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Abstract

Climate change and variability are projected to negatively affect wheat

production in Europe. The impacts of climate change are typically projected

using global and regional climate models (GCMs and RCMs) and impact

assessment tools such as crop models. However, this impact simulation

chain can propagate uncertainty, as errors are introduced by GCMs, RCMs,

and crop models. There are also many intermediate steps and decisions in

the impact simulation process that are influenced by the different

communities of practice that utilize climate and crop models. These

differences in methods and approaches can also influence the range of

future yield projections. Yield projections are thus considered inherently

uncertain because of this cascade of uncertainty.

This interdisciplinary study projects the impacts of climate change on

wheat yields in the UK and Germany, two key wheat-growing countries.

Added value is found when using RCMs for downscaling temperature and

precipitation simulations for the impact assessment. However, these

GCM-RCM simulations are shown to have significant errors relative to

observations, necessitating a bias correction (BC) step. Different BC

methods are shown to be effective in improving simulations. Two BC

calibration approaches, one that corrects RCM-only error and the other

GCM-RCM error, are used to examine how different GCM-RCM

combinations can affect projected changes in climate. Future climate

projections are used in a multi-method crop modeling approach, and the

uncertainty in the resulting yield projections is analyzed. Key findings are

that wheat yields in the UK and Germany will be affected by changes in

temperature and precipitation. However, these impacts are shown to be

region-dependent and vary based on the crop modeling method, making the

choice of crop modeling method a major contributor to uncertainty.
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Chapter 1

Introduction

"The quest for food security can be the

common thread that links the different

challenges we face and helps build a

sustainable future."

José Graziano da Silva, United Nations

Food and Agriculture Organization (FAO)

Director-General

Food security – generally defined as the availability and physical, social

and economic access to food – is an underlying objective in fulfilling the

global goals for sustainable development that are agreed upon by world

nations. Although it is not an explicit Sustainable Development Goal,

availability and access to clean, healthy food for all is tantamount to

eliminating hunger and achieving better health, greater sustainability, and

equality. However, attaining sufficient food for all is, and will continue to be,

challenging. Current challenges to food production include natural resource

constraints to growing food, its large environmental costs and demands,

and the increasing consumption and dietary shifts of a growing global

population.

1
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Where and when food can be grown in the world is largely dictated by

geography: namely, the type of climate and soil, human influence on the

area, and cropping intensity of crop systems (Iizumi and Ramankutty, 2015,

Beauregard and De Blois, 2014, Leff et al., 2004). Agricultural production,

specifically crop production, demands a sufficient supply of solar radiation,

appropriate temperatures, and adequate water necessary for plant growth,

in addition to arable soil and land. The sensitivity of crops to climate means

that extreme weather and changes to expected climate patterns – such as

drought, heat waves, floods and tropical cyclones – can cause significant

losses and damages to livelihood assets and crops (Porter et al., 2014).

For example, climate-related disasters are among the main drivers of food

insecurity, in the short- and long-term period after a climate hazard (Porter

et al., 2014).

Human activity has greatly increased the concentration of greenhouse

gases (GHGs) in the atmosphere. The rise in GHGs, together with other

anthropogenic drivers, is extremely likely to have been the dominant cause

of the observed warming since the mid-20th century (Summary for

Policymakers, Intergovernmental Panel on Climate Change Fifth

Assessment Report (IPCC AR5), 2013). An increase in the mean and/or

variance of temperature results in potentially more of both hot and cold

temperature extremes, whereas changes to the distribution of precipitation

could result in an increase in mean precipitation (Cubasch et al., 2013).

This could also increase heavy precipitation extremes and the duration of

dry spells between precipitation events (Cubasch et al., 2013). While these

extreme weather events may not be new to farmers and food producers,

climate change may have impacts outside the realm of collective historical

experience (Vermeulen et al., 2013).

Climate change and variability therefore have significant potential

impacts on food security (Synthesis Report of the IPCC, 2014). Current

climate variability already accounts for roughly a third of observed yield
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variability at the global scale for major crops such as maize, rice, wheat and

soybean (Ray et al., 2015, Lobell and Field, 2007). In response to these

projected changes, how can food producers prepare, adapt, or transform

crop production systems in anticipation of climate change and its impacts?

How and when will climate change affect food systems in a particular area,

or a specific crop?

Numerous scientific studies have been conducted to find answers or

provide evidence in response to these two questions, focusing on a variety

of important agricultural crops, communities, and disciplinary emphasis

(e.g. physical or economic impacts, plant crop growth and development, or

sociopolitical responses). In answering these questions and developing the

research niche, it is important to acknowledge the vast amount of

knowledge on crop-climate relationships gained from existing studies, as

well as remaining challenges in projecting the impacts of climate change.

This study is therefore motivated by the challenge posed by climate

change on agricultural production, the need for knowledge on its projected

impacts, and the opportunity to provide guidance to support climate change

adaptation. In this thesis, climate and crop modeling are used to provide

evidence of how important the impact assessment methods are in

understanding how climate change will potentially affect wheat, which is one

of the most important European food crops.

In addition, the focus of the work is to critically examine the current

methods used in climate-crop research that are used to attain wheat yield

projections. The aim of this chapter is firstly to discuss the importance of

wheat production in Europe and the sensitivity of the wheat crop to different

climatic variables, in order to highlight the significance of the study. In

addition, the concepts of uncertainty and communities of practice are

introduced, which are major themes for the research work because of how

they can influence the outcomes of impact assessment studies.
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1.1 Background of the study

1.1.1 Global significance of wheat

Wheat is one of the most important food and feed crops in the world.

Approximately 21% of the world’s food depends on wheat (Triticum aestivum)

(Ortiz et al., 2008, Högy and Fangmeier, 2008). Wheat is a widely grown

cereal crop, second only to rice in terms of production (Trnka et al., 2015).

Humans directly consume more than 60% of wheat that is produced globally,

thus wheat supplies approximately 20% of the energy and about 25% of the

protein requirements of the world population (Högy and Fangmeier, 2008).

Where wheat is cultivated and grown successfully in the world is

dependent on many factors, and one of these important influencing factors

is climate. The relationship between climate and wheat is particularly

significant to discuss because of concerns that climate change will

adversely affect agricultural production, and thus food security. In addition to

growing competition for land, water, and energy, the effects of climate

change are seen as a further threat to food production (Godfray et al.,

2010). Extreme weather events are already a significant challenge for grain

producers, and they are predicted to increase in future climate scenarios

(Barlow et al., 2015).

The global importance of wheat and its role in food security makes

understanding the impacts of current and future climate change and

variability a priority for food security research. In particular, wheat is an

important crop in Europe, which is one of the largest producers of wheat in

the world.
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1.1.2 Wheat production in Europe

Europe is responsible for up to 25% of the global wheat area and 29% of

global wheat production (Koehler et al., 2013, Trnka et al., 2014, 2015).

Wheat is considered the main crop in France, the United Kingdom, and

Germany (Gornott and Wechsung, 2016, Michel and Makowski, 2013,

Semenov et al., 2012, Brisson et al., 2010). The favorable climate of

Europe, in addition to intensive management practices, has contributed to

regionally high yields in France, the UK and Germany in Western Europe,

and also some of the highest yields globally (Wrigley et al., 2016). Based on

data on wheat production and planted area from the United Nations Food

and Agriculture Organization (FAO, 2014), wheat yields are shown to be

highest in Western European countries (Fig. 1.1).

Figure 1.1: Average wheat yields, Europe (1961-2013).
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1.1.2.1 Wheat production trends

Wheat yields in Europe have experienced a steady growth trend since

the 1950s, mostly because of improvements to genetics and farm practices,

such as the use of fertilizers, irrigation and mechanization (Michel and

Makowski, 2013). However, it has been shown that wheat yields in Europe

are experiencing stagnation or a ’yield plateau’. Analysis of wheat yield time

series have shown that yields in Europe have been stagnated since the

early to mid-1990s, particularly in countries which contribute significantly to

the supply of wheat in Europe, such as France, Germany and England

(Michel and Makowski, 2013, Brisson et al., 2010). Could this plateau

already be caused by climate change? In order to respond to this question,

firstly, there needs to be an understanding and review of the relationship

between wheat yields and climate.

1.1.3 Sensitivity of wheat to weather and climate

Climate and weather directly affect the growth and development of food

crops like wheat (Porter and Semenov, 2005), which is sensitive to extremes

of temperature, excess and shortage of water, and other changes to optimal

growing thresholds. Wheat is also sensitive to the occurrence of drought, late

spring frosts and of severe winter frosts associated with inadequate snow

cover (Trnka et al., 2015). The sensitivity of wheat to climate, particularly to

temperature and precipitation, is seen as a primary reason for its vulnerability

to climate change and variability. In this section, wheat physiology is briefly

explained in terms of its sensitivity to temperature and precipitation.

1.1.3.1 Yield responses to temperature

While wheat can be grown in a variety of climates around the world, it has

an optimum temperature range between 17-23◦C (Porter and Gawith, 1999).
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Rising mean temperatures due to increased GHG emissions are anticipated

to push wheat beyond optimal growing temperature ranges and subsequently

reduce wheat yields. This is because warming temperatures accelerate the

wheat crop towards maturity, thereby reducing the period of time that the crop

has to accumulate grain mass; in addition, warming accelerates leaf aging

and leaf death (Asseng et al., 2014, Hawkins et al., 2013a, Lobell et al., 2012,

Asseng et al., 2011).

Wheat yield is determined by grain number and size, which are

established around the flowering period (anthesis), a stage that is sensitive

to high temperatures (Semenov and Shewry, 2011). Short periods of high

temperatures around anthesis can substantially reduce the grain yield for

heat-sensitive wheat cultivars due to heat-driven grain sterility and grain

abortion (Barlow et al., 2015, Semenov et al., 2012), leading to poor yields.

Wheat is also sensitive to extreme hot or cold temperatures, as it stops

growing below 0◦C and above 37◦C (Porter and Gawith, 1999).

The large diversity of wheat varieties are also affected by climate in

different ways. Generally, wheat varieties are qualitatively classified into two

types: firstly, winter wheat, which has a low-temperature requirement called

vernalization that is needed in order to commence flowering and thus have

successful grain reproduction; secondly, spring wheat, which does not have

this requirement (Li et al., 2013). Warming temperatures are important for

parts of Europe that grow winter wheat, which are generally more

high-yielding than spring wheat varieties (Thorup-Kristensen et al., 2009).

Compared to varieties of spring wheat, winter wheat has been shown to

be more vulnerable to increasing temperatures during winter seasons

because of its need for vernalization (Li et al., 2013). Vernalization

requirements vary with the variety (cultivar) but are typically less than 8◦C,

with an optimum of 5-6◦C for 2-4 weeks (Li et al., 2013). Extremely low

temperatures, such as less than -15◦C, can kill seedlings (Li et al., 2013,
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Porter and Gawith, 1999). Failed or insufficient vernalization in winter wheat

can delay dormancy, which then delays the onset of the reproductive stage

of winter wheat (Wang et al., 2015).

1.1.3.2 Yield responses to precipitation

In addition to its sensitivity to warming and extreme temperatures, wheat

is also sensitive to the absence or excess of precipitation, which are both

negative influences on wheat yield. Shortage of water is a chief cause of

variation in wheat yields in many parts of the world (Jamieson et al., 1998).

The prolonged absence of water (drought) is the most significant

environmental stressor to agriculture worldwide (Semenov and Shewry,

2011). Heavy or extreme precipitation can also have negative effects on

wheat production, primarily due to the impacts of waterlogging, which can

reduce yields by about 12-20% due to depleted oxygen in the ground (Li

et al., 2016). This can result in insect infestations and plant diseases,

causing crop losses and large economic costs (Li et al., 2016).

Rainfall also has indirect impacts on yield. Wet or cool weather can

enhance disease occurrence and complicate crop management practices

related to wheat harvest or sowing (Trnka et al., 2015). For example, when

the ground is too wet, farmers have to decide between timely planting or

harvest against the long-term compaction damage caused by driving on wet

soil (Wolkowski and Lowery, 2008).

1.1.3.3 Wheat responses to large-scale climate variability

Weather and climate also affect wheat grain quality. The preceding winter

North Atlantic Oscillation (NAO) can have effects on the specific weight of

grain – the higher the specific weight, the greater the weight of grain that can

be loaded into a container (Kettlewell et al., 2003). The NAO is the large-

scale alternation in air pressure between northern and southern regions of
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the North Atlantic Ocean (Kettlewell et al., 2003), and it is a leading pattern

of weather and climate variability over the Northern Hemisphere (Hurrell and

Deser, 2009).

Because of the influence of the NAO on winter surface climate, a strong

association between the winter NAO index and specific weight (r=0.64) was

found in a UK site (Kettlewell et al., 2003). When this mechanism was

investigated further, however, it was reported that sunshine during grain

growth and late summer precipitation during grain ripening, are the most

important climatic factors determining specific weight of harvested UK

wheat, meaning that NAO effects on the early life of the crop (i.e. during

winter months) do not appear to have substantial effects on specific weight

(Atkinson et al., 2005).

1.1.3.4 Other factors and influences on yield

The complexity of real-world wheat systems means that there are many

more factors apart from climate that affect wheat production. Factors such

as genetics (that determine the wheat variety), soil, and management are

important influences on yield. It has been reported that local factors such as

farm and field management are reported to contribute more to yield

variability than climate (Porter and Semenov, 2005). In addition, policy and

agricultural practice changes in Europe, such as the extension of cultivated

areas or the implementation of the Common Agricultural Policy (CAP) in the

European Union (EU) are also thought to also have influenced yield

stagnation (Brisson et al., 2010, Moore and Lobell, 2014). Therefore, while

climate may play a role in European yield stagnation (Moore and Lobell,

2014), it is evident that the complexity and dynamics of agricultural

production needs to be considered and analyzed when assessing the

potential impacts of climate change.
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1.1.4 Risk of climate change and variability to wheat

The sensitivity of wheat to climate is seen as a reason for the

vulnerability of the crop to present and future climate variability and change.

Some findings report that although there is heterogeneity across European

wheat yield trends, climate has already been found to have negative

impacts, an approximately 2.5% reduction in wheat yields since 1989

(Moore and Lobell, 2014). There is also evidence that long-term

temperature and precipitation trends also account for approximately 10% of

the stagnation in European wheat yields (Moore and Lobell, 2015).

Climate change is a threat to wheat production because it leads to

changes in the frequency, intensity, spatial extent, duration, and timing of

extreme weather and climate events (Special Report on Climate Extremes

and the IPCC Fifth Assessment Working Group II Report, 2014, 2012).

Extreme weather events such as heat waves, droughts, excessive cold, and

heavy and prolonged precipitation can have significant impacts on

agricultural production (van der Velde et al., 2012), making climate change

and its potential impacts significant threats to agriculture. Increasing

temperatures and drought incidence associated with global warming are

posing serious threats to food security (Lobell et al., 2013).

Alongside climate change, the world’s population and its consumption

of food continue to increase. The global population is predicted to exceed

nine billion by 2050 and there is increasing concern about the capability of

agriculture to feed such a large population (Michel and Makowski, 2013).

Climate change presents a considerable challenge in achieving the targeted

70% needed increase in world food production (Semenov et al., 2014). Thus,

agricultural adaptation is needed in order to reduce the negative impacts of

climate change on crop yields and to maintain food production (Tanaka et al.,

2015). In order to offer evidence to support adaptation, this study focuses on

climate change and its impacts on wheat yield as a measure of production.
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1.1.5 Typical approaches to investigate the impacts of

climate change on wheat production

The importance of wheat as a food staple and its sensitivity to climate

have led to numerous studies in the field of crop-climate research to better

understand and characterize the relationship between climate and crop

yields. Many scientific studies have attempted to project the potential

impacts of climate change and variability on different aspects of wheat, from

development and phenology to yield quality and quantity (e.g. as reviewed

by White et al., 2011). However, developing crop yield projections is not a

straightforward process, although the typical impact assessment may seem

simple. The crop yield projection simulation process involves the use of

several types of models, including those from climate and crop science

disciplines. The typical simulation process uses climate model output as

input to crop impact models, which are used to project future changes to

climate and crops (White et al., 2011), as shown in Fig. 1.2.

Figure 1.2: Typical simulation process for the impacts of climate change on crops,
where climate model output is used as input to a crop model to simulate the selected
crop metric, such as yield.
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Crop models can be categorized into one of two approaches:

process-based crop models – which represent crop development based on

the mechanisms of plant interactions with weather and soil, as well as field

management – or statistical models, which use empirical data on climate

and yields to quantify relationships between them. In addition to the data

and input needed by crop models to simulate the development and growth

of crops like yield, they also need climate input, including scenarios for

future climate change. Therefore, in order for crop models to be able to

represent and project the impacts of climate change, agricultural and

climate data are crucial (Ramirez-Villegas et al., 2013). Simulations of

future climate are also dependent on models. These complex

representations, or models, of the atmosphere and oceans are called

general circulation models or global climate models (GCMs) (Maraun et al.,

2015). Future outlooks of agricultural production and food security are

therefore contingent on the skill of GCMs in reproducing seasonal rainfall

and temperatures (Ramirez-Villegas et al., 2013).

While GCMs provide the capability to project climate change based on

future emission scenarios of greenhouse gases (GHGs), and crop models

likewise have been shown capable of simulating plant growth and

development in many scientific analyses of the impacts of climate change,

the projected impacts on crop yields are considered inherently uncertain

(Asseng et al., 2013). But what is uncertainty and how does it affect yield

projections?

1.1.6 Uncertainty as a major theme of the research

The definition of uncertainty in this work is adopted from the IPCC Special

Report on Managing the Risks of Extreme Events and Disasters to Advance

Climate Change Adaptation (IPCC SREX, 2012):

"[Uncertainty is] an expression of the degree to which a value
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or relationship is unknown. Uncertainty can result from lack of

information or from disagreement about what is known or even

knowable. Uncertainty may originate from many sources, such

as quantifiable errors in the data, ambiguously defined concepts

or terminology, or uncertain projections of human behavior."

Following this definition, it has been proposed that there are three

general sources of uncertainty in approaches to understand the impacts of

climate change on crops like wheat: (1) climate modeling, (2) crop

modeling, and (3) the connections between them (Ruiz-Ramos and

Mínguez, 2010). This is because crop models carry uncertainty from

climate models and the methods used to link climate and crop models,

leading to crop projections that have accumulated uncertainty. This

uncertainty propagation through impact models is also known as the

cascade of uncertainty (Wilby and Dessai, 2010, Fig. 1.3).

Figure 1.3: A cascade of uncertainty proceeds from different future pathways, their
associated greenhouse gas (GHG) concentrations, the resulting climate outcomes
in global and regional models, and how these are translated into local impacts
and ideal adaptation responses. The increasing number of triangles at each level
symbolize expanding envelope of uncertainty. Figure from Wilby and Dessai (2010).
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The cascade of uncertainty begins with the choice between numerous

plausible scenarios of future society and their potential GHG emissions, to

climate models, to impact models and their different methods (Wilby and

Dessai, 2010). Local impacts and possible adaptation options are at the

bottom of the cascade, where uncertainty accumulates. Therefore, the

typical or idealized process of impact assessment can propagate

uncertainty. It is argued that the importance of wheat globally, and

regionally in Europe, makes it crucial that methods that aim to understand

future changes can accurately capture crop and climate relationships while

identifying sources of error and uncertainty. This is important to be able to

generate more confidence in them, as impact assessment studies may be

used as evidence for the basis of adaptation.

Based on the work carried out in this research, the typical simulation

approach to impact assessment (Fig. 1.2) is argued to have many

intermediate steps and decisions that need to be made to proceed from one

step to another, leading to an actual approach filled with numerous other

processes. Each of these intermediate steps, such as downscaling, bias

correction, utilizing different climate forcings (on the climate side) to crop

model calibration and evaluation (on the crop modeling side) all contribute

to the cascade of uncertainty in yield projections (Fig. 1.4).

Given the important role that uncertainty plays in decision-making

(Vermeulen et al., 2013, Lemos and Rood, 2010, Wilby and Dessai, 2010),

and the uncertainty cascade associated with impact assessment (Hawkins

et al., 2013a, Wilby and Dessai, 2010, Challinor et al., 2010, Tsvetsinskaya

and Mearns, 2003), there is a need to critically review current methods –

and these intermediate steps in the typical assessment – for simulating the

impacts of climate change with a focus, or lens, on uncertainty. Focusing on

underlying uncertainties can also elucidate steps in the cascade where

uncertainty can be better characterized, or where there are research gaps.



1.2. DIVERGING COMMUNITIES OF PRACTICE 15

Figure 1.4: Actual simulation process for the impacts of climate change on crops,
where numerous intermediate steps to link climate model output to crop models are
needed to generate the selected crop metric.

1.2 Diverging communities of practice

Many of the intermediate steps in the ‘actual’ impact assessment

cascade (Fig. 1.4) vary depending on the underlying reasons for the

selection of the simulation approach, which also depends on the disciplinary

orientation of the study. Because of the development trajectories of climate

impact research, there are also different communities of practice that have

developed around the use of climate and crop models. In this work, the

definition of a community of practice is adopted as "a group [or groups] of

people who share a concern or a passion for something they do and learn

how to do it better as they interact regularly" (Wenger, 1998).

Communities of practice in climate-crop modeling often use different or

constrasting methods to simulate the impacts of climate change on sectors

such as agriculture; for example, methods that are acceptable or common

to one community may be a long-standing debate in the other. In addition,

even within these disciplinary communities, there are smaller subgroups
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that approach impact assessment in different ways. For example, there are

long-standing debates within the climate community on whether using

techniques to derive higher-resolution climate model output can provide

more useful information on future climate change in local and regional

areas, which is discussed in Chapter 2.

In this project, additional differences between climate modeling

communities of practice were found in how errors from GCMs are dealt with.

For instance, while GCMs are powerful simulation tools, they are still

simplifications of complex atmospheric and oceanic systems, so they are

likely to contain errors relative to the real world. Some communities of

practice within the climate modeling community believe that these errors

should be corrected before their use in impact assessment; still others

believe that doing so does not address underlying climate model error and

in fact contributes to more uncertainty.

In addition, there are divisions between the communities of practice of

crop modeling. As further explained in the next chapter, research around

the relationship between crops and their environment is clearly divided

between groups that use process-based models that can consider

numerous factors, including genetics and management as influences on

crop growth and development. Still other communities utilize relatively

straightforward empirical/statistical models as a basis of impact

assessments. Within these subgroups of crop modeling communities, there

are also numerous frameworks, systems, and methods which may be vastly

different from others even within the same disciplinary approach – all of

which are here argued to also contribute to diverging outcomes in climate

change impact assessment.

In the following chapter, these issues are expanded upon in a review of

literature to better elucidate where research gaps are, and what can be

undertaken in this research to address these gaps and fulfill reseach aims.



Chapter 2

Literature review and defining

research gaps

2.1 Introduction

In the previous chapter, it was discussed how the combination of

different methods and the numerous decisions made in the typical impact

simulation process result in impact assessment projections, for example for

crop yields, that are inherently uncertain due to the cascade of uncertainty.

In addition, the diverging practices of research communities that utilize

impact assessment methods may also contribute to a range of plausible

future scenarios for climate change studies. These valuable differences in

models, methods and communities in the field of impact assessment have

resulted in a number of comparative analyses that focus on better

understanding and characterizing uncertainty.

To further the knowledge gained from these studies, in this chapter, it is

the objective to firstly outline what the differing methods and models are to

provide a common research framework throughout the thesis, as well as to

highlight important research gaps that can be investigated further.

17
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2.1.1 Chapter objectives

In this chapter, the uncertainty of crop yield projections is discussed as

stemming from three different sources, following the framing of Ruiz-Ramos

and Mínguez (2010): from climate models, crop models, and the linkages

between them. It is argued here that this framing indicates that apart from

crop yield projections being ‘inherently uncertain’ (e.g. Asseng et al., 2013),

the field of climate-crop impact assessment is also inherently multi- and

inter-disciplinary. Impact studies combine the climate sciences with crop

agronomy and agricultural sciences, and they also utilize many statistical

tools to reach the end-goal of yield projections. This means that research in

impact studies requires a common understanding of key concepts and tools.

To bring a common understanding to these important disciplinary

concepts, in this review of literature, firstly, climate models are reviewed, in

addition to a discussion of downscaling methods that are used to change

global climate model simulations to a more regional scale. The method of

bias correction, which is the use of statistical approaches to improve the

output of climate models as a post-processing step, is also reviewed, in light

of the ongoing discussion and criticism that it does not address underlying

climate model error, nor that bias correction methods are appropriate for

use in future climate projections.

The methods of crop modeling are also reviewed and compared. As

previously indicated, crop modeling methods are roughly divided into

process-based (or mechanistic) crop models and statistical approaches.

Although both disciplinary approaches have been used extensively in

crop-climate research, they are fundamentally different and efforts to

directly compare their output are still relatively new in the research

discipline. Lastly, the third source of uncertainty – the linkages between

climate and crop models – is also discussed.
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After this discussion, opportunities for sharpening the research focus are

explored, with the intention to fulfill the research aims of offering evidence

and recommendations to characterize sources of error in crop yield

projections. The chapter ends with an overview of the research gaps,

questions, and design that is a result of the review of related literature.

Importantly, this chapter also defines the scope of what is investigated in the

research study.

2.2 Uncertainty from climate models

Among the possible sources of crop projection uncertainty according to

Ruiz-Ramos and Mínguez (2010), the first source is from climate models.

GCMs generally show satisfactory performance for many large-scale

features of climate (Flato et al., 2013), and through downscaling (through

regional climate models, or RCMs) are also able to provide more spatial or

temporal detail at a regional scale (e.g. for Europe, Kotlarski et al., 2014,

Jacob et al., 2014). However, despite the immense simulation power and

knowledge gained from GCMs, it is well known that climate models have

numerous limitations that may lead to error and uncertainty in downstream

impact projections.

For example, it has been shown that many biases in yield projections are

related to errors in driving GCMs (Glotter et al., 2014). Climate models,

while state-of-the-art tools, are limited in their capacity to realistically

simulate all the components of the atmosphere and oceans, and thus need

numerous parameterized processes (Flato et al., 2013). Uncertainties in the

projections of climate change impacts on future crop yields derive from

different sources in climate modeling, for example diverse GCM

construction and parameterization, future emissions scenarios, and inherent

or response uncertainty (Asseng et al., 2013).



20 CHAPTER 2. LITERATURE REVIEW

In this section, the purposes and development of climate models are

reviewed, giving focus to sources of error and uncertainty, developing

regional climate simulations, and correcting errors in climate model output.

2.2.1 Introduction to climate models

According to the IPCC Fifth Assessment Report (Working Group I, Flato

et al., 2013), climate models represent the most current understanding of

the dynamics of the physical components of the climate system, particularly

the atmosphere and oceans. Climate models are the primary tools that are

used to investigate the responses of the climate system to various forcings,

including future GHGs and aerosols. GCMs are used to make climate

projections on seasonal to decadal time scales and for making projections

of future climate for the coming century and beyond (Flato et al., 2013).

Essentially, climate models are mathematical and physical expressions of

the atmosphere and oceans. Numerical methods are then used to solve

these discretized mathematical expressions, which are implemented on a

grid (Flato et al., 2013).

Climate models are also essential in the detection and attribution of

observed changes in climate. Observations unequivocally indicate that the

earth has warmed (IPCC Summary for Policymakers, 2013). While a simple

approach to detection and attribution of climate change would be to

compare climate observations with model simulations driven with natural

forcings to simulations driven with both natural and anthropogenic forcings,

climate models must firstly be able to correctly simulate the response of the

atmosphere and oceans (Bindoff et al., 2013). This is a strong assumption

of the ability of GCMs. Therefore, while climate models may not get the

exact magnitude of the response correctly, there is general consensus that

models can simulate the shape – meaning large-scale patterns – of the

response to external forcings (Bindoff et al., 2013).
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Climate models are important tools in research because of their

capabilities to represent complex atmospheric and oceanic processes,

alongside their ability to be used for attribution experiments. Because of

their importance in climate impact studies, therefore, it is crucial to evaluate

the performance of these models, both individually and collectively (Flato

et al., 2013). How well climate models perform is usually evaluated by

comparing the model output to observations and analyzing the resulting

difference. In this regard, the IPCC (2013) reports very high confidence that

climate models are able to reproduce observed large-scale mean surface

temperature patterns, and known large-scale climate features.

2.2.2 Sources of error in climate models

While climate model performance may be satisfactory, it is not without

several shortcomings. A well-known example is that climate model

simulations of precipitation perform less well compared to surface

temperature (Flato et al., 2013). Errors in GCM simulations of precipitation

can affect the simulated precipitation intensity. This can lead to a low

number of dry days, which are compensated by too much drizzle (Piani

et al., 2010). GCM errors can also result in biases in mean precipitation and

poorly represented extreme events (Piani et al., 2010).

Some errors are a result of the coarse resolution (spatial and temporal

grid characteristics) of large-scale climate models. The resolution of GCMs

is usually of a grid cell resolution that is around 200 kilometers (Ekström

et al., 2015), which is too coarse to resolve finer-scale features that affect

crop growth and production. While recent developments have resulted in

high-resolution GCMs with resolutions of approximately 50 km grid-point

spacing, the large computational cost of running high-resolution models

means that they have been performed at only a few research centers

(Haarsma et al., 2016). Therefore, although the knowledge of atmospheric
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and ocean processes continues to advance alongside increases in the

computational power needed to run GCMs, climate models still have

limitations.

These limitations can be sources of error which propagate through to

impact models. The sources of model error are summarized as the

following: uncertainty in process representation, error propagation,

sensitivity to resolution, uncertainty in observations, and other factors

(IPCC, 2013).

(1) Uncertainty in process representation

There is still limited understanding of very complex processes of the

atmosphere and oceans that need to be included in GCMs. In addition, it is

a challenge to represent these complex processes mathematically and in a

manner that preserves their physics (Flato et al., 2013). As a result,

conceptual representatations, or parameterizations, are needed to include

processes that occur at spatial and/or temporal scales that are not explicitly

resolved (Flato et al., 2013). A wide range of processes must be

parameterized, for example those associated with atmospheric convection,

clouds, aerosols, ocean and sea ice dynamics, as well as radiation (Flato

et al., 2013).

In particular, the representation of clouds, a key component in the

atmospheric system, is considered problematic. This is due to several

reasons, for example that the simulation of clouds with GCMs involves many

nonlinear processes spanning a large range of spatial and temporal scales

(Lauer and Hamilton, 2013). When modeling the response of global mean

surface temperature to the doubling of atmospheric carbon dioxide (CO2),

clouds are among the leading causes of uncertainty in estimates produced

by GCMs (Tan et al., 2016). Therefore, while the latest climate models now

include more cloud and aerosol processes and their interactions (Flato
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et al., 2013), there remains low confidence in the representation of clouds

and other complex processes in models.

(2) Error propagation

Biases can be propagated by climate models that use parameterized

processes. Parameterization of physical processes in the atmosphere or

oceans, for example those dealing with clouds, could lead to errors or

uncertainties in simulations of radiation (Flato et al., 2013). Other examples,

such as biases in the position of storm tracks, are partly due to sea-surface

temperature (SST) biases in simulations, which are related to problems with

the simulated location of warm waters such as the Gulf Stream and

Kuroshio Current (Booth et al., 2017, Greeves et al., 2007, Keeley et al.,

2012). For instance, a cold SST bias in the Pacific and a lack of El Niño

Southern Oscillation (ENSO) variability lead to large changes in the Pacific

storm track (Greeves et al., 2007). This mispositioning of storm tracks leads

to errors that may propagate to climate simulations, leading to errors in the

simulation of precipitation, for example (Wilby et al., 2009).

(3) Sensitivity to resolution

Some aspects of the climate system are found to be dependent on the

scale – the horizontal or vertical resolution – of climate model simulations.

While higher model resolution generally leads to mathematically more

accurate models, it entails higher computational costs, and does not

necessarily translate to more reliable simulations (Flato et al., 2013).

However, higher-resolution models have been shown to improve the

representation of the Gulf Stream, and Kuroshio Current (Haarsma et al.,

2016, Ma et al., 2016, Kirtman et al., 2012), which as mentioned in the

previous paragraph, are important in climate dynamics and have influence

over other simulated climate variables. Higher resolution in the atmospheric
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component of some models has been shown to improve features such as

storm tracks and extratropical cyclones, extreme precipitation, and tropical

cyclone intensity and structure (Haarsma et al., 2016, Flato et al., 2013),

making the resolution of GCMs an important influence on the presence and

size of errors in simulations.

(4) Uncertainty in observations

In some cases, the observations used to evaluate climate model

simulations are of insufficient length or quality. The normal and accepted

length of climate data is 30 years, as defined by the World Meteorological

Organization (WMO, Arguez and Vose, 2011). A shortage or lack of

high-quality observational data to compare with model simulations, for

example in topographically diverse or remote areas, can make the

evaluation of model performance challenging (Flato et al., 2013). Recent

advances include greater use of remote sensing (e.g. satellite imagery)

technologies. Satellite data has provided major advances in understanding

the climate system and its changes through added observational data, and

satellite data are frequently used with climate models to simulate the

dynamics of the climate system and to improve climate projections (Yang

et al., 2013). However, this is also limited by spatial sampling over long

periods of time, biases in sensors, and the need to also validate with other

observations (Yang et al., 2013).

(5) Other factors that contribute to uncertainty

Aside from the uncertainty that can arise from numerous parameter

values, uncertainty from climate models also arises because of different

model formulations, internal variability, or boundary conditions (Flato et al.,

2013). Model simulations are also affected by how they are forced, for

example uncertainties in GHGs, aerosols emissions, or land use change,
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can all affect model results (Flato et al., 2013). Different statistical methods

used in model evaluation can also lead to differences in the assessment of

model quality (Flato et al., 2013).

In the case of future climate projections, scenario uncertainty also arises

because future development and emission trajectories are also uncertain.

Future scenarios of GHGs and their radiative forcings are used with climate

models to generate estimates of climate change. These scenarios are

currently implemented through the use of the representative concentration

pathways (RCPs). Succeeding the emission scenarios described in the

IPCC Special Report on Emission Scenarios (SRES), the RCPs are a set of

four pathways developed for the climate modeling community as a basis for

long-term and near-term modeling experiments (van Vuuren et al., 2011).

RCPs provide information on possible development trajectories for the

climate change forcings (Moss et al., 2010, van Vuuren et al., 2011) and are

currently used by the latest IPCC Fifth Assessment Report and recent

impact studies. RCPs contain not only emission and CO2 concentration

trajectories, they also consider land-use, and can be used to explore

alternative energy and technology futures (van Vuuren et al., 2011, Moss

et al., 2010). Future climate simulations forced by the RCPs are then used

to drive numerous different impact models, such as hydrological,

economical, or crop models. For example, the RCPs are used with impact

models from the Inter-Sectoral Impact Model Intercomparison Project

(ISI-MIP) (Warszawski et al., 2014), which seeks to compare different

impact models in various sectors of interest.

Based on all these differences and sources of potential uncertainty, it is

clear that making use of climate models and their output requires, at least, a

systematic and scientific method of comparing and evaluating climate

models.
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2.2.3 Evaluating climate model performance

Despite the limitations of climate models, climate models have continued

to show significant improvement (IPCC, 2013). Some of these

improvements come from the better understanding and subsequent

incorporation of other important components of the earth system into

climate models. For example, the current state-of-the-art climate models

are called Earth System Models (ESMs), which expand on GCMs by

including the representation of various biogeochemical cycles such as the

carbon cycle or the sulfur cycle. Some features of the land surface are also

included, such as vegetation, soil type and water bodies (Flato et al., 2013).

The climatic effects of these land surface variables can be profound: for

example, it has been suggested that changes in the state of the land

surface, in particular soil moisture, may have played an important part in the

severity and length of the 2003 European drought (García-Herrera et al.,

2010, Fischer et al., 2007).

As a means to characterize these limitations which lead to uncertainties

and error, ensemble approaches are frequently used. These ensemble

approaches can be either Multi-model Ensembles (MMEs) or Perturbed

Parameter (or Physics) Ensembles (PPEs). MMEs are created from existing

model simulations from various climate models where a multi-model mean

can be calculated. In contrast, PPEs are created to assess uncertainty

based on a single model and benefit from the explicit control on parameters

(Flato et al., 2013). By controlling different parameters for a single model in

a PPE, statistical methods can determine which parameters are the main

drivers of uncertainty across the ensemble.

A prominent example of an MME is the Coupled Model Intercomparison

Project, now in Phase 6 (CMIP6). CMIPs are a central element of national

and international assessments of climate change, for example the IPCC AR5

from 2013 (Eyring et al., 2016). However, even MMEs have limitations, for
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example, their evaluation can be confounded by the fact that some climate

models share a common lineage and thus share common biases (Flato et al.,

2013).

2.2.3.1 Improving climate models

Improvements to climate models are also driven by increases in

high-performance computing capabilities. Increased computing power has

enabled the investigation of the impacts of increased resolution of climate

models on simulated mean climate and its variability. The High Resolution

Model Intercomparison Project (HighResMIP), part of CMIP6, uses climate

models with increased horizontal resolution (Haarsma et al., 2016). Models

in HighResMIP have shown significant improvements in the simulation of

aspects of large-scale circulation phenomena such as the ENSO, tropical

instability waves, the Gulf Stream, and their respective influences on the

atmosphere (Haarsma et al., 2016). Other large-scale features such as the

global water cycle, snow cover, the Atlantic inter-tropical convergence zone

(ITCZ), the jet stream, storm tracks, and Euro-Atlantic blocking have also

shown improvements with higher-resolution models (Haarsma et al., 2016).

2.2.4 Simulating regional climate

The capability of GCMs to represent and simulate climate implies that

their output could potentially be directly used in impact models. However, as

discussed, their resolution is too coarse, as a resolution of 100-250 km is

too large to resolve features that are important at regional scales. For

example, GCM precipitation output cannot be used to directly force impact

models without some form of prior calibration of the uncorrected climate

model output (Hawkins et al., 2013a, Piani et al., 2010). Because of the

coarse scale of GCMs, methods to bridge the scale gap are needed

(Ekström et al., 2015). These methods are known as downscaling methods.
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Downscaling attempts to resolve the scale discrepancy between GCM grid

cell resolution and the fine-scale resolution required for local and regional

impact assessment (Maraun et al., 2010).

2.2.4.1 Downscaling methodologies

Downscaling methodologies are generally divided into dynamical

downscaling and statistical downscaling, which have significantly different

approaches to providing more spatial or temporal detail to GCM simulations.

Dynamical downscaling nests a regional climate model (RCM) into the GCM

to represent the physical processes of the atmosphere with a higher grid

box resolution (Maraun et al., 2010). RCM simulations are richer in spatial

and temporal detail compared to GCMs (Flato et al., 2013), so they are

often used to provide more detailed information for a particular geographical

region. The analysis of several downscaled climate model experiments from

the Coordinated Regional Downscaling Experiment over Europe

(EURO-CORDEX, Jacob et al., 2014) confirmed the ability of RCMs to

capture the features of European climate, including its variability in space

and time (Kotlarski et al., 2014).

Alternatively, statistical downscaling involves deriving empirical

relationships (as transfer functions) to link large-scale atmospheric variables

and local/regional weather conditions (Kotlarski et al., 2014). Statistical

downscaling is a popular alternative for use in impact studies because of its

relative ease of use, and its performance is comparable to output from

RCMs (Eden and Widmann, 2014). Statistical downscaling methods also

constitute a range of techniques to provide regional or local detail.

However, while both these methods are valid approaches to bridge the

scale gap, they are vastly different with regard to complexity. Thus, the

single umbrella term of ’climate downscaling’ can be somewhat simplistic,

as different downscaling methods can produce information with dissimilar
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properties with regard to the climate change signal contained in the GCM

output, and to what is required by the end-user (Ekström et al., 2015).

Depending on the needs of the end-user, one particular method may be

considered more suitable. In order to find common ground between

dynamical and statistical downscaling, recent climate impact applications

suggest that a combination of the two approaches is optimal (Kotlarski

et al., 2014, Maraun et al., 2010). This combination of statistical and

dynamical downscaling is called Model Output Statistics (MOS).

For a chosen climate model, MOS infers a correction function between a

simulated climate variable and its corresponding observed value in the

present-day climate, and applies this correction function to a future

simulation with the same model (Wong et al., 2014). The comparison of

statistical, dynamical downscaling and their combination is the focus of

projects such as VALUE, which is a comprehensive effort to assess the

credibility of regional climate change scenarios (Maraun et al., 2015).

2.2.4.2 Increasing importance of regional climate simulations

The use of MOS is already common in numerical weather prediction,

and it is gaining more prominence in downscaling climate change scenarios

(e.g. Eden and Widmann, 2014). However, dynamical downscaling of GCM

output is already considered a well-established and standard technique for

the generation of regional climate change scenarios (Kotlarski et al., 2014).

Apart from their role in the development of climate scenarios, RCMs have

become important tools that help to advance the understanding of

regional-scale climate processes (Kotlarski et al., 2014). RCMs are thus

increasingly important tools in assessing the impacts of climate change. For

example, progress in RCM research has made the use of RCM simulations

for hydrological studies more attractive (Teutschbein and Seibert, 2012).

The progress of RCM intercomparison projects such as those available
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with EURO-CORDEX have made many RCM simulations available and

more accessible for use in impact studies, for example for crop production.

Because crop modeling studies rely on the accuracy of climate input data,

they are sensitive to the downscaling method (Ramarohetra et al., 2015).

The common experimental design of EURO-CORDEX can therefore

facilitate comparison between other RCMs used to simulate European

climate in impact studies for crop production.

However, systematic GCM errors have been shown to propagate into

RCM output, leading to errors in simulations (Glotter et al., 2014). For

example, if the GCM misplaces storm tracks, this leads to errors in the

simulation of precipitation by an RCM (Wilby et al., 2009). Even RCM

simulations do not often agree with local observations, and their output are

not directly useful for assessing impacts at the catchment scale for

hydrological impact studies (Teutschbein and Seibert, 2012). It is thus

argued that this lack of agreement of simulations to observations – error or

bias – is critical to the confidence in the impact assessment studies that

utilize them. Based on the literature review, the quality of regional climate

simulations depends not only on the validity of the physics and methods

behind the RCM or downscaling technique, but also, and perhaps more

critically, on the quality and realism of the boundary information from the

GCM.

Error and bias from climate models can have effects on projections of

impacts, as climate information is cascaded from one step to the next. The

number of permutations of emission scenario, climate model, and

downscaling method also proliferates uncertainty at each stage of the

simulation process (Wilby and Dessai, 2010). Although downscaling does

result in simulations with a higher spatial resolution (approximately 11-25

km for the EURO-CORDEX experiments), RCMs often inherit the biases

from the GCMs (Maraun et al., 2010). Therefore, while the simplest way

may be to directly utilize the uncorrected GCM or RCM output for driving
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impact models, such as crop models for agricultural production, there are

biases between the simulations and reality which should be corrected

(Hawkins et al., 2013a).

2.2.5 Bias correction to improve agreement of simulations

with observations

Bias correction (BC), also sometimes referred to as statistical

downscaling, post-processing, or calibration, addresses these errors in

climate model simulations by improving their mean, distribution or shape to

bring them closer to observations. BC is an attempt to make the GCM

output more realistic (Hawkins et al., 2013a, Piani et al., 2010). Based on

the literature review, how BC affects climate change projections is an

important question in many scientific studies, particularly because BC is

thought to modify the physical consistency and climate change signal (e.g.

Maraun et al., 2017, Hempel et al., 2013, Piani et al., 2010). These issues

with BC are an important point of discussion, and are revisited later in the

Chapter, and across other chapters as a key focus of the research.

In a review of methods for hydrological impact studies, Teutschbein and

Seibert (2012) describe some approaches to BC of climate model output:

methods can range from simple scaling approaches like linear scaling,

which makes RCM simulations agree with the monthly mean values of

observations, to methods like quantile-quantile mapping that involve

modifying the shape of the distribution of simulations. Extensions to linear

methods can also correct the variance, while distribution or quantile

mapping attempts to remove quantile-dependent biases (Maraun, 2013).

Stochastic weather generators (WGs) are another method of

post-processing climate simulations. They figured prominently as a common

method for modifying weather variables in a review of methodologies for

simulating impacts of climate change on crop production (White et al.,
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2011). WGs such as the Long Ashton Research Station Weather Generator

(LARS-WG) (Semenov and Barrow, 1997) – the most common WG used in

crop modeling studies (White et al., 2011) – are capable of generating a

synthetic weather time series with the statistical properties of observations,

in order to generate long enough records of weather simulations, or fill in

gaps in existing records (Mehan et al., 2017, Semenov and Barrow, 1997).

Although WGs were first developed for hydrological application, they

have been widely used to investigate the influence of weather conditions on

crop yields, and continue to figure in impact studies (e.g. Mehan et al.,

2017). However, despite the utility of weather generators and suggested

continued research and support for investigating stochastic WGs for BC

(e.g. Maraun, 2016), they are not investigated in the research. Rather, in

this thesis, linear, variance or quantile-quantile mapping BC methods that

directly modify uncorrected projections are used.

2.2.6 Climate change projections and uncertainty

In summary, climate models are a useful way of simulating past, present

and future climate, conducting attribution experiments, and contributing to

the scientific understanding of our complex atmosphere and oceans.

However, due to their limitations, and different development and structural

designs, GCMs can have and propagate error, leading to uncertainty in

climate change projections and further ’downstream’ into crop projections.

For example, it has been found that errors in yield projections are

dominated by GCM systematic errors (Glotter et al., 2014), meaning that

GCM error cascades into impact projections.

Additional uncertainty in climate change projections ranges from

uncertainty in future emissions of GHGs, the range GCM responses to

these specified emissions, combined with the natural, internal variability of

the climate (Hawkins et al., 2013b, Hawkins and Sutton, 2009, 2011). In
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addition, there is uncertainty in the choice of calibration method in

producing climate data for the impact model, including BC procedures

(Hawkins et al., 2013b). Projections of future crop production accumulate

uncertainties from GCMs and RCMs, which are passed onto their

simulations of climate, and eventually to crop model simulations, in addition

to being affected by the uncertainties of the crop models and methods

themselves. In the following section, crop models are also focused on with

an uncertainty lens.

2.3 Uncertainty from crop models

Uncertainty in crop yield simulations can come from the chosen crop

impact models and methods that aim to realistically simulate plant growth

and responses to climate. Uncertainty is introduced by the chosen crop

model(s) approach and representation of crop growth and development. In

this section, two fundamentally different approaches of crop modeling are

compared and critically reviewed in order to break down and understand the

uncertainty that results from using crop models to assess the impacts of

climate change.

2.3.1 Representing crop growth and responses to climate

Because of their ability to model crop growth and development based on

climate and other input variables, crop models are considered essential

tools in the assessment of climate change impacts to local and global food

production (Asseng et al., 2014). Most climate change impact studies use a

similar methodological approach using crop models which may seem

relatively ’straightforward’ in principle (White et al., 2011, p.357). Firstly,

GCMs are used to generate climate projections for time periods many years

or decades into the future based on a selected emissions scenario. The
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output of climate models is used as input to a crop model that is able to

translate the relationship between climate and crops into measurable

impacts. Following the generation of future climate from climate models,

one provides the crop model with the field conditions, crop information and

future climate model simulations from GCMs. The crop model is then ’run’

and outputs are then compared to observations or different crop simulations

(White et al., 2011).

However, while the typical modeling approach may seem straightfoward,

in reality there are numerous and nontrivial intermediate processes that are

needed to link climate and crop models. Linking climate model output to

crop models involves processes such as scaling the GCM output due to its

typically coarse resolution to a scale that is used by crop models. In addition

to this downscaling step to provide information at the appropriate spatio-

temporal scale, corrections to errors in climate simulations are also often

required in order to improve them relative to observations.

The chosen climate variables that need to be downscaled and corrected

depend largely on the choice of crop modeling method and crop model, as

there are numerous approaches to simulate crop growth and development

and their responses to climate. In this review of literature, studies have been

shown to use different crop modeling methods with varying complexity, input

demands, and corresponding output related to crop processes.

In general, crop models are categorized as either process-based crop

models (PCMs), or statistical crop-climate models (SCCMs), which are

fundamentally different approaches to understanding crop yield (Lobell and

Asseng, 2017, Liu et al., 2016). PCMs attempt to provide explanations of

crop systems’ behavior relative to changes in the environment (Angulo

et al., 2013), in contrast to statistical approaches which link observed crop

parameters to climate (Lobell and Burke, 2010). Because of their

contrasting approaches, it is valuable to compare crop modeling methods
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and models, for example through their simulated yields, in order to

understand how different crop modeling methods contribute to error and

uncertainty.

Despite the fact that both approaches seek to quantify the impacts of

climate change on agricultural productivity, there have been relatively few

attempts to systematically compare findings from both approaches (Moore

et al., 2017). While both PCMs and SCCMs are prevalent in the field of

crop-climate research, there continues to be a clear divide between the

communities that use them. For instance, the results from either approach

are often published in different disciplinary journals (Lobell and Asseng,

2017) and it is only recently that there have been large-scale scientific

efforts to methodically compare their differences (e.g Liu et al., 2016),

among other method comparison studies (e.g. Soltani et al., 2016, Watson

et al., 2015). Based on scientific research using crop models, the

contrasting approaches and mechanisms of (1) PCMs and (2) SCCMs are

as follows:

(1) Process-based crop models (PCMs)

Process-based crop models, also known as crop simulation models,

dynamic growth models, or mechanistic crop models, are considered the

state-of-the-art tools for simulating crop growth and development. They

represent the most current understanding of crops, and they can integrate

knowledge on physiology, agronomy, soil science and agrometeorology (Shi

et al., 2013). PCMs attempt to explain not only the relationship between

crop parameters and simulated variables, but also the mechanisms of the

described processes that are relevant to plant growth and development

(Palosuo et al., 2011). PCMs are able to consider dynamic interactions

between genotype, environment, and management factors (Angulo et al.,

2013). They use mathematical equations to describe physiological, physical
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and chemical processes to simulate crop growth and development over time

(Shi et al., 2013). PCMs are considered useful tools in climate impact

studies as they deal with multiple climate factors and how they interact with

crop processes (Asseng et al., 2014).

There are numerous crop models that have been developed in research

centers around the world that are available to the end-user for a variety of

crops, climates, and simulation objectives, each with their own set of

modeled processes, input parameters, and generated output. Therefore, the

choice in crop model may lead to uncertainty, which is a major component

of uncertainty in yield projections and is considered the most difficult source

of uncertainty to quantify (Palosuo et al., 2011). In order to compare crop

model structure, similar to MMEs used in climate studies, there are several

studies that evaluate how different PCMs perform compared to one another

for various crops, locations and crop variables (e.g. Angulo et al., 2014,

Palosuo et al., 2011, Jamieson et al., 1998). A large global MME of crop

models that is used for future climate change assessments is the

Agricultural Model Intercomparison and Improvement Project (AgMIP),

which focuses on using PCMs. AgMIP uses seven global gridded crop

models for a coordinated set of simulations of global crop yields under

climate change (Rosenzweig et al., 2013, 2014).

(2) Statistical approaches to modeling crop-climate relationships

Statistical approaches are also used to model climate and crop

relationships. Statistical models are often thought to be capable of

assessing climate change impacts on crop production rapidly and across

large datasets (Rosenzweig et al., 2013). Statistical approaches are based

on empirical data of crop yields and weather to develop models to relate

these variables to each other (Lobell and Asseng, 2017, Lobell and Burke,

2010). Rather than plant processes being explicitly modeled, as with a
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PCM, crop and climate data are used to calibrate regression equations that

describe the relationship between crops (typically an aspect of crop

production, such as crop yield), and climate. Statistical approaches and

models have become increasingly common in recent years with the growing

availability of data on both weather and crops (Lobell and Asseng, 2017).

Various types of SCCMs have been used for the analysis of yield time

series. Linear regression has been used in many studies but other

regression models, such as quadratic regression, bi-linear, tri-linear, and

linear-plus-plateau models, have been used in a smaller number of papers

(Michel and Makowski, 2013). SCCMs can be used in a variety of scales via

three methods: through time series methods, which are based on time

series data from a single point or area; panel methods, which are based on

variations both in time and space; lastly, cross-section methods which are

based on variations in space (Lobell and Burke, 2010).

SCCMs have been used at a variety of scales, locations, and crops, for

example: maize in France and Africa (e.g. Hawkins et al., 2013a, Lobell and

Burke, 2010, respectively), soybean, cotton and maize in the United States

(e.g. Schlenker and Roberts, 2009), and at a global scale for several crops

(e.g. Ray et al., 2015).

2.3.2 Challenges in crop modeling approaches

While both PCMs and SCCMs have been used in numerous scientific

studies, their performances, and thus confidence in their yield simulations,

are still constrained by several limitations. For instance, these methods have

significant differences between their structure, represented processes, and

calibration needs. In order to further contrast the two approaches, some of

the main limitations of both PCMs and SCCMs – summarized as differences

in calibration parameter demands, scale mismatch, upscaling parameters,

aggregation error, and stationarity – are discussed next.
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(1) Calibration parameter differences

In many of the studies reviewed for this chapter, PCMs have been

considered the primary tools for simulating crop growth and development.

However, a caveat of their powerful simulation capability is that they require

extensive fine-scale input data in order to function. PCMs often require data

on cultivar, management, and soil conditions that are unavailable in many

parts of the world (Lobell and Burke, 2010). Even in the presence of such

data, PCMs can be difficult to calibrate because of large numbers of

parameters (Lobell and Burke, 2010). For example, the well-evaluated and

used CERES-Wheat crop model which is part of the Decision Support

Systems for Agrotechnology Transfer (DSSAT, Jones et al., 2003) requires

fine-scale information on soil type, planting depth, row spacing, and several

genetic parameters that relate to specific cultivars (crop varieties).

As an alternative to PCMs, SCCMs are considered to have advantages

due to their limited reliance on field calibration data, and their transparent

assessment of model uncertainties (Lobell and Burke, 2010). However,

because of their relative simplicity, SCCMs have difficulty offering

process-level understanding and testing of adaptation strategies, so

extrapolation beyond the observations is considered risky (Rosenzweig

et al., 2013). Some crop modeling studies call for ’appropriate complexity’

for both SCCMs and PCMs (e.g. Hawkins et al., 2013a, Challinor et al.,

2009). Models need to be complex enough to adequately represent

cropping systems. However, an ’appropriate’ level of complexity is called for,

because the more processes are simulated (or the more statistical

predictors used), the greater the number of potential interactions between

them and the number of parameters that require calibration, thereby

increasing the potential for error (Challinor et al., 2009).

The next three limitations of crop models are closely linked together, and

have to do with the scale where PCMs and SCCMs are generally applied.
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(2) Scale mismatch

PCMs require a large amount of fine-scale calibration data because they

were originally developed to provide decision support at the field scale.

Despite this original intended scale design, PCMs have become common

tools in assessing agricultural impacts and adaptation to climate variability

and change at larger scales beyond the field (Palosuo et al., 2011). This

results in a scale mismatch between their design and implementation. A

scale mismatch leads to a number of persistent challenges, such as the

need to upscale input parameters on crop growth and development from the

field to other larger scales (Angulo et al., 2013, Palosuo et al., 2011).

Scaling up parameters and input data means that valuable information on

the environmental conditions where crops are grown could be lost and

smoothed in the process. However, most PCMs that are available

‘off-the-shelf’ for general impact assessment end-users are set at the field

scale, although they have been applied at many scales larger than this (e.g.

Challinor et al., 2017). A potential research gap is thus identified here: how

does the application of PCMs at larger (regional) scales affect yield

projections?

In contrast, statistical approaches can be used to directly link various

scales of observations of crops and climate, and are often used at a

regional or country scale where they are thought to perform well (e.g. Lobell

and Burke, 2010). While SCCMs may be limited for finer-scale response

compared to PCMs, the plausibility of field-scale simulations of climate

change impacts on yield should also be questioned, since projections at

field scales are extremely uncertain (Lobell and Burke, 2010).

(3) Upscaling parameters

Related to the scale difference, upscaling and deriving parameters to

larger scales is considered a significant challenge with the PCM approach.
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It has been hypothesized that many large-scale crop model applications that

assess climate impacts and adaptation options for crops involve huge

uncertainties related to the model parameters and structure (Palosuo et al.,

2011). In addition, the reproducibility of crop model outputs is also an issue,

as input parameters for PCMs are not always harmonized nor documented

in a transparent manner (Balkovič et al., 2013).

To obtain realistic simulations, it is recommended that crop model

parameters should be derived from field experiments where measurements

were taken (Therond et al., 2011). However, there are a limited number of

field experiments, due to their extensive and costly nature (Farina et al.,

2011). This may lead to calibration of PCMs with commonly used

field-based experimental datasets, which may propagate further bias

(Balkovič et al., 2013). In their experiment, Therond et al. (2011) did

additional calibration work for their simulations to match regional phenology

(plant developmental stage) dates. While this improved the yield

simulations, this was still not sufficient to reproduce regional observed

yields (Therond et al., 2011), which highlights significant shortcomings in

upscaling PCM parameters.

SCCMs are thought to have advantages over PCMs in this respect due

to their limited reliance on field experiment data for calibration, and their

transparent assessment of model uncertainties (Lobell and Burke, 2010).

(4) Aggregation errors

Also related to scale and upscaling, an additional source of error in using

both PCMs and SCCMs at large scales is data aggregation. Most

large-scale applications of PCMs have some way of considering the spatial

variability of input data such as climate, soil characteristics and

management practices, often through some form of data aggregation

(Angulo et al., 2013). There is a large diversity and heterogeneity of the
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environmental conditions, such as soil and weather, that agricultural crops

are grown and managed in. Aggregating and integrating spatially

heterogeneous data inevitably results in spatial and temporal biases

(Balkovič et al., 2013). This again connects to the potential for more

research related to the application of field-based models at larger scales.

For statistical approaches, it is thought that there is a reduction of error

when aggregating to larger scales because the relationship between

weather and yields is more appropriately described by simple functions at

coarse scales, rather than at fine scales (Lobell and Burke, 2010). This

means that working and aggregating at larger scales with SCCMs "cancels

out" many of the individual errors at individual fields (Lobell and Burke,

2010).

(5) Stationarity and explanatory power

One of the largest issues that remains with the use of statistical

approaches is the issue of stationarity. This problem arises because of how

SCCMs are trained and calibrated on a specific timeframe to describe

crop-climate relationships. The validity of empirical-statistical methods

under climate change is limited by the necessity of using data outside the

range for which the models were fitted (Challinor et al., 2009). In contrast to

PCMs which detail plant processes, SCCMs also have no explanatory

power to enable understanding as to why certain changes have occurred

(Challinor et al., 2009). Thus, statistical approaches should be used with

caution when projecting impacts at long lead times (Osborne et al., 2013).

SCCMs are also considered less adaptable to different conditions over

both time and space, such as changing CO2 concentrations or growth being

limited by water rather than radiation, and vice versa (Challinor et al., 2004).

A significant difference between process-based and statistical studies is

that the former tend to include the effects of CO2 increases, whereas
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statistical models typically do not (Lobell and Asseng, 2017). The response

of plants to CO2 is of particular importance, as GHG concentrations

continue to increase due to human activity, such as through fossil fuel

emissions. Carbon dioxide fertilization has numerous effects on crop

production: more CO2 could result in increased rates of photosynthesis,

decreased water use and various effects on crop leaf area index, biomass,

radiation use efficiency and harvest index (Challinor and Wheeler, 2008).

Because of its potential to increase crop productivity for particular crops,

it has been recommended that estimating the extent of the CO2 effect is

important because of its potential to stimulate plant growth, thus providing

more food for an increasing global population (Vanuytrecht et al., 2012). It is

clear that a major research need is for SCCMs to incorporate CO2 effects.

Additionally, both PCMs and SCCMs need to improve their treatment of

ozone as well (Lobell and Asseng, 2017).

(6) Other limitations and uncertainties

There are other limitations associated with both crop modeling

approaches, such as problems of co-linearity between predictor variables

like temperature and precipitation (Hawkins et al., 2013a, Lobell and Burke,

2010). It is also well-known that PCMs are also limited in their capacity to

simulate crop responses to extremes (Semenov et al., 2014), pests and

diseases (Liu et al., 2016), all of which are important in current and future

climate conditions. While SCCMs may be able to include indirect effects of

climatic variability, such as those related to pests and diseases, it remains

that statistical approaches do not directly consider processes inherent to

crop growth (Liu et al., 2016).

Regardless of the crop modeling approach – whether process-based or

based on statistical relationships – choosing or adjusting the climate model
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output to the right scale, and taking steps to make simulations or processes

more realistic can help to manage and characterize uncertainty. The process

of crop modeling involves numerous issues of data availability, quality and

translating input data from climate models to the appropriate scale and detail

needed by crop impact models (White et al., 2011), making the third step

of linking climate and crop models another significant component of crop

projections’ uncertainty.

2.4 Uncertainties in linking climate model

output and crop models

The final source of uncertainty in projections of the impacts of climate

change on crop yields stems from the need to do numerous intermediate

steps in order to link climate models with crop models. This linkage requires

bridging the scale gap between climate models and crop models, and also

making climate simulations more realistic prior to their use in crop models.

In addition, the development and availability of diverse climate and crop

models means that these intermediate steps are dependent on the research

questions and choices of methods of the end-users.

In this section, the methods that are used to resolve the scale gap as well

as address errors – downscaling and BC – are discussed. The use of multi-

model ensembles is also discussed in the context of the differences between

crop model approaches and the growing need for multi-method ensembles.

2.4.1 Relevance of downscaling in crop impact

assessment

As discussed in Section 2.2.4, downscaling methods are used to

produce finer-scale climate information from the coarse-resolution GCMs.
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Downscaling methods are able to translate a coarse-scale GCM output to

finer scaled information on climate change (Ekström et al., 2015), thus

providing climate information at scales more relevant for plant processes.

Because of the increasing availability of downscaled climate simulations, for

example through EURO-CORDEX, the use of dynamically downscaled

GCM output is considered a well-established and standard technique for the

generation of regional climate change scenarios (Kotlarski et al., 2014).

The development and increasing utility of downscaled climate model

output has not gone unnoticed by the impact assessment community – for

example, because there is an assumption that rainfall projections represent

a key bottleneck to reducing uncertainties in projections of climate change

impacts on agriculture, there has been support of downscaling methods in

crop modeling research (Lobell and Burke, 2008).

It is argued that this assumption, that finer-scale climate information is

"better", is related to the poor ability of climate models to simulate

precipitation, which is extremely important to crops. Many of the biggest

shortfalls in crop production have been as a result of droughts caused by

anomalously low precipitation (Lobell and Burke, 2008). Because crop

modeling studies rely on the accuracy of climate input data, it is also argued

that the choice of downscaling method, or RCM, is important. There are

advantages and disadvantages associated with RCMs, which are more

computationally expensive than GCms alone. Therefore, for this study, it is

important to ask and demonstrate whether (1) RCMs are skillful in capturing

important climate variables such as temperature and precipitation, and (2)

have increased skill and utility over GCMs for the study sites and climate

variables needed for crop projections.
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2.4.2 Bias correction to improve climate model output

When linking climate and crop models in order to assess the potential

impacts of climate change on agriculture at a regional or local level,

plausible climate projections are required. To address this, in addition to

downscaling, many crop modeling studies also use BC. This is because

even small biases in climate input can have significant consequences,

especially since crops have physical and/or biological thresholds that are

critical for their successful growth and development (Ruiz-Ramos et al.,

2016). For example, extreme temperatures can negatively affect wheat

development: both heat stress and frost can decrease wheat yield (Barlow

et al., 2015, Semenov and Shewry, 2011, Porter and Gawith, 1999).

Therefore, there need to be minimal biases in the climate simulations used

for crop models to avoid over- or underestimation of impacts.

Using BC can improve impact assessments, and may in fact be

considered necessary to obtain reliable future changes and design robust

ensembles (Macadam et al., 2016, Ruiz-Ramos et al., 2016). As a result, it

is often recommended that calibration or correction strategies should be

part of impact assessment, and that yield estimates made with both GCMs

and RCMs require some form of correction to climate inputs (Ho et al.,

2012, Glotter et al., 2014).

The use of BC in crop modeling applications has been shown to be

useful in a crop modeling case performed in Iberia for maize for the near

(2021-2050) and far future (2051-2100) (Ruiz-Ramos et al., 2016). The use

of bias-corrected climate simulations in a crop model improved simulated

crop phenology and yield, relative to crop projections simulated with

uncorrected climate input driven by GCMs (Ruiz-Ramos et al., 2016). In

another crop modeling study that also investigated maize, it was found that

no climate model output could reproduce crop yields unless BC was first

applied to climate simulations (Glotter et al., 2014).
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2.4.2.1 Criticism of bias correction

However, significant criticism of BC in the context of impact modeling

also exists. For example, Glotter et al. (2014) also found that while the

computationally expensive RCMs were able to correct some biases from

GCMs in the simulations, most errors in yield were dominated by

broad-scale systematic GCM errors, and after correction, RCM-driven and

GCM-driven yields were indistinguishable. Because of this, the study was

critical of the utility of downscaling. In addition, there have also been

arguments that although current BC methods might improve the applicability

of climate simulations for impact assessment, BC cannot improve low model

credibility – in fact it may even hide a lack of credibility or reduce credibility

(Maraun et al., 2017).

While the use of downscaling and BC have been shown to be useful in

reducing error and characterizing uncertainty in yield projections, it remains

a fact that BC cannot overcome major model errors. The naive application

of correction methods might even result in ill-informed adaptation decisions

(Maraun et al., 2017). This means that beyond the technical capability

provided by downscaling, and that of BC to improve climate model

simulations, a critical analysis of the skill, usefulness, and effects of

downscaling and BC should be taken into consideration.

It is clear from a review of the scientific literature on climate change

projections and impact assessment that there is a common and continuous

demand that GCMs are improved and the root sources of error from GCMs

are addressed. While improving GCMs cannot be feasibly covered by the

work in this thesis, there are still remaining research gaps that deal with

uncertainty in the typical modeling chain of GCM to RCM to crop model that

can be addressed, which are discussed in the next section alongside key

research questions.
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2.5 Identified research gaps and questions

Based on the literature review, there are several opportunities to conduct

more research in the field of climate change impact studies on crops, and

these are discussed and summarized in this section. These research gaps

are also important to be taken in the contexts of uncertainty and

communities of practice (discussed in Chapter 1): many processes and

methods that are assumed to be standard are often highly debated in and

between communities of practice from different disciplines that interact in

climate change impact assessments, for example using RCMs, PCMs over

SCCMs, and the practice of BC.

2.5.1 Bias correction, climate and crop projections

Based on this review, further investigation is needed on the effects of BC

on crop projections, specifically to identify how (1) the choice of BC method

affects yield projections, particularly through different crop modeling

methods, and (2) what biases are being addressed (GCM error, GCM-RCM

error, or RCM error) by correction methods.

There are numerous ways to achieve BC, ranging from simple scaling to

more complex distribution mapping (e.g. Teutschbein and Seibert, 2012),

which are all capable of improving simulations. While several studies have

investigated the effect of BC methods on hydrology (e.g. Teutschbein and

Seibert, 2012), or for future crop yield projections (e.g. Macadam et al.,

2016, Glotter et al., 2014, Koehler et al., 2013, Hawkins et al., 2013a) they

are rarely investigated jointly with crop modeling method. This is significant

because different crop modeling methods may utilize climate model

simulations in non-linear methods. For example, errors in simulated

precipitation were found to propagate through, and even enhanced by,

non-linear processes that simulated stream flow (Hwang et al., 2014).
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It is thus valuable to investigate how different RCMs and BC methods

affect yield projections relative to actual yield observations through different

crop modeling methods. Additionally, BC as a process is also discussed

critically because of its potential to modify the climate change signal, among

other effects.

For the second gap related to BC, in the typical impact assessment

method that uses downscaled GCM output as input to the crop model,

potential errors are introduced by the GCM and also by the RCM. It could

be possible that a well-performing GCM is paired with a poorly-performing

RCM for the climate variables needed for the simulation, and vice versa.

However, when bias-corrected, future climate projections typically use

historical GCM (or GCM-RCM) output as a calibration period for the

correction. Historical simulations are simulated by a free-running GCM,

which does not assimilate observations and thus does not match the

temporal evolution of atmospheric states in the real world (Eden et al.,

2014). Can BC potentially be a way to identify how biases from the choice

of GCM-RCM selection can affect both climate and crop projections?

2.5.2 Multi-method comparisons

Because of how different the communities of practice around crop

modeling are, another research gap is the comparison of PCMs and

SCCMs in multi-method approaches. With regard to crop modeling

uncertainty, crop model comparison projects such as AgMIP, which is within

the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)

(Rosenzweig et al., 2013, Warszawski et al., 2014), is a current large-scale

attempt to systematically explore differences between crop models,

however it is limited to PCMs.

This is significant, because as discussed in Section 2.3, there are large

methodological differences between PCMs and SCCMs. The differences in
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approach of PCMs and SCCMs means that there is ’method uncertainty’ in

their assessment of the impacts of climate change on crop production and

yields. While studies between SCCMs and PCMs are increasing (e.g. Lobell

and Asseng, 2017, Moore et al., 2017, Liu et al., 2016), it remains to be seen

whether a particular crop modeling method or crop model emerges as an

optimal method for future yield projections.

As a means to address this uncertainty, just as MMEs and multi-model

means have proven to be useful in understanding and characterizing

uncertainty, multi-method ensembles can enable the quantification of

method uncertainty (Liu et al., 2016). Multi-method ensembles, coupled

with multi-model ensembles of climate models, can allow for better

comparison of yield projections across different growing conditions; based

on these recommendations, a multi-method approach is adopted for the

experimental design of the research.

2.5.2.1 Characterizing and communicating uncertainty

Lastly, the communication and characterization of uncertainty is an area

within crop-climate studies that is an area that constantly benefits from new

and added knowledge, as well as opportunities for further investigation.

Although using multi-model and multi-method ensembles may help to

characterize uncertainty, there are still numerous in-between steps such as

the different parameters and calibration steps for both the climate and crop

models that may have impacts on yield projections. The argument that crop

yield projections are inherently uncertain (e.g. Asseng et al., 2013) may be

perceived as a bottleneck to decision-making for climate change adaptation.

However, key papers (e.g. Vermeulen et al., 2013, Lemos and Rood, 2010)

have refuted this ’uncertainty fallacy’, as policymakers and decision-makers

are quite accustomed to making large decisions under considerable

uncertainty.
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The literature review reveals that it has become important to address

uncertainty in impact assessments. Dealing with uncertainty can be

complex, but it is important to address as it helps the discourse on whether

yield projections of climate change impacts can be useful, given their large

uncertainties. This is particularly significant because uncertainty, and how it

is dealt with, can critically affect the way climate projections move from

useful to usable (Lemos and Rood, 2010).

The reduction of uncertainty – and proper communication of what it

means – is thus of great concern within the climate impacts community. In

this regard, there is an opportunity to use the research questions and

results to address and communicate uncertainty in a transparent way. There

are also opportunities to identify where sharpening of the research in the

future is possible and where the study has limitations. By doing so, the

research can contribute to the knowledge of uncertainty and the larger

picture of making crop yield projections move from uncertain to useful.

2.5.2.2 Summary of research gaps

In summary, there are several ways to focus the research, based on the

identified research gaps and remaining challenges:

• Related to the climate modeling community of practice, it is important

to go beyond the assumption that RCMs automatically provide more

skill or information; therefore assessing whether RCMs are skillful in

capturing important climate variables such as temperature and

precipitation, in particular vis-à-vis to their driving GCMs;

• Investigating the effect of the BC method on climate and yield

projections, particularly given that there are a number of ways to

perform BC, and to investigate its effect on climate change projections;

• Differentiating the error contributed by the choice of the GCM and
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RCM in a way to understand how this affects future projected climate

changes;

• Further investigating how PCMs and SCCMs differ in their structure,

limitations, and simulations of past and future yields, giving particular

focus to issues of scale, calibration, and upscaled parameters;

• In general, characterizing the contribution of the ‘intermediate’ steps in

the linkages between climate and crop models (See Figs. 1.2-1.4); and

• Using uncertainty as a way to understand the limitations of current

methods to assess the impacts of climate change on agriculture, and

to discuss this with the aim of providing useful information.

There are also opportunities to further investigate how solar radiation, an

important factor in PCMs, can be bias corrected, as well as how CO2 can

be better accounted for in statistical crop modeling approaches. However,

these are not covered by the work in the thesis in order to better focus on the

following research questions outlined below.

2.5.3 Research questions and hypothesis

1. What climate variables are most important to wheat yields in the

European study sites?

2. How well do climate models – the state-of-the-art tools of simulating the

earth’s atmospheric processes and projecting future changes – capture

and represent climate variables that are relevant to crop growth and

development? In particular, does the computationally expensive use of

regional climate models add any skill or value to the coarser climate

model output?

3. How do the two main methods of simulating crop yields, namely

process-based models and statistical approaches, compare to each

other in concept and in application, e.g. simulating observed yields
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from the past? What are their differences in how they represent

crop-climate relationships?

4. How do different methods of correcting biases in climate model output

compare when applied to past and future climate simulations?

5. What are future climate projections for the chosen geographical areas,

and how do different climate models, downscaling and bias correction

methods affect these projected changes?

6. How do the simulation and modeling methods chosen affect the

projections of wheat yields under different future climate change

scenarios?

7. What are the sources of uncertainty in crop yield projections, and how

can these sources be quantified?

8. Based on the results of the study, what areas need more focus on in

future work?

These research questions and the hypothesis have informed the selection

of data, methods, and the framing of results to be discussed in the thesis.

Each chapter addresses one of these research questions, in addition to other

relevant sub-questions that aid in answering a main research question. The

hypothesis, based on the literature review, is that wheat yields in Europe

will be negatively affected by climate change because of the sensitivity of

wheat to climate; however, it is theorized that the severity of projected yield

decreases depends largely on the methods, models, and climate change

scenarios chosen.

2.5.4 Research aim

The research aim of this project is to produce projections of future wheat

yields that consider the potential effects of climate change, while

transparently communicating the limitations and uncertainties of the
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methods used to generate them. In this way, steps to better characterize

uncertainty while understanding potential yield changes are offered, in order

to inform agricultural adaptation and add to the body of knowledge in the

interdisciplinary field of crop-climate studies.

2.6 Structure of the thesis

Because of the diversity of the interdisciplinary methods used in this

study, each chapter contains introduction and methods sections specific to

the chapter objectives and research questions. The thesis is made up of

eight chapters, including (Chapter 1) which introduced the research project,

key features of wheat physiology, and concepts such as uncertainty and

communities of practice.

This chapter, Chapter 2, critically reviewed methods that aim to

understand the impacts of climate change on yield, with a particular lens on

the ’cascade of uncertainty’ (e.g. as defined by Wilby and Dessai, 2010).

Research gaps and questions that guide the research are identified, as well

as the lines between what the research is able to feasibly investigate.

Chapter 3 compares two different approaches to crop yield modeling,

namely a statistical crop-climate model an a process-based crop model.

Their respective ability to simulate yields is evaluated and compared

through a simulation of past yield with observational climate as input.

Chapter 4 investigates the performance of global and regional climate

models in simulating temperature and precipitation relative to past climate

observations, and whether downscaling provides any added value over the

typically coarse-scaled global climate model output.

Chapter 5 evaluates regional climate models, and compares how

effective different bias correction methods are in improving climate

simulations. These corrected climate model outputs are used in a
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comparison with past yield simulations from different crop modeling

methods (from Chapter 3), in order to formulate a methodology for future

climate simulations and yield projections.

Chapter 6 is a comparison of how simulations of future climate change

from different models and scenarios project changes in temperature and

precipitation relative to one another. Based on the results of these future

climate projections, the limitations of using bias correction to future

projections are also discussed, considering the different sources of error

that these methods are – and are not able – to address.

Chapter 7 focuses on the development and comparison of future wheat

yield projections, utilizing an uncertainty decomposition method to partition

the sources of uncertainty into yield projections. By doing so, the aim of this

chapter is to produce yield simulations while quantifying the contribution of

uncertainty by each step in the impact simulation cascade.

Chapter 8 seeks to bring together the results in order to recall their

context and contribution to address to the main research questions, offer

steps in moving forward, and discuss the limitations of the study.

An appendix is also available after conclusion chapter to provide further

detail on simulations, plots, and other calculations that were not included, but

referred to, in the main text.



Chapter 3

Evaluation and comparison of

crop models and methods

3.1 Introduction

As discussed in Chapters 1 and 2, the sensitivity of wheat to climate is

of great concern in a warming world. With present-day climate change and

variability already having significant impacts on crop production, the climate

and weather hazards brought by future climate change will indubitably pose

greater risks to wheat production. It is therefore important to assess and

quantify the relationship of crop growth and development to temperature and

precipitation in order to determine the extent of influence that climate and

climate change have on yields.

Given the two distinct approaches to modeling crop production, it is

valuable to ask how, and how well, each approach represents and

integrates the relationship between temperature, precipitation, and yield.

The work of this chapter compares two different crop modeling approaches

in reproducing wheat yields in the UK and Germany in order to answer

research questions on crop-climate relationships.

55
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The work of this chapter is particularly important because the skill of the

crop models in reproducing regional yields is crucial for the work in future

chapters when generating yield projections with both crop modeling

approaches. Because of the significant differences between statistical and

process-based crop models, each have their own advantages and

limitations, as well as different communities of practice that may influence

how and for what purpose a particular crop modeling method is applied.

Their differences in skill, and the larger implications of the differences

between the research communities that use them, are explored and

critiqued in this chapter.

3.1.1 Comparing crop modeling methods

As discussed in Section 2.3.1, there are various possible approaches to

determine the influence climate has on yields, and these have been used

for a number of different crops and locations. In the case of statistical

crop-climate models (SCCMs), typical approaches are using multiple

regression, with different climate variables – usually indices of precipitation

and temperature – as predictors (e.g. Ray et al., 2015, Martín et al., 2015,

Moore and Lobell, 2014, Lobell and Burke, 2010, Hawkins et al., 2013a).

The complexity of the SCCM may also be increased by including

non-climatic predictors such as soil, and considering a non-linear trend (e.g.

Michel and Makowski, 2013, Kristensen et al., 2011, Brisson et al., 2010).

In contrast, process-based crop models (PCMs) seek to represent the

physical mechanisms of crop development. PCMs typically operate with a

daily time step and dynamically calculate various crop and soil properties

(Lobell and Asseng, 2017). Their general mechanisms are as follows: the

timing of key events such as floral initiation, anthesis and physiological crop

maturity are usually predicted by integrating a developmental rate, R, over

time. This rate is determined by a potential rate of crop development, Rpot,
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which is modified by environmental factors such as temperature (T ),

photoperiod (P ), vernalization (V ), and other abiotic stresses (Z) (Boote

et al., 2013, Equation 3.1). In the data and methods section, the specific

processes represented by the chosen PCM for the study are discussed.

R = Rpot ∗ f(T, P, V...Z) (3.1)

Equation 3.1: General mechanism of process-based crop models, where R is the
developmental rate integrated over time modified by factors (f). (Boote et al., 2013)

3.2 Chapter approach and objectives

In this chapter, the main objective is to compare the simulations of yield

from a SCCM and PCM driven with the same past climate observations.

The aim of this comparison is to evaluate the crop models for their ability to

capture past yields before they are used to project future wheat yields in

subsequent chapters, considering the differences, limitations and

associated uncertainties of either approach (See Section 2.3.2). This

comparison is important because of the different ways climate-crop

relationships are represented in each approach, and how their individual

skill can influence the confidence and robustness of future yield projections.

3.2.1 Considerations for the hindcast comparison

While the chapter’s main objective is to objectively compare and evaluate

the skill of the SCCM and PCM, there are several considerations that make

this comparison fairly complex. For instance, the scale of comparison: the

SCCM is evaluated and used at the country and regional scale, while the

PCM is used at the regional scale with initial validation at the site scale.

While SCCMs have already been shown to perform well at the regional scale

(e.g. Lobell and Burke, 2010), the use of PCMs at the regional scale is
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challenging because of the original field-level design of PCMs, which require

climate inputs of high accuracy at high spatio-temporal resolution, typically

more than the resolution of GCMs (Glotter et al., 2014, Ramirez-Villegas

et al., 2013), in addition to the input-intensive design of PCMs (Lobell and

Burke, 2010). Therefore, an important consideration in this chapter is how

the PCM is used at larger scales to be comparable to the SCCM.

3.2.1.1 Using field-level PCMs at greater scales

Field-level PCMs are often applied to make regional- or larger-scale

simulations of yield (e.g. for the same countries in the study, the UK (Cho

et al., 2012) and for Germany, (Nain and Kersebaum, 2007)). There are a

number of ’typical’ approaches performed in order to circumvent this scale

discrepancy (See e.g. Ewert et al., 2011). One approach is that the PCM is

evaluated or validated at the field level. After a satisfactory validation step,

the PCM is then used directly the regional level, following the hypothesis

that if yields ’reasonably match’ reported regional yields, then this would

provide validation for the use of crop growth models in predicting regional

yields under a variety of climate, economic and management scenarios

(Huffman et al., 2015).

While crop models are designed and used with careful evaluation,

calibration, and knowledge on the mechanisms they represent, it may still

be an outcome that evaluation for a particular crop or domain may result in

a poor evaluation outcomes. For example, in their work, a validation

exercise at the field level with the Rothamsted field-level experiment (for

application at the UK regional level) did not show very high agreement

between CERES-Wheat and the observed data because a generic cultivar

without specific tuning was applied (Cho et al., 2012). In another case, the

discrepancies between simulated and observed yields using CERES-Wheat

following this field-level validation approach were deemed too high (e.g.
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Langensiepen et al., 2008) and future yield projections were not generated.

Despite these poor evaluation results, however, PCMs are still often

applied at scales beyond their original design (e.g. Cho et al., 2012, where

the PCM was still applied at the regional scale to make yield projections into

the future over the UK). An alternative approach to the field-validation

involves direct calibration with regional-level parameters, although

recognizing that this may also be a source of error due to aggregation of

fine-scale field characteristics. Regional statistics are usually insufficient to

derive parameters for crop models as they do not represent field-scale

conditions for which the models have been originally developed (Balkovič

et al., 2013, Therond et al., 2011), where regional-level data of finer

calibration parameters for the PCM DSSAT is unavailable (e.g. spikelet

length, date of emergence, date of heading).

3.2.1.2 Critiqiuing practices at the regional scale

These typical simulation practices lead to questions of what exactly

’reasonably matched’ in terms of validation means – given that good

practice in crop modeling underpins accurate risk quantification (Challinor

et al., 2017) – what are good practices for the validation step of field scale

models used at spatial scales greater than those at which they were

developed for? Furthermore, if the alternative regional calibration is used,

are previous studies and the existence of CERES-Wheat regional wheat

calibration parameters (e.g. (Nain and Kersebaum, 2007)), enough to justify

the use of the PCM at larger scales? Acknowledging the limitations of the

approach – and thinking about them critically – is important to the research

questions outlined in the following section, and the chapter’s design is

structured to allow for this critical comparison not only between results, but

between the underlying assumptions of the different methods.

However, it is reiterated here that the scale of interest of the study is
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the at the larger regional scale (country- to state-level) because it is a scale

that climate projections are most available and reliable (Lobell and Burke,

2010). Encouraging results of the ability of downscaled climate models to

simulate European climate with EURO-CORDEX (e.g. Kotlarski et al., 2014,

Jacob et al., 2014) are also used to justify the choice of regional scales in

the chapter and in the study.

3.2.2 Chapter research questions

The main research question addressed by this chapter is: How do the two

main methods of modeling crop yields compare to each other in simulating

observed yields from the past? In addition to the main research question,

the following research questions are also investigated in this chapter, in light

of the considerations of scale and regional-scale evaluation:

(1) How have wheat yields changed in the UK and Germany in

recent decades?

(2) What is the statistical relationship between wheat yields,

temperature, and precipitation for the UK and Germany?

(3) How well does a statistical crop-climate model, developed

based on observations of climate, perform in reproducing wheat

yields from the past?

(4) How well does a process-based model perform in

reproducing yields from the past? Are the represented

processes within a mechanistic plant growth model adequate in

describing crop growth and yield?

(5) How do these recreated past yields (’yield hindcasts’) from

two different crop modeling methods compare to each other, and

to observations?

(6) Lastly, and perhaps most critically, how do the ’standard’ crop



3.3. DATA AND METHODS 61

modeling procedures behind each method affect the credibility

and robustness of crop simulations? Being cognizant of

aggregation error and uncertainty – particularly the limitations of

a field-based model being applied to a regional level – are there

opportunities to improve skill, or refine these standardized

methods?

3.3 Data and methods

3.3.1 Overview of chapter experimental design

The sensitivity of wheat to climate change and variability has led to

numerous studies which attempt to project their possible impacts on wheat

production. However, the typical approach to modeling and projecting crop

yields is considered highly uncertain, and multiple steps of the impact

assessment process contribute to this uncertainty. There are also

opportunities within the chapter, and research overall, to critically assess

how crop modeling is typically implemented. In response to this, the

research of the chapter is designed to address uncertainty from the crop

modeling method. The chapter research design is shown in Figure 3.1.

The chapter begins with firstly determining current trends in wheat

production in the UK and Germany, two major wheat-growing countries, as

well as an analysis of their recent climate records (in the Appendix).

Following this, the SCCM is evaluated for its skill in reproducing past yield.

A field-level PCM is tested with a simple sensitivity experiment using data

from a long-term field experiment in Germany. Due to limitations of data

availability at the regional scale for the UK, the regional analysis of yield and

climate is limited to four regions in Germany that are chosen to represent

north, west, east and south Germany climates.
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Figure 3.1: Overview of Chapter 3 research design.

3.3.2 Sources of wheat production data

3.3.2.1 National yield data

The UK and Germany are chosen as sites for data analysis because of

their high wheat production and yields (See Chapter 1). The wheat yields

of the UK and Germany are also potentially stagnated in terms of growth

(Moore and Lobell, 2015, Brisson et al., 2010). National, regional and site-

level wheat yield data from the UK and Germany are obtained from different

secondary sources. National wheat production figures from 1961-2013 are

obtained from the United Nations Food and Agriculture Organization (FAO,

2014), which also has data on cultivated area. These figures are used to

calculate average yield in tons per hectare (t/ha). A limitation of the FAO

data is that it does not distinguish between winter and spring wheat, which
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differ in their planting time. However, while this limitation has been noted,

winter wheat is far more commonly planted rather than spring wheat (Thorup-

Kristensen et al., 2009).

3.3.2.2 Regional yield data

For regional data, wheat production and planted area data for the UK are

available only for the period 2000-2015 at the time of the analysis. Following

the convention of 30 years for the length of climate data for robust analysis,

the length of yield data of only sixteen years is insufficient for regional yield

analysis in the UK. However, longer-term regional data for Germany is

available from winter wheat production records from Land- und

Forstwirtschaft und Fischerei reports from the Statistisches Bundesamt

(German Federal Statistics Office, Destatis, 2018). Because of this data

limitation, the direct comparison of the output of the SCCM and PCM is only

possible for Germany.

For consistency, the NUTS classification (Nomenclature of territorial

units for statistics) is used to geographically identify regions in Germany.

NUTS is a system used to geographically label the economic divisions and

territory of the EU. Four German federal states are chosen to represent the

northern, western, eastern, and southern wheat-growing regions: Bayern

(South Germany, NUTS code DE2), Nordrhein-Westfalen (West Germany,

DEA), Sachsen (East Germany, DED) and Schleswig-Holstein (North

Germany, DEF). Yield data from these regions is available from 1979-2014

(36 years) (Table 3.1).

3.3.2.3 Field-level data: Bad Lauchstädt

In addition, a long-term field experiment (LTFE) is chosen for the

analysis to validate the PCM at a local scale, based on its long time period

of observations and data availability. LTFE provide the possibility of
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Table 3.1: Selected German regions, and NUTS code.

Region Code
Bayern, S Germany DE2

Nordrhein-Westfalen, W Germany DEA
Sachsen, E Germany DED

Schleswig-Holstein, N Germany DEF

investigating the effect of fertilization on yields, soil parameters and

ecosystem functions (Merbach and Schulz, 2013), and are a rich source of

data that can be used to test sustainability, study cropping dynamics, and

their impacts on agriculture and the environment (Ortiz et al., 2008).

The static fertilization experiment in Bad Lauchstädt (BL, Merbach and

Schulz, 2013) in Sachsen-Anhalt in Central Germany has been running since

1902, and data from 1978-2014 is used for some sensitivity analysis at the

field scale. The BL experiment has eight strips where the crops are grown

simultaneously every year in a rotation between sugar beets, spring barley,

potatoes and winter wheat. The soil is haplic chernozem (loamy). Grain

yield data from 1978 onwards is available. The plots were treated with no

fertilizer (NoFert), different amounts of farm yard manure (FYM1 with 20t/ha

and FYM2 with 30 t/ha) and combined in a factorial manner with mineral

fertilizer (NPK).

3.3.3 Sources of climate data

3.3.3.1 National and regional gridded climate data

In terms of climate data, daily values of maximum and minimum

temperature (Tmax and Tmin), as well as precipitation are taken as

observations from E-OBS, which is a gridded dataset of land-only daily

high-resolution estimates of these climate variables in Europe (Haylock

et al., 2008). E-OBS is used at 0.5◦ regular grid cell resolution. E-OBS was
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developed as part of the European Union ENSEMBLES project, an

ensemble prediction system for climate change based on high resolution

global climate models. E-OBS daily values are compiled from observations

from various weather observation stations around Europe (Haylock et al.,

2008). E-OBS daily values are calculated with a three-step process of

interpolation, first with monthly precipitation and mean temperature because

of an insufficient number and heterogenous distribution of European

weather stations (Haylock et al., 2008).

E-OBS is used as climate observations in the study as it was developed

for the European domain. Since climate variables for the UK and Germany

at both country and regional levels are needed, E-OBS is deemed most

appropriate for the study. Land-based grid cells over the UK and Germany

are intersected with country and regional grid lat-lon boundaries based on

the NUTS grid, and then aggregated to obtain country and regional climate

observation averages. At the site level, the BL experiment has

meteorological data for Tmax and Tmin, precipitation, humidity, and

radiation for 1978-2014.

3.3.3.2 Other climate data

Additional climate data apart from E-OBS is needed, considering the

climate requirements of CERES-Wheat. For solar radiation, regional

downward solar radiation estimates were taken from ERA-Interim (Dee

et al., 2011) for the four German regions in the study.

3.3.4 Evaluating the statistical crop-climate model

3.3.4.1 Accounting for yield changes

The SCCM used in this chapter is a generalized additive model

patterned after crop-climate studies for for maize yield (Hawkins et al.,
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2013a and Lobell and Burke, 2010) which both use multiple linear

regression to derive parameters for temperature and precipitation indices as

predictors for yield. An adapted model based on their work is used in this

chapter, where it has been modified by several changes: firstly, different

time series models are fitted to yield data in order to determine the best-fit

model of yield evolution over the recent past decades. Although yield

changes have been typically described by a linear trend, a cubic regression

spline is used in the work of Hawkins et al. (2013a) to represent the

increase in expected yield due to improving technology. This avoids the

assumption that the technology trend is linear with time (Hawkins et al.,

2013a).

In other crop modeling studies, this trend has been found to be better

described by quadratic and linear-plus-plateau (LPP) models, which tend to

work better in cases of yield stagnation, which was the case in France from

1996 onwards (Brisson et al., 2010). Following the work of Brisson et al.

(2010) and Michel and Makowski (2013), in addition to fitting a linear model,

time series are fit with pairs of straight lines to test whether a ’stagnating’

model fits the yield data at a national level.

3.3.4.2 Using hot days and summer precipitation as predictors of yield

Another adaptation to the general SCCM is the choice of climate

predictors. Based on the importance of heat stress on yields during

anthesis, the proposed model has two main climate predictors for yield:

firstly, the number of days equal to or above 31◦C between June-August

(JJA). Yield loss due to irreversible grain sterility begins at this temperature

(Webber et al., 2015, Porter and Gawith, 1999). Aside from being the

warmest months in the year, the JJA season is important because it

coincides with the anthesis (flowering) stage, which occurs 130 days after

emergence or typically around June, as well as overlapping with the
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grain-filling stage (Acevedo et al., 2002, Kristensen et al., 2011).

The anthesis stage has been shown to be particularly sensitive to high

temperatures, and the grain-filling stage that follows it is also sensitive to

heat stress. High temperatures at anthesis can reduce the grain number,

while heat stress after flowering can reduce the grain size (Semenov and

Shewry, 2011). These reductions can reduce grain yield (Semenov and

Shewry, 2011). While increased temperatures increase the rate of

grain-filling, they also reduce the period for grain-filling; although it could be

thought that an increase in the grain-filling rate could compensate for the

shorter period, this does not occur at temperatures above 30◦C (Farooq

et al., 2011).

A second predictor is mean summer (JJA) precipitation (P̄S), which is

also averaged over both countries and the four German regions. In the work

of Lobell and Burke (2010), this term is averaged over the entire growing

season; in the work of Hawkins et al. (2013a), this is a climate index based

on a long-term rainfall average over JJA. The third predictor is an interaction

term TH and P̄S, as hot days and precipitation have been shown to interact

with each other (i.e. more hot days, less rain) (Hawkins et al., 2013a).

3.3.4.3 General SCCM for evaluation

The full general model is shown in Equation 3.2, where Y is wheat yield,

f(t) is the yield time series trend, βn represents the coefficients of the

different parameters for the climate indices and their interaction term, and ε

is an error term at time t. Although this general model is adopted, the trend

and each climate predictor is also evaluated and validated for each site (UK,

Germany, German regions); non-significant predictors (p>0.05) are not

included in the final model of the country or region based on linear

regression analysis with ordinary least squares.
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Y (t) = f(t) + β1TH(t) + β2P̄S(t) + (β3TH(t)× P̄S(t)) + ε(t) (3.2)

Equation 3.2: General statistical crop-climate model for wheat.

3.3.4.4 Analyzing yield time series trends

Aside from the linear and LPP models, wheat yield data are also fitted

with polynomial models, to account for non-linear yield trends (See Table

3.2 for a summary of models). Different models are fitted to the yield time

series from the UK, Germany, and German regions. The model with the

best fit, as determined by several statistical metrics described in the

following section, is used to represent the yield trend, inclusive of changes

in yield due to technology and management. In the case of the LPP model,

the point of transition or breakpoint when yields begin to decline or stagnate

is estimated with the R segmented package (Muggeo, 2008), which uses a

grid-search type algorithm that estimates a model breakpoint by fitting a

linear model iteratively with a linear predictor. Provided with an initial

estimated breakpoint, calculations from the algorithm update the breakpoint

estimate through ’gap’ and ’difference-in-slope’ coefficients (Muggeo, 2008).

In the final model, the time trend yield is fitted simultaneously with the

climate predictors in order to avoid overfitting.

Table 3.2: Models used to determine yield evolution trends.

Model Description
LM0 Linear model
LM1 LPP before estimated breakpoint
LM2 LPP after estimated breakpoint
QM Quadratic model (QM)
CM Cubic model (CM)
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3.3.5 Process-based model: CERES-Wheat

3.3.5.1 Introduction and basis of selection

While considering the limitations of PCMs, they remain the most current

tools for understanding the impacts of climate change on crop yield. There

are many PCMs that are capable of simulating the effects of climate change

on various aspects of wheat production, and many of them have been used

and evaluated in many different locations all across the world. In the work of

this chapter, the CERES-Wheat PCM (Originally Ritchie and Otter, 1985,

now part of DSSAT Jones et al., 2003) is used. CERES has a long

development history (Dettori et al., 2011). It has been compared to other

crop models in various studies (e.g. Eitzinger et al., 2013, Palosuo et al.,

2011, Singh et al., 2008, Eitzinger et al., 2004, Jamieson et al., 1998). It is

also included in the Agricultural Model Intercomparison and Improvement

Project (AgMIP) (Rosenzweig et al., 2013) and in a crop modeling method

comparison study (Liu et al., 2016).

In a review of studies that use crop models in their methodology, CERES

was the most used crop model in the majority of papers (White et al., 2011).

These reasons of wide usage, evaluation and accessibility are reasons for

the selection of CERES-Wheat for the research. Additionally, CERES-Wheat

was found to have satisfactory performance at a regional scale in the UK and

in Germany (Cho et al., 2012, Nain and Kersebaum, 2007), but also critically

evaluated in Northern Germany (Langensiepen et al., 2008). In this chapter,

CERES-Wheat is tested and validated at the field-level in Germany prior to

its use in crop hindcasts.

3.3.5.2 Modeled processes and mechanisms

CERES-Wheat is able to simulate crop phenological development. This

means that it is able to simulate the growth of grains, leaves, stems and roots
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and biomass accumulation based on thermal time accumulation (Cho et al.,

2012). It is also able to account for soil water balance and soil processes

important to crops such as nitrogen uptake, which eventually lead to yield

(Cho et al., 2012).

In CERES-Wheat, the plant life cycle is divided into several phases. The

rate of crop development is governed by thermal time, or growing

degree-days (GDD), which is computed based on the daily maximum and

minimum temperatures (Jones et al., 2003). Daily plant growth is computed

by converting daily intercepted photosynthetically active radiation into plant

dry matter using a crop-specific radiation use efficiency (RUE) parameter

(Jones et al., 2003). Light interception is computed as a function of leaf

area index, plant population, and row spacing (Jones et al., 2003).

Information on field management such as planting, harvesting, application

of both organic and inorganic fertilizer, and irrigation are also considered.

Abiotic stresses such as water, nitrogen, temperature or atmospheric CO2

modify the amount of new dry matter available for growth each day (Jones

et al., 2003). In CERES-Wheat simulations, the wheat crop is allowed to

grow and reach physiological maturity. However, growth is terminated if the

plant runs out of resources or if the grain growth rate is reduced below a

threshold value for several days (Jones et al., 2003). In order to model these

processes, the CERES-Wheat PCM has a set of minimum data requirements

for the simulation to run (Jones et al. (2003), Table 3.3).

3.3.5.3 Cultivar-related plant processes and responses

Many of the simulated crop metrics like yield or phenology are based on

the genetic coefficients for the cultivar (variety) simulated. For example, the

grain numbers are based on the cultivar characteristics, which determine its

genetic potential, canopy weight, average rate of carbohydrate accumulation

during flowering, and temperature, water and nitrogen stresses (Jones
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et al., 2003). Other genetic coefficients include the cultivar’s daylength and

vernalization sensitivity. Failed or insufficient vernalization in winter wheat

can delay dormancy, which then delays the onset of the reproductive stage

of winter wheat (Wang et al., 2015). In CERES-Wheat, these numerous

processes are described by cultivar coefficients (Table 3.4).

Table 3.3: CERES-Wheat minimum data requirements (Jones et al., 2003).

Module Input requirements
Site Latitude, longitude, elevation, average annual temperature

and amplitude, slope, topography, drainage, surface stones
Weather Daily solar radiation, maximum and minimum temperatures,

precipitation
Soil Classification and characteristics by layer (e.g. water

release curve characteristics, bulk density, organic carbon,
pH, root growth factor, drainage)

Initial conditions Previous crop, root and nodule amounts, rhizobia
characteristics, water, ammonium and nitrate by layer

Management Cultivar: name and type (genotypic coefficients) Planting:
date, depth, method, row spacing, direction, population
Water: irrigation and water management (dates, method,
amounts, depth)
Inputs: Inorganic and organic fertilizer (material, dates,
method, amount)
Others: tillage, environmental adjustments (e.g. CO2,
harvest schedule)

Table 3.4: CERES-Wheat (DSSAT) experimental values (Jones et al., 2003) and
regional German cultivar coefficients (Nain and Kersebaum, 2007).

Cultivar
coefficient Controlled crop process Coefficient

values
P1D Photoperiod sensitivity coefficient 5.0
P1V Vernalization sensitivity coefficient 5.0

P5
Thermal time from the onset of filling to

maturity
8.0

G1 Grain (kernel) number per unit stem 3.9
G2 Potential kernel growth rate 3.0
G3 Tiller death coefficient 3.0

PHINT
Thermal time between the appearance of leaf

tips
95
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3.3.5.4 Experimental design for the PCM evaluation and simulations

The sensitivity of the CERES-Wheat is tested at the field scale, with BL

data from 1978-2014. A simple sensitivity experimental design is adopted to

test the PCM responses to increases in temperature and precipitation in

both well-fertilized and poorly-fertilized wheat fields. Modifications are daily

increases of 1 and 2◦C to daily temperature and +1 and 2 standard

deviations from the daily mean precipitation for the observed time period. In

addition, in order to understand the influence of genetic coefficients, the

regional coefficients from Nain and Kersebaum (2007) are used together

with the default genetic coefficients for wheat to compare yield responses.

After this sensitivity analysis, the output of the PCM is evaluated with

regional genetic coefficients (Table 3.4) so that its performance can be

compared with the SCCM. The use of standard genetic coefficients is a

commonly applied practice when practical restrictions prevent site-specific

model calibrations (Langensiepen et al., 2008), althugh the limitations of

this typical approach have already been explained (See Section 3.2.1.1).

The following experimental set-up is thus adopted: Optimal fertilizer based

on the BL experiments is provided. Fine-scale soil information is used to

provide the soil profile and type. One kilometer-grid resolution soil data is

taken from a fine-scale soil grid developed for DSSAT (IRI et al., 2015).

Regional yields are simulated with the same experimental setup (input,

management, cultivar) for all four German regions. The simulations are

performed for each year from 1981-2010 (30 years). Evapotranspiration is

calculated using the Priestley-Taylor method (Priestley and Taylor, 1972),

which is based on radiation and soil heat flux. Hydrology follows the Ritchie

water balance model (Ritchie and Otter, 1985), which uses the upper limit

and drained lower limit of the soil as basis of the available soil water. The

Godwin model for soil organic matter (Godwin and Jones, 1991) is used,

and this models the transport of nitrogen through the soil to deeper layers
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based on water flux values obtained from the soil water module of the crop

model (Jones et al., 2003).

3.3.5.5 Evaluating crop model performance

To evaluate model performance, goodness-of-fit is determined based on

the adjusted coefficient of determination (R2) with p <0.05 considered

statistically significant, denoted with (∗) when indicated. Additional

validation such as the root mean square error (RMSE), Akaike Information

Criterion (AIC), and Leave-One-Out Cross Validation (LOOCV ) error

statistics are also calculated. RMSE is the square root of the mean square

error, which is a measure of how close a fitted line is to data points.

The AIC is a means of measuring relative model quality where a smaller

number means the model is closer to the true (unknown) model, and the

LOOCV statistics are from a resampling method that estimate test error

based on n− 1 training observations with a prediction made for the excluded

observation (James et al., 2013). R2, RMSE, AIC and LOOCV error are

also calculated between hindcasted and observed yields for each country

and region. If the SCCM or PCM do poor jobs of representing crop yield

responses to climate, this will be reflected in its validation statistics, such as

a low R2, and high error estimates between hindcasted and observed yields.

3.4 Results

The results section first reports the analysis of yield trends, followed by

the evaluation of the general SCCM, the site sensitivity analysis of a PCM,

and finally the yield hindcast comparison between the SCCM and PCM.
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3.4.1 Yield trend analysis

3.4.1.1 National wheat yield trends in the UK and Germany

Time series analysis of FAO data shows that wheat yields in the UK and

Germany since 1961 have increased from around 3-4 t/ha to around 6 t/ha at

present. However, after the 1990s, the rate of yield increase slows down, and

more yield variability (scatter) in annual yields can be observed, for example

for Germany after the year 2000. Figures 3.2A-D and Table 3.5 show the

results of fitting different models for the yields in UK and Germany to describe

national yield trends.

The linear model LM0 shows that yields in both countries have

increased significantly since the 1960s (R2=0.83). The estimated breakpoint

between increasing and stagnating yields in the UK and Germany is

identified as the year 1999. Two separate linear models are thus calculated

for the LPP model: one before the year 1999 and another one after. For the

UK, LM1 improves the R2 value for the years 1961-1999 (LM0 R2=0.83,

LM1 R2=0.89) when annual yields from 1999 onwards are removed from the

time series. Similarly, a separate linear model for Germany before the year

1999 explains yield trends better (LM0 R2=0.92, LM1 R2=0.95). Yields after

1999 for both countries show no significant trend (R2=0.02 and -0.05 for the

UK and Germany, respectively) when fitted with another linear model (LM2)

after the breakpoint, which is evidence that yields have been stagnating in

the UK and Germany in the most recent decade.

For the UK, polynomial models improve R2 values compared to LM0 (QM

R2=0.88, CM R2=0.92). The best fit is given by a cubic model, which has the

smallest RMSE, AIC and LOOCV error estimates. For Germany, QM and

CM also improve R2 values compared to LM0 (QM R2=0.93, CM R2=0.95)

and result in smaller RMSE values. The AIC value is also smallest for the

cubic model, although the LOOCV statistics are similar between the QM and
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CM models. These smaller error values using QM and CM show that yield

trends for both countries over the past 50 years are not necessarily linear,

with the rate of yield increase slowing down in the mid-90s.

3.4.1.2 Regional wheat yield trends

Winter wheat yield data from 1979-2014 shows different levels of

productivity across Germany. The highest median yields were in Northern

Germany (DEF) at 8 t/ha and the lowest median yields are observed in East

Germany (DED) at 6 t/ha (Fig. 3.3). Regions all show significant positive

(linear) trends (R2>0.35). Similar to the analysis at the national level, a

cubic model best describes yield trends in the time series, with the highest

R2 compared to other fitted models, and smaller RMSE,AIC and LOOCV

error (Table 3.6). For example, the RMSE is smallest for DE2, DEA, DED,

and DEF with the cubic model (RMSE=0.42, 0.52, 0.59, 0.52 t/ha

respectively) compared to the linear model (RMSE=0.58, 0.66, 0.63, 0.68

respectively).

3.4.1.3 Field level yield trends

At the field level, BL wheat yields treated without fertilizer, or only

farmyard manure (FYM), show no significant trend (Fig. 3.4A-C). Yields in

BL had increasing yields (p <0.05) for all treatments with NPK fertilizers

(Fig. 3.4D-F), although the quadratic and cubic models do not show

significant improvements compared to a fitted linear time trend (Table 3.7).

The effect of the fertilization scheme on the yield trend is not analyzed in

this work, but it has been investigated extensively in the work of Merbach

and Schulz (2013).
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Figure 3.2: Different models for UK and Germany wheat yield trends, 1961-2013.
(A) and (B) show linear models, (C) and (D) are non-linear models.

Table 3.5: Summary evaluation statistics for national yield trend analysis.

Country Statistic LM0
LM1
(pre-
1999)

LM2
(post-
1999)

QM CM

UK

R2 0.83* 0.89* 0.02 0.88* 0.92*
RMSE 0.63 0.48 0.41 0.54 0.42
AIC 107.7 59.8 20.6 92.4 67.9

LOOCV 0.43 0.25 0.24 0.33 0.20

Germany

R2 0.92* 0.95* -0.05 0.93* 0.95*
RMSE 0.43 0.29 0.48 0.39 0.35
AIC 67.6 19.4 25 59.4 49

LOOCV 0.20 0.09 0.3 0.17 0.14
LM0 is the linear model; LM1 is the linear model to the estimated breakpoint year 1999 and
LM2 is the linear model for the years after 1999; QM and CM are the quadratic and cubic
models. (∗) indicates statistical significance (p <0.05).
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Figure 3.3: Wheat yields for German regions (A-D), 1979-2014, including different
fitted models (linear, quadratic and cubic) to describe the trend.

Table 3.6: Summary evaluation statistics for regional yield trend analysis.

Region Statistic LM0 QM CM

South Germany, DE2

R2 0.35* 0.41* 0.63*
RMSE 0.58 0.54 0.42
AIC 68.5 66.2 49.6

LOOCV 0.38 0.36 0.22

West Germany, DEA

R2 0.55* 0.67* 0.71*
RMSE 0.66 0.56 0.52
AIC 77.8 66.2 65.0

LOOCV 0.48 0.37 0.33

East Germany, DED

R2 0.47* 0.48* 0.5*
RMSE 0.63 0.61 0.59
AIC 74.2 74.5 74.2

LOOCV 0.43 0.45 0.46

North Germany, DEF

R2 0.43* 0.57* 0.66*
RMSE 0.68 0.59 0.52
AIC 80.8 72.1 64.5

LOOCV 0.53 0.45 0.36
LM0 is the linear model; QM and CM are the quadratic and cubic models. (∗) indicates
statistical significance (p <0.05).
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Figure 3.4: Wheat yields for different fertilizer treatments (A-F) from the Bad
Lauchstädt long-term field experiment, 1978-2014. Significant yield trends (linear,
quadratic and cubic) are also shown.

Table 3.7: Summary evaluation statistics for field-level yield trend analysis.

Treatment Statistic LM0 QM CM

NPK only (NPK1)

R2 0.18* 0.17* 0.15*
RMSE 1.21 1.2 1.2
AIC 125.3 126.6 128.5

LOOCV 1.62 1.63 1.7

NPK + 20 t/ha FYM (NPK2)

R2 0.24* 0.22* 0.21*
RMSE 1.56 1.55 1.54
AIC 143.7 145.3 146.7

LOOCV 2.68 2.73 2.8

NPK + 30 t/ha FYM (NPK3)

R2 0.22* 0.2* 0.22*
RMSE 1.63 1.63 1.58
AIC 147.2 149.1 149

LOOCV 2.9 3.1 3.07
Treatments without NPK fertilizers did not show any significant (p <0.05) trends and are thus
not shown. LM0 is the linear model; QM and CM are the quadratic and cubic models. (∗)
indicates statistical significance (p <0.05).
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3.4.2 Evaluating the statistical crop-climate model

In this section, the results from the SCCM evaluation are reported. Yield

trend fitting at the national and regional level showed that a cubic (non-linear)

trend most accurately captures how yields have changed and evolved from

the past decades (See Figures 3.2, 3.3), so this is included in the generalized

additive model.

3.4.2.1 National-level yield and climate models

The results of using the general wheat SCCM (Eqn. 3.2) with ordinary

least squares (multiple linear regression) on climate and wheat data results

in distinct SCCMs for the UK and Germany. At the country level, only

summer predictors – TH , P̄S and their interaction term – are statistically

significant predictors and the interaction term was significant only for

Germany. Equations 3.3 and 3.4 show the country level SCCMs, where Y is

wheat yield, f(t) is the cubic time trend, βn represents the coefficients of the

different parameters, and ε is an error term at time t:

UK: Y (t) = f(t) + β1TH(t) + β2P̄S(t) + ε(t) (3.3)

Germany: Y (t) = f(t) + β1TH(t) + β2P̄S(t) + (β3TH(t)× P̄S(t)) + ε(t) (3.4)

Equations 3.3 and 3.4: National statistical crop-climate models (SCCMs).

These models, based on summer climate predictors, can account for 85%

and 94% of yield variability for the UK and Germany from 1961-2013 based

on their R2 value (Table 3.8). Comparing the coefficients shows that for the

UK and Germany, TH has a negative effect on yields while the coefficients of

P̄S and the interaction term between TH and P̄S are significant and negative,

however these effects are small.
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Figure 3.5: Observed and SCCM simulated yields, (A) UK and (B) Germany, 1961-
2013. (C) and (D) compare observed and simulated yields.

Table 3.8: Summary statistics for national SCCMs.

Country TH P̄S TH × P̄S R2 RMSE AIC LOOCV

UK -0.64* -0.005* - 0.85* 0.59 104.5 0.47
DE -0.25* -0.007* 0.001* 0.94* 0.38 59.14 0.18

(∗) indicates statistical significance (p <0.05).

3.4.2.2 Regional-level yield and climate models

At the regional level, the cubic yield trend and significant climate

predictors are evaluated through multiple regression which result in distinct

regional SCCMs (Equations 3.5-3.7). Significant climate predictors for

regions vary: hot days and summer precipitation are significant predictors

for yield for East, West and Southern Germany (DED, DEA, DE2). The only

significant climate predictor for Northern Germany (DEF) is JJA

precipitation (Fig. 3.6). Similar to the development of the country-level

SCCMs, summary statistics are calculated per region, including

cross-validation error (LOOCV ) for a hindcast using the regional SCCMs.

The calculated coefficients for each region are in Table 3.9.

The SCCM regional yield hindcasts show high and significant correlation

(r>0.7) to yield observations, for all regions (Fig. 3.7A-D, Table 3.9).
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Evaluation statistics between observed and simulated yields also show

relatively good agreement, as evidenced by RMSE under 1 t/ha, significant

R2 values, and relatively small LOOCV error.

DE2, DED: Y (t) = f(t) + β1TH(t) + β2P̄S(t) + (β3TH(t)× P̄S(t)) + ε(t) (3.5)

DEA: Y (t) = f(t) + β1TH(t) + β2P̄S(t) + ε(t) (3.6)

DEF: Y (t) = f(t) + β1P̄S(t) + ε(t) (3.7)

Equations 3.5-3.7: Regional statistical crop-climate models (SCCMs).

Region Significant predictors
DE2 TH , P̄S , TH × P̄S

DEA TH , P̄S

DED TH , P̄S , TH × P̄S

DEF P̄S

Figure 3.6: Significant climate predictors for yield in German states.

Table 3.9: Coefficient values for regional German SCCMs.

State TH P̄S TH × P̄S R2 RMSE AIC LOOCV

DE2 -0.34* -0.01* 0.001* 0.47* 0.46 57.1 0.69
DEA -0.08* -0.01* NS 0.6* 0.58 71 1.48
DED -0.37* -0.01* 0.001* 0.56* 0.52 66.1 1.15
DEF NS -0.004* NS 0.5* 0.6 71.2 1.15

(∗) indicates statistical significance (p <0.05).
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Simulated yields from all regional SCCMs show good year-to-year

agreement, although they generally underestimate yields between the years

1995-2000. The SCCMs for DE2 and DED, which both contain a significant

interaction term (TH × P̄S), show their ability to simulate yields during hot

summers, for example the large European heat waves in 2003 and 2006.

The results of these SCCM hindcasts are compared PCM hindcasts in the

next section, after the sensitivity analysis for the PCM.

Figure 3.7: Observed and SCCM simulated yields, (A) DE2, (B) DEA, (C) DED, and
(D) DEF, 1978-2013, with a comparison and correlation of observed and simulated
yields, (∗) indicates significance (p <0.05).
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3.4.3 Testing the sensitivity of the PCM to environmental

modifications

The responses of CERES-Wheat are tested at the site level, using wheat

yield and weather data from 1978-2014 from the BL LTFE (Merbach and

Schulz, 2013). Two treatments, namely the no-fertilizer and the high-yielding

mineral fertilizer with FYM, are chosen for validation to represent the effect

under different fertilization schemes.

Figure 3.8: Simple climate sensitivity validation experiment with BL data (1979-
2014) and CERES-Wheat, using default genetic coefficients and those from Nain
and Kersebaum (2007) (NK 2007). The boxplots show: (A) the yield response to
no fertilizer and (B) optimal fertilizer, both compared to observations; (C) changes
in response to daily increases in temperature (+1 and 2◦C) and (D) precipitation (+1
and 2 standard deviations.)
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Yields are shown to be sensitive to fertilization, temperature, (increases

of 1 and 2 degrees Celsius to daily temperature) and precipitation (+1 and

+2 standard deviations to daily precipitation), with the PCM simulating

increases to yield with increased fertilization, and decreases to mean yields

with increased temperature and precipitation (Tables 3.10A-B). In particular,

the yield responses are shown to be very sensitive to the genetic

coefficients used to describe the cultivar responses. Given the large number

of plant responses that these coefficients control (See Table 3.4), it is not

surprising that a default cultivar performs more poorly compared to the

Germany genetic coefficients from (Nain and Kersebaum, 2007, or NK2007)

when attempting to recreate observed yields (Fig 3.8A-B).

Table 3.10: Yield responses to environmental modifications in experimental
validation.

Experimental
modification

Yield difference and RMSE relative
to respective BL yield observations
No fertilizer Optimal fertilizer

Default cultivar -48%, 2.4 t/ha -58%, 4.7 t/ha
Nain and Kersebaum

(2007) cultivar -50%, 2.5 t/ha -14%, 2.2 t/ha

Table 3.10 continued.

Weather
modification

Yield change
with default

cultivar

Yield change with
NK2007 cultivar

+1 C Temperature -1% -10%
+2 C Temperature -5% -14%

+1 SD Precipitation -70% -3%
+2 SD Precipitation -82% -16%

Comparison of the simulated yields with the default and the NK2007

genetic coefficients (Table 3.10A) shows that simulated wheat yields are not

significantly different when they are not fertilized, regardless of the cultivar

used. In the case of well-fertilized wheat experiments, the NK2007 yield

simulations are significantly higher than those simulated with the default

cultivar; in addition, the NK2007 yield simulations are closer to
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observations. Yield simulations with the default cultivar for the well-fertilized

experiment have a large RMSE of nearly 5 t/ha with respect to yield

observations.

In addition, the genetic coefficients influenced how yields respond to

environmental modifications: for example, yield losses with increased

precipitation are drastic, with 70-80% simulated yield losses with the default

wheat cultivar in contrast to 3-16% with the NK2007 wheat cultivar

coefficients.

3.4.4 Crop model comparison: regional yield hindcasts

The last section of results is the comparison of regional yield hindcasts

using wheat yield observations, simulations from regional SCCMs and

simulations from the PCM experiments designed with E-OBS climate,

regional genetic coefficients and fine-scale soil data. The results are shown

for each region in Fig. 3.9A-D. As reported in Section 3.4.2.2, the yield

simulations from the SCCM are generally well-correlated to yield

observations for each region (National: r>0.9, regional Germany: r>0.7). In

contrast, yield simulations from the PCM have poor (non-significant)

correlation to observations, apart from DED (East Germany), which had

r=0.5. Although median yields from DEA and DEF (West and North

Germany) are within the range of values of yield observations, generally

yields from DE2 and DED (South and East Germany) overestimated

regional wheat yields, with large RMSE values of approximately 2 t/ha

(Table 3.11).

Although these are generally poor results for the PCM, it can be

observed the yield impacts of the 2003 heat wave were observed in the

climate analysis (See Appendix) are captured by PCM at this point in time.

Comparatively, however, the SCCM evaluation performance is much closer

to observations in terms of the year-to-year accuracy and smaller errors.
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Figure 3.9: Crop modeling method comparison: SCCM and PCM simulations of
regional German wheat yields, 1981-2010.
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Table 3.11: Summary statistics, CERES-Wheat (PCM) simulations compared to
yield observations.

State Correlation (r) R2 RMSE

DE2 NS NS 2.5
DEA NS NS 1.8
DED 0.47* 0.2* 1.9
DEF NS NS 1.6
(∗) indicates statistical significance (p <0.05).

However, as discussed previously, upscaling from fine-scale PCMs to a

regional scale is challenging and the input parameters are considerable

sources of uncertainty. The context of these multi-method comparisons and

their implications for future yield projections are discussed in the following

section.

3.5 Discussion

In this discussion, the results from the SCCM and PCM evaluation are

addressed in terms of the main research question: how well does each crop

modeling method capture past yield observations?

3.5.1 Using statistical crop modeling approaches

In this chapter, statistical approaches were used to answer research

questions on: (1) how yields have changed over the study areas and period

of yield observations, (2) what the best model to describe yield trends is,

and (3) how models based on empirical data perform with temperature and

precipitation indices to hindcast past yields. National and regional wheat

data showed that yields have changed significantly in recent decades, with

evidence of stagnation in both the UK and Germany at the national level

(shown by the LPP and non-linear yield trend) as well as in German
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regions. Other findings include that hot days above 31◦C have already

affected wheat yields in the UK and Germany.

These results are supported by the literature review in Chapter 2 where

it was reported that wheat yields are negatively affected by periods of high

temperatures. The results of the SCCM evaluation showed that the effect of

precipitation is fairly unclear because of its small coefficient, but the

interaction term between the two climate indices showed that periods of

high hot days also typically had low rainfall (e.g. the 2003 heatwave, see

Brisson et al., 2010). In Germany, this interaction term was significant at the

national level and for several of the four examined regions. Statistical

metrics such as high correlation, low RMSE and improved AIC are used

as evidence of the good performance at the national and regional level of

the statistical approaches used in this chapter. This means that the SCCM

has a credible performance, making its usage for the future reasonably

justified. However, there are also limitations that are associated with

statistical approaches to crop modeling.

3.5.1.1 Limitations of the statistical model approach

While the SCCMs resulted in yield simulations that were significantly

correlated to observations, the approach of statistically linking empirical

data on climate and crops and using the resulting SCCM for projections is

still heavily criticized. For example, while it is frequently reported that

SCCMs are useful, their usefulness and predictive power are also frequently

diminished in scientific literature because they are limited to responses

inside the range of conditions used to develop them (Ewert et al., 2011).

Other criticisms are the fact that in the real world, plants respond to highly

local weather conditions in complex and non-linear ways (Glotter et al.,

2014), in contrast to the relatively simple regression used here in the

chapter. In addition, it has been argued that the complexity of crop growth
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and development makes it impossible to define a general relationship

between temperature and rate of development for all phases and varieties

of wheat (Porter and Gawith, 1999).

This is where PCMs may have significant advantages by being able to

represent the complexity of plant development. PCMs attempt to

encompass knowledge of crop physiology and responses to environmental

factors, and have been used for decades to gain knowledge on how crops

develop, grow, and yield (Semenov et al., 2012, Chenu et al., 2017). They

are also able to integrate simulations of external factors not commonly

included in statistical models. For example, they can include fertilization

management, CO2 concentrations, and wheat variety (Rosenzweig et al.,

2014). These factors are difficult to include in SCCMs. However, based on

the results in this chapter, the relatively simple approach of the regional

SCCMs significantly outperformed the yield simulations generated by the

CERES-Wheat PCM.

The PCM evaluation is discussed in the following section, but here it is

valuable to point out that despite significant criticism of statistical models

(e.g. Semenov et al., 2012, White, 2009) it is argued that there are still

merits with the use of statistical approaches, especially when applied to

larger areas where fine-scale information cannot be obtained, as is the case

in this chapter for the country- and regional-scales. They remain useful, if

imperfect tools, for projecting future yield responses and are likely to

continue to play an important role in anticipating future impacts of climate

change (Lobell and Burke, 2010).

3.5.2 Evaluation of the PCM approach

The results of the PCM evaluation were not strong on a stand-alone

basis, and this was even more evident when compared to the SCCM: most

regions did not have well-correlated PCM yield simulations, and all PCM
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yield simulations had larger RMSE values relative to observations

compared to the SCCM. There are clearly limitations in directly applying the

field-based PCM at the regional scale, in addition to existing limitations and

differences during calibration between these approaches that may have

contributed to this disparity in the measured skill (here, with metrics like r

and RMSE) of the two crop modeling methods used – it is argued that

these are mostly issues connected to scale. Scale issues brought about by

the use of plot- or field-scale models at coarser resolutions are well-known

within the discipline (e.g. Ewert et al., 2011, Hansen and Jones, 2000, see

also Chapter 2 literature review).

Because of this, the research questions posed at the beginning are

revisited: what can be expected when using PCMs at a scale that they were

not originally designed for? Can the PCM still be used in the future for yield

projections, and are there opportunities to improve their usability at larger

scales? In the following sections, the evaluation of the PCM performance is

discussed in the context of these scale issues to attempt to provide initial

options to address these critical questions.

3.5.2.1 Limitations of the PCM approach: scale and data aggregation

Scale is a notable issue in many crop-climate studies in both SCCMs

and PCMs, but in opposite directions. SCCMs are generally challenging to

use at the field-level scale, where climate model output is hard to obtain and

extremely uncertain (Lobell and Burke, 2010) but have reasonable

performance at larger scales, as shown in this chapter. In contrast, when

PCMs are used at larger scales than the field or plot, the aggregation of

input data from finer to coarser resolution will inevitably lead to losses of

spatial variability of the dataset (Ewert et al., 2011). At the field scale, there

is variation in crop development due to small-scale factors like

micro-climates and soil variation (Barlow et al., 2015) which are lost when
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data is aggregated. Aggregation errors are also amplified as the resolution

of soil and climate data decreases (Maharjan et al., 2019, Hoffmann et al.,

2016, Folberth et al., 2016). In particular for climate data, given the

importance of radiation and its significant effects on crop model output and

error (e.g. Trnka et al., 2007), it should be acknowledged that future

radiation projections are highly uncertain, making these also contribute to

errors (in future yield projections).

However, despite this scale limitation being well-known, field-scale

models are used at larger scales roughly 50% of the time (Challinor et al.,

2017). Given the awareness and discourse on scale and aggregation error,

why does this scale mismatch persist in practice, and how can it be

addressed? One method would be to approach crop modeling at the

regional scale. This would be advantageous given the reliability and positive

evaluation of regionally downscaled climate information, such as over

Europe through EURO-CORDEX (e.g. Kotlarski et al., 2014). Some

regional-level PCMs exist, for example the General Large Area Model

(GLAM, Challinor et al., 2004), which represents a number of plant growth

processes applied over a range of environments (Challinor et al., 2004).

GLAM has been shown to be successful at reproducing crop metrics like

yield from a variety of crops, and it has been used extensively in other

crop-climate studies (e.g. Wang et al., 2017, Elliott et al., 2015, Watson and

Challinor, 2013, Vermeulen et al., 2013, Challinor et al., 2010). GLAM was

also recently compared to a similar generalized additive SCCM used in this

chapter (Watson et al., 2015).

However, it should be noted that criticism of regional yield simulations

also exists, because regional yields are often poorly correlated with the yields

of individual farms and are less valuable in local decision support (Lawless

and Semenov, 2005). Using regional scales also does not eliminate the

aggregation error from other fine-scale input data on soil. Thus, bridging the

gap in the scale and resolution at which climate models, crop models and
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other local-scale processes operate remains a considerable problem for the

impact assessment of climate change (Fowler et al., 2007).

3.5.2.2 Calibration with regional parameters

Another potential solution and common method in the literature of

addressing the scale mismatch is by using more generic or regionalized

crop model parameters in fine-scale PCMs, which was the approach

attempted in this chapter. To do so, firstly, the sensitivity of the PCM was

tested using regional crop calibration parameters and generic other

parameters whenever possible (e.g. following Palosuo et al., 2011). A

review of the methods included in the PCM also showed sufficient

representation of plant processes relevant to yield (Section 3.3.5, Table

3.4). Results showed that yields responded to changes in the fertilization

scheme, temperature, and precipitation in the sensitivity test. However, it

was also shown that these results were highly influenced by the genetic

parameters which determine the magnitude of the yield responses.

Cultivar coefficients for PCMs like CERES-Wheat are important in the

field of crop-climate research because of the powerful simulation effects that

they have over crop growth and development which cascade into yield

simulations (See Table 3.4). The sensitivity of yields to crop

parameterization indicates the importance of the initial calibration prior to

simulation, and this is argued to have a large influence on the bias in PCM

yield hindcasts in this chapter. PCMs such as CERES-Wheat require

extensive input data and parameters. However, despite its widespread use,

it was challenging to find regional genetic coefficients for CERES-Wheat

Germany in crop-climate studies, as many studies that use CERES-Wheat

frequently report ’iterative’ or ’trial-and-error’ calibration and

parameterization procedures (e.g. Li et al., 2015, Dettori et al., 2011, Wang

et al., 2009) and do not often report these coefficients nor have detailed
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procedures about how they were obtained (e.g. Li et al., 2015, Thaler et al.,

2012, Lobell et al., 2012, Ruiz-Ramos and Mínguez, 2010, Wang et al.,

2009). It is argued that this limited reporting hinders the reproducibility of

results from evaluation.

In addition to the iterative nature of determining genetic coefficients for

CERES-Wheat, there is still a remaining large number of input parameters

that are dependent on fine-scale validation data, which are not always

available or accessible, even in LTFE. As discussed in the introduction, in

the typical PCM set-up, it is usually deemed sufficient or even appropriate

that before it is applied to the regional scale, the PCM is highly tuned to a

field-level site (where calibration data can be more easily monitored or

obtained, Maharjan et al., 2019, Hoffmann et al., 2016). These data include

fine-scale information such as phenology, the harvest index, and tiller/leaf

growth which are important variables that measure the stages of wheat

growth and development.

However, it is argued that the ’typical’ method of field-level calibration

(whether the results are satisfactory or not) and its subsequent direct

application at the regional scale does not fully address the scale issue. In

particular for the regional genetic parameters, cultivars are often very

specific to a region or locality so using regionalized parameters will

inevitably result in simulation biases relative to local yields. Cultivars can

also vary widely as they are grown under different conditions of soil and

climate, even within the same state or region (Curtis, 2012). As mentioned

in the introduction to the chapter, a study that performed extensive

calibration to determine genetic coefficients through built-in functions in

CERES-Wheat, Langensiepen et al. (2008) also found large ranges of error

above 2 t/ha using CERES-Wheat to simulate wheat yields in Germany.

These errors were deemed too large to permit the practical application of

CERES-Wheat for optimizing fertilizer management in North Germany

(Langensiepen et al., 2008). This is in line with the idea that if a model
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needs to be skillful if its assessment of risk is to be correct (Challinor et al.,

2017), which underlines the importance of validation.

3.5.2.3 Continuing mismatch between PCM application and its scale

In spite of these challenges, the use of field-scale PCMs beyond its

original scale is widespread in crop-climate modeling studies (e.g. Challinor

et al., 2017), where CERES (DSSAT) is one of the most widely used PCMs

based on an extensive review (e.g. White et al., 2011). In contrast to the

findings of Langensiepen et al. (2008) and this chapter, CERES-Wheat has

been shown to be able to feasibly simulate regional yields in the UK and

Germany (e.g. Cho et al., 2012, Nain and Kersebaum, 2007). While a

globally gridded version of the larger DSSAT suite, of which CERES crop

models are a part of, is included in the large-scale multi-crop model

comparison project, the Agricultural Model Intercomparison and

Improvement Project (AgMIP, Rosenzweig et al., 2013), the end-user is

more likely to utilize the publicly accessible field-based model to answer

smaller-scale research questions, and it is argued that this is where issues

of the continuing mismatch between the scale design of PCMs and their

application are likely to persist.

Recently released guidelines to crop modeling emphasize ’good

practices’ in crop modeling (Challinor et al., 2017), including better

transparency and measures to enhance reproducibility, but it is argued that

the scale gap – and the methods that attempt to address it but not solve it –

remain difficult to make feasible guidelines for due to limited available data

and resources to run fully parameterized, well-calibrated PCMs. However,

these guidelines are important to the credibility and robustness of crop yield

projections. In the final section of the discussion, other potential solutions to

the issue are also suggested.
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3.5.3 Setting guidelines for crop modeling practices

Both the statistical and process-based approaches to crop modeling

have powerful simulation capability, but also significant limitations that

contribute to uncertainty. While progress continues to be made with the use

of both SCCMs and PCMs, and comparing their results to each other in

ensemble approaches (e.g. Lobell and Asseng, 2017, Liu et al., 2016,

Moore et al., 2017), the results in this chapter show that yield simulations

from contrasting crop modeling approaches can differ significantly, due to

reasons like the scale mismatch and calibration/validation practices that do

not wholly address the gap between design and application, particularly for

PCMs.

In their work, Challinor et al. (2017) discuss the scale mismatch and

offer the following suggestions for good crop modeling practice, including

appropriate complexity, creating model ensembles based on skill, correcting

biases in climate model output, including uncertainty estimates in

simulations, and performing evaluation as a continuous process (and over a

broad range of contexts), among others. Specifically for crop model

calibration and ongoing evaluation, heavy emphasis is put on adequate

input and validation data throughout the growth of the simulated crop, as

well as thorough documentation for transparency and reproducible results

(Challinor et al., 2017). In this regard, the work of AgMIP has made

significant progress in its management of different crop model protocols,

evaluation, and its implications (Müller et al., 2017, Elliott et al., 2015).

In the meantime, how can progress be made in answering the research

questions of the study when working with limited data to carry out thorough

evaluation, which can result in less than ideal results (as evidenced by the

PCM evaluation results for the PCM in this chapter)? Reasonable

performance in the context of this chapter and study is therefore reliant on

the reported favorable evaluation of CERES-Wheat in the past, its
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represented processes that are important to wheat production (focusing on

yield), and plausible performance (e.g. with the DED region) even with

limited parameterization. Here, the research focus is reiterated: to

comparatively assess the contributed uncertainty of the two different crop

modeling approaches, as well as ’pay attention’ to the otherwise

standardized intermediate steps of downscaling and bias correction, and

their impacts on the cascade of uncertainty. While a more thorough

evaluation would perhaps provide an improvement of the statistical metrics

between PCM yields and observations, the results point to the need for

more thorough regional calibration, rather than casting doubt on the

knowledge that can be gleaned from the PCM simulation results, which

includes information on the amount of dry matter, and estimates of dates of

anthesis and maturity (See Jones et al., 2003).

While the input-intensive nature of PCMs may not change soon, and

may in fact increase as more knowledge is gained on crop growth and

development, there are only a limited amount of ways to make field-level

PCMs more usable at the regional scale for which they are frequently

applied. It is suggested that results here could be improved greatly by using

available regional data (apart from yield) for the ’ongoing evaluation’ (e.g.

Challinor et al., 2017) recommended for good practices in crop modeling.

Apart from the further development of both field- and regional-scale crop

models (both process-based and statistical approaches), publicly accessible

databases of the PCM calibration parameters, such as CERES-Wheat

coefficients for well-used wheat cultivars, should be developed and

disseminated in scientific literature to promote transparent and reproducible

methods in PCMs. In addition, greater availability of regional information on

wheat growth and development characteristics would be valuable resources

to aid in more fairly evaluating PCMs applied at larger scales.
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3.5.3.1 Characterizing uncertainty through multi-model and

multi-method comparisons

Other recommendations that can be followed from the Challinor et al.

(2017) paper are the use of ensembles to better evaluate skill. Although this

is a single-SCCM and single-PCM study, the results of the chapter connect

to the larger discourse on crop modeling method uncertainty. Within the

broad classifications of these two crop modeling methods, there exist

numerous types of statistical approaches and PCMs of various scales.

Numerous institutions develop crop models, each with their own

formulation, requirements, and implementation procedures. In an effort to

characterize how different impact models compare to each other,

multi-model ensembles (MMEs) are used for many different types of

models. For example, MMEs can be composed of crop models, such as

those in AgMIP (Rosenzweig et al., 2013), climate models in the Coupled

Model Intercomparison Project (CMIP) (Eyring et al., 2016) or other sectoral

impact models in the ISI-MIP (Warszawski et al., 2014). MMEs are a useful

method for characterizing uncertainty due to different model structure.

Ensembles allow for direct comparison of simulations in order to quantify

and explore uncertainty (Challinor et al., 2013).

While the value of multiple models for impact assessment in quantifying

uncertainty is increasingly well-documented, it also has been argued that

there are underlying conceptual differences between MMEs of impact

models and MMEs of climate models, and ultimately should have very

different objectives (Challinor et al., 2014). Climate models can be

assessed on a number of physical properties, such as how well they can

represent precipitation and temperature. In contrast, impact models like

crop models require calibration towards a small subset of variables towards

simulating one measurable value, such as yield (Challinor et al., 2014). This

means that comparing impact models is less advanced than comparing
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climate models due to constraints in comparable properties, and that

significant difficulties exist in obtaining adequate data, particularly at

regional scales (Challinor et al., 2014).

It is often the objective in climate MMEs to narrow the range of

uncertainty to seek consensus between models. However, it has been

argued that this objective may be too limited (Knutti and Sedláček, 2012,

Challinor et al., 2014). As models improve and represent more processes in

greater detail, there is greater confidence in their projections. Despite these

improvements, agreement or convergence between model simulations may

remain slow (Knutti and Sedláček, 2012). In contrast to climate model

ensembles, rather than focusing on a single objective of narrowing

uncertainty, exploring the differences between crop models matters, and is

actually valuable (Challinor et al., 2014). It is thus argued that despite

varying results between SCCMs and PCMs, applying multi-method

ensembles can further improve the understanding behind projecting the

impacts of climate change.

Therefore, due to the fundamentally different approaches between

PCMs and SCCMs – for example, significant differences in parameter

inputs, calibration needs, and included processes, as shown in this chapter

– single-PCM or single-SCCM crop modeling method approaches contain

significant uncertainty, and more studies which use both approaches

comparatively will help to characterize these significant sources of

uncertainty and error in yield simulations.

3.6 Conclusion

Important food crops like wheat are sensitive to climate. Climate largely

determines where and when crops can be cultivated and how they are

managed, and also has an influence on their harvest and yield. Extremes of
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climate and climate change, already observed in Europe, have present-day

impacts on wheat yields in the UK and Germany. In particular, heat stress

can have significant negative effects on wheat. Achieving a science-based

understanding of these impacts and making insights into the future, in the

context of adaptation, is largely dependent on crop models. The

fundamentally different approaches of crop modeling – PCMs and SCCMs –

have different input requirements and associated limitations, which can lead

to very different yield simulation results, as shown in this chapter. However,

it is important to continue an approach that investigates and communicates

these differences, as they help elucidate the limitations and needed

improvements to the typical impact assessment method often described in

crop-climate studies.

In this context, continued work on transparently communicating

calibration and validation procedures is particularly important when using

PCMs, which have high input demands at a fine scale for which they were

originally designed. Although their regional application is possible, it is not

without challenges due to scale and aggregation error. Thus, the

reproducibility of previous research that employs these methods is of

extreme significance and studies that use PCM should report methods with

detail, and consider suggestions made here and elsewhere in the scientific

literature on good crop modeling practice. Following these guideliness will

aid in not only the evaluation of the model or method, but in the robustness

of results into the future.





Chapter 4

Evaluating the added value of

downscaled GCM output

4.1 Introduction

Global climate models (also general circulation models, or GCMs) and

earth system models (ESMs) are the most current scientific tools that are

used to understand the atmosphere, oceans, and their feedback with land

systems. As discussed in the literature review in Chapter 2, GCMs still have

numerous limitations which stem from, inter alia, limited abilities to

represent complex physical processes and resolve key climate features

(Section 2.2.2). Combined with these limitations, climate change projections

are also uncertain when combined with plausible future greenhouse gas

scenarios and natural variability (e.g. Hawkins and Sutton, 2011, 2009).

Therefore, the errors from GCMs can have large impacts on the robustness

of climate change impact assessments.

Based on the literature review, the coarse scale of GCMs is often

criticized because impact assessments often require fine-scale climate

information. Therefore, the downscaling of GCMs for impact assessments is

101
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now common practice, or even considered ’necessary’ (Glotter et al., 2014,

p.8776) particularly for climate change studies. However, the benefits of

using regional climate models (RCMs) for downscaling are still debated in

the scientific community. Because RCMs are driven by GCMs, there are

implicit assumptions on the skill of GCMs, as well as the added value

provided by RCMs (e.g. Feser et al., 2011). In this chapter, these implicit

claims are investigated by analyzing historical GCM and GCM-RCM

(dynamically downscaled GCMs) simulations in terms of their closeness to

observations, in order to address the uncertainty from climate models in

crop yield simulations and projections. While the evaluation of climate

models and the added value of RCMs is widespread in the climate modeling

discipline, it is a relatively uncommon component in impact assessment, so

this chapter provides information on how important this step is in projecting

future crop yield under climate change.

4.1.1 Simulations of the climate system with the CMIP

ensemble of GCMs

Exploring where GCMs are skillful in representing key features of the

atmosphere and oceans is typically done through multi-model ensembles

(MME). MMEs of GCMs are an effective way of comparing different GCMs

under a common framework and structured experiments. The Coupled

Model Intercomparison Project (CMIP) is a promiment example of an MME,

with more than 20 modeling centers and 50 models (GCMs/ESMs)

participating in its fifth phase (CMIP5) (Taylor et al., 2012). CMIP5 provides

a multi-model context for determining why similarly forced GCMs produce a

range of responses, and they are also a way of understanding the climate

system, inclusive of its feedback to the carbon cycle, and exploring climate

predictability (Taylor et al., 2012).

CMIP5 models have shown significant changes and improvements in the
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performance of participating GCMs relative to its predecessor CMIP3,

which was used extensively in the Intergovernmental Panel on Climate

Change Fourth Assessment Report (AR4) (Kumar et al., 2014). CMIP5 has

also been shown generally capable of simulating climate extremes and their

trend patterns (Sillmann et al., 2013). However, there has also been some

instances of degradation in skill and only little changes to uncertainty in

CMIP5 compared to CMIP3 (Kumar et al., 2014). While current models are

generally able to simulate European climate with considerable skill, they are

still affected by common errors, such as a tendency to underestimate

blocking frequencies (McSweeney et al., 2015, Woollings, 2010). Blocking

describes a weather pattern in which the prevailing westerly winds and

storms are blocked by a persistent and stationary anomaly, generally an

anticyclone (area of high pressure) (Woollings, 2010).

Biases in the representation of blocking such as the Greenland and

summer Pacific blocking frequencies are associated with errors in the

representation of storm tracks, while biases in winter European blocking

frequency are related to the North Atlantic storm track tilt and

Mediterranean cyclone density (Zappa et al., 2014). The North Atlantic has

an important influence on European climate: the single most important

factor for year to year fluctuations in the seasonal climate around the

Atlantic Basin is the state of the North Atlantic Oscillation (NAO) (Scaife

et al., 2014), so biases in this basin are crucial to the accurate

representation of European climate. Other biases in the surface storm track

north of the Gulf Stream have been found to be connected to biases in sea

surface temperatures (Booth et al., 2017).

Given the existing biases in GCMs, the use of dynamical downscaling

methods that make use of a ’nested’ RCM within a driving GCM has been

met with scientific criticism and debate because the output of an RCM is

heavily influenced by the lateral boundary conditions of the driving GCM. If

the large-scale climatology of the driving GCM has large systematic errors,
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these will be transmitted to the nested RCM (Giorgi and Gutowski, 2015).

This has been previously discussed with the example of biased storm tracks

and the resulting biased precipitation simulations in Sections 2.2.2 and

2.2.4 of the Literature Review. Therefore, the usefulness of RCMs, in terms

of their "added value" to existing GCM simulations, has been well-debated

in the field of climate modeling. Added value is the term used to describe

additional knowledge gained from RCMs (Feser et al., 2011) compared to

the information available from GCMs alone.

4.1.2 Added value of regional climate models

Comparing GCM and GCM-RCM output is relevant in the context of the

scientific discussion in the climate modeling discipline community on the

added value of RCMs. RCMs target regional (sub-continental to

sub-national) scales, and have approximate spatial resolution ranges from 1

to 50 km, in contrast to GCM resolutions that are about 100 km and coarser

(Rummukainen, 2016). In principle, several improvements to GCM

simulations can be expected when RCMs are used, due to their higher

resolution: for example, numerical truncation error in the discretization of

field equations is automatically reduced with the use of finer computational

grids, and these finer grids also permit the explicit representation of

small-scale processes that are precluded in low-resolution simulations (Di

Luca et al., 2015).

These small-scale processes such as local orography, land-sea contrast,

and atmospheric features such as convective cells are important influences

to regional climate, in addition to the prevailing large-scale conditions (Feser

et al., 2011). Therefore, it is both well-established and unsurprising that

regional climate modeling adds "detail" to the driving GCM results. Although

a number of key studies have already demonstrated that RCMs can

realistically simulate general climate patterns in comparison to observations
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(e.g. in Europe, Kotlarski et al., 2014), the added value of the information

provided by RCMs remains a long-standing and central issue in the climate

modeling literature and community (Rummukainen, 2016, Giorgi and

Gutowski, 2015).

For example, many RCM studies implicitly assume a superiority of the

RCM output over the driving global data (Feser et al., 2011), or simply have

claims that the added value of RCMs consists of "more spatial detail"

(Takayabu et al., 2016). These are claims that should be examined, but are

not usually explicitly proven (Takayabu et al., 2016, Feser et al., 2011).

Thus, this chapter focuses on evaluating the simulations of past climate

from both GCMs and GCM-RCMs, and this is considered an important step

in the process of assessing the impacts of climate change on wheat

production in the study sites in Europe.

4.2 Chapter approach and objectives

Given the increasing availability and resolution of climate model

simulations, including downscaled climate model output, there have been

numerous studies with different emphases that have evaluated the

performance of both GCMs and RCMs for specific climate phenomena and

variables over varying timescales and geographical locations. In this

chapter, historical GCM and GCM-RCM simulations are compared to past

observations of climate to identify the skill of the selected GCMs and

GCM-RCM combinations in representing temperature and precipitation in

the UK and Germany, in the interest of utilizing these climate models to

project future climate change and future crop yields.

Through this comparison, the research aims to go beyond the implicit

claim that using RCMs makes climate model output more skillful, a step that

is mostly out of the scope of climate impact studies.
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4.2.1 Chapter research questions

In this chapter, the main research question addressed is: how do GCMs

and GCM-RCMs compare to each other when representing climate variables

that are relevant to crop growth and development? In addition, the following

questions guide the data and methods for the analysis in the chapter:

(1) How well do historical GCMs and GCM-RCM simulations

capture temperature and precipitation in the past for the UK,

Germany and its selected regions?

(2) How does GCM-RCM output compare to the output of their

coarser driving GCMs, and also to observations?

(3) Based on the comparisons to answer questions (1) and (2), do

RCMs add value in the context of the climate needs for the crop

models used in the study?

Based on the literature review, it is hypothesized that GCM-RCMs will

reproduce past observations of temperature and precipitation better

compared to GCM-only simulations, particularly for temperature. However,

despite this better performance, it is also anticipated that these uncorrected

simulations contain significant biases relative to observations.

4.3 Data and methods

4.3.1 Overview of chapter experimental design

In this chapter, output from GCMs and GCM-driven RCMs are

processed and compared to the climate observations from E-OBS (Haylock

et al., 2008) that were analyzed in terms of annual and seasonal timescales

in Chapter 3. The approach of the chapter is to use simple but challenging
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tests to determine whether added value of GCM-RCMs exists over GCMs in

the context of the climate output needed for the crop models. This means

that the respective outputs of GCM-RCMs and GCMs alone are compared

relative to observations in order to answer the research questions. In the

following section, the basis for selecting the different GCMs and RCMs that

are used in the chapter are discussed and reviewed.

Figure 4.1: Overview of Chapter 4 research design.

4.3.2 Selection of GCMs, RCMs, GCM-RCM combinations

4.3.2.1 Multi-model ensembles of GCMs and RCMs

Simulations of global climate from GCMs in this chapter are taken from

CMIP5 (Taylor et al., 2012). Although a more recent sixth phase of CMIP

also exists (CMIP6, Eyring et al., 2016), the CMIP5 database has more

readily available simulations for the research. CMIP5 has several core

simulations, including a "historical" run, which is forced by observed

atmospheric composition changes (reflecting both anthropogenic and

natural forcings) and land cover (Taylor et al., 2012). CMIP5 also has

available future climate projections forced with specified emission

concentrations from the representative concentration pathways (RCPs). For

CMIP5, four RCPs have been formulated that are based on a range of

projections of future population growth, technological development, and
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societal response: a high emissions scenario (RCP8.5), midrange

emissions scenarios (RCP6.0 and RCP4.5) and a low emissions scenario

(RCP2.6) (Taylor et al., 2012, van Vuuren et al., 2011, Moss et al., 2010).

Simulations of regional climate over the European domain are taken

from the Coordinated Regional Downscaling Experiment (CORDEX), in

particular EURO-CORDEX (Jacob et al., 2014, Giorgi and Gutowski, 2015),

which is considered the state-of-the-art RCM intercomparison project over

Europe. EURO-CORDEX has been well-studied in the literature, especially

in the context of CMIP5, for instance CMIP5 GCM ensemble evaluations

(e.g. Jury et al., 2015), a thorough evaluation of temperature and

precipitation simulations from ensembles of RCMs (e.g. Kotlarski et al.,

2014), and it has been used in recent agricultural impact studies in Europe

(e.g. Balkovič et al., 2018).

In this chapter, the closeness of climate simulations to observations is

important to the research objectives as an impact assessment study

demands realistic, or at least plausible, climate representation for the crop

models. Apart from the evaluation of GCMs and GCM-RCMs, the RCMs

themselves also need to be evaluated, which is undertaken in the next

chapter (Chapter 5).

Because of the design of the study and the limited availability of

simulations within the same experimental ensemble in public databases of

GCM and GCM-RCM output, the selection of GCMs has to consider which

GCM-RCM combinations are available under EURO-CORDEX. It is also

important that the chosen GCM-RCM combinations are available into the

future in order to create yield projections until the end of the century. In the

following section, the basis for selection of RCMs and GCMs is discussed.
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4.3.2.2 RCM review and selection

Although there are numerous RCMs available from EURO-CORDEX,

three RCMs are chosen due to their availability at the time of analysis for

the needed climate variables from the historical (driven by GCMs) and

evaluation simulations (for the evaluation of RCMs in Chapter 5) on a daily

time step, a simulation period of sufficient length for the past (30 years or

more), and if they are a member of the same experimental ensemble (i.e.

r1p1i1). The three chosen RCMs are CCLM4-8-17, RACMO22E, and RCA4

(hereafter referred to as CCLM, RACMO and RCA, Table 4.1a), which are

available at both 0.11 and 0.44◦, which is a resolution of approximately 12

and 50 km, respectively. However, not all the chosen RCMs have

simulations of a sufficient length (> 30 years) for the 0.11◦ resolution, so

only the 0.44◦ resolution (EUR-44) simulations are used. In addition, it has

been found that for seasonal mean quantities averaged over large European

sub-domains (i.e. the research design of this chapter), no clear benefit of an

increased spatial resolution was identified (Kotlarski et al., 2014).

These three RCMs are also chosen because of their common availability

for future climate simulations forced by the RCP8.5 and RCP2.6 scenarios

(the highest and lowest emission scenarios from Moss et al., 2010, van

Vuuren et al., 2011) and in the newly-released (2017)

EURO-CORDEX-Adjust, which is a database of bias-corrected future

climate simulations performed by climate research centers within the

CORDEX framework over the European domain. The three chosen RCMs

have been well-used and evaluated in climate modeling studies over

Europe, where they have generally shown satisfactory performances.

A key paper on the evaluation of RCMs over the European domain

(Kotlarski et al., 2014) evaluated 17 simulations of temperature and

precipitation from 6 RCMs (including CCLM, RACMO and RCA) at two

different resolutions against E-OBS data. For temperature, their analysis



110 CHAPTER 4. EVALUATING ADDED VALUE

revealed a cold bias of up to -2◦C for most models, most seasons and most

subdomains (Kotlarski et al., 2014). Over the British Isles, models typically

had a dry bias in most seasons – in contrast to the generally positive

precipitation biases over Europe, which were significantly larger in the

higher-resolution experiments (Kotlarski et al., 2014).

Other evaluation studies have focused on individual GCM-RCM pairs.

For example, RACMO nested within the EC-EARTH GCM (Hazeleger et al.,

2010), showed significant improvements to climate simulations of fine-scale

precipitation maxima and minima forced by the Alpine topography and the

Italian coastlines, which were both well-captured by the RACMO RCM

(Giorgi and Gutowski, 2015). A study that evaluated mean and extreme

precipitation regimes over Spain using an ensemble of RCMs – including

CCLM, RACMO, and RCA – showed good representation of the mean

regimes and the annual cycle, but an overestimation of rainfall frequency

that led to a wrong estimation of wet and dry spells (Herrera et al., 2010).

This means that while RCM performance may be acceptable, there are

still significant biases that vary from one sub-domain to the next. Biases

from RCMs were also found in a study that evaluated climate change

indices of temperature and precipitation derived from the output of chosen

RCMs, again including CCLM, RACMO and RCA (Dosio, 2016). The results

of their study showed that, in general, the chosen RCMs underestimated

maximum temperatures, performed relatively better in simulating minimum

temperatures, but overestimated precipitation. Their study reports that RCA

driven by GCM HadGEM2-ES, (Collins et al., 2011) showed the smallest

biases (Dosio, 2016).

A different study that investigated added value found that improved skill

from RCMs was not clear when downscaled output with RACMO and CCLM

was compared to bias-corrected ECHAM5 GCM (Eden et al., 2014). While

the comparison of directly bias-corrected GCMs compared to bias-corrected
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downscaled GCMs is not covered by the chapter research questions, and

the research focuses instead on the evaluation of the chosen GCMs, GCM-

RCMs, and RCMs themselves (the lattermost in the subsequent Chapter 5),

it is argued that this important step of evaluating the climate models in the

context of agricultural impact assessment is needed to better characterize

uncertainty. In addition, this evaluation of driving GCMs and downscaling

RCMs is argued to be crucial in building confidence in crop yield projections.

4.3.2.3 GCM review and selection

Similar to RCM selection, driving GCMs are selected for the study based

on their availability on several levels: on a daily timestep over a sufficient

time period (>30 years) for maximum and minimum temperature as well as

precipitation, within the same ensemble member from CMIP5 (r1i1p1), and

lastly for future climate simulations forced by the RCPs 8.5 and 2.6. The

subset of available CMIP5 GCM simulations that suited these criteria are also

reviewed in terms of available scientific literature on their evaluation. The five

chosen GCMs are CNRM-CM5.1, EC-EARTH, HadGEM2-ES, IPSL-CM5A-

MR, and MPI-ESM-LR (referred to as CC, EC-EARTH, HadGEM, IPSL, and

MPI, Table 4.1b) which all have varying resolutions of approximately 150 km.

Historical runs for the chosen GCMs (and GCM-RCMs) are available from

1976-2005.

Several studies which have evaluated the chosen GCMs are discussed

in the following paragraphs. In a review of CMIP5 GCM performance in the

context of EURO-CORDEX, a model performance index was used to rank

and evaluate surface temperature and precipitation for several GCMs,

including the GCMs selected for this study, apart from EC-EARTH (Jury

et al., 2015).
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Table 4.1: GCM and RCM selection and combinations.

Table 4.1a. Selected regional climate models (RCMs) from EURO-CORDEX for
evaluation simulations.

RCM,
abbreviation

Downscaled
resolution

Reference and institutes

CCLM4-8-17
(CCLM)

0.44◦ Jaeger et al. (2008), CLM Community

RACMO22E
(RACMO)

0.44◦ van Meijgaard et al. (2008), Royal
Netherlands Meteorological Institute
(KNMI)

RCA4 (RCA) 0.44◦ Kjellström et al. (2016), Rossby Centre,
Swedish Meteorological and Hydrological
Institute

Table 4.1b. Selected global climate models (GCMs) from CMIP5 for historical
simulations.

GCM/ESM,
abbreviation

Resolution Reference and institutes

CNRM-CM5.1
(CC)

1.406◦ x 1.406◦ Voldoire et al. (2013), Centre National
de Recherches Météorologiques (CNRM)
and Centre Européen de Recherche
et de Formation Avancée en Calcul
Scientifique

EC-EARTH 1.125◦ x 1.125◦ Hazeleger et al. (2010), Royal
Netherlands Meteorological Institute
(KNMI)

HadGEM2-ES
(HadGEM)

1.250◦ x 1.875◦ Collins et al. (2011), Martin et al. (2011),
UK Met Office Hadley Centre

IPSL-CM5A-MR
(IPSL)

1.25◦ x 1.875◦ Dufresne et al. (2013), Institut Pierre
Simon Laplace (IPSL)

MPI-ESM-LR
(MPI)

1.875◦ x 1.875◦ Giorgetta et al. (2013), Max Planck
Institute for Meteorology

Table 4.1c. Paired GCM-RCM combinations for evaluation.

No. Global climate model and regional climate model
combination

1 CCLM-MPI
2 RACMO-ECEARTH
3 RCA-CC
4 RCA-HadGEM
5 RCA-IPSL
6 RCA-MPI
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Based on their evaluation, the GCM MPI-ESM-LR had a model

performance index higher than the multi-model mean, in addition

CNRM-CM5 and HadGEM2-ES had above average performance compared

to other GCMs in the study (Jury et al., 2015). In the same evaluation study,

IPSL-CM5A-MR and the lower-resolution IPSL-CM5A-LR had lower

average MPI with respect to the other GCMs, as it performed well for

near-surface variables but poorly for upper-air variables (Jury et al., 2015).

A different version of an IPSL GCM, IPSL-CM5B-LR, was found to have

’implausible’ projections and all three IPSL models demonstrated poor

realism of the annual cycle of rainfall in most regions in Europe

(McSweeney et al., 2015, p.3237).

In a study that compared the precipitation output of 34 GCMs from

CMIP5 to high-resolution satellite gauge-adjusted observations, selected

climate models in the study were outperformed by the multi-model

ensemble mean and median, although biases over Europe were generally

lower than other regions (Mehran et al., 2014). Their sample of GCMs

included the GCMs selected for the study, apart from EC-EARTH. The

quantile bias analyses in the study indicated that CMIP5 simulations are

particularly biased at high quantiles (extremes) of precipitation (Mehran

et al., 2014). Following their method of using a ’volumetric hit index’ – which

is the volume of precipitation detected correctly by GCMs above a set

threshold – the chosen GCMs were thus ranked (from best-performing):

MPI, CC, HadGEM, IPSL. However, after the removal of mean-field bias,

these GCMs had fairly even index scores. Output apart from simulated

precipitation extremes were improved after correction (Mehran et al., 2014).

Other studies which assess GCM performance have found that

IPSL-CM5A-LR (the lower-resolution version of the IPSL model that is used

in this chapter) performed relatively well compared to observational data

(Yoo and Cho, 2018), based on simple statistical measures, namely root

mean square error (RMSE) and correlation coefficient of empirical
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orthogonal functions (EOF). This is in contrast to the aforementioned

studies which have found IPSL to have poor to mixed results (e.g. Jury

et al., 2015, McSweeney et al., 2015). In the Yoo and Cho (2018) study,

EC-EARTH was included in the 20-member MME, and it showed relatively

small normalized RMSE for gridded data within the ensemble. In addition,

the first EOF of CC, IPSL and EC-EARTH explained approximately 97.5%

of the pattern variance of output, which was very close to the variance

explained by observations (97.23%) (Yoo and Cho, 2018).

Therefore, the selected GCMs for the study that meet the availability

criteria show relatively fair performances based on a review of the literature;

however they are also reported to have several biases, and these are

investigated in the following results section.

4.3.2.4 Processing the GCM-RCM combinations

After the literature review and data availability checks, the final

GCM-RCM combinations which are used for the past climate evaluation are

the following: CCLM-MPI, RACMO-ECEARTH, RCA-CC, RCA-HadGEM,

RCA-IPSL, and RCA-MPI (Table 4.1c). Although this is a relatively small

ensemble of 5 GCMs and 6 GCM-RCM combinations, it is found suitable for

the research questions of the study.

CMIP5 and EURO-CORDEX use netCDF as the file format for climate

model output. The rotated lat-lon grid of climate model simulations are

transformed to a regular lat-lon grid to match the E-OBS (Haylock et al.,

2008) and NUTS grids using the remapcon and setgrid functions from the

Climate Data Operators (cdo) toolkit (CDO, 2018). Further processing of

netCDF files is completed with the R package ncdf4 (Pierce, 2017). Country

and regional land-based grid cells for the UK, Germany, and German

regions (See Table 3.1) are selected based on geographical boundaries

defined by the European NUTS gridding system. Similar to the selection of
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grid cells for observations, the grid cells that matched the lat-lon grid

coordinates of GCM and RCM simulations are extracted.

Selected grid cells are then aggregated to represent country and

regional averages of climate simulations for the needed variables of

maximum and minimum temperature, and precipitation for 1976-2005 for

the historical GCM and GCM-RCMs. The processed GCM and GCM-RCM

output are then compared to observations and to each other with the

statistical methods discussed at the end of this data and methods section,

recalling that it is the hypothesis that uncorrected GCM-RCM output has a

better performance compared to uncorrected GCM output.

4.3.3 Statistical analyses and evaluation

4.3.3.1 Comparing the output of GCMs and RCMs to observations

Building on the work from the previous chapter, daily values of maximum

and minimum temperature as well as precipitation for the UK, Germany and

four German regions, are taken from E-OBS, which is a gridded dataset of

land-only gridded daily high-resolution estimates of these climate variables

in Europe (Haylock et al., 2008). An advantage of using E-OBS is its spatial

and temporal coverage, which makes it ideal for an approximate evaluation

of RCM-simulated temperature and precipitation characteristics over Europe

(Kotlarski et al., 2014).

In the analysis of climate simulations and BC methods, several statistical

metrics are used to evaluate climate model performances, such as bias

(simulations minus observations), correlation (r), and RMSE. Mean bias is

calculated for annual and seasonal maximum and minimum temperature

(Tmax, Tmin) for the period between 1976-2005, where a negative

(positive) mean bias indicates that simulated temperatures are cooler or

have fewer hot days (warmer or more hot days) than observations. For
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precipitation, a negative (positive) mean bias indicates that total annual or

seasonal precipitation is underestimated (overestimated). To answer the

research question on added value of RCMs, "simple" or conventional

statistical measures of RMSE and correlation are adopted, similar to the

approach of Yoo and Cho (2018). This straightforward approach is a step to

show the relative performance of RCMs compared to GCMs.

4.3.3.2 Challenging tests of added value

As reported earlier in this chapter (Section 4.1.2), the concept and proof

of added value from RCMs is strongly debated in the scientific community.

There are many key studies that are on opposite ends of the debate: for

example, some studies have confirmed that there is added value from

RCMs, particularly for climate projections (e.g. Rummukainen, 2016), while

other studies have found that in a setup where GCMs and GCM-RCMs are

both directly post-processed (bias corrected) there is no clear added value

by RCMs (e.g. Eden et al., 2014). Therefore, it must be acknowledged that

the design of the chapter to find this added value in uncorrected projections

is a difficult test, as is any added value test that is largely dependent on the

context (e.g. model, variable, scale, region, experiment set-up)

(Rummukainen, 2016).

Furthermore, correlations are a particularly challenging test for

precipitation compared to precipitation as the link between temperature and

external forcings is more clear. For instance, it has been shown that the

addition of anthropogenic forcings to climate model simulations produces

better agreement with the evolution of observed temperatures (Meehl et al.,

2012). However challenging, it is argued, after the review of literature in

Chapter 2, that finding and characterizing added value from RCMs is a

method that is not common in disciplinary impact assessment studies (e.g.

crop modeling studies), as assumptions are often made that climate model
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output is automatically ’better’ using finer-scale data. However, given the

growing dependence and demand of impact studies for high-resolution

climate projections, issues such as the value of downscaling must also be

taken into account when considering the cascade of uncertainty in climate

impact assessment.

4.4 Results

In this section, the results of the comparison of (1) uncorrected historical

GCM simulations to the same output downscaled by an RCM, and (2) the

comparison of both the raw and downscaled output to observations are

reported.

4.4.1 Comparing climate model output to observations

The results of the comparison of climate model output to observations

is reported here in order to assess how well-represented temperature and

precipitation are in both historical GCM and GCM-RCM (downscaled) output.

4.4.1.1 Biases and error in simulated maximum and minimum

temperature (country level)

At the country level, the 5 chosen GCMs and 6 GCM-RCM combinations

show biases relative to observations for annual averages of maximum and

minimum temperature. Generally, it can be observed that both GCMs and

GCM-RCMs underestimate maximum temperatures (Tmax, Figs. 4.2A and

4.3A), where bias of the ensemble mean of GCMs is smaller than GCM-

RCMs. There are smaller observed biases for minimum temperature (Tmin,

Figs. 4.2B and 4.3B) from both GCMs and GCM-RCMs, and the ensemble

mean of the latter has a smaller/similar bias compared to GCMs.
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These biases are also reflected in the calculated RMSE relative to

observations over the same period (Tables 4.2 and 4.3). GCM-RCMs have

larger RMSE than GCMs for Tmax: 1.89 and 1.4◦C for the UK and

Germany, compared to RMSE=1.37 and 1.24◦C using the ensemble of

GCMs. For the UK, Tmin is overestimated by historical GCMs, but this is

improved using RCMs, and the multi-model mean is closer to observations:

RMSE=1.05 (0.43◦C) for the ensemble mean of historical GCMs

(GCM-RCMs). For Germany, the ensemble mean of Tmin simulations by

both GCMs and GCM-RCMs have similar error relative to observations

(RMSE=0.7 for GCMs, RMSE=0.6 for GCM-RCMs).

In terms of individual climate model performances, historical simulations

from IPSL significantly underestimate Tmax over the UK, even when

downscaled with RCA (RMSE=2.88◦C and RMSE=2.68◦C with RCA).

Historical simulations from MPI for Tmin over the UK and Germany have a

large positive bias and RMSE (2.7◦C for the UK and 1.72◦C for Germany);

using the RCMs like CCLM and RCA reduce this bias, for example

CCLM-MPI brings Tmin simulations closer to observations (RMSE=0.85◦C

for the UK and 0.94◦C for Germany).

It can be observed that RACMO has different effects on output from

driving GCM EC-EARTH: downscaled RACMO-ECEARTH Tmin has

reduced error and bias relative to the historical GCM simulations for the UK

(RMSE=1.41 to 0.71◦). However, RACMO increases the RMSE for

Germany Tmin compared to its historical GCM simulations and

observations (RMSE=0.95 to 1.79◦C).
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Figure 4.2: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, b): minimum temperature, and C) total annual precipitation
for 1976-2005 in the UK.

Figure 4.3: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, b): minimum temperature, and C) total annual precipitation
for 1976-2005 in Germany.
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4.4.1.2 Biases and error in simulated precipitation (country level)

For total annual precipitation, historical GCMs are shown to generally

underestimate rainfall for the UK, and positive biases generally increase

when using RCMs over the UK and Germany (Figs. 4.2C and 4.3C), which

is also reflected in the large RMSE values for GCM-RCMs compared to

GCMs alone. For example, RCA-downscaled MPI has a large RMSE of

347mm compared to the 193mm from MPI alone (Table 4.3).

Table 4.2: RMSE between historical GCM Tmax, Tmin and Precip to observations.

Annual Tmax Annual Tmin Annual Precip
GCM UK Germany UK Germany UK Germany

CC 1.6 1.11 0.58 1.62 170.42 172.88
ECEARTH 1.59 1.55 1.41 0.95 156.42 220.68
HadGEM 0.7 0.98 1.15 0.97 261.92 177.1
IPSL 2.88 2.2 0.64 1.04 156.64 210.06
MPI 1.09 1.39 2.7 1.72 193.69 245.14
Ens.mean 1.37 1.24 1.05 0.72 164.7 184.72

Table 4.3: RMSE between historical GCM-RCM simulations Tmax, Tmin and Precip
to observations.

GCM-RCM
Annual Tmax Annual Tmin Annual Precip

UK Germany UK Germany UK Germany
CCLM-MPI 1.89s 2.04s 0.85t 0.94t 161.33t 324.77s

RACMO-ECEARTH 2.2s 1.4t 0.71t 1.79s 144.69t 139.05t

RCA-CC 2.94s 2.68s 0.99s 1.51t 286.18s 271.89s

RCA-HADGEM 0.77s 0.76t 1.35s 0.94t 175.59t 152.88t

RCA-IPSL 2.68t 2t 0.59t 0.92t 305.39s 274s

RCA-MPI 1.36s 1.05t 1.23t 1.05t 347.28s 257.11s

Ens.mean 1.89s 1.4s 0.42t 0.6t 206.62s 213.03s

A s(t) indicates a relative increase (decrease) in RMSE relative to the driving GCM.
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4.4.1.3 Regional-level annual average temperatures and total

precipitation

At the German regional level, both historical GCMs and GCM-RCM

simulations of annual average Tmax, Tmin and total annual precipitation

show biases relative to observations, although the size and sign of the bias

varies from region to region as well as for the particular climate variable

analyzed. For example, similar to the national level, GCMs and GCM-RCMs

generally underestimate annual average Tmax in the German regions (Figs.

4.4A-4.7A). In contrast, for all the four regions analyzed, the multi-model

mean of annual average Tmin has small biases and small RMSE relative to

observations for both GCMs and GCM-RCMs, typically under 1◦C (Figs.

4.4B-4.7B, Tables 4.4 and 4.5). The use of RCMs has mixed effects on the

ensemble means: it only reduces RMSE in DE2 (Tmax), DED (Tmin), and

DEF (Tmin).

At the individual model level, more reductions of RMSE can be

observed: for example, RACMO-ECEARTH (Tmax DE2), RCA-MPI

(reductions in RMSE across all regions for Tmax and Tmin), RCA-IPSL

(Tmax DE2, DED, DEF, Tmin DEA, DED and DEF), RCA-HadGEM (Tmax

for all regions, Tmin DE2, DEA), RCA-CC (Tmin DE2, DEF), and

CCLM-MPI (Tmin across all regions). Similar to the country-level analysis,

total annual precipitation is generally overestimated by both GCMs and

GCM-RCMs (Figs. 4.4C-4.7C), and some of these biases increase when

using RCMs, for example with CCLM-MPI in DE2, DEA and DED; RCA-CC

in DEA and DED; and RCA-MPI in DEA, DED, and DEF.
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Figure 4.4: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, B): minimum temperature, and C) total annual precipitation
for 1976-2005 in DE2 (South Germany).

Figure 4.5: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, B): minimum temperature, and C) total annual precipitation
for 1976-2005 in DEA (West Germany).
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Figure 4.6: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, B): minimum temperature, and C) total annual precipitation
for 1976-2005 in DED (East Germany).

Figure 4.7: Mean bias of GCM and GCM-RCM simulations: A) annual average
maximum temperature, b): minimum temperature, and C) total annual precipitation
for 1976-2005 in DEF (North Germany).
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Table 4.4: RMSE between historical GCM Tmax, Tmin and Precip to observations, German regions, 1976-2005.

Annual Tmax Annual Tmin Annual Precip
GCM-RCM DE2 DEA DED DEF DE2 DEA DED DEF DE2 DEA DED DEF
CC 1.96 1.37 1.43 1.03 2.52 1.85 1.97 0.93 235.25 164.76 211.04 230.98
ECEARTH 2.57 1.64 1.69 1.35 1.85 1.18 0.95 2.17 235.42 191 214.99 188.4
HadGEM 1.51 1.1 1.18 0.99 1.19 0.99 0.99 1.06 248.73 178.02 186.9 178.39
IPSL 2.52 2.4 2.44 2.55 1 1.22 1.18 1.13 272.54 158.82 248.88 145.07
MPI 2.05 1.38 1.26 1.35 1.2 2.03 2 2.03 242.27 204.68 228.44 164.05
Ens.mean 2.01 1.35 1.28 1.15 0.85 0.69 0.72 1.11 220.29 146.4 199.68 137.56

Table 4.5: RMSE between historical GCM-RCM Tmax, Tmin and Precip to observations, German regions, 1976-2005.

GCM-RCM
Annual Tmax Annual Tmin Annual Precip

DE2 DEA DED DEF DE2 DEA DED DEF DE2 DEA DED DEF
CCLM-MPI 2.52s 2.41s 2.32s 1.7s 0.99t 0.79t 0.89t 1.25t 495.97s 252.7s 287.99s 160.37t

RACMO-ECEARTH 2t 1.77s 1.7s 1.34t 2.68s 1.78s 2.1s 0.74t 167.49t 155.96t 176.87t 161.85t

RCA-CC 3.12s 3.02s 3s 2.15s 1.81t 1.74t 1.64t 0.96s 181.27t 209.33s 398.12s 259.24s

RCA-HADGEM 0.82t 0.9t 0.93t 0.81t 0.91t 0.75t 1.07s 1.2s 218.81t 162.21t 235.15s 171.38t

RCA-IPSL 1.95t 2.52s 2.3t 2.15t 0.91t 1.23s 1.04t 0.87t 150.49t 274.69s 324s 322.4s

RCA-MPI 1.13t 1.36t 1.25t 1.1t 0.93t 0.87t 1.1t 1.46t 159.48t 249.72s 328.32s 291.7s

Ens.mean 1.7t 1.82s 1.69s 1.3s 0.72t 0.8s 0.64t 0.69t 159.35t 183.67s 269.86s 188.55s

A s(t) indicates a relative increase (decrease) in RMSE relative to the driving GCM.
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4.4.2 Comparison of relative GCM and RCM performance:

correlation

In the previous section, the relative bias and error of GCM and GCM-

RCM output was compared to observations. This section continues with

the comparison of GCMs and downscaled GCM output in order to answer

research questions on added value. In this section, the correlation between

GCM and GCM-RCM output is reported. It is important for climate model

output to match closely with observations because the realism of climate

input data is crucial to plausible yield projections, so a higher correlation

statistic is considered favorable.

The performance of GCMs and RCMs driven by GCMs are compared

to how closely they are correlated to observations (Figs. 4.8 and 4.9), as

well as the four German regions used in the study (Figs. 4.10 and 4.13).

Overall, it can be observed that the correlation statistic of the multi-model

mean of GCM-RCMs exceeds that of the multi-GCM mean in the UK and

Germany for Tmax and Tmin. For example, the correlation of the GCM-RCM

ensemble mean for Tmax and Tmin is over r=0.6 for the UK, Germany, DE2

(Tmax only), DEA, and DEF (Tmin only). In contrast, the ensemble mean

correlation of historical simulations from GCMs is not significant for Tmax

nor Tmin in any of the German regions as well as at the country level in

Germany.

For precipitation, both GCMs and downscaled GCMs typically do not

have any significant correlation for the UK and Germany and at the regional

level. This indicates that precipitation simulation from climate models needs

significant improvement, a known limitation of climate models and their

ability to simulate precipitation (See Chapter 2, Section 2.2.2).
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Figure 4.8: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for the UK.

Figure 4.9: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for Germany.
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Figure 4.10: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for DE2.

Figure 4.11: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for DEA.
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Figure 4.12: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for DED.

Figure 4.13: Correlation of historical GCM and RCM-downscaled GCM simulations
of total annual precipitation, 1976-2005 for DEF.
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4.5 Discussion

The chapter was designed to answer questions on how well GCMs and

GCM-RCMs can capture past climate trends and how simulations from

GCMs and GCM-RCMs compare to each other, in the context of the

debated added value of RCMs. The main findings of the chapter,

contextualized by the research questions (RQs) are as follows:

4.5.1 Summary of findings

• Historical simulations of GCMs and their dynamically downscaled

simulations (GCM-RCMs) contain significant biases relative to

observations on annual timescales, but the multi-model mean of the

analyzed climate variables (Tmax, Tmin and precipitation) has smaller

biases relative to observations and outperforms individual models.

(RQ 1)

• In general, both GCMs and GCM-RCMs tended to underestimate

Tmax, overestimate Tmin, and have a wide range of biases for

precipitation.

• Comparing GCMs and GCM-RCMs with simple statistical metrics

such as correlation and RMSE showed that the multi-model mean of

GCM-RCMs typically outperformed the multi-model mean of GCMs,

as well as individual GCM-RCM pairs, and individual GCMs in terms

of correlation. (RQ 2)

• Total annual precipitation from historical simulations was not

well-correlated to observations. It also had large positive biases

relative to observations; although the former is is not unexpected

given that they were unforced by observations, and the latter

considering known challenges in the simulation of precipitation by
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climate models. Therefore, it was observed that the performance of

GCMs in simulating precipitation over the UK, Germany and German

regions needs significant improvement.

• Overall, the relatively better performance of GCM-RCMs in the study

design (better correlation, some smaller errors, and benefits associated

with higher resolution) was considered sufficent evidence for their use

in projecting the impacts of climate change on crops, at least for the

context of the study. A more thorough characterization of added value

beyond the chosen metrics is out of the scope of the research but it is

clear that this GCM and GCM-RCM comparison is necessary to avoid

overstating the ’benefits’ of RCMs. (RQ 3)

In the following section, these key results are discussed, focusing on how

these results relate to the main research objectives.

4.5.2 Comparing of GCMs and GCM-RCM simulations

The major research question addressed by this chapter is how much do

RCMs add to the GCM simulations – do they improve them, make them

worse, or make no difference? In terms of RMSE, the advantages of using

downscaled simulations are shown to be mixed: in many cases the use of an

RCM reduces RMSE, particularly for Tmin (See Tables 4.2 and 4.4) and in

other cases, using RCMs increases the measured error.

For example, using downscaled simulations versus historical simulations

reduces RMSE for Tmax in the UK and Germany for RACMO-ECEARTH,

RCA-HadGEM, RCA-IPSL (Tables 4.2 and 4.3). Downscaled climate output

also has smaller error for Tmin, with the multi-model mean ensemble error

having significantly smaller RMSE. In contrast however, the multi-model

mean of downscaled Tmax and precipitation simulations for the UK and

Germany had larger in RMSE relative to GCM-only simulations.
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In this chapter, it was also shown that correlations were often better, and

some biases relative to observations were reduced, when using GCM-RCMs

compared to uncorrected historical GCM output. For example: the more well-

correlated ensemble mean of Tmin for the UK and Germany, and across all

chosen German regions, individual GCMs and RCMs (e.g. Tmax with RCA-

IPSL over IPSL alone in the UK and Germany, RACMO-ECEARTH over EC-

EARTH alone in the UK, among others). However, the use of RCMs did not

always result in smaller errors. In fact, when using RCMs for precipitation,

some of these errors increased substantially (e.g. CCLM-MPI for Germany).

These imbalanced advantages of using RCMs have been reported in

other studies and in the review (See Sections 4.1.2, 4.3.3.2). It is argued,

therefore, based on these results, that the proof of added value from RCMs

is challenging – in fact, many studies that have attempted to find this added

value from RCMs have not shown unequivocal gains (Di Luca et al., 2016).

Therefore, although some reduction of RMSE is observed in precipitation

when using RCMs, the choice of using GCM-RCMs over GCMs only does

not appear to be unilaterally in favor of RCMs. Rather than this being a

discouraging result in favor of the additional spatial and temporal

information already known to be provided by RCMs, it provides an

interesting result, considering that RCMs are often accepted as ’better’ than

GCMs simply because of the more spatial resolution they provide. The

results reported here are a reminder that claims of added value should

always be verified.

However, in order to move forward with the analysis and provide usable

climate model output for the impact assessment, it should be recalled that

the tests used here are relatively ’tough’ tests for added value – particularly

for precipitation– given that climate models still need significant

improvement to represent the complexity of the atmospheric processes that

drive the representation of precipitation in climate models. In addition, this

larger bias and error could be due to the drizzle effect associated with
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climate models. This tendency of climate models, particularly RCMs, to

overestimate the occurrence of wet days and underestimate heavy

precipitation is well known (Maraun, 2013, Maraun et al., 2010, Piani et al.,

2010). Although the results show that not all RCMs could not improve the

accuracy of precipitation simulations, it remains that even un-downscaled

GCM simulations of precipitation contain considerable error, therefore

RCMs that are driven by the same GCMs cannot be expected to completely

compensate for these errors.

Therefore, it can be reported that the selected RCMs in this study are able

to result in improvements in the multi-model ensemble mean’s correlation to

observations for maximum and minimum temperatures, and are also able

to reduce some bias and error – particularly for minimum temperatures –

relative to the historical driving GCM simulations. These reasons of improved

correlation, and some reduction of biases, are deemed sufficient justification

for the use of RCMs in the study and RCMs are found to be appropriate to

answer the research questions of the study. However, errors remain, and are

introduced by RCMs themselves: because of this, the selected RCMs are

evaluated and bias-corrected in the next chapter.

4.5.3 Connecting to the added value debate: advantages

of regional climate and impact modeling

The debate on added value of RCMs was an important question to

address in the chapter because of the ’garbage-in-garbage-out’ discussion

which questions the utility of RCMs (e.g. Maraun, 2016, Jury et al., 2015,

Giorgi and Gutowski, 2015), that is, if RCMs will produce anything better if

they still remain driven by GCMs that contain significant errors. Despite the

advantages of modeling climate and impacts at regional scales, it cannot be

discounted that RCMs are still highly dependent on the skill of GCMs.

Additionally, it is not clear nor obvious whether RCMs can improve the
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larger-scale climate properties, such as the continental to sub-continental

surface temperature distribution (Sørland et al., 2018).

A critical study which investigated downscaling jointly with bias

correction showed that after correction, GCM- and RCM-driven US maize

yields were essentially indistinguishable (Glotter et al., 2014). Although the

comparison of bias-corrected GCM-only output used to simulate yields is

not in the scope of the research, this points to the importance of taking a

critical stance on the utility of RCMs. RCMs should not be used like ’black

boxes’ for producing regional climate information (Giorgi and Gutowski,

2015, p.471) with the automatic assumption that their output is better.

With multiple criticisms on the utility of regional climate modeling, why

advocate for regional scales or RCMs? It is argued that these more local

scales will continue to be significant in impact assessment, and that this

significance may continue to increase. The development of adaptation and

response strategies to climate change depend on information and

geographical features (e.g. coastlines, mountain ranges) at smaller scales

(Sørland et al., 2018). Compared with the coarser GCM output,

downscaling (both through RCMs and statistical methods) has been found

to add value in several ways. For example, RCMs can often better capture

meso-scale phenomena and climate dynamics, which the results of

statistical downscaling can complement because of its different set of

information and assumptions (Takayabu et al., 2016).

In addition, [climate and impact] model accuracy and data quality are

often better at local to regional scales, which has led to questions on

whether projections of climate change impacts are better made by

ensembles that are global or regional in scope (e.g. Challinor et al., 2014,

2017). Furthermore, adaptation is important at regional and local scales: if

effective climate change adaptation measures, particularly for food security,

are to happen in the next few decades, the uncertainties and lack of skill in
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simulated regional climates need to be communicated and understood by

both researchers and policymakers (Ramirez-Villegas et al., 2013).

To conclude, recent studies report that RCMs in general outperform

GCMs in many aspects, and that there are benefits to the use of GCM-RCM

model chains in regional climate change assessments (Sørland et al., 2018,

Olsson et al., 2016). A recent review also concluded that the answer to

whether RCMs provide added value is "yes" – added value is meaningfully

underlined when there is a clear physical context for it to appear in – and

that it is more important to ask where this added value can be found rather

than whether it exists or not (Rummukainen, 2016). Added value has been

found to depend on many factors, including the general setup of the

experiment (model, scale, region, boundary conditions, and intended

application) as well as the specific climate variables being analyzed (Di

Luca et al., 2016, Rummukainen, 2016). Therefore, more than ever, careful

framing of research questions and development of targeted and appropriate

methods are important to make the most of the full range of models (both

climate- and impact-oriented) and communities of researchers, rather than

deepen the existing divide (Challinor et al., 2017, 2014).

In this context, considering the results found in this chapter, and given

the many perceived advantages of using RCMs, particularly

EURO-CORDEX, which has been well-evaluated over Europe alongside the

GCMs that drive many of its experiments (Jacob et al., 2014, Kotlarski et al.,

2014, Jury et al., 2015), the results of the chapter point to RCMs as being

appropriate for the study. In future chapters, reanalysis-driven RCMs

themselves are evaluated compared to observations, and the error of

GCM-RCMs and RCMs in climate projections are also analyzed to further

examine how biases in climate models can affect future yield projections.
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4.6 Conclusion

Although GCMs are powerful tools and continue to increase in resolution

and complexity, their coarse scale and biases limit their direct application in

impact studies. RCMs are seen as a method to generate higher-resolution

simulations from existing GCMs. They are considered useful particularly for

crop studies which rely on high-quality and realistic simulations of

temperature and precipitation. However, the added value of RCMs is not

always clear as they are themselves driven by GCMs.

To justify the selection of using downscaled GCM output for impact

analyses, the work of this chapter examined differences between the output

of historical GCM simulations and those that were downscaled by RCMs. It

was found that RCMs have some advantages over GCMs in terms of better

correlation and some improvements to simulations of temperature.

However, these findings are limited to the design and context of the chapter,

and the debate on added value remains an active point of discussion in

many scientific communities. It is therefore important that the limitations of

these downscaling methods, alongside the limitations of GCMs, are

communicated in order to provide a better understanding of uncertainty.





Chapter 5

Evaluation of RCMs and the effect

of bias correction on climate and

yield simulations

5.1 Introduction

The assessment of added value in the previous chapter showed that

downscaling global climate models (GCMs) with regional climate models

(RCMs) shows some added value over GCMs alone. As previously

discussed, there are benefits associated with using downscaled

simulations, along with their increasing availability and access. However,

RCMs themselves can introduce error, therefore affecting impact projections

that utilize their output. Therefore, RCM evaluation in a perfect boundary

setting is an important piece of information that can reveal RCM

deficiencies (Kotlarski et al., 2014). In this chapter, the biases of selected

reanalysis-driven RCMs are evaluated, and these are corrected with a

number of bias correction (BC) methods of varying complexity. Finally, this

BC RCM output is used to simulate yield in order to investigate the effects of

BC on RCM output and yield simulations.

137
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5.1.1 RCMs and bias correction in impact assessment

As previously discussed in the literature review (Chapter 2, Section

2.2.4), the use of downscaling methods – either statistical downscaling or

through RCMs (dynamical downscaling) – is an attempt to resolve the scale

discrepancy between GCM grid cell resolution and the fine-scale resolution

required for local and regional impact assessment (Maraun et al., 2010),

such as modeling the impacts of climate change on agriculture. There are

many reasons for utilizing downscaling to bridge the scale gap between

GCM and impact models. A primary reason is that it is not considered

‘sensible’ to use hourly and/or daily GCM outputs directly for agriculture

impact assessment because of the challenges in interpreting the higher

temporal resolution data over large grid boxes (Luo and Yu, 2012, p.560).

Based on the literature review, progress in regional climate modeling has

made the use of RCMs more attractive in a number of climate impact

analyses, such as hydrological studies (e.g. Pasten Zapata, 2017, Olsson

et al., 2016, Teutschbein and Seibert, 2012) and agriculture-oriented

studies (e.g. Balkovič et al., 2018, Wilcke and Bärring, 2016, Waongo et al.,

2015, Glotter et al., 2014, Oettli et al., 2011. RCMs have a history within the

field of agricultural impact assessment, as they have been applied to

agricultural impacts assessments as early as 1998 (Luo and Yu, 2012).

Therefore, while their added value is still an active point of discussion in the

scientific community (See Chapter 4), it is argued that downscaling methods

do, and will continue to, play a significant role in impact assessment.

Similar to the use of RCMs, the use of bias correction (BC, see Section

2.2.5), has become somewhat standardized in impact assessment methods.

Previous studies have found that precipitation output from GCMs cannot be

used to force hydrological or other impact models without some form of prior

correction if realistic output is sought (Piani et al., 2010), so it is often applied,

in varying forms of complexity, to post-process climate model output.
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However, BC is also seen as a debatable step if it is applied without

careful design and thought to its implications on the climate change signal

and climate physics (e.g. avoiding ‘naive application’, Maraun et al., 2017,

see Section 2.4.2.1). The choices of RCMs, their driving GCMs, and BC

methods are therefore important to evaluate and not take simply as

standard, especially considering research findings that showed that GCM

and RCM simulations that were used as input to crop modeling showed no

significant differences after BC (Glotter et al., 2014), and that biases in

wheat yield simulations have been caused by biases in rainfall inherited

from GCMs (Macadam et al., 2016).

The choices of RCMs and BC methods are also relevant in the context of

the impact modeling methods they are used as input to. The large differences

between statistical and process-based approaches to crop modeling mean

that climate model output is utilized in different ways.

5.1.2 Comparing crop model approaches and past yield

simulations

5.1.2.1 Differences in crop modeling method

As previously discussed in Chapters 2 and 3, the impacts of climate

change on crop yield are typically assessed through the use of crop models,

which are categorized into process-based models (PCMs) or statistical

crop-climate models (SCCMs). These crop modeling approaches are

methodologically distinct: PCMs consider plant growth processes, genetics

and field management. SCCMs, on the other hand, are built considering

empirical data, and rely on a much smaller set of input data for calibration.

The issues between the choice of using PCMs or SCCMs have been

summarized as calibration parameter differences, scale mismatch,

challenges in upscaling parameters, aggregation error, stationarity, among
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other differences (See Chapter 2). These numerous issues are argued to

cause serious limitations in the resulting confidence in crop yield projections

when they are generated using only a single crop model, or more

importantly, with only a single crop modeling approach. The numerous

advantages of the PCM approach – namely being able to consider field

management and genetics, which have a larger effect on yields compared

to climate (Porter and Semenov, 2005) – are also matched by the

advantages of ease of use and transparency of statistical approaches (e.g.

as reviewed by Lobell and Burke (2010)).

These fundamental differences in crop modeling method are important,

particularly when recalling the cascade of uncertainty (e.g. Wilby and

Dessai, 2010) in agricultural impact projections. For example, PCMs are

linked to uncertainties that are introduced by crop modeling parameters

(e.g. Watson et al., 2015, Koehler et al., 2013), and related to factors such

as soil and genetics (e.g. Folberth et al., 2016, Langensiepen et al., 2008).

A major issue is the assumed stationarity in impact responses (Lobell and

Burke, 2010, Lobell and Field, 2007). These differences between SCCMs

and PCMs have been investigated in previous chapters, which have focused

on evaluating simulations of wheat yields in the UK and Germany, as well as

four German regions (See Chapter 3).

5.1.2.2 Review of previous chapter findings

In Chapter 3, SCCMs and PCMs were compared using climate

observations (E-OBS, Haylock et al., 2008) as input in order to assess their

skill in producing yield "hindcasts". A hindcast is the term used in the study

to describe recreations of past yield. The PCM used for the comparison is

CERES-Wheat (part of DSSAT, Jones et al., 2003). It was shown to be

highly sensitive to input parameters such as the genetic coefficients. The

SCCMs for the study are generalized additive models based on the work of
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Hawkins et al. (2013a), Lobell and Burke (2010). They were evaluated for

the UK, Germany, and the German regions that are the focus of the study

(See Equations 3.3-3.7). These SCCMs consider a non-linear time trend

and climate indices that are relevant for heat stress, which is thought to be

the current and future major cause of climate-driven yield loss (e.g.

Semenov et al., 2014).

A comparison of the yield hindcasts generated by the PCM and SCCMs

showed that, in the study, SCCMs out-performed PCMs based on smaller

root mean square error (RMSE), higher correlation, and generally better

agreement (smaller biases) with the yield observations in wheat yield

hindcasts from German regions between 1981-2010. Despite this difference

in skill, it is argued that there are still many benefits to the use of

systems-based understanding that decision support systems like PCMs can

provide. In addition, the important outcomes resulting from the evaluation of

the PCM and SCCM in Chapter 3 – particularly what can be considered a

‘reasonable’ performance from the PCM in particular – have implications for

the work in this chapter.

Both crop modeling approaches have advantages and disadvantages,

and shared limitations (e.g. considering extremes and the influence of

pests). It is argued that PCMs and SCCMs remain difficult to compare to

each other, but these differences that are valuable to be explored further

(e.g. Challinor et al., 2014, see Chapter 3 discussion) to better characterize

how decisions in the impact simulation cascade affect the resulting

projections. Therefore, this chapter adopts this method comparison

approach while investigating the effect of BC on yield simulations.
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5.2 Chapter approach and objectives

Based on the overall research objectives of investigating uncertainty from

the ‘intermediate’ steps needed to link climate and crop models (See Chapter

1, Fig. 1.4), this chapter takes on the objectives of evaluating the skill of

RCMs, comparing how different approaches to BC affect RCM output, and

whether these BC methods also have impacts on yield simulations generated

by two different crop modeling methods. By doing so, the study aims to

contribute to knowledge in the interdisciplinary field of crop-climate research.

5.2.1 Chapter research questions

(1) How do reanalysis-driven RCM simulations (evaluation RCM

simulations or perfect boundary setting RCM) of temperature and

precipitation compare to observations? What are their biases?

(2) How do different BC methods, chosen for their varying

complexity, affect these climate simulations relative to

observations? Are they effective in reducing biases?

(3) How does BC of RCM evaluation simulations used for crop

models affect yield simulations: (a) relative to observations and

the E-OBS hindcast, and (b) relative to yield simulations

generated by uncorrected RCM output?

(4) How do yield simulations compare when they are generated

with the same bias-corrected climate data but with a different crop

modeling approach?

(5) By reducing the biases climate model simulations, do

simulations from the PCM or SCCM improve?

In order to answer these questions, after the evaluation and correction of

reanalysis-driven RCMs, the resulting BC RCM output are used in two
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different crop modeling methods in order to assess the impact of BC on

yield simulations. Of particular interest is how these yield hindcasts differ

because the two different crop modeling methods utilize climate inputs in

distinct ways. Because the RCMs are driven by reanalysis data, it is

expected that their outputs are reasonably correlated to observations and

their biases are relatively small compared to observations. Where present,

these biases are assumed to be caused by the inherent differences

between RCMs. Despite projected small biases, it is also hypothesized that

BC is still needed to overcome significant errors relative to observations,

due to inherent RCM error. It is also expected that yields driven with

bias-corrected RCM output will have better agreement to reference yields

compared to yields driven by uncorrected RCM output. Through this

analysis, it is the objective of the chapter to form a cohesive simulation

approach that includes selection of a BC method for the future yield

projections.

5.3 Data and methods

5.3.1 Overview of chapter experimental design

The structure of the chapter (Fig. 5.1) is framed around the objective of

assessing RCM evaluation simulations for their skill in reproducing E-OBS

observations of temperature and precipitation. After this evaluation, RCM

output is then subjected to BC using three different methods: linear scaling,

variance correction, and quantile-quantile mapping. The simulations are then

re-evaluated relative to observations to test the effectiveness of the BC step.

After BC, the RCM output are used as input to the SCCMs (Eqns. 3.5-3.7)

and the PCM so that the regional yield simulations can be compared.
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Figure 5.1: Overview of Chapter 5 research design.

5.3.2 Observations of climate and yield

Daily observations of precipitation, maximum and minimum temperature

over the UK, Germany, and four German regions are taken from the gridded

dataset E-OBS (Haylock et al., 2008) from 1981-2010. The German regions

are identified by their NUTS code: DE2 (South Germany), DEA (West

Germany), DED (East Germany) and DEF (North Germany) (Table 3.1).

Yield data from the Food and Agriculture Organization (FAO (2014), for the

country level) and German Statistical Office (Destatis, 2018) for the regional

level are used in this chapter, also from 1981-2010.
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5.3.3 Simulations of temperature and precipitation from

regional climate models

The three RCMs in this chapter are the RCMs used in the previous

chapter which evaluated added value, and are taken from the the

Coordinated Downscaling Experiment over the European domain

(EURO-CORDEX, Jacob et al., 2014). The three RCMs are CCLM, RACMO

and RCA (Table 5.1), which are available from 1981-2010 for the evaluation

simulation at 0.44◦ resolution. Daily maximum temperature (Tmax),

minimum temperature (Tmin) and precipitation are derived from RCM

evaluation simulations. The relevant climate indices for the SCCMs are also

derived from the daily timestep using uncorrected and corrected RCM

output.

Table 5.1: Selected regional climate models (RCMs) from EURO-CORDEX for
evaluation simulations.

RCM Reference and institutes
CCLM4-8-17 (CCLM) Jaeger et al. (2008), CLM Community

RACMO22E (RACMO) van Meijgaard et al. (2008), Royal Netherlands
Meteorological Institute (KNMI)

RCA4 (RCA) Kjellström et al. (2016), Rossby Centre, Swedish
Meteorological and Hydrological Institute

An RCM evaluation simulation is when GCM-scale reanalysis data

(taken as observations) are used as initial and boundary conditions to drive

the downscaling RCM. In the case of EURO-CORDEX, reanalysis data is

from ERA-Interim (Dee et al., 2011). RCM evaluation simulations from

EURO-CORDEX are useful for the study, as using reanalysis data

downscaled by an RCM allows for the evaluation of the RCM itself, and

provides an objective measure of the skill of the RCM downscaling accuracy

by approximately synchronizing the sequence of simulated and observed

time series (Eden et al., 2014, Hwang et al., 2014, Menut et al., 2013). How

well RCMs perform is a major research question of the thesis, and this
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method of RCM evaluation has been used in several impact assessment

studies (e.g. Hwang et al., 2014, Menut et al., 2013, Oettli et al., 2011).

Several statistical metrics, explained later in this section are calculated to

assess the performance RCMs relative to observations in order to

determine their biases. After this analysis, several BC methods are applied

to RCM output.

5.3.4 Bias correction methods

The three BC approaches selected for the study can be applied directly

to correct climate model output: (1) Simple scaling with linear

transformation, (2) Variance scaling, which corrects variation as well as the

mean of the simulations through power transformation (for precipitation) and

variance scaling (for temperature), and (3) Distribution mapping through

quantile-quantile mapping. These methods have been chosen to show

varying complexity in the adjustment method. Stochastic weather

generators (WGs) are another valuable method of BC and have been

recently revisited as an alternative to ’classical’ BC methods (e.g. Maraun

et al., 2017, Maraun, 2016). WGs which generate random weather data

with the properties of the observation or calibration dataset; however they

are not examined in this research because the realism (i.e. year-to-year

values) of annual and seasonal climate is important in the RCM evaluation

in order to generate yield hindcasts.

The equations for the chosen BC methods from Teutschbein and Seibert

(2012) are as follows, where T and P are daily (d) temperature and

precipitation. An asterisk (∗) signifies the corrected RCM output. Monthly

mean and standard deviation are denoted by µm and σm, respectively. The

coefficient of variation (CV ) is standard deviation divided by the mean

(σ/µ). The time period for the EURO-CORDEX RCM evaluation simulations

(eval) and E-OBS observations (obs) is from 1981-2010.
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Although daily climate values are also analyzed in this chapter, the

results and analyses are explained primarily in terms of annual and

seasonal summer climate for clarity. All observations and RCM simulations

are corrected on a daily basis before obtaining seasonal means for use in

the statistical crop-climate model, while daily values are needed for the

CERES-Wheat model.

(1) Simple scaling: linear correction for temperature and precipitation

In this BC method, daily precipitation from the RCM evaluation

simulations Peval(d) is corrected with a factor based on the ratio of the

long-term monthly mean µm of observed and the RCM-downscaled

reanalysis data (Eqn. 5.1). For temperature, daily Tmax from the RCM

evaluation simulation, Teval(d), is corrected with an additive term based on

the difference of the long-term monthly mean between the observations

Tobs(d) and RCM evaluation simulation Teval(d) simulation (Eqn. 5.2):

P ∗
eval(d) = Peval(d) ·

[
µm(Pobs(d))

µm(Peval(d))

]
(5.1)

T ∗
eval(d) = Teval(d) + µm(Tobs(d))− µm(Teval(d)) (5.2)

(2a) Variance scaling: power transformation of daily precipitation

While linear scaling accounts for a bias in the mean, it does not allow

differences in the variance to be corrected. In the first step of variance

scaling (Eqn. 5.3), the coefficient of variation CV of daily precipitation from

observations and simulations is equated, such that P bm
eval(d) is scaled by a

non-linear correction by a parameter bm. The estimate of parameter bm is

found using the root-finding Brent-Dekker algorithm (R library pracma), an

algorithm for real, univariate, continuous functions (Brent, 1971).

f(bm) = 0 = CVm(Pobs(d))− CVm(P bm
eval(d)) (5.3)
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After estimating bm, the parameter is used as an exponent to adjust the

variance statistics of the daily RCM evaluation simulations for precipitation

Peval(d) (Eqn. 5.4):

P ∗1
eval(d) = P bm

eval(d) (5.4)

In a final step, the long-term monthly mean of observed precipitation is

matched to the monthly mean µm of the intermediary precipitation time series

obtained from step two P ∗1
eval(d) (Eqn. 5.5):

P ∗
eval(d) = P ∗1

eval(d) ·
[
µm(Pobs(d))

µm(P ∗1
eval(d))

]
(5.5)

(2b) Variance scaling for temperature

This is a corresponding approach to power transformation for precipitation

to correct temperature. It results in a corrected time series with the same

mean and standard deviation as the observed time series. In a first step,

the mean of the RCM-simulated time series are adjusted by linear scaling,

where T ∗1
eval(d) follows from Eqn. 5.2:

T ∗2
eval(d) = T ∗1

eval(d)− µm(T ∗1
eval(d)) (5.6)

The standard deviations are scaled based on the ratio of observed and

RCM evaluation run output on a daily timestep:

T ∗3
eval(d) = T ∗2

eval(d) ·
[
σm(Tobs(d))

σm(T ∗2
eval(d))

]
(5.7)

In a final step, the corrected time-series is shifted:

T ∗
eval(d) = T ∗3

eval(d) + µ(T ∗1
eval(d)) (5.8)

(3) Quantile-quantile mapping

Realistic representation of precipitation is crucial for any impact and

vulnerability assessment. Hence, crop modelers use BC methods that can

correct the intensity histogram of simulated precipitation (Piani et al., 2010).
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These methods are known as distribution mapping, also known as

quantile-quantile (QQ) mapping. QQ mapping is a method for BC where a

Gamma distribution (γ, with shape parameters α and β) is assumed to be

suitable for distributions of precipitation events and that a Gaussian

distribution (N for normal) is assumed to fit best for temperatures

(Teutschbein and Seibert, 2012, Piani et al., 2010, Eqns. 5.9, 5.10).

P ∗
eval(d) = F−1

γ (Fγ(Peval(d)|αcontr,m, βcontr,m)|αobs,m, βobs,m) (5.9)

T ∗
eval(d) = F−1

N (FN(Teval(d)|µcontr,m, σ2
contr,m)|µobs,m, σ2

obs,m) (5.10)

(3a) QQ mapping: dealing with the drizzle effect and cross validation

Because it has been shown that RCMs simulate too many days with very

low precipitation (Chen et al., 2013) – the so-called drizzle effect – an initial

step prior to QQ mapping is to adjust the number of dry days, by matching

them with the number of observed dry days using a wet day threshold below

which all simulated values are changed to zero, a method used in a recent

hydrological impact study (Pasten Zapata, 2017).

After this correction, the steps described by Teutschbein and Seibert

(2012) are followed: cumulative distribution functions (CDFs) are

constructed for observations and RCM simulations for all days within a

certain month. The value of the RCM-simulated precipitation/temperature of

day d within month m is then searched on the observational CDF of the

RCM simulations together to find its corresponding cumulative probability.

The value of precipitation P or temperature T of the same cumulative

probability is then located on the empirical CDF of observations, and this

value is used as the corrected value for the RCM simulation.

An additional cross-validation step called five-fold cross validation, based

on the work of Maraun and Widmann (2015), is used for QQ mapping. In

this approach, conceptually similar to the leave-one-out cross validation
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described in Chapter 3, the calibration period is divided into five sections of

the same length (in this study, using daily data from 30-year periods). The

correction is calibrated using four of the sections and these are used to

correct the remaining section not used for calibration. This is repeated until

all sections have been corrected in this cross-validation method.

5.3.5 Crop modeling methods

Following their evaluation in Chapter 3, the two crop modeling methods

that are used in this chapter are CERES-Wheat (originally Ritchie and Otter,

1985, now part of DSSAT, Jones et al., 2003) and the regional SCCMs (Eqns.

3.5-3.7). Because of the limited regional yield data for the UK, the crop

modeling method comparison is only used for the four German regions for

which data is available. A full description of the PCM and SCCMs is found

in Chapter 3, Section 3.3.5. For the basic PCM experimental setup, the

same regional parameters, including the genetic coefficients from Nain and

Kersebaum (2007) and fine-scale soil data (IRI et al., 2015) are used, and

CO2 is not considered in the PCM for simplicity and better comparability with

the SCCM which cannot consider CO2.

5.3.6 Methods of statistical evaluation

5.3.6.1 Evaluation of RCM output relative to observations and

uncorrected RCM output

Similar to the previous chapter, RCM outputs are compared to

observations of Tmax, Tmin and precipitation by using statistical metrics

such as the bias, RMSE, and correlation (r). A negative (positive) mean

bias indicates that simulated temperatures are cooler or have fewer hot

days (warmer or more hot days) than observations. For precipitation, a

negative (positive) mean bias indicates that total annual or seasonal
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precipitation is underestimated (overestimated). The Kolmogorov-Smirnov

(KS) test statistic is also calculated to show characteristics of distribution of

simulations relative to observations. The KS test statistic provides the

maximum distance between the cumulative distributions of the observation

and simulation dataset, and can be used to evaluate the similarity or

dissimilarity of two datasets (Dobor et al., 2016). Significant p-values

(p <0.05) indicate rejection of the null hypothesis that the samples have

identical distribution.

As indicated previously, the results in this chapter focus on annual and

seasonal timescales for clarity in the discussion, particularly the JJA climate

indices that are used for the SCCMs. The JJA season is also crucial as it is

when when heat stress on crucial wheat development stages is possible

(e.g. anthesis, grain-filling). However, supplementary information on

simulations on a daily timestep can be found in the Appendix (Section

8.4.1), including Taylor diagrams and empirical CDFs and probability

density functions (PDFs). Climate model output (uncorrected and

bias-corrected) are additionally represented in Taylor diagrams (Taylor,

2001) with the R package plotrix (J, 2006) in the Appendix.

In a Taylor diagram, the radial distance from the origin is proportional to

the standard deviation. The centered root mean square difference is

proportional to the distance between the observations (denoted on the

x-axis) and the simulation. The correlation is given by the azimuthal position

of the point (Taylor, 2001), see sample diagram that shows both negative

and positive correlation, Fig. 5.2). Empirical CDFs and PDFs are also found

in the Appendix to show the distribution of daily climate model output and

observed values, as well as daily bias-corrected output.
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Figure 5.2: Sample Taylor diagram for displaying pattern statistics, based on Taylor
(2001). The radial distance from the origin of is proportional to the standard deviation
(blue lines). The centered RMS difference between ’Observations’ and ’Simulations’
is proportional to their distance apart (green lines). The correlation between the two
fields is given by the azimuthal position, for example, r=0.9-0.95 for Simulations.

5.3.6.2 Yield evaluation relative to observations and uncorrected RCM

output-driven yields

The results of the yield simulations at the regional level which are

generated using the PCM and SCCM are compared to yield observations

and to the yield hindcast that uses E-OBS as input data. The simulations

are evaluated for how close they are to these reference yields using r,

RMSE, and bias. A ‘good’ performance is defined here as significant

correlation, small RMSE, and minimal bias (positive/negative) compared to

the reference yields. Statistical significance is marked at p <0.05 and

significant differences are tested with a Student’s t-test. Following this

statistical evaluation, the effects of BC on yield simulations using the two

crop modeling methods are discussed in the context of developing a unified

approach for projecting yield into the future.
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5.4 Results

The results section is organized as follows: Firstly, the results of the

RCM evaluation are reported. This is followed by the effect of BC on RCM

output, and finally the effect of BC on yield simulations generated by the

SCCM and PCM. Because there is no country-level PCM yield hindcast, the

yield hindcasts from SCCMs and PCMs are reported and compared for

each German region, relative to the reference yields (observations and

E-OBS hindcast with the respective crop model approach) before and after

BC. The ranges of yield simulations with each correction are also reported.

Supplementary information on individual RCM-driven yield performances is

shown in the Appendix (Tables A11-A14).

5.4.1 Evaluating reanalysis-driven RCMs

The results from the analysis of the error contributed by RCMs are

performed by comparing the output of reanalysis-driven RCMs to

observations of annual and seasonal Tmax, Tmin and precipitation

(1981-2010). The results show that uncorrected RCM evaluation

simulations can capture the year-to-year values and range of observations

relatively well: for example, there are significant and high correlations

between raw RCM output and observations: R2=0.8-0.9 for Tmax, Tmin for

the UK, Germany and German regions (Tables 5.2-5.7), and for

precipitation this ranges between R2=0.5-0.8 (Tables 5.4-5.8).

While well-correlated, RCM evaluation simulations still contain biases.

For example, it can be observed that CCLM, RACMO, and RCA generally

underestimate annual Tmax, overestimate Tmin and have biases for annual

and seasonal precipitation in the UK and Germany (Figs. 5.3 and 5.4), as

well as the four different German regions (Figs. 5.5-5.8) – similar to the

general findings of RCM bias reported by Kotlarski et al. (2014).
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The negative biases of uncorrected RCM evaluation simulations range

between -1.13 to -1.48◦C for UK Tmax, 0.37-0.74 ◦C for UK Tmin, and -113

to 132 mm for UK precipitation, -0.9 to -1.49◦C for Germany Tmax, -0.86 to

0.27 for Germany Tmin, and 38-113 mm for Germany precipitation (Tables

5.2-5.4). German regions also show similar ranges of bias to Germany for

Tmax, Tmin precipitation (Tables 5.6-5.8), with RACMO usually showing the

largest negative biases for Tmin in all four German regions.

The summer climate indices used for the SCCM are derived from daily

Tmax and precipitation in JJA. The results show that for the UK, RCM

evaluation simulations from CCLM, RACMO and RCA simulate zero days

above 31◦C, while over Germany (including all four German regions) RCA

tends to overestimate the number of hot days while RACMO and CCLM

have negative biases for the number of hot days (Figs. 5.3D- 5.8D).

JJA precipitation shows relatively small biases for the UK and Germany

(-40 to 40mm, UK and -16 to 0.7mm, Germany). In German regions, the

biases from RCMs are also relatively small, with the largest negative bias

from raw RCA simulations (-87mm for DE2). Additional statistics on the KS

test values (Tables 5.5 and 5.9) and the daily empirical cumulative distribution

function and probability density functions, (available in the Appendix, 8.4.1,

Figs. A10-A15 and Tables A6 and A10) show that the uncorrected RCM

simulations have significantly different distributions relative to observations.

Additional information from the analysis of the seasonal climate indices is

also available in Appendix (Section 8.4.1B.).
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Figure 5.3: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for the UK, 1981-
2010.
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Figure 5.4: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for Germany,
1981-2010.
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Figure 5.5: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DE2 (South
Germany), 1981-2010.
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Figure 5.6: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DEA (West
Germany), 1981-2010.
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Figure 5.7: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DED (East
Germany), 1981-2010.
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Figure 5.8: Uncorrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DEF (North
Germany), 1981-2010.
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5.4.2 Results of the BC of RCM output

The results from the evaluation of RCMs shows that while biases can be

considered relatively small, and that correlations are significant and high –

particularly when recalling the results from uncorrected historical simulations

of temperature and precipitation (Chapter 4) – RCMs still have error relative

to observations. Therefore, they are bias corrected with different methods

of varying complexity; the results of these corrections are reported in this

section.

5.4.2.1 Effects of BC on national-level climate simulations

The different BC methods of simple scaling, variance and power

transformation, and quantile-quantile mapping are applied to the RCM

evaluation simulations. The results of the correction are shown in Figs. 5.9

and 5.10 for the UK and Germany. It can be observed that the BC methods

are effective in reducing the range of error of the uncorrected simulations

relative to observations. Although some biases remain, for example, in the

seasonal climate indices (See Section 8.4.1B.), all BC methods are effective

to bring the simulations closer to observations.

For example, biases in annual Tmax and Tmin in the UK and Germany

are reduced to zero from previous negative biases (Tables 5.2-5.3). BC

methods are also shown to be effective for precipitation: after BC,

QQ-mapping corrected simulations have biases of less than 15mm (11mm)

compared to biases ranging from -130 to 130mm (38 to 113 mm) for the UK

(Germany) and total annual precipitation (Table 5.4).

While the statistical analysis shows that correlation is not typically

improved by BC, uncorrected simulations (on the annual timescale from

1981-2010) are already highly correlated to observations with r>0.9 for the

UK and r>0.7 for Germany for all RCMs for annual average Tmax (Table
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5.2), Tmin (Table 5.3), and total annual precipitation (Table 5.4). There are

some observed increases to correlation using variance transformation and

QQ mapping for Tmax, and the linear and variance methods for

precipitation at the country level.

RMSE and bias are greatly reduced across all climate variables in the

UK and Germany after BC. Because of the nature of the computation of

the power transformation correction method, annual precipitation totals are

in perfect agreement with observations. However, the seasonal and daily

analysis (in the Appendix 8.4.1) shows that after correction, distributions of

daily precipitation are no longer significantly different to observations, based

on empirical CDFs and PDFs, along with the KS test statistic for the UK and

Germany (Table 5.5, Appendix Figs. A10 and A11). The Taylor diagrams

also show that corrected RCM evaluation simulations have properties closer

to that of observations – with high correlation and similar standard deviation;

however, a small spread remains with precipitation simulations (Appendix

Fig. A16).

Overall, BC methods show the capability to improve correlation, reduce

the RMSE and biases of the regional climate simulations of daily, seasonal

and annual temperatures and precipitation, and the resulting climate indices.



5.4. RESULTS 163

Table 5.2: Statistical comparison of annual averages of maximum temperature from
RCM evaluation simulations and observations, UK and Germany, 1981-2010.

UK GermanyModel and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.93, * 1.29 -1.27 0.91, * 1.54 -1.49
Raw RACMO 0.92, * 1.5 -1.48 0.78, * 1.07 -0.92
Raw RCA 0.81, * 1.19 -1.13 0.7, * 1.12 -0.9
Linear BC CCLM 0.93, * 0.25 0 0.91, * 0.36 0
Linear BC RACMO 0.92, * 0.25 -0.01 0.78, * 0.54 -0.02
Linear BC RCA 0.81, * 0.37 -0.01 0.7, * 0.68 -0.02
Variance BC CCLM 0.93, * 0.23 0 0.92, * 0.34 0
Variance BC RACMO 0.92, * 0.25 -0.01 0.8, * 0.52 -0.02
Variance BC RCA 0.82, * 0.36 -0.01 0.73, * 0.63 -0.02
QQ BC CCLM 0.94, * 0.23 -0.08 0.92, * 0.35 -0.09
QQ BC RACMO 0.93, * 0.24 -0.08 0.81, * 0.51 -0.09
QQ BC RCA 0.83, * 0.36 -0.08 0.74, * 0.64 -0.09

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are in Celsius.

Table 5.3: Statistical comparison of annual averages of minimum temperature from
RCM evaluation simulations and observations, UK and Germany, 1981-2010.

UK GermanyModel and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.94, * 0.56 0.53 0.89, * 0.62 0.53
Raw RACMO 0.94, * 0.4 0.37 0.94, * 0.9 -0.86
Raw RCA 0.87, * 0.79 0.74 0.9, * 0.4 0.27
Linear BC CCLM 0.94, * 0.18 0 0.89, * 0.32 0.01
Linear BC RACMO 0.94, * 0.17 -0.01 0.94, * 0.25 -0.01
Linear BC RCA 0.87, * 0.26 0 0.9, * 0.29 0
Variance BC CCLM 0.94, * 0.19 0 0.91, * 0.3 0.01
Variance BC RACMO 0.94, * 0.18 0 0.94, * 0.25 -0.01
Variance BC RCA 0.87, * 0.26 0 0.91, * 0.27 0
QQ BC CCLM 0.94, * 0.2 -0.06 0.89, * 0.35 0
QQ BC RACMO 0.94, * 0.21 -0.07 0.93, * 0.29 -0.01
QQ BC RCA 0.89, * 0.25 -0.06 0.92, * 0.26 0

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are in Celsius.
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Figure 5.9: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for the UK, 1981-
2010. Three different BC methods are used and their ranges are shown relative to
E-OBS climate observations.
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Figure 5.10: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for Germany,
1981-2010. Three different BC methods are used and their ranges are shown
relative to E-OBS climate observations.
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Table 5.4: Statistical comparison of total annual precipitation from RCM evaluation
simulations and observations, UK and Germany, 1981-2010.

UK GermanyModel and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.86, * 145.02 -133.19 0.84, * 69.57 38.41
Raw RACMO 0.89, * 53.82 -14.28 0.73, * 107.61 81.16
Raw RCA 0.8, * 150.79 132.24 0.69, * 140.77 113.53
Linear BC CCLM 0.87, * 54.39 -4.75 0.85, * 55.7 0.36
Linear BC RACMO 0.9, * 50.03 -0.96 0.72, * 68.97 1.92
Linear BC RCA 0.82, * 65.45 -2.04 0.67, * 81.87 2.4
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.87, * 55.51 9.42 0.85, * 57.9 7.9
QQ BC RACMO 0.89, * 54.8 15.46 0.73, * 74.69 12.5
QQ BC RCA 0.81, * 73.47 9.89 0.68, * 93.86 10.87

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are in mm.

Table 5.5: Kolmogorov-Smirnov (KS) test statistics on the distribution of annual
averages of maximum and minimum temperature, and total annual precipitation from
RCM evaluation simulations and observations, UK and Germany, 1981-2010.

Model and
BC method

UK Germany
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.73, * 0.47, * 0.57, * 0.7, * 0.4, * 0.23
Raw RACMO 0.77, * 0.33 0.2 0.57, * 0.53, * 0.33
Raw RCA 0.7, * 0.63, * 0.43, * 0.53, * 0.2 0.47, *
Linear BC CCLM 0.13 0.13 0.13 0.13 0.07 0.13
Linear BC RACMO 0.1 0.1 0.17 0.2 0.17 0.13
Linear BC RCA 0.13 0.2 0.17 0.2 0.13 0.1
Variance BC CCLM 0.17 0.13 0.03 0.13 0.1 0.03
Variance BC RACMO 0.1 0.1 0.03 0.2 0.17 0.03
Variance BC RCA 0.13 0.17 0.03 0.2 0.13 0.03
QQ BC CCLM 0.2 0.13 0.13 0.2 0.1 0.2
QQ BC RACMO 0.13 0.13 0.13 0.23 0.23 0.17
QQ BC RCA 0.17 0.2 0.13 0.2 0.1 0.17

(∗) indicates a difference to the distribution of observations with statistical significance
(p <0.05).
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5.4.2.2 Effects of BC on regional climate simulations

After BC, errors are also significantly reduced regardless of the BC

method used at the regional level (Figs. 5.11-5.14). Several improvements

to RCM simulations occur after BC: although correlation is not always

improved, biases and RMSE are greatly reduced (Tables 5.6-5.7). In all

four regions, variance and QQ mapping methods are additionally able to

improve correlation of Tmax. For Tmin, this improvement is less consistent,

but variance and QQ mapping methods are able to improve correlation of

Tmin for CCLM and RCA in all four regions. Biases are also shown to be

reduced, although not completely eliminated, in precipitation simulations for

all regions (Tables 5.8). RMSE is not reduced using QQ mapping for

RACMO and RCA simulations of precipitation in DE2 (RCA), DEA

(RACMO), and DEF (RACMO). The annual KS test statistic (Table 5.9)

shows that after BC, distributions of annual Tmax, Tmin and total annual

precipitation are not significantly different to observations.

However, on a daily level, some RCM simulations still have significantly

different distributions, particularly for precipitation. QQ mapping is shown to

be most effective in correcting distributions for Tmax and Tmin (Appendix

Table A10). The QQ mapping method also removes the drizzle days that

RCMs introduce to simulations of precipitation (Appendix Figs. A12-A15).

Taylor diagrams show that raw temperature simulations have small biases

relative to observations, with high and significant correlation across the four

regions (r>0.6). BC is able to further improve these simulations and adjust

their variability, but regional precipitation still shows some errors, apart from

those corrected with power transformation (by nature of the computation)

(Appendix Fig. A17).

Similar to the national level, BC proves to be a useful step in reducing the

introduced error from the RCMs. In the next section, these results are used

in the SCCM and PCM to determine how BC affects yield simulations.
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Figure 5.11: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DE2 (South
Germany), 1981-2010. Three different BC methods are used and their ranges are
shown relative to E-OBS climate observations.
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Figure 5.12: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DEA (West
Germany), 1981-2010. Three different BC methods are used and their ranges are
shown relative to E-OBS climate observations.
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Figure 5.13: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DED (East
Germany), 1981-2010. Three different BC methods are used and their ranges are
shown relative to E-OBS climate observations.
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Figure 5.14: Bias-corrected RCM evaluation simulations of annual (A) average
maximum temperature, (B) average minimum temperature, (C) total precipitation;
seasonal (D) hot days (above 31◦C), and (E) total JJA precipitation for DEF (North
Germany), 1981-2010. Three different BC methods are used and their ranges are
shown relative to E-OBS climate observations.
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Table 5.6: Statistical comparison of annual averages of maximum temperature from
RCM evaluation simulations and observations, German regions, 1981-2010.

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.87, * 1.75 -1.7 0.89, * 1.65 -1.61
Raw RACMO 0.66, * 1.08 -0.87 0.79, * 1.28 -1.16
Raw RCA 0.63, * 1.07 -0.72 0.66, * 1.24 -1.01
Linear BC CCLM 0.87, * 0.4 0 0.89, * 0.38 0.01
Linear BC RACMO 0.66, * 0.64 -0.02 0.79, * 0.53 -0.02
Linear BC RCA 0.63, * 0.79 -0.01 0.66, * 0.71 -0.02
Variance BC CCLM 0.88, * 0.38 0 0.9, * 0.37 0.01
Variance BC RACMO 0.69, * 0.61 -0.02 0.81, * 0.51 -0.02
Variance BC RCA 0.67, * 0.71 -0.01 0.7, * 0.66 -0.02
QQ BC CCLM 0.89, * 0.38 -0.05 0.91, * 0.38 -0.08
QQ BC RACMO 0.7, * 0.61 -0.06 0.81, * 0.51 -0.08
QQ BC RCA 0.68, * 0.71 -0.06 0.7, * 0.68 -0.08

Table 5.6 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.9, * 1.58 -1.53 0.94, * 1.13 -1.09
Raw RACMO 0.79, * 1.12 -0.96 0.9, * 1.15 -1.09
Raw RCA 0.76, * 1.2 -1 0.81, * 1.05 -0.92
Linear BC CCLM 0.9, * 0.41 0 0.94, * 0.3 0
Linear BC RACMO 0.79, * 0.58 -0.02 0.9, * 0.38 -0.02
Linear BC RCA 0.76, * 0.66 -0.01 0.81, * 0.51 -0.02
Variance BC CCLM 0.91, * 0.38 0 0.94, * 0.29 0
Variance BC RACMO 0.81, * 0.56 -0.02 0.9, * 0.38 -0.02
Variance BC RCA 0.79, * 0.63 -0.01 0.82, * 0.5 -0.02
QQ BC CCLM 0.91, * 0.4 -0.05 0.95, * 0.32 -0.12
QQ BC RACMO 0.82, * 0.55 -0.06 0.91, * 0.39 -0.12
QQ BC RCA 0.79, * 0.64 -0.05 0.82, * 0.52 -0.12

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are in Celsius.
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Table 5.7: Statistical comparison of annual averages of minimum temperature from
RCM evaluation simulations and observations, German regions, 1981-2010.

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.85, * 0.86 0.79 0.9, * 0.33 0.06
Raw RACMO 0.87, * 1.48 -1.44 0.94, * 0.96 -0.93
Raw RCA 0.78, * 0.51 0.28 0.87, * 0.35 -0.05
Linear BC CCLM 0.85, * 0.34 0.01 0.9, * 0.33 0.01
Linear BC RACMO 0.87, * 0.34 0 0.94, * 0.26 -0.01
Linear BC RCA 0.78, * 0.43 0.01 0.87, * 0.35 -0.01
Variance BC CCLM 0.87, * 0.33 0.01 0.91, * 0.32 0.01
Variance BC RACMO 0.86, * 0.33 0 0.93, * 0.26 -0.01
Variance BC RCA 0.8, * 0.41 0 0.89, * 0.32 -0.01
QQ BC CCLM 0.87, * 0.35 0 0.89, * 0.36 0.01
QQ BC RACMO 0.87, * 0.33 0 0.92, * 0.3 0.01
QQ BC RCA 0.82, * 0.39 0 0.89, * 0.32 0.02

Table 5.7 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.86, * 0.57 0.42 0.93, * 0.65 0.59
Raw RACMO 0.91, * 1.17 -1.13 0.96, * 0.29 0.14
Raw RCA 0.88, * 0.47 0.32 0.96, * 0.41 0.34
Linear BC CCLM 0.86, * 0.38 0.01 0.93, * 0.28 0
Linear BC RACMO 0.91, * 0.32 0 0.96, * 0.25 -0.02
Linear BC RCA 0.88, * 0.34 0 0.96, * 0.22 -0.02
Variance BC CCLM 0.88, * 0.37 0.01 0.94, * 0.28 0
Variance BC RACMO 0.9, * 0.32 0 0.95, * 0.28 -0.01
Variance BC RCA 0.89, * 0.33 0 0.96, * 0.22 -0.02
QQ BC CCLM 0.85, * 0.43 0.03 0.93, * 0.34 -0.06
QQ BC RACMO 0.89, * 0.36 0.02 0.95, * 0.33 -0.06
QQ BC RCA 0.88, * 0.34 0.03 0.97, * 0.21 -0.06

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are in Celsius.
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Table 5.8: Statistical comparison of total annual precipitation from RCM evaluation
simulations and observations, German regions, 1981-2010.

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.7, * 197.34 169.55 0.77, * 104.16 -72.27
Raw RACMO 0.53, * 127.19 65.39 0.74, * 102.65 57.9
Raw RCA 0.55, * 129.25 -66.2 0.67, * 132.53 89.01
Linear BC CCLM 0.7, * 89.7 -1.15 0.77, * 82.46 -0.39
Linear BC RACMO 0.51, * 109.75 1.08 0.73, * 83.5 1.11
Linear BC RCA 0.55, * 127.64 2.85 0.66, * 96.35 3.27
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.71, * 94.75 13.33 0.8, * 78.93 13.63
QQ BC RACMO 0.51, * 122.55 18.61 0.71, * 105.72 26.4
QQ BC RCA 0.55, * 156.43 23.38 0.65, * 115.01 23.8

Table 5.8 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.77, * 106.79 69.04 0.7, * 145.37 -120.77
Raw RACMO 0.73, * 167.81 144.63 0.71, * 82.47 18.77
Raw RCA 0.59, * 235.1 211.01 0.55, * 191.64 129.91
Linear BC CCLM 0.79, * 76.06 3.57 0.71, * 86.26 -2.21
Linear BC RACMO 0.72, * 81.16 2.94 0.71, * 80.41 2.36
Linear BC RCA 0.59, * 97.03 0.77 0.56, * 125.73 5.25
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.78, * 80.65 -3.57 0.72, * 86.54 12.15
QQ BC RACMO 0.74, * 88.15 11.04 0.66, * 103.93 25.48
QQ BC RCA 0.58, * 108.42 8.72 0.53, * 158.84 23.1

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger R, smaller RMSE or bias) relative to the uncorrected RCM simulation. RMSE

and bias are mm.
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Table 5.9: Kolmogorov-Smirnov (KS) test statistics on the distribution of annual
averages of maximum and minimum temperature, and total annual precipitation from
RCM evaluation simulations and observations, German regions, 1981-2010.

Model and
BC method

DE2 (South Germany) DEA (West Germany)
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.73, * 0.57, * 0.53, * 0.7, * 0.17 0.3
Raw RACMO 0.5, * 0.7, * 0.37, * 0.63, * 0.53, * 0.3
Raw RCA 0.47, * 0.23 0.37, * 0.53, * 0.17 0.33
Linear BC CCLM 0.13 0.17 0.23 0.17 0.13 0.13
Linear BC RACMO 0.2 0.17 0.1 0.13 0.1 0.13
Linear BC RCA 0.13 0.23 0.13 0.17 0.13 0.13
Variance BC CCLM 0.17 0.17 0.03 0.13 0.13 0.03
Variance BC RACMO 0.17 0.17 0.03 0.17 0.1 0.03
Variance BC RCA 0.17 0.17 0.03 0.2 0.17 0.03
QQ BC CCLM 0.23 0.17 0.23 0.17 0.17 0.17
QQ BC RACMO 0.17 0.17 0.17 0.17 0.13 0.2
QQ BC RCA 0.2 0.13 0.13 0.23 0.13 0.17

Table 5.9 continued.

Model and
BC method

DED (East Germany) DEF (North Germany)
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.77, * 0.33 0.33 0.6, * 0.43, * 0.5, *
Raw RACMO 0.53, * 0.57, * 0.53, * 0.6, * 0.17 0.17
Raw RCA 0.5, * 0.23 0.7, * 0.57, * 0.33 0.4, *
Linear BC CCLM 0.2 0.1 0.13 0.1 0.13 0.13
Linear BC RACMO 0.2 0.1 0.1 0.13 0.1 0.1
Linear BC RCA 0.17 0.13 0.2 0.2 0.17 0.17
Variance BC CCLM 0.13 0.13 0.03 0.1 0.1 0.03
Variance BC RACMO 0.2 0.1 0.03 0.13 0.1 0.03
Variance BC RCA 0.17 0.13 0.03 0.2 0.17 0.03
QQ BC CCLM 0.13 0.17 0.17 0.13 0.1 0.17
QQ BC RACMO 0.2 0.13 0.1 0.2 0.17 0.13
QQ BC RCA 0.2 0.17 0.17 0.23 0.13 0.23

(∗) indicates statistical significance (p <0.05).
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5.4.3 Comparing the effect of BC on past yield simulations

generated by the SCCM

The results of using uncorrected and BC evaluation-run RCM output

show different effects on regional yield hindcasts, and the magnitude of

these effects depends on the BC method, region and crop modeling method

(Figs. 5.15A-5.18A). After BC, it can be observed that only variance

methods reduce biases in SCCM yield projections (Tables 5.10-5.13): for

example, in DE2 bias (and RMSE) are reduced to -0.06 (0.26 t/ha) over the

simulation period 1981-2010 compared to the initial bias of -0.14 (0.52 t/ha).

Among the BC methods, variance and QQ mapping show the ability to

reduce RMSE compared to the simple linear method, reduce the mean

biases over the period of simulations, and improve or maintain high positive

correlation to the E-OBS yield hindcast and to observations. The use of

variance BC is also able to improve the significant correlation of DE2, DEA,

and DED (r=0.8.4, 0.94, 0.9, respectively).

It can also be observed that variance-corrected yields from DEF

perfectly agree with the hindcast as the only significant climate predictor is

total summer precipitation, which, by definition of the correction and the

derivation of the climate index, perfectly equates with climate observations

(Table 5.13).

The use of QQ mapping brought small improvements to yield hindcasts,

for example in DE2 where it increased correlation, albeit marginally, and

reduced RMSE relative to observations (RMSE=0.7 t/ha compared to 0.78

t/ha for the raw simulations). Significant differences to the E-OBS hindcast

are found between linear BC RCA yield simulations in DE2, raw CCLM

yields in DEA, and linear BC RCA simulations in DED (Figs. 5.15C-5.15C).

After BC, the raw CCLM yields in DEA are no longer significantly different to

the E-OBS hindcast.
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Figure 5.15: DE2 (South Germany) SCCM yield simulation with uncorrected and
bias-corrected climate model output. A * indicates a significant difference between
the yield simulation and the E-OBS yield hindcast based on a t-test.

Table 5.10: Statistical evaluation between yield simulations, a yield hindcast
generated with E-OBS, and yield observations, DE2 (South Germany).

SCCM PCM

Correl. RMSE Mean bias Correl. RMSE Mean biasBC method

EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs

Raw 0.66* 0.24 0.52 0.78 -0.14 -0.19 0.36 -0.01 1.28 2.37 -0.43 1.96

Linear 0.63* 0.22 0.56 0.81 -0.25 -0.3 0.52* 0.18 1.02 2.35 -0.32 2.07

Variance 0.84* 0.44* 0.26 0.53 -0.06 -0.11 0.75* 0.26 0.76 2.42 -0.22 2.17

QQ 0.53* 0.26 0.52 0.7 -0.18 -0.23 0.55* 0.18 1.1 2.36 -0.38 2.01

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast (EOBS) or observations
(OBS). RMSE and bias are in t/ha.
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Figure 5.16: DEA (West Germany) SCCM yield simulation with uncorrected and
bias-corrected climate model output. A * indicates a significant difference between
the yield simulation and the E-OBS yield hindcast based on a t-test.

Table 5.11: Statistical evaluation between yield simulations, a yield hindcast
generated with E-OBS, and yield observations, DEA (West Germany).

SCCM PCM

Correl. RMSE Mean bias Correl. RMSE Mean bias
Model and

BC method
EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs

Raw 0.92* 0.62* 0.26 0.66 0.02 -0.06 0.06 0.01 1.85 1.61 0.86 1.1

Linear 0.87* 0.59* 0.39 0.74 -0.2 -0.28 0.23 0.1 1.63 1.4 0.39 0.63

Variance 0.94* 0.59* 0.25 0.71 -0.03 -0.12 0.93* -0.12 0.57 1.55 0.08 0.33

QQ 0.87* 0.57* 0.33 0.71 -0.03 -0.12 0 0.34 1.9 1.31 0.29 0.53

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast (EOBS) or observations
(OBS). RMSE and bias are in t/ha.
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Figure 5.17: DED (East Germany) SCCM yield simulation with uncorrected and
bias-corrected climate model output. A * indicates a significant difference between
the yield simulation and the E-OBS yield hindcast based on a t-test.

Table 5.12: Statistical evaluation between yield simulations, a yield hindcast
generated with E-OBS, and yield observations, DED (East Germany).

SCCM PCM

Correl. RMSE Mean bias Correl. RMSE Mean bias
Model and

BC method
EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs

Raw 0.67* 0.45* 0.68 0.89 -0.24 -0.31 0.24, 0.08 1.61 2.75 0.96 2.51

Linear 0.63* 0.41* 1.04 1.23 -0.48 -0.54 0.42* 0.23 1.25 1.72 -0.29 1.25

Variance 0.9* 0.66* 0.31 0.59 0.01 -0.05 0.82* 0.47* 0.71 1.58 -0.27 1.27

QQ 0.52* 0.27 1 1.21 -0.33 -0.39 0.42* 0.38* 1.17 1.57 -0.29 1.25

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast (EOBS) or observations
(OBS). RMSE and bias are in t/ha.
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Figure 5.18: DEF (North Germany) SCCM yield simulation with uncorrected and
bias-corrected climate model output. A * indicates a significant difference between
the yield simulation and the E-OBS yield hindcast based on a t-test.

Table 5.13: Statistical evaluation between yield simulations, a yield hindcast
generated with E-OBS, and yield observations, DEF (North Germany).

SCCM PCM

Correl. RMSE Mean bias Correl. RMSE Mean bias
Model and

BC method
EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs EOBS Obs

Raw 0.86* 0.63* 0.27 0.5 0.02 -0.11 0.3 -0.22 1.62 1.32 0.84 0.07

Linear 0.86* 0.63* 0.27 0.51 -0.02 -0.15 0.33 0 1.42 1.43 0.2 -0.57

Variance 1* 0.57* 0.03 0.56 0 -0.13 0.92* -0.21 0.58 1.75 0.15 -0.62

QQ 0.83* 0.63* 0.29 0.51 -0.01 -0.14 0.15 0.08 1.7 1.63 0 -0.78

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast (EOBS) or observations
(OBS). RMSE and bias are in t/ha.
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Although the mean bias over the simulation period 1981-2010 between

actual, hindcasted, and SCCM simulated yields is already quite small

(under 1 t/ha), what these results show is that apart from the ability of BC to

successfully bring RCM output more similar to E-OBS climate observations,

BC is also able to improve the yield simulations. BC is able to improve

SCCM yields relative to the E-OBS SCCM hindcast, and in some cases,

relative to actual yield observations as well (e.g. DE2 and DED with

variance correction).

However, yield simulations are also affected by the computational

artifacts of the correction, for instance that since the DEF SCCM only has

summer precipitation as a significant predictor, and that variance correction

results in perfectly equal simulations to observations. Generally, it can also

be observed that, similar to their evaluation in Chapter 3, the RMSE and

biases of SCCM yields are much smaller than yield simulations from the

PCM, which is discussed in the next section.

5.4.4 Comparing the effect of BC on past yield simulations

generated by the PCM

The application of BC also results in improvements to yield generated by

the PCM using individual RCM output (Figs. 5.15B-5.18B, Appendix Tables

A15-A18). For example, all BC methods reduce RMSE, improve

correlation, and reduce bias in DE2 and DED relative to both observations

and E-OBS hindcast yields (Tables 5.10 and 5.12). For DEA, all methods

reduce the PCM yield bias relative to both the E-OBS hindcast and

observations: from 0.86 t/ha bias to 0.39, 0.08, and 0.29 t/ha for linear,

variance and QQ mapping methods respectively. However, only variance

methods in DEA are able to improve correlation to r=0.93 (Table 5.11).

In DEF (North Germany), all BC methods significantly reduce bias from

0.84 t/ha relative to the E-OBS hindcast to 0.2, 0.15 and 0 t/ha for linear,
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variance and QQ correction methods, respectively (Table 5.13). It can be

observed that median yields are more similar to observations and the yield

hindcast after using BC. For example, in DEA, DED, and DEF, yield

simulations with raw RCA output are significantly different to their respective

E-OBS hindcast based on t-tests. After correction, yields are no longer

significantly different (Figs. 5.16D-5.18D).

After BC, the size of the bias (in t/ha) relative to the respective E-OBS

hindcast of both PCMs and SCCMs is fairly comparable, typically under 0.5

t/ha. These results indicate that BC is also capable of improving PCM yield

simulations because it is able to improve the climate model output (daily

Tmax, Tmin, Precipitation) that is used as input. However, BC does not

necessarily improve the yield simulations relative to actual yield, as seen in

the remaining large difference between yield simulations and observations

in DE2. This discrepancy is therefore still connected to the crop modeling

method itself, and this is discussed later in the chapter.

5.4.4.1 Comparison of ensemble SCCM and PCM yields with

bias-corrected climate input

A comparison of the ensemble SCCM and PCM yields, averaged per BC

method, generated using raw and BC RCM output is shown in Fig. 5.19. It

can be observed in DEA, DED, and DEF that ensemble median yields and

ranges are more similar to both observations and the yield hindcast

generated with E-OBS after BC (Fig. 5.19B-D). For example, in DE2, the

range of yield simulations using the PCM and uncorrected RCM output is

large, but after BC this is significantly reduced by linear, variance and QQ

methods (Fig. 5.19A), although the bias between simulated and observed

yields in this region is still high.
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Figure 5.19: Comparison of yield observations, SCCM and PCM yield hindcasts,
and ensemble mean of yields generated by bias-corrected RCM output for German
regions, 1982-2010. A * indicates a significant difference between the yield
simulation and the E-OBS yield hindcast based on a t-test.

Overall, the analysis of the effect of BC on yield simulations from both

the SCCM and PCM approaches shows that the while all BC methods are

generally effective in minimizing bias in PCM yields, variance and QQ

correction are more useful in the SCCM yields compared to linear methods

(Tables 5.10-5.13). Ensemble means of PCM yields with uncorrected RCM

output in this study have generally poor and non-significant correlation to

reference yields, but this is improved by BC, particularly in the DE2 and

DED regions. The results of the RCM evaluation, correction, and their

application into crop models are discussed in the following section.
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5.5 Discussion

In this chapter, the research questions are focused on how well RCMs

perform relative to observations and whether BC improves the correlation

and reduces bias/RMSE when using different methods of varying

complexity. Another research question for the chapter is whether improved

climate model output with reduced biases from the correction can reduce

input error, thereby also improving yield simulations from both statistical and

process-based approaches to crop modeling. The results presented are

discussed in this section to connect the results to the research questions

and to previous studies.

Additionally, the results in this chapter are used in the formulation of an

approach for use in the following chapters which aim to utilize future climate

projections to generate yield simulations. To begin the discussion, firstly, the

results of the RCM evaluation and bias correction are addressed.

5.5.1 Error in reanalysis-driven RCM simulations

5.5.1.1 Results of the bias analysis for climate

Statistical evaluation shows that climate simulations from

reanalysis-driven RCMs contained biases when used directly (uncorrected)

in a comparison to observations. Typically, Tmax was underestimated, Tmin

was overestimated, and individual RCMs had positive or negative biases in

simulating precipitation, but this varied from region to region. These biases

from RCM evaluation simulations were addressed using different BC

methods of varying complexity, which were all effective in reducing the

biases in RCM output, RMSE, and also led to some improvements in

correlation relative to climate observations.

Because of its design, QQ mapping was also able to correct the
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distribution of daily Tmax and Tmin at the regional level (not achieved by the

more simple methods), as evidenced by the KS test statistic. Although

some RCMs still had better performances than others – for example, the

CCLM model typically had the highest correlation among other RCMs for

Tmax and precipitation – all bias corrected simulations showed significant

improvements, and their corrected output were closer to observations

regardless of the BC method used.

5.5.1.2 Intrinsic error in RCMs

It is evident from the RCM evaluation that the error from RCMs should be

assessed before their use in impact studies, regardless of the BC method

used, or if BC is applied at all. Biases in the evaluation RCM simulations are

significant, because they are intrinsic to the RCMs (Ruiz-Ramos et al., 2016,

Maraun et al., 2010, Fowler et al., 2007), as RCM evaluation simulations are

all driven by the same ERA-Interim data. When the boundary conditions of

RCMs are reanalysis output, correlations in terms of the time evolution of

RCM output and observations are expected (de Elía et al., 2017).

In contrast, when using historical GCM simulations as boundary

conditions to downscaling RCMs (i.e. ‘free-running’ GCM simulations),

downscaling skill depends strongly on the biases inherited from the driving

GCM (See Section 2.2.2). In the results presented, errors and differences

between climate observations and simulated temperature and precipitation

from RCM evaluation simulations were therefore a result of the differences

between RCMs chosen for the experiment.

It should be noted, however, that atmospheric reanalyses such as the

ERA-Interim data which was used as boundary conditions for the RCMs,

are also based on imperfect models, meaning there may still some

differences between reanalysis datasets and actual climate observations

which can affect the evaluation of RCMs (Kotlarski et al., 2014, de Elía
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et al., 2017). While the use of simulations from EURO-CORDEX and

E-OBS is a common and suitable pairing over the European domain (e.g.

Kotlarski et al., 2014) and matches the purposes of the study, a comparison

of reanalysis datasets is also a point that can be explored in future studies.

Although the type of RCM evaluation used in the chapter does not

necessarily allow for uncovering the physical reasons for the found biases

(similar to e.g. Kotlarski et al., 2014), the results of this chapter indicate that

RCMs can contribute to error in impact projections.

5.5.1.3 Utilizing bias corrected simulations for impact assessment

The choice of RCM and BC method paired with impact assessment

models is also important. For example, it has been shown that the choice of

downscaling is significant in reproducing past yields (e.g. Ramarohetra

et al., 2015). Similarly, the large influence of the choice of RCM was found

in a hydrological impact study, where it was shown that uncertainty in

regional climate projections due to different RCMs is greater than the

uncertainty stemming from different BC methods (Hwang et al., 2014,

Teutschbein and Seibert, 2012).

Other examples which highlight the careful pairing of climate and impact

models include studies which show that errors in precipitation were found to

propagate through, and even enhanced by, non-linear processes that

simulated stream flow (Hwang et al., 2014), so it is argued that climate

model outputs with minimal biases are intuitively ideal. In a crop modeling

study, the performances of RCMs in reproducing crucial climate variables

for crop production were shown to be extremely variable, which led to a

large range of crop yield projections (Oettli et al., 2011). Climate simulations

that retain large errors, as shown in the uncorrected temperature and

precipitation simulations, could therefore result in over- or underestimation-

of projected yield changes and impacts.
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Crops are sensitive to the timing of extreme temperature and

precipitation events (Glotter et al., 2014), and certain temperatures can

trigger different developmental stages. For example, a cool bias that

underestimates Tmax during sensitive growth stages could underestimate

yield impacts in a future climate with more hot days. Heat stress is predicted

to be a more significant stressor than drought for wheat production in the

future (Semenov and Shewry, 2011), so a realistic representation of Tmax

is critical.

In summary, this cascade of errors in using RCMs and BC has been

shown to affect projections from impact models, and this has been observed

in the results of the yield hindcasts of the chapter. In the following section,

the effects of the intrinsic error in RCMs on yield simulations is discussed.

5.5.2 Improvement of crop yield simulations through BC

5.5.2.1 Comparing the effect of different BC methods on yield

simulations

In this chapter, all BC methods were generally able to reduce bias and

RMSE in yield simulations (driven by E-OBS), although their correlation to

actual yield observations was not always improved. While variance

correction was shown to be effective in reducing bias across both crop

modeling methods, as well as for individual and ensemble yield simulations,

the computational artifact of perfectly equal total precipitation will be

problematic, particularly for the future yield simulations generated by the

SCCM. For example, the North Germany state (DEF) only has summer

precipitation as a significant climate predictor, and after BC of daily values

the sum total equated to the total over the observations period. This means

that any projections for this region, using the SCCM with JJA precipitation,

will continue to reproduce these computational artifacts.
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Another BC method which was fairly consistent in reducing input error

and thus improving yield simulations was QQ mapping, which shows promise

for use into the future. QQ mapping has been well-used and evaluated in

climate impact studies (e.g. Macadam et al., 2016, Staffell and Pfenninger,

2016, Teutschbein and Seibert, 2012, Eisner et al., 2012, Oettli et al., 2011).

QQ mapping brought improvements to SCCM and PCM yield simulations

through the reduction of bias in most of the yield simulations for German

regions in the study. These results were also reported in a recent study that

investigated the effect of QQ mapping on wheat yield simulations for Australia

(Macadam et al., 2016). Their study concluded that BC is a necessary step

in yield simulation, in addition to the initial reduction of bias because of the

use of RCMs. Biases in rainfall were found to be inherited from the forcing

GCMs; therefore BC would have still been necessary even at finer climate

model resolutions (Macadam et al., 2016).

However, there are exceptions: for example, in DE2 (South Germany) it

can be observed that there is a large bias between PCM simulations and

observations even after BC. The discrepancy between the yields from the

PCM and actual yields was discussed extensively in Chapter 3 as a result of

applying a field-based, input-intensive crop model to a regional scale, with

implications for aggregation error due to the scaling-up of processes. This

is likely to have contributed to the large bias in DE2. Because a regional

genetic coefficient is used in the research to facilitate comparison between

the SCCM and PCM, it is argued that the coefficients do not necessarily

reflect the actual cultivars grown in DE2. The regional coefficients from the

study of Nain and Kersebaum (2007) are derived from experimental work

completed in North-Central Germany.

Apart from adopting more rigorous evaluation, this also emphasizes

what was discussed in Chapter 3, which was the need for better reporting of

regional data that can be used for calibration. This underscores the need for

more regional-level yield data and (related to phenology and other
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developmental stages of wheat) to aid in better calibrating the

CERES/DSSAT parameters. In addition, better reporting of input

parameters such as regional genetic coefficients often used in in the

‘iterative’ process of crop model calibration could improve yield hindcasts

performed with climate observations as input.

5.5.2.2 Comparing BC RCM yields simulated with different methods

The results in this chapter further add evidence that the impact

projections are affected by the cascade of error and uncertainty from

climate and crop models. The results also affirm the that the uncertainty in

crop model projections is also a result of the linkages between climate and

crop models. Given the relative acceptance and ’standardization of BC’ (e.g.

Chen et al., 2015, p.1123) as a necessary step in impact assessment, it

was important to address how different BC methods affect yield simulations,

giving particular focus to the crop modeling method as well.

Similar to the work of Macadam et al. (2016), BC was shown to be mostly

effective in reducing large errors, for example with the PCM. By reducing

the input error of the RCM simulations, BC was also able to improve the

statistics between PCM yields and observations, which is research question

5 of the chapter. However, BC was less effective in improving small errors

in the yield simulations which were generated by the SCCM. However, in

the results presented here, BC with QQ mapping was not always effective

in reducing biases for the SCCM, and in some cases made these errors

slightly larger. In their work, this is theorized to be due to how QQ mapping

uses a cumulative probability distribution function and how the BC procedure

corrects biases on a daily, rather than seasonal, timestep (Macadam et al.,

2016).

This problem of over-correction both through variance correction and QQ

mapping, which re-scale the simulated time series in an attempt to explain
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unexplained small-scale variability results in the ‘inflation’ of the simulated

time series (Maraun et al., 2015, p.2138): the drizzle effect for area means

is over-corrected, area-mean extremes are overestimated, and trends are

affected by the correction method.

The results in this chapter show that BC of the climate model output that is

used as input to crop models can generally provide improvements to wheat

yield simulations, both in SCCMs and PCMs, and relative to observations

and a observation-driven yield hindcast. This is not surprising, because in

order to realistically simulate changes in crop yields, crop models must be

forced with climate data that closely represent relevant aspects of climate,

especially considering that crops like wheat have non-linear responses to

climate and other environmental factors (Macadam et al., 2016, Glotter et al.,

2014, Hawkins et al., 2013a). Therefore, having climate model output that is

closer in its mean and distribution to climate observations will inevitably bring

improvements to yield simulations, at least relative to a hindcast driven by

climate observations. This means that the choice of RCM (or driving GCM,

and GCM-RCM combination) – and its evaluation – remains an important

decision in the formulation of an impact assessment methodology.

Whether BC improves the yield simulations relative to actual yield

observations themselves is argued to be more dependent on how well the

crop modeling method can capture the reality it seeks to represent,

partnered with minimal input errors, and even more specific to the the case

of PCMs, the inclusion of factors apart from climate. In contrast to studies

which have focused on climate model or crop model contributions to

uncertainty, there have been relatively few studies that have assessed the

effects of BC on wheat yield simulations in a manner that considers the crop

modeling method. In this regard, and considering past results in previous

chapters (e.g. See Chapter 3, crop model evaluation) how do these results

inform the development of a methodology for future climate and crop yield

projections?
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5.5.3 Formulating a method for future yield projections

5.5.3.1 An ‘optimal’ BC method?

As shown in the results, all BC methods used in this chapter were

capable of improving uncorrected RCM simulations of daily Tmax, Tmin,

and precipitation, which are important in winter wheat growth and

development. However, there are differences in the ability of different BC

methods to improve not only the mean values of climate variables but also

their other properties such as distribution and variation, which are better

accounted for in more sophisticated methods such as QQ mapping.

Among the BC methods presented here, QQ mapping was able to

effectively correct the daily distribution of Tmax and Tmin in German

regions. While both linear and variance correction were shown to be also

effective, the latter’s computational artifacts (i.e. perfect monthly or annual

total precipitation) may make it challenging to use in future simulations. In

addition, because linear approaches only consider changes in the mean,

extreme values in future climate scenarios are often leveled off (Supit et al.,

2012). Furthermore, changes in climate variability are likely to be hard to

correct using a mean (linear) BC only (Challinor et al., 2005).

It is argued that while it can be considered reasonable to limit the choice

of BC to the best performing method, (e.g. here, QQ mapping), for

simulations of future climate a singular choice is more difficult to justify.

Should a single BC method be considered ‘optimal’ for the study? Ideally,

rather than a single choice of BC method, an ensemble of bias-corrected

climate model (GCM, GCM-RCM, or RCM) simulations can better

characterize uncertainty from both the choice of climate model and the

methods used to bring them closer to observations. However, based on

practicality, and considering the overarching research questions on the

study, it has been shown that the BC method of QQ mapping is not only
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effective in reducing bias in climate model output, it is also effective in

reducing large biases in the yield simulations generated by an upscaled

PCM. It can also bring some improvements to yields from SCCMs because

it is effective in reducing biases in the driving RCMs. QQ mapping is also

able to correct the distribution of daily temperatures and precipitation which

are important for the PCM, and does not contain computational artifacts

when used with the SCCM, as does the variance correction demonstrated

here for the North Germany region (DEF).

Its frequent use and evaluation in climate impact studies make QQ

mapping a suitable choice for performing BC on simulations of future

climate from GCMs and RCMs. Therefore, the following chapters use only

QQ mapping, although as shown in the results, linear and variance mapping

are also efficient correction methods, depending on the context and

research questions. However, it should be noted that QQ mapping, and BC

methods in general, are highly criticized for several reasons.

5.5.4 Revisiting the issues and limitations of BC

BC may be a feasible way of reducing RCM error in climate simulations

and this leads to reductions ‘downstream’ the impact assessment cascade.

However, it should be recognized that there are also significant criticisms of

the use of BC, and there are limitations in the method itself. This means

that the methodology of simulating future yields needs to be reflective of the

changes that BC can impose on the direction and magnitude of projected

yield changes.

5.5.4.1 Physical consistency and limited applicability

While useful in reducing error in model output, BC may also disrupt the

physical consistency of climate simulations (Piani et al., 2010). In addition,
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while BC methods are capable of reducing biases, there is no BC approach

that can completely remove biases over a validation period (Chen et al.,

2015). For example, in the results of this chapter, while BC significantly

improved the mean, variation and distribution of climate simulations, some

biases remained after BC (e.g. DE2 PCM simulations).

Limitations of BC are also dependent on the chosen methods for impact

projection or assessment. It is usually not possible to correct all relevant

errors for which observations are available (Hawkins et al., 2013b). For

instance, in the work of this chapter, temperature and precipitation were

corrected as these are the needs of the SCCM and PCM. However, should

more climate variables beyond temperature and precipitation be needed for

the various crop modeling methods that exist, (e.g. the CERES-Wheat

model also takes non-essential input information on humidity, wind speed,

and other variables) it can be a challenge to find observational data to verify

and evaluate simulations, limiting the value of the BC step.

5.5.4.2 The issue of stationarity and bias correction

A significant limitation of BC is the issue of stationarity. Although BC of

climate model output has emerged as a standard procedure in most recent

climate change impact studies, there is a problematic assumption that

climate model biases remain constant over time (Chen et al., 2015). This

issue of stationarity is one of the major criticisms in the usage of BC, and in

projecting future climate using BC. This is because the stationarity in the

design of BC methods results in the calibrated BC coefficients, whether for

correcting evaluation simulations or historical GCM-driven simulations, also

being used to correct future climate change simulations. A major limitation

of this approach is that it is impossible to say whether the variability of future

climate will bear any resemblance to the variability of past climate used as

the ’control’ or calibration period for bias correction. This inherent
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assumption of stationarity is the weak point of any BC method (Teutschbein

and Seibert, 2012).

This assumption of stationarity is also a major issue in the use of model

output statistics (MOS, i.e. the combination of downscaling and correction

approaches (Maraun et al., 2010)) for climate output. In numerical weather

prediction, MOS-applied predictions can be verified by forecast verification

scores. In contrast, MOS in climate studies is almost exclusively bias

correction. For climate change studies, evaluation and assessment of MOS

for future climate is essentially impossible (Maraun, 2016).

5.5.4.3 Climate change signal modification

One of the most widely-discussed drawbacks of using BC is that while its

use may be justified (as observed in the results of this chapter with RCM

errors), BC may change the climate signal or trend that arises from the

climate simulations (Hempel et al., 2013). Because of this – since many

impact studies explicitly seek to investigate the impacts of climate change –

whether or not the BC is appropriate for future use remains a topic of

discussion (Hempel et al., 2013). There have been some recommendations

of abandoning statistical BC approaches toward a more stochastic

approach, meaning randomly adding small-scale variability (e.g. Maraun,

2013).

Therefore, while BC has obvious benefits, its use needs to be carefully

considered in impact studies. The validity of the assumption of stationarity in

bias has important implications for impact studies and needs to be verified to

properly address uncertainty in future climate projections (Chen et al., 2015).
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5.5.4.4 Negotiating the BC issue for impact studies

Other approaches to negotiate the BC issue, particularly to manage the

‘destruction of physical consistency’ are to use a combination of dynamical

downscaling and BC in a ‘trend-preserving approach’ (Hempel et al., 2013,

p.220), which is used in the large Inter-Sectoral Impacts Model

Intercomparison Project (ISI-MIP, Warszawski et al., 2014). In this

approach, physical consistency is ensured by correcting low-resolution

model data (e.g. sea surface temperatures) in order to provide correct

boundaries for an RCM. However, this does not solve the problem

completely, because the RCM itself introduces bias into simulations

(Hempel et al., 2013). This non-trivial introduction of error by RCMs is also

discussed in Chapter 2 and is the primary reason for the evaluation of

RCMs in this chapter.

While this trend-preserving BC approach is expected to reduce the

deviation between high-resolution simulations and observations while

ensuring physical consistency of different climate variables (Hempel et al.,

2013), it is evident that there are no clear-cut solutions to resolving the BC

issue, nor the use of RCMs versus GCMs alone, which mean that devising a

singular approach for future yield simulations is challenging and very

contextual to the research questions being investigated.

Apart from more sophisticated BC methods, directly addressing and

reducing RCM error means that there need to be improvements in the

physical realism of processes within both GCMs and RCMs. In a recent

review of climate change experiments performed at very high resolution

(approximately 1.5-km RCM resolution), Kendon et al. (2017) discuss

several high-resolution experiments that are now available to provide

potential added value to future projections for convective precipitation, wind

gusts, hail, fog, and lightning (Kendon et al., 2017). However, despite

promising results and potential contributions from these high-resolution
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experiments, it remains essential that driving GCMs capture the key

large-scale processes driving future changes before any regional

downscaling is attempted (Kendon et al., 2017).

Independent of the improvement of climate and impact models, what is

clear in moving forward with the BC issue is argued to be that as the use of

RCMs and BC methods become more popular, standard, and accessible,

bias-corrected climate model data may serve as the basis for real-world

adaptation actions. In fact, this is the objective of many studies: that climate

model simulations can provide plausible representations of future reality,

giving society time to develop and implement climate change adaptation

strategies. Climate model simulations thus contain an undeniable ethical

dimension and should thus be plausible, defensible and actionable (Maraun,

2016). Therefore, the uncertainties of climate models, and the methods that

are used to produce and utilize them should be communicated

transparently.

5.5.4.5 Remaining limitations

In the simulations with the PCM, daily solar radiation is an essential

climate variable that is used by DSSAT/CERES-Wheat to simulate radiation

use efficiency. In this case, solar radiation data from the ERA-Interim

reanalysis dataset (Dee et al., 2011) was used as observations. As

described in Macadam et al. (2016), it may be necessary to correct

simulated solar radiation towards values derived from satellite products

and/or observations of sunshine hours or other variables, however this may

make the BC less reliable than for temperature and rainfall. Although solar

radiation is not bias-corrected because in this study due to a larger focus on

temperature and precipitation, and incomplete data for direct observations

of solar radiation, improved input data could also result in improvements to

yield simulations
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5.6 Conclusion

The realism or plausibility of climate model simulations is important for

assessing or projecting the impacts of climate change. While climate

models continue to improve, downscaling and using BC remain an

accessible ways of processing climate simulations for impact assessment

by bridging the scale gap, and reducing errors in climate model output.

The use of BC on RCM output that is used as input to crop models has

been shown to improve yield simulations to be closer to an

observation-driven yield simulation because of the reduction of input error.

However, each BC method used here affected yield simulations differently,

particularly when using either the SCCM or PCM approach, which handle

and utilize climate data in distinct ways. While QQ mapping was chosen to

be a suitable method for future yield projections, regardless of this choice, it

is clear that there are still gaps in effectively linking the output of climate

models as input to crop models through downscaling and BC. It is also

important to be conscious of the criticisms of RCMs and BC, which are

methods that may add to error and uncertainty in the yield simulations.

It is recommended that prior to the use of climate model simulations in

impacts or projection studies, the skill of RCMs and the effect of BC methods

used to correct them need to be evaluated. Significant work needs to be done

in order to negotiate the benefits provided by BC vis-à-vis its limitations. In

order to move forward to project the impacts of climate change on yields, the

work of the subsequent chapters continues the comparative crop modeling

method approach, as well as a method that considers error introduced by

RCMs individually as well as from joint GCM-RCM error.





Chapter 6

Projections of future temperature

and precipitation

6.1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC)

Fifth Assessment Report, climate change caused by increased greenhouse

gas (GHG) emissions is anticipated to bring further warming to the earth’s

atmosphere and oceans, leading to changes in all components of the

climate system (Summary for Policymakers (SPM), IPCC, 2014).

Projections of future climate in the latest IPCC report are based on

simulations of climate models forced with future emission scenarios, the

Representative Concentration Pathways (RCPs, Moss et al., 2010, van

Vuuren et al., 2011). Simulations from climate and earth system models

project that global surface temperature change is likely to exceed 2◦C for

the higher emission scenarios RCP6.0 and RCP8.5 (SPM IPCC, 2014).

Although there is less certainty on regional precipitation changes, increases

in global mean surface temperature are expected to change normal water

cycle patterns. Extreme precipitation events are very likely to become more

intense and frequent by the end of this century (SPM IPCC, 2014).

199
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These changes are anticipated to be detrimental to crop production

because of the sensitivity of many crops, including wheat, to rising and

extreme temperatures and variable precipitation (Asseng et al., 2014, and

see Chapter 1 for more on wheat physiology). In this chapter, the projected

changes in temperature and precipitation from dynamically downscaled

climate model simulations from the Coordinated Regional Downscaling

Experiment over Europe (EURO-CORDEX, Jacob et al., 2014) are

investigated in order to use these simulations as input into crop models that

can assess the potential impacts of climate change on future food security.

In addition, previously discussed issues such as the effect of bias correction

to handle errors in climate model output (See Chapter 5 discussion) are

addressed in the chapter questions and design.

6.1.1 Bias correction and its contribution to uncertainty

While global climate models and earth system models (also general

circulation models, GCMs and ESMs) are powerful simulation tools that use

physics- and mathematics-based approaches to represent the atmosphere,

ocean and land systems, the complexity of the earth’s systems make it

challenging to generate climate simulations without some uncertainty (See

Chapter 2, Section 2.2.2). This uncertainty is linked to, among other

sources, the numerous parameterizations that need to be made and

challenges in representing complex processes. These modeled and

parameterized processes also affect other simulated climate processes,

making error propagation an issue. Projecting into the future is also

challenging, considering natural variability and scenario uncertainty – i.e.

how society develops or regulates greenhouse gas emissions. Error is also

introduced when using regional climate models (RCMs) for downscaling

because of the different structures and parameters of RCMs, and the

possible pairings with a diverse number of driving GCMs.
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RCM and GCM errors are typically addressed by bias correction (BC)

methods, which attempt to minimize or eliminate biases in climate model

output. It has been argued that utilizing GCM or GCM-RCM output without

some form of BC will not accurately represent potential changes to climate

(Hawkins et al., 2013b, Piani et al., 2010). Therefore it is ‘unavoidable’ that

climate risk and impact assessment studies see the need to utilize BC

methods (Iizumi et al., 2017, p.7800). However, in principle, BC is a

post-processing step that does not address underlying error embedded in

GCMs/ESMs or RCMs, only the error in their output.

BC is an additional source of uncertainty in climate risk assessments

because different BC methods and reference daily weather data sets often

lead to different impact outcomes (Iizumi et al., 2017). BC has also been

criticized heavily because of its potential to introduce uncertainty into

climate model output (e.g. the results from Chapter 5), potential

modifications to the climate signal or to the embedded climate physics (e.g.

Hempel et al., 2013), and also because in principle, there is no certainty

that future climate will behave like past climate (e.g. Maraun, 2016).

Because of the scientific discussion around BC, as well as the importance

of BC in the impact assessment chain, the investigation of how it contributes

to uncertainty is likewise a key objective of the research. While the

decomposition of uncertainty linked to BC is addressed in Chapter 7, to

prepare the climate simulations for yield projections and the uncertainty

analysis, this chapter focuses on investigating how temperature and

precipitation are projected to change until the end of the century.

Additionally, how BC modifies these future projections is also investigated.

6.1.2 Chapter approach and objectives

In this chapter, dynamically downscaled GCM output (paired

GCM-RCMs), both uncorrected and bias corrected, are used to investigate
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changes to climate, particularly for temperature and precipitation. These

climate variables which are important to wheat growth, development, and

yield. It is the objective of the chapter to compare uncorrected and BC

climate projections under two future emission scenarios, and using two

different approaches to calibrate the BC. Two different calibrations for the

BC are used in order to separately address and characterize joint

GCM-RCM and RCM-only error. These BC outputs are generated for their

use in the process-based model (PCM) and statistical crop-climate model

(SCCM) that are used to generate future yield simulations in the

subsequent chapter.

The hypothesis is that BC climate simulations will project different

changes to temperature and precipitation relative to uncorrected

simulations, and that there may be modifications to the robustness of the

climate change signal after BC. It is also hypothesized that the different

GCM-RCM combinations will respond differently to the evaluation- or

historical-based calibration, depending on the contributed error of the

choice of GCM or RCM. The details of these different calibrations are

described in the following data and methods section.

6.1.2.1 Chapter research questions

(1) What are the trends and changes projected for temperature

and precipitation from different GCM-RCM output? How do

projections from different GCM-RCMs compare to each other?

(2) How do future climate projections from the chosen GCM-RCM

combinations compare under the high and low emission (RCP8.5

and 2.6) scenarios?

(3) How are projected climate changes affected by the use of BC?

Does BC change future climate projections relative to changes

projected by uncorrected simulations?
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(4) How do the results of two BC approaches, one that corrects

GCM-RCM error and the other RCM error, compare?

(5) How can the results of the chapter inform the selection of

GCM-RCM pairs for use in impact assessment?

6.2 Data and methods

Daily simulations of future precipitation, maximum and minimum

temperature (Tmax and Tmin) from EURO-CORDEX over the UK, Germany

and four German states are selected, using the highest and lowest RCP

emission scenarios (RCP8.5 and RCP2.6, Moss et al., 2010, van Vuuren

et al., 2011) from 2011 until the end of the century, in 30-year periods.

These variables are crucial input data for the PCM and SCCMs that are

used to generate yield projections. General changes and trends in these

climate variables are investigated for the UK and Germany relative to the

baseline period of historical simulations from 1976-2005. Figure 6.1 shows

an outline of the general methods used in this chapter.

6.2.1 Climate models and future emission scenarios

Six combinations of GCM-RCMs – the same used in previous chapters –

are used for comparison of their output, and to identify how each climate

model projects future climate. These GCM-RCMs are: CCLM-MPI,

RACMO-ECEARTH, RCA-CC, RCA-HadGEM, RCA-IPSL and RCA-MPI

(Table 6.1). These GCMs and RCMs are chosen based on their inclusion in

large model intercomparison projects (e.g. CMIP5 and CMIP6 (Eyring et al.,

2016, Taylor et al., 2012), EURO-CORDEX and EURO-CORDEX-Adjust

(Jacob et al., 2014)), in comparison and evaluation studies over Europe

(e.g. Jury et al., 2015, Kotlarski et al., 2014), and generally satisfactory

performances over the UK and Germany (See Chapter 4).
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Figure 6.1: Overview of Chapter 6 research design.

Table 6.1: Paired GCM-RCM combinations for future climate projections with
available RCP scenarios.

GCM-RCM combination Available RCP scenario
CCLM-MPI RCP8.5

RACMO-ECEARTH RCP8.5
RCA-CC RCP8.5

RCA-HadGEM RCP8.5 and 2.6
RCA-IPSL RCP8.5
RCA-MPI RCP8.5 and 2.6

6.2.2 Bias correction method and approaches

BC methods are operationally used to post-process regional climate

projections (Maraun et al., 2017). The motivation for the BC of climate

model output is primarily to correct biases, because if the historical or

evaluation time series are biased compared to the observations, then

logically, future projections will also be biased. BC in the form of

quantile-quantile (QQ) mapping (See Chapter 5 methods and discussion,

Teutschbein and Seibert, 2012, Piani et al., 2010) is applied to these
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simulations in this chapter in order to correct the mean and distribution of

climate model output. Although it was shown in Chapter 3 that a variety of

BC methods are effective in bringing climate simulations closer to

observations, QQ mapping is chosen because of its design to correct the

distribution of simulations, and includes a cross-validation step and

management of drizzle days (See Chapter 5 Methods).

6.2.2.1 Calibration approaches to investigate GCM-RCM errors

Two approaches to calibrate the distribution parameters are used: (1)

calibration using past RCM evaluation simulations (BC-Eval) and (2)

calibration using past GCM-RCM historical simulations (BC-Hist). These

approaches are used in order to identify the error coming from RCMs alone,

and that coming from the use of downscaled GCM simulations which have

both GCM and RCM error. As previously discussed in Chapters 4 and 5,

RCM evaluation simulations are driven by reanalysis data at their

boundaries, with EURO-CORDEX utilizing ERA-Interim to drive RCM

evaluation runs (Jacob et al., 2014, Dee et al., 2011). In contrast, historical

RCM simulations are driven by GCM simulations that have been driven by

with time-varying external forcings (e.g. GHGs and other radiative forcings)

at their boundaries. Thus historical simulations do not assimilate

observations (or reanalysis data) and do not match the temporal evolution

of atmospheric states in the real world (Eden et al., 2014). The comparison

of historical GCM-RCMs and GCM-only simulations was performed in

Chapter 4, where some "added value" from downscaling was found, and the

error introduced by RCMs alone was evaluated in Chapter 5, where different

choices of RCMs were found to introduce their own error to climate output.

The primary reason for using these two different calibration approaches

is that it allows for the careful comparison and selection of GCM-RCM

combinations with small biases (Pasten Zapata, 2017), so the results may
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be useful in future work for selecting climate models for impact studies. This

approach to comparing calibration for BC also allows for the identification or

isolation of error from GCMs and their downscaling RCM. The results of

these two different BC approaches are compared to each other and also to

uncorrected simulations. The low/high emission scenarios represented by

the RCPs are also compared. These recent approaches to understanding

the effects of BC on projections through these different calibrations are

aimed to provide novel results to better understand climate model error.

6.2.3 Future emission scenarios

What the future world will look like in terms of the sustainability of global

development, including the resulting GHG emissions, and any policies or

regulatory measures to control GHGs is another significant source of

uncertainty in climate and crop projections. There are extensive

uncertainties in future forcings and responses to climate change,

necessitating the use of scenarios to explore the potential consequences of

different response options (Moss et al., 2010) To do this, RCPs are used

(See Chapter 2, Section 2.2.2). The RCPs span the range of radiative

forcing values from 2.6 to 8.5 W/m2 in four scenarios (van Vuuren et al.,

2011).

However, although four RCPs have been developed, not all future

simulations are available for the selected GCM-RCMs in the

EURO-CORDEX database at the time of analysis. For the purpose of the

chapter, RCP8.5 and RCP2.6, the highest and lowest emission pathways,

are chosen to represent unabated global warming and a peak and decline

in emissions, respectively. In addition, RCP2.6 is only available for the

RCA-HadGEM and RCA-MPI simulations. The CO2 equivalent of RCP8.5 is

1370 parts per million (ppm) by the year 2100, and RCP2.6 would peak at

490 ppm before the year 2100, followed by a decline (Moss et al., 2010).
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6.2.4 Statistical analyses and evaluation

As in previous chapters, the analysis of the chapter is for the UK and

Germany, including four German states, because of the high productivity

and importance of wheat in these locales. The four German states are

identified by their EU NUTS code: DE2 (South), DEA (West), DED (East),

and DEF (North). The climate model outputs are used to compare

GCM-RCM performances before and after correction, in particular

measuring projected changes.

The projected changes in the uncorrected future projections are

compared to uncorrected past historical simulations (1976-2005, 30 years).

Projections corrected considering RCM error only (BC-Eval) are compared

to the calibration period of BC past RCM evaluation simulations (available

for 1981-2010, also 30 years). For BC-Hist, the calibration period is BC past

historical simulations. Early century refers to 2011-2040, mid-century

2041-2070, and late century is from 2071-2100.

Linear regression is also used to determine whether significant linear

trends in temperature and precipitation exist. Trend analysis is also

extended to climate indices such as the number of days above 31◦C

between June and August (JJA), a critical temperature for wheat (Porter and

Gawith, 1999) and the total JJA precipitation, a period of potential heat

stress for wheat (See Chapter 1 for a review of wheat physiology). The

analysis in the chapter is limited to annual and seasonal trends in climate

model output, and a more in-depth analysis of extremes such as their

duration are recommended for future work. Additional t-tests are performed

to test for significance between time-series.
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6.3 Results

In this results section, climate change projections for temperature and

precipitation over the chosen wheat-growing countries and regions are

analyzed: firstly, national and regional uncorrected projections from the high

and low emissions scenarios that are taken directly from the

EURO-CORDEX simulations, followed by an analysis of how BC (with

BC-Eval and and BC-Hist) affects the temperature and precipitaton

simulations and their projected changes. The summer climate index

projections are also reported. The results of the uncorrected projections are

shown as the GCM-RCM ensemble for the purpose of clarity; however

additional information on the effect of BC-Eval and BC-Hist on individual

GCM-RCMs is also provided.

6.3.1 Projected temperature changes

6.3.1.1 Uncorrected projections of annual Tmax and Tmin

At the national level, uncorrected climate projections show warming

temperatures for the UK and Germany (Figs. 6.2 I-II and 6.3 I-II, Tables 6.2

and 6.3). The ensemble of GCM-RCMs show increases relative to the past

historical simulation baseline, and have significant increasing trends until

the end of the century for the UK and Germany. Future projections of both

Tmax and Tmin show increases of over 2◦C for the UK and over 3◦C for

Germany under RCP2.6 and RCP8.5 for the period 2071-2100. Differences

between individual GCM-RCM projections show that the largest projected

increases in temperature are from RCA-HadGEM in both the UK and

Germany (Tables 6.4-6.5 and Tables 6.6-6.7). RCA-HadGEM projections

are typically up to a degree warmer than the RCP8.5 ensemble mean, but

cooler than the RCP2.6 ensemble mean for both Tmax and Tmin.
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Figure 6.2: Ensemble GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for the UK until
the end of the century using different calibration for the bias correction (BC-Eval and
BC-Hist). I-II (A) shows the range of simulations under RCP8.5 and RCP2.6. I-II (B)
shows changes in these climate variables relative to the respective past calibration
period.

Table 6.2: Summary of ensemble projected temperature changes (UK).
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Tmax RCP85 Mean 0.7 1.5 2.6 +, 0.9* 0t 0.7t 1.9t +, 0.9* 0.8s 1.5 2.7s +, 0.88*
6.60 14.10 24.50 0 5.6 15.2 6.4 12.1 21.8

Tmax RCP26 Mean 2.7 2.8 2.9 +, 0.01 0.8t 1t 1t +, 0.01 0.9t 1.1t 1.2t +, 0.01
28.20 29.20 30.30 6.4 8 8 7.2 8.8 9.6

Tmin RCP85 Mean 0.8 1.6 2.8 +, 0.94* 0.5t 1.2t 2.3t +, 0.93* 0.3t 1.1t 2.3t +, 0.93*
14.50 29.10 50.90 9.3 22.4 43 5.3 19.4 40.6

Tmin RCP26 Mean 2.6 2.9 2.8 +, 0.02 1.2t 1.4t 1.3t +, 0.02 0.6t 0.8t 0.7t +, 0.02
57.80 64.50 62.30 22.4 26.1 24.3 10.4 13.8 12.1

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective calibration period. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a
s(t) indicates a relative increase (decrease) to the uncorrected projected change.



210 CHAPTER 6. PROJECTIONS OF FUTURE CLIMATE

Figure 6.3: Ensemble BC GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for Germany until
the end of the century using different calibration for the bias correction (BC-Eval and
BC-Hist). I-II (A) shows the range of simulations under RCP8.5 and RCP2.6. I-II (B)
shows changes in these climate variables relative to the respective past calibration
period.

Table 6.3: Summary of ensemble projected temperature changes (Germany).

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

Tmax RCP85 Mean 0.9 1.9 3.4 +, 0.87* 0.4t 1.4t 2.9t +, 0.86* 0.8t 1.7t 3.3t +, 0.85*
7.80 16.50 29.60 3.1 10.7 22.1 6.1 12.9 25.1

Tmax RCP26 Mean 3.2 3.4 3.4 +, 0.02 1.4t 1.6t 1.7t +, 0.01 1.3t 1.5t 1.5t +, 0.02
31.20 33.20 33.20 10.7 12.2 13 9.8 11.3 11.3

Tmin RCP85 Mean 0.9 1.9 3.5 +, 0.92* 1.1s 1.9 3.2t +, 0.92* -0.2t 0.8t 2.3t +, 0.91*
19.70 41.60 76.60 22.3 38.5 64.9 -3.4 13.6 39.2

Tmin RCP26 Mean 2.7 3 3 +, 0.06* 1.6t 1.8t 1.8t +, 0.04* 0.3t 0.5t 0.4t +, 0.02
75.80 84.20 84.20 32.5 36.5 36.5 4.8 8.1 6.5

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective calibration period. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a
s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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As expected, the difference in the trajectories of Tmax and Tmin is

observed to be dependent on the RCP scenario. The RCP2.6 projected

changes of temperature start out high – projected changes are

approximately 2◦C higher relative to the calibration period (here uncorrected

historical simulations) – early into the century, but these changes level off by

the mid- and late century. For example, for both the UK and Germany, the

uncorrected projected change between 2011-2040 is approximately 0.8◦C

for the ensemble mean of projected Tmax and Tmin under RCP8.5. In

contrast, the projected change for the RCP2.6 scenario is larger for the

same time period: above 2.7 (2.6)◦C for Tmax (Tmin) for the UK and above

3.2 (2.7)◦C for Germany under RCP2.6. Towards the mid- and late-century,

the projected changes to temperature under RCP2.6 remain the same.

In contrast, it can be observed in the results that projected changes in

Tmax and Tmin under RCP8.5 continue to increase over time. Indicating a

stabilization of emissions under RCP2.6, the ensemble mean of Tmax and

Tmin do not show any significant trends for both countries under the

RCP2.6 scenario (Tables 6.2 and 6.3), with the exception of RCA-MPI and

the RCP2.6 ensemble mean for Germany Tmax – although R2 values are

small (R2<0.06). The ensemble mean and all individual GCM-RCMs show

significant positive trends for future projections of annual Tmax and Tmin

under the RCP8.5 scenario for the UK and Germany (Tables 6.4 and 6.7).

Projections also show that that the beginning of the uncorrected future

climate starts from the end period of uncorrected historical simulations of

Tmax and Tmin, which are often below the mean of observations. In

Chapter 4, historical simulated temperatures from GCM-RCMs showed

significant negative biases relative to observations, meaning that these

projected changes toward the end of the century could be significantly

underestimating the magnitude and range of future temperatures. For this

reason, the use of BC on future climate projections is investigated in the

following section.
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6.3.1.2 The effect of bias correction on temperature projections

A summary of the effects of BC is that ensemble means of BC-Eval and

BC-Hist temperature projections generally show reductions in projected

changes after BC, but the effect of BC on individual projections varies.

Regardless of these modifications, simulations under both BC calibration

approaches continue to project significant future warming. Between

BC-Eval and BC-Hist, how big the ‘jump’ from uncorrected projections also

changes: this depends on whether the removal of the RCM bias can cause

significant changes to the projection or whether it is the larger error from the

joint GCM-RCM choice that contributes more error. These different ’cases’

are further explained in the discussion; here, the effect of BC is discussed in

more detail.

(1) Effect of BC on ranges and scenario differences of simulations

The use of the two differently-calibrated BC approaches – BC-Eval, to

correct RCM error and BC-Hist to correct GCM-RCM error – results in

projections that ‘jump’ from the uncorrected range to begin at the same

magnitude as the end of the 30-year period of BC past evaluation and BC

past historical simulations. This means that projections shift upward

compared to the uncorrected projections which are below the observational

mean. Both BC-Eval and BC-Hist simulations show increases (upward

shifts) in the range of temperatures under both scenarios and for both Tmax

and Tmin for the UK and Germany, with significant increasing trends for

both the ensemble means and the individual GCM-RCMs.

The range of BC projections relative to the uncorrected projections varies

depending on the variable and location. For example, for Tmax, the range

of BC-Hist is higher than BC-Eval in the UK (RCP8.5), but not in Germany

(Figs. 6.2-I and 6.3-I). For Tmin, the ranges of the ensemble means of BC-

Eval and BC-Hist are smaller than uncorrected projections for the UK, but
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they are relatively similar to each other in Germany (Figs. 6.2-II and 6.3-II).

In terms of differences between scenarios, the RCP8.5 and 2.6 pathways

remain distinct even after BC: projected changes in Tmax under RCP8.5

remain low in the early century, but steadily increase towards the end of

the century. The RCP2.6 projections project a large positive temperature

change, but this again levels off in the mid- and late-century for both BC-

Eval and BC-Hist. BC-Hist corrected projections show significant increasing

trends for both the ensemble means and the individual GCM-RCMs.

(2) Effect of BC on projected changes in temperature

Between raw, BC-Hist and BC-Eval projections, the largest projected

changes (relative to the respective calibration period) are typically from the

uncorrected projections. BC-Eval and BC-Hist generally reduce the

projected changes in Tmax and Tmin in the UK (Figs. 6.2-I and II (B)) and

Germany (Figs. 6.3-I and II (B)) for both scenarios. In addition to these

smaller projected relative changes after BC, significant trends are only

observed for projections forced by RCP8.5 (Tables 6.4-6.7).

In the case of individual GCM-RCMs, the use of BC-Eval results in

smaller projected changes relative to the changes from uncorrected

projections for all GCM-RCMs apart from RCA-HadGEM. RCA-HadGEM

was noted in the previous section as having the largest projected changes

among the GCM-RCMs, so this increase due to BC-Eval brings the

projected change by the end of the century to 4.1◦C in the UK, for example.

BC-Eval Tmin also generally has smaller projected changes compared to

uncorrected Tmin, apart from RCA-HadGEM and RCA-MPI. Relative to past

BC historical simulations, the projected changes in BC-Hist are 2.7 (2.3)◦C

for Tmax (Tmin) under RCP8.5 and 1.2 (1.2)◦C for RCP2.6 by the end of the

century for the UK (Tables 6.2-6.5). For Germany, these projected changes

are: 3.3 (2.3)◦C for Tmax (Tmin) for RCP8.5 and 1.2 (0.4) for RCP2.6.
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Table 6.4: GCM-RCM annual projected Tmax changes for the UK, in ◦C and in
percentage.
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CCLM-MPI 0.5 1.2 2.1 +, 0.58* 0t 0.6t 1.3t +, 0.59* 0.8s 1.5s 2.3s +, 0.56*
4.70 11.20 19.50 0 4.8 10.4 6.5 12.1 18.6

RACMO-ECEARTH 0.7 1.4 2.6 +, 0.79* -0.1t 0.7t 2t +, 0.79* 0.7 1.4 2.7s +, 0.74*
6.80 13.60 25.20 -0.8 5.6 16 5.6 11.2 21.7

RCA-CC 0.6 1.4 2.8 +, 0.81* -1.3t -0.5t 0.9t +, 0.81* 0.5t 1.3t 2.8 +, 0.79*
6.30 14.60 29.20 -10.4 -4 7.2 4 10.4 22.5

RCA-HADGEM 1.1 2.1 3.6 +, 0.71* 1.6s 2.6s 4.1s +, 0.71* 0.9t 1.8t 3.3t +, 0.67*
9.20 17.60 30.10 12.8 20.7 32.7 7.1 14.3 26.2

RCA-IPSL 0.8 1.5 2.6 +, 0.68* -0.9t -0.1t 1t +, 0.68* 1s 1.7s 2.8s +, 0.65*
8.10 15.20 26.40 -7.2 -0.8 8 8.2 14 23

RCA-MPI 0.6 1.2 2.1 +, 0.59* 0.4t 1.1t 2t +, 0.59* 0.7s 1.4s 2.3s +, 0.51*
5.30 10.60 18.50 3.2 8.8 16 5.6 11.3 18.6

RCP85_Mean 0.7 1.5 2.6 +, 0.9* 0t 0.7t 1.9t +, 0.9* 0.8s 1.5 2.7s +, 0.88*
6.60 14.10 24.50 0 5.6 15.2 6.4 12.1 21.8

RCA-HADGEM_RCP26 2.1 2.1 2.3 +, 0 1.3t 1.4t 1.5t +, 0 1.4t 1.5t 1.6t +, 0.02
19.50 19.50 21.40 10.4 11.2 12 11.3 12.1 12.9

RCA-MPI_RCP26 1.4 1.6 1.6 +, 0.01 0.2t 0.5t 0.4t +, 0.01 0.5t 0.9t 0.8t +, 0.01
13.60 15.50 15.50 1.6 4 3.2 4 7.2 6.4

RCP26_Mean 2.7 2.8 2.9 +, 0.01 0.8t 1t 1t +, 0.01 0.9t 1.1t 1.2t +, 0.01
28.20 29.20 30.30 6.4 8 8 7.2 8.8 9.6

Uncorrected BC-Eval BC-Hist

Table 6.5: GCM-RCM annual projected minimum temperature changes for the UK,
in ◦C and in percentage.
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CCLM-MPI 0.6 1.4 2.3 +, 0.72* 0.7s 1.3t 2.1t +, 0.72* 0.4t 1.1t 2.1t +, 0.71*
10.30 24 39.40 13.1 24.3 39.2 7.2 19.7 37.6

RACMO-ECEARTH 0.9 1.7 3 +, 0.85* 0.2t 0.9t 2t +, 0.86* 0.5t 1.2t 2.5t +, 0.85*
18.70 35.30 62.40 3.7 16.8 37.4 8.8 21.1 44

RCA-CC 0.7 1.6 3 +, 0.86* -0.5t 0.2t 1.5t +, 0.86* 0t 0.9t 2.3t +, 0.84*
15.60 35.60 66.70 -9.3 3.7 28 0 15.5 39.7

RCA-HADGEM 1.1 2.1 3.7 +, 0.83* 1.7s 2.6s 4.1s +, 0.83* 0.3t 1.3t 2.8t +, 0.79*
16.80 32 56.40 31.7 48.5 76.6 5.1 22.3 48.1

RCA-IPSL 0.9 1.7 2.9 +, 0.79* 0t 0.7t 1.8t +, 0.78* 0.3t 1.1t 2.3t +, 0.79*
18.10 34.20 58.40 0 13.1 33.6 5.3 19.6 41

RCA-MPI 0.7 1.3 2.3 +, 0.72* 1s 1.7s 2.6s +, 0.73* 0.4t 1.1t 2.1t +, 0.68*
11 20.50 36.20 18.7 31.7 48.5 7.2 19.9 38.1

RCP85_Mean 0.8 1.6 2.8 +, 0.94* 0.5t 1.2t 2.3t +, 0.93* 0.3t 1.1t 2.3t +, 0.93*
14.50 29.10 50.90 9.3 22.4 43 5.3 19.4 40.6

RCA-HADGEM_RCP26 1.7 1.9 1.9 +, 0.01 1.5t 1.7t 1.7t +, 0.01 1.2t 1.4t 1.4t +, 0.01
29.10 32.60 32.60 28 31.7 31.7 21.5 25.1 25.1

RCA-MPI_RCP26 1.9 2.2 2.1 +, 0.01 0.8t 1t 0.9t +, 0.01 0.3t 0.6t 0.5t +, 0.01
39.50 45.70 43.70 14.9 18.7 16.8 5.3 10.6 8.8

RCP26_Mean 2.6 2.9 2.8 +, 0.02 1.2t 1.4t 1.3t +, 0.02 0.6t 0.8t 0.7t +, 0.02
57.80 64.50 62.30 22.4 26.1 24.3 10.4 13.8 12.1

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective calibration period. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a
s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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Table 6.6: GCM-RCM annual projected Tmax changes for Germany, in ◦C and in
percentage.
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CCLM-MPI 0.5 1.5 2.6 +, 0.58* 0.1t 0.9t 2t +, 0.59* 0.6s 1.5 2.6 +, 0.52*
4.50 13.60 23.60 0.8 6.9 15.3 4.6 11.4 19.8

RACMO-ECEARTH 0.8 1.4 3.1 +, 0.67* 0.2t 0.8t 2.5t +, 0.67* 0.8 1.4 3.1 +, 0.61*
6.90 12.10 26.90 1.5 6.1 19.1 6.1 10.7 23.6

RCA-CC 0.6 1.6 3.1 +, 0.74* -1.2t -0.3t 1.3t +, 0.73* 0.5t 1.5t 3t +, 0.7*
5.90 15.60 30.20 -9.2 -2.3 9.9 3.8 11.3 22.7

RCA-HADGEM 1.4 2.5 4.5 +, 0.6* 2.3s 3.4s 5.5s +, 0.6* 1.2t 2.3t 4.2t +, 0.59*
10.90 19.50 35 17.6 25.9 42 9.1 17.5 31.9

RCA-IPSL 1.2 2.5 4 +, 0.66* 0.2t 1.5t 3t +, 0.66* 0.9t 2.2t 3.6t +, 0.62*
10.90 22.70 36.30 1.5 11.4 22.9 6.8 16.7 27.3

RCA-MPI 0.6 1.7 3.2 +, 0.58* 0.8s 1.9s 3.5s +, 0.58* 0.6 1.7 3.1t +, 0.51*
4.90 13.80 26.10 6.1 14.5 26.7 4.6 13 23.7

RCP85_Mean 0.9 1.9 3.4 +, 0.87* 0.4t 1.4t 2.9t +, 0.86* 0.8t 1.7t 3.3t +, 0.85*
7.80 16.50 29.60 3.1 10.7 22.1 6.1 12.9 25.1

RCA-HADGEM_RCP26 3 3.1 3.2 +, 0 2t 2.1t 2.2t +, 0.01 1.8t 1.9t 2t +, 0.02
27.30 28.20 29.10 15.3 16 16.8 13.7 14.5 15.3

RCA-MPI_RCP26 1.3 1.7 1.7 +, 0.01 0.8t 1.2t 1.1t +, 0.01 1t 1.4t 1.3t +, 0.01
11.30 14.70 14.70 6.1 9.2 8.4 7.6 10.7 9.9

RCP26_Mean 3.2 3.4 3.4 +, 0.02 1.4t 1.6t 1.7t +, 0.01 1.3t 1.5t 1.5t +, 0.02
31.20 33.20 33.20 10.7 12.2 13 9.8 11.3 11.3

Uncorrected BC-Eval BC-Hist

Table 6.7: GCM-RCM annual projected minimum temperature changes for Germany,
in ◦C and in percentage.
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CCLM-MPI 0.6 1.5 2.8 +, 0.71* 1.1s 1.8s 2.7t +, 0.74* -0.2t 0.7t 2t +, 0.68*
11.30 28.10 52.50 22.3 36.5 54.8 -3.5 12.4 35.4

RACMO-ECEARTH 0.9 1.7 3.4 +, 0.77* 1s 1.5t 2.7t +, 0.81* -0.5t 0.2t 1.9t +, 0.76*
28.10 53.10 106.20 20.3 30.5 54.8 -8 3.2 30.4

RCA-CC 0.7 1.9 3.5 +, 0.81* 0.1t 0.9t 2.2t +, 0.82* -0.7t 0.4t 2t +, 0.8*
19.60 53.30 98.20 2 18.2 44.6 -11.3 6.5 32.3

RCA-HADGEM 1.3 2.5 4.3 +, 0.8* 1.9s 3s 4.7s +, 0.81* 0.2t 1.3t 3.1t +, 0.73*
24.10 46.30 79.60 38.5 60.8 95.3 3.5 22.4 53.5

RCA-IPSL 1.2 2.3 3.9 +, 0.83* 0.9t 1.8t 3.2t +, 0.83* 0t 1.1t 2.6t +, 0.79*
27.50 52.80 89.50 18.2 36.5 64.9 0 19.1 45.2

RCA-MPI 0.7 1.7 3.2 +, 0.73* 1.5s 2.4s 3.7s +, 0.75* -0.1t 0.9t 2.4t +, 0.67*
12.60 30.70 57.80 30.4 48.7 75 -1.8 16.2 43.2

RCP85_Mean 0.9 1.9 3.5 +, 0.92* 1.1s 1.9 3.2t +, 0.92* -0.2t 0.8t 2.3t +, 0.91*
19.70 41.60 76.60 22.3 38.5 64.9 -3.4 13.6 39.2

RCA-HADGEM_RCP26 1.2 1.3 1.4 +, 0.02 1.8s 1.9s 1.9s +, 0.02 1.1t 1.3 1.3t +, 0.02
22.50 24.40 26.30 36.5 38.5 38.5 19.5 23 23

RCA-MPI_RCP26 2.9 3.2 3.2 +, 0.04* 1.5t 1.7t 1.6t +, 0.01 0t 0.2t 0.1t +, 0.01
90.60 100 100 30.4 34.5 32.4 0 3.2 1.6

RCP26_Mean 2.7 3 3 +, 0.06* 1.6t 1.8t 1.8t +, 0.04* 0.3t 0.5t 0.4t +, 0.02
75.80 84.20 84.20 32.5 36.5 36.5 4.8 8.1 6.5

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective calibration period. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a
s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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6.3.1.3 Regional changes to annual temperatures

In terms of regional projected changes to temperature in Germany, the

uncorrected projections from the six GCM-RCMs are shown in Figs. 6.4-6.7

(I-II). The ensemble results are shown in Tables 6.8-6.11. Similar to projected

changes at the national level, temperatures are projected to increase until the

end of the century, albeit with different pathways depending on the emissions

scenario, where stabilization of temperatures occurs under RCP2.6.

Ensemble means of annual Tmax and Tmin show significant trends for

RCP8.5 in all regions, but not for RCP2.6. Some exceptions are the

ensemble mean for DED and DEF Tmin under RCP2.6, where trends are

significantly increasing – however, the R2 values are close to zero.

Uncorrected projected changes to temperatures (relative to the uncorrected

historical baseline) are, on average, 3.4 (3.6)◦C for all regions for Tmax

(Tmin) under RCP8.5; this is 3.4 (3)◦C under RCP2.6 by the end of the

century.

After BC, the range and magnitude of projected temperatures also jumps

or shifts abruptly upward to begin from where past BC simulations end in

2010. After BC, the increasing trends remain significant for all regions, and

the projected changes to regional annual Tmax (relative to the respective

calibration period) by the end of the century are 3.2, 2.5, 3, 3◦C for BC-Eval

and 3.7, 3.1, 3.4, 3.5◦C for BC-Hist for each region respectively (DE2, DEA,

DED, DEF) with the RCP8.5 scenario. Similar to the national level, the effect

of BC-Eval and BC-Hist on the ensemble and individual GCM-RCM

simulations of temperature depends on how large the biases are in the

calibration periods that are used to calibrate the correction: large

differences in the bias contributed by the RCM and by the driving GCM lead

to differences in the BC-Eval and BC-Hist ranges.
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Figure 6.4: Ensemble BC GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for South
Germany (DE2) until the end of the century using different calibration for the bias
correction (BC-Eval and BC-Hist). I-II (A) shows the range of simulations under
RCP8.5 and RCP2.6. I-II (B) shows changes in these climate variables relative to
the respective past RR.

Table 6.8: Summary of ensemble projected temperature changes (DE2).
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Tmax RCP85 0.9 2.1 3.8 +, 0.87* 0.4t 1.5t 3.2t +, 0.86* 1s 2t 3.7t +, 0.85*
8.20 19 34.40 3.1 11.8 25.1 7.9 15.9 29.4

Tmax RCP26 3.6 3.9 3.9 +, 0.02 1.6t 1.8t 1.8t +, 0.01 0.5t 0.6t 0.6t +, 0.01
37.20 40.30 40.30 12.5 14.1 14.1 4 4.8 4.8

Tmin RCP85 1 2.1 3.8 +, 0.92* 1.3s 2.1 3.5t +, 0.92* 0.9t 2t 3.6t +, 0.91*
29.40 61.70 111.60 32.7 52.7 87.9 23.2 51.6 92.9

Tmin RCP26 3 3.2 3.3 +, 0.07* 1.8t 2t 2t +, 0.02 1.4t 1.4t 1.4t -, -0.01
129.80 138.50 142.80 45.2 50.2 50.2 36.1 36.1 36.1

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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Figure 6.5: Ensemble BC GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for West
Germany (DEA) until the end of the century using different calibration for the bias
correction (BC-Eval and BC-Hist). I-II (A) shows the range of simulations under
RCP8.5 and RCP2.6. I-II (B) shows changes in these climate variables relative to
the respective past RR.

Table 6.9: Summary of ensemble projected temperature changes (DEA).
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Tmax RCP85 0.8 1.7 3.2 +, 0.85* 0.2t 1.1t 2.5t +, 0.86* 0.8 1.7 3.1t +, 0.84*
6.70 14.30 26.90 1.5 8 18.3 5.9 12.5 22.9

Tmax RCP26 3 3.2 3.3 +, 0.01 1.2t 1.4t 1.4t +, 0.01 0.3t 0.3t 0.3t +, 0.01
28 29.90 30.80 8.8 10.2 10.2 2.2 2.2 2.2

Tmin RCP85 0.8 1.8 3.3 +, 0.91* 0.9s 1.6t 2.9t +, 0.91* 0.7t 1.7t 3.1t +, 0.9*
15.30 34.40 63.10 15.2 27.1 49.1 12 29.2 53.3

Tmin RCP26 2.6 2.8 2.9 +, 0.05* 1.4t 1.6t 1.6t +, 0.04* 0.7t 0.7t 0.7t +, -0.01
60.90 65.60 67.90 23.7 27.1 27.1 12 12 12

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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Figure 6.6: Ensemble BC GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for East Germany
(DED) until the end of the century using different calibration for the bias correction
(BC-Eval and BC-Hist). I-II (A) shows the range of simulations under RCP8.5 and
RCP2.6. I-II (B) shows changes in these climate variables relative to the respective
past RR.

Table 6.10: Summary of ensemble projected temperature changes (DED).
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Tmax RCP85 0.9 1.9 3.5 +, 0.85* 0.5t 1.4t 3t +, 0.85* 0.9 1.9 3.4t +, 0.84*
8 16.90 31.10 3.9 10.9 23.3 7.1 14.9 26.7

Tmax RCP26 3.3 3.5 3.5 +, 0.01 1.5t 1.7t 1.7t +, 0.01 0.3t 0.4t 0.4t +, -0.01
33.10 35.10 35.10 11.6 13.2 13.2 2.4 3.1 3.1

Tmin RCP85 1 2 3.6 +, 0.92* 1.3s 2 3.2t +, 0.92* 0.8t 1.8t 3.4t +, 0.9*
23.50 46.90 84.40 27.9 42.9 68.7 17.5 39.3 74.3

Tmin RCP26 2.9 3.1 3.1 +, 0.05* 1.8t 1.9t 1.9t +, 0.02 1.1t 1.1t 1.1t +, -0.01
89.1 95.3 95.3 38.6 40.8 40.8 24.1 24.1 24.1

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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Figure 6.7: Ensemble BC GCM-RCM historical and projected changes to annual
averages of I. Maximum temperature and II. Minimum temperature for North
Germany (DEF) until the end of the century using different calibration for the bias
correction (BC-Eval and BC-Hist). I-II (A) shows the range of simulations under
RCP8.5 and RCP2.6. I-II (B) shows changes in these climate variables relative to
the respective past RR.

Table 6.11: Summary of ensemble projected temperature changes (DEF).
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Tmax RCP85 0.8 1.7 3 +, 0.87* 0.6t 1.5t 3 +, 0.87* 1.3s 2.2s 3.5s +, 0.84*
7.10 15.10 26.70 4.8 12.1 24.1 10.6 17.9 28.4

Tmax RCP26 2.5 2.7 2.8 +, 0.02 1.5t 1.7t 1.8t +, 0.01 0.3t 0.2t 0.3t -, -0.01
24.10 26 27 12.1 13.7 14.5 2.4 1.6 2.4

Tmin RCP85 0.9 1.9 3.3 +, 0.9* 1.1s 1.9 3.1t +, 0.92* 0.9 1.8t 3.2t +, 0.9*
16.40 34.70 60.30 20.9 36.1 58.8 17.5 35 62.1

Tmin RCP26 2.4 2.6 2.6 +, 0.05* 1.6t 1.8t 1.8t +, 0.04* 0.8t 0.8t 0.8t +, -0.01
51.90 56.20 56.20 30.4 34.2 34.2 15.5 15.5 15.5

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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6.3.2 Changes to total annual precipitation

6.3.2.1 Uncorrected projections of annual precipitation

Future precipitation from GCM-RCMs shows some positive trends over

the UK and Germany. For example, over the UK, three of the total six

GCM-RCMs show significant trends: RCP8.5 RCA-CC, RCA-IPSL, and

RCA-MPI, and the ensemble mean for RCP8.5. For Germany, RCP8.5

RACMO-ECEARTH, RCA-CC, RCA-IPSL, and the RCP8.5 ensemble mean

show significant increasing tends. Under RCP2.6 both uncorrected

RCA-MPI and RCA-HadGEM show significant increasing trends but the

ensemble mean does not for the UK, while under RCP2.6, no significant

trends for uncorrected precipitation are observed for Germany (Tables 6.12,

6.13). Unlike temperature, precipitation projections do not show strong

divergence between RCP8.5 and RCP2.6 emission scenarios (Figs. 6.8,

6.9).

The past historical simulations of precipitation have a large positive bias

over the period 1976-2005 relative to E-OBS data (observations) of annual

precipitation. This large bias is retained into the future, as projections

remain approximately 200mm away from the mean of observations for both

the UK and Germany (Figs. 6.8, 6.9). The largest projected precipitation

change over the UK and Germany is from RCA-CC (RCP8.5), which

projects a 160mm increase by the end of the century relative to the mean of

past uncorrected historical precipitation for both countries; however, other

RCP8.5 GCMs project much smaller changes which are typically under

100mm by the end of the century.

Under RCP2.6, projected precipitation changes show large differences

between RCA-HadGEM and RCA-MPI. RCP2.6 RCA-HadGEM projects

large reductions in total annual precipitation for Germany, approximately

200mm, while RCA-MPI projects increases over 160mm on average in all
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three 30-year future time periods. In contrast, in the UK, RCA-HadGEM

projects small positive increases under 100mm, but RCA-MPI projects large

increases in total annual precipitation, over 300mm on average for each

30-year future period. Due to these large contrasts in the value of projected

changes, the ensemble mean between these two GCM-RCMs available for

RCP2.6 does not show any significant trend for either country. As the

number of GCM-RCMs under RCP2.6 is limited, having more members in

the ensemble could produce more robust results.

6.3.2.2 The effect of BC on precipitation projections

After BC, it can be observed that precipitation projections generally shift

(‘jump’) downward, closer to the mean of observations and their BC RR

(evaluation simulations for BC-Eval and historical simulations for BC-Hist) in

both the UK and Germany. This shift is anticipated as the use of BC, in this

case quantile-quantile mapping, reduces the large positive biases to bring

simulations closer to the mean and distribution of the RR used for

calibration, as it was shown in Chapter 5 with RCM simulations.

In the following paragraphs, more specific changes to the range and

projected precipitation changes are discussed:

(1) Effect of BC on ranges and scenario differences of simulations

In terms of trends, after BC, the significant increasing linear trends are

retained for RCP8.5: RCA-CC, RCA-IPSL, RCA-MPI and the RCP8.5 mean

for the UK. In Germany, the positive trend of RACMO-ECEARTH is lost for

both BC-Eval and BC-Hist. RCA-CC is one of the only GCM-RCMs that has

a significant (p<0.05) linear increasing trend for precipitation in the UK and

in Germany (R2=0.16 and 0.18, respectively) across uncorrected and BC

projections.
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Figure 6.8: Ensemble BC GCM-RCM historical and projected changes to total
annual precipitation for the UK until the end of the century using different calibration
for the bias correction (BC-Eval and BC-Hist). (A) shows the range of simulations
under RCP8.5 and RCP2.6. (B) shows changes in these climate variables relative
to the respective past RR.

Table 6.12: GCM-RCM annual projected precipitation changes for the UK, in mm
and in percentage.
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CCLM-MPI -4.4 18 45.5 +, 0.01 268.1s 281.5s 298.9s +, -0.01 -3.1s 18.8s 44.5t +, 0.02
-0.4 1.6 4 25.5 26.8 28.4 -0.3 1.8 4.3

RACMO-ECEARTH 19.6 5.8 30.2 +, 0 20s 4.3t 28.8t +, 0.01 19.2t 4.8t 30.7s +, 0.01
1.9 0.6 2.9 1.9 0.4 2.7 1.9 0.5 3

RCA-CC 43.3 106.9 159.7 +, 0.21* 125.5t 190.8s 245.5s +, 0.23* 52.7s 117.5s 172s +, 0.26*
3.40 8.40 12.50 11.9 18.1 23.3 5.1 11.5 16.8

RCA-HADGEM 58 38.7 70.4 +, 0.01 2.6t -12.7t 23.1t +, 0.01 65.2s 49.7s 84.4s +, 0.01
5.10 3.40 6.20 0.2 -1.2 2.2 6.4 4.9 8.3

RCA-IPSL 34.6 31.6 108.6 +, 0.1* 152.8s 153.5s 234.2s +, 0.12* 26.4t 31.1t 106t +, 0.15*
2.60 2.40 8.30 14.5 14.6 22.3 2.6 3 10.3

RCA-MPI 8.6 38.9 80.4 +, 0.07* 172.8s 206.2s 250.9s +, 0.09* 15.9t 46.1s 84.7s +, 0.1*
0.60 2.90 5.90 16.4 19.6 23.9 1.5 4.5 8.2

RCP85_Mean 26.6 40 82.4 +, 0.19* 122.8s 136.4s 179.3s +, 0.19* 29.4s 44.7s 86.8s +, 0.23*
2.20 3.30 6.80 11.7 12.9 17 2.9 4.4 8.4 +

RCA-HADGEM_RCP26 44 96.5 42.1 +, 0.1* -11.5t 42.4t -11.6t +, 0.12* 20t 76.1t 20.3t +, 0.15*
3.90 8.50 3.70 -1.1 4 -1.1 1.9 7.3 1.9

RCA-MPI_RCP26 320.3 320.3 336 +, 0.19* 168.9t 170.2t 184t +, 0.19* 8.2s 11t 21.5t +, 0.23*
30.80 30.80 32.30 16.1 16.2 17.5 0.8 1.1 2.1

RCP26_Mean -11.3 15 -6.5 +, 0.02 77s 104.6s 82.4s +, 0.01 27.9s 57.4s 32.9s +, 0.01
-0.9 1.2 -0.5 7.3 9.9 7.8 2.7 5.6 3.2

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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Figure 6.9: Ensemble BC GCM-RCM historical and projected changes to total
annual precipitation for Germany until the end of the century using different
calibration for the bias correction (BC-Eval and BC-Hist). (A) shows the range
of simulations under RCP8.5 and RCP2.6. (B) shows changes in these climate
variables relative to the respective past RR.

Table 6.13: GCM-RCM annual projected precipitation changes for Germany, in mm
and in percentage.
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CCLM-MPI -4.7 8 39.9 +, 0.01 225.8s 223.2s 245.4s +, -0.01 83.6s 101.8s 131.4s +, 0.03
-0.40 0.80 3.70 29 28.6 31.5 10.7 13 16.7

RACMO-ECEARTH 91.3 103.8 120 +, 0.15* -36.5t -7.9t 3.2s +, 0.01 89.6t 109.4s 126.6s +, 0.01
11.10 12.60 14.60 -4.7 -1 0.4 11.7 14.3 16.5

RCA-CC 43.1 81.2 154.9 +, 0.15* 140.8s 177.2s 249.3s +, 0.16* 73.6s 106.3s 183.2s +, 0.18*
4.30 8 15.30 18 22.6 31.9 9.8 14.2 24.4

RCA-HADGEM 30.2 60.4 81.2 +, 0.01 -59t -28.1t -4.6t +, 0.03* 59.8s 93.6s 122.7s +, 0.04*
3.80 7.50 10.10 -7.5 -3.6 -0.6 7.9 12.4 16.3

RCA-IPSL 22.1 28.4 78.5 +, 0.08* 118.5s 127.1s 177.4s +, 0.1* 45.3s 62.4s 115.9s +, 0.14*
2.20 2.80 7.80 15.1 16.2 22.7 6 8.3 15.4

RCA-MPI 30 34.7 69.8 +, 0.01 102.4s 108.7s 144s +, -0.01 47.6s 60s 94.3s +, 0.03
3.10 3.50 7.10 13.1 13.9 18.4 6.3 7.9 12.4

RCP85_Mean 35.3 52.7 90.6 +, 0.17* 82.2s 100.3s 135.9s +, 0.16* 66.6s 88.9s 128.9s +, 0.24*
3.70 5.60 9.50 10.5 12.8 17.4 8.8 11.7 16.9

RCA-HADGEM_RCP26 -230 -223.2 -227.5 +, 0.01 -59.6s -52.3s -56s +, 0.01 6.3s 14.1s 9.9s +, 0.01
-21.60 -20.90 -21.30 -7.6 -6.7 -7.2 0.8 1.8 1.3

RCA-MPI_RCP26 175 183.2 166.2 +, 0.01 93.7t 102t 85.1t +, 0.01 17.5t 25.5t 8.9t +, 0.01
21.20 22.20 20.20 12 13 10.9 2.3 3.3 1.2

RCP26_Mean -93.5 -86 -98.1 +, 0.01 17.5s 25.3s 13.6s +, -0.01 36.5s 44.4s 32.8s +, -0.01
-9.20 -8.50 -9.70 2.2 3.2 1.7 4.9 5.9 4.4

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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Significant positive trends are also observed for RCA-MPI and

RCA-HadGEM, but not the ensemble mean, for RCP2.6 for both BC-Eval

and BC-Hist in the UK only; RCP2.6 precipitation projections still show no

trends for Germany. In the UK, the use of BC-Eval and BC-Hist both shift

the ensemble mean of projections of total annual precipitation downward

relative to the uncorrected projections (Fig. 6.8A). For Germany, BC-Eval

and BC-Hist precipitation projections are also shifted downward relative to

uncorrected projections, as a result of reducing the positive biases based on

the calibration period (Fig. 6.9A).

Similar to uncorrected projections, BC-Eval and BC-Hist precipitation do

not show any clear differences in trajectories between RCP8.5 and RCP2.6.

Projected changes after BC under RCP2.6 are generally smaller than

RCP8.5 for the UK and Germany, at least for the two GCM-RCMs which

were available for the comparison. For example, in Germany BC-Hist

RCP2.6 RCA-MPI projects relative increases of 21.5mm by the end of the

century, which is lower compared to uncorrected projections (336mm) and

BC-Eval (180mm) for the same scenario, and to the projected decreases of

85mm under RCP8.5.

(2) Effect of BC on projected changes in precipitation

In terms of projected changes, the ensemble mean of BC-Eval

simulations shows the largest projected precipitation changes compared to

the uncorrected and BC-Hist changes (Figs. 6.8B, 6.9B). For example, the

RCP8.5 BC-Eval mean projects 180mm increases by the end of the century

versus 80mm from both uncorrected and RCP8.5 BC-Hist projections for

the UK. For Germany, the RCP8.5 BC-Eval ensemble projected change is

136mm, compared to BC-Hist (129mm) and uncorrected projections

(91mm). For RCP2.6, BC-Eval ensemble is also greater than BC-Hist and

uncorrected projections, but for the UK only.
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In terms of individual climate models, all six GCM-RCM BC-Eval and

BC-Hist simulations for RCP8.5 project precipitation increases in the UK.

The largest projected BC-Eval increases are from CCLM-MPI, with over

270mm projected changes (a roughly 25% increase) relative to the RR for

the UK. The smallest projected changes are from BC-Eval

RACMO-ECEARTH and RCA-HadGEM with just under 30mm (UK) and

5mm (Germany) projected changes by the end of the century (Tables 6.12

and 6.13). Most BC-Eval GCM-RCMs also project increases in rainfall for

Germany, apart from RACMO-ECEARTH (RCP8.5) and RCA-HadGEM

(both scenarios), which project decreases in total annual precipitation.

BC-Hist precipitation changes from individual GCM-RCMs are all

positive changes for the UK and Germany across both emission scenarios.

In the UK, all individual BC-Hist GCM-RCMs show projected precipitation

changes under 100mm by the end of the century under both scenarios,

apart from RCP8.5 BC-Hist RCA-CC which projects a larger change of

172mm relative to the RR. In Germany BC-Hist RCA-MPI (RCP2.6) projects

relative increases of 21.5mm by the end of the century, which is lower

compared to uncorrected projections (336mm) and BC-Eval (180mm) for

the same scenario. In contrast, BC-Hist RCA-MPI under RCP8.5 at the

higher emissions scenario projects larger increases of 85mm over

Germany. The highest projected precipitation changes by the end of the

century are from RCA-CC (180mm) for RCP8.5 for Germany.

In the following section, regional precipitation changes for Germany are

discussed, followed by the projected changes in summer climate indices.

6.3.2.3 Projected changes to regional precipitation

At the German regional level, there are significant positive trends for

future projected precipitation in all four regions (Table 6.14, Fig. 6.10) under

RCP8.5. This means that in general, increasing annual precipitation can be
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expected in the four German regions: the projected changes are all under

120mm for the ensemble means for RCP8.5: 70mm (DE2), 80mm (DEA),

70mm (DED) and 120mm (DEF).

The shift after BC relative to the uncorrected projections depends on

how close the evaluation and historical simulations are initially: for example,

in DE2, DEA, and DEF (South, West, and North Germany respectively),

while uncorrected past historical simulations have a positive bias relative to

observations, i.e. the uncorrected GCM-RCMs were too ’wet’

(RMSE=176mm on average, see Chapter 4 for historical analysis), the

difference between the mean of historical simulations and observations is

relatively small (Fig. 6.10 I, II, IV). The difference between uncorrected

evaluation simulations and observations is also relatively small for the

chosen RCMs.

Table 6.14: GCM-RCM annual projected precipitation changes for German regions,
in mm and in percentage.

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

20
11

-2
04

0

20
41

-2
07

0

20
71

-2
10

0

Tr
en

d
(R

2
)

DE2 RCP85 16.4 37.7 69.1 +, 0.1* 109.8s 133s 166.6s +, 0.11* 25.4s 53.3s 89.7s +, 0.15*
1.60 3.80 6.90 11.9 14.4 18 2.8 5.9 9.9

DE2 RCP26 -128.5 -126.3 -132.9 +, 0.01 12s 15.8s 7.8s +, 0.01 -9.8s -7s -8.8s +, 0.01
-12.90 -12.70 -13.40 1.3 1.7 0.8 -1.1 -0.8 -1

DEA RCP85 12.2 36.4 80 +, 0.16* 78.9s 98.8s 137s +, 0.13* 29.2s 58.4s 107.6s +, 0.22*
1.20 3.70 8.10 8.9 11.2 15.5 3.4 6.9 12.7

DEA RCP26 -37.7 -33.3 -54.7 +, -0.01 11.3s 15.9s -5s +, -0.01 11s 11.9s 7.7s +, 0
-3.70 -3.30 -5.40 1.3 1.8 -0.6 1.3 1.4 0.9

DED RCP85 19.8 40.8 69.2 +, 0.11* 77.9s 94.3s 117.2t +, 0.1* 39.9s 62.8s 93.5s +, 0.17*
2.20 4.60 7.80 11.8 14.3 17.8 6.2 9.8 14.5

DED RCP26 -131.1 -125.6 -140.9 -, -0.01 21s 25.9s 13s -, -0.01 11.3s 12.2s 12.9s +, -0.01
-12.90 -12.30 -13.90 3.2 3.9 2 1.8 1.9 2

DEF RCP85 38.2 64.8 120.7 +, 0.25* 100.8s 124.4s 175.8s +, 0.23* 46.8s 68s 127.8s +, 0.24*
4.10 7 13.10 12.4 15.3 21.6 6 8.7 16.3

DEF RCP26 -21.4 -4.8 -20.2 +, -0.01 33.8s 48.4s 34.7s +, -0.01 16.9s 7.9s 11.9s +, -0.01
-2.20 -0.50 -2 4.2 5.9 4.3 2.2 1 1.5

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the
respective RR. (∗) indicates a significant (p <0.05) trend (+/-). In addition, a s(t) indicates
a relative increase (decrease) to the uncorrected projected change.
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However, in contrast, the positive bias between historical GCM-RCM

simulations and observations in in DED (East Germany) is significantly

larger (RMSE=270mm). Therefore, after BC, it can be observed that the

shift from uncorrected to BC projections in DE2, DEA, and DEF is relatively

small, and uncorrected projections, BC-Eval and BC-Hist remain close

together. In contrast, after BC-Eval and BC-Hist in DED, BC projections

(both BC-Hist and BC-Eval) of total annual precipitation make a significant

downward shift compared to other regions (Fig. 6.10 III).

After BC, projected changes in precipitation increase under BC-Eval and

BC-Hist in all regions for RCP8.5, apart from DEF under RCP2.6 (Fig. 6.10

I-IV (B)). Changes in BC-Eval are all above 100mm under RCP8.5: 166mm

(DE2), 137mm (DEA), 117mm (DED), and 176mm (DEF) by the end of the

century. Under RCP2.6, these changes are significantly smaller: 8mm

(DE2), -5 mm (DEA), 13mm (DED), 35mm (DEF) for BC-Eval by the end of

the century.

Ensemble projected changes in precipitation with the BC-Hist calibration

are smaller relative to BC-Eval under both emission scenarios, but are all

comparatively greater than uncorrected projected changes (Table 6.14 (B)).

Significant increasing trends in precipitation are observed in DE2, DEA, DED,

and DEF but only under RCP8.5.
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Figure 6.10: Regional ensemble BC GCM-RCM historical and projected changes to
total annual precipitation for I. South (DE2), II. West (DEA), III. East (DED), and IV.
North (DEF) Germany until the end of the century using different calibration for the
bias correction (BC-Eval and BC-Hist). (A) shows the range of simulations under
RCP8.5 and RCP2.6. (B) shows changes in these climate variables relative to the
respective past RR.
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6.3.3 National-level changes to summer (JJA) climate

indices

The number of days above 31◦C (’hot days’) and total precipitation

during the summer months of June-August are important climate indices

which aim to represent the climate component of crop heat stress, as

discussed in previous chapters (See Chapter 1 and the SCCM evaluation in

Chapter 3). These summer (JJA) climate indices are calculated from daily

future Tmax and precipitation simulations for the UK (Fig. 6.11), Germany

(Fig. 6.12), and four German regions (Figs. 6.13) and 6.14).

6.3.3.1 Changes in the number of days above 31◦C

Because the indices are averaged over the entire country, daily average

temperatures of above 31◦C over the entire UK were not typically observed

in the climate analysis (Chapter 3), and this is also observed in the climate

projections. The changes to hot days are low in uncorrected projections,

BC-Eval and BC-Hist for the UK: projected increases are typically less than

one day per summer by the end of the century for uncorrected and BC-Eval

projections. BC-Hist GCM-RCMs project comparatively more hot days over

the UK by the end of the century, but these remain under 2 days per summer.

For example, RCA-HadGEM typically projects the highest increases in

the number of hot days under RCP8.5: 1 (uncorrected), 1.1 (BC-Eval) and

1.7 (BC-Hist). Some trends from GCM-RCMs are unable to be computed

because of zero values in the past and in the future (Table 6.15). Significant

(p<0.05) trends are observed for the UK, but they are generally have small

R2 values, for example uncorrected RCP8.5 and RCP2.6 ensemble means

(R2=0.05 and R2=0.03), BC-Eval RCA-HadGEM (R2=0.05) and BC-Hist

RCA-HadGEM (R2=0.09).

In contrast to the projections of little to no changes over the UK, more



6.3. RESULTS 231

hot days are projected for Germany: the ensemble mean of uncorrected

projections under RCP8.5 projects 6.6 more days per summer while RCP2.6

projects 4.2 more days by the end of the century (Table 6.17). Generally,

RCP2.6 projects fewer hot days compared to RCP8.5 for the GCM-RCMs

RCA-HadGEM and RCA-MPI. RCP2.6 and RCP8.5 projections are observed

to follow the same trajectories for regional Tmax, where projections from

RCP2.6 are higher in the early century but projected changes level off while

those under RCP8.5 continue to increase for Germany.

After BC, the number of projected hot days increases for Germany. For

example, the BC-Eval ensemble mean projects 9.3 (6.2) more hot days

under RCP8.5 (RCP2.6). For BC-Hist, this is 9.3 (10.6) more hot days

under RCP8.5 (RCP2.6). The number of projected hot days is highest using

BC-Hist, followed by BC-Eval and then uncorrected projections (Fig. 6.12 I

(B)) by the end of the century under both scenarios for Germany.

6.3.3.2 Summer (JJA) precipitation

For JJA precipitation, climate projections generally show negative

trends, in addition to projected decreases. For example, the ensemble

RCP8.5 mean of uncorrected JJA precipitation projects decreases under

30mm, along with a significant negative trend for the UK (R2=0.16). Trends

in uncorrected projections of precipitation are negative for the UK based on

simulations from CCLM-MPI, RACMO-ECEARTH, RCA-IPSL, and

RCA-MPI; however, while significant, the R2 values are relatively small (R2<

0.16 for uncorrected RCP8.5 projections (Table 6.12). Over Germany,

reductions of 20 (85)mm are projected under RCP8.5 (RCP2.6), and with

significant negative trends for the RCP8.5 ensemble mean (R2=0.06).

Projections from CCLM-MPI, RCA-IPSL, RCA-MPI and the RCP8.5

ensemble mean have negative trends (R2<0.14), but RCP8.5 RCA-CC has

an increasing trend (R2=0.08).
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Figure 6.11: Ensemble BC GCM-RCM historical and projected changes to I. the
number of days above 31◦C in JJA, and II. Total JJA precipitation (mm) for the UK
until the end of the century using BC-Eval and BC-Hist. I-II (A) shows the range
of simulations under RCP8.5 and RCP2.6. I-II (B) shows changes in these climate
indices relative to the respective RR.

Table 6.15: GCM-RCM projected changes to the number of hot days for the UK, in
number of days and percentage.
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CCLM-MPI 0 0 0.07 +, 0.01 0 0 0t - 0 0.27s 0.37s +, 0.05*
- - - - - - - - -

RACMO-ECEARTH 0 0 0 - 0 0 0.23s +,0.04* -0.27t -0.27t -0.03t +,0.05*
- - - - - - -101.25 -101.25 -11.25

RCA-CC 0 0 0 - -0.07t -0.07t -0.07t - 0 0 0 -
- - - -105 -105 -105 - - -

RCA-HADGEM 0 0.27 0.97 +, 0.05* -0.07t 0.37s 1.07s +, 0.05* -0.3t 0.57s 1.74s +, 0.09*
- - - -105 555 1605 -90 171 522

RCA-IPSL 0 0 0.03 +, 0.02 -0.07t -0.07t -0.03t +, 0.02 0 0.03s 0.3s +, 0.04*
- - - -105 -105 -45 - - -

RCA-MPI 0 0 0.13 +, 0.01 -0.07t -0.07t 0.1t +, 0.01 -0.03t 0.07s 0.97s +, 0.13*
- - - -105 -105 150 -90 210 2910

RCP85_Mean 0 0.04 0.2 +, 0.08* -0.02t 0.05s 0.22s +, 0.08* -0.1t 0.11s 0.54s +, 0.16*
- - - -90 225 990 -94.74 104.21 511.58

RCA-HADGEM_RCP26 0 0 0.07 +, 0.03* -0.07t -0.07t 0t +, 0.03* 0.57s 0.33s 1.86s +, 0.01
- - - -105 -105 0 - - -

RCA-MPI_RCP26 0 0 0 - -0.07t -0.07t -0.03t +, 0 0.27s 0.03s 0.6s +, 0.01
- - - -105 -105 -45 101.25 11.25 225

RCP26_Mean 0 0 0.03 +, 0.03* -0.02t -0.02t 0.03 +, 0.04* 0.55s 0.32s 1.38s +, -0.01
- - - -90 -90 135 - - -

Uncorrected BC-Eval BC-Hist
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Table 6.16: GCM-RCM projected JJA precipitation changes for the UK, in mm and in percentage.
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CCLM-MPI -11.5 -33.8 -48.1 -, 0.1* 90.1s 64.3s 49s -, 0.13* -10s -30.8s -43.6s -, 0.1*
-4.4 -12.8 -18.2 42.2 30.1 22.9 -4.1 -12.6 -17.9

RACMO-ECEARTH -1.2 -16.5 -30.3 -, 0.07* 12.7s -4.7s -20.6s -, 0.08* 12.1s -4.2s -18.8s -, 0.07*
-0.5 -7.2 -13.2 5.9 -2.2 -9.5 5.5 -1.9 -8.5

RCA-CC 18.7 27.3 40.6 +, 0.01 132.7s 142.3s 155.4s +, 0.02 31.8s 38.6s 54.1s +, 0.02
5.1 7.5 11.1 61.8 66.3 72.4 10.5 12.7 17.8

RCA-HADGEM 3.7 -8.9 -28 -, 0.03 12.3s 0.3s -17.6s -, 0.03 19.3s 5.1s -11s -, 0.03
1.4 -3.5 -11 5.7 0.1 -8.2 8.5 2.3 -4.9

RCA-IPSL -4.2 -18.3 -43.2 -, 0.09* 43.3s 30.4s 6.2s -, 0.09* 13.8s 1.3s -21.5s -, 0.09*
-1.4 -6.1 -14.5 20.2 14.2 2.9 6.1 0.6 -9.5

RCA-MPI -17.2 -46.9 -71.4 -, 0.11* 80.8s 52.5s 28.6s -, 0.11* 2.5s -22.2s -43.7s -, 0.11*
-4.9 -13.5 -20.5 37.6 24.4 13.3 0.9 -8.4 -16.6

RCP85_Mean -1.9 -16.2 -29.9 -, 0.16* 62s 47.5s 33.7s -, 0.17* 11.6s -2.1s -13.9s -, 0.16*
-0.6 -5.5 -10.2 28.9 22.1 15.7 4.7 -0.8 -5.6

RCA-HADGEM_RCP26 -2.9 20 -1.3 +, 0 12.4s 35.8s 14.4s +, 0 -12.2t 12t -10.1t +, 0
-1.1 7.6 -0.5 5.8 16.7 6.7 -5 4.9 -4.1

RCA-MPI_RCP26 94.5 104.6 99 +, -0.01 73.9t 84.8t 78.7s +, -0.01 24.1t 35.2t 29t +, -0.01
41.2 45.6 43.2 34.4 39.5 36.6 11 16 13.2

RCP26_Mean -73.2 -56.7 -71.7 +, 0 43.2s 60.3s 45s +, 0 -65.3s -47.6s -63.3s +, 0
-20 -15.5 -19.6 20.1 28.1 21 -21.5 -15.7 -20.9

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the respective RR. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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Figure 6.12: Ensemble BC GCM-RCM historical and projected changes to I. the
number of days above 31◦C in JJA, and II. Total JJA precipitation (mm) for the UK
until the end of the century using BC-Eval and BC-Hist. I-II (A) shows the range
of simulations under RCP8.5 and RCP2.6. I-II (B) shows changes in these climate
indices relative to the respective RR.

Table 6.17: GCM-RCM projected changes to the number of hot days for Germany,
in number of days and percentage.
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CCLM-MPI 0 0.4 1.9 +, 0.16* -2.2t -1.8t -0.3t +, 0.17* 1.5s 4.1s 9.1s +, 0.31*
0 400 1900 -97.1 -79.4 -13.2 125 341.7 758.3

RACMO-ECEARTH -0.1 0.7 2 +, 0.11* -1.7s -0.1t 3.1s +, 0.22* -1.3s 1.6s 7.2s +, 0.28*
-18.8 131.2 375 -66.2 -3.9 120.8 -32.8 40.3 181.5

RCA-CC -0.2 0 0.8 +, 0.05* -2.1s -1.8t 0t +, 0.08* -1.4s -1t 3.3s +, 0.18*
-54.5 0 218.2 -72.4 -62.1 0 -43.7 -31.2 103.1

RCA-HADGEM 2.8 8 18.2 +, 0.25* 8.4s 14.5t 28s +, 0.25* -1.3t 4.2t 15.5t +, 0.29*
89.4 255.3 580.9 289.7 500 965.5 -21.1 68.1 251.4

RCA-IPSL 1.4 2.8 7.1 +, 0.09* 0.7t 4.2s 10.8t +, 0.17* -5.5t -0.3t 8.9s +, 0.26*
280 560 1420 24.1 144.8 372.4 -58.1 -3.2 94

RCA-MPI 0.8 3 9.6 +, 0.25* 0.6t 4.5s 13.3t +, 0.29* -1.7t 2.3t 12.3t +, 0.32*
400 1500 4800 20.7 155.2 458.6 -31.1 42.1 225

RCP85_Mean 0.8 2.5 6.6 +, 0.41* 0.8 3.4s 9.3s +, 0.48* -1.6t 1.8t 9.3s +, 0.59*
99.3 310.3 819.3 31 131.9 360.8 -32.6 36.7 189.4

RCA-HADGEM_RCP26 6 5.6 6.1 +, -0.01 9.1s 8.3s 8.8s +, -0.01 13.3t 12.7t 13.1t +, 0.01
6000 5600 6100 313.8 286.2 303.4 1108.3 1058.3 1091.7

RCA-MPI_RCP26 1.2 1.5 2.2 +, -0.01 1.4s 1.7s 2.8s +, -0.01 7.4s 7.3s 9.2s +, -0.01
225 281.2 412.5 48.3 58.6 96.6 186.6 184 231.9

RCP26_Mean 3.5 3.5 4.2 +, -0.01 5.6s 5.3s 6.2s +, -0.01 9.8s 9.4s 10.6t +, -0.01
954.5 954.5 1145.5 217.2 205.6 240.5 306.2 293.8 331.2

Uncorrected BC-Eval BC-Hist
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Table 6.18: GCM-RCM projected JJA precipitation changes for Germany, in mm and in percentage.
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CCLM-MPI -9.4 -30 -53.5 -, 0.14* 55.5s 36.7s 14.2s -, 0.18* -7.4s -23.3s -40.7s -, 0.13*
-3.1 -10 -17.8 24.8 16.4 6.3 -3.2 -10.2 -17.9

RACMO-ECEARTH -1.8 -3 -20.2 -, 0.01 -9s -10t -26.2t -, 0.01 5.3s 4.8s -12.6s -, 0
-0.8 -1.3 -8.5 -4 -4.5 -11.7 2.4 2.2 -5.7

RCA-CC 9.2 8.3 44.4 +, 0.08* 69.4t 68.6t 103.9t +, 0.08* 14.9t 12.6t 50.4s +, 0.1*
2.9 2.6 13.9 31 30.6 46.4 5.9 5 19.9

RCA-HADGEM -8.4 1.6 -11.5 -, -0.01 -67.8t -57.9t -69.1s -, -0.01 -0.8t 9.3s -2.7s -, -0.01
-4.4 0.8 -6 -30.3 -25.9 -30.9 -0.5 5.2 -1.5

RCA-IPSL -19.1 -21 -42.8 -, 0.04* -35.4s -36.6s -56.7s -, 0.04* -5.6s -5.5s -24.2t -, 0.03
-8.1 -8.9 -18.1 -15.8 -16.3 -25.3 -3.1 -3.1 -13.6

RCA-MPI 3.7 -20.6 -43.9 -, 0.08* 24.6t 2.1s -19.2t -, 0.08* 11.6t -7.2s -25.8t -, 0.06*
1.3 -7.5 -15.9 11 0.9 -8.6 5.3 -3.3 -11.8

RCP85_Mean -4.3 -10.8 -20.8 -, 0.06* 6.3s 0.5s -8.4s -, 0.05* 3s -1.6s -8.9s -, 0.03
-1.7 -4.2 -8 2.8 0.2 -3.8 1.4 -0.8 -4.2

RCA-HADGEM_RCP26 -102.5 -108.4 -87.8 +, 0.01 -53.9s -58.9s -39.7s +, 0.01 -41.7s -47.2s -26.4s +, 0.01
-34.2 -36.1 -29.3 -24.1 -26.3 -17.7 -18.3 -20.7 -11.6

RCA-MPI_RCP26 25.7 34.7 19 -, -0.01 8.7t 17.4t 1.9t -, -0.01 -12.7t -4.2t -19.4t -, -0.01
10.8 14.6 8 3.9 7.8 0.8 -5.7 -1.9 -8.7

RCP26_Mean -88.9 -87.4 -85.5 +, -0.01 -22.5s -20.6s -19.3s +, -0.01 -55.5s -54s -51.7s +, -0.01
-27.9 -27.4 -26.8 -10.1 -9.2 -8.6 -21.9 -21.3 -20.4

Uncorrected BC-Eval BC-Hist

Raw changes are in white rows and percentage in gray. All changes are relative to the respective RR. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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After BC, negative JJA precipitation trends remain significant for

CCLM-MPI, RACMO-ECEARTH, RCA-IPSL, RCA-MPI, and the RCP8.5

ensemble for both BC-Eval and BC-Hist. RCP2.6 JJA precipitation

simulations do not have any significant linear trends for the UK. For

Germany, CCLM-MPI, RCA-CC, RCA-IPSL, RCA-MPI and the RCP8.5

ensemble retain their significant linear trends for BC-Eval and BC-Hist,

apart from BC-Hist RCA-IPSL (Table 6.13). After BC, the relative projected

changes over Germany for JJA precipitation are smaller than uncorrected

projections under both scenarios (Fig. 6.12 II (B)). In contrast, BC

projections for UK JJA precipitation show large projected increases using

BC-Eval for both scenarios (Fig. 6.11 II (B)).

Overall, therefore, there are only small projected increases in the number

of hot days over the entire UK, but there are more over Germany under both

emission scenarios. In terms of JJA precipitation, the ensemble means of

GCM-RCM simulations over the UK and Germany show negative trends.

6.3.4 Regional changes to summer (JJA) climate indices

6.3.4.1 Changes in the number of days above 31◦C

At the regional level, the magnitude of projected changes to the number

of hot days and total JJA precipitation is observed to depend greatly on the

region: for example, based on the climate analysis in Chapter 3, South

Germany (DE2) has a comparatively warmer average climate than the more

northern state of DEF. As may be expected, DE2 therefore has the largest

projected changes in the number of hot days compared to other states, 11.3

(7.1) days based on the uncorrected RCP8.5 (RCP2.6) ensemble mean

(Table 6.19). This is followed by eastern Germany (DED) and western

Germany (DEA) with 7.5 (5.4) and 6.4 (4.7) more hot days under the

RCP8.5 (RCP2.6) scenario. DEF is the coolest region and has projected



6.3. RESULTS 237

increases in the number of hot days by only 2 (1.4) days by the end of the

century under RCP8.5 (RCP2.6) emissions scenario.

The difference in the scenario forcing can be observed in the projected

changes to hot days: again, the projections from RCP8.5 start small but

continuously increase until the end of the century; in contrast, the number of

projected hot days under RCP2.6 are relatively the same through the three

future 30-year periods. Because of these different trajectories, significant

positive trends are found only in the projections forced by RCP8.5 in all

regions (R2=0.58, 0.38, 0.43 and 0.17 for DE2, DEA, DED and DEF

respectively). These increasing trends remain significant after BC using

both BC-Eval and BC-Hist, with R2 values increasing after correction.

After BC, the number of projected hot days generally increases for all

regions using BC-Eval; results using BC-Hist are more mixed, with

decreases in the RCP2.6 ensemble mean for DE2, and some early- and

mid-century decreases relative to the uncorrected projected changes are

also observed (Fig. 6.13 (B)). The increase in the number of hot days under

BC-Eval (RCP8.5) is: 14.1, 7.4, 8.4, 4.8 for each region respectively (DE2,

DEA, DED, DEF). For BC-Hist (RCP8.5), this is 8.7, 8.7, 9.8 and 7.2

respectively.

6.3.4.2 Summer (JJA) precipitation

Overall, trends in projected JJA precipitation changes are unclear (Fig.

6.14 A and B). There are no significant trends found for the future, apart

from DE2 (South Germany), which is projected to have decreases in

precipitation, although the R2 value is small (R2=0.05) and the ensemble

projected changes are also small (20mm) (Table 6.20). Larger decreases

are found for DE2 under the RCP2.6 scenario, up to 100mm less over the

June-August period – however, no significant trends are found for any of the

projections under RCP2.6 for any region.
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DEA, DED, and DEF are also projected to have small (<21 mm) changes

by the end of the century under RCP8.5, and larger projected decreases

are found under RCP2.6, up to 113mm less for DED, for example. After

BC, these projected changes reduced relative to the uncorrected projections.

Significant trends are found for the ensemble mean of JJA rainfall for DE2,

DEA, and DEF (BC-Eval), but none are observed for BC-Hist.

This concludes the results section; in the following discussion, these

climate projections are summarized and used to revisit and answer the

chapter research questions.

Table 6.19: GCM-RCM projected changes to the number of hot days in German
regions, in days and in percentage.
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DE2 RCP85 Mean 1.6 5 11.3 +, 0.58* 2.4s 6.6s 14.1s +, 0.61* -5.7t -1t 8.7s +, 0.68*
108.7 339.6 767.5 71.3 196 418.8 -58.5 -10.3 89.3

DE2 RCP26 Mean 6 6.4 7.1 +, 0 9.6s 9.6s 10.1s -, -0.01 -0.6t 1.9t 3.4t +, 0.04*
600 640 710 285.1 285.1 300 -5.5 17.5 31.4

DEA RCP85 Mean 0.7 2.4 6.4 +, 0.38* 0.6t 2.7s 7.4s +, 0.41* -1.1t 2.1t 8.7s +, 0.53*
52.7 180.8 482 22.2 100 274.1 -22.8 43.4 180

DEA RCP26 Mean 3.7 3.7 4.7 +, -0.01 4.6s 4s 5.4s +, -0.01 4.3s 4s 6.2s +, 0
555 555 705 170.4 148.1 200 104 96.8 150

DED RCP85 Mean 0.9 3 7.5 +, 0.43* 0.4t 3 8.4s +, 0.47* -1.4t 2.2t 9.8s +, 0.58*
63.5 211.8 529.4 12.9 97.1 271.9 -24.9 39.1 174.1

DED RCP26_Mean 4.6 4.8 5.4 +, -0.01 5.3s 5s 5.7s +, -0.01 3.2t 4.5t 6.1s +, 0.02
511.1 533.3 600 171.6 161.9 184.5 68.1 95.7 129.8

DEF RCP85 Mean 0.1 0.6 2 +, 0.17* 0.6s 1.8s 4.8s +, 0.31* 0.6s 2.6s 7.2s +, 0.41*
28.6 171.4 571.4 74 221.9 591.8 31.2 135.3 374.6

DEF RCP26 Mean 1.1 0.7 1.4 +, -0.01 2.5s 2.3s 3.6s +, 0 3.2s 2.1s 4.2s +, 0
1100 700 1400 308.2 283.6 443.8 400 262.5 525

Uncorrected BC-Eval BC-Hist
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Table 6.20: GCM-RCM projected changes to total JJA precipitation in German regions, im mm and and in percentage.
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DE2 RCP85 Mean -7.6 -15.6 -23.5 -, 0.05* 11s 3.5s -3.5s -, 0.04* 3.8s -2.1s -7.5s -, 0.02
-2.7 -5.6 -8.4 4.2 1.3 -1.3 1.6 -0.9 -3.1

DE2 RCP26 Mean -102.1 -103.1 -97.7 +, 0 -37s -37.6s -31.7s +, 0 -81s -83.5s -75.7s +, 0
-33 -33.3 -31.6 -14.2 -14.4 -12.1 -27.5 -28.3 -25.7

DEA RCP85 Mean -5.5 -9.9 -21.7 -, 0.03 30.6s 25.4s 12.8s -, 0.05* 9.1s 6s -3.3s -, 0.01
-2.2 -4 -8.7 14.9 12.4 6.2 4.3 2.8 -1.6

DEA RCP26 Mean -62 -59.2 -64.3 +, -0.01 9.7s 12.3s 7.3s +, -0.01 -48.6s -47s -47.9s +, -0.01
-21 -20 -21.8 4.7 6 3.6 -19 -18.4 -18.7

DED RCP85 Mean -7.2 -14.8 -14.5 -, 0 -3.6s -9.7s -9.7s -, 0 16s 9.9s 12.7s -, -0.01
-2.7 -5.5 -5.4 -1.6 -4.4 -4.4 8.3 5.2 6.6

DED RCP26 Mean -111.3 -118.1 -113.2 +, -0.01 -24.8s -30.2s -26.5s +, -0.01 -58.6s -65.4s -57.5s +, -0.01
-31.1 -33 -31.6 -11.4 -13.8 -12.1 -24 -26.8 -23.5

DEF RCP85 Mean 6.4 3 -8.2 -, 0.02 38.7s 34.3s 23.6s -, 0.03* 28.4s 21.2s 13.4s -, 0.01
2.6 1.2 -3.3 18.8 16.7 11.5 13.4 10 6.3

DEF RCP26 Mean -58.2 -51.6 -48.3 +, 0 14s 20.1s 23.3s +, 0 -49.6s -49.7s -42.1s +, 0
-18.9 -16.8 -15.7 6.8 9.8 11.3 -19.3 -19.3 -16.4

Uncorrected BC-Eval BC-Hist
Raw changes are in white rows and percentage in gray. All changes are relative to the respective RR. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected change.
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Figure 6.13: Regional ensemble BC GCM-RCM historical and projected changes to
the number of days above 31◦C in JJA, for I. South (DE2), II. West (DEA), III. East
(DED), and IV. North (DEF) Germany until the end of the century using different
calibration for the bias correction (BC-Eval and BC-Hist). (A) shows the range
of simulations under RCP8.5 and RCP2.6. (B) shows changes in these climate
variables relative to the respective past RR.
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Figure 6.14: Regional ensemble BC GCM-RCM historical and projected changes to
total JJA precipitation (mm), for I. South (DE2), II. West (DEA), III. East (DED), and
IV. North (DEF) Germany until the end of the century using different calibration for
the bias correction (BC-Eval and BC-Hist). (A) shows the range of simulations under
RCP8.5 and RCP2.6. (B) shows changes in these climate variables relative to the
respective past RR.
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6.3.4.3 Summary of significant differences between ensemble

projections

A summary of when ensemble mean BC projections are significantly

different to uncorrected projections is shown in Table 6.21. This shows the

results of a Student’s t-test, where the difference between the means of two

samples is tested. After BC, most projections are significantly different to

their uncorrected projection counterparts, indicative of the shifts made after

adjustment.

Table 6.21: Summary of significant differences, with respect to uncorrected
projections (RCP8.5 and 2.6).

BC-Eval BC-Eval RCP2.6 BC-Hist BC-Hist RCP2.6

Region Variable
2011-
2040

2041-
2070

2070-
2100

2011-
2040

2041-
2070

2071-
2100

2011-
2040

2041-
2070

2071-
2100

2011-
2040

2041-
2070

2071-
2100

Tmax
Tmin
Precip
Hot.Days

UK

JJA.Precip
Tmax
Tmin
Precip
Hot.Days

Germany

JJA.Precip
Tmax
Tmin
Precip
Hot.Days

DE2

JJA.Precip
Tmax
Tmin
Precip
Hot.Days

DEA

JJA.Precip
Tmax
Tmin
Precip
Hot.Days

DED

JJA.Precip
Tmax
Tmin
Precip
Hot.Days

DEF

JJA.Precip

A shaded box indicates a significant difference between uncorrected and BC projections
based on a t-test (p<0.05).
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In the UK, where very few hot days are found before and after BC, this

index is mostly zero hence its similarity to the respective RR. For Germany,

as can be observed in Fig. 6.3, ensemble means of BC-Eval, BC-Hist and

uncorrected projections are very close to each other, and hence they are not

found to be significantly different across all 30-year intervals for BC-Hist, and

for the last 30-year period for BC-Eval.

At the regional level, a handful of temperature and precipitation

simulations are found to be not significantly different, for instance BC-Eval

JJA precipitation for both scenarios in DE2, DEA, and DEF (only RCP8.5).

The closeness of ensemble mean JJA precipitation across raw and BC

projections can also be observed in Fig. 6.14. For DE2, BC-Eval DE2

annual precipitation (both scenarios) and most of BC-Hist RCP2.6

simulations for other variables, apart from the hot days are also ot

significantly different to their uncorrected projections. The mean of BC-Eval

and BC-Hist Tmin in DED and DEF, respectively, is also found to be not

significant to raw projections across early- and mid-century intervals.

What this indicates is that a large majority of simulations do change and

shift after BC. Based on these results, it is argued that when uncorrected

projections capture past E-OBS observations of climate fairly well, BC-Eval

and BC-Hist simulations are quite close to each other and to the raw

projections, resulting in only small modifications after BC. What does this

indicate, in terms of GCM and RCM error? In the discussion, these results

are reviewed and presented in several cases.

6.4 Discussion

In this section, the results from the chapter are summarized and put into

context with the research questions at the beginning of the chapter, which

focus on the analyzing the projected changes to temperature and
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precipitation from the chosen GCM-RCMs, and how BC affects these

projected changes. The following discussion also aims to connect the

results to the debate on the appropriate use of BC for the future. How useful

are the different calibration approaches in processing climate model output

for future impact projections?

6.4.1 Summary of projected changes

In the results of the analysis of downscaled climate projections from

EURO-CORDEX, the following results are found, in the context of the first

two research questions posed at the beginning of the chapter:

• Projections of both Tmax and Tmin from EURO-CORDEX

GCM-RCMs show annual warming trends over the UK, Germany, and

the four German regions examined in the study. (RQ 1)

• Depending on the future emission scenario, individual GCM-RCM

pairs project different magnitudes of warming, with uncorrected future

temperature projections from RCA-HadGEM typically projecting the

largest changes in temperature.

• In terms of total annual precipitation, uncorrected projections,

approximately half of the GCM-RCMs show increasing trend over the

UK and Germany, albeit with generally small R2 values. The ensemble

mean over both countries and all four German regions also show

significant increases under RCP8.5. The ensemble mean projections

of total annual precipitation under RCP2.6 did not show any significant

trends for the UK, Germany, or any of the German regions.

• The number of days above 31◦C are shown to have significant

increasing trends. Warm days are projected to increase over Germany

by around 6.6 (4.2) days under the RCP8.5 (RCP2.6) scenario in the

uncorrected projections. While the UK projections also show
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significant increases in the number of hot days, the increase in the

number of days over the entire UK is low, under 1-2 days per summer.

In German regions, South Germany (DE2) is projected to have 11

more hot days per summer by the end of the century based on

uncorrected RCP8.5 projections. RCP2.6 also projects more hot days,

but these are typically lower than RCP8.5 projections, and there are

no significant increasing linear trends observed.

• Summer precipitation totals are projected to decrease in the UK and

Germany, but ensemble projected changes are small (30mm, RCP8.5

UK) and in Germany (20mm, RCP8.5 Germany). Projected decreases

under RCP2.6 are greater than the RCP8.5 projections (70mm UK,

85mm Germany), but did not show any significant trends. Similar

trends are observed for regional Germany, where projected decreases

in JJA precipitation are greater when forced by RCP2.6.

• The ’evolution’ of temperature projections forced by the high-emission

scenario RCP8.5 are distinct from the lower RCP2.6 scenario:

typically projected temperature changes under RCP8.5 start out low

but continuously climb until the end of the century. In contrast,

projected temperatures under RCP2.6 start out high do not increase

further by the mid- and late-century. (RQ2)

• For precipitation, the divergence of precipitation projections between

the two different scenarios is less distinct compared to temperature, but

projected changes under RCP2.6 with RCA-HadGEM and RCA-MPI,

the GCM-RCMs available for the study, are less than their projections

forced by RCP8.5 in all study regions. (RQ2)

The effect of BC on these projected changes in temperature, precipitation,

and seasonal summer climate – the foci of research questions 3 and 4 – are

discussed in the following section, along with how they can be used in impact

assessment (RQ5).



246 CHAPTER 6. PROJECTIONS OF FUTURE CLIMATE

6.4.2 Analyzing the effects of BC on projections

6.4.2.1 ’Practical’ BC for use in impact assessment

The results of the chapter show that, as expected, the use of BC shifts

the beginning of the early century projections closer to the mean of the past

BC evaluation simulations (for BC-Eval) and past BC historical simulations

(for BC-Hist), which are more similar to observations in their mean and

distribution than uncorrected past simulations. The results shown in this

chapter are evidence as to why the use of BC is seen as a needed practice

in impact assessment, particularly in impact studies – because of the large

biases in uncorrected historical projections that are carried over to future

climate projections.

A particular example is for Tmax, which is a critical climate variable for

wheat, because of its sensitivity to heat stress. In uncorrected projections,

while changes of over 2◦C are projected, the mean of uncorrected future

projections is shown to be below the mean of observations in the UK and

Germany (Figs. 6.2-I and 6.3-I). It is shown in the results of this chaper how

the use of BC methods applied to future projections, particularly for

temperatures, shifts simulations to a plausible range. This shift is important

for crop yield projections, as realistic climate change projections are needed

for developing appropriate and effective adaptation strategies and better

targeting global emissions reduction goals (Ramirez-Villegas et al., 2013).

Therefore, this large temperature shift/jump after BC is particularly

significant for the crop models chosen for the study. The PCM

CERES-Wheat/DSSAT used in the study requires daily temperature input,

and the SCCM depends on the hot-day index which is calculated from daily

Tmax. Because yield simulations are sensitive to precipitation and

temperature biases, impact assessments need climate input data at high

spatial and temporal resolutions with minimal biases. Without BC, it has
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been shown that large biases in yields are due to biases in rainfall during

the growing season inherited from GCMs (Macadam et al., 2016). When BC

is applied, the largest positive yield biases are reduced because the

underlying biases in growing season rainfall are reduced (Macadam et al.,

2016). Even when downscaled, the biases from climate models hamper the

direct application of RCM output in impact studies (Casanueva et al., 2016).

There are thus several arguments in favor of BC: the design of BC is to

bridge the gap between the the information provided by climate models and

data needs to make quantitative climate impact projections (Hempel et al.,

2013). In addition to being a common method in climate change impact

studies (Cannon et al., 2015), it has been reported in numerous studies that

some form of correction must be applied to climate projections before their

use in climate change impact assessment (Iizumi et al., 2017, Hawkins et al.,

2013b, Piani et al., 2010). For these reasons, and as shown by the results, it

is argued that BC, despite criticisms, assumptions and issues, as previously

discussed (See Section 2.4.2.1 and Chapter 5 discussion), serves a practical

purpose in impact assessment; how these biases affect yield projections is

examined in the subsequent chapter.

6.4.2.2 Bias correction and the climate change signal

The results of this chapter also address the third research question for

the chapter, which is how BC affects climate projections. Several changes

to the projected climate changes in temperature and precipitation can be

observed after BC. Most projections are significantly different to their

uncorrected projections (See Table 6.21), and this affects their projected

changes. For example, the ensemble projected temperature change relative

to the respective RR (past BC evaluation simulations for BC-Eval and past

BC historical simulations for BC-Hist) is smaller than the uncorrected

projected temperature change in the UK, Germany, and all four German
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regions. There are some exceptions, for example the RCP8.5 BC-Hist

ensemble Tmax mean for DEF. For precipitation, projected annual changes

to precipitation typically increase after correction for the RCP8.5 scenario.

In terms of the average annual Tmax and Tmin and precipitation totals,

most RCP8.5 trends remain significant, and therefore robust, even after BC

in all the study regions. Significant warming is projected for all regions until

the end of the century before and after BC. Projections forced by RCP2.6

remain non-significant for all GCM-RCM simulations of Tmax and Tmin in

the UK and Germany. However, there are a small number of changes where

after BC, trends become insignificant, although most changes are to trends

with relatively low R2 values to begin with:

• BC-Hist Tmin, RCP2.6 RCA-MPI, Germany

• BC-Eval and BC-Hist Tmin, RCP2.6 ensemble mean, DE2

• BC-Hist Tmin, RCP2.6 ensemble mean, DEA

• BC-Eval and BC-Hist Tmin, RCP2.6 ensemble mean, DED

• BC-Hist Tmin, RCP2.6 ensemble mean, DEF

• BC-Eval and BC-Hist total annual precipitation, RCP8.5 RACMO-ECEARTH,

Germany

• BC-Hist hot days, RCP2.6 RCA-HadGEM, UK

• BC-Hist hot days, RCP2.6 ensemble mean, UK

• BC-Hist JJA rain, RCP8.5 RCA-IPSL, Germany

• BC-Hist JJA rain, RCP8.5 ensemble mean, Germany

• BC-Hist JJA rain, RCP8.5 ensemble mean, DE2

There are also a number of simulations with linear trends that become

significant after correction, also with small R2 values:

• BC-Eval and BC-Hist RCP8.5 RCA-HadGEM, Germany

• BC-Hist hot days, RCP2.6 ensemble mean, DE2

• BC-Hist JJA rain, RCP8.5 ensemble mean, DEA

• BC-Hist JJA rain, RCP8.5 ensemble mean, DEF
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These changes in trends are also evidence of why there remains

significant scientific criticism and controversy in the use of BC. As previously

discussed in Chapter 5, the BC issue is still much debated by the scientific

community (Dosio, 2016). BC is heavily criticized because of its potential to

exaggerate high extremes while over-correcting low extremes, the potential

that BC methods may change the climate signal, and disrupt physical

consistency (Maraun et al., 2017, Maraun, 2016, Sippel et al., 2016,

Hempel et al., 2013, Maraun, 2013). BC approaches hinge on the

fundamental assumption that the GCM produces skillful input in the first

place, in order for the correction to be effective, as well as the assumption

that the GCM can produce a plausible representation of climate change

(Maraun, 2016). It has been argued that the preservation of the climate

change signal is crucial (Hempel et al., 2013); projected changes and

trends by climate models should be preserved in a way that the sensitivity of

the climate model is preserved and not affected by BC.

To contrast the criticism of BC, there are also studies that show that BC

can actually improve the climate change signal: in a study, Gobiet et al.

(2015) show that while quantile mapping does modify the climate change

signal, it also removes the intensity-dependent errors in the original GCM

output, potentially leading to an improved signal (Gobiet et al., 2015). Other

studies have also shown that quantile mapping improves the correspondence

with observed changes in some locations and degrades it in others (Maurer

and Pierce, 2014), but overall they find that the influence of BC does not

systematically degrade projected differences.

These findings contrast with studies that report that the transfer function

via quantile mapping can be considered as a ‘leap of faith’ that may lead to

a false certainty about the robustness of the adjusted projection (Grillakis

et al., 2017, p.890). The fact that bias adjustment affects the change of

mean climate is known: BC can reduce or increase temperature-related

climate change over Europe (Dosio, 2016). In the results of this chapter, it is
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shown that most increasing (warming) trends in temperature remain robust

after correction, and that precipitation trends are also mostly robust.

However, it is also shown that there are some changes in the significance

(but no significant changes in the direction) of the linear trend. However, the

projected change depends on the calibration setup (BC-Eval or BC-Hist)

used for the correction, which is discussed in the next section to address

the fourth research question of the chapter.

6.4.2.3 Comparing BC-Eval and BC-Hist: case examples

Two calibration methods are used in this chapter. This dual approach

was adopted because scientific opinions within different communities of

practice differ on how to calibrate the correction for future projections, given

that both GCMs and RCMs contribute to biases. It has been argued that the

use of evaluation simulations to assess RCM skill is useful as the choice of

downscaling RCM can be a source of uncertainty in climate projections (e.g.

Kotlarski et al., 2014, Hwang et al., 2014, Menut et al., 2013, Oettli et al.,

2011). In contrast, the more commonly used BC-Hist approach is argued to

be a useful and practical way of correcting the future GCM output with the

purpose of using them in impact assessments as it minimizes error from

both the GCM and RCM simultaneously (Pasten Zapata, 2017).

Despite these differences in design and purpose between BC-Eval and

BC-Hist, a comparison of their results is useful to explore how BC affects

future projections, and this approach is a relatively new way of

understanding climate model error that is introduced by the GCM-RCM

pairing, which is research question 5 in this chapter. Through the

comparison of temperature and precipitation simulations calibrated with

BC-Eval and BC-Hist, four different cases have been identified: (1) a

poorly-performing GCM (high bias in the past historical simulations) is

paired with a well-performing RCM (low bias in evaluation simulations); (2) a
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well-performing GCM (with low bias in the historical simulations) is paired

with a poorly-performing RCM; (3) both the GCM and RCM are skillful in

past historical and past evaluation simulations, or (4) both the GCM and

RCM perform poorly and have large biases. Similar cases have also been

identified in a hydrological context (Pasten Zapata, 2017).

Case 1: A biased GCM and with a well-performing RCM. In this

example of total annual precipitation over Germany from CCLM-MPI

simulations, past historical GCM-RCM simulations have a large positive

bias relative to observations (Fig. 6.15), while uncorrected evaluation

simulations are well-correlated to observations. The future GCM output thus

retains this bias, and BC-Eval projections calibrated to the BC evaluation

simulations are only shifted slightly compared to uncorrected projections.

BC-Hist simulations are further negatively shifted since the contributing

error is mostly from the driving GCM.

Figure 6.15: Total annual precipitation, past and projected, Germany, CCLM-MPI.

Case 2: A well-performing GCM and with a biased RCM. In this

example, the opposite to Case 1 is observed: the error from the contributing

RCM (RCA) is larger than from the GCM. Past historical simulations from

RCA-IPSL have smaller biases relative to observations compared to the

uncorrected past evaluation simulations, so after BC the projections shift

downward in order to compensate for this positive bias from the RCM.
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Figure 6.16: Annual average Tmin, UK, RCA-IPSL

Case 3: Both the GCM and RCM are skillful. Both the evaluation and

historical simulations perform relatively well compared to observations and

have minimal biases (Fig. 6.17). Therefore, after BC, BC-Eval and BC-

Hist total annual precipitation values change very little relative to uncorrected

projections in the time-series of projections of total annual precipitation.

Figure 6.17: Total annual precipitation, past and projected, UK, RACMO-ECEARTH

Case 4: Both the GCM and RCM are unskillful (have large biases).

In this case of annual Tmax, both the RACMO evaluation simulation and

the RACMO-ECEARTH past historical simulation have similar large negative

biases relative to observations. After BC, it can be observed that BC-Eval

and BC-Hist are both shifted positively relative to uncorrected projections.
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Figure 6.18: Annual average Tmax, UK, RACMO-ECEARTH

These four cases demonstrate that the choice of the GCM-RCM

combination, as well as the application of BC, are important contributors to

the uncertainty (range) of future climate projections. What these cases

show, rather than that one calibration approach (BC-Eval or BC-Hist) is

more suitable than the other, is that the choice of both the GCM and RCM –

and how they perform when used together over a particular domain – is

very significant to produce a plausible set of climate projections.

6.4.2.4 Using BC calibration as a method to understand combined

error of GCM-RCM choice

The approach used in this chapter of using BC-Eval and BC-Hist to

compare how they affect future climate projections is thus presented as an

option for evaluating how particular GCM-RCM pairs can influence the

projected changes in temperature and precipitation. This relatively novel

way of understanding the combined error of GCM-RCM error, along with the

error of the RCM alone (See Chapter 5 for RCM evaluation results) can

become a supplementary method in the process of selection of climate

models for a study. In addition, other methods are recommended for this

purpose and they are outlined in the following discussion as reviewing and

ranking based on previous performances, and using ensembles.
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6.4.2.5 Reviewing previous climate model performances

GCM-RCMs are often reviewed and selected carefully through a review

of their performances in previous studies. For instance, this study reviews

the chosen GCM-RCMs in Section 4.3.2.2, Chapter 4. The chosen RCMs

(CCLM, RACMO, RCA) generally had acceptable performances, but noted

cool biases for Tmax and wet biases over Europe (Kotlarski et al., 2014).

Among the chosen GCMs, MPI, CC, and HadGEM were typically noted for

their better performances compared to other GCMs in CMIP5 used for

EURO-CORDEX based on a Model Performance Index score (Jury et al.,

2015). In contrast, the lower resolution IPSL model has been reviewed

poorly for its simulation of precipitation and was classified as containing

“biases" in a key GCM evaluation study (McSweeney et al., 2015).

EC-ECEARTH was found to have “significant biases" in the same study,

while CC, MPI, and HadGEM had satisfactory performances for their

simulation of temperature and precipitation cycles, storm tracks, and

circulation over Europe (McSweeney et al., 2015). EC-EARTH was found to

perform well for dynamic variables but less favorably for surface temperature

(Hazeleger et al., 2010), and this is reflected in the Case 4 example (Fig.

6.18) in this study where past RACMO-ECEARTH simulations are poorly

related to past E-OBS over the UK: the cool biases of RACMO for Tmax are

combined with EC-EARTH’s challenges in simulating surface temperatures

and thus uncorrected projections also contain a significant cool bias.

Therefore, the results shown in this chapter which use two different

calibration reference simulations (past BC-Eval or past BC-Hist) means that

it is possible to investigate the effect of RCM-only and joint GCM-RCM error,

and by using the case examples as indicative demonstrations of the error

introduced by the pairing, this information can be used to minimize biases in

the future. This further emphasizes that impact assessments should also

perform careful selection of the climate models and considering which



6.4. DISCUSSION 255

variables are to be simulated. Given the large number of simulations

available, the added complexity and uncertainty of BC (choice of method,

and considering its criticism), the complexity of impact models themselves,

impact modelers are given great challenges. It has thus been reported that

the [climate change] practitioner’s dilemma is no longer the lack of

down-scaled projections; it is how to choose an appropriate dataset, assess

its credibility, and use it wisely (Ekström et al., 2015, Barsugