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Abstract

The immobilization of high level nuclear waste is a very important aspect of the nuclear industry. In

general, it is necessary to stabilise high level nuclear waste into a form that will retain its integrity

for extended periods of time. The resulting wasteforms must be able to retain their durability

and integrity for the timescale for which the incorporated radioactive elements emit radiation.

This time scale extends to thousands of years and it is not possible to establish the long-term

reliability of the new wasteforms only by experimental methods. Computational simulations of the

wasteforms have the ability to provide detailed information regarding the structural changes in the

wasteform due to the creation of an radiation damage at short timescales that can be used along

with experimental approaches to predict the long term behaviour of the wasteforms. Traditional

methods used to analyse radiation damage effects in computer models of glass wasteforms are

based on the Wigner-Seitz method which ignores the properties of specific bonds and the number

of broken bonds associated with the displacement of a particle from its initial position. Thus, it

is necessary to develop novel computational methods to characterise the radiation damage effects

with increased accuracy.

Work presented in this thesis, outlines the development of new topological based approaches to

the characterisation of radiation damage effects in computer models of recoil damaged borosilicate

and iron phosphate glasses. This method utilises a modified set of the well known Steinhardt

order parameters and introduces a new set of distance-dependent order parameters, referred to as

Hermite order parameters. The methods were developed using zircon crystal as a test structure, to

establish the accuracy of the new approach, and then applied to the irradiated borosilicate and iron

phosphate glass models to determine the behaviour of the glasses under irradiation. Additional

structural analysis of the simulated structures was performed using primitive ring statistics.

The results of the analysis show that one of the topological methods proposed in this work

succeeds in providing new insights regarding the effects of radiation damage in terms of bond

defects. The simulated structures show significant tolerance to irradiation. For the borosilicate

glass models, the Steinhardt and Hermite order parameters based methods suggest that the sil-

ica network is almost completely recovered, in contrast with the predictions of the Wigner-Seitz

method, according to which a significant number of silicon particles are permanently damaged.

Additionally it is found that the majority of the damage is due to broken B-O bonds. For the iron

phosphate glasses the topological analysis suggest that only a small percentage of P-O bonds are

affected by the creation of the damage cascade. Using the Steinhardt order parameters method

it is also revealed that a radiation damage event affects the geometry of the SiO4 and PO4 tetra-

hedra in the borosilicae and iron phosphate glass models respectively, by creating variations in

the values of O-Si-O, O-P-O angles and Si-O, P-O bond lengths. Primitive ring statistics analysis

in the borosilicate glass models reveal that the creation of a radiation damage cascade favours

the formation of higher order primitive rings. However, the distribution of the ring sizes in the
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recovered structures is very close to the one of the undamaged glass models, suggesting a strong

recovery of the network of the glasses. An attempt to perform a primitive ring statistics analysis

in the iron phosphate glasses failed to provide any results, as no primitive rings were detected in

line with existing models for the structure of phosphate glasses.
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3.5.2 Nosé-Hoover barostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Integrating the equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.2 Explicit Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents ix

3.6.3 Numerical solution of the simple harmonic oscillator . . . . . . . . . . . . . 59

3.6.4 Verlet’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.5 Verlet’s velocity algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Interaction potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8.1 Electrostatic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8.2 Van-der-Waals interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.3 Short range potentials and the Lennard-Jones potential . . . . . . . . . . . 67

3.8.4 Buckingham potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8.5 Ziegler-Biersack-Littmark short range potential . . . . . . . . . . . . . . . . 69

3.8.6 Long range electrostatic potentials . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Molecular dynamics simulations on glass wasteforms . . . . . . . . . . . . . . . . . 74

4 Defect characterization techniques 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Defect counting: The Wigner-Seitz method . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 The necessity of a topological approach . . . . . . . . . . . . . . . . . . . . 83

4.3 Steinhardt order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Tesseral spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Symmetry of tesseral spherical harmonics . . . . . . . . . . . . . . . . . . . 87

4.3.3 Calculation of Steinhardt order parameters . . . . . . . . . . . . . . . . . . 87

4.3.4 The effect of the coordination number . . . . . . . . . . . . . . . . . . . . . 91

4.4 Steinhardt order parameters of simple cubic crystals . . . . . . . . . . . . . . . . . 96

4.4.1 Primitive cubic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 BCC lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 FCC lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Hermite order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Calculation of Hermite order parameters . . . . . . . . . . . . . . . . . . . . 102

4.5.2 The effect of coordination number . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Hermite order parameters of simple cubic crystals . . . . . . . . . . . . . . . . . . . 104

4.7 Ring statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1 Rings definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.2 Identifying primitive rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Developing topological methods towards radiation damage characterisation 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Zircon crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Creating a zircon crystal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Potentials for radiation damaged zircon simulations . . . . . . . . . . . . . 115

5.3.2 Optimization results: Choosing the correct potential . . . . . . . . . . . . . 117

5.3.3 Creating a radiation damage cascade . . . . . . . . . . . . . . . . . . . . . . 118

5.3.4 Thermostat evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Algorithmic details for defect analysis . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



x Contents

5.4.2 Global and partial order parameters . . . . . . . . . . . . . . . . . . . . . . 122

5.4.3 Species specific order parameters . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.4 Treatment of surface effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.2 Global Steinardt order parameters . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.3 Partial Steinhardt order parameters . . . . . . . . . . . . . . . . . . . . . . 131

5.5.4 Partial Hermite order parameters . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5.5 Species specific Steinhardt order parameters . . . . . . . . . . . . . . . . . . 147

5.5.6 Species specific Hermite order parameters . . . . . . . . . . . . . . . . . . . 148

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Radiation damage in borosilicate glasses 153

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Creating SBN12 and SBN14 borosilicate glass models . . . . . . . . . . . . . . . . 154

6.2.1 Creating a radiation damage cascade . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Algorithmic details of defect analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.2 Partial Steinhardt order parameters . . . . . . . . . . . . . . . . . . . . . . 160

6.4.3 Partial Hermite order parameters . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.4 Primitive ring statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Radiation damage in iron prosphate glasses 193

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2 Creating iron phosphate glass models . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.1 Creating a radiation damage cascade . . . . . . . . . . . . . . . . . . . . . . 198

7.3 Algorithmic details for defect analysis . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4.2 Partial Steinhardt order parameters . . . . . . . . . . . . . . . . . . . . . . 199

7.4.3 Partial Hermite order parameters . . . . . . . . . . . . . . . . . . . . . . . . 208

7.4.4 Primitive ring statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.5 Topological description of the redox states of the irradiated IPG1 glass . . . . . . . 215

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8 Conclusions and proposed further work 231

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.1.1 Development of topological methods towards the characterisation of radia-

tion damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.1.2 Topological analysis of irradiated borosilicate and iron phosphate glass models233

8.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.2.1 Extending the timescales and the system size of the simulations . . . . . . . 235



Contents xi

8.2.2 Multiple projectile simulations . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2.3 Simulations in various ensembles . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2.4 Improvement of the interaction potentials . . . . . . . . . . . . . . . . . . . 237

8.2.5 Actinide doping simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2.6 Investigation of chain formation in iron phosphate glasses . . . . . . . . . . 237

8.2.7 Experimental validation of the computer models . . . . . . . . . . . . . . . 237

A Steinhardt order parameters mathematical details 239

A.1 The effect of the coordination number . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.1 Reference particle with one neighbour . . . . . . . . . . . . . . . . . . . . . 239

A.1.2 Reference particle with two or more neighbours . . . . . . . . . . . . . . . . 239

A.2 Steinhardt order parameters of simple cubic crystals . . . . . . . . . . . . . . . . . 240

B Primitive ring statistics code details 247

Bibliography 257





List of Figures

1.1 The number of existing nuclear reactors as of August 2018 and reactors under con-

struction per country [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Illustration of the fission reaction described by Eq. 1.5. The mother 235
92U nucleus

is bombarded by a neutron and converted to the excited and unstable 236
92U. The

latter then splits into two lighter nuclei and releases 3 neutrons and a significant

amount of energy in the form of gamma photons. . . . . . . . . . . . . . . . . . . . 7

1.3 The nuclear fission product yields for the chain reactions of the thermal neutron

fission of 235U and 239Pu, as a function of the mass of the daughter nuclei [2]. . . . 8

1.4 Schematic diagram of the nuclear fuel cycle [35]. . . . . . . . . . . . . . . . . . . . 11

1.5 The production of uranium in tonnes in 2017 [3]. . . . . . . . . . . . . . . . . . . . 12

1.6 Cutaway of a fuel assembly used in the Advanced Gas-Cooled Reactors [4]. . . . . 13

1.7 Diagrams of the main nuclear reactor types: (a) a Pressurised Water Reactor [5],

(b) a Boiling Water Reactor [6], (c) a Pressurised Heavy water reactor [7] and (d)

an Advanced Gas-Cooled Reactor [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Area chart of the radioactive waste in UK by percentage [9]. . . . . . . . . . . . . . 21

1.9 Illustration of a typical vitrification process. . . . . . . . . . . . . . . . . . . . . . . 23

1.10 The waste hierarchy implemented in the UK for the radioactive waste management

[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Diagram of the specific volume against the temperature for the liquid to crystal and

liquid to glass transitions [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Diagram of the specific heat against the temperature for the liquid to crystal and

liquid to glass transitions [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The modification of a simple silicate glass network due to the addition of an alkali

oxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 A typical short range silica glass structure formed by three [SiO4/2] tetrahedra con-

nected via bridging oxygens O4 and O7. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Structure of a typical borosilicate glass. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 The amplitude of the vibration as a function of time, for a simple harmonic oscillator,

as calculated using Euler’s, second and fourth order Runge-Kutta integration methods. 61

3.2 The amplitude of the vibration of a simple harmonic oscillator as calculated using

the two different Runge-Kutta methods for a longer simulation. . . . . . . . . . . . 62

3.3 Illustration of periodic boundary conditions in a simple two dimensional system. . 65

3.4 Plot of φLJ(r)/ε versus r/rm of the Lennard-Jones pair potential. . . . . . . . . . . 68

3.5 A typical form of the Buckingham potential . . . . . . . . . . . . . . . . . . . . . . 69

xiii



xiv List of Figures

3.6 A typical form of the short range ZBL potential. . . . . . . . . . . . . . . . . . . . 70

3.7 A typical splined interaction potential, along with the Buckingham and ZBL potentials. 71

4.1 Construction of a Wigner-Seitz cell in a simple 2D case . . . . . . . . . . . . . . . 82

4.2 Typical defects in a simple crystalline structure . . . . . . . . . . . . . . . . . . . . 82

4.3 Problems associated with Wigner-Seitz defect counting method. . . . . . . . . . . . 84

4.4 The symmetry in a simple cubic lattice. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Algorithm for the calculation of Steinhardt order parameters. Na is the total number

of atoms of the same species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Plots of Q4 values against the average neighbour distance for a reference particle

with 1-8 neighbours located at random positions. . . . . . . . . . . . . . . . . . . . 93

4.7 Plots of Q6 values against the average neighbour distance for a reference particle

with 1-8 neighbours located at random positions. . . . . . . . . . . . . . . . . . . . 94

4.8 Plots of Q6 against Q4 values for a reference particle with 1-8 neighbours located at

random positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.9 The first three coordinate shells of a primitive cubic cell system. . . . . . . . . . . 97

4.10 The first three neighbour cells of a bcc lattice (left) and a fcc lattice (right). . . . . 100

4.11 Algorithm for the calculation of the Hermite order parameters. Na is the total

number of atoms of the same species. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.12 Plots of R4 values against the average neighbour distance for a reference particle

with 1-8 neighbours located at random positions. . . . . . . . . . . . . . . . . . . . 105

4.13 Plots of R6 values against the average neighbour distance for a reference particle

with 1-8 neighbours located at random positions. . . . . . . . . . . . . . . . . . . . 106

4.14 Plots of R6 against R4 values for a reference particle with 1-8 neighbours located at

random positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.15 Plots of R6 against R4 values for 4 to 8 neighbours with adjusted axis scales. . . . . 108

4.16 A sample topological network with 11 nodes and 12 links. . . . . . . . . . . . . . . 111

4.17 The concept of prime-mid-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Zircon unit cell structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 3D representation of the SiO4 tetrahedra and ZrO8 dodecahedra . . . . . . . . . . 115

5.3 Potentials proposed by Trachenko et al. [12] (2004). . . . . . . . . . . . . . . . . . 120

5.4 Temperature plot vs. time of a irradiated system simulated using four different

constant volume thermostats, NVE, NVT Nose-Hoover, NVT Berendsen and NVT

Langevin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Radial distribution functions for the Zr-Si, Zr-O and Si-O pairs and the total radial

distribution function of the undamaged zircon crystal. . . . . . . . . . . . . . . . . 123

5.6 Evolution of Steinhardt order parameters during the radiation damage process of a

zirconium atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 Radial distribution functions for the Zr-Zr, Si-Si and O-O pairs. . . . . . . . . . . . 126

5.8 Screenshots of the zircon crystal at four different stages of the damage cascade creation.127

5.9 Evolution of vacancies (interstitials) in the damaged zircon structure. . . . . . . . . 128

5.10 Q6(Q4) scatter of global Steinhardt order parameters for the initial undamaged zir-

con crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



List of Figures xv

5.11 Q6(Q4) scatter of global Steinhardt order parameters for t = 0.15 ps. . . . . . . . . 130

5.12 Q6(Q4) scatter of global Steinhardt order parameters for t = 4.75 ps. . . . . . . . . 131

5.13 Q6(Q4) scatter of the global Steinhardt order parameters for the zirconium atoms

at t = 0.15 ps and t = 4.75 ps, highlighting the coordination number . . . . . . . . 132

5.14 Q6(Q4) scatter of the global Steinhardt order parameters for the silicon atoms at

t = 0.15 ps and t = 4.75 ps, highlighting the coordination number . . . . . . . . . . 133

5.15 Q6(Q4) scatter of the global Steinhardt order parameters for the silicon atoms at

t = 0.15 ps and t = 4.75 ps, highlighting the coordination number . . . . . . . . . . 134

5.16 Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 0.00 ps, highlighting the coordination number . . . . . . . . . . 136

5.17 Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 0.15 ps, highlighting the coordination number . . . . . . . . . . 137

5.18 Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 4.75 ps, highlighting the coordination number . . . . . . . . . . 138

5.19 The effect of atomic vibrations in the Q6(Q4) values of partial Steinhardt order

parameters of a zircon crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.20 Comparison of Q6(Q4) data points between the structure at maximum damage with

those of the vibrational effect for the Zr-Si and Zr-O pairs (top) and Si-O pairs

(bottom), highlighting the coordination number . . . . . . . . . . . . . . . . . . . . 140

5.21 Comparison of Q6(Q4) data points between the structure at t = 4.75 ps, with those

of the vibrational effect for the Zr-Si and Zr-O pairs (top) and Si-O pairs (bottom),

highlighting the coordination number . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.22 Comparison of number of bond defects for Zr-Si, Zr-O and Si-O pairs calculated

using partial Steinhardt order parameters and by simple calculation of coordination

numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.23 R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 0.00 ps, highlighting the coordination number . . . . . . . . . . 144

5.24 R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 0.15 ps, highlighting the coordination number . . . . . . . . . . 145

5.25 R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order

parameters for t = 4.75 ps, highlighting the coordination number . . . . . . . . . . 146

5.26 Comparison of number of bond defects for Zr-Si, Zr-O and Si-O pairs calculated

using partial Hermite order parameters and by simple calculation of coordination

numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.27 The time evolution of Q1, Q6 and Q9 for the zirconium species. The plot demon-

strates the values of Q`(t)−Q`(0) normalized to give unit maxima. These three were

the only SOPs that presented a damaged-like behaviour. . . . . . . . . . . . . . . . 148

5.28 Comparison between the number of defects of the zirconium, silicon and oxygen

atoms calculated using Wigner-Seitz method and the number of oxygen damaged

atoms calculated using SOP and HOP methods. . . . . . . . . . . . . . . . . . . . 149

6.1 The melt-quench routine for the creation of borosilicate glass models. . . . . . . . 155

6.2 Partial and total radial distribution functions of the SBN12 borosilicate glass. . . . 156



xvi List of Figures

6.3 Partial and total radial distribution functions of the SBN14 borosilicate glass. . . . 157

6.4 Number of displaced atoms versus time for the radiation damaged SBN12 glass

calculated using defect counting method. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Number of displaced atoms versus time for the radiation damaged SBN14 glass

calculated using defect counting method. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6 The evolution of the number of 4-coordinated boron atoms (top), of 3-coordinated

boron atoms (middle) and 4-coordinated silicon atoms (bottom) of the SBN12

radiation damaged glass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 The evolution of the number of 4-coordinated boron atoms (top), of 3-coordinated

boron atoms (middle) and 4-coordinated silicon atoms (bottom) of the SBN14

radiation damaged glass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.8 Q6(Q4) plot of the boron atoms in the initial undamaged structure of the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.9 Q6(Q4) plot of the boron atoms at t = 0.35 ps for the SBN12 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 164

6.10 Q6(Q4) plot of the boron atoms in the final damaged structure of the SBN12 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.165

6.11 Q6(Q4) plot of the silicon atoms in the initial undamaged structure of the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.12 Q6(Q4) plot of the silicon atoms at t = 0.35 ps for the SBN12 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 166

6.13 Q6(Q4) plot of the silicon atoms in the final damaged structure of the SBN12 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.166

6.14 Q6(Q4) plot of the boron atoms in the initial undamaged structure of the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.15 Q6(Q4) plot of the boron atoms at t = 0.35 ps for the SBN14 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 167

6.16 Q6(Q4) plot of the boron atoms in the final damaged structure of the SBN14 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.168

6.17 Q6(Q4) plot of the silicon atoms in the initial undamaged structure of the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.18 Q6(Q4) plot of the silicon atoms at t = 0.35 ps for the SBN14 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 169

6.19 Q6(Q4) plot of the silicon atoms in the final damaged structure of the SBN14 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.169

6.20 Q6(Q4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



List of Figures xvii

6.21 Q6(Q4) plot of the initially 3-coordinated boron atoms in the final structure of the

SBN12 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.22 Q6(Q4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.23 Q6(Q4) plot of the initially 4-coordinated boron atoms in the final structure of the

SBN12 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.24 Q6(Q4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.25 Q6(Q4) plot of the initially 3-coordinated boron atoms in the final structure of the

SBN14 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.26 Q6(Q4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.27 Q6(Q4) plot of the initially 4-coordinated boron atoms in the final structure of the

SBN14 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.28 Number of atoms associated with bond defects for the radiation damaged SBN12

glass, calculated using the partial Steinhardt order parameters method. . . . . . . 174

6.29 Number of atoms associated with bond defects for the radiation damaged SBN14

glass, calculated using the partial Steinhardt order parameters method. . . . . . . 174

6.30 R6(R4) plot of the boron atoms in the initial undamaged structure of the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.31 R6(R4) plot of the boron atoms at t = 0.35 ps for the SBN12 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 176

6.32 R6(R4) plot of the boron atoms in the final damaged structure of the SBN12 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.177

6.33 R6(R4) plot of the silicon atoms in the initial undamaged structure of the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.34 R6(R4) plot of the silicon atoms at t = 0.35 ps for the SBN12 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 178

6.35 R6(R4) plot of the silicon atoms in the final damaged structure of the SBN12 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.178

6.36 R6(R4) plot of the boron atoms in the initial undamaged structure of the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xviii List of Figures

6.37 R6(R4) plot of the boron atoms at t = 0.35 ps for the SBN14 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 179

6.38 R6(R4) plot of the boron atoms in the final damaged structure of the SBN14 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.180

6.39 R6(R4) plot of the silicon atoms in the initial undamaged structure of the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.40 R6(R4) plot of the silicon atoms at t = 0.35 ps for the SBN14 glass, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 181

6.41 R6(R4) plot of the silicon atoms in the final damaged structure of the SBN14 glass,

highlighting the coordination number, as indicated in the colourbar next to the plots.181

6.42 R6(R4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.43 R6(R4) plot of the initially 3-coordinated boron atoms in the final structure of the

SBN12 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.44 R6(R4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN12

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.45 R6(R4) plot of the initially 4-coordinated boron atoms in the final structure of the

SBN12 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.46 R6(R4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.47 R6(R4) plot of the initially 3-coordinated boron atoms in the final structure of the

SBN14 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.48 R6(R4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN14

glass, highlighting the coordination number, as indicated in the colourbar next to

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.49 R6(R4) plot of the initially 4-coordinated boron atoms in the final structure of the

SBN14 glass, highlighting the coordination number, as indicated in the colourbar

next to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.50 Number of atoms associated with bond defects for the radiation damaged SBN12

glass, calculated using the partial Hermite order parameters method. . . . . . . . . 186

6.51 Number of atoms associated with bond defects for the radiation damaged SBN14

glass, calculated using the partial Hermite order parameters method. . . . . . . . . 186

6.52 Rings per boron node for the radiation damaged SBN12 glass. . . . . . . . . . . . . 188

6.53 Rings per silicon node for the radiation damaged SBN12 glass. . . . . . . . . . . . 188

6.54 Rings per boron node for the radiation damaged SBN14 glass. . . . . . . . . . . . . 189

6.55 Rings per silicon node for the radiation damaged SBN14 glass. . . . . . . . . . . . 189



List of Figures xix

6.56 Rings per boron node for the radiation damaged SBN12 glass. . . . . . . . . . . . . 190

6.57 Rings per silicon node for the radiation damaged SBN14 glass. . . . . . . . . . . . 190

7.1 Partial and total radial distribution functions of the of the IPG1 glass structure. . 195

7.2 Partial and total radial distribution functions of the of the IPG2 glass structure. . 196

7.3 Partial and total radial distribution functions of the of the IPG3 glass structure. . 197

7.4 The number of displaced atoms as a function of time for the IPG1 (top), IPG2

(middle) and IPG3 (bottom) iron phosphate glass structures simulated by Jolley

et. al. [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Q6(Q4) plot of the phosphorus atoms of the IPG1 glass at t = 0.00 ps, highlighting

the coordination number, as indicated in the colourbar next to the plots. . . . . . . 202

7.6 Q6(Q4) plot of the phosphorus atoms of the IPG1 glass at t = 0.50 ps, highlighting

the coordination number, as indicated in the colourbar next to the plots. . . . . . . 202

7.7 Q6(Q4) plot of the P atoms of the IPG1 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 203

7.8 Number of phosphorus atoms of the IPG1 glass identified with bond defects using

the partial Steinhardt order parameters method. . . . . . . . . . . . . . . . . . . . 203

7.9 Q6(Q4) plot of the P atoms of the IPG2 glass at t = 0.00 ps, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 204

7.10 Q6(Q4) plot of the P atoms of the IPG2 glass at t = 0.50 ps, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 204

7.11 Q6(Q4) plot of the P atoms of the IPG2 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 205

7.12 Number of phosphorus atoms of the IPG2 glass identified with bond defects using

the partial Steinhardt order parameters method. . . . . . . . . . . . . . . . . . . . 205

7.13 Q6(Q4) plot of the P atoms of the IPG3 glass at t = 0.00 ps, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 206

7.14 Q6(Q4) plot of the P atoms of the IPG3 glass at t = 0.50 ps, highlighting the

coordination number, as indicated in the colourbar next to the plots. . . . . . . . . 206

7.15 Q6(Q4) plot of the P atoms of the IPG3 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 207

7.16 Number of phosphorus atoms of the IPG3 glass identified with bond defects using

the partial Steinhardt order parameters method. . . . . . . . . . . . . . . . . . . . 207

7.17 R6(R4) plot of the P atoms of the IPG1 glass at t = 0.00 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 209

7.18 R6(R4) plot of the P atoms of the IPG1 glass at t = 0.50 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 209

7.19 R6(R4) plot of the P atoms of the IPG1 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 210

7.20 Number of phosphorus atoms of the IPG1 glass identified with bond defects using

the partial Hermite order parameters method. . . . . . . . . . . . . . . . . . . . . . 210

7.21 R6(R4) plot of the P atoms of the IPG2 glass at t = 0.00 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 211



xx List of Figures

7.22 R6(R4) plot of the P atoms of the IPG2 glass at t = 0.50 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 211

7.23 R6(R4) plot of the P atoms of the IPG2 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 212

7.24 Number of phosphorus atoms of the IPG2 glass identified with bond defects using

the partial Hermite order parameters method. . . . . . . . . . . . . . . . . . . . . . 212

7.25 R6(R4) plot of the P atoms of the IPG3 glass at t = 0.00 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 213

7.26 R6(R4) plot of the P atoms of the IPG3 glass at t = 0.50 ps, highlighting the coor-

dination number, as indicated in the colourbar next to the plots. . . . . . . . . . . 213

7.27 R6(R4) plot of the P atoms of the IPG3 glass in the final damaged structure, high-

lighting the coordination number, as indicated in the colourbar next to the plots. . 214

7.28 Number of phosphorus atoms of the IPG3 glass identified with bond defects using

the partial Hermite order parameters method. . . . . . . . . . . . . . . . . . . . . . 214

7.29 Q6(Q4) plots of the undamaged (top) and the damaged (bottom) IPG1 glass structure.216

7.30 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

3 at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.31 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

3 at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.32 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

3 at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.33 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

4 at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.34 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

4 at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.35 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

4 at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.36 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with coordination number 5 at

t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.37 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

5 at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.38 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

5 at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



List of Figures xxi

7.39 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

6 at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.40 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

6 at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.41 Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number

6 at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.42 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

4 at t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.43 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

4 at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.44 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

4 in the final damaged structure. The colourbar indicates the coordination number

of Fe3+ at the specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.45 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with coordination number 5 at

t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the specific

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.46 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

5 at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.47 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

5 in the final damaged structure. The colourbar indicates the coordination number

of Fe3+ at the specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.48 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

6 at t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.49 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

6 at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the

specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.50 Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number

6 in the final damaged structure. The colourbar indicates the coordination number

of Fe3+ at the specific time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

B.1 Illustration of the 4 point detection method used to identify shortcuts between any

pair of nodes of a ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253





List of Tables

1.1 The characteristics of the different fission products of nuclear fuel cycle . . . . . . 14

1.2 Existing nuclear reactor types as of August 2018 [14] . . . . . . . . . . . . . . . . . 16

1.3 Planned and proposed nuclear reactors in the UK [9]. . . . . . . . . . . . . . . . . 19

1.4 The characteristics of the different radioactive waste types at global level and in the

UK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 The forecast for the volume of the radioactive waste in the UK by 2125 [10]. . . . . 21

2.1 Typical compositions of borosilicate glass frits use for the vitrification of HLW . . 41

2.2 Cumulative decay events in typical borosilicate glass wasteforms used by the US

nuclear industry and tested in the Savannah River Laboratory. . . . . . . . . . . . 42

3.1 Parameters of the potentials used by Delaye & Ghaleb [15, 16, 17], Delaye et al.

[18], Abbas et al. [19] and Dewan et al. [20] to study the radiation damage effects

in a simplified borosilicate glass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Parameters of the potentials used by Abbas et al. [21] to study the structure and

surface behaviour of borosilicate glasses. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Buckingham potential parameters used by Kieu et al. [22] . . . . . . . . . . . . . . 77

3.4 Parameters of the Buckingham potential used by Al-Hasni & Mountjoy et al. [23],

Jolley et al. [24] and Jolley & Smith [13] to model iron phosphate glasses. . . . . . 78

4.1 The non-zero values of second kind Steinhardt order parameters for the first three

neighbour cells of the primitive cubic cell and for 0 ≤ ` ≤ 10 . . . . . . . . . . . . . 98

4.2 The first 9 Hermite order parameters for the first three neighbour shells of a primitive

cubic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Zircon crystal structure data as published in the studies of by Robinson et.al. [25],

Hazen and Finger [26] and Finch et.al. [27]. . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Buckingham potential parameters used by Trachenko et al. [28] (2001) to study the

radiation damage effects in a zircon crystal. . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Buckingham and Morse potential parameters used by Trachenko et al. [12] (2004). 116

5.4 Buckingham potential and Fermi switching function parameters used by Devanathan

et al. [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Buckingham and (18-6) Lennard-Jones parameters used by Yu et al. [30]. . . . . . 117

5.6 The cell parameters and properties calculated with the four different proposed po-

tentials using a 2×2×2 supercell, containing 192 atoms . . . . . . . . . . . . . . . . 118

5.7 The cell parameters and properties calculated with the three qualifying potentials

using a 6×6×6 supercell, containing 5184 atoms. . . . . . . . . . . . . . . . . . . . . 119

xxiii



xxiv List of Tables

6.1 Composition of the SBN12 and SBN14 sodium borosilicate glasses in mol%. . . . . 153

6.2 Partial charges used in SBN12 and SBN14 borosilicate glass models. . . . . . . . . 154

6.3 Structural data of the modeled SBN12 and SBN14 glasses. The experimental values

[22] are in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1 Composition of the three iron phosphate glass models used in this study, in mol%.

Na is the total number ot atoms of the structures. . . . . . . . . . . . . . . . . . . 193

7.2 Parameters of the three body Stillinger-Weber potential used by Jolley et. al. [13]

for the creation of the iron phosphate glass models used in this work. . . . . . . . . 194

7.3 Parameters used to truncate and fit the Buckingham potential used for the creation

of iron phosphate glass models with the short range ZBL potential [31]. In this

table, rBuck and rZBL are the truncation distances for the Buckingham and ZBL

potentials respectively. rZBL and rBuck are in Å and an in Å−n. . . . . . . . . . . . 194
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Introduction

The immobilization of high level nuclear waste is a very important aspect of the nuclear industry. In

general, it is necessary to stabilise high level nuclear waste into a form that will retain its integrity

for extended periods of time. Currently, the preferred method for achieving that is vitrification.

During the vitrification process, the nuclear waste is calcined, to evaporate the water and de-nitrate

the radioactive fission products, and then fed into a furnace with fragmented glass. This melt is

poured into stainless steel containers and when it is cooled, it vitrifies into a glass in which the

radioactive elements are bonded within the glass matrix. These wasteforms are highly resistant to

water and so they show good durability to corrosion. However, high level nuclear waste remains

radioactive for thousands of years and so it is not possible to establish the long-term reliability of the

new wasteforms only by experimental methods. For a successful study of radiation damage effects

it is necessary to extract detailed information regarding the structural changes in the waste form,

both at the surface and in the bulk. Consequently it is important to have a better understanding

regarding the dynamics of the radiation damage process, to be able to predict the behaviour of the

wasteform at large time scales.

Existing research on both borosilicate and iron phosphate glass wasteforms is mainly exper-

imental, focusing on the structure of the glasses. The effects of radiation damage are examined

from the perspective of the changes to the physical and chemical properties of the glasses due to

alpha decay. To retrieve dynamic information for the material the better option is to use compu-

tational molecular dynamics simulations. For the borosilicate glasses, several molecular dynamics

simulation studies exist that study the radiation damage effects. For the iron phosphate glasses

on the other hand, computational simulations of radiation damage are extremely limited. The

DREAM II project is a part of an EPSRC-India link, led by Professor Roger Smith of the Uni-

versity of Loughborough. The UK team is formed by scientific teams from the Universities of

Loughborough, Sheffield, Birmingham, Cambridge and Imperial College London while the India

team involves scientists from Bhabha Atomic Research Centre and the Indhira Gandhi Centre of

Atomistic Research. This consortium aims to develop computer models of the radiation induced

structural changes due to alpha particles and recoil nuclei damage on the structure, and speci-

ation of redox active elements in the immobilisation materials over long time scales. The main

wasteforms to be investigated are the well known borosilicate glasses and iron phosphate glasses.

Both computer models and experiments will contribute to make successful predictions regarding

the best materials for long time structural integrity. The successful outcome of the DREAM II

project will have a serious economic impact as the expected optimization of the actinide loading

might lead to a new industrial manufacturing process.

The traditional methods used to describe radiation damage effects in glass wasteforms are based

in the Wigner-Seitz method which counts the number of atoms displaced by a certain distance from

their initial position. However, this is not a safe method to extract accurate information regarding

1
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the extent of damage, as it ignores the properties of specific bonds and the number of broken bonds

associated with the displacement of a particle from its initial position. Thus, the development of

novel computational methods to characterise the radiation damage effects with increased accuracy

appears to be necessary. To make a successful characterization of the radiation damage in glasses

it is necessary to develop novel computational methods utilising topological measures.

The aim of this project is to develop a new topological approach towards the characterisation

of α−recoil cascades in glass wasteforms used for the immobilisation of High Level Waste. It is

expected that the new method will contribute significantly in the understanding of the dynamic

behaviour of borosilicate and iron phosphate glass wasteforms under self-irradiation and provide

a strong basis for future molecular dynamics simulations, targeting the improvement of the pro-

posed methods in order to correlate topological measurements with physical and probably chemical

properties of the structures.

Structure of the thesis

The first chapter of this thesis is an introduction to nuclear power. It provides information re-

garding the nuclear fuel cycle and the types of nuclear reactors, starting from the physics of a

nuclear reactor and nuclear fission, to the production of High Level Waste. This chapter also

discus the generation of nuclear power and the High Level Waste management in the UK. Chapter

2 provides a literature review on the borosilicate and iron phosphate glass wasteforms used for

the encapsulation of High Level Waste. It details the glassy state and the glass structure of oxide

glasses, emphasizing the borosilicate and iron phosphate glasses, and also includes a description

of the radiation damage process in glass wasteforms and how it affects various properties and the

structure of the glasses.

Chapter 3 details Molecular Dynamics, starting from theoretical concepts of classical and sta-

tistical mechanics. Special attention is given to the integration methods and the force fields used

to describe the interaction between atoms in atomistic simulations. At the end of the chapter

there is also a survey of existing work on molecular dynamics simulations on glass wasteforms.

Chapter 4 presents existing methods for the characterisation of defects - the Wigner-Seitz method

and the primitive ring statistics. It also describes in depth the Steinhardt order parameters and

introduces the Hermite order parameters, including a detailed discussion on how these parameters

are affected by the coordination number and the distribution of particles within a system and what

information they provide for simple cubic systems.

Before applying the topological defect characterization techniques to the model glasses, it is

important to test them in a simple crystalline material such as zircon. Chapter 6 demonstrates

the relevant work starting from the creation of a radiation damaged zircon crystal model using

molecular dynamics. It then considers the characterization of the defects using the simple Wigner-

Seitz defect counting method, Steinhardt order parameters and Hermite Order parameters. By

comparing the results obtained with these three methods, the chapter discusses the superiority

of the topological methods over the traditional defect counting and how Steinhardt and Hermite

order parameters and Hermite Order parameters can be used to make an accurate estimation of

bond defects in both crystalline and amorphous materials.

Chapters 6 and 7 discuss the main part of this research project: a topological analysis of the
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radiation damage effects in borosilicate and iron phosphate glasses. In detail, chapter 6 starts by

presenting the methodology followed for the creation of irradiated models of two simplified borosili-

cate glasses, SBN12 and SBN14. Afterwards, the results obtained using defect counting, Steinhardt

order parameters, Hermite Order parameters and primitive ring statistics methods are presented.

Emphasis is given to the fact that each method can provide complementary information to others.

Defect counting is useful to determine the displacement of the atoms due to the radiation damage

event, Steinhardt order parameters and Hermite Order parameters can provide insights regarding

the angular and radial distribution of atoms around reference particles and finally primitive ring

statistics analysis is important to extract information regarding the connectivity of the network.

In a similar manner, chapter 7 presents the methodology followed for the creation of three different

iron phosphate glass models, provided from our collaborators at Loughborough University, Dr.

Kenny Jolley and Professor Roger Smith and a comprehensive topological analysis of the three

structures.





Chapter 1

Nuclear power generation

1.1 Introduction

Nuclear power is the process in which nuclear reactions are exploited to produce energy, which

generates heat used for the production of electricity in nuclear power plants. In general, the

nuclear reactions take place within a nuclear reactor. The heat generated by the reactions, is used

to produce steam that drives a steam turbine connected to an electricity generator.

Nuclear power contributes significantly towards the generation of electricity. As of August

2018, there are 445 nuclear reactors in operation worldwide, with a combined capacity of 339.3

GW. There are also 55 reactors under construction that will increase the global capacity by 55.9

GW (Fig. 1.1). In 2017 nuclear power supplied 2487.98 TWh of electricity for commercial use,

equivalent to the 10% of the global electricity production [1].

Despite the fact the amounts of greenhouse gases emitted by nuclear power plants are compa-

rable or even lower than those from renewable sources, there is a continuous debate regarding if

nuclear power generation is an environmental friendly process or not. The main criticism is due to

the radioactive waste containing nuclear fission products that is discharged and deposited to the

environment. These products include radioactive isotopes of several elements, such as 131I, 90Sr,
137Cs and 99Tc, with half-life varying between days and million years, that can pose a serious threat

to the health of living organisms. One of the main areas of interest in the nuclear power industry,

is the management of the radioactive waste and the development of wasteforms, to prevent them

from becoming hazardous for the biosphere.

1.2 Nuclear reactor physics

In general, nuclear reactions are exothermic and have the ability to produce huge amounts of

energy in the form of heat. Currently, nuclear energy is mainly generated from the nuclear fission

of actinides. Actinides are a group of 15 slightly to highly radioactive metallic elements with atomic

number 89 ≤ Z ≤ 103. Most actinides, due to their moderate and high radioactivity, can produce

a large variety of product nuclei, following one of the four existing α decay chains, depending on

the mass number A.

• Thorium decay series, containing elements with A = 4n, n ∈ Z+.

228Th −→ · · · −→ 208Pb + 42.6 Mev (1.1)

5
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Figure 1.1: The number of existing nuclear reactors as of August 2018 and reactors under con-
struction per country [1].

• Neptunium decay series, containing elements with A = 4n + 1.

237Np −→ · · · −→ 205Tl + 66.8 Mev (1.2)

• Uranium decay series, containing elements with A = 4n + 2.

238U −→ · · · −→ 206Pb + 51.7 Mev (1.3)

• Actinium decay series, containing elements with A = 4n + 3.

235U −→ · · · −→ 207Pb + 46.4 Mev (1.4)
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Natural decay processes have the ability to produce significant amounts of energy. However in

nuclear reactors the energy is produced following the more efficient nuclear fission reactions.

1.2.1 Nuclear fission

Nuclear fission is a nuclear reaction in which a mother nucleus is bombarded by a neutron and splits

in two lighter daughter nuclei. The products of a nuclear fission reaction may also include neutrons

and energetic photons in the form of gamma rays. The nuclear fission process is shown in Fig. 1.2.

Nuclei that release neutrons during the fission reaction, such as 235U, 233U and 239Pu, have the

ability to create a nuclear fission chain reaction, since the released neutrons can trigger consecutive

fission reactions that in turn release huge amounts of energy. In general, the energy released by

a nuclear fission reaction is significantly higher than the energy released during a natural decay

chain. In nuclear reactors, the energy is generated by the fission of 235U. Following the reaction

235
92U +

1
0n −→

141
56Ba + 92

36Kr + 3 1
0n + 202.5 MeV, (1.5)

just 1 kg of 235U - corresponding to about 1400 kg of natural uranium - has the ability to produce

83.15 TJ of energy. By comparison, 1 kg of coal produces just 30.79 MJ. The above, is the most

energetic fission reaction of 235U, but it is not the only one. From a statistical perspective, the

fission of 235U can be described by

235
92U +

1
0 n −→ Fission fragments + 2.4 1

0n + 192 MeV, (1.6)

which shows the average values of the neutron products and the energy produced. In any case, the

above equations demonstrate the extremely high efficiency of the nuclear fission process.

1
0n v

235
92U

236
92U

(Unstable)

+3 1
0n + 202.5 MeV

141
56Ba

92
36Kr

Figure 1.2: Illustration of the fission reaction described by Eq. 1.5. The mother 235
92U nucleus is

bombarded by a neutron and converted to the excited and unstable 236
92U. The latter then splits

into two lighter nuclei and releases 3 neutrons and a significant amount of energy in the form of
gamma photons.

1.2.2 Nuclear fission products

Each nuclear fission reaction of a specific radioactive nucleus, may give a different set of daughter

nuclei. However, the products of a nuclear fission reaction follow a statistical pattern that allows
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Figure 1.3: The nuclear fission product yields for the chain reactions of the thermal neutron fission
of 235U and 239Pu, as a function of the mass of the daughter nuclei [2].

us to calculate the probability of a specific set of products. The fraction of each daughter nucleus

per parent nucleus is called yield. Since each parent nuclei produces two different daughter nuclei,

the sum of all product yields is equal to 200%. In general, the products of a nuclear fission reaction

depend both on the parent nucleus and the energy of the incident neutron. As a rule of thumb, the

mass difference of the two daughter nuclei decreases with the energy state of the nucleus and/or

incident neutron. In Fig. 1.3, the fission yields for the chain reactions of the thermal neutron

fission of 235U and 239Pu are shown, where it is clear that the valley between the two peaks for
235U is wider than that for 239Pu, as a result of the lower energy state of 235U.

1.2.3 Criticality and control rods

The fission reaction shown in Fig. 1.2, releases three neutrons, which means that each 235U nucleus

that is bombarded by a neutron can in turn initialize 3 fission reactions. This chain reaction

can propagate exponentially and produce uncontrolled amounts of energy. Due to the nature of

nuclear fission chain reactions, the population of neutrons at a given time is a function of the rate

of neutron production Rp, the rate of neutron absorption Ra and the rate of neutron leakage Rl.

When Rp = Ra + Rl, the rate of neutron production is equal to the sum of the rates of neutron

absorption and the rate of neutron leakage, the reactor’s operation is referred to as critical. On

the other hand, when Rp > Ra + Rl, the production of neutrons is higher than the losses and the

operation of the reactor is referred to as supercritical and the energy production increases with

time. Finally, when Rp < Ra + Rl, the neutron losses are higher than the production rate, and

the reactor operates at a subcritical level and the production of energy declines with time. The
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number of neutrons N as a function of time is given by the differential equation

dN
dt
=
α

τ
N, (1.7)

where τ is the average life-time of a neutron and α is a constant given by

α = PiPf N̄ − Pa − Pe, (1.8)

where Pi is the probability for a neutron to collide with a radioactive nucleus in the fuel, Pf the

probability that a neutron collision with a nucleus in the fuel will trigger a fission reaction, Pa

the probability that the neutron will be absorbed in the fuel before colliding with a radioactive

nucleus, Pe the probability that the neutron will escape the core and N̄ the average number of

neutrons produced by a fission reaction in the fuel. For the operation of the reactor to remain at

a critical level, the rate dN/dt and consequently α must be equal to zero. If a < 0 the number of

neutrons is decreasing and the operation is subcritical, while if a > 0 the number of neutrons is

increasing and the operation is supercritical [32].

In nuclear reactors, the number of fission neutrons must be controlled in order to produce

energy at a desired and safe rate. Since the probability Pf of triggering a fission reaction depends

on the fuel, to control the rate of neutron production, nuclear reactors are engineered in such a

way to control the number of fission neutrons by adjusting Pa. This can be achieved by using

control rods, that can absorb neutrons released by a nuclear fission reaction and prevent them

from triggering further reactions. Control rods are usually made from materials such as boron,

cadmium or hafnium, that exhibit high absorption cross section for thermal neutrons.

Another way to express criticality of a nuclear fission chain reaction is by using the multiplica-

tion factor k, which is equal to the ratio of number of neutrons in one generation to the number

of neutrons in the preceding generation, and is given by the six-factor formula

k = η f pεPFNLPTNL, (1.9)

where η is the thermal fission factor showing the number of fission neutrons produced per neutron

absorption in the fuel material, f is the thermal utilisation factor which gives the probability of

absorbing a neutron within the fuel material, p is the resonance escape probability, showing the

fraction of fission neutrons that are slowed down to thermal energies without being absorbed, ε is

the fast fusion factor, equal to the fraction of the number of fast neutron to the number of thermal

neutrons produced by the fission reactions and finally PFNL and PTNL are the probabilities that

a fast neutron and a thermal neutron will not leak out of the nuclear reactor. For k = 1, the

operation of the reactor is critical, for k > 1 supercritical and for k < 1 subcritical [32].

1.2.4 Neutron moderators

The neutron moderators are used in thermal reactors to reduce the energy of fast neutrons gener-

ated during the fission reaction from several MeV to about 0.02 eV and convert them to thermal

neutrons that have increased probability to trigger the additional fission reactions. The most ef-

fective moderators are materials with light atoms that have the ability to slow down the incident
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neutrons by colliding with them without absorbing them. The most usual moderators include

water (H2O), heavy water (D2O) and C in the form of graphite [33].

The nature and the amount of a moderator affects the controllability of a nuclear fission chain

reaction. Since neutron moderators have the ability not only to slow down neutrons, but also to

absorb them, the amount of the neutron moderator must be high enough to increase the probability

Pf of triggering a nuclear fission reaction in the fuel, but also low enough to prevent a large number

of neutrons from escaping and keep Pe term at an acceptable level. The effectiveness of a moderator

is affected by temperature changes and is actually reduced with increase of the temperature. When

the nuclear reactor core is overheated, the moderator temperature also increases and becomes less

effective since the energy of the neutrons passing through the moderator is higher than the optimal

thermal level and the reactor operates at a subcritical level, making the reactor inherently safe:

the reactivity of the reactor is controlled without affecting the structure of the core and as a

consequence the probability of a meltdown is decreased [33].

1.3 Nuclear fuel cycle

The Nuclear Fuel Cycle (Fig. 1.4) is the sum of activities related to the production of electricity

from fission reactions. The nuclear fuel cycle can be subdivided into three major stages: the front

end involving the preparation of the nuclear fuel, the service period in which the nuclear fuel is

used for the production of electricity, and the back end in which the spent nuclear fuel is either

disposed of or reprocessed to start a new nuclear fuel cycle. Nuclear fuel cycles in which spent fuel

is not reprocessed are known as open cycles while those in which the fuel is reprocessed are called

closed cycles.

1.3.1 Front end

Uranium mining and milling

The first step of the front end of the nuclear fuel cycle is to extract uranium ore, using both

excavation and in-situ techniques. Traditional excavation methods recover uranium either through

an open pit - when the uranium deposit is relatively close to the surface in depths less than

∼ 120 m, or directly from the underground. In-situ techniques use oxygenated groundwater that is

circulated through a porous deposit of natural uranium, to dissolve the uranium oxide (UO2) and

make it emerge to the surface. In 2017, the majority of uranium was extracted in three countries:

Kazakhstan (39%), Canada (22%) and Australia (10%), with the remaining 10 countries extracting

about 29% of world production, as shown in Fig. 1.5.

This then undergoes a milling process in which the ore is ground and uranium is separated from

the waste rock to produce a type of uranium concentrate powder, known as yellowcake, containing

about 80% uranium oxide (U3O8), which is significantly higher than the ' 0.1% of uranium in the

extracted ore [34, 35].

Uranium enrichment

Natural uranium primarily consists of 238U (99.28 w%) while the amount of fissile 235U accounts

only for 0.71 w% - the rest 0.01 w% is mainly 234U. For most types of reactors, this amount of
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235U is not adequate to sustain a nuclear fission chain reaction and consequently the concentration

of the fissile 235U must be increased to between 3.5% and 5%, depending on the reactor. This

can be achieved with a process known as isotope separation. However, isotope separation requires

uranium in a gaseous form. In conversion facilities, the uranium oxide mixture is initially refined

into uranium dioxide UO2. The conversion of the uranium oxide mixture to UO2 can by achieved

U2O3
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Figure 1.4: Schematic diagram of the nuclear fuel cycle [35].
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Figure 1.5: The production of uranium in tonnes in 2017 [3].

using two different methods, the dry, that produces U3O8 or the wet which gives UO3, following

the reactions

U3O8 + 2 H2 −→ 3 UO2 + 2 H2O − 109 kJ/mole, (1.10)

or

UO3 +H2 −→ UO2 +H2O − 109 kJ/mole, (1.11)

that can be used directly in graphite-moderated and heavy-water reactors. Most of the UO2 is

converted into uranium hexafluoride UF6 using the two step process

UO2 + 4 HF −→ UF4 + 2 H2O − 176 kJ/mole, (1.12)

and

UF4 + F2 −→ UF6, (1.13)

which is in a gaseous form at the relatively low temperature of 57 oC. The UF6 is then cooled into

a liquid form that is drained into 14-tonne cylinders and solidifies into a solid form [34, 35, 36].

During the enrichment process, gaseous UF6 is separated into two streams. The important

stream contains the low-enriched uranium and the secondary, containing up to 96% of the byprod-

uct of the process is gradually depleted in 235U that can be used in a series of other applications.

The enrichment of the uranium can be accomplished following three different processes: gaseous

diffusion, gas centrifuge and laser separation. The final product in the main stream is enriched

UF6 that is reconverted into UO2 ready to be used in a fuel fabrication facility [34, 35].

In the UK, the gas centrifuge method is used. To separate the 235U and 238U isotopes, the

UF6 gas is fed into several cylindrical vacuum tubes. Each of these tubes contains a rotor 20 cm

in diameter and between 3 and 5 m tall, that spins rapidly, between 50 × 103 and 70 × 103 rpm.

This process moves the heavier 238U nuclei towards the outer parts of the tubes, while the lighter
235U nuclei accumulate near the centre. A temperature gradient between the top and bottom of
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Figure 1.6: Cutaway of a fuel assembly used in the Advanced Gas-Cooled Reactors [4].

the tubes creates a convention current that moves the 235U nuclei to the top of the tubes, where it

is collected, while the 238U nuclei are moved to the bottom. The enriched gas can be used directly

as feed for the next stages of the nuclear cycle, while the depleted UF6 goes back to the previous

stage [37].

Fuel fabrication

The enriched UF6 resulted from the previous stage, is converted to UO2 powder which is sintered

in the form of ceramic pellets at a temperature above 1400 oC. These pellets are then ground to

become uniform in size and stacked into cylindrical tubes of metal alloy specially designed to have

a high resistance to corrosion to create the fuel rods [35]. The size of the rods is defined by the

specifications of the specific nuclear reactor core but it is usually 10-15 mm long and 8-15 mm in

diameter [38]. The fuel rods are finally grouped in assemblies that form the nuclear fuel core of

the nuclear reactor.

In the Advanced Gas-Cooled Reactors used in the UK (Section 1.4.1), the fuel assembly is a

circular array consisting of 36 fuel rods, as shown in Fig. 1.6. Each of these rods contains 20

fuel pellets of uranium, enriched to about 3.5%. The fuel rods clad are made of stainless steel

that offers higher operating temperatures. Each reactor contains 8 assemblies, stacked end on end

through the top of the nuclear reactor [4].

1.3.2 Service period

A nuclear reactor requires several hundred fuel rods to operate - for an electricity output of 1000

MW the core needs to be loaded with 75 tonnes of low-enriched uranium. Once the fuel is loaded

a controlled fission process is initiated. The fission of 235U nuclei produces large amounts of heat,

used to boil water and produce steam at high pressure. This steam, is directed to a turbine that

sets in motion a generator that produces electricity [35]. During the 235U chain reaction, a fraction

of 238U of the core absorbs neutrons emitted from the decay of 235U and decays to plutonium.
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About 50% of this plutonium is also fissioned, contributing about 30% or more of the reactor’s

electricity output [34, 35].

The full fuel load has a service period of 3 to 6 years (5 years for the Advanced Gas-Cooled

Reactors used in the UK [4]), depending on the size and the production power of the reactor. To

ensure the continuous functionality of the reactor, over a period of about one year to 18 months,

known as a cycle, the 25-30% of the fuel is removed from the core and replaced with new fuel

[35, 38].

