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Abstract

Atomic interactions have a wide range of potential applications in

quantum technology but are, unfortunately, usually relatively short-

range. In this thesis a novel approach to quantising the electromag-

netic field in the presence of two-sided semi-transparent mirrors with

finite transmission, reflection and absorption rates is presented. The

image-detector method allows one to correctly reproduce the appro-

priate dynamics of wave packets in the presence of semi-transparent

mirrors by mapping onto analogous free-space scenarios meaning pho-

tons are characterised as they are in free space. Moreover, radiat-

ing atoms in the presence of semi-transparent mirrors exhibit modi-

fied spontaneous emission rates due to boundary conditions imposed

on the electromagnetic field. Through the image-detector method

mirror-mediated dipole-dipole interactions are predicted which modify

atomic spontaneous emission rates. The spontaneous emission rates

explicitly depend on the optical properties of the semi-transparent

mirror and these mirror-mediated dipole-dipole interactions are con-

sidered to be long range, as atoms placed several wavelengths from the

mirror still exhibit modified spontaneous emission rates. In addition,

the model readily extends to describe optical cavities. The results pre-

sented in this thesis are expected to pave the way for the modelling

of more complex scenarios and for designing novel photonic devices

for quantum technology applications, such as non-invasive glucose-

sensing technology.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Theoretical Background 7

2 Electrodynamics in free-space 8

2.1 Classical electrodynamics . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quantum theory of radiation . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Basics of quantum physics . . . . . . . . . . . . . . . . . . 14

2.2.2 Canonical field quantisation . . . . . . . . . . . . . . . . . 20

2.2.3 A physically motivated field quantisation . . . . . . . . . . 22

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Atom-field interactions 30

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Modelling open quantum systems . . . . . . . . . . . . . . . . . . 32

3.2.1 The relevant Hamiltonians . . . . . . . . . . . . . . . . . . 32

3.2.2 General derivation of the master equation . . . . . . . . . 34

3.2.3 Unravelling of the master equation . . . . . . . . . . . . . 37

3.3 Master equation for two-level atom-field interaction . . . . . . . . 38

3.3.1 The relevant Hamiltonians . . . . . . . . . . . . . . . . . . 39

v



CONTENTS

3.3.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Dipole-dipole interactions in free space 50

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Master equation for dipole-dipole interactions in free space . . . . 53

4.2.1 The relevant Hamiltonians . . . . . . . . . . . . . . . . . . 53

4.2.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Spontaneous emission rates and atomic level shifts . . . . . 60

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II Novel Theoretical Models 63

5 Modelling the electromagnetic field in the presence of two-sided

mirrors 64

5.1 Overview of the image-detector method . . . . . . . . . . . . . . . 65

5.2 Classical physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 One-sided perfect mirror . . . . . . . . . . . . . . . . . . . 68

5.2.2 Two-sided perfect mirror . . . . . . . . . . . . . . . . . . . 70

5.2.3 Two-sided semi-transparent mirror . . . . . . . . . . . . . 71

5.2.4 Generalisation to three dimensions . . . . . . . . . . . . . 73

5.3 Quantum physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 One-sided perfect mirror . . . . . . . . . . . . . . . . . . . 76

5.3.2 Two-sided perfect mirror . . . . . . . . . . . . . . . . . . . 78

5.3.3 Two-sided semi-transparent mirror . . . . . . . . . . . . . 78

5.3.4 Generalisation to three dimensions . . . . . . . . . . . . . 80

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III Applications 82

6 Radiating atom in the presence of a two-sided semi-transparent

mirror 83

6.1 Master equation for an atom near a two-sided mirror . . . . . . . 84

vi



CONTENTS

6.1.1 The relevant Hamiltonians . . . . . . . . . . . . . . . . . . 84

6.1.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.3 Spontaneous emission rate and atomic level shift . . . . . . 86

6.1.4 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Long-range dipole-dipole interaction mediated by two-sided mir-

ror 92

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Master equation for long-range dipole-dipole interaction . . . . . . 96

7.2.1 The relevant Hamiltonians . . . . . . . . . . . . . . . . . . 96

7.2.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.3 Spontaneous emission rates . . . . . . . . . . . . . . . . . 103

7.2.4 Limiting Cases . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 A continuous-mode model for optical cavities 109

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 A continuous-mode field quantisation for optical cavities . . . . . 111

8.2.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.2 One-dimensional cavity model . . . . . . . . . . . . . . . . 114

8.2.3 Three-dimensional cavity model . . . . . . . . . . . . . . . 116

8.2.4 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Conclusions & future work 119

A Master equation for dipole-dipole interaction in free space 124
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Chapter 1

Introduction

In this chapter some background information is presented as well as the key

motivations behind this body of work. A brief introduction of modelling open

quantum systems and an outline for the thesis is also included.

1.1 Background

Technology is always changing and adapting with the key objective of devel-

oping and designing new forms of technology to improve the users’ daily lives.

Harnessing the inherent strangeness of nature at the quantum scale, one can use

these properties to design quantum technologies that are more powerful than cur-

rent classical ones. These types of technologies are currently being popularised

through recent efforts to design a quantum computer, in particular efforts from

numerous companies; Google (Bristlecone), D-Wave as well as ongoing projects

with IBM and Samsung. Kimble et al. [1] postulated a potential quantum inter-

net designed with nodes (optical cavities) and fibres connecting them together,

thereby demonstrating optical networks and optical systems as excellent candi-

dates for designing novel quantum technologies.

In order to design new technologies using optical networks it is important to

understand how light behaves within optical cavities. Understanding these com-

ponents is essential and while it is well understood how to describe light within

idealised optical cavities, it still remains challenging to model more realistic con-

figurations e.g. two-sided optical resonators with off-resonant laser driving [2].

1



1.1 Background

Figure 1.1: Predicted experimental transmission rate T (ω0) for a Fabry-Pérot

cavity driven by monochromatic light of frequency ω0 where the dashed line

represents a refractive index of n = 3 and the solid line represents a refractive

index of n = 20.

There exists several models which allow one to describe light within a cavity.

The input-output formalism provides a phenomenological approach, where the

modes inside and outside of the cavity are related through a linear coupling and

the mirrors impose boundary conditions on electric field amplitudes [3–5]. This

formalism models light scattering through optical cavities in such a way that is

consistent with Maxwell’s equations (see Refs. [6, 7]). For another perspective,

there exists the modes-of-the-universe description [8–13], which describe the elec-

tromagnetic field in terms of the modes of a much larger cavity - the universe.

The quantisation in Refs. [8–10] results in a quasi-mode representation of the elec-

tromagnetic field, where the non-orthogonal modes allow for leakage of photons

through the cavity mirrors.

Barlow et al. [2] proposed a master equation description for a two-sided opti-

cal cavity, where a laser-driven resonator is considered (dielectric slab of arbitrary

length d and a refractive index that is larger than air, n > 1). This paper cor-

rectly predicts spontaneous photon emission rates for an optical cavity using a

2



1.2 Motivation

continuous-mode description, while providing consistency with classical electro-

dynamics. For an idealised cavity one would expect the transmission of light to

occur at the discrete cavity frequencies, due to the strict boundary conditions im-

posed by the mirrors. However, experimental observation shows the transmission

is not restricted to these discrete frequencies, i.e. transmission through the cavity

occurs across a broad range of frequencies [14], with Ref. [2] able to predict the

appropriate behaviour (see Fig. 1.1). However, this approach is unable to cor-

rectly describe the electromagnetic field in the presence of a single mirror due to

non-physical terms arising in the Hamiltonian. This leaves the challenge to de-

sign a continuous-mode model that is able to describe the electromagnetic field for

one- and two-mirror setups, whilst only using basic quantum optics assumptions

and tools.

1.2 Motivation

The motivation behind the work outlined in this thesis can be summarised through

three important questions.

1). What gaps have been identified?

Comparing the theoretically-predicted transmission rate of optical cavities with

experimental observations (cf. Fig. 1.1), one can see that the traditional discrete-

mode description of the electromagnetic field within an optical cavity does not

tell the full story. Instead, it is more appropriate to treat the electromagnetic

field using a continuous-mode model, allowing for a broader range of frequencies

within the cavity.

As there are no rules regarding how to implement boundary conditions in

the postulates of quantum mechanics, it has been difficult for previous authors

to provide a full description of a radiating atom in the presence of a reflective

interface. Nevertheless, the spontaneous emission of an atom in the presence

of a perfectly-reflecting mirror is well-understood, as imposing strict boundary

conditions is fairly straightforward. However, modelling a radiating atom in the

3
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presence of a semi-transparent mirror is not as straightforward. Moreover, pre-

vious models are unable to account for the possible dissipation of light by the

interface.

2). Why did you decide to work on this?

The main aim behind this project was to design a continuous-mode model to

quantise the electromagnetic field in the presence of two-sided semi-transparent

mirrors. This model should pave the way to understand more complex systems

as well as designing novel quantum technologies such as the non-invasive glucose

sensing technology discussed in Chapter 7.

3). What are the original contributions to research?

Chapter 5 outlines the so-called image-detector method to quantise the electro-

magnetic field in the presence of two-sided semi-transparent mirrors by mapping

onto analogous free space scenarios. Applying this model to examine a radiating

atom in the presence of a two-sided semi-transparent mirror in Chapter 6 allows

one to determine analytical expressions for the atomic spontaneous emission rate

(cf. Eq. (6.7)). Chapter 7 predicts a long-range dipole-dipole interaction mediated

by the mirror, which provides insight into understand novel quantum technologies

such as the non-invasive glucose sensing technology discussed later. Again, an-

alytical expressions for the collective spontaneous emission rates (cf. Eqs. (7.20)

– (7.24)) are presented, where these rates explicitly depend on the optical prop-

erties of the semi-transparent mirror. Moreover, a summary table is provided

in Chapter 9 to compare the form of the various spontaneous emission rates de-

rived in this thesis. Finally, in Chapter 8 the model is extended to present a

continuous-mode model for optical cavities.
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1.3 Open quantum systems

If a quantum system has no interaction with its environment, it is characterised

as a closed quantum system, which evolves in time according to the Schrödinger

equation. This means the state |ψ〉 evolves according to

∂t |ψ〉 = − i

~
Ĥ |ψ〉 , (1.1)

where Ĥ is the Hamiltonian operator describing the system. However, when

modelling quantum optical systems with spontaneous emission, it is necessary to

model the dynamics differently. These types of systems must be treated as open

quantum systems as they interact with their environment to produce measurable

phenomena.

Consider a quantum system interacting with some external system (more com-

monly known as a bath) that has infinitely many degrees of freedom, then the

system is no longer described in terms of pure states. Instead a statistical en-

semble (or density matrix) description is used. The time evolution of the density

matrix ρ̂ is governed by a master equation. Assuming Markovianity and a weak-

coupling between system and bath, the master equation is Lindbladian [15] and

is of the form

˙̂ρ(t) = − i

~

[
Ĥ, ρ̂(t)

]
+

1

2

∑
i,j

Γij

(
2L̂j ρ̂(t) L̂†i −

[
L̂†i L̂j, ρ̂(t)

]
+

)
, (1.2)

where L̂i,j are Lindblad operators and Γij denotes the decay rate for the i →
j transition. Chapter 3 will discuss a general derivation for the above master

equation as well as considering explicit examples in later chapters.

1.4 Outline

This thesis is split into three parts. The first part consists of Chapters 2, 3 and 4,

providing a theoretical background on the basics of quantum mechanics, quantum

optics and modelling open quantum systems. Collectively these chapters provide

the necessary background information required to understand the overall project.
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The second part consists of Chapter 5 which looks at the novel theoretical

model known as the image-detector method. This model correctly describes the

behaviour of wave packets in the presence of two-sided semi-transparent mirrors

for both classical and quantum scenarios. By mapping onto analogous free-space

scenarios, one is able to obtain expressions for the electromagnetic field Hamilto-

nian Ĥfield, as well as expressions for the electromagnetic field observables Êmirr(r)

and B̂mirr(r) as functions of the mirrors optical properties.

The third section considers applications of the image-detector method and

consists of Chapters 6, 7 and 8. In the following chapters applications of the

outlined model are presented in order to justify its validity. Chapter 6 demon-

strates the validity of the model outlined in Chapter 5 by predicting the correct

spontaneous emission rates for an atom in the presence of a perfectly-reflecting

mirror, as well as generating analytical expressions for the spontaneous decay rate

for an atom in the presence of a two-sided semi-transparent mirrors Γmirr. Chap-

ter 7 implements the image-detector method to predict long-range dipole-dipole

interaction mediated by a two-sided semi-transparent mirror. The interaction

leads to modifications in collective spontaneous emission rates, where analytical

expressions for the spontaneous emission rates Γ̃± are obtained. In Chapter 8 a

continuous-mode model is presented to describe the electromagnetic field within

optical cavities, where expressions for the electromagnetic field Hamiltonian Ĥfield

as well as expressions for the electromagnetic field observables Êcav(r) and B̂cav(r)

are obtained.

Finally, in Chapter 9, potential future work based on this work is discussed

and a summary of the results presented in this thesis.
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Theoretical Background
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Chapter 2

Electrodynamics in free-space

In this chapter the classical and quantum theories of light will be reviewed. More-

over, when quantising the electromagnetic field both canonical and phenomeno-

logical approaches will be presented and consistency of the results confirmed.

2.1 Classical electrodynamics

In 1865 James Clerk Maxwell published his seminal paper - A Dynamical The-

ory of the Electromagnetic Field - in which he unified the theories of electricity,

magnetism and light [16]. He linked these together through four elegant equa-

tions which describe the dynamics of electric and magnetic fields, as well as any

constraints placed on them. Fundamentally, he proved that light is the physical

manifestation of oscillating electric and magnetic fields which propagate through

space at the speed of light, c.

In free space, i. e. in a medium with permittivity ε0 and permeability µ0 and

in the absence of any charges or currents, one can write Maxwell’s equations in

the following way

∇ · Efree(r, t) = 0 , ∇× Efree(r, t) = −Ḃfree(r, t) ,

∇ ·Bfree(r, t) = 0 , ∇×Bfree(r, t) = εµĖfree(r, t) , (2.1)

where the dot notation represents a derivative with repsect to time, Efree(r, t) and

Bfree(r, t) denote the electric and the magnetic field vectors at position r and at

a time t, respectively.
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2.1 Classical electrodynamics

Immediately, one can see that

k · Efree(r, t) = k ·Bfree(r, t) = 0 , (2.2)

which reveals that both the electric and magnetic fields are orthogonal to the

direction of propagation k for all times t, in a homogeneous and anisotropic

medium. From Eqs. (2.1) and (2.2) one can deduce that there is an extra degree

of freedom missing from the description. This degree of freedom is known as

polarisation and describes the orientation of the electric field amplitude. As it

shall be demonstrated later, for any given wave vector k there are two independent

polarisations λ = 1, 2.

Now, one must solve Maxwell’s equations (see Eq. (2.1)). By determining

these solutions one obtains analytical expressions for the electric and magnetic

field vectors, Efree(r, t) and Bfree(r, t). To do so, one must first convert them into

a slightly different form. Since an electric field is the result of a time-varying

magnetic field, and vice versa, it is possible to eliminate either the electric or the

magnetic field from Maxwell’s equations. Applying the curl operator to each line

of Eq. (2.1) and making use of the following vector identity

∇× (∇× v) = ∇ (∇ · v)−∇2 v , (2.3)

allows one to reduce the set of equations. Therefore, Eq. (2.1) reduces to give the

two following equations

∇2 Efree(r, t) =
1

c2
∂t

2Efree(r, t) ,

∇2 Bfree(r, t) =
1

c2
∂t

2Bfree(r, t) . (2.4)

The expressions in Eq. (2.4) are more commonly known as wave equations, which

take the general form

∇2 f(r, t) =
1

v2
∂2
t f(r, t) , (2.5)

where v represents the propagation velocity of the wave. In the case of free space,

the velocity of the wave is equal to the speed of light, i.e. v = c.
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2.1 Classical electrodynamics

One-dimensional case

First, let us consider the simplest case where the direction of propagation of the

field is restricted to the x-axis. From Eq. (2.4), one can write down the following

one-dimensional wave equations for the electric and magnetic field

∂2
xEfree(x, t) =

1

c2
∂2
tEfree(x, t) ,

∂2
xBfree(x, t) =

1

c2
∂2
tBfree(x, t) , (2.6)

and in analogy to Eq. (2.5), the above wave equations take the general form

∂2
xf(x, t) =

1

v2
∂2
t f(x, t) . (2.7)

The above equation can be solved using Fourier transforms. The Fourier trans-

form is a mathematical operation that allows one to decompose a wave into the

different frequencies it is constructed from, thereby providing a simpler problem

to solve. Here, it is necessary to transform from position-space to momentum-

space through the definition of the Fourier transform. The converse is also true,

this is more commonly known as the inverse Fourier transform.

The Fourier transform to move between position-space (x-space) and momentum-

space (k-space) is defined as

F̃ (k, t) =
1√
2π

∫ ∞
−∞

dx f(x, t) e−ikx , (2.8)

where the factor of 1/
√

2π is a normalisation constant. Similarly, the inverse

Fourier transform can be defined as

f(x, t) =
1√
2π

∫ ∞
−∞

dk F̃ (k, t) eikx , (2.9)

which moves from momentum-space back to position-space.

Now, lets look at the electric field wave equation (first expression of Eq. (2.6)),

one must first multiply both sides by e−ikx/
√

2π and then integrate over all space.

Combining this with the definition provided in Eq. (2.8), one finds that

∂2
t Ẽ(k, t) + (ck)2 Ẽ(k, t) = 0 . (2.10)
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2.1 Classical electrodynamics

The above equation is the familiar equation of motion for a simple harmonic

oscillator, which has well-known solutions taking the form Ẽ(k, t) = Ẽ(k)ert

where r = ±ick. This means the general solution takes the form

Ẽ(k, t) = F̃ (k) eickt + G̃(k) e−ickt , (2.11)

where F̃ (k) and G̃(k) denote the Fourier transforms of the functions f(x) and

g(x), respectively. Now, applying the inverse Fourier transform to the above

equation, which is achieved by multiplying through by eikx/
√

2π and integrating

over all wavenumbers k yields

E(x, t) =
1√
2π

∫ ∞
−∞

dk F̃ (k) eik(x−ct) +
1√
2π

∫ ∞
−∞

dk G̃(k) eik(x+ct). (2.12)

Using the definition of the Fourier transform from Eq. (2.8), one finds that the

above equation reduces to give

E(x, t) = f(x− ct) + g(x+ ct) , (2.13)

where the solutions of the wave equation are left- and right-moving waves, which

propagate with the speed of light c. Here, the left-travelling solution is repre-

sented by a function which depends on (x + ct) and the right-travelling solution

is represented by a function which depends on (x − ct). Notice that both left-

and right-travelling waves are valid solutions of the wave equation. Moreover,

since the wave equation is a linear equation, it is also true that the sum of any

two solutions is also a valid solution. This observation is commonly known as the

superposition principle. From the above equations, it is evident that electromag-

netic waves in a vacuum obey the following relation

ω = ck , (2.14)

where k = 2π/λ and c = fλ.

Taking this into account, it is possible to write the solution of the electric and

magnetic field wave equations from Eq. (2.6) in the following way [17]

Efree(x, t) =
1√
2π

∫ ∞
−∞

dk Ẽ(k) ei(kx−ωt) + c.c. ,

Bfree(x, t) =
1√
2π

∫ ∞
−∞

dk B̃(k) ei(kx−ωt) sign(k) + c.c. (2.15)
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2.1 Classical electrodynamics

Here, c.c. denotes the complex conjugate, which represents an equally valid solu-

tion to the wave equation. The presence of the complex conjugate term ensures

that the electric and magnetic field Efree(x, t) and Bfree(x, t) are real.

Returning to the discussion regarding polarisation, the above solutions are

applicable to one polarisation, specifically λ = 1. This arises as the field is re-

stricted to propagating along the x-axis for the one-dimensional case, i.e. only

wave vectors k = (k, 0, 0) are considered. From Eq. (2.2) it must also be true

that the electric field and magnetic field are always orthogonal to the direction

of propagation, leaving two possible choices for the oscillating electric and mag-

netic fields. For the case with polarisation λ = 1, the coordinate system is

chosen such that Efree(r, t) = (0, Efree(x, t), 0) and Bfree(r, t) = (0, 0, Bfree(x, t)).

For polarisation λ = 2, it is assumed that Efree(r, t) = (0, 0, Efree(x, t)) and

Bfree(r, t) = (0, Bfree(x, t), 0). For these field vectors, Maxwell’s equations simplify

to

∂xEfree(x, t) = ∓∂tBfree(x, t) ,

∂xBfree(x, t) = ∓εµ ∂tEfree(x, t) , (2.16)

where the minus and the plus signs apply to waves with linear polarisation λ = 1

and λ = 2, respectively. As was shown earlier, one can manipulate Eq. (2.16)

to eliminate either the electric or magnetic field and doing so, one obtains one

of the wave equations derived in Eq. (2.6). Moreover, the convention for electric

and magnetic fields outlined in Eq. (2.16) will be used throughout this thesis.

Three-dimensional case

Following a similar procedure for the three-dimensional case, one starts with the

wave equations from Eq. (2.4),

∇2 Efree(r, t) =
1

c2
∂2
t Efree(r, t) ,

∇2 Bfree(r, t) =
1

c2
∂2
t Bfree(r, t) . (2.17)
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2.2 Quantum theory of radiation

The above equations then have the associated solutions [17]

Efree(r, t) =
1

(
√

2π)3

∑
λ=1,2

∫ ∞
−∞

d3k Ẽ(k) ei(k·r−ωt)êkλ + c.c. ,

Bfree(r, t) =
1

(
√

2π)3

∑
λ=1,2

∫ ∞
−∞

d3k B̃(k) ei(k·r−ωt) (k× êkλ) + c.c. (2.18)

Again, one can show that the general solutions to Maxwell’s equations in three di-

mensions are superpositions of travelling waves with wave vectors k, polarisations

λ = 1, 2 and frequencies ω which obey the following fundamental relation

ω = ‖k‖/√εµ = ‖k‖ c , (2.19)

in analogy to Eq. (2.14) where c denotes the speed of light [17].

2.2 Quantum theory of radiation

In the late 1800s, Lord Rayleigh was following the in footsteps of James Clerk

Maxwell by researching the behaviour of the electromagnetic field and through

his work, provided a more solid foundation for the classical theory of electromag-

netic radiation. Nowadays, it is common knowledge that all physical bodies emit

electromagnetic radiation, however, predicting the spectrum of radiation emitted

by an idealized black body was one of his key results [18]. It was during this

period of work that he derived the famous Rayleigh-Jeans law but, more impor-

tantly, his work really drew attention to key issues within the classical theory.

Ultimately, all these discrepancies within the classical theory brought about the

need for a new, more accurate theory - the quantum theory.

Planck published his seminal paper in 1900 on the spectrum of black body

radiation [19] which eventually led to the discovery of quantum physics. In his

work he was able to correctly predict the spectral density of electromagnetic

radiation emitted by a blackbody in thermal equilibrium. Planck’s new approach

was able to correctly model the behaviour of the spectrum in the ultraviolet range,

something which the classical theory simply could not predict. As it will be shown

later in this chapter, Planck resolved this problem by deriving an elegant theory

where he treated a region of space as a box with sides of length L which leads to

a quantised wavevector and energy quanta known as photons.
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2.2.1 Basics of quantum physics

Having presented the story of the classical theory of electromagnetism so far, the

next step will be to present the quantum theory of electromagnetism. To do so,

let us define some of the basic rules and mathematical tools used in quantum

physics to describe the behaviour of physical systems [20, 21].

Postulates of quantum physics

1. States of a physical system are represented by normalised vectors which are

elements of a complex Hilbert space, H, where one is able to define the

inner product of any two basis vectors such that

〈m|n〉 =

{
1, if m = n ,

0, otherwise .
(2.20)

2. The Hilbert space of composite systems are defined using the tensor prod-

uct, i.e. H = H1 ⊗H2 describes the Hilbert space for two subsystems H1

and H2.

3. Observable quantities of a physical system are represented by self-adjoint

operators Â which are defined on the space H. The average result of re-

peated measurements of an observable Â with non-degenerate eigenvalues,

when the system is in the state |ψ〉, is given by the expectation value

〈Â〉 = 〈ψ|Â|ψ〉 . (2.21)

It is equally valid to say that individual measurement outcomes are eigen-

values am of the observable Â, and the probability p(am) of making a mea-

surement with the outcome am is given by

p(am) = 〈ψ|(|am〉〈am|)|ψ〉 ≡ |〈ψ|am〉|2 , (2.22)

where |am〉 denotes the eigenstate associated with the eigenvalue am. Here,

the inner product is always defined due to Postulate 1.

4. The state of a closed system |ψ(t)〉 evolves according to the time-dependent

Schrödinger equation

i~ ∂t|ψ(t)〉 = Ĥ|ψ(t)〉 . (2.23)
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Quantising the classical one-dimensional harmonic oscillator

The best starting point is to first consider the fundamental system consisting

of a particle of mass M attached to a spring with a spring constant k. This

system is more commonly known as a harmonic oscillator and one can draw

some fundamental analogies between the quantised electromagnetic field and the

quantised harmonic oscillator.

One can readily write down an expression for the classical one-dimensional

oscillator Hamiltonian by summing over kinetic and potential energies such that,

H =
p2

2M
+

1

2
Mω2x2 , (2.24)

where the frequency of oscillation ω is determined by the spring constant k and the

mass of the particle mass M , such that ω =
√
k/m. Understanding the harmonic

oscillator in classical physics is crucial as the quantised harmonic oscillator plays a

key role in quantum physics. One can write down the Hamiltonian for a quantum

harmonic oscillator by making use of the correspondence principle [22–24] which

states that a classical dynamic variable corresponds to a quantum mechanical

Hermitian operator. Therefore, one can replace the momentum and position

variables with their corresponding quantum mechanical operators to obtain the

Hamiltonian for the one-dimensional oscillator

Ĥ =
p̂2

2m
+

1

2
Mω2x̂2 , (2.25)

where

x→ x̂ , and p→ p̂ . (2.26)

In the position representation these operators are defined such that x̂ = x and

p̂ = −i~∂x. The canonical commutation relation between the momentum and

position (conjugate) variables arises from the Postulate 1 and is defined in the

following way

[x̂i, p̂j] = i~δij , (2.27)
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2.2 Quantum theory of radiation

where i, j = 1, ..., n and δij denotes the Kronecker delta function. One can justify

Eq. (2.27) from classical physics as the Poisson bracket for position and momen-

tum variables satisfies

{xi, pj} = δij , (2.28)

where i, j = 1, ..., n. At this point, rather than attempt to solve Eq. (2.23), one

can use the ladder operator method initially outlined by Dirac [25]. This method

allows one to extract information regarding the energy eigenvalues of the system.

This is achieved by defining the ladder operators as

â =

√
Mω

2~

(
x̂+

i

Mω
p̂

)
,

â† =

√
Mω

2~

(
x̂− i

Mω
p̂

)
, (2.29)

where â and â† are also known as bosonic annihilation and creation operators.

Moreover, these ladder operators obey the canonical commutation relation,[
â, â†

]
= 1 . (2.30)

From here, one can re-express the position and momentum operators in terms of

these ladder operators,

x̂ =

√
~
2

1

Mω

(
â† + â

)
,

p̂ = i

√
~
2
Mω

(
â† − â) . (2.31)

Substituting the expressions from Eq. (2.31) into Eq. (2.25) generates a new

form for the quantised harmonic oscillator Hamiltonian in one-dimension. This

substitution yields

Ĥ = ~ω
(
â†â+

1

2

)
, (2.32)

where the constant represents the zero-point energy of the oscillator.

In order to understand Eq. (2.32), it is convenient to make use of the sec-

ond quantisation notation [26]. This formalism looks at the occupation number
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2.2 Quantum theory of radiation

Figure 2.1: Energy-level diagram for a quantum-mechanical harmonic oscillator,

where energy levels are equally separated by ~ω. By applying the creation and

annihilation operators â† and â, one is able to move up or down these energy

levels, which results in either adding or subtracting an amount ~ω, respectively.

of particular states i.e. the number of particles or quanta in each state. This

is particularly useful as it means one does not have to consider individual wave

functions, especially since writing down the wave function of a photon in a par-

ticular representation is not a straight forward task. Implementing the second

quantisation notation and substituting the Hamiltonian from Eq. (2.32) into the

time-independent Schrödinger equation one finds

Ĥ|n〉 = ~ω
(
â†â+

1

2

)
|n〉 = En|n〉 , (2.33)

for some arbitrary eigenstate |n〉 with the associated energy eigenvalue En. Eq. (2.33)

takes the form of an eigenvalue equation, where the Fock state |n〉 is an eigen-

function of the Hamiltonian operator Ĥ with corresponding eigenvalue(s) En.
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Multiplying from the left by the creation operator â† yields

~ω
(
â†â†â+

1

2
â†
)
|n〉 = Enâ

†|n〉 ,

~ω
(
â†ââ† − 1

2
â†
)
|n〉 = Enâ

†|n〉 ,

~ω
(
â†â+

1

2

)
â†|n〉 = (En + ~ω) â†|n〉 . (2.34)

From the last line of the above equation, one can write down the following energy

eigenvalue-eigenstate equation

Ĥâ†|n〉 = (En + ~ω) â†|n〉 . (2.35)

Eq. (2.35) demonstrates that by applying the creation operator â†, one shifts

up the ladder structure in Fig. 2.1, effectively moving to a higher energy level.

Similarly, one can also apply the annihilation operator â to Eq. (2.33) which gives

Ĥâ|n〉 = (En − ~ω) â|n〉 . (2.36)

From Eq. (2.36) it is evident that applying the annihilation operator â one shifts

down the ladder structure in Fig. 2.1, effectively moving to a lower energy level.

Denoting the ground state of the oscillator as |0〉, and using the Schrödinger

equation, one can show that

Ĥâ|0〉 = (En − ~ω) â|0〉 , (2.37)

which implies that

â|0〉 = 0 , (2.38)

as the ground state is the lowest possible eigenstate. In addition, it is also true

â†|0〉 = |1〉 . (2.39)

Moreover, using Eqs. (2.30), one can show

〈n|ââ†|n〉 = 〈n|1 + â†â|n〉 = n+ 1 , (2.40)
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meaning

â†|n〉 =
√
n+ 1|n+ 1〉 ,

â|n〉 =
√
n|n− 1〉 ,

(2.41)

and

|n〉 =

(
â†
)n

√
n!|0〉 . (2.42)

This allows one to define a Hermitian operator n̂, which is known as the bosonic

number operator or the occupation number operator, such that

n̂ = â†â . (2.43)

Moreover, photons are an example of bosons and for this case, the number op-

erator gives information regarding the number of photons occupying a certain

state. In addition, the one-photon state |1〉 corresponds to a wavepacket with

statistically one photon and the energy of one excitation. Importantly, this rep-

resentation allows one to re-express Eq. (2.32) such that

〈Ĥ〉 = ~ω
(
n+

1

2

)
where n = 0, 1, 2, 3... (2.44)

As it was demonstrated in Fig. 2.1 the energy spectrum of the harmonic oscillator

is built up of discrete energy levels separated by an integer amount of ~ω and

this description is confirmed by examining the form of Eq. (2.44). Finally, one

can state that the number operator obeys the eigenvalue-eigenstate equation

â†â|n〉 = n|n〉 where n = 0, 1, 2, 3... , (2.45)

and the eigenstates |n〉 are known as number states or Fock states with the

orthogonality property

〈n|n〉 = δnn , (2.46)

and the completeness relation
∞∑
n=0

|n〉〈n| = 1̂ , (2.47)

where 1̂ denotes the identity operator. This completeness relation holds as any

state of the system can be expressed as a superpositon of the number states |n〉.
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2.2.2 Canonical field quantisation

The aim of this section is to present the quantisation of the electromagnetic field

based on the canonical approach. The standard route was first laid out by Dirac

who used the classical theory as a basis, and then replaced dynamical variables

by corresponding quantum mechanical operators which obeyed commutation re-

lations in analogy to the classical Poisson brackets [25].

