trajectory may be that not enough ORB features

could not be extracted in this part of the environment for the given camera resolution.

Future work may consider visual SLAM methods that use different image features, such as

straight edges (e.g., Maity et al. (2018)), which are more common in an urban environment.

103

Localisation for a bridge bearing inspection robot

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Distance travelled by robot (m)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

)

A

B

C

starting
position

end
position

ORB SLAM
Stereo (640x480px, 100fps)
ORB SLAM
Stereo (1280x720px, 60fps)

ORB SLAM
Stereo (1920x1080px, 30fps)
Robot trajectory

Figure 4.12: A comparison of robot trajectories calculated using ORB SLAM for three
different resolutions and frame-rates of the ZED stereo camera. These robot trajectories

are compared to the reference robot trajectory, plotted as orange points.

Using the full stereo camera resolution of 1920 pixel × 1080 pixel at 30 fps gave the
motion with the greatest error (compared to the reference trajectory) with the position

of the robot being lost between B and C in Figure 4.12. These errors were caused at the

lower frame rate of 30 fps, where ORB features were lost between frames and tracking of
these features failed.

The robot motion was also repeated for a camera resolution of 1280 pixel × 720 pixel
at 60 fps. The increase of frames per second from 30 fps to 60 fps meant that the full
trajectory of the robot was recorded. Dropped frames occasionally caused problem for

the datasets collected at 1280 pixel × 720 pixel and 60 fps, although the main problem was

due to an error in the orientation calculated by ORB-SLAM. However, there was a problem

with the scale of the robot trajectory calculated by ORB SLAM, and the motion of the robot

was falsely recorded (see the incorrect change in direction at location A for the pink points

104

4.7 Summary of findings in the laboratory environment

in Figure 4.12). The main cause of this error was that the ORB SLAM algorithm requires a

bundle adjustment stage to correct errors in the map.

In ORB SLAM, bundle adjustment is calculated on the full robot trajectory periodically

during mapping and localisation and is triggered by loop closure (Mur-Artal et al., 2015;

Mur-Artal and Tardos, 2017). However, due to the confined space in the test enclosure

it was difficult to perform a robot motion that allowed loop closure. In addition, the test

environment was traversed only once and this appears not to have been enough time to

perform multiple loop closures to correctly adjust scale and orientation of the ORB-SLAM

trajectories. Overall, ORB SLAM was found to be sensitive to lighting changes and to be

unsuitable for environments where small small trajectories are required, and hence was not

tested the real bridge environment.

4.7 Summary of findings in the laboratory

environment

Overall, the experimental results from the laboratory environment showed that the trajec-

tories calculated by local AMCL (for all map types) and Hector SLAM gave an error within

4 cm of the reference trajectory.

In the real bridge environment there is danger that the robot could fall from height.

Hence, a maximum error limit was required to evaluate the different methods with the aim

of reducing the risk of failure, especially since the maps in the bridge environment weremore

noisy than in the laboratory environment. For the purposes of this work, this maximum

error limit was defined as 10 cm with respect to the reference trajectory, which was chosen

as it is approximately the diameter of one of the wheels on the robot, because if a wheel

was to move over the edge of bearing enclosure, it was anticipated that the robot would

not be able to recover from an error greater than this value. This error bound is defined

to allow comparison of the performance of the algorithms considered in this chapter in the

real and laboratory environments. Next, to understand whether such an error bound is

105

Localisation for a bridge bearing inspection robot

achievable in practice, AMCL was tested in the bridge environment using the same robotic

platform.

4.8 Data collection in the bridge environment

Next, AMCL and Hector SLAM were tested in the bridge environment using the same

robotic platform as tested in the laboratory environment in Section 4.5. In this section, an

additional map, created from 3D terrestrial LiDAR scans, was used as an alternative method

for occupancy map creation. Again, all results from AMCL were compared to Hector SLAM

and the reference robot trajectory, which was calculated using odometry information from

the 2D LiDAR. In all cases, only the local implementation of AMCL was considered. The

maps used for AMCL calculations are as follows:

1. A map created using Hector SLAM.

2. A map created using SfM data from photographs collected in the bridge bearing en-

closure.

3. A map created using 3D terrestrial LiDAR (map creation process was the same as for

SfM in Section 4.3, see Figure 4.1). AMCL results using this method will henceforth

be referred to as AMCL-LiDAR.

The results of AMCL-SfM and AMCL-LiDAR were also considered for two different

map resolutions: 5 cm/grid-cell and 1 cm/grid-cell. Examples of the different maps tested in
the bridge environment are given in Figure 4.13.

Sensor data was collected in the same manner as described in Section 4.5, with the

robot traversing a pre-set trajectory from a given set of velocity commands. The data in

this section was collected in the real bridge environment with the assistance of Dr. Shan

Luo.

106

4.8 Data collection in the bridge environment

Figure 4.13: a) 2D occupancy map created using Hector SLAM at a resolution of
5 cm/grid-cell. b) 2D occupancy map created using SfM 1 cm/grid-cell. c) 2D occupancy
map at 5 cm/grid-cell created from 3D terrestrial LiDAR point cloud. d) 2D occupancy
map at 1 cm/grid-cell created from 3D terrestrial LiDAR point cloud. The black pixels
show areas of occupied space, the white pixels show areas of unoccupied space and the
dark-grey pixels (in a) show regions where it is unknown if the space is occupied or

unoccupied.

107

Localisation for a bridge bearing inspection robot

4.9 Validation of SfM data against 3D terrestrial LiDAR

data

In the bearing enclosure, point cloud data is also available from a 3D terrestrial laser scan-

ner, the RIEGL VZ-1000. Detailed scans of the bearing enclosure were taken from three

different perspectives and the clouds were registered using targets with a registration error

of less than 3 mm. CloudCompare was then used to compare the SfM and 3D terrestrial

LiDAR point clouds. The SfM and terrestrial laser scan point clouds were aligned by select-

ing common features that are visible and easy to select by eye. Iterative Closest Point (ICP)

alignment was used to further align the point clouds. A cloud-cloud distance calculation

allows the comparison of a point cloud to a reference point cloud, where the distance of

points can be calculated relative to associated points in the reference cloud. A scalar field

was generated showing the number of points and the distance of those points compared

to the points in the reference cloud. 90 % of points from the SfM point cloud are within a

distance of 4 cm from the terrestrial 3D LiDAR point cloud and 60 % of points are within

1 cm of the terrestrial 3D LiDAR point cloud. This result gave confidence that the SfM map

was accurate and suitable for map creation. Furthermore, using two sets of maps gives an

indication of whether localisation will be affected by scale. A visual comparison of the dif-

ference between SfM and terrestrial LiDAR data for the bridge bearing enclosure is shown

in Figure 4.14.

108

4.9 Validation of SfM data against 3D terrestrial LiDAR data

(i): 3D terrestrial LiDAR point cloud of the bearing enclosure.

(ii): 3D SfM point cloud of the bearing enclosure.

Figure 4.14: Exemplar terrestrial LiDAR data (4.14i) and sparse SfM data (4.14ii) for the
bearing enclosure. The dots that make up each of the image represent a point in 3D

Cartesian space. The terrestrial LiDAR point cloud in Figure 4.14i is denser than the SfM
point cloud in Figure 4.14ii and has less noise (see the distribution of points around the
outside of the point cloud in Figure 4.14ii). Both images are cropped to a region of the

bridge that includes only the bearing enclosure.

109

Localisation for a bridge bearing inspection robot

4.10 Results and discussion for the bridge environment

Figure 4.15 shows a comparison between the calculated robot trajectories and the refer-

ence trajectory. The associated error and covariance values are also plotted in Figure 4.16.

The areas labelled B and C in Figure 4.15i show the greatest discrepancies between the

AMCL trajectories and the reference trajectory. Overall, the associated trajectory errors

in the real bridge environment are greater than the laboratory results, with values vary-

ing between 2 cm and 10 cm (see Figure 4.16i). The maximum value for covariance is also

greater than in the laboratory environment, with values between 20 cm and 1 m (see Fig-

ure 4.16ii), which covers a large portion of the bearing enclosure in Figure 4.15ii. Again,

the largest error and covariance occurs after initialisation of the particles, with the largest

error value of 9 cm produced by AMCL-SfM, and the largest covariance value of 1 m, pro-
duced by all methods (see Figure 4.16ii). This error is slightly greater than in the laboratory

environment due to greater uncertainty in the initial position given to the robot, but this

error converges to within 3 cm of the reference trajectory after three time-steps. Errors in

the initial position guess occur due to the difficulty of measuring the location by hand in the

bridge environment. In future work, some method of accurately determining the starting

position of the robotic platform in the bearing enclosure could be developed. One poten-

tial solution may be to use a charging dock in a fixed location or to combine information

from both Hector SLAM and AMCL to improve the initial position estimate.

110

4.10 Results and discussion for the bridge environment

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance travelled by the robot (m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Di

st
an

ce
 tr

av
el

le
d

by
 th

e
ro

bo
t (

m
)

starting
position

end
position

A

B

C

D

Robot Trajectory
Hector SLAM
AMCL-LiDAR

AMCL-SfM
AMCL-Hector

(i): A comparison of the trajectories calculated for the robot in the bearing enclosure.

2 1 0 1 2 3
Distance travelled by the robot (m)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
st

an
ce

 tr
av

el
le

d
by

 th
e

ro
bo

t (
m

)

Terrestrial LiDAR
 map
Robot Trajectory
Hector SLAM

AMCL-LiDAR
AMCL-SfM
AMCL-Hector

(ii): The trajectories of the robot with covariance ellipses from AMCL and terrestrial LiDAR map
for scale

Figure 4.15: The trajectories calculated using AMCL (local) in the bridge environment for
three different maps created using either SfM, 3D terrestrial LiDAR data or Hector SLAM
(4.15i). In 4.15ii, the same trajectories as in 4.15i are shown, but are overlaid with ellipses
representing the covariance of the pose at each step is shown in 4.15ii. Map points from

the terrestrial 3D LiDAR scan are shown in 4.15ii to give a sense of scale of the
trajectories relative to the bearing enclosure.

111

Localisation for a bridge bearing inspection robot

0 20 40 60 80 100 120 140
Sequential points in robot trajectory

0.00

0.05

0.10

0.15

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-Hector
AMCL-SfM

AMCL-LiDAR
Hector SLAM

Error limit

(i): Comparing the error between the reference trajectory of the robot and the trajectories
calculated by both local AMCL-Hector, AMCL-SfM and AMCL-LiDAR for each point in the

reference robot trajectory. The error limit of 10 cm between the calculated trajectory and the
reference trajectory is also marked.

0 20 40 60 80 100 120 140
Sequential points in the robot trajectory

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ea

te
st

 d
im

en
sio

n
of

 th
e

co
va

ria
nc

e
el

lip
se

 (m
)

AMCL-Hector
AMCL-SfM
AMCL-LiDAR

(ii): Comparing the covariance of the AMCL particles over the duration of the robot trajectory, as
calculated from the greatest dimension of the covariance ellipses seen in Figure 4.15ii

Figure 4.16: The error calculated between the reference trajectory of the robot and the
trajectories calculated by AMCL-Hector, AMCL-LiDAR and AMCL-SfM in the bridge
environment, where the error was calculated for each point in the reference robot

trajectory (Figure 4.16i). The covariance of the AMCL particles over time for the same
approaches as in 4.16i, with the covariance value being calculated from the greatest

dimension of the covariance ellipses seen in Figure 4.15ii.

112

4.10 Results and discussion for the bridge environment

The initial error for AMCL-LiDAR is lower than AMCL-SfM, but slightly greater than

AMCL-Hector and Hector SLAM (5 cm, 2 cm and 4 cm respectively in Figure 4.16i). In

addition, the covariance for AMCL-LiDAR takes the longest to converge (see Figure 4.16ii).

This initial uncertainty is visible in Figure 4.17a, where the particles are spread over the

majority of the bearing enclosure and in Figure 4.17b appear to split into two groups of

particles representing the robot position. However, by Figure 4.17c the covariance has

decreased to 20 cm (i.e., between the areas labelled A and B in Figures 4.15 and 4.16). One

potential reason for the greater uncertainty for AMCL-LiDAR is that the available detail in

the original point cloud is greater than for the 2D LiDAR. Therefore, some features have

been included in the map that are not representative of what was visible for the 2D LiDAR,

and as a result, the AMCL particles group in the true position and another position, but

as the robot begins to move, it becomes apparent which is the correct position and the

uncertainty and error decreases.

An increase in error is observed at the points labelled B and C in Figure 4.15i (time-

steps 60 and 100 in Figure 4.16) as the robot turns towards the less featured regions of the

map (i.e., regions where there is not much bridge structure: top left region of figures a-d

in Figure 4.13). At these points, potential features in the map are at a distance close to the

maximum sensor range of the 2D LiDAR (6 m). When comparing the maps in Figure 4.13a-

c, it is apparent that the sensor data from the 2D LiDAR can reach some of regions of the

map but not others, which contributes to a greater error in the robot position. Although

the increase in errors are similar for all methods, the error for AMCL-SfM does not recover

as well as the other methods towards the end of the trajectory at point D. In addition, the

error at D for AMCL-SfM is higher when the map resolution was increased to 1 cm/grid-cell
(see Figure 4.18ii). The map for AMCL-SfM in these regions is noisier, but also the sensor

data does not overlap well, suggesting that the point cloud scaling is worse in these regions.

AMCL-SfM has the least detail in this region since the image features used to create the

SfM point cloud are far away are not as clear as nearby features.

113

Localisation for a bridge bearing inspection robot

Figure 4.17: The pictorial representation of AMCL-LiDAR plotted in RVIZ (ROS
visualisation software) showing the robot position within map created using 3D terrestrial
LiDAR data (black pixels). The covariance of the robot pose and robot orientation varies

as the robot moves around the map. a) shows the robot position shortly after
initialisation of AMCL-LiDAR with particles widespread around the current guess for

robot position; b) shows the AMCL particles in two small groups, but with misalignment
in the current LiDAR data and the map there is uncertainty in the current robot position;
c) shows the particles converge to one position and an improvement in the alignment of
the current LiDAR data and the map; d) shows an increase in the covariance for robot
position and orientation as the robot turns; e) is towards the end of the robot motion

and shows that AMCL-LiDAR converges to the current robot position.

114

4.10 Results and discussion for the bridge environment

0 20 40 60 80 100 120 1400.00

0.05

0.10

0.15

Er
ro

r w
ith

 re
sp

ec
t

 to
 re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-LiDAR
resolution
0p05cm/cell

AMCL-LiDAR
resolution
0p01cm/cell

Error limit

(i): A comparison of errors with respect to the reference trajectory for AMCL-LiDAR for two
map resolutions

0 20 40 60 80 100 120 140
Sequential points in robot trajectory

0.00

0.05

0.10

0.15

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-SfM
resolution
0p05cm/cell

AMCL-SfM
resolution
0p01cm/cell

Error limit

(ii): A comparison of errors with respect to the reference trajectory for AMCL-SfM for two map
resolutions

Figure 4.18: The error calculated between the reference trajectory of the robot and the
trajectories calculated by AMCL-LiDAR and AMCL-SfM in the bridge environment, where
the error was calculated for each point in the reference robot trajectory. Map resolutions

of 1 cm/grid-cell and 5 cm/grid-cell are compared for both methods.

115

Localisation for a bridge bearing inspection robot

Otherwise, there is little difference in the errors produced from AMCL-LiDAR and

AMCL-SfM when increasing the map resolution to 1 cm/pixel (see Figure 4.18). For AMCL-
SfM, the error converges quicker for the lower map resolution of 5 cm/pixel, but the er-
ror for both resolutions of the AMCL-LiDAR maps match well. The map resolution of

5 cm/pixel is used for creating the maps for localisation in the bridge environment as it

appears to allow some smoothing of noisy regions, but provides adequate detail for locali-

sation.

4.11 A combined approach for localisation

For the majority of the trajectories recorded in Figure 4.15 and Figure 4.16 the error with

respect to the reference robot trajectory is equal to or below the desired bound of 10 cm
(marked in Figure 4.16). However, for AMCL-SfM the error becomes greater than this

bound. The method with the lowest trajectory error is Hector SLAM, and the associated

error is below this threshold at all times. The output from Hector SLAM was combined

with a AMCL-SfM by taking the average of the trajectory coordinates from Hector SLAM

and AMCL-SfM and plotting the error of this new trajectory with respect to the reference

trajectory (Figure 4.19). By combining the two approaches, it is observed that the averaged

trajectory maintains a value below 6 cm for all time. In addition, for the greatest error pro-

duced by AMCL-SfM (10 cm), the equivalent error for the averaged trajectory is 4 cm and

when Hector SLAM spikes to 6 cm at time-step 50 in Figure 4.19 the error for the averaged
trajectory remains below 4 cm. This solution is considered as a basic approach to allow

some combination of the benefits of the individual methods (namely that AMCL allows the

use of pre-existing map, but Hector SLAM is more accurate) and if one of the individual

methods fail, this solution provides redundancy to reduce the risk of failure of the entire

system. However, since the completion of this work, algorithms that allow SLAM in pre-

viously mapped environments have been developed (e.g., Google Cartographer), although

these approaches do not take advantage of existing inspection data. It is recommended

for future work that the AMCL approach used in this work be compared to the newer

116

4.11 A combined approach for localisation

algorithms, and that methods for combining the new approaches with AMCL using inspec-

tion data be considered as a more robust method for combining SLAM and localisation in

a known map.

0 20 40 60 80 100 120 140
Sequential points in robot trajectory

0.00

0.05

0.10

0.15

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-SfM (local)
Average of AMCL-SfM
and Hector SLAM

Hector SLAM
Error limit

Figure 4.19: The error calculated in the bridge environment between the reference
trajectory of the robot and the trajectories calculated by AMCL-SfM, Hector SLAM and a
trajectory determined from the average of the two trajectories. The error limit of 10 cm

between the calculated trajectory and the reference trajectory is also marked.

117

Localisation for a bridge bearing inspection robot

4.12 Using inspection data in a simulated environment

In addition to creating maps for localisation, there are other uses for existing inspection

data for assisting the development of robotic inspection platforms. In particular, there may

be advantages to using the existing data to aid the development of a robotic platform in

a simulation environment before performing testing in the real environment. However,

validation is required to understand how realistic the simulation environment is compared

to the real environment. This section explores whether the 3D point clouds collected

for inspection applications (but also used for localisation maps previously in this chapter)

can be used to create a simulation environment that complements the testing that can be

performed in a laboratory environment.

In this section, the simulation software known as Gazebo (Koenig and Howard, 2004)6

was used to simulate the robotic platform that was used for testing localisation and mapping

algorithms in this chapter. Gazebo is a popular simulation tool and has been used broadly

in robotics research from robot manipulation tasks (e.g., Qian et al. (2014)) to simulation

of quad-rotor UAVs (e.g., Meyer et al. (2012)). In particular, Gazebo is often chosen due

to its compatibility with ROS that allows the development of systems that can then be

implemented on a real robotic platform (e.g., Agüero et al. (2015)). There are some notable

applications of using Gazebo with Digital Elevation Maps to simulate outdoor environments

with difficult terrain (e.g., Neves et al. (2015) and Portugal et al. (2015)). Digital Elevation

Models (DEMs) are 3D models of a surface terrain and are typically collected through

remote-sensing approaches, such as radar satellites (Z. Li et al., 2004), but can also be

created from point cloud data such as those created by SfM or terrestrial LiDAR (Westoby

et al., 2012; Z. Li et al., 2004).

At the time of writing, there are no known examples in the literature of directly using

SfM or 3D terrestrial LiDAR data to mimic an existing environment in simulation. Using

SfM or terrestrial LiDAR to create a simulation environment may be particularly useful for

robotic inspection of infrastructure since this data is often collected, or could be collected,

using cameras on-board robotic platforms such as drones (e.g, Hallermann and Morgenthal

6http://gazebosim.org/ (Date accessed: 01/02/2019)

118

4.13 Creating the simulation environments

(2014) and Lattanzi and Miller (2015)). In this work, the 3D point cloud data that was

used to create maps for localisation in Section 4.3 was used to create an environment for

simulation. In addition, the robotic platform used in this chapter in the laboratory and

real bridge environment was adapted for simulation. More details on creating the robotic

platform for simulation can be found in Chapter 3 (page 74).

4.13 Creating the simulation environments

In this section, the point cloud data from the 3D terrestrial LiDAR scan of the bridge

bearing enclosure is used to create a simulation environment. It should be noted that the

same process could also be applied to the SfM data to create a simulation environment, but

only terrestrial LiDAR data is used in this chapter. However, the maps that were created for

AMCL using both terrestrial LiDAR data and SfM data in Section 4.10 are used to compare

AMCL for the real bridge environment with the simulation environment.

In Gazebo, there are two main considerations for the development of the simulation

environment. The first consideration is that some geometry needs to be defined for the

purposes of collision and physics calculation (e.g., the friction between the surface and the

wheels on the robotic platform). The second consideration is for the need of a visual

representation of the environment which may be useful for monitoring the simulation, but

also to provide features for the navigation algorithms.

In order to create the collision and visual geometries, the 3D point cloud data (from

LiDAR or SfM) needs converting into a format that is compatible with Gazebo; in gen-

eral, a mesh format is required (Open Source Robotics Foundation, 2014). In addition,

stereolithography format (STL) has been recommended as a mesh format for collision cal-

culations and digital asset exchange format (DAE) for mesh visualisation, since the collision

mesh does not need to be as detailed and the STL format can be used to simplify mesh

geometries (Kohlbrecher, 2016; Morena et al., 2016).

The approach for converting the point clouds into a mesh has three main steps, which

are also outlined in Figure 4.20. First, the input 3D point cloud can be cropped or cleaned

119

Localisation for a bridge bearing inspection robot

using point cloud manipulation software such as CloudCompare. This step is similar to

the process used in Section 4.3 and can be used to reduce the size of the environment by

removing points outside of the maximum range of the navigation sensors. In this section, a

reduced area of the bridge bearing enclosure is used for demonstration and evaluation of

the simulation environment. Next, the normals of the points in the point cloud (the vector

that is perpendicular to a point in the point cloud) are computed in CloudCompare, by

approximating local planes across the point cloud using a number of nearest neighbours for

each point. This step is required prior to to generating a mesh.

Next, the point cloud needs converting into a mesh. This is possible using several

different software, but in this work was completed using MeshLab 7. The points of the

point cloud become the vertices of the mesh, which can be joined by edges and filled in by

faces to create a solid surface. Mesh reconstruction was performed using Poisson surface

reconstruction (Kazhdan et al., 2006), as recommended by Kooi (2013). Since the Poisson

surface reconstruction creates a ‘water-tight’ mesh, large faces were then removed from

the mesh to reveal the bridge bearing enclosure. This process was performed automatically

in MeshLab.

7http://www.meshlab.net/ (Date accessed: 01/02/2019)

120

4.13 Creating the simulation environments

Figure 4.20: An overview of the main steps required to create the simulation environment
from 3D point cloud data (left). A visual example of each of these steps (right). The input
was a 3D point cloud from the 3D terrestrial LiDAR, which is converted into a mesh,

cleaned and exported in DAE or STL format, for the Gazebo simulation.

121

Localisation for a bridge bearing inspection robot

The final step is to mend holes (caused by removing large faces from the mesh as Poisson

surface reconstruction creates a water-tight mesh) and clean the mesh, which is required

to ensure the robot has a solid surface to move on in simulation. In this chapter, the mesh

cleaning step was performed in Blender8, a mesh manipulation software. In addition to

cleaning the mesh, a thickness of around two millimetres was added to the mesh in Blender,

to allow better physics calculations when the mesh is imported into Gazebo (Morena et

al., 2016). The mesh can then be exported from Blender as DAE and STL format as a

visual mesh or a collision mesh for use in Gazebo. Figure 4.21 shows the final environment,

with the simulated robot and simulated 2D LiDAR. Further description of the setup of the

simulated robot is given in Chapter 3.

Figure 4.21: The final simulation environment with the robotic platform (labelled) and the
simulated 2D LiDAR shown as the blue rays (labelled).

8https://www.blender.org/ (Date accessed: 01/02/19)

122

4.14 Results from the simulated environment

4.14 Results from the simulated environment

Next, the experiments from the real bridge environment were repeated in simulation. Mo-

tion commands were given to the simulated robotic platform, and the data from the simu-

lated 2D LiDAR was recorded. This data was used for Hector SLAM and for AMCL using

the same maps from SfM and the terrestrial LiDAR as used in the real bridge experiments

in Section 4.8. The trajectory of each of these approaches was recorded and compared to

the reference trajectory determined from odometry data generated using the 2D LiDAR

and the Hector SLAM package. These trajectories are plotted in Figure 4.22i (with the

corresponding uncertainties in Figure 4.22ii) and the errors with respect to the reference

trajectory are plotted in Figure 4.24i. In order to compare to the real bridge environment,

the results from Section 4.8 are replotted in this section, see Figure 4.23 and Figure 4.25.

123

Localisation for a bridge bearing inspection robot

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Distance travelled by robot(m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

) AMCL-SfM (local)
AMCL-LiDAR (local)

Hector SLAM
Robot trajectory

(i): The trajectories of the robot calculated from the simulation environment for different methods

2 1 0 1 2 3
Distance travelled by robot(m)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

) AMCL-SfM
AMCL-LiDAR

Odometry
Hector SLAM

(ii): The same trajectories as in 4.22i, but with the uncertainties represented by ellipses of the
AMCL particles for each point in the robot trajectory.

Figure 4.22: A comparison of the trajectories calculated using local AMCL-SfM and
AMCL-LiDAR, the trajectory calculated by Hector SLAM and the reference trajectory
calculated from odometry information. The ellipses that represent the covariance of the
pose calculated by AMCL-Hector and AMCL-SfM are also plotted at each step in the

trajectory in Figure 4.22ii.

124

4.14 Results from the simulated environment

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance travelled by the robot (m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
st

an
ce

 tr
av

el
le

d
by

 th
e

ro
bo

t (
m

)

starting
position

end
position

A

B

C

D

Robot Trajectory
Hector SLAM
AMCL-LiDAR

AMCL-SfM
AMCL-Hector

(i): A comparison of the trajectories calculated for the robot in the real bearing enclosure.

2 1 0 1 2 3
Distance travelled by the robot (m)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
st

an
ce

 tr
av

el
le

d
by

 th
e

ro
bo

t (
m

)

Terrestrial LiDAR
 map
Robot Trajectory
Hector SLAM

AMCL-LiDAR
AMCL-SfM
AMCL-Hector

(ii): The trajectories of the robot with covariance ellipses from AMCL and terrestrial LiDAR map
for scale

Figure 4.23: The trajectories calculated using AMCL (local) in the bridge environment for
three different maps created using either SfM, 3D terrestrial LiDAR data or Hector SLAM
(4.23i). This Figure is a duplicate of Figure 4.15, and is provided for comparison to the

simulation results.

125

Localisation for a bridge bearing inspection robot

0 10 20 30 40 50
Time (s)

0.00

0.05

0.10

0.15

0.20

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

) AMCL-SfM (local)
AMCL-LiDAR (local)

Hector SLAM Error limit

(i): Comparing the errors between the reference trajectory of the simulated robot and the
trajectories calculated by both local AMCL-LiDAR and AMCL-SfM for each point in the simulated

reference robot trajectory.

0 10 20 30 40 50
Sequential points in trajectory

0.0

0.2

0.4

0.6

0.8

Gr
ea

te
st

 d
im

en
sio

n
of

 th
e

co
va

ria
nc

e
el

lip
se AMCL-LiDAR (local)

AMCL-SfM (local)

(ii): Comparing the covariance of the AMCL particles over the duration of the simulated robot
trajectory, as calculated from the greatest dimension of the covariance ellipses seen in Figure 4.22ii

.

Figure 4.24: The error between the reference trajectory of the robot and the trajectories
calculated by AMCL-SfM, AMCL-LiDAR and Hector SLAM calculated in the simulation
environment for subsequent points in the robot trajectory shown in Figure 4.22i (4.24i).
The greatest value of the covariance, seen as the greatest dimension of the ellipses in

Figure 4.22ii for each point in the robots trajectory (4.24ii).

126

4.14 Results from the simulated environment

0 20 40 60 80 100 120 140
Sequential points in robot trajectory

0.00

0.05

0.10

0.15

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-Hector
AMCL-SfM

AMCL-LiDAR
Hector SLAM

Error limit

(i): Comparing the error between the reference trajectory of the robot and the trajectories
calculated by both local AMCL-Hector, AMCL-SfM and AMCL-LiDAR for each point in the

reference robot trajectory. The error limit of 10 cm between the calculated trajectory and the
reference trajectory is also marked.

0 20 40 60 80 100 120 140
Sequential points in the robot trajectory

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ea

te
st

 d
im

en
sio

n
of

 th
e

co
va

ria
nc

e
el

lip
se

 (m
)

AMCL-Hector
AMCL-SfM
AMCL-LiDAR

(ii): Comparing the covariance of the AMCL particles over the duration of the robot trajectory, as
calculated from the greatest dimension of the covariance ellipses seen in Figure 4.15ii

Figure 4.25: Error and covariance plots for AMCL local in the bridge environment. This
Figure is a duplicate of Figure 4.16, and is provided for comparison to the simulation

results.

127

Localisation for a bridge bearing inspection robot

As in the real environments, the uncertainty (seen in the covariance ellipses in Fig-

ure 4.22ii and the greatest dimension of these ellipses, as plotted in Figure 4.24ii) for

AMCL-LiDAR and AMCL-SfM is greatest at the beginning of the robot motion and gen-

erally decreases over time. The values for the uncertainty, as represented by the greatest

dimension of the covariance ellipse (Figure 4.24ii) are of a slightly lower magnitude com-

pared the results from the real bridge environment (see Figure 4.25).

The error values for AMCL-LiDAR and AMCL-SfM are also similar to the real bridge

environment, for most time steps. However, the error is greater for AMCL-SfM and AMCL-

LiDAR in simulation than for the bridge environment (Figure 4.23) towards the end of the

robot trajectory. To check whether the higher error is due to a difference in the size of the

simulated environment compared to the real environment, the simulation for AMCL-LiDAR

was repeated with a cropped map that better represents the simulated environment and

plotted in Figure 4.26. Overall, Figure 4.26 shows that there is an increase in uncertainty

as the platform moves towards the regions of the simulated environment which are not

representative of the real environment (see Figure 4.27). However, there is little difference

between the error values for the map from the real environment and the cropped map.

128

4.14 Results from the simulated environment

0 5 10 15 20 25 30 35 40
Sequential points in the robot trajectory

0.000

0.025

0.050

0.075

0.100

Er
ro

r w
ith

 re
sp

ec
t t

o
re

fe
re

nc
e

tra
je

ct
or

y
(m

)

AMCL-LiDAR
AMCL-LiDAR (reduced map)

(i): Comparison of the error with respect to the reference trajectory for AMCL-LiDAR in
simulation for the original and cropped AMCL-LiDAR maps.

0 5 10 15 20 25 30 35 40
Sequential points in trajectory

0.2

0.4

0.6

0.8

1.0

Gr
ea

te
st

 d
im

en
sio

n
of

 th

e
co

va
ria

nc
e

el
lip

se
 (m

)

AMCL-LiDAR
AMCL-LiDAR (reduced map)

(ii): Comparison of the covariance for AMCL-LiDAR in simulation for the original and cropped
AMCL-LiDAR maps.

Figure 4.26: Comparison of the error and covariance for AMCL-LiDAR in simulation using
the map for AMCL-LiDAR in the bridge environment and a cropped map that is more

representative of the simulated environment.

129

Localisation for a bridge bearing inspection robot

Figure 4.27: A comparison of the maps used for AMCL-LiDAR in both the real bridge
environment (i) and simulation environment (i and ii). The approximate region of motion

available to the robotic platform has been highlighted.

130

4.14 Results from the simulated environment

One of the potential benefits of using simulated environments is that different sensors

can be tested and compared. For example, wheel encoder sensors were added to the

robotic platform in simulation as an alternative method for providing odometry. The dif-

ference between the wheel odometry and the odometry from the 2D LiDAR is shown in

Figure 4.28.

In Figure 4.28, the trajectories generated from the simulated wheel odometry sensor

(purple) and the simulated 2D LiDAR odometry data (orange) are compared. The trajec-

tory from AMCL-LiDAR from Figure 4.22 is also plotted for reference. In addition, the

difference between the trajectories calculated using wheel and LiDAR odometry is also

plotted in Figure 4.29 alongside the difference between the trajectories calculated using

AMCL-LiDAR and the wheel odometry. Initially, the difference between the two odome-

try methods is low, but grows over time; this difference may be because the wheel encoders

are prone to error caused by the wheels slipping. The error between AMCL-LiDAR and

the wheel odometry trajectories is similar to the difference between AMCL-LiDAR and

the reference trajectory (from 2D LiDAR odometry) in Figure 4.24i, but lower towards the

end of the trajectory (comparing time-step 40 onwards for Figure 4.24i and Figure 4.29).

It is possible that the lack of features in the simulated environment (see Figure 4.27) in this

region means that wheel odometry gives a more accurate estimate for the robot position

at this location. However it may also be coincidental, since the location with the fewer

features is also at the end of robot trajectory, where the errors in wheel odometry due to

slippage are also likely to be highest. This relationship should be verified further in future

experiments.

Overall, there is scope to expand the work in this chapter by experimenting and proto-

typing different configurations of robotic platform with different sensors for localisation and

mapping, but to also test different inspection environments. Future work may expand the

initial investigations in this Section by comparing simulation environments generated using

terrestrial LiDAR to simulation environments generated using CAD or BIM models for mul-

tiple bridge architectures and for scenarios where 3D point cloud data is not available. In

addition, additional methods for SLAM could be tested in simulation, including visual SLAM

131

Localisation for a bridge bearing inspection robot

approaches. Further work might also investigate the need for the application of textures

and colours to the meshes used in these simulation environments.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Distance travelled by robot(m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
st

an
ce

 tr
av

el
le

d
by

 ro
bo

t (
m

) LiDAR odometry
Wheel odometry

Hector SLAM
AMCL-LiDAR (local)

Figure 4.28: A comparison of the robot trajectories from Figure 4.22 (Hector SLAM,
AMCL-LiDAR and odometry from the 2D LiDAR) and the trajectory calculated using a

simulated wheel odometry sensor.

0 10 20 30 40 50
Time (s)

0.00

0.05

0.10

0.15

0.20

Di
ffe

re
nc

e
be

tw
ee

n
lo

ca
lis

at
io

n
 a

pp
ro

ac
h

an
d

od
om

et
ry

 (
m

)

AMCL_LiDAR vs
wheel odometry

Wheel odometry vs
lidar odometry

Figure 4.29: The difference between the odometry calculated using simulated wheel
encoders and the simulated 2D LiDAR.

132

4.15 Summary and scope for future work

4.15 Summary and scope for future work

Autonomous inspection offers opportunities for reducing the risk, whilst also increasing

the repeatability of bridge bearing inspection. Using a pre-defined map is important for

autonomous navigation to allow targeted inspection. The map can be created from existing

data, such as 3D terrestrial scans data, which is particularly useful in environments where

the robot cannot be tele-operated in order to create a map. In addition, existing information

(which may be difficult or expensive to obtain) can be supplemented and expanded over

successive robotic inspections and this could be explored as part of future work. In this

chapter, 2D occupancy maps were created from 3D SfM terrestrial LiDAR point cloud data.

A particle filter localisation approach called Adaptive Monte-Carlo Localisation was used

to localise the robot in each of the maps created from point cloud data and also a map cre-

ated from Hector SLAM. A 2D LiDAR SLAM approach called Hector SLAM, and a stereo

and monocular visual SLAM approach called ORB SLAM, were also considered as an al-

ternative solution to AMCL. Three environments were considered for testing, a laboratory

environment, a real bridge environment and a simulated environment that was created using

terrestrial LiDAR data from the real bridge environment.

In the laboratory environment, a typical trajectory error of 3 cm with respect to the

reference was obtained for all methods, with the largest error of 8 cm occurring on initial-

isation of the particle filter for AMCL-SfM. AMCL with global localisation also converged,

but with a greater error of 75 cm which was sustained for several time-steps and made

it unsuitable for use in a real bridge environment. Future work could investigate suitable

methods (e.g., rotation of the robotic platform on the spot) to ensure adequate conver-

gence of global AMCL before the robotic platform begins any inspection tasks. An error

bound of 10 cm was defined in the laboratory environment, with considerations being made

about operating in the real bridge environment.

Two implementations (using a stereo and monocular camera) of a visual SLAM method

called ORB SLAM were tested. When comparing error to the reference trajectory, neither

implementations performed as well as Hector SLAM, with problems caused by the scale

recovered by ORB SLAM and the loss of features in the environment at low frame rates

133

Localisation for a bridge bearing inspection robot

and camera resolutions. In addition, trajectories that require turn-in-place motions cannot

be used with ORB SLAM, and bundle-adjustment is mostly performed on loop-closures.

Since the space in the bridge bearing limits the trajectories that are possible, ORB SLAM

was not tested further in the real bridge environment.

In the bridge environment, the trajectory error was generally greater than in the lab-

oratory due to increased noise in the maps and in the environment, with a typical error

ranging between 1 cm and 8 cm. However, all methods remained below the defined error

bound, with the exception of AMCL-SfM. By combining the results from AMCL-SfM with

Hector SLAM, a more robust method for determining the trajectory is possible that keeps

the trajectory error below 6 cm throughout. For AMCL, the largest errors occurred at

the beginning of the robot trajectories, which was due to uncertainty in the initial position

estimate of the robot.

Terrestrial LiDAR data was used successfully to create a simulation environment. Again,

AMCL and Hector SLAM were compared to the reference trajectory created using the sim-

ulated 2D LiDAR data. These methods were implemented successfully, although the results

were different to the results in the real environment. The main reason for the difference

between the real and simulated environment is likely due to the limited region of the bear-

ing enclosure that was used in simulation, but may also be related to the physics parameters

used in the simulations; these areas should be the subject of future research. However, for

AMCL, the errors seen in the simulation were arguably closer to the real bridge environ-

ment than those from the laboratory environment, which shows good potential for using

the simulation environment for testing different robot configurations prior to testing in the

real environment.

To conclude, the following points are suggested as areas for further investigation:

• Further evaluation of the combined approach between AMCL and Hector SLAM

proposed in this chapter.

• Exploration of SLAM methods that combine data, such as LiDAR and camera data.

• Expand the 2D implementation in this work to 3D using sensors such as the stereo

camera to detect objects on the floor of the enclosure and the edges of the enclosure.

134

4.15 Summary and scope for future work

The known bearing enclosure could also be identified using cost-maps (which can be

used by ROS) generated from the existing inspection data.

• Adding sensors, such as an IMU to give improved performance for measuring uncer-

tainty in rotation

• Exploration of the use of a docking station to allow repeatable initialisation of AMCL

or the combined approach to improve the initial position estimate of the robotic

platform.

• Further testing and integration of SLAM methods, such as line-based visual SLAM and

3D LiDAR-based approaches.

• Further testing of the methods from this chapter in different real bridge configura-

tions.

• Long-term testing of the methods and sensors proposed in this chapter to better

understand the implications for the robustness of the chosen SLAM approach.

• Testing different configurations of bridge structure in simulation to evaluate the gen-

eralisation of the methods presented in this chapter.

• Testing different configurations of the robotic platform in simulation, including differ-

ent sized platforms and the addition of sensors, such as IMU.

• Testing of SLAM methods such as Google Cartographer, which allows localisation in a

previously mapped area, and visual SLAM with different features, such as ORB SLAM

where the ORB features are replaced with line features (which are common features

in urban environments).

• Further testing of the effect of the physics parameters (such as friction and sensor

noise) on the results in the simulated environment.

135

Chapter 5

Application of computer vision

techniques to visual inspection tasks

5.1 Crack detection using computer vision methods

The literature review in Chapter 1 highlighted that cameras and computer vision are useful

tools for aiding the inspection of civil infrastructure, with almost all of the current develop-

ments in robotic bridge inspection including at least one camera sensor. In addition, crack

detection in the concrete structure of the bridge was the most commonly reported pur-

pose for the camera on the robotic system. The aim of using robots mounted with cameras

was to increase the automation of the inspection process and to reduce the subjectivity and

increase the occurrence of such inspections (Lattanzi and Miller, 2017; Agnisarman et al.,

2019). The use of a camera also aids the requirements of visual inspections, which is re-

quired for components such as the bridge bearings (BS-EN-1337, 2003; Sutter et al., 2018).

A second focus of crack detection is to find defects in road surfaces. For example, Varad-

harajan et al. (2014) mount a camera in a vehicle in order to monitor the cracks in asphalt

road surfaces around the city. Road surfaces commonly consist of concrete or asphalt, and

there is overlap in the methods used for detection of cracks in these surfaces. Due to a lack

of general datasets for crack detection in concrete infrastructure, the datasets and meth-

ods for crack detection in concrete and asphalt roads will be considered in this chapter. A

137

Application of computer vision techniques to visual inspection tasks

summary of recent literature for computer vision approaches for crack detection in images

is given in Table 5.1.

Table 5.1: A summary of the review of recent literature that focuses on computer vision
for crack detection in photographs. Rows highlighted in grey show research with

published datasets. Related projects are marked with *.

Literature Summary

Reference Description of
approach

Task Dataset

Image processing methods

Lim et al.
(2011)

Image processing with
Laplacian of Gaussian

Segment
Asphalt

N/A

Su (2013) Image processing with
weighted median filter,
image opening Otsu’s
thresholding and
measurement of
morphological features

Segment
Concrete
pavement

Private dataset collected by
hand. 50 images with cracks,
50 non-crack.
1536 × 2048 px resized to
335 × 413 px

H. Li et al.
(2017)

Multiple image scales
using gaussian blurring.
Group crack seeds into
clusters and use
window minimal
intensity path
algorithm to grow
cracks. Cracks
matched across image
scales.

Segment.
Asphalt

Compared results to dataset
from Shi et al. (2016)
480 × 320 px

Nayyeri and
Hou (2016)

Local structure
extraction to preserve
strong edges. Followed
by binarisation.
K-means used to group
background texture

Segment from
Concrete and
asphalt road
surface

Private dataset of 704
images. 352 for training, 352
for testing, repeated 10
times.
400 × 500 px

138

5.1 Crack detection using computer vision methods

Continuation of Table 5.1

Reference Description of
approach

Task Dataset

Sato (2018) Image processing using
V-shaped detector for
edge detection

Segment
Bridge pier -
concrete

Private dataset collected in
lab, 3–7,m from concrete
specimen using DSLR
camera. 6016 × 4000 px

Machine learning approaches

Varadharajan
et al. (2014)

Feature extraction and
description with SVM
classifier

Segment
super-pixel
regions
Asphalt

Private dataset. 220 images
for training, 140 for testing

L. Li et al.
(2014)

Image processing for
crack segmentation,
with a
back-propagation
neural network for
crack recognition.
Work also focuses on
separately classifying
linear and crocodile
cracks.

Segment and
classify
Asphalt

Private dataset collected
using an Automated Road
Analyser (ARAN) 400
images, 60 % used for
training, 20 % validation,
20 % testing

Prasanna et al.
(2016)

SVM, Adaboost and
random forest trained
on different feature
vectors generated
using RANSAC.
Method tested on two
distinct datasets.

Segment.
Bridge surface
- concrete

Private dataset collected
using robotic system. 100
images split into
corresponding to a bridge
segment for 2 different
bridges 1000 samples taken
from two datasets for
training and validation. Equal
positive and negative
instances of cracks
920 × 1280 px

139

Application of computer vision techniques to visual inspection tasks

Continuation of Table 5.1

Reference Description of
approach

Task Dataset

Shi et al.
(2016)

Structured forests with
SVM classifier

Segment
Asphalt

Developed dataset called
Crack Forest. 118 images
taken on smart phone
camera. 60 % for training
40 % for testing. Images
reduced to 480 × 320 px.

G. Li et al.
(2017)

SVM classifier with
features generated
using the ratio,
regularity, aspect ratio
and eccentricity ratio
of connected pixels
and the Hu invariant
moment.

Segment
Concrete

Used own dataset generated
using DSLR camera, flash
lamp, autofocusing apparatus
and laser distimeter and
angular transducer for
distance and shooting angle
of the camera from the
crack.

Cubero-
Fernandez
et al. (2017)

Image filtering with
logarithmic
transformations,
bilateral filter, Canny
edge detection and
morphological filtering.
Decision tree for
classification

Segment
Asphalt

Private dataset, labelled by
expert. Unspecified
collection conditions. 600
for training, 400 for testing

Deep-learning approaches

Makantasis
et al. (2015)

Convolutional Neural
Network (CNN)
compared to SVM,
kNN and classification
tree

Classification
Tunnel walls-
concrete

Data collected by hand-held
DSLR camera 100, 000
samples split into 8 ∶ 1 ∶ 1
ratio for training validation
and testing

2016 F. Yang
et al. (2016)

CNN Classification
then
segmentation
Asphalt

Developed dataset called
CrackNet 640, 000 patches
of 99 × 99 px for training

140

5.1 Crack detection using computer vision methods

Continuation of Table 5.1

Reference Description of
approach

Task Dataset

2017 L. Yang
et al. (2017)

CNN. Fine-tuned
VGG16 network

Patch-based
classification
Bridge
structure -
concrete

Developed shared dataset.
954 images split into regions
of interest of 100 × 100 and
130 × 130 px. Fine-tuned
with images collected at
bridge

Y.-J. Cha et al.
(2017)

CNN Concrete
surfaces

Private dataset collected by
hand. 277 images for training
cropped to 40, 000 patches.
4, 928 × 3, 264 px split into
256 × 256 px.

Pauly et al.
(2017)

CNN Patch-based
classification
Asphalt

Dataset from F. Yang et al.
(2016) 100000 image patches
for training, 40, 000 for
testing. 99 × 99 px.

Yokoyamma
and
Matsumoto
(2017)

CNN Patch-based
classification
Concrete
surfaces

Private dataset. 2000 images
for training, 1000 for testing.
64𝑥64 px patches.

Maeda et al.
(2018)

Object detection CNN Crack region
detection
Asphalt

Private dataset. Bounding
box of defect is labelled.
7, 240 images for training.
1, 813 for testing. 600 × 600
px reduced to 300 × 300 px.

Nhat-Duc
et al. (2018)

CNN combined with
Canny and Sobel edge
detection

Patch-based
classification.
Custom
dataset
collected on a
mobile phone
150 × 150 px

141

Application of computer vision techniques to visual inspection tasks

Continuation of Table 5.1

Reference Description of
approach

Task Dataset

Zhang et al.
(2018a)*

CNN with
cross-entropy loss

Segment
Asphalt

Private 3D dataset collected
using PaveVision3D system
with cameras and laser.
2, 500 images for training,
300 images for validation,
200 images testing.
1, 025 × 512 px

Zhang et al.
(2018b)*

Comparing Recurrent
Neural Network
architectures

Segment
Asphalt

Private 3D dataset collected
using PaveVision3D system
with of cameras and laser
3, 000 images for training,
500 images for testing, 500
for validation. 1, 025 × 512.

Gibb et al.
(2018)

CNN with genetic
algorithm to optimise
CNN structure

Patch-based
classification
Asphalt

Developed own dataset, but
perhaps made comparison to
Y.-J. Cha et al. (2017)
3, 000 ∶ 1, 500 for testing,
1, 500 for training 256 × 256

2018 Özgenel
and Sorguç
(2018)

Compared the
performance of
fine-tuning many
existing, pre-trained,
CNN architectures

Patch-based
classification

Largest training data size was
28, 000 patches of 227 × 277
pixels. Published dataset of
Middle East Technical
University.

X. Yang et al.
(2018)

CNN, using the fully
connected network
with pre-trained
network (VGG-19)

Segmentation
dataset
available
online.
267 × 241 px.

142

5.1 Crack detection using computer vision methods

Continuation of Table 5.1

Reference Description of
approach

Task Dataset

Vu Dung and
Duc Anh
(2019)

CNN, using the fully
connected network
with pre-trained
network (VGG-16)

Segment
Asphalt

Used dataset from Özgenel
and Sorguç (2018), which
uses the method from F. Yang
et al. (2016). Selected 600
images and manually
segmented using MATLAB
tool. 227 × 227 px

In most of the examples in Table 5.1, the aim of the research was to segment the crack

location from the image (i.e., to find the pixel coordinates of the crack within the image).

Segmentation can also be understood as a pixel-wise classification task, where the pixel

belongs to either a category of crack or non-crack. The two most common applications

for crack detection in photographs are for cracks in asphalt (i.e., road surfaces (H. Li et al.,

2017; Varadharajan et al., 2014; Cubero-Fernandez et al., 2017)) or cracks in concrete (i.e.,

structures such as bridges (Sato, 2018; Prasanna et al., 2016; L. Yang et al., 2017)).

The initial approaches to segmentation of cracks from photographs were performed

using computer vision methods that focused on edge detection algorithms (e.g., Sobel,

Canny, fast Haar transform (Abdel-Qader et al., 2003)) or colour discrepancy (since a crack

typically has darker pixels than the normal surface (Chambon and Moliard, 2011)) to allow

thresholding of the image to find the regions of the image that contain a crack. However,

these methods tend not to be robust to noise (e.g., caused by background texture in the

image) leading to results with many false positives (Chambon and Moliard, 2011) and require

tuning of parameters for best results in different scenarios. Edge detection methods can

also fail to join the crack segments, and produce poor results in cluttered images (H. Li

et al., 2017). To reduce noise in images, preprocessing steps are applied by filtering the

images, such as median filters or opening and closing morphological filters to join crack

segments (Noh et al., 2017; Su, 2013).

143

Application of computer vision techniques to visual inspection tasks

Recent advances in the field of machine-learning, has initiated a growth in the research

for automated crack detection in concrete and asphalt. Commonly, features are extracted

from the images using image processing methods and then classifiers, such as support vector

machines (SVM), random forests or k-nearest neighbour (KNN) algorithms are used to

classify whether a test image contains a crack. In the literature shown in table 5.1, features

were created using filtering methods such as Gaussian blurring , and SVM was the most

commonly used classifier.

However, most of the recent applications for crack detection in images use deep learn-

ing, specifically an approach based on convolutional neural networks (CNNs), also referred

to as deep learning. One reason for the increase in use of CNNs for crack detection is

because they do not require hand-crafted features as developed in other machine learning

approaches, and appear to be more invariant to noise (Nayyeri and Hou, 2016). However,

rather than segmenting the crack from the image, the majority of these approaches focus

on classification of image patches as either a crack or not a crack. It is likely that the reason

for using CNNs for classifying image patches, rather than segmenting the pixels containing

cracks, is due to the use of CNNs more broadly in the literature for tasks such as object

classification (e.g., (Simonyan and Zisserman, 2014)). In addition, the burden for creating

ground truth datasets for segmentation of cracks from images is much greater than for

patch-based classification, since labelling is required at a pixel level, especially since a large

amount of data tends to be required for deep learning approaches. Zhang et al. (2018a)

highlight how using small patches for crack detection introduces false positives into the

classification results since cracks and background image texture are similar at small scales.

The architecture of CNNs is adapting in the broader literature and being used for a wide

range of tasks. The development of public datasets and architectures for edge detection

has been used as inspiration for medical segmentation of retinal vessels from images of eyes

for diagnosing patients with diseases such as Coat’s disease and diabetes (Staal et al., 2004;

Hoover, 2000). Similarly, deep learning networks that were developed for medical segmen-

tation have also been used to extract road networks from satellite images (Panboonyuen

et al., 2017). Research is moving towards the use of CNNs for segmentation of cracks from

144

5.1 Crack detection using computer vision methods

images, but this has not yet been fully implemented, with only one recent example by Vu

Dung and Duc Anh (2019). Vu Dung and Duc Anh (2019) use the dataset from Özgenel

and Sorguç (2018) and manually segment the image patches. Again, it is difficult to compare

the results of this paper with others from the literature as no comparison of the approach

by Vu Dung and Duc Anh (2019) is made to existing datasets or methods, nor is there im-

plementation (with networks parameters etc.) publicly available. In addition, the adapted

dataset has not been published (at the time of writing).

One challenge of using deep learning for crack detection is the quantity and quality

of the available datasets on which learning of tasks can be performed, since ground-truth

labels are required in order to perform training and typically a greater amount of data is

required than for other machine learning approaches. This restriction creates an overhead

for preparing the datasets, particularly if an expert labeller is required to annotate the

ground truth images. In recent years, this challenge has been reduced for some applications

(e.g., house-hold object classification) due to the development of open-source, publicly

available datasets (e.g., the ImageNet dataset (Fei-Fei et al., 2010)).

The literature reviewed in Table 5.1 shows a lack of agreement around how datasets

for the segmentation of cracks should be used, particularly for deep learning applications

where there is little agreement or comment about the amount of training data required,

the size of images that should be used and the conditions under which the images should

be collected. There are also very few public datasets that are agreed upon as being a

gold-standard for testing new algorithms and approaches, with many of the examples in

Table 5.1 being collected from scratch. In contrast, in other fields of research, algorithms

are often bench-marked against one dataset, such as the BSDS dataset for image boundary

segmentation (Martin et al., 2001). The use of a common dataset allows the evaluation

of the effectiveness of the algorithm being presented, and in the current literature it is

unclear how much of an effect is due to the quality of the private datasets (i.e., datasets

that are not being made publicly available). The need for more public datasets has also been

highlighted by Zhang et al. (2018a) and Cubero-Fernandez et al. (2017). Some datasets have

developed recently (e.g. Özgenel and Sorguç (2018)), but due to the popularity of CNNs in

145

Application of computer vision techniques to visual inspection tasks

the literature, many of the datasets are in the form of small patches, rather than full-image

pixel-wise segmentations.

A potential solution to the lack of datasets for training CNNs is the use of transfer learn-

ing to a deep learning network. Transfer learning is applicable in different types of machine

learning algorithms and refers to ‘the improvement of learning in a new task through the

transfer of knowledge from a related task that has already been learned’ (Torrey and Shav-

lik, 2009). A related approach is the so-called fine-tuning of a network, where a previously

trained architecture (or a set of weights generated from a previously trained network e.g.,

VGG16 (Simonyan and Zisserman, 2014)) can be introduced to a new dataset. Fine-tuning

a network is therefore useful if a large dataset does not exist for the current application,

since it can be used to extract general features from the previous larger dataset. The result

of this process is a network specialised on the current dataset, but without the need for

large training time and datasets. Recently, (Özgenel and Sorguç, 2018) reviewed the per-

formance of several existing and pre-trained network architectures (AlexNet, variations of

VGG, GoogleNet, and variations of ResNet), which were then fine-tuned using a dataset

of cracked and non-cracked concrete surfaces. The authors concluded that the features

from these pre-trained networks were applicable for crack detection, with all of the tested

networks giving an accuracy of over 90 %. The authors also published their classification

dataset of patches of cracked and non-cracked concrete surfaces.

There is also disagreement in the literature regarding the methods that should be used

for evaluating the effectiveness of the crack detection algorithms. Most of the approaches

in Table 5.1 adopted some measure of precision and recall, which are common metrics

in machine learning and will be described further in Section 5.8. However, there were

inconsistencies with whether the mean or maximum values should be used. The methods

for evaluating crack segmentation algorithms will be discussed further in Section 5.8.

Overall, the use of deep learning for crack detection in images appears to be a promis-

ing approach for addressing the need for tuning in traditional computer vision algorithms.

However, the use of classification CNNs is limited due to the addition of false positives

caused by similarities at a patch level and the computational overhead.

146

5.2 Method overview: deep learning

In this chapter, segmentation of cracks from images of concrete will be performed using

a deep learning network which has been used for boundary segmentation (Xie, 2015; Xie

and Tu, 2017), edge detection and blood vessel segmentation in the retina (Maninis et al.,

2016). In addition, a dataset that was developed for a machine learning approach for crack

segmentation in asphalt will be used to test the deep learning approach and to compare this

method with the state of the art. Furthermore, to address the shortage of good-quality

datasets of cracks in concrete infrastructure for training deep learning networks, data from

different domains, including asphalt, concrete and the retina, were used in this work to

fine-tune the deep learning network for a crack segmentation application; these fine-tuned

networks are then compared on two datasets of cracks to evaluate their performance.

5.2 Method overview: deep learning

The area of research referred to as ‘deep learning’ is a subsection of machine learning and

artificial intelligence, that has its origin in research dating back to the 1940s, with artificial

neural networks being researched as computational models for biological learning (Good-

fellow et al., 2015). In 1990, (Le Cun et al., 1990) developed a multi-layer artificial neural

network for classification of handwritten digits, which has been recognised as a key influ-

ence in the development of modern CNNs (Gu et al., 2015). In general, these feed-forward

and back-propagation networks define a mapping 𝑦 = 𝑓(𝑥; Θ) from an input 𝑥 to output

𝑦 by learning parameters Θ (typically a set of weights and biases) that best approximate

the mapping function (Goodfellow et al., 2015). This mapping function tends to made up

of a network of many layers, where the depth of such a network refers to the number of

chained function layers and includes common layers, such as convolution layers, rectified

linear unit layers (ReLu), pooling layers and fully-connected layers.

More recently, popularity of deep learning methods has been influenced by improvement

in graphics processing units and open source datasets that has allowed large-scale image

classification objects, with well-known CNNs including: AlexNet, VGG-Net, GoogleNet

and ResNet (Gu et al., 2015). The trend during the development of these CNNs was

147

Application of computer vision techniques to visual inspection tasks

in increasing the number of layers (i.e, the depth of the network), which allows better ap-

proximation of target function and hence classification of objects in images, but at increased

risk of over-fitting (Gu et al., 2015). An example of the VGG-16 architecture is shown in

Figure 5.1.

Figure 5.1: Example structure of the VGG-16 network architecture (Simonyan and
Zisserman, 2014). Convolution, ReLu and Max-Pooling are applied in successive layers.
Finally fully connected and softmax layers are applied to calculate the loss for an input

image and to classify the output.

CNNs are most applicable to grid-like topologies, such as time-series data, image data

and speech recognition. The architecture of CNNs varies, but there are several key compo-

nents: convolution, pooling and fully-connected layers. Convolution layers are composed

of several convolution kernels that are used to compute feature maps (Gu et al., 2015).

Convolutional networks apply convolution in the place of matrix multiplication in at least

one layer (Goodfellow et al., 2015). In CNNs, convolution is the mathematical operation

of applying a kernel (or filter) across the input data, e.g., an image. The kernel usually has

a width and height smaller than the input data, but has the same depth. The output of this

process is an activation map of the response to that filter across the input data. Convolu-

tion is commonly followed by a ReLu layer which performs element wise comparison on

the convolution output and uses an activation function to convert negative values to zero,

which is required to introduce non-linearity into the model (Gu et al., 2015).

Pooling layers tend to occur between convolutional layers and are used to add invariance

in translation of an input by reducing the resolution of the feature maps (Gu et al., 2015),

148

5.2 Method overview: deep learning

typically by taking the maximum or mean in regions across the feature map. The stacking of

convolutional and pooling layers allows the extraction of features from the input data at dif-

ferent scales. The benefits of this process will be discussed further in Section 5.10.2. Finally,

fully connected layers are typically where the training loss (difference between training data

and ground truth labels) is computed. A common CNN architecture stacks convolution,

ReLu and pooling layer in a linear manner and use the fully-connected layer to calculate the

loss. However, different types of layers and architectures are developing over time. The

specific architecture used in this work is discussed in Section 5.3.

149

Application of computer vision techniques to visual inspection tasks

5.3 The HED network architecture

Two approaches are compared in this chapter for the segmentation of cracks from images

of concrete and asphalt. The main approach is a deep learning network for Holistic Edge

Detection (HED) (Xie, 2015; Xie and Tu, 2017). The HED network is compared to a

machine learning approach for crack segmentation that uses a structured forests and a

support vector machine (SVM), see Section 5.4.

The architecture of the HED network is built upon the VGG-16 convolutional neural

network (Simonyan and Zisserman, 2014), the fully connected neural networks (Long et

al., 2015) and the deeply-supervised network (DSN) (C. Lee et al., 2015) architectures.

Similarly to the VGGNet architecture, the first five stages of the network comprise of

between two and four convolution layers followed by a max-pooling step. However, the

HED network (Xie and Tu, 2017) takes inspiration from DSN by using the whole image,

rather than image patches, as an input and output and using the outputs from the final

convolution layer of each step (referred to henceforth as side outputs) to learn the features

at multiple image scales. Each of the side-outputs is associated with a classifier and an

objective function, such that:

ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) =
𝑀

∑
𝑚=1

𝛼(𝑚)𝑙𝑚
𝑠𝑖𝑑𝑒(𝐖, 𝐰𝑚) (5.1)

where𝐖 is the collection of standard network parameters,𝐰 is the set of weights optimised

for each of the side-outputs (𝐰 = (𝐰1, … , 𝐰𝑚)); 𝑙𝑠𝑖𝑑𝑒 is the image-level loss function; 𝑀 is

the number of side outputs in the network — five for HED — and 𝛼(𝑚) is the loss weight

for the 𝑚𝑡ℎ layer.

The image-level loss function, 𝑙𝑠𝑖𝑑𝑒, has been defined to include a term, 𝛽, that is used
to balance the loss between positive and negative classes (e.g., pixels that contain edges

and not edges). Here, 𝛽 = |𝑌−|/|𝑌 | and (1 − 𝛽) = |𝑌+|/|𝑌 |; |𝑌−| denotes the set of edge
ground truth pixels and |𝑌+| denotes the set of non-edge ground truth pixels. This term
is required because there is a typical imbalance in images of natural scenes where around

150

5.3 The HED network architecture

90 % of the image is a negative class, i.e., not an edge (Xie and Tu, 2017). The loss function

at each side output is defined as:

𝑙𝑚
𝑠𝑖𝑑𝑒(𝐖, 𝐰𝑚) = −𝛽 ∑

𝑗∈𝑌+

𝑙𝑜𝑔𝑝(𝑦𝑗 = 1|𝑋; 𝐖, 𝐰(𝑚)) − (1 − 𝛽) ∑
𝑗∈𝑌−

𝑙𝑜𝑔𝑝(𝑦𝑗 = 0|𝑋; 𝐖, 𝐰(𝑚))

(5.2)

The probability, 𝑝, that a pixel in a given image is an edge is calculated using a sigmoid
function, 𝜎, on the activation of the model (for the 𝑚𝑡ℎ side output) output value at the

pixel, i.e., 𝑝(𝑦𝑗 = 1|𝑋; 𝐖, 𝐰(𝑚)) = 𝜎(𝑎(𝑚)
𝑗) ∈ [0, 1]. The output of each of side outputs

is a predicted edge (or crack or retina) map, such that ̂𝑌 (𝑚)
𝑠𝑖𝑑𝑒 = 𝜎(̂𝐴(𝑚)

𝑠𝑖𝑑𝑒), where ̂𝐴(𝑚)
𝑠𝑖𝑑𝑒 ≡

𝑎(𝑚)
𝑗 , 𝑗 = 1, … , |𝑌 | for side output 𝑚. Each of these side outputs can be considered as

a mini-network that classifies edges at different scales, where the output becomes more

coarse with progression through the network (see Figure 5.2ii).

An edge map is also obtained by fusing the results of the side-outputs. This stage also

has a loss function:

ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡) = 𝐷𝑖𝑠𝑡(𝑌 , ̂𝑌𝑓𝑢𝑠𝑒) (5.3)

where 𝐡 = (ℎ1, … , ℎ𝑀) are the weights for fusing each of the side-outputs and𝐷𝑖𝑠𝑡(𝑌 , ̂𝑌𝑓𝑢𝑠𝑒)
is the distance between the fused predictions and ground truth label map, which is a cross-

entropy loss calculation.

The optimal solution is:

(𝐖, 𝐰, 𝐡)∗ = 𝑎𝑟𝑔𝑚𝑖𝑛(ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) + ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡)) (5.4)

The architectures of HED is shown in Figure 5.2i.

151

Application of computer vision techniques to visual inspection tasks

(i): HED network architecture

(ii): Output from HED

Figure 5.2: Network architecture of the HED network (5.2i) and two examples of the
HED network with the output of each of the side-outputs shown at each row for two

initial images (left and right in Figure 5.2ii). For each example, the results become coarser
with progression through the network. Using deep supervision gives better object

boundary definition.

152

5.4 Summary of the Structured Forest Approach

5.4 Summary of the Structured Forest Approach

A second method, henceforth referred to as ‘the structured forest approach’ (SFA) (Shi

et al., 2016), will be compared to the deep learning approach described in Section 5.3. An

overview of SFA is given in this section.

First, the authors created an annotated dataset. This dataset is the Crack Forest dataset

and is described in more detail in Section 5.5.1. Next, 16 × 16 patches were extracted

from the images along with their corresponding ground truth annotations. Patches that

contain an instance of a crack at the centre pixel of the patch were considered a positive

sample, other patches were discarded. Tokens (binary image patches with white pixels

representing cracks and black pixels representing background) that describe the cracks are

then extracted from the patches by computing features such as: the patch mean, standard

deviation and integral channel features. Example tokens are shown in Figure 5.3.

These tokens were then grouped using a structured random forest, see Figure 5.3.

The ground truth segmentation patch and associated features is recursively passed down

the branches of a tree until they reach a leaf, where tokens with the same features are

gathered. The number of leaves on the structured forest tree is equal to the number of

independent tokens. The most representative tokens in each leaf are extracted from the

structured forest tree and the statistical histogram (showing the occurrence of each token

in the dataset) and neighbourhood histogram (which shows the occurrence of two tokens

next to each other) can then be extracted for a given input image as statistical descriptors.

These descriptors are used to train different classifiers (e.g., a KNN and SVM classifier) to

allow cracks to be discriminated from noise in an image (Shi et al., 2016).

A test image is split into patches and the features are calculated using the same approach

as for the training samples. These test tokens are then passed down the trained structured

forest tree. A threshold is applied to the resulting images to remove the areas where there

is low probability that a crack is present. Finally, classification using an SVM removes noise.

The output of the testing process is a probability map, where each pixels are classified using

a probability that a crack is present at that pixel.

153

Application of computer vision techniques to visual inspection tasks

Figure 5.3: Visual example of SFA, with an input image token being passed down the
decision tree, where ψ represents the decision at each branch of the decision tree. The
image token passes down the decision tree to reach a ‘leaf’ (circled end nodes) that best
matches its features. The dashed edges of the tree represent multiple branching stages of

the tree. Image adapted from Shi et al. (2016).

154

5.5 Description of existing datasets

5.5 Description of existing datasets

The literature review in Section 5.1 showed that the datasets that have been developed

for CNNs are for classification of image patches. However, the most valuable information

is arguably found in segmentation datasets, although the creating a ground truth for seg-

mentation may be more time consuming than for crack classification datasets. A summary

of the currently available datasets for crack segmentation in photographs of concrete and

asphalt are described in the following sections and in Table 5.2.

5.5.1 Dataset 1: The Crack Forest segmentation dataset

The Crack Forest (CF) dataset is composed of 118 images, collected in Beijing, China, and
consists of cracks on the surface of asphalt roads. Each image has a resolution of 480 × 320
and has a corresponding hand-labelled ground truth segmentation. All the images are taken

by an iPhone 5 with focus length of 4 mm, aperture of f/2.4 and exposure time of 1/134 s (Shi
et al., 2016). An example of the CF dataset and corresponding ground truth label is shown

in Figure 5.4i and 5.4iii, respectively. The CF dataset has been used as a benchmark for

comparison of different algorithms and against an existing dataset by (Shi et al., 2016; H. Li

et al., 2017).

5.5.2 Dataset 2: Concrete Structure Spalling and Crack segmentation

dataset

The Concrete Structure Spalling and Crack (CSSC) (L. Yang et al., 2017) dataset is unique in

the current literature for crack detection as it uses search engine results (e.g., from Google,

Yahoo, Bing and Flickr) to collect images of both cracking and spalling (where the concrete

surface delaminates) in concrete, rather than hand-collected data. This dataset is different

from the CF dataset, which focuses on cracks in asphalt materials, because factors, such as

the background material of the images, in the dataset consist of a much wider variety of

colours and textures and intensity. The images were manually labelled and although the total

dataset consists of 954 crack images, 149 have been made available with manually segmented

155

Application of computer vision techniques to visual inspection tasks

ground truth images. An example of the CSSC dataset and corresponding ground truth

label is shown in Figure 5.4ii and 5.4iv, respectively. CSSC is a more recent dataset than CF

and currently has not been compared with other datasets through evaluation on different

network architectures.

(i): Crack Forest (ii): CSSC

(iii): Crack Forest ground truth (iv): CSSC ground truth

Figure 5.4: Example colour images (5.4i–5.4ii) and corresponding hand labelled ground
truths (5.4iii–5.4iv) from datasets of cracks in concrete material. In Figures 5.4iii and 5.4iv,
black pixels correspond to image regions from 5.4i and 5.4ii where there are no instances
of a crack and white pixels correspond to image regions from 5.4i and 5.4ii where there

are cracks.

156

5.5 Description of existing datasets

Table 5.2: A summary of original datasets of cracks in photographs of concrete and
asphalt. A brief description of the dataset is given along with the associated image

resolutions and number of images for each dataset.

Total number of

Dataset Dataset Image images at original

name type resolution (pixels) resolution

Crack Forest Cracks in asphalt 480 × 320 px 118

CSSC Crack in concrete varying 149

157

Application of computer vision techniques to visual inspection tasks

5.6 Creating Training and Testing Datasets

The CF dataset will be used to test the performance of the HED network for crack seg-

mentation in this chapter. As described in Section 5.5.1, the CF dataset comprises of cracks

in asphalt (not concrete), but is considered as a dataset in this work due to a general lack

of crack datasets in concrete that have a segmentation ground-truth, and because the CF

dataset has also been used for some comparisons with other methods in the literature.

Cross-dataset evaluation will also be performed using a mixture of CF and CSSC for train-

ing and testing. The resolution of the images is different for the CF and CSSC datasets,

and is different across images in the CSSC dataset. However, many of the existing deep

learning network architectures require the input data to have a consistent size and typically

this is achieved by either creating image patches (e.g., Alom et al. (2018)) or by resizing the

images (e.g., Simonyan and Zisserman (2014)). Creating image patches allows variability in

the input data size, but creates a large computational overhead for preprocessing and for

training of deep learning networks (Guo et al., 2018).

The implementation of the HED network architecture (described in Section 5.3) uses a

full input image resolution of 500 × 500 pixels, but the resolution of the CF dataset is 480 ×
320 pixels. In order to compare SFA with the HED network approach, the HED network

was trained using the CF image resolution, i.e., an input image resolution of 480 × 320, see
Section 5.10.1. To determine whether the image resolution has an impact on the crack

segmentation results, the HED network is also trained using CF scaled to 500 × 500 pixels
(see Section 5.10.4).

It is common to use a data split of around 60 % of the total dataset for training and

40 % of the dataset of testing (e.g., Xie and Tu (2017) and Zitnick and Dollár (2015)). If

network validation is performed, around 40 % of the allocated training data (i.e., the training

data is around 36 % of the total, the validation dataset is around 24 % of the total and the

testing dataset is around 40 % of the total). Validation of the networks is discussed further

in Section 5.7.1.

The CF datasets were collected using the same camera for all images and of cracks

in the photographs all appear on one type of surface, i.e., asphalt. In contrast, the CSSC

158

5.6 Creating Training and Testing Datasets

dataset comprises of many different types of images collected from image search engines

with a much greater variety of surface texture and lighting conditions, which has the po-

tential for giving increased generalisation when training the deep learning networks. The

generalisation of the datasets will be explored in Section 5.10.3 and Section 5.11.

5.6.1 Data preprocessing and augmentation

Data augmentation can also be used to increase the generalisation of the deep learning

network. In HED, a pooling layer follows a block of convolution layers (see Section 5.3).

These pooling layers allow the addition of some invariance to translation in the input im-

age. However this invariance can be improved further by performing dataset augmentation.

Dataset augmentation typically includes the application of some transform, such as rotation,

translation or scaling, to the set of input images. Since a crack can appear at different image

scales and at any orientation in an image, rotation and scaling (to 0.5 and 1.5 of the input

images) transformations were applied. These augmentations effectively increase the input

data size by a factor of 32 (Xie and Tu, 2017). Further augmentations may also be rele-

vant (e.g., skew), but have not been applied in this chapter. The augmentations of rotation,

translation and scaling were chosen to be consistent with the original HED implementation.

In the HED network, the base architecture is the VGG network (Simonyan and Zis-

serman, 2014). For VGG, no preprocessing of the images is implemented other than to

calculate the mean of the image channels across the dataset, i.e., calculating the mean red

channel value, the mean green channel value and the mean blue channel value for each

image in the training set and then averaged across the dataset. Once the mean value of

each channel is calculated it is subtracted from each of the images in the training set. Mean

subtraction is required to centre the dataset in order to ensure the model converges to a

solution (Simonyan and Zisserman, 2014).

The data augmentation and mean subtraction steps implemented in the original HED

implementation were also followed in this work. The training data was rotated and rescaled

to 0.5 and 1.5 times the original image size. Following the methodology of Simonyan and

Zisserman (2014) and Xie and Tu (2017), the mean of each of the image channels was

159

Application of computer vision techniques to visual inspection tasks

calculated for the augmented dataset, the average of which was subtracted from the aug-

mented dataset. Further research may consider the affect of using alternative methods for

normalising the input data, such as using an image range of 0–1.

5.7 Training the Networks

The network architectures described in this chapter were implemented using a publicly

available deep learning framework called Caffe (Chu et al., 2013). The networks were

trained using the GPU nodes on the advanced research computing (ARC3)—part of the

High Performance Computing facility at the University of Leeds1—and tested on a desktop

PC with a NVIDIA Titan X GPU. In order to train the deep learning networks on ARC3,

a Singularity (Kurtzer et al., 2017) image was created containing the same build of Caffe as

used in the public implementation of HED 2.

5.7.1 Parameters for training the networks

An optimisation approach is required to find the set of weights in the deep learning networks

that best reduce the loss-functions described in Section 5.3. One of the most common

optimisation approaches in deep learning is stochastic gradient descent (SGD), which is a

variation of the gradient descent algorithm.

Generally, the value of the cost function for the network is computed over the set of

training samples. It is desirable to increase the amount of training data to increase the

generalisation of the model, but as the amount of training data is increased, the cost of

computing the gradient over the whole training set becomes prohibitively large (Goodfellow

et al., 2015). Instead, SGD calculates the gradient over a reduced number of samples from

the training set, and can vary from only a single training example to a few hundred.

In HED, and other deep learning approaches, the batch-size for SGD is one training

sample (Xie and Tu, 2017). Using a larger batch-size may give a better estimate of the

1https://arc.leeds.ac.uk/systems/arc3/ (Date accessed 01/02/19)
2https://github.com/s9xie/hed (Date last accessed:01/02/19)

160

5.7 Training the Networks

gradient for optimisation, but is inefficient for large dataset sizes. In addition, calculating

the gradient using a batch-size of a single sample can increase the generalisation of the

model, perhaps since bias between samples is removed (Goodfellow et al., 2015).

For stochastic gradient descent, there are several training parameters that can be mod-

ified in order to ensure the model converges to a solution; for example, SGD depends

greatly on a parameter called learning rate. When using a batch-size smaller that the train-

ing dataset size (i.e., mini-batch stochastic gradient descent), it is recommended that the

learning rate should be decreased over time (Goodfellow et al., 2015). The learning rate

is typically chosen through trial and error or by monitoring the error curves (Goodfellow

et al., 2015; Zitnick and Dollár, 2015). A term called ‘momentum’ is added to SGD to

allow accelerated learning for noisy data, which weighs the gradients obtained by SGD with

a preference towards the direction of the previously computed gradient.

The authors of HED (Xie and Tu, 2017) state that the parameter choice for low level

edge detection requires more care than for image classification tasks, with the risk of the

network not converging. In order to choose the parameters for training, the authors of

HED follow the method outlined in Zitnick and Dollár (2015), which involves trial and error

tuning of the initial parameters by observing the effect on the precision-recall curves on a

validation dataset. In HED, the model weights were initialised using the weights from a pre-

viously trained model (VGG16). For the HED network, a publicly available implementation

exists 2, which includes the initial VGG model for fine-tuning and all details about model

structures and parameters.

To obtain the initial parameters for SGD, a validation dataset was selected which con-

sisted around 24 % of the CF dataset. The model was tested on this validation dataset

periodically during the training process. The model was scored for the chosen initial pa-

rameters throughout the training process. These parameters were then varied and training

was repeated. The selected initial parameters were the ones that gave the best result in

terms of 𝐹1 score and training loss on the validation dataset.

The main parameters to vary are: the base learning rate, the maximum number of iter-

ations, momentum, weight decay and step-size. The trial and error process using validation

161

Application of computer vision techniques to visual inspection tasks

curves to obtain the parameters used in this chapter is given Appendix B and the final values

are shown in Table 5.3.

Table 5.3: The parameters for fine tuning HED with stochastic gradient descent.

Parameter Value for training HED

learning rate 1𝑒 − 08
momentum 0.9
weight decay 0.0002

training iterations 20000
learning rate step 10000

162

5.8 Methods for testing and evaluating the networks

5.8 Methods for testing and evaluating the networks

The literature review in Section 5.1 showed that there is little agreement in the current

methods for evaluating the performance of a crack detection algorithms. Various options

will be explored in this chapter, with inspiration taken from the fields of medical segmen-

tation and edge detection.

5.8.1 Pixel-based evaluation

In order to asses the performance of a particular approach, some metrics for evaluation are

required. The output of the HED network is a grey-level image with pixels in the range of 0–
1, where each pixel of the output image contains a probability that the corresponding pixel in
the input test image contains the feature that was being learned (e.g., the probability that the

pixel contains a crack). These outputs were evaluated by comparison to the corresponding

pixels in the ground truth image. The performance of an image classification algorithm is

usually determined by first calculating the following metrics:

• True Positives (TP): when a test correctly classifies, for a given probability threshold,

a pixel as being a crack. For example, there is a crack in the pixel where the model

says there is a crack.

• True Negatives (TN): when a test correctly classifies, for a given probability threshold,

a pixel as not being a crack. For example, there is not a crack in the pixel where the

model says there is not a crack.

• False Positives (FP): when a test incorrectly classifies, for a given probability threshold,

a pixel as being a crack. For example, there is not a crack in the pixel where the model

says there is a crack.

• False Negatives (FN): when a test incorrectly classifies, for a given probability thresh-

old, a pixel as not being a crack. For example, there is a crack in the pixel where the

model says there is not a crack.

163

Application of computer vision techniques to visual inspection tasks

In the current literature for crack segmentation and classification, these values are in-

consistently reported, with some researchers reporting the average results across the test

dataset (e.g., L. Yang et al. (2017)) and some reporting the maximum value for the test

dataset (e.g., Vu Dung and Duc Anh (2019)). In addition, some authors used a boundary-

based evaluation of the crack (e.g. Shi et al. (2016)) or by selecting an image threshold

to convert the probability map into a binary image and removing pixels with a probability

below the chosen threshold, but with no justification for the choice of image threshold

(e.g., Shi et al. (2016)).

However, other fields of research, including object detection and medical segmentation

research, precision and recall are typically calculated for multiple thresholds of the output

probability map to obtain multiple binary images. Again the image pixels for each new image

are compared to the corresponding pixels in the ground truth image. A recall operator

characteristic curve (ROC) or precision-recall curve can then be generated by plotting the

true positive rates against the false positive rates or the precision values against the recall

values, respectively, for all images. The ROC curve has many reported benefits for algorithm

evaluation (Flach, 2015; Davis and Goadrich, 2006). For example, the area under the curve

(AUC) of the ROC can be used as a measure of accuracy of the test, and the major diagonal

from 0–1 of the ROC curve shows the line of random performance, which can be used as

a benchmark for algorithmic performance (Flach, 2015).

In order to choose the parameters for evaluating the model or algorithm, the classifi-

cation task at hand requires some thought. For example, for the image segmentation task

of classifying the number of tumours in an image, the penalty for false negatives should be

high because to miss a tumour could have fatal consequences. In this scenario, it may be

favourable to allow for an algorithm with an increased rate of false positives if the number

of false negatives are minimised. To represent the above values graphically, the following

metrics can be calculated:

• Sensitivity, True Positive Rate (TPR) or Recall = 𝑇 𝑃
𝑇 𝑃 +𝐹 𝑁

• Specificity or False Positive Rate (FPR) = 𝑇 𝑁
𝑇 𝑁+𝐹 𝑃

164

5.8 Methods for testing and evaluating the networks

• Precision = 𝑇 𝑃
𝑇 𝑃 +𝐹 𝑃

• Accuracy = 𝑇 𝑃 +𝑇 𝑁
𝑇 𝑃 +𝐹 𝑃 +𝑇 𝑁+𝐹 𝑁

However, the data used for training and testing the segmentation of cracks in images is

biased by the number of true negatives in the dataset; the background pixels were correctly

classified as not containing cracks, but this is not necessarily useful information. Therefore,

the results shown in the ROC curve are also biased since the ROC curve uses the number of

true positives in calculating the false positive rate (FPR) and are not a suitable representation

of the performance of the algorithm or method (Flach, 2015; Davis and Goadrich, 2006).

This bias is also present in criteria such as overall accuracy, which is commonly reported in

the literature for crack classification and segmentation (e.g., Prasanna et al. (2016), Y.-J. Cha

et al. (2017), and L. Yang et al. (2017)).

One approach for addressing the imbalance caused by the large number of true nega-

tive pixels is to discount them completely, i.e., to use the metrics which do not rely on this

value, such as precision and recall. The precision-recall curves do not have the same afore-

mentioned benefits as the ROC curve, such as the AUC metric representing a measure of

accuracy (Flach, 2015). However, the precision and recall can be combined into a metric

named the 𝐹𝛽 score, which is defined as Van Rijsbergen (1979):

𝐹𝛽 = (1 + 𝛽2)𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 ⋅ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5.5)

where 𝛽 determines the preference of the precision and recall. Typically, equal weighting is

given to the precision and the recall (Flach, 2015), i.e., 𝛽 = 1 and 𝐹1 is the harmonic mean

of the precision and recall. A single 𝐹1 value can then be obtained for the test dataset as

follows:

𝐹1 = 2 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (5.6)

165

Application of computer vision techniques to visual inspection tasks

5.8.2 Structure-based evaluation

Pixel level evaluations are not necessarily the most useful evaluation measure for segmen-

tation of cracks from photographs. As described in Fan et al. (2017), since the common

metrics used in segmentation evaluation (i.e., TP, FN, TN, FP, precision and recall) are eval-

uated at the pixel level they cannot fully capture the structure information from the image

and can be affected by errors in the ground truth labels. For crack detection applications,

it may be more useful to obtain the overall structure of the crack, rather than every pixel

containing a crack, and some approaches (e.g., Aldea and Le Hégarat-Mascle (2015)) focus

on removing false alarms, as only cracks over a certain size usually require investigation.

Object boundaries have also been used for algorithm evaluation in semantic segmen-

tation task. Object boundaries can be generated where neighbouring pixels in the ground

truth label have different values (e.g., Zitnick and Dollár (2015)). These boundaries often

need to be annotated by hand because automated approaches can give poor results for

intricate shapes. As a result, there are very few datasets with these ground truth labels

that exist for crack segmentation. This data is available for the dataset that accompanies

the SFA method (i.e., the Crack Forest dataset), but was not used as an evaluation method

in this work as the results could not be compared with other existing crack segmentation

datasets. This approach is especially useful for applications, such as segmenting objects an

image scene, where there are multiple objects of interest since some of the errors caused

by mis-labelling in a per-pixel evaluation are removed. In addition, boundary segmentation

datasets may not be as useful for crack segmentation since a crack tends to be a thin line,

sometimes with a width of one pixel, which is not well represented using a boundary-based

approach.

There may be alternative metrics available in the wider literature that can be used for the

evaluation of the deep-learning networks for crack segmentation. For example, Guo et al.

(2018) note that pixel evaluation methods do not allow the recovery of the global structure

of the retina for medical segmentation tasks and introduce a structure similarity measure

(SSIM) based on work by Fan et al. (2017) and Zhou Wang and Alan C. Bovik (2004). Fan

et al. (2017) introduce a structure measure (S-measure) as an alternative to precision and

166

5.8 Methods for testing and evaluating the networks

the 𝐹𝛽 measures. This measure uses the structural similarity measure, which is used in the

image quality assessment field as a measure for success of image de-noising (Zhou Wang

and Alan C. Bovik, 2004). SSIM is defined as follows (ZhouWang and Alan C. Bovik, 2004):

𝑠𝑠𝑖𝑚 = 2𝑥̄ ̄𝑦
(𝑥̄)2 + (̄𝑦)2 ⋅

2𝜎𝑥𝜎𝑦
(𝜎𝑥)2 + (𝜎𝑦)2 ⋅

𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

(5.7)

where 𝑥 = 𝑥𝑖|𝑖 = 1, 2, … , 𝑁 and 𝑦 = 𝑦𝑖|𝑖 = 1, 2, … , 𝑁 are the pixels belonging to the

saliency map and corresponding ground truth; 𝑥̄, ̄𝑦 are the corresponding mean values of 𝑥
and 𝑦 and 𝜎𝑥 and 𝜎𝑦 are the standard deviations.

Fan et al. (2017) divide the image into sections and use SSIM across different regions of

the image and weight the result depending on the amount of the object that are present in

the different regions to create a region-aware structural similarity measure:

𝑆𝑟 =
𝐾

∑
𝑘=1

𝑤𝑘 × 𝑠𝑠𝑖𝑚(𝑘) (5.8)

Where K is the number of image blocks, SSIM is the structural similarity measure intro-

duced in Equation 5.7 and 𝑤𝑘 is the weighting proportional to the foreground region the

block covers in the ground truth. An object-aware measure is also defined, as follows:

𝑆𝑜 = 𝜇𝑥𝑂𝐹 𝐺 + (1 − 𝜇)𝑥𝑂𝐵𝐺 (5.9)

where 𝜇 is the ratio between the foreground area (i.e., the crack) in the ground truth image

and the total image area. 𝑂𝐹 𝐺 is defined as:

𝑂𝐹 𝐺 = 2𝑥̄𝐹 𝐺 ̄𝑦𝐹 𝐺
(𝑥̄𝐹 𝐺)2 + 1 + 2𝜆 × 𝜎𝑥𝐹 𝐺)

(5.10)

where 𝑥̄𝐹 𝐺 is the mean of the foreground of the saliency map (i.e., the foreground of the

output of the HED network), 𝜆 is a constant that balances the ratio of the standard deviation
to the mean (assigned as 0.5 by Fan et al. (2017)) and 𝜎𝑥𝐵𝐺 is the standard deviation of the

background of the saliency map. 𝑂𝐵𝐺 is defined as:

167

Application of computer vision techniques to visual inspection tasks

𝑂𝐵𝐺 = 2𝑥̄𝐵𝐺 ̄𝑦𝐹 𝐺
(𝑥̄𝐵𝐺)2 + 1 + 2𝜆 × 𝜎𝑥𝐵𝐺)

(5.11)

where 𝑥̄𝐵𝐺 is the mean of the foreground of the saliency map (i.e., the foreground of the

output of the HED network) and 𝜎𝑥𝐵𝐺 is the standard deviation of the background of the

saliency map.

Finally, the region-aware similarity measure and the object-aware similarity measure are

combined to give:

𝑆 = 𝛾 × 𝑆𝑜 + (1 − 𝛾) × 𝑆𝑟 (5.12)

where 𝛾 is used to weight the region and object structure measures and is set as 𝛾 = 0.5
in Fan et al. (2017). This measure is used in this chapter to assess howmuch of the structure

of the crack has been recovered for the different datasets with respect to the ground truth

for different crack segmentation approaches. The S-measure was found to be robust to

errors in mis-labelling of the ground truth (Fan et al., 2017).

168

5.9 Overview of experiments

5.9 Overview of experiments

In this chapter, deep learning approaches for segmentation of cracks from photographs are

evaluated. In order to evaluate these approaches, the CF dataset described in Section 5.5.1

is used as a benchmark to compare the HED network with the SFA approach and other

approaches from the literature. The CF and CSSC datasets are then evaluated individually

and in combination for training and testing the HED network. The datasets referred to

as CF_CSSC indicate mixing the CF and CSSC dataset to create a combined dataset of

different sizes (70 or 140 for training and 48 and 96 for testing), but with 50 % from each

of the original datasets.

A summary of comparisons that are made using the datasets of cracks in this chapter is

given in Table 5.4.

Table 5.4: A summary of the experiments performed by the two different crack datasets,
with the method that is tested and the number of images that are used for training and

testing.

Dataset
label

Dataset for
training

Dataset for
testing

Num. images
training
/testing

Method
Section
training

CF_480_320_Aa CF CF 70 / 48 SFA 5.10.1
CF_480_320_Aa CF CF 70 / 48 HED 5.10.2
CSSC_70_Ba CSSC CF 70 / 48 HED 5.10.3
CSSC_70_Bb CSSC CSSC 70 / 48 HED 5.10.3
CF_CSSC_70_Ca CSSC+CF CF 70 / 48 HED 5.10.3
CF_CSSC_70_Cb CSSC+CF CSSC 70 / 48 HED 5.10.3
CF_CSSC_140_Da CSSC+CF CF 140 / 96 HED 5.10.3
CF_CSSC_140_Db CSSC+CF CSSC 140 / 96 HED 5.10.3

CF_500_500_Ee
CF

(500 × 500 px)
CF

(500 × 500 px) 70 / 48 HED 5.10.4

169

Application of computer vision techniques to visual inspection tasks

5.10 Results and discussion

5.10.1 Comparison of HED and SFA

As a benchmark, the results of SFA were compared to the results of HED. Both imple-

mentations were trained using the CF dataset, with 70 images for training and 48 images

for testing. After passing the testing data through the trained HED model, the output is a

probability map that describes the probability whether a pixel is a crack or not. The initial

output of the SFA is also a probability map. However, Shi et al. (2016) also applied post-

processing steps, including morphological opening to join crack segments and a threshold

to remove pixels below a probability of 0.9, to create a binary image (Shi et al., 2016) (i.e.,
a pixel containing a crack is represented by a 1 and non-crack pixels are represented by a

0). Since HED does not have a post-processing step, the results of SFA were initially com-

pared to HED without post-processing, see Figures 5.5–5.6. Then, post-processing in the

form of the application of different image thresholds and morphological opening followed

by thresholding was applied to both SFA and HED (see Figure 5.8).

First, the results for the final layer of HED (referred to henceforth as HED fused) and

SFA without post-processing were compared. As described in Section 5.8.1, a single prob-

ability map was created by stacking all of the images that are tested on HED or SFA into

a single vector and by applying a probability threshold. This process created a single bi-

nary map for the whole test dataset and repeated for many probability thresholds. The

precision, recall and 𝐹1 values were calculated for each of the binary maps and are plotted

as a precision recall curve. The precision-recall curve for the HED network is shown in

Figure 5.6 alongside the precision recall curve for SFA. The 𝐹1 score where precision was

equal to recall is marked for each method in Figure 5.6 and exemplar probability maps (and

the corresponding ground truth images and original images) from each method are given

in Figure 5.5. The 𝐹1 score where precision was equal to recall is used as the comparision

point in line with traditional computer vision analysis.

170

5.10 Results and discussion

(i): Image 1 (ii): Image 2 (iii): Image 3

(iv): Ground truth for image 1 (v): Ground truth for image 2 (vi): Ground truth for image 3

(vii): SFA for image 1 (viii): SFA for image 2 (ix): SFA for image 3

(x): HED for image 1 (xi): HED for image 2 (xii): HED for image 3

Figure 5.5: A comparison of the example images from the CF dataset, with associated
ground truth labels (5.5iv–5.5vi) followed by the results of the SFA algorithm and the HED
network on the CF dataset. Black pixels correspond to image regions where there are no
instances of a crack and white pixels correspond to image regions where there are cracks.

Pixels containing a crack or not-crack pixel are hand labelled by an annotator in
5.5iv–5.5vi and determined by SFA or HED in 5.5vii–5.5xii.

171

Application of computer vision techniques to visual inspection tasks

The example results in Figure 5.5 show that the majority of the cracks were segmented

from the test images for both SFA and HED implementations, but more background noise

was segmented using SFA than when using HED, although both HED and SFA mis-classify

pixels, such as the marks made by oil in Figure 5.5i. A higher amount of background noise

is expected for SFA since it is a patch-based approach and cracks appear similar at different

image scales (Zhang et al., 2018a). The examples in Figure 5.5viii and Figure 5.5xi show

that HED was more successful for faint cracks. Figure 5.5x also highlights a problem when

evaluating against a mis-labelled ground truth dataset, since HED segments part of a crack

that was not labelled in the ground truth in Figure 5.5iv, but is faintly visible in the original

image in Figure 5.5i. Similarly, there is discrepancy for the per-pixel evaluation for the

ground-truth in Figure 5.5vi and the result of HED in Figure 5.5xii, where the ground truth

label has a block of pixels, but the actual crack in Figure 5.5iii is a more subtle line. Further

cause for error between the segmented image and the ground truth label is the thickness

of the cracks that are segmented by both SFA and HED, since these pixels will be regarded

as false positives in the per-pixel evaluation.

For all probability thresholds applied to the SFA and HED results, the precision is higher

for HED than SFA for the associated recall value in Figure 5.6. Hence, for all pixels where

HED and SFA reported some probability that a crack was present, the pixels returned by

HED were more likely to be a crack. The 𝐹1 score for the probability threshold at which

precision is equal to recall is 0.546 for SFA and 0.638 for HED (also marked on Figure 5.6).

A different threshold can be chosen to meet some other criteria at the expense of reducing

either recall or precision. The authors of SFA (Shi et al., 2016) chose a probability thresh-

old of 0.9, the equivalent precision and recall values for this threshold are also marked in
Figure 5.6 and shown qualitatively in Figure 5.7.

172

5.10 Results and discussion

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

0.607

0.537

0.
80

4

0.
26

8

Precision - Recall curve
SFA vs HED network for CF dataset

F1 score (P==R)
 = 0.540
SFA_CF
(AUC = 0.546)

F1 score (P==R)
 = 0.626
HED_CF_fuse
(AUC = 0.638)

Precision
==Recall
Threshold
=0.9

Figure 5.6: Comparison of the precision-recall values for the results of SFA and the fused
output (final layer) of the HED network. The 𝐹1 score where the precision is equal to the
recall are marked for each method along with the corresponding probability threshold,

and the values are given in the legend.

173

Application of computer vision techniques to visual inspection tasks

For SFA, using a probability threshold of 0.9 gave a much lower recall of 0.287, but
a precision of 0.607, so that fewer pixels were being reported as cracks, but those that

were reported were more likely to be cracks. In contrast, for HED, using a probability

threshold of 0.9 gave a higher recall of 0.804, but a lower precision of 0.537, so that more
pixels were classified as cracks, but the number of false positives increased. Aldea and

Le Hégarat-Mascle (2015) reported that it may be desirable to have a higher precision

than recall to reduce the number of false positives that are detected when performing

crack segmentation from images, since only pixels containing a high probability of crack are

returned. A precision-recall curve, such as the one in Figure 5.6, can be used to determine

the trade-off between precision and recall and the corresponding probability threshold can

be obtained from the raw data used to create the precision-recall curve. This threshold

value can then be applied in order to achieve desirable results when implementing the

classifier on a new test dataset.

To show the effect of using different probability thresholds on the qualitative results, a

threshold of 0.604 was applied to the probability maps from SFA and a threshold of 0.957
was applied to the probability maps from HED, (i.e., the thresholds that were applied to the

probability map to give the 𝐹1 score where precision is equal to recall for SFA and HED,

respectively in Figure 5.6) and the threshold of 0.9 was applied to the probability maps from
both SFA and HED. Exemplar binary images resulting from different probability thresholds

are shown in Figure 5.7 and correspond to the original probability maps shown in Figure 5.5.

By comparing the resulting binary maps for the different thresholds in Figure 5.7, the

effect of increasing and decreasing recall in Figure 5.6 can be seen. As expected, the crack

in Figure 5.7iv is much more pronounced than in Figure 5.7vii where only pixels above a

probability of 0.9 remain. For the same threshold for HED, a more complete crack was

returned than for SFA in all instances (comparing Figure5.7vii–5.7ix and Figures 5.7xiii–

5.7xv), although both SFA and HED perform poorly for the cracks corresponding to the

ground truth label in Figure 5.7ii.

In order to improve the results of SFA, (Shi et al., 2016) applied post-processing steps

using morphological opening where a 4 × 4 filter is passed over the probability map to

174

5.10 Results and discussion

remove small areas of noise and to join gaps between cracks before applying a threshold of

0.9 to the post-processed probability map. To compare the effect of this approach on the

resulting binary maps, post-processing was applied to both SFA and HED and the results are

shown in Figure 5.8. However, rather than applying a single threshold of 0.9, the thresholds
of 0.604, 0.957 and 0.9 were applied to SFA, HED and both methods (see Figure 5.8).

As expected, comparing the results in Figure 5.7 and Figure 5.8, shows that by applying

the morphological opening, less pixels containing cracks were removed when applying the

thresholds for each approach when compared to just thresholding in Figure 5.7. Again,

changing the threshold affects the number of pixels that were kept. For HED, applying

the threshold of 0.959 (obtained from the 𝐹1 score where precision was equal to recall in

Figure 5.6) gave a much thicker crack than for the equivalent threshold for SFA (compare

Figures 5.8iv – 5.8vi and 5.8x – 5.8xii). However, this increase in thickness comes at a loss

of subtle details, such as the gaps in some of the cracks (compare Figure 5.8xii and 5.8xv).

175

Application of computer vision techniques to visual inspection tasks

(i): Ground truth for image 1 (ii): Ground truth for image 2 (iii): Ground truth for image 3

(iv): Threshold of 0.604 for SFA (v): Threshold of 0.604 for SFA (vi): Threshold of 0.604 for SFA

(vii): Threshold of 0.9 for SFA (viii): Threshold of 0.9 for SFA (ix): Threshold of 0.9 for SFA

(x): Threshold of 0.959 for
HED

(xi): Threshold of 0.959 for
HED

(xii): Threshold of 0.959 for
HED

(xiii): Threshold of 0.9 for HED (xiv): Threshold of 0.9 for HED (xv): Threshold of 0.9 for HED

Figure 5.7: Qualitative results of SFA and HED on three images from the test dataset
when different thresholds are applied. A threshold of 0.604 and 0.959 are applied to SFA
and HED respectively, A threshold of 0.9 is also applied to match the threshold applied in
SFA by (Shi et al., 2016). Black pixels correspond to image regions where there are no

instances of a crack and white pixels correspond to image regions where there are cracks.
176

5.10 Results and discussion

(i): Ground truth for image 1 (ii): Ground truth for image 2 (iii): Ground truth for image 3

(iv): Threshold of 0.604 for SFA (v): Threshold of 0.604 for SFA (vi): Threshold of 0.604 for SFA

(vii): Threshold of 0.9 for SFA (viii): Threshold of 0.9 for SFA (ix): Threshold of 0.9 for SFA

(x): Threshold of 0.959 for
HED

(xi): Threshold of 0.959 for
HED

(xii): Threshold of 0.959 for
HED

(xiii): Threshold of 0.9 for HED (xiv): Threshold of 0.9 for HED (xv): Threshold of 0.9 for HED

Figure 5.8: Qualitative results of SFA and HED on three images from the CF dataset when
applying the post-processing step of morphological opening and the thresholds of 0.604

and 0.959 and 0.9 . Black pixels correspond to image regions where there are no
instances of a crack and white pixels correspond to image regions where there are cracks.

177

Application of computer vision techniques to visual inspection tasks

Next, an alternative evaluation method is considered: the SSIM and S-measure ap-

proaches described in Section 5.8.2. These values are plotted for the original SFA and

HED implementations as well as the thresholded values and post-processed and thresh-

olded values in Figure 5.9 and Figure 5.10.

The S-measure and SSIM was calculated on a per-image basis for the test dataset results

and averaged over the dataset, whereas the 𝐹1 score was obtained for the test dataset

results as a whole. Figure 5.9 and Figure 5.10 show that on the whole, the 𝐹1 score has a

lower value than S-measure and SSIM, but from a ranking perspective the difference between

the 𝐹1 and S-measure is similar for all approaches. In addition, although the application of

the post-processing steps in Figure 5.8 gave a better visual appearance of the cracks, the

overall 𝐹1 score did not improve and there appears to be a decrease for the values of SSIM

and S-measure, although this reduction was minimal for SSIM on the SFA approach. In

general, the SSIM had a value over 0.8 for all methods and image thresholds, which shows
that all methods gave low amounts of background texture, but otherwise is not useful for

discerning between approaches.

For HED, the S-measure and 𝐹1 score decreased when the image was post-processed.

This reduction is most probably because the segmented crack is much thicker than the

ground truth, as discussed for the qualitative results in Figure 5.8. For SFA, this effect is less

prominent, since there are fewer pixels to which the morphological opening is applied. An

alternative threshold could be applied to minimise this effect, with the aim of maximising

the S-measure after pre-processing rather than the 𝐹1 score before pre-processing.

178

5.10 Results and discussion

SFA SFA
 f1 threshold

SFA
 threshold

 of 0.9

SFA
 post-processed

 threshold
 of 0.604

SFA
 post-processed
 threshold of 0.9

Method

0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

fo
r S

-m
ea

su
re

, S
SI

M
, F

1
sc

or
e

Comparison of S-measure , SSIM and F1 score for SFA

S-measure SSIM F1 score

Figure 5.9: A comparison of SSIM, S-measure and 𝐹1 score for the original SFA
implementation, and SFA after a thresholding step or post-processing has been applied to

the results.

HED HED
 f1 threshold

HED
 threshold

of 0.9

HED
 post-processed

 threshold of
 0.957

HED
 post-processed
 threshold of 0.9

Method

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
fo

r S
-m

ea
su

re
, S

SI
M

, F
1

sc
or

e

Comparison of S-measure , SSIM and F1 score for HED

S-measure SSIM F1 score

Figure 5.10: A comparison of SSIM, S-measure and 𝐹1 score for HED for the original HED
implementation, and HED after a thresholding step or post-processing has been applied to

the results.

179

Application of computer vision techniques to visual inspection tasks

5.10.2 Evaluating the side-outputs of HED

As described in Section 5.3, the HED network has outputs (also referred to as side-outputs)

for each set of layers in the network. In this section, the side-outputs are compared to eval-

uate whether a different configuration of HED could be used for an improved segmentation

of cracks, since different details of the cracks are extracted at each side-output (see Fig-

ure 5.11). Each of the output layers follows a naming convention of deeply supervised

network layer (DSN) from 1–5, which reflects the process of calculating the loss for each
of the outputs, of which there are five, and using this loss to train the network. The final

output fuses the five output layers and is henceforth referred to as ‘fused’. For the same

HED network as Section 5.10.1, an example of the qualitative results for the side-outputs

for a sample image from the test dataset are shown in Figure 5.11, alongside the original

image and corresponding ground truth label. The network is trained and tested on the CF

dataset.

In Figure 5.11, the side-outputs of HED show segmentation of the cracks at different

image scales. In Figure 5.11iii, the thickness of the segmented crack appears most similar to

the ground truth label, but there is the greatest amount of background noise, when com-

pared to the other side-outputs. Each of the side-outputs from DSN 1–5 shows an increase

in the thickness of the segmented crack and a decrease in the amount of background noise.

Figure 5.11viii shows the fused result, where the background noise has been removed, but

the crack is also thinner than in Figure 5.11vii.

The precision-recall curve is plotted in Figure 5.12, for each of the side-outputs layers

and fused layer and the 𝐹1 score where precision is equal to recall is marked. The fused

output layer has the greatest precision for all values of recall. The first side-output (DSN1)

and the fifth side-output (DSN5) has the lowest 𝐹1 scores for all of the layers. DSN1

probably has a low 𝐹1 score since its output has the greatest amount of background noise,

visible in the example output of Figure 5.11iii, and DSN5 may has a low score due to the

thickness of the segmented crack, also visible in the example output of Figure 5.11vii, which

increases the number of false positive when compared to the ground truth.

180

5.10 Results and discussion

(i): RGB Image 2 of CF dataset (ii): Ground truth of image 2 of CF dataset

(iii): Result of side output 1 (dsn1) of HED (iv): Result of side output 2 (dsn2) of HED

(v): Result of side output 3 (dsn3) of HED (vi): Result of side output 4 (dsn4) of HED

(vii): Result of side output 5 (dsn5) of HED (viii): Result of fused output of HED

Figure 5.11: The qualitative results of the side-outputs of the HED network on the CF
dataset. An example image from the CF dataset is shown in 5.11i and the corresponding

ground truth label is shown in 5.11ii. Each of the five side outputs is shown
in 5.11iii–5.11vii and the fused result is shown in 5.11viii. Black pixels correspond to image
regions where there are no instances of a crack and white pixels correspond to image

regions where there are cracks.

181

Application of computer vision techniques to visual inspection tasks

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
comparing side outputs of HED for CF dataset

Precision
==Recall
HED_CF_fuse
F1 score (P==R)
 = 0.63
HED_CF_fuse
HED_CF_dsn5

F1 score (P==R)
 = 0.40
HED_CF_dsn5
HED_CF_dsn4
F1 score (P==R)
 = 0.51
HED_CF_dsn4

HED_CF_dsn3
F1 score (P==R)
 = 0.55
HED_CF_dsn3
HED_CF_dsn2

F1 score (P==R)
 = 0.51
HED_CF_dsn2
HED_CF_dsn1
F1 score (P==R)
 = 0.37
HED_CF_dsn1

Figure 5.12: A comparison of the precision-recall curves for the side-outputs of the HED
network (labelled DSN–5 and fuse). The 𝐹1 score where the precision is equal to the

recall is marked for each of the side-outputs and the values given in the legend.

182

5.10 Results and discussion

HED
 DSN1

HED
 DSN2

HED
 DSN3

HED
 DSN4

HED
 DSN5

HED
 FUSED

Method

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
fo

r S
-m

ea
su

re
, S

SI
M

, F
1

sc
or

e
Comparison of S-measure , SSIM and F1 score

 for side-outputs of HED

F1 score
SSIM

S-measure

Figure 5.13: A comparison of SSIM, S-measure and 𝐹1 score for the side-outputs of HED.

In addition to the precision-recall curve, the averaged structure measures (SSIM and

S-measure) are also plotted in Figure 5.13, alongside the associated 𝐹1 score. Figure 5.13

shows that the average S-measure increases almost linearly as the scale of the image fea-

tures from the side-outputs increases. The 𝐹1 score is within the error bounds of the

S-measure for all outputs except for side-output 5, where the crack is much thicker than
the corresponding ground truth. The overlap between 𝐹1 score and S-measure suggests

that the ranking of these metrics when benchmarking different methods may be similar.

The standard deviation is greater for DSN2–DSN4 for both the S-measure and SSIM. The

SSIM changes considerably between the side-outputs, which suggests it is more affected by

background texture, since it varied only slightly for the fused outputs of SFA and HED in Fig-

ure 5.9 and 5.10 when the majority of background noise had been removed. The S-measure

gives the best performance for the fused output, where the 𝐹1 score is also highest. In ad-

183

Application of computer vision techniques to visual inspection tasks

dition, the S-measure also appears to be less variable than 𝐹1 score, which suggests that it

is more robust to the change in thickness of the crack and also mis-labelling of the ground

truth (Fan et al., 2017). It is recommended for future work that the S-measure be used in

comparison with the 𝐹1 score for ranking different approaches and datasets to understand

the correlation between S-measure and 𝐹1 score and to determine whether S-measure is

a better metric for evaluating crack segmentation algorithms.

5.10.3 Cross-dataset testing

To evaluate the effect of the dataset on the results of HED network, the HED network was

trained on three additional datasets: the CSSC dataset, a 50:50 split of CF and CSSC with

a total of 70 images (henceforth referred to as CF_CSSC_70_Ca or CF_CSSC_70_Cb for

testing on the CF or CSSC dataset, respectively) and a 50:50 split of CF and CSSC with a to-

tal of 140 images (henceforth referred to as CF_CSSC_140_Da or CF_CSSC_140_Db for
testing on the CF or CSSC dataset, respectively). The HED networks trained on these dif-

ferent datasets were then tested on the CF dataset and CSSC dataset. Reference examples

of the CF and CSSC dataset are given in Figure 5.14. Qualitative results for cross-dataset

testing are given in Figure 5.15 and Figure 5.17 and the precision-recall curves are shown

in Figure 5.16 and Figure 5.18.

The qualitative results in Figure 5.15 and Figure 5.17 show that training the HED net-

work on the different crack datasets returned positive instances of segmentation of cracks

when applied to the test images. However, when testing CSSC_70 on the CF dataset (i.e,

CSSC_70_Ba), the crack in Figure 5.15v was not segmented. Conversely, when testing

CF_70 (i.e, CSSC_70_Bb) on CSSC the edge at the intersection of a wall and a floor in

Figure 5.14ix is incorrectly segmented as a crack in Figure 5.17iii. This example, shows that

the CF dataset is too focused on cracks, i.e., there are no (or too few) examples in the

training dataset of lines other than cracks from which the model can learn.

In general, the combination of the two datasets for training increased the amount of

background noise that was present in the resulting probability maps. The amount of back-

ground noise decreased as the size of the training data increased from 70 images to 140

184

5.10 Results and discussion

images, but was still worse than when using only CF or only CSSC. For example, the image

Figure 5.17ix shows more of the wall from Figure 5.14ix than in Figure 5.17xii. This result

suggests that there may be overfitting of the model when trained only on CSSC or only on

CF.

185

Application of computer vision techniques to visual inspection tasks

(i): Image 1 of CF dataset (ii): Image 2 of CF dataset (iii): Image 3 of CF dataset

(iv): Ground truth for CF
image 1

(v): Ground truth for CF image
2

(vi): Ground truth for CF
image 3

(vii): Image 1 of the CSSC
dataset

(viii): Image 2 of the CSSC
dataset

(ix): Image 3 of the CSSC
dataset

(x): Ground truth for image 1
of the CSSC dataset

(xi): Ground truth for image 2
of the CSSC dataset

(xii): Ground truth for image 3
of the CSSC dataset

Figure 5.14: Reference RGB and ground truth labels of data from the CF dataset
(5.14i–5.14vi) and CSSC dataset (5.14vii–5.14xii).Black pixels correspond to image regions
where there are no instances of a crack and white pixels correspond to image regions

where there are cracks.

186

5.10 Results and discussion

In Figure 5.16, the network that had the lowest performance was the CSSC_70_Ba

dataset and in Figure 5.18 the network with the lowest performance was the CF_70_Ab

dataset. This result is expected, since no data from CF was used to train the CSSC_70

network and no data from CSSC was used to train the CF_70 network: the networks

have not been exposed to any data from the opposing datasets during training. Comparing

CSSC_70 and CF_70 in Figures 5.15 and 5.17, shows that CSSC_70 has a slightly higher

performance when tested on CF (with an 𝐹1 score of 0.567 in Figure 5.16) than the CF_70
network when tested on CSSC (i.e., CF_70_Ab, with an 𝐹1 score of 0.534 Figure 5.18).

This result suggests that the CSSC dataset allows better generalisation than the CF dataset

to unseen test data, which is expected due to the greater diversity in the training data (e.g.,

different types of cracks and background texture).

All of the trained networks in Figure 5.18 had a worse performance than in Figure 5.16.

This result is likely caused by a larger variation in the types of cracks in the CSSC dataset

compared to the CF dataset. Mixing CSSC and CF datasets may give a slight increase in

performance for precision at low recall which increased further slightly when the size of

the dataset was doubled from CF_CSSC_70_Ca to CF_CSSC_140_Da, see Figure 5.16.

However, the 𝐹1 score was not improved when testing on the CF dataset or CSSC dataset.

187

Application of computer vision techniques to visual inspection tasks

(i): CF_70
(tested on CF)

(ii): CF_70_Aa
(tested on CF)

(iii): CF_70_Aa
(tested on CF)

(iv): CSSC_70_Ba
(tested on CF)

(v): CSSC_70_Ba
(tested on CF)

(vi): CSSC_70_Ba
(tested on CF)

(vii): CF_CSSC_70_Ca
(tested on CF)

(viii): CF_CSSC_70_Ca
(tested on CF)

(ix): CF_CSSC_70_Ca
(tested on CF)

(x): CF_CSSC_140_Da
(tested on CF)

(xi): CF_CSSC_140_Da
(tested on CF)

(xii): CF_CSSC_140_Da
(tested on CF)

Figure 5.15: A qualitative comparison of the results from different training datasets. The
CF_CSSC_70 dataset consists of 35 images from both the CF and CSSC datasets. The
CF_CSSC_140 dataset consists of 75 images from both the CF and CSSC datasets. The
CF_70 dataset consists of 70 images from the CF dataset. The CSSC_70 dataset consists
of 70 images from the CSSC dataset. All networks were tested on the CF dataset. Black
pixels correspond to image regions where there are no instances of a crack and white

pixels correspond to image regions where there are cracks.

188

5.10 Results and discussion

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
testing different training sets on the CF dataset

Precision
==Recall
CF_70_Aa
F1 score (P==R)
 = 0.626

CSSC_70_Ba
F1 score (P==R)
 = 0.567

CSSC_CF_70_Ca
F1 score (P==R)
 = 0.610

CSSC_CF_140_Da
F1 score (P==R)
 = 0.623

Figure 5.16: A comparison of the precision-recall curve comparing different training
datasets for crack segmentation when tested on the CF dataset. The CF and CSSC

datasets were combined to give the CSSC_70 and CSSC_140 datasets and are compared
with with CSSC_70 and CF_70 datasets.

189

Application of computer vision techniques to visual inspection tasks

(i): CF_70_Ab
(tested on CSSC)

(ii): CF_70_Ab
(tested on CSSC)

(iii): CF_70_Ab
(tested on CSSC)

(iv): CSSC_70_Bb
(tested on CSSC)

(v): CSSC_70_Bb
(tested on CSSC)

(vi): CSSC_70_Bb
(tested on CSSC)

(vii): CF_CSSC_70_Cb
(tested on CSSC)

(viii): CF_CSSC_70_Cb
(tested on CSSC)

(ix): CF_CSSC_70_Cb
(tested on CSSC)

(x): CF_CSSC_140_Db
(tested on CSSC)

(xi): CF_CSSC_140_Db
(tested on CSSC)

(xii): CF_CSSC_140_Db
(tested on CSSC)

Figure 5.17: A qualitative comparison of the results from different training datasets. The
CF_CSSC_70 dataset consists of 35 images from both the CF and CSSC datasets. The
CF_CSSC_140 dataset consists of 75 images from both the CF and CSSC datasets. The
CF_70 dataset consists of 70 images from the CF dataset. The CSSC_70 dataset consists
of 70 images from the CSSC dataset. All networks were tested on the CSSC dataset.
Black pixels correspond to image regions where there are no instances of a crack and

white pixels correspond to image regions where there are cracks.

190

5.10 Results and discussion

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
testing different training sets on the CSSC dataset

Precision
==Recall
CF_70_Ab
F1 score (P==R)
 = 0.534

CSSC_70_Bb
F1 score (P==R)
 = 0.593

CSSC_CF_70_Cb
F1 score (P==R)
 = 0.528

CSSC_CF_140_Db
F1 score (P==R)
 = 0.580

Figure 5.18: A comparison of the precision-recall curve comparing different training
datasets for crack segmentation when tested on the CSSC dataset. The CF and CSSC

datasets were combined to give the CSSC_70 and CSSC_140 datasets and are compared
with with CSSC_70 and CF_70 datasets.

191

Application of computer vision techniques to visual inspection tasks

5.10.4 Varying image resolution when training HED

As described in Section 5.3, all of the input images for HED are required to be the same.

The image resolution of 480 × 320 pixels was chosen initially to match the image resolution
of the CF dataset and to allow comparison with the results from SFA, which also trained the

random forests and SVM classifier using images of 480 × 320 pixels. However, the original
HED implementation uses images of 500x500 pixels. HED was retrained using the same

training set from CF, but the images were resized to 500x500 pixels using a script, written

in python, that scaled and cropped the images to maintain the aspect ratio of the crack

in the original image. The test images were also resized and precision-recall curve for the

results for both image resolutions are compared in Figure 5.20 and a qualitative comparison

of example results is given in Figure 5.19.

(i): CF 500 × 500 (ii): CF 500 × 500 (iii): CF 500 × 500

(iv): CF 480 × 320 px (v): CF 480 × 320 px (vi): CF 480 × 320 px

Figure 5.19: A qualitative comparison of the results from HED when training and testing
on two different image resolutions. The results of the network trained and tested using
images scaled to 500 × 500 are shown in the top row and the results of the network when
trained at the original resolution of 480 × 320 pixels are shown in the bottom row of the
Figure. Both sets of images are from the CF dataset. Black pixels correspond to image
regions where there are no instances of a crack and white pixels correspond to image

regions where there are cracks.

192

5.10 Results and discussion

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
Comparing HED for two image resolutions

Precision
==Recall
CF_500_500_Ee

F1 score (P==R)
 = 0.657
CF_480_320_Aa

F1 score (P==R)
 = 0.626
CF_500_480_Ea

F1 score (P==R)
 = 0.626

Figure 5.20: Comparison of the precision-recall values for the results of the fused output
of the HED network for the CF dataset for image resolutions of 480 × 320 pixels and

500 × 500 pixels. The 𝐹1 score where the precision is equal to the recall are marked for
each method and the values given in the legend.

193

Application of computer vision techniques to visual inspection tasks

Changing the input image resolution improved the 𝐹1 score from 0.626 to 0.657 and

the values of precision at low recall. One potential reason for the increase in performance,

is shown in Table 5.5. Table 5.5 shows that by resizing the images of the CF dataset from

480 × 320 pixels to 500 × 500 pixels for training and testing the HED network, the number

of pixels as a ratio the background pixels increases by almost 50 %. One possible reason
for the improvement in the results for the HED network is due to increase in the number

of positive instances of a crack in the training set for no change in the background texture

in the image. As shown in Figure 5.19, one consequence of resizing the images is that some

of the cracks have been cropped away. However, the CF dataset focuses the images around

the crack, hence the majority of pixels that were removed were background pixels, which

increases the percentage of pixels containing cracks relative to the image. Increasing the

scale of the CF dataset images increased the probability that a pixel is a crack and details of

the results. This is apparent by the increased contrast of the cracks in Figures 5.19i–5.19iii

when compared to Figures 5.19iv–5.19vi and the increased detail seen in Figure 5.19iii when

compared to Figure 5.19vi.

Table 5.5: The percentage of pixels corresponding to cracks in the CF dataset for an
image resolution of 480 × 320 pixels and 500 × 500 pixels. The percentage of pixels

classified as a crack is calculated as a ratio to the number of non-crack pixels in the image.

Dataset Name Data type Averaged percent Standard

crack (%) deviation (%)

CF 480 × 320 px Crack 1.43 0.95
CF 500 × 500 px Crack 2.15 0.95

194

5.11 Incorporating features from blood vessels for the segmentation of cracks

5.11 Incorporating features from blood vessels for the

segmentation of cracks

In Section 5.10 methods from the medical segmentation of blood vessels from images of the

retina were used to improve the methodology for evaluating the segmentation of cracks

from images. However, there may be other useful information that can be utilised for the

purpose of segmenting cracks. For example, there are many visual similarities between the

branching patterns made by blood vessels and cracks. In the book ‘The Self-Made Tapestry:

Pattern Formation in Nature’ Philip Ball describes some of the physical reasoning behind

the patterns that are visible in nature, such as the branching patterns of mineral dendrites

in crystals (Ball, 1999). These patterns can often be described mathematically using fractals.

The term fractal was coined by Benoit Mandelbrot (Mandelbrot, 1982) to describe both the

irregularity and fragmented shapes of patterns in nature (Mandelbrot, 1982). A key feature

of fractals is the property of scale invariance, where zooming in or out of a section of the

shape gives the shape as a whole and self-similarity.

Not all branching structures are fractals, but, as demonstrated by Ball, cracks can be

described by fractal models and there formation has similarities to the propagation of light-

ning (Ball, 1999). Both the retinal blood vessels and cracks can be described using their

fractal dimension. The fractal dimension describe how densely packed a branching struc-

ture is (Ball, 1999; Mandelbrot, 1982), where a fractal dimension of 1 is close to a straight
line and a fractal dimension of 2 is a densely branching structure.

To compare the fractal dimension of cracks and retinal blood vessels, some datasets

of the retina are required. Images of the retina are collected when diagnosing patients by

looking for narrowing of the retinal blood vessels or discolouration of the optic nerve when

diagnosing diseases such as Coat’s disease and diabetes (Staal et al., 2004; Hoover, 2000).

Three commonly used datasets in retinal segmentation and the properties of these datasets

is outlined in Table 5.6.

195

Application of computer vision techniques to visual inspection tasks

Table 5.6: A summary of recent retinal datasets showing the datasets described above
with the associated image resolutions and number of images for each dataset.

Total number of

Dataset Dataset image images at original

name type resolution (pixels) resolution

DRIVE Retina 565 × 584 40
STARE Retina 700  ×  605 20
HRF Retina 3504  ×  2336 45

(i): DRIVE (ii): STARE (iii): HRF

(iv): DRIVE ground truth (v): STARE ground truth (vi): HRF ground truth

Figure 5.21: Example RGB images (5.21i–5.21iii) and corresponding ground truth labels
(5.21iv–5.21vi) from the retinal blood vessels datasets. The ground truth labels were

manually annotated. where the white pixels denote a pixel containing a blood vessel and
the black pixels denote the background.

The fractal dimension of a shape can be calculated using a box-counting method. Box-

counting overlays a grid over an image and counts the number of pixels of the shape of

interest in the boxes of the grid whilst the grid-size is decreased over subsequent iterations.

Box-counting is used to determine how the detail of the shape changes with decreasing

196

5.11 Incorporating features from blood vessels for the segmentation of cracks

scale. The change in detail (number of relevant pixels) is plotted against the change in

scale of the grid, and the slope of the logarithmic regression of these values is the fractal

dimension.

Several authors have used the fractal properties of the retinal blood vessels and of

cracks for image segmentation and characterisation. For example, the authors of Salari

and Ouyang (2012) use fractal-inspired approach for thresholding images containing cracks.

Similarly, Ventura et al. (2015) compare the fractal dimension of the retinal blood vessels in

patients with and without a disease with the aim of creating a classifier for the disease.

For context, the fractal dimension of the images in Figure 5.22 are given. The box-

counting algorithm used to obtain the fractal dimension of these images was implemented

using the fractal analysis plugin FracLac3 to the image analysis software called ImageJ4. Since

the HRF dataset has a larger image resolution than DRIVE or STARE, the images were

cropped to match the image resolution of the CF dataset.

Both cracks and the retina have a fractal dimension between 1 and 2 (Ventura et al.,

2015). The full image of the retina in Figure 5.22i has a fractal dimension of 𝐷 = 1.6463
with a standard deviation 0.0323. This result aligns with fractal dimension of 1.7 reported
in (Ball, 1999). For the images of cracks in Figure 5.22iii and 5.22iv, the fractal dimensions are

𝐷 = 1.17(+/ − 0.0282) and 𝐷 = 1.14(+/ − 0.0136). These values show that the cracks have

some self-similarity, but are not as dense as the retinal image. Furthermore, when the high

resolution retina image is cropped it also has a fractal dimension of𝐷 = 1.2306(+/−0.0148).
This value is much closer to the value for images of cracks and suggest that there may be

some features that are worth using for training the HED network. The patches of HRF

appear visually similar to features you might expect in crack detection, such as being linear

across an image and branching into smaller sections.

In the previous section, the performance of the segmentation of cracks was improved by

increasing the image resolution. When the image resolution was increased, the proportion

of the number of cracks containing pixels to background increased by 50 %. The authors
of HED (Xie and Tu, 2017) address the class imbalance between pixels by introducing a

3https://imagej.nih.gov/ij/plugins/fraclac/ date last accessed:01/02/19
4https://imagej.nih.gov/ date last accessed:01/02/19

197

Application of computer vision techniques to visual inspection tasks

(i): DRIVE: 𝐷 = 1.6463 + / − 0.0323 (ii): HRF: 𝐷 = 1.2306 + / − 0.0148

(iii): CF: 𝐷 = 1.17 + / − 0.0282 (iv): CSSC: 𝐷 = 1.14 + / − 0.0136

Figure 5.22: Example ground truth images from datasets of the DRIVE and HRF retinal
datasets (5.22i and 5.22ii) and from the CF and CSSC datasets of cracks in concrete

material (5.22iii and 5.22iv).

term in the loss function used when training the networks (see Section 5.3). When training

the Deep Retinal Image Understanding (DRIU) network (a variation of HED) using DRIVE

and STARE images (Maninis et al., 2016) state that there is an expected imbalance where

only 10 % of pixels in the image will contain a positive example (i.e., the pixel contains an

example of a retinal vessel), the remaining pixels should be classified as negative.

In Table 5.7 the number of pixels that are classed as a blood vessel in proportion to

the background is shown. The number of positive pixels in the HRF patches are around

six times greater than in the CF dataset. As the features for eyes and crack are similar,

the addition of HRF images may improve the segmentation of cracks during cross-dataset

training and testing. It should be noted, that the increase in the number of pixels for the

CSSC dataset did not improve the results, since the standard deviation of the percent of

198

5.11 Incorporating features from blood vessels for the segmentation of cracks

pixels in the image is much greater for CSSC than CF, it is likely that the results did not

improve due to size of some of the cracks included in the training dataset, see Figure 5.23

or due to the noisy nature of the dataset (discussed further in Section 5.12).

Figure 5.23: An example of an image and associated ground truth label in the CSSC
dataset which contains a crack that has a high percentage of image pixels containing cracks.

The number of positive examples of pixels containing cracks in the DRIVE dataset is

51.83 % which is a five-fold increase over the HRF patches. For comparison, the HED

network has been used for the segmentation of blood vessels from the DRIVE dataset, and

achieved a reported 𝐹1 score of 0.796 (Maninis et al., 2016). Since the number of examples
of pixels containing blood vessels is greater than the number of pixels containing positive

examples of cracks, it may be that introducing examples of eye images into the crack dataset

may increase the amount of available data for training for crack images. In this section, the

images from the cropped HRF dataset was used to test whether the addition of images of

the retina can improve the training and generalisation of the crack dataset and HED. The

cropped HRF dataset was used over the DRIVE dataset due to the visual similarities to

cracks. Example patches for HRF are shown in Figure 5.24.

199

Application of computer vision techniques to visual inspection tasks

Table 5.7: The percentage of pixels corresponding to cracks or blood vessels in different
datasets. The percentage of pixels classified as a crack is calculated as a ratio to the total

number of pixels in the image.

Dataset Name Data type Averaged percent Standard
crack / retina (%) deviation (%)

CF Crack 1.41 0.69
CSSC Crack 5.02 4.68
DRIVE Retina 51.83 17.18

HRF (cropped) Retina 9.46 5.54

Similarly to the approach used for cross-dataset training and testing of crack datasets

in Section 5.10.3, mixed datasets were generated for training the HED network. These

datasets consisted of a combination of HRF patches and images from the CF dataset, both

at an image resolution of 480×320 pixels. The mixed datasets were composed of a 50 ∶ 50
split of HRF patches and images from the CF dataset. The first mixed dataset had a total of

70 images, and will be referred to henceforth as CF_HRF_70_Fa for the networks tested on
the CF dataset and CF_HRF_70_Fb for the networks tested on the CSSC dataset, respec-

tively. The second mixed dataset had a total of 140 images and will be referred to henceforth
as CF_HRF_140_Ga for the networks tested on the CF dataset and CF_HRF_140_Gb for

the networks tested on the CSSC dataset, respectively. These datasets were tested on

the CF and CSSC datasets; an overview of these experiments is given in Table 5.8. The

qualitative results are shown in Figure 5.25 and the precision-recall results are shown in

Figure 5.26. For reference, the results of the cross-dataset testing from Section 5.10.3 are

also included in the precision-recall plot (Figure 5.26).

200

5.11 Incorporating features from blood vessels for the segmentation of cracks

Table 5.8: A summary of the experiments performed by the combined dataset of cracks
and eyes, with the method that is tested and the number of images that are used for

training and testing.

Dataset Dataset Dataset Num. images Num. images Method

label for training for testing training testing

CF_HRF_70_Fa CF+HRF CF 70 48 HED

CF_HRF_70_Fb CF+HRF CSSC 70 48 HED

CF_HRF_140_Ga CF+HRF CF 140 96 HED

CF_HRF_140_Gb CF+HRF CSSC 140 96 HED

201

Application of computer vision techniques to visual inspection tasks

(i): Image 1 of HRF
training dataset

(ii): Ground truth of image 1 of HRF
training dataset

(iii): Image 2 of HRF
training dataset

(iv): Ground truth of image 2 of HRF
training dataset

(v): Image 3 of HRF
training dataset

(vi): Ground truth of image 3 of HRF
training dataset

(vii): Image 4 of HRF
training dataset

(viii): Ground truth of image 4 of the HRF
training dataset

Figure 5.24: Example images from the cropped HRF dataset with respective ground truth
labels, where the white pixels denote a pixel containing a blood vessel and the black pixels
denote the background. Images 5.24ii,5.24iii,5.24v,5.24vii have been edited to improve the

visibility of the retinal blood vessels for this example.
202

5.11 Incorporating features from blood vessels for the segmentation of cracks

(i): CF_HRF_70_Fa
(tested on CF)

(ii): CF_HRF_70_Fa
(tested on CF)

(iii): CF_HRF_70_Fa
(tested on CF)

(iv): CF_HRF_140_Ga
(tested on CF)

(v): CF_HRF_140_Ga
(tested on CF)

(vi): CF_HRF_140_Ga
(tested on CF)

(vii): CF_HRF_70_Fb
(tested on CSSC)

(viii): CF_HRF_70_Fb
(tested on CSSC)

(ix): CF_HRF_70_Fb
(tested on CSSC)

Figure 5.25: A qualitative comparison of the results from different training datasets. The
CF_HRF_70 dataset consists of 35 images from both the CF and HRF datasets. The
CF_HRF_140 dataset consists of 70 images from both the CF and HRF datasets. The

CF_70 dataset consists of 70 images from the CF dataset. The CSSC_70 dataset consists
of 70 images from the CSSC dataset. All networks were tested on the CF dataset. The

white pixels denote a pixel containing a crack and the black pixels denote the background.

203

Application of computer vision techniques to visual inspection tasks

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision-recall curve comparing CF+HRF and CSSC+CF for testing on the CF dataset
 and comparing CF+HRF to CF for testing on CSSC dataset

F1 score (P==R)
 = 0.540
SFA_CF
F1 score (P==R)
 = 0.534
CF_70_Ab
F1 score (P==R)
 = 0.525

CF_HRF_70_Fb
F1 score (P==R)
 = 0.623
CSSC_CF_140_Da
F1 score (P==R)
 = 0.623

CF_HRF_70_Fa
F1 score (P==R)
 = 0.610
CSSC_CF_70_Ca
F1 score (P==R)
 = 0.625

CF_HRF_140_Ga
F1 score (P==R)
 = 0.626
CF_480_320_Aa
Precision
==Recall

Figure 5.26: Comparison of the precision-recall values for the results of the fused output
of the HED network for datasets that include images of both cracks and blood vessels. All
of the combined datasets are tested on the CF dataset. The 𝐹1 score where the precision
is equal to the recall are marked for each method and the values given in the legend.

204

5.11 Incorporating features from blood vessels for the segmentation of cracks

Again, the combination of datasets led to an increase in the segmented background

noise, particularly for the increased amount of HRF patches in the combined dataset (com-

pare Figures 5.25i–5.25iii and Figures 5.25iv–5.25vi). Similarly for the datasets compared in

Section 5.10.3, the networks trained on eyes also mis-segment pixels that belong to a join

in the floor and wall as a crack, see Figures 5.25ix.

The CF_HRF_70 dataset was also tested on the CSSC dataset to observe whether

the addition of the features from blood vessels would give an acceptable performance on

a dataset that it has not been exposed to. This result is shown as the black dotted line

marked CF_HRF_70_Fb in Figure 5.26. However, this result is as poor as CSSC_70 when

tested on the CF dataset (light blue dotted line marked CSSC_70 in Figure 5.16). Therefore

the addition of the blood vessel features has not significantly increased the performance of

the HED network for generalisation on a new dataset.

Overall, the precision recall of the trained using HRF patches combined with the CF

datasets (CF_HRF_70 and CF_HRF_140) are very similar to the performance of the net-

works trained using CSSC and CF datasets (CF_CSSC_70 and CF_CSSC_140). The perfor-

mance for both CF_CSSC_140 and CF_HRF_140 is marginally better than for CF_CSSC_70

and CF_HRF_70 at low recall values when tested on the CF dataset, but not when tested

on the CSSC dataset (CF_CSSC_140 in Figure 5.17), which suggests overfitting of the HED

network due to the uniformity of the CF dataset.

205

Application of computer vision techniques to visual inspection tasks

5.12 Discrepancies in dataset quality

One reason that the results may not have improved further is due to the difference in

quality of the available datasets. The CF and CSSC dataset both contain artefacts that are

not present in the HRF dataset. These artefacts can be emphasised by applying the Matlab

implementation of the decorrelation stretch algorithm5 to the CF and HRF patches (see

Figure 5.27). Decorrelation stretch acts to accentuate the differences between the channels

(i.e., red, green and blue) of a multi-channel image. The artefacts visible as a chess-board

pattern in Figure 5.27 are most likely due to jpeg compression of the images in the CSSC

and CF dataset, which is unavoidable for the CSSC dataset as the images were collated from

an online image search, but may also be due to the quality of the camera that was used to

collect the data. In contrast, there are no artefacts present in the HRF images, which were

collected under more rigorous laboratory conditions.

It is also possible that the background texture of the retina is different to the texture

of asphalt or concrete in images, and this feature may be the cause of some of the ‘fuzzy’

artefacts that appear in Figure 5.25. However, due to the block-like artefacts in the crack

images it is difficult to discern how much an effect the difference is caused by the lack

of block-like artefacts in the retina images rather than the difference between the visual

background texture.

Furthermore, the effect on the training processes caused by the artefacts is unknown.

Figure 5.28 displays activation maps from layers of the HED network, which shows example

filters applied to the network during the testing process. Although these filters may not be

the ones used to produce the results shown in this chapter, Figure 5.28 shows that these

compression artefacts are also visible as a chess-board pattern during the training process

and may even be the reason for the blocky nature of the cracks segmented by DSN5 (see

Figure 5.28xv and Figure 5.11vii in Section 5.10.2).

5https://uk.mathworks.com/help/images/ref/decorrstretch.html (Date accessed: 01/02/2019)

206

5.12 Discrepancies in dataset quality

(i): CF image with decorrelation stretch (ii): HRF image with decorrelation stretch

Figure 5.27: Decorrelation stretch algorithm applied to an example image from the CF
dataset (5.27i) and HRF dataset (5.27ii). Artefacts are visible as a chess-board pattern

when decorrelation stretch is applied to the CF dataset; these artefacts are not visible in
the HRF image and are suggestive of jpeg compression artefacts.

207

Application of computer vision techniques to visual inspection tasks

(i): A filter from layer one (ii): A filter from layer one (iii): A filter from layer one

(iv): A filter from layer two (v): A filter from layer two (vi): A filter from layer two

(vii): A filter from layer three (viii): A filter from layer three (ix): A filter from layer three

(x): A filter from layer four (xi): A filter from layer four (xii): A filter from layer four

(xiii): A filter from layer five (xiv): A filter from layer five (xv): A filter from layer five

Figure 5.28: Comparison of the activation of layers inside the HED network when trained
on images from the CF dataset. Each column shows an example filter from inside a layer
of the network. The filters were chosen to show the block-like artefacts, see Figure 5.27.

208

5.13 Summary and scope for future work

5.13 Summary and scope for future work

In this chapter, a review of the current literature for computer vision based segmentation

of cracks was performed. The literature showed that there is an increasing interest in

the automation of segmentation of cracks from images, particularly using deep learning ap-

proaches. However, there are many inconsistencies in the approaches used for training and

evaluating the deep learning approaches, with the use of different metrics making the com-

parison of such approaches difficult. These inconsistencies show the need for agreement

in the methods used for bench-marking new approaches.

The work in this chapter made steps towards this goal by using existing datasets to

compare a deep learning approach and an approach that used random forests and a SVM

classifier. Using these datasets, evaluation of segmentation approaches were performed.

The main comparisons took the form of precision-recall analysis, which has foundations in

the fields of object recognition and medical segmentation (e.g., Everingham et al. (2010)

and Xie and Tu (2017) and Maninis et al. (2016)). Using this method allows justification for

the choice of the threshold that is applied to the grey-level probability maps, rather than

using arbitrary thresholds, as reported in the current literature. Qualitative examination

of the results was also performed. In addition, two other approaches were introduced

for evaluation (SSIM and S-measure), which focused on the structure of the results, and

compared to the 𝐹1 score (a pixel-based evaluation metric that combines precision and

recall). It is recommended that future research benchmarks the results from literature

using the metrics presented in this chapter to better understand the correlation between

these metrics, if any, and the usefulness of these metrics for real-world testing.

The network used in this chapter (referred to as HED) had a better performance than

the approach that used random forests and an SVM classifier (referred to as SFA) for all

precision-recall metrics. The authors of SFA (Shi et al., 2016) defined thresholds to remove

pixels with low confidence from the resulting probability maps, but with very little justifica-

tion as to why this threshold was suitable. In contrast, the evaluation methods used in this

chapter constitute a more consistent means for choosing this threshold value.

209

Application of computer vision techniques to visual inspection tasks

The application of post-processing joined gaps in the segmented cracks and may be

useful for emphasising cracks that have low confidence in the probability maps. It is rec-

ommended that the threshold for post-processing be chosen carefully, since too high a

threshold increased the recall of pixels labelled as cracks, and reduced the performance for

all metrics.

The side-outputs of the HED network showed the detection of features at different

image scales, with more background noise being removed in the deeper layers of the net-

work. The S-measure results for these side-outputs increased in a linear fashion. Overall,

the fused output of HED gave the best-performing result, rather than the one of the side-

outputs. However, in general there may be benefit to further exploration of the effect of

varying network architecture. It is recommended that future work should evaluate differ-

ent deep learning architectures (e.g., U-Net Ronneberger et al. (2015)) to understand the

effect of different architectures on the segmentation of crack features and to compare with

other network architectures that have been used for crack segmentation.

Cross-dataset evaluation was used to test the generalisation of the trained network to

other datasets. Overall, combining the different crack datasets did not lead to an increase in

the performance for segmenting cracks. Future work should examine these results further

to ensure there is no over-fitting of the deep-learning networks. Increasing the resolution

of the images used for training did improve the performance of the HED network, perhaps

due to the increase in the number of positive examples of the crack as a proportion of the

training data.

Datasets for segmentation of blood vessels were also used to test whether the number

of positive samples could be boosted using the visually similar features of the blood vessels

and cracks, such as the branching patterns formed by both. The results of training on a

mixture of data from eyes and cracks were very similar to the results from cross-dataset

testing using datasets of cracks and there was no increase in performance by adding the

images containing blood vessels.

In addition, the datasets from crack detection were found to have compression artefacts.

The affect of these artefacts on the results should be explored in future research. It is

210

5.13 Summary and scope for future work

proposed that the community needs to develop a dataset that can be used for comparison

and bench-marking new approaches.

In the case of poor quality datasets, further research into the use of similar features for

training should be explored, with suggestions for using satellite data for the segmentation

of rivers or synthetic cracks created from simulated data.

Although the datasets used in this chapter are not from bridge environments, the meth-

ods explored here are applicable to crack detection in the concrete structure surrounding

bridge bearings, which is required as part of the visual inspection of bridge bearings (see

Chapter 1). Questions for future work include the applicability of the methods discussed

in this chapter for use in the inspection environment, by testing the trained model on real-

world data.

211

Chapter 6

Summary and conclusions

Two main research topics were considered in this thesis. The first research topic focused

on the development of a robotic platform for testing localisation and mapping approaches;

the second topic focused on the use of computer vision methods for detection of cracks in

concrete. Both of these research areas contribute to the automated and robotic inspection

of a bridge, with a specific focus on the bridge bearings. The success and limitations of this

thesis in addressing these research topics are discussed in this chapter.

6.1 Robotic localisation and mapping for inspection

environments

Investigate and identify existing sensors and methods for localisation and mapping

that could be used for navigating in a real inspection environment.

In Chapter 1, the current literature for robotic bridge inspection was reviewed. This review

highlighted the aspiration for automated bridge inspection. This aspiration is due to an

increasing demand for inspection of bridges, partly because of an increasing number of

bridges (Sutter et al., 2018), but also due to ageing infrastructure with some components,

such as bridge bearings, requiring frequent inspection (Freire et al., 2014). Consequently,

the literature demonstrates growing interest in developing robotic tools for inspection of

213

Summary and conclusions

bridges. Although fully automated robotic bridge inspection was stated as an ambition, with

many researchers developing robotic platforms, most of the current and previous research

focuses only on platform development or data collection, with little focus on developing

the navigation algorithms that are necessary to achieve this aim.

To achieve autonomous inspection, methods for mapping and/or localising in an envi-

ronment are required. In other robotics applications, methods for simultaneous localisation

and mapping (SLAM) or localisation-only methods (where the map is determined a priori)

are used. In this thesis, different sensors and algorithms were reviewed for SLAM and

localisation-only approaches. A review of the literature also informed the choice of robotic

platform and a ground-based platform was selected over other configurations due to its

stability and maturity in the wider robotics literature. However, the methods reviewed in

this thesis are not platform specific and could potentially be used to aid other approaches

and platforms developed in the literature.

Develop a robotic platform for the purpose of testing localisation and mapping algo-

rithms in a real bridge environment.

Many of the robotic platforms that exist in the literature are tested only in a laboratory

environment. A real bridge environment was chosen to complement a laboratory envi-

ronment for the experimental environments for the studies in this thesis. One difference

between a typical bridge environment and other settings in robotics research is the size

constraints that are imposed. This factor limited the size of the robotic platform and the

sensors that could be used for testing in this thesis. A 2D LiDAR, monocular camera and

stereo camera were chosen alongside existing methods for SLAM and localisation that had

been implemented in urban or outdoor environments.

Use existing tools that are commonly used in robotics research for inspection appli-

cations (e.g., the Robot Operating System).

After reviewing robotic applications in other disciplines where inspection was required, the

Robot Operating System (ROS) was selected to aid the implementation of data collection,

214

6.1 Robotic localisation and mapping for inspection environments

localisation and mapping algorithms and motion of the robotic platform. In general, ROS

provided many useful features that were invaluable in this project. However, the impact

of the failures of a system like ROS require further research in real-world environments.

In addition, it should be noted that many of the available algorithms for navigation, path

planning and localisation from ROS were designed for use in indoor environments on larger

robots. As a result, autonomous motion of the robotic platform in this research was not

implemented and should be considered as an area of future research, with a particular focus

on navigation and path-planning in confined areas.

In Chapter 2, existing SLAM and localisation techniques were evaluated in a laboratory

and a bridge environment. Hector SLAM was selected for use with the 2D LiDAR scan. In

general, Hector SLAM performed better than the localisation-only approaches, because it

takes the current environment into account and is not affected by changes, since the map is

created as the robot moves around the environment. In contrast, AMCL uses a pre-existing

map; in this thesis, a mapping approach that can make use of existing surveying data was

presented for use with AMCL. The maps created using this method showed comparable

performance to when AMCL was tested using a map created using data from Hector SLAM.

Develop a mapping approach that can make use of existing surveying data.

The method for map creation used data that was commonly collected by researchers in the

literature review; namely 3D point cloud data. In particular, two types of data collection

were considered for point cloud generation. The first was a 3D reconstruction method

known as Structure-from-Motion, which extracts key features in photographs to generate

a point cloud. In addition, terrestrial LiDAR data was collected, the output of which is also

a 3D point cloud. They key difference between SfM and terrestrial LiDAR data is that the

SfM data typically has no global scale, unless some reference measurements to provide scale

are supplied. However, SfM is typically a lower cost solution to generating the point clouds

than terrestrial LiDAR and they can be generated as a secondary task. In this thesis, scale

was provided to the SfM point clouds using measurements from the reference point cloud

data, but past research has also used measurements from the bridge environment, CAD

215

Summary and conclusions

drawings, or referenced (i.e., photogrammetry). The SfM point cloud was validated against

a terrestrial LiDAR point cloud.

After the point clouds were collected, they were cropped to obtain a region in the area

of interest, this reduced map was then converted into an occupancy map. In this thesis,

the assumption was made that the surface of the bearing enclosure was reasonably level,

and that points can be extracted from a region around the height of the 2D LiDAR on the

robotic platform. The generalisation of the method used in this thesis should be tested in

different bridges.

Test existing state-of-the-art localisation and mapping techniques in a real environ-

ment and compare to laboratory experiments.

In the laboratory environment, local and global implementations of AMCL were tested;

global AMCL allows localisation without a known starting position, whereas local AMCL

needs an initial position guess in the map. For global AMCL, the errors in the calculated

position in the lab environment were as large as 75 cm and were sustained over several

time steps. For the local implementation of AMCL, the discrepancy with respect to the

reference trajectory was below 3cm at all times. However, the repeatability of initialising

the robot from a known start position and the maximum threshold for this error in the

initial position should be considered as a topic of future research.

Both Hector SLAM and AMCL are 2D methods. In this thesis, limited studies were

conducted into methods for 3D. One approach for 3D mapping–ORB SLAM–was evaluated

using both a monocular and stereo camera. However, the stereo implementation was found

to have problems relating to the available frame rates of the camera. The monocular camera

performed better than stereo but a method for correctly scaling the resulting trajectory is

required. Further research might consider the development of expanding the work in this

thesis from 2D to 3D.

In the bridge environment, a maximum error of 10cm from the reference trajectory was

chosen to evaluate the performance of the algorithms. In general, Hector SLAM performed

better than the AMCL localisation methods; However, the errors for all methods remained

216

6.1 Robotic localisation and mapping for inspection environments

below the defined error limit of 10cm. There are potential advantages to using each of

the methods in an inspection environment. Since Hector SLAM creates the map each

time, it is more robust to changes in the environment; however, the robot has to explore

regions of the environment to know if it is possible to travel there. For an inspection

application, there may be some utility in defining the map in advance to enable a human

operator to define regions of interest. The work in Chapter 4 made steps towards creating

a combined approach using the trajectory information from both Hector SLAM and AMCL.

It is recommended that future research evaluate this approach further and consider the use

of additional sensors.

Use existing data from bridge surveys to develop a simulation environments in order

to test and prototype in different bridge configurations.

In Chapter 3 and Chapter 4 the robotic platform was developed for use in simulation us-

ing the open-source simulation environment called Gazebo (Koenig and Howard, 2004).

Gazebo can be used to simulate the dynamics of an environment and provides plugins for

simulation of sensors with appropriate noise models (Koenig and Howard, 2004). Gazebo

has been used by many robotics researchers but is not commonly used for inspection en-

vironments, perhaps since there is little research to show how the simulations correlate to

use in real-world environments.

In this thesis, existing data from bridge surveys was used to develop simulation environ-

ments and the experiments from the bridge environment were repeated in this simulation

environment. In particular, the maps created using SfM and LiDAR data for AMCL were

tested again using data collected using the simulated laser scanner in the simulated environ-

ment, and these results were compared to the results from Hector SLAM in the simulated

environment. In general, the results in simulation gave similar errors to the results from

AMCL in the bridge environment, but the errors for Hector SLAM were more like the lab-

oratory environment. The use of simulation could be used to expand the possibilities for

testing the localisation, mapping and navigation algorithms in different bridge configurations

and modifications to the platform configuration, including weight, types of wheels or tracks

217

Summary and conclusions

and is recommended for future research. Furthermore, the results in Chapter 4 showed

that the addition of different sensors can be tested, such as wheel odometry sensors that

were not implemented on the real robotic platform. Further tests and validation of the

robot model in simulation should be performed with reference to laboratory and real-

world environments. In addition, the work in this thesis could be compared to alternative

methods for creating simulated environments, such as using CAD models.

Finally, Cadena et al. (2016) highlights an open research question concerning the degra-

dation of sensor performance and the effect on SLAM reliability, particularly for safety-

critical applications. One of the key challenges highlighted by Cadena et al. (2016) is the

need for long-term testing of SLAM algorithms and associated hardware to validate the ro-

bustness of these methods. Many SLAM methods are also fragile in complex environments

since SLAM is based on the assumption that the environment is static, which is rarely the

case. It is recommended that future research focuses on the long-term assessment of

robotic sensors and navigation methods for inspection environments.

6.2 Deep learning for crack segmentation

Test the effectiveness of methods from computer vision and deep-learning for the

segmentation of cracks in images of concrete.

The second part of this thesis focused on inspection. The main requirements for bridge

bearing inspection include detection of changes in geometry of the bearing or detection

of deterioration of the surrounding structure, including cracking, crushing and build-up of

debris. The work in this thesis focused on the use of computer vision and deep-learning

methods for the detection of cracks in concrete. The data used in this thesis centred around

existing datasets that were collected using RGB monocular cameras. RGB cameras were

also the most reported sensor to be used onboard the robotics platforms, which makes

this data and approach extendable to the real applications.

Initially, an existing approach for crack segmentation using a machine learning method

was compared to a deep learning approach that has been previously been used for edge

218

6.2 Deep learning for crack segmentation

detection (Xie, 2015; Xie and Tu, 2017). Most of the approaches for crack detection in

images from the literature use a CNN-based deep learning approach to crack detection,

with network architectures that have been previously used for object recognition and clas-

sification. As a result, the majority of available datasets for cracks in concrete comprise of

images cut into patches; the patches are then labelled as true or false instances of a crack,

rather than each pixel. In this thesis, the disadvantages of using patched-based approaches

were discussed; the main disadvantage is the increase in the number of false positives that

are detected by the classifier due to the similarity of the regions containing the crack and the

background texture of the image. The deep learning approach used in this thesis (known as

HED) takes a whole image as an input and learns features at different image scales, which

are then combined to segment the crack from the image. However, there are relatively

few datasets of cracks in concrete with a corresponding ground truth label at a pixel level.

Only one other approach in recent literature was found to be using a related approach, but

comparisons could not be made with this approach since their dataset and model imple-

mentation was not available.

Identify evaluation metrics from the literature and use these metrics for the evalua-

tion of the machine learning and deep learning methods for crack segmentation.

The methods for evaluation of crack segmentation are inconsistently presented in the lit-

erature with the reported metrics including precision, recall, 𝐹1 score and the reported

values for these metrics ranging from averaged to maximum values across the dataset and

on a per-image instance. Occasionally, machine learning methods from the broader liter-

ature were followed and receiver-operator characteristic curve or precision-recall curves

were produced. Overall, this inconsistency makes it difficult to properly benchmark the

differences in the methods reported in the literature. In this thesis, the difference between

these metrics was discussed, and the case for discounting metrics that include the back-

ground as a true positive was presented due to the biases these pixels introduce. Taking

these factors into account, the precision-recall curve, with 𝐹1 metric was chosen as the

219

Summary and conclusions

main tool for evaluation of the methods in this thesis and compared to additional metrics

that accounted for the structure of the crack.

An existing approach called SFA was chosen for comparison to HED. SFA combined ran-

dom forests and a SVM classifier to segment cracks at a pixel level. HED performed better

than SFA when evaluated using the precision-recall curve with 𝐹1 metric and a qualitative

examination of the resulting grey-level images. The post-processing methods implemented

by SFA were also tested in this thesis and improved the visual appearance of the cracks

through morphological filtering. However, these post-processing steps did not improve

the results using the pixel-based or structure-based evaluations. The performance of the

S-measure method increased in a linear fashion when side-outputs of the HED network

were examined, which when examined visually, showed the increasing definition of the

segmented crack. Otherwise, the S-measure correlated well with the ranking of the 𝐹1

metric. It is recommended that future research should focus on these metrics and perform

correlation studies with other methods reported in the literature.

Identify and compare different datasets and the effects of training and testing using a

mixture of these datasets on the chosen methods.

Generalisation of the HED network was tested through cross-dataset evaluation. Over-

all, varying the datasets- through increasing the number of training images and mixing the

dataset with other images of cracks- appeared to have little impact on the results. Some

increase in performance was found by changing the resolution of the input images. It was hy-

pothesised that this increase in performance was due to the cracks accounting for a greater

proportion of the pixels of the image when the resolution was increased.

This hypothesis was examined further by introducing images collected for the diagnosis

of diseases in the retinal blood vessels. The cropped images of the retina had a compara-

ble fractal dimension to the images of the cracks, since both have a branching structure.

However, the images from the retinal dataset had a greater number of pixels that could be

counted as a positive instance by the classifier by approximately a factor of 10. By introduc-

ing the images from the retinal dataset, it was thought that there would be an improvement

220

6.2 Deep learning for crack segmentation

in the training of the networks for crack segmentation, since the network would be exposed

to a greater amount of positive data examples.

The deep-learning network was then re-trained on images from the retinal database and

the cracks database and compared using a precision-recall curve. The results from training

HED using images of cracks and of the retina were comparable to the cross-dataset testing

when two different datasets of cracks were combined. The qualitative results showed that

increasing the number of retinal images increased the amount of background noise that was

included in the segmentation. However, the HED networks trained using both images of

the retina and images of cracks performed just as well as the network trained on images

of just cracks. When tested on a dataset of cracks previously unseen in the training of the

networks, all networks gave a comparable performance to the original SFA implementation.

Overall, there appears to be an upper limit to the achievable performance of the net-

work, which was only overcome in this thesis by increasing the image resolution. The

outcome of the deep learning networks appears to be sensitive to the input dataset, which

may be indicative of overfitting of the model to the dataset, but also perhaps due to the dif-

ference in quality of the crack datasets compared to the retinal datasets. It is recommended

that different network architectures should be compared to the results in this thesis.

The crack forest (CF) dataset was chosen as the main dataset for training and testing

the HED network as it has been used in other approaches in the literature. However,

the results in Chapter 5 showed that this dataset was affected by compression artefacts,

which were also apparent when the model weights of the network were examined. The

effect of dataset on the deep-learning results is unknown and further experimental work

is required to better understand this problem. Overall, this thesis highlighted the need for

a consistent dataset and for consistent methods of evaluation to allow better comparison

between researchers.

Since the deep-learning approaches in this thesis performed better than the state of the

art, it is recommended that real-world testing be performed, through controlled laboratory

experiments and real world testing and in a variety of bridge environments.

221

Summary and conclusions

6.3 Scope for future work

In this work, potential solutions for the mapping and localisation of robotic platforms in

inspection environments were investigated. The next stages of this research could expand

on the use of the simulated environment developed in Chapter 4 to refine the robotic

platform and the combined localisation approach that was developed in this thesis. Com-

plementary sensors and long-term testing, both in simulation and in the real environment,

could be utilised to create a robust and reliable inspection system. In addition, research of

path-planning in confined spaces and testing the methods from this work in different bridge

configurations may be required.

The state of the art for deep-learning for crack segmentation in concrete and asphalt

materials was also presented. This research could be expanded by implementing the model

developed in Chapter 5 onto the robotic platform for evaluation in the real environment.

The data collected on this platform could be used to improve the existing datasets from

the literature, and to create a benchmark for similar inspection applications, but may also

be sensitive to the detection of edges in the environment, and hence datasets with edges

that may be found in real environments should be used for training. The data collected

in Chapter 4 and Chapter 5 could also be used for other inspection applications, such as

calculating changes in bearing geometry or using point cloud data for detecting anomalies

over time, to further aid visual inspection of the bridge bearings.

222

References

Abdel-Qader, I., Abudayyeh, O., and Kelly, M. E. (2003). “Analysis of Edge-Detection Tech-
niques for Crack Identification in Bridges”. In: Journal of Computing in Civil Engineering
17.4, pp. 255–263. DOI: 10.1061/(ASCE)0887-3801(2003)17:4(255) (see p. 143).

Agnisarman, S., Lopes, S., Chalil Madathil, K., Piratla, K., and Gramopadhye, A. (2019). “A
survey of automation-enabled human-in-the-loop systems for infrastructure visual in-
spection”. In: Automation in Construction 97.November 2018, pp. 52–76. DOI: 10.1016/
J.AUTCON.2018.10.019 (see pp. 5, 15, 21, 137).

Agüero, C., Koenig, N., Chen, I., Boyer, H., Peters, S., Hsu, J., Gerkey, B., Paepcke, S., Rivero,
J., Manzo, J., Krotkov, E., and Pratt, G. (2015). “Inside the Virtual Robotics Challenge:
Simulating Real-Time Robotic Disaster Response”. In: IEEE Transactions on Automation
Science and Engineering 12.2, pp. 494–506 (see p. 118).

Ahmad, N., Ghazilla, R., Khairi, N., and Kasi, V. (2013). “Reviews on Various Inertial Mea-
surement Unit (IMU) Sensor Applications”. In: International Journal of Signal Processing
Systems 1.2, pp. 256–262. DOI: 10.12720/ijsps.1.2.256-262 (see p. 26).

Akutsu, A., Sasaki, E., Takeya, K., Kobayashi, Y., Suzuki, K., and Tamura, H. (2017). “A
comprehensive study on development of a small-sized self-propelled robot for bridge
inspection”. In: Structure and Infrastructure Engineering 2479.October, pp. 1–12. DOI:
10.1080/15732479.2016.1236132 (see pp. 7, 13).

Aldea, E. and Le Hégarat-Mascle, S. (2015). “Robust crack detection for unmanned aerial
vehicles inspection in an a-contrario decision framework”. In: Journal of Electronic Imaging
24.6, p. 061119. DOI: 10.1117/1.JEI.24.6.061119 (see pp. 166, 174).

Alom, M. Z., Hasan, M., Yakopcic, C., Taha, T. M., and Asari, V. K. (2018). “Recurrent
Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Im-
age Segmentation”. In: Cornell Computing Research Repository abs/1802.06955. eprint:
1802.06955 (see p. 158).

223

https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
https://doi.org/10.1016/J.AUTCON.2018.10.019
https://doi.org/10.1016/J.AUTCON.2018.10.019
https://doi.org/10.12720/ijsps.1.2.256-262
https://doi.org/10.1080/15732479.2016.1236132
https://doi.org/10.1117/1.JEI.24.6.061119
1802.06955

References

Aria, M. and Akbari, R. (2013). “Inspection, condition evaluation and replacement of elas-
tomeric bearings in road bridges”. In: Structure and Infrastructure Engineering 9.9, pp. 918–
934. DOI: 10.1080/15732479.2011.638171 (see pp. 1, 2).

Arth, C., Pirchheim, C., Ventura, J., Schmalstieg, D., and Lepetit, V. (2015). “Instant Outdoor
Localization and SLAM Initialization from 2.5D Maps”. In: Transactions on Visualization
and Computer Graphics 21.11, pp. 1309–1318. DOI: 10.1109/TVCG.2015.2459772 (see
p. 23).

Baimas, N. and McClean, J. (1998). “Mancunian Way Bearing Replacements”. In: Proceedings
of the Institution of Civil Engineers - Municipal Engineer. Vol. 127. 3, pp. 124–131. DOI:
10.1680/imuen.1998.30988 (see p. 3).

Ball, P. (1999). The Self-Made Tapestry: Pattern Formation in Nature. 7. New York, NY, USA:
Oxford University Press, Inc., p. 421. DOI: 10.1119/1.880339 (see pp. 195, 197).

Bechar, A. and Vigneault, C. (2016). “Agricultural robots for field operations: Concepts and
components”. In: Biosystems Engineering 149, pp. 94–111. DOI: 10.1016/j.biosystemseng.
2016.06.014 (see p. 14).

Behrooz, M., Yarra, S., Mar, D., Pinuelas, N., Muzinich, B., Publicover, N. G., Pekcan, G.,
Itani, A., and Gordaninejad, F. (2016). “A self-sensing magnetorheological elastomer-
based adaptive bridge bearing with a wireless data monitoring system”. In: Proceedings
of SPIE - The International Society for Optical Engineering. Vol. 9803, p. 98030D. DOI: 10.
1117/12.2218691 (see p. 2).

Behzadian, B., Agarwal, P., Burgard, W., and Tipaldi, G. D. (2015). “Monte Carlo localiza-
tion in hand-drawn maps”. In: International Conference on Intelligent Robots and Systems,
pp. 4291–4296. DOI: 10.1109/IROS.2015.7353985 (see p. 82).

Burgard, W., Derr, A., Fox, D., and Cremers, A. (1998). “Integrating global position estima-
tion and position tracking for mobile robots: the dynamic Markov localization approach”.
In: Proceedings of the 1998 International Conference on Intelligent Robots and Systems. Inno-
vations in Theory, Practice and Applications. Vol. 2, pp. 730–735. DOI: 10.1109/IROS.1998.
727279 (see p. 48).

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and Leonard,
J. J. (2016). “Past, Present, and Future of Simultaneous Localization And Mapping: To-
wards the Robust-Perception Age”. In: Transactions on Robotics 32.6, pp. 1309–1332.
DOI: 10.1109/TRO.2016.2624754 (see pp. 32, 42, 60, 82, 218).

Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2018). “Autonomous
Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple

224

https://doi.org/10.1080/15732479.2011.638171
https://doi.org/10.1109/TVCG.2015.2459772
https://doi.org/10.1680/imuen.1998.30988
https://doi.org/10.1119/1.880339
https://doi.org/10.1016/j.biosystemseng.2016.06.014
https://doi.org/10.1016/j.biosystemseng.2016.06.014
https://doi.org/10.1117/12.2218691
https://doi.org/10.1117/12.2218691
https://doi.org/10.1109/IROS.2015.7353985
https://doi.org/10.1109/IROS.1998.727279
https://doi.org/10.1109/IROS.1998.727279
https://doi.org/10.1109/TRO.2016.2624754

References

Damage Types”. In: Computer-Aided Civil and Infrastructure Engineering 33.9, pp. 731–747.
DOI: 10.1111/mice.12334 (see p. 12).

Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017). “Deep Learning-Based Crack Damage
Detection Using Convolutional Neural Networks”. In: Computer-Aided Civil and Infras-
tructure Engineering 32.5, pp. 361–378. DOI: 10.1111/mice.12263 (see pp. 10, 141, 142,
165).

Chambon, S. and Moliard, J. (2011). “Automatic road pavement assessment with image
processing: Review and comparison”. In: International Journal of Geophysics 2011. DOI:
10.1155/2011/989354 (see p. 143).

Chen, S., Rice, C., Boyle, C., and Hauser, E. (2011). “Small-Format Aerial Photography
for Highway-Bridge Monitoring”. In: Journal of Performance of Constructed Facilities 25.2,
pp. 105–112. DOI: 10.1061/(ASCE)CF.1943-5509.0000145 (see pp. 6, 9, 13, 83).

Chen, S., Truong-hong, L., Keeffe, E. O., Laefer, D. F., and Mangina, E. (2018). “Outlier de-
tection of point clouds generating from low cost UAVs for bridge inspection”. In: The
Sixth International Symposium on Life-Cycle Civil Engineering January 2019, pp. 1969–1975
(see p. 12).

Chen, T. (2017). “Factors in Bridge Failure, Inspection, and Maintenance”. In: Journal of
Performance of Constructed Facilities 31.5, 04017070 (online document). DOI: 10.1061/
(ASCE)CF.1943-5509.0001042 (see p. 3).

Cho, J. S., Park, J. C., Gil, H. B., Kim, H. J., and An, H. H. (2014). “Computer Vision Tech-
niques for Bridge Bearing Condition Assessment using Visual Inspection Photographs”.
In: IABSE Symposium Report. Vol. 102. 9, pp. 2697–2704. DOI: 10.2749/222137814814070253
(see p. 1).

Cho, K., Kim, H. M., Jin, Y. H., Liu, F., Moon, H., Koo, J. C., and Choi, H. R. (2013). “Inspec-
tion robot for hanger cable of suspension bridge: Mechanism design and analysis”. In:
Transactions on Mechatronics 18.6, pp. 1665–1674. DOI: 10.1109/TMECH.2013.2280653
(see pp. 6, 11, 13).

Chong, Z. J., Qin, B., Bandyopadhyay, T., Ang, M. H., Frazzoli, E., and Rus, D. (2013). “Syn-
thetic 2D LIDAR for precise vehicle localization in 3D urban environment”. In: Pro-
ceedings of the International Conference on Robotics and Automation, pp. 1554–1559. DOI:
10.1109/ICRA.2013.6630777 (see p. 23).

Chu, K. W., Lee, W. S., Cheng, C. Y., Huang, C. F., Zhao, F., Lee, L. S., Chen, Y. S., Lee, C. Y.,
and Tsai, M. J. (2013). “Demonstration of lateral IGBTs in 4H-SiC”. In: Electron Device
Letters 34.2, pp. 286–288. DOI: 10.1109/LED.2012.2230240 (see p. 160).

225

https://doi.org/10.1111/mice.12334
https://doi.org/10.1111/mice.12263
https://doi.org/10.1155/2011/989354
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000145
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001042
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001042
https://doi.org/10.2749/222137814814070253
https://doi.org/10.1109/TMECH.2013.2280653
https://doi.org/10.1109/ICRA.2013.6630777
https://doi.org/10.1109/LED.2012.2230240

References

Cox, I. J. and Wilfong, G. T. (1990). Autonomous Robot Vehicles, p. 462. DOI: 10.1007/978-
1-4613-8997-2 (see p. 32).

Cubero-Fernandez, A., Rodriguez-Lozano, F. J., Villatoro, R., Olivares, J., and Palomares,
J. M. (2017). “Efficient pavement crack detection and classification”. In: Eurasip Journal
on Image and Video Processing 2017.1. DOI: 10.1186/s13640-017-0187-0 (see pp. 140,
143, 145).

Darby, P. and Gopu, V. (2018). Bridge Inspecting with Unmanned Aerial Vehicles. https : / /
digitalcommons.lsu.edu/transet_pubs/14/. Accessed: 2019-02-01 (see p. 7).

Davis, J. and Goadrich, M. (2006). “The Relationship Between Precision-Recall and ROC
Curves”. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–
240. DOI: 10.1145/1143844.1143874 (see pp. 164, 165).

Droeschel, D., Schwarz, M., and Behnke, S. (2017). “Continuous mapping and localization
for autonomous navigation in rough terrain using a 3D laser scanner”. In: Robotics and
Autonomous Systems 88, pp. 104–115. DOI: 10.1016/j.robot.2016.10.017 (see p. 61).

Dueñas, F. M. (2015). “Stereo Visual SLAM for Mobile Robots Navigation”. PhD thesis.
University of Málaga (see p. 39).

Durrant-Whyte, H. and Bailey, T. (2006). “Simultaneous localization and mapping (SLAM)”.
In: Robotics and Automation Magazine 13.2, pp. 99–116. DOI: 10 . 1109 / MRA . 2006 .
1638022 (see pp. 27–29, 33, 34, 37).

Ellenberg, A., Kontsos, A., Moon, F., and Bartoli, I. (2016a). “Bridge deck delamination iden-
tification from unmanned aerial vehicle infrared imagery”. In: Automation in Construction
72, pp. 155–165. DOI: 10.1016/j.autcon.2016.08.024 (see p. 9).

Ellenberg, A., Kontsos, A., Moon, F., and Bartoli, I. (2016b). “Bridge related damage quantifi-
cation using unmanned aerial vehicle imagery”. In: Structural Control and Health Monitoring
23.9, pp. 1168–1179. DOI: 10.1002/stc.1831 (see pp. 9, 13, 14, 77, 83).

BS-EN-1337 (2003). British-European Standard 1337: Structural Bearings – Part 10 Inspection
and maintenance (see pp. 4, 12, 13, 137).

Eschmann, C. and Wundsam, T. (2017). “Web-Based Georeferenced 3D Inspection and
Monitoring of Bridges with Unmanned Aircraft Systems”. In: Journal of Surveying Engi-
neering 143.3, pp. 1–10. DOI: 10 . 1061 / (ASCE) SU . 1943 - 5428 . 0000221 (see pp. 9,
13).

Everett, H. R. (1995). Sensors for Mobile Robots: Theory and Application. Natick, MA, USA: A.
K. Peters, Ltd. (see pp. 21, 22, 25, 26).

226

https://doi.org/10.1007/978-1-4613-8997-2
https://doi.org/10.1007/978-1-4613-8997-2
https://doi.org/10.1186/s13640-017-0187-0
https://digitalcommons.lsu.edu/transet_pubs/14/
https://digitalcommons.lsu.edu/transet_pubs/14/
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1016/j.robot.2016.10.017
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1016/j.autcon.2016.08.024
https://doi.org/10.1002/stc.1831
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000221

References

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). “The
PASCAL Visual Object Classes (VOC) Challenge”. In: International journal of computer
vision 88.2, pp. 303–338 (see p. 209).

Fabresse, L. (2018). “Evaluation of Out-of-the-box ROS 2D SLAMs for Autonomous Ex-
ploration of Unknown Indoor Environments”. In: International Conference on Intelligent
Robotics and Applications. August. DOI: 10.1007/978-3-642-40852-6 (see p. 60).

Fan, D., Cheng, M., Liu, Y., Li, T., and Borji, A. (2017). “Structure-Measure: A New Way to
Evaluate Foreground Maps”. In: Proceedings of the International Conference on Computer
Vision, pp. 4558–4567. DOI: 10.1109/ICCV.2017.487 (see pp. 166–168, 184).

Fei-Fei, L., Deng, J., and Li, K. (2010). “ImageNet: Constructing a large-scale image database”.
In: Journal of Vision 9.8, pp. 1037–1037. DOI: 10.1167/9.8.1037 (see p. 145).

Filatov, A., Filatov, A., Krinkin, K., Chen, B., and Molodan, D. (2018). “2D SLAM quality
evaluation methods”. In: Conference of Open Innovation Association, FRUCT, pp. 120–126.
DOI: 10.23919/FRUCT.2017.8250173 (see p. 60).

Flach, P. A. (2015). “Precision-Recall-Gain Curves : PR Analysis Done Right”. In: Proceedings
of Advances in Neural Information Processing Systems. Vol. 28, pp. 1–9 (see pp. 164, 165).

Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999). “Monte Carlo Localization: Effi-
cient Position Estimation for Mobile Robots”. In: Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI’99), pp. 343–349. DOI: 10.1.1.2.342 (see p. 48).

Freire, L. and de Brito, J. (2006). “Relationship between bearings type and their most com-
mon anomalies”. In: Proceedings of the 3rd International Conference on Bridge Maintenance,
Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance
and Cost, pp. 205–206. DOI: 10.1201/b18175 (see pp. 1, 2).

Freire, L., de Brito, J., and Correia, J. (2014). “Management system for road bridge structural
bearings”. In: Structure and Infrastructure Engineering 10.8, pp. 1068–1086. DOI: 10.1080/
15732479.2013.788524 (see pp. 1–5, 16, 213).

Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendón-Mancha, J. (2012). “Visual simultaneous
localization and mapping: a survey”. In: Artificial Intelligence Review 43.1, pp. 55–81. DOI:
10.1007/s10462-012-9365-8 (see pp. 34, 39, 40).

Galvez-López, D. and Tardos, J. (2012). “Bags of Binary Words for Fast Place Recognition
in Image Sequences”. In: Transactions on Robotics 28.5, pp. 1188–1197. DOI: 10.1109/
TRO.2012.2197158 (see p. 46).

227

https://doi.org/10.1007/978-3-642-40852-6
https://doi.org/10.1109/ICCV.2017.487
https://doi.org/10.1167/9.8.1037
https://doi.org/10.23919/FRUCT.2017.8250173
https://doi.org/10.1.1.2.342
https://doi.org/10.1201/b18175
https://doi.org/10.1080/15732479.2013.788524
https://doi.org/10.1080/15732479.2013.788524
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1109/TRO.2012.2197158
https://doi.org/10.1109/TRO.2012.2197158

References

Gibb, S., La, H., and Louis, S. (2018). “A Genetic Algorithm for Convolutional Network
Structure Optimization for Concrete Crack Detection”. In: Congress on Evolutionary
Computation, pp. 1–8 (see pp. 10, 142).

Gibb, S., Le, T., La, H., Schmid, R., and Berendsen, T. (2017). “A Multi-functional Inspection
Robot for Civil Infrastructure Evaluation and Maintenance”. In: International Conference
on Intelligent Robots and Systems, pp. 2672–2677 (see pp. 7, 16, 78).

Giubilato, R., Chiodini, S., Pertile, M., and Debei, S. (2018). “An Experimental Comparison
of ROS-compatible Stereo Visual SLAM Methods for Planetary Rovers”. In: International
Workshop on Metrology for AeroSpace. September. DOI: 10.1109/MetroAeroSpace.2018.
8453534 (see p. 61).

Goodfellow, I., Bengio, Y., and Courville, A. (2015). “Deep Learning”. In: Nature Methods
13.1, pp. 35–35. DOI: 10.1038/nmeth.3707 (see pp. 147, 148, 160, 161).

Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. (2010). “A tutorial on graph-
based SLAM”. In: Intelligent Transportation Systems Magazine 2.4, pp. 31–43. DOI: 10 .
1109/MITS.2010.939925 (see pp. 29, 35, 36).

Großmann, A. and Poli, R. (1999). “Robust mobile robot localisation from sparse and noisy
proximity readings”. In: Proceedings of IJCAI-99 Workshop on Reasoning with Uncertainty in
Robot Navigation (RUR-99). Vol. 37, pp. 1–18 (see p. 22).

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang,
G., Cai, J., and Chen, T. (2015). “Recent Advances in Convolutional Neural Networks”.
In: Pattern Recognition 77, pp. 354–377. DOI: 10.3389/fpsyg.2013.00124 (see pp. 147,
148).

Guo, S., Gao, Y., Wang, K., and Li, T. (2018). “Deeply supervised neural network with short
connections for retinal vessel segmentation”. In: Cornell Computing Research Repository
abs/1803.03963 (see pp. 158, 166).

Hallermann, N. and Morgenthal, G. (2014). “Visual inspection strategies for large bridges
using Unmanned Aerial Vehicles (UAV)”. In: Bridge Maintenance, Safety, Management and
Life Extension. July. DOI: 10.1201/b17063-96 (see pp. 7, 9, 13, 77, 78, 118).

Heinrich, M., Sperl, A., Mittmann, U., and Henkel, P. (2018). “Reliable multi-GNSS real-
time kinematic positioning”. In: Proceedings - International Symposium Electronics in Marine.
September, pp. 103–108. DOI: 10.23919/ELMAR.2018.8534600 (see p. 25).

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). “RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments”. In: The In-
ternational Journal of Robotics Research 31.5, pp. 647–663. DOI: 10.1177/0278364911434148
(see p. 24).

228

https://doi.org/10.1109/MetroAeroSpace.2018.8453534
https://doi.org/10.1109/MetroAeroSpace.2018.8453534
https://doi.org/10.1038/nmeth.3707
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.3389/fpsyg.2013.00124
https://doi.org/10.1201/b17063-96
https://doi.org/10.23919/ELMAR.2018.8534600
https://doi.org/10.1177/0278364911434148

References

Hiasa, S., Karaaslan, E., Shattenkirk, W., Mildner, C., and Catbas, F. (2018). “Bridge In-
spection and Condition Assessment Using Image-Based Technologies with UAVs”. In:
Structures Congress 2018: Bridges, Transportation Structures, and Nonbuilding Structures -
Selected Papers from the Structures Congress 2018. Vol. 2018-April, pp. 217–228. DOI:
doi:10.1061/9780784481332.020 (see pp. 9, 13, 77, 78).

Hidalgo, F. and Braunl, T. (2015). “Review of underwater SLAM techniques”. In: ICARA 2015
- Proceedings of the 2015 6th International Conference on Automation, Robotics and Applica-
tions, pp. 306–311. DOI: 10.1109/ICARA.2015.7081165 (see p. 34).

Hoeke, L., Singh, P., Moser, R., Kahn, L., and Kurtis, K. (2009). “Degradation of steel girder
bridge bearing systems by corrosion”. In: National Association of Corrosion Engineers (see
p. 2).

Hoffer, N., Coopmans, C., Dorafshan, S., Maguire, M., Hoffer, N. V., and Coopmans, C.
(2017). “Challenges in Bridge Inspection Using Small Unmanned Aerial Systems : Re-
sults and Lessons Learned”. In: International Conference on Unmanned Aircraft Systems,
pp. 1722–1730. DOI: 10.1109/ICUAS.2017.7991459 (see pp. 6, 7, 9, 13).

Hoover, A. (2000). “Locating blood vessels in retinal images by piecewise threshold probing
of a matched filter response”. In: Transactions on Medical Imaging 19.3, pp. 203–210. DOI:
10.1109/42.845178 (see pp. 144, 195).

Hoskere, V., Narazaki, Y., Hoang, T., and Spencer, B. (2018). “Vision-based Structural In-
spection using Multiscale Deep Convolutional Neural Networks”. In: Cornell Computing
Research Repository. eprint: 1805.01055 (see p. 12).

Jahanshahi, M., Shen, W., Mondal, T., Abdelbarr, M., Masri, S., and Qidwai, U. (2017). “Re-
configurable swarm robots for structural health monitoring: a brief review”. In: Inter-
national Journal of Intelligent Robotics and Applications 1.3, pp. 287–305. DOI: 10.1007/
s41315-017-0024-8 (see pp. 5, 7, 11).

Jalón-Monzón, A., De León, C. G. R., Alvarez-Múgica, M., Méndez-Ramírez, S., Hevia-Suárez,
M. Á., and Escaf-Barmadah, S. (2016). “RESCUER: Development of a Modular Chemical,
Biological, Radiological, and Nuclear Robot for Intervention, Sampling, and Situation
Awareness”. In: Journal of Field Robotics 33.7, pp. 931–945. DOI: 10.1002/rob.21588 (see
p. 14).

Javadnejad, F., Gillins, D. T., Higgins, C. C., and Gillins, M. N. (2017). “BridgeDex : Proposed
Web GIS Platform for Managing and Interrogating Multiyear and Multiscale Bridge-
Inspection Images”. In: Journal of Computing in Civil Engineering 31.6, p. 04017061. DOI:
10.1061/(ASCE)CP.1943-5487.0000710 (see pp. 5, 83).

229

https://doi.org/doi:10.1061/9780784481332.020
https://doi.org/10.1109/ICARA.2015.7081165
https://doi.org/10.1109/ICUAS.2017.7991459
https://doi.org/10.1109/42.845178
1805.01055
https://doi.org/10.1007/s41315-017-0024-8
https://doi.org/10.1007/s41315-017-0024-8
https://doi.org/10.1002/rob.21588
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000710

References

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). “Poisson Surface Reconstruction”. In: Sym-
posium on Geometry Processing (see p. 120).

Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., and Riley, M. (2018). “Unmanned
aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D mod-
elling”. In: Structure and Infrastructure Engineering 14.1, pp. 124–136. DOI: 10 . 1080 /
15732479.2017.1330891 (see pp. 9, 13).

Kim, C., Son, H., Hwang, N., and Kim, C. (2014). “Rapid and automated determination of
rusted surface areas of a steel bridge for robotic maintenance systems”. In: Automation
in Construction 42, pp. 13–24. DOI: 10.1016/j.autcon.2014.02.016 (see pp. 6, 12, 83).

Klein, G. and Murray, D. (2007). “Parallel Tracking and Mapping for Small AR Workspaces”.
In: International Symposium on Mixed and Augmented Reality, pp. 1–10. DOI: 10 .1109/
ISMAR.2007.4538852 (see p. 61).

Koenig, N. and Howard, A. (2004). “Design and Use Paradigms for Gazebo , An Open-
Source Multi-Robot Simulator”. In: International Conference on Intelligent Robots and Sys-
tems, pp. 2149–2154. DOI: 10.1109/IROS.2004.1389727 (see pp. 15, 118, 217).

Kohlbrecher, S. (2016). Gazebo cannot handle collada files as collision mesh. https://bitbucket.
org/osrf/gazebo/issues/2072/gazebo-cannot-handle-collada- files-as. Accessed: 2019-
02-01 (see p. 119).

Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., von Stryk, O., and Klingauf, U. (2014).
“Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue
Robots”. In: RoboCup 2013: RoboCup 2013: Robot World Cup. Vol. XVII, pp. 624–631.
DOI: 10.1007/978-3-662-44468-9_58 (see pp. 43, 61, 80).

Kohlbrecher, S., von Stryk, O., Meyer, J., and Klingauf, U. (2011). “A flexible and scalable
SLAM system with full 3D motion estimation”. In: Proceedings of the International Sym-
posium on Safety, Security, and Rescue Robotics, pp. 155–160. DOI: 10.1109/SSRR.2011.
6106777 (see pp. 43, 44, 58, 61, 80).

Kooi, S. (2013). Using VisualSFM and Meshlab for creating 3-D models Guidelines for using SfM
in field archaeology. http : / / www . academia . edu / 10190411 /Using _VisualSFM_ and_
Meshlab_for_creating_3-D_models_Guidelines_for_using_SfM_in_field_archaeology.
Accessed: 2019-02-01 (see p. 120).

Kramer, J. and Scheutz, M. (2007). “Development environments for autonomous mobile
robots: A survey”. In: Autonomous Robots 22.2, pp. 101–132. DOI: 10.1007/s10514-006-
9013-8 (see p. 68).

Kulich, M., Lhotský, V., and Přeučil, L. (2017). “Practical Aspects of Autonomous Exploration
with a Kinect2 sensor”. In: Cornell Computing Research Repository, pp. 2–3 (see p. 24).

230

https://doi.org/10.1080/15732479.2017.1330891
https://doi.org/10.1080/15732479.2017.1330891
https://doi.org/10.1016/j.autcon.2014.02.016
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/IROS.2004.1389727
https://bitbucket.org/osrf/gazebo/issues/2072/gazebo-cannot-handle-collada-files-as
https://bitbucket.org/osrf/gazebo/issues/2072/gazebo-cannot-handle-collada-files-as
https://doi.org/10.1007/978-3-662-44468-9_58
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/SSRR.2011.6106777
http://www.academia.edu/10190411/Using_VisualSFM_and_Meshlab_for_creating_3-D_models_Guidelines_for_using_SfM_in_field_archaeology
http://www.academia.edu/10190411/Using_VisualSFM_and_Meshlab_for_creating_3-D_models_Guidelines_for_using_SfM_in_field_archaeology
https://doi.org/10.1007/s10514-006-9013-8
https://doi.org/10.1007/s10514-006-9013-8

References

Kurtzer, G., V, S., and Bauer, M. (2017). “Singularity: Scientific containers for mobility of
compute.” In: PLoS ONE 12.5. DOI: 10.1371/journal.pone.0177459 (see pp. 80, 160).

La, H. M., Lim, R. S., Basily, B., Gucunski, N., Yi, J., Maher, A., and Romero, F. A. (2013). “Au-
tonomous Robotic System for High-Efficiency Non-Destructive Bridge Deck Inspection
and Evaluation”. In: Proceedings of the International Conference on Automation Science and
Engineering, pp. 1053–1058. DOI: 10.1109/CoASE.2013.6653886 (see pp. 10, 78).

La, H., Gucunski, N., Kee, S., Yi, J., Senlet, T., and Van Nguyen, L. (2014). “Autonomous
robotic system for bridge deck data collection and analysis”. In: International Conference
on Intelligent Robots and Systems, pp. 1950–1955. DOI: 10.1109/IROS.2014.6942821 (see
pp. 7, 10).

La, H., Lim, R., Basily, B., Gucunski, N., Yi, J., Maher, A., Romero, F., and Parvardeh, H.
(2013). “Mechatronic Systems Design for an Autonomous Robotic System for High-
Efficiency Bridge Deck Inspection and Evaluation”. In: Transactions onMechatronics. Vol. 18.
6, pp. 1655–1664. DOI: 10.1109/TMECH.2013.2279751 (see pp. 6, 7, 10, 78).

Labbe, M., Michaud, F., and Labb, M. (2014). “Online global loop closure detection for large-
scale multi-session graph-based SLAM”. In: Proceedings of the International Conference on
Intelligent Robots and Systems, pp. 2661–2666. DOI: 10.1109/IROS.2014.6942926 (see
p. 61).

Lattanzi, D. and Miller, G. (2015). “3D Scene Reconstruction for Robotic Bridge Inspection”.
In: Journal of Infrastructure Systems 21.2, p. 04014041. DOI: 10.1061/(ASCE)IS.1943-
555X.0000229 (see pp. 12, 13, 83, 119).

Lattanzi, D. and Miller, G. (2017). “Review of Robotic Infrastructure Inspection Systems”. In:
Journal of Infrastructure Systems 23.3, e–page: 04017004. DOI: 10.1061/(ASCE)IS.1943-
555X.0000353 (see pp. 5–8, 16, 65, 77, 137).

Le Cun, Y., Boser, B., Denker, J., Howard, R., Habbard, W., Jackel, L., and Henderson, D.
(1990). “Handwritten Digit Recognition with a Back-PropagationNetwork”. In: Advances
in Neural Information Processing Systems 2, pp. 396–404 (see p. 147).

Le, T., Gibb, S., Pham, N., La, H., Falk, L., and Berendsen, T. (2017). “Autonomous robotic
system using non-destructive evaluation methods for bridge deck inspection”. In: Pro-
ceedings of the International Conference on Robotics and Automation, pp. 3672–3677. DOI:
10.1109/ICRA.2017.7989421 (see pp. 6, 10, 83).

Leberl, F., Irschara, ., Pock, T., Meixner, P., Gruber, M., Scholz, S., and Wiechert, A. (2010).
“Point Clouds: Lidar versus 3D Vision”. In: Photogrammetric Engineering and Remote Sens-
ing 76.10, pp. 1123–1134. DOI: 0099-1112/10/7610–1123 (see p. 51).

231

https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1109/CoASE.2013.6653886
https://doi.org/10.1109/IROS.2014.6942821
https://doi.org/10.1109/TMECH.2013.2279751
https://doi.org/10.1109/IROS.2014.6942926
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000229
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000229
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
https://doi.org/10.1109/ICRA.2017.7989421
https://doi.org/0099-1112/10/7610–1123

References

Lee, B., Shin, D., Seo, J., Jung, J. D., and Lee, J. (2012). “Intelligent bridge inspection using
remote controlled robot and image processing technique”. In: Proceedings of the 28𝑡ℎ

International Symposium on Automation and Robotics in Construction (see pp. 8, 11).

Lee, C., Xie, S., and Gallagher, P. (2015). “Deeply-Supervised Nets”. In: Cornell Computing
Research Repository, arXiv:1409.5185 (see p. 150).

Lee, J. H., Lee, J. M., Kim, H. J., and Moon, Y. S. (2008). “Machine vision system for automatic
inspection of bridges”. In: Proceedings of the 1st International Congress on Image and Signal
Processing, pp. 363–366. DOI: 10.1109/CISP.2008.672 (see p. 12).

Lee, M., Hanczor, M., Chu, J., He, Z., Michael, N., andWhittaker, R. (2018). “3-D Volumetric
Gamma-ray Imaging and Source Localization with a Mobile Robot”. In: Cornell Computing
Research Repository abs/1802.06072 (see pp. 14, 77).

Li, G., Zhao, X., Du, K., Ru, F., and Zhang, Y. (2017). “Recognition and evaluation of bridge
cracks with modified active contour model and greedy search-based support vector
machine”. In: Automation in Construction 78, pp. 51–61. DOI: 10.1016/j.autcon.2017.01.
019 (see p. 140).

Li, H., Song, D., Liu, Y., and Li, B. (2017). “Automatic Pavement Crack Detection by Multi-
Scale Image Fusion”. In: Transactions on Intelligent Transportation Systems 99, pp. 1–12 (see
pp. 138, 143, 155).

Li, L., Sun, L., Guobao, N., and Shengguang, T. (2014). “Automatic pavement crack recogni-
tion based on BP neural network”. In: International Conference on Computer and Electrical
Engineering, pp. 11–22 (see pp. 12, 13, 139).

Li, Z., Zhu, C., and Gold, C. (2004). Digital Terrain Modeling: Principles and Methodology. CRC
Press (see p. 118).

Lim, R., La, H., Shan, Z., and Sheng, W. (2011). “Developing a crack inspection robot for
bridge maintenance”. In: Proceedings of the International Conference on Robotics and Au-
tomation, pp. 6288–6293. DOI: 10.1109/ICRA.2011.5980131 (see pp. 7, 10, 138).

Liu, D., Dissanayake, G., Miro, J. V., and Waldron, K. J. (2014). “Infrastructure Robotics: Re-
search Challenges and Opportunities”. In: Proceedings of the 31st International Symposium
on Automation and Robotics in Construction, p. 1 (see p. 16).

Liu, J., Miao, X., and Yuan, Y. (2012). “The rail bridge bearing monitoring system base on
FBG”. In: Proceedings of the 4th International Conference on Electronics, Communications and
Networks. DOI: 10.1117/12.968607 (see p. 2).

232

https://doi.org/10.1109/CISP.2008.672
https://doi.org/10.1016/j.autcon.2017.01.019
https://doi.org/10.1016/j.autcon.2017.01.019
https://doi.org/10.1109/ICRA.2011.5980131
https://doi.org/10.1117/12.968607

References

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for seman-
tic segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3431–3440 (see p. 150).

Luque-Vega, L. F., Castillo-Toledo, B., Loukianov, A., and Gonzalez-Jimenez, L. E. (2014).
“Power line inspection via an unmanned aerial system based on the quadrotor heli-
copter”. In: Proceedings of the Mediterranean Electrotechnical Conference - MELECON. IEEE,
pp. 393–397. DOI: 10.1109/MELCON.2014.6820566 (see p. 24).

Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., and Omata, H. (2018). “Road Damage De-
tection Using Deep Neural Networks with Images Captured Through a Smartphone”.
In: Cornell Computing Research Repository abs/1801.09454, pp. 4–6. eprint: 1801.09454
(see p. 141).

Maity, S., Saha, A., and Bhowmick, B. (2018). “Edge SLAM: Edge Points Based Monocular
Visual SLAM”. In: Proceedings - 2017 IEEE International Conference on Computer Vision
Workshops, ICCVW 2017. Vol. 2018-Janua, pp. 2408–2417. DOI: 10.1109/ICCVW.2017.
284 (see p. 103).

Maizuar, M., Zhang, L., Miramini, S., Mendis, P., and Thompson, R. G. (2017). “Detecting
structural damage to bridge girders using radar interferometry and computational mod-
elling”. In: Structural Control and Health Monitoring 24, e–record 1985. DOI: 10.1002/stc.
1985 (see p. 2).

Makantasis, K., Protopapadakis, E., and Doulamis, A. (2015). “Deep Convolutional Neural
Networks for Efficient Vision Based Tunnel Inspection”. In: International Conference on
Intelligent Computer Communication and Processing (ICCP), pp. 335–342. DOI: 10.1109/
ICCP.2015.7312681 (see p. 140).

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. WH freeman New York (see
p. 195).

Maninis, K.-k., Pont-tuset, J., Arbel, P., and Gool, L. V. (2016). “Deep Retinal Image Under-
standing”. In: Medical Image Computing and Computer-Assisted Intervention (see pp. 147,
198, 199, 209).

Markom, M., Aniza, S., Shukor, A., Adom, A. H., Sulino, E., Muslim, M., and Shakaff, A. Y.
(2016). “Indoor Scanning and Mapping using Mobile Robot and RP Lidar”. In: 3.1, pp. 42–
47 (see p. 23).

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). “A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms and Measur-
ing Ecological Statistics”. In: Proceedings of the International Conference on Computer Vision.
July (see p. 145).

233

https://doi.org/10.1109/MELCON.2014.6820566
1801.09454
https://doi.org/10.1109/ICCVW.2017.284
https://doi.org/10.1109/ICCVW.2017.284
https://doi.org/10.1002/stc.1985
https://doi.org/10.1002/stc.1985
https://doi.org/10.1109/ICCP.2015.7312681
https://doi.org/10.1109/ICCP.2015.7312681

References

Mazumdar, A. and Asada, H. (2009). “Mag-Foot: A steel bridge inspection robot”. In: Pro-
ceeding of the International Conference on Intelligent Robots and Systems, pp. 1691–1696.
DOI: 10.1109/IROS.2009.5354599 (see p. 7).

McLoughlin, B., Pointon, H., McLoughlin, J. P., Shaw, A., and Bezombes, F. (2018). “Uncer-
tainty characterisation of mobile robot localisation techniques using optical surveying
grade instruments”. In: Sensors 18.7. DOI: 10.3390/s18072274 (see p. 16).

Meeussen, W. (2010). REP 105: Coordinate Frames for Mobile Platforms. http://www.ros.org/
reps/rep-0105.html (YEAR last accessed: 01/02/19) (see p. 70).

Menendez, E., Victores, J. G., Montero, R., Martínez, S., and Balaguer, C. (2018). “Tunnel
structural inspection and assessment using an autonomous robotic system”. In: Automa-
tion in Construction 87.November 2016, pp. 117–126. DOI: 10.1016/j.autcon.2017.12.001
(see p. 15).

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., and Stryk, O. von (2012). “Compre-
hensive Simulation of Quadrotor UAVs Using ROS and Gazebo”. In: Simulation, Modeling,
and Programming for Autonomous Robots, pp. 400–411 (see p. 118).

Micheletti, N., Chandler, J. H., Lane, S. N., Prosdocimi, M., Calligaro, S., Sofia, G., Dalla
Fontana, G., Tarolli, P., Schenk, T., Micheletti, N., Chandler, J. H., and Lane, S. N. (2015).
“Structure fromMotion (SfM) Photogrammetry Photogrammetric heritage”. In:Depart-
ment of Civil and Environmental Engineering and Geodetic Science, The Ohio State University
2.14, pp. 1–12. DOI: 10.1002/esp.3767 (see p. 51).

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). “FastSLAM: A factored
solution to the simultaneous localization and mapping problem”. In: Proc. of 8th National
Conference on Artificial Intelligence/14th Conference on Innovative Applications of Artificial
Intelligence 68.2, pp. 593–598. DOI: 10.1.1.16.2153 (see p. 39).

Moore, T. and Stouch, D. (2016). “A Generalized Extended Kalman Filter Implementation
for the Robot Operating System”. In: Intelligent Autonomous Systems 13: Proceedings of
the 13th International Conference IAS-13, pp. 335–348. DOI: 10.1007/978-3-319-08338-
4_25 (see p. 48).

Morena, M., Manhães, M., Sebastian, A., Voss, M., Douat, L. R., and Rauschenbach, T. (2016).
“UUV Simulator: A Gazebo-based package for underwater intervention and multi-robot
simulation”. In: Oceans 2016. IEEE. DOI: 10.1109/oceans.2016.7761080 (see pp. 119,
122).

Moutarlier, P. (1989). “Stochastic Multisensory Data Fusion For Mobile Robot Location
And Environment Modeling”. In: Proceedings of the International Symposium on Robotics
Research (see p. 32).

234

https://doi.org/10.1109/IROS.2009.5354599
https://doi.org/10.3390/s18072274
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html
https://doi.org/10.1016/j.autcon.2017.12.001
https://doi.org/10.1002/esp.3767
https://doi.org/10.1.1.16.2153
https://doi.org/10.1007/978-3-319-08338-4_25
https://doi.org/10.1007/978-3-319-08338-4_25
https://doi.org/10.1109/oceans.2016.7761080

References

Mur-Artal, R., Montiel, J., and Tardos, J. (2015). “ORB-SLAM : a Versatile and Accurate
Monocular SLAM System”. In: Transactions on Robotics 31.5, pp. 1147–1163. DOI: 10.
1109/TRO.2015.2463671 (see pp. 45–47, 61, 80, 102, 105).

Mur-Artal, R. and Tardos, J. (2017). “ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras”. In: Transactions on Robotics 33.5, pp. 1255–
1262. DOI: 10.1109/TRO.2017.2705103 (see pp. 45, 46, 102, 105).

Murphy, K. (2000). “Bayesian map learning in dynamic environments”. In: Advances in Neural
Information Processing Systems 12, pp. 1015–1021. DOI: 10.1.1.21.3240 (see pp. 22, 37).

Murphy, R. R., Steimle, E., Hall, M., Lindemuth, M., Trejo, D., Hurlebaus, S., Medina-Cetina,
Z., and Slocum, D. (2011). “Robot-assisted bridge inspection”. In: Journal of Intelligent
and Robotic Systems: Theory and Applications 64.1, pp. 77–95. DOI: 10.1007/s10846-010-
9514-8 (see p. 11).

Nayyeri, F. and Hou, L. (2016). “Foreground-–background separation technique for crack
detection”. In: Computer-Aided Civil and Infrastructure Engineering, pp. 1–14. DOI: 10.1111/
mice.12428 (see pp. 138, 144).

Neves, F., Sobreira, H., Campos, D., and Morais, R. (2015). “Towards a Reliable Monitoring
Robot for Mountain Vineyards”. In: International Conference on Autonomous Robot Systems
and Competitions, pp. 37–43. DOI: 10.1109/ICARSC.2015.21 (see p. 118).

Nhat-Duc, H., Nguyen, Q. L., and Tran, V. D. (2018). “Automatic recognition of asphalt
pavement cracks using metaheuristic optimized edge detection algorithms and convolu-
tion neural network”. In: Automation in Construction 94.July, pp. 203–213. DOI: 10.1016/
j.autcon.2018.07.008 (see p. 141).

Niemierko, A. (2016). “Modern Bridge Bearings and Expansion Joints for Road Bridges”. In:
Transportation Research Procedia 14, pp. 4040–4049. DOI: 10.1016/j.trpro.2016.05.501
(see p. 1).

Nilsson, F. (2008). Thermal Cameras. CRC Press, p. 110. DOI: 10.1201/9781420061574 (see
p. 25).

Nitsche, M., Pire, T., Krajník, T., Kulich, M., and Mejail, M. (2014). “Monte Carlo localization
for teach-and-repeat feature-based navigation”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8717 LNAI, pp. 13–24. DOI: 10.1007/978-3-319-10401-0_2 (see p. 61).

Noh, Y., Koo, D., Kang, Y., Park, D. G., and Lee, D. H. (2017). “Automatic crack detection on
concrete images using segmentation via fuzzy C-means clustering”. In: Proceedings of the
International Conference on Applied System Innovation: Applied System Innovation for Modern
Technology, pp. 877–880. DOI: 10.1109/ICASI.2017.7988574 (see pp. 2, 13, 143).

235

https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1.1.21.3240
https://doi.org/10.1007/s10846-010-9514-8
https://doi.org/10.1007/s10846-010-9514-8
https://doi.org/10.1111/mice.12428
https://doi.org/10.1111/mice.12428
https://doi.org/10.1109/ICARSC.2015.21
https://doi.org/10.1016/j.autcon.2018.07.008
https://doi.org/10.1016/j.autcon.2018.07.008
https://doi.org/10.1016/j.trpro.2016.05.501
https://doi.org/10.1201/9781420061574
https://doi.org/10.1007/978-3-319-10401-0_2
https://doi.org/10.1109/ICASI.2017.7988574

References

Nüchter, A., Bleier, M., Schauer, J., and Peter Janotta (2018). “Continuous-Time SLAM—
Improving Google’s Cartographer 3D Mapping”. In: Latest Developments in Reality-Based
3D Surveying and Modelling, pp. 53–73 (see p. 23).

Oh, J., Lee, A., Oh, S., Choi, Y., Yi, B., and Yang, H. (2007). “Design and Control of Bridge
Inspection Robot System”. In: International Conference on Mechatronics and Automation,
pp. 3634–3639 (see p. 8).

Open Source Robotics Foundation (2014). Import Meshes. http://gazebosim.org/tutorials?
tut=import_mesh&cat=build_robot. Accessed: 2019-02-01 (see p. 119).

Özgenel, Ç. F. and Sorguç, A. G. (2018). “Performance Comparison of Pretrained Convo-
lutional Neural Networks on Crack Detection in Buildings”. In: Proceedings of the 35th
International Symposium on Automation and Robotics in Construction (see pp. 142, 143, 145,
146).

Panboonyuen, T., Jitkajornwanich, K., Lawawirojwong, S., Srestasathiern, P., and Vateekul, P.
(2017). “Road segmentation of remotely-sensed images using deep convolutional neural
networks with landscape metrics and conditional random fields”. In: Remote Sensing 9.7,
pp. 1–19. DOI: 10.3390/rs9070680 (see p. 144).

Parkinson, B. and Gilbert, S. (1983). “NAVSTAR: Global positioning system—Ten years
later”. In: Proceedings of the IEEE 71.10, pp. 1177–1186. DOI: 10.1109/PROC.1983.12745
(see p. 25).

Pauly, L., Peel, H., Luo, S., Hogg, D., and Fuentes, R. (2017). “Deeper Networks for Pavement
Crack Detection”. In: Proceedings of the 34th International Symposium on Automation and
Robotics in Construction. DOI: https://doi.org/10.22260/ISARC2017/0066 (see p. 141).

Peel, H., Morgan, G., Peel, C., Cohn, A., and Fuentes, R. (2016). “Inspection robot with low
cost perception sensing”. In: Proceedings of the 33rd International Symposium on Automation
and Robotics in Construction. Vol. 33. DOI: 10.22260/ISARC2016/0008 (see p. 22).

Pham, N. and La, H. (2016). “Design and implementation of an autonomous robot for steel
bridge inspection”. In: 54th Annual Allerton Conference on Communication, Control, and
Computing. Vol. 10. January, pp. 556–562. DOI: 10 .1109/ALLERTON.2016 .7852280
(see pp. 6, 8, 10, 13, 77, 78).

Philippe, M. and Chatila, R. (1990). “An Experimental System for Incremental Environment
Modelling by an Autonomous Mobile Robot”. In: Experimental Robotics I, pp. 327–346.
DOI: 10.1007/BFb0042528 (see p. 32).

Ponnu, G., George, J., and Skovira, J. (2016). Real-time ROSberryPi SLAM Robot. Masters of
Engineering Design Project (see pp. 45, 61, 64, 80).

236

http://gazebosim.org/tutorials?tut=import_mesh&cat=build_robot
http://gazebosim.org/tutorials?tut=import_mesh&cat=build_robot
https://doi.org/10.3390/rs9070680
https://doi.org/10.1109/PROC.1983.12745
https://doi.org/https://doi.org/10.22260/ISARC2017/0066
https://doi.org/10.22260/ISARC2016/0008
https://doi.org/10.1109/ALLERTON.2016.7852280
https://doi.org/10.1007/BFb0042528

References

Portugal, D., Cabrita, G., Gouveia, B. D., Santos, D. C., and Prado, J. (2015). “An au-
tonomous all terrain robotic system for field demining missions”. In: Robotics and Au-
tonomous Systems 70, pp. 126–144. DOI: 10.1016/j.robot.2015.02.013 (see p. 118).

Post, M. A., Bianco, A., and Yan, X. T. (2017). “Autonomous Navigation with ROS for
a Mobile Robot in Agricultural Fields”. In: Proceedings of the 14th International Confer-
ence on Informatics in Control, Automation and Robotics. Vol. 2, pp. 79–87. DOI: 10.5220/
0006434400790087 (see p. 15).

Prasanna, P., Dana, K. J., Gucunski, N., Basily, B. B., La, H. M., Lim, R. S., and Parvardeh, H.
(2016). “Automated Crack Detection on Concrete Bridges”. In: Transactions on Automa-
tion Science and Engineering. Vol. 13. 2, pp. 591–599. DOI: 10.1109/TASE.2014.2354314
(see pp. 2, 13, 139, 143, 165).

Protopapadakis, E., Stentoumis, C., Doulamis, N., Doulamis, A., Loupos, K., Makantasis, K.,
Kopsiaftis, G., and Amditis, A. (2016). “Autonomous robotic inspection in tunnels”. In:
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 3.5, pp. 12–19.
DOI: 10.5194/isprsannals-III-5-167-2016 (see pp. 6, 15).

Qian, W., Xia, Z., Xiong, J., Gan, Y., and Guo, Y. (2014). “Manipulation Task Simulation
using ROS and Gazebo”. In: International Conference on Robotics and Biomimetics. IEEE,
pp. 2594–2598 (see p. 118).

Quigley, M., Berger, E., and Ng, A. Y. (2007). “STAIR : Hardware and Software Architecture”.
In: AAAI 2007 Robotics Workshop, Vancouver, BC, pp. 31–37. DOI: 10.1.1.88.7903 (see
p. 68).

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and
Ng, A. (2009). “ROS: an open-source Robot Operating System”. In: ICRA Workshop on
Open Source Software (see p. 68).

Ratsamee, P., Kriengkomol, P., Arai, T., Kamiyama, K., Mae, Y., Kiyokawa, K., Mashita, T.,
Uranishi, Y., and Takemura, H. (2016). “A hybrid flying and walking robot for steel bridge
inspection”. In: International Symposium on Safety, Security and Rescue Robotics, pp. 62–67.
DOI: 10.1109/SSRR.2016.7784278 (see pp. 7, 11, 13).

Ridao, P., Carreras, M., Ribas, D., and Garcia, R. (2010). “Visual Inspection of Hydroelec-
tric Dams Using an Autonomous Underwater Vehicle”. In: Journal of Field Robotics 27.6,
pp. 759–778 (see p. 16).

Rohde, J., Jatzkowski, I., Mielenz, H., and Z, J. M. (2016). “Vehicle Pose Estimation in Clut-
tered Urban Environments Using Multilayer Adaptive Monte Carlo Localization”. In:
Proceedings of the International Conference on Information Fusion (see pp. 61, 80).

237

https://doi.org/10.1016/j.robot.2015.02.013
https://doi.org/10.5220/0006434400790087
https://doi.org/10.5220/0006434400790087
https://doi.org/10.1109/TASE.2014.2354314
https://doi.org/10.5194/isprsannals-III-5-167-2016
https://doi.org/10.1.1.88.7903
https://doi.org/10.1109/SSRR.2016.7784278

References

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: Medical Image Computing and Computer-Assisted In-
tervention, Springer, LNCS, Vol.9351: 234–241, 2015, pp. 1–8. DOI: 10.1007/978-3-319-
24574-4_28 (see p. 210).

Rossow, M. (2006). “Section 9: Inspection of Bridge Bearings (BIRM)”. In: Federal Highway
Administration Bridge Inspector’s Reference Manual. Chap. 9, pp. 9.1.1–9.1.36 (see p. 2).

Ryan, T. W., Eric Mann, J., Chill, Z. M., and Ott, B. T. (2012). Bridge Inspector’s Reference
Manual (see pp. 1, 2).

Sacks, R., Kedar, A., Borrmann, A., Ma, L., Brilakis, I., Hüthwohl, P., Daum, S., Kattel, U.,
Yosef, R., Liebich, T., Barutcu, B. E., and Muhic, S. (2018). “SeeBridge as next generation
bridge inspection: Overview, Information Delivery Manual and Model View Definition”.
In: Automation in Construction 90.May 2017, pp. 134–145. DOI: 10.1016/j.autcon.2018.
02.033 (see pp. 5, 83).

Sakagami, T. (2015). “Remote nondestructive evaluation technique using infrared thermog-
raphy for fatigue cracks in steel bridges”. In: Fatigue and Fracture of Engineering Materials
and Structures 38.7, pp. 755–779. DOI: 10.1111/ffe.12302 (see p. 12).

Salari, E. and Ouyang, D. (2012). “An image-based pavement distress detection and classifi-
cation”. In: International Conference on Electro Information Technology. DOI: 10.1109/EIT.
2012.6220706 (see p. 197).

Sanchez-Cuevas, P., Heredia, G., and Ollero, A. (2017). “Multirotor UAS for bridge inspec-
tion by contact using the ceiling effect”. In: International Conference on Unmanned Aircraft
Systems, ICUAS 2017, pp. 767–774. DOI: 10.1109/ICUAS.2017.7991412 (see p. 9).

Sato, Y. (2018). “Crack Detection on Concrete Surfaces Using V-shaped Features”. In: The
World of Computer Science and Information Technology Journal 8.1, pp. 1–6 (see pp. 12,
139, 143).

Shi, Y., Cui, L., Qi, Z., Meng, F., and Chen, Z. (2016). “Structured Forests”. In: Transactions on
Intelligent Transportation Systems. Vol. 17. 12, pp. 1–12. DOI: 10.1109/TITS.2016.2552248
(see pp. 138, 140, 153–155, 164, 170, 172, 174, 176, 209).

Shiau, Y., Huang, C., Wang, M., and Zeng, J. (2008). “Discussion of Pot Bearing for Concrete
Bridge”. In: Proceedings from the 25th International Symposium on Automation and Robotics
in Construction, pp. 213–223. DOI: 10.22260/ISARC2008/0033 (see p. 2).

Shibasaki, N., Ikeda, C., and Sakano, C. (2016). “Evaluation of bridge bearing performance
based on the field measurement”. In: Maintenance, Monitoring, Safety, Risk and Resilience
of Bridges and Bridge Networks - Proceedings of the 8th International Conference on Bridge
Maintenance, Safety and Management, pp. 870–877 (see p. 2).

238

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.autcon.2018.02.033
https://doi.org/10.1016/j.autcon.2018.02.033
https://doi.org/10.1111/ffe.12302
https://doi.org/10.1109/EIT.2012.6220706
https://doi.org/10.1109/EIT.2012.6220706
https://doi.org/10.1109/ICUAS.2017.7991412
https://doi.org/10.1109/TITS.2016.2552248
https://doi.org/10.22260/ISARC2008/0033

References

Siciliano, B. and Khatib, O. (2016). “Springer handbook of robotics”. In: (see pp. 27, 29–33,
36–38, 41).

Siegwart and Nourbaksh (2011). Introduction to Autonomous Mobile Robots. MIT press (see
pp. 23, 25, 26, 36, 39).

Sim, R., Elinas, P., Griffin, M., and Little, J. J. (2005). “Vision-based SLAM using the Rao-
Blackwellised Particle Filter”. In: Workshop on Reasoning with Uncertainty in Robotics.
Vol. 14, pp. 9–16. DOI: 10.1631/jzus.A071361 (see p. 39).

Simonyan, K. and Zisserman, A. (2014). “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: arXiv preprint arXiv:1409.1556, pp. 1–14. DOI: 10.1016/j.
infsof.2008.09.005 (see pp. 144, 146, 148, 150, 158, 159).

Smith, R., Self, M., and Cheeseman, P. (1987). “Estimating Uncertain Spatial Relationships in
Robotics”. In: International Conference on Robotics and Automation (see p. 32).

Sommer, A. M., Nowak, A. S., and Thoft-Christensen, P. (1993). “Probability-Based Bridge
Inspection Strategy”. In: Journal of Structural Engineering 119.12, pp. 3520–3536. DOI:
10.1061/(ASCE)0733-9445(1993)119:12(3520) (see p. 5).

Spuler, T., Meng, N., and Moor, G. (2015). “Life-cycle costs of bridge bearings – Key con-
siderations for bridge designers and owners”. In: Multi-Span Large Bridges - Proceedings
of the International Conference on Multi-Span Large Bridges, 2015, pp. 743–750. DOI: 10.
1201/b18567-95 (see p. 3).

Staal, J., Abràmoff, M., Niemeijer, M., Viergever, M., and Van Ginneken, B. (2004). “Ridge-
based vessel segmentation in color images of the retina”. In: Transactions on Medical
Imaging 23.4, pp. 501–509. DOI: 10.1109/TMI.2004.825627 (see pp. 144, 195).

Su, T. (2013). “Application of Computer Vision to Crack Detection of Concrete Structure”.
In: International Journal of Engineering and Technology 5.4, pp. 457–461. DOI: 10.7763/IJET.
2013.V5.596 (see pp. 138, 143).

Sutter, B., Lelevé, A., Pham, M. T., Gouin, O., Jupille, N., Kuhn, M., Lulé, P., Michaud, P., and
Rémy, P. (2018). “A semi-autonomous mobile robot for bridge inspection”. In: Automa-
tion in Construction 91.May 2017, pp. 111–119. DOI: 10.1016/j.autcon.2018.02.013 (see
pp. 5, 8, 11, 16, 77, 83, 137, 213).

Takada, Y., Ito, S., and Imajo, N. (2017). “Development of a Bridge Inspection Robot Capable
of Traveling on Splicing Parts”. In: Inventions 2.3, p. 22. DOI: 10.3390/inventions2030022
(see pp. 6, 11).

Thrun, S., Burgard, W., and Fox, D. (2005). “Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents)”. In: The MIT Press (see pp. 48, 49, 61, 82).

239

https://doi.org/10.1631/jzus.A071361
https://doi.org/10.1016/j.infsof.2008.09.005
https://doi.org/10.1016/j.infsof.2008.09.005
https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3520)
https://doi.org/10.1201/b18567-95
https://doi.org/10.1201/b18567-95
https://doi.org/10.1109/TMI.2004.825627
https://doi.org/10.7763/IJET.2013.V5.596
https://doi.org/10.7763/IJET.2013.V5.596
https://doi.org/10.1016/j.autcon.2018.02.013
https://doi.org/10.3390/inventions2030022

References

Toldo, R., Gherardi, R., Farenzena, M., and Fusiello, A. (2015). “Hierarchical structure-and-
motion recovery from uncalibrated images”. In: Computer Vision and Image Understanding
140, pp. 127–143. DOI: 10.1016/j.cviu.2015.05.011 (see p. 51).

Torrey, L. and Shavlik, J. (2009). “Transfer Learning”. In: Handbook of Research on Machine
Learning Applications, pp. 1–22. DOI: 10.1016/j.jbi.2011.04.009 (see p. 146).

van Diggelen, F. and Enge, P. (2015). “The World’s first GPS MOOC and Worldwide Labo-
ratory using Smartphones”. In: Proceedings of the 28th International Technical Meeting of
The Satellite Division of the Institute of Navigation, pp. 361–369 (see p. 25).

Van Nguyen, L., Gibb, S., Pham, H., and La, H. (2018). “A Mobile Robot for Automated Civil
Infrastructure Inspection and Evaluation”. In: International Symposium on Safety, Security,
and Rescue Robotics, pp. 1–6. DOI: 10.1109/SSRR.2018.8468642 (see pp. 6, 7, 10, 13,
77).

Van Rijsbergen, C. (1979). Information Retrieval. 2nd. Butterworth-Heinemann (see p. 165).

Varadharajan, S., Jose, S., Sharma, K., Wander, L., and Mertz, C. (2014). “Vision for road
inspection”. In: Winter Conference on Applications of Computer Vision, pp. 115–122. DOI:
10.1109/WACV.2014.6836111 (see pp. 6, 137, 139, 143).

Ventura, E., Costa, L., and Nogueira, R. A. (2015). “Fractal, multifractal and lacunarity anal-
ysis applied in retinal regions of diabetic patients with and without nonproliferative dia-
betic retinopathy”. In: Fractal Geometry and Nonlinear Analysis in Medicine and Biology 1.3,
pp. 112–119. DOI: 10.15761/FGNAMB.1000118 (see p. 197).

Victores, J., Martínez, S., Jardón, A., and Balaguer, C. (2011). “Robot-aided tunnel inspection
and maintenance system by vision and proximity sensor integration”. In: Automation in
Construction 20.5, pp. 629–636. DOI: 10.1016/j.autcon.2010.12.005 (see p. 6).

Vivet, D., Checchin, P., and Chapuis, R. (2013). “Localization and mapping using only a rotat-
ing FMCW radar sensor”. In: Sensors (Switzerland) 13.4, pp. 4527–4552. DOI: 10.3390/
s130404527 (see p. 22).

Vu Dung, C. and Duc Anh, L. (2019). “Automation in Construction Autonomous concrete
crack detection using deep fully convolutional neural network”. In: Automation in Con-
struction 99.December 2018, pp. 52–58. DOI: 10 . 1016 / j . autcon . 2018 . 11 . 028 (see
pp. 143, 145, 164).

Ward, P., Manamperi, P., Brooks, P., Mann, P., Kaluarachchi, W., Matkovic, L., Paul, G., Quin,
P., Pagano, D., Liu, D., Waldron, K., and Dissanayake, G. (2014). “Climbing robot for
steel bridge inspection: design challenges”. In: Proceedings for the Austroads, pp. 1–13
(see pp. 11, 13).

240

https://doi.org/10.1016/j.cviu.2015.05.011
https://doi.org/10.1016/j.jbi.2011.04.009
https://doi.org/10.1109/SSRR.2018.8468642
https://doi.org/10.1109/WACV.2014.6836111
https://doi.org/10.15761/FGNAMB.1000118
https://doi.org/10.1016/j.autcon.2010.12.005
https://doi.org/10.3390/s130404527
https://doi.org/10.3390/s130404527
https://doi.org/10.1016/j.autcon.2018.11.028

References

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012).
“’Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience
applications”. In: Geomorphology 179, pp. 300–314. DOI: 10.1016/j.geomorph.2012.08.
021 (see p. 118).

Xie, S. (2015). “Holistically-Nested Edge Detection University of California , San Diego”. In:
International Conference on Computer Vision (ICCV), pp. 1395–1403. DOI: 10.1109/ICCV.
2015.164 (see pp. 147, 150, 219).

Xie, S. and Tu, Z. (2017). “Holistically-Nested Edge Detection”. In: International Journal of
Computer Vision 125.1-3, pp. 3–18. DOI: 10.1007/s11263-017-1004-z (see pp. 147, 150,
151, 158–161, 197, 209, 219).

Yanagihara, M., Matsuzawa, T., Kudo, M., and Turker, T. (2000). “Replacement of Bearings in
the Golden Horn Bridge, Turkey”. In: Structural Engineering International 10.2, pp. 121–
123. DOI: 10.2749/101686600780557857 (see p. 1).

Yang, C., Wen, M., Chen, Y., and Kang, S. (2015). “An Optimized Unmanned Aerial System
for Bridge Inspection”. In: Proceeding of the 32nd International Symposium on Automation
and Robotics in Construction. DOI: 10.22260/ISARC2015/0084 (see pp. 6, 9, 13, 77, 78).

Yang, F., Zhang, Y. D., and Zhu, Y. J. (2016). “Road Crack Detection Using Deep Convolu-
tional Neural Network”. In: International Conference on IImage Processing (ICIP) October
2017. DOI: 10.1109/ICIP.2016.7533052 (see pp. 140, 141, 143).

Yang, L., Li, B., Li, W., Liu, Z., Yang, G., and Xiao, J. (2017). “Deep Concrete Inspection Using
Unmanned Aerial Vehicle Towards CSSC Database”. In: Proceedings of the International
Conference on Intelligent Robots and Systems (see pp. 12, 141, 143, 155, 164, 165).

Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., and Yang, X. (2018). “Automatic Pixel-Level Crack
Detection and Measurement Using Fully Convolutional Network”. In: Computer-Aided
Civil and Infrastructure Engineering 33.12, pp. 1090–1109. DOI: 10.1111/mice.12412 (see
p. 142).

Yeum, C. and Dyke, S. (2015). “Vision-Based Automated Crack Detection for Bridge In-
spection”. In: Computer-Aided Civil and Infrastructure Engineering 30.10, pp. 759–770. DOI:
10.1111/mice.12141 (see p. 13).

Yokoyamma, S. and Matsumoto, T. (2017). “Development of an automatic detector of cracks
in concrete using machine learning”. In: The 3rd International Conference on Sustainable
Civil Engineering Structures and Construction Materials - Sustainable Structures for Future
Generations, pp. 1250–1255. DOI: 10.1016/j.proeng.2017.01.418 (see p. 141).

241

https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1109/ICCV.2015.164
https://doi.org/10.1109/ICCV.2015.164
https://doi.org/10.1007/s11263-017-1004-z
https://doi.org/10.2749/101686600780557857
https://doi.org/10.22260/ISARC2015/0084
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1111/mice.12412
https://doi.org/10.1111/mice.12141
https://doi.org/10.1016/j.proeng.2017.01.418

References

Zaffar, M., Ehsan, S., Stolkin, R., and Maier, K. M. (2018). “Sensors, SLAM and Long-term
Autonomy: A Review”. In: Cornell Computing Research Repository abs/1807.01605. DOI:
arXiv:1807.01605v1 (see pp. 21, 23).

Zhang, A., Wang, K. C. P., Asce, M., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J. Q., and Li, B.
(2018a). “Deep Learning – Based Fully Automated Pavement Crack Detection on 3D
Asphalt Surfaces with an Improved CrackNet”. In: Journal of Computing in Civil Engineering
32.5, pp. 1–14. DOI: 10.1061/(ASCE)CP.1943-5487.0000775. (see pp. 142, 144, 145,
172).

Zhang, A., Wang, K. C. P., Fei, Y., Liu, Y., Chen, C., Yang, G., Li, J. Q., and Yang, E. (2018b).
“Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces with a Re-
current Neural Network”. In: Computer-Aided Civil and Infrastructure Engineering 34.3,
pp. 213–229. DOI: 10.1111/mice.12409 (see p. 142).

Zhou Wang and Alan C. Bovik (2004). “Image Quality Assessment: From Error Visibility to
Structural Similarity”. In: Transactions on Image Processing 13.4, pp. 1–14. DOI: 10.1109/
TIP.2003.819861 (see pp. 166, 167).

Zitnick, C. L. and Dollár, P. (2015). “Fast Edge Detection Using Structured Forests”. In:
IEEE transactions on pattern analysis and machine intelligence. Vol. 37, pp. 1558–1570 (see
pp. 158, 161, 166).

242

https://doi.org/arXiv:1807.01605v1
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775.
https://doi.org/10.1111/mice.12409
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

References

243

Appendix A

Simulation parameters

A.1 Defining the robot URDF

The parameters below were used in simulation, but can also be used for the real robot in

order to utilise tools in ROS, such as motion path planners.
< ? xml v e r s i o n = ’ 1 . 0 ’ ? >

<robot name=” rosbot ” xm l n s : x a c ro=” h t t p : / /www. ros . org / w i k i / xacro ”>

< x a c r o : i n c l u d e f i l e n am e =” $(f i n d ␣ r o s b o t _ d e s c r i p t i o n) / u r d f / body / body .
gazebo ” / >

<xacro :macro name=” body ” params=” pa r en t ␣ ba s eHe i g h t ␣baseWidth ”>
< l i n k name= ’ b a s e _ l i n k ’ >

<pose>0 0 0 . 1 0 0 3 . 142< / pose>
< i n e r t i a l >

<mass v a l u e =”5” / >
< o r i g i n xyz=”0␣0␣ 0 . 04 ” rpy=”␣0␣0␣0” / >
< i n e r t i a
i x x=” 0 . 01 ” i x y =” 0 . 01 ” i x z =”0 ”
i y y =” 0 . 01 ” i y z =” 0 . 01 ”
i z z =” 0 . 01 ”
/ >

< / i n e r t i a l >

< c o l l i s i o n name= ’ c o l l i s i o n ’>
< o r i g i n xyz=”0␣0␣ 0 . 05 ” rpy=”0␣0␣0” / >
<geometry>

<box s i z e =” 0 . 19 ␣ 0 . 12 ␣ 0 . 045 ” / >
< / geometry>

< / c o l l i s i o n >

< v i s u a l name= ’ b a s e _ l i n k _ v i s u a l ’ >
< o r i g i n xyz=” −0.085␣ −0.06␣ 0 . 02 ” rpy=”␣0␣0␣0” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes /
d i ddy_box_sma l l . dae ” s c a l e =” 0 . 1 ␣ 0 . 1 ␣ 0 . 1 ” / >

245

Simulation parameters

< / geometry>
< / v i s u a l >

< / l i n k >
< j o i n t name=” t o p _ j o i n t ” t ype=” f i x e d ”>

< a x i s xyz=”0␣1␣0” / >
< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣0” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< c h i l d l i n k =” top ” / >

< / j o i n t >
< l i n k name= ’ top ’>

<pose>0 0 0 0 0 0< / pose>

< i n e r t i a l >
<mass v a l u e =” 0 . 01 ” / >
< o r i g i n xyz=”0␣0␣ 0 . 1 ” rpy=”␣0␣0␣0” / >
< i n e r t i a
i x x=” 0 . 0 ” i x y =”0 ” i x z =”0 ”
i y y =” 0 . 0 ” i y z =”0 ”
i z z =” 0 . 0 ”
/ >

< / i n e r t i a l >
< v i s u a l name= ’ top ’>

< o r i g i n xyz=” −0.085␣ −0.06␣ 0 . 05 ” rpy=”␣0␣0␣0” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes /
d iddy_box_upper . dae ” s c a l e =” 0 . 1 ␣ 0 . 1 ␣ 0 . 1 ” / >

< / geometry>
< / v i s u a l >

< / l i n k >

< l i n k name=” m i d d l e _ l e f t _whe e l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >

< v i s u a l name=” m i d d l e _ l e f t _w h e e l _ v i s u a l ”>
< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >

246

A.1 Defining the robot URDF

< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< l i n k name=” f r o n t _ l e f t _w h e e l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >
< v i s u a l name=” f r o n t _ l e f t _ w h e e l _ v i s u a l ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >
< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< l i n k name=” m i dd l e_ r i g h t _whee l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >
< v i s u a l name=” m i d d l e _ r i g h t _wh e e l _ v i s u a l ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >

247

Simulation parameters

<geometry>
<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”

s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >
< / geometry>

< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >
< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< l i n k name=” f r o n t _ r i g h t _wh e e l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >
< v i s u a l name=” f r o n t _ r i g h t _w h e e l _ v i s u a l ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >
< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< l i n k name=” r e a r _ l e f t _wh e e l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

248

A.1 Defining the robot URDF

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >
< v i s u a l name=” r e a r _ l e f t _w h e e l _ v i s u a l ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ −1.5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >
< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< l i n k name=” r e a r _ r i g h t _whe e l ”>
< c o l l i s i o n name=” c o l l i s i o n ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< s u r f a c e >

< f r i c t i o n >
<ode>

<mu>2< /mu>
<mu2>2< /mu2>

< / ode>
< / f r i c t i o n >

< / s u r f a c e >
< / c o l l i s i o n >
< v i s u a l name=” r e a r _ r i g h t _w h e e l _ v i s u a l ”>

< o r i g i n xyz=”0␣0␣0” rpy=”0␣0␣ 1 .5707 ” / >
<geometry>

<mesh f i l e n am e =” p a c k a g e : / / r o s b o t _ d e s c r i p t i o n / meshes / wheel . dae ”
s c a l e =” 0 .00075 ␣ 0 .00075 ␣ 0 .00075 ” / >

< / geometry>
< / v i s u a l >
< i n e r t i a l >

< o r i g i n xyz=”0␣0␣0” rpy=”0␣ 1 .5707 ␣ 1 .5707 ” / >
<mass v a l u e =” 0 . 5 ” / >
< i n e r t i a
i x x=” 0 . 001 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”
i y y =” 0 . 001 ” i y z =” 0 . 0 ”
i z z =” 0 . 001 ” / >

< / i n e r t i a l >
< / l i n k >

< j o i n t t ype=” con t i n uou s ” name=” f r o n t _ l e f t _wh e e l _ h i n g e ”>
< o r i g i n xyz=” 0 . 082 ␣ 0 . 065 ␣ −0.005 ” rpy=”0␣0␣0” / >

249

Simulation parameters

< c h i l d l i n k =” f r o n t _ l e f t _w h e e l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< j o i n t t ype=” con t i n uou s ” name=” f r o n t _ r i g h t _wh e e l _ h i n g e ”>
< o r i g i n xyz=” 0 . 083 ␣ −0.065␣ −0.005 ” rpy=”0␣0␣0” / >
< c h i l d l i n k =” f r o n t _ r i g h t _wh e e l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< j o i n t t ype=” con t i n uou s ” name=” m i d d l e _ l e f t _whe e l _ h i n g e ”>
< o r i g i n xyz=” 0 . 0 ␣ 0 . 065 ␣ −0.005 ” rpy=”0␣0␣0” / >
< c h i l d l i n k =” m i d d l e _ l e f t _whe e l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< j o i n t t ype=” con t i n uou s ” name=” m i dd l e_ r i g h t _whee l _ h i n g e ”>
< o r i g i n xyz=” 0 . 0 ␣ −0.065␣ −0.005 ” rpy=”0␣0␣0” / >
< c h i l d l i n k =” m i dd l e_ r i g h t _whee l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< j o i n t t ype=” con t i n uou s ” name=” r e a r _ l e f t _wh e e l _ h i n g e ”>
< o r i g i n xyz=” −0.083␣ 0 . 065 ␣ −0.005 ” rpy=”0␣0␣0” / >
< c h i l d l i n k =” r e a r _ l e f t _wh e e l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< j o i n t t ype=” con t i n uou s ” name=” r e a r _ r i g h t _whe e l _ h i n g e ”>
< o r i g i n xyz=” −0.083␣ −0.065␣ −0.005 ” rpy=”0␣0␣0” / >
< c h i l d l i n k =” r e a r _ r i g h t _whe e l ” / >
<pa r en t l i n k =” ${ p a r en t } ” / >
< a x i s xyz=”0␣1␣0” rpy=”0␣0␣0” / >
< l i m i t e f f o r t =”1 ” v e l o c i t y =” 10 ” / >
< j o i n t _ p r o p e r t i e s damping=” 5 . 0 ” f r i c t i o n =” 1 . 0 ” / >

< / j o i n t >

< / xacro :macro>

< / robot>

250

A.2 Additional robot parameters for simulation

A.2 Additional robot parameters for simulation

The parameters below adapt the robot description above for the simulation of the differ-

ential drive controller.

< ? xml v e r s i o n =” 1 . 0 ” ?>
<robot>

<gazebo>
< p l u g i n name=” s k i d _ s t e e r _ d r i v e _ c o n t r o l l e r ” f i l e n am e =”

l i b g a z e b o _ r o s _ s k i d _ s t e e r _ d r i v e . so ”>
<upda teRa te>20 . 0< / upda teRa te>
<robotBaseFrame> b a s e _ l i n k < / robotBaseFrame>
<whee l S e p a r a t i o n>0 . 075< / whee l S e p a r a t i o n>
<whee lDiameter>0 . 065< / whee lDiameter>
<torque>0 . 8 < / torque>
< l e f t F r o n t J o i n t > f r o n t _ l e f t _wh e e l _ h i n g e < / l e f t F r o n t J o i n t >
< r i g h t F r o n t J o i n t > f r o n t _ r i g h t _wh e e l _ h i n g e < / r i g h t F r o n t J o i n t >
< r i g h t M i d d l e J o i n t >m i dd l e _ r i g h t _whee l _ h i n g e < / r i g h t M i d d l e J o i n t >
< l e f t M i d d l e J o i n t >m i d d l e _ l e f t _whe e l _ h i n g e < / l e f t M i d d l e J o i n t >
< l e f t R e a r J o i n t > r e a r _ l e f t _wh e e l _ h i n g e < / l e f t R e a r J o i n t >
< r i g h t R e a r J o i n t > r e a r _ r i g h t _whe e l _ h i n g e < / r i g h t R e a r J o i n t >
< !−−max_ve loc i t y >0 .1< / max_ve l o c i t y−−>
<topicName>cmd_vel< / topicName>
<commandTopic>cmd_vel< / commandTopic>
<broadca s tTF> t r ue< / b roadca s tTF>
<odometryTopic>odom_gazebo< / odometryTopic>
<odometryFrame>odom< / odometryFrame>
<cov a r i a n c e_x>0 .000100< / co v a r i a n c e_x>
< co v a r i a n c e_ y>0 .000100< / co v a r i a n c e_ y>
<cova r i ance_yaw>0 .010000< / cova r i ance_yaw>

< / p l u g i n >
< / gazebo>

<gazebo r e f e r e n c e =” b a s e _ l i n k ”>
<m a t e r i a l >Gazebo / R u s t y S t e e l < / m a t e r i a l >

< / gazebo>
<gazebo r e f e r e n c e =” top ”>

<m a t e r i a l >Gazebo / Chrome< / m a t e r i a l >
< / gazebo>
<gazebo r e f e r e n c e =” f r o n t _ l e f t _w h e e l ”>

<m a t e r i a l >Gazebo / B l a c k < / m a t e r i a l >
< / gazebo>
<gazebo r e f e r e n c e =” f r o n t _ r i g h t _wh e e l ”>

<m a t e r i a l >Gazebo / B l a c k < / m a t e r i a l >
< / gazebo>
<gazebo r e f e r e n c e =” m i d d l e _ l e f t _whe e l ”>

<m a t e r i a l >Gazebo / B l a c k < / m a t e r i a l >
< / gazebo>
<gazebo r e f e r e n c e =” m i dd l e_ r i g h t _whee l ”>

<m a t e r i a l >Gazebo / B l a c k < / m a t e r i a l >
< / gazebo>
<gazebo r e f e r e n c e =” r e a r _ l e f t _wh e e l ”>

<m a t e r i a l >Gazebo / B l a c k < / m a t e r i a l >
< / gazebo>

< / robot>

251

Simulation parameters

A.3 Defining the 2D LiDAR in simulation

Below is an example of the parameters used to define the 2D LiDAR in the simulation

environment. These parameters were based on the parameters of the real 2D LiDAR

sensor in Chapter 3
<robot>
<gazebo r e f e r e n c e =” r p l i d a r ”>

<sensor t ype=” r a y ” name=” h e a d_ r p l i d a r _ s e n s o r ”>
<pose>0 0 0 0 0 0< / pose>
< v i s u a l i z e > f a l s e < / v i s u a l i z e >
<upda t e_ r a t e>40< / upd a t e_ r a t e>
<ra y>

<scan>
< h o r i z o n t a l >

<samp l e s>720< / s amp l e s>
< r e s o l u t i o n >1< / r e s o l u t i o n >
<min_ang l e>−3.14159265< / m in_ang l e>
<max_ang le>3 .14159265< / max_ang le>

< / h o r i z o n t a l >
< / s c an>
<range>

<min>0 . 2 < / min>
<max>30 . 0< / max>
< r e s o l u t i o n >0 . 01< / r e s o l u t i o n >

< / r ange>
<no i s e >

< type> g a u s s i a n < / t ype>
<mean>0 . 0 < / mean>
<s tddev>0 . 01< / s t ddev>

< / no i s e >
< / r a y>
< p l u g i n name=” g a z e bo_ r o s _ h e a d_ r p l i d a r _ c o n t r o l l e r ” f i l e n am e =”

l i b g a z e b o _ r o s _ l a s e r . so ”>
<topicName>scan< / topicName>
<frameName> l a s e r < / frameName>

< / p l u g i n >
< / sen sor>

< / gazebo>
< / robot>

252

Appendix B

Parameter sweep for training

parameters for HED network

B.1 Varying base learning rate and step-size

As described in Chapter 5, parameters are chosen for training the deep-learning network

by performing tests on a validation set. First, the base learning rate and the step size at

which the learning rate is reduced were varied. The results are shown in Figures B.1– B.3.

When the base learning rate is set too high, i.e., above 1𝑒−7, the model does not converge
(Figure B.1). Figure B.3 also shows that for a reduced base learning rate of 1𝑒 − 8, when the
learning rate is reduced too frequently (e.g., for a step-size of 5000) then there are large

oscillations in the loss. It is likely that the learning rate has been reduced too much and the

model is learning slowly.

253

Parameter sweep for training parameters for HED network

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate: 1e-06

step 10000
step 7500
step 5000

Figure B.1: Comparing training loss against number of training iterations for a
base-learning rate of 1e-06. The learning rate is reduced at every 5000, 7500 or 10000
training iterations, but the model does not converge as the base-learning rate is too high.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate: 1e-07

step 10000
step 7500
step 5000

Figure B.2: Comparing training loss against number of training iterations for a base
learning rate of 1e-07. The learning rate is reduced at every 5000, 7500 or 10000 training

iterations.

254

B.1 Varying base learning rate and step-size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate: 1e-08

step 10000
step 7500
step 5000

Figure B.3: Comparing training loss against number of training iterations for a
base-learning rate of 1e-08. The learning rate is reduced at every 5000, 7500 or 10000

training iterations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate: 1e-07 vs 1e-08 for a stepsize of 10000

1e-07 step 10000
1e-08 step 10000

Figure B.4: A comparison of the training loss against number of training iterations for a
base-learning rate of 1e-07 and 1e-08. The learning rate is reduced every 10000 training

iterations.

255

Parameter sweep for training parameters for HED network

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
comparing learning rate stepsize for base learning rate = 1e-08

Precision
==Recall
CF_val_1e07_10000

F1 score (P==R)
 = 0.54
CF_val_1e07_10000
CF_val_1e07_7500

F1 score (P==R)
 = 0.54
CF_val_1e07_7500
CF_val_1e07_5000

F1 score (P==R)
 = 0.54
CF_val_1e07_5000

Figure B.5: A comparison of the precision-recall curves for a base learning rate of 1e-07
for learning rate steps of 5000,7500 and 10000.

256

B.1 Varying base learning rate and step-size

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
comparing learning rate stepsize for base learning rate = 1e-08

Precision
==Recall
CF_val_1e08_10000

F1 score (P==R)
 = 0.53
CF_val_1e08_10000
CF_val_1e08_7500

F1 score (P==R)
 = 0.53
CF_val_1e08_7500
CF_val_1e08_5000

F1 score (P==R)
 = 0.52
CF_val_1e08_5000

Figure B.6: A comparison of the precision-recall curves for a base learning rate of 1e-08
for learning rate steps of 5000,7500 and 10000.

257

Parameter sweep for training parameters for HED network

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
comparing learning rate stepsize for base learning rate = 1e-08

F1 score (P==R)
 = 0.53
CF_val_1e07_10000
CF_val_1e07_10000

F1 score (P==R)
 = 0.53
CF_val_1e08_10000
CF_val_1e08_10000

Precision
==Recall

Figure B.7: A comparison of the precision-recall curves for a base learning rate of 1e-08
and 1e-07 for a learning rate step of 10000.

258

B.2 Varying weight decay

B.2 Varying weight decay

In addition to varying the base learning rate and the step at which the learning rate was

reduced, the weight decay parameter is also varied. In the following plots, the weight decay

for training the networks was varied for both a base learning rate of 1e-07 and 1e-08.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate 1e-07

weight decay: 0.0001
weight decay: 0.0002
weight decay: 0.0005
weight decay: 0.001

Figure B.8: A comparison of the training loss against number of training iterations for a
base-learning rate of 1e-07 for different values of weight decay. The learning rate is

reduced every 10000 training iterations.

259

Parameter sweep for training parameters for HED network

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

Lo
ss

Iteration

base learning rate 1e-08

weight decay: 0.0001
weight decay: 0.0002
weight decay: 0.0005
weight decay: 0.001

Figure B.9: A comparison of the training loss against number of training iterations for a
base-learning rate of 1e-08 for different values of weight decay. The learning rate is

reduced every 10000 training iterations.

B.3 Varying number of training iterations

Finally, the number of training iterations is considered. The precision-recall curve is plotted

for different points in the training process and compared in Figure B.10. Figure B.10 showed

that above 5000 training iterations there was no change in the precision-recall curve, and

hence there is no performance gain in terms of 𝐹1 score to be made by training the network

for longer periods.

260

B.3 Varying number of training iterations

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 F1=0.2

 F1=0.4

 F1=0.6

 F1=0.8

Precision - Recall curve
Comparing training iterations for baselr = 1e-07

Precision
==Recall
CF_val_1e07_5000
F1 score (P==R)
 = 0.54
CF_val_1e07_5000
CF_val_1e07_10000

F1 score (P==R)
 = 0.54
CF_val_1e07_10000
CF_val_1e07_15000
F1 score (P==R)
 = 0.54
CF_val_1e07_15000
CF_val_1e07_20000

F1 score (P==R)
 = 0.54
CF_val_1e07_20000
CF_val_1e07_25000
F1 score (P==R)
 = 0.54
CF_val_1e07_25000
CF_val_1e07_30000

F1 score (P==R)
 = 0.54
CF_val_1e07_30000
CF_val_1e07_35000
F1 score (P==R)
 = 0.54
CF_val_1e07_35000

Figure B.10: A comparison of the precision-recall curves for different training iterations
for a base learning rate of 1e-07, a learning step-size of 10000 and a weight-decay of 0.002.

261

	Table of contents
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Automation of bridge bearing inspection
	1.2 The state of the art in robotic bridge inspection
	1.3 Sensors for bridge inspection
	1.4 Robotics for other inspection applications
	1.5 Summary
	1.6 Problem statement, aims and scope
	1.7 Thesis structure

	2 Sensors, SLAM and localisation
	2.1 A review of sensors for robotic navigation
	2.1.1 Exteroceptive sensors
	2.1.2 Thermal camera
	2.1.3 Proprioceptive sensors

	2.2 Methods for autonomous navigation – SLAM
	2.2.1 Filter-based approaches: the Extended Kalman Filter
	2.2.2 Graph-based SLAM
	2.2.3 Particle filters for SLAM

	2.3 Map representation
	2.4 SLAM implementations
	2.4.1 SLAM implementation using a 2D LiDAR
	2.4.2 SLAM implementations for camera data

	2.5 Localisation-only approaches to navigation
	2.6 Structure-from-Motion

	3 Robotic platform and system development
	3.1 Description of the inspection environment
	3.2 Qualitative review of sensors and SLAM
	3.3 Summary of SLAM methods
	3.4 Choice of sensors for navigation and inspection
	3.5 Camera calibration
	3.6 Robotic platform description
	3.7 The Robot Operating System
	3.8 Robot motion and data collection
	3.9 Adapting the robotic platform for simulation

	4 Localisation for a bridge bearing inspection robot
	4.1 Introduction
	4.2 Maps for localisation
	4.3 Generating maps from point cloud data
	4.4 Scaling the SfM point cloud
	4.5 Results from the laboratory environment
	4.6 Evaluation of ORB SLAM
	4.7 Summary of findings in the laboratory environment
	4.8 Data collection in the bridge environment
	4.9 Validation of SfM data against 3D terrestrial LiDAR data
	4.10 Results and discussion for the bridge environment
	4.11 A combined approach for localisation
	4.12 Using inspection data in a simulated environment
	4.13 Creating the simulation environments
	4.14 Results from the simulated environment
	4.15 Summary and scope for future work

	5 Application of computer vision techniques to visual inspection tasks
	5.1 Crack detection using computer vision methods
	5.2 Method overview: deep learning
	5.3 The HED network architecture
	5.4 Summary of the Structured Forest Approach
	5.5 Description of existing datasets
	5.5.1 Dataset 1: The Crack Forest segmentation dataset
	5.5.2 Dataset 2: Concrete Structure Spalling and Crack segmentation dataset

	5.6 Creating Training and Testing Datasets
	5.6.1 Data preprocessing and augmentation

	5.7 Training the Networks
	5.7.1 Parameters for training the networks

	5.8 Methods for testing and evaluating the networks
	5.8.1 Pixel-based evaluation
	5.8.2 Structure-based evaluation

	5.9 Overview of experiments
	5.10 Results and discussion
	5.10.1 Comparison of HED and SFA
	5.10.2 Evaluating the side-outputs of HED
	5.10.3 Cross-dataset testing
	5.10.4 Varying image resolution when training HED

	5.11 Incorporating features from blood vessels for the segmentation of cracks
	5.12 Discrepancies in dataset quality
	5.13 Summary and scope for future work

	6 Summary and conclusions
	6.1 Robotic localisation and mapping for inspection environments
	6.2 Deep learning for crack segmentation
	6.3 Scope for future work

	References
	Appendix A Simulation parameters
	A.1 Defining the robot URDF
	A.2 Additional robot parameters for simulation
	A.3 Defining the 2D LiDAR in simulation

	Appendix B Parameter sweep for training parameters for HED network
	B.1 Varying base learning rate and step-size
	B.2 Varying weight decay
	B.3 Varying number of training iterations