1.3.3 Back end

Spent fuel

The amount of fissile 235U in the fuel rods declines over time and after 18-36 months, the nuclear

fuel contains about 1% of 235U. At the same time, the nuclear fission reactions produce 1%

plutonium with 0.6% of the fissile isotope 239Pu, 3% fission products and minor actinides and the

rest 95% is in the form of 238U. The main fission products are presented in Table 1.1. When the

fuel is removed from the reactor, the fission products will emit significant amounts of radiation

and heat. In order to reduce the levels of radiation and heat, immediately after removal from

the reactor, the fuel is submerged in water ponds located next to the nuclear reactor. The water

within the ponds absorbs both the radiation and heat which causes the temperature of the water

to increase. To maintain the temperature of the water at an acceptable level, it is circulated to

external heat exchangers. This way, the spent fuel rods can remain in the ponds for months or

even years [35]. In the final stage, spent fuel is either reprocessed to recycle the portion that is

usable or it can be prepared for long-term storage and final disposal without any reprocessing.

Table 1.1: The characteristics of the different fission products of nuclear fuel cycle [39].

Isotope Half-life (y) Yield (%) Q (keV) Radiation type
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155Eu 4.76 0.0803 252 β, γ
85Kr 10.76 0.2180 687 β, γ
113mCd 14.1 0.0008 316 β
90Sr 28.9 4.505 2826 β
137Cs 30.23 6.337 1176 β, γ
121mSn 43.9 0.00005 390 β, γ
151Sm 96.6 0.5314 77 β

Isotope Half-life (My) Yield (%) Q (keV) Radiation type
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99Tc 0.211 6.1385 294 β
126Sn 0.230 0.1084 4050 β, γ
79Se 0.327 0.0447 151 β
93Zr 1.53 5.4575 91 β, γ
135Cs 2.3 6.9110 269 β
107Pd 6.5 1.2499 33 β
129I 15.7 0.8410 194 β, γ
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Reprocessing of spent fuel

The main scope of the reprocessing of spent fuel is to separate the uranium and plutonium from the

fission products and the cladding of the fuel rods. For this the fuel rods are chopped and dissolved

in acid to separate the materials comprising the fuel rod. This way, the uranium and plutonium

can be recycled to create new fuel while the remaining 3% of the spent fuel is the radioactive waste

[40]. The treatment of the radioactive waste is presented in detail in Section 1.6.

Uranium and plutonium recycling

The uranium produced during the reprocessing of the spent fuel, contains about than 1% of fissile
235U, which is about 40% higher than the percentage of 235U in the natural uranium. Consequently,

it can be used directly as a feed to the front end of the nuclear fuel cycle in order to be converted

and enriched as discussed in the previous sections [35].

The concentration of the various plutonium isotopes however, depends strongly on the burn-up

level of the original fuel in the core. In general, when the burn-up level is higher, most plutonium

isotopes in the spent fuel are non-fissile and the concentration of the fissile 239Pu is lower [40].

Usually, the spent fuel contains about 1% plutonium of which 0.5% and 0.15% are the fissile

isotopes 239Pu and 241Pu respectively [41]. The majority of the separated plutonium can be used

directly to produce Mixed Oxide (MOX), that acts as a substitute for the uranium oxide fuel

[34, 35, 38, 41]. The standard process is to mix the recycled plutonium with depleted uranium

produced during the enrichment phase. The generated MOX fuel contains both UO2 and PuO2

[41]. MOX fuel generated by mixing depleted uranium and recycled plutonium with concentration

about 7-11%, is equivalent to enriched uranium with concentration of about 4.5% 235U. In terms of

power generation, MOX fuel generated from natural uranium and recycled plutonium is about 12%

more efficient than natural uranium, while MOX fuel containing recycled plutonium and uranium

is about 22% more efficient [41].

1.4 Nuclear reactor types

Currently, there is a variety of existing nuclear reactor types. The majority of existing nuclear

reactors are improvements of the two types developed in the 1950s: the thermal reactors and the

fast neutron reactors. The main component of a nuclear reactor is the nuclear reactor core which

is actually the fuel of the reactor, surrounded by a neutron moderator (in the case of thermal

reactors) and fitted with control rods.

Additional components of a nuclear reactor are the coolant, which is a fluid flowing in a circuit

through the core to transfer the heat, the pressure vessel/tubes that contain the nuclear reactor

core, the moderator and the coolant, the steam generator, used in the Pressurised Water Reactors

and the Pressurised Heavy Water Reactors to generate the steam necessary to drive the turbine

and finally the containment, a structure surrounding the reactor and associated with the steam

generators, used to protect the surrounding environment from the effects of radiation in case of

a malfunction of the nuclear reactor, and also to protect the reactor from outside intrusion [14].

Depending of the nature of the moderator and the coolant, nuclear reactors can be categorised as

shown in Table 1.2.
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Table 1.2: Existing nuclear reactor types as of August 2018 [14]

.

Reactor type Main countries Number Fuel Coolant Moderator

Pressurised Water US, France, Japan
299 Enriched UO2 Water Water

Reactor (PWR) Russia, China

Boiling water US, Japan,
74 Enriched UO2 Water Water

Reactor (BWR) Sweden

Pressurised Heavy
Canada, India 49 Natural UO2

Heavy Heavy
Water Reactor (PHWR) Water Water

Gas-Cooled Reactor
UK 14

Natural U
CO2 Graphite

(AGR & Magnox) Enriched UO2

Light Water Graphite
Russia 15 Enriched UO2 Water Graphite

Reactor (LWGR)

Fast Neutron
Russia 3 PuO2 & UO2

Liquid
-

Reactor (FBR) Sodium

1.4.1 Thermal reactors

The majority of nuclear reactors use moderators in order to lower the kinetic energy of neutrons

participating in a nuclear fission reaction and convert them to thermal neutrons with kinetic energy

of about 0.025 eV, and consequently increase the probability for a successful fission reaction. These

reactors are known as thermal reactors and they are able to use minerals with very low fissile isotope

concentration. Additional categorisation of the thermal nuclear reactors is based on the nature of

the moderator and the coolant.

Reactors using natural water as moderator, are known as light water reactors and are further

categorized into Pressurised Water Reactors (Fig. 1.7a) and Boiling Water Reactors (Fig. 1.7b).

The difference between the two types is that in a PWR the reactor heats pressurised water at a

temperature above 300 oC, that then exchanges heat with a secondary lower pressure system of

water, which generates the steam to drive the turbine, while in a BWR the steam is produced

directly by the main water system, in which the water is heated at around 285 oC to produce the

necessary steam. LWRs require fuel enriched in fissile isotopes. For those using uranium, which

is the majority, it is required to enrich the element in order to contain 3-5% of the radioactive

isotope 235U. This is because the water moderator, apart from slowing down the neutrons, can

also absorb a large number of them, and consequently the probability of creating and sustaining a

nuclear fission chain reaction is reduced. The enrichment of the fuel is actually a countermeasure

for the absorption of neutrons from the water moderator. As an alternative to the low-enriched

uranium (LEU), LWR can also operate by using MOX fuels, consisting of plutonium mixed with

depleted or natural uranium. These reactors are very useful as they utilise the excess of plutonium

used for nuclear weapons.

An alternative to the LWR is the Pressurised Heavy Water Reactor (Fig. 1.7c), which operates

in a similar way but has two main differences. It can use natural uranium oxide as fuel and

consequently it is not necessary to perform the enrichment step, thus reducing the fuel preparation

time and cost. On the other hand it requires heavy water to operate, the production cost of which

is equivalent to the cost of uranium enrichment. In addition, the construction costs of a PHWR
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are higher in comparison with the LWRs. The purpose of using heavy water is that in contrast

with water, it absorbs neutrons at a much lower rate and consequently the probability of triggering

a nuclear fission reaction in 235U is high enough to sustain a nuclear fission chain reaction in the

natural uranium fuel.

The Light Water Graphite Reactor that was developed in the former Soviet Union, is a cheaper

alternative to the PHWR. The heat is generated in the main water system as in the BWRs but

the moderator is made of carbon in the form of graphite. Carbon has a lower neutron absorption

rate in comparison with water and consequently LWGR can operate by using low enriched UO2

containing about 2% of fissile 235U as a fuel.

Finally, the Gas-Cooled Reactors developed in the UK, use graphite as moderator and CO2 as

a coolant. The major advantage of this reactor type, is that it can use natural uranium as a fuel,

avoiding the enrichment process. The Magnox reactors, was the first generation of nuclear reactors

developed in the UK. They were designed with a dual purpose, to produce electricity and also 239Pu

to be used for nuclear weapons. Their name derives from the magnesium-aluminium used to clad

the fuel rods within the core. This allow has the advantage of having a low neutron absorption cross-

section. However it exhibits two major disadvantages. At high temperatures, magnox reactivity

increases and the operational temperature of the reactor had to remain relatively low, at around

380 oC, thus limiting the efficiency of the reactor. Additionally the magnox alloy reacts with the

water and this prevents the long term storage of the spent fuel in a water pool. These factors

limited the economic performance of the design and led to the development of a new design, the

Advanced Gas-Cooled Reactors (AGR) (Fig. 1.7d), which would make the power generation more

profitable. The AGRs were designed to have a thermal efficiency of 41%, higher than the 34%

offered by the LWRs. To achieve that, the AGRs had to run at considerably higher temperatures

(650 oC) and for this, the magnox alloy cladding of the core was replaced with stainless steel. This

however required the core to use enriched UO2 as fuel. Although the enrichment process increased

the operational costs of the AGRs, the overall economic performance was better than that of the

Magnox reactors.

1.4.2 Fast neutron reactors

In contrast with thermal reactors, fast neutron reactors use fast neutrons with kinetic energy of

about 1 MeV to initiate the fission of the nuclear fuel and instead of moderators, these reactors

use coolants. Fast neutrons have very low probability to collide with a nuclei and initiate a fission

reaction. Consequently, fast neutron reactors require highly enriched fuel, including more than

20% of fissile material. Additionally they are more difficult to build and expensive to operate in

comparison with thermal reactors. However, all actinides in the nuclear fuel are involved in fission

reactions [42] with fast neutrons and so they produce less transuranic radioactive waste.

1.5 Nuclear power in the UK

The United Kingdom was the first country in the world establishing a civilian nuclear programme.

The first nuclear power station opened in 1956 at Calder Hall, Windscale. Between 1956 and

1971, 26 Magnox nuclear reactors were connected in the UK electricity grid, followed by 14 AGRs,
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(a) (b)

(c) (d)

Figure 1.7: Diagrams of the main nuclear reactor types: (a) a Pressurised Water Reactor [5],
(b) a Boiling Water Reactor [6], (c) a Pressurised Heavy water reactor [7] and (d) an Advanced
Gas-Cooled Reactor [8].

between 1976 and 1988 and a single PWR in 1995. All Magnox reactors were gradually decom-

mishioned between 1986 and 2015. The operation of the nuclear reactors contributes significantly

in the electricity generation in the UK. In 1997, electricity produced by nuclear reactors accounted

for the 26% of the total electricity production in the UK. However, due to the shutdown of the

Magnox reactors this percentage declined and in 2018 it was around 21% [9].

As of August 2018, in the UK there are 14 graphite-moderated advanced gas-cooled reactors

operating at Dungeness (2), Hinkley Point B (2), Hunterston B (2), Hartlepool (2), Heysham (2),

Torness (2) and one PWR at Sizewell, producing in total 8.883 GW of electricity. Existing nuclear

power plants, operated by EDF energy are planned to gradually shut-down by 2035. However,

on March 2017, EDF energy started building two new, third generation PWRs, at Hinkley Point.

China General Nuclear (CGN) company is also involved in this project and they also expressed

their interest to build their own nuclear power plants at Bradwell in Essex and at Sizewell in Suffolk.

Additionally there are plans from Horizon Nuclear Power for 4-6 new PWR and from NuGeneration

for 3 new PWR at Sellafield [9]. In Table 1.3 a summary of the planned and proposed reactors in

the UK are presented.
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Table 1.3: Planned and proposed nuclear reactors in the UK [9].

Proponent Site Type Capacity (MWe) Comission

EDF Energy

Hinkley Point C1 EPR 1670 2026
Hinkley Point C2 EPR 1670 2027

Sizewell C1 EPR 1670 N/A
Sizewell C2 EPR 1670 N/A

Horizon

Wylfa Newydd 1 ABWR 1380 2015
Wylfa Newydd 2 ABWR 1380 2015

Oldbury B1 ABWR 1380 Late 2020s
Oldbury B2 ABWR 1380 Late 2020s

NuGeneration
Moorside 1 AP1000/APR1400 1135/1520 2025
Moorside 2 AP1000/APR1400 1135/1520 2026
Moorside 2 AP1000 1135 2027

China General Nuclear
Bradwell B1 Hualong One 1150 Proposed
Bradwell B2 Hualong One 1150 Proposed

Notes: The EPR (Evolutionary Power Reactor) is a third generation Pressurised Water Reactor, devel-
oped in France by Areva and Germany by Siemens. The ABWR (Advanced Boiling Water Reactor) is a
third generation Boiling Water Reactor developed in Japan by Toshiba. The AP1000 is an advanced Pres-
surised Water Reactor developed by Westinghouse Electricity Company. The APR1400 is an advanced
Pressurised Water Reactor developed by the Korea Electric Power Corporation. The Hualong One is a
Pressurised Water Reactor developed in China by China General Nuclear Power Group and the China
National Nuclear Corporation.

1.5.1 The front end of the nuclear cycle in the UK

Since in the UK there are no sources of natural uranium, all the uranium that was used in the

front end of the nuclear fuel cycle was imported. The conversion of UO2 into UF6 used to take

place at a facility at Springfields, near Preston, operated by Westinghouse Electric Company, a

group company of Toshiba Corporation, with a UF6 production capacity of 6000 tonnes U per

year. However, this facility was shut down at the end of August 2014 [9].

The enrichment process is assigned to Urenco, operating three centrifugal enrichment plants

at Capenhurst with a capacity of 1.1 × 106 tonnes SWU1 per year. Another Urenco enrichment

facility is currently being built at Capenhurst, with a capacity of 7000 tonnes U per year and is

expected to start commission by the end of 2018 [9].

A fuel fabrication facility for the AGRs and the future PWRs is located at Springfields, where

a Magnox fuel fabrication facility was located, but was shut down in May 2008 [9].

1.5.2 The back end of the nuclear cycle in the UK

The reprocessing of spent nuclear fuel takes place at Sellafield by Sellafield Ltd. The reprocessing

plant started operations in 1964 and has a capacity of 1500 tones/year. It is used to reprocess the

spent fuel from the first generation Magnox reactors and it is planned to cease operations by 2020,

when all the Magnox fuel will be reprocessed. A second reprocessing facility at Sellafield, known as

Thermal Oxide Reprocessing Plant (THORP) is responsible for the reprocessing of oxide fuel from

the Advanced Gas-Cooled Reactors overseas. This plant was commissioned in 1994 and is planned

1SWU stands for Separate Work Units (SWU). 1 SWU equals to 1 kg of Separate Work (SW) which is the effort
necessary to separate the 235U and 238U isotopes [43].
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to close by the end of 2018. The original capacity of THORP was for 1200 tonnes/year, but due

to a leak incident in 2005, the capacity was reduced to 900 tonnes/year. A MOX reprocessing

facility, the Sellafield MOX Plant operated between 2001 and 2011, with an original capacity of

120 tonnes/year which was decreased to 40 tonnes/year in 2005. This plant was not efficient

in terms of production since the plant managed to produce only 8 tonnes of fuel. In 2010, the

Nuclear Decommission Authority (NDA) reached an agreement with 10 Japanese utilities for the

refurbishment of the facility, in order to export reprocessed MOX fuel to Japan. However, in

August 2011, following the Fukushima accident, NDA reassessed the project and decided to close

the facility [9].

1.6 Radioactive waste management in the UK

Despite the fact that the amount of radioactive wastes produced during the nuclear fuel cycle is

very small when compared with the amount of the produced energy, the nuclear wastes may contain

highly radioactive fission products that are extremely hazardous for the environment. As it makes

sense, the wastes must be treated properly is order to minimize or even eliminate the impact in the

surrounding biosphere. Radioactive wastes are produced in every step of the nuclear fuel cycle and

also in other sectors involving radioactive materials, such as research, medicine, manufacturing,

agriculture and mineral exploration. There are different types of wastes, each containing a variety

of radioactive materials.

1.6.1 Types of radioactive waste

The classification of nuclear waste varies between countries. In the UK, radioactive wastes are

classified depending on the types and the intensity of the emitted radiation and heat into four

categories: Very Low Level Wastes (VLLW), Low Level Wastes (LLW), Intermediate Level Wastes

(ILW) and High Level Wastes (HLW). The main characteristics of each type of radioactive waste

are presented in Table 1.4.

Table 1.4: The characteristics of the different radioactive waste types [44, 10].

Waste Alpha Beta Heating

Very Low Level Wastes (VLLW) − <4 MBq/t No

Low Level Wastes (LLW) <4 GBq/t <12 GBq/t No

Intermediate Level Wastes (ILW) >4 GBq/t >12 GBq/t No

High Level Wastes (HLW) >4 GBq/t >12 GBq/t Yes

The majority of the radioactive wastes in the UK, are products of the nuclear power development

programme. Only a fraction of the total waste is produced during the nuclear fuel cycle [9]. In

the UK, 57.02% of the total radioactive waste is characterised as VLLW, 33.54% is LLW, 9.41%

is ILW and only 0.03% is HLW. In Fig. 1.8 an area chart of the relative percentages of each type

is shown. It is predicted that by 2125, the total volume of the radioactive wastes in the UK will

be 4.77 × 106 m3 (Table 1.5). However, HLW are responsible for the majority of the radioactivity,
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producing about 95% of the radiation, with the remaining 5% mainly produced by the ILW. The

LLW and VLLW are only responsible for 0.00001% of the radioactivity [10].

VLLW
57.02%

LLW
33.54%

ILW
9.41%

HLW
0.03%

Figure 1.8: Area chart of the radioactive waste in UK by percentage [9].

Table 1.5: The forecast for the volume of the radioactive waste in the UK by 2125 [10].

Waste type VLLW LLW ILW HLW Total

Volume (m3) 2720000 1600000 449000 1500 4770500

Very Low Level Wastes

The Very Low Level Wastes, are actually a sub-category of the Low Level Wastes described in the

following section and they include materials left over and byproducts of the uranium ore process

as well as materials produced during demolishing or rehabilitation of nuclear industrial sites. They

emit very low amounts of β radioactivity, less that 4 MBq per tonne, but they also contain heavy

metals such as As and Pb that are chemical hazardous.

Low Level Wastes

Low Level Wastes contain radioactive elements emitting less than 4 GBq/tonne of α radiation and

less than 12 GBq/tonne β radiation [44]. They include materials such as clothing, filters, papers

and tools and they are mainly generated from industry and hospitals and also from the nuclear

fuel cycle. Although they are more radioactive than uranium tailings, they are also characterized

by a relatively low emission of radiation [44].

Intermediate Level Wastes

Includes contaminated materials from nuclear reactor decommissioning, nuclear fuel cladding,

chemical sludge and resins. They contain higher amounts of radioactive nuclei in comparison
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to uranium tailings and LLW, and require shielding to protect the environment. ILW emit more

than 4 GBq/tonne of α radiation and more than 12 GBq/tonne of β radiation. However, the

radioactive elements do not heat up the waste so no cooling is necessary [44]. They are usually

disposed of by solidification in concrete canisters. Depending on the half-life of the encapsulated

radioactive elements, ILW are either buried in shallow repositories or deposited in a geological

repository facility [44].

High Level Wastes

High Level Wastes are mainly the product of spent fuel reprocessing and can be found in either raf-

finate form created during the nuclear reprocessing or in the form of vitrified HLW [45]. Additional

HLW may be generated during the operation and decommissioning of nuclear reactors. Although

they account for a small amount of the total volume of radioactive waste, HLW are responsible

for 95% of the emitting radiation, since they contain all the fission products created during the

nuclear fuel cycle as well as actinides. They are highly radioactive since they emit the same levels

of α and β radiation as the ILW but they also have the ability to heat up, since the radioactivity

produces energy greater than 2 kW/m3. For this reason, the treatment of HLW require cooling

and shielding operations [44].

1.6.2 Treatment and conditioning of radioactive waste

After a radioactive material is characterised as radioactive waste, it must be converted into a form

that will be convenient for the subsequent transportation, storage and final disposal. For this the

wastes must be treated properly to minimise the volume and then conditioned into an appropriate

solid form that can be immobilised and prevent contamination of the biosphere. There are several

processes that can be used for the treatment and conditioning of the radioactive wastes, depending

on the type of the waste, the radioactivity of the material and the nuclear waste management

policies of each country [46]. The most energetic LLW may require shielding to handle or transport

but in general all LLW can be disposed of by burying them on land in shallow repositories [44].

Liquid LLW and ILW are solidified in cement, a process known as cementation, while HLW are

calcined and then vitrified in a glass matrix, a process known as vitrification [44].

Vitrification

The immobilisation of HLW is based on vitrification (Fig. 1.9), a process in which the waste is

transformed into a glass wasteform [11] that does not react or degrade for long periods of time

[45]. Vitrified glasses show great resistance to corrosion, making them a favourite option for the

immobilisation of HLW [47]. In the West, the main glass wasteforms are normally borosilicate

glasses while in countries of the former Soviet Union, phosphate glasses are more common [48].

In the UK, the vitrification takes place at the Sellafield Waste Vitrification Plant. At the

first stage of the vitrification process, the HLW liquor is transferred from the storage facility to the

waste vitrification plant where it is then mixed with sugar, to enhance the de-nitration process and

reduce as far as possible ruthenium volatilization. Afterwards the mix passes through a electrically-

controlled rotary calciner, to dehydrate the waste and also partially de-nitrate the radioactive

elements, producing a dry powder to increase the stability of the glass wasteform [49, 50]. The
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Figure 1.9: Illustration of a typical vitrification process.

calcined mix is then discharged by gravity along with a measured quantity of fragmented glass in

an induction-heated melter and heated to a temperature of about 1050 oC. The calcine mix reacts

with the melted glass, resulting in a homogeneous melt which is then poured periodically into steel

containers. The product containers are allowed to cool for a period of at least 24 hours, which

is sufficient for the product to solidify into a glass in which the radioactive waste elements are

incorporated into the glass matrix. The cylinder canisters are then welded and decontaminated

before being stored in the Vitrified Product Store, located at Sellafield.

1.6.3 Storage and disposal of radioactive waste

Radioactive waste may be stored at any stage of the management process, after being treated and

conditioned appropriately. The main purpose of the storage is to maintain the radioactive waste

accessible and at the same time isolate it from the environment and prevent any pollution [44].

HLW are stored for at least 50 years before disposal, to allow the radioactivity level to decrease.

Spent nuclear fuel is usually stored under water for at least 5 years, until the amount of generated

heat is reduced to an acceptable level, and then moved to a dry storage facility [51].

To manage the radioactive waste in a more sustainable way, a waste hierarchy has been estab-

lished (Fig. 1.10). The main concept is to prevent or minimise as much as possible the production

of radioactive waste. When it is possible, radioactive wastes are decontaminated and then re-used

or recycled. In some cases, radioactive waste may be incinerated and the disposal to a radioactive

waste repository is the least preferred option [10].

In the UK, an active LLW National Waste Programme is responsible for the sustainable man-

agement of the LLW across the country. The main scope of this programme is to ensure that the

capacity of the Low Level Waste Repository (LLWR), located in Cumbria will remain sufficient for

the future needs. A metal recycling facility, also located at Cumbria, is responsible for minimising

the amount LLW sent for disposal. As of 2016, about 106 m3 of LLW have been delivered to the

LLWR. Initially, the wastes delivered to the LLWR were disposed of in shallow landfills and covered

with soil and stone. However, the large amount of LLW made it necessary to minimize the volume

of the disposed material. Today, the LLW are compacted to decrease their volume. Afterwards
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Figure 1.10: The waste hierarchy implemented in the UK for the radioactive waste management
[10].

they are placed in large metal containers that are then filled with cement grout. As of 2016, there

have been produced more than 10000 containers. In 2014, a new LLW disposal facility was opened

at Dounreay that will receive LLW produced from the decommissioning of the Dounreay Nuclear

Power Development Establishment and also waste packages produced from LLW retrieved from

the LLWR landfills [10].

In contrast with the LLW, no plan has been implemented so far for the disposal of the ILW. As

a result, most ILW are stored in on-site drums, silos, vaults and tanks. The majority of ILW are

stored without any treatment process while the rest are immobilised in cement. The NDA plans

to dispose of ILW alongside vitrified HLW in a Geological Disposal Facility (GDF) [9].

The vitrified HLW are temporarily stored in the Vitrified Product Store at Shellafield, with

a capacity of 7960 steel canisters [50], which is currently almost 75% occupied. While the glass

remains within the Vitrified Product Store it is heated due to the incorporated radioactive elements.

To ensure that the temperature of the glass remains well below the glass transition temperature,

the storage facility is passively cooled by convection. Sellafield’s Vitrified Product Store is planned

to continue operation until the planned completion of reprocessing of the existing HLW liquor. It

is estimated that Sellafield’s vitrification facility will produce about 8620 steel canisters of which

about 1850 will be returned to overseas customers while the remaining packages will be disposed

of in the UK in an appropriate Geological Disposal Facility [50].

Deep Geological Disposal

In the UK and for the long-term management of the radioactive nuclear waste, the government

is working along with local communities, regulators and technical specialists to design the best

possible route for the disposal of ILW and HLW. Currently, the preferred option is Deep Geological

Disposal. In order to develop and implement a plan for geological disposal in the UK, NDA

established a public organisation known as Radioactive Waste Management (RWM). In addition,

the safety policies required for HLW and ILW management are developed by the UK Department

of Business, Energy and Industrial Strategy (BEIS) and the Scottish government.

The concept of geological disposal involves the isolation of ILW and HLW in sealed vaults,
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placed in tunnels at depths between 200 m and 1000 m below the surface, the containment of the

radiation emitted by the radioactive waste to prevent it reaching the surface at levels harmful for

the biosphere. For this, the tunnels must be created within solid rock formations and the packaged

radioactive wasteforms that are placed in the tunnels, are additionally surrounded by cement (for

the ILW) or clay (for the HLW). This multi-barrier approach minimises as much as possible the

probability of contaminating the surrounding environment with the hazardous radioactivity of the

wastes [52]. The GDF is expected to cost 12 million GBP and is expected to become operational

around 2040 with a prospected decommissioning at 2100.

According to the initial plans, the site selection process was expected to start at 2025. After

an invitation from the UK government three communities in Cumbria volunteered to site the

facility. Once the location would be selected, three research studies were expected to take place:

a 4-year geological study, a 10-year surface study and a 15-year underground study, construction

and commissioning. However, this plan was cancelled in 2013 after the Cumbria County Council

decided to halt the project. Following that, the UK government issued a white paper in July 2014,

describing the new plans for the establishment of the GDF. According to this, during the first

two years of the process, the RWM alongside with the government would provide the communities

that are interested in hosting the GDF with detailed information regarding the development of a

GDF. It was planned for the site of the GDF to be selected in 2017, but this was postponed due

to local elections that complicated the process [9, 53]. According to RWM, the site selection and

investigation process will take about 15-20 years [9].





Chapter 2

Glass wasteforms

2.1 Introduction

The relatively high concentration of medium-lived and long-lived radioactive elements makes it

necessary to treat and solidify HLW before they are disposed of in an appropriate repository.

Vitrified nuclear waste products incorporate radioactive elements within the glass matrix. These

nuclei can undergo a spontaneous decay, releasing α, β and γ radiation. While only β and γ

particles can heat the wasteform, highly energetic recoil nuclei, resulting from α decay, can have a

serious impact on the physical and chemical properties of the wasteform in a way that can cause

it to lose its mechanical coherence, and it can lead to unwanted phenomena such as corrosion,

degradation and leaching. Additionally, the incorporated radioactive elements, such as 99Tc, retain

their radioactivity for 105−106 years. In order to prevent the radiation from escaping the wasteform

and contaminating the surrounding environment, it is important to develop new wasteforms with

increased resistance to corrosion and leaching induced by the self irradiation that will be reliable

over the time for which the containing elements remain significantly radioactive, a period that

can expand even to millions of years. Thus the research on wasteforms that can maintain their

chemical durability and physical properties for all the time that the incorporated radioisotopes

remain radioactive, is of crucial importance [54].

Early efforts to develop wasteforms for the immobilisation of HLW started in the 1950s. These

attempts were focused on the incorporation of nuclear radioactive waste into various glasses

with different compositions. The first wasteforms developed were nepheline syenite glasses [55].

Nepheline syenite glasses have a relatively high melting point of about 1350 oC, which is much

higher than the respective borosilicate glasses, ranging between 1100 oC and 1150 oC. Additionally,

the high processing temperature of nepheline syenite glass leads to leaching of radioactive elements

by volatilization and incorporation of radioactive waste without phase separation, reducing the

durability of the wasteform. These facts directed the research in United States, United King-

dom, Canada, France, Italy, Japan and Soviet Union to the development of new glass wasteforms

with lower melting point to make the manufacturing and processing easier. The lower processing

temperatures also help to manufacture glasses at an industrial scale. This research led to the

development of the well-known borosilicate glasses, used as vitrified wasteforms since 1978 [54],

and to phosphate glasses [56].

The search for alternative wasteforms was continued and between 1977 and 1982 a large variety

of new wasteforms were developed [56]. In the US, this research ended with the establishment

of borosilicate glasses as wasteform [57]. The alternative to borosilicate glasses is SYNROC, a

ceramic titanate wasteform, developed initially in the US and afterwards at the Australian National

University and Australian Nuclear Science and Technology Organization, with the collaboration

27
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of the Japanese Atomic Energy Research Institute and AERE Harwell in the UK [54].

Through the years, a series of alternative wasteforms has been developed such as tailored

ceramics such as zirconolite, perovskite, hollandite and pyrochlore [58], TiO2 ceramics [59], glass

ceramics such as the aluminosilicate glasses[60], monazite [61].

As the highly energetic recoil nuclei are moving within the glass wasteform, they transfer their

kinetic energy to the glass atoms that are displaced from their initial position. In computer simula-

tions of crystalline materials it is easy to identify the defects by comparing the damaged structure

with the ideal crystalline assembly [62]. In amorphous materials, such as glass wasteforms things

are more complicated and defects are associated with under-coordinated or over-coordinated atoms

[63] or empty regions [64]. Consequently, the research in radiation damage effects in crystalline

materials is quite extensive, especially for zircon, zirconolite and pyrochlore. In glass wasteforms,

existing research is not as wide as for crystalline materials and is limited mainly to silicate glasses

- for iron phosphate glasses, the study of radiation damage effects is still at an early stage.

2.2 The glassy state

A glass is in general an amorphous solid resulting from a melt by rapid cooling to a rigid body

without crystallization. The atomic structure of glasses is characterised by the absence of order at

long-range level. However, amorphous materials such as glasses appear to have a short to medium-

range order due to the chemical bonding and the interactions between the atoms comprising the

glass. For example, silicate glasses, such as borosilicate glasses, are characterised by tetrahedral

structures formed by the one silicon and 4 oxygen atoms. Early X-ray diffraction studies of vitreous

SiO2 and GeO2 showed that the structure of these glasses is typical of that of an amorphous solid

[65].

2.2.1 The glass transition temperature

In general, when a melt is cooled at a relatively low rate from a high temperature to the melting

point Tm, it solidifies in a crystalline form. The transition between the two forms is not smooth.

Instead at the transition temperature Tm, the volume decreases significantly, as shown in Fig. 2.1.

The slope of dV/dT , which represent the thermal expansivity of the material, is different for T < Tm

and T > Tm and is actually higher at temperatures above the melting point [66].

In order to create a glass, a melt must be rapidly supercooled to a temperature below the

melting point, in a way that prevents the recrystallisation of the structure. In this case the specific

volume of the quenched material does not exhibit a discontinuity and decreases smoothly until the

glass transition temperature, at which the volume change rate with the temperature decreases.

The liquid to glass transition curve, is identical to the liquid to crystal transition up to Tm. Below

Tm however the rate remains the same until the melt reaches the glass transition temperature

Tg, at which the rate of dV/dT gradually decreases, until the material reaches the glassy state in

which dV/dT is constant. The value of the transition temperature depends on the rate of cooling

Q = −dT/dt, and in general Tg increases with the cooling rate. For the curves of Fig. 2.1, Tg2

corresponds to a higher cooling rate [11, 66, 67]. The curve between the super cooled region and

the line corresponding to the glassy state is known as the glass transition region. The departure
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Figure 2.1: Diagram of the specific volume against the temperature for the liquid to crystal and
liquid to glass transitions [11].

from the super cooled region depends on the cooling rate. A slow cooling rate allow the glass to

have a lower volume and hence a higher density [11].

To avoid the crystallisation and obtain a glass, the cooling rate must be rapid and is determined

by the crystallisation velocity vc, given by

vc =
L

3πa2η

Tm − T
T∞

, (2.1)

where L is the fusion heat, a is a parameter of the order of the lattice spacing and describes the

distance an atom needs to move during crystallisation and η is the melt viscosity of the material.

During a rapid quench, viscosity increases exponentially and consequently the crystallisation ve-

locity also decreases rapidly, preventing atoms from relaxing at a position in a crystal lattice and

allowing glass formation [66].

In the case of glass forming materials such as SiO2 and B2O3, used in borosilicate glasses,

and P2O5 used in phosphate glasses, the maximum crystallisation velocities are very low and

consequently the quench rate can also be relatively low. For SiO2 the rate is just 22 Å/s while for

P2O5 it is 15 Å/s [68, 69]. Furthermore, for B2O3 glasses, crystallisation only occurs when the

melt is pressurised when quenched [66].

From a thermodynamical perspective, the entropy and enthalpy during the liquid to glass and

liquid to crystalline transitions show the same behaviour as the specific volume. However, other

thermodynamic properties, such as the heat capacity behave quite different. In Fig. 2.2 the plot of

Cp for the liquid to crystal and liquid to glass transition is shown. It is clear that the heat capacity
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Figure 2.2: Diagram of the specific heat against the temperature for the liquid to crystal and liquid
to glass transitions [11].

exhibits a sudden drop at Tg which can be explained by the change at the enthalpy values near

the glass transition temperature [66]. Using the Gibbs free energy function G, that changes with

temperature T and pressure P according to the equation

dG = −SdT + VdP, (2.2)

where S is the entropy and V the volume, the main thermodynamical properties can be expressed

as functions of the pressure and temperature. For the volume and entropy we have

V =
(
∂G
∂P

)
T

, (2.3)

S = −
(
∂G
∂T

)
P

, (2.4)

while for the heat capacity Cp, the thermal expansivity α and compressibility β

Cp =

(
∂2G
∂T2

)
P

= −

(
∂S
∂T

)
P

, (2.5)

α =
1

V

(
∂2G
∂P∂T

)
= −

1

V

(
∂S
∂P

)
=

1

V

(
∂V
∂T

)
, (2.6)

β = −
1

V

(
∂2G
∂P2

)
T

=
1

V

(
∂V
∂P

)
T

(2.7)

The above equations, along with Fig. 2.2 show that the heat capacity, the thermal expansion

and the compressibility undergo characteristic sudden and major changes at the glass transition

temperature [66].
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2.3 Glass structure

Early efforts to study glass formation by Zachariasen [70] led him to develop 4 rules for the glass

structure. For a glass forming oxide in the form AmOn the rules imply that

1. An oxygen atom can be connected to up to two alkali metal atoms,

2. Each A atom must be surrounded by a small number of oxygen atoms,

3. Polyhedra formed by an A atom and the surrounding oxygen atoms can share only corners

and not edges,

4. The minimum number of shared corners of each polyhedron is three.

These rules are based on the fact that the crystalline and the glass form of a material that can

undergo a glass transition contain the same types of oxygen polyhedra. The difference between

the crystalline and the glass form is due to the large variations in the A-O-A bond angles of the

glassy state, leading to the loss of the long-range periodicity and the formation of a network of

corner-sharing oxygen polyhedra with random orientations [66]. While glass formers such as B2O3

and SiO2 obey all the rules suggested by Zachariasen, oxygen polyhedra of highly ionic compounds,

such as MgO, Al2O3 and TiO2, are connected by sharing edges or faces and consequently they are

not efficient glass formers [66].

However, glasses can also be formed using alkali oxides which act as network modifiers. Network

modifiers can alter the network of a glass by breaking A-O-A chains and forming A-O− terminations.

For example, as seen in Fig. 2.3, consider a SiO2 glass, in which the structural units are [SiO4/2]

tetrahedra sharing all the oxygens residing on the corners. Consequently, each oxygen forms a

Si-O-Si unit with two silicon atoms. The addition of an ionic oxide, such as Na2O triggers the

reaction

2[SiO4/2] +Na2O −→ 2[SiO3/2O]− + 2Na+ (2.8)

As a result, the Si-O-Si chain is broken, forming SiO− terminations, and the structure is modified

or depolymerised. Oxygen atoms in the Si-O-Si chains are known as bridging oxygens (BO) while

those in the SiO− link are known as non-bridging oxygens (NBO). Additionally Na2O, the ionic

oxide that is responsible for the transformation of BOs to NBOs, is the network modifier and SiO2,

the unit that formed the glass, is called the network former.

In this case, the number of shared corners between the oxygen polyhedra is reduced, which

seems contradictory to the Zachariasen rules. Through the years, the Zachariasen rules were also

modified to be in line with the observation for alkali oxide glasses [66] as:

1. The majority of cations acting as network formers are surrounded by tetrahedral oxygen

configurations,

2. Polyhedra formed by an A atom and the surrounding oxygen atoms can share only corners

and not edges,

3. A number of oxygen atoms can be linked to only two cations and cannot form additional

bonds with other cations.
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Figure 2.3: The modification of a simple silicate glass network due to the addition of an alkali
oxide.

2.3.1 The continuous random network model

For the description of the glass structure, the most widely accepted model is the continuous random

network model, introduced by Zachariasen in 1932. The continuous random network model assumes

that the network formed in a glass is extensive and consequently continuous as well as random due

to the absence of periodicity. The oxygen polyhedra structural units in the glass are considered to

be the same as in the respective crystalline material, defining a short-range order with a size defined

by the distance of the first neighbours. In some cases, second or higher order neighbours are also

observed to have fixed geometries, creating a medium-range order within the glass. However, the

large variety in bond lengths and bond angles at large distances results in the complete absence of

long-range order.

The continuous random network model ignores the nature of the bonds between atoms in a

glass. Zachariasen’s rules do not take into account whether a bond is ionic or covalent. Early

efforts to explore the nature of bonds within a glass network conducted in the early 1950s, showed

that glass formation requires both ionic and covalent bonds, as the existence of only one type

of bond will result in crystalline order [71]. Additionally, bond strength can also affect the glass

formation. In detail, high bond strength values result in increased glass forming ability [72]. But

this is only valid if the melting temperatures are high enough to favour bond breaking [73].
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For a detailed description of a glass network, it is required not only to know the primary

structural polyhedra, but also the way they are connected to each other to form the network,

consisting of closed paths, known as rings. In a simple silica glass, the smallest possible ring

consists of 2 silicon and two oxygen atoms forming 4 Si-O bonds. However, such a ring requires

heavy distortions in the Si-O-Si angle, which in normal [SiO4/2] tetrahedra is normally equal to

109.28o and thus it is very difficult to form. Thus, rings with 6 or more Si-O bonds are more

favourable but very large rings, with more than 12 bonds are not easy to form as such formation

reduces the cohesive energy of the structure [66, 74]. Additionally, the absence of Si-Si and O-O

bonds forbids the formation of odd rings.

Despite the success of the continuous random network model, there are some significant ex-

ceptions. In oxides, oxygen atoms are 2-coordinated and the polyhedra formed by the structural

unit are connected via their corners. However, in GeSe2 and B2S3 glasses, that are similar to SiO2

and B2O3 respectively, their polyhedra are mainly connected via an edge. As a result, the sizes

of the rings are generally of lower order and the long range order of the network is decreased.

Consequently, the Zachariasen’s rules cannot be applied to non-oxide glasses. Despite that, the

continuous random network model can predict the distribution in the bond angles that leads to a

large distribution in the ring sizes and in turn an alteration in the local connectivities, known as

topological disorder [66].

2.3.2 Single bond strength criterion

In order for the supercooled liquid to form a glass, there must be a mechanism that prevents the

rearrangements of the bonds towards a crystalline state. Additionally this mechanism must be

able to explain the fact that some materials are better glass formers as discussed previously. Sun

[75] proposed that this mechanism is related to the strength of the bond and that the ability of a

material to form a glass increases with the bond strength. By calculating the strength of the A–O

bonds in the AmOn oxides, Sun was able to show that if the single bond strength is higher than

80 kcal/mol, the oxide acts as a glass network former (NWF). Oxides with single bond strength

between 60 and 80 kcal/mol are classified as intermediates and those with single bond strength

lower than 60 kcal/mol are considered to be glass network modifiers (NWM). Based on Sun’s results

it was found that among other materials, 3- and 4- coordinated boron, 4-coordinated silicon, 4-

coordinated aluminium, 6-coordinated zirconium and 4-coordinated phosphorus are classified as

network formers, 3-coordinated aluminium, 6-coordinated titanium and 8-coordinated zirconium

are intermediates and 6-coordinated magnesium and 6-coordinated sodium are network modifiers.

2.4 Oxide glasses

Oxide glasses are the oldest existing glasses and those with the most widespread industrial ex-

ploitation. The most common oxide glasses are made from combinations of SiO2, B2O3, Al2O3,

Na2O, K2O, MgO, CaO and PbO at various compositions [66]. For the purposes of this work, the

interested is limited to the borosilicate and phosphate glasses, the structure of which is discussed

in more detail in the following sections.
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2.4.1 Silica glasses

Silica glasses are considered the simplest of all existing glasses. A typical silica glass is formed by

supercooling a silica melt at a moderate rate to a glass transition temperature around Tg = 1200 oC.

They are typical examples of a tetrahedral glass structure in which each silicon atom is connected

to 4 oxygen atoms and each oxygen atom is connected to 2 silicon atoms [66]. Each of the slightly

distorted [SiO4/2] tetrahedra are connected together via a bridging oxygen. All the oxygens in the

glass structure act as bridging oxygens. The distortions on the [SiO4/2] tetrahedra geometry are

due to variations in the values of the Si–O–Si bond angles and the O–Si–O–Si torsional angles

[11]. The Si-O-Si bond angles vary between 120 and 180 degrees, with a peak at around 144o

[11, 66].

The short range order of the silica glasses extends to about 5.0 Å and includes the two nearest

neighbour distances between the bonded Si–O pairs and the non bonded O–O pairs comprising

the tetrahedron up to 2.65 Å and the Si–O–Si bond angles and the O–Si–O–Si torsional angles

at distances between 2.65 Å and 5.0 Å (Fig. 2.4). The radial distribution function demonstrates

five dominant peaks: the first at 1.62 Å corresponding to the first coordination shell of the Si-O

pairs (Si1 –O1/2/3/4), the second at 2.65 Å formed by the O–O pairs formed by oxygen atoms of

the same tetrahedron (O1 –O2/3/4, O2 –O3/4, O3 –O4), the third at 3.12 Å due to the Si–Si pairs of

the Si–O–Si bond angles (Si1 –Si2), the fourth at 4.15 Å formed by the second coordination shell

of the Si–O pairs from the Si–O–Si–O dihedral angles (Si1 –O5/6/7) and the fifth at around 5.0

Å formed by the second coordination shell of the Si–Si and O–O pairs (Si1 –Si3, O1/2/3 –O5/6/7)

[11].
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Figure 2.4: A typical short range silica glass structure formed by three [SiO4/2] tetrahedra con-
nected via bridging oxygens O4 and O7.
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2.4.2 Borate glasses

Borate glasses have been used extensively and especially in combination with SiO2. Due to the

high glass forming abilities of the boron atoms, B2O3 melts have the ability to avoid crystallisation

and form glass structures even when they are cooled at the slowest possible rates. The main

building block of borate glasses are the [BO3/2] units, formed by 3 covalent bonds between a boron

atom and three oxygen atoms. However, these units are electron deficient (the p1 orbital has 6

electrons) and have the ability to accept two more electrons. Consequently, borate glasses also

consist of tetrahedral [BO4/2]– units [66]. The average B–O bond length in the [BO3/2] units is

1.38 Å, which is shorter than the theoretical length of 1.53 Å.

This suggests that more than 80% of the boron atoms of a borate glass, form [BO3/2] that are

connected in triplets to form boroxol rings [76, 77]. The boroxol rings in turn are connected together

through simple [BO3/2] units [78]. The addition of alkali oxides in the structure, destroys the

boroxol network, by transforming one [BO3/2] unit in the boroxol ring into a [BO4/2] tetrahedron.

In a binary borate glass, this transformation is described by the reactions

2[BO3/2]
0 +O2− −→ 2[BO4/2]

− and 2B3 +O2− −→ 2B4. (2.9)

The transformation of B3 to B4 is favoured when the concentration of the B3 is less than 50%.

However, when it exceeds 50%, the concentration of B4 is rapidly decreasing. This phenomenon

is known as the borate anomaly and it affects significantly the properties of the borate glasses

[11, 66]. The tetrahedral [BO4/2] units are not associated with any non-bridging oxygens and in

general they are not connected directly [79]. For alkali fractional concentrations of less than 1/3,

the connectivity of the [BO4/2] units creates an open borate glass structure. In contrast, when

the alkali fractional concentration exceeds 1/3, the tetrahedral [BO4/2] units are transformed to

[BO1/2O2]2– units via

2[BO4/2]
− +O2− −→ 2[BO1/2O2]

2− and 2B4 +O2− −→ 2B3
2−. (2.10)

This way, the glass network partially collapses and the utilisation of the volume increases [66].

2.4.3 Alkali and sodium borosilicate glasses

Alkali borosilicate glasses consists of an alkali oxide, SiO2 and B2O3 in various compositions. The

general formula of an alkali borosilicate glass is RA2O-KSiO2-B2O3. As it is clear, two glass network

formers exist: boron and silicon. The addition of the alkali oxide can be associated either with the

silicon atom and create SiO–A+ units containing a NBO, or with the boron atoms and convert

BO3 units to BO4 tetrahedra. In the second case, no NBOs are formed during the process [11].

The exact glass forming mechanism depends on the concentration of alkali oxide. The association

of the alkali oxide with the boron atoms is favoured for R < 0.5 and for higher R values the alkali

oxide is associated also with silicon atoms at a fraction depending on the K value, therefore creating

NBOs [80].

Sodium borosilicate glasses, consisting of SiO2, B2O3 and Na2O are studied extensively. The

effects of sodium addition to a binary SiO2-B2O3 glass was first studied during 1979-1983 by

Nuclear Magnetic Resonance (NMR) [81, 82, 83] and it was shown that the structure depends on
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the fractions R = [Na2O]/[B2O3] and K = [SiO2]/[B2O3]. Later studies revealed that sodium acts

as a network former and leads to the complete transformation of [BO3/2] to [BO4/2] tetrahedra,

leaving the silica network undisturbed with no NBOs [84]. This process occurs while R < 0.5.

For 0.5 < R < Rmax, where Rmax = 0.5 + K/16 the silica network is also altered resulting in the

formation of reedmergnerite ( 1
2Na2OB2O38 SiO2) units consisting of four silica tetrahedra bonded

with one four-coordinated boron [83, 85]. For even higher R values up to R1 = 0.5 + K/4, the

additional Na2O molecules are shared between reedmergnerite and the diborate units, resulting

in the formation of NBOs on the silica units forming the reedmergerite groups [81, 82, 83, 84].

This process is also characterised by the transformation of diborate units to pyroborate consisting

of 1 three-coordinated boron atom with 2 NBOs at a rate given by (2 − K/4)/(2 + K) and the

transformation of reedmergnerite into silica tetrahedra and pyroborate units with also 2 NBOs per

silicon atom at a rate (K +K/4)/(2+K), until all the three-coordinated boron atoms are associated

with at least one NBO. This happens for R = R2 = 1.5+3K/4 [81, 82, 83, 84]. These transformations

continue to occur until all borate units are transformed into pyroborate and all silica units have

no NBOs.

Figure 2.5: Structure of a typical borosilicate glass. [86]

2.4.4 Phosphate and iron phosphate glasses

Although phosphorus is a network former, only P2O5 has the ability to form a glass. Crystalline

P2O5 can be found in three different forms: hexagonal, orthorhombic and tetragonal, which can

form a glass [11]. The simplest possible phosphate glasses can be made using a P2O5 melt. However,
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the manufacturing of such a glass is very difficult due to the complex preparative procedures [87].

The basic building units of a phosphate glass are the trigonal [PO3/2] and the tetrahedral [PO4/2].

In the tetrahedral unit, the phosphorus atom is connected with 3 oxygen atoms via a single bond

of length equal to 1.581 Å, while the bond with the fourth oxygen is double with length equal to

1.432 Å. In a single component P2O5 phosphate glass, the three single bonded oxygens are actually

bridging oxygens, while the double bonded is a terminal oxygen (TO) that cannot be connected

with any other atom. The addition of an alkali oxide, results in the reduction of the non-bridging

oxygens in the PO4 [66]. This is one of the main differences between the phosphate and the silica

glasses, in which all four oxygens of the SiO4 units are BOs. As a result, the phosphate glasses

are less rigid when compared to silica glasses [11]. Using the notation Qi, where i is the number

of NBOs, all the structural units in pure P2O5 glasses are described as Q3. The addition of one

alkali oxide in the glass results in the gradual transformation of Q3 units to Q2 → Q1 → Q0 as

the abundance of the alkali oxide increases [66, 88]. The different structures formed as the alkali

oxide concentration increases consist of ultraphosphates Q3 tetrahedra, Q2 metaphosphate chains,

Q1 pyrophosphates and Q0 orthophosphate ions. Consequently, the structure of an alkali oxide

phosphate glass consists of chains instead of rings [11].

Basic iron phosphate glasses are binary oxides consisting only of Fe2O3 and P2O5. The atomic

structure of iron-phosphate glasses and how it affects physical and chemical properties is well

studied. The basic structural unit is the PO4 tetrahedron and depending on the composition of

the glass, these tetrahedra can be isolated. In the case where the O/P ratio is equal to 4, like

the FePO4 glasses, the structure is known as orthophosphate [89]. For binary glasses consisting

only of Fe2O3 and P2O5, the glass formation is achieved for a content of 15 to 45 mol% in Fe2O3.

Lower iron oxide content may also form glass but with very low chemical durability, while higher

concentrations crystallise rapidly [90, 91]. For vitrification applications, it is common to use 30

to 40 mol% Fe2O3 [89]. The maximum waste load of iron phosphate glasses depends on the

composition of both the glass frit and the HLW. Recent studies also show that an iron phosphate

glass with composition of 42% P2O5, 25% Na2O, 5% Al2O3, 10% CaF2 and 18% Fe3O4 shows

great potential for the immobilisation of HLW containing 99Tc [92].