A convenient starting point is the classical Maxwell equations (cf. Eq. (2.1)).

Considering some electric field Efree(r, t), one is able to express this field in terms

of the gradient of the scalar potential V (r, t) such that

Efree(r, t) = −∇V (r, t) , (2.48)

which is possible since the potential is defined as the work required to bring

a positive charge from infinity to some specific point, hence the minus sign.

If the scalar potential in Eq. (2.48) was changed by some function constant

which is spatially constant but time dependent, i.e. some periodic potential where

V (r, t) → V (r, t) + C(t) then the equations of motion for the system are unaf-

fected, which is more commonly known as gauge freedom. In other words, one

can apply a mathematical operation to a system and the operation does not af-

fect the system’s dynamics. Implementing such an operation is called a gauge

transformation [27]. The electric and magnetic fields Efree(r, t) and Bfree(r, t) can

be defined in terms the position- and time-dependent magnetic vector potential

A(r, t) such that

Efree(r, t) = −∇V (r, t)− ∂tA(r, t) ,

Bfree(r, t) = ∇×A(r, t) . (2.49)

As the scalar potential V (r, t) and the magnetic vector potential A(r, t) are not

unique, one can define new potentials such that

A′(r, t) = A(r, t) +∇f(r, t) ,

V ′(r, t) = V (r, t)− ∂tf(r, t) , (2.50)

where the two are related through some function f(r, t) that depends on posi-

tion and time and is twice differentiable. This function f(r, t) is more commonly
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2.2 Quantum theory of radiation

referred to as the gauge function, and introducing this function enforces a gauge

transformation. In other words, when there are no sources or charges present

Maxwells equations are gauge invariant. One can impose conditions on the po-

tentials A(r, t) and V that can be realised by a gauge transformation from an

arbitrary pair of A(r, t) and V (r, t), thereby specifying a gauge for the electro-

magnetic field. The most common and convenient choice of gauge for problems

in quantum optics is the so-called Coulomb gauge,

∇ ·A(r, t) = 0 . (2.51)

Field modes

Now let us have a closer look at what it means for the electromagnetic field to be

quantised over all space and most importantly, derive the form of the quantised

electromagnetic field observables.

Planck’s key contribution to the modelling of this problem required treating

a region of free-space as a cube with sides of length Lx = Ly = Lz = L. The

walls of this cube provide periodic boundary conditions which are imposed to

determine the travelling wave solutions of the electromagnetic field within that

region of space. It is assumed that the wave function vanishes on the walls of

the cube and the vector potential inside the cube satisfies V (r, t) = 0. Therefore,

the components of the wave vector k must have discrete values. The quantised

wavevector is denoted by k = (kx, ky, kz) such that

ki =
∑
i=x,y,z

2πni
L

, (2.52)

where the spatial dimensions x, y, z are summed over and ni are integers or zeros.

In addition, each wavevector carries a polarisation of either λ = 1 or λ = 2. The

polarisation vectors êkλ satisfy the relations

êkλ · k = 0 ,

êkλ · êk′λ′ = δkk′ δλλ′ . (2.53)

These solutions are more commonly referred to as modes, or field modes and

they can be determined by obtaining a wave equation for the vector potential
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2.2 Quantum theory of radiation

A(r, t), i.e. substituting the second expression of Eq. (2.49) into Ampères law

(the fourth expression of Eq. (2.1)), which yields

∇2A(r, t) =
1

c2
∂2
t A(r, t) . (2.54)

As this is the same form as Eq. (2.17), it is already known what form these modes

take, and that they can be written as

A(r, t) = Akλe
ik·rêkλ + A∗kλe

−ik·rêkλ . (2.55)

One can then expand the vector potential A(r, t) to sum over contributions from

all possible modes. This allows one to express the vector potential, the electric

and the magnetic field observables in the following way

A(r, t) =
∑
kλ

√
~

2ωkε0V
eik·rakλêkλ + H.c. ,

E(r, t) =
∑
kλ

√
~ωk

2ε0V
i eik·rakλêkλ + H.c. ,

B(r, t) =
∑
kλ

√
~ω

2ε0V
i eik·rakλ (k× êkλ) + H.c. , (2.56)

where
√

~
2ωε0V

and
√

~
2ωV

denote normalisation constants and V denotes the

quantisation volume mapped out by the cube with sides of length L. Note that

the expressions in Eq. (2.56) can also be derived without introducing a fictitious

quantisation volume and instead consider all of space to be a part of an infinite

quantisation volume. This is addressed in the next subsection which presents a

physically-motivated approach to obtain consistent observables without introduc-

ing a quantisation volume.

2.2.3 A physically motivated field quantisation

In the previous subsection 2.2.2, the free-electromagnetic field was quantised

through the canonical procedure, where discrete expressions for the electric and

magnetic field observables were presented. In this subsection, an alternative ap-

proach is presented where experimental observation is used to state the main
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2.2 Quantum theory of radiation

result and one can then use the fundamentals to work backwards and obtain

the necessary missing details [28]. Most importantly, the expressions derived us-

ing the physically-motivated approach are consistent with those derived through

the canonical procedure, without having to introduce a certain gauge or a finite

quantisation volume.

Field quantisation for propagation in one-dimension

In order to be able to quantise the electromagnetic field in free space in one

dimension, it is important to first see what experimental evidence tells us. From

experimental observations it is known that the free electromagnetic field consists

of basic energy quanta (photons) which can be characterised by their (positive)

frequency ω ∈ (0,∞) and a direction of propagation X = L,R [29–38]. Moreover,

a photon with the frequency ω has an associated energy E, equal to

E = ~ω , (2.57)

with ω given in Eq. (2.14). In addition, there exist two possible polarisations

λ = 1, 2, which indicate the direction of the respective electric field vectors.

Looking at both polarisations, it is possible to fully describe the free-field using

tensor product states of the form

∞⊗
ω=0

⊗
X=L,R

⊗
λ=1,2

|nXλ(ω)〉 , (2.58)

as the free-electromagnetic field behaves as a collection of harmonic oscillator

modes with number basis states of the form |nXλ(ω)〉. Moreover, the energy eigen-

states of the electromagnetic field are the states defined in Eq. (2.58). Therefore,

the form the field Hamiltonian Ĥfield is such that

Ĥfield|nXλ(ω)〉 = [~ωnXλ(ω) +Hzpe] |nXλ(ω)〉 , (2.59)

where the constant Hzpe denotes the zero point energy of the field. In addi-

tion, photons are characterised as bosons, therefore the annihilation and creation

operators âXλ(ω) and â†Xλ(ω) obey the bosonic commutation relation[
âXλ(ω), â†

X′λ′ (ω
′)
]

= δXX′δλλ′δ(ω − ω′) . (2.60)
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2.2 Quantum theory of radiation

Taking this into account it is possible to deduce the form of the field Hamiltonian

Ĥfield for light propagating along the x-axis, yielding

Ĥfield =
∑

X=L,R

∑
λ=1,2

∫ ∞
0

dω ~ω â†Xλ(ω)âXλ(ω) +Hzpe , (2.61)

where all possible modes are summed over (X,ω, λ). One can easily check that

the energy eigenvalues and eigenstates of Eq. (2.61) are consistent with those of

Eq. (2.59).

If one considers the observable for the energy stored inside the free electro-

magnetic field Ĥfield, this can be expressed as

Ĥfield =
∑
λ=1,2

1

2
A

∫ ∞
−∞

dx

[
ε0 Êfree(x)2 +

1

µ0

B̂free(x)2

]
, (2.62)

where A denotes the area in the y-z plane in which Ĥfield is defined. Here Êfree(x)

and B̂free(x) denote the free-space observables of the electric and the magnetic

field amplitudes, respectively.

The next step is to determine full expressions for the quantised electric and

magnetic field observables for propagation along the x-axis. To do so, one must

compare the two Hamiltonian expressions from Eqs. (2.61) and (2.62), whilst also

demanding that expectation values of Êfree(x) and B̂free(x) evolve according to

Maxwell’s equations. This allows one to calculate the remaining missing coeffi-

cients for the observables [28]. Immediately one can see by comparing the two

equations, the electric field observable Êfree(x) and the magnetic field observable

B̂free(x) are linear superpositions of annihilation and creation operators âXλ(ω)

and â†Xλ(ω). For this reason it is appropriate to adopt the following ansatz for

the electric and magnetic fields Êfree(x) and B̂free(x),

Êfree(x) =
∑

X=L,R

∑
λ=1,2

∫ ∞
0

dω fXλ(x, ω)âXλ(ω) + H.c. ,

B̂free(x) =
∑

X=L,R

∑
λ=1,2

∫ ∞
0

dω gXλ(x, ω)âXλ(ω) + H.c. , (2.63)

where fXλ(x, ω) and gXλ(x, ω) are complex coefficients and H.c. denotes the Her-

mitian conjugate (or adjoint).
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2.2 Quantum theory of radiation

One is able to calculate the time evolution of an expectation value with respect

to a given Hamiltonian Ĥ through the following equation of motion

∂t〈Ô〉 = − i

~

〈[
Ô, Ĥ

]〉
. (2.64)

Taking this into account and demanding that the expectation values of the electric

and magnetic field observables evolve as predicted by Maxwell’s equations whilst

also maintaining the form of the field Hamiltonian in Eq. (2.61), consistency is

maintained provided

∂xfXλ(x, ω) = ±iωgXλ(x, ω) ,

∂xgXλ(x, ω) = ±iε0µ0ωfXλ(x, ω) . (2.65)

In Eq. (2.65), the minus and positive signs denote the different polarisations of

light λ = 1 and λ = 2, respectively. More importantly, the general solutions of

Eq. (2.65) can be written as

fXλ(x, ω) = KX,1(ω)eikx +KX,2(ω)e−ikx ,

gXλ(x, ω) = ∓√ε0µ0

[
KX,1(ω)eikx −KX,2(ω)e−ikx

]
, (2.66)

where the positive wave number k is defined in Eq. (2.14) and the constants

K are complex functions of frequency and direction of propagation (ω and X)

but independent of position, time and polarisation (x, t and λ). However, since

the index X characterises the direction of propagation, it is only appropriate

to keep certain solutions. In other words, looking at Eq. (2.66), the solutions

with KR,1(ω) and KL,2(ω) are kept as these have an exponential term that is

consistent with the correct direction of propagation. In turn, one can now set

KR,2(ω) = KL,1(ω) = 0.

Next, one must determine the remaining constants KR,1(ω) and KL,2(ω). One

can then normalise Êfree(x) and B̂free(x) by determining these constants through

the two field Hamiltonians in Eqs. (2.61) and (2.62) coinciding. Therefore, one

must use Eqs. (2.63) and (2.66) to generate expressions for the electric and mag-

netic free-field observables and then substitute these into the field Hamiltonian

given in Eq. (2.62). Doing so, one notices that due to the prefactor in the second
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2.2 Quantum theory of radiation

line of Eq. (2.66), one obtains an equal contribution from both the electric and

magnetic field. This yields the expression

Ĥfield = ε0A
∑

X=L,R

∑
λ=1,2

∫ ∞
−∞

dx

∫ ∞
0

dω

∫ ∞
0

dω′

×| (KXλ(ω)eikx +KXλ(ω)e−ikx
)

+ H.c.|2. (2.67)

Implementing the bosonic commutation relation from Eq. (2.60) and KR,2(ω) =

KL,1(ω) = 0, one can re-arrange the expression in Eq. (2.67) to give

Ĥfield = ε0A
∑
λ=1,2

∫ ∞
−∞

dx

∫ ∞
0

dω

∫ ∞
0

dω′ F (k, k′, ω, ω′, λ) , (2.68)

where the function F (k, k′, ω, ω′, λ) is defined as

F (k, k′, ω, ω′, λ) = KR,1(ω)K∗R,1(ω)ei(k−k′)x
(
â†Rλ(ω

′)âRλ(ω) + δ(ω − ω′)
)

+K∗R,1(ω)KR,1(ω)e−i(k−k′)xâ†Rλ(ω
′)âRλ(ω)

+KL,2(ω)K∗L,2(ω)e−i(k−k′)x
(
â†Lλ(ω

′)âLλ(ω) + δ(ω − ω′)
)

+K∗L,2(ω)KL,2(ω)ei(k−k′)xâ†Lλ(ω
′)âLλ(ω) . (2.69)

Making use of the definition of the Dirac delta function

2π δ(k − k′) =

∫ ∞
−∞

dx e±i(k−k′)x , (2.70)

one can then evaluate the ω′-integral and resolve the delta function to generate

the following expression for the field Hamiltonian

Ĥfield = 2πε0Ac
∑
λ=1,2

∫ ∞
0

dω

[
|KR,1(ω)|2[2â†Rλ(ω)âRλ(ω) + 1

]
+|KL,2(ω)|2[2â†Lλ(ω)âLλ(ω) + 1

]]
. (2.71)

Finally, by demanding that the expectation value of the field Hamiltonian from

Eq. (2.71) in the one-photon state (〈1|Ĥfield|1〉 = ~ω) is identical to the expecta-

tion value of the field Hamiltonian from Eq. (2.61) also in the one-photon state,

one finds that

|KR,1(ω)|2 = |KL,2(ω)|2 =
~ω

4πε0Ac
. (2.72)
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In addition, from Eq. (2.71) it also possible to write down an expression for the

zero-point energy of the field

Hzpe =

∫ ∞
0

dω
1

2
~ω δ(0) , (2.73)

in relation to Eqs. (2.59) and (2.61). Finally, one can write down the expressions

for the one-dimensional electric- and magnetic-field observables in the following

way [28]

Êfree(x) = i

∫ ∞
0

dω

√
~ω

4πε0Ac
eikx

[
âR(ω)− â†L(ω)

]
+ H.c. ,

B̂free(x) = −i
√
ε0µ0

∫ ∞
0

dω

√
~ω

4πε0Ac
eikx

[
âR(ω)− â†L(ω)

]
sign(k) + H.c.

(2.74)

Analogously, one can derive the electric and magnetic field observables for λ = 2

polarised light. These are of the same form as Êfree(x) and B̂free(x) in Eq. (2.74)

up to an overall minus sign of the magnetic field.

One can simplify the expressions in Eq. (2.74) by stating that amplitudes

propagating in the −x direction have the associated wavenumber −k and those

propagating in the +x direction have the associated wavenumber +k. Taking

this into account, one can re-express Eq. (2.74) in the following way

Êfree(x) = i

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx âk + H.c. ,

B̂free(x) = −i
√
ε0µ0

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx âk sign(k) + H.c. (2.75)

Note, the normalisation constant changes as the units of the âX(ω)1 operators

differ from the âk operators and the variable of integration changes from ω to k.

As before, these observables apply to λ = 1 polarised light and they differ from

λ = 2 polarised light by an overall minus sign for the magnetic field. Using the

new form of the electromagnetic field observables from Eq. (2.75) and substituting

the expressions into Ĥfield in Eq. (2.62), one obtains

Ĥfield =

∫ ∞
−∞

dk ~ω â†kâk . (2.76)

1X = L,R.
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Field quantisation for propagation in three-dimension

Finally, let us examine the quantised electromagnetic field in three dimensions. In

free space, the electric field observable Êfree(r) and the magnetic field observable

B̂free(r) at a position r for light propagation in three dimensions equal [28]

Êfree(r) =
i

4π

∑
λ=1,2

∫
R3

d3k

√
~ωk

πε
eik·r êkλ âkλ + H.c.

B̂free(r) = − i

4π

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

eik·r
(
k̂× êkλ

)
âkλ + H.c. (2.77)

which sum over all possible photon modes with wave vectors k and polarisations

λ. Moreover, âkλ is the photon annihilation operator of the (k, λ) mode with the

bosonic commutator relation[
âkλ, â

†
k′λ′

]
= δλλ′ δ(k− k′) . (2.78)

The normalised polarisation vectors êkλ in Eq. (2.77) are pairwise orthogonal and

êkλ ·k = 0 for all k. The frequency ωk can be found in Eq. (2.19) and the constant

ε0 denotes the permittivity of free space. Moreover, the Hamiltonian Ĥfield of the

electromagnetic field in free space in three dimensions can be expressed as

Ĥfield =
∑
λ=1,2

∫ ∞
−∞

d3r

[
ε0 Êfree(r)2 +

1

µ0

B̂free(r)2

]
, (2.79)

where A denotes the area in the y-z plane in which Ĥfield is defined. Taking the

three-dimensional observables for the electromagnetic field from Eq. (2.77) and

substituting them into Eq. (2.79). One finds that the fields Hamiltonian Ĥfield

reduces to give [28]

Ĥfield =
∑
λ=1,2

∫
R3

d3k ~ω â†kλâkλ , (2.80)

in analogy to Eq. (2.61). Finally, in analogy to Eq. (2.73), one can now write down

the three-dimensional expression for the zero-point energy of the electromagnetic

field,

Hzpe =

∫ ∞
0

d3k
1

2
~ω δ(0) . (2.81)

Most importantly, all the results derived here are consistent with the continuum

limit of other authors, i.e. in the limit of an infinite quantisation volume [39–42].
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2.3 Summary

In this chapter the classical theory of electromagnetism was used a starting point

to then discuss the quantum description of electromagnetic radiation where the

electromagnetic field consists of basic energy quanta known as photons. The first

step in this part of the story is outlining what is more commonly known as the

canonical approach to quantising the electromagnetic field. Contrasting this with

a more physically-motivated approach where one uses experimental observations

to state that the free-electromagnetic field behaves as a collection of quantum

harmonic oscillators and photons with frequency ω have an associated energy

~ω. Most importantly, the electric and magnetic field observables in Eqs. (2.74)

and (2.77) are consistent with the findings of other authors.
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Chapter 3

Atom-field interactions

In the previous chapter, the quantised electromagnetic field was explored and it

was determined that it consists of basic energy quanta known as photons. At this

stage it is possible to ask questions about how this field interacts with matter,

such as individual atoms. It was Paul Dirac who first considered the interaction

of light and matter through his newly developed interpretation of the quantum

theory where dynamical variables are non-commutative [43]. Importantly, he

noticed that the Schrödinger framework did not allow one to describe, nor does

it give any useful information, regarding atomic transitions (cf. Postulate 4).

In particular, the process of an atom spontaneously emitting a photon was not

explainable within the framework of the Schrödinger equation because it is not

sufficient to only understand how the energy levels of the atom are quantised - the

electromagnetic field must also be quantised. This required extending quantum

mechanics to also describe fields which are quantised at every point in space. One

of the most famous quantum field theories is that of electrons and electromagnetic

fields, or light-matter interactions, which is more commonly known as quantum

electrodynamics (QED) [44, 45] and is one of the most successful theories ever

developed in physics due to the high level of accuracy in its predictions.

If one considers the simple case of an isolated two-level atom, the Hamilto-

nian can be written in terms of its energy eigenstates which are orthogonal to one

another (see Eq. (3.28)). In QED, one must explicitly consider the interaction

between the atom and its surroundings, i.e. the quantised electromagnetic field.

The result is that the free electromagnetic field perturbs the state of the atom
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3.1 Overview

generating a finite probability that one photon will be emitted (the spontaneous

emission rate of the atom) as well as inducing a level shift in the atoms excited

state. The matrix elements which describe these atomic transitions were calcu-

lated by Fermi using his famous ‘golden rule’ [46], despite Dirac having achieved

similar results some twenty years earlier. Moreover, it has been shown that quan-

tum optical master equations are extremely useful tools to analyse the dynamics

of atomic systems with spontaneous photon emission [15, 47–49].

The beginning of this chapter will present a brief overview of closed quantum

systems and then contrast this by presenting an overview of open quantum sys-

tems, with a general master equation derivation in the following section. Finally,

the master equation for a two-level atom interacting with the free-electromagnetic

field is presented, with analytical expressions for the free-space spontaneous emis-

sion rate Γfree and atomic level shift ∆free.

3.1 Overview

If one wishes to understand how a closed quantum system with the time-dependent

state vector |ψ(t)〉 evolves over time, one can use the time-dependent Schrödinger

equation

|ψ̇(t)〉 = − i

~
Ĥ|ψ(t)〉 , (3.1)

where Ĥ represents the Hamiltonian describing the system of interest (cf. Postu-

late 4). More importantly, the closed system is an idealised case as it is assumed

that the quantum system is completely decoupled from its surrounding environ-

ment. As a result, one is able to describe the dynamics of a closed quantum

system using unitary operations. However, this idealised system is a simplified

description of realistic physical systems.

In order to model more realistic scenarios one has to relax the assumptions

used and one must explicitly consider the interaction of the system and the sur-

roundings. In order to model the dynamics of open quantum systems and analyse

their behaviour, one must introduce the quantum master equation [15, 47–49] as
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3.2 Modelling open quantum systems

unitary operations are no longer sufficient. In addition, one assumes a weak cou-

pling between the system and its surroundings1. An N-dimensional system has

the quantum optical master equation of Lindblad form

˙̂ρS(t) = − i

~

[
Ĥ, ρ̂S(t)

]
+

N∑
i=0

N∑
j=0

Γi,j

(
L̂j ρ̂S(t)L̂†i −

1

2

[
L̂†i L̂j, ρ̂S(t)

]
+

)
,(3.2)

assuming the initial and final state of the system are uncorrelated. Here, ρ̂S(t)

is the density operator describing the state of the system and the notation

[Â, B̂]+ denotes the anti-commutator between some operators Â and B̂, such

that [Â, B̂]+ = ÂB̂ + B̂Â. The decay rate of the channel i, j is denoted by Γi,j

and the Lindblad operators L̂i,j correspond to the transition i ↔ j. In the case

where there is just a single decay channel, Eq. (3.2) simplifies to give

˙̂ρS(t) = − i

~

[
Ĥ, ρ̂S(t)

]
+ Γ

(
L̂ρ̂S(t)L̂† − 1

2

[
L̂†L̂, ρ̂S(t)

]
+

)
. (3.3)

Although the time evolution of an open quantum system is non-trivial, the evolu-

tion is still characterised by linear differential equations. A general and in-depth

derivation of a quantum optical master equation describing an atom-field inter-

action is presented in the next subsection.

3.2 Modelling open quantum systems

When modelling open quantum systems, there is an inherent connection between

the quantum system under consideration and its surroundings, which is often

referred to as a bath. As a result of this link, the total energy for the open

system and is no longer conserved and one must use quantum master equations

to accurately model the dynamics of the system.

3.2.1 The relevant Hamiltonians

Let us first have a closer look at the simplest case of an open quantum system.

For this case, there is a quantum system interacting with the surrounding bath.

1Therefore, it is permissible to use perturbation theory.
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3.2 Modelling open quantum systems

One can then define the relevant Hamiltonians by considering the interacting

and non-interacting (free) contributions. Therefore, one can write the overall

Hamiltonian as

Ĥ = Ĥ0 + Ĥ1 , (3.4)

where the Hamiltonian Ĥ0 provides the description of the quantum system and

bath in the absence of interactions, and is of the form

Ĥ0 = ĤS + ĤB , (3.5)

whereas the Hamiltonian Ĥ1 is of the form

Ĥ1 = Ĥint + ĤSB . (3.6)

The Hamiltonian Ĥ1 has two contributions which arise due to interactions. The

term Ĥint describes the internal system dynamics and the term ĤSB describes

interactions between the system and bath.

Figure 3.1: Schematic view of the total system with the different contributions

annotated. The corresponding Hamiltonians for the system and bath are given

by ĤS and ĤB, with the system-bath interaction and internal dynamics given by

ĤSB and Ĥint respectively.
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One can re-express the Hamiltonian in Eq. (3.4) by making use of unitary

transformations. For example, these transformations can be used to move from

the Schrödinger picture to the interaction picture. The Hamiltonian in Eq. (3.4)

is currently in the Schrödinger picture and will be moved into the interaction pic-

ture, with respect to the free Hamiltonian Ĥ0 shown in Eq. (3.5). The interaction

picture Hamiltonian ĤI(t) can be expressed as [42]

ĤI(t) = Û †0(t, 0)
(
Ĥ − Ĥ0

)
Û0(t, 0) = Û †0(t, 0) Ĥ1 Û0(t, 0) . (3.7)

The time evolution operator Û0(t, 0) with respect to the Hamiltonian Ĥ0 is given

by

Û0(t, 0) = exp

[
− i

~

∫ t

0

dt′ Ĥ0(t′)

]
, (3.8)

which can be found by solving the Schrödinger equation in Eq. (3.1). The key

result of this transformation allows one to ignore the trivial dynamics generated

by the non-interacting Hamiltonian Ĥ0, and explicitly consider the non-trivial

dynamics generated by the interaction between system and bath.

3.2.2 General derivation of the master equation

The starting point is to assume that the state of the quantum system is given by

some density matrix, ρ̂(t) where the density matrix is defined as

ρ̂(t) =
∑
j

pj|ψj(t)〉〈ψj(t)| . (3.9)

In other words, the density matrix describes a mixed state - a statistical ensemble

of various pure quantum states each with an associated probability pj such that∑
j

pj = 1 . (3.10)

Suppose the bath (the free radiation field) surrounding the quantum system gen-

erally resides and resets to an environmentally preferred state - the so-called

einselected state [49, 50]. In other words, when an excitation is emitted by the

system it is absorbed by the bath, which could be the walls of a laboratory [51].
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In general, the bath resets into an einselected state which corresponds to a min-

imum entropy state. In terms of the applications considered within this thesis,

it is assumed that the einselected state coincides with the vacuum state |0〉 of

the electromagnetic field1. Thus, one can write the general density matrix of the

quantum system and bath at some given time t in the interaction picture as

ρ̂SB I(t) = ρ̂S I(t)⊗ |0B〉〈0B| = |0B〉 ρ̂S I(t) 〈0B| . (3.11)

The next step is to consider the system-bath interactions based on the interac-

tion Hamiltonians from Eq. (3.7). Considering the evolution of these interactions

on a short time scale ∆t using the time evolution operator ÛI(t+ ∆t, t), one can

evolve the system-bath density matrix ρSB I(t) to obtain the new density matrix

ρ̂SB I(t+ ∆t) such that

ρ̂SB I(t+ ∆t) = ÛI(t+ ∆t, t) |0B〉 ρ̂S I(t) 〈0B|Û †I (t+ ∆t, t) . (3.12)

In addition, it is assumed that the system-bath interactions perturb the state of

the bath but this time evolution is followed by a rapid resetting of the bath into

its environmentally preferred state due to the fact that ∆t is relatively small and

that a typical bath has infinitely many degrees of freedom. This gives the new

system-bath density matrix

ρ̂SB I(t+ ∆t) = |0B〉 ρ̂S I(t+ ∆t) 〈0B| . (3.13)

By tracing over the modes of the bath, one obtains a density matrix ρ̂S I(t) which

purely describes the state of the quantum system

ρ̂S I(t+ ∆t) = TrB (ρ̂SB I(t+ ∆t)) . (3.14)

In the following, the coarse-grained dynamics are implied by a differential equa-

tion without coarse graining, i.e. an atomic master equation of the form,

˙̂ρS I(t) =
1

∆t
(ρ̂S I(t+ ∆t)− ρ̂S I(t)) . (3.15)

When calculating the terms on the right hand side of Eq. (3.15), it is necessary

to consider a relatively short time interval ∆t. However, ∆t should not be too

1For the remainder of this derivation the vacuum state will be referred to as |0B〉.
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short either, as it needs to be sufficient to allow for a transfer of information from

the system to the bath.

Now, using Eqs. (3.12) – (3.14) and second-order perturbation theory, one can

evaluate the right-hand side of Eq. (3.15). In addition, one can use the Dyson

series [39] to obtain an expression for the time evolution operator ÛI(t + ∆t, t),

such that

ÛI(t+ ∆t, t) = T exp

[
− i

~

∫ τ

t0

dτ ĤI(τ)

]
, (3.16)

where T denotes the time-ordered product of the Hamiltonians, ĤI(τ). Up to

second-order, this can be written as1

ÛI(t+ ∆t, t) ' 1− i

~

t+∆t∫
t

dt′ ĤI(t
′)− 1

~2

t+∆t∫
t

dt′
t′∫
t

dt′′ ĤI(t
′)ĤI(t

′′). (3.17)

Substituting Eq. (3.17) into Eq. (3.12) and using both Eqs. (3.14) and (3.15), one

obtains the following expression

˙̂ρS I(t) = − 1

∆t

i

~
TrB

(∫ t+∆t

t

dt′
[
Ĥint I(t) , |0B〉ρ̂S I(t)〈0B|

])
− 1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
ĤSB I(t

′)ĤSB I(t
′′), |0B〉 ρ̂S I(t)〈0B|

]
+

)

+
1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′ ĤSB I(t
′)|0B〉ρ̂S I(t)〈0B|ĤSB I (t′′)

)
.

(3.18)

Finally, one can consider what happens when tracing out the bath modes in the

above equation. The first term generates the internal dynamics of the quantum

system, while the second and third line of Eq. (3.18) generate the open system

dynamics. The term on the second line is only non-zero when the bath is projected

into the vacuum state |0B〉 by the trace, where as the third line of Eq. (3.18) is

only non-zero when the trace projects the bath into the one photon state |1B〉.
Therefore, the terms on the second line corresponds to the situation where there

is no emission by the system and the term on the third line corresponds to the

situation where the system emits an excitation into the bath.

1Due to assuming a weak-coupling between the system and bath, terms higher than second-
order do not contribute to ˙̂ρS I(t) in the small ∆t limit.
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3.2.3 Unravelling of the master equation

The master equation describes the evolution of the ensemble average of the sys-

tem. In other words, a master equation describes how a system will behave on

average, whereas a single quantum system (or individual quantum trajectory)

may evolve differently. Although individual quantum trajectories are not the

main focus of the thesis, the following unravelling of Eq. (3.18) provides the

necessary intuition and will be used throughout.

One denotes the unnormalised density matrix of the quantum system for which

no excitation is exchanged and the bath remains in its environmentally preferred

state |0B〉 as ρ0
S(t). For the scenario where excitations are exchanged with the

bath, this unnormalised density matrix is denoted as ρ̂ 6=S (t). Taking this into

account, one finds the time evolution of the density matrix has two contributions

such that

˙̂ρS I(t) = ˙̂ρ0
S I(t) + ˙̂ρ6=S I(t) , (3.19)

where

˙̂ρ0
S I(t) = − 1

∆t

i

~
TrB

(∫ t+∆t

t

dt′
[
Ĥint I(t

′) , |0B〉ρ̂S I(t)〈0B|
])

− 1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
ĤSB I(t

′)ĤSB I(t
′′), |0B〉 ρ̂S I(t)〈0B|

]
+

)
(3.20)

and

˙̂ρ6=S I(t) =
1

∆t

1

~2
TrB

(∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′ ĤSB I(t
′)|0B〉ρ̂S I(t)〈0B|ĤSB I (t′′)

)
.

(3.21)

Now, one must use the Eqs. (3.20) and (3.21) and compare these with the master

equation of Lindblad form given in Eq. (3.3). Doing so demonstrates that

˙̂ρ0
S I(t) = − i

~

[
Ĥint I, ρ̂S I(t)

]
− 1

2
Γ
[
L̂†L̂, ρ̂S I(t)

]
+
, (3.22)

˙̂ρ 6=S I(t) = ΓL̂ ρ̂S I(t) L̂
† . (3.23)
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3.3 Master equation for two-level atom-field interaction

In addition, one can show that ρ̂S I(t) evolves according to

˙̂ρS I(t) = − i

~
[
Ĥcond I(t) ρ̂S I(t)− ρ̂S I(t) Ĥ

†
cond I(t)

]
+ L(ρ̂S I(t)) , (3.24)

The conditional Hamiltonian Ĥcond I(t) describes the time evolution of the system

under the condition of no photon emission and is defined as [48, 52, 53]1

Ĥcond I(t) =
1

∆t

t+∆t∫
t

dt′ 〈0B|Ĥint I(t
′)|0B〉

− i

~∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ 〈0B|ĤSB I(t
′)ĤSB I(t

′′)|0B〉+ H.c.

(3.25)

Finally, the reset operator L(ρ̂S I(t)) is defined as

L(ρ̂S I(t)) =
1

~2∆t
TrB

(∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′ ĤSB I(t
′)|0B〉ρ̂S(t)〈0B|ĤSB I (t′′)

)
,

(3.26)

which describes the un-normalised state of the quantum system in the case of an

emission at time t [48, 52, 53].

In the following subsection, a master equation description for a two-level atom

interacting with the surrounding free electromagnetic field will be presented, with

the example demonstrating how to solve the various integrals within Eqs. (3.25)

and (3.26).

3.3 Master equation for two-level atom-field in-

teraction

The beginning of this chapter discussed the time evolution of both closed and

open quantum systems, which allows one to present a description of a light-

matter interaction where an atom couples to its surrounding environment, which

1In order to be completely general the Hamiltonian, Ĥint I(t′) which describes the internal
dynamics of the quantum system has been included. However, for the scenarios studied within
this thesis Ĥint I(t′) = 0 is always the case.
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3.3 Master equation for two-level atom-field interaction

in this case is the free electromagnetic field. In order to model this scenario, one

can make use of the two-level approximation. This approximation means one

only has to consider the two lowest energy levels, i.e. the ground state and first

excited state. Any atomic transitions with energies very different from ~ω will

be neglected.

3.3.1 The relevant Hamiltonians

As before, the first step is to identify the relevant Hamiltonians. In analogy to

Eq. (3.4), we take the sum of three contributions such that

Ĥ = Ĥatom + Ĥfield + ĤSB , (3.27)

where Ĥint = 0 as there is no laser driving providing internal system dynamics.

One can express the atom Hamiltonian in terms of the energy eigenstates |n〉 such

that

Ĥatom =
2∑
i=1

~ωi|ni〉〈ni| , (3.28)

The form of this equation demonstrates why the number state representation is

particularly useful as it is possible to simply read off the eigenvalues of a diagonal

matrix. Similarly, the second term describes the free electromagnetic field

Hfield =
∞∑
j=1

~ωj|nj〉〈nj| , (3.29)

to which the atom is coupled.

From Eq. (3.27), the first two terms can be identified as the system and the

bath in the absence of interactions, respectively, with the last term representing

the interaction between the atom and the free electromagnetic field. Therefore,

in analogy to Eqs. (3.5) and (3.6), one can write

Ĥ0 = Ĥatom + Ĥfield ,

Ĥ1 = ĤSB . (3.30)

Moreover, the atom-field interaction can expressed as

ĤSB = D̂ · Êfree(r) , (3.31)
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3.3 Master equation for two-level atom-field interaction

where D̂12 denotes the dipole moment associated with the atomic transition

|2〉 → |1〉 and Êfree(r) denotes the electric field at position r. In order to ar-

rive at Eq. (3.31) one must make use of the electric dipole approximation. In the

previous chapter it was shown that one can satisfy Maxwell’s equations with plane

wave solutions. Since the wavelength of the emitted photon is much larger than

the size of the atom, in the electric dipole approximation only the zeroth-order

term contributes to the atom-field interaction, i.e. eik·r ≈ 1. Importantly, this

approximation can be made regardless of the route taken to quantise the electro-

magnetic field. This is due to the electric field Efree(r, t) being spatially uniform

over the position of the atom. If one chooses a different gauge, this would then

lead to a different atom-field interaction (see [49] and references herein). More-

over, to derive the full form of the dipole moment operator D̂12 from Eq. (3.31),

one can do so in the following way

D̂12 = ex̂ , (3.32)

where e denotes the quanta of charge (electric charge carried by a single proton

or electron) and x̂ denotes the position operator. Expressing the dipole moment

operator D̂12 in terms of the identity operator such that

D̂12 = 1̂x̂1̂

= (|1〉〈1|+ |2〉〈2|)x̂(|1〉〈1|+ |2〉〈2|)
= 〈1|x̂|1〉|1〉〈1|+ 〈1|x̂|2〉|1〉〈2|+ 〈2|x̂|1〉|2〉〈1|+ 〈2|x̂|2〉|2〉〈2| . (3.33)

Analysing the terms of the above equation, the diagonal elements describe per-

manent dipole moments e.g. an atom in a solid, and the off-diagonal elements

describe transition dipole moments. Therefore, it is possible to say that 〈1|x̂|1〉 =

〈2|x̂|2〉 = 0 and due to the atom having inversion symmetry 〈1|x̂|2〉 = 〈2|x̂|1〉 6= 0.

This generates the final form of the dipole moment operator

D̂12 = 〈1|x̂|2〉 |1〉〈2|+ 〈2|x̂|1〉 |2〉〈1| = D12 σ̂
− + D∗12 σ̂

+ , (3.34)

where D12 and D∗12 are the matrix elements discussed above and σ̂± represent the

atomic raising and lowering operators, respectively. These operators are analo-

gous to the ladder operators mentioned in the previous chapter. Finally, the

40



3.3 Master equation for two-level atom-field interaction

algebra of these operators can be defined in the following way

σ̂+ = |2〉〈1| ,
σ̂− = |1〉〈2| , (3.35)

with [
σ̂+, σ̂−

]
= σ̂+σ̂− − σ̂−σ̂+ = 2σ̂3 , (3.36)

where the operator σ̂3 = 1
2

[|2〉〈2| − |1〉〈1|]. Making use of Eqs. (3.32) – (3.34)

and substituting this information into Eq. (3.31), one obtains

ĤSB = e
[
D12 σ̂

− + D∗12 σ̂
+
] · Êfree(r) , (3.37)

where Êfree(r) denotes the free electric field at position r, the point at which

the atom couples to this field. Using the expression obtained in Eq. (2.77), this

generates the following atom-field Hamiltonian

ĤSB(t) =
ie

4π

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

ei(k·r−ωt) [D12 σ̂
− + D∗12 σ̂

+
]
âkλêkλ + H.c.

(3.38)

The next step is to use Eq. (3.7) to move the system-bath Hamiltonian from

the Schrödinger picture into the interaction picture, with respect to the free

Hamiltonian Ĥ0. To do so, one must use the spectral theorem to decompose the

time evolution operator from Eq. (3.8) into the eigenvalues and eigenvectors of

the Hamiltonian Ĥ0 such that

Û0(t, 0) = exp

[
− i

~

∫ t

0

dt′ Ĥ0(t′)

]
=
∑
i

e−iEit/~|Ei〉〈Ei| , (3.39)

where Ei denotes the energy (eigenvalue) of the energy eigenstate |Ei〉. Imple-

menting the above relation when evaluating Eq. (3.7) allows one to obtain an

expression for the system-bath Hamiltonian within the interaction representa-
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tion1. Performing this substitution yields

ĤSB I(t) =
ie

4π

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

× (ei(ω+ω0)t D12 σ̂
− + e−i(ω−ω0)t D∗12 σ̂

+
)

eik·r âkλêkλ + H.c.

(3.40)

Finally, one must apply the rotating wave approximation in order to ensure the

above Hamiltonian will return the appropriate physical dynamics2. Applying the

rotating wave approximation to the above equation, one finds that the interaction

picture Hamiltonian ĤSB I(t) takes the form

ĤSB I(t) =
ie

4π

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

e−i(ω−ω0)t eik·r D∗12 σ̂
+ âkλêkλ + H.c.

(3.41)

In the following section of this chapter, the Hamiltonian in Eq. (3.41) will be used

to present a master equation description for the atom-field interaction.

3.3.2 Master equation

In order to obtain the master equation for a two-level atom coupled to the free

electromagnetic field, one must substitute the interaction picture Hamiltonian

ĤSB I(t) from Eq. (3.40) into the expressions for the conditional Hamiltonian

Ĥcond I(t) and the reset operator L(ρ̂S I(t)) in Eqs. (3.25) and (3.26), respectively.

1Moving into the interaction representation allows one to ignore the trivial dynamics and
focus on the non-trivial (interacting) dynamics. This transformation is evident when comparing
field operators in the Schrödinger and interaction representation. In the Schrödinger represen-
tation these operators take the form âkλ and â†kλ. However, in the interaction representation,
these operators now take the form âkλ e−iω0t and â†kλeiω0t.

2In Eq. (3.31), the dipole approximation was assumed and in order for this to remain a valid
assumption, the electric field must be near resonance with the atomic transition, ω0. Therefore,
the exponentials in Eq. (3.40) which scale with e±i(ω+ω0)t will be far from resonant with the
field. These oscillations quickly average to 0 and therefore, these fast-oscillating terms may
be neglected. Exponentials with e±i(ω−ω0)t will be close to resonance with the field and are
therefore kept.
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Calculating Ĥcond I(t) for an atom in free space

Let us first take a closer look at how to calculate the non-Hermitian Hamiltonian

Ĥcond I(t). The first step requires substituting the interaction picture Hamiltonian

ĤI(t) from Eq. (3.41) into the expression derived for the conditional Hamiltonian

given in Eq. (3.25). Doing so, one finds that the conditional Hamiltonian Hcond I(t)

for an atom in free space equals1

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∑
λ=1,2

∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′)

×
(
D̂∗12 · êkλ

)(
D̂12 · êkλ

)
σ̂+σ̂− . (3.42)

In free space, using a Cartesian coordinate system (x, y, z) it is possible express

the atomic dipole moment D̂12 without restrictions such that

D̂12

‖D12‖ =

 d1

0
d3

 , (3.43)

with

|d1|2 + |d3|2 = 1 . (3.44)

One can simplify Eq. (3.42) by noticing that the polarisation vectors êkλ with

λ = 1, 2 and the unit vector k̂ = k/‖k‖ form a complete set of basis states in R
3

which implies ∑
λ=1,2

‖v · êkλ‖2 = ‖v‖2 − ‖v · k̂‖2 , (3.45)

for any vector v. Moreover, to perform the integration in k-space, one introduces

the polar coordinates (ω, ϑ, φ) such that

k = k

 cos(ϑ)
cos(φ) sin(ϑ)
sin(φ) sin(ϑ)

 =
ω

c

 cos(ϑ)
cos(φ) sin(ϑ)
sin(φ) sin(ϑ)

 , (3.46)

1Upon performing the substitution, it is evident from the perturbative expansion performed
in Eq. (3.16), that one will obtain an integral over k and k′. This is evaluated using the Dirac-
delta function δ3(k − k′), when tracing out the bath modes. The significance of this delta
function is that it ensures frequency-matching between the excitation emitted by the system
and the excitation that is absorbed by the bath.
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and ∫
R3

d3k =

∫
R3

dkx dky dkz =

∫ ∞
0

dk k2

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dφ , (3.47)

where the spherical polar volume element is given by dkx dky dkz = k2 sin(ϑ)dk dϑ dφ.

The above equation can be re-expressed using ω = ck, which yields the expression∫
R3

d3k =

∫ ∞
0

dω
ω2

c3

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dφ . (3.48)

Taking this into account and combining with the above equations yields

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dφ
e2 ‖D12‖2 ω3

16π3ε0c3~

×
[
|d1|2

(
1− cos2(ϑ)

)
+ |d3|2

(
1− sin2(ϑ) sin2(φ)

)
+ (d∗1d3 + d∗3d1) sin(ϑ) cos(ϑ) sin(φ)

]
e−i(ω−ω0)(t′−t′′) σ̂+σ̂− .

(3.49)

Performing the φ-integration, one finds that

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω

∫ π

0

dϑ sin(ϑ)
e2 ‖D12‖2 ω3

16π3ε0c3~

×2π

[
|d1|2

(
1− cos2(ϑ)

)
+

1

2
|d3|2

(
1 + cos2(ϑ)

) ]
×e−i(ω−ω0)(t′−t′′) σ̂+σ̂− . (3.50)

One can then simplify the ϑ-integration by introducing a new variable s = cos(ϑ).

Applying this substitution, one finds

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds
e2 ‖D12‖2 ω3

8π2ε0c3~

×
[
|d1|2(1− s2) +

1

2
|d3|2(1 + s2)

]
e−i(ω−ω0)(t′−t′′) σ̂+σ̂−.(3.51)
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Now, evaluating the s-integration and making use of the relation in Eq. (3.44),

one obtains

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω
e2 ‖D12‖2 ω3

6π2ε0c3~
e−i(ω−ω0)(t′−t′′) σ̂+σ̂− .

(3.52)

The next step requires imposing Markovianity, i.e. the initial and final state of

the system are uncorrelated meaning it is appropriate to replace the lower limit of

the t′′ integral with −∞. Therefore, in Eq. (3.52) one can make the substitution

t′∫
t

dt′′ →
t′∫

−∞

dt′′ , (3.53)

which applies very well when t� t+∆t and ∆t� 1/ω0. In order to evaluate the

resulting integral one must be aware of the singularity where ω = ω0. This issue

can be avoided through using a form of the Cauchy principle value theorem, where

one introduces an infinitesimal term β (such that β ∈ R). Therefore, looking the

t′′-integral from Eq. (3.52) whilst also considering Eq. (3.53), one finds that∫ t′

−∞
dt′′ e−i(ω−ω0)(t′−t′′)

= lim
β→0+

∫ t′

t

dt′′ e−i(ω−ω0)(t′−t′′)+βt′′

= lim
β→0+

eβt
′

β + i (ω − ω0)

= lim
β→0+

eβt
′
(

β

β2 + (ω − ω0)2 −
i (ω − ω0)

β2 + (ω − ω0)2

)
= lim

β→0+

β eβt
′

β2 + (ω − ω0)2 −
i

ω − ω0

. (3.54)

Considering the first term of the above equation, in the limit of β → 0+ this term

is equivalent to a Dirac-delta distribution, which can be defined as

lim
β→0+

1

π

β

x2 + β2
= δ (x) , (3.55)
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where ∫ ∞
−∞

dx δ(x) = 1 . (3.56)

Therefore, one can state that∫ t′

−∞
dt′′ e−i(ω−ω0)(t′−t′′) = πδ (ω − ω0)− i

(ω − ω0)
. (3.57)

Looking at the above equation, the first term is real and this is the contribution

that gives rise to the spontaneous emission rate of the system. The second term

is imaginary and describes a level shift for the atom’s excited state. However, this

level shift can be dealt with by absorbing it into the definition of the system’s

free energy. Now, one can make use of Eq. (3.57) to simplify Eq. (3.52). Doing

so and performing the t′-integration, one obtains the conditional Hamiltonian

Ĥcond I(t) = − i~
2

∫ ∞
0

dω
e2 ‖D12‖2 ω3

3π2ε0c3~

[
πδ (ω − ω0)− iP

(ω − ω0)

]
σ̂+σ̂− ,

(3.58)

where the Cauchy-principal value P allows one to evaluate improper integrals,

which otherwise would be undefined e.g. due to a singularity in the integrand

[54]. Evaluating the ω-integral generates the following expression

Ĥcond I(t) = − i~
2

[
Γfree − i∆free

]
σ̂+σ̂− , (3.59)

where the spontaneous decay rate of the system is equal to Γfree and the atomic

level shift is given by ∆free. The above equation simplifies to give

Ĥcond I(t) = ~
(

∆free − i

2
Γfree

)
σ̂+σ̂− . (3.60)

As stated earlier, one can absorb the atomic level shift into the definition of

ω0, thereby absorbing it into the atomic Hamiltonian Hatom in Eq. (3.28). This

simplifies the conditional Hamiltonian in Eq. (3.60) to give

Ĥcond I(t) = − i~
2

Γfree σ̂
+σ̂− , (3.61)
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3.3 Master equation for two-level atom-field interaction

where the spontaneous decay rate of the system is expressed as

Γfree =
e2 ‖D12‖2 ω3

0

3πε0c3~
. (3.62)

This is the spontaneous emission rate of a two-level atom in free space. In addi-

tion, one can define the atomic level shift ∆free as

∆free = P

∫ ∞
0

dω
2

π

Γfree

ω3
0

ω3

(ω0 − ω)
. (3.63)

However, the exact form of this free-space level shift is not important for the work

presented in this thesis1.

Calculating L(ρ̂SI(t)) for an atom in free space

The next step requires obtaining an expression for the reset operator L(ρ̂S I(t)),

which is achieved by substituting the interaction picture Hamiltonian ĤSB I(t)

from Eq. (3.41) into the reset operator expression given in Eq. (3.26). Doing so,

one finds2

L(ρ̂S I(t)) = (−1)2

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫
R3

d3k
e2ω

16π3ε0~∆t

×ei(ω−ω0)(t′−t′′)
(
D̂∗12 · êkλ

)(
D̂12 · êkλ

)
×〈1kλ|â†kλ|0kλ〉 σ̂−ρ̂S I(t)σ̂

+ 〈0kλ|âkλ|1kλ〉 . (3.64)

Implementing the relations from Eqs. (3.45) – (3.48), one finds that the above

equation simplifies to give

L(ρ̂S I(t)) =

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dφ
e2‖D12‖2ω3

16π3ε0c3~∆t

×
[
|d1|2

(
1− cos2(ϑ)

)
+ |d3|2

(
1− sin2(ϑ) sin2(φ)

)
+ (d∗1d3 + d∗3d1) sin(ϑ) cos(ϑ) sin(φ)

]
ei(ω−ω0)(t′−t′′) σ̂− ρ̂S I(t) σ̂

+.

(3.65)

1The free-space level shift ∆free is highly divergent when treated non-relativistically.
2As with Eq. (3.42), strictly one obtains two integrals; one over k and one over k′. How-

ever, frequency matching is required when one traces over the bath modes hence, one obtains
Eq. (3.64).
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3.3 Master equation for two-level atom-field interaction

From Eq. (3.50), it is evident that evaluating the φ-integral generates a factor of

2π, which yields the expression

L(ρ̂S I(t)) =

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω

∫ π

0

dϑ sin(ϑ)
e2‖D12‖2ω3

8π2ε0c3~∆t

×
[
|d1|2

(
1− cos2(ϑ)

)
+ |d3|2

(
1− sin2(ϑ) sin2(φ)

) ]
×ei(ω−ω0)(t′−t′′) σ̂− ρ̂S I(t) σ̂

+. (3.66)

Again making use of the substitution s = cos(ϑ), one finds that

L(ρ̂S I(t)) =

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds
e2‖D12‖2ω3

8π2ε0c3~∆t

×
[
|d1|2

(
1− s2

)
+

1

2
|d3|2

(
1 + s2

) ]
ei(ω−ω0)(t′−t′′) σ̂− ρ̂S I(t) σ̂

+.

(3.67)

Evaluating the s-integral yields the expression

L(ρ̂S I(t)) =

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω
e2‖D12‖2ω3

6π2ε0c3~∆t

×ei(ω−ω0)(t′−t′′) σ̂− ρ̂S I(t) σ̂
+. (3.68)

Note that the above expression can be re-written such that1

L(ρ̂S I(t)) = Γfree

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω
1

∆t

1

2π

ω3

ω3
0

ei(ω−ω0)(t′−t′′)

× σ̂− ρ̂S I(t) σ̂
+. (3.70)

In order to evaluate the t′′-integral, one makes use of the substitution ξ = t′− t′′.
Through this substitution one is able to state that∫ t+∆t

t

dt′′ =

∫ t′−t

t′−(t+∆t)

dξ , (3.71)

1As the final Lindblad form of the master equation is known, one can also say that

Γ = Γfree

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∫ ∞

0

dω
1

∆t
1

2π
ω3

ω3
0

ei(ω−ω0)(t′−t′′) . (3.69)
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3.4 Summary

and by making the Markov approximation, it is possible to say that

t′−t∫
t′−(t+∆t)

dξ ei(ω−ω0)ξ =

∫ ∞
−∞

dξ ei(ω−ω0)ξ = 2π δ(ω − ω0) . (3.72)

Through the above identity one can obtain the final form of the reset operator,

L(ρ̂S I(t)). This is shown to be equal to

L(ρ̂S I(t)) = Γfree σ̂
− ρ̂S I(t) σ̂

+ , (3.73)

where Γfree is consistent with Eq. (3.62).

Finally, in order to obtain the master equation in Lindblad form, one must

substitute the expressions for the conditional Hamiltonian and the reset operator

from Eqs. (3.61) and (3.73), respectively, into the quantum jump master equation

given in Eq. (3.24). This generates the following equation

˙̂ρS I(t) = Γfree

(
σ̂− ρ̂S I(t) σ̂

+ − 1

2

[
σ̂+σ̂−, ρ̂S I(t)

]
+

)
. (3.74)

The first term of Eq. (3.74) arises due to the spontaneous emission of a photon

by the atom and the second term corresponds to no photon emission.

3.4 Summary

In this chapter, the behaviour and modelling of closed quantum systems is con-

trasted with that of open quantum systems. Open quantum systems posses a

coupling to the surrounding environment and one way to accurately model open

quantum systems is through the use of quantum optical master equations. By

considering the well-understood example of a two-level atom interacting with the

free electromagnetic field, a master equation description with analytical expres-

sions for the free-space spontaneous emission rate Γfree (cf. Eq. (3.62)) and atomic

level shift for the excited state ∆free (cf. Eq. (3.63)) was presented. Moreover,

both results are consistent with the findings of other authors [49].
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Chapter 4

Dipole-dipole interactions in free

space

Dipole interactions are ubiquitous in quantum physics. Moreover, interacting

dipole systems have shown practicality in the real world, e.g. quantum information

processing and designing quantum gates for quantum information processing [55–

57]. Experimental observations have shown that Ryberg atoms (i.e. atoms with

high quantum numbers n which are extremely sensitive to small perturbations)

are excellent candidates for dipole-dipole interactions [55–59]. Tanas & Ficek [60]

provide an in-depth review where entanglement and quantum effects in two-atom

systems are investigated (see references herein as well as Refs. [61–65] for more

discussion on interacting dipole-dipole systems and entanglement). In addition, it

has been demonstrated that arranging atoms in an ordered array, such as a lattice,

makes it possible to achieve strong enhancement of emission [66] - a result that

has been confirmed experimentally [67]. For a recent study looking at finite size

effects in dipole systems see Ref. [68] and references within. More importantly,

these scenarios have previously been shown to be successfully described using

both the Heisenberg formalism [69] as well as quantum jump approaches [70–72],

with a recent study demonstrated a gauge-invariant master equation approach

for strongly interacting dipoles [73].

This chapter will focus on considering the interaction between two dipoles

(or atoms) in free space. As it will be demonstrated later, the origin of this

interaction stems from interference effects experienced by both atoms due to
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4.1 Overview

coupling to the same electromagnetic field. The result of the interaction leads to

corrections in the spontaneous emission rates of each atom as well as both atoms

experiencing a level shift. Both these rates depend strongly on the orientation

of their respective dipoles and the interatomic separation x, if x is of the same

order of magnitude as the wavelength λ0 of the emitted light. Unfortunately,

these types of atomic interactions are usually relatively short-range. However, as

it shall be demonstrated in Chapter 7, one is able to maintain and even increase

the strength of this interaction when separating the atoms with a thin semi-

transparent mirror.

4.1 Overview

The interaction of two dipoles in free space is a well-understood problem. Dicke

was first to demonstrate that a collection of identical atoms can interact with one

another through the electromagnetic field generating sub- or super-radiance [74],

provided the atoms are separated by a distance that is much shorter than the

wavelength of the emitted radiation, λ0. As a result of interference effects, the

collective spontaneous emission rate of the total system can be enhanced or sup-

pressed and this generally depends on the initial state that the system is prepared

in. In other words, depending on whether the system was initially prepared in a

symmetric or an anti-symmetric state, one either observes an enhanced or sup-

pressed emission rate. Following this, studying the behaviours of these collective

systems gained a fair amount of interest [75–82] as well as studies considering

non-identical atoms and the effect of retardation [83, 84].

Considering the case of two identical atoms (i.e. atoms with ground state

|1〉 and excited state |2〉) in free space, as shown in Fig. 4.3, it is well-known

that this scenario can be modelled as a single four-level system consisting of a

ground, an excited, a symmetric and an anti-symmetric state which are denoted

by |g〉, |e〉, |s〉 and |a〉 respectively (see Fig. 4.2). These states are known as Dicke
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4.1 Overview

Figure 4.1: Schematic view of two interacting atoms in free space, where the

atoms are placed along the x-axis with atom a and atom b being placed at the

positions xa and xb, respectively. One can then define the separation between the

atoms as some distance x = |xa − xb| = |xb − xa|.

states and can be expressed in the following way,

|g〉 = |11〉 ,
|e〉 = |22〉 ,
|s〉 =

1√
2

(|12〉+ |21〉) ,

|a〉 =
1√
2

(|12〉 − |21〉) . (4.1)

Interpreting the above equations, the ground state |g〉 denotes the state where

both atoms are de-excited and the excited state |e〉 denotes the state where both

atoms are excited. The symmetric and anti-symmetric state |s〉 and |a〉 respec-

tively, then denote states which are a superposition of atom one excited, atom

two de-excited and vice versa.

As one shall see later in this chapter, in the limit of atomic separation x→ 0,

the associated spontaneous decay rate of two atoms in the symmetric Dicke states

|s〉 or |e〉 is twice as large as the decay rate of a single atom in free space. However,

the antisymmetric state |a〉 forms a different superposition of atom one excited,

atom two de-excited and vice versa. The associated spontaneous decay rate of

two atoms in the anti-symmetric Dicke states |a〉 is suppressed such that they

are no longer able to emit a photon. This means the dipole-dipole interaction is

a manifestation of the indistinguishability of nearby atomic emitters. Moreover,

for very large atomic separation x � λ0, both atoms decay independently and

exactly as in free space, as one would expect.
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4.2 Master equation for dipole-dipole interactions in free space

Figure 4.2: Level scheme for a dipole-dipole interaction between a pair of identical

two-level atoms. This figure illustrates that such a system can be described by a

single four-level configuration. The possible states of the system are denoted as;

|e〉, |g〉, |s〉 and |a〉, where the |s〉 and |a〉 are the symmetric and anti-symmetric

states, respectively. Each arrow denotes a one-photon transition, with Γ+ and

Γ− denoting the spontaneous emission rate of the symmetric and anti-symmetric

states, respectively. In addition, the level shifts for the symmetric and anti-

symmetric states are denoted by ∆+ and ∆−, respectively.

4.2 Master equation for dipole-dipole interac-

tions in free space

In order to present a master equation description for two interacting dipoles

(or atoms), one is required to make use of the assumptions previously used in

Chapters 2 and 3, i.e. the two-level approximation as well as the electric dipole

and Markov approximation. This allows one to obtain analytical expressions for

the spontaneous emission rates and atomic level shifts of the system.

4.2.1 The relevant Hamiltonians

Following the same procedure outlined in Chapter 3 and making use of the well-

known dipole approximation, one can express the relevant Hamiltonian for two
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4.2 Master equation for dipole-dipole interactions in free space

interacting dipoles as

Ĥ = Ĥatom a + Ĥatom b + Ĥfield + ĤSB , (4.2)

where Ĥatom a, Ĥatom b and Ĥfield describe the non-interacting contributions of the

two atoms and the free electromagnetic field, respectively. The final term ĤSB

describes the interaction between the atoms and the surrounding free electromag-

netic field. As before, it is necessary to move into the interaction picture with

respect to the free Hamiltonian Ĥ0. Here, Ĥ0 has been chosen such that

Ĥ0 = Ĥatom a + Ĥatom b + Ĥfield , (4.3)

and the interaction Hamiltonian ĤSB can again be defined through the dipole

approximation in the following way

ĤSB = e
∑
i=a,b

D̂
(i)
12 · Ê(ri) , (4.4)

where Ê(ri) represents the electric field observable at the position of atom i. In

free space, this observable equals Êfree(ri) (cf. Eq. (2.77)). Therefore, one can say

that the atom-field interaction Hamiltonian ĤSB of two atoms at positions ra and

rb and with dipole moments D̂
(a)
12 and D̂

(b)
12 is equal to

ĤSB = e

[
D̂

(a)
12 σ̂

−
a + D̂

(a)∗
12 σ̂+

a

]
· Êfree(ra) + e

[
D̂

(b)
12 σ̂

−
b + D̂

(b)∗
12 σ̂+

b

]
· Êfree(rb).

(4.5)

Without restrictions, the dipole moments D̂
(i)
12 are defined in the following way

D̂
(a)
12

‖D12‖ =

 d
(a)
1

0

d
(a)
3

 ,
D̂

(b)
12

‖D12‖ =

 d
(b)
1

d
(b)
2

d
(b)
3

 (4.6)

with

|d(i)
1 |2 + |d(i)

2 |2 + |d(i)
3 |2 = 1 . (4.7)

Combining Eqs. (2.77) and (4.5), one is then able to move into the interaction

picture via Eq. (3.7). One finds that the interaction picture Hamiltonian ĤSB I(t)
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4.2 Master equation for dipole-dipole interactions in free space

takes the form

ĤSB I(t) =
ie

4π

∑
i=a,b

∑
λ=1,2

∫
R3

d3k

√
~ω
πε
×
[
ei(ω+ω0)t

(
D̂

(i)
12 · êkλ

)
σ̂−i

+e−i(ω−ω0)t
(
D̂

(i)∗
12 · êkλ

)
σ̂+
i

]
âkλ + H.c.,

(4.8)

in analogy to Eq. (3.40). Finally, applying the rotating wave approximation, one

finds that

ĤSB I(t) =
ie

4π

∑
i=a,b

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

e−i(ω−ω0)t
(
D̂

(i)∗
12 · êkλ

)
eik·ri σ̂+

i âkλ + H.c..

(4.9)

This Hamiltonian describes the simultaneous interaction of atom a and atom b

with the electric fields Êfree(ra) and Êfree(rb). The indistinguishability of the two

atoms arises as both atoms couple to the same field.

4.2.2 Master equation

In order to determine the master equation for this system, one must substitute

the interaction-picture Hamiltonian ĤSB I(t) into the expressions derived for the

conditional Hamiltonian Ĥcond I(t) and the reset operator L(ρ̂S I(t)) in Eqs. (3.25)

and (3.26). Evaluating the various integrals by proceeding as described in App. A,

one obtains expressions for the conditional Hamiltonian Ĥcond I(t) and the reset

operator L(ρ̂S I(t)) for two interacting atoms. The conditional Hamiltonian is

given by

Ĥcond I(t) = − i~
2

[
Γfree

(
σ̂+
a σ̂
−
a + σ̂+

b σ̂
−
b

)
+ C(x)

(
σ̂+
a σ̂
−
b + σ̂+

b σ̂
+
a

) ]
, (4.10)

where C(x) is a complex function which corresponds to an inter-system decay

rate. This results in a reset operator of the form

L(ρ̂S I(t)) = Γfree

[
σ̂−a ρ̂S I(t)σ̂

+
a + σ̂−b ρ̂S I(t)σ̂

+
b

]
+Re(C(x))

[
σ̂−b ρ̂S I(t)σ̂

+
a + σ̂−a ρ̂S I(t)σ̂

+
b

]
, (4.11)
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4.2 Master equation for dipole-dipole interactions in free space

Both Eqs. (4.10) and (4.11) depend on the complex dipole-coupling constant C(x)

which is defined as (cf. Eq. (A.12))

C(x) =
3

2
eik0x

[
c1

ik0x
+

c2

(k0x)2
− c2

i(k0x)3

]
Γfree , (4.12)

where

x ≡ |xa − xb| ≡ |xb − xa| , (4.13)

denotes the distance between atom a and atom b. In the above equations, Γfree

denotes the spontaneous emission rate of an atom in free space (cf. Eq. (3.62)),

k0 = ω0/c, x denotes the always positive distance between the atoms, and c1 and

c2 equal1

c1 ≡
(
D̂

(a)
12 · D̂(b)

12

)
−
(
D̂

(a)
12 · x̂

)(
D̂

(b)
12 · x̂

)
,

c2 ≡
(
D̂

(a)
12 · D̂(b)

12

)
− 3

(
D̂

(a)
12 · x̂

)(
D̂

(b)
12 · x̂

)
. (4.14)

where the atomic dipole moment can be defined as2

µ(a) = ‖D̂(a)
12 · x̂‖2 ,

µ(b) = ‖D̂(b)
12 · x̂‖2 . (4.15)

As a consequence, the spontaneous decay rates and level shifts of the atoms can

exhibit an intricate distance-dependence, especially, when their dipole moment

vectors are complex or different from each other.

When substituting Eqs. (4.10) and (4.11) into the expression for the quantum

jump master equation, one finds that it is necessary to perform the following

change of basis,

|1〉 = Both atom a and atom b in ground state ,

|2〉 = Atom b excited and atom a in ground state ,

|3〉 = Atom a excited and atom b in ground state ,

|4〉 = Both atom a and atom b in excited state , (4.16)

1Both dipole moments are assumed to be real.
2Here, x̂ denotes the normalised vector x̂ = x

‖x‖ .
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4.2 Master equation for dipole-dipole interactions in free space

in order to maintain Lindblad form. In addition, one can define the atomic

lowering and raising operators

σ̂−a = |1a〉〈2a|
[|1b〉〈1b|+ |2b〉〈2b|] = |1〉〈3|+ |2〉〈4|,

σ̂−b = |1b〉〈2b|
[|1a〉〈1a|+ |2a〉〈2a|] = |1〉〈2|+ |3〉〈4|,

(4.17)

and

σ̂+
a = |3〉〈1|+ |4〉〈2| ,
σ̂+
b = |2〉〈1|+ |4〉〈3| . (4.18)

Using this notation and the conditional Hamiltonian in Eq. (4.10), one finds that

Ĥcond I(t) = − i~
2

[
Γfree (|2〉〈2|+ |3〉〈3|) + C(x) (|2〉〈3|+ |3〉〈2|) + 2 Γfree|4〉〈4|

]
.

(4.19)

Using the above equation and Eq. (4.16), it is evident that the state |1〉 has a zero

associated eigenvalue (spontaneous emission rate) where as the state |4〉 has the

spontaneous emission rate of 2Γfree as it should. Considering the central block of

this Hamiltonian separately, one obtains the additional eigenvalues

λ± = Γfree ± C(x) , (4.20)

corresponding to the eigenstates1

|λ+〉 =
1√
2

(|2〉+ |3〉) ,

|λ−〉 =
1√
2

(|2〉 − |3〉) . (4.21)

In the above equation, the state |λ+〉 corresponds to the symmetric state of the

system, where as the state |λ−〉 corresponds to the anti-symmetric state of the

1One can check these are the correct eigenstates by applying the states in Eq. (4.21) to the
conditional Hamiltonian in Eq. (4.19). Doing so gives an eigenvalue-eigenvector equation where
the spontaneous emission rates Γ± correspond to the states |λ±〉.
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4.2 Master equation for dipole-dipole interactions in free space

system. Returning to the notation in Eq. (4.1),

|g〉 = |1〉 ,
|e〉 = |4〉 ,
|s〉 =

1√
2

(|2〉+ |3〉) ,

|a〉 =
1√
2

(|2〉 − |3〉) , (4.22)

it is possible to write the conditional Hamiltonian Ĥcond I(t) from Eq. (4.19) in

terms of these basis states,

Ĥcond I(t) = − i~
2

[
(Γfree + C(x)) |s〉〈s|+ (Γfree − C(x)) |a〉〈a|+ 2Γfree|e〉〈e|

]
.

(4.23)

Comparing Eqs. (4.19) and (4.23), one finds that

σ̂−a =
1√
2

[
|g〉〈s|+ i|s〉〈a|+ |s〉〈e|+ i|a〉〈e|

]
,

σ̂−b =
1√
2

[
|g〉〈s| − i|s〉〈a|+ |s〉〈e| − i|a〉〈e|

]
, (4.24)

and

σ̂+
a =

1√
2

[
|s〉〈g| − i|a〉〈s|+ |e〉〈s| − i|e〉〈a|

]
,

σ̂+
b =

1√
2

[
|s〉〈g|+ i|a〉〈s|+ |e〉〈s|+ i|e〉〈a|

]
. (4.25)

From Eqs. (4.24) and (4.25), one can define two new operators L̂± and L̂†± which

are linear superpositions of the atomic operators σ̂−a,b and σ̂+
a,b. These new opera-

tors are defined in the following way

L̂± =
1√
2

(
σ̂−a ± σ̂−b

)
,

L̂†± =
1√
2

(
σ̂+
a ± σ̂+

b

)
, (4.26)

where the plus sign corresponds to the symmetric state and the minus sign cor-

responds to the anti-symmetric state. These states yield the conditional Hamil-

tonian

Ĥcond I(t) = − i~
2

[
(Γfree + C(x)) L̂†+L̂+ + (Γfree − C(x)) L̂†−L̂−

]
. (4.27)
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4.2 Master equation for dipole-dipole interactions in free space

Moreover, these operators can be expressed in terms of the collective atomic states

(Dicke states) |g〉, |e〉, |s〉 and |a〉 from Eq. (4.1), such that1

L̂+ = |g〉〈s|+ |s〉〈e| ,
L̂− = −|g〉〈a|+ |a〉〈e| , (4.28)

and

L̂†+ = |s〉〈g|+ |e〉〈s| ,
L̂†− = −|a〉〈g|+ |e〉〈a| . (4.29)

In addition, this allows the reset operator L(ρ̂S I(t)) in Eq. (4.11) to be expressed

in the following way

L(ρ̂S I(t)) = [Γfree + Re(C(x))] L̂+ ρ̂S I(t) L̂
†
+

+ [Γfree − Re(C(x))] L̂− ρ̂S I(t) L̂
†
− . (4.30)

Considering the form of Eqs. (4.27) and (4.30), it is evident that the basis transfor-

mation outlined in Eqs. (4.16) – (4.18) and Eq. (4.22) generate a master equation

of Lindblad form. More importantly, the above calculations show that two inter-

acting atoms effectively have two decay channels. The spontaneous emission of a

photon transfers symmetrically into symmetric states with an emission rate given

by Γfree + Re(C(x)) and anti-symmetric states have an associated emission rate

given by Γfree − Re(C(x)). The imaginary part of the dipole coupling constant

C(x) describes atomic level shifts which apply to the collective atomic states

|s〉 and |a〉, respectively, as illustrated by the combined atomic level scheme in

Fig. 4.2.

To obtain the master equation of Lindblad form, one must substitute the ex-

pressions for the conditional Hamiltonian and the reset operator from Eqs. (4.27)

and (4.30) respectively, into the quantum jump master equation given in Eq. (3.24).

1For the schematic setup shown in Fig. 4.3, there exists a certain symmetry. For example,
the Hamiltonian is unchanged if one exchanges the labels ‘atom a’ and ‘atom b’. One could use
this interpretation to deduce the form of the operators in Eqs. (4.28) and (4.29).
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4.2 Master equation for dipole-dipole interactions in free space

This generates the following master equation

˙̂ρS I(t) = Γ+

(
L̂+ ρ̂S I(t) L̂

†
+ −

1

2

[
L̂†+L̂+, ρ̂S I(t)

]
+

)
+Γ−

(
L̂− ρ̂S I(t) L̂

†
− −

1

2

[
L̂†−L̂−, ρ̂S I(t)

]
+

)
, (4.31)

where Γ± = Γfree ± Re(C(x)).

4.2.3 Spontaneous emission rates and atomic level shifts

From Eqs. (4.12), (4.27) and (4.30), one can determine full analytical expressions

for the spontaneous emission rates of the system as well as atomic level shifts.

The spontaneous emission rates of two interacting dipoles are

Γ± ≡ Γfree ± Re(C(x)) , (4.32)

with the ± sign denoting the symmetric and the anti-symmetric decay channels,

respectively. The distance-dependent dipole-coupling constant C(x) is given in

Eq. (4.12). Moreover, the decay channels from Eq. (4.32) can be expressed as

Γ± =

[
1± 3

2

[
sin(k0x)

k0x
c1 +

(
cos(k0x)

(k0x)2
− sin(k0x)

(k0x)3

)
c2

]]
Γfree , (4.33)

where c1 and c2 are defined in Eq. (4.14). In addition, one can obtain the atomic

level shift from the imaginary part of the dipole-coupling constant. Examining

the imaginary coefficient, one finds that atomic level shift takes the following

form1

∆± =
3

4

[
cos(k0x)

k0x
c1 −

(
sin(k0x)

(k0x)2
+

cos(k0x)

(k0x)3

)
c2

]
Γfree . (4.34)

Limiting cases

To gain a better understanding of the physical behaviour described by the above

equations, one can look at some limiting cases.

1The exact form of these level shifts is not important for the work presented in this thesis.
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4.2 Master equation for dipole-dipole interactions in free space

Figure 4.3: [Colour online] The spontaneous decay rates Γ± for the (a) symmetric

and (b) anti-symmetric states as a function of the atomic separation x for different

orientations of the atomic dipole moment, where D̂
(a)
12 = D̂

(b)
12 . For distances x of

the same order of magnitude as the wavelength λ0 of the emitted light, the last

few terms in Eq. (4.33) are no longer negligible and Γ± depend strongly on x and

µ. As shown in Eq. (4.38), the decay rates Γ+ → 2 Γfree and Γ− → 0 when x→ 0.

Moreover, for k0x� 1, we have Γ± = Γfree, as it should (c.f. Eq. (4.38)).

Behaviour for large atomic separation

First, let us consider the physical behaviour of Eqs. (4.33) and (4.34) when x→
∞, i.e. when the atoms are separated over large distances. In other words, for

the case where x → ∞, then one finds that C(x) → 0 and each atom decays

independently and as in free space. As a result, the spontaneous emission rates

Γ± reduce to give

Γ± = Γfree , (4.35)

and the atomic level shifts reduce to give

∆± = 0 . (4.36)

Strictly, the separation cannot be taken to infinity as this would violate the

Markovian approximation used earlier. This atomic separation x̃ can be taken

to approximately 0.03cm provided the time period under consideration ∆t is

approximately 10−13s.
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4.3 Summary

Behaviour for small atomic separation

Finally, let us consider the behaviour of Eqs. (4.33) and (4.34) when the two

atoms are separated over very small distances. In other words, for the case where

x→ 0, one finds

Γ± =

[
1± 3

2

[
(1− µ)− 1

3
(1− 3µ)

]]
Γfree . (4.37)

For both cases of µ = 0 and µ = 1, one finds that the spontaneous emission rates

reduce to

Γ± = [1± 1] Γfree , (4.38)

which is consistent with the spontaneous emission rates for the symmetric and

anti-symmetric states illustrated in Fig. 4.3. Finally, for the atomic level shifts

in this limit, one finds that1

∆± = ∞ . (4.39)

4.3 Summary

In this chapter, the behaviour and modelling of two interacting atoms in free

space is presented through a master equation description. This allows one to ob-

tain analytical expressions for the spontaneous emission rates Γ± (cf. Eq. (4.33))

and atomic level shifts ∆± (cf. Eq. (4.34)), respectively. These rates arise due

to interference effects as the atoms interact through the electromagnetic field,

generating collective spontaneous emission rates. These spontaneous emission

rates can be enhanced or suppressed depending on the initial state of the system,

i.e. if the system is initially prepared in a symmetric state this leads to an en-

hanced emission rate given by Γ+, and preparing in the anti-symmetric leads to a

suppressed emission rate given by Γ−. The symmetric and anti-symmetric states

have an associated atomic level shift given by ∆+ and ∆−, respectively. The main

results from this chapter and the process applied should aid the understanding

of the long-range dipole-dipole interaction detailed in Chapter 7.

1This is due to assuming that the electron is a point particle orbiting around the atomic
nuclei. In reality, one finds finite level shifts e.g. Lamb shift (see Ref. [49] for details).
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Novel Theoretical Models
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Chapter 5

Modelling the electromagnetic

field in the presence of two-sided

mirrors

Quantising the electromagnetic field in the presence of perfectly-conducting sur-

faces is well-understood due to the strict boundary conditions imposed on the

electromagnetic field by the interface. However, quantising the electromagnetic

field near semi-transparent mirrors is less straightforward as these boundary con-

ditions are not as strictly enforced. Moreover, within the postulates of quantum

physics, there is no information given about how one should impose these bound-

ary conditions. In this chapter it will be shown this can be done in different

ways.

Sommerfeld laid the foundation for quantising the electromagnetic field near

semi-transparent mirrors in 1909 when he examined the propagation of surface

waves above a flat lossy ground for applications in wireless communication [85]. In

1971, Carniglia and Mandel [86] considered a semi-transparent mirror with finite

transmission and reflection rates and identified a set of elementary orthogonal

light modes of travelling waves, so-called triplet modes. These are formed by in-

cident, transmitted and reflected electromagnetic waves, as illustrated in Fig. 5.1.

Quantising these triplet modes, Carniglia and Mandel obtained an electromag-

netic field Hamiltonian, which is the sum of independent harmonic oscillator
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5.1 Overview of the image-detector method

Hamiltonians, and electromagnetic field observables, which are superpositions of

free space observables (see Refs. [87–91] for more recent related work).

In 1974, Agarwal used quantum electrodynamics to calculate the level shift

and spontaneous decay rate of an atom near a dielectric medium [92, 93]. Subse-

quently, he published a series of papers on quantum electrodynamics in the pres-

ence of dielectrics and conductors [94–99]. In these papers, Agarwal uses linear

response functions to indirectly deduce the properties of the electromagnetic field

observables. His implicit approach to field quantisation helped to lay the foun-

dations of a research area now known as macroscopic quantum electrodynamics

[100, 101]. Other authors are more interested in the direct canonical quantisation

of the electromagnetic field [8–10, 102–109] or prefer purely phenomenological

approaches to model light scattering through semi-transparent mirrors, like the

so-called input-output formalism [3–5] and different continuous-mode model ap-

proaches [2, 110]. When modelling the transmission of single photons through

linear optics networks, we usually employ scattering matrices [101, 111]. Unfor-

tunately, the consistency and relationship between these different methods is not

yet always well understood [112].

This chapter models light scattering through thin, conducting, flat surfaces

with finite transmission, reflection and absorption rates, where light approaches

the mirror from both sides (cf. Fig. 5.1). The physically-motivated description

presented in Chapter 2 provides the basis and allows one to characterise photons

as in free space. The uniqueness of this model then arises by explicitly considering

the exchange of energy between the electromagnetic field and the mirror surface

and the presence of mirror images.

5.1 Overview of the image-detector method

The basic idea of realising boundary conditions through the image-detector method

maps the problem onto analogous free space scenarios. In other words, when con-

sidering a wave packet incident on a reflective surface such as a mirror, one can

realise the boundary condition by replacing the mirror with a wave packet of op-

posite amplitude and propagating in the opposite direction. As it will be shown

in this chapter, the field quantisation scheme applies to a wide range of optical

65



5.1 Overview of the image-detector method

Figure 5.1: Schematic view of a semi-transparent mirror with light incident from

both sides. Depending on the direction of the incoming light, the (real) transmis-

sion and reflection rates of the mirror are denoted by ta, tb, ra and rb, respectively.

In this model, the possible absorption of light in the mirror surface is explicitly

taken into account. However, for simplicity it is assumed that these rates are

angle-independent and the medium on both sides of the mirror is assumed to be

the same.

mirrors and is strongly motivated by the method-of-images [17]. This model de-

tails an approach that describes the electromagnetic field near semi-transparent

mirrors using the same Hamiltonian as in free space and assume that incoming

wave packets evolve exactly as they would in the absence of mirrors [28]. How-

ever, the presence of mirrors changes how and where electric and magnetic field

amplitudes are measured. Adopting this point of view, one finds that detectors

observe superpositions of free-space observables which can be associated with

incoming, reflected and transmitted waves.

Although the approach has some similarities with the so-called triplet or nor-

mal mode field quantisation schemes of previous authors [86–91], it also provides

novel insight into their origin and extends the potential use of these modes. As

it will be shown later in this chapter, the triplet modes derived here differ from
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5.1 Overview of the image-detector method

the triplet modes of Carniglia and Mandel [86] by phase factors which coincide

with the phase factors of the beamsplitter transformations that are routinely

used to describe linear optics experiments [101, 111]. The phase factors are cru-

cial components as they guarantee energy conservation on the mirror surface. As

a result, this model applies not only to one-sided but also to two-sided semi-

transparent mirrors unlike Ref. [86]. As it is demonstrated later in this chapter,

the energy of the mirror surface, i.e. the energy of mirror images, is explicitly

taken into account. Therefore, the harmonic oscillator system Hamiltonian Ĥsys

can be decomposed into a Hamiltonian Ĥfield which describes the energy of the

electromagnetic field and a Hamiltonian Ĥmirr which describes the energy of the

mirror surface,

Ĥsys = Ĥfield + Ĥmirr . (5.1)

For example, when placing a wave packet in front of a perfect mirror, one finds

that half of the energy of the system belongs to the wave packet and the other

half belongs to its mirror image. However, when wave packets approach a mirror

simultaneously from both sides, then the expectation values of Ĥfield and Ĥmirr

are in general not the same. Moreover, the squares of the electric field amplitudes

of reflected and transmitted waves do not have to add up to one, meaning

ta
2 + ra

2 ≤ 1 and tb
2 + rb

2 ≤ 1 , (5.2)

thereby the possible absorption of light by the mirror surface is taken into account.

It is assumed that the mirror surface does not alter the coherent properties of

the incoming light, it only reduces the amplitude of incoming wave packets. In

addition, the medium on both sides of the mirror is assumed to be the same.

In order to test the validity of this model and determine the normalisation

factors ηa and ηb, a closer examination of a radiating atom near a two-sided

semi-transparent mirror is presented in the following chapter, with analytical

expressions for the spontaneous decay rate Γmirr and the level shift ∆mirr of the

system (see Chapter 6).
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5.2 Classical physics

This section will review the scenario of light incident on a single, thin mirror

using a classical description. Throughout this treatment it is assumed that the

transmission and reflection coefficients describing the quality of the mirror surface

are independent of the angle of incident light and these coefficients are assumed

to be real and readily determined from experimental observation.

5.2.1 One-sided perfect mirror

First, let us have a closer look at the case of a perfect mirror in one-dimension

and understand what happens when light is incident on it. Placing the mirror

at x = 0, only considering wave packets which propagate along the x-axis and

approach the perfect mirror from one side of the setup, the right-hand side,

i.e. x > 0. Strict boundary conditions are imposed by the mirror surface, such

that the electric field obeys the condition

Emirr(0, t) = 0 (5.3)

at all times t, as the mirror surface charges move freely and are able to immedi-

ately compensate for any non-zero electric field contributions. In a similar fashion

to the standard method-of-images approach of satisfying boundary conditions as

discussed earlier, a mirror-image detector (see later) is introduced.

The easiest way of deriving electric and magnetic field solutions in this situ-

ation is to apply the mirror image method [17]. This method suggests to write

the electric field Emirr(x, t) and its accompanying magnetic field Bmirr(x, t) as

Emirr(x, t) = [Efree(x, t)− Efree(−x, t)] Θ(x) ,

Bmirr(x, t) = [Bfree(x, t) +Bfree(−x, t)] Θ(x) (5.4)

with the Heaviside step function Θ(x) defined as

Θ(x) =

{
1 for x ≥ 0 ,
0 for x < 0 .

(5.5)

An interpretation of Eq. (5.4) is to say that the mirror produces a mirror-

image of any incoming wave packet (see Fig. 5.2). The mirror image has the
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5.2 Classical physics

same shape as the original wave packet but its components travel with negative

electric field amplitudes in the opposite direction. Propagating any incoming

wave packet and its mirror image simultaneously as in free space and adding the

respective field amplitudes of both contributions yields exactly the same electric

and magnetic fields as Eq. (5.4), provided one restricts to looking at the x ≥ 0

half space. In Fig. 5.2 (a)–(c) and Fig. 5.2 (d)–(f) demonstrate a left-moving and

a right-moving wave packet, respectively, at three different times. The two wave

packets cross over the mirror location at x = 0 at the same time. Adding the

electric field contributions on the right side of the mirror, as done in Fig. 5.2 (g)–

(i), reproduces the dynamics of an incoming wave packet approaching a perfect

mirror from the right.

An alternative way of interpreting Eq. (5.4) is to say that the mirror intro-

duces mirror-image detectors while assuming that any incoming wave packets

propagate exactly as they would in free space. The presence of the image de-

tectors changes where and how the electromagnetic field is observed. In this

description, it is assumed that the image detectors of the electric field measure

−Efree(−x, t), while the original detectors measure Efree(x, t). Moreover, the total

electric field Emirr(x, t) in the presence of a one-sided perfect mirror is the sum of

the free-fields seen by both the original and the image-detector. This approach

also reproduces Emirr(x, t) in Eq. (5.4), and analogously, one can also construct

mirror image-detectors for magnetic field measurements.

Looking closer at Eq. (5.4), more specifically the second terms of Emirr(x, t)

and Bmirr(x, t), why is a pre-factor of ±1 attributed to describe reflection? Since

the model maps the mirror scenario onto an analogous free space scenario with

two wave packets, then in order to satisfy Eq. (5.3) the phase shift between the

incident and reflected wave packet must be equal to π. It is well-known that the

general form of a plane wave is

ei(kx−ωt+ϕ) = ei(kx−ωt) eiϕ , (5.6)

and it is also true that

eiϕ = cos(ϕ) + i sin(ϕ) = −1 when ϕ = π . (5.7)
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Therefore, this minus sign should not be surprising as the mirror imposes a strict

boundary condition on the electric field meaning the phase factor must satisfy

ϕ = π. As the mirror does not impose any conditions on the magnetic field,

and more importantly, in order to be consistent with Maxwell’s equations, the

free-field magnetic field solutions can be ‘stitched together’ through a pre-factor

of +1. Most importantly, in the presence of a mirror, the electric field Emirr(x, t)

still needs to obey Maxwell’s equations (cf. Eq. (2.1)).

One can easily check that, at all times, the solution in Eq. (5.4) obeys Eq. (5.3)

and Maxwell’s equations, since it is a superposition of free-field solutions. Upon

reflection, the electric field changes sign, while the magnetic field amplitude re-

mains the same1.

5.2.2 Two-sided perfect mirror

The next step is looking at how to model the scenario where light is incident on

a perfect mirror from both sides. Doing so is fairly straightforward, since wave

packets on different sides of the mirror never meet and therefore, never interfere.

Proceeding as previously, one finds that the electric field amplitude Emirr(x, t)

can now be written as

Emirr(x, t) =
[
E

(a)
free(x, t)− E(a)

free(−x, t)
]

Θ(x)

+
[
E

(b)
free(x, t)− E(b)

free(−x, t)
]

Θ(−x) (5.8)

in analogy to Eq. (5.4). The superscripts in this equation help to distinguish

free space solutions corresponding to opposite sides of the mirror. Here, the

superscript (a) denotes free-field solutions originating on the right-hand side of

the mirror (x > 0) and the superscript (b) denotes free-field solutions originating

on the left-hand side of the mirror (x < 0). One can easily check that this

general electric field solution satisfies the wave equation in Eq. (2.6) and also the

boundary condition in Eq. (5.3) at all times.

1Notice that, if Efree(x, t) and Bfree(x, t) are consistent with Maxwell’s equations, then the
same applies to Efree(−x, t) and −Bfree(x, t) due to symmetry.
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Figure 5.2: Plots (a)–(c) show a left-travelling Gaussian wave packet with

Efree(x, 0) = E0 e−(x−x0)2/2σ2
eik0x + c.c. where E0 and x0 are free parameters and

where k0x0 = −6, σ =
(
1/
√

2
)
x0, t1 = 0.89x0/c and t2 = 1.83x0/c. Moreover,

plots (d)–(f) show a right-travelling Gaussian wave packet. At t = 0, the blue

wave packet ((a)–(c)) can be interpreted as a real wave packet, while the red

wave packet ((d)–(f)) constitutes its mirror image. When the wave packets cross

over at x = 0, the red wave packet becomes real, while the blue one becomes

the image. Moreover, plots (g)–(i) show the sum of the red and the blue electric

field contribution on the right side of the mirror, which evolves like a wave packet

approaching a perfectly reflecting mirror.

5.2.3 Two-sided semi-transparent mirror

Next, let us examine what happens when wave packets, which travel along the

x-axis, approach a semi-transparent mirror from both sides. This scenario is

more complicated to model as semi-transparent mirrors do not impose such strict

boundary conditions, unlike the perfect mirror. Therefore, for all times t, the

condition in Eq. (5.3) is not satisfied.

As illustrated in Fig. 5.1, we denote the (real) transmission and reflection

rates of the mirror by ta, tb, ra and rb, respectively. Assuming that the mirror

only affects the amplitudes but not the coherence properties of incoming wave

packets, we can again write the electric field amplitude Emirr(x, t) as a sum of
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free-space solutions,

Emirr(x, t) =
[
E

(a)
free(x, t) + raE

(a)
free(−x, t, ϕ1) + tbE

(b)
free(x, t, ϕ2)

]
Θ(x)

+
[
E

(b)
free(x, t) + rbE

(b)
free(−x, t, ϕ3) + taE

(a)
free(x, t, ϕ4)

]
Θ(−x) ,

(5.9)

where each term is weighted with its respective rate. Again, one requires super-

scripts to distinguish electric field contributions which originate from different

sides of the mirror. As before, the superscripts (a) and (b) are chosen such that,

at t = 0,

E
(a)
free(x, 0) = Emirr(x, 0) Θ(x) ,

E
(b)
free(x, 0) = Emirr(x, 0) Θ(−x) . (5.10)

Moreover, E
(s)
free(x, t, ϕ) is defined such that its amplitude differs from E

(s)
free(x, t)

only by a phase shift ϕ, where s = a, b. Unfortunately, Eq. (5.9) applies only

for positive times t. For t < 0, the weighting of the individual electric field

contributions becomes incorrect. When evolving a wave packet backwards in time,

its amplitude should increases whenever it passes through the mirror surface,

however, the rates in Eq. (5.9) are all smaller than unity (cf. Eq. (5.2)).

The expression in Eq. (5.9) solves Maxwell’s equations, since it is again a

superposition of free-field solutions. It also produces the expected long-term

dynamics for the scattering of incoming wave packets through a two-sided semi-

transparent mirror. However, Emirr(x, t) no longer satisfies the boundary condi-

tion in Eq. (5.3). A physical explanation of this is that semi-transparent mirrors

do not have enough surface charges to compensate all electric field amplitudes.

To ensure that maximum interference of the electric field on one side of the mirror

implies minimum interference on the other, one assumes that

ϕ1 − ϕ2 + ϕ3 − ϕ4 = ±(2n+ 1) π , (5.11)

where n is an integer (cf. App. B for more details). In addition, there are another

two constraints placed on the phase factors such that

ϕ1 − ϕ4 = ±π
2
,

ϕ3 − ϕ2 = ±π
2
. (5.12)
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These conditions only apply to lossless semi-transparent mirrors [113, 114] and

are required to ensure energy conversation between transmitted and reflected

wave packets.

Looking closer at Eq. (5.9), one can see this includes free space as a limiting

case which corresponds to ra = rb = 0, ta = tb = 1 and ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0.

In addition, Eq. (5.9) reproduces the one-sided perfect mirror case (cf. Eq. (5.4)),

if one chooses ra = rb = 1, ta = tb = 0 with phase factors ϕ1 = ϕ3 = π and

ϕ2 = ϕ4 = π/2. In general, three of the phase factors ϕi depend on the properties

of the mirror surface but can be determined relatively easily experimentally. The

remaining fourth parameter is established when the interference of wave packets

originating from different sides of the mirror is first observed.

As pointed out already in Sec. 5.1, the possible absorption of light by the

mirror surface is explicitly taken into account in this model. The only assumption

is that absorption does not affect the shape of the incoming wave packets, it

only reduces their amplitudes. Moreover, it is assumed that the reflection and

transmission rates of the mirror do not depend on the frequency or angle of the

incoming light1. For simplicity, one also ignores the existence of evanescent wave

solutions of Maxwell’s equations, i.e. the electromagnetic field is only considered

at a certain distance away from the mirror surface [86].

5.2.4 Generalisation to three dimensions

Finally, the dynamics of the electromagnetic field near a semi-transparent mirror

with light approaching the mirror at any possible angle, cf. Fig. 5.3, is analysed.

Again, one assumes that the mirror does not affect the dynamics of incoming

wave packets but only changes how and where the electric and magnetic field

amplitudes Emirr(r, t) and Bmirr(r, t) are detected. Suppose an electric field de-

tector observes incoming and transmitted wave packets at a position r = (x, y, z).

Then the detector sees the electric field amplitudes of incident and of reflected

1One can make the transmission and reflection rates functions of frequency and also factor
in the angle of the incident light, however, this would make master equations calculations
highly non-trivial, particularly solving the necessary integrals. Therefore, monochromatic light
is assumed throughout this model.
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wave packets which are equal to the electric field amplitudes of freely-propagating

wave packets at a position r̃ with

r̃ = (−x, y, z) . (5.13)

The latter contributions need to be multiplied by their respective transmission

and reflection rates. Moreover, parallel electric field amplitudes need to be mul-

tiplied with a factor −1 upon reflection, as illustrated in Fig. 5.3.

Figure 5.3: Schematic view of a semi-transparent mirror with light incident from

the left. The red lines indicate the direction of the wave vector of the incoming

light, while the perpendicular orange vectors indicate electric field amplitudes.

To predict the effect of the mirror, the electric field amplitudes of incoming wave

packets are decomposed into parallel and perpendicular components with respect

to the mirror surface. As illustrated, transmission and reflection reduces these

components by a factor which equals the corresponding transmission and reflec-

tion rate. Notice that these rates have to be the same for parallel and perpen-

dicular field amplitudes. Otherwise, the electric field vector would not remain

orthogonal to the corresponding wave vector k. However, parallel electric field

components obtain a minus sign upon reflection due to the rearrangement of

mirror surface charges.
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Taking this into account, placing the mirror again into the x = 0 plane, one

now finds that the electric field Emirr(r, t) is the sum of six contributions,

Emirr(r, t) =
[
E

(a)
free(r, t) + ra Ẽ

(a)
free(r̃, t, ϕ1) + tb E

(b)
free(r, t, ϕ2)

]
Θ(x)

+
[
E

(b)
free(r, t) Θ(−x) + rb Ẽ

(b)
free(r̃, t, ϕ3) + ta E

(a)
free(r, t, ϕ4)

]
Θ(−x) ,

(5.14)

where x refers to the x-component of r. Here E
(s)
free(r, t) denotes an electric field

free-space solution of Maxwell’s equations, where s = a, b. Moreover, Ẽ
(s)
free(r, t) is

defined such that it differs from E
(s)
free(r, t) only by the sign of the x-component.

The superscripts (a) and (b) help again to distinguish initial electric field con-

tributions on the left- and on the right-side of the mirror and the phase factors

ϕi indicate shifts of electric field amplitudes in agreement with the discussion in

the previous subsection. Notice that the same transmission and reflection rates

need to apply to vertical and horizontal electric field components. Otherwise, one

would obtain electric field vectors which are no longer orthogonal to their wave

vectors k1.

5.3 Quantum physics

In the previous section, the scattering of light through a two-sided semi-transparent

mirror onto an analogous free-space scenario with both real and mirror-image de-

tectors, using classical physics. In this section, the classical model is used as

an analogy to quantise the electromagnetic field in the presence of a two-sided

semi-transparent mirror. In the following, expression for the system Hamiltonian

Ĥsys (cf. Eq. (5.1)) as well as the electric and magnetic field observables Êmirr(r)

and B̂mirr(r) as a function of the transmission and reflection rates of the mirror

are presented.

1Treating the problem in this way could potentially allow one to build refraction into this
model.
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5.3.1 One-sided perfect mirror

As before, the starting point is to consider a one-sided perfect mirror which is

placed in the x = 0 plane with light incident from the right-hand side of the

setup, as in Fig. 5.2 (a) – (c). From experimental observation, it is known that

a photon of frequency ω has the associated energy ~ω, even in the presence of

a mirror. Hence, when using the same notion of photons as in free space, one

finds that the system Hamiltonian Ĥsys in the presence of a perfect mirror must

be the same as the free space Hamiltonian Ĥsys in Eq. (2.61). Moreover, as

demonstrated previously, wave packets evolve essentially as in free space, even in

the presence of mirrors. What changes is how and where electromagnetic field

amplitudes are measured. These are now the sum of the field amplitudes seen by

original detectors and the field amplitudes seen by mirror-image detectors in the

corresponding free-space scenario. Taking this into account, Eq. (5.4) suggests

that

Êmirr(x) =
1

η

[
Êfree(x)− Êfree(−x)

]
Θ(x) ,

B̂mirr(x) =
1

η

[
B̂free(x) + B̂free(−x)

]
Θ(x) , (5.15)

with Êfree(x) and B̂free(x) given in Eq. (2.74) and with η denoting a normalisation

factor. As it will be demonstrated later, a perfect mirror has

η =
√

2 . (5.16)

To show that this is the case, a radiating atom placed near a perfectly reflecting

mirror is examined (see Chapter 6).

Taking this into account, introducing standing-wave photon annihilation op-

erators ξk,

ξ̂k =
1√
2

(âk − â−k) with ξ̂−k = −ξ̂k , (5.17)

and combining Eqs. (2.74) and (5.15), the field operators Êmirr(x) and B̂mirr(x)

simplify to

Êmirr(x) = i

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx ξ̂k Θ(x) + H.c. ,

B̂mirr(x) = ∓i
√
ε0µ0

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx ξ̂k sign(k) Θ(x) + H.c. , (5.18)

76



5.3 Quantum physics

with the sign of the magnetic field depending on the polarisation of the field.

Moreover, it is known that the energy of the electromagnetic field on the right-

hand side of the mirror equals

Ĥfield =
∑
λ=1,2

1

2
A

∫ ∞
0

dx

[
ε0 Êmirr(x)2 +

1

µ0

B̂mirr(x)2

]
. (5.19)

Proceeding as described in App. C, one finds that

Ĥfield =

∫ ∞
0

dk ~ω ξ̂†kξ̂k (5.20)

up to a constant. One can easily check that this field Hamiltonian commutes

with Ĥsys and that its expectation values are conserved.

However, notice that Ĥsys and Ĥfield are no longer the same. For example,

suppose a wave packet approaches the mirror from the right. In this case, exactly

half of the population of the electromagnetic field is in the antisymmetric ξ̂k

modes. All other population is in orthogonal (symmetric) modes and

〈Ĥfield〉 =
1

2
〈Ĥsys〉 . (5.21)

Only half of the energy of the system is stored in the electromagnetic field in this

case. The other half belongs to the mirror image of the incoming wave packet. As

illustrated in Fig. 5.2, the mirror scenario is indeed equivalent to having two wave

packets travelling in opposite directions in free space. The difference between Ĥsys

and Ĥfield is the observable Ĥmirr for the energy of the mirror surface charges,

cf. Eq. (5.1).

Previous quantisation schemes for the electromagnetic field in front of a perfect

mirror do not account for the energy of the mirror surface (see e.g. Refs. [115–

120]). Nevertheless, they are consistent with this approach. If one considers the

scenario where a wave packet approaches a one-sided perfect mirror from the right,

as illustrated in Fig. 5.2 (a)–(c), then one can extend the initial state to the left-

side of the setup (x < 0), as only the electromagnetic field on the right-side of the

mirror (x > 0) is of interest. By doing so, one introduces the mirror-image shown

in Fig. 5.2 (d)–(f), which is equivalent to having an initial state with population

only in the ξ̂k modes. For these modes, the field observables Ĥsys, Êmirr(x) and
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B̂mirr(x) are exactly the same as in free space. However, this approach does not

restrict the Hilbert space of the electromagnetic field to a subset of possible initial

states. This means it is possible to model a mirror scenario where light is incident

from both sides of the mirror.

5.3.2 Two-sided perfect mirror

As pointed out in Subsection 5.2.2, wave packets approaching a perfectly-reflecting

two-sided mirror from different sides never meet. Therefore, in order to quan-

tise the electromagnetic field, one can treat each side of the mirror separately.

This requires dividing the overall Hilbert space H into the tensor product of two

free-space Hilbert spaces H(a) and H(b), such that

H → H(a) ⊗H(b) . (5.22)

Denoting the annihilation operators for photons on different sides by âk and b̂k,

respectively, the system Hamiltonian Ĥsys of the mirror surfaces and the electro-

magnetic fields equals

Ĥsys =

∫ ∞
−∞

dk ~ω
[
â†kâk + b̂†kb̂k

]
. (5.23)

Moreover, in analogy to Eq. (5.15), one finds that the electric field observable

Êmirr(x) in front of a two-sided perfect mirror is equal to

Êmirr(x) =
1√
2

[
Ê

(a)
free(x)− Ê(a)

free(−x)
]

Θ(x)

+
1√
2

[
Ê

(b)
free(x)− Ê(b)

free(−x)
]

Θ(−x) , (5.24)

where Ê
(a)
free(x) and Ê

(b)
free(x) are electric field free space observables. As before,

superscripts indicate whether the respective field contribution initially belongs in

the right- or left-half space, respectively.

5.3.3 Two-sided semi-transparent mirror

From 5.2.4, the dynamics of wave packets which approach a semi-transparent

mirror from both sides depends on whether they originate from the left or from

78



5.3 Quantum physics

the right side. As above, the Hilbert space H becomes a tensor product of two

free-space Hilbert spaces H(a) and H(b) as in Eq. (5.22).

Considering only light travelling along the x-axis and denoting the corre-

sponding photon annihilation operators belonging to H(a) and H(b) by âk and b̂k,

respectively, then in analogy to Eq. (5.23), one finds that the system Hamiltonian

Ĥsys describing the mirror surfaces and the surrounding electromagnetic fields is

again given by Eq. (5.23). As before, the superscripts (a) and (b) indicate con-

tributions which originate from the right and the left half space of the mirror,

respectively.

Moreover, Eq. (5.9) suggests that the observable Êmirr(x) of the electric field

near a semi-transparent mirror is a superposition of free-space observables,

Êmirr(x) =
1

ηa

[
Ê

(a)
free(x) +

ra
ηa
Ê

(a)
free(−x, ϕ1) +

tb
ηb
Ê

(b)
free(x, ϕ2)

]
Θ(x)

+
1

ηb

[
Ê

(b)
free(x) +

rb
ηb
Ê

(b)
free(−x, ϕ3) +

ta
ηa
Ê

(a)
free(x, ϕ4)

]
Θ(−x) .(5.25)

The additional argument in Ê
(s)
free(x, ϕ) indicates a ϕ phase shift of the electric

amplitude with respect to the field amplitude of Ê
(s)
free(x). Moreover, the constants

ηa and ηb are normalisation factors. To determine them one needs to specify not

only transmission and reflection rates but also the type of medium on either side

of the semi-transparent mirror. Again, this will be done later when looking at

the spontaneous emission of an atom placed near the mirror.

As in classical physics, the expectation value of Êmirr(x) no longer always van-

ishes at x = 0 and the transmission of light through a semi-transparent mirror

surface can result in the exchange of energy between the electromagnetic field

and mirror. Only the energy of the electromagnetic field and the mirror surface,

i.e. the expectation value of the system Hamiltonian Ĥsys in Eq. (5.23), is con-

served. However, the expectation value of the electromagnetic field Hamiltonian

Ĥfield can change in time. In general, there is a continuous exchange of energy

between the electromagnetic field and the mirror surface. For example, suppose a

wave packet approaches the mirror from the right. After a sufficiently long time,

this wave packet turns into two wave packets: one on the left and one on the

right side of the mirror. This implies a reduction of the energy stored inside the

electromagnetic field by a factor which can be smaller than one (cf. Eq. (5.2)).
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5.3.4 Generalisation to three dimensions

To model a two-sided semi-transparent mirror in the x = 0 plane, one again

doubles the Hilbert space compared to the free-space description. Denoting the

corresponding photon annihilation operators by âkλ and b̂kλ, respectively, the

system Hamiltonian Ĥsys of the electromagnetic field and the mirror surface equals

Ĥsys =
∑
λ=1,2

∫
R3

d3k ~ω
[
â†kλâkλ + b̂†kλb̂kλ

]
, (5.26)

in analogy to Eq. (5.23). To obtain the observable Êmirr(r) of the electric field at

position r, one makes use of the previously introduced quantum ‘image detector

method’. Again, it is assumed that wave packets evolve as in free space but

that an electric field detector at position r observes electric field contributions of

incoming, transmitted and reflected wave packets. Reflection changes the sign of

the y-and the z-component of the electric field of incoming wave packets, while

their x-component remains unaffected. Hence

Êmirr(r) =
1

ηa

[
Ê

(a)
free(r) +

ra
ηa

ˆ̃
E

(a)

free(r̃, ϕ1) +
tb
ηb

Ê
(b)
free(r, ϕ2)

]
Θ(x)

+
1

ηb

[
Ê

(b)
free(r) +

rb
ηb

ˆ̃
E

(b)

free(r̃, ϕ3) +
ta
ηa

Ê
(a)
free(r, ϕ4)

]
Θ(−x) , (5.27)

in analogy to Eq. (5.14). The definition of r̃ can be found in Eq. (5.13) and

ˆ̃
E

(s)

free(r) differs from Ê
(s)
free(r) only by the sign of its x-component, where s = a, b.

The argument in Θ(x) refers again to the x-component of r and the factors ηa

and ηb are again normalisation factors.

5.4 Conclusions

The main result of this chapter is the quantisation of the electromagnetic field

in the presence of a semi-transparent mirror. Using an ‘image-detector’ method

allowed expressions for the system Hamiltonian Ĥsys (describes the field and mir-

ror) and for the electric field observable Êmirr(r) (cf. Eqs. (5.26) and (5.27) with

ηa and ηb as in Eq. (6.12)) to be derived. In contrast to Ĥsys, which is independent

of the transmission and reflection rates ta, tb, ra and rb of the mirror, the electric
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field observable Êmirr(r) depends strongly on these rates. As it is assumed that

wave packets remain coherent after interacting with the mirror, then the possible

absorption of light in the mirror surface is explicitly taken into account, since the

squares of the absorption and transmission coefficients, i.e. r2
a + t2a and r2

b + t2b ,

do not have to add up to one for this model to work. However, it is assumed

that the reflection and the transmission rates of the mirror do not depend on the

frequency and the angle of the incoming light.

Before quantising the electromagnetic field, classical electrodynamics is used

to discuss the scattering of light on flat surfaces. Throughout this section the scat-

tering process is mapped onto an analogous free space scenario. The presence of

the mirror changes how and where the amplitudes of the electromagnetic field are

measured. Adopting this point of view when deriving the observables of the quan-

tised electromagnetic field in the presence of a two-sided semi-transparent mirror,

it is found that the system Hamiltonian Ĥsys is the sum of two free-space field

Hamiltonians Ĥfree. Moreover, Êmirr(r) is now a sum of electric field free-space

observables which can be associated with incoming, reflected and transmitted

waves. These contributions are properly normalised through the normalisation

factors ηa and ηb. In addition, phase factors need to be introduced such that

maximum interference on one side of the mirror implies minimum interference on

the other. Our field observables have some similarities with previously proposed

observables [86–91] but can be used to model not only one-sided but two-sided

semi-transparent mirrors.

Another difference between this field quantisation scheme and the schemes of

other authors is that the energy of the mirror surface, i.e. the energy of the mirror

images, is explicitly taken into account. For example, when placing a single wave

packet in front of a one-sided perfect mirror, half of the energy of the system

belongs to the original wave packet and the other half belongs to its mirror image

and is stored in mirror surface charges. In general, there is a difference between

the system Hamiltonian Ĥsys and the Hamiltonian Ĥfield of the electromagnetic

field surrounding the semi-transparent mirror. Energy can flow from the field

onto the mirror surface and back. In the case of absorption, the interaction with

the mirror surface reduces the energy of incoming wave packets without changing

their coherence properties.
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Chapter 6

Radiating atom in the presence

of a two-sided semi-transparent

mirror

The spontaneous photon emission of atoms in the presence of perfect mirrors

has been extensively studied in the literature [115–125]. When considering this

problem, boundary conditions of vanishing electric field amplitudes along the

mirror surface must be imposed. This is usually done by reducing the state

space of the electromagnetic field to a subset of photon modes. As a result,

the spontaneous decay rate Γmirr of an atom in front of a perfect mirror differs

strongly from its free-space decay rate Γfree in Eq. (3.62), when the distance x

of the atom from the mirror surface is of the same order of magnitude as the

wavelength λ0 of the emitted light. Although the effect of the mirror is relatively

short-range, the sub- and super-radiance of atomic systems near perfect mirrors

has already been verified experimentally [126–128].

In this chapter, the well-understood problem of a radiating atom in the pres-

ence of a perfect mirror is used in order to test the validity of the model presented

in Chapter 5. In this description, the spontaneous emission rate Γmirr and atomic

level shift ∆mirr of an atom at a fixed distance x from a semi-transparent mirror

as a function of its transmission and reflection rates are deterined, through the

image-detector method. In the following, it is assumed that the atom-mirror dis-

tance does not become so large that delay terms have to be taken into account
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[119]. In addition, it should not be too short in order to avoid the interaction

of the system with evanescent field modes. The only other assumptions made in

this section are standard quantum optical approximations which were introduced

in the theoretical background (see Chapters 2 and 3).

As one would expect, it is shown that a radiating atom near a perfect mirror

has the same effect as the dipole-dipole interaction between an atom and a mirror

atom [70]. In the limit of relatively large atom-mirror distances x, the spontaneous

emission rate Γmirr of the atom coincides with its free-space emission rate Γfree in

Eq. (3.62). Imposing this as a condition allows one to calculate the normalisation

factors ηa and ηb in Eq. (5.27) as a function of the reflection and transmission

rates of the two-sided semi-transparent mirror. The validity of this model is then

confirmed by reproducing known results for a radiating atom in the presence of

a perfect mirror as well as obtaining describing previously unknown results for a

radiating atom in the presence of a two-sided semi-transparent mirror.

6.1 Master equation for an atom near a two-

sided mirror

In this section, a master equation description of an atom radiating in the presence

of a two-sided semi-transparent mirror using the quantum image-detector method

outlined in Chapter 5 as well as the procedures outlined in Chapter 3.

6.1.1 The relevant Hamiltonians

As before, the starting point is to identify the relevant Hamiltonians. In analogy

to Eq. (3.4), there are contributions from the atom, the field and the interaction

between the two. This gives the following Hamiltonian

Ĥ = Ĥatom + Ĥsys + ĤSB . (6.1)

Supposing |1〉 denotes the ground state of the atom and |2〉 is its excited state

with energy ~ω0, then the form of the atom Hamiltonian Ĥatom is given in

Eq. (3.28). The system Hamiltonian Ĥsys for the electromagnetic field and the
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semi-transparent mirror can be found in Eq. (5.26). Moreover, in analogy to

Eq. (3.31), the atom-field interaction Hamiltonian ĤSB equals

ĤSB = D̂ · Êmirr(r) , (6.2)

where instead of the free electric field Êfree(r), the atom now couples to a slightly

different electric field Êmirr(r) due to the presence of the mirror. The form of

the semi-transparent mirror electric field observable Êmirr(r) can be found in

Eq. (5.27). Here, D̂ represents the complex atomic dipole moment and is defined

in Eq. (3.34). As before, one moves into the interaction picture with respect to

the free Hamiltonian Ĥ0 = Ĥatom + Ĥsys and exploits Eqs. (3.7), (3.39) and the

rotating wave approximation. This yields the interaction Hamiltonian

ĤSB I(t) =
ie

4π

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

e−i(ω−ω0)t

×
[(

D̂∗12 · êkλ

)
eik·r

(
1

ηa
âkλ +

tbe
iϕ2

ηb
b̂kλ

)

+

(
ˆ̃
D
∗

12 · êkλ

)
eik·er raeiϕ1

ηa
âkλ

]
σ̂+ + H.c.

(6.3)

As a specific example, when determining the master equation the interaction

Hamiltonian will be expressed using the phases,

ϕ1 = π and ϕ2 =
π

2
. (6.4)

In this way, the model contains the free-space and the one-sided perfect mirror

scenario as limiting cases. However, in general, ϕ1 and ϕ2 might be different

from the above choice and depend on the optical properties of the mirror surface.

Moreover, the atomic dipole moment
ˆ̃
D12 is defined such that it differs from D̂12

only by the sign of its x-component (cf. Eq. (D.2)).

6.1.2 Master equation

The next step is to make use of the quantum jump approach outlined in Sec. 3.2.3.

One must substitute the expression for the interaction picture Hamiltonian ĤSB I(t)
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from Eq. (6.3) into the expressions for the conditional Hamiltonian Ĥcond I(t) and

the reset operator L(ρ̂S I(t)), which are given in Eqs. (3.25) and (3.26), respec-

tively. Again, in the case of an environment that monitors the spontaneous

emission of photons, the non-Hermitian Hamiltonian Ĥcond I(t) describes the time

evolution of the atom under the condition of no photon emission, while the reset

operator L(ρ̂S I(t)) denotes the un-normalised state of the atom in the case of an

emission at t [48].

Substituting in the interaction picture Hamiltonian ĤI(t) from Eq. (6.3) and

proceeding as described in App. D whilst using standard quantum optical ap-

proximations to evaluate integrals, one obtains

Ĥcond I(t) = ~
(

∆mirr − i

2
Γmirr

)
σ̂+σ̂− ,

L(ρ̂S I(t)) = Γmirr σ̂
− ρ̂S I(t) σ̂

+ (6.5)

As a final step, one can ignore the level shift ∆mirr and substitute the expressions

from Eq. (6.5) into the quantum jump expression for the master equation given in

Eq. (3.24). Doing so, generates the following master equation for the atom-mirror

configuration,

˙̂ρS I(t) = Γmirr

(
σ̂−ρ̂S I(t)σ̂

+ − 1

2

[
σ̂+σ̂−, ρ̂S I(t)

]
+

)
. (6.6)

The master equation in Eq. (6.6) takes the same form as Eq. (3.2), however, the

form of the spontaneous emission rate and atomic level shift (cf. Sec. 6.1.3) differ

strongly from the free-space results (cf. Sec. 3.3) due to the presence of the mirror.

6.1.3 Spontaneous emission rate and atomic level shift

The spontaneous emission rate and the atomic level shift are denoted by Γmirr and

∆mirr, respectively. The mirror alters the spontaneous emission rate of an atom

near a semi-transparent mirror and causes a level shift of the excited atomic state

|2〉. The expressions for these differ strongly from the free-space results presented

in Sec. 3.3 due to the presence of the mirror. The atom now couples to a different

field, as the surface effectively changes the electromagnetic environment.
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Following the steps outlined in App. D, one finds that

Γmirr =

[
1 + r2

a

η2
a

+
t2b
η2
b

]
Γfree

−3ra
η2
a

[
sin(2k0x)

2k0x
(1− µ) +

(
cos(2k0x)

(2k0x)2
− sin(2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree ,

∆mirr =
3ra
2η2

a

[
cos(2k0x)

2k0x
(1− µ)−

(
sin(2k0x)

(2k0x)2
+

cos(2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree.

(6.7)

Here k0 = ω0/c and the constant µ denotes the orientation of the atomic dipole

moment relative to the x-axis such that,

µ = ‖D̂12 · x̂‖2 (6.8)

When deriving the above level shift a self-interaction term, which is also present

in free space, has been neglected. This form of this term is presented in Sec. 3.3

and it is independent of the mirror. As previously stated, the free-space level

shift can be absorbed into the definition of ω0 [49].

6.1.4 Limiting cases

To gain more intuition for the results in Eq. (6.7), let us now have a closer look

at some limiting cases and concrete scenarios.

Considering an atom placed on the right-hand of the mirror setup (x > 0),

assuming atom-mirror distances x which are much larger than the wavelength λ0

of the emitted light, we have k0x � 1 and Eq. (6.7) simplify to give ∆mirr ∼ 0,

while

Γmirr =

[
1 + r2

a

η2
a

+
t2b
η2
b

]
Γfree . (6.9)

In order to determine the normalisation factors ηa and ηb, one must assume that

on both sides the mirror borders a medium with permittivity ε0 and demand that

Γmirr = Γfree when k0|x| � 1 . (6.10)
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Analogously, one can show that the spontaneous decay rate for an atom placed

on the left-hand side of the mirror (x < 0) is equal to

Γmirr =

[
1 + r2

b

η2
b

+
t2a
η2
a

]
Γfree , (6.11)

when k0|x| � 1. Following the condition outlined in Eq. (6.10), one can solve

Eqs. (6.9) and (6.11) simultaneously to find that the normalisation factors ηa and

ηb are in general given by

η2
a =

(1 + r2
a) (1 + r2

b )− (tatb)
2

1 + r2
b − t2b

,

η2
b =

(1 + r2
a) (1 + r2

b )− (tatb)
2

1 + r2
a − t2a

. (6.12)

The (real) transmission and reflection rates in these equations can be determined

experimentally. From above, one can determine the normalisation factors for the

case of a symmetric mirror using the energy conservation condition from Eq. (5.2).

Doing so, one finds

η2
a = η2

b =
(1 + r2)2 − t4

1 + r2 − t2 = 2 . (6.13)

Perfect mirrors

Now le us consider the example of a perfect mirror, where this means maximum

reflection (ra = rb = 1) and zero transmission (ta = tb = 0). Using Eq. (6.12),

one finds that in this case ηa = ηb =
√

2, as stated in Eqs. (5.16) and (5.24).

Substituting these parameters into Eq. (6.7) yields

Γmirr =

[
1− 3

2

[
sin(2k0x)

2k0x
(1− µ) +

(
cos(2k0x)

(2k0x)2
− sin(2k0x)

(2k0x)3

)
(1 + µ)

]]
Γfree ,

∆mirr =
3

4

[
cos(2k0x)

(2k0x)
(1− µ)−

(
sin(2k0x)

(2k0x)2
+

cos(2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree . (6.14)

The altered spontaneous decay rate Γmirr and the level shift ∆mirr can be thought

of as arising from a dipole-dipole interaction between the atom and its mirror

image [70]. However, as one can see from Eq. (6.3), the x-component of the

atomic dipole moment of the mirror image,
ˆ̃
D12, and the dipole moment D̂12 of

the original atom have different signs.
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6.1 Master equation for an atom near a two-sided mirror

Figure 6.1: The spontaneous emission rate Γmirr (a) and the atomic level shift

∆mirr (b) of an atom in front of a perfect mirror (cf. Eq. (6.14)) as a function of

the atom-mirror distance x for different orientations of the atomic dipole moment

D̂12. For µ = 0, D̂12 is parallel and, for µ = 1, D̂12 is perpendicular to the mirror

surface. In all cases, we have Γmirr = 0 while ∆mirr diverges for x = 0 (due to

Taylor expansion of Eq. (6.14)). Moreover, for k0x � 1, we have Γmirr = Γfree

and ∆mirr = 0, as it should.

Fig. 6.1 shows the x-dependence of the spontaneous emission rate Γmirr and

the level shift ∆mirr of an atom in the presence of a perfect mirror for different

dipole orientations µ. For distances x of the same order of magnitude as the

wavelength λ0 of the emitted light, the last terms in Eq. (6.14) are no longer

negligible and Γmirr and ∆mirr both depend strongly on x and µ. As one would

expect, this dependence is most pronounced and most long-range when µ = 0,

i.e. in the case of an atomic dipole moment that is parallel to the mirror surface.

In contrast to this, the decay rate Γmirr approaches Γfree much more quickly when

µ = 1. In both cases, we have Γmirr = 0 for x = 0, since the electric field

amplitude vanishes on the surface of a perfectly conducting mirror (cf. Eq. (5.3)).
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6.1 Master equation for an atom near a two-sided mirror

Symmetric mirrors

The case of a symmetric mirror gives rise to transmission and reflection rates

equal for both sides of the mirror,

ta = tb = t and ra = rb = r . (6.15)

This results in the normalisation factors ηa and ηb from Eq. (6.12) becoming the

same. In this case, one can deduce from Eq. (6.15) that η2
a = η2

b = 2. Substituting

back into Eq. (6.7), one can show that

Γmirr = Γfree − 3r

2

[
sin(2k0x)

2k0x
(1− µ)

+

(
cos(2k0x)

(2k0x)2
− sin(2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree ,

∆mirr =
3r

4

[
cos(2k0x)

2k0x
(1− µ)

−
(

sin(2k0x)

(2k0x)2
+

cos(2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree . (6.16)

Again, Γmirr and ∆mirr depend strongly on µ and r for relatively short atom-mirror

distances x but tend to their respective free-space rates when x becomes much

larger than λ0. This is illustrated in Fig. 6.2 which show Γmirr and and ∆mirr as

a function of x for different values of r and t, while µ = 0.

Highly absorbing mirrors

Finally, let us have a closer look at the example where a mirror absorbs all

incoming light. This case is equivalent to a perfectly-transmitting mirror where

ta = 1 and ra = 0, as no emitted light is reflected back towards the atom.

Therefore, this yields (cf. Eq. (6.7))

Γmirr = Γfree and ∆mirr = 0 (6.17)

independent of the atom-mirror distance x and the orientation µ of the atomic

dipole moment. As one would expect, an atom in the presence of an absorb-

ing medium does not see any of the emitted light return from the surface and

emits exactly as it would in free space. This is illustrated in Fig. 6.2, where the

spontaneous emission rate and atomic level shift both show a flat line for ra = 0.
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6.2 Conclusions

Figure 6.2: The spontaneous emission rate Γmirr (a) and the atomic level shift

∆mirr (b) of an atom in the presence of a non-absorbing symmetric mirror

(cf. Eqs. (6.16)) as a function of the atom-mirror distance x for different val-

ues of r. Again it is assumed µ = 0, while t2 = 1 − r2. Here, the r = 0 case

corresponds to free space, while r = 1 models a perfect mirror.

6.2 Conclusions

In this chapter, the validity of the image-detector method outlined in Chapter 5

is tested by presenting a master equation description of a radiating atom in the

presence of a two-sided semi-transparent mirror. The master equation description

provides analytical expressions for the spontaneous emission rate Γmirr and the

level shift ∆mirr (cf. Eq. (6.7)) of an atom in the presence of a two-sided semi-

transparent mirror. In general, Γmirr and ∆mirr depend in a relatively complex

way on transmission and reflection rates and other relevant system parameters,

i.e. normalisation factors ηa and ηb, which in general depend on the optical prop-

erties of the mirror (cf. Eq. (6.12)). Most importantly, the model reproduced the

expected behaviour in the limiting cases, e.g. perfect mirrors and highly absorbing

mirrors [115–125] and is in good agreement with experimental findings of other

authors [126–128].
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Chapter 7

Long-range dipole-dipole

interaction mediated by

two-sided mirror

In Chapter 4 the interaction of two dipoles in free space was reviewed and Chap-

ter 6 demonstrated that a radiating atom in the presence of a two-sided semi-

transparent mirror can be thought of as arising from a dipole-dipole interaction

between an atom and its mirror image [70]. The next step is to build on the work

presented in Chapter 6 and introduce a second atom in order to demonstrate

that it is possible to induce atomic long-range interactions with the help of thin

semi-transparent mirrors.

Suppose an atom is placed on either side of a thin semi-transparent mirror

with finite transmission and reflection rates. As it will be demonstrated below,

this situation is equivalent to having two atoms and two mirror images at certain

locations in a free space scenario as illustrated in Fig. 7.1. From Fig. 7.1, it is

evident that one can use the mirror to induce a dipole-dipole interaction between

an atom and a mirror-image atom provided the following condition is maintained

x̃ ≡ |ra − r̃b| ≡ |̃ra − rb| ∼ λ0 . (7.1)

This means as long as the relative distance between an atom and a mirror-image

atom, x̃ is approximately of the same order as the emitted radiation λ0, a dipole-

dipole interaction is induced - even when the actual distance of the atoms is
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several orders of magnitude larger1. To show that this is the case, one adopts the

continuous-mode field quantisation in front of a semi-transparent mirror presented

in Chapter 5. Through this field quantisation scheme one is able to obtain an

expression for the electric field observable Êmirr(r) (cf. Eq. (5.27)) which allows

one to derive a master equation for the system and obtain analytical expressions

for the atomic decay rates. Throughout, it is assumed that both atoms are

identical, two-level systems with the transition frequency ω0 for the transition

|2〉 → |1〉.
Dipole-dipole interactions in the vicinity of a reflective interface generate mod-

ifications in the collective spontaneous emission rates [129–133]. As well as de-

termining atomic lifetimes and atomic level shifts for these dipole-dipole systems,

previous authors also consider how the arrangement of the atoms affect these

phenomena, i.e. place one atom above the other or placing the atoms next to one

another. However, none of these studies investigate the effect of separating the

two atoms with a reflective interface, i.e. placing a thin semi-transparent mirror

between the two atoms (see Fig. 7.1). Previous authors consider dipole-dipole

systems in the presence of a dispersing or absorbing medium [134], as well as ex-

amining other interesting effects due to the immediate surroundings, e.g. atoms

in accelerating reference frames, atoms in curved spacetime or coupling atomic

systems to optical waveguides, see Refs. [135–138].

In addition, searching for a long-range interaction between two dipoles should

not be too surprising as it has been shown that if one confines the electromag-

netic field to propagate in one-dimension only, then one should be able to observe

infinite-range interactions between dipoles [1]. Moreover, this has been exper-

imentally verified recently using Rubidium atoms placed near an optical fibre

[139], where the fibre restricts the propagation of the field. This effect is even

demonstrated when two dipoles are separated by a distance of one hundred wave-

lengths or more - a drastic improvement on what would be achievable in free

space. The same group also demonstrated a Purcell effect using a similar method

[140].

1Removing the semi-transparent mirror means the dipole-dipole interaction takes the form
of that presented in Chapter 4. In addition, removing one atom from the setup, then one
obtains the results predicted in Chapter 6.
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Figure 7.1: Schematic view of two dipoles separated by a thin, two-sided semi-

transparent mirror and an equivalent scenario illustrated below through the

mirror-image perspective. In the standard scenario, there is a thin mirror surface

placed at x = 0, however one can ignore the mirror surface in this setup by intro-

ducing a mirror-image atom for each real atom. The mirror-image atom is placed

on the opposite side of the setup i.e. one can see that if atom one is placed at

some position x > 0, the corresponding mirror-image is placed at some position

x < 0. Doing so for both atoms demonstrates that the two pictures are equiva-

lent. Therefore, when using this interpretation it will be as if the mirror-image of

one atom is sitting in close proximity to the other atom. This separation is de-

noted x̃ and provided this is of the same order of magnitude as the wavelength of

the emitted radiation λ0 then the atoms can exchange excitations over relatively-

large distances. Finally, the position of the mirror-image atoms are given by x̃a

and x̃b.

The work in this chapter has been adapted from Ref. [2] which predicts a

long-range dipole-dipole interaction mediated by a two-sided semi-transparent
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7.1 Overview

mirror. This allows one to treat photons as they are in free space and determine

analytical expressions for the spontaneous emission rates, which are denoted by

Γ̃± (cf. Fig. 7.2). Successfully modelling the long-range dipole-dipole interaction

shown in Fig. 7.1 would provide various applications in quantum optics and quan-

tum information processing, particularly quantum sensing. The work outlined in

this chapter provides theoretical groundwork for Professor Gin Jose’s engineering

group at the University of Leeds, whom are designing state of the art medical

devices using a novel laser-based technique to measure blood glucose. The group

use ultrafast laser plasma doping to fabricate thin glass films (or thin film sen-

sors) using rare earth ions, namely Erbium (Er3+) [141–144]. These structures

can then be implemented to provide painless and non-invasive glucose-sensing

technology which should allow the user to continuously monitor glucose and pro-

vide improved diabetic management [145]. This state of the art device uses the

mechanism illustrated in Fig. 7.1, i.e. the presence of atoms above the laser-doped

glass (when a patient places their finger on the device containing the thin film

structure) effectively projects atoms within the patients finger into the device,

and vice versa due to boundary conditions. One is able to laser drive the atoms

doped within the glass structures allowing excitations to be exchanged between

the doped atoms and the atoms projected from the patients finger, allowing one

to measure atomic lifetimes through the induced dipole-dipole interaction.

7.1 Overview

In Chapter 4, it was demonstrated that a pair of interacting dipoles in free space

can be modelled as a single four-level system consisting of a ground, excited,

symmetric and anti-symmetric state denoted |g〉, |e〉, |s〉 and |a〉, respectively.

However, the results derived here will differ from those in Chapter 4 as the time-

dependent interaction picture Hamiltonian ĤSB I(t) now takes a different form

than that in Eq. (4.9).
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7.2 Master equation for long-range dipole-dipole interaction

Figure 7.2: Level scheme for a dipole-dipole interaction between a pair of two-level

atoms separated by a thin semi-transparent mirror. As with the dipole-dipole

interaction in free space (cf. Fig. 4.2, this scenario is also described as a four-

level system where each arrow denotes a one-photon transition and the free-space

Dicke states; |e〉, |g〉, |s〉 and |a〉 are given in Eq. (4.1). However, the spontaneous

emission rates Γ̃± and atomic level shifts ∆̃± now take a different form those

presented in Eqs. (4.33) and (4.34) due to the presence of the semi-transparent

mirror.

7.2 Master equation for long-range dipole-dipole

interaction

In this section a master equation description for two interacting dipoles sepa-

rated by a thin, two-sided semi-transparent mirror is presented, where analytical

expressions for the spontaneous emission rates Γ̃± are obtained.

7.2.1 The relevant Hamiltonians

As in Chapter 4, the starting point is the Hamiltonian, which is again the sum

of three contributions,

Ĥ = Ĥatom a + Ĥatom b + Ĥfield + ĤSB . (7.2)
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7.2 Master equation for long-range dipole-dipole interaction

These incorporate the non-interacting contributions from both atoms, the energy

of the electromagnetic field and atom-field interactions. As before, the next step

is to move the Hamiltonian into the interaction picture with respect to the free

Hamiltonian

Ĥ0 = Ĥatom a + Ĥatom b + Ĥfield (7.3)

(cf. Eq. (4.3)). The interaction Hamiltonian ĤSB can again be defined through

the dipole approximation in the following way

ĤSB = e
∑
i=a,b

D̂
(i)
12 · Êmirr(ri) , (7.4)

where Êmirr(ri) represents the electric field observable at the position of atom i.

In front of a two-sided semi-transparent mirror, this observable equals Êmirr(ri)

(cf. Eq. (5.27)). Assuming that atom a sits on the right-hand side (x > 0) and

atom b sits on the left-hand side of the mirror (x < 0), this allows the above

interaction Hamiltonian to be expressed as

ĤSB = e

[
D̂

(a)
12 σ̂

−
a + D̂

(a)∗
12 σ̂+

a

]
· Êmirr(ra) + e

[
D̂

(b)
12 σ̂

−
b + D̂

(b)∗
12 σ̂+

b

]
· Êmirr(rb).

(7.5)

As before, one can write the dipole moments D̂
(i)
12 without restrictions in the

following way

D̂
(a)
12

‖D12‖ =

 d
(a)
1

0

d
(a)
3

 ,
D̂

(b)
12

‖D12‖ =

 d
(b)
1

d
(b)
2

d
(b)
3

 (7.6)

with

|d(i)
1 |2 + |d(i)

2 |2 + |d(i)
3 |2 = 1 . (7.7)
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7.2 Master equation for long-range dipole-dipole interaction

Figure 7.3: Schematic view of a semi-transparent mirror with light incident from

both sides. Depending on the origin of the incoming light, we denote the trans-

mission and reflection rates of the mirror ta, tb, ra and rb, respectively. The

possible absorption of light in the mirror surface is explicitly taken into account

and for simplicity we assume that the medium on both sides of the mirror is the

same, free space.

Figure 7.4: Schematic view of a semi-transparent mirror with light incident from

both sides using the image-detector method. This figure demonstrates the dif-

ferent electric field amplitudes measured by the real and mirror-image detector.

As in the above figure, depending on the origin of the incoming light, we denote

the transmission and reflection rates of the mirror ta, tb, ra and rb, respectively.

Moreover, the possible absorption of light in the mirror surface is explicitly taken

into account and for simplicity we assume that the medium on both sides of the

mirror is the same, free space.
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7.2 Master equation for long-range dipole-dipole interaction

Substituting the electric field observable from Eq. (5.27) into the above inter-

action Hamiltonian ĤSB, one now obtains the interaction Hamiltonian

ĤSB =
e

ηa
D

(a)
12 · Ê(a)

free(ra) + eD
(a)
12 ·

[
ra
ηa

ˆ̃
E

(a)

free(r̃a, ϕ1) +
tb
ηb

Ê
(b)
free(ra, ϕ2)

]
+
e

ηb
D

(b)
12 · Ê(b)

free(rb) + eD
(b)
12 ·

[
rb
ηb

ˆ̃
E

(b)

free(r̃b, ϕ3) +
ta
ηa

Ê
(a)
free(rb, ϕ4)

]
. (7.8)

The six terms in this equation are exactly the terms that one would expect,

when looking at Fig. 7.4. The first terms on lines one and two of Eq. (7.8)

describe the independent interaction of two atoms with two different free radiation

fields. The terms which scale with ra and rb, respectively, describe the coupling

of atoms to light modes which have been reflected by the mirror. The mirror

reflection introduces phase factors such that directly emitted and reflected light

interferes as one would expect also classically and energy is conserved. Moreover,

in case of non-zero transmission of light through the mirror surface, the atoms

see electromagnetic field modes originating from the opposite side of the mirror.

The normalisation factors ηa and ηb characterise the medium on either side of the

mirror and are later chosen such that a single excited atom at a relatively large

distance from the mirror surface has the spontaneous emission rate as it would

in free space.

Transferring HSB in Eq. (7.8) into the interaction picture with respect to the

free Hamiltonian Ĥ0, one finds that

ĤSB I(t) =
ie

4π

∑
i=a,b

∑
λ=1,2

∫
R3

d3k

√
~ω
πε
×
[
ei(ω+ω0)t

(
D̂

(i)
12 · êkλ

)
σ̂−i

+e−i(ω−ω0)t
(
D̂

(i)∗
12 · êkλ

)
σ̂+
i

]
ŝ

(i)
kλ(ri) + H.c.

(7.9)

Finally, one applies the rotating wave approximation to sift out any non-energy

conserving terms which yields the interaction Hamiltonian

ĤSB I(t) =
ie

4π

∑
i=a,b

∑
λ=1,2

∫
R3

d3k

√
~ω
πε

e−i(ω−ω0)t
(
D

(i) ∗
12 · êkλ

)
σ̂+
i ŝ

(i)
kλ(ri) + H.c.

(7.10)
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7.2 Master equation for long-range dipole-dipole interaction

with

ŝ
(a)
kλ (ra) =

1

ηa

[
eik·ra + ra ei(k·era+ϕ1)

]
âkλ +

tb
ηb

ei(k·ra+ϕ2) b̂kλ

ŝ
(b)
kλ(rb) =

1

ηb

[
eik·rb + rb ei(k·erb+ϕ3)

]
b̂kλ +

ta
ηa

ei(k·rb+ϕ4) âkλ . (7.11)

This Hamiltonian has many similarities with the Hamiltonian in Eq. (4.9) of two

atoms at positions ra and rb in free space but instead of coupling to the same set of

(k, λ) photon modes, the atoms now couple to two different sets of modes. Notice

that the annihilation operators in Eq. (7.11) are in general incorrectly normalised

and do not obey bosonic commutator relations. Moreover, in general, the two

atoms do not interact with pairwise orthogonal photons modes. For example, one

can show that[
ŝ

(a)
kλ (ra), ŝ

(b)
kλ(rb)

†
]

=
ta
η2
a

[
eik·ra + ra ei(k·era+ϕ1)

]
e−i(k·rb+ϕ4) +

tb
η2
b

ei(k·ra+ϕ2)
[
e−ik·rb + rb e−i(k·erb+ϕ3)

]
(7.12)

which is in general different from zero. As we shall see below, as a result, the

spontaneous emission of photons from both atoms becomes strongly correlated.

Due to interference effects, it becomes impossible to distinguish if a photon has

been emitted by atom a or by atom b. As a result, spontaneous emission rates

change and atomic level shifts occur.

7.2.2 Master equation

Implementing the image-detector method from Chapter 5 allows one to map

the situation of two atoms separated by thin semi-transparent mirror onto two

analogous free space scenarios (cf. Fig. 7.1). Therefore, one should expect the

long-range dipole-dipole interaction to take a similar form to the free-space dipole-

dipole interaction described in Chapter 4. However, the long-range dipole-dipole

interaction will now have an explicit dependence on the optical properties of the

mirror, i.e. the mirror’s transmission and reflection rates. For simplicity, in the

following it is assumed that the absolute distance x of the atoms is much larger
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7.2 Master equation for long-range dipole-dipole interaction

than the atomic transition wavelength λ0, meaning a direct interaction between

both atoms will become negligible. On the other hand, the distance x̃ between

atoms and mirror-images can be relatively small (cf. Eq. (7.1)). Proceeding as

described in App. E and keeping all terms which depend on x̃, one obtains the

conditional Hamiltonian,

Ĥcond I(t) = − i~
2

[
Γ

(aa)
mirr σ̂

+
a σ̂
−
a + C̃(x̃) σ̂+

a σ̂
−
b + C̃∗(x̃) σ̂+

b σ̂
−
a + Γ

(bb)
mirr σ̂

+
b σ̂
−
b

]
,

(7.13)

and the following reset operator

L(ρ̂S I(t)) = Γ
(aa)
mirrσ̂

−
a ρ̂S I(t)σ̂

+
a + Re(C̃(x̃)σ̂−a ρ̂S I(t)σ̂

+
b

+Re(C̃(x̃)σ̂−b ρ̂S I(t)σ̂
+
a + Γ

(bb)
mirrσ̂

−
b ρ̂S I(t)σ̂

+
b , (7.14)

where the form of Γ
(aa)
mirr and Γ

(bb)
mirr are given in Eqs. (E.17) and (E.20). In addition,

the full form of the distance-dependent dipole-coupling constant C̃(x̃) is given in

Eq. (E.22).

Assuming the semi-transparent mirror is symmetric and lossless allows one to

simplify the conditional Hamiltonian given in Eq. (7.13) such that1

Ĥcond I(t) = − i~
2

[
Γ̃mirr

(
σ̂+
a σ̂
−
a + σ̂+

b σ̂
−
b

)
+ Re(C̃(x̃))

(
σ̂+
a σ̂
−
b + σ̂+

b σ̂
−
a

)]
,

(7.15)

and similarly, the reset operator given in Eq. (7.14) can be simplified such that

L(ρ̂S I(t)) = Γ̃mirr

(
σ̂−a ρ̂S I(t)σ̂

+
a + σ̂−b ρ̂S I(t)σ̂

+
b

)
+Re(C̃(x̃))

(
σ̂−b ρ̂S I(t)σ̂

+
a + σ̂−a ρ̂S I(t)σ̂

+
b

)
, (7.16)

1This is because the real part of the conditional Hamiltonian contributes to the atomic
level shifts and the imaginary part contributes to the spontaneous emission rates. Therefore,
by treating C̃(x̃) ≡ C̃∗(x̃) one can accurately calculate spontaneous emission rates as the real
part of C̃(x̃) is equivalent to the real part of C̃∗(x̃). Therefore, C̃(x̃) and C̃∗(x̃) will now be
replaced by Re(C̃(x̃)). This is important as it allows one to obtain the spontaneous emission
rates of the system and this is what will be measured. In addition, the semi-transparent mirror
is considered to be very thin, therefore it will assumed both sides of the mirror have the same
optical properties, i.e. ra = rb = r, ta = tb = t and therefore, η2

a ≡ η2
b and Γ̃mirr ≡ Γ(aa)

mirr ≡ Γ(bb)
mirr.
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7.2 Master equation for long-range dipole-dipole interaction

where the expressions for Γ̃mirr and Re(C̃(x̃)) are given later (see Eqs. (7.21) and

(7.22)).

Finally, in analogy to Eqs. (4.27) and (4.30), one is able to re-express these

equations such that

Ĥcond I(t) = − i~
2

[(
Γ̃mirr + Re(C̃(x̃))

)
L̂†+L̂+ +

(
Γ̃mirr − Re(C̃(x̃))

)
L̂†−L̂−

]
,

(7.17)

and

L(ρ̂S I(t)) =
[
Γ̃mirr + Re(C̃(x̃))

]
L̂+ρ̂S I(t)L̂

†
+

+
[
Γ̃mirr − Re(C̃(x̃))

]
L̂−ρ̂S I(t)L̂

†
− .

(7.18)

where the operators L̂± and L̂†± are defined in Eq. (4.26) through the Dicke states

(cf. Eq. (4.22)). In order to obtain the final form of master equation, one must

substitute the expressions for the conditional Hamiltonian and the reset operator

from Eqs. (7.17) and (7.18) respectively, into the quantum jump master equation

given in Eq. (3.24). This generates the following master equation

˙̂ρS I(t) = Γ̃+

(
L̂+ ρ̂S I(t) L̂

†
+ −

1

2

[
L̂†+L̂+, ρ̂S I(t)

]
+

)
+Γ̃−

(
L̂− ρ̂S I(t) L̂

†
− −

1

2

[
L̂†−L̂−, ρ̂S I(t)

]
+

)
, (7.19)

where the spontaneous emission rates Γ̃± = Γ̃mirr ± Re(C̃(x̃)) are analogous to

those in Eq. (4.32) for interacting dipole in free space. One should expected

these results to be similar as the image-detector method maps onto analogous

free-space scenarios.
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7.2 Master equation for long-range dipole-dipole interaction

7.2.3 Spontaneous emission rates

From the expressions from Eqs. (7.17) and (7.18), one can determine analytical

expressions for the spontaneous emission rates for the long-range dipole-dipole

interaction mediated by a symmetric and lossless semi-transparent mirror. In

analogy to Eq. (4.32), the spontaneous emission rates of two interacting dipoles

separated by a symmetric and lossless semi-transparent mirror are given by

Γ̃± = Γ̃mirr ± Re(C̃(x̃)) , (7.20)

where the solution with the positive sign corresponds to the spontaneous emis-

sion rate when the dipole-dipole system is prepared in a symmetric state and

the solution with the negative sign corresponds to the spontaneous emission rate

when the dipole-dipole system is prepared in an anti-symmetric state. Assum-

ing a symmetric and lossless semi-transparent mirror then one can simplify and

combine Γ
(aa)
mirr and Γ

(bb)
mirr from Eqs. (E.17) and (E.20) to give

Γ̃mirr =
1

η2
a

[
1 + r2 + t2 + 2t cos(ϕ2)

]
Γfree . (7.21)

As it was shown in Chapter 6, the normalisation constants η2
a = η2

b = 2 for a

symmetric and lossless mirror. In analogy to Eq. (4.12), one finds that the real

part of the distance-dependent dipole coupling constant for a lossless, symmetric

mirror takes the form

C̃(x̃) =
3r

2η2
a

cos(ϕ1)

×
[

sin(k0x̃)

k0x̃
c̃1 +

(
cos(k0x̃)

(k0x̃)2
− sin(k0x̃)

(k0x̃)3

)
c̃2

]
Γfree ,

(7.22)

where x̃ is defined in Eq. (7.1) and in analogy to Eq. (4.14), the constants c̃1 and

c̃2 are given by

c̃1 =

(
D̂

(a)
12 · ˆ̃

D
(b)

12

)
−
(
D̂

(a)
12 · x̂

)(
ˆ̃
D

(b)

12 · x̂
)
,

c̃2 =

(
D̂

(a)
12 · ˆ̃

D
(b)

12

)
− 3

(
D̂

(a)
12 · x̂

)(
ˆ̃
D

(b)

12 · x̂
)
. (7.23)
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7.2 Master equation for long-range dipole-dipole interaction

Using Eq. (7.20) combined with Eqs. (7.21) – (7.23), one finds the spontaneous

emission rates for the long-range dipole-dipole interaction mediated by a sym-

metric and lossless semi-transparent mirror take the form

Γ̃± =

[
1

η2
a

[
1 + t cos(ϕ2)

]± 3r

2η2
a

cos(ϕ1)

×
[

sin(k0x̃)

k0x̃
c̃1 +

(
cos(k0x̃)

(k0x̃)2
− sin(k0x̃)

(k0x̃)3

)
c̃2

] ]
Γfree , (7.24)

where η2
a is given in Eq. (6.12). Moreover, if one assumes both atoms have the

same dipole moment, i.e. D̂
(a)
12 = D̂

(b)
12 then one finds c̃1 = 1 − µ and c̃2 = 1 + µ,

as predicted by Eq. (7.23) and the definition of the atomic dipole moment µ can

be found in Eq. (4.15).

Fig. 7.5 demonstrates the spontaneous emission rates for the symmetric (Fig. 7.5 (a))

and anti-symmetric (Fig. 7.5 (b)) rate of a long-range dipole-dipole interaction,

mediated by a symmetric and lossless 50:50 beamsplitter. This figures illustrates

the dependence of Γ̃± on the atomic separation x̃ and the atomic dipole moment

µ. On the other hand, Fig. 7.6 illustrates the spontaneous emission rates for

the symmetric and anti-symmetric rate of a long-range dipole-dipole interaction,

mediated by a thin, lossless mirror of varying reflectivity. By considering the two

extreme examples for the dipole orientation (µ = 0 and µ = 1), one can see how

the symmetric states of the interaction are affected when the mirror’s reflectivity

is changed (cf. Fig. 7.6 (a) & (c)) and similarly, how the anti-symmetric states

are affected (cf. Fig. 7.6 (b) & (d)). For both these states, Γ̃± → Γfree when the

mirror is removed (free space where r = 0) or when a perfectly-reflective mirror

separates the atoms. However, in the case of free space, provided one atom is

excited then a photon can be exchanged between the two atoms and this inter-

action would affect the spontaneous decay rates in the same way as described in

Chapter 4, i.e. it is only the long-range interaction that vanishes when the mirror

is removed or made perfectly-reflective, as one would expect.
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7.2 Master equation for long-range dipole-dipole interaction

7.2.4 Limiting Cases

To gain more intuition for the spontaneous emission rates in Eq. (7.20), let us

have a closer look at some limiting cases and concrete scenarios.

Figure 7.5: [Colour online] The spontaneous emission rates Γ̃± for the (a) sym-

metric and (b) anti-symmetric states of a long-range, mirror-mediated dipole-

dipole interaction as a function of the separation x̃ for different orientations of

the atomic dipole moment, where D̂
(a)
12 = D̂

(b)
12 . For distances x̃ of the same or-

der of magnitude as the wavelength λ0 of the emitted light, the last few terms in

Eq. (7.22) are no longer negligible and Γ± depend strongly on x̃ and µ. Moreover,

for k0x̃ � 1, we have Γ̃± = Γfree, as it should. For simplicity it is assumed the

mirror is a symmetric, lossless 50:50 beamsplitter, i.e. r = ra = rb = 1/
√

2.

Perfect mirrors

Looking at the case of a perfect mirror requires setting the reflection coefficient

ra = rb = 1 and the transmission coefficient ta = tb = 0. Due to the nature of

this surface, one also finds the phase factors ϕ1 = ϕ3 = π. From Eqs. (7.22) and

(7.24), it is not immediately obvious what happens to the long-range interaction

when the atoms are separated by a perfect mirror. From Fig. 7.1, one can see

the long-range interaction manifests itself as an interaction between a ‘mirror-

image’ atom and a real atom. Therefore, when a perfect mirror is placed between

the atoms, neither atom is aware of the other as they live in distinctly separate

Hilbert spaces. This means the interference effect which generates the long-range
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7.2 Master equation for long-range dipole-dipole interaction

Figure 7.6: [Colour online] The spontaneous emission rates Γ̃± for the symmetric

and anti-symmetric states of a long-range dipole-dipole interaction mediated by

a mirror of varying reflectivity, where D̂
(a)
12 = D̂

(b)
12 . Plots (a) and (b) demon-

strate how the reflectivity of the mirror affects the spontaneous emission rates for

the symmetric and anti-symmetric states, when the dipoles have the orientation

µ = 0. Similarly, plots (c) and (d) demonstrate how the reflectivity of the mir-

ror affects the spontaneous emission rates for the symmetric and anti-symmetric

states, when the dipoles have the orientation µ = 1. These figures demonstrate

the interaction is mirror-mediated. As the effect of the mirror is removed (r = 0)

or in the case a perfectly-reflective mirror is placed between the atoms (r = 1),

then the long-range interaction is no longer present. For simplicity the mirror is

assumed to be symmetric and lossless, i.e. r2 + t2 = 1 always holds.

interaction is never able to happen, i.e. Re(C̃(x̃)) = 0 as the mirror does not

transmit light. As a result, both atoms decay independently of each other and

as one would expect in front of a perfect mirror, i.e. the decay rates Γ̃± take the

form of Γ̃
(aa)
mirr and Γ̃

(bb)
mirr in App. E (cf. Eqs. (E.17) and (E.20)).
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7.2 Master equation for long-range dipole-dipole interaction

Free space

For the case of free space one finds that ra = rb = 0 and ta = tb = 1. This

means Re(C̃(x̃)) = 0, which one would expect as the mirror, which mediates the

long-range interaction, has now been removed. This results in the spontaneous

decay rates to take the form

Γ̃± = Γ̃mirr , (7.25)

where Γ̃mirr is given in Eq. (7.21). Substituting in the necessary conditions for

free space (ϕ2 = 0, r = 0 and t = 1) and using Eq. (6.12), one finds

Γ̃± =
4

η2
a

Γfree = 2 Γfree , (7.26)

which is the result one would predict provided the separation of the atoms is

comparable to wavelength of emitted radiation and one of the atoms is in its

excited state. In other words, by removing the mirror one obtains a dipole-dipole

interaction as described in Chapter 4.

Behaviour for large atomic separation

Next, let us consider the physical behaviour of the system when a real atom and

a mirror-image are separated over large distances. In other words, the case where

x̃→∞, then one finds that Re(C̃(x̃))→ 0 yielding

Γ̃± = Γfree , (7.27)

Strictly, the separation cannot be taken to infinity as this would violate the

Markovian approximation used earlier. This atomic separation x̃ can be taken

to approximately 0.03cm provided the time period under consideration ∆t is

approximately 10−13s.

Behaviour for small atomic separation

Finally, let us consider the physical behaviour of the system when a real atom and

a mirror-image are separated over very small distances. Assuming both atoms

have the same atomic dipole moment i.e. the case where x̃→ 0, and. As a result,

Re(C̃(x̃))→ 3r

2
cos(ϕ1)

[
(1− µ)− 1

3
(1 + µ)

]
Γfree , (7.28)
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7.3 Summary

(cf. Eq. (7.22)). This results in the indistinguishability of two nearby emitters.

Using Eqs. (7.20), (7.24) and (7.21), one finds the spontaneous decay rates reduce

to

Γ̃± =

[
2

η2
a

[
1 + t cos(ϕ2)

]± 3r

η2
a

[
(1− µ)− 1

3
(1 + µ)

]
cos(ϕ1) Γfree .(7.29)

Therefore, for a symmetric and lossless semi-transparent mirror, the spontaneous

emission rates take the form

Γ̃± =

[
2

η2
a

[
1 + t cos(ϕ2)

]± 2r

η2
a

cos(ϕ1)

]
Γfree . (7.30)

7.3 Summary

In this chapter, the image-detector method is used to present a master equa-

tion description for mirror-mediated long-range dipole-dipole interactions. This

description allows one to determine analytical expressions for the spontaneous

emission rates Γ̃± (cf. Eqs. (7.20) – (7.22)). The spontaneous emission rates take

a similar form as those presented in Chapter 4 as the image-detector method maps

onto analogous free space scenarios. However, due to the atoms being separated

by a semi-transparent mirror, the spontaneous emission rates now depend on the

optical properties of the mirror. From Fig. 7.1, it is shown that an atom on one

side of a mirror is able to detect the presence of another atom on the other side,

even if the other atom is large distance from the mirror surface. This interaction

changes the spontaneous emission rates of both atoms leading to potential uses in

quantum technologies and sensing applications, such as the non-invasive glucose-

sensing technology discussed at the beginning of Chapter 7. Finally, one could

also investigate this scenario a step further and consider how to obtain analytical

expressions for the atomic level shifts for this system.
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Chapter 8

A continuous-mode model for

optical cavities

In Chapter 5, a continuous-mode model approach to quantising the electromag-

netic field in the presence of a two-sided semi-transparent mirror was presented.

Here, the aim is to extend the continuous-mode model for single interfaces to

describe the behaviour of light within an optical cavity, ultimately aiming to

reproduce results consistent with those found in Refs. [2, 14]. Successfully mod-

elling these scenarios will pave the way for the modelling of more complex systems.

Moreover, it will also hopefully give more insight into non-intuitive phenomenon

such as the Casimir effect.

8.1 Overview

While quantising the electromagnetic field inside an optical cavity with perfect

mirrors is straight forward [146], modelling more realistic cavities with finite

transmission and reflection rates remains challenging [2]. There exists a range of

approaches which are sufficient for modelling optical cavities in a wide range of ex-

periments. The input-output formalism provides a phenomenological approach,

where the modes inside and outside of the cavity are related through a linear

coupling and the mirrors impose vanishing boundary conditions on electric field

amplitudes [3–5], in such a way that is consistent with Maxwell’s equations [6, 7].
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8.1 Overview

Another approach is the modes-of-the-universe description [7, 10–13]. These ap-

proaches describe the electromagnetic field in terms of the modes of a much larger

cavity - the universe. Refs. [7, 10] obtain a quasi-mode representation of the elec-

tromagnetic field, where the non-orthogonal modes allow for leakage of photons

through the cavity mirrors. Alternatively, Barlow et al. [2] proposed a master

equation description for a two-sided optical cavity, which describes the correct

spontaneous photon emission from an optical cavity, while providing consistency

with classical electrodynamics. Moreover, it is assumed there exists a continuum

of modes within the cavity. However, this approach is unable to describe a single

interfaces. In addition, the consistency between current models is not obvious

[112]. Designing a continuous-mode model for optical cavities could provide in-

sight into a wide range of experiments and generate motivation to consider the

physical consequences of quantising the electromagnetic field between two mirrors

e.g. the Casimir effect.

Figure 8.1: Schematic view of an optical cavity with semi-transparent mirrors

as the boundaries, with finite transmission and reflection rates. Depending on

the direction of the incoming light and which mirror surface it sees, we denote

these rates ta, ra, tb, rb, t
′
b, r
′
b, tc and rc. To maintain generality, each side of the

mirror surfaces have different phase factors, ϕ. For simplicity we assume that the

medium on both sides of the each mirror is the same - free space. The possible

absorption of light in the mirror surface is explicitly taken into account.
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8.2 A continuous-mode field quantisation for optical cavities

The work in this chapter aims to develop a continuous-mode field quantisation

within an optical cavity (see Fig. 5.1) by extending the quantisation scheme out-

lined in Chapter 5 to a two mirror setup. Throughout, photons are characterised

as in free space and the electromagnetic field between two semi-transparent mir-

rors with finite transmission and reflection rates is quantised through the image-

detector method. As in Chapter 5, the possible dissipation of light by the mirror

surface is taken into account, meaning

ta
2 + ra

2 ≤ 1 and tb
2 + rb

2 ≤ 1 ,

t′b
2

+ r′b
2 ≤ 1 and tc

2 + rc
2 ≤ 1 . (8.1)

Again, it is assumed that the mirror surface does not alter the coherent properties

of the incoming light - it only reduces the amplitude of incoming wave packets. As

it will be demonstrated later, the mapping results in the electric field contributions

forming an infinite geometric series.

8.2 A continuous-mode field quantisation for op-

tical cavities

In the following section a continuous-mode model description of the quantised

electromagnetic field between two thin semi-transparent mirrors is presented. To

maintain generality different transmission and reflection rates are assigned to each

side of both mirrors, as well as corresponding phase factors ϕ (cf. Fig. 8.1). First,

a discussion of how to implement the image-detector method for the two mirror

scenario is presented, which outlines how to generate expressions for the one-

dimensional electromagnetic field observables Êcav(x) and B̂cav(x). Extending this

description to three dimensions allows one to obtain the relevant electromagnetic

field observables Êfree(r) and B̂free(r).
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8.2 A continuous-mode field quantisation for optical cavities

8.2.1 General idea

First let us consider the single mirror case. For this one-mirror setup it is only ever

necessary to consider a single image detector and this is always placed at some

arbitrary position −x. The general solution obtained through the image-detector

method is then a linear superposition of the electric field amplitudes measured

by both detectors (cf. Chapter 5). However, for the two mirror scenario light is

reflected multiple times between the two mirrors. Putting this in the perspective

of the image-detector approach, it would require an infinite number of image-

detectors to measure the electric field within the cavity setup for some position x,

when compared to the single mirror setup. The infinite number of image-detectors

allows one to replicate the effect of a wave packet traversing the cavity multiple

times. Therefore, both the electric and magnetic field observables becomes an

infinite sum of free-field solutions to Maxwell’s equations. In order to keep track

of all contributions, the overall Hilbert space H is divided into three subspaces.

Previously, for the single mirror case, the overall Hilbert space is divided into

two subspaces such that, H = H(a) ⊗H(b), which allowed one to specify which

subspace the wave packet was in at time t = 0. For the scenario illustrated in

Fig. 8.1, one divides the overall Hilbert space such that

H = H(a) ⊗H(b) ⊗H(c) , (8.2)

where H(a), H(b) and H(c) denote the sub-spaces for x < 0, 0 ≤ x ≤ L and x > L,

respectively.

Now, by considering a simple example, one can derive the form of the elec-

tromagnetic field between the two mirrors. To do so, one first introduces a wave

packet into the cavity and also places an electric-field detector at some arbi-

trary position, x. Suppose the wave packet is completely right-travelling and

initially exists in the subspace H(b) (cf. Fig. 8.2). Looking at the possible elec-

tric field amplitudes the detector could measure; the initial measurement would

correspond to the electric field amplitude, Ê
(b)
free(x) and at some later time t in

this evolution, the next possible measurements one could make would correspond

to the wave packet after undergoing reflection(s) by either the mirror placed at

x = 0 or x = L. From Fig. 8.2, one can see the corresponding electric field
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8.2 A continuous-mode field quantisation for optical cavities

Figure 8.2: An illustration of how to construct the one-dimensional electric field

observable for the cavity, Ê
(b,R)
cav (x) using the image-detector method. A thought

experiment is used to compare the expected evolution of light (plots (a)–(c))

with a free-space alternative (plot (d)). Plots (a)–(c) show how an initially right-

travelling wave packet interacts with the walls of the cavity. The plots show how

the wave packet evolves over time where all these contributions can be measured

by the detector at x. Plot (d) uses the image-detector method to map plots (a)–

(c) onto an analogous free space scenario, where the mirrors are replaced with

appropriately weighted image-detectors. By summing over all electric field ampli-

tudes measured by both real and image-detectors allows one to obtain expressions

for the electric field observable. Here, contributions that initially existed outside

the cavity have been ignored.

amplitudes for the evolution of the wave packet. From here, one can follow this

thought experiment to obtain the form of all subsequent electric field amplitudes.

The image-detector method allows one to describe the behaviour of light within

the cavity by mapping the problem onto an analogous free-space scenario where

non-physical image-detectors are introduced and wave packets propagate freely

(c.f. Fig. 8.2). Figs. 8.2 (a)–(c) illustrates a right-travelling wave packet traversing

an optical cavity and Fig. 8.2 (d) illustrates how the packet evolves in this thought

experiment using the image-detector method. The detector (shown in black) in

Figs. 8.2 (a)–(c) is used to measure electric field amplitudes at the position x.

Fig. 8.2 (d) illustrates the evolution of Figs. 8.2 (a)–(c) using an analogous free

space scenario and the detector (black) corresponds to the initial measurement
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8.2 A continuous-mode field quantisation for optical cavities

of the field. The subsequent measurements are represented by image-detectors

(shown in red), which are placed along the propagation axis corresponding to the

evolution of the wave packet. In Fig. 8.2, the first image-detector is placed at

2L− x as the wave packet travelled a distance of x+ 2(L− x) between Figs. 8.2

(a) and (b). Similarly, the second image-detector is placed at 2L+ x as the wave

packet travelled a distance x+2(L−x)+2x between Figs. 8.2 (b) and (c). More-

over, it is important to note direction of propagation in order to determine the

positions of the image-detectors correctly, i.e. right-travelling wave packets are

travelling in the positive x-direction and left-travelling ones travel in negative x-

direction. Using the above thought experiment and the details shown in Fig. 8.2,

one uses the image-detector method to sum over all detectors giving

Ê(R)
cav (x) =

1

ηb

[
Ê

(b,R)
free (x) + r′b Ê

(b,R)
free (2L− x, ϕ5)

+rb r
′
b Ê

(b,R)
free (2L+ x, ϕ1 + ϕ5) + .....

]
, (8.3)

where superscript R denotes a right-travelling amplitude and ηb is a normalisation

constant to be determined later. Similarly, one can use a left-travelling wave

packet in the above example which yields

Ê(L)
cav(x) =

1

ηb

[
Ê

(b,L)
free (x) + rb Ê

(b,L)
free (−x, ϕ1)

+rb r
′
b Ê

(b,L)
free (x− 2L, ϕ1 + ϕ5) + .....

]
, (8.4)

8.2.2 One-dimensional cavity model

One can use this thought experiment and by combining Eqs. (8.3) and (8.4), one

can describe the electric field between two semi-transparent mirrors. Notice these

expressions take the form of an infinite geometric series, therefore, one can make

use of the identity [147]

∞∑
n=0

akn =
a

1− k , for |k| < 1 . (8.5)
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This yields the following expression

Êcav(x) =
1

ηb

[
Ê

(b,L)
free (x) + rb Ê

(b,L)
free (−x, ϕ1)

1 + rb r′b e−2ikL ei(ϕ1+ϕ5)

+
Ê

(b,R)
free (x) + r′b Ê

(b,R)
free (2L− x, ϕ5)

1 + rb r′b e2ikL ei(ϕ1+ϕ5)

]
.

(8.6)

In Eq. (8.6), one must split the contributions into two parts; left- and right-

travelling components as it is important to state which mirror does the wave

packet see first. Therefore, one must specify the direction of propagation of the

wave packet in order to model the field correctly. From this splitting, one finds

Ê
(b)
free(x) = Ê

(b,L)
free (x) + Ê

(b,R)
free (x)

= i

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx bk + H.c., (8.7)

which arises from left- and right-travelling wave packets being assigned negative

and positive wavenumbers k, respectively. In addition, one can deduce the form

of the magnetic field between the two mirrors

B̂cav(x) =
1

ηb

[
B̂

(b,L)
free (x) + rb B̂

(b,L)
free (−x)

1− rb r′b e−2ikL

+
B̂

(b,R)
free (x) + r′b B̂

(b,R)
free (2L− x)

1− rb r′b e2ikL

]
.

(8.8)

In analogy to Eq. (8.7), one also obtains the following expression for the magnetic

field, Bfree(x)

B̂
(b)
free(x) = B̂

(b,L)
free (x) + B̂

(b,R)
free (x)

= −i
√
ε0µ0

∫ ∞
−∞

dk

√
~ω

4πε0A
eikx bk sign(k) + H.c. . (8.9)

Finally, one finds the system Hamiltonian Ĥsys describing the two semi-transparent

mirrors and electromagnetic field takes the form

Ĥsys =

∫ ∞
∞

dk ~ω
[
a†kak + b†kbk + c†kck

]
, (8.10)

as photons are characterised as they are in free space.
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8.2.3 Three-dimensional cavity model

Finally, let us generalise this quantisation scheme to three dimensions. To do

so, one follows the same process as in the previous subsection, however, now one

must use the three-dimensional free-space electric- and magnetic-field observables

defined in Eq. (2.77).

To obtain the observable Êcav(r) of the electric field at position r, one again

makes use of the quantum image-detector method introduced above. More con-

cretely, it is assumed in the following that a detector at a position r = (x, y, z)

observes light arriving directly at the detector which originates either from the

same or from the other side of the mirror. In addition, the detector measures

the electric field amplitude at a position r̃ with r̃ = (x, y, z) as well as measuring

periodically thereafter i.e. every 2L from r̃. These different field contributions

need to be weighted by the appropriate transmission and reflection rates. More-

over, it is the y- and z- components that are affected by the mirror, while the x-

component of the electric field remains the same. Taking this into account, one

obtains the three-dimensional electric field observable

Êcav(r) =
1

ηb

[
Ê

(b,L)
free (r) + rb

ˆ̃
E

(b,L)

free (r̃, ϕ1)

1 + rbr′b e−2ikL ei(ϕ1+ϕ5)

+
Ê

(b,R)
free (r) + r′b

ˆ̃
E

(b,R)

free (2L+ r̃, ϕ5)

1 + rbr′b e2ikL ei(ϕ1+ϕ5)

]
Θ(L− x),

(8.11)

which generalises Eq.(8.6) to field propagation in three dimensions. In Eq. (8.11),

ˆ̃
E

(s)

free(r̃)1 is defined such that it differs from Ê
(s)
free(r̃) only by the sign of their

x-component. Similarly, in analogy to Eq. (8.8), one can obtain the three-

dimensional magnetic field observable

B̂cav(r) =
1

ηb

[
B̂

(b,L)
free (r) + rb

ˆ̃
B

(b,L)

free (r̃)

1− rbr′be−2ikL

+
B̂

(b,R)
free (r) + r′b

ˆ̃
B

(b,R)

free (2L+ r̃)

1 + rbr′be
2ikL

]
Θ(L− x) ,

(8.12)

1s = a, b, c.
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Finally, in analogy to Eq. (8.10), one finds that in three-dimensions the system

Hamiltonian Ĥsys takes the form

Ĥsys =

∫ ∞
∞

d3k ~ω
[
a†kak + b†kbk + c†kck

]
. (8.13)

8.2.4 Limiting cases

In this section limiting cases of the continuous-mode model for optical cavities

are presented. First the free space case is considered where the influence of the

mirrors is removed and then the case of perfectly-reflective mirrors is examined.

Cavity with perfectly-transmissive mirrors

For the free space case, one must remove the influence of the mirrors and assign

the transmission rates tb = t′b = 1 as well as the reflection rates rb = rb = 0.

Making the substitution into the electromagnetic field observable from Eq. (8.6),

one can readily confirm the cavity fields given in Eqs. (8.6), (8.8), (8.12) and (8.11)

reduce to their respective free-field expressions for the electric- and magnetic-field

observables (cf. Eqs. (2.75) and (2.77)).

Cavity with perfectly-reflective mirrors

If one considers the limit of perfectly-reflective mirrors, then one must assign

the reflection rates rb = r′b = 1 as well as the transmission rates tb = t′b = 0.

In addition, the associated phase factors take the following value ϕ1 = ϕ5 = π.

Looking at Eqs. (8.5) and (8.11), one can see that imposing such conditions no

longer allows the field to be approximated as an infinite geometric series.

8.3 Summary

In this chapter the image-detector method is used to present a continuous-mode

model for optical cavities by building from the work presented in Chapter 5. The

proposed model allows one to determine expressions for the electromagnetic field

observables as a function of the optical properties of the mirrors. Expressions

for the one-dimensional electromagnetic field observables for an optical cavity,
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8.3 Summary

Êcav(x) and B̂cav(x) are given in Eqs. (8.6) and (8.8), respectively. In addition,

expressions for the three-dimensional electromagnetic field observables for an op-

tical cavity, Êcav(r) and B̂cav(r) are given in Eqs. (8.11) and (8.12), respectively.

In both scenarios, one finds the system Hamiltonian Ĥsys, which describes the

electromagnetic field and mirrors, takes the same form as the harmonic oscillator

Hamiltonian (cf. Eqs. (8.10) and (8.13)). These results are expected to help model

various scenarios such as coherent cavity networks [148] and quantum metrology

schemes [149].
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Chapter 9

Conclusions & future work

In this chapter the concluding remarks are presented first, followed by a discussion

of potential future work.

Conclusions

This thesis has presented a novel approach to understanding how to impose

boundary conditions, ultimately providing the image-detector method to describe

the electromagnetic field in the presence of two-sided semi-transparent mirrors

and within optical cavities, as well as potential applications in designing quantum

technologies.

In Chapter 2 a theoretical background on classical electrodynamics was pre-

sented, followed by introducing the basic tools of quantum mechanics and how

one quantises the electromagnetic field in free space. In Chapter 3 open quantum

systems are discussed and a general derivation of a quantum optical master equa-

tion is presented. Applying a master equation description allows one to determine

the spontaneous emission rate of a two-level atom in free space, Γfree. Finally,

Chapter 4 concludes the background section by presenting the well-known exam-

ple of a dipole-dipole interaction in free space and analytical expressions for the

collective spontaneous emission rates Γ± are determined.

Using the ideas outlined in the previous chapters, a novel approach to un-

derstanding how to impose boundary conditions is presented in Chapter 5. The

image-detector method describes the electromagnetic field in the presence of a
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two-sided semi-transparent mirror by mapping onto an analogous free space sce-

nario and correctly models the long term behaviour of wave packets in the pres-

ence of a two-sided semi-transparent mirror. In Chapter 6 the image-detector

method was applied to a radiating atom in the presence of a two-sided semi-

transparent mirror, where analytical expressions for the spontaneous emission

rate Γmirr were determined. In Chapter 7 the image-detector method was used to

describe the mirror-mediated long-range dipole-dipole interaction, where analyt-

ical expressions for the collective spontaneous emission rates Γ̃± are determined.

Finally, in Chapter 8 the image-detector method is extended to describe an optical

cavity.

The summary table shown in Fig. 9.1 compiles the quantum optical master

equations and the associated spontaneous emission rates for each scenario dis-

cussed in the thesis. From above one can see the master equations for the various

scenarios all take the same Lindblad form, which was the general form of a quan-

tum optical master equation describing the interaction between a system and an

external bath (discussed in Chapter 3). The master equations on row’s one and

three describe single atom systems, as the Lindblad operators L̂ and L̂† take the

form of the atomic lowering and raising operators σ̂− and σ̂+. Row one describes

the spontaneous emission of a single two-level atom (Chapter 3) and row three

describes a radiating atom in the presence of a semi-transparent mirror (Chapter

6). On the other hand, the master equations on row’s two and four describe two

atom systems, where the Lindblad operators L̂ and L̂† take the form of linear

superpositions of the atomic lowering and raising operators σ̂− and σ̂+ leading

to interference effects. Row two describes the free space dipole-dipole interaction

(Chapter 4) and row four describes the mirror-mediated dipole-dipole interaction

(Chapter 7). The constants c1 and c2 shown in the spontaneous emission rates

Γ± (row two) take the form c1 = 1 − µ and c2 = 1 − 3µ when both atoms have

the same dipole moment D̂
(a)
12 = D̂

(b)
12 = D̂12 where µ = ‖D̂12 · x̂‖2 (cf. Eq. (4.15)).

Similarly, the constants c̃1 and c̃2 shown in the spontaneous emission rates Γ̃±

(row four) take the form c̃1 = 1− µ and c̃2 = 1 + µ. Although the master equa-

tions remain of a similar form, the spontaneous emission rates for the systems

change due to the atom(s) coupling to different surroundings, i.e. free electro-

magnetic field or the free electromagnetic field in the presence of a two-sided
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semi-transparent mirror. Particularly in the case of a semi-transparent mirror,

the mirror surface affects how and where electric field amplitudes can be measured

- a key idea behind the image-detector method. The spontaneous emission rates

for these systems, particularly those for the long-range dipole-dipole interaction

(row four of summary table) should provide insight into the functionality of a

non-invasive glucose sensing quantum technology being designed in the Chemical

Engineering department at the University of Leeds [141–144].

Future work

Dipole interaction coupled to a thermal bath

An extension of the work presented in Chapter 7 could consider the mirror-

mediated dipole interaction where the electromagnetic field resides in a thermal

state, rather than the vacuum state. This would allow both atoms to acquire

excitations from the bath, which could lead to further enhancements to the spon-

taneous emission rates Γ̃± (cf. Eq. (7.24)).

Transmission rate of a Fabry-Pérot cavity

An extension of the work presented in Chapter 8 could model a laser-driven

Fabry-Pérot cavity and compare the results with Fig. 1.1. Using Fig. 8.1 and

laser driving the cavity from the left-hand side at its resonant frequency ω0, one

can then examine what leaves the cavity on the right-hand side of the setup. The

transmission rate of the optical cavity is then given by the ratio of the modulus of

the two field amplitudes; the transmitted field and the incident field (see Ref. [2]).

Casimir effect

In reality, the dipole interactions considered in this thesis are all part of a much

larger picture, intermolecular forces which are more commonly known as van der

Waals forces or London dispersion forces (which are effective dipole-dipole inter-

actions). These dispersion forces attract two atoms or molecules together when

separated by a distance d. In the non-retarded regime this force is proportional
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to d−3 for the short-range separation and proportional to d−6 for the long-range

separation, which is also consistent with classical dipole interactions. By explic-

itly considering the role of retardation (light travels at a finite speed meaning

the interaction does not happen instantaneously) in these interactions, then one

finds the interaction varies as d−7 [150]. This scenario was first investigated by

Casimir and Polder using two neural atoms, which was extended to study the

interaction between a neutral atom and a solid boundary. The atom and solid

boundary scenario has since been revisited more recently [151–155].

The above scenario also links into the Casimir effect which was predicted

in 1948 and has since developed into a large field of research in its own right.

The Casimir effect manifests itself as an attractive force between two flat and

neutrally-charged conducting plates [156]. The Casimir force is proportional to

d−4, where d is the plate separation. Previously, authors have attributed this ef-

fect to fluctuations in the electromagnetic vacuum, which in some cases has been

attributed to a consequence of the canonical quantisation [150] (the electromag-

netic field is treated as a collection of harmonic oscillators each with a zero-point

energy of 1
2
~ω). For more in-depth reviews and interpretations of these topics,

see Refs. [84, 157–160]. Although the existence of the Casimir effect is said to

have been experimentally verified [161, 162], some authors still debate whether

the effect exists or whether such an effect is too small to measure [163].

As a scope for future work, one could implement the cavity quantisation

scheme outlined in Chapter 8 in an attempt to predict the correct scaling of

the zero-temperature Casimir force and attribute the effect to a dipole-dipole

interaction between atoms sitting on the mirror surfaces or opposing mirrors.

123



Appendix A

Master equation for dipole-dipole

interaction in free space

In this supplementary chapter I present some of the details and calculations

required to derive a master equation for the dipole-dipole interaction between a

pair of atoms coupled to the free-electromagnetic field. First I will outline the

steps required to obtain the conditional Hamiltonian Ĥcond I(t) and then the reset

operator L(ρ̂S I(t)).

A.1 Ĥcond I(t) for dipole-dipole interaction in free

space

The first step requires substituting the interaction picture Hamiltonian ĤI(t) from

Eq. (4.9) into the expression derived for the conditional Hamiltonian Ĥcond I(t) in

Eq. (3.25). Doing so, one finds that the conditional Hamiltonian Ĥcond I(t) of an

atom in free space equals

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∑
i,j=a,b

∑
λ=1,2

∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′)

×
(
D̂

(i)∗
12 · êkλ

)(
D̂

(j)
12 · êkλ

)
eik·(ri−rj) σ̂+

i σ̂
−
j (A.1)
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A.1 Ĥcond I(t) for dipole-dipole interaction in free space

Again making use of Eqs. (3.45) – (3.47) as well as the atomic dipole moments

defined in Eq. (7.6), one finds that

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dφ
e2 ‖D12‖2 ω3

16π3ε0c3~

×e−i(ω−ω0)(t′−t′′)
{[
|d(a)

1 |2
(
1− cos2(ϑ)

)
+ |d(a)

3 |2
(
1− sin2(ϑ) sin2(φ)

)
+
(
d

(a)∗
1 d

(a)
3 + d

(a)∗
3 d

(a)
1

)
sin(ϑ) cos(ϑ) sin(φ)

]
σ̂+
a σ̂
−
a

+ e−ik·(ra−rb) ×
[
d

(a)∗
1 d

(b)
1

(
1− cos2(ϑ)

)
+ d

(a)∗
3 d

(b)
3

(
1− sin2(ϑ) sin2(φ)

)
+d

(a)∗
1 d

(b)
2 sin(ϑ) cos(ϑ) cos(φ) + d

(a)∗
1 d

(b)
3 sin(ϑ) cos(ϑ) sin(φ)

+d
(a)∗
3 d

(b)
1 sin(ϑ) cos(ϑ) sin(φ) + d

(a)∗
3 d

(b)
2 sin2(ϑ) sin(φ) cos(φ)

]
σ̂+
a σ̂
−
b

+ eik·(ra−rb) ×
[
d

(b)∗
1 d

(a)
1

(
1− cos2(ϑ)

)
+ d

(b)∗
3 d

(a)
3

(
1− sin2(ϑ) sin2(φ)

)
+d

(b)∗
1 d

(a)
3 sin(ϑ) cos(ϑ) sin(φ) + d

(b)∗
3 d

(a)
1 sin(ϑ) cos(ϑ) sin(φ)

+d
(b)∗
3 d

(a)
2 sin2(ϑ) sin(φ) cos(φ)

]
σ̂+
b σ̂
−
a

+

[
|d(b)

1 |2
(
1− cos2(ϑ)

)
+ |d(b)

2 |2
(
1− sin2(ϑ) cos2(φ)

)
+|d(b)

3 |2
(
1− sin2(ϑ) sin2(φ)

)
+ d

(b)∗
1 d

(b)
2 sin(ϑ) cos(ϑ) cos(φ)

+d
(b)∗
1 d

(b)
3 sin(ϑ) cos(ϑ) sin(φ) + d

(b)∗
2 d

(b)
1 sin(ϑ) cos(ϑ) cos(φ)

+d
(b)∗
2 d

(b)
3 sin2(ϑ) sin(φ) cos(φ) + d

(b)∗
3 d

(b)
1 sin(ϑ) cos(ϑ) sin(φ)

+d
(b)∗
3 d

(b)
2 sin2(ϑ) sin(φ) cos(φ)

]
σ̂+
b σ̂
−
b

}
. (A.2)

The exponential terms in the above equation can be simplified using the def-

inition of the wave vector k and Fig. 4.3. In other words, the atoms are aligned
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A.1 Ĥcond I(t) for dipole-dipole interaction in free space

along the x-axis such that

ra − rb =

 xa − xb
0
0

 =

 x
0
0

 . (A.3)

In the following, x ≡ |xa − xb| ≡ |xb − xa| denotes the distance between the two

atoms (see Eq. (4.13)). Therefore, one can re-express the exponential terms in

the following way

eik·(ra−rb) = eik cos(ϑ)x . (A.4)

The atomic separation x is of the same order of magnitude as the wavelength

of the emitted radiation λ0. Taking this into account and performing the φ-

integration, whilst introducing the new variable s = cos(ϑ), yields

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds
e2 ‖D12‖2 ω3

8π2ε0c3~
e−i(ω−ω0)(t′−t′′)

×
{[
|d(a)

1 |2
(
1− s2

)
+

1

2
|d(a)

3 |2
(
1 + s2

)]
σ̂+
a σ̂
−
a

+ eikxs ×
[
d

(a)∗
1 d

(b)
1

(
1− s2

)
+

1

2
d

(a)∗
3 d

(b)
3

(
1 + s2

)]
σ̂+
a σ̂
−
b

+ eikxs ×
[
d

(b)∗
1 d

(a)
1

(
1− s2

)
+

1

2
d

(b)∗
3 d

(a)
3

(
1 + s2

)]
σ̂+
b σ̂
−
a

+

[
|d(b)

1 |2
(
1− s2

)
+

1

2
|d(b)

2 |2
(
1 + s2

)
+

1

2
|d(b)

3 |2
(
1 + s2

)]
σ̂+
b σ̂
−
b

}
.

(A.5)

Evaluating the s-integration, one obtains the following conditional Hamiltonian

Ĥcond I(t) = − i~
2

1

∆t

Γfree

πω3
0

t+∆t∫
t

dt′
t′∫
t

dt′′
∫ ∞

0

dω ω3 e−i(ω−ω0)(t′−t′′)

×
{
σ̂+
a σ̂
−
a +

3

2

[
sin(kx)

kx
c1 +

(
cos(kx)

(kx)2
− sin(kx)

(kx)3

)
c2

]
σ̂+
a σ̂
−
b

+
3

2

[
sin(kx)

kx
c∗1 +

(
cos(kx)

(kx)2
− sin(kx)

(kx)3

)
c∗2

]
σ̂+
b σ̂
−
a + σ̂+

b σ̂
−
b

}
,

(A.6)
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A.1 Ĥcond I(t) for dipole-dipole interaction in free space

where the constants c1 and c2 are consistent with Eq. (4.14). Therefore, one

obtains the conditional Hamiltonian

Ĥcond I(t) = ~
[
Ca−a σ̂

+
a σ̂
−
a + Ca−b(x) σ̂+

a σ̂
−
b + Cb−a(x) σ̂+

b σ̂
−
a + Cb−b σ̂

+
b σ̂
−
b

]
.

(A.7)

In order to obtain real dipole moments, one requires both atoms to have the same

dipole moment such that D̂
(a)
12 = D̂

(b)
12 in Eq. (7.6) 1. Moreover, this means that

Ca−b(x) = Cb−a(x) = C(x). In addition, it will also be demonstrated that both

constants Ca−a and Cb−b coincide such that Ca−a = Cb−b = A, where A is some

constant. This means one can simplify Eq. (A.7) into the compact form

Ĥcond I(t) = ~
[
A
(
σ̂+
a σ̂
−
a + σ̂+

b σ̂
−
b

)
+ C(x)

(
σ̂+
a σ̂
−
b + σ̂+

b σ̂
−
a

) ]
. (A.8)

Isolating the two constants from the above equation separately and comparing

with the expression in Eq. (A.6), one finds that

A = − i

2π

Γfree

ω3
0

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3 e−i(ω−ω0)(t′−t′′) , (A.9)

where the free-space spontaneous decay rate Γfree is defined as in Eq. (3.62).

Similarly, one finds that

C(x) = − i

2π

Γfree

ω3
0

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3 e−i(ω−ω0)(t′−t′′)

×3

2

{
sin(kx)

kx
c1 +

(
cos(kx)

(kx)2
− sin(kx)

(kx)3

)
c2

}
. (A.10)

In order to evaluate the remaining integrals in Eqs. (A.11) and (A.12) one is

required to making the substitution, ω̃ = ω − ω0. Doing so, one finds that

Eq. (A.11) reduces to

A = − i

2π

Γfree

ω3
0

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3 e−iω̃ , (A.11)

1If complex dipole moments were allowed this could potentially lead to extra damping on
the spontaneous emission rate for the system

127



A.1 Ĥcond I(t) for dipole-dipole interaction in free space

and Eq. (A.12) reduces to

C(x) = − i

2π

Γfree

ω3
0

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3 e−iω̃(t′−t′′)

×3

2

{
sin(kx)

kx
c1 +

(
cos(kx)

(kx)2
− sin(kx)

(kx)3

)
c2

}
. (A.12)

The next step is to evaluate the remaining frequency and time integrations. To

do so, sin(kx) and cos(kx) are decomposed into exponentials. Afterwards, one

substitutes k = ω/c and ω̃ = ω − ω0. Moreover, one considers time intervals ∆t

such that

ω0 � 1/∆t , (A.13)

which is physically well justified by the fact that spontaneous emissions in the

optical regime obey exponential decay laws [48, 49]. This observation allows one

to extend the lower limit of the ω̃-integral to minus infinity, an approximation

also made by previous authors. Infinitely large level shifts (i.e. free-space level

shifts) can be absorbed into the definition of the atomic transition frequency ω0

and one assumes that∫ ∞
−∞

dω̃ ω̃2 e−iω̃(t′−t′′−x/c) = −2π δ′′(t′ − t′′ − x/c) ,∫ ∞
−∞

dω̃ ω̃ e−iω̃(t′−t′′−x/c) = −2iπ δ′(t′ − t′′ − x/c) ,∫ ∞
−∞

dω̃ e−iω̃(t′−t′′−x/c) = 2π δ(t′ − t′′ − x/c) , (A.14)

where δ′ and δ′′ are the first and the second time derivative of the δ-function with

respect to t′′ and x/c denotes some constant. When introducing the exponential

form of sin(kx) and cos(kx) into Eq. (A.12), one also finds terms proportional to

to δ(t′−t′′+x/c). These terms do not contribute to the integration as they do not

exist within the time interval considered here 1. The delta function δ(t′−t′′−x/c)
also does not contribute if the time period ∆t is smaller than x/c. This means

that

∆t� x/c , (A.15)

1The derivatives of the δ-function also do not contribute
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A.2 L(ρ̂S I(t)) for dipole-dipole interaction in free space

which means that the chosen time period must be greater than the time it takes for

light to travel the path between the atoms. In order to simplify the application,

it is worthwhile to introduce a second approximation, namely to neglect any

retardation contribution x/c. This makes sense if the atomic separation lies in

the order of magnitude of the wavelength λ0, as it has already been assumed that

∆t � 1/ω0. Therefore, ∆t � 1/ω0 ≈ x/c is then automatically fulfilled as well.

Finally, performing the time integration, one must assume that the distance of

the atoms is not so large that retardation effects need to be taking into account,

i.e.

∆t � k0x . (A.16)

Doing so, we eventually obtain the conditional Hamiltonian

Ĥcond I(t) = − i~
2

[
Γfreeσ̂

+
a σ̂
−
a + C(x)

(
σ̂+
a σ̂
−
b + σ̂+

b σ̂
−
a

)
+ Γfreeσ̂

+
b σ̂
−
b

]
,

(A.17)

where the dipole-coupling constant is given in Eq. (4.12).

A.2 L(ρ̂S I(t)) for dipole-dipole interaction in free

space

To obtain an expression for the reset operator L(ρ̂S I(t)), one again makes use of

the interaction picture Hamiltonian ĤSB I(t) from Eq. (4.9) and substitutes this

into the reset operator expression in Eq. (3.26). Substituting in from Eq. (4.9),

one finds

L(ρ̂S I(t)) =
1

∆t

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
∑
i=a,b

∑
λ=1,2

∫
R3

d3k
e2ω

16π3ε0~
ei(ω−ω0)(t′−t′′)

×
(
D̂

(i)∗
12 · êkλ

)(
D̂

(j)
12 · êkλ

)
e−ik·(ri−rj)

×〈1kλ|â†kλ|0kλ〉σ̂−j ρ̂S I(t)σ̂
+
i 〈0kλ|âkλ|1kλ〉 . (A.18)

Following the same process as in the previous subsection and this time making

use of ∫ t′−t

t′−(t+∆t)

dξ ei(ω−ω0)ξ =

∫ ∞
−∞

dξ ei(ω−ω0)ξ = 2πδ(ω − ω0) , (A.19)
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A.2 L(ρ̂S I(t)) for dipole-dipole interaction in free space

one finds this generates a reset operator of the from

L(ρ̂S I(t)) = Γfree

[
σ̂−a ρ̂S I(t)σ̂

+
a + σ̂−b ρ̂S I(t)σ̂

+
b

]
+Re(C(x))

[
σ̂−b ρ̂S I(t)σ̂

+
a + σ̂−a ρ̂S I(t)σ̂

+
b

]
, (A.20)

with the dipole-coupling constant is given in Eq. (4.12).
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Appendix B

Calculation of classical phase

shifts for two-sided

semi-transparent mirrors

The aim of this supplementary chapter is to derive a relation between the phase

shifts of incoming and outgoing wave packets as they interact with a two-sided

semi-transparent mirror. Here, I consider the specific case from 5.2.3 where light

is incident on both sides of a semi-transparent mirror. Note that for the perfect

mirror case when light incident from both sides, one does not need to worry about

this problem as the wave packets live in separate Hilbert spaces and will therefore

never meet.

Suppose two relatively well-localised wave packets approach a semi-transparent

mirror from either side. Considering only one specific frequency contribution of

these wave packets with positive wave number k and with

E
(a)
mirr(x, 0) =

[
E

(a)
0 eiξ1 e−ikx + c.c.

]
Θ(x) ,

E
(b)
mirr(x, 0) =

[
E

(b)
0 eiξ2 eikx + c.c.

]
Θ(−x) , (B.1)

where E
(a)
0 and E

(b)
0 denote real amplitudes and ξ1 and ξ2 specify initial phases.

After a sufficiently long time, once both wave packets have seen the mirror, the
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electric field Emirr(x, t) is given by

Emirr(x, t) =
[
raE

(a)
0 ei(ξ1+ϕ1) ei(kx−ωt)

+tbE
(b)
0 ei(ξ2+ϕ2) ei(kx−ωt)

]
Θ(x) ,

+
[
rbE

(b)
0 ei(ξ2+ϕ3) e−i(kx+ωt)

+taE
(a)
0 ei(ξ1+ϕ4) e−i(kx+ωt)

]
Θ(−x)

+c.c. , (B.2)

which is in agreement with Eq. (5.9). Rearranging this equation, one finds that

Emirr(x, t) also equals

Emirr(x, t) =
[
raE

(a)
0 + tbE

(b)
0 ei(ξ2−ξ1+ϕ2−ϕ1)

]
×ei(ξ1+ϕ1) ei(kx−ωt) Θ(x) ,

+
[
taE

(a)
0 + rbE

(b)
0 ei(ξ2−ξ1+ϕ3−ϕ4)

]
×ei(ξ1+ϕ4) e−i(kx+ωt) Θ(−x) + c.c. (B.3)

which shows that maximum interference of electric field amplitudes on one side

of the mirror always implies minimum interference on the other side, when

ei(ξ2−ξ1+ϕ2−ϕ1) = −ei(ξ2−ξ1+ϕ3−ϕ4) . (B.4)

This equation yields

ϕ1 − ϕ2 + ϕ3 − ϕ4 = ±(2n+ 1) π , (B.5)

which is consistent with Eq. (5.11) in the main text. The same applies for the

magnetic field amplitudes which interfere in the same way on the same side of

the mirror, as the electric field amplitudes.
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Appendix C

Calculation of field Hamiltonian

for one-sided perfect mirror

In this supplementary chapter I derive an expression for the field Hamiltonian

Ĥfield for the one-sided perfect mirror scenario. To do so, one must substitute

the electromagnetic field observables Êmirr(x) and B̂mirr(x) from Eq. (5.18) into

Eq. (2.62), which yields

Ĥfield =
A

2

∫ ∞
0

dx

∫ ∞
−∞

dk

∫ ∞
−∞

dk′
~

4πε0Ac

√
ωω′

×2ε0c
2
[(

eikxξ̂k − e−ikxξ̂†k

)(
eik′xξ̂k′ − e−ik′xξ̂†k′

)]
× [1 + sign(kk′)] .(C.1)

Keeping the relevant terms, one finds that this field Hamiltonian can also be

written as

Ĥfield = − ~
8π

∫ 0

−∞
dx

∫ ∞
−∞

dk

∫ ∞
−∞

dk′
√
ωω′

×
(

eikxξ̂k − e−ikxξ̂†k

)(
eik′xξ̂k′ − e−ik′xξ̂†k′

)
× [1 + sign(kk′)] . (C.2)

Finally, employing the relation∫ ∞
0

dx e±ik0x = π δ(k0) , (C.3)

where k0 denotes a constant, to show that

Ĥfield =
1

2

∫ ∞
−∞

dk ~ω
[
ξ̂†kξ̂k + ξ̂kξ̂

†
k

]
. (C.4)
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The above Hamiltonian can then be re-expressed in the standard harmonic oscil-

lator form using the ξ-mode description. This yields the field Hamiltonian

Ĥfield =

∫ ∞
−∞

dk ~ω ξ̂†kξ̂k , (C.5)

up to a constant summand. Therefore, Eqs. (C.4) and (C.5) differ by this constant

summand, which is determined by the commutation relation of the operators ξ̂k

and ξ̂†k. However, as this constant is not necessary for any of the calculations

performed here, one can neglect it and obtain the field Hamiltonian given in

Eq. (C.5).
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Appendix D

Calculation of master equation

for a radiating atom in the

presence of a two-sided

semi-transparent mirror

In this supplementary chapter some of the details and calculations required to

derive a master equation for a radiating atom in the presence of a two-sided semi-

transparent mirror. First the steps required to obtain the conditional Hamiltonian

Ĥcond I(t) are outlined and then the reset operator L(ρ̂S I(t)).

D.1 Ĥcond I(t) for an atom in the presence of a

semi-transparent mirror

As before, one combines Eqs. (3.25) and (6.3) to find that the conditional Hamil-

tonian Hcond I(t) of a radiating atom near a semi-transparent mirror is equal to

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′∫
t

dt′′
∑
λ=1,2

∫
R3

d3k
e2ω

16π3ε0~

×
[

1

η2
a

∣∣∣∣ (D̂∗12 eik·r − ra ˆ̃
D
∗

12 eik·er) · êkλ

∣∣∣∣2 + ...
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D.1 Ĥcond I(t) for an atom in the presence of a semi-transparent mirror

+...
t2b
η2
b

∣∣∣∣ (D̂?
12 · êkλ

) ∣∣∣∣2
]

e−i(ω−ω0)(t′−t′′) σ̂+σ̂−.

(D.1)

Again, it is appropriate to express the atomic dipole moment D̂12 as in Eq. (3.43),

with |d1|2 + |d3|2 = 1. In addition, in this coordinate system, the dipole moment
ˆ̃
D12 of the mirror image of the atom equals

ˆ̃
D12 = ‖D12‖

 −d1

0
d3

 . (D.2)

As in Chapter 3, one can make use of Eqs. (3.45) – (3.47) to simplify the integrals

in Eq. (D.1). Implementing these relations and defining µ as in Eq. (6.8) implies

|d1|2 = µ and |d3|2 = 1 − µ. Taking this into account and performing the φ

integration, whilst introducing two new variables s = cos(ϑ) and ξ = t′ − t′′,

which yields

Ĥcond I(t) = − i~
∆t

t+∆t∫
t

dt′
t′−t∫
0

dξ

∫ ∞
0

dω

∫ 1

−1

ds
e2 ‖D12‖2 ω3

8π2ε0c3~

×
[

1

η2
a

(
1 + r2

a + 2ra cos (2kxs)
) (

1− s2
)
µ

+
1

2η2
a

(
1 + r2

a − 2ra cos (2kxs)
) (

1 + s2
)

(1− µ)

+
t2b
η2
b

(
1− s2

)
µ+

t2b
2η2

b

(
1 + s2

)
(1− µ)

]
×e−i(ω−ω0)ξ σ̂+σ̂− (D.3)

with k = ω/c. Next, one can perform the t′- and s-integration and re-express the

ξ-integration such that

Hcond = ~Cmirr σ̂
+σ̂− (D.4)

with the constant Cmirr given by

Cmirr = − i

2π

Γfree

ω3
0

∞∫
0

dξ

∫ ∞
0

dω ω3e−i(ω−ω0)ξ
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D.1 Ĥcond I(t) for an atom in the presence of a semi-transparent mirror

×
[

1 + r2
a

η2
a

+
t2b
η2
b

− 3ra
η2
a

sin (2kx)

2kx
(1− µ)

−3ra
η2
a

(
cos (2kx)

(2kx)2
− sin (2kx)

(2kx)3

)
(1 + µ)

]
(D.5)

Using the relation derived in Eq. (3.57) to evaluate the ξ-integration yields

Cmirr = − i

2

[
1 + r2

a

η2
a

+
t2b
η2
b

]
Γfree +

1

2π

[
1 + r2

a

η2
a

+
t2b
η2
b

] ∫ ∞
0

dω
ω3

ω − ω0

Γfree

ω3
0

− i

2

(
−3ra
η2
a

)[
sin (2k0x)

2k0x
(1− µ)

+

(
cos (2k0x)

(2k0x)2
− sin (2k0x)

(2k0x)3

)
(1 + µ)

]
Γfree

− 1

2π

3ra
η2
a

∫ ∞
0

dω
ω3

ω − ω0

×
[

sin (2kx)

2kx
(1− µ)−

(
cos (2kx)

(2kx)2
− sin (2kx)

(2kx)3

)
(1 + µ)

]
Γfree

ω3
0

.

(D.6)

From the general form of the conditional Hamiltonian in Eq. (6.5) one can see

that the imaginary part of this constant denotes a spontaneous decay rate, while

its real part denotes an atomic level shift [48, 49]. More concretely, comparing

Eqs. (6.5) and (D.4), one finds that

Γmirr = −2 ImCmirr , ∆mirr = ReCmirr . (D.7)

Demanding that Γmirr equals Γfree for large values of x shows that the expres-

sions in square brackets in Eq. (D.6) equals unity, c.f. Eq. (6.12). The last term

therefore describes an atomic level shift which does not depend on the presence

of the mirror. As usual, this level shift is absorbed into the definition of ω0. The

remaining level shift evaluated using standard quantum optical approximations.

Doing so, one can show that

∆mirr =
3ra
2η2

a

Γfree

×Im

[
i

2k0x
e2ik0x(1− µ)− e2ik0x

(
1

(2k0x)2
+

i

(2k0x)3

)
(1 + µ)

]
.

(D.8)

which equals ∆mirr in Eq. (6.7).
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D.2 L(ρ̂S I(t)) for an atom in the presence of a semi-transparent mirror

D.2 L(ρ̂S I(t)) for an atom in the presence of a

semi-transparent mirror

To obtain an expression for the reset operator L(ρ̂S I(t)), one again makes use of

the interaction picture Hamiltonian ĤSB I(t) from Eq. (6.3) and substitutes this

into the reset operator expression in Eq. (3.26). Following the process outlined

above and making use of∫ t′−t

t′−(t+∆t)

dξ ei(ω−ω0)ξ =

∫ ∞
−∞

dξ ei(ω−ω0)ξ = 2π δ(ω − ω0) , (D.9)

one finds that

L(ρ̂S I(t)) = Γmirr σ̂
− ρ̂S I(t) σ̂

+ (D.10)

with Γmirr given in Eq. (6.7).
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Appendix E

Calculation of master equation

for long-range dipole-dipole

interaction mediated by a

two-sided semi-transparent

mirror

In this supplementary chapter some of the details and calculations required to

derive a master equation for the dipole-dipole interaction between a pair of atoms

which are separated by a thin two-sided semi-transparent mirror are presented.

First the steps required to obtain the conditional Hamiltonian Ĥcond I(t) are out-

lined and then the reset operator L(ρ̂S I(t)).

E.1 Ĥcond I(t) for two atoms separated by a semi-

transparent mirror

Following the same procedure as in previous appendices, one must first substitute

the interaction picture Hamiltonian ĤI(t) from Eq. (7.10) into the expression

derived for the conditional Hamiltonian Ĥcond I(t) in Eq. (3.25). This substitution
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E.1 Ĥcond I(t) for two atoms separated by a semi-transparent mirror

yields

Ĥcond I(t) = ~
[
Caa σ̂

+
a σ̂
−
a + Cab σ̂

+
a σ̂
−
b + Cba σ̂

+
b σ̂
−
a + Cbb σ̂

+
b σ̂
−
b

]
. (E.1)

The constants Caa and Cbb in the above equation can be expressed in the following

way

Caa = − i

∆t

∑
λ=1,2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′)

×
[(

1

η2
a

+
t2b
η2
b

+
2tb
ηaηb

cos(ϕ2)

)
‖D̂(a)

12 · êkλ‖2 +
r2
a

η2
a

‖ ˆ̃
D

(a)∗

12 · êkλ‖2

+

(
2ra
η2
a

cos(k · (ra − r̃a)− ϕ1) +
2ratb
ηaηb

cos(k · (ra − r̃a) + (ϕ2 − ϕ1))

)
×
(
D̂

(a)∗
12 · êkλ

)(
ˆ̃
D

(a)

12 · êkλ

)]
, (E.2)

and

Cbb = − i

∆t

∑
λ=1,2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′)

×
[(

1

η2
b

+
t2a
η2
a

+
2ta
ηaηb

cos(ϕ4)

)
‖D̂(b)

12 · êkλ‖2 +
r2
b

η2
b

‖ ˆ̃
D

(b)

12 · êkλ‖2

+

(
2rb
η2
b

cos(k · (rb − r̃b)− ϕ3) +
2tarb
ηaηb

cos(k · (rb − r̃b) + (ϕ4 − ϕ3))

)
×
(
D̂

(b)∗
12 · êkλ

)(
ˆ̃
D

(b)

12 · êkλ

)]
, (E.3)

In addition, one can define the remaining two constants such that

Cab = − i

∆t

∑
λ=1,2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′) × F,

(E.4)

and

Cba = − i

∆t

∑
λ=1,2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫
R3

d3k
e2ω

16π3ε0~
e−i(ω−ω0)(t′−t′′) × F ∗.

(E.5)
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E.1 Ĥcond I(t) for two atoms separated by a semi-transparent mirror

The function F is defined in the following way

F =

[(
rata
η2
a

+
ra
ηaηb

)
eiϕ1 +

rata
η2
a

e−iϕ4

]
× eik·(era−rb)

(
ˆ̃
D

(a)∗

12 · êkλ

)(
D̂

(b)
12 · êkλ

)
+

[(
rb
ηaηb

+
rbtb
η2
b

)
e−iϕ3 +

rbtb
η2
b

eiϕ2

]
× eik·(ra−erb)

(
D̂

(a)∗
12 · êkλ

)(
ˆ̃
D

(b)

12 · êkλ

)
,

(E.6)

where some terms have been omitted in order to isolate the contributions of F

which arise due to the presence of the mirror i.e. the source of the long-range

dipole-dipole interaction1.

As in previous appendices, one can make use of Eqs. (3.45) – (3.47) to simplify

the integrals in Eqs. (E.1) – (E.6). One must also assume that both atoms have

real dipole moments such that D̂
(a,b)
12 = D̂

(a,b)∗
12 and one can define the dipole

orientation using the relation

µ(a,b) = ‖D̂(a,b)
12 · x̂‖2 , (E.7)

where these denote the normalised vector expressions. Taking this into account

and performing the φ integration in Eqs. (E.2) – (E.5), whilst introducing the

new variables s = cos(ϑ), yields the following expressions for the constants,

Caa = − i

∆t

3Γfree

8πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds ω3e−i(ω−ω0)(t′−t′′)

×
[(

1 + r2
a

η2
a

+
t2b
η2
b

+
2tb
ηaηb

cos(ϕ2)

)
×
(
µ(a)(1− s2) + (1− µ(a))

1

2
(1 + s2)

)
+

(
2ra
η2
a

cos(2kxas− ϕ1) +
2ratb
ηaηb

cos(2kxas+ (ϕ2 − ϕ1))

)
×
(
−µ(a)(1− s2) + (1− µ(a))

1

2
(1 + s2)

)]
, (E.8)

1For reference, the two omitted terms take the form

(O1) =
[(

ta
η2
a

+
tatb
ηaηb

)
e−iϕ4 +

(
tb
η2
b

+
tatb
ηaηb

)
eiϕ2 +

1
ηaηb

]
× eik·(ra−rb)

(
D̂(a)∗

12 · êkλ

)(
D̂(b)

12 · êkλ

)
(O2) =

rarb
ηaηb

eik·(era−erb)

(
ˆ̃D

(a)∗

12 · êkλ

)(
ˆ̃D

(b)

12 · êkλ

)
.

Note that these terms will not dominate as the long-range interaction requires the condition
that one real atom sits in the immediate vicinity of a mirror-image atom i.e. this separation is
on the order of the wavelength of the emitted radiation λ0.
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E.1 Ĥcond I(t) for two atoms separated by a semi-transparent mirror

and

Cbb = − i

∆t

3Γfree

8πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds ω3e−i(ω−ω0)(t′−t′′)

×
[(

1 + r2
b

η2
b

+
t2a
η2
a

+
2ta
ηaηb

cos(ϕ4)

)
×
(
µ(b)(1− s2) + (1− µ(b))

1

2
(1 + s2)

)
+

(
2rb
η2
b

cos(2kxbs− ϕ3) +
2rbta
ηaηb

cos(2kxbs+ (ϕ4 − ϕ3))

)
×
(
−µ(b)|2(1− s2) + (1− µ(b))

1

2
(1 + s2)

)]
(E.9)

In addition, one can define the remaining constants such that

Cab = − i

∆t

3Γfree

8πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω

∫ 1

−1

ds ω3e−i(ω−ω0)(t′−t′′)

×
[(

rata
η2
a

ei(ϕ1−ϕ4) +
rbtb
η2
b

ei(ϕ2−ϕ3) +
1

ηaηb

(
ra eiϕ1 + rb e−iϕ3

))
×eikexs (−d(a)

1 d
(b)
1 (1− s2) + d

(a)
3 d

(b)
3

1

2
(1 + s2)

)]
, (E.10)

where |̃ra − rb| ≡ |ra − r̃b| = x̃. This denotes the distance between an atom and

the mirror-image of another atom. Therefore, provided that this separation is

of the same order of magnitude as the wavelength of the emitted radiation λ0,

it should be possible to observe oscillations in atomic lifetimes for fairly large

atom-mirror distances. The next step requires evaluating the s-integration in

Eqs. (E.8) – (E.10), which yields the constants

Caa = − i

2

1

∆t

Γfree

πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3e−i(ω−ω0)(t′−t′′)

×
[(

1 + r2
a

η2
a

+
t2b
η2
b

+
2tb
ηaηb

cos(ϕ2)

)
+

(
3ra
η2
a

cos(ϕ1) +
3ratb
ηaηb

cos(ϕ2 − ϕ1)

)
×
[

sin(2kxa)

(2kxa)
(1− µ(a)) +

(
cos(2kxa)

(2kxa)2
− sin(2kxa)

(2kxa)3

)
(1 + µ(a))

]]
,

(E.11)
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with,

Cbb = − i

2

1

∆t

Γfree

πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3e−i(ω−ω0)(t′−t′′)

×
[(

1 + r2
b

η2
b

+
t2a
η2
a

+
2ta
ηaηb

cos(ϕ4)

)
+

(
3rb
η2
b

cos(ϕ3) +
3rbta
ηaηb

cos(ϕ4 − ϕ3)

)
×
[

sin(2kxb)

(2kxb)
(1− µ(b)) +

(
cos(2kxb)

(2kxb)2
− sin(2kxb)

(2kxb)3

)
(1 + µ(b))

]]
.

(E.12)

The other two constants Cab and Cba can be expressed in the following way

Cab = − i

2

1

∆t

3Γfree

2πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3e−i(ω−ω0)(t′−t′′)

×
[

sin(kx̃)

(kx̃)
c̃1 +

(
cos(kx̃)

(kx̃)2
− sin(kx̃)

(kx̃)3

)
c̃2

]
×
(
rata
η2
a

ei(ϕ1−ϕ4) +
rbtb
η2
b

ei(ϕ2−ϕ3) +
1

ηaηb

(
rae

iϕ1 + rbe
−iϕ3

))
,(E.13)

and

Cba = − i

2

1

∆t

3Γfree

2πω3
0

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∫ ∞

0

dω ω3e−i(ω−ω0)(t′−t′′)

×
[

sin(kx̃)

(kx̃)
c̃∗1 +

(
cos(kx̃)

(kx̃)2
− sin(kx̃)

(kx̃)3

)
c̃∗2

]
×
(
rata
η2
a

ei(ϕ1−ϕ4) +
rbtb
η2
b

ei(ϕ2−ϕ3) +
1

ηaηb

(
rae

iϕ1 + rbe
−iϕ3

))
,(E.14)

where x̃ denotes the separation of a real atom and a mirror-image atom and in

analogy to Eq. (4.14), c̃1 and c̃2 can be defined in the following way

c̃1 =

(
D̂

(a)
12 · ˆ̃

D
(b)

12

)
−
(
D̂

(a)
12 · x̂

)(
ˆ̃
D

(b)

12 · x̂
)
,

c̃2 =

(
D̂

(a)
12 · ˆ̃

D
(b)

12

)
− 3

(
D̂

(a)
12 · x̂

)(
ˆ̃
D

(b)

12 · x̂
)
, (E.15)

where x̂ and D̂
(i)
12 denote the unit vectors.

Finally, one can solve the remaining integrals in Eqs. (E.11) – (E.14) by mak-

ing use of the relation in Eq. (3.57). First, lets consider the constant Caa and
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evaluating the remaining integrals through the given relation. Doing so and ig-

noring level shifts, one finds that

Caa = − i

2
Γ

(aa)
mirr , (E.16)

where,

Γ
(aa)
mirr =

(
1 + r2

a

η2
a

+
t2b
η2
b

+
2tb
ηaηb

cos(ϕ2)

)
+

(
3ra
η2
a

cos(ϕ1) +
3ratb
ηaηb

cos(ϕ2 − ϕ1)

)
×
[

sin(2kxa)

(2kxa)
(1− µ(a)) +

(
cos(2kxa)

(2kxa)2
− sin(2kxa)

(2kxa)3

)
(1 + µ(a))

]
.(E.17)

Similarly for the constant Cbb, one finds that

Cbb = − i

2
Γ

(bb)
mirr , (E.18)

where,

Γ
(bb)
mirr =

(
1 + r2

b

η2
b

+
t2a
η2
a

+
2ta
ηaηb

cos(ϕ4)

)
+

(
3ra
η2
a

cos(ϕ3) +
3ratb
ηaηb

cos(ϕ4 − ϕ3)

)
×
[

sin(2kxb)

(2kxb)
(1− µ(b)) +

(
cos(2kxb)

(2kxb)2
− sin(2kxb)

(2kxb)3

)
(1 + µ(b))

]
. (E.19)

The remaining integrals in Eqs. (E.13) and (E.14) can be solved similarly. Fol-

lowing this procedure, one finds that

Cab = − i

2
C̃(x̃) , (E.20)

and similarly,

Cba = − i

2
C̃∗(x̃) . (E.21)

Moreover, one can define the distance-dependent constant C̃(x̃) in the following

way

C̃(x̃) =
3

2

[
sin(k0x̃)

k0x̃
c̃1 +

(
cos(k0x̃)

(k0x̃)2
− sin(k0x̃)

(k0x̃)3

)
c̃2

]
Γfree

×
(
rata
η2
a

ei(ϕ1−ϕ4) +
rbtb
η2
b

ei(ϕ2−ϕ3) +
1

ηaηb

(
rae

iϕ1 + rbe
−iϕ3

))
,

(E.22)
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where the above equation denotes the real part of the contribution. This part

is responsible for the spontaneous emission rate of the system, where as the

imaginary part contributes to the atomic level shifts. Noting the form of the long-

range dipole-coupling constant C̃(x̃), one can observe a strong analogy between

this and the form of the dipole-coupling constant for two interacting atoms in

free space (c.f. Eq. (4.12)).

Combining the above results with the conditional Hamiltonian outlined earlier

in Eq. (E.1), one obtains the expression

Ĥcond I(t) = − i~
2

[
Γ

(aa)
mirr σ̂

+
a σ̂
−
a + C̃(x̃) σ̂+

a σ̂
−
b + C̃∗(x̃) σ̂+

b σ̂
−
a + Γ

(bb)
mirr σ̂

+
b σ̂
−
b

]
.

(E.23)

E.2 L(ρ̂S I(t)) for two atoms separated by a semi-

transparent mirror

In order to obtain an expression for the reset operator L(ρ̂S I(t)), one again makes

use of the interaction picture Hamiltonian ĤSB I(t) from Eq. (7.10) and substitutes

this into the reset operator expression in Eq. (3.26). Following the same procedure

as above and making use of∫ t′−t

t′−(t+∆t)

dξ ei(ω−ω0)ξ =

∫ ∞
−∞

dξ ei(ω−ω0)ξ = 2π δ(ω − ω0) , (E.24)

one finds this generates a reset operator of the form

L(ρ̂S I(t)) = Γ
(aa)
mirrσ̂

−
a ρ̂S I(t)σ̂

+
a + Γ

(bb)
mirrσ̂

−
b ρ̂S I(t)σ̂

+
b

+Re(C̃(x̃))σ̂−b ρ̂S I(t)σ̂
+
a + Re(C̃(x̃)∗)σ̂−a ρ̂S I(t)σ̂

+
b . (E.25)
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[23] N. Bohr. Über die anwendung der quantentheorie auf den atombau: I.

grundpostulate der quantentheorie. Z. Phys., 13:117–65, 1923.

[24] N. Bohr. The structure of the atom. Nature, 112:29–41, 1923. 15

[25] P. A. M. Dirac. The fundamental equations of quantum mechanics. Proc.

R. Soc. A, 109:642–653, 1925. 16, 20

[26] P. A. M. Dirac. The principles of Quantum Mechanics. Claredon Press

(Oxford), 1958. 16

[27] J. D. Jackson. From lorenz to coulomb and the other explicit gauge trans-

formations. Am. J. Phys., 70:917–28, 2002. 20

[28] R. Bennett, T. M. Barlow, and A. Beige. A physically-motivated quanti-

sation of the electromagnetic field. Eur. J. Phys., 37:014001, 2015. 23, 24,

27, 28, 66

[29] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov. Invited review

article: single-photon sources and detectors. Rev. Sci. Instrum., 82:071101,

2011. 23

[30] F. Marsili et al. Detecting single infrared photons with 93% system effi-

ciency. Nat. Photon, 7:210, 2013.

[31] A. Kuhn, M. Hennrich, , and G. Rempe. Deterministic single-photon source

for distributed quantum networking. Phys. Rev. Lett., 89:067901, 2002.

[32] S. Scheel. Single-photon sources - an introduction. J. Mod. Opt., 56:141,

2009.

148



REFERENCES

[33] H. C. Bennett and G. Brassard. Quantum cryptography: public key dis-

tribution and coin tossing. Proc. IEEE Int. Conf. on Computers, Systems

and Signal Processing, page 175, 1984.

[34] A. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett.,

67:661, 1991.

[35] N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptogra-

phy. Rev. Mod. Phys., 74:145, 2002.

[36] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum

computation with linear optics. Nature, 409:46, 2001.

[37] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J.

Milburn. Linear optical quantum computing with photonic qubits. Rev.

Mod. Phys., 79:135, 2007.

[38] D. L. Andrews. Physicality of the photon. J. Phys. Chem., 4:3878, 2013.

23

[39] D. V. Schroeder and M. E. Peskin. An Introduction To Quantum Field

Theory. CRC Press, 1995. 28, 36

[40] A. Messiah. Quantum mechanics. Dover publications (New York), 1999.

[41] M. O. Scully and M. S. Zubairy. Quantum optics. Cambridge university

press, 1997.

[42] R. Loudon. The quantum theory of light. Oxford University Press, 2000.

28, 34

[43] P. A. M. Dirac. The quantum theory of the emission and absorption of

radiation. Proc. R. Soc. A, 114:243–265, 1927. 30

[44] R. P. Feynman. Quantum Electrodynamics (Frontiers in Physics). Perseus,

1998. 30

[45] J. Schwinger. Selected papers on quantum electrodynamics. Courier Corpo-

ration, 1958. 30

149



REFERENCES

[46] E. Fermi. Nuclear physics. University of Chicago press, 1950. 31

[47] G. S. Agarwal. Springer Tracts in Modern Physics; Quantum Optics.

Springer Verlag Berlin, 1974. 31

[48] G. C. Hegerfeldt. How to reset an atom after a photon detection; applica-

tions to photon counting processes. Phys. Rev. A, 47(449), 1993. 38, 86,

128, 137

[49] A. Stokes, A. Kurcz, T. P. Spiller, and A. Beige. Extending the validity

range of quantum optical master equations. Phys. Rev. A, 85(053805), 2012.

31, 34, 40, 49, 62, 87, 128, 137

[50] W. H. Zurek. Decoherence, einselection, and the quantum origins of the

classical. Rev. Mod. Phys., 75(715), 2003. 34

[51] C. Schön and A. Beige. Analysis of a two-atom double-slit experiment based

on environment-induced measurements. Phys. Rev. A, 64(023806), 2001. 34

[52] J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissi-

pative processes in quantum optics. Phys. Rev. Lett., 68(580), 1992. 38

[53] H. Carmichael. An Open Systems Approach to Quantum Optics, volume 18

of Lecture Notes in Physics. Springer-Verlag, 1993. 38

[54] Ram P. Kanwal. Linear Integral Equations: theory and technique.
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