Mössbauer spectroscopy studies of sodium iron phosphate glasses showed clearly that iron

ions can be found both as Fe2+ and Fe3+ redox states [93]. Melting conditions can affect the

concentration of Fe2+. Increase of Fe2+ will result in the increase of both the viscosity and the

tendency to crystallise. To create an iron-phosphate glass with the desired properties it is important

to maintain the fraction Fe2+/Fe3+ at an appropriate level. This fraction is found to depend on the

melting temperature, the glass composition, the melting time and the atmospheric composition [90,

93]. Although the Fe2+/Fe3+ fraction tends to decrease during the cooling stage of the vitrification,

for normal melting conditions, the variations are quite small and it is generally accepted that both

the melt and the glass consist of the same Fe2+/Fe3+ fraction. However, at low temperatures and

when the resulting glass wasteform is heated in the air, it seems that the fraction increases with

a rate depending on the air temperature. This oxidation can be explained by assuming that the

increase of the temperature results into the transformation of FeO to Fe2O3 [89].

The structure of iron phosphate glasses are far more complicated due to the existence of redox

states. The local structure of iron atoms depends on the Fe2+/Fe3+ fraction. In general, iron atoms

can have a coordination number varying from 4 to 6. In any case the basic structural units are
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the FePO4 tetrahedra. The first attempts to create a model which describes with accuracy the

structure of iron phosphate glasses belong to Wedgwood and Wright [94]. According to this model,

the basic structural units of iron phosphate glasses are [FeO4]– and [PO4]– tetrahedra sharing all

four corners and also PO4 tetrahedra with 3 NBOs and one BO. Additionally, all Fe2+ cations are

8-coordinated and act as network modifiers. A second model was developed by Marasinghe et. al.

more than two decades later [95]. This model is based on the crystalline Fe3(P2O7)2 structure, in

which two Fe3+ ions are found in octahedral coordination and one Fe2+ ion is in trigonal prismatic

coordination. DFT simulations of a simple iron phosphate glass consisting of 60% P2O5 and 40%

Fe2O3 performed by Stoch et. al. [88], assisted efforts to develop a third model, according to which

the basic structural units are both [FeO4]– and [PO4]– tetrahedra. The glass network structure

depends on the Fe2+/Fe3+ ratio.

2.5 Radiation damage process in glass wasteforms

The radioactive decay of the actinides and other fission products incorporated within glass waste-

forms, results in self-heating and self-irradiation of the wasteform that can gradually affect the

structure, performance and stability of the wasteform [96, 97]. Fissile radioactive products con-

tained within nuclear spent fuel have the potential to undergo a spontaneous radioactive decay to

form lighter and more stable elements. During the decay process, the initial nuclei loses energy by

emitting α, β or/and γ radiation.

2.5.1 Alpha decay effects

In alpha decay, a radioactive nucleus undergoes a spontaneous decay in which the initial nucleus is

transformed to a nucleus with atomic number Z reduced by two and a mass number A reduced by

four, with the simultaneous emission of an alpha particle, identical to a 4
2He nucleus. Alpha decay

is described by the equation

A
Z X

α
−→ A−4

Z−2Y + α or A
Z X

α
−→ A−4

Z−2Y +
4
2 He (2.11)

For a single decay event, the kinetic energy of α particles is given by the Geiger-Nuttall law [98]

Eα =
(

α1Z
α2 − ln λ

)2
− Er, (2.12)

where Er is the kinetic energy of the recoil nucleus, Z the atomic number of the mother nuclei

and α1, α2 are constants. This law limits the kinetic energy of α particles in the range between

4.5 MeV and 5.5 MeV, corresponding to a speed of about 0.045 c to 0.055 c or 13.5 × 106 m/s to

16.5×106 m/s. The recoil nuclei, depending on the mass, has a much lower kinetic energy between

70 keV to 100 keV [54].

In nuclear wasteforms, radiation damage results mainly from the α decay of actinides. Although

the kinetic energy of α particles can be from 45 to almost 80 times greater that the one of the

recoil nuclei, it is the latter that is responsible for the majority of the damage. When the fast

moving α particles collide with atoms of the glass matrix because of their extremely high velocity,
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they deposit their energy inelastically to the atoms with the energy transferred to the electrons

of the atoms. Consequently, α particles contribute only about 4% in the displacement energy of

an alpha decay event and their energy is deposited over a relatively large distance varying from

10 µm to 20 µm, while the maximum damage occurs near the end of the α’s particle trajectory

[99]. Furthermore, each α particle collides with a small number of atoms in the glass matrix and

the resulting damage is limited to small clusters of atoms spread over a large area of the structure

and surrounded by undamaged regions, making possible the recovery of the damaged regions. As

a result, the generic effect of α particles in the wasteform is the heating of the structure although

it has been observed that borosilicate glasses may decompose when absorbing ionizing energy

and consequently forming molecular oxygen [100]. Noble gases, such as helium, are insoluble in

most materials. Consequently, accumulation of α particles in different regions within the glass

matrix can lead to helium bubble formation, resulting in induced mechanical strains reducing

the mechanical integrity of the wasteform [54, 101]. Aggregation of helium bubbles within the

wasteform is a continuous process - as long as radioactive materials within the glass undergo α

decay, the concentration of helium nuclei will increase. However, the estimated helium bubble

concentration after 100,000 years is about 30 times lower than that required to start affecting the

mechanical integrity of the wasteform [101].

In contrast, the massive recoil nuclei are responsible for 96% of the displacement energy [99].

Although recoil nuclei from an alpha decay event can travel only about 10 nm within the wasteform,

they have low velocity and transfer their energy elastically, displacing a large number of atoms from

the glass matrix in a small volume and creating a radiation damage cascade. The fact that damaged

atoms of the glass matrix are surrounded by displaced atoms makes the recovery of the structure

less possible. The accumulation of damaged regions from multiple decay events within the glass

wasteform results in permanent damage to the glass matrix [54].

2.5.2 Beta and gamma decay effects

During a beta decay process, the radioactive nuclei transforms a neutron to a proton by emitting

an electron (β− particle) and an anti-neutrino (β− decay), or a proton to neutron with simultaneous

emission of one positron (β+ particle) and one neutrino (β+ decay), according to equations

A
Z X

β−

−→ A
Z+1Y + β

− + ν̄e and A
Z X

β+

−→ A
Z−1Y + β

+ + νe . (2.13)

or

A
Z X

β−

−→ A
Z+1Y + e− + ν̄e and A

Z X
β+

−→ A
Z−1Y + e+ + νe . (2.14)

Because of the large difference in masses between the emitted β particle and the recoil nuclei,

almost all the kinetic energy is transferred to the β particle and it is generally accepted that the

kinetic energy of the recoil nuclei is negligible.

The contribution of the small β particles to the displacement energy of the structure is also

very small. Since electrons and positrons have a very small mass, 5 orders of magnitude lower

than a typical nucleus, they can only participate in single displacement events and most of their

energy is dissipated in the structure of the wasteform by ionisation effects. These effects result in
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the heating of the wasteform for a period of about 500-600 years from their manufacture [54, 97].

The main heating sources, are the short-lived fission products 90Sr and 137Cs.

In gamma decay, a nucleus excited to a higher energy level relaxes to the ground state by

emitting a photon (γ particle) with energy equal to the energy difference between the two states,

via
A
Z X∗

γ
−→ A

Z X + γ. (2.15)

The energy of the emitting photon depends on the energy levels of the mother nuclei but in general

is of the order of 100 keV. Photons resulting from γ decay processes within the wasteform, can

have significant effect only when the wasteform is subjected to a radiolysis process.

2.6 Borosilicate glass wasteforms

The first country to use borosilicate glasses as wasteforms for the immobilisation of HLW was

France in 1981, followed by United states in 1982 and progressively by other countries [102, 103].

The establishment of borosilicate glasses as the main wasteform in the USA was based on early

stage experimental studies of the radiation damage effects conducted in the early 1980s at the

Savannah River Laboratory. These studies focused on the effects of radiation on physical and

chemical properties and mainly on the leaching rates, volume change and damage accumulation.

In general, the results of these studies enhanced the reliability of borosilicate glass wasteforms as

they showed that α and γ particles have no effect on the leaching of the glass [104, 105]. Radiolysis

of the borosilicate glass leachant using 244Cm α radiation, 90Sr β radiation and 60Co γ radiation

also has a small effect on the leaching rates of the wasteforms [106]. However, leach rates may

increase under the oxidative conditions resulting from the formation of HNO3.

The main advantages of borosilicate glass waste forms are [107]:

1. The ability to incorporate the large variety of actinides and fission products comprising HLW,

2. They have a relatively low melting point, about 1150 oC or lower, depending on the compo-

sition,

3. They have a high waste load, up to 40 wt%, again depending on the composition,

4. They maintain their tolerance for a large variety of glass compositions,

5. They are proved to be resistant to radiation induced degradation,

6. They have low leaching rates in aqueous environments,

7. They can be manufactured at an industrial scale.

2.6.1 Composition effects on physical and chemical properties of the

wasteform

Through the years, several borosilicate glass compositions have been proposed for vitrification

applications. In order to achieve the maximum chemical durability, a borosilicate glass wasteform

should have the maximum possible concentration of SiO2. However, large silica concentrations
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increase the melting point to more than 1700 oC. At such high temperatures, fission products such

as Cs, Tc and Se become volatile and cannot be incorporated into the vitrified glass matrix. Thus,

it is necessary to use additional glass forming components to decrease the melting temperature. In

Table 2.1, typical compositions of glass frits used for the vitrification of HLW are presented [56].

The only glass consisting of the three basic components of borosilicate glasses, SiO2, B2O3 and

Na2O, is developed at Atelier de Vitrification Marcoule and is known as AVM frit.

Each of the components of a borosilicate glass can modify specific physical and chemical prop-

erties and the composition is based on the desired properties. Alkaline species, such as sodium

and lithium affect the electrical conductivity and viscosity of the melt. Lithium in general is a

network modifier and consequently it helps to decrease the specific electrical resistance and the

melting point of the glass [108]. To achieve the desired melting temperature, it is required to use

both Li2O and Na2O with a weight percentage of about 0.5. However, alkaline materials may

result in very low viscosities, making it difficult to pour the melt into the steel containers. To set

the viscosity at a convenient value, it is necessary to use oxide additives and mainly Al2O3, CaO,

MgO, ZnO and TiO2.

Aluminium oxide is used to increase the chemical durability of the glass, as aluminium forms

tetrahedra with four oxygen atoms. High concentrations of aluminium however, may increase the

viscosity to levels at which the glass produced will be inhomogeneous [109]. Calcium, Magnesium

and Zinc have the ability to increase the chemical durability of the glass by stabilizing the glass

structure. They also increase the viscosity of the glass at low temperatures, from 400 oC to 600
oC and decrease it at temperatures in the range from 1000 oC to 1300 oC [110]. The effect of

magnesium depends strongly on the composition of the glass. Substitution of CaO by MgO in

specific amounts may significantly reduce the viscosity [111]. ZnO at a concentration of 20 wt% or

more, on the other hand, may devitrify the glass to form willemite (Zn2SiO4). Finally, TiO2 can

Table 2.1: Typical compositions of borosilicate glass frits use for the vitrification of HLW [56]

Composition in weight percent

SRL165 SON168 SM513 PNL76-68 UP209 GP98/12 P0522 SM539 AVM SRL131

SiO2 68.0 54.9 58.6 59.4 68.5 58.5 61.0 45.5 56.1 58.7

B2O3 10.0 16.9 14.7 14.3 15.0 11.0 19.9 33.0 25.3 14.9

Li2O 7.0 2.4 4.7 – 5.4 – 4.3 4.5 – 5.8

Na2O 13.0 11.9 6.5 11.3 11.2 17.5 1.4 10.5 18.6 18.0

K2O – – – – – – 2.8 – – –

TiO2 – – 5.1 4.5 – 3.6 – – – 1.04

CaO – 4.9 5.1 2.9 – 4.5 2.8 6.5 – –

MgO 1.0 – 2.3 – – 3.3 – – – 2.1

Al2O3 – 5.9 3.0 – – 1.6 5.0 – – –

ZnO – 3.0 – 7.6 – – 2.8 – – –

ZrO2 1.0 – – – – – – – – 0.45

La2O3 – – – – – – – – – 0.45
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also decrease the viscosity of the glass because it forms TiO4 tetrahedra. However, large titanium

concentrations can produce crystalline phases within the glass [112]

The composition has been proved to have a significant effect on the leaching and thermal

stability of the glasses, but it has no or only a minor effect on other physical properties. The

optimum borosilicate glass compositions are 51-53% SiO2, 24-28% Na2O and B2O3 and 21-25%

Al2O3, Fe2O3 and waste products [57].

One of the problems associated with the use of borosilicate glass is that many HLW wastes

contain phosphates P2O5, with mass concentrations that reaches 15 wt%. The high concentration

of P2O5 may lead to phase separation in borosilicate glasses, resulting in loss of chemical dura-

bility [113]. To prevent phase separation, one possibility is to minimise as much as possible the

concentration of P2O5 in the wasteform. Depending on the composition of the borosilicate glass,

the maximum acceptable concentration of P2O5 varies from 0.5 wt% to 7 wt% [114, 115]. For most

common borosilicate glass compositions, this limit is even smaller, from 2 wt% to 3 wt%, which is

far less than the common 15 wt%.

2.6.2 Damage accumulation and energy storage

Continuous α decay events within the wasteform result in the accumulation of radiation dose. In

Table 2.2 the cumulative decay events in typical borosilicate glass wasteforms used by the US

nuclear industry and tested in the Savannah River Laboratory are demonstrated. The energy

stored in the wasteform, as a function of cumulative dose, shows a sigmoid behaviour, with an

exponential growth for low cumulative doses and a saturation for higher doses. From 1016 to 1017

α decays/g the stored energy remains almost constant and equal to the maximum values mentioned

previously [96, 116].

Table 2.2: Cumulative decay events in typical borosilicate glass wasteforms used by the US nuclear
industry and tested in the Savannah River Laboratory [117]

Time Alpha decays Beta decays Alpha decay dose Beta decay dose
(years) (per gram) (per gram) (rad) (rad)

1 2 × 1014 5 × 1016 2 × 107 6 × 108

10 2 × 1015 5 × 1017 2 × 108 6 × 109

102 2 × 1016 2 × 1018 2 × 109 3 × 1010

103 1 × 1017 5 × 1018 9 × 109 6 × 1010

104 3 × 1017 5 × 1018 3 × 1010 8 × 1010

105 5 × 1017 5 × 1018 4 × 1010 1 × 1011

106 1 × 1018 5 × 1018 8 × 1010 1 × 1011

The amount of stored energy was also calculated using molecular dynamics simulations. Results

show that the stored energy in a radiation damaged simplified borosilicate glass model is about 70

J/g [15], which is very close to the experimental findings by Weber et. al. [96, 116]. Later studies

of the CJ1 borosilicate glass conducted by Dewan et. al. [20], estimated that after 200 × 4 keV

cascades, the stored energy is almost 100 times higher and approaches 8 kJ/g. However, these

authors note that in a real glass wasteform such a high radiation dose would be achieved after

104 − 105 years and so it is not possible to make a direct comparison of the simulation results with

real world glasses.
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2.6.3 Coordination changes due to alpha decay

Molecular dynamics simulation studies in simplified borosilicate glasses consisting of 63.8% SiO2,

17.0% B2O3, 13.4% Na2O3, 4.0% Al2O3 and 1.8% ZrO2, with incident energy of about 800 eV or

less, showed that oxygen and sodium are the most frequently displaced atoms. A displaced atom

was defined by the authors as one that was moved away from its initial position by more than

10 Å. This is because oxygen and sodium cohesive energies are lower than those of the network

formers of the glass network and also because Na-O bonds are longer than the other bonds of the

structure (' 2.5 Å), and consequently these species have the largest free volume surrounding them

in which they can move [15].

The formation of a damage cascade affects the coordination number of particles and the geo-

metric characteristic and local angles of bonds. Simulations of a simplified glass model revealed

that there is a net reduction of the coordination of oxygen atoms. This transformation of oxygens

results in the transformation of three-coordinated boron atoms to four-coordinated. Additionally

the mean O-B-O angle for the four-coordinated boron atoms is reduced in the damaged structures

regardless of the kinetic energy of the impact particle, varying between 109.27o and 109.29o. For the

three-coordinated boron atoms that were transformed to four-coordinated during the cascade for-

mation, the variations in the angle were more significant and varied between 109.14o and 109.37o.

In any case, these angles are smaller than the equilibrium angle θ0 [15]. In a multiple cascade

simulation of the French borosilicate glasses SON68 consisting of 63.8% SiO2, 17.0% B2O3, 13.4%

Na2O, 1.83.5% ZrO2, 4.0% Al2O3 and '0.1% UO2, by calculating the mean Voronoi volumes of the

three and four-coordinated boron atoms, it was demonstrated how the change in the coordination

numbers is proportional to the number of decay events [17]. Molecular dynamics simulations on a

simplified borosilicate CJ1 glass consisting of only three oxides at composition 67.7% SiO2, 18.0%

B2O3 and 14.2% Na2O also revealed that the change of the boron coordination number results in

a change in the B-O-B and Na-O-Na angles but also in the Si-O-Si. In glasses with high sodium

concentrations, the Na-O bond length becomes shorter and this affects the structure of network

formers, forcing them away from the central oxygen atom and consequently reducing the values of

B-O-B, Na-O-Na and Si-O-Si angles [18]. The changes in the local structure of the glass within

the damage cascade, have been found to be similar to the effect observed when increasing the

temperature of the glass near to the melting point, suggesting that radiation damage effects are of

a similar nature to thermal effects [118]

2.6.4 Volume changes due to alpha decay - Swelling

Alpha decay of radioactive isotopes within the glass wasteform results into a change in the volume

of the glass. The relative volume change is given by

∆V
V0
= A

[
1 − e−BD

]
, (2.16)

where V0 is the initial volume, A the saturation volume change, B the amount of damaged glass per

unit dose and D the total radiation dose. Normally, the saturation volume changes for D = 1018

α decays per gram of glass, are limited within ±1.2% [54, 119, 120, 96]. The volume saturation

depends on the composition and the network of the glass, but in general the volume saturation
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dose is higher than 2 × 1018 α decays/g [121].

By comparing with the energy storage saturation doses, it is obvious that volume change

saturation occurs at much higher doses and this suggests that the storage energy, associated with

the defects formed from α particles released from the decay events, has a different origin from the

network rearrangements that are responsible for the volume changes, associated with the recoil

nuclei. This argument is also supported by the fact that the amount of energy stored in the glass

is independent of whether the glass undergoes contraction, swelling or negligible changes in the

volume [121].

Volume changes in irradiated borosilicate glass were also investigated in several molecular dy-

namics simulation studies. For a structure comprising 56.1% SiO2, 17.1% B2O3, 12.3% Na2O, 3.5%

ZrO2, 6.1% Al2O3 and 4.9% CaO and for damage cascades created by heavy atoms with kinetic

energies of 300, 500 and 700 eV, the volume changes were found to be respectively +0.21%, +0.33%

and +0.19% [122]. In the simulation of the French borosilicate glasses SON68, it was shown that

the increase of the kinetic energy of the projectile results in a decrease of the swelling. To explain

this behaviour, authors suggested that the higher kinetic energy of the impact particle results in a

higher thermal wave that enhances the restoration of the structure. Consequently, the swelling of

the glasses is mainly due to the low energy recoil particles. This is supported by the observation

that structures irradiated with high kinetic energy projectiles (>700 eV) have almost identical ring

distributions as undamaged structures. In contrast, impact particles with lower kinetic energy have

the ability to change the ring distribution, by increasing the number of higher order rings and de-

creasing lower order rings [122]. The total swelling observed in multiple decay events accompanied

by multiple damage cascades is correlated with the structural changes at the atomic level. This is

because of the changes in the coordination numbers of the atoms, resulting in the increase of the

mean ring size and consequently increasing the size of the network [17]. In general, the swelling

of the structure is mainly observed around Na and Ca atoms, acting as network modifiers [122].

However, multiple cascade molecular dynamics simulations of the simplified borosilicate CJ1 glass,

showed that computer simulations may overestimate the change in the volume by a factor of 2.5

[123]. In the work done by Dewan et. al. [20] the volume expansion saturates at about 9%, much

higher than observed in real glasses, but this can also be explained by the fact that the radiation

dose in the simulations was much higher that those observed in current real glasses.

2.6.5 Polymerisation of the glass due to alpha decay

The effect of polymerisation in the cascade morphology also has been studied using molecular

dynamics. It is argued that the impact particle behaves in a different way in polymerised regions,

where it displaces many atoms and its momentum is not reduced significantly, resulting in the

formation of heavily damaged regions, while in depolymerised zones containing sodium, the impact

particle only displaces a few atoms with a faster loss of kinetic energy [16]. In a later molecular

dynamics study of polymerisation the results suggested that the development of the cascade can

be separated into two different stages, a initial one, during the first 0.1 ps, in which the cascade

is created and the glass is depolymerized, followed by the second stage during which the structure

relaxes and the glass is repolymerised [19].
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2.7 Iron phosphate glass wasteforms

The problems related to the high P2O5 concentration in borosilicate glasses, led to the search

for alternative glass wasteforms. A proposed alternative is the iron phosphate glasses that take

advantage of the high P2O5 and Fe2O3 concentration in the HLW to produce wasteforms that can

retain their physical and chemical properties at high phosphate and metal oxides loading. In later

years, the interest in iron phosphate glasses focused on their low melting temperatures and their

large thermal expansion coefficients [124].

Phosphate glass wasteforms were developed in the same period as borosilicate glass wasteforms

[54]. However, for almost three decades, until the mid 1990s, it was thought that they had lower

chemical durability and research was abandoned [102]. It was then proven that binary and tertiary

iron phosphate glasses result in having the same or higher chemical durability in comparison with

borosilicate glasses in water at 90 oC [125, 93]. Additionally, iron-phosphate glasses have a lower

melting point, ranging between 950 oC and 1150 oC which makes their manufacturing process

relatively straightforward [125, 93, 126].

2.7.1 Composition effects on physical and chemical properties

Iron phosphate glasses are in general more fluid than borosilicate glasses with significantly lower

viscosity. The addition of CaF2 decreases further the viscosity and makes the glass formation

much easier. 3 to 7% CaF2 also has the ability to reduce the melting point by almost 100 oC and

additionally increase the durability of the glass [113]. Fluorides such as ZnF2, AlF3 and MgF2 and

additions like Si3N4 or CaO have the same effects such as CaF2, but in lower degree.

Sodium-iron phosphate glasses demonstrate a dissolution rate that is heavily dependent on

the Fe2O3 concentration of the wasteform. In general, durability increases with the iron content

[126, 127]. At 20 mol% Fe2O3, the dissolution rate is of order of 10−6 g/cm2 while for 30 mol% Fe2O3

it decreases by three orders of magnitude, to about 10−9 g/cm2 [93]. In sodium iron phosphate

glasses, the P-O-P bonds forming the PO4 tetrahedra give place to P-O-Fe2+ and P-O-Fe3+ bonds

that demonstrate increased chemical resistance and are responsible for the enhanced chemical

durability and lower thermal expansion coefficient of glasses with high Fe2O3 concentration [113,

126]. Dissolution rates also depend on the oxygen and phosphorus content of the glass and become

a minimum for O/P ratio equal to 3.5, corresponding to a structure of two PO4 tetrahedra, with

one common oxygen, joined to form a pyrophosphate group P2O7 bonded by iron ions [113].

Displacement energy threshold depends on the nature and the coordination of the ions of iron

phosphate glasses. However, the total stored energy seems to be independent of the amount of

Fe2+ and P ions. Additionally, the peak displacement energy threshold of the Fe3+ and O atoms

is higher that that for Fe2+, suggesting that iron phosphate glasses used for the immobilisation of

HLW should contain as few Fe2+ ions as possible.

2.7.2 Alpha decay effects on iron phosphate glasses

Until 2002, there was no research on the radiation damage effects in iron phosphate glasses con-

taining actinides [128]. Since then, research has been mainly focused on the encapsulation of LLW

by the US nuclear industry. In recent years, the Indian nuclear industry expressed interest in
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using iron phosphate glasses for the immobilisation of spent nuclear fuel containing 99Tc [129]

and consequently, involved parties started investigating the effects of α decay on iron phosphate

wasteforms.

To date, there is very limited research on the radiation effects in iron phosphate glasses. From

the existing literature it is found that the irradiation of iron phosphate glasses with 2 MeV Bi

ions results in the depolymerisation of the glass and the breaking of P-O-P and Fe-O-P bonds. In

contrast, 750 keV Bi ions irradiation results in the polymerisation related with the heating of the

structure during irradiation [130]. Finally, molecular dynamics simulations show that the extent

of damage during the cascade formation seems to be inversely proportional to the Fe2+ content.

However, the final damage, after the relaxation of the structure is independent of the amount of

Fe2+. In terms of the P atoms with a coordination number less than 4 which is observed in the

undamaged structures, it can be argued that radiation damage has limited effects in iron phosphate

glasses [13].



Chapter 3

Molecular dynamics

3.1 Introduction

Molecular dynamics is a computational method for studying the behaviour of matter at the atomic

scale, using Classical Mechanics. The technique is based on Newton’s equations of motion

F = m
d2r

dt2
, (3.1)

that are solved for a given force field F to yield the positions r and velocities Ûr of a set of N

atoms after a finite set of timesteps. The positions and velocities of atoms at each timestep

of the simulation define the trajectory of the atom in phase space. Boltzmann’s formulation of

Statistical Mechanics links the trajectories of atoms to equilibrium thermodynamic properties.

Linear response theory enables time-dependent properties, such as transport properties, to be

extracted. A basic Molecular Dynamics algorithm represents an isolated thermodynamic system

in which volume and energy are conserved.

3.2 Classical mechanics in molecular dynamics

In Molecular Dynamics simulations, the first step is to define the potentials φ(r) between the atoms.

For a conservative force field, we can then calculate the forces between the atoms of the system

using the relation

F = −∇φ(r), (3.2)

and from this the acceleration. With the acceleration known, we can calculate the velocity v and

the position r of a particle by simply integrating equations

a =
dv
dt
=
Ûp

m
and v =

dr
dt
= Ûr =

p

m
. (3.3)

For a system of N particles, the integration of these first order ordinary differential equations will

introduce 6N constants that can be calculated using the initial conditions for the positions and

velocities. While initial positions depend on the structure under investigation and are set according

to that structure, initial velocities can be assigned using a Maxwell-Boltzmann distribution. For

example, the x component of the initial velocity of particle i we will have

P(vx,i) =

(
mi

2πkBT

)1/2
e

mi v
2
x ,i

2kBT , i = 1, 2, 3, . . . N . (3.4)

47
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Using similar relations the ŷ and ẑ components of the initial velocities can be also assigned. Ad-

ditionally, in molecular dynamics it is usual to choose a reference frame moving with the centre of

mass of the system. Since Newton’s equations of motion conserve total momentum, without loss of

generality this can be set to zero. So the initial momenta can be assigned to satisfy the equation

p(t = 0) =
N∑
i=1

pi(t = 0) = 0. (3.5)

The Hamiltonian of the motion of a particle will be

Hi =
p2i
2mi
+ φi(r). (3.6)

We can easily show that

dH
dt
= 0 and

dp
dt
= 0, (3.7)

Thus, for a system governed by Newton’s equation of motion (3.1) the total energy and total

momentum are conserved. Additionally, since there is no net torque in the system the total

angular momentum is also a conserved variable. However, in molecular dynamics simulations, we

are concerned only for the conservation of energy and linear momentum, since periodic boundary

conditions used for the simulation (section 3.7) destroy the conservation of angular momentum.

The knowledge of linear momentum at any timestep of the simulation is crucial, as it can be

used to calculate, among others, two very important variables: the total kinetic energy of the

system

Ktot(t) =
1

2

N∑
i=1

p2i (t)
mi

, (3.8)

and the pressure, from the Clausius virial theorem

P =
1

3V

(
N∑
i=1

p2i
mi
+

N∑
i=1

ri · Fi

)
. (3.9)

which for pairwise additive forces becomes

P =
1

3V

(
N∑
i=1

p2i
mi
+

N−1∑
i=1

N∑
j>i

ri j · Fi j

)
. (3.10)

Kinetic energy and pressure play very important role in molecular dynamics simulations because,

as will be discussed in section (3.4), they are used to control the conditions of a simulation.

3.3 Statistical mechanics

In molecular dynamics, all the information regarding the properties of a system is provided at the

microscopic level by calculating atomic positions, velocities and accelerations at each timestep of

the simulation. The knowledge of the position and velocities of the particles at every timestep
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is crucial in order to calculate the thermodynamic properties of the structure. For example, the

kinetic energy can be calculated from the equipartition theorem and in the case where the structure

has no net momentum, we can calculate the instantaneous temperature via

T(t) =
2

3 f kB
Ktot(t), (3.11)

where f is the number of degrees of freedom in the system, given by

f = 3N − 3, (3.12)

where N is the number of particles of the system. In basic molecular dynamics simulations the

total momentum is conserved and this imposes 3 constraints, reducing the total number of degrees

of freedom by 3.

However, it is of equal importance to get information at the macroscopic level for observables

such as the energy, the pressure, the heat capacities and the elastic properties. In order to convert

microscopic variables to macroscopic observables, it is required to use statistical mechanics.

Statistical mechanics is a branch of physics that combines probability theory with

classical physics and quantum mechanics, to determine the thermodynamic behaviour

of large systems consisting of a large number of particles.

3.3.1 Statistical ensembles in molecular dynamics

Statistical mechanics is based on the concept of a microstate, which is a microscopic configuration of

the system with a specific probability. Each microstate is defined by the positions and the momenta

of the particles of the system that form the phase space. Since both position and momentum are

three dimensional vectors, for a system of N particles, the phase space will have 6N dimensions

and the state of the system will be described by a point in the phase space. As the particles of a

system fluctuate around their equilibrium position, the microstates of the system change and the

state of the system will move in phase space. Although the microstates of the system may change

with time, some of the macroscopic variables will remain constant and will define a macrostate.

The set of the points in the phase space that correspond to a specific macrostate define a statistical

ensemble.

In typical molecular dynamics simulations, the total linear momentum p and the total energy E

are constants of motion and consequently, molecular dynamics produce trajectories very close to the

microcanonical NVE ensemble. However, a molecular dynamics simulation in the microcanonical

ensemble cannot provide information regarding the fluctuations of energy. In general the choice

of a specific ensemble determines the thermodynamic properties of which the fluctuations can

be measured. Thus, apart from the microcanonical ensemble, we are able to perform molecular

dynamics simulations in different ensembles, such as the canonical NVT ensemble or the isobaric-

isothermal NPT ensemble.



50 Chapter 3. Molecular dynamics

3.3.2 The microcanonical NVE ensemble

The microcanonical ensemble represents a set of microstates of a system for which if the number

of particles N and the volume V remains constant, the total energy will also be constant. In order

to be in statistical equilibrium, the system must be isolated and the exchange of energy between

the particles and the environment is not possible. In case the system consists of more than one

atomic species, the number of particles of each species N1, N2, N3, . . . is also constant. In the

microcanonical ensemble, each microstate r = r(qi, pi; i = 1, 2, . . . ,N) is characterized by the same

probability

Pr =
1

Ω
(3.13)

where Ω is the number of microstates of the system. An immediate consequence of this is that all

the microstates of the system are characterized by the same energy and so all the particles belonging

in the ensemble must have the same total energy. Although the microcanonical ensemble provides

a very convenient framework to study the evolution of a system, it may not give realistic results

since no real world system is actually isolated from the environment.

3.3.3 The canonical NVT ensemble

The canonical ensemble represents all the possible microstates of a system that are in thermal

equilibrium with a surrounding heat bath of fixed temperature. To preserve thermal equilibrium,

the system must be closed and so it is not allowed to exchange particles with the environment,

keeping the total number of particles N constant. However, the system can exchange heat either

with the environment or with other systems that are described by any ensemble at the same

temperature and it can describe real systems with increased accuracy in comparison with the

microcanonical ensemble.

The Boltzmann factor and the partition function

In the canonical ensemble, the particles do not have the same energy. One of the tasks of statistical

mechanics is to find the distribution of the total energy of the system in the particles. For this, it

is necessary to introduce the Boltzmann factor and the partition function.

The Boltzmann factor is actually a dimensionless weighting factor, that describes the relative

probability to find a particle of a system - which is at thermodynamic equilibrium with a heat bath

at temperature T , in a specific energy state. For a system at temperature T , in a state of energy

Ei, the Boltzmann factor is given by

bi = e−βEi , (3.14)

where

β =
1

kBT
. (3.15)

In contrast with the microcanonical ensemble, the microstates of the system in the canonical

ensemble are not characterized by the same energy. For each particle of specified energy, there is

a specific number of microstates with the same energy that it can occupy, a number that defines

the multiplicity ΩR of the microstate. The least energy principle requires the system to have the

least possible energy. Thus, it is reasonable to assume that the multiplicity of the microstates



3.3. Statistical mechanics 51

will decrease as the energy of the microstate increases and the particles will have an increased

probability of occupying a state of lower energy. This probability is proportional to the multiplicity

of the microstate and is given by

Pi ∝ ΩR(Ei), (3.16)

resulting in

Pi =
1

ZNVT
e−βEi , (3.17)

where

ZNVT =
∑
i

e−βEi , (3.18)

is the partition function, which contains all the information regarding the statistical properties of

a system at thermodynamic equilibrium. The importance of the partition function lies in the fact

that the knowledge of the exact form of partition function allow us to know how the particles of

a system are distributed in the different energy states and additionally to calculate all the basic

thermodynamic variables.

3.3.4 Isothermal-Isobaric NPT ensemble

For simulations of homogeneous fluids, it is common to use the isothermal-isobaric NPT ensemble,

in which the number of particles N, the pressure P and the temperature T of the system remain

constant, allowing the volume and the total energy to change. The probability density is given by

P =
1

ZNPT
e−β(E+PV ) (3.19)

where the partition function can be written as a combination of the partition functions of the

canonical ensembles as

ZNPT =
∑
V

e−βPV ZNVT (3.20)

3.3.5 The ergodic hypothesis

As discussed in the previous paragraphs, the great power of statistical mechanics is based on the

calculation of average variables, achieved by averaging all the points of the phase space. Phase

space defines a continuous 6N-dimensional volume and the average variables cannot be calculated

using the above summation. For a given thermodynamic observable A(pN ,rN ) which is a function

of the positions r and momenta p, the canonical ensemble average is given by

〈A〉e =
∬
P(pN ,rN )A(pN ,rN )dpN drN . (3.21)

In this equation, P(pN ,rN ) is the probability density written as a function of r and p, given by

P(pN ,rN ) =
1

Z
e−βH(p

N ,rN ), (3.22)
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where H(pN ,rN ) is the Hamiltonian and

Z =
∬

e−βH(p
N ,rN )dpN drN (3.23)

is the partition function in the classical limit. However, in molecular dynamics simulations it is

impossible to access all the points of the phase space and instead, time averaged variables are

calculated using equation

〈A〉t = lim
τ→∞

[
1

τ

∫ τ

0

A(pN (t),rN (t))
]

dt '
1

nts

nts∑
t=1

A(pN ,rN ), (3.24)

where τ is the total simulation time, nts the number of timesteps and A(pN ,rN ) the instantaneous

value of observable A. In order for the two approaches to be equivalent, it is necessary to assume

that over long periods of time, the time spent by a particle in some region of the phase space of

microstates with the same energy is proportional to the volume of this region. This is known as

the ergodic hypothesis and plays a very crucial role in molecular dynamics simulations. Because

of this hypothesis the statistical ensemble averages are equal to time averages of the system and

can be calculated using

〈A〉e = 〈A〉t . (3.25)

3.4 Molecular dynamics at constant temperature

Basic molecular dynamics simulations produce trajectories in the microcanonical NVE ensemble

and require the total energy of the system to be constant. However, as mentioned in section 3.3.2,

the microcanonical ensemble only simulates isolated systems. That is unrealistic. Additionally,

the use of the NVE ensemble does not give access to all the properties of a system. In order

to make simulations related more closely to laboratory experiments and be able to access more

features of the simulated system, it is necessary to use the canonical NVT ensemble that requires

the temperature of the system to be constant. This would be a very easy task if we could solve the

equations of motions analytically. Molecular dynamics simulations however, involve the numerical

integration methods described in section 3.6 that allow the temperature to fluctuate. To control

the temperature in a molecular dynamics simulation, at least four different methods can be used:

1. Velocity scaling.

2. Gaussian constraints

3. Addition of stochastic forces.

4. Use of extended Lagrangian formalism.

3.4.1 Deterministic thermostats

Velocity scaling: Isokinetics and Berendsen thermostat

The simplest way to control the temperature is to use the equipartition theorem, according to

which the temperature of the system is a linear combination of the linear momenta of the particles
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consisting the system given by

T =
1

3 f kB

N∑
i=1

p2i
mi
, (3.26)

and rescale the velocities at every timestep of the simulation by multiplying them with a scale

factor so that

γ =

[
Treq

T(t)

]1/2
, (3.27)

where Treq is the required temperature and T(t) the kinetic temperature at time t. This thermostat

conserves the kinetic energy and is called the ad-hoc thermostat.

A preferable temperature control method involves the Berendsen thermostat [131]. Unlike

ad-hoc rescaling, the momenta scale factor is

γ =

[
1 +
∆t
τ

(
Kreq

Ktot
− 1

)]1/2
, (3.28)

where ∆t is the timestep of the simulation, τ is the coupling constant of the thermostat that

indicates how strong is the coupling of the system with a hypothetical heat bath at constant

temperature Treq and is proportional to the time needed by the thermostat to set the temperature

to the required value, Ktot is the total kinetic energy of the system and finally

Kreq =
f
2

kBTreq, (3.29)

is the total kinetic energy corresponding to the desired temperature. As it can be easily shown,

when τ = ∆t Berendsen and ad-hoc rescaling are identical. Both the ad-hoc and Berendsen ther-

mostats can be easily implemented in a molecular dynamics scheme. However, if we choose to

rescale temperature at every timestep of the simulation, the temperature will remain constant

during the simulation and energy fluctuations will not be captured correctly. Consequently these

thermostats, when applied to every timestep of the simulation, fail to produce trajectories in the

canonical ensemble.

Gaussian constraints: Evans thermostat

In this scheme, the kinetic energy of the system is assumed to be a constant of motion [132]. The

scheme uses a modified set of equations of motion, based on Gauss’s principle of least constraint

Ûri =
pi
mi
, (3.30)

Ûpi = Fi − γpi, (3.31)

where γ is a kinetic temperature constraint that can be easily calculated from the equipartition

theorem
N∑
i=1

p2i
2mi
=

f
2

kBT . (3.32)
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Since the kinetic energy and the temperature are constants of motion, by taking the time derivatives

we have
N∑
i=1

Ûpi · pi
mi

= 0, (3.33)

and if we substitute Ûpi from (3.31)

N∑
i=1

(Fi − γpi) · pi
mi

= 0. (3.34)

Solving this equation for gamma, we can easily find that

γ =
1

2Ktot

N∑
i=1

1

mi
(pi · Fi). (3.35)

The Evans thermostat conserves the kinetic energy and generates trajectories in the NVEkin en-

semble. For this reason it is known as the isokinetic thermostat.

The Nosé-Hoover thermostat

In 1984, Nosé proposed an alternative deterministic thermostat, based on a more general formula-

tion of mechanics based on the Hamilton, Lagrange and Gauss formalisms, involving an extended

phase space, by reformulating Newton’s equations of motion [133]. In detail, Nosé added two

additional degrees of freedom to the Hamiltonian of the system, which he re-wrote as

H =
1

2

N∑
i=1

p2i
mi
+

N−1∑
i=1

N∑
j>i

φi(ri j) +
p2s
2Q
+ (3N + 1)kBTreq ln s, (3.36)

where s and ps are the generalized position and momentum of an imaginary heat bath coupled to

the system and Q an effective mass, related to position s, as

ps = QÛs. (3.37)

The third and fourth terms on the right hand side represent the kinetic and potential energy of

the imaginary heat bath. The momentum of each particle is scaled to satisfy the equation

pi = mivis. (3.38)

It can be proven that the Nosé thermostat produces trajectories in the canonical ensemble and since

the evolution of the system is deterministic instead of stochastic, it can be used to approximate

the true dynamics of the system. In order to deploy this thermostat in a simulation, the constant

Q needs to be specified, as it determines the energy exchange rate between the system and the

imaginary heat bath.

However, the above formulation of the thermostat is not convenient, as the momenta scaling

by the factor s requires the time t to be an additional variable of the simulation. To eliminate

this problem, Hoover [134] developed a different formulation of the Nosé thermostat by writing the
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Hamiltonian as

H =
1

2

N∑
i=1

p2i
mi
+

N−1∑
i=1

N∑
j>i

φi(ri j) +
γ2(t)Q

2
+ 3NkBTreq ln s, (3.39)

in which γ is a friction coefficient that replaces ps and actually represents the scaled velocity of

the particles. To calculate the evolution of the position of the particles, Hoover used the equations

Ûri = vi, (3.40)

Ûpi = Fi − γvi, (3.41)

Ûγ =
1

Q

[
1

2

N∑
i=1

p2i
mi
− 3NkBTreq

]
, (3.42)

The third equation can be written in a more convenient form that demonstrates the strength of

the coupling as

Ûγ = −
1

τ2T

[
Treq

T
− 1

]
, (3.43)

where

τ2T =
Q

NkBTreq
, (3.44)

is the effective relaxation time of the thermostat. To apply the Nosé-Hoover thermostat, it is

necessary to use an integration scheme designed for 1st order equations of motion ,consistent with

the above equation, such as the fourth order Runge-Kutta method.

3.4.2 Stochastic NVT thermostats

Andersen thermostat

As discussed in section 3.2, initial velocities of the particles in a molecular dynamics simulations

can be assigned using a Maxwell-Boltzmann distribution. The basic idea behind the Andersen

thermostat [135], is to add a stochastic element to the temperature, by assuming random collisions

of the particles with an imaginary heat bath. In this scheme, every particle of the system is assumed

to collide with imaginary particles of the heat bath with a frequency ν. After the assumed collision,

all the components of particle’s velocity are reassigned using a Maxwell-Boltzmann distribution.

The probability of the collisions is described by a Poisson process given by

Pc(t) = 1 − e−δt/τT , (3.45)

where τT is the relaxation time of Andersen thermostat. In the hardest collision scenario, the

collided particles undergo a complete reset of their momentum using a Maxwell-Boltzmann distri-

bution. It can be proven that infinitely long trajectories, generated using the Andersen thermostat

and averaged over a large number of collisions, belong to the canonical ensemble.

Langevin thermostat

An alternative to the Andersen thermostat is the Langevin thermostat [136, 137], which adds a

stochastic friction force to reassign the velocities of the particles. The Langevin thermostat controls
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temperature by using the modified Newton’s equations of motion

Ûri(t) = vi(t),

Ûpi(t) = Fi(t) − γ(t)pi(t) + ri(t), (3.46)

where γ(t) is the friction coefficient and ri a random force on atom i due to stochastic collisions of

the particles with the imaginary heat bath, with a dispersion σi related to the friction coefficient

γ(t) via

σi =
2miγ(t)kBT

δt
. (3.47)

In order to produce trajectories in the canonical ensemble, the random force ri must oppose the

viscous force. Additionally, ri(t) is uncorrelated in time and its mean value is given by

〈ri(t),rj(t ′)〉 = 6kBmiγ(t)T(t)δi jδ(t − t ′) (3.48)

Just like the Andersen thermostat, the Langevin thermostat also destroys momentum transport

so it is not recommended in simulations where transport properties are to be calculated.

The great advantage of the Langevin thermostat is that it thermostats the system on a local

scale. Particles with high kinetic energies are slowed down by the friction term while those with

low kinetic energies are given additional energy by the random force term.

3.5 Molecular dynamics at constant pressure

In some applications of molecular dynamics it is important to conserve the pressure of the system.

To achieve that it is necessary to use barostats to control the pressure during the simulation. In

general, pressure is controlled by adjusting the size of the unit cell and rescaling the positions of

atoms at each timestep.

3.5.1 Berendsen barostat

The most widely used barostat for the pressure control is the Berendsen barostat [131], based on

the instantaneous pressure, given by (3.9). The Berendsen barostat applies a scale factor η, given

by

η =

[
1 −
∆t
τP
[P − Preq]

]1/3
, (3.49)

where τP is the relaxation time of the barostat, to rescale the lengths of the system according to

ri(t) −→ ηri and L −→ η3L. (3.50)

3.5.2 Nosé-Hoover barostat

As for the control of temperature, we can use a deterministic approach to control pressure based

on the Nosé-Hoover thermostat, proposed by Melchionna et. al. [138]. The Nosé-Hoover equations
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of motion are modified as

Ûr = v + η[r − rcm], (3.51)

Ûp = F − [γ + η]p, (3.52)

Ûγ =
1

τ2T

[
T

Treq
− 1

]
, (3.53)

Ûη =
1

NkBTreqτ
2
P

[P − Preq], (3.54)

ÛV = 3ηV, (3.55)

where rcm is the position of the centre of mass of the system at time t. With the Nosé-Hoover

barostat, the conserved quantity is

HNPT = HNVE + PreqV(t) +
3NkBTreq

2
η2(t)τ2P, (3.56)

and represents within a constant the Gibbs free energy of the system (and can be used to check

the dynamics of the system).

3.6 Integrating the equations of motion

As mentioned in the previous sections, molecular dynamics simulations require the solution of

Newton’s equations of motion. For a three dimensional system of N particles, we need to solve

3N second order differential equations in the form of (3.1), where the force depends on the 3N

positional coordinates. For N > 2, this task cannot be performed analytically and it is necessary

to seek a numerical solution.

All numerical methods are based on the initial value problem

dy
dt
= f (t, y), y(t0) = y0. (3.57)

In molecular dynamics simulations we cannot calculate the position and velocity of a particle as a

continuous function of time and consequently it is impossible to calculate the analytical form of the

differentials Ûr and Ûv. However, since we are only interested in finding the position and velocities of

the particles at each timestep of the simulation, we can use the same initial value problem in the

form

∆y

∆t
= f (t, y), y(t0) = y0. (3.58)

where ∆t is the timestep of the simulation, and give approximate solutions at discrete times

t0, t1, t2, . . . for which ∆t = tn+1 − tn = h. In general the distance h between two consecutive

points is known as the step and in the case of molecular dynamics simulations it is equivalent to

the timestep of the simulation. The size of this step determines the accuracy of the solution and

in general, the smaller the step, the greater the accuracy of the solutions.

The basic idea behind this algorithm is that if we know the initial position r(t = 0), the initial

velocity v(t = 0) and the initial acceleration a(t = 0) of the particles, we can use them to find the
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position, velocity and acceleration at ∆t. Then, using r(∆t), v(∆t) and a(∆t) as reference values, we

can calculate the position, velocity and acceleration at 2∆t. Repeating this process for a desired

number of n timesteps ∆t, it is possible to calculate the position, velocity and acceleration at any

discrete moment n∆t.

The integration of the equations of motion may be performed using simple numerical integration

techniques, such as Euler’s method or more complex algorithms, developed for molecular dynamics

simulations, such as Verlet’s algorithm, Verlet’s velocity algorithm and the leapfrog algorithm or

the even more complicated but also more accurate Runge-Kutta method.

3.6.1 Euler’s method

In this method we consider the Taylor’s expansion of position and velocity vectors around time t

for a timestep ∆t = h, given by

r(t + h) = r(t) + v(t)h + O(h2), (3.59)

v(t + h) = v(t) + Ûv(t)h + O(h2). (3.60)

By keeping only the first two terms of the expansion we can write these equations in the form of

linear recurrence equations as

rn+1 = rn + v(t)h, (3.61)

vn+1 = vn + Ûv(t)h. (3.62)

Considering that Ûv(t) = v(t) and Ûv(t) = F(t)/m we have

rn+1 = rn + vnh, (3.63)

vn+1 = vn +
Fn

m
h. (3.64)

With the initial positions, velocities and forces known, these equations give directly the position

and velocity at time t +∆t. Then, using v(t +∆t), v(t +∆t) and F(t +∆t) as reference values, we can

calculate the position and velocity at time t + 2∆t and so on.

Although this method is quite simple and straightforward, for small step values, it is associated

with large errors of order of h2 in the calculation of the trajectories, because all the higher order

terms of the position and velocity expansions are discarded. To minimize error it is necessary to

use more terms from the Taylor’s expansion.

3.6.2 Explicit Runge-Kutta method

Euler’s method take into account the first two terms of Taylor’s expansion, up to the first derivative.

To increase the accuracy we can use explicit Runge-Kutta methods1 of order s that include in the

calculation the first s derivatives.

1Explicit Runge-Kutta methods are used for the integration of ordinary differential equations. For partial differ-
ential equations it is necessary to use implicit Runge-Kutta methods.
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Second order Runge-Kutta method takes into account the first two derivatives of the Taylor’s

expansion of the position and velocity, and the solution of an initial value problem is given by

yn+1 = yn +
1

2
(k1 + k2), (3.65)

where

k1 = h f (tn, yn) and k2 = h f (tn + h, yn + k1). (3.66)

The error in the second order Runge-Kutta method is of order h3 which is smaller than the one

resulting from Euler’s method but it can still be significant. To further reduce the error we can

use the fourth order Range-Kutta method, according to which

yn+1 = yn +
1

6

(
kn,1 + 2kn,2 + 2kn,3 + kn,4

)
, (3.67)

where

kn,1 = h f (tn, yn), (3.68)

kn,2 = h f (tn + h/2, yn + kn,1/2), (3.69)

kn,3 = h f (tn + h/2, yn + kn,2/2), (3.70)

kn,4 = h f (tn + h, yn + kn,3). (3.71)

The fourth order Runge-Kutta method uses the first four derivatives of the Taylor’s expansion and

consequently the resulting errors are of order h5.

For Newton’s second law, we can determine velocities and positions according to the equations

Ûv(t) =
F(t)
m

, and Ûr(t) = v(t). (3.72)

We can apply Runge-Kutta methods to these equations, for each component of the position and

velocity, to determine with increased accuracy the trajectories of the particles. However, this

method is more demanding in terms of calculation time in comparison with Euler’s method.

3.6.3 Numerical solution of the simple harmonic oscillator

To investigate the effect of the truncation of Taylor’s series, we can apply the previous integration

methods in a one dimensional system, such as the simple harmonic oscillator. This system describes

the movement of a mass m, experiencing a restoring harmonic force

F = −k x, (3.73)

where k is a positive constant, related to the mass and the angular frequency ω via

k = mω2. (3.74)
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The corresponding potential is given by

V(x) =
1

2
mω2x2. (3.75)

The analytical solution for the simple harmonic oscillator is

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt), (3.76)

v(t) = v0 cos(ωt) − ωx0 sin(ωt), (3.77)

where x0 and v0 are the initial position and velocity respectively. The total energy of the system

is given by

Etot =
1

2
mv2(t) +

1

2
k x2(t) =

1

2
mv20 +

1

2
k x20 = constant. (3.78)

Using Euler’s method with a timestep ∆t, we will have

x(t + ∆t) = x(t) + v(t)∆t and v(t + ∆t) = v(t) −
k
m

x(t)∆t . (3.79)

For the Runge-Kutta methods, we need to solve the set of coupled differential equations

dx(t)
dt
= v(t) and

dv(t)
dt
= −

k
m

x(t). (3.80)

For the second order Runge-Kutta method, the position and velocity at time t + ∆t will be given

by (3.65) and since the right hand side of equations (3.80) are only functions of time, k1 and k2
will be

k1,x = v(t)∆t, k1,v = −
k
m

x(t)∆t, (3.81)

k2,x = v(t + ∆t)∆t, k2,v = −
k
m

x(t + ∆t)∆t . (3.82)

For the calculation of x(t + ∆t) and v(t + ∆t), we use the first three terms of the respective Taylor

series.

In a similar approach, the position and velocity in the fourth order Runge-Kutta method is

given by (3.67) where

k1,x = v(t)∆t, k1,v = −
k
m

x(t)∆t (3.83)

k2,x = v(t + ∆t/2)∆t, k2,v = −
k
m

x(t + ∆t/2)∆t (3.84)

k3,x = v(t + ∆t/2)∆t, k3,v = −
k
m

x(t + ∆t/2)∆t (3.85)

k4,x = v(t + ∆t)∆t, k4,v = −
k
m

x(t + ∆t)∆t, (3.86)

and for the calculation of position and velocity at t + ∆t/2 and t + ∆t we use the first five terms of

the Taylor series.

The truncation of Taylor’s expansion of the position and velocity plays a crucial role in the

stability of the solution. This is demonstrated in Fig. (3.1), in which the amplitude of the vibration
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is plotted as a function of time, for a simple harmonic oscillator with mass m = 1 kg, k = 100 N/m,

x0 = 0 and v0 = 10 m/s. For such a system, the maximum amplitude of the vibration must be

equal to A = 1 m. The simulation was performed for just 200 timesteps of 0.02 s each. In the first,

we can see that Euler’s method provides an unstable solution as the amplitude of the vibration

diverges rapidly. Second order and fourth order Runge-Kutta methods provide relatively stable

solutions that are not easy to distinguish for such a short simulation. To explore the differences

between the two methods, we simulated the system for 1000 timesteps of 0.02 s each (Fig. 3.2).

For this longer run, it is clear that the second order Runge-Kutta integrator also diverges while

the fourth order integrator manages to keep the amplitude in the range |A| ≤ 1 m as expected

from the analytical solution of the system. At this point it is worth mentioning that the stability

of the solution is also affected by the timestep ∆t. By choosing a smaller timestep we can make

the second order Runge-Kutta method give more accurate results. However, for long simulations

the solutions will always diverge far more rapidly in comparison with fourth order Runge-Kutta

method. A similar behaviour is observed for the velocity as a function of time, resulting in the

divergence of the total mechanical energy of the system. Consequently, it is preferable to use the

fourth order Runge-Kutta method although its implementation is more complicated in comparison

with Euler’s and second order Runge-Kutta methods.

3.6.4 Verlet’s algorithm

This algorithm was introduced in 1791 by Delambre and rediscovered many times since, including

most recently by Verlet in the 1960s [139]. Verlet’s algorithm is more complex than Euler’s in-
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Figure 3.1: The amplitude of the vibration as a function of time, for a simple harmonic oscillator,
as calculated using Euler’s, second and fourth order Runge-Kutta integration methods.
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Figure 3.2: The amplitude of the vibration of a simple harmonic oscillator as calculated using the
two different Runge-Kutta methods for a longer simulation.

tegration method and with no significant additional computational cost, it offers greater stability

and time-reversibility in phase space, properties that are quite important in physical systems.

Verlet’s algorithm is based on the Taylor’s expansion of the position vector around time t for

two different steps ±h

r(t + h) = r(t) + Ûr(t)h +
1

2
Ür(t)h2 + O(h3), (3.87)

r(t − h) = r(t) − Ûr(t)h +
1

2
Ür(t)h2 + O(h3). (3.88)

Summing these two equations and rearranging gives

r(t + h) = 2r(t) − r(t − h) + Ür(t)h2 + O(h4). (3.89)

In this algorithm, the velocity is not calculated by the integration of the equations of motion.

Instead, the Störmer-Verlet method is used, according to which the velocity can be calculated by

subtracting (3.87) and (3.88), in which case

v(t) = Ûr(t) =
1

2h
[r(t + h) − r(t − h)] (3.90)

From the above equations it is obvious that the calculation of the position vector and velocity at

time t + ∆t requires the knowledge of the position vectors r(t) and forces F(t) on each particle at

the current timestep, but it also requires the knowledge of the position vector at time t − ∆t and

this is a problem in molecular dynamics simulations since the algorithm is not self starting.
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3.6.5 Verlet’s velocity algorithm

To solve the problem with the calculation of positions at time t − ∆t in the Verlet algorithm and

most importantly to be able to calculate velocities directly from the integration of equations of

motion, a modification of the method known as Verlet’s velocity algorithm was introduced that

apart from the Taylor’s expansion of the position vector at time t + ∆t, involves the expansions of

velocity [140]. Thus, we start using equations

r(t + h) = r(t) + Ûr(t)h +
1

2
Ür(t)h2 + O(h3), (3.91)

v(t + h) = v(t) +
dv(t)

dt
h +

1

2

d2v(t)
dt2

h2 + O(h3), (3.92)

or, in a better form

r(t + h) = r(t) + v(t)h +
1

2

F(t)
m

h2 + O(h3), (3.93)

v(t + h) = v(t) +
F

m
h +

1

2m
dF(t)

dt
h2 + O(h3). (3.94)

Although the calculation of the position can be performed directly using (3.93), the calculation of

the velocity requires the first derivative of the force. To eliminate this term, we additionally use

the Taylor’s expansion of the force

F(t + h) = F(t) +
dF(t)

dt
h + O(h2), (3.95)

from which
dF(t)

dt
h2 ' h [F(t + h) − F(t)] . (3.96)

Substituting this to (3.94) we get

v(t + h) = v(t) +
1

2

F

m
h +

1

2

F(t + h)
m

h + O(h3). (3.97)

Discarding higher order terms, equations (3.93) and (3.97) can be written in recurrence form as

rn+1 = rn + vnh +
1

2m
Fnh2, (3.98)

vn+1 = vn +
1

2

Fn

m
h +

1

2

Fn+1

m
h. (3.99)

The obvious advantages of Verlet’s velocity algorithm over the basic Verlet’s algorithm is that it

calculates the velocities directly from the force fields and also does not require the calculation of the

position vector at the previous timestep, making it a more favorable option. Additionally, it follows

the logic of the simple Euler’s method but offers greater accuracy due to the fact that it includes

in the calculations the second derivatives of the Taylor’s expansion for both the position and the

velocity. However, the implementation of this algorithm require two steps in the calculation, and

this because, for the calculation of the velocities at time t+ h we must first update the forces acting
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on the particles. The first step to achieve that is to write (3.93) and (3.97) in the form

r(t + h) = r(t) + h
[
v(t) +

h
2

F(t)
m

]
, (3.100)

v(t + h) =
[
v(t) +

1

2

F(t)
m

h
]
+

h
2

F(t + h)
m

. (3.101)

The terms in the brackets are the expression of the velocity in Euler’s method for half a timestep

h/2. Thus, the four steps of the implementation are:

1. Calculate velocities at half timestep h/2 using Euler’s method,

v(t + h/2) = v(t) +
h
2

F(t)
m

. (3.102)

2. Use the Störmer-Verlet method for t −→ t + h/2 and t − h −→ t to update the positions at

time t + h,

r(t + h) = r(t) + hv(t + h/2). (3.103)

3. Use r(t + h) to update forces at t + h directly from the interaction potential.

4. Update velocities at t + h

v(t + h) = v(t + h/2) +
h
2

F(t + h)
m

. (3.104)

3.7 Periodic boundary conditions

Integration of the equations of motion requires the calculation of all the interactions between the

particles of the system. In general, for a small system consisting of a few hundred or thousand

particles, this is not a problem, since the system is finite and we will have a finite number of

interactions - for a system of N particles the total potential energy is proportional to N2. Addi-

tionally, the surface of such a system is well-defined and the cohesive forces between the particles

are sufficient to hold the system stable [137].

However, if we want to study bulk systems things are more complicated since we practically

want to study an infinite system. Additionally, particles near the surface of the simulation box

will experience different forces from the particles in the bulk, leading to unnatural behaviour of

the simulated system. To overcome these inconveniences, we can implement periodic boundary

conditions [141], introduced by Born & von Karman in 1912. The basic idea is to create periodic

images of the original simulation box and so the motion of the particle within the original simulation

box is replicated in every one of the periodic images. This way, a particle can travel through the

surface of the original simulation box and simultaneously, an image particle enters the simulation

box through the opposite face. This way, both the total number of particles in the system as well

as the number density of particles in the original box are conserved. The great advantage of the

method, however, is that during the simulation we need to calculate the positions and velocities

only for the particles within the original simulation cell - although a pseudo-infinite system is

investigated, we can extract all the necessary information from a small and finite portion of the
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infinite structure.

However, the number of interactions increases rapidly with N. If there are N particles in the

original simulation box, the number of interactions will be equal to 1
2 N(N − 1). For the 3D case

and for N � 1, the replication of the cell a times in each direction, will increase the number of

interactions by a factor equal to a3(a3N − 1)/(N − 1) ' a6. For example, if a = 3 this factor is

equal to 729 meaning that the simulation time will be 729 times longer. To avoid increasing the

number of interactions, the minimum-image convention method is used, according to which, every

particle only interacts with the closest of the images or equivalently only with the particles within

a volume identical to the volume of the original box, in which the reference particle is found in the

centre of the volume.

A simple example of periodic boundary conditions in a two dimensional system is illustrated in

Fig. 3.3. Every time a particle leaves the original simulation box (central square) through the top

side, another particle enters the cell from the symmetric point at the bottom side of the cell. The

procedure is exactly the same for all the periodic images of the simulation cell. To avoid enormously

increasing the number of interactions between particles, the minimum-image convention method

suggests to take into account only the interactions of a reference particle (particle A) with the

particles within the shaded area, which has the same shape as the original box and where the

reference particle lies in the centre of the area.

Special attention needs to be paid to the way the interactions between particles are handled.

Periodic boundary conditions can be applied only in cases where the size of the original box is

sufficient to prevent a molecule from interacting with its own image. Additionally the shape of the

A

Figure 3.3: Illustration of periodic boundary conditions in a simple two dimensional system.
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original simulation cell must have a geometry that will allow the periodic images to exactly fill the

3D space, without leaving any voids or overlapping. It also places a restriction on the maximum

correlation length and correlation time [137].

3.8 Interaction potentials

In a real system, the total internal energy is a quantity depending on the positions and momenta of

all the nuclei and electrons comprising the structure. However, it is extremely difficult to calculate

the exact form of electronic interactions and thus it is necessary to use approximate interacting

potentials. In general, for a system consisting of N particles, the total potential energy function

can be expressed as

Φtot(ri,rj, . . . ,rN ) =
N∑
i=1

φ1(ri) +
N−1∑
i=1

N∑
j>i

φ2(ri,rj)+

N−2∑
i=1

N−1∑
j>i

N∑
k> j

φ3(ri,rj,rk) + · · · , (3.105)

where φ1(ri) on the right hand side describes the single particle energy which is zero unless an

external field is applied to the system, φ2(ri) the two body pair interactions, φ3(ri) the three body

interactions etc. In molecular dynamics simulations of crystalline or amorphous materials, we only

take into account pair interactions.

3.8.1 Electrostatic interactions

To describe electrostatic interactions we use Coulomb’s law of electrostatics, according to which,

the force between two particles of charge q1 and q2 at a distance r12 is given by

F12 =
1

4πε0

q1q2
r212

r̂12, (3.106)

where r̂12 is the unit vector pointing from charge q1 to q2 or to the opposite, depending on the

charge on which the force is calculated. The respective electrostatic energy is given by

φe =
1

4πε0

q1q2
r12

. (3.107)

These relations are valid for particles interacting in a vacuum. For dielectric materials, the electric

permittivity ε0 of the vacuum must be replaced with the electric permittivity ε = keε0 of the

dielectric material, where ke is the dielectric constant of the material.

Inside a typical atomic system, the only kind of electrostatic interactions taking place are

the ionic interactions, describing the attractive and repulsive forces between ions with full formal

charges.
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3.8.2 Van-der-Waals interactions

Van-der-Waals interactions are a subset of electrostatic forces describing the interaction between

any kind of dipoles or multipoles. They are separated into three different categories:

1. Permanent dipole-permanent dipole interactions, also known as Keesom forces, that align

the molecules parallel to each other in order to minimize the potential energy of a structure.

2. Permanent dipole-induced dipole interactions, alternatively known as Debye forces resulting

from the polarisation of a molecule with no permanent dipole due to the electric field of an

approaching molecule with a permanent dipole.

3. Induced dipole-induced dipole interactions, or London dispersion forces, generated by the

temporary repulsion of the electronic clouds between two molecules with no permanent

dipoles and resulting in the creation of one partially positive and one partially negative

dipole.

In general, interactions between dipoles are proportional to r−6 and also depend on the orientation

of dipoles. It can be proven that the total Van-der-Waals energy is given by the sum of the above

three terms as

φvw = −
cvw
r6

, (3.108)

where cvw is a positive constant. From this equation it is clear that Van-der-Waals interactions

are inversely proportional to the sixth power of the distance between dipoles.

3.8.3 Short range potentials and the Lennard-Jones potential

Electrostatic interactions, as described in the previous section are very accurate for large dis-

tances. However, close to atoms they are invalid because atoms and particles do not behave like

point charges as assumed by Coulomb’s law. The main reason is that when two atoms approach,

the electronic orbitals of the two atoms overlap, resulting into a relatively strong repulsive Pauli

force, the detailed calculation of which is very complicated as it requires quantum mechanical per-

turbation theory. The perturbation terms of the Coulombic potential consist of the interactions

between the electrons of the two orbitals, the spin-spin interactions and the spin-orbital angu-

lar momentum interactions. From a computational perspective this is an extremely demanding

and expensive task. To overcome these complications, John Lennard-Jones proposed an approxi-

mate interaction potential, that takes into account both the Van-der-Waals interactions and Pauli

repulsion term [142]. In the most common form, the Lennard-Jones potential is expressed as

φLJ = 4ε

[(σ
r

)12
−

(σ
r

)6]
, (3.109)

or

φLJ = ε

[( rm
r

)12
− 2

( rm
r

)6]
, (3.110)

where ε is the depth of the potential well, σ is the distance at which the potential is equal to zero

and rm is the distance for which the respective force is zero and the Lennard-Jones potential has

its minimum value.
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Figure 3.4: Plot of φLJ(r)/ε versus r/rm of the Lennard-Jones pair potential.

Although the attractive Van-der-Waals term is well justified, the repulsive r−12 term has no

clear physical basis. However, it approximates with very good accuracy the Pauli repulsion and

its calculation is very easy and inexpensive since it is proportional to the square of r6.

The calculation of the exact interaction energy between atoms in molecular dynamics sim-

ulations is an extremely demanding task and there are several limitations associated with the

Lennard-Jones potential. First, the Lennard-Jones potential is empirical. It has only two parame-

ters that can be fitted to up to two physical quantities using experimental data, and consequently

it is not applicable to systems where more than two physical properties need to be fitted into the

potential. Additionally, the Lennard-Jones bonds are spherically symmetrical and so it cannot be

used in systems where directional bonding is important. Furthermore, the coordination number of

an atom does not affect the strength of the bond and the bond energy is a linear function of the

coordination number, in contrast with experimental data showing that the bond energy per atom

increases quadratically with the coordination number [143]. Finally, the potential diverges when

two atoms approach. This may lead to instabilities in molecular dynamics simulations involving

highly energetic particles. Thus, in molecular dynamics simulations of atomic systems, it is com-

mon to use alternative potentials, such as the Buckingham potential, the Ziegler-Biersack-Littmark

short range potential and the Stillinger-Weber potential.

3.8.4 Buckingham potential

A more flexible potential, that can be fitted to three physical parameters, is the Buckingham

potential [144] given by

φBuck(r) = Ae−r/ρ −
C
r6
, (3.111)

where the first term describes the Pauli repulsion energy and the second the Van-der-Waals interac-

tion energy. In the Buckingham potential the Pauli repulsion term has a more natural exponential

form in comparison with the (rm/r)12 Lennard-Jones term [145]. However, as shown in Fig. 3.5,

Buckingham potential has a divergent region at short distances with limr→0 [φBuck(r)] = −∞. This
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may create problems in simulations of systems with either very short interatomic distances that

due to the nature of the potential will converge to zero, or with energetic particles that may

overcome the potential barrier and simultaneously lose energy due to collisions with other atoms

and consequently be trapped in the infinite potential well. Additionally, for r −→ 0, Buckingham

potential is attractive despite the fact that the force between two nuclei is repulsive.
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Figure 3.5: A typical form of the Buckingham potential with A = 1000 eV, ρ = 0.30 Å and C = 1.00
Å6.

3.8.5 Ziegler-Biersack-Littmark short range potential

To eliminate the effects of the divergence region of the Buckingham potential, in simulations with

short interatomic distances or in cases where energetic particles are involved, the Buckingham

potential is combined with the short range Ziegler-Biersack-Littmark (ZBL) potential (Fig. 3.6),

that describes the nuclear repulsion resulting from high-energy collisions between atoms [146]. The

ZBL potential between two atoms with atomic number Zi and Z j is given by

φZBL =
1

4πε0

ZiZ je2

ri j

4∑
k=1

cke−bk
ri j
a . (3.112)

where

α =
0.46850

Z0.23
i + Z0.23

j

Å (3.113)

and
b1 = 0.18175, b2 = 0.50986, b3 = 0.28022, b4 = 0.02817,

c1 = 3.19980, c2 = 0.94229, c3 = 0.40290, c4 = 0.02817.
(3.114)

A ZBL potential has no natural joining point with a Buckingham potential. In order to work

together, the two potentials must be truncated at distances rZBL and rBuck > rZBL. They may be

joined with a 3rd or higher order spline or even with a Fermi switching function, in such a way

that the total potential energy function is continuous and smooth.
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Figure 3.6: A typical form of the short range ZBL potential.

Cubic spline interpolations

To fit the two truncated potentials, the most common method is to use a cubic spline in the form

Q(x) =
3∑

k=0

ck xk . (3.115)

The first step is to choose a set of n + 1 points (xi, yi), i = 0, 1, 2 . . . n and rewrite Q(x) in the

parametric form

Qi = (1 − t) fi−1 + t fi + t(1 − t)[ai(1 − t) − bit], (3.116)

where

t = t(x) =
x − xi−1
xi − xi−1

. (3.117)

In (3.116), Qi are 3rd order polynomials interpolating f in the interval xi−1 < x < xi for i =

1, 2, 3 . . . n such that(
dQi

dx

)
xi

=

(
dQi+1

dx

)
xi

and
(

d2Qi

dx2

)
xi

=

(
d2Qi+1

dx2

)
. (3.118)

Since there are n steps between points x0 and xn, we must calculate n polynomials Q(x) to fill the

gap between the two truncated curves. Equations (3.118) secure the continuity of the first and

second derivatives of polynomials Q(x), while the continuity of the polynomials is ensured using

the relations

Qi(xi) = Qi+1(xi) = Q(xi), i = 1, 2, 3, . . . , n − 1. (3.119)

To simplify the above equations we can set

Q(xi) = yi, and

(
dQi(x)

dx

)
xi

= ki . (3.120)
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Figure 3.7: A typical splined interaction potential, along with the Buckingham and ZBL potentials.
The Buckingham potential was truncated at rBuck and the ZBL at rZBL. These distances are chosen
so that the splined potential won’t form a potential well for rZBL < r < rBuck. Additionally the
value of rBuck was selected to be significantly smaller than the distance between oxygen atoms in
the initial crystal.

Using this notation, parameters ai and bi in equation (3.116) can be calculated via

ai = ki−1(xi − xi−1) − (yi − yi−1), (3.121)

and

bi = −ki(xi − xi−1) + (yi − yi−1), (3.122)

respectively. Since there are n polynomials to be calculated, parameters ai and bi define a system

of 2n equations. However, by using the continuity of the second derivatives of Qi(x), this system

can be simplified into a n × n system in respect to ki.

Three body Stillinger-Weber potential

The Lennard-Jones, Buckingham and ZBL potentials are used to describe the pair interactions

between the particles of a system. But in certain cases, it is necessary to include in the simulations

three body terms used to describe three particle interactions. Through the years, several three

body potentials have been proposed [147, 148, 149, 150]. The most commonly used three body

potential for the simulation of glasses however, is the Stillinger-Weber three body potential [148],

given by

φSW(ri j,rik, θ jik) = λe
(

γ
ri j−rc

+
γ

rik−rc

)
(cos θ jik − cos θ0)

2, (3.123)

where ri j and rik are the distances of the outer atoms j and k from the middle atom i of an atomic

triplet ( j − i − k), θ jik is the angle of the bonds formed by atoms j and k with atom i, rc is the

cutoff distance that defines the maximum distance for which the three body potential is applied

and finally λ and θ0 are adjustable parameters, with the latter describing the ideal bond angle.
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3.8.6 Long range electrostatic potentials

All pair potentials described in the previous sections have infinite range. For large bulk systems,

this will lead to a huge increase of the computational time. An alternative method is to use

truncated and shifted potentials. For the Lennard-Jones potential it is common to truncate the

potential at a distance rc = 2.5σ, and shift the potential upwards so that ULJ(2.5σ) = 0. The final

expression of the potential is

φtr.LJ(r) =


4ε

[(σ
r

)12
−

(σ
r

)6]
− φLJ(rc), for r < rc,

0, for r > rc

(3.124)

We can follow the same approach with all pair potentials and with the electrostatic forces, for

which the truncated potential can be written as

φtr.e (r) =


1

4πε0

qiqj

r
− φe(rc), for r < rc,

0, for r > rc

(3.125)

For every potential however we need to pay special attention on how to choose the truncation

distance. The Lennard-Jones potential converges very fast to zero due to its dependency on r−6

and r−12. But electrostatic forces are proportional to 1/r and so they converge much slower.

Thus, the cutoff distance for the electrostatic forces must be much greater than the cutoff for the

Lennard-Jones potential. It is common to truncate electrostatic forces to a distance equal to the

half of the minimum dimension of the simulation box, to avoid a particle interacting with its own

image when we use periodic boundary conditions.

Direct sum and Ewald sum of electrostatic forces

Even if the electrostatic potential is truncated, we will still have a huge number of interactions

to calculate, making simulations quite expensive. One way to reduce the computation time, is

to take advantage the periodic boundary conditions and perform a direct sum of the electrostatic

potentials for all the images of the original simulation box. In case of a cubic cell of size L, all the

electrostatic interactions can be calculated using equation

Φe(r) =
1

8πε0

N∑
i=1

N∑
j,i

qiqj

ri j
+

1

8πε0

∑
n,0

N∑
i=1

N∑
j=1

qiqj

|ri j + nL |
, (3.126)

where n is a three-dimensional vector used to identify the positions of the image particles. The

first term on the right hand side of the above equation describes the interactions of particle i with

all the other particles in the original simulation box, where it cannot interact with itself, and the

second the interaction of the particle with all the other particles of the image cells, include the

images of the particle itself. Even with this method, the potential energy conditionally converges

very slowly and even more importantly, if we model infinite bulk structures, the sum over vectors

n must also be infinite making the computation impossible.
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The faster way to compute electrostatic forces is to use the Ewald summation [151], in which

the potential energy is split into two terms: one for the short range interactions, treated with a

simple cutoff and one for the long range interactions which is periodic and can be approximated

with satisfactory accuracy by a finite Fourier series. To perform the splitting, the first step is to

neutralize every point charge of the system by using a surrounding charge distribution of equal

magnitude and opposite sign, treated in real space. To remove the effects of this artificial charge

distribution Ewald summation method also uses a slowly varying periodic charge density, treated

in reciprocal space.

For the surrounding charge distribution, a screening function is used, most commonly in the

form of a Gaussian distribution

ρs(r) = −qi
(α
π

)3/2
e−αr

2

. (3.127)

To compensate for the contribution of this charge density in the Coulombic energy, we use a charge

distribution

ρc(r) =
∑
n

N∑
j=1

qj

(α
π

)3/2
e−α |r−(r j+nL) |, (3.128)

for which the Fourier transform is given by

ρ̃c(r) =
N∑
j=1

qje−ik·r j e−k
2/4α . (3.129)

Using the Fourier’s transform of Poisson’s equation

k2φ̃(k) =
1

ε0
ρ̃(k), (3.130)

we can find that the Fourier’s transformation of the respective potential energy is

φ̃ j(k) =
1

k2ε0

N∑
j=1

qje−ik·r j e−k
2/4α, (3.131)

and by using inverse Fourier’s transformation, we find that the compensating potential function is

φ j(r) =
1

V

∑
k,0

φ̃(k)eik·r =
1

ε0V

∑
k,0

N∑
j=1

qj

k2
eik·(r−r j )e−k

2/4α . (3.132)

The contributing of the compensating term in the potential energy is

Φc(r) =
1

2

N∑
i=1

qiφ j(r) =
1

2ε0V

∑
k,0

N∑
i=1

N∑
j=1

qiqj

k2
eik·(r−r j )e−k

2/4α . (3.133)

This term includes an interaction of particle i at ri with the compensating charge distribution at

the same point, described by a potential due to the Gaussian charge distribution, given by

φi,G(r) =
1

4πε0

qi
r

erf(
√
αr), where erf(x) =

2
√
π

∫ x

0

e−r
2dr . (3.134)
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at the centre of the distribution, for r = 0. This interaction corresponds to a potential energy

Φself(r) =
(α
π

)1/2 N∑
i=1

q2
i , (3.135)

that needs to be subtracted from the total Coulombic energy.

We also need to calculate the real space contribution for the short range interactions, given by

φ j ,sh =
1

4πε0

qj

r
− φ j ,G(r) =

1

4πε0

qj

r
(erfc

√
αr), (3.136)

resulting into a potential energy term given by

Φsh(r) =
1

8πε0

N∑
i=1

N∑
j,i

qiqj

ri j
erfc(
√
αri j) (3.137)

Finally, the Coulombic energy calculated with Ewald summation method is

Φe(r) = Φc(r) − Φself(r) + Φsh(r). (3.138)

For a successful implementation of the Ewald summation method one needs to specify the cutoffs

for the real and the reciprocal space and also Gaussian parameter α. This step is quite important

as a poor estimation of these parameters may lead to large errors in the results of the simulation.

3.9 Molecular dynamics simulations on glass wasteforms

To model the structure of borosilicate and iron phosphate glasses as well as the the effects of radi-

ation damage, several molecular dynamics simulations have been conducted, using a large variety

of interatomic potentials. In the following paragraphs, a concise and detailed description of these

studies is provided to point out the necessity of a topological approach towards the characterisation

of radiation damage effects in glass wasteforms.

To study simplified borosilicate glass wasteforms, Delaye & Ghaleb [15, 16, 17] used a Buck-

ingham pair potential in the form

UBuck(r) = Ae−
r
ρ , (3.139)

along with the three body Stillinger-Weber potential

USW(ri j,rik, θ jik) = λe
(

γ
ri j−rc

+
γ

rik−rc
)
(cos θ jik − cos θ0)

2 (3.140)

where A, ρ, λ and γ are adjustable parameters. For the short range pair interactions, the authors

also used a Ziegler-Biersack-Littmark (ZBL) potential (details in section 4.9). To combine the

Buckingham with the ZBL potential, the two potentials were truncated and joined with a fifth

order spline.

Results of their work showed that in a simplified nuclear glass consisting of 63.8% SiO2, 17.0%

B2O3, 13.4% Na2O3, 4.0% Al2O3 and 1.8% ZrO2 the number of atoms displaced from their initial

positions due to irradiation increases with the kinetic energy of the incident particle, ranging form
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300 to 800 eV. The authors considered a particle to be displaced if the distance between its final

and initial position is larger than 1 Å. The majority of the displaced particles are sodium and

oxygen atoms, with the displaced sodium atoms found near the limits of the damage cascade,

while the displacement distance of the particles is independent of the atomic species. Additionally,

it was observed that boron atoms are transformed from 4-coordinated to 3-coordinated and BOs

are transformed to NBOs, minimizing the connectivity of the network [15]. Delaye & Ghaleb also

investigated the origins of volume change in irradiated borosilicate glasses, by performing molec-

ular dynamics simulations in a glass with the same composition [17]. Multiple damage cascades

were created using impact particles with kinetic energy equal to 700 eV. Results revealed that the

swelling of the glass is rapid in the first stages of the simulation and reached a saturation volume

after the creation of 10 consecutive cascades. The swelling was accompanied with a depolymeri-

sation of the structure, since the coordination number of the boron atoms was decreased and

consequently the mean size of the rings was increased. The swelling was mainly due to the increase

of the local volume of boron and silicon particles, as a result of the decrease in the coordination of

boron atoms.

Simulations of a different glass, consisting of 60% SiO2, 20% B2O3, 13% Na2O, 5% Al2O3 and

2%ZrO2, using incident particles with kinetic energies between 500 eV and 6 keV to model the

irradiation process, revealed that network formers behave differently from network modifiers during

the creation of damage cascades. In detail, the number of particles displaced by more than 1 Å in

the polymerised regions of the structure is significantly larger from the one in the depolymerised

zones [16].

The behaviour of a borosilicate glass with composition 60.2% SiO2, 15.8% B2O3, 12.7% Na2O3,

3.9% Al2O3, 1.8% ZrO2 and 5.6% CaO under α irradiation was investigated by Abbas et al. [19].

Table 3.1: Parameters of the potentials used by Delaye & Ghaleb [15, 16, 17], Delaye et al. [18],
Abbas et al. [19] and Dewan et al. [20] to study the radiation damage effects in a simplified
borosilicate glass.

Buckingham potential parameter A in keV
ρ = 0.29 Å except for the O-O interactions for which ρO-O = 0.35 Å.

Si O B Na Zr Al

Si 836.42 1571.11 361.41 862.02 2557.35 961.27
O 362.670 760.90 1396.34 4805.09 1734.03
B 121.09 374.52 1031.80 366.37
Na 842.05 2637.87 976.25
Zr 7822.47 2940.61
Al 1100.46

Stillinger-Weber potential parameters.
λ is expressed in eV, γ and rc in Å and θ0 in degrees.

O-Si-O Si-O-Si O-B-O

λ 149.808 6.242 11984.64
γ 2.6 2.0 2.27
θ0 109.47 160.0 109.47
rc 3.0 2.6 2.1
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These authors used the same potentials as Delaye & Ghaleb [15, 16, 17] and the impact particle was

given a kinetic energy of 700 eV. Results showed that the number of particles displaced by more

than 1 Å increases during the first 0.1 ps, where the damage cascade is created and the structure

is depolymerised, and then it decreases significantly as the structure relaxes and repolymerises.

Delaye et al. [18] performed simulations of an irradiated CJ1 glass with molecular composition

67.7% SiO2, 18.1% B2O3 and 14.2% Na2O3, using again the same potentials as Delaye & Ghaleb

[15, 16, 17]. The kinetic energy of the impact particle was selected to be equal to 600 eV and

it was found that the creation of the damage cascade resulted in the disorder within the glass.

In contrast with previous results, these authors found that the mean ring size of the irradiated

structure decreased in comparison with the one of the initial undamaged glass. The same glass

structure was also simulated by Dewan et al. [20] who performed a topological analysis of the

structure. The system was subjected to 300 cascades of 4 keV each. The results revealed that

the number of 4-coordination boron atoms decreases with the number of cascades, leading to

the domination of 3-coordinated boron atoms while the average ring size increases, indicated a

depolymerisation of the structure.

Gu et al. [152], examined the chemistry of sodium borosilicate glasses with various compositions

given by (B2O3)x(Na2Si2O5)1−x for x = 0.3, 0.5, 0.7, using a Born-Mayer-Huggins potential in the

form

UBMH(ri j) =
(
1 +

Zi

ni
+

Z j

nj

)
bi je

σi+σ j−ri j
ρi j +

1

4πε0

ZiZ je2

ri j
, (3.141)

where ni, nj are the number of valence electrons of atoms i and j respectively, σi, σj the atomic sizes

and bi j , ρi j constants. For the three body interactions, these authors used the same three body

Stillinger-Weber potential used by Delaye & Ghaleb [15, 16]. They concluded that the tetrahedral

coordination of silicon atoms remains invariant with the increase of B2O3 concentration, while the

boron tetrahedra are decreased in favour of 3-coordinated boron atoms.

Abbas et al. [21] performed molecular dynamics simulations to study the structure and surface

dynamic behaviour of a borosilicate glass consisting of 53.3% SiO2, 14.05% B2O3, 11.3% Na2O3,

3.4% Al2O3, 1.6% ZrO2 and 5.0% CaO, using a Buckingham pair potential in the form of (3.139)

supplemented with a three body Stillinger-Weber potential, with parameters given in Table 3.2.

The results suggested that the glass behaves in a different manner on the surface, as the structural

properties deviate from those in the bulk glass. The reason behind this behaviour is the accumu-

lation of alkali oxides near the surface of the glass resulting in the lower coordination of atoms at

the outer layers of the structure. This depolymerisation near the surface results in the formation

of slightly larger rings in comparison with those in the bulk.

Kieu et al. [22] developed composition dependent empirical potentials for the study of sodium

borosilicate glasses by assuming fractional charges for the different atoms, unlike previous studies

in which the charges of the atoms were integers. They used only a pair Buckingham potential with

parameters given in Table 3.3. Kieu assumed that the charges of atoms in the sodium borosilicate

glasses are given by

q′B = −q′O

(
C6K2 +

5∑
i=0

CiRi

)
(3.142)
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Table 3.2: Parameters of the potentials used by Abbas et al. [21] to study the structure and surface
behaviour of borosilicate glasses.

Buckingham potential parameter A in keV
ρ = 0.29 Å except for the O-O interactions for which ρO-O = 0.35 Å.

Si O B Na Zr Al Ca

Si 876.02 1645.89 353.45 903.59 2679.25 956.46 4000.81
O 369.31 769.92 1462.63 5034.05 1725.23 6873.07
B 126.76 392.61 1080.99 394.48 1691.08
Na 882.37 2763.58 971.38 3990.64
Zr 8185.01 2925.38 12236.19
Al 1039.67 4326.64
Ca 17898.94

Stillinger-Weber potential parameters.
λ is expressed in eV, γ and rc in Å and θ0 in degrees.

O-Si-O Si-O-Si O-B-O O-Al-O

λ 124.840 6.242 9363.000 149.808
γ 2.6 2.0 2.27 2.6
θ0 109.47 160.0 109.47 109.47
rc 3.0 2.6 2.1 3.0

and

q′i = qi −
NB

NSi + NO + NNa
(q′B − qB), where i = Si, O, Na, (3.143)

where

C0 = 1.49643, C1 = −0.2950, C2 = −0.2565,

C3 = 0.08721, C4 = −0.01323, C5 = 0.00073, (3.144)

and

C6 = 0.00315 for R > 0.55 or C6 = 0 for R ≤ 0.55. (3.145)

Using this approach Kieu managed to control bond angles to the desired values without using the

three body Stillinger-Weber potential.

Table 3.3: Buckingham potential parameters used by Kieu et al. [22]

Bond A (eV) ρ (Å) C (eV·Å
6
)

Si-O 45296.72 0.161 46.1395
Na-O 120360.22 0.17 0
O-O 9027.03 0.265 85.0321
Si-Si 834.40 0.29 0
Si-B 337.70 0.29 0
B-B 121.10 0.35 0
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Potentials used by Delaye & Ghaleb [15] and Kieu et al. [22] were evaluated by Jolley et al.

[24]. These authors found that the potentials proposed by Kieu et al. provide the highest accuracy

regarding the calculation of bond lengths and bond angles and additionally these models have the

lowest melting point.

For the investigation of the structure of iron phosphate glasses, Al-Hasni & Mountjoy [23] used

a Buckingham pair potential, with parameters given in Table 3.4. Authors simulated 10 different

glass compositions with P2O5, Fe2+ and Fe3+ compositions varying in the ranges 50-70%, 0-50%

and 0-50% respectively. They also used a three body potential in the form

Vi ji(θ) =
1

2
ki ji

(
θ − θi ji

)2
, (3.146)

where j is the central atom, to describe the bond angle stretch of O-P-O and P-O-P triplets, with

kOPO = 3.5 eV, kPOP = 3.0 eV, θOPO = 109.47o and θPOP = 135.5o. Results revealed a well-

defined phosphate network and different bond lengths for the Fe2+ –O and Fe3+ –O bonds, equal

to 2.12 Å and 1.89 Å respectively. The mean coordination of iron ions was calculated equal to

' 4.5. Finally, they suggested that an iron phosphate glass consisting of 60% P2O5 and 40%Fe2O3

has increased durability because of the relatively low number of P-O-P bonds and the increased

number of Fe-O-P bonds.

Table 3.4: Parameters of the Buckingham potential used by Al-Hasni & Mountjoy et al. [23],
Jolley et al. [24] and Jolley & Smith [13] to model iron phosphate glasses.

Bond A (eV) ρ (Å) C (eV·Å
6
)

Fe2+-O 11777 0.2071 21.642
Fe3+-O 19952 0.1825 4.6583
O-O 1844 0.3436 192.58
P-O 27772 0.1819 86.860

Kitheri et al. [31] and Jolley & Smith [13] used the same potentials to investigate the displace-

ment energy thresholds and radiation damage tolerance respectively. In contrast with Al-Hasni &

Mountjoy, Jolley et al. [24] and Jolley & Smith [13] used a three body Stillinger-Weber potential

with λOPO = 5.351617 eV, λPOP = 8.299695 eV, θOPO = 109.47o, θPOP = 135.5o, γ = 0.5 Å and

rc = 2.5 Å.

The work done by Kitheri et al. [31] revealed that the displacement energy of Fe2+ in an iron

phosphate glass consisting of 60% P2O5 and 40% Fe2O3 is lower than the one for Fe3+. Addition-

ally, the cohesive energy of the glasses reduces as the Fe2+ content increases and consequently, iron

phosphate glass wasteforms are suggested to have as low Fe2+ content as possible.

Jolley & Smith [13] simulated five different compositions of iron phosphate glasses: 3 resulting

from crystalline phases Fe2+Fe3+2 (P2O7)2, Fe3+4 (P2O7)3, Fe3+(PO3)3 and two from the 40% Fe2O3

and 60% P2O5 iron phosphate glass with two different Fe2+ concentrations, 4% and 17%. For

the creation of the damage cascade authors used 4 keV impact particles. Results show that the

majority of particles displaced by more than 1.2 Å are oxygen atoms and also that the number of

displaced particles increases significantly during the first 0.5 ps of the simulation and is slightly

reduced (about 10%) during the final relaxation stage. The number of displaced particles during

the creation of the cascades was found to be proportional to the Fe2+ content. However, the
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absence of Fe2+ ions in the Fe3+4 (P2O7)3 glass resulted in a higher number of displaced atoms in

comparison with the other simulated structures. In the relaxed structures in contrast, it was found

that the Fe2+ concentration has no effect on the final number of displaced particles.

In the existing literature it is apparent that radiation damage studies focus on the number of

displaced particles. A particle is identified as displaced if the distance between the position of

the particle in the damaged structure and the position in the initial undamaged structure exceeds

a certain value depending on the structure. However, this approach ignores the specific bond

lengths and characteristics and may lead to inaccurate estimation of damage effects. Additionally,

rings play a crucial role in the understanding of glass structure. Especially for irradiated glass

wasteforms, ring statistics can improve our understanding on the effect of radiation damage and

contribute significantly in the efforts to develop the best possible wasteforms. However, until now,

the exploitation of ring statistics in the research of glass wasteforms is very limited.





Chapter 4

Defect characterization techniques

4.1 Introduction

Radiation damage characterization requires the identification and analysis of the defects that play

a crucial role in materials properties and behaviour. In general, point defects can be categorized

as vacancies and interstitials. It is relatively easy to spot them in a crystal, like zircon, where

a simple comparison between the damaged structure and the initial reference crystal is sufficient

for their identification. DLPOLY 4[132] offers an in-build algorithm based on the Wigner-Seitz

method, to estimate the number of defects. The Wigner-Seitz method compares the configuration

of a system at a time t, which contains the point defects, with a reference configuration that

defines the defect-free structure of the system and is usually a perfect crystal lattice. But as

Hobbs [153] points out, this method cannot be used for an accurate estimation of defects during

radiation damage simulation, since the crystal may suffer heavy distortions during the procedure.

In addition, in amorphous materials such as glasses there is no reference lattice structure to refer

to and a topological approach becomes necessary. In this work three topological methods are

proposed, involving Steinhardt order parameters, Hermite order parameters and ring statistics.

4.2 Defect counting: The Wigner-Seitz method

The Wigner-Seitz method is the most wide-spread method for defect characterization in crystalline

materials. It is based on the concept of a Wigner-Seitz cell (Fig. 4.1), a type of primitive Voronoi

cell. To construct a Wigner-Seitz cell, the process is quite straightforward. From a chosen atomic

site, the planes that are perpendicular to the midpoint of the position vector of all the neighbours

are drawn. From the cells that are formed, the one with the least volume defines the Wigner-Seitz

cell of the specific atomic site.

In a crystalline structure, each atomic site defines a unique Wigner-Seitz cell. The number

of atoms in each Wigner-Seitz cell defines the occupancy oi of the cell. In typical undamaged

structures, each Wigner-Seitz cell is occupied by one and only one atom, so for the undamaged

structure we will have

oi(t = 0) = 1. (4.1)

To find defects in the damaged structure, the positions of the atoms are compared with their

positions in the initial structure in order to determine the occupancy of the atomic sites in the

damaged configuration (Fig. 4.2). An empty atomic site i for which

oi(t > 0) = 0, (4.2)

81
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Figure 4.1: Construction of a Wigner-Seitz cell in a simple 2D case: A reference atomic site (gold
color) is connected with all the neighbours. From the midpoint of the position vector of each
neighbour, a perpendicular line is draw (grey dashed lines). The Wigner-Seitz cell (light gold area)
is defined by the black lines that form the cell with the least possible area.

defines a vacancy defect, while a site for which

oi(t > 0) > 1, (4.3)

has excess atoms and the number of excess atoms oi(t > 0) − 1 defines the number of interstitial

defects of the site. Obviously, the total number of vacancies of the system is equal to the number

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Undamaged structure

1 2 3

4 5 6

7 8 9

1 6

4

5 3

7 8 9

4

Vacancy Interstitial Antisites

2

Damaged structure

Figure 4.2: Typical defects in a simple crystalline structure. The empty atomic site previously
occupied from atom 4 forms a vacancy. Atomic site 5 in the damaged structure is occupied by two
atoms forming an interstitial. Atoms 3 and 6 that exchanged their atomic sites are characterized
as antisite defects.
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of atomic sites with occupancy equal to zero, so

nv(t) =
∑
i

δoi (t>0),0, (4.4)

and the total number of interstitials is equal to the total number of excess atoms of the system, so

ni(t) =
∑
i

[oi(t) − 1](1 − δoi (t>0),0). (4.5)

In the above relations, δi, j is the Kronecker delta, defined by

δi, j =


0, for i , j

1, for i = j

, (4.6)

In the case that the total number of atoms of the system is conserved, the number of vacancies is

equal to the number of interstitials.

When a vacancy is created in a damaged structure, the empty atomic cell may be re-occupied by

a different atom. Thus the occupancy of this site is equal to 1, meaning it cannot be characterized

as vacancy or as interstitial. However, since the atom that originally occupied this site is displaced

from its initial position, this defines an antisite defect.

4.2.1 The necessity of a topological approach

Although this method is quite simple, it is not accurate to estimate radiation damage effects,

mainly because it is based on the displacement of the particle from the initial position. In a real

damaged structure there is no information regarding the distance a particle is moved from its

initial position. In crystalline materials this distance can be estimated by comparing the position

of the particle in the damaged structure with the position of a reference frame but again this

is just an estimation, while in amorphous materials there is no reference structure to compare

with. Additionally and especially in amorphous materials, the displacement distance of a particle

from its initial position is not a foolproof way to classify if the structure is damaged or not. The

displacement of the particles from their initial positions will result in broken bonds between the

atoms, known as bond defects. These bond defects are responsible for any change in the properties

of a material under irradiation. As demonstrated in Fig. 4.3, a point defect is not necessarily

accompanied by bond defects and via versa. In the first case, particle 9 is displaced away from

its initial position it occupied in the undamaged structure (Fig. 4.2), resulting into two broken

bonds previously formed by pairs 6-9 and 8-9. However, particle 9 is still within the boundaries

of its Wigner-Seitz cell and consequently the Wigner-Seitz method will not identify this particle

as a defect. In the second case, a group af atoms may move as a whole away from the positions

occupied in the undamaged structure, without breaking any bonds between the atoms forming the

group. All the atoms of the group in the damaged structure are found outside their respective

Wigner-Seitz cells and the Wigner-Seitz method will classify them as defects, ignoring the fact that

the relative geometry of the group is unaffected by the radiation damage event. It is important

to retrieve information about both point defects and bond defects and for this we need to apply a
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topological approach.
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Figure 4.3: Problems associated with Wigner-Seitz defect counting method. Left: Radiation dam-
age may displace a particle away from its initial position, breaking the bonds with the neighbouring
atoms. However, if this particle stays within its Wigner-Seitz cell, the Wigner-Seitz method will
not identify it as a defect. Right: In this case, radiation damage may displace a small cluster away
from its reference position, without breaking any bonds. The Wigner-Seitz method will identify a
large number of point defects even though there is no broken bond in the structure.

4.3 Steinhardt order parameters

In 1983, P. Steinhardt and his group formulated a set of bond-orientational parameters based on

spherical harmonics, in order to study the structure of liquids and glasses [154]. For a reference

particle i of the system, these parameters are given by

〈Q`,m〉
(i) =

1

Nb

Nb∑
j=1

Ym
` (θ j, φ j), (4.7)

where Nb is the number of neighbours of particle i, θ j , φ j are the spherical polar and azimuth

angles of the neighbouring particle j in the reference system of particle i and `, m are integers that

obey the conditions

` ≥ 0 and −` ≤ m ≤ `. (4.8)

Spherical harmonics on the other hand are given by

Ym
` (θ, φ) = (−1)m

√
2` + 1

4π

(` − m)!
(` + m)!

eimφPm
` (cos θ), −` ≤ m ≤ `, (4.9)

where Pm
`
(cos θ) are the associated Legendre polynomials, given by

Pm
` (ξ) =

1

2``!
(1 − ξ2)m/2

d`+m

dξ`+m
(ξ2 − 1)`, 0 ≤ m ≤ `. (4.10)
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for positive m values, while for the negative values of m we have

Pm
` (ξ) = (−1)m

(` + m)!
(` − m)!

P |m |
`
(ξ), −` ≤ m < 0. (4.11)

It can also be shown that associated Legendre polynomials can be expressed as a series of ξ in the

form

Pm
` (ξ) =

1

2`
(1 − ξ2)m/2

`−m∑
k=0

dk(`,m)ξk, (4.12)

where

dk(`,m) = (−1)
1
2
(`−m−k) (` + m + k)!

k!
(
`−m−k

2

)
!
[
` −

(
`−m−k

2

)]
!

(4.13)

for
` − m = odd and k = 1, 3, 5, . . . , ` − m

or

` − m = even and k = 0, 2, 4 . . . , ` − m

, (4.14)

and dk = 0 for all the other cases. The calculation of spherical harmonics at the poles where

the angle φ is not defined requires special attention. Using the cartesian form of the spherical

harmonics we can find that for θ = 0 and θ = π, all the spherical harmonics with m , 0 should be

zero. This leads us to define the angle φp for θ = 0 according to the relation

φp =


0 for m ≤ 0

π

2m
for m > 0

(4.15)

Because spherical harmonics, for a given value of `, are members of the SO(3) rotational group

that represents all the rotations in the 3D Euclidian space under the operation of composition,

they are coordinate system dependent. This dependence is transferred directly to the first kind of

Steinhardt order parameter given by equation (4.7). To avoid this inconvenience, a second kind of

Steinhardt order parameter was introduced, given by

Q(i)
`
=

[
4π

2` + 1

∑̀
m=−`

���〈Q`,m〉
(i)

���2]1/2 , (4.16)

which are independent of the coordinate system - they depend only on the relative position of the

reference particle i with its neighbours. In general, Steinhardt Order Parameters can give useful

information regarding the degree of symmetry in a system and more particularly about the angular

distribution of atoms around a reference particle. Details regarding the information that can be

retrieved for the symmetry of both crystalline and amorphous materials will be discussed in the

following paragraphs.
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4.3.1 Tesseral spherical harmonics

Spherical harmonics are in general complex functions, due to the exponential term eimφ. Thus,

the sum in equation (4.7) has both real and imaginary parts. For example, if a reference particle

has Nb neighbours, the first kind of Steinhardt order parameters will be given by

〈Q`, |m |〉
(i) =

1

Nb

Nb∑
j=1

Ym
` (θ j, φ j) =

=
1

Nb
c`,m

[
Nb∑
j=1

cos(mφ j)Pm
` (cos θ j) + i

Nb∑
j=1

sin(mφ j)Pm
` (cos θ j)

]
. (4.17)

where

c`,m = (−1)m

√
2` + 1

4π

(` − m)!
(` + m)!

. (4.18)

Second kind Steinhardt order parameters require the calculation of the squared norm of the first

kind Steinhardt order parameters, which in this case is

���〈Q`,m〉
(i)

���2 = 1

16
c2`,m


(

4∑
j=1

cos(mφ j)Pm
` (cos θ j)

)2
+

+

(
4∑
j=1

sin(mφ j)Pm
` (cos θ j)

)2 , (4.19)

and results in ���〈Q`,m〉
(i)

���2 = 1

N2
b

c2`,m

[
Nb∑
j=1

[
Pm
` (cos θ j)

]2
+

+

Nb−1∑
j=1

Nb∑
k>i

cos
[
m(φ j − φk)

]
Pm
` (cos θ j)Pm

` (cos θk)

]
. (4.20)

From a computational perspective, this practice is not very efficient as it requires Nb(Nb + 1)

calculations for each particle of the system. To make the calculation more efficient and reduce the

computation time, the real form of the spherical harmonics is used. Real spherical harmonics, also

known as tesseral spherical harmonics, are given by

Ỳ ,m(θ, φ) =



√
2c`, |m |P

|m |
`
(cos θ) sin(|m|φ), for m < 0

c`,0P0
` (cos θ), for m = 0

√
2c`,mPm

`
(cos θ) cos(mφ), for m > 0

. (4.21)

Using tesseral spherical harmonics, the calculation of
��〈Q`,m〉

(i)
��2 becomes proportional to the num-

ber Nb of neighbours of the reference particle, reducing significantly the computation time.
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4.3.2 Symmetry of tesseral spherical harmonics

Tesseral spherical harmonics obey symmetry relations that are transferred into Steinhardt order

parameters, which in turn give useful information regarding the structure of a system. As can be

seen from Fig. 4.4, for a cubic lattice, for every particle at position (r, θ, φ) there are three particles

at positions (r, θ, π + φ), (r, π − θ, φ) and (r, π − θ, π + φ). In general it can be shown that tesseral

spherical harmonics obey the symmetry relations

Ỳ ,m(π − θ, φ) = (−1)`−mỲ ,m(θ, φ),

Ỳ ,m(θ, π ± φ) = (−1)mỲ ,m(θ, φ),

Ỳ ,m(π − θ, π ± φ) = (−1)`Ỳ ,m(θ, φ).

(4.22)

From the final equation it is obvious that the sum of the spherical harmonics for two particles in

opposite directions from the reference particle will be zero for ` = odd.

x

y

z

π − θ

θθ

π − θ
φ

φ + π

(θ, φ)

(π − θ, φ)
(π − θ, φ + π)

(θ, φ + π)

Figure 4.4: The symmetry in a simple cubic lattice. For the coordinate system of the central red
atom and for every particle at position (r, θ, φ) (blue atom) there are three particles at positions
(r, θ, π + φ), (r, π − θ, φ) and (r, π − θ, π + φ). The dashed lines show the projections of the positions
on the Oxy plane and on the z axis. Same symmetries apply for every cubic based lattice system,
such as the bcc and the fcc.

4.3.3 Calculation of Steinhardt order parameters

In radiation damage simulations, it is important not only to estimate the total damage in the

system, but also to know the extent of the damage for the different species comprising the structure.

Thus, Steinhardt order parameters are calculated separately for each species. Additionally, since

we are interested in bond defects, separate calculations are carried out for each of the neighbouring

species of the reference particle. For the calculation, the algorithm displayed in Fig. 4.5 is followed.
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Select reference particle i = 1
to initialize the calculation.

Calculating distances between reference
particle and all other particles.

Keep particles with distance r < rcut
from the reference particle.

Calculating angles θ and φ for all the
neighbours of the reference particle.

Calculating associated Legendre polynomials
for all neighbours.

Calculating tesseral spherical harmonics
for all neighbours.

Calculating first kind of Steinhardt order
parameters and their squared norms.

Calculating second kind of Steinhardt order
parameters.

If i = Na If i < Na

Set
i −→ i + 1

End of calculation

Figure 4.5: Algorithm for the calculation of Steinhardt order parameters. Na is the total number
of atoms of the same species.

The calculation is initialized by selecting the first reference particle of the system. The next

step is to find all the neighbours of the particle that lie within a sphere of radius rcut, usually

equal to the distance of the first minimum of the partial radial distribution function for the species

under investigation. To identify those neighbours, the distances ri j between the reference particle

and all the other particles of the systems must be calculated. The calculation time of common

codes is proportional to the square of the number Na of the atoms. But since the calculation of

Steinhardt order parameters for the reference particle is limited to the neighbours inside the sphere
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of radius rcut, the calculation time can be significantly reduced using a modified cell algorithm.

This is based on the fact that since ri j ≤ rcut, the components xi j , yi j and zi j must also satisfy

the relations xi j ≤ rcut, yi j ≤ rcut and zi j ≤ rcut. Based on that, the initial structure is expanded

by a distance rcut, and then the cell is split into smaller cells with dimensions larger and as close

as possible to rcut. To identify all the bonds, we just need to calculate the distances between the

particles of each of the smaller cells, with the particles in its 26 neighbouring cells. This way,

the calculation time is proportional to 27N2
a (d/a)

3 instead of N2
a , where a is the dimension of the

original cell and d the dimension of the smaller cells. Fraction a/d is an integer and for a/d > 3,

the calculation time is significantly reduced. For example, for a system of 106 particles, a/d can

take a value a/d > 50 and the running time with the modified cell algorithm can be more than 104

times lower in comparison with conventional methods.

Once all the neighbours with r ≤ rcut are identified, spherical angles θi j and φi j can be calcu-

lated. Angle θi j appears in the associated Legendre polynomials, not explicitly, but in the form of

cos θi j and sin θi j . Thus, there is no need to calculate angle θi j itself. Instead, cos θi j and sin θi j

are calculated using

cos θi j =
zi j
ri j

and sin θi j =
√

1 − cos2 θi j . (4.23)

However, the calculation of φi j involves a lot of details that needs to be considered. In general,

angle φi j is given by

φi j = arccos
©­­«

xi j√
x2i j + y2i j

ª®®¬ (4.24)

The problems arise when xi j or yi j or both are equal to zero. In the poles of the reference particle,

where xi j = yi j = 0 and so θi j = 0 or θi j = π, angle φi j is defined by

φi j =


0, for m ≤ 0

π
2m , for m > 0

. (4.25)

If the component yi j of the distance between two particles is zero and xi j , 0, then

φi j = arccos

(
xi j
|xi j |

)
, (4.26)

and φi j can take two possible values, 0 if xi j > 0 and π if xi j < 0. Finally, special consideration needs

to be taken for particles with π < φi j ≤ 2π since the inverse cosine function provides values in the

range 0 ≤ φi j ≤ π. To solve this issue, for particles with yi j < 0 the transformation φi j −→ 2π − φi j

is necessary.

The calculation of associated Legendre polynomials can be performed using equation (4.9) for

m ≥ 0. It is not required to calculate Pm
`
(cos θi j) for m < 0, since tesseral spherical harmonics

are expressed using associated Legendre polynomials for m ≥ 0. However, this way, associated

Legendre polynomials need to be written in their analytical form and this requires a rigid code

that will have a prefixed limit for the maximum value of ` and the respective maximum order of
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the Steinhardt order parameters. To make the code more flexible and have the freedom to choose

the maximum number ` for the calculations, associated Legendre polynomials can be calculated

using the recursion relations

Pm
` (cos θi j) =

1

` − m
[
(2` − 1) cos θi jPm

`−1(cos θi j) − (` + m − 1)Pm
`−2(cos θi j)

]
, (4.27)

for ` ≥ 2 and

Pm
` (cos θi j) = −2(m − 1) cot θi jPm−1

` (cos θi j) − (` + m − 1)(` − m + 2)Pm−2
` (cos θi j), (4.28)

for `,m ≥ 2. This calculation requires initial values for P0
0 (cos θi j), P0

1 (cos θi j), P1
1 (cos θi j) and

P1
2 (cos θi j) given by

P0
0 (cos θi j) = 1, P0

1 (cos θi j) = cos θi j,

P1
1 (cos θi j) = − sin(θi j), P1

2 (cos θi j) = −3 sin θi j cos θi j .
(4.29)

The first two are used to calculate all polynomials with m = 0, using (4.27),

P0
` (cos θi j) =

1

`

[
(2` − 1) cos θi jP0

`−1(cos θi j) − (` − 1)P0
`−2(cos θi j)

]
, (4.30)

while P1
1 (cos θi j) and P1

2 (cos θi j) are used in (4.27) for the calculation of all polynomials with m = 1,

P1
` (cos θi j) =

1

` − 1

[
(2` − 1) cos θi jP1

`−1(cos θi j) − `P1
`−2(cos θi j)

]
. (4.31)

The knowledge of all polynomials with m = 0, 1 allows the calculation of all the other polynomials

using (4.28), up to the desired value of integer `.

To find the tesseral spherical harmonics it is required to calculate first the c`,m coefficients from

equation (4.18). One approach is to use directly this equation. However, the calculation of the

factorial can be extremely expensive, especially for large values of `. It is far more efficient to use

the following recursion relations

c`,0 =

√
2` + 1

4π
(4.32)

to find all the coefficients for m = 0 and then use

c`,m =
(−1)m√

(` + m)(` − m + 1)
c`,m−1, (4.33)

to calculate all the required coefficients. These coefficients, since they do not depend on the position

of the particles, can be calculated just one time, before the initialization of the algorithm, to save

computational time. With c`,m and Pm
`
(cos θi j) already known, tesseral spherical harmonics can

be calculated for the different values of m directly from equation (4.21).

First kind Steinhardt order parameters are calculated by summing the tesseral spherical har-

monics for all the neighbours and then dividing by the number Nb of the neighbours. 〈Q`,m〉
(i) are

then squared and summed for all possible m values and substituted in (4.16) in order to find the

second kind Steinhardt order parameters for the reference particle. This process is repeated Na

times, until the parameters are calculated for all the atoms of the system.
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4.3.4 The effect of the coordination number

Steinhardt order parameters not only depend on the angular distribution of the particles around

a reference particle, but also on the number of neighbours. In a radiation damage event, where

the recoil nuclei displace atoms from their initial positions, the coordination number of the atoms

changes constantly during the cascade formation. We can explore the dependence of Steinhardt

order parameters on the number of nearest neighbours in order to predict the effect of radiation

damage.

As shown in detail in Appendix A.1.1, for a reference particle with only one neighbour we will

have

Q(i)
`
(Nb = 1) =

[
4π

2` + 1

∑̀
m=−`

|Ym
` (θ, φ)|

2

]1/2
= 1. (4.34)

From this relation we can also show that the sum of the squares of the spherical harmonics for all

possible m values satisfy the relation

∑̀
m=−`

|Ym
` (θ, φ)|

2 =
2` + 1

4π
. (4.35)

When the reference particle has two or more neighbours, it can be proven (Appendix A.1.2)

that the second kind of the Steinhardt order parameters is given by

Q(i)
`
=

1

Nb

Nb +
8π

2` + 1

∑̀
m=−`

Nb−1∑
j=1

Nb∑
k> j

Ym
` (θ j, φ j)Ym

` (θk, φk)


1/2

. (4.36)

From this relation it is obvious that each particle contributes in two ways to the values of Stein-

hardt order parameters. Each of the neighbours has a single-particle contribution to the values

of Steinhardt order parameters resulting in the Nb terms inside the brackets of the above relation

and we also have the two-particle contributions described by the sum over all the neighbour pairs.

It can be shown that the pair terms are also independent of the values of angles θ and φ and can

be expressed using only the angular differences θ j − θk and φ j − φk . For example, for ` = 1 each of

the pair terms can be written as

1∑
m=−1

Ym
1 (θ j, φ j)Ym

1 (θk, φk) =
3

8π
cos(θ j − θk)[1 + cos(φ j − φk)+

+
3

8π
cos(θ j + θk)[1 − cos(φ j − φk). (4.37)

The result of this behaviour is that Steinhardt order parameters do not depend on the position

vectors of the neighbours surrounding the reference particle, but only on the number of neighbours

and the relative position of them. To obtain detailed results of the effect of coordination number we

calculate Steinhardt order parameters for a reference particle and for different numbers of neigh-

bours that are placed in random positions around the reference particle. In this way, simulations

were carried out for up to 8 neighbours and repeated 1000 times in order to have a good statistical

sample.

We can plot Q` values against any other variable, but there is no real point in doing that. When
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we need to study a real material, the most common structural parameter that can be measured,

apart from the coordination number, is the average bond length, which is equal to the average

distance of the nearest neighbours. Also there is no point in trying to find a relation between

the values of the Steinhardt order parameters and the displacement of the particles from their

initial positions for the reasons described in section 4.2.1. The displacement of the particles from

their initial positions will result in broken bonds between the atoms and consequently the average

neighbour distance and the coordination number of the particles will change. Thus, it is much

more sensible to try to identify possible relations between Steinhardt order parameter values and

either the average neighbour distance or the coordination number.

Figs. 4.6 and 4.7 show plots of Q4 and Q6 against the average neighbour distance. The

first observation is that for 1 neighbour the parameters are equal to 1 - as expected - and for 2

neighbours the values of Steinhardt order parameters are greater than 0.5. For the 2 neighbours,

we can see also an upper limit in the values, with only a few particles receiving a higher value.

These data points correspond to a pair of almost diametrically opposite particles, for which, as we

can easily prove from equation 4.37, Steinhardt order parameters have values close or equal to 1.

As the number of neighbours increases, the distribution of the data points becomes more uniform

since the range of values of both Q` and rav is becoming narrower. Additionally, Steinhardt order

parameters values become lower. This observation is quite important when we study radiation

damage effects. Figs. 4.6 and 4.7 show that Steinhardt order parameters are sensitive to the

change of the coordination number. Thus, we will be able to use Steinhardt order parameters in

order to identify any broken bonds in a structure. The only disadvantage of this method seems to

be the fact that for coordination numbers greater that 2, the values of Steinhardt order parameters

overlap. However, it must be pointed out that these plots correspond to randomly placed atoms

around the reference particle. In real systems - even in amorphous materials - there is a kind of

symmetry that will be reflected in the Steinhardt order parameters values. For example, the silica

network in both crystalline and amorphous materials usually forms tetrahedral structures with

the neighbouring oxygen atoms. In these structures, the relative positions of the oxygen atoms

around the silicon reference particle are almost fixed. Thus the range of Q` values will be narrowed

significantly. When a radiation damage event occurs, the coordination number of silicon atoms will

be reduced to 3 or perhaps to 2 or 1, with the oxygen atoms having a more random distribution

around the silicon atom, resulting into a wide range of Q` values, that will make the identification

of bond defects possible.

Things become clearer when Q6 values are plotted against Q4, as shown in Fig. 4.8. For

1 neighbour, all Q` values are equal to 1, and so all (Q4,Q6) pairs are reflected at (1,1). For 2

neighbours, the Q6(Q4) plot forms an α shaped curve that is very easy to distinguish. As the number

of neighbours increases, the area occupied by the data points becomes smaller and becomes elliptic

in shape. Once again there is overlapping in the Steinhardt order parameter values. However, in

real systems - crystalline or amorphous - the local geometry of the structures is quite consistent

and we expect to have a much more compact distribution of data points which can be used to

explore effectively the radiation damage effects.

Although in this section only the effect of the coordination number on the values of Q4 and

Q6 are presented, we can do a similar analysis for any (Q`,Q`′) pair and identify similar behaviour

in terms of their relation with the coordination number. However, as it is demonstrated in the
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Figure 4.6: Plots of Q4 values against the average neighbour distance for a reference particle with
1-8 neighbours located at random positions.



94 Chapter 4. Defect characterization techniques

Figure 4.7: Plots of Q6 values against the average neighbour distance for a reference particle with
1-8 neighbours located at random positions.
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Figure 4.8: Plots of Q6 against Q4 values for a reference particle with 1-8 neighbours located at
random positions.
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following section, for cubic crystals, all the odd Steinhardt order parameters as well as Q2 are equal

to zero. So Q4 and Q6 are the first non-zero Steinhardt order parameters.

4.4 Steinhardt order parameters of simple cubic crystals

The values of Steinhardt order parameters, depend on the structure of the system. More specifi-

cally, the local environment of each particle and the positions on the neighbouring particles define

the parameter values. To explore the way that local structure affects Steinhardt order parameter

values, simple cubic structures were investigated for the three first neighbouring cells.

4.4.1 Primitive cubic cell

The primitive cubic cell structure consists of one atomic site in each corner of a cube (Fig. 4.9).

The first neighbour shell consists of 6 atoms, the second has 12 atoms and the third 8. In order

to determine the values of Steinhardt order parameters for the primitive cubic cell, it is required

to calculate tesseral spherical harmonics for the different neighbouring atoms. For the first three

neighbouring cells, angle θ can take the values 0, π/4, cos−1(1/
√

3), π/2, cos−1(1/
√

3), 3π/4 and

π. But using the symmetry of tesseral spherical harmonics, only terms with 0 ≤ θ ≤ π/2 require

calculation. These calculations contain tedious mathematical details presented in Appendix A.2.

For the first neighbouring shell, the second kind of the Steinhardt order parameters is given by

Q(i)
`
=

1

3

[ [
1 +

1

2`−1
d0(`,0)

]2
+

1

22`−1

∑̀
m=0

(` − m)!
(` + m)!

d2
0 (`,m)em,4k+4

] 1
2

e`,2k, (4.38)

For the atoms that lie exclusively in the second neighbour shell

Q(i)
`
=

1

3 · 2`


[
2

[∑̀
k=0

2−
k
2 dk(`,0)

]
+ d0(`,0)

]2
+

+
1

2

[∑̀
m=0

(` − m)!
(` + m)!

d2
0 (`,m)em,4k+4

] ] 1
2

e`,2k, (4.39)

Finally, for the third neighbouring shell,

Q(i)
`
=

1

2`


[∑̀
k=0

3−
k
2 dk(`,0)

]2
+

+
1

2

∑̀
m=0

(
2

3

)m
(` − m)!
(` + m)!

[
`−m∑
k=0

3−
k
2 dk(`,m)

]2
em,4k+4


1
2

e`,2k . (4.40)

In the above relations, the terms e`,2k and em,4k+4 are a sum over various Kronecker’s delta terms,

given by

ei, jk+l =
∞∑
k=0

δi, jk+l . (4.41)
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Figure 4.9: The first three coordinate shells of a primitive cubic cell system. Top: Atoms in the
first neighbour shell of a primitive cubic lattice form an octahedron. There are six atoms at certain
distance a from the reference particle, equal to the dimension of the cell, that can be grouped in
three pairs, [(π/2,0) − (π/2, π)], [(π/2, π/2) − (π/2,3π/2)] and [(0, φp) − (π, φp)], symmetric to the
origin. Middle: The 12 atoms of the second neighbour shell form a tetradecahedron. All atoms
are found at distance a

√
2 from the reference particle. The symmetry of the tesseral spherical

harmonics makes possible the calculation of all spherical harmonics by using just the for atoms
at (π/4,0), (π/4, π/2), (π/2, π/2) and (π/2,3π/4)]. Bottom: The third neighbour shell consists
of 8 atoms at the corners of the cubic cell and at distance a

√
3 from the reference particle. All

tesseral spherical harmonics can be calculated by using the two particles at (cos−1(1/
√

3), π/4) and
(cos−1(1/

√
3),3π/4).
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Table 4.1: The non-zero values of second kind Steinhardt order parameters for the first three
neighbour cells of the primitive cubic cell and for 0 ≤ ` ≤ 10

` 0 4 6 8 10

1st Neighbour cell 1
√
21
6

√
2
4

√
33
8

√
390
48

2nd Neighbour cell 1
√
21
24

13
√
2

32
9
√
33

128

√
390

1536

3rd Neighbour cell 1
√
21
9

4
√
2

9

√
33
27

8
√
390

243

This expression is used to distinguish the non-zero terms contributing to the values of the Steinhardt

order parameters. The presence of the terms e`,2k and em,4k+4 in Eqs. (4.38), (4.39) and (4.40),

reveals that all the parameters with ` = odd are zero and for ` = even only terms with m = 4k

contribute to the values of the Steinhardt order parameters. The non-zero second kind Steinhardt

order parameters values for the first three neighbour cells of the primitive cubic cell are given in

Table 4.1.

Combination of different neighbouring cells

If we need to calculate the Steinhardt order parameters for all the atoms within the second neigh-

bour shell, there is no need to perform an analytical calculation as in the case of separate cells. It

can be proven that the first kind Steinhardt order parameters for all the atoms within the n−th

neighbouring cell are given by

〈Q`,m〉
(i) =

1

Nn

n∑
j=1

Nj 〈Q`,m〉
(i)
j , (4.42)

where Nj are the atoms of the j−th neighbouring cell and 〈Q`,m〉
(i)
j the respective first kind Stein-

hardt order parameters. Thus, the squared norm will be

|〈Q`,m〉
(i) |2 =

1

N2
n


n∑
j=1

N2
j |〈Q`,m〉

(i)
j |

2 + 2
n∑
j=1

n∑
k> j

NjNk 〈Q`,m〉
(i)
j 〈Q`,m〉

(i)
k

 (4.43)

Using this relation we can also prove that second kind Steinhardt order parameters are given by

Q(i)
`
=

1

Nn


n∑
j=1

N2
j Q(i)

`, j
+ 2

n∑
j=1

n∑
k> j

NjNk

∑̀
m=−`

〈Q`,m〉
(i)
j 〈Q`,m〉

(i)
k


1
2

(4.44)

For example, in the case of the first two cells, first order Steinhardt order parameters are given

by

〈Q`,m〉
(i) =

1

3
〈Q`,m〉

(i)
1 +

2

3
〈Q`,m〉

(i)
2 , (4.45)

and the second kind Steinhardt order parameters

Q(i)
`
=

1

3

[
Q(i)
`,1
+ 4Q(i)

`,2
+ 4

∑̀
m=−`

〈Q`,m〉
(i)
1 〈Q`,m〉

(i)
2

] 1
2

(4.46)
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This methodology is also extremely helpful in case we need to calculate Steinhardt order pa-

rameters for particles with neighbours of different species. We can perform calculations of the

parameters for each of the neighbouring species separately and then use equation (4.44) to calcu-

late the parameters for all the neighbours, instead of recalculating them from scratch, which will

be a more expensive procedure.

4.4.2 BCC lattice

In a bcc lattice, the first three neighbour shells are identical to the third, the first and the sec-

ond neighbour shells of a primitive cubic cell, as demonstrated in Fig. 4.10. Thus, second kind

Steinhardt order parameters will be given by (4.40), (4.38) and (4.39) respectively.

Thus, by estimating the Steinhardt order parameters of the first and only neighbouring cell it

will be quite easy to distinguish the two crystal systems. However, if the parameters are calculated

for all the atoms in the first three neighbouring cells, they will be identical for the two structures

and any identification of the crystalline structure will be impossible.

4.4.3 FCC lattice

For the fcc lattice, the first neighbour cell is identical to the second neighbouring cell of the primitive

cubic cell and the second to the first cell. Additionally, the third cell is quite different from and

much more complicated than the neighbour cells of the primitive cubic cell (Fig. 4.10). It forms

a tetradecahedron consisting of 24 atoms at a distance a
√

10/2 from the reference particle. This

tetradecahedron is formed by 6 squares and 8 hexagons, while the tetradecahedron of the first

neighbour cell (which is identical to the second neighbour cell of the primitive cubic cell structure)

consists of 6 squares and 8 equilateral triangles.

Again, to distinguish the different cubic crystal systems using Steinhardt order parameters, we

need to calculate them only for the first neighbour cell, since it is different in the three basic cubic

crystal systems.

4.5 Hermite order parameters

Steinhardt order parameters depend only on the angular distribution of the particles around a

reference atom. If we can develop a similar method to characterize damage that will be independent

of the angles θi j and φi j between particles that will give identical results, then the two can provide

a self validating set of methods to characterize radiation damage. In this direction, we can develop

an additional methodology that will depend only on the distance ri j between the particles using a

set of polynomial functions. The first step is to decide which kind of polynomials we must use in

order to get the required results.

In all systems, particles are vibrating around their initial position. So the force in their vicinity

must have a dominant harmonic term of the form

F = −kr r̂, (4.47)

which describes the well known Hooke’s law. In classical mechanics, this equation of motion can
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Figure 4.10: The first three neighbour cells of a bcc lattice (left) and a fcc lattice (right). For
the bcc it is quite easy to see that the first three cells are identical to the third, the first and the
second cell of a primitive cubic cell. For the fcc lattice, the first cell is identical to the second
and the second to the first shell of the primitive cubic cell. However, the third cell is much more
complicated and very different from the neighbour cells of a primitive cubic cell.
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be solved analytically giving the position of the particle as a function of time in the form

r = A cos(ωt) + B sin(ωt), (4.48)

where

ω =

√
k
m
, (4.49)

is the frequency of the vibrational movement and m the mass of the particle. If we know the initial

conditions (the initial position and velocity) it is easy to find the position of the particle as a func-

tion of time. However this approach cannot give us the required information as it involves only the

displacement of a particle from its initial position. For crystalline systems, this information might

be enough to characterize radiation damage. But in amorphous materials, where the displacement

of a particle from its initial position cannot determine with accuracy if it is damaged or not, we

need something more sophisticated.

If we use a quantum mechanics approach things become more interesting. The solution of

SchrÜodinger’s equation for a harmonic potential results is the well known Hermite polynomials,

given by

Hn(ξ) = (−1)ξeξ
2 dn

dξn
e−ξ

2

. (4.50)

These polynomials are probably the best functions to describe vibrational motions around a refer-

ence point. These polynomial are orthogonal and satisfy the relation∫ ∞

−∞

Hn(ξ)Hm(ξ)e−ξ
2

dξ =
√
π 2nn! δm,n. (4.51)

For large n or ξ values, the Hermite polynomials take on very large values. To limit their values

to a more reasonable and workable range, we use the orthonormal polynomials

H̃n(ξ) =
(−1)n

π1/4
√

2nn!
eξ

2/2 dn

dξn
e−ξ

2

, (4.52)

so that ∫ ∞

−∞

H̃n(ξ)H̃m(ξ)dξ = δm,n. (4.53)

The disadvantage of this form is that because of the exponential term and the high order terms,

these polynomials are extremely sensitive to any change in the distance. But as in the case of

Steinhardt order parameters, we do not attempt to find a relation between the Hermite order

parameters and the displacement of the particles. We are only interested in finding a relation

between the parameters and the coordination number. To reduce the effect of the distance, instead

of using the distance between the neighbouring particles we can use the relative distance

r̃j =
rj
rav

, (4.54)

where rav is the average neighbour distance. In a similar approach to Steinhardt order parameters,
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we can calculate the Hermite polynomials for all the nearest neighbours and average them taking

〈H̃n(r̃)〉(i) =
1

Nb

Nb∑
j=1

H̃n(r̃j) (4.55)

Using the above expression for the average Hermite polynomials we define the Hermite order

parameters for a reference particle as

R(i)n =
1

Nb

[
Nb∑
j=1

��H̃n(r̃i j)
��2]1/2 . (4.56)

For a damaged system, where both the coordination number and the distances between the particles

change, it is expected that these parameters will take values that depend on both the number

of neighbours and the neighbour distances, providing important information regarding radiation

damage.

4.5.1 Calculation of Hermite order parameters

The algorithm to calculate the Hermite order parameters is similar to the one for Steinhardt order

parameters and is presented in Fig. 4.11. The first step is to select a reference particle to initialize

the calculation. For this particle, all the neighbours that are inside a sphere of radius rcut are

selected, following the same procedure as in the calculation of Steinhardt order parameters.

The calculation of the even Hermite polynomials can be performed using equation (4.52) for

ξ = ri j . Once the Hermite polynomials are determined, we can also calculate their squared values

and average them over all the nearest neighbours. The Hermite order parameters can then be

calculated by just taking the square root of the averaged squared Hermite polynomials, as described

in equation (4.56).

4.5.2 The effect of coordination number

As in the case of Steinhardt order parameters we can examine the effect of coordination number

on the values of Hermite order parameters. In the case where the reference particle has only

one neighbour, the relative distance r̃ will be equal to 1. As we can show, orthonormal Hermite

polynomials for ξ = 1 are given by

H̃n(1) =
1

π1/4
√

2n n!

n∑
k=0,2,4,...

(−1)k/2
2n−k n!

(n − k)!(2k)!
(4.57)

and so Hermite order parameters will be given by

R(i)n (Nb = 1) =
1

π1/4
√

2n n!

����� n∑
k=0,2,4,...

(−1)k/2
2n−k n!

(n − k)!(2k)!

����� , (4.58)

and their values are actually equal to the absolute value of the orthonormal Hermite polynomials

at ξ = 1. We can divide each of the Hermite order parameters with R(i)n (Nb = 1) in order to make all

the Hermite order parameters for Nb = 1 to be equal to 1, just like the respective Steinhardt order
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Select reference particle i = 1
to initialize the calculation.

Calculating distances between reference
particle and all other particles.

Keep particles with distance r < rcut
from the reference particle.

Calculating Hermite polynomials
for all neighbours.

Calculating Hermite polynomial parameters

If i = Na If i < Na

Set
i −→ i + 1

End of calculation

Figure 4.11: Algorithm for the calculation of the Hermite order parameters. Na is the total number
of atoms of the same species.

parameters. This will allow the immediate identification of particles with coordination number

equal to 1, but it will not affect the way that the Hermite order parameters behave.

To explore the relation of the higher order Hermite order parameters with the average neighbour

distance and the coordination number, simulations similar to those used for Steinhardt order

parameters were carried out. In Fig. 4.12 the plots of R4 against the average neighbour values

are shown. From these plots it is obvious that for a coordination number Nb ≥ 3 the Hermite

order parameters present very small variations in their values. This behaviour is observed for all

the parameters with n ≥ 2. However, these plots can lead to the incorrect conclusion that the

values of the Hermite order parameters are almost constant. To avoid such misconceptions, it is

better to adjust the values of Rn axis properly, according to the range of the parameter values,

as demonstrated in figure 4.13, where R6 is plotted against rav. From this plot we can observe

that in general, Rn values form triangular-shaped regions, in which the Hermite order parameters

converge as the average neighbour distance increases. For up to 4 neighbours, the triangles have a

well defined base at the bottom of the plots, while for higher coordination numbers the base appears

at the top of the plots. The disadvantage of Rn(rav) plots is that there is large overlapping in the

values of the Hermite order parameters for different coordination numbers - exactly as observed

for Steinhardt order parameters.
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For the Hermite order parameters however, it is quite easy to overcome this obstacle. In Fig.

4.14 the plots of R6 against R4 are shown, for the various coordinate numbers. Although it is quite

easy to distinguish the areas occupied for up to four neighbours, particles with higher coordination

numbers seems to occupy the same areas in the plots. As in the case of Rn(rav) plots, these

cannot give any information, unless the scales of both axes are adjusted, as in Fig. 4.15, which

demonstrates R4 − R6 pairs for coordination numbers 4 ≤ Nb ≤ 8. In this plot it is obvious that

particles with different coordination numbers occupy different position in the diagram, which makes

very easy to distinguish them. There is a small overlapping for particles with 4 and 5 neighbours,

however this is for only a few particles in a total of 8000 data points, which means that the error

in the estimation will be extremely small. For the Hermite order parameters there is no need in

modify their values by using a weight function dependent on the coordination number.

As is obvious, we can create similar plots for any pair of the Hermite order parameters and get

similar information. The choice of R4 and R6 is just made for symmetry reasons, in order to have

the same order as in the Steinhardt order parameters.

Similarly to the Steinhardt order parameters, the Hermite order parameters are also sensitive

to both the coordination number of the particles as well as to the average neighbour distance. It is

therefore expected that the use of the Hermite order parameters will provide important information

regarding the radiation damage in a structure. In fact, it is expected that both Steinhardt and

Hermite order parameters will provide consistent information regarding bond defects. This is

extremely important, as the two sets of parameters depend on different variables. Steinhardt order

parameters depend only on the spherical angles θ and φ between the reference particle and it’s

nearest neighbours, while the Hermite order parameters depend only on the separation distance.

Thus, if the results of the two methods are consistent with each other, the Steinhardt and Hermite

order parameters can be used as a self-validating set of methods in order to retrieve information

regarding the topology of a structure.

4.6 Hermite order parameters of simple cubic crystals

In contrast with Steinhardt order parameters, the calculation of the Hermite order parameters of

simple cubic crystals is quite straightforward. In these systems, all the nearest neighbours are

found at the same distance from the reference particle, and so r̃i j = ri j/rav = 1. This means that

all the orthonormal Hermite polynomials will be given by equation (4.57) and the Hermite order

parameters are

R(i)n =
1

Nb

1

π1/4
√

2n n!


Nb∑
j=1

����� n∑
k=0,2,4,...

(−1)k/2
2n−k n!

(n − k)!(2k)!

�����2
1/2

. (4.59)

The second sum, over the k values, does not depend on the coordination number and so the above

relation results in

R(i)n =
1
√

Nb

1

π1/4
√

2n n!

����� n∑
k=0,2,4,...

(−1)k/2
2n−k n!

(n − k)!(2k)!

����� , (4.60)
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Figure 4.12: Plots of R4 values against the average neighbour distance for a reference particle with
1-8 neighbours located at random positions.
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Figure 4.13: Plots of R6 values against the average neighbour distance for a reference particle with
1-8 neighbours located at random positions.
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Figure 4.14: Plots of R6 against R4 values for a reference particle with 1-8 neighbours located at
random positions.
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Figure 4.15: Plots of R6 against R4 values for 4 to 8 neighbours with adjusted axis scales.

and all the parameters are inversely proportional to the square root of the coordination number.

For example, for the different n values up to 8 we get

R(i)0 =
1
√

Nb

, R(i)1 =
1
√

Nb

√
2, R(i)2 =

1
√

Nb

1
√

2
,

R(i)3 =
1
√

Nb

1
√

3
, R(i)4 =

1
√

Nb

5

4
√

6
, R(i)5 =

1
√

Nb

1

2
√

5
,

R(i)6 =
1
√

Nb

23

12
√

5
, R(i)7 =

1
√

Nb

29

6
√

70
, R(i)8 =

1
√

Nb

103

24
√

70
.

(4.61)

For the first neighbouring cells of the simple cubic lattice, for which Nb = 6 we have the values

demonstrated in table 4.2. With these values known, the parameters for any other neighbouring

shell can be directly calculated using the relation

R(i)n =

√
6

Nb
R(i)n,pcc. (4.62)

In Table 4.2 the Hermite order parameters for the second and third neighbour shells of a primitive

cubic structure are also shown. It is obvious that the parameters depend on the structure, although

they do not have the symmetry of Steinhardt order parameters. Consequently, the Hermite order
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parameters can also be used to retrieve information regarding the structure of a material. However,

as in the case of Steinhardt order parameters, it is impossible to distinguish the 1st neighbour shell

of the primitive cubic cell (pcc) from the 2nd cell of the bcc and fcc structures, the 2nd pcc from

the 3rd bcc and the 3rd pcc from the first bcc. Thus, to distinguish the different structures, we

need to calculate the Hermite order parameters for all the atoms within the first two neighbour

shells.

Table 4.2: The first 9 Hermite order parameters for the first three neighbour shells of a primitive
cubic system.

n 0 1 2 3 4 5 6 7 8

1st 1√
6

1√
3

1

2
√
3

1

3
√
2

5
24

1

2
√
30

23

12
√
30

29

12
√
105

103

48
√
105

2nd 1

2
√
3

1√
6

1

2
√
6

1
6

5

24
√
2

1

4
√
15

23

24
√
15

29

12
√
210

103

48
√
210

3rd 1

2
√
2

1
2

1
4

1

2
√
6

5

16
√
3

1

4
√
10

23

24
√
10

29

24
√
35

103

96
√
35

Combination of different neighbouring shells

With Steinhardt order parameters, if we know the parameters for each of the first m neighbour

shells, the parameters for all the atoms within these shells are given by equation 4.44. For the

Hermite order parameters the calculation needs to be performed from scratch, since the average

neighbour distance changes as more and more neighbouring cells are added in the calculation. For

example, for the first two shells of the primitive cubic cell, we have 6 atoms at distance α and 8 at

distance α
√

2. Thus, the average neighbour distance will be

rav =
1

14

(
6 + 8

√
2
)
α. (4.63)

Thus, the Hermite polynomials will be given by

R̃(i)n =
1

Nb

[
6∑
j=1

|H̃n((6 + 8
√

2)/14)|2 +
14∑
j=7

|H̃n((3
√

2 + 8)/14)|2

]
. (4.64)

In any case, there is no analytical form that can be extracted that will give the Hermite order

parameters of m neighbouring shells as a function of the parameters for each of the cells.

4.7 Ring statistics

The Steinhardt and Hermite order parameters, provide information regarding the short-range

structure of a material, based on the position of particles within the first coordination cell of a

reference particle. By increasing the radius of the sphere used to identify neighbours, the range

can be increased, but it will be difficult to retrieve information regarding bond defects. Thus, for

long-range information it is preferable to use ring statistics, a topological approach that provides

a mathematical description of the connectivity between the atoms of a structure [153, 155, 156,

157, 158].
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4.7.1 Rings definitions

Ring statistics are based in the concept of a topological network, consisting of nodes, that are

points in a network connected with links. In a real system, nodes represent atoms and links

represent bonds between them. However, in contrast with actual structures, both nodes and

links in a topological network are non-directed and have equivalent weights. Thus, all nodes are

independent of the atomic species while links do not depend on the bond types and properties

[159]. Sequentially connected nodes that do not overlap form paths, and if the path is closed it

forms a ring. Each ring is characterized by a size or an order that is equal to the number of nodes

comprising the ring.

Fig. 4.16 illustrates a sample topological network consisting of 11 nodes and 12 links. Several

paths can be identified in this network. For example, just for node 1, 30 paths can be identified.

However, Node sequences such as (1 − 2 − 3 − 4 − 5 − 6 − 7 − 2 − 8) are not paths, since one node

(2) appears more than once. However, this sequence forms the ring r1 : (2 − 3 − 4 − 5 − 6 − 7 − 2).

In this network, apart from the one previously mentioned, another two rings can be identified:

r2 : (2 − 8 − 9 − 10 − 11 − 4 − 3 − 2) and r3 : (2 − 8 − 9 − 10 − 11 − 4 − 5 − 6 − 7 − 2). The size of these

rings is respectively 6, 7 and 9.

Primitive rings

In the network demonstrated in Fig. 4.16, we can see that nodes 2 and 4 can be connected through

three different paths: p1 : (2−3−4), p2 : (2−8−9−10−11−4) and p3 : (2−7−6−5−4). The length

of these paths is l1 = 2, l2 = 5 and l3 = 4 respectively. The path with the shortest length that

connects two nodes is known as shortest path. For the rings r1 and r2, this shortest path forms

an edge of the rings. For these rings, all the shortest paths between any pair of nodes belongs to

the perimeter of the rings. In contrast, for ring r3 the shortest path between nodes 2 and 4 does

not belong to the perimeter. Thus, for this ring, path p1 defines a shortcut. Any ring for which

there is no shortcut between any two nodes that form the ring is called a primitive ring. Thus,

rings r1 and r2 are primitive rings, while ring r3 is not. One important property of primitive rings,

is that they cannot be decomposed into two rings of lower order. In contrast, any non-primitive

ring can be decomposed into two rings of which at least one is of lower order. In Fig. 4.16, the

non-primitive 9-order ring r3 can be decomposed into a 6-order ring r1 and a 7-order ring r2.

An equivalent definition of primitive rings, that clarifies the previous argument, is given by

Marians & Hobbs [160], who define a primitive ring as one with at least one shortest path between

any pair of nodes. For this definition we can give a mathematical description. Consider three paths

of lengths l1, l2 and l3 between 2 nodes, forming three rings, r12, r13 and r23. If all paths have the

same length, so that l1 = l2 = l3 then all three rings are primitive, since all paths between the two

nodes are shortest paths. If l1 = l2 < l3, then for ring r12 both paths are shortest while rings r13
and r23 contain one shortest path (l1 and l2 respectively). All three rings are primitive. Finally,

when l1 < l2 = l3 or l1 < l2 < l3, rings r12 and r13 include the shortest path, while ring r23 does not

include the shortest path and consequently is not primitive.

An important concept in the primitive rings, is the prime-mid-node [159]. For an even ring of

any given source node, there is one node, the prime-mid-node, for which both paths that connect the

source node with the prime-mid-node are shortest paths. For odd rings, a prime-mid-node is defined
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Figure 4.16: A sample topological network with 11 nodes and 12 links. In this network, 3 rings
are identified: 2 primitive r1 : (2 − 3 − 4 − 5 − 6 − 7 − 2) and r2 : (2 − 8 − 9 − 10 − 11 − 4 − 3 − 2) and
one non-primitive r3 : (2− 8− 9− 10− 11− 4− 5− 6− 7− 2) that can be decomposed into r1 and r2.
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Figure 4.17: The concept of prime-mid-node for the even ring r1 : (2 − 3 − 4 − 5 − 6 − 7 − 2) and
the odd r2 : (2 − 8 − 9 − 10 − 11 − 4 − 3 − 2). Taking node 2 as a source node, in the even ring r1
has only one prime-mid-node, node 5, while in the odd ring r2, nodes 10 and 11 form a pair of
prime-mid-nodes.

as a node for which the length of the two paths connecting the node with the source node differ by

one. To understand this concept, consider node (2) in Fig. 4.17. Ring r1 : (2− 3− 4− 5− 6− 7− 2)

has six nodes and so it is an even ring. For node 2, there are two paths 2−3−4−5 and 2−7−6−5

connecting it with node 5. Thus, node 5 is the prime-mid-node of source node 2 and via versa.

For the ring r2 : (2 − 8 − 9 − 10 − 11 − 4 − 3 − 2) we can see that there are two paths, 2 − 3 − 4 − 11

and 2− 8− 9− 10− 11, with respective lengths 3 and 4, connecting node 2 with node 11. Since the

length of these paths differs by 1, node 11 is a prime-mid-node of source 2. However, node 10 is

also connected with node 2 with two paths, 2 − 8 − 9 − 10 and 2 − 3 − 4 − 11 − 10, with lengths 3
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and 4 respectively, so this is also a prime-mid-node. This stands for every odd ring. In general, for

every source node of an even ring there is one prime-mid-node, while for a source node of an odd

ring there are two prime-mid-nodes, linked with each other and forming a pair of prime-mid-nodes

[159].

4.7.2 Identifying primitive rings

To analyse a structure using primitive rings, the first step is to identify the shortest paths from a

source node - a node for which the ring structure will be determined, to any other source of the

network. For this process, several methods have been proposed, including algorithms proposed

by Goetzke & Klein [161] and by Hobbs et. al. [158]. For a system consisting of N nodes, these

methods require the calculation of a N × N matrix that stores the shortest path distances for any

pair on nodes in the system [158, 161]. For large systems where N ∼ 106, the shortest distant

matrix should contain ∼ 1012 elements, which makes the calculation quite expensive. Yuan and

Cormack [159], proposed a new efficient algorithm to identify primitive rings. This algorithm

involves 6 main calculation steps, described in detail in Appendix B. According to the authors,

this method is significantly faster than traditional ring searching algorithms. For example, in case

of a silica-based glass network and for a maximum ring size of 24, the new algorithm is about 1000

times faster.



Chapter 5

Developing topological methods
towards radiation damage

characterisation

5.1 Introduction

The development of new methods to analyse structural properties of materials needs validation.

However, methods that involve the analysis of radiation damage effects in amorphous materials are

very difficult to validate, since there are no data in the literature with which to compare the results.

Thus, it is necessary to develop the new methodologies on a well studied crystalline structure, for

which the existing literature studies will contribute to the validation of the methods. A zircon

crystal was selected as a test structure, as it is one of the most well-studied crystalline structures

under radiation damage events. This structure was used to identify how the radiation damage

affects Steinhardt order parameters and Hermite order parameters and what information can be

retrieved from these topological measurements regarding the bond defects and the extent of the

damage in the material.

This structure is ideal for radiation damage studies, since all the atoms of the same species of the

undamaged structure have the same coordination number. As several atoms will be displaced from

their initial positions during the radiation damage event, the coordination numbers will change

significantly and we anticipate being able to identify these changes - and consequently the bond

defects - by plotting Q4 against Q6 and R4 against R6, as shown in the previous chapter.

At this point it is important to emphasise that although the results from the topological mea-

surements will be compared with results from the traditional Wigner-Seitz method, they are not

expected to converge. The Wigner-Seitz method only identifies atoms that are displaced from their

initial position. Each of these atoms may be involved with more than one broken bond and so the

number of broken bonds will be much higher than the number of displaced atoms, especially in

the case of atoms with higher coordination. However, the number of broken bonds is not directly

related to the displacement of one particle.

5.2 Zircon crystal structure

Zircon is the common name of zirconium silicate, a mineral crystal with chemical formula ZrSiO4,

which crystallizes in the I41/amd space group. Its structure is well studied in the past, mainly by

Robinson et.al. [25], Hazen and Finger [26] and Finch et.al. [27]. The structure data determined

by these studies are presented in Table 5.1. As Robinson et.al. [25] concluded, the main structural

113
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unit of zircon is a Si-Zr chain, parallel to the c axis, consisting of ZrO8 dodecahedra and SiO4

tetrahedra that share one edge, as illustrated in Fig. 5.2 [162]. Each of the oxygen atoms forms

one bond with a silicon atom and two bonds of different length with zirconium atoms, forming a

triangular plane, as demonstrated in Fig. 5.1.

The SiO4 units in zircon are distorted from the regular SiO4 tetrahedron to a shape elongated

parallel to [001], due to the repulsion between the Si4+ and Zr4+ cations of adjusted SiO4 tetrahedra

and ZrO8 dodecahedra that share a common edge [163]. The values of the two O–Si–O angles

in the SiO4 unit are 116o and 97o [26, 27]. The O–O distance opposite the 116o angle and along

the edge that is not shared between the SiO4 tetrahedron and the adjusted ZrO8 dodecahedron is

2.75 Å, while the O–O distance opposite to the 97o angle and along the shared edge is 2.43 Å.

Similarly, the zirconium atom located at the centre of the ZrO8 dodecahedron forms 4 short (2.131

Å) and four long (2.268 Å) bonds with the neighbouring oxygen atoms [162].

5.3 Creating a zircon crystal model

To create the crystal model, the General Utility Lattice Program (GULP) [147] was used. Although

GULP was originally developed to perform fitting of potential energy functions to the physical and

structural properties, it now offers a wide variety of simulation tasks using boundary conditions,

including the energy minimization of a structure. Instead of using molecular dynamics, the program

uses lattice dynamics in order to find still numerical solutions. GULP can automatically create

the ideal initial structure just by using the space group and the chemical formula of the structure.

However, to create a realistic structure, it is required to minimize Gibbs free energy and for this,

the correct interaction potentials must be selected.
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Å

3.626 Å
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Figure 5.1: Zircon unit cell structure. Left: The triangular plane formed by one oxygen, one
silicon and two zirconium atoms, along with the respective bond length and angles. Right: 3D
image of zircon crystal unit cell. Although it is difficult to identify the SiO4 tetrahedra - the cell
must be expanded at least in one dimension to make them obvious - it is very easy to distinguish
the ZrO8 dodecahedron in the centre of the cell, formed by the central zirconium atoms and the 8
oxygen atoms that are bonded with it.



5.3. Creating a zircon crystal model 115

a

b

c

a

b

a

c

b

c

Figure 5.2: 3D representation of the SiO4 tetrahedra and ZrO8 dodecahedra, as seen from the
same angle as the unit cell in Fig. 5.1 and 3 cuts parallel to the Oxy, Oxz and Oyz planes.

5.3.1 Potentials for radiation damaged zircon simulations

There are several potentials proposed in the literature for the zircon structure. Most common is

a Buckingham type potential, used to describe Si-O, Zr-O and O-O interactions. Electrostatic

interactions in all existing studies are described by the Coulombic term and calculated using an

Ewald summation method. Trachenko et al. [28] (2001), used a Buckingham potential with

the parameters shown in Table 5.2 to study radiation damage effects in a zircon crystal. To

keep the Zr-Si-O angle constant at 99.17o, these authors used three body potentials proposed by

Sanders et al. [164]. Electrostatic interactions were calculated using the standard integer charges

q(Si) = q(Zr) = +4e and q(O) = −2e. To avoid problems associated with the divergence region of

the Buckingham potential, the short range ZBL potential was also used.
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Table 5.1: Zircon crystal structure data as published in the studies of by Robinson et.al. [25],
Hazen and Finger [26] and Finch et.al. [27]. In this, a, b, c are the unit cell distances, Z is the
number of ZrSiO4 units in the unit cell, ρ is the density and x, y, z are the relative positions of
the atoms within the unit cell.

Robinson et al. Hazen and Finger Finch et al.

a (Å) 6.6070 6.6042 6.6139
b (Å) 6.6070 6.6042 6.6139
c (Å) 5.9820 5.9796 5.9850

a/b 1.0000 1.0000 1.0000
b/c 1.1045 1.1045 1.1051
c/a 0.9054 0.9054 0.9049

Z 4 4 4

ρ (g/cm3) 4.66 4.67 4.65

x(Zr) 0.0000 0.0000 0.0000
y(Zr) 0.7500 0.7500 0.7500
z(Zr) 0.1250 0.1250 0.1250

x(Si) 0.0000 0.0000 0.0000
y(Si) 0.2500 0.2500 0.2500
z(Si) 0.3750 0.3750 0.3750

x(O) 0.0000 0.0000 0.0000
y(O) 0.0661 0.0660 0.0658
z(O) 0.1953 0.1951 0.1954

Table 5.2: Buckingham potential parameters used by Trachenko et al. [28] (2001) to study the
radiation damage effects in a zircon crystal.

Buckingham A (eV) ρ (Å) C (eV·Å
6
)

Si-O 1354.9546 0.3104097 5.33
Zr-O 8000000 0.14 0
O-O 22764 0.149 27.879

In a later study, Trachenko et al. [12] (2004) replaced the Si-O Buckingham potential with

a Morse potential (Table 5.3) and used the fractional charges q(Si) = 1.356, q(Zr) = 3.428 and

q(O) = −1.196 for the electrostatic interactions.

Table 5.3: Buckingham and Morse potential parameters used by Trachenko et al. [12] (2004).

Buckingham A (eV) ρ (Å) C (eV·Å
6
)

Zr-O 1477 0.317 0
O-O 9245 0.2617 100

Morse D (eV) a (Å−1) re (Å)

Si-O 1.252 2.83 1.627

To study radiation damage effects in disordered zircon, Devanathan et al. [29] also used a

Buckingham potential with C = 0 for all pair interactions, coupled with a ZBL short range potential.
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For the electrostatic interactions, these authors used the fractional charges q(Si) = 2.00e, q(Zr) =

3.80e and q(O) = −1.45e. To join the Buckingham potential with the ZBL potential, instead of

using the usual splines, this author used a Fermi switching function, given by

f (r) =
1

1 + e−b f (r−r f )
, (5.1)

where b f and rf are adjustable parameters such that the first derivative of the total potential

energy function is continuous and monotonic for every r ∈ [0,+∞).

Table 5.4: Buckingham potential and Fermi switching function parameters used by Devanathan et
al. [29].

Buckingham potential Fermi switching function

Pair A (eV) ρ(Å) Pair b f (Å
−1
) ρ f (Å) Pair b f (Å

−1
) ρ f (Å)

Si-O 1277.0 0.227225 Si-Si 6.0 1.00 Zr-Zr 6.0 1.00
Zr-O 1967.0 0.305004 Si-Zr 6.0 1.00 Zr-O 6.0 0.87
O-O 1755.0 0.306820 Si-O 6.0 0.62 O-O 6.0 0.30

Yu et al. [30] proposed an alternative potential, given by

U(r) = Ae−
r
ρ −

C
r6
+ 4ε

[(σ
r

)18
−

(σ
r

)6]
, (5.2)

which is the sum of a Buckingham potential with a (18-6) Lennard-Jones potential, that applies

to simulations of ZrSiO4, ZrO2 and SiO2 systems. For the electrostatic interactions, the charges

of atoms are: q(Si) = q(Zr) = 2.4 and q(O) = −1.2.

Table 5.5: Buckingham and (18-6) Lennard-Jones parameters used by Yu et al. [30].

Pair A (eV) ρ(Å) C (eV·Å
6
) ε (eV) σ(Å)

Si-O 18003.7572 0.2052 133.5381 0.019 1.36
Zr-O 17243.3940 0.2265 128.3513 0.010 1.30
O-O 1388.7730 0.3623 175.0000 0.002 2.05

5.3.2 Optimization results: Choosing the correct potential

To validate the proposed potentials described in the previous section, three different energy min-

imization procedures were performed using a 2×2×2 supercell, containing 192 atoms in total. As

demonstrated in Table 5.6, by comparing with experimental results it is obvious that the potentials

proposed by Trachenko et al. [28] (2001) give relatively small errors for the structural properties,

from 0.88% for the density to 3.26% for the c vector. However, the results for the elastic properties

are associated with large relative errors, up to 198.8% for C13 and furthermore they give a nega-

tive C66 coefficient, observed in systems that store energy. From the other three potentials, those

proposed by Trachenko et al. [12] (2004) give the best structural properties while those proposed

by Devanathan et al. [29] give the best elastic properties.
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Table 5.6: The cell parameters and properties calculated with the four different proposed potentials
using a 2×2×2 supercell, containing 192 atoms. a, b, and c are the unit cell distances, V is the
volume of the unit cell, ρ the density Ci j the non-zero elastic constants and Ks the bulk modulus.

Parameter
Trachenko Trachenko Devanathan Yu

Experimental
(2001) (2004) (2004) (2009)

a(Å) 6.4571 6.6410 6.6020 6.5583 6.607†

b(Å) 6.4571 6.6410 6.6020 6.5583 6.607†

c(Å) 6.1173 5.8998 6.0934 6.1445 5.982†

V(Å3
) 255.9977 260.2002 265.5928 264.2809 261.1†

ρ(gr/cm3) 4.7012 4.6794 4.5844 4.6072 4.66‡

C11(GPa) 1148.4924 434.3904 445.3640 455.3635 424†

C33(GPa) 1283.3937 519.0305 479.1945 436.4143 490†

C44(GPa) 139.4096 106.5761 84.3542 96.1216 114†

C66(GPa) -0.3274 31.5165 63.8702 63.5743 49†

C12(GPa) 109.5501 47.9927 64.0769 118.6705 70†

C13(GPa) 385.4487 146.8824 133.1748 146.3562 129†

Ks(GPa) 593.4749 230.1474 225.6417 241.0992 225†

† Results from Devanathan et al. [29]
‡ Results from Robinson et al. [25]

To explore the effect of the cell size, additional optimization simulations were performed for the

three potentials qualified from the first round of optimization, using a 6×6×6 supercell containing

5184 atoms (Table 5.7). By comparing the results for the 2×2×2 and the 6×6×6 structures it is

clear that the size of the simulation cell has negligible effects in the optimization results. For the

6×6×6 supercell, Trachenko’s potentials give the best structural properties with a median error

equal to 0.633% while the median error for the structural properties calculated with Devanathan’s

and Yu’s potentials are equal to 1.072% and 1.308% respectively. For the elastic properties, the

median errors for the three proposed potentials are equal to 16.0%, 12.5% and 24.5% respectively.

Thus, it is clear that Devanathan’s potentials provide the best estimation of the elastic properties.

For radiation damage simulations it is important to preserve the structural properties and thus it

is important to create models with structural properties as close as possible to the experimental

values and so to create the irradiated zircon crystal model, the potentials proposed by Tracheno

et al. [12] were used.

5.3.3 Creating a radiation damage cascade

The radiation damage cascade formation process was performed using the DL POLY 4 molecular

dynamics simulations package [132]. The first step was to equilibrate the 5184 atoms structure

created by GULP at 300 K for 10 ps under the NVT ensemble and by using periodic boundary

conditions. For the interaction between atoms, pair potentials proposed by Trachenko et al. [12]

(2004) were used, as they give the most accurate structural data in comparison with experiments.

To avoid problems associated with the divergence region of the O-O Buckingham potential, a short

range ZBL potential was also used. To fit the two potentials, the atsim.potentials package was

used [165], that fits a third order spline between the truncation points. The truncation distances
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for the two potentials where selected so that:

1. The resulting potential is a smooth function of distance r,

2. The Buckingham potential is truncated as close as possible to the distance rmax for which

the potential receives the maximum value,

3. The distance rBuck − rZBL is as small as possible.

These conditions are satisfied for rBuck = 1.0 Å and rZBL = 0.4 Å. The resulting potential was

tabulated and incorporated within DL POLY 4, and had the general form

UO-O(r) =



UZBL(r), for r < 0.4 Å

f (r), for 0.4 Å ≤ r ≤ 1.0 Å

UBuck(r), for r > 1.0 Å

, (5.3)

where f (r) is the third order spline. For the calculation of electrostatic interactions the Ewald

summation method routine provide by DL POLY 4 was used.

A zirconium atom of the crystal was used as impact particle and assigned an excess of kinetic

energy equal to 4 keV along the direction [111]. This kinetic energy is very high for a system of

just 5184 atoms. However, the purpose of the simulation was not to estimate the radiation damage

effects in the zircon crystal, but to create significant damage and find correlations between the

extent of the damage and the topological parameters described in the previous chapter.

Radiation damage is a highly non-equilibrium process. To handle the excess of kinetic energy,

a Langevin thermostat boundary layer was used, to emulate an infinite heat bath at a constant

temperature of 300 K. The boundary layer relaxes locally the buffer region of the simulation cell

Table 5.7: The cell parameters and properties calculated with the three qualifying potentials using
a 6×6×6 supercell, containing 5184 atoms. a, b, and c are the unit cell distances, V is the volume
of the unit cell, ρ the density Ci j the non-zero elastic constants and Ks the bulk modulus. The
relative errors of each calculation in comparison with the experiment can be seen in the brackets.

Parameter
Trachenko Devanathan Yu

(2004) (2004) (2009)

a(Å) 6.6410 (0.515) 6.6020 (0.076) 6.5583 (0.737)
b(Å) 6.6410 (0.515) 6.6020 (0.076) 6.5583 (0.737)
c(Å) 5.8998 (1.374) 6.0934 (1.863) 6.1445 (2.716)

V(Å3
) 260.2002 (0.345) 265.5929 (1.721) 264.2807 (1.218)

ρ(gr/cm3) 4.6794 (0.416) 4.5844 (1.622) 4.6072 (1.133)

C11(GPa) 434.3900 (2.450) 445.3641 (5.038) 455.3637 (7.397)
C33(GPa) 519.0304 (5.925) 479.1946 (2.205) 436.4192 (10.935)
C44(GPa) 106.5760 (6.512) 84.3541 (26.005) 96.1221 (15.682)
C66(GPa) 31.5165 (35.681) 63.8702 (30.347) 63.5740 (29.743)
C12(GPa) 47.9926 (31.439) 64.0768 (8.642) 118.6685 (69.521)
C13(GPa) 146.8823 (13.862) 133.1748 (3.216) 146.3532 (13.452)

Ks(GPa) 230.1472 (2.288) 225.6415 (0.286) 241.0996 (7.155)
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Figure 5.3: Potentials proposed by Trachenko et al. [12] (2004). Top: The Buckingham potential of
the Zr-O interactions (left) and the Morse potential of the Si-O interactions (right) are monotonic,
strictly decreasing functions and there is no need to truncate them and join them with the short
range ZBL potential. Bottom: The O-O potential diverges to −∞ as r −→ 0 and this can cause
serious problems in the simulation in case two oxygen atoms approach to a distance closer than
rmax, equal to the distance for which the interaction potential receives it’s maximum value. For
this, Buckingham potential is truncated and fitted to a short range ZBL potential.
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and dissipates the excess kinetic energy, preventing energetic atoms from travelling through the

boundaries of the simulation cell and re-entering through the mirror point, forming an unrealistic

damage cascade. The thickness of the boundary layer was selected equal to 2 Å, the smallest

possible value offered by DL POLY 4, which was sufficient to block the energetic atoms. The

highly energetic atoms travel relatively large distances at the initial stages of the simulation. To

form the trajectories as accurate as possible, a variable timestep algorithm was applied for 50,000

timesteps. The initial and final timesteps set to 10−5 ps and 10−4 ps respectively, allowing the

atoms to travel a distance between 0.01 Å and 0.05 Å per timestep.

5.3.4 Thermostat evaluation

The accuracy of the simulation heavily depends on the thermostat used to control the temperature.

To explore this dependence and evaluate the efficiency of the different thermostats in controlling

the temperature during the simulation of the radiation damage event, four different runs were

performed at 300 K, using respectively NVE ensemble, NVT Nose-Hoover, NVT Berendsen and

NVT Langevin thermostats. In all four simulations, a 2 Å boundary layer was used to emulate a

heat bath at 300 K. In Fig. 5.4 the plot of the temperature versus time is illustrated. It is obvious

0 1 2 3 4 5 6 7 8 9 10
0

250

500

750

1,000

1,250

1,500

1,750

Time (ps)

T
em

p
er

at
u

re
(K

)

NVE
NVT Nose-Hoover
NVT berendsen
NVT Langevin

Figure 5.4: Temperature plot vs. time of a irradiated system simulated using four different constant
volume thermostats, NVE, NVT Nose-Hoover, NVT Berendsen and NVT Langevin.
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that the NVE ensemble fails to control sufficiently the temperature, as the system relaxes at a final

temperature of around 1000 K. This is explained by the fact that the excess of energy given to the

impact particle is only dissipated if a particle enters the boundary layer. The NVT Nose-Hoover

thermostat on the other hand allows huge fluctuations in the temperature. This could be avoided

by using a smallest timestep for the simulation. However, a timestep smaller by a factor of 10k

will increase the time of simulation K times, resulting in a very expensive simulation. In contrast,

both NVT Berendsen and NVT Langevin thermostats control the temperature very efficiently.

However, the best option is to use a Langevin stochastic thermostat since it is especially designed

to dissipate excess energy in a system.

5.4 Algorithmic details for defect analysis

The defect analysis process was conducted using the output of the simulation, which recorded the

trajectories of the atoms every 100 timesteps. A total of 501 configurations (frames) were created,

with the first one corresponding to the initial undamaged structure and the remaining 500 to the

damaged structure. Each of these frames was analysed with both the traditional defect counting

method and two different sets of topological methods, each one utilizing both the Steinhardt and

the Hermite order parameters.

5.4.1 Defect counting

The standard way to estimate damage effects is to use the Wigner-Seitz method to identify defects

and vacancies in the system. The process was carried out using the DL POLY 4 in-built defect

identification routine based on the Wigner-Seitz method. For this it is necessary to define a site-

interstitial distance rsi, which is equal to the minimum distance that a particle needs to travel from

its lattice position to be regarded as a defect. In the existing literature, this distance is usually set

equal to half of the minimum bond-length of the system under investigation or equal to the half of

the distance corresponding to the first maximum of the total radial distribution function. For the

modelled zircon crystal, the first maximum of the total radial distribution function is observed at

1.55 Å (Fig. 5.5) and the site-interstitial distance was set to 0.75 Å.

5.4.2 Global and partial order parameters

To characterize the radiation damage effects in the system, we explored various approaches to

calculate Steinhardt and Hermite order parameters. These approaches are using the algorithms

illustrated in Figs. 4.5 and 4.11 and the only differences are related to the definition of the

neighbours that are used for the calculation of the order parameters.

The first and most common approach used in this work, is to select a reference particle and

for each timestep of the simulation identify all the atoms that lie within a sphere of radius rcut
and calculate order parameters for these atoms. However, this approach ignores the identity of

neighbours and the nature of specific bonds. For example, if a zirconium atom is selected as

reference particle and the cutoff distance set equal to 3.2 Å to include silicon and oxygen atoms

within the first neighbour shell, and given that Zr-Si and Zr-O bond lengths are '2.99 Å and '2.27

Å respectively, a silicon particle will leave the sphere if the distance from the reference zirconium
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Figure 5.5: Radial distribution functions for the Zr-Si, Zr-O and Si-O pairs and the total radial
distribution function of the undamaged zircon crystal.

atom is increased by just 0.3 Å while the distance of the oxygen particle must increase by more than

0.9 Å. These distances are not related to actual bond lengths and as a result, the characterization

of a particle as a defect is not physical and the results will involve large errors.

To overcome the problems related with the selection of a global cutoff distance, a different

approach is used that takes into account the bond lengths between atoms of different species.

Instead of setting a global cutoff distance, a species dependent distance is used, defined by the first

minimum of the partial radial distribution functions. The order parameters are then calculated

not only for all the neighbours, but also for neighbours of each species separately. For example,

for a zirconium reference atom, the cutoff distances for the silicon and oxygen neighbours are

different and defined by the first minimum of the Zr-Si and Zr-O radial distribution functions and

the parameters are calculated for all the neighbours - referred to from now on as global order

parameters, as well as for the silicon oxygen neighbours separately - referred to as partial order

parameters. The identification of bond defects can be achieved by using only Q4 and Q6 for the

Steinhardt order parameters and R4, R6 for the Hermite order parameters.

Another issue that needs to be addressed is rising from the fact that the distances between a

reference particle and its neighbours may alter significantly during the damage process. In Fig.

5.6, the evolution of the local environment around a reference particle and of the parameter Q6

during the radiation damage process is illustrated. From this figure it is apparent that at the initial

stages of the damage process where the damage cascade is formed, there is a significant increase
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Figure 5.6: Evolution of Steinhardt order parameters during the radiation damage process of a
zirconium atom.

in the value of Q6. As the displaced atoms recover their initial positions, Q6 also recovers close to

the initial value, with small variations due to the vibrational movement of the atoms. For t > 0.05

ps it is obvious that the bottom particle of the configuration left its initial position and resided at

a different final position. However, the relative angle of the displaced particle is almost the same

as in the initial structure, and since Steinhardt order parameters are independent on the distance

between the atoms, this movement is not recorded in the final Q6 value and the particle is not

identified as a defect.

To avoid such misleading results, it is necessary to apply the cutoff distance to every snapshot, to
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identify the neighbours at the specific timestep. If a particle is displaced by a distance large enough

to be found at a distance greater than rcut from the reference particle, it will no longer contribute to

the value of Steinhardt order parameters. This way, when a particle leaves the calculation sphere,

the values of the Steinhardt order parameters are expected to alter significantly and reflect this

event. This process requires the calculation of the distance between all the atoms of the system

and this is an expensive procedure. To reduce the calculation time without losing information

regarding the defect atoms, the neighbour list can be updated in larger time increments - but not

too large as in this case the results might appear discontinuous. For this study, the neighbour list

was updated every 5 timesteps.

5.4.3 Species specific order parameters

The previous two methods are able to provide information regarding the bond defects of the system.

However it is not possible to use them to estimate the number of defect atoms. For this, a different

and more complicated approach is implemented. The zircon structure is separated into three

substructures, each containing only atoms of the same species. For each of these substructures,

a nearest neighbour list is created for each reference particle, containing atoms within a distance

shorter than the first minimum of the respective partial radial distribution function (Fig. 5.7). For

each of the 501 snapshots of the simulation and for each of the substructures, the species specific

Steinhardt order parameters with 0 ≤ ` ≤ 10 and the species specific Hermite order parameters with

0 ≤ n ≤ 16 were calculated. At each snapshot, the average value of the parameters is calculated

along with the number of atoms ng(t) with an order parameter value greater than the average of

the respective snapshot, and for all the available ` and n values.

To avoid identifying as damaged an atom that undergoes a simple thermal vibration around

its equilibrium position, a special condition is applied. At each snapshot, the distances ri j between

every reference particle and its neighbours are calculated, along with the differences di j(t) = |ri j(t)−

ri j(0)| of the distance between the initial undamaged structure at t = 0 and the distance at the

time t of the snapshot under investigation. To characterize a particle as defect, it is required that

at least one of the distances between the reference particle and its neighbours at the snapshot

corresponding to the damaged structure will be greater than the distance rcut corresponding to

the first minimum of the respective partial radial distribution function. If all the distances are

less than rcut, the order parameters values for the specific reference particle are set to the values

calculated for the same particle in the snapshot corresponding to the initial undamaged structure.

However, this method will overestimate the number of defect atoms. When di j(t) > rcut, we

will also have dji(t) > rcut. Consequently, the values of the species specific order parameters will be

affected for both the reference particle i and its neighbour j and both atoms will be identified as

defects, even where only one of them is actually a defect. To avoid such an erroneous estimation,

a correlation map between the numbers ng(t) and the actual number of defect atoms is created. In

each of the three substructures corresponding to the initial undamaged configuration, a number of

atoms equal to 10% of the total atoms of the substructure, are displaced deliberately from their

equilibrium positions by a distance greater than rcut. In these artificially damaged substructures,

the number ng(t) is calculated and compared with the actual number of deliberately displaced

atoms. The process is repeated 100 times to increase the statistical accuracy by calculating the
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Figure 5.7: Radial distribution functions for the Zr-Zr, Si-Si and O-O pairs.

average ng(t) values.

Not all the Steinhardt and Hermite order parameters are appropriate to estimate the number

of defect atoms. To get a satisfactory estimation it is necessary to select only the Steinhardt

and Hermite order parameters that demonstrate a qualitative evolution similar to the evolution

of number of defects. For these ` and n values, the respective correlation coefficients between

the number of deliberately displaced atoms and the number of defects are calculated and used to

estimate the number of defect atoms in the actual structure. For example, for the zirconium atoms

and for ` = 6, the number of defect atoms nd(t) is given by

nd(t) =
86

35.13
ng(t). (5.4)

The number of defect atoms is calculated for all the selected ` and n values and then averaged to

get the final estimation of the number of defects in the system.

5.4.4 Treatment of surface effects

In all the above approaches, it is crucial to deal with surface effects. Atoms close to the edges

of the simulation box have fewer neighbours than atoms in the bulk. Consequently the value of

Steinhardt order parameters for these atoms will be different and they need special treatment to

clarify if they are defective or not. To avoid this complexity, one could use periodic boundary

conditions during the calculation of the parameters. However, periodic boundary conditions may
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transfer a defect particle residing near one edge of the box to its mirror position, in an undamaged

area, leading to overestimation of the damage. To deal with this problem, instead of applying

periodic boundary conditions, we used a periodic expansion of the initial undamaged cell and at

each timestep of the simulation, only the atoms within the original simulation box are replaced

with those of the current timestep. This way, surface effects are neglected and also damaged atoms

are not transferred to undamaged regions of the structure. Additionally, during the simulation of

the damage cascade and due to periodic boundary conditions, it is common for atoms to travel

through the boundaries and settle to the mirror point of the simulation box. These atoms needs

to be identified at each timestep and returned to their initial positions.

5.5 Results

In Fig. 5.8, four stages of the radiation damage simulation are illustrated. From this figure it

can be safely assumed that the damage progresses very rapidly at the beginning and also that the

crystal is well recovered at the end of the process.

(a) Initial: 0 ps (b) Intermediate: 0.04 ps

(c) Maximum damage: 0.11 ps (d) Final equilibrium: 5.0 ps

Figure 5.8: Screenshots of the zircon crystal at four different stages of the damage cascade creation.
The initial undamaged structure, the structure after 0.04 ps as the damaged atoms are increasing,
the configuration at 0.11 ps where the maximum damage occurred and the structure at the final
equilibrium state, after 4.75 ps. Zirconium atoms are in gray, silicon in yellow and oxygen in red.
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5.5.1 Defect counting

In Fig. 5.9, the number of vacancies, as calculated at every 100 timesteps, is illustrated for each

of the three species. From this plot, it is clear that the damage progresses rapidly in the first 0.15

ps, where it reaches a maximum for all the atomic species. The recovery phase is also very fast,

as after just 1 ps the system reaches a new equilibrium state in which only about 20 vacancies

remain. While during the creation of the damage cascade the majority of the displaced atoms are

oxygen atoms, in the final equilibrium state, about half of the damaged atoms are silicon atoms.
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Figure 5.9: Evolution of vacancies (interstitials) in the damaged zircon structure.

At this point, it is important to note that the in-built defect counting method provided by

the DL POLY 4 routine, identifies only vacancies and interstitials and does not identify antisites.

Also, this method assumes that all the bonds of the system have the same ”strength” and the

characterization of a particle as a defect is independent of the bond length and the forces between

atoms. This approximation may lead to inaccurate results as, depending on the species forming

a bond, a particle needs to travel a different distance so that the bond is broken. Additionally,

the Wigner-Seitz cell is not spherical, as assumed in the DL POLY 4 routine. Instead the shape

depends on the crystal structure. However it is extremely difficult to define Wigner-Seitz cells with

accuracy to better estimate the number of defects. Furthermore, as stated in the previous chapter,

even if Wigner-Seitz cells were properly defined, this method will not provide any details regarding

the number of broken bonds in the system.

5.5.2 Global Steinardt order parameters

In Fig. 5.10, the Q6(Q4) scatter of global Steinhardt order parameters of the initial undamaged

crystal is illustrated. In this Fig. it is obvious how the local geometry affects the distribution of
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Q4 and Q6 values. Zirconium atoms are 10-coordinated, forming 2 bonds with neighbouring silicon

atoms and 8 with oxygen, silicon atoms are 6-coordinated, forming 2 bonds with zirconium atoms

and 4 with oxygen and finally oxygen atoms are 3 coordinated, forming 2 bonds with zirconium

atoms and 1 with a silicon atom. Ideally, atoms of the same species should have exactly the same

local geometry and occupy the same point on the Q6(Q4) plots. However, small variations in the

bond angles and the relative angles of atoms around a reference particle, result in the observed

spread in the values of the parameters. Since atoms in the crystalline structure are located in

places corresponding to minima of the free energy, it can be safely argued that the data points in

this plot correspond to the minima of free energy. During a radiation damage event, atoms are

excited to a higher free energy state and it is expected that this increase of free energy will be

reflected in the Q6(Q4) plot, represented by data points away from the initial well-defined regions.

Indeed, for t = 0.15 ps, where according to the DL POLY 4 defect counting routine the maxi-

mum damage occurs, the distribution of the data points on the plot is very different (Fig. 5.11).

A large number of data points for all the species are distributed away from the initial well-defined

areas, indicating a major change in the local geometry of these atoms. By comparing this plot with

Fig. 5.8, it is clear that several oxygen atoms are transformed from 3-coordinated to 2-coordinated

forming the characteristic α-like space on the upper right corner of the diagram while some others

are either 1-coordinated, located at point (1,1) of the diagram and others are completely free, found

Figure 5.10: Q6(Q4) scatter of global Steinhardt order parameters for the initial undamaged zircon
crystal. Zirconium atoms are in grey colour, silicon in yellow and oxygen in red.
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Figure 5.11: Q6(Q4) scatter of global Steinhardt order parameters for t = 0.15 ps. Zirconium atoms
are in grey colour, silicon in yellow and oxygen in red.

on the lower corner of the plot, at (0,0). Consequently, a number of O-Zr/Si bonds are broken.

However, for the silicon and zirconium atoms it is not easy to distinguish the original 6-coordinated

and 10-coordinated configurations from the damaged one.

In Fig. 5.12, Q6(Q4) is illustrated for the final equilibrated structure at t = 4.75 ps. It is quite

clear that the structure is almost recovered, as only a few atoms (in comparison with the 5184

atoms comprising the structure) are found away from the well defined areas formed for t = 0. Thus,

the local geometry in the final configuration is almost identical to the one of the initial structure,

apart from the damaged atoms. For oxygen atoms it is again easy to spot those that are converted

from 3-coordinated to 2-coordinated. However it is again impossible to identify the change in the

coordination number of silicon and zirconium atoms.

For this, each of the species is plotted separately, highlighting the coordination number of the

atoms. In Figs. 5.13, 5.14 and 5.15, the scatter Q6(Q4) plots for each species are illustrated at

t = 0.15 ps and t = 4.75 ps. From these plots it is safe to argue that non-defect atoms, e.g. atoms

with no broken bonds, remain concentrated in a compact region, with similar shape to the initial

well-defined area and slightly expanded. Defect atoms tend to leave this well-defined area. For

zirconium and silicon atoms, the distance from the well-defined area seems to be proportional to

the change in the coordination number. However, in both the intermediate damaged configuration

at t = 0.15 ps and the final recovered structure, there are atoms that although they have no
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Figure 5.12: Q6(Q4) scatter of global Steinhardt order parameters for t = 4.75 ps. Zirconium atoms
are in grey colour, silicon in yellow and oxygen in red.

broken bonds, since the coordination number is unchanged, they are away from the initial well-

defined area. This suggests a change in their local geometry because either the particle itself or its

neighbours are displaced from their initial positions in a way that the bonds remain unaffected.

As for the final configuration and based on the coordination numbers of the atoms, 31 zirconium

atoms with broken bonds are identified, 23 silicon atoms and 44 oxygen atoms. Although these

scatter plots can be used to identify atoms of specific species associated with broken bonds, it is

not possible to identify the species of the second atom of the damaged bond. Additionally, the

total number of atoms associated with at least one broken bond is not given by the total number

of atoms with altered coordination number, as a broken bond affects both atomic species that

originally formed the bond.

5.5.3 Partial Steinhardt order parameters

To identify specific species associated with a broken bond, partial Steinhardt order parameters

were calculated for all the possible bond pairs (Zr-Si, Zr-O and Si-O). For the Zr-O and Zr-Si

pairs, the results at t = 0.00 ps, t = 0.15 ps and t = 4.75 ps are illustrated in Figs. 5.16, 5.17 and

5.18 respectively. As expected, Zr-O and Zr-Si bonds occupy different areas in the plots, that are

characteristic of the geometry of the central zirconium atom with the bonded oxygen and silicon

atoms. Each zirconium atom is bonded with 8 oxygen atoms, forming dodecahedra and also with
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Figure 5.13: Q6(Q4) scatter of the global Steinhardt order parameters for the zirconium atoms at
t = 0.15 ps and t = 4.75 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.14: Q6(Q4) scatter of the global Steinhardt order parameters for the silicon atoms at
t = 0.15 ps and t = 4.75 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.15: Q6(Q4) scatter of the global Steinhardt order parameters for the silicon atoms at
t = 0.15 ps and t = 4.75 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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2 silicon atoms with a bond angle '180 degrees. The small variations of the Si-Zr-Si bond angle

from the ideal value of 180 degrees, are reflected in the fact that the Zr-Si Q4 − Q6 data points

have small deviations from the ideal (1,1) point.

As the damage progresses, at t = 0.15 ps, data points corresponding to the Zr-Si bonds tend to

form the characteristic α− shape curve on the upper right part of the plot, indicating large varia-

tions in the Si-Zr-Si angles. Also, a large number of Zr-Si bonds are broken, since 108 zirconium

atoms are now connected with less than 2 silicon atoms. For the Zr-O bonds, it is observed that

a large number are broken and 147 zirconium atoms are related to at least one Zr-O broken bond.

The dispersion of Q4 − Q6 data points for the Zr-O pairs away from the compact initial region is

characteristic of the changes in the number and the relative positions of the oxygen atoms that

are bonded with reference zirconium atoms. In the recovered structure on the other hand, only a

few atoms are dispersed away from their initial positions. Actually, only 22 zirconium atoms are

identified to have at least one Zr-Si bond broken and 27 at least one Zr-O broken bond.

For the Si-O pairs, a similar behaviour is observed, but with a significantly higher degree of

recovery. At t = 0 ps, the plots are characteristic of the tetrahedral geometry of silicon atoms with

bonded oxygen atoms. At t = 0.15 ps, 81 silicon atoms have at least one broken bond with an

oxygen atom while for t = 4.75 ps only 3 silicon atoms are associated with a broken Si-O bond.

Thus it is safe to assume that a radiation damage event mostly affects the Zr-Si and Zr-O bonds,

while the Si-O tetrahedral formations remain almost undamaged.

The question that arises is: Can the number of damaged bonds for specific species pairs be

estimated without calculating the coordination number? This is possible if we know the specific

geometry of the reference particle and the bonded neighbours. For the zircon crystal structure,

the geometry is well defined. Each zirconium atom is bonded with 2 silicon atoms in a straight

chain and with 8 oxygen atoms forming dodecahedra, while each silicon atom is connected with 2

zirconium atoms in a straight chain and 4 oxygen atoms forming tetrahedra. In frozen structures,

each of these geometries would be represented in the Q6(Q4) scatter plots as a single point. But the

vibrations1 of the atoms from their equilibrium positions create wider areas in which the Q6(Q4)

values lie. These vibrations can be simulated in order to define the area in which data points

corresponding to atoms with no broken bonds can be found. In a zircon crystal, the Zr-Si chain,

the Zr-O dodecahedra and the Si-O tetrahedra can be simulated. The maximum distance a particle

can travel - e.g. the amplitude of the simulated vibrations - is equal to the difference ra = rmin−rmax

between the first minimum and the first maximum of each partial radial distribution function, so

that the distance of the neighbours from the reference particle will be less than the Steinhardt

order parameters cutoff distance. In Fig. 5.19, the effect of atomic vibrations in the values of

the partial Steinhardt order parameters for the Zr-Si (blue), Zr-O (gray) and Si-O (yellow) pairs

are illustrated. By comparing these plots with Fig. 5.16 corresponding to the initial undamaged

structure, it is clear that atomic vibrations significantly expand the areas covered by Q4 −Q6 data

points.

These plots can be used as a guide to identify damaged bonds without the calculation of

coordination numbers. As illustrated in Fig. 5.20, in which the partial Steinhardt order parameters

are compared with those of the vibrational effect for t = 0.15 ps where the maximum damage occurs,

1During a simulation, atoms are not frozen at their equilibrium positions but they vibrate with a small amplitude
in the order of 0.1 Å.
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Figure 5.16: Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order
parameters for t = 0.00 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.17: Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order
parameters for t = 0.15 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.18: Q6(Q4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Steinhardt order
parameters for t = 4.75 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.19: The effect of atomic vibrations in the Q6(Q4) values of partial Steinhardt order
parameters of a zircon crystal. Grey points correspond to Zr-O bonds, red to Si-O and blue to
Zr-Si.

it is clear that almost all zirconium and silicon atoms associated with at least one damaged bond

with an oxygen atom are found outside the area defined by the vibrations of atoms. For the Zr-Si

pairs, things are not that clear, as the Si-Zr-Si angles in the damaged structure are not as limited

due to the atomic vibrations. However, zirconium atoms are originally bonded with 2 silicon atoms.

2-coordinated atoms are easily identified in the Q6(Q4) plots due to the characteristic α− shape

curve they form. Zirconium atoms with one broken Zr-Si bond will have Q4 = Q6 = 1 while those

with two broken Zr-Si bonds will have Q4 = Q6 = 0, making it possible to identify defect atoms

without examining if their Q6(Q4) values are within the area defined by the vibrational moves. As

demonstrated if Fig. 5.21, at t = 4.75, where the crystal is almost completely recovered, it is much

easier to identify the zirconium and silicon atoms associated with at least one damaged bond.

By defining the area corresponding to atomic vibrations and calculating at each timestep the

number of atoms found outside this area, it is possible to get a clear and accurate estimation of

bond defects. In Fig. 5.22 the evolution of Zr-Si, Zr-O and Si-O bond defects is illustrated. It is

clear that the number of defects versus time follow a pattern similar to the number of damaged

atoms calculated by the DL POLY 4 in-built routine, as shown in Fig. 5.9. Additionally, these

numbers are compared with the respective calculation using the coordination number as a func-

tion of time. The agreement between the two methods is impressive, reflecting the accuracy of

the partial Steinhardt order parameters method and establishing the latest as a successful defect

characterization technique for crystalline materials. The accuracy of the method is mainly due to

the fact that in an undamaged crystalline material, all atoms of the same species have the same
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Figure 5.20: Comparison of Q6(Q4) data points between the structure at maximum damage with
those of the vibrational effect for the Zr-Si and Zr-O pairs (top) and Si-O pairs (bottom), high-
lighting the coordination number, as indicated in the colourbar next to the plots
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Figure 5.21: Comparison of Q6(Q4) data points between the structure at t = 4.75 ps, with those of
the vibrational effect for the Zr-Si and Zr-O pairs (top) and Si-O pairs (bottom), highlighting the
coordination number, as indicated in the colourbar next to the plots
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initial coordination number and a specific local geometry, making easy to define the Q6(Q4) area

due to atomic vibrations and consequently identify the atoms of the damaged structure associated

with at least one bond defect. In amorphous materials, atoms of the same species in an undamaged

structure may have more than one coordination number and a variety of local geometries. Thus,

the task to define areas in Q6(Q4) plots due to the vibrational movements remains challenging.

Since Steinhardt order parameters depend on the relative angular positions of the atoms around

a reference particle, it is expected that, if the relative positions of the neighbours surrounding

different reference atoms are similar, then the corresponding data points on the Q6(Q4) plots will

be close to each other. This is actually shown in Fig. 5.19. For the SiO4 units, the geometry

of the respective tetrahedra is similar - the only variations are due to the vibration of the atoms

around their equilibrium positions. Consequently, the corresponding data points form a well defined

compact area. Similar arguments can be made for the ZiO8 dodecahedra and also for the almost

linear Si-Zr-Si triplets. During the creation of the radiation damage cascade, it is clear that the

data points corresponding to the SiO4 pairs (or the 4-coordinated silicon atoms) remain inside

the area defined by these vibrations. Thus, the angular geometry of the SiO4 tetrahedra is not

affected by the radiation damage event. However, the distribution of data points corresponding to

defect silicon atoms is quite extended. It can be argued that the angular distribution of the bonded

oxygen neighbours of both the 3- and 2-coordinated silicon atoms created during the irradiation

event does not converge. Similar arguments can be made for the zirconium atoms associated

with at least one bond defect, as the distribution of low coordinated atoms in the Q6(Q4) plots is

arbitrary for the Zr-O pairs. For the Zr-Si pairs, it is also clear from Fig. 5.20 that during the
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Figure 5.22: Comparison of number of bond defects for Zr-Si, Zr-O and Si-O pairs calculated using
partial Steinhardt order parameters and by simple calculation of coordination numbers.
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creation of the damage cascade, several data points are found away from the upper right corner,

meaning that the Si-Zr-Si bond angle is affected and taking values away from the ideal angle of

180o. By the end of the simulation however (Fig. 5.21), it is clear that the angular geometry of

the SiO4 tetrahedra and ZrO8 dodecahedra is almost completely restored and there is also a high

recovery of the Si-Zr-Si bond angles.

5.5.4 Partial Hermite order parameters

For the Hermite order parameters, a similar approach is applied. Using the cutoff distances de-

fined for the calculation of Steinhardt order parameters, partial Hermite order parameters were

calculated in order not only to identify atoms with damaged bonds, but also to extract information

regarding the nature of broken bonds. Using partial Hermite order parameters it is quite simple to

retrieve all the necessary information, as atoms with broken bonds are clearly distinguished from

non-defect atoms. Figs. 5.23 - 5.25 show the distribution of R6(R4) data points in three different

states of the damage process, the initial undamaged structure at t = 0 ps, the maximum damage

phase at t = 0.15 ps and the final recovered structure at t = 4.75 ps.

For t = 0 ps and for the Zr-Si pairs, all data points (apart for one corresponding to the primary

knocked zircon atom) are found in a small area around (R4,R6) = (0.328,0.275). For the Zr-O pairs

the R6(R4) data points of the undamaged structure are concentrated around point (0.163,0.136)

and for the Si-O pairs the R6(R4) data points of the undamaged structure are concentrated around

point (0.232,0.195). As the damage progresses and several Zr-Si, Zr-O and Si-O bonds are broken,

resulting in zirconium and silicon atoms with at least one bond defect, data points for the Zr-Si

pairs accumulate at (0.465,0.391) corresponding to 1 silicon neighbour and at (0,0) corresponding

to no Zr-Si bond. Data points corresponding to the Zr-O and Si-O pairs are dispersed in several

regions according to the number of damaged Zr-O and Si-O bonds respectively. For the Zr-Si pairs

it is possible to estimate the number of defect zircon atoms just by counting the number of atoms

at each data point. For the Zr-O and Si-O pairs, it is also very easy to identify damaged bonds

between specific pairs. Using the same approach as for partial Steinhardt order parameters, the

areas in the R6(R4) plots formed using data from the undamaged structure can be defined and

the number of atoms associated with bond defects can be calculated. As in the case with partial

Steinhardt order parameters, the number of bond defects calculated using partial Hermite order

parameters is compared with the one calculated using the coordination number of atoms (Fig.

5.26). The agreement between the results is once again impressive.

In terms of bond defects, Hermite order parameters give the same results as the Steinhardt

order parameters method. As a result, it is natural to question the usage of Hermite order pa-

rameters. However, Hermite order parameters can give additional information regarding the radial

distribution of atoms around a reference atom, that the Steinhardt order parameters are unable

to provide. For example, we can refer to Fig. 5.24, where R6 is plotted against R4 for the Zr-O

bonds and for t = 0.15 ps. Apart from the obvious argument, that several zirconium atoms are

associated with at least one broken Zr-O bond, zirconium atoms with the same coordination num-

ber are not located in the same position in the diagram. For example, the three 4-coordinated

zirconium atoms are found in three different points on the plot. Since Hermite order parameters

are a function of distance r, but also dependent on the average neighbour distance, it is safe to
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Figure 5.23: R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Hermite order
parameters for t = 0.00 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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Figure 5.24: R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Hermite order
parameters for t = 0.15 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.



146 Chapter 5. Developing topological methods towards radiation damage characterisation

Figure 5.25: R6(R4) scatter of Zr-Si and Zr-O (top) and Si-O (bottom) partial Hermite order
parameters for t = 4.75 ps, highlighting the coordination number, as indicated in the colourbar
next to the plots.
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assume that although these three atoms have 4 neighbouring oxygens, the radial distribution of

these neighbours is different for each zirconium atom.

For the Zr-O bonds and for t = 0.15 ps (Fig. 5.24), apart from the zirconium atoms associated

with bond defects, the area corresponding to the 8-coordinated atoms are expanded in comparison

with the respective area for the initial undamaged structure (Fig. 5.23). This is due to the change

of the local geometry around reference zirconium atoms during the creation of the damage cascade,

resulting in variations in the average distance of the oxygen neighbours. At the final stage of the

simulation, for t = 4.75 ps (Fig. 5.25), the area is again more compact and close to the one of the

initial structure and so it is safe to assume that the local geometry of the Zr-O bonds in terms of

the average neighbour distance is restored. Si-O bonds behave in a similar manner. During the

generation of the damage cascade (Fig. 5.24), silicon atoms show some variations in the radial

geometry of the neighbours, regardless of the coordination number, while the geometry of the

4-coordinated silicon atoms is restored at the end of the simulation.
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Figure 5.26: Comparison of number of bond defects for Zr-Si, Zr-O and Si-O pairs calculated using
partial Hermite order parameters and by simple calculation of coordination numbers.

5.5.5 Species specific Steinhardt order parameters

The evolution of the majority of the species specific Steinhardt order parameters, follows an arbi-

trary pattern that is not related with the evolution of the number of defects, as shown in Fig. 5.9.

However, some of the parameters demonstrate similar behaviour to the evolution of the number

of defects. As shown in Fig. 5.27 of the zirconium and silicon atoms of the structure it was found

that Q1, Q6 and Q9 are evolving qualitative the same way as the number of defects, by reaching

a maximum value near the time of the maximum damage and forming a plateau at 0.5 < t < 1
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Figure 5.27: The time evolution of Q1, Q6 and Q9 for the zirconium species. The plot demonstrates
the values of Q`(t) −Q`(0) normalized to give unit maxima. These three were the only SOPs that
presented a damaged-like behaviour.

ps, while for the oxygen atoms it was Q9 and Q10. Since our effort is to correlate the Steinhardt

order parameters with the number of defect atoms, it makes sense to use these parameters. It

can be argued that the time evolution of these parameters is directly related to the evolution of

the number of defect atoms of the system. Actually, the average number of defect atoms for the

zirconium and silicon atoms, as calculated using the Steinhardt order parameters method, for the

above ` values, is in good agreement with the number of defects calculated using the traditional

defect counting method (Fig. 5.28). For the oxygen atoms however, there is a disagreement in the

recovery region which can be explained by considering the fact that the DL POLY in-built defect

counting routine cannot identify antisites, which in this system are numerous.

A simple way to make an estimation of the total number of defects for each species is to find

for each of the frames corresponding to the damaged structure the atoms that are displaced by

a distance r > rd. As can seen in Fig. 5.28, the total number of defect oxygen atoms is again

smaller than the one estimated using the Steinhardt order parameters method, but this time, the

difference is much smaller. A solution to this problem is to use higher order Steinhardt order

parameters, in order to be able to average the number of defect atoms for even more ` values and

get a better statistical distribution. However, this comes with a significant computational cost,

since to compute the Steinhardt order parameters for ` = 16 and ` = 24, the computational times

becomes 2.4 and 5.2 times higher respectively. However, since in amorphous materials there are

no antisites, it is expected that the accuracy of this method will not be affected by such effects.

5.5.6 Species specific Hermite order parameters

For the species specific Hermite order parameters, a similar approach is followed. For the zirconium

atoms, R9, R10, R11, R12, R14 and R15 demonstrated a desired damage-like time evolution while for

silicon atoms R10, R11, R14 and R15 were used. For the oxygen atoms on the other hand, only R2

demonstrated the desired behaviour. As seen in Fig. 5.28, the results obtained with the Hermite
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Figure 5.28: Comparison between the number of defects of the zirconium, silicon and oxygen atoms
calculated using Wigner-Seitz method and the number of oxygen damaged atoms calculated using
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number of displaced oxygen atoms: damaged atoms and antisites.
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order parameters method are in good agreement with the results obtained with both the Steinhardt

order parameters and defect counting methods. This can be considered as a self-validation of the

two proposed methods for systems with no antisites.

5.6 Conclusions

Zircon crystal is a well studied crystalline system regarding the effects of radiation damage and thus

it is an ideal structure to develop and test new methods to characterise radiation damage effects

that can be also applied in amorphous materials. When calculated Steinhardt order parameters

using the standard approach, in which a reference particle is selected and the parameters are

calculated using all the atoms within a sphere of specific radius, centred on the reference atoms,

it was found that it is not possible to extract information regarding the bond defects. As a result,

two novel approaches were proposed. The first approach, utilises the partial Steinhardt order

parameters, calculated using as neighbours the atoms that form a physical bond with a reference

particle. The goal of this method is to identify the number of atoms that are associated with at

least one bond defect. The second approach, estimates the effects of radiation damage in terms

of defect particles, by calculating the species specific Steinhardt order parameters, in which the

neighbours of a reference atom of species A, are all the atoms of the same species within the first

coordination shell of the gA−A(r) radial distribution function.

The results obtained using the partial Steinhardt order parameters method were compared with

the number of low coordinated atoms created during the radiation damage event and the accuracy

was very good. By comparing the results with the number of defected atoms estimated using the

Wigner-Seitz defect count method, it was found that the latter fails to predict with accuracy the

number of atoms associated with bond defects. The displacement or not of a particle from its

initial lattice position is not directly related with the number of bond defects. The Wigner-Seitz

method seems to underestimate the total number of defect atoms by a factor of 2.5 and in parallel

overestimates the respective number of silicon atoms. This is due to the fact that the Wigner-Seitz

method fails to identify antisites that in general may assist the recovery of a damage structure by

reforming broken bonds.

The species specific Steinhardt order parameters method was proved accurate for the estimation

of the number of defect particles resulting from a radiation damage event. For the silicon and

zirconium atoms there was a very good agreement with the Wigner-Seitz method. However, for

the oxygen atoms, the species specific Steinhardt order parameters method show a good agreement

with the Wigner-Seitz method only at the first stages of the simulation, where the damage cascade

is created. In the recovery region, our method seems to significantly overestimate the number of

defect atoms. However, the species specific Steinhardt order parameters method has the ability

to identify and count as defect atoms the antisites, that are not calculated using the DL POLY 4

in built routine. When calculating the number of defect particles using the Wigner-Seitz method

and taking into account the antisites, the results are much close to those obtained by our method.

However, there is still a considerable difference between the two methods that needs to be addressed.

Apart from that, it was possible to use the partial Steinhardt order parameters to explore how

the impact event affects the angular geometry of the SiO4 tetrahedra, the ZrO8 dodecahedra and

the Si-Zr-Si triplets and the resulting low coordination structures associated with a bond defect. It
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was found that during the creation of the damage cascade , the non-defect SiO4 and ZrO8 structures

are only a little affected by the impact event. However, the low coordination units, demonstrate

a large variety of angular geometry - the relative angular positions of remaining oxygen atoms

surrounding the reference atoms do not converge. Additionally, several Si-Zr-Si triplets become

non linear, as there are several zirconium atoms for which the Si-Zr-Si angle is very different from

the ideal value of 180o. However, by the end of the simulation, when the crystal exhibits a large

degree of recovery, most of the Si-Zr-Si triplets are restored to an almost linear conformation.

Hermite order parameters methods were developed in order to have an additional method to

identify bond-defect atoms, using only the distance between bonded atoms and to extract informa-

tion regarding the effect of radiation damage on the bond length between different species. In terms

of the number of atoms associated with at least one bond defect, partial Hermite order parameters

provide almost the same results as the partial and partial Steinhardt order parameters methods.

In terms of the number of defect atoms, species specific Hermite order parameters provide results

that are in good agreement with the respective results of the species specific Steihnhardt order

parameters method. Since the two sets of parameters depend on different variables - Steinhardt

order parameters depend on the spherical angles θ and φ while Hermite order parameters on the

spherical distance r - it can be argued that they can be used as a self validating set of methods

for the estimation of bond-defect atoms in a system. In terms of the average bond length between

the different bonded species, Hermite order parameters revealed that the impact event affects the

length of all the bond lengths of the system. In the R6(R4) plots, the compact areas formed by

the data points for the undamaged structure, are replaced in the damaged structures by extended

areas due to the changes in the average distance of the bonded neighbours.The recovery of the

system at the end of the simulation is also reflected in the average neighbour distance, as the final

areas in the R6(R4) plots are more compact compared with the respective areas at the stage of

maximum damage.





Chapter 6

Radiation damage in borosilicate
glasses

6.1 Introduction

Since borosilicates represent the most common glass wasteform for the encapsulation of HLW, it is

important to explore their tolerance to self irradiation. In the UK, the most common borosilicate

glass for nuclear waste encapsulation consists of 47.2% SiO2, 16.9%B2O3, 4.8% Al2O3, 5.3% MgO,

8.4% Na2O and 17.4% of other elements [166]. However, this glass composition cannot be simulated

with accuracy, as the accurate potentials developed to describe the pair interactions in borosilicate

glasses are limited to Si-O, B-O and Na-O interactions. Consequently, in this work, the behaviour

of the simpler sodium borosilicate glasses SBN12 and SBN14 (Table 6.1) is explored.

Table 6.1: Composition of the SBN12 and SBN14 sodium borosilicate glasses in mol%.

SiO2 B2O3 Na2O

SBN12 59.66 28.14 12.20

SBN14 67.73 18.04 14.23

These glasses were selected on the basis of their molar compositions and on the extent of

current research. The ratios R = [Na2O]/[B2O3] and K = [SiO2]/[B2O3] for the UK nuclear

glass are R = 0.497 and K = 2.793. From the sodium borosilicate glasses that are currently used

in molecular dynamics simulations, SBN12 has a molar composition close to the UK glass with

R12 = 0.434 and K12 = 2.120, while SBN14 glass has a composition with ratios R14 = 0.789 and

K14 = 3.754, very close to those of the R7T7 glass used in the French nuclear industry. Although

R7T7 glass has no current applications in the UK nuclear industry, SBN14 was selected in this

work as it has been extensively researched and it can be used for comparison with our models.

The two irradiated glass models were analysed using the methods described in the previous

chapters: defect counting, partial Steinhardt and Hermite order parameters, species specific Stein-

hardt and Hermite order parameters and primitive ring statistics. However, the species specific

Steinhardt and Hermite order parameters methods failed to provide any trustworthy information

regarding the extent of radiation damage in terms of defect atoms. Following the same procedure

as in the radiation damaged crystal structure, the method failed to identify appropriate order

parameters following a damage like evolution and so it was not possible to find a relation between

nd(t) and ng(t) as described in section 5.4.3.

153
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6.2 Creating SBN12 and SBN14 borosilicate glass models

The first step to create accurate borosilicate glass models is to select the correct pair potentials.

Jolley et. al. [24] conducted a comprehensive comparison between existing potentials for sodium

borosilicate glasses and concluded that potentials proposed by Kieu et. al. [22] predict the bond

lengths and the density of the structure with increased accuracy and additionally have lowest

melting points. Kieu model potentials are described in detail in section 3.9. The partial charges

presented in Table 6.2 for each of the species were calculated using equation (3.143).

Table 6.2: Partial charges used in SBN12 and SBN14 borosilicate glass models.

qSi qB qNa qO

SBN12 1.869128 1.528756 0.451628 -0.965872

SBN14 1.869425 1.588015 0.451925 -0.965580

For the simulation of the glasses, the DLPOLY 4 molecular dynamics simulation package was

used [132]. For the SBN12 glass a cubic fcc cell consisting of 4093 atoms in total (686 silicon,

646 boron, 230 sodium and 2481 oxygen atoms) randomly placed on the lattice points was created

while for the SBN14 glass the cubic cell contained 4094 atoms (825 silicon, 440 boron, 346 sodium

and 2483 oxygen atoms). The difference in the total number of atoms in the two structures was

necessary in order to have the respective compositions as close as possible to those presented in

Table 6.1 and also have a neutral crystal with zero total charge. Electrostatic interactions were

taken into account using the Ewald summation routine provided by the DLPOLY 4 package. The

size of the cell was selected appropriately to give densities about 5% lower than the experimental

values, in order to relax close to the experimental value after the quench, and set to 37.999 Å for

the SBN12 glass and to 37.686 Å for the SBN14. The initial structures were equilibrated for 100 ps

at 5000 K under the NVT ensemble and then rapidly quenched to room temperature at a rate of

5× 1012 K/s under constant volume. Finally, both structures were equilibrated at 300 K following

a two step procedure: for 20 ps under the NPT ensemble to relax to the desired density and for 10

ps using the NVE ensemble, to remove the excess pressure. The procedure of glass creation [24] is

illustrated in Fig. 6.1.

To verify the glassy nature of the quenched structures, the radial distribution functions (Figs.

6.2 and 6.3) are examined. All radial distribution functions are characteristic of an amorphous

material. For both structures, the curves representing the radial distribution functions of the Si-O

and B-O pairs are plotted separately, as their first peak, corresponding to the first coordination

shell, is found at a distance smaller than the first minimum of the total radial distribution function.

This property will be exploited later, for the calculation of the Steinhardt order parameters, Her-

mite order parameters and primitive rings. Also, the Si-O and B-O radial distribution functions

clearly demonstrate the local order corresponding to the silica and boron network that is limited

to the first coordination shell.

The accuracy of the two glass models can also be tested by calculating their density. For the

SBN12 glass, the final density is calculated ρSBN12 = 2.378 g/cm3 while for the SBN14 it was

ρSBN14 = 2.482 g/cm3. These values are very close to the experimental ones, which are 2.37

g/cm3 and 2.45 g/cm3 respectively [22]. The average coordination number of the boron atoms was
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Figure 6.1: The melt-quench routine for the creation of borosilicate glass models.

calculated equal to CB,SBN12 = 3.30 and CB,SBN14 = 3.46, very close to the experimental values

which are 3.43 and 3.72 respectively. The Si-O, B-O and Na-O bond lengths for the two glasses,

as given in Table 6.3, are close to the experimental values.

Table 6.3: Structural data of the modeled SBN12 and SBN14 glasses. The experimental values
[22] are in parentheses.

dSi-O dB-O dNa-O

SBN12 1.61 (1.60-1.62) 1.42 (1.41) 2.42 (2.30-2.62)
SBN14 1.62 (1.60-1.62) 1.42 (1.44) 2.43 (2.30-2.62)

6.2.1 Creating a radiation damage cascade

The radiation damage cascade formation process was performed using the DLPOLY 4 molecular

dynamics simulations package [132]. One silicon atom of the system was selected as primary knock

atom (PKA) and given an excess of kinetic energy equal to 1 keV along the direction (x = y = z).

To avoid problems associated with the divergence region of the Si-O, B-O and O-O Buckingham

potentials, a short range ZBL potential was used. This potential was truncated and fitted to the

Buckingham potentials using the atsim.potentials package [165]. As in the case of the damage
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cascade creation in zircon crystal, a boundary layer was applied to dissipate the excess of kinetic

energy as well as a variable timestep algorithm. The simulation was run for 50000 timesteps,

corresponding to 4.75 ps, under the NVT dynamics.

6.3 Algorithmic details of defect analysis

The method followed for the defect analysis is similar to the one used in the zircon crystal. An

output file was generated, containing the trajectories of the atoms at every 100 timesteps of the

simulation, generating 501 snapshots in total to be analysed using the defect counting and the

partial SOP/HOP methods. Additionally, for each snapshot, a primitive ring statistics analysis

was performed, to get detailed information regarding the effect of the radiation in the silica network

of the glasses.

For the defect counting method and since the smallest interatomic distance for both structures

is 1.42 Å, equal to the average B-O bond distance, a particle is identified as damaged, if the distance

between the position it occupies in the damaged frame from the position in the initial undamaged

structure is greater than 0.7 Å.

Partial Steinhardt order parameters are calculated for a reference particle using all the bonded

neighbours of the same species. For the calculation of the parameters it is assumed that a bond

between two atoms A and B exists if the distance rAB between two atoms is less than the first

minimum rRDF(A,B) Par.
min of both the respective partial radial distribution function and the first

minimum of the total radial distribution functions rRDF(A,B) Tot.
min ,

rAB ≤ rRDF(A,B) Par.
min and rAB ≤ rRDF(A,B) Tot.

min (6.1)

By these criteria, the only bonds existing in the structure are the B-O and Si-O bonds.

6.4 Results

6.4.1 Defect counting

In Figs. 6.4 and 6.5, the number of displaced atoms versus time is demonstrated, for the SBN12 and

SBN14 borosilicate glasses, as calculated using the DL POLY 4 defect counting routine. From these

plots it is obvious that the two glasses show similar behaviour. The majority of displaced atoms

are oxygen atoms, while boron atoms demonstrate the greater resistance to radiation damage.

For the SBN12 glass, at the maximum damage, almost 10.7% of the total atoms of the system

are displaced from their initial position. The fraction of displaced atoms is 9.0% for the boron

atoms, 44.8% for the sodium atoms, 7.7% for the silicon atoms and 10.4% for the oxygen atoms.

The respective percentages for the SBN14 glass are 9.8% for the total atoms, 6.6% for the boron

atoms, 36.7% for the sodium atoms, 7.5% for the silicon atoms and 8.7% for the oxygen atoms.

Thus, in terms of number of displaced atoms, it is obvious, that SBN14 glass is slightly more

resistant to radiation damage in comparison with SBN12 glass. The high percentage of displaced

sodium atoms for both structures can be justified by considering that sodium atoms are actually

network modifiers and consequently it is much easier to displace them from their position during
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Figure 6.4: Number of displaced atoms versus time for the radiation damaged SBN12 glass calcu-
lated using defect counting method.
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Figure 6.5: Number of displaced atoms versus time for the radiation damaged SBN14 glass calcu-
lated using defect counting method.



160 Chapter 6. Radiation damage in borosilicate glasses

a decay event in comparison with bonded atoms. In terms of recovery, only a few of the displaced

oxygen and silicon atoms manage to recover to their initial positions, while boron and sodium

atoms are permanently displaced.

However, the number of displaced atoms is in total disagreement with the changes in the

coordination number of the atoms. In Figs. 6.6 and 6.7, the changes in the coordination number

of boron and silicon atoms during the simulation are clear. For both glasses, the number of 3-

coordinated boron atoms and 4-coordinated boron and silicon atoms at the end the simulation, is

almost the same as the numbers in the initial undamaged structure. For the SBN12 glass, there is

a small increase in the number of 4-coordinated boron atoms and a small decrease in the number of

3-coordinated boron atoms, suggesting that due to the irradiation, a small number of boron atoms

transform from 3- to 4-coordinated, while for the SBN14 glass we observe the reverse. Additionally,

the maximum number of boron and silicon atoms undergoing a change in their coordination number

is much lower than the maximum number of displaced atoms for each of the species. Thus it is

clear that the defect counting method does not provide an accurate estimation of the radiation

damage effects in terms of bond defects.

6.4.2 Partial Steinhardt order parameters

In Figs. 6.8-6.13 the plots of Q4 against Q6 for the B-O and Si-O bonds of the SBN12 glass are

shown for the initial structure at t = 0.00 ps, t = 0.35 ps (a moment in which the maximum damage

occurs according to the defect counting method), and for the final structure at t = 4.75 ps. In Figs.

6.14-6.19 the same plots for the SBN14 glass are displayed.

For the undamaged structures it is clear that boron atoms are concentrated in two regions, one

corresponding to the 3-coordinated boron atoms and one to the 4-coordinated (figs. 6.8 and 6.14).

These regions are in general well defined, meaning that there is a consistency in the geometry for

both 3 and 4-coordinated boron atoms. However, a small number of the initially 3-coordinated

boron atoms are found outside the well defined regions and it can be argued that the angular

distribution of the oxygen neighbours around this atoms is slightly different than the average. The

initially 4-coordinated boron atoms on the other hand appear to have a most consistent initial

angular distribution of their oxygen neighbours. For the silicon atoms (figs. 6.11 and 6.17), it is

observed that a few of them are three coordinated and distributed in a wide area of the Q6(Q4)

plots, underlying the large variations of the angular distribution of the three oxygen neighbours.

In a similar manner, data points corresponding to the initially 4-coordinated silicon atoms cover a

relatively wide area showing a variety in the geometry of the tetrahedra of the silica network.

For the damaged structures, it is clear that for both glasses, the changes in the values of partial

Steinhardt order parameters show agreement with the behaviour of the coordination number of

the boron and silicon atoms. For both glasses and for t = 0.35 ps, only a few boron (Figs.

6.15) and silicon atoms (Figs. 6.18) have a Q6(Q4) value away from the region defined by the

undamaged structure. Boron atoms are found either 3- or 4-coordinated, with the exception of

some located in the low left corner of the plots and corresponding to 0-coordinated atoms. Similar

to the undamaged structure however, the angular distribution of the oxygen neighbours of a small

number of the 3- and 4-coordinated boron atoms appear to be different from the average. For the

silicon atoms this is more obvious as several 4-coordinated atoms are clearly distributed away from
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Figure 6.6: The evolution of the number of 4-coordinated boron atoms (top), of 3-coordinated
boron atoms (middle) and 4-coordinated silicon atoms (bottom) of the SBN12 radiation damaged
glass.
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Figure 6.7: The evolution of the number of 4-coordinated boron atoms (top), of 3-coordinated
boron atoms (middle) and 4-coordinated silicon atoms (bottom) of the SBN14 radiation damaged
glass.
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the region defined by the atoms with the standard geometry, while the 3-coordinated damaged

silicon atoms have an arbitrary geometry. In the final structures, at t = 4.75 ps, the distribution

of data points is very close to the one of the initial undamaged structure implying a high degree

of structural recovery.

The transformation of 3-coordinated boron atoms to 4-coordinated and vice versa can be ex-

plored, by identifying 3- and 4- coordinated boron atoms of the initial undamaged structure and

calculating partial Steinhardt order parameters at every timestep for each of these separately. In

Figs. 6.20-6.23 and 6.24-6.27 the Q6(Q4) plots of the 3- and 4-coordinated boron atoms are demon-

strated for the SBN12 and SBN14 glasses. It is clear from these plots that some boron atoms that

were originally 3-coordinated, leave the area defined by this atom and move in the area of the

four coordinated atoms and vice versa. Additionally all boron atoms found at some point to have

zero coordination number were initially 3-coordinated. During the creation of the damage cascade,

at t = 0.35 ps, the 3-coordinated boron atoms transform to 4-coordinated with a relatively fixed

angular distribution of oxygen neighbours - with only a few exceptions - very close to the one of

the originally 4-coordinated boron atoms. Thus it is safe to assume that the initially 3-coordinated

boron atoms are transforming to BO4 tetrahedra during every stage of the simulation. On the

contrary, during the creation of the damage cascade, the initially 4-coordinated boron atoms are

transformed into 3-coordinated with arbitrary angular distribution of the 3 oxygen neighbours.

At the end of the simulation however, the 3-coordinated boron atoms resulting from the transfor-

mation of 4-coordinated, demonstrate a consistent geometry similar to the one of the undamaged

3-coordinated boron atoms.

For both boron and silicon atoms, the number of atoms associated with at least one bond

defect can be calculated, the same way it was calculated for the zircon crystal: the areas in the

Q6(Q4) plots occupied by atoms in the undamaged structure is defined and all the atoms in the

damaged structure and for each timestep lying outside these areas are identified (Figs. 6.28 and

6.29). For the silicon atoms, there is a good agreement between the number of atoms associated

with at least one bond defect and the number of 4-coordinated silicon atoms demonstrated in Figs.

6.6 and 6.7. For the boron atoms it seems to have a lower agreement. However, in Figs. 6.6

and 6.7 the number of 4-coordinated boron atoms is the sum of those having no bond defects and

those transformed from 3-coordinated to 4-coordinated and in a similar manner, the number of 3-

coordinated atoms are the actual one and those transformed from 4-coordinated to 3-coordinated.

Thus, the coordination number fails to give information regarding the transformation of boron

atoms between the two different coordination number, a task that can be successfully completed

using partial Steinhardt order parameters.

By comparing the number of boron and silicon atoms associated with bond defects for both

structures it is clear that SBN14 shows slightly increased tolerance to radiation damage. The

percentage of maximum displaced silicon atoms is 7.1% for the SBN12 glass and 7.4% for the

SBN14. However for the boron atoms the percentage of defect atoms is 8.8% for the SBN12 glass

and 6.4% for the SBN14. In the final equilibrated structures, silicon atoms are almost completely

recovered in terms of bond defects. On the contrary after the time at which the maximum damage

is observed, the number of boron atoms associated with at least one broken B-O bond remains

almost constant. Consequently, it can be argued that B-O bonds are unable to recover after a

radiation damage event and the majority of the damage in both structures is related to broken
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Figure 6.8: Q6(Q4) plot of the boron atoms in the initial undamaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.9: Q6(Q4) plot of the boron atoms at t = 0.35 ps for the SBN12 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.
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Figure 6.10: Q6(Q4) plot of the boron atoms in the final damaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.11: Q6(Q4) plot of the silicon atoms in the initial undamaged structure of the SBN12
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.12: Q6(Q4) plot of the silicon atoms at t = 0.35 ps for the SBN12 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.

Figure 6.13: Q6(Q4) plot of the silicon atoms in the final damaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.14: Q6(Q4) plot of the boron atoms in the initial undamaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.15: Q6(Q4) plot of the boron atoms at t = 0.35 ps for the SBN14 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.
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Figure 6.16: Q6(Q4) plot of the boron atoms in the final damaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.17: Q6(Q4) plot of the silicon atoms in the initial undamaged structure of the SBN14
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.18: Q6(Q4) plot of the silicon atoms at t = 0.35 ps for the SBN14 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.

Figure 6.19: Q6(Q4) plot of the silicon atoms in the final damaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.20: Q6(Q4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN12
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.21: Q6(Q4) plot of the initially 3-coordinated boron atoms in the final structure of the
SBN12 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.22: Q6(Q4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN12
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.23: Q6(Q4) plot of the initially 4-coordinated boron atoms in the final structure of the
SBN12 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.24: Q6(Q4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN14
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.25: Q6(Q4) plot of the initially 3-coordinated boron atoms in the final structure of the
SBN14 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.26: Q6(Q4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN14
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.27: Q6(Q4) plot of the initially 4-coordinated boron atoms in the final structure of the
SBN14 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.28: Number of atoms associated with bond defects for the radiation damaged SBN12
glass, calculated using the partial Steinhardt order parameters method.
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Figure 6.29: Number of atoms associated with bond defects for the radiation damaged SBN14
glass, calculated using the partial Steinhardt order parameters method.
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B-O bonds.

6.4.3 Partial Hermite order parameters

As is expected, Hermite order parameters reveal similar information to partial Steinhardt order

parameters regarding bond defects. In Figs. 6.30-6.35 and 6.36-6.41, Hermite order parameters of

the boron and silicon atoms of the SBN12 and SBN14 glasses respectively are shown for t = 0.00

ps, t = 0.35 ps and t = 4.75 ps. From these plots it is obvious that radiation damage alters the

distribution of R4 − R6 data points for both boron and silicon atoms. However, as in the case of

Steinhardt order parameters cannot be used to directly identify boron atoms that transform from

3-coordinated to 4-coordinated during the creation of the radiation damage cascade and vice versa.

In Figs. 6.42-6.44 the parameters of the 3- and 4-coordinated boron atoms of the SBN12 glass for

t = 0.35 ps and t = 4.75 ps are shown while the respective plots for the SBN14 glass are illustrated

in Figs. 6.46-6.48. These plots provide information regarding the transformation between the 3-

and 4- coordinated boron atoms.

As discussed in the previous chapter, Hermite order parameters are able to provide information

regarding the radial distribution of atoms around the reference particle. In the initial structure

of both glasses (figs. 6.30 and 6.36) it is clear that the average oxygen neighbour distance for the

3-coordinated boron atoms is almost constant - the R6(R4) data points form a very compact area.

On the other hand, the dispersion of the R6(R4) data points of the 4-coordinated boron atoms is

due to the variations of the average B-O bond length of the BO4 units. During the simulation,

3-coordinated boron atoms are transformed into 4-coordinated, for which the average neighbour

distance varies, while the radial geometry of the BO3 units resulted from the transformation of

4-coordinated boron atoms to 3-coordinated is more consistent. At the end of the simulation

however, the radial geometry of the resulting BO4 units converges. Finally, for the silicon atoms

it can be argued that the average neighbour distance in the initial undamaged SiO4 units shows

some variations reflected in the non-compact distribution of the R6(R4) data points. At the time

of maximum damage, the variations are larger and it can be safely assumed that the average

neighbour distance is affected significantly during the creation of the damage cascade. At the end

of the simulation, the region formed by the R6(R4) data points for the silicon atoms is very close

to the one of the undamaged structure. There is a slightly increased dispersion of the data points

which can be explained by assuming that the radial geometry of the recovered SiO4 units is slightly

different from the one of the undamaged structures.

As in the case of Steinhardt order parameters the number of atoms associated with at least one

bond defect can be calculated, by identifying at each timestep the number of atoms found outside

the area defined by the undamaged atoms in the R6(R4) plots. In Figs. 6.50 and 6.51, the number

of atoms associated with at least one bond defect for the SBN12 and SBN14 glasses respectively

is displayed. The results are in very good agreement with those extracted using the Steinhardt

order parameters method and consequently we can argue that the results of the two methods are

validating each other.
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Figure 6.30: R6(R4) plot of the boron atoms in the initial undamaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.31: R6(R4) plot of the boron atoms at t = 0.35 ps for the SBN12 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.
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Figure 6.32: R6(R4) plot of the boron atoms in the final damaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.33: R6(R4) plot of the silicon atoms in the initial undamaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.34: R6(R4) plot of the silicon atoms at t = 0.35 ps for the SBN12 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.

Figure 6.35: R6(R4) plot of the silicon atoms in the final damaged structure of the SBN12 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.36: R6(R4) plot of the boron atoms in the initial undamaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.37: R6(R4) plot of the boron atoms at t = 0.35 ps for the SBN14 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.
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Figure 6.38: R6(R4) plot of the boron atoms in the final damaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.39: R6(R4) plot of the silicon atoms in the initial undamaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.40: R6(R4) plot of the silicon atoms at t = 0.35 ps for the SBN14 glass, highlighting the
coordination number, as indicated in the colourbar next to the plots.

Figure 6.41: R6(R4) plot of the silicon atoms in the final damaged structure of the SBN14 glass,
highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.42: R6(R4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN12
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.43: R6(R4) plot of the initially 3-coordinated boron atoms in the final structure of the
SBN12 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.44: R6(R4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN12
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.45: R6(R4) plot of the initially 4-coordinated boron atoms in the final structure of the
SBN12 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.46: R6(R4) plot of the initially 3-coordinated boron atoms at t = 0.35 ps for the SBN14
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.47: R6(R4) plot of the initially 3-coordinated boron atoms in the final structure of the
SBN14 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.48: R6(R4) plot of the initially 4-coordinated boron atoms at t = 0.35 ps for the SBN14
glass, highlighting the coordination number, as indicated in the colourbar next to the plots.

Figure 6.49: R6(R4) plot of the initially 4-coordinated boron atoms in the final structure of the
SBN14 glass, highlighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 6.50: Number of atoms associated with bond defects for the radiation damaged SBN12
glass, calculated using the partial Hermite order parameters method.
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Figure 6.51: Number of atoms associated with bond defects for the radiation damaged SBN14
glass, calculated using the partial Hermite order parameters method.
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6.4.4 Primitive ring statistics

Primitive rings statistics provide important information regarding the connectivity between the

atoms of the glasses. All boron and silicon atoms of the systems are connected together through

oxygen atoms. Consequently, all the rings of the borosilicate glass structures are even numbered.

We performed a search of primitive rings up to 40 nodes. Since the maximum bond length is 1.61

Å for the SBN12 glass and 1.62 Å for the SBN14 glass, equal to the respective Si-O bond lengths,

to identify all possible rings up to the required size, the initial structure was expanded by 32.4

Å and 32.2 Å in each direction respectively, distances corresponding to 20 Si-O bond lengths. In

each step in which ring statistics was performed, the expanded cell was the same as for the initial

undamaged structure and we replaced the original cell with the one corresponding to the current

timestep. In the expanded structure, rings were identified for all nodes of the original cells. Since

the identification of rings is an expensive task, we performed a ring statistics analysis every 2000

timesteps of the simulation.

In Figs. 6.52 and 6.53 the number of rings per boron atom of the SBN12 glass as a function

of ring size are shown and for t = 0.00 ps, t = 0.35 ps and t = 4.75 ps. The respective plots for

the SBN14 glass are shown in Figs. 6.54 and 6.55. For the SBN12 glass, it is obvious that for the

initial structure the most common rings are of size 16 for both boron and silicon nodes. For each

boron and silicon atom we have 1.53 and 1.97 rings of size 16 per node respectively. As the damage

progresses, the number of medium sized rings consisting of 12 to 16 nodes decreases significantly.

The most obvious change in the distribution of rings per node is observed for the 16-sized rings,

the number of which is reduced by 14.4% for the boron nodes and 15.3% for the silicon nodes of

the SBN12 glass at t = 0.35 ps. At this stage, there are more 14 and 18 sized rings that 16 sized

rings in the structure. We also observe an increase in number of rings of size 20 and 26. For the

latter, there is a clear peak in the plots making it easy to distinguish the damaged structures from

the undamaged.

The initial structure of the SBN14 glass is dominated by rings of size 14 and 18 and also there

is a strong peak at the 28 numbered rings. During the damage, the number of 14, 18 and 28 sized

rings is reduced significantly and in parallel we observe an increase in the number of higher order

rings consisting of 34 and 38 nodes.

Most importantly, for t = 4.75 ps it is clear that the ring distribution for both structures is very

close to the one for the undamaged glasses, implying the recovery of the structure. For the SBN12

glass we observe a small decrease in the number of 14, 16 and 18 membered rings of the boron

nodes and of the 16 sized rings of the silicon nodes, accompanied by an increase in the number of

20 and 22 sized rings for both species. For the SBN14 glass and for both species, the final result

of the damage is to decrease the number of the dominant 18 membered rings and increase the 28

sized rings.

We can also explore the average ring size of each structure and for each species of nodes versus

time (Figs. 6.56 and 6.57). Initially the average ring size for the boron and silicon nodes and

for the SBN12 glass is 17.78 and 17.68 respectively, while for the SBN14 glass is 17.08 and 17.22.

Thus, initially there are only minor differences in the local cluster level between boron and silicon

atoms. Also, despite the fact that the composition of the two glasses is quite different, they have

initially similar average ring sizes. During the creation of a damage cascade, the average ring size
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Figure 6.52: Rings per boron node for the radiation damaged SBN12 glass.
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Figure 6.53: Rings per silicon node for the radiation damaged SBN12 glass.

is increasing for both structures which is expected.
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Figure 6.54: Rings per boron node for the radiation damaged SBN14 glass.
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Figure 6.55: Rings per silicon node for the radiation damaged SBN14 glass.
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Figure 6.56: Rings per boron node for the radiation damaged SBN12 glass.
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Figure 6.57: Rings per silicon node for the radiation damaged SBN14 glass.



6.5. Conclusions 191

The radiation damage event will result in the breaking of smaller size rings and favours the

formation of higher order rings. However the two glasses behave quite differently. For the SBN12

glass, there is a sudden increase in the average ring size, reaching its maximum for t ' 0.15 ps,

before the time where the maximum number of bond defects is observed. On the contrary, SBN14

glass demonstrates the maximum of average ring size at t ' 0.55 ps, after the maximum of the

bond defects. Thus the network of the SBN14 glasses demonstrates a slower response to the bond

defects induced by radiation damage. Also, for the first 1.5 ps of the simulation and for the SBN12

glass, the average ring size for the boron nodes varies almost the same way as the average ring size

of the silicon nodes, but after that time, the average ring size of the boron atoms decreases to a

higher degree. The average ring size for the final structure, at t = 4.75 ps is about 2% lower in

comparison with the initial one for both boron and silicon nodes. For the SBN14 glass however,

during the creation of the damage cascade, boron nodes demonstrate a significantly higher average

ring size in comparison with silicon atoms. In the final structure, the average ring size for the

boron atoms is increased about 2% in comparison with the initial structure while for the silicon

atoms is almost at the same level.

6.5 Conclusions

Radiation damage simulations performed in SBN12 and SBN14 borosilicate glass models, show

that both glasses demonstrate high tolerance to radiation damage. Using the simple Wigner-Seitz

method, it is found that the percentage of permanently displaced silicon and boron atoms for

the SBN12 glass is 7.3% and 7.7% respectively while for the SBN14 glass the respective numbers

are 5.5% and 5.0%. In terms of the number of bond defects, all three methods used to estimate

the number of atoms associated with broken bond suggest that Si-O bonds are almost completely

recovered - which is in contrast with what the Wigner-Seitz method predicts - while B-O bonds

are unable to recover. The majority of the damage is related to broken B-O bonds. For the

SBN12 glass, it is estimated that about 8.8% of the boron atoms are associated with at least one

broken B-O bond while for the SBN14 glass this percentage is about 6.4%. Using these numbers it

can be argued that the Wigner-Seitz method overestimates significantly the damage of the silicon

atoms and on the other hand slightly underestimates the damage effects on the boron atoms. By

comparing the number of atoms associated with at least one bond defect it is safe to assume that

SBN14 glass demonstrate a slightly increased tolerance to the irradiation effects.

Using Steinhardt order parameters, it is possible to extract additional information regarding

the angular distribution of oxygen atoms around reference boron and silicon atoms at every stage

of the simulation. For both glasses, it is clear that the geometry of the SiO4 tetrahedral units in

the undamaged structures is not fixed. The relative positions of the oxygen neighbours around

the reference silicon atoms show variations. Consequently it can be assumed that the O-Si-O

angles in the SiO4 tetrahedra, as well as the distance between the oxygen atoms forming the

tetrahedra can take a wide range of values. BO4 tetrahedra on the other hand appear to have a

very consistent geometry. During the creation of the damage cascade, several silicon atoms are

related to at least one broken Si-O bond and the resulting 3-coordinated silicon atoms demonstrate

large variations in the angular distribution of the bonded oxygen atoms. As for the boron atoms,

there is a transformation of 4-coordinated atoms to 3-coordinated and vice versa. While the 3-
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coordinated atoms transforming to 4-coordinated appear to create BO4 tetrahedral units with

geometry very close to the one of the undamaged structure, the 4-coordinated atoms transform to

3-coordinated with arbitrary angular geometry, different from the one of the initially 3-coordinated

atoms. However, the geometry of the resulting 3-coordinated boron atoms progressively converges

to the one of the undamaged BO3 units. By the end of the simulation, it is observed that the

BO3 units resulting from the transformation of a 4-coordinated boron atom to a 3-coordinated

demonstrate a geometry identical to the initial BO3 units.

Hermite order parameters provide information regarding the radial distribution of the oxygen

atoms around the reference boron and silicon atoms. For the silicon atoms, in the undamaged

structure there are some variations in the radial distribution of the oxygen neighbours. During the

creation of the damage cascade, the radial geometry of the oxygen neighbours initially diverges,

until the maximum damage is observed and then gradually converges to the initial one. At the end

of the simulation, the radial geometry of the SiO4 tetrahedra is slightly expanded in comparison

with the initial one, suggesting that the bond lengths in the recovered SiO4 tetrahedra are slightly

different from the initial. For the boron atoms, in contrast with the angular distribution of the

neighbouring oxygen atoms of the BO3 and BO4 units, which is more consistent for the BO4

tetrahedra, the radial distribution appears more consistent for the BO3 units.

Primitive ring statistics analysis was used to explore the effect of radiation damage in the size

of the primitive rings in the network of the glasses. For the SBN12 glass, the number of rings per

node as a function of the ring size, follows a bell-shaped curve. The most common rings in the

undamaged structure consists of 16 nodes. As the damage progresses, the number of 12-, 14- and

16-sized rings is reduced, while there is a significant increase in the number of rings consisting of

20 and 26 nodes, accompanied with the formation of a characteristic peak corresponding to the

26-sized rings. Additionally, several rings consisting of 34, 36 and 38 nodes are formed. In the final

structure, the rings distribution is quite similar to the one of the undamaged structure. The only

significant difference that can be observed is the small decrease of the 14-, 16- and 18-sized rings

and the increase in the number of 10- and 22-sized rings. The number of 36-sized rings is restored

to close to the initial value while the number of 34- and 38- sized rings remains higher than in

the initial structure. For the SBN14 glass, the results suggest that in the undamaged structures,

the network is slightly different in comparison with the SBN12 glass. The most common rings

consist of 14 and 28 nodes. There is also a characteristic peak in the 28-sized rings. During the

formation of the damage cascade, the number of rings of this size reduces significantly, especially,

for the 18 and 28-sized. At the maximum damage phase, the peak formed by the 28-sized rings

is actually diminished. At the end of the simulation, the distribution of ring sizes is very close

to the one of the initial structure, suggesting a recovery of the network of the glass. It is worth

pointing out that there is a small decrease in the number of the 18-sized rings and an increase in

the 20-, 22- and 28-sized rings. In addition to the previous observations, the average ring size in

the final structures is decreased for the SBN12 glass and increased for the SBN14. These results

suggest that the network of the two structures behaves differently during the irradiation process

and for the first glass results in the formation of smaller rings, while for the SBN14 it favours the

formation of rings with increased size.



Chapter 7

Radiation damage in iron
prosphate glasses

7.1 Introduction

Although borosilicate glasses are generally accepted as effective wasteforms for the immobilization

of HLW and spent fuel, there is a need to develop the best possible glass wasteforms that will

retain their chemical durability for all the time period for which the incorporated radioactive

nuclei remain active. In this direction, the Indian nuclear industry shows great interest in the

development and fabrication of new iron phosphate glass wasteforms, and for this they formed a link

with UK’s Engineering and Physical Sciences Research Council (EPSRC) that led to the DREAM

II consortium. Although experimental research can provide very useful information regarding

the effects of radiation damage in a material, many radioactive components incorporated within

nuclear waste remain radioactive for thousands or millions of years and consequently it is not

straightforward to establish the reliability of the new vitrified wasteforms only by experimental

methods. For a successful study of these radiation damage effects it is important to acquire detailed

information regarding the structural changes in the waste form, both at the surface and in the bulk.

It is important to retrieve dynamic information for the material and thus the better option is to

use a method that directly yields this, Molecular Dynamics.

The iron phosphate glass models used in this study, were created by Jolley et. al. [13], collab-

orators from Loughborough University. In detail, Jolley et. al. created 3 different iron phosphate

glasses with different compositions, presented in Table 7.1, subjected to radiation damage. These

authors also performed a defect counting analysis of the damaged structures which is presented

briefly later in this chapter, in section 7.4.1.

In this work, we performed additional analysis of the irradiated structures, by utilising partial

Steinhardt and Hermite order parameters methods, alongside with primitive rings statistics. As

in the case of the borosilicate glass models, the species specific Steinhardt and Hermite order

Table 7.1: Composition of the three iron phosphate glass models used in this study, in mol%. Na

is the total number ot atoms of the structures.

Structure Na Fe2+ Fe3+ P O

IPG1: Fe2+Fe3+2 (P2O7)2 453600 4.76 9.52 19.05 66.67

IPG2: Fe3+4 (P2O7)3 455328 − 12.90 19.36 67.74

IPG3: Fe3+(PO3)3 454896 − 7.69 23.08 69.23

193
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parameters failed to identify appropriate parameters to be used for the estimation of the number

of defect particles and consequently, this method was not used to analyse the irradiated iron

phosphate glass models. Additionally, in the last section of this chapter, a topological description

of the redox states of the irradiated IPG1 glass is given, to acquire information regarding the local

structure around the iron atoms comprising the glass.

7.2 Creating iron phosphate glass models

Jolley et. al. [13] generated the iron phosphate glass models used in this study using the potentials

proposed by Al Hasni & Mountjoy [23]. P-O, Fe-O and O-O interactions were described using a

Buckingham potential in the form

φ(r) = Ai je
− r
ρi j −

Ci j

r6
+

1

4πε0

qiqj

r
, (7.1)

with parameters Ai j , Ci j and ρi j given in Table 3.4. To control P-O-P and O-P-O bond angles a

three body Stillinger-Weber potential

φ(ri j,rik, θi jk) = λe
(

γ
ri j−rc

+
γ

rik−rc

)
(cos θi jk − cos θ0)

2 (7.2)

was used, with parameters λ, γ, rc and θ given in Table 7.2.

Table 7.2: Parameters of the three body Stillinger-Weber potential used by Jolley et. al. [13] for
the creation of the iron phosphate glass models used in this work.

Triplet( j − i − k) λ (eV) γ (Å) rc (Å) θ0 (o)

P-O-P 8.299695 0.5 2.5 135.50
O-P-O 5.351617 0.5 2.5 109.47

For the short range interactions, Jolley et. al. [13] used a short range ZBL potential, truncated

and fitted to the Buckingham pair potentials with a fifth order spline in the form

f (r) = a0 + a1r + a2r2 + a3r3 + a4r4 + a5r5, (7.3)

where the parameters ai were chosen such that the resulting potential energy functions as well as

their first and second derivatives were continuous and given in Table 7.3.

Table 7.3: Parameters used to truncate and fit the Buckingham potential used for the creation of
iron phosphate glass models with the short range ZBL potential [31]. In this table, rBuck and rZBL

are the truncation distances for the Buckingham and ZBL potentials respectively. rZBL and rBuck

are in Å and an in Å−n.

Pair rZBL rBuck a0 a1 a2 a3 a4 a5

Fe2+ –O 0.2 0.85 11.274280 -21.233242 44.802056 -69.570862 60.519843 -21.948215
Fe3+ –O 0.5 1.25 13.468756 -36.254018 82.390627 -109.921757 74.401925 -20.216820
O–O 0.35 1.80 9.273627 -11.288100 8.398709 -2.456703 -0.030643 0.093801
P–O 0.25 1.03 11.166080 -26.912807 75.626106 -136.453869 116.256770 -36.456113
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g
(r
)

Fe2+-Fe2+

Fe2+-Fe3+

Fe2+-O

Fe2+-P

Fe3+-Fe3+

Fe3+-O

Fe3+-P
O-O
P-P

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

r (Å)
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Figure 7.1: Partial and total radial distribution functions of the of the IPG1 glass structure.
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Figure 7.2: Partial and total radial distribution functions of the of the IPG2 glass structure.
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Figure 7.3: Partial and total radial distribution functions of the of the IPG3 glass structure.
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The initial structures of random atomic arrangements were first equilibrated at 6000 K and

then quenched to room temperature at a rate of 5 × 1012 K/s. Finally, the system was energy

minimized at 0 K using the conjugate gradient method. For the simulation of the structures, a

single 4 GHz Intel Core i7 processor was used. Due to the relatively low computational power,

authors were only able to quench small systems of around 2000 atoms and the large systems used in

this analysis were generated by stacking multiple copies of quenched cells to generate a simulation

cell of the desired size.

At this point, it is important to notice that the work of Jolley et. al. [13] is based on an

important approximation, since they assumed that the Fe2+ –O/Fe3+ –O ions of the structures

maintain their valence during the simulation

In Figs. 7.1-7.3 the radial distribution functions of the three structures are shown. It is clear

that the first minimum of the total RDF is governed by the P-O bonds. This is the only pair for

which the first minimum of the partial RDF is smaller than the first minimum of the total RDF.

Consequently, it is assumed - as is natural since iron atoms act as network modifiers - that the

only existing bonds of the structure are between phosphorus and oxygen atoms.

7.2.1 Creating a radiation damage cascade

The creation of a damage cascade was also performed by Jolley et. al. [13]. Each of the structures

was subjected to radiation damage, by selecting a primary knock-on atom (PKA) which was given

a 4 keV excess of kinetic energy along a random direction. The cascade formation was simulated

for a total of 4 ps in the NVE ensemble. Since the NVE ensemble does not preserve temperature,

the temperature of the system increased from 0 K to 32 K by the end of the simulation.

7.3 Algorithmic details for defect analysis

The defect counting method was used by Jolley et. al. [13], to study the effects of radiation

damage in the three modelled structures. In their work, these authors calculated the displacement

of atoms from the position they occupied in the undamaged structure, and characterized a particle

as a defect if that distance was greater than 1.2 Å (Fig. 7.4).

For the calculation of the Steinhardt and Hermite order parameters performed in this work

by the author, the standard approach was used: An output file was generated, containing the

trajectories of the atoms at every 100 timesteps of the simulation, generating 401 snapshots in

total to be analysed using the partial SOP/HOP methods. Additionally, for each snapshot, a

primitive ring statistics analysis was performed, to get detailed information regarding the effect of

the radiation in the silica network of the glasses.

For the calculation of Steinhardt and Hermite order parameters, and based on the radial dis-

tribution functions of the systems, a bond between two atoms exists - as discussed previously -

if the interatomic distance between the two atoms is smaller from the first minimum of both the

partial and the total radial distribution function. Consequently, for the three simple structures

under investigation, the only existing bonds are between phosphorus and oxygen atoms.
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7.4 Results

7.4.1 Defect counting

According to the work of Jolley et. al. [13], for the IPG1 glass, it is clear that the number of

displaced Fe2+ and Fe3+ atoms is almost the same at every timestep, despite the fact that the

number of Fe3+ atoms was twice as large as Fe2+ (Fig. 7.4). Consequently, it can be argued that

Fe3+ atoms are more resistant to radiation damage [13]. The number of displaced phosphorus

atoms is slightly higher in comparison with the Fe2+ and Fe3+ atoms, while displaced oxygen

atoms are almost 6 times higher. For all species, a small peak in the number of displaced atoms

just after 0.50 ps is observed. Their number is slightly reduced for the next 0.50 ps and remains

constant until the end of the simulation. However, as seen in Figs. 7.8, 7.12 and 7.16, these results

are in contrast with the changes in the coordination numbers of the phosphorus atoms. Thus, as

was the case for borosilicate glass structures, the number of displaced atoms is not sufficient to

identify bond-defected atoms.

7.4.2 Partial Steinhardt order parameters

In Figs. 7.5, 7.6 and 7.7, the plots of Q6(Q4) for the phosphorus atoms of the IPG1 glass are shown

for the initial structure at t = 0.00 ps, at t = 0.50 ps where the maximum of displaced atoms is

observed and for the final structure at t = 4.00 ps respectively. It is clear, that PO4 tetrahedra

are characterized by a single geometry, since all data points for t = 0.00 ps are found in the same

area of the Q6(Q4) plots. At the time of maximum damage, several P atoms are found away from

the well defined region formed by the 4-coordinated atoms and are associated with at least one

bond defect. Actually, for t = 0.50 ps most of the defected atoms are 3-coordinated and only a few

are 2-coordinated. At the end of the simulation however, only 3-coordinated defected phosphorus

atoms are found, implying a degree of recovery of the phosphorus network.

The single geometry of the PO4 units makes it possible to apply the method described in the

previous chapters to calculate at every stage of the simulation the number of phosphorus atoms

associated with bond defects (Fig. 7.8). As is clear when compared with the number of phosphorus

atoms with coordination number less than 4, Steinhardt order parameters provide a very accurate

estimation of the number of P atoms associated with at least one bond defect. In contrast with

the maximum number of displaced atoms, which is observed for t = 0.50 ps, the maximum number

of P atoms associated with bond defects is observed at t = 0.25 ps. At the maximum damage, only

220 P atoms have bond defects (0.25% of the total P atoms) while by the end of the simulation,

almost 2/3 of them have recovered their bonds leaving only about 65 defect atoms, which accounts

for 0.075% of the total P atoms.

By comparing the results with the number of displaced atoms, it is apparent that at the

maximum damage stage, the number of displaced atoms is actually smaller than the number of

bond-defected phosphorus atoms while at the end of the simulation it is higher. By combining these

results it can be argued that during the first stages of the creation of the damage cascade, the light

oxygen atoms are displaced from their initial positions faster than the phosphorus atoms, resulting

in the creation of bond defected phosphorus atoms. As the damage progresses, the phosphorus

atoms are also displaced from their initial positions by distances comparable with those travelled
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Figure 7.4: The number of displaced atoms as a function of time for the IPG1 (top), IPG2
(middle) and IPG3 (bottom) iron phosphate glass structures simulated by Jolley et. al. [13].
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by their neighbouring oxygen atoms and finally they are reconnected, although they are displaced

from their initial positions by more than 1.2 Å.

For the IPG2 glass, results are slightly different, as phosphorus atoms are more heavily defected

in comparison with IPG1 glass. For all the stages of the simulation, apart from the 3- and 2-

coordinated P atoms, atoms with coordination number 0 and 1 (Figs. 7.9, 7.10 and 7.11) were

identified. The partial Steinhardt order parameters method was used to identify the number of

phosphorus atoms associated with bond defects, as shown in Fig. 7.12. The maximum number

of defected phosphorus atoms is observed for t = 0.40 ps, where 290 P atoms (0.33% of the total)

are associated with at least one bond defect. By the end of the simulation, about 1/3 of the

atoms are recovered and there are about 200 P atoms remaining defected (0.23% of the total P

atoms). The differences can be explained based on the different composition of the two glasses.

However, existing experiments suggest that the energy threshold per atom is higher for Fe3+ and

O atoms in comparison with Fe2+ atoms and consequently, IPG1 glass should be more resistant

to radiation damage. Although the percentage of remaining defect atoms is almost three times

higher in comparison with those for the IPG1 glass, the percentage is quite low and characteristic

of the tolerance of the system in radiation damage.

Finally, the behaviour of the IPG3 glass is closer to that of the IPG1 glass. Q6(Q4) plots for

this structure are demonstrated in Figs. 7.13, 7.14 and 7.15, while the number of phosphorus

atoms associated with bond defects is shown in Fig. 7.16. At the maximum damage phase, 334

phosphorus atoms are associated with at least one bond defect, a number that accounts for just

0.3% of the total phosphorus atoms. By the end of the simulation, 2/3 of the atoms are recovered,

leaving just 100 atoms with a bond defect (0.095% of the total phosphorus atoms). This structure

is slightly less resistant than IPG1 glass, but it is also more tolerant to radiation damage in

comparison with IPG2 glass.

In terms of the geometry of the oxygen neighbours, for the initial undamaged structures, it is

clear that the Q6(Q4) data points form a single compact area for every glass. It is safe to argue

that the local angular distribution of the oxygen neighbours of the PO4 units exhibits very small

variations. However, as the damage progresses, the area covered by the 4-coordinated phosphorus

atoms is extended, reflecting the changes in the shape of the PO4 tetrahedra due to radiation

damage. Additionally, the defected 3-coordinated phosphorus atoms cover a wide area on the

Q6(Q4) plots. Consequently, the 3 remaining oxygen atoms are arbitrarily distributed around the

phosphorus atoms. As for the 2-coordinated defected atoms, they cover a significant part of the

curve corresponding to the Steinhardt order parameters for atoms with 2 neighbours, but away

from the points corresponding to interdimensional atoms. At the end of the simulation, the areas

corresponding to the remaining 3- and 4-coordinated phosphorus atoms are shrunk in comparison

with the state of maximum damage. However, the resulting regions for the 4-coordinated phos-

phorus atoms, is extended when compared with those of the undamaged structure, especially for

the IPG3 glass. Thus, although there is a significant recovery of the PO4 tetrahedra, the angular

distribution of the oxygen neighbours exhibits variations that are not observed in an undamaged

structure.
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Figure 7.5: Q6(Q4) plot of the phosphorus atoms of the IPG1 glass at t = 0.00 ps, highlighting the
coordination number, as indicated in the colourbar next to the plots.

Figure 7.6: Q6(Q4) plot of the phosphorus atoms of the IPG1 glass at t = 0.50 ps, highlighting the
coordination number, as indicated in the colourbar next to the plots.
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Figure 7.7: Q6(Q4) plot of the P atoms of the IPG1 glass in the final damaged structure, highlighting
the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.8: Number of phosphorus atoms of the IPG1 glass identified with bond defects using the
partial Steinhardt order parameters method.
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Figure 7.9: Q6(Q4) plot of the P atoms of the IPG2 glass at t = 0.00 ps, highlighting the coordination
number, as indicated in the colourbar next to the plots.

Figure 7.10: Q6(Q4) plot of the P atoms of the IPG2 glass at t = 0.50 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.
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Figure 7.11: Q6(Q4) plot of the P atoms of the IPG2 glass in the final damaged structure, high-
lighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.12: Number of phosphorus atoms of the IPG2 glass identified with bond defects using the
partial Steinhardt order parameters method.
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Figure 7.13: Q6(Q4) plot of the P atoms of the IPG3 glass at t = 0.00 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.

Figure 7.14: Q6(Q4) plot of the P atoms of the IPG3 glass at t = 0.50 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.
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Figure 7.15: Q6(Q4) plot of the P atoms of the IPG3 glass in the final damaged structure, high-
lighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.16: Number of phosphorus atoms of the IPG3 glass identified with bond defects using the
partial Steinhardt order parameters method.
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7.4.3 Partial Hermite order parameters

Along with Steinhardt order parameters, for the three structures, Hermite order parameters were

calculated. In Figs. 7.17-7.19, 7.21-7.23 and 7.25-7.27, the plots of R6(R4) for the phosphorus atoms

of the IPG1, IPG2 and IPG3 glass are shown for the initial structure at t = 0.00 ps, at t = 0.50

ps where the maximum of displaced atoms is observed, and for the final structure at t = 4.00 ps

respectively.

In terms of the number of phosphorus atoms associated with at least one bond defect (Figs. 7.20,

7.24 and 7.28), information retrieved from the R6(R4) is almost identical to those extracted using

Steinhardt order parameters for all three structures. The single geometry of the PO4 tetrahedra

is obvious in the plot for t = 0.00 ps as all data points are found in the same area. Phosphorus

atoms associated with bond defects are progressively found away from that region, making it easy

to identify these atoms.

Plots of R4 against R6 can be used to extract information regarding the average P-O bond

length. From Figs. 7.17, 7.21 and 7.25, it is clear that since the data points form a very compact

area, there are very small variations in the P-O distance. However, as seen in Figs. 7.18, 7.22

and 7.26, the radiation damage event, apart from creating phosphorus atoms with coordination

number less than 4, expands the area covered by the 4-coordinated phosphorus atoms, suggesting

an alteration in the P-O bond lengths in the PO4 tetrahedra. This effect is more intense for the

IPG2 glass, for which the data points of several atoms are spread relatively away from the compact

area of the 4-coordinated phosphorus atoms. Additionally, for all three structures, the 3- and 2-

coordinated phosphorus atoms formed during the damage event also appear to have significant

variations in the average distance from their oxygen neighbours. At t = 4.00 ps (figs. 7.19, 7.23

and 7.27), the areas corresponding to the 3- and 4-coordinated phosphorus atoms are slightly

contracted suggesting a small restoration of the average P-O bond length.

7.4.4 Primitive ring statistics

The simple iron phosphate glass structures modelled for this work contain only P-O bonds and

consequently, a search for even ordered primitive rings consisting of consecutive phosphorus and

oxygen atoms was performed. However, the search failed to find any rings. This observation is

in-line with experimental studies on alkali phosphate glasses stating that there is a large number

of non-bridging oxygens in the PO4 units that prevents the formation of rings [11]. A possible

explanation can be suggested using the coordination numbers of the oxygen atoms, as presented

in Table 7.4. From this table it is clear that the majority of the oxygen atoms are 2-coordinated.

This means that these atoms, when connected form P-O chains while the 3- and 4-coordinated

oxygen atoms can form bifurcations that in general favour the formation of rings. However, in all

structures there is also a large number of oxygen atoms that accept only one phosphorus neighbour

and consequently create end-points in the P-O chains preventing the formation of rings.

There are other possibilities to get information regarding the connectivity, such as the study

of the P-O chains within the structures. Although such methods are out of the scope of this work

package it would be extremely interesting to perform such research in future projects.
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Figure 7.17: R6(R4) plot of the P atoms of the IPG1 glass at t = 0.00 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.

Figure 7.18: R6(R4) plot of the P atoms of the IPG1 glass at t = 0.50 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.
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Figure 7.19: R6(R4) plot of the P atoms of the IPG1 glass in the final damaged structure, high-
lighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.20: Number of phosphorus atoms of the IPG1 glass identified with bond defects using the
partial Hermite order parameters method.
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Figure 7.21: R6(R4) plot of the P atoms of the IPG2 glass at t = 0.00 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.

Figure 7.22: R6(R4) plot of the P atoms of the IPG2 glass at t = 0.50 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.
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Figure 7.23: R6(R4) plot of the P atoms of the IPG2 glass in the final damaged structure, high-
lighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.24: Number of phosphorus atoms of the IPG2 glass identified with bond defects using the
partial Hermite order parameters method.
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Figure 7.25: R6(R4) plot of the P atoms of the IPG3 glass at t = 0.00 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.

Figure 7.26: R6(R4) plot of the P atoms of the IPG3 glass at t = 0.50 ps, highlighting the coordi-
nation number, as indicated in the colourbar next to the plots.



214 Chapter 7. Radiation damage in iron prosphate glasses

Figure 7.27: R6(R4) plot of the P atoms of the IPG3 glass in the final damaged structure, high-
lighting the coordination number, as indicated in the colourbar next to the plots.
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Figure 7.28: Number of phosphorus atoms of the IPG3 glass identified with bond defects using the
partial Hermite order parameters method.
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Table 7.4: The number of oxygen atoms with different coordination number in the three structures.

Coordination number

Structure 1 2 3 4

IPG1 8088 257808 35424 1080

IPG2 14688 283824 9936 0

IPG3 49788 262332 2808 0

7.5 Topological description of the redox states of the irra-

diated IPG1 glass

Although iron atoms are not directly bonded with oxygen atoms, partial Steinhardt order param-

eters and/or Hermite order parameters can be used to explore qualitatively the transition of both

Fe2+ and Fe3+ atoms between their possible states during the creation of the damage cascade. This

method is demonstrated analytically for the IPG1 glass (which contains both Fe2+ and Fe3+) ions

using Steinhardt order parameters. For the iron species of the undamaged iron phosphate glass

structures have various numbers of closest oxygen neighbours, making it difficult to determine the

number of damaged bonds from the Q6(Q4) plots. For example, as shown in Fig. 7.29, Fe2+ with

different numbers of closest oxygen neighbours are mixed in the Q6(Q4) for both the initial undam-

aged structure and the final damaged configuration. For simplicity, an iron atom with n closest

oxygen neighbours will be referred to have a coordination number equal to n or n-coordinated,

despite the absence of actual bonds between iron and oxygen atoms. To distinguish the different

coordination numbers, a roman subscript will be used. For example the 3-coordinated Fe2+ atoms

will be referred as Fe2+III

As in the case of the B-O bonds of the SBN12 and SBN14 borosilicate glasses, atoms of the

same species can be separated into groups, according to their coordination number in the initial

undamaged structure. For each stage of the radiation damage simulation, Q6 is plotted against Q4

for the Fe2+-O, and Fe3+-O pairs and for all the possible coordination numbers.

For the IPG1 glass, the initial coordination number of the Fe2+ species varies between 3 and

6, for the Fe3+ between 4 and 6. As the damage proceeds, several Fe2+-O, Fe3+-O are broken and

the coordination numbers are between 0 and 6 for both iron states. In Figs. 7.30-7.41, the Q6(Q4)

plots for the Fe2+ atoms for the initial coordination numbers 3, 4, 5 and 6 and for t = 0.00 ps,

t = 0.50 ps - where according to the defect counting method the maximum number of displaced

atoms is observed - and t = 4.00 ps.

Fe2+ atoms: The originally Fe2+III atoms are concentrated in three different regions corresponding

to three different angular geometries (Fig. 7.30). At t = 0.50 ps, only a few of the originally

Fe2+III atoms have lower coordination. A large number of atoms are transformed into Fe2+IV atoms

and very few of them 5-coordinated (Fig. 7.31). The distribution of the data points for all the

coordination numbers suggests a great variety in the relative angular position of the oxygen atoms

around the reference Fe2+ atoms. The plots also suggest that all the atoms belonging in one of

the initial three geometries around point (0.66,0.52) are transformed into either Fe2+III atoms with
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Figure 7.29: Q6(Q4) plots of the undamaged (top) and the damaged (bottom) IPG1 glass structure.
The colourbar indicates the coordination number of Fe2+ atoms.

different geometries, or into Fe2+ with different coordination number. This can be explained if

the free energy minimum corresponding to the specific geometry is not very deep and it favours

either the capture of an additional oxygen or the displacement of the oxygen atoms to form other
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possible arrangements. In the final structure (Fig. 7.32), there are no atoms with coordination

number lower than 3. However there is a large number of Fe2+IV atoms mainly concentrated in

three regions. The majority of the Fe2+III atoms that are transformed into 4-coordinated are found

around point (0.7,0.5). However, a large number of those atoms are still dispersed away from

this region suggesting an arbitrary angular distribution of oxygen atoms. Also, some of the 3-

coordinated atoms belonging to the geometry around point (0.66,0.52) are recovered and only a

few are distributed away from the initial 3 regions, suggesting a recovery of the geometry of the

Fe2+III atoms.

Fe2+ atoms that were initially 4-coordinated (Fig. 7.33) are dispersed into a large number of

data points in the Q6(Q4) plots, that are characteristic of the different geometries of the non-bonded

Fe2+O4 units. For t = 0.50 ps (Fig. 7.34), several atoms receive coordination numbers different

from 4 and so they are associated with a transformation between different coordination numbers.

Most of the defected atoms seem to be transformed into Fe2+V and Fe2+III and a smaller number

show coordination numbers lower than 3. The angular distribution of oxygen atoms around the

reference iron particle shows large variety. In the final structure (Fig. 7.35), only atoms with

coordination numbers 0, 3, 4, 5 and 6 are found. The geometry of Fe2+IV atoms is extended around

the data points corresponding to the initial structure. It is also observed, that 3-coordinated atoms

resulted from 4-coordinated atoms are found away from the regions defined by the originally Fe2+III
atoms for both t = 0.50 ps and t = 4.00 ps and consequently they have different geometries from

the originally Fe2+III atoms.

Initially 5-coordinated Fe2+ atoms behave in a similar manner (Figs. 7.36-7.38). As the damage

Figure 7.30: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 3
at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.
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Figure 7.31: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 3
at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

Figure 7.32: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 3
at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.
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Figure 7.33: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 4
at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

Figure 7.34: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 4
at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.
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Figure 7.35: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 4
at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

Figure 7.36: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with coordination number 5 at
t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.
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Figure 7.37: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 5
at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

Figure 7.38: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 5
at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.



222 Chapter 7. Radiation damage in iron prosphate glasses

Figure 7.39: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 6
at t = 0.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

Figure 7.40: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 6
at t = 0.50 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.
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Figure 7.41: Q6(Q4) plot of the Fe2+ atoms of the IPG1 glass with initial coordination number 6
at t = 4.00 ps. The colourbar indicates the coordination number of Fe2+ at the specific time.

progresses, several atoms are transformed to Fe2+III and Fe2+IV and only a few of them have a coor-

dination number equal to 2. Finally, Fe2+ atoms with coordination number 6 in the undamaged

structure, are initially found in 5 different groups representing 5 different geometries of non-bonded

Fe2+O6 units (Fig. 7.39). Radiation damage results into transforming several 6-coordinated atoms

into the lower coordinated atoms Fe2+IV and Fe2+V . This behaviour is observed for both the mid-stage

of the damage process (Fig. 7.40) as well as in the final structure (Fig. 7.41).

Fe3+ atoms: In general, Fe3+ atoms behave in a similar manner to the Fe2+ atoms. Originally 4-

and 5-coordinated Fe3+ show various geometries reflected in the large number of groups identified

in the Q6(Q4) plots (Figs. 7.42 and 7.45), while the Fe3+VI atoms show a single geometry (Fig. 7.48).

At the maximum of the damage, at t = 0.50 ps, a number of Fe3+IV atoms are transformed into

Fe3+V (Fig. 7.43) and vice versa (Fig. 7.46) while some 6-coordinated atoms are transformed in

Fe3+V . Several Fe3+IV and less Fe2+V atoms are found as Fe2+II and Fe3+III . Additionally, some Fe3+V
atoms are found at point (0,0) suggesting that the oxygen neighbours are at large distance from

these atoms.

However, at the end of the simulation, at t = 4.00 ps (Figs. 7.44, 7.47 and 7.50), although several

Fe3+IV and Fe2+VI atoms are transformed into Fe3+V and via versa, there are actually no defected Fe3+

atoms with coordination number lower than 4, except only a few Fe3+V atoms found at point (0,0).

To summarise, it is clear that during the creation of the damage cascade, the majority of

the Fe3+ and Fe3+ atoms are transformed between their possible coordination numbers. The local

environment of the iron atoms in terms of the angular distribution of the closest oxygen neighbours
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Figure 7.42: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 4
at t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.

Figure 7.43: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 4
at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.
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varies significantly as a result of the impact event. However, at the end of the simulation, almost

no atoms are found with coordination numbers lower than 3 and 4 respectively and consequently

it can be argued that the regions around iron atoms are strongly recovered. The qualitative results

for the Fe3+ atoms of the IPG2 and IPG3 glass structures are almost identical to those of the

IPG1, revealing similar transitions between the different possible coordination numbers.

It would be possible to perform a similar qualitative analysis using the Hermite polynomials.

However, the R6(R4) plots will provide information regarding the number of closest oxygen neigh-

bours - which is already extracted using Steinhardt order parameters - and the average Fe2+/3+ –O

distance which is of limited interest since there are no actual bonds between iron and oxygen atoms

and consequently this distance does not correspond to an actual bond length.

7.6 Conclusions

Radiation damage simulations were performed on three different iron phosphate glass models,

designated as IPG1, IPG2 and IPG3 (Table 7.1). For these structures the only existing bonds are

between phosphorus and oxygen atoms. Steinhardt order and Hermite order parameters were used

to estimate the number of phosphorus atoms that are associated with at least one P-O bond defect.

The results show that at the maximum damage state the percentage of defect phosphorus atoms

is 0.25%, 0.33% and 0.30% respectively. By the end of the simulation, the respective percentages

reduced to abut 0.075%, 0.23% and 0.095% suggesting a high level of tolerance to radiation damage.

By these means it can be argued that IPG1 is the most tolerant structure. For the IPG1 and IPG3

glasses, these numbers are slightly higher than the percentage of displaced phosphorus atoms, as

calculated by Jolley et. al. [13], while for the IPG2 glass they are almost double. This suggests

that the number of displaced atoms is not a reliable way to estimate the extent of radiation

damage in terms of defect atoms. The number of bond-defected P atoms calculated using Hermite

order parameters method (Figs. 7.20, 7.20 and 7.20) are extremely close to the respective number

calculated using Steinhardt order parameters, enhancing the reliability of the two methods.

In terms of the angular distribution of oxygen atoms neighbouring with phosphorus atoms,

Steinhardt order parameters revealed that in an undamaged iron phosphate structure, the PO4

units form tetrahedra with very similar geometry. A cascade event however, apart from creating

defect P atoms, alters the geometry of these tetrahedra and the relative positions of the oxygen

atoms surrounding the reference phosphorus atoms show a wider range of values. This effect

is weaker for the IPG2 glass which on the contrary exhibits the highest percentage of defected

phosphorus atoms. Hermite order parameters however suggest that although the undamaged

structures have very consistent P-O bond lengths, the irradiated IPG2 glass is associated with a

wider range of average bond length values in comparison with the other two structures. It can

be argued that a radiation damage event in the IPG1 and IPG3 glasses mainly affects the O-P-O

angles while in the IPG2 glass results in variations in the P-O bond lengths.

In addition to the above, Steinhardt order parameters were used to explore the redox states

of the iron atoms of the IPG1 glass. The results show that in the initial structure, both Fe2+

and Fe3+ atoms are found with various numbers of closest non-bonded oxygen neighbours. For

Fe2+ the coordination number varies between 3 and 6 while for Fe3+ it varies between 4 and 6.

The geometries of these arrangements have great variety. However, the data points on the Q6(Q4)



226 Chapter 7. Radiation damage in iron prosphate glasses

plots corresponding to the iron atoms are grouped into small and well defined areas, suggesting

that these geometries are not arbitrary. As the damage progresses, the number of closest oxygen

neighbours alters significantly, suggesting a strong modification of the network of the structure.

Additionally, the well defined areas corresponding to the various relative angular positions of the

closest neighbouring oxygen atoms are extended to a high degree. This suggest that the radiation

damage event results in the modification of the network in a way that several oxygen atoms occupy

arbitrary positions around iron atoms.

It is important to notice that primitive ring statistics analysis in the three iron phosphate glass

structures revealed the total absence of primitive rings. This can only be explained by the fact

that the vast majority of oxygen atoms in the structures appear to have a coordination number

equal to two, which is ideal to form P-O chains but at the same time prohibits the formation of

rings. Although a number of 3-coordinated oxygen atoms exist in the structures, the simultaneous

existence of oxygen atoms with coordination number equal to 1 can lead to endpoints in the chains

which also work against the formation of rings. This result is in-line with experimental observations

of the phosphate glasses, according to which the large number of non-bridging oxygens prevents

the formation of rings and instead, the glass network is formed by PO4 chains [11].



Figure 7.44: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 4
in the final damaged structure. The colourbar indicates the coordination number of Fe3+ at the
specific time.

Figure 7.45: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with coordination number 5 at
t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.
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Figure 7.46: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 5
at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.

Figure 7.47: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 5
in the final damaged structure. The colourbar indicates the coordination number of Fe3+ at the
specific time.



7.6. Conclusions 229

Figure 7.48: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 6
at t = 0.00 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.

Figure 7.49: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 6
at t = 0.50 ps. The colourbar indicates the coordination number of Fe3+ at the specific time.
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Figure 7.50: Q6(Q4) plot of the Fe3+ atoms of the IPG1 glass with initial coordination number 6
in the final damaged structure. The colourbar indicates the coordination number of Fe3+ at the
specific time.



Chapter 8

Conclusions and proposed further
work

8.1 Conclusions

The work presented in this thesis is part of the DREAM II project, aiming to create computer

models of irradiated borosilicate and iron phosphate glasses, that will assist the efforts towards

the development of reliable and durable vitrified wasteforms for the immobilisation of High Level

Waste. The work package presented here aimed to investigate the radiation damage effects in

irradiated computer models of borosilicate and iron phosphate glasses, by using existing and novel

topological methods.

Our approach involved the development of novel topological methods based on modified sets

of Steinhardt order parameters and the Hermite order parameters introduced in this work. The

development of the new methods was achieved using a computer model of an irradiated zircon

crystal, generated using molecular dynamics simulations. The molecular dynamics simulations

allow the study of materials from a dynamic perspective in relatively short time and extract infor-

mation regarding the structural changes of a structure under irradiation. Once the methods were

developed, they were compared against the traditional Wigner-Seitz method to demonstrate their

superiority and emphasise the additional information that can be extracted regarding the dynamic

behaviour of a system under irradiation when using a topological approach. The topological meth-

ods developed in this work, are expected to provide new insights towards the characterisation of

structures and contribute significantly in the scientific literature.

The next step was to apply this topological approach on irradiated borosilicate and iron phos-

phate glass models, also generated using molecular dynamics simulations. The main contribution

of this work is that the usage of the partial Steinhardt and Hermite order parameters provides a

new insight regarding the behaviour of the irradiated glasses in terms of bond defect atoms, that

was absent from the existing literature. A second method was also developed in this work, based

on the species specific Steinhardt and Hermite order parameters. Although this method was able

to predict with good accuracy the number of defect particles in the irradiated zircon crystal, it

failed to do the same in the irradiated glass structures.

Additional information regarding the behaviour of the glass network was extracted by perform-

ing a primitive ring statistics analysis on the irradiated glass models. This method succeeded in

providing information regarding the behaviour of the network in the borosilicate glasses, suggest-

ing a strong recovery of the structure. However, it was not possible to do the same in the iron

phosphate structures, as no primitive rings were found, something that was expected based on the

existing literature [11].

231
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The main discovery from the topological analysis is that the borosilicate and iron phosphate

glasses used in this study show great tolerance to irradiation since only a very small fraction of

atoms are associated with a bond defect after the recovery of the structure. Actually, this number

is much lower compared to the number of defect atoms calculated using the Wigner-Seitz method

suggesting that the latter overestimates the damage effects in amorphous materials.

In the following sections we provide an in depth set of conclusions, following the structure of this

thesis, and a discussion on future work than could be done, both experimental and computational,

to validate the results and further develop the topological methods introduced in this thesis.

8.1.1 Development of topological methods towards the characterisation

of radiation damage

The development of the new topological approaches was based on the study of a radiation damaged

zircon crystal that was used as a test structure. To create the zircon crystal model, molecular

dynamics simulations were performed. The radiation damage cascade was created by assigning a

4 keV excess of kinetic energy to a particle of the system, simulating the primary knocked atom,

resulting from the collision with the recoil nuclei of an alpha decay event. The energy of the

projectile was relatively high for the size of the structure. However, the purpose of the irradiated

zircon crystal model was not to study with accuracy the effects of radiation damage in a zircon

crystal. Our purpose was to create an extended damage cascade in the structure that would be easy

to quantify and analyse in order to develop new topological methods towards the characterisation

of radiation damage effects.

Steinhardt order parameters are well known for providing information regarding the angular

distribution of atoms around a reference particle. The standard calculation approach includes all

the atoms with a sphere of specific radius, centred on the reference particle. However, when applied

to the test system - the zircon crystal - this approach did not prove sufficient to characterise the

radiation damage effects in terms of bond defects, since within the sphere can be included atoms

that are not bonded with the reference particle. To overcome this discrepancy, two novel approaches

were proposed. In the first approach the partial Steinhardt order parameters were calculated

only for the bonded atoms surrounding a reference particle, and for each of the neighbouring

species separately. In the second approach, the species specific Steinhardt order parameters were

calculated for the atoms of the same species A within the first coordination shell of the gA−A(r)

radial distribution function.

Using the partial Steinhardt order parameters approach it was possible to determine with good

accuracy the number of zirconium and silicon atoms that were associated with at least one bond

defect. The results revealed that zircon crystal has a high degree of tolerance to radiation damage

especially in the Si-O bonds which seems to be completely recovered. Zr-Si and Zr-O bonds also

demonstrate a high degree of recovery with a small number of broken bonds remaining in the

system. It was also possible to retrieve qualitative information regarding the angular geometry of

the bonded particles around the reference atoms. It was found that the geometry of the non defected

SiO4 and ZrO8 units is only a little affected by the cascade event. However the low coordinated

units resulting from the collision of atoms exhibit a large variety in the angular distribution of

oxygen atoms around the reference Zr/Si particles, reflected in the extended areas covered by the
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corresponding data points in the Q6(Q4) plots. Additionally, during the decay event, several Si-

Zr-Si angles are taking values away from the ideal bond angle of 180o. However, at the end of the

simulation, the majority of the affected Si-Zr-Si triplets recover to an almost linear conformation.

The species specific Steinhardt order parameters method was proved accurate for the estimation

of the number of defect particles resulting from a radiation damage event. For the silicon and

zirconium atoms there was a very good agreement with the Wigner-Seitz method. However, for

the oxygen atoms, the species specific Steinhardt order parameters method show a good agreement

with the Wigner-Seitz method only at the first stages of the simulation, where the damage cascade

is created. In the recovery region, our method seems to significantly overestimate the number of

defect atoms. However, the species specific Steinhardt order parameters method has the ability

to identify and count as defect atoms the antisites, that are not calculated using the DL POLY 4

inbuilt routine. When calculating the number of defect particles using the Wigner-Seitz method

and taking into account the antisites, the results are much closer to those obtained by our method.

However, there is still a considerable difference between the two methods that needs to be addressed.

The novel Hermite order parameters were also introduced in this work and developed using

the test zircon crystal structure, in order to obtain additional information regarding the radial

distribution of the atoms surrounding a reference particle. Two sets of parameters was introduced,

the partial Hermite order parameters and the species specific Hermite order parameters calculated

in the same way as the respective Steinhardt order parameters. This approach provided details

regarding the average first neighbour distance and the bond lengths between the different bonded

pairs. When applied to the zircon crystal, Hermite polynomial parameters results for the number

of particles associated with bond defects or the number of defect atoms are almost identical to

those retrieved using the Steinhardt order parameters method. Hermite polynomial parameters

depend only on the distance r between the reference particles and their neighbours, in contrast with

Steinhardt order parameters that depend only on the spherical angles θ and φ. Since the results

obtained using the two methods converge to the same values, it may be argued that they can be

used as a cross validating set of methods for the characterization of radiation damage in terms of

defect particles. Additional information extracted regarding the average bond length shows that

the distance between all the possible pairs is affected by the impact event.

8.1.2 Topological analysis of irradiated borosilicate and iron phosphate

glass models

The models of the irradiated borosilicate glass models followed a similar approach to the one for

the zircon crystal. The initial stage was to create a random arrangement of the atoms comprising

the glass based on a fcc lattice. Then, molecular dynamics simulations were performed to melt

the glasses at a high temperature, above the melting point of each glass and then quench them

rapidly at room temperature at a rate fast enough to avoid the recrystallisation of the structure.

Radiation damage cascades were created using the same method as for the zircon crystal model,

using a 1 keV projectile. The models of the iron phosphate glass models were provided by our

collaborators at Loughborough University [13].

When the partial Steinhardt and Hermite order parameters methods were applied to the models

of the SBN12 and SBN14 borosilicate glasses, in terms of the number of bond-defect particles, the
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results were quite similar. Both methods suggest that these glasses demonstrate high tolerance

to radiation damage, with the SBN14 performing slightly better. The majority of the damage is

located at the B-O bonds. For the SBN14 glass, only 6.4% of the boron atoms are related with

bond defects by the end of the simulation while the respective percentage for the SBN12 glass

rises to 8.8%. As suggested by Steinhardt order parameters, the angular geometry of the BO4

tetrahedra converges at all stages of the simulation. Thus, radiation damage does not affect the

relative positions of the oxygens bonded to the 4-coordinated boron atoms no matter if they were

originally 4-coordinated or created by the transformation of previously 3-coordinated boron atoms.

On the other hand, Hermite polynomial parameters reveal that the average B-O bond length of

the BO4 units is affected by the recoil event during the creation of the damage cascade. However,

at the end of the simulation, the distribution of data points into the R6(R4) plots, corresponding

to BO4 units is very close to the one of the undamaged structure, suggesting a recovery of the

B-O distance in these units. For the 3-coordinated boron atoms forming the BO3 units, the

results show the opposite behaviour in comparison with the BO4 units. During the simulation, the

angular distribution of the oxygen neighbours is affected more in comparison with the respective

of the BO4 units, while the radial distribution seems to be affected insignificantly. As for the

silica network, while during the simulation it is obvious that several Si-O bonds are broken, at

the final recovered structure almost all Si-O bonds are restored, reflecting the high recovery of the

silica network within the structures. The geometry of the SiO4 tetrahedra shows variations in the

undamaged structure and is not affected by the displacement of the particles during the creation

of the damage cascade. On the other hand, the resulting low coordination silicon atoms appear to

have an arbitrary angular and radial distribution of the remaining bonded oxygen neighbours.

For the borosilicate glasses it was also possible to perform a primitive ring statistics analysis to

identify the effect of radiation damage in the network of the material. In detail, all the primitive

rings of the structure were identified and the number of rings per boron and silicon node as well

as the average ring size was calculated for both glasses. For the SBN12 glass, the result suggest

that the creation of the damage cascade results in the destruction of a number of the dominant

12- 14 and 16-sized rings accompanied by the formation of higher order rings consisting of 26, 34,

36 and 38 nodes. It is important to note that for the stage of maximum damage, the curves of

rings per node forms a distinct peak in the position of the 26-sized rings. At the final structure,

the distribution of rings is very close to that of the undamaged structure with slightly decreased

number of 14-, 16- and 18-sized rings and an increased number of rings consisting of 10 and 22

nodes. The SBN14 glass behaves in a similar manner. The initial structure is governed by 14-,

16- and 18- sized rings and the number of rings per node demonstrates three characteristic peaks

at the positions of the 14-, 18- and 28- sized rings. During the creation of the damage cascade,

the number of 18-sized rings is decreased significantly and the peak at the position of the 28-

sized rings is diminished. There is a small but observable decrease in the number of 10-, 12- and

14- sized rings. Similarly to the SBN12, a small increase of the 26-, 34- and 38- sized rings is

also observed. At the end of the simulation, rings with sizes 10 to 14 are completely restored.

18-sized rings also exhibit a degree of recovery accompanied by an increase of number of 28-sized

rings. Additionally, the calculation of the average ring size for both structures revealed that for

the SBN12 glass, radiation damage favours the creation of smaller rings while the average ring size

slightly increases for the SBN14.
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For the iron phosphate structures, a similar analysis was performed. The results extracted

using the partial Steinhardt and Hermite order parameters methods revealed that all three iron

phosphate glass structures (Table 7.1) show high degree of resistance to radiation damage, as by the

end of the simulation, only 0.25%, 0.33% and 0.30% pf the phosphorus atoms of structures IPG1,

IPG2 and IPG3 respectively are related to P-O defects. Steinhardt order parameters and Hermite

polynomial parameters also suggest that the geometry of the PO4 units is very consistent in the

undamaged structure. However, during the creation of a damage cascade, both the angular and

radial distribution of the oxygen neighbours bonded to the phosphorus atoms is slightly altered.

For the IPG1 and IPG3 glasses it appears that the P-O bond lengths are not affected as much

as the relative position of the neighbouring oxygen atoms, while for the IPG2 glass the effect is

stronger for the bond lengths. By the end of the simulation, the distribution of data points in the

Q6(Q4) and R6(R4) plots, corresponding to the 4-coordinated phosphorus atoms is quite close to

the one of the initial undamaged structure, suggesting a recovery of both the bond lengths and

O-P-O bond angles.

Steinhardt order parameters were also used to explore the effect of the radiation damage on

the angular distribution of oxygen atoms around iron atoms of the structure - although no bond

between oxygen and iron atoms exists. The analysis was performed for the IPG1 glass consisting of

both Fe2+ and Fe3+ iron redox states. It was found that Fe2+ atoms can be surrounded by 3 to 6

closest oxygen atoms while the Fe3+ can be surrounded by 4 to 6. The angular distribution of the

oxygen atoms around the reference iron atoms exhibits a great variety for the initial undamaged

structure. However, regardless of the number of closest oxygen atoms, iron atoms appear to form

groups of similar geometries. When the recoil event occurs, this classification appears to diminish

and the distribution of oxygen atoms extends to a level that can be regarded as arbitrary, suggesting

a strong modification of the network of the structures.

It is important to note that when attempting to apply the primitive rings statistics analysis

in the iron phosphate glasses, it was found that no primitive rings with size up to 40 exists in

the structure, mainly due to the high number of low coordinated non-bridging oxygen atoms, with

coordination number equal to 1, that act as end points in the P-O chains and prevent the formation

of rings.

The second topological method developed based on the species specific Steinhardt and Hermite

order parameters was also applied on the glass models used in this study. However, none of the

parameters that were calculated (Q0 −Q10 and R0 − R16) showed a desired damaged like behaviour

and consequently it was impossible to correlate the number of particles with a parameter value

greater than the average with the number of defect particles in these systems.

8.2 Further work

8.2.1 Extending the timescales and the system size of the simulations

The simulations performed in this work were in the ps timescale and nm length scale. Although

the structural information retrieved by these simulations is important, it is necessary to perform

simulations for larger systems at longer timescales. The larger system size will allow us to cre-

ate simulations using even higher kinetic energy for the impact particle. The simulations of the
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borosilicate glasses involved a 1 keV energy projectile, while those for the iron phosphate glasses

were performed with a 4 keV impact particle. However, the average kinetic energy of an alpha

particle resulting from an α decay is 5 keV, which means that the simulations describe the damage

created by relatively low energy α particles. However, the α decay process in real glass wasteforms

is expected to produce a large number of high energy α particles, that will create more severe

cascades that will probably decrease the tolerance of the wasteforms to radiation damage. Longer

time scales will be able to provide a more complete image regarding the cascade evolution and the

recovery of the wasteforms after an impact event. For the iron phosphate glasses used in this study,

it is clear that the evolution on the number of particles associated with a bond defect was not able

to form a plateau (Figs. 7.8, 7.12, 7.16, 7.20, 7.24 and 7.28). Consequently it is not possible to

determine with high accuracy the extent of the damage at the recovery region. For this, there are

several simulation techniques that can be used, including Kinetic Monte Carlo, Dissipative Particle

Dynamics, Temperature Accelerated Dynamics or even Smooth Particle Applied Mechanics.

8.2.2 Multiple projectile simulations

Molecular dynamics simulations performed in this study, assumed that the damage cascade is

created by a single projectile. However, in real systems this is not the case, as there can be

multiple projectiles affecting a specific area of the structure at a relatively short timescale. To

study the damage accumulation in these structures, additional molecular dynamics simulations

can be performed following two different approaches. The first is to start a simulation with one

projectile particle and then, at a random time within the simulation, create a second projectile

or, alternatively, it is possible to generate a series of cascade simulations, using the final damage

structures of one simulation as a starting point for the following simulation. The first method

will provide information on how the structure of a glass wasteform is affected due to almost

simultaneous decay events at a small region, while the second will determine the behaviour under

continuous decay events. For these simulations, it is recommended to use large structures to allow

the cascades to be created in a larger volume of the material and explore the effects of creating

overlapping cascades.

8.2.3 Simulations in various ensembles

The damage cascades in this study were created under the constant volume NVT dynamics. This

prevents the systems from changing shape and size during the simulations. However, it is observed

experimentally that the glass wasteforms tend to swell under self irradiation. To explore such

effects it is necessary to perform simulations using different dynamics. The isobaric-isothermal

NPT ensemble can be an alternative as it will allow the system size to change during the simulation.

This will be useful for studying isotropic swelling of the structure. For anisotropic swelling, it is

necessary to allow the simulation box to change both its volume and shape. A potential approach

is to use flexible NPT dynamics, in which the shape of the simulation box is allowed to change

during the simulation by allowing the cell angles to be flexible, and not fixed to a specific geometry.
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8.2.4 Improvement of the interaction potentials

The glass compositions used in this work were relatively simple and did not correspond to one of

the actual glass wasteforms used in the industry. This is because the accurate potentials developed

to describe the pair interactions in borosilicate glasses are limited to Si–O, B–O and Na–O

interactions, while for the phosphate glasses are limited to the P–O, Fe2+ –O, Fe3+ –O and O–O

interactions. It is important to develop a more complete set of potentials that will be able to

describe more interactions - for example for the Li–O, Mg–O and Al–O pairs. That will allow

the modelling of borosilicate structures that will be much closer to the experimental in terms of

composition. This will give the opportunity to study in great detail the composition effects using

computer simulations. Additionally, for the iron phosphate glasses it is important to perform

simulations with improved interaction potentials that will take into account the transformation

between the redox states of the iron ions during the creation of a radiation damage cascade. The

development of such potentials can be performed with ab initio methods such as Density Functional

Theory.

8.2.5 Actinide doping simulations

In the existing simulations, it was assumed that a recoil event transferred the kinetic energy of an

α particle to an atom of a system that was used as a primary knock atom to create the radiation

damage cascade. Additionally, there were no nuclear fusion elements in the structures that can

affect the behaviour of the wasteform. It would be beneficial to perform simulations in which the

structure would be doped with actinides and the decay event would be simulated with accuracy

using an actual recoil nucleus and an α particle that would be responsible for the creation of the

damaged region. For this it would be necessary to develop potentials that will be able to describe

with accuracy the interaction between the actinides and the glass atoms comprising the wasteform.

Performing such simulations will allow the investigation of the effects of various radioactive loads

on the behaviour and tolerance of the wasteforms.

8.2.6 Investigation of chain formation in iron phosphate glasses

As discussed previously, the existence of a large number of non-bridging oxygen atoms in the PO4

tetrahedra of the iron phosphate glass network, prevents the formation of rings and favours the

formation of chains. Consequently, it was possible to study the effects of the radiation damage in

the phosphorus network of the structures. This could be done by developing an algorithm that

will allow the study of chains in an amorphous materials and explore how the length and possibly

the shape of the chains is changing during the creation of the radiation damage cascade.

8.2.7 Experimental validation of the computer models

Probably the most important part of the future work that needs to be performed is to validate

the results of the molecular dynamics simulations and topological analysis performed in this study

using an experimental approach. This can be achieved by applying experimental methods such as

X-ray Absorption Spectroscopy (XAS) technique to real glass wasteforms with glass composition as

close as possible to the simulated structures. XAS has the ability to determine the local geometric
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structure in amorphous solids and liquids. Performing such experiments and analysing the local

geometric structure will provide information regarding the local connectivity and network of glass

atoms in both the cascade and undamaged areas. These results can be compared to those retrieved

from the molecular dynamics simulations and topological analysis of the glass models. A successful

experimental validation will place of the proposed topological methods on a solid rock basis and

will contribute significantly towards the accurate characterisation of the damage effects in a large

variety of wasteforms using computational methods.



Appendix A

Steinhardt order parameters
mathematical details

A.1 The effect of the coordination number

A.1.1 Reference particle with one neighbour

In case the reference particle has only one neighbour, first and second kind Steinhardt order

parameters are given by
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By substituting associated Legendre polynomials, it can be proven that for all ` values and for one

neighbour all the second kind Steinhardt order parameters are equal to 1, thus
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A.1.2 Reference particle with two or more neighbours

When the reference particle has 2 neighbours, first kind Steinhardt order parameters are given by
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Thus second kind Steinhardt order parameters are given by
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and using (4.35)
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Following the same procedure we can find for Nb neighbours that
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A.2 Steinhardt order parameters of simple cubic crystals

The calculation of Steinhardt order parameters of simple cubic cells requires the calculation of the

tesseral spherical harmonics for various θ and φ values. For θ = 0, cos θ = 1 and eq. (4.12) for

m , 0 gives P`,m(1) = 0 and so the only non-zero tesseral spherical harmonics for θ = 0 are given

for m = 0. Combining eq. (4.18) and (4.21) it can be shown that
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δm,0, (A.10)

and so they are independent of angle φ. For θ = π/4 things are far more complicated. To start
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Using the term

ei, jk+l =
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k=0

δi, jk+l, (A.13)
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which is actually a sum over different Kronecker’s delta terms, the spherical harmonics can be

written in a compact form as
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For θ = π/4, only the tesseral spherical harmonics for φ = 0 and φ = π/2 require calculation. For
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Ỳ ,m(
π
4 ,0) =

1

2`+
m+1
2

c`,m

[
`−m∑
k=0

2−
k
2 dk(`,m)

] (√
2δm,0 + em,k+1

)
, (A.15)

and the only non-zero terms are for m ≥ 0. For φ = π/2 on the other hand
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Ỳ ,m(
π
4 ,

π
2 ) =
(−1)

1
2
( |m |−1)

2`+
|m |+1

2

c`, |m |

[
`−|m |∑
k=0

2−
k
2 dk(`, |m|)

]
em,−2k−1+

+
1

2`+
m+1
2

c`,m

[
`−m∑
k=0

2−
k
2 dk(`,m)

] [√
2δm,0 + (−1)

m
2 em,2k+1

]
, (A.17)

and the non-zero terms are for negative odd m values, m = 0 and positive even m values. For
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These spherical harmonics needs to be calculated for φ = π/4 and φ = 3π/4. It can be proven that
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The final form of the tesseral spherical harmonics for (θ, φ) = (cos−1(1/
√

3), π/4) is

Ỳ ,m(cos−1( 1√
3
), π4 ) =

1

2`
c`,0

[∑̀
k=0

3−
k
2 dk(`,0)

]
δm,0+

+
∑
j=1,3

[
(−1)

1
4
( |m |−j)

2`+1−
|m |
2 3

|m |
2

c`, |m |

[
`−|m |∑
k=0

3−
k
2 dk(`, |m|)

]
em,−4k−j

]
+

+
(−1)

1
4
( |m |−2)

2`−
|m |−1

2 3
|m |
2

c`, |m |

[
`−|m |∑
k=0

3−
k
2 dk(`, |m|)

]
em,−4k−2+

+
∑
j=1,3

[
(−1)

1
4
(m+j−2)

2`+1−
m
2 3

m
2

c`,m

[
`−m∑
k=0

3−
k
2 dk(`,m)

]
em,4k+j

]
−

−
(−1)

1
4
(m−4)

2`−
m−1
2 3

m
2

c`,m

[
`−m∑
k=0

3−
k
2 dk(`,m)

]
em,4k+4, (A.21)

while for φ = 3π/4, spherical harmonics can be calculated using the symmetry relation

Ỳ ,m(cos−1( 1√
3
), 3π4 ) = (−1)mỲ ,m(cos−1( 1√
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It is required to calculate the above tesseral spherical harmonics for φ = 0, π/4, π/2 and 3π/4. For
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for φ = π/4
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for φ = π/2
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and finally for φ = 3π/4
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For the first neighbour shell of the primitive cubic cell, first kind Steinhardt order parameters

are given by
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and by using the symmetry of tesseral spherical harmonics, the parameters become
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Replacing tesseral spherical harmonics
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In the above relation the only non zero terms can be found for m = 4k. Since d0(`,m) , 0 only for
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Second order Steinhardt order parameters require the calculation of the squared norm of
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For the atoms that lie exclusively in the second neighbour shell, first kind Steinhardt order

parameters are given by
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Using the symmetry of tesseral spherical harmonics the above equation results in
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Thus, the only non-zero terms exist for `, m = even. Substituting tesseral spherical harmonics this

gives
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The squared norm of the first kind Steinhardt order parameters is
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For the third neighbour shell, first kind Steinhardt order parameters are
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The squared norm is
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and second order Steinhardt order parameters are given by
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As in the previous cases, all terms with ` = odd are zero and the only terms that contribute to the

values of Q(i)
`

are for m = 4k.





Appendix B

Primitive ring statistics code
details

Step 1: Identifying all the links in the network.

The simulation cell is expanded in a way similar to the expansion performed for the calculation

of Steinhardt order parameters. The difference is that the expansion distance is defined by the

maximum ring size L we need to calculate and is equal to rmax(L/2), where rmax is the maximum

bond length in the system as defined by the first maximum of the partial radial distribution

functions. Once the cell is expanded, all the bonds are identified. The number of linked nodes

for each node is stored in the array LNKS(:) and the identification number of each linked node is

stored into the 2D array NODLNKD(:,:)

Listing B.1: Djikstra simplified algorithm for the identification of single-source shortest paths [159]

1 DO J=1, RATOMS

2 LVLREF(I,J)=LVLREFREQ +2

3 END DO

4 NODSRC=NODEREF(I)

5 LVLREF(I,NODSRC)=0

6 QUEUE (1)=NODSRC

7 QUEBGN =0

8 QUEEND =1

9 DO WHILE (QUEBGN QUEEND)

10 QUEBGN=QUEBGN +1

11 NODCRT=QUEUE(QUEBGN)

12 LVLPRB=LVLREF(I,NODCRT)+1

13 DO LNKSCRT=1, LNKS(NODCRT)

14 NODPRB=NODLNKD(NODCRT ,LNKSCRT)

15 IF (LVLREF(I,NODPRB)>LVLPRB) THEN

16 LVLREF(I,NODPRB)=LVLPRB

17 IF (LVLPRB <LVLREFREQ) THEN

18 QUEEND=QUEEND +1

19 QUEUE(QUEEND)=NODPRB

20 END IF

21 END IF

22 END DO

23 END DO

247
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Step 2: Creating a distance levels reference map.

In this extended cell, four reference source nodes are selected, usually as near as possible to four

of the corners of the extended cell. For these reference nodes, the shortest path lengths with

all other nodes of the system are calculated and stored in a one dimensional matrix, that will

be used to search for shortcuts between any pair of nodes on a ring under examination. The

reference shortest distance matrix is calculated using the following simplified Djikstra algorithm

[167], proposed by Yuan & Cormack [159], written in FORTRAN 95. For each of the reference nodes

I, the shortest paths lengths LVLREF(:,:) of every other node in the system is set to an initial

value of LVLREFREQ+2 (lines 1-3), where LVLREFREQ needs to be selected carefully to be greater

than the maximum shortest distance in the system. A simple way to set this number, is to divide

the diagonal length of the extended cell by the minimum bond length of the system. Let d be the

result of the division. LVLREFREQ is set to be an integer number one order of magnitude higher

than the integer part of d. The first reference node is selected as a source node NODSRC (line 4)

and its reference distance is set to zero (line 5). The source node is then set to be the first node

in the list for the identification of shortest paths (line 6). Two integers, QUEBGN and QUEEND are

then selected in order to direct the search to the next linked node (lines 7-8). The following loop

(lines 9-22) is used to estimate the length of the shortest paths to each node. In lines 12-14, the

source node is selected as the first in the list and a predefined distance LVLPRB from the source

node is set to be 1 higher than the distance level of the node in the list. Afterwards (lines 13-22)

all the linked nodes are examined. The first linked node is set as NODPRB (line 14) and its distance

level LVLREF(I,NODPRB) from the reference node is checked. If it is lower than the predefined level

LVLPRB, it means that the node was already checked and the next linked node is examined. If it is

higher (line 15), it is set equal to the predefined level LVLPRB (line 16) and if this level is lower than

the requested level, the list is updated (lines 17-20) with the examined node. The shortest path

search concludes when QUEEND=QUEBGN and this happens only when all the nodes are examined.

Step 3: Finding shortest paths

Once the reference distance map is created, for a given source node, the shortest paths levels

LVLDIST(:) of all other nodes of the system up to the requested level LVLREQ - which is equal to

the half of the maximum ring size, are calculated using the simplified Djikstra Algorithm described

above, just by replacing LVLREF(:,:) with LVLDIST(:). It is worth pointing out that, depending

on the maximum ring size, several nodes of the system will appear have a distance level equal to

LVLREQ+2. However, these nodes were never examined to find the actual distance level since ot is

equal to or higher than the requested level. Additionally, the distance level of each source node

will be found equal to zero and this must be the only node with zero distance level.

Step 4: Finding Prime-mid-nodes

With the shortest paths from the given source node, to any node of the network known, up to the

requested level, the next step is to identify prime-mid-nodes. For odd rings, we just need to search

for nodes which have at least one linked node with the same level distance level from the source
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node, while for even rings, we need to identify nodes with at least one linked node with a distance

level lower by 1. The FORTRAN 95 code to identify prime-mid-nodes for a given source node I is

given below. For every node in the network, we define an integer PRIMMN(:) set to zero (line 1)

that helps identify if a node is a prime-mid-node. Integers OPMN and EPMN are used to identify the

number of linked nodes with the desired level, and initially they are set to zero (lines 3-4). Nodes

are examined only if the distance levels is higher than 1 and lower than or equal to the required

level LVLREQ (line 5). In lines 6-16, all the distance level of all the linked nodes is examined. If the

distance level of the linked node is equal to the level of node under investigation, an odd prime-

mid-node is identified (lines 7-19) and if the level is lower by 1, a potential even prime-mid-node

is found (lines 10-12). Based on the number of linked nodes that have the required distance level,

the node can be classified as prime-mid-node and PRIMMN(:) is set to 1 (line 13). Finally, the

total number of prime-mid-nodes PNM is calculated and each prime-mid-node receives an index

PMNINDEX(:) (lines 18-23), to be able to identify it at a later stage.

Listing B.2: Algorithm for the identification of prime-mid-nodes, developed using pseudo-code

published by Yuan & Cormack [159]

1 DO J=1, RATOMS

2 PRIMMN(J)=0

3 OPMN=0

4 EPMN=0

5 IF (LVLDIST(J) >0 .AND. LVLDIST(J)<=LVLREQ) THEN

6 DO K=1, LNKS(J)

7 IF (LVLDIST(NODLNKD(J,K))== LVLDIST(J) .AND. IODD ==1) THEN

8 OPMN=OPMN+1

9 END IF

10 IF (LVLDIST(NODLNKD(J,K))== LVLDIST(J) -1 .AND. IODD ==0) THEN

11 EPMN=EPMN+1

12 END IF

13 IF (OPMN >=1 .OR. EPMN =2) PRIMMN(J)=1

14 END DO

15 END IF

16 END DO

17 PMN=0

18 DO J=1, RATOMS

19 IF (PRIMMN(J)==1) THEN

20 PMN=PMN+1

21 PMNINDEX(PMN)=J

22 END IF

23 END DO

Step 5: Forming rings

Once all the prime-mid-nodes are known, the ring forming process is initialized. The idea is

that for even rings, each pair of paths connecting the source node to a prime-mid-node form a

ring while for odd rings any path of one of the prime-mid-nodes forms a ring with a path of

its pair prime-mid-node. This can be done using code B.4. During the ring forming procedure,

all the nodes forming the shortest paths must be identified and for this the recursive subroutine

SRTPATH_RECORD (code B.3) is used. In code B.4, we first set the total number of paths that
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connect the current prime-mid-node with the source node and the number of rings to zero (lines

1-2). In lines 3-4, the current node under investigation NODCRT is set to the current prime-mid-node

and its distance level LVLCRT is set. In line 5, the distance level LVLPRIM of the prime-mid-node is

set. The difference between LVLCRT and LVLPRIM is that the first will change dynamically as the

recursive subroutine SRTPATH_RECORD will search for the nodes forming the ring. Before calling the

subroutine SRTPATH_RECORD, we also set the first node of the path SRTPTHX(:) to be the current

prime-mid-node. In line 7, the recursive subroutine is called (code B.3) and all the linked nodes

of the prime-mid-node are checked.

In code B.3, for each linked node NDPRB we examine the distance level LVLPRB from the source

node. If the level is by 1 less than the level of the current prime-mid-node (line 11), the node is

added to the path (line 12) and the subroutine is called again to examine the neighbours of the

last identified node. The process stops when the distance level of a node is equal to zero and the

source node is found (line 6). In this case, a path is identified and receives an ID number (line 7)

and all the nodes of the part are recorded in the array SRTPTH(:,:).

Listing B.3: Subroutine to identify all the nodes forming a path [159]

1 RECURSIVE SUBROUTINE SRTPTH_RECORD(NODCRT ,LVLCRT ,PTHS ,LVLPRIM ,LNKS ,NODLNKD ,

LVLDIST ,SRTPTH ,SRTPTHX)

2

3 DO LNKSCRT=1, LNKS(NODCRT)

4 NODPRB=NODLNKD(NODCRT ,LNKSCRT)

5 LVLPRB=LVLDIST(NODPRB)

6 IF (LVLPRB ==0) THEN

7 PTHS=PTHS+1

8 DO LVL=1, LVLPRIM

9 SRTPTH(PTHS ,LVL)=SRTPTHX(LVL)

10 END DO

11 ELSE IF (LVLPRB ==LVLCRT -1) THEN

12 SRTPTHX(LVLPRB)=NODPRB

13 CALL SRTPTH_RECORD(NODPRB ,LVLPRB ,PTHS ,LVLPRIM ,LNKS ,NODLNKD ,LVLDIST ,SRTPTH

,SRTPTHX)

14 END IF

15 END DO

Once the paths from the current prime-mid-node to the current source node are formed, the

process returns to code B.4 and the ring forming process takes place (line 8). There are two options,

one for even rings for which IODD=0 (line 8) and for odd rings with IODD=1 (line 23). For even rings

it is quite straightforward to form rings, since every pair of paths from the current prime-mid-node

to the current source node forms a ring. The formation is achieved with the double loop over all

the paths (lines 9-21). However there is a chance that the two paths that form the ring might

have a common node (apart from the source node and the prime-mid-node). These rings will not

be primitive and we can filter them out by comparing the nodes of the two paths at the same

level (lines 12-14). The PAIR variable is used to identify the distance levels that have different

nodes, and if this number is 1 less than the distance level of the prime-mid-node (line 15), the

two paths have no common nodes and a ring is formed (line 16). To identify the ring at a later

stage, each of the paths forming the ring receive a unique ID using the array QUERNG(:,:). For

the odd rings things are more complicated. The first step is to copy the number of paths for the
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current prime-mid-node using variable OPTH (line 24) and then we check all the linked nodes (line

25) to identify the other node of the prime-mid-nodes pair, which have the same distance level

as the current prime-mid-node (line 26). In this statement, we require that the index of the pair

prime-mid-node is greater than the index of the current prime-mid-node, to avoid finding the same

pair twice. Once the pair node is found, we need to form again the paths from this pair node to the

current source node (lines 27-32). Note that before calling the subroutine SRTPH_RECORD, variable

PTHS is set to an initial value equal to the number of paths of the current prime-mid-node (line

31). Once the paths of the pair prime-mid-node are identified, we can form the rings by pairing

any path of the current prime-mid-node with any path of the pair prime-mid-node (lines 33-45)

following the same procedure as for the even rings.

Listing B.4: Algorithm to form all the rings of a given source node, developed using pseudo-code

published by Yuan & Cormack [159].

1 PTHS=0

2 RNGS=0

3 NODCRT=PMNINDEX(J)

4 LVLCRT=LVLDIST(NODCRT)

5 LVLPRIM=LVLDIST(NODCRT)

6 SRTPTHX(LVLPRIM)=NODCRT

7 CALL SRTPTH_RECORD(NODCRT ,LVLCRT ,PTHS ,LVLPRIM ,LNKS ,NODLNKD ,LVLDIST ,SRTPTH

,SRTPTHX)

8 IF (IODD ==0) THEN

9 DO PATH1 , PTHS -1

10 DO PATH2=PATH1+1, PTHS

11 PAIR=0

12 DO LVL=1, LVLPRIM

13 IF (SRTPTH(K,LVL)/= SRTPTH(L,LVL)) PAIR=PAIR+1

14 END DO

15 IF (PAIR==LVLPRIM -1) THEN

16 RNGS=RNGS+1

17 QUERNG(RNGS ,1)=PATH1

18 QUERNG(RNGS ,2)=PATH2

19 END IF

20 END DO

21 END DO

22 END IF

23 IF (IODD ==1) THEN

24 OPTH=PTHS

25 DO K=1, LNKS(PMNINDEX(J))

26 IF (LVLDIST(NODLNKD(PMNINDEX(J),K))== LVLDIST(PMNINDEX(J)) .AND.

NODLNKD(PMNINDEX(J),K)>PMNINDEX(J)) THEN

27 NODCRT=NODLNKD(PMNINDEX(J),K)

28 LVLCRT=LVLDIST(NODCRT)

29 LVLPRIM=LVLDIST(NODCRT)

30 SRTPTHX(LVLPRIM)=NODCRT

31 PTHS=OPTH

32 CALL SRTPTH_RECORD(NODCRT ,LVLCRT ,PTHS ,LVLPRIM ,LNKS ,NODLNKD ,LVLDIST ,

SRTPTH ,SRTPTHX)

33 DO PATH1=1, OPTH

34 DO PATH2=OPTH+1, PTHS

35 PAIR=0
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36 DO LVL=1, LVLPRIM

37 IF (SRTPTH(PATH1 ,LVL)/= SRTPTH(PATH2 ,LVL)) PAIR=PAIR+1

38 END DO

39 IF (PAIR== LVLPRIM) THEN

40 RNGS=RNGS+1

41 QUERNG(RNGS ,1)=PATH1

42 QUERNG(RNGS ,2)=PATH2

43 END IF

44 END DO

45 END DO

46 END IF

47 END DO

48 END IF

Step 6: Checking for shortcuts and identify primitive rings

The final step of the process is to validate that the rings formed are indeed primitive rings. This

is done by using code B.5. Logical variable GOAL_FOUND is used to state if a shortcut is found or

not. Initially it is assumed that no shortcut exists for the ring under investigation (line 1). For

a given pair of source node and prime-mid-node all the rings formed are examined (line 2), using

the paths stored for each ring (lines 3-4). If the distance level of the prime-mid-node is LVLPRIM,

to classify the ring as primitive it is necessary to verify that there is no path with length shorter

than LVLPRIM between any two unlinked nodes in the ring. The pair of nodes is selected using

variables NODCHK and NODMID (lines 8-9), for which the sum of distance levels is initially equal to

the distance level of the prime-mid-node. To identify any possible shortcut, a four point detection

method is applied (lines 10-32), using the recursive subroutine shown in code B.6.

This method uses the reference distance level map LVLREF(:,:) calculated at the first step of

the procedure. In Fig. B.1 a 2D analogue of the method is illustrated. The four reference nodes

occupy positions near the corner of the expanded simulation cell and we examine a 12-order ring.

The distance level between the source node and the prime-mid-node is equal to 6. Assume that

we want to search for a shortcut between nodes 3 and 12. The shortest path that connects these

two nodes across the ring has a length equal to 5 (3 − 4 − 5 − 6 − P − 12). If a shortcut exists, it

should have a maximum length 4. Thus, we check if there is a path, connecting nodes 3 and 12

with length ≤ 4. Let L1, L2, L3 and L4 be the distance levels of node 3 from the four reference

nodes. If a shortcut with maximum length equal to 4 between nodes 3 and 12 exists, the distance

levels of node 12 from the reference nodes should lie in the limits Li − 4 ≤ li < Li + 4, i = 1, 2, 3, 4..

Thus, by comparing the distance levels of the two nodes from the reference nodes we can determine

if a shortest path exists. If the distance level of node 12 from the reference nodes is not within

these limits, a shortcut does not exist. Schematically, if we make the simplification that nodes

with the same distance level from a reference node form a circular arc, a shortcut would exist if

node 12 was within the overlapping arc of the four shells. However, the fact that the distance level

of node 3 from the reference nodes is within the specified limits does not guarantee the existence

of a shortcut and a further investigation needs to be carried out.

Before calling the subroutine PAIR_SEARCH to identify shortcuts (code B.6), we use the reference

distance levels of node NODMID to set the upper and lower limits for the distance levels of node
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Figure B.1: Illustration of the 4 point detection method used to identify shortcuts between any
pair of nodes of a ring.

NODCHK from the reference nodes (lines 10-13). Lines 14 and 15 provide two additional limits defined

the same way, related with the distance level of MIDNODE from the source node, useful when the

distance level of node NODCHK is within the defined limits. After calling subroutine PAIR_SEARCH,

if a shortcut is found, the ring is not a primitive ring and the search is directed to the next ring.

However, before proceeding to the next ring, we can check if any other rings have the same pair

of NODCHK and NODMID (lines 19-30). If they do, QUERNG(:,1) is set to zero and the specific ring is

omitted from the next search.

Listing B.5: Algorithm to identify all primitive rings for a given source node [159]

1 GOAL_FOUND =. FALSE.

2 DO IRNG=1, RNGS

3 PTH1=QUERNG(IRNG ,1)

4 PTH2=QUERNG(IRNG ,2)

5 IF (PTH1 >0) THEN

6 DO LVLMAX=LVLPRIM , LVLPRIM+IODD

7 DO LVLCHK=1, LVLMAX -1

8 NODCHK=SRTPTH(PTH1 ,LVLCHK)

9 NODMID=SRTPTH(PTH2 ,LVLMAX -LVLCHK)

10 DO K=1, 4

11 LIMIT(K,1)=LVLREF(K,NODMID)+LVLPRIM -1

12 LIMIT(K,2)=LVLREF(K,NODMID)-LVLPRIM +1

13 END DO
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14 LIMIT (5,1)=LVLDIST(NODMID)+LVLPRIM -1

15 LIMIT (5,2)=LVLDIST(NODMID)-LVLPRIM +1

16 CALL PAIR_SEARCH(NODCHK ,NODMID ,LIMIT ,GOAL_FOUND ,LNKS ,NODLNKD ,

LVLDIST ,LVLREF)

17 IF (GOAL_FOUND) THEN

18 GOAL_FOUND =. FALSE.

19 DO IRGX=IRNG+1, RNGS

20 P1X=QUERNG(IRGX ,1)

21 P2X=QUERNG(IRGX ,2)

22 IF (P1X >0) THEN

23 IF (SRTPTH(P1X ,LVLCHK)== NODCHK .AND. SRTPTH(P2X ,LVLMAX -

LVLCHK)== NODMID) THEN

24 QUERNG(IRGX ,1)=0

25 END IF

26 IF (SRTPTH(P2X ,LVLCHK)== NODCHK .AND. SRTPTH(P1X ,LVLMAX -

LVLCHK)== NODMID) THEN

27 QUERNG(IRGX ,1)=0

28 END IF

29 END IF

30 END DO

31 GO TO 200

32 END IF

33 END DO

34 END DO

35 RINGSTAT(I,2*LVLPRIM+IODD)=RINGSTAT(I,2*LVLPRIM+IODD) +1

36 END IF

37 200 CONTINUE

38 END DO

Subroutine PAIR_SEARCH (code B.6), used to identify shortcuts between any pair of nodes in

a ring, initially examines the distance levels of the nodes linked with NODCHK with the reference

nodes (lines 9-11) and if they are not within the limits defined by the reference nodes, no shortcut

is found, and the ring is counted as a primitive in line 35 of code B.5. If the distance level of the

neighbours is within the limits defined by the four reference nodes, an additional check is performed

by comparing the distance levels of the linked node with the limits defined by the distance level of

NODMID from the source node (lines 12-13). Once again, if the distance level is outside those limits,

the analysis proceeds by identifying the ring as positive. If not, the upper and lower limits in the

distance levels are decreased and increased by one respectively (lines 13-16) and the subroutine is

called again (line 17) to check this time a node linked to NODPRB (which is linked to node NODMID

under examination). If at any point of the search NODCHK is found (lines 3-5, 18), it means that a

shortcut exists and the search ends (lines 5,19).

Listing B.6: Subroutine to identify shortcuts in a ring [159].

1 RECURSIVE SUBROUTINE PAIR_SEARCH(NODCRT ,NODGOAL ,LIMIT ,GOAL_FOUND ,LNKS ,NODLNKD ,

LVLDIST ,LVLREF)

2

3 IF (NODCRT == NODGOAL) THEN

4 GOAL_FOUND =.TRUE.

5 RETURN

6 END IF

7 DO LNKSCRT=1, LNKS(NODCRT)
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8 NODPRB=NODLNKD(NODCRT ,LNKSCRT)

9 DO IREF=1, 4

10 IF (LVLREF(IREF ,NODPRB) >=LIMIT(IREF ,1) .OR. LVLREF(IREF ,NODPRB) <=LIMIT(IREF

,2)) GO TO 100

11 END DO

12 IF (LVLDIST(NODPRB) >=LIMIT (5,1) .OR. LVLDIST(NODPRB)<=LIMIT (5,2)) GO TO 100

13 DO IREF=1, 5

14 LMTX(IREF ,1)=LIMIT(IREF ,1) -1

15 LMTX(IREF ,2)=LIMIT(IREF ,2)+1

16 END DO

17 CALL PAIR_SEARCH(NODPRB ,NODGOAL ,LMTX ,GOAL_FOUND ,LNKS ,NODLNKD ,LVLDIST ,LVLREF)

18 IF (GOAL_FOUND) THEN

19 RETURN

20 END IF

21 100 CONTINUE

22 END DO
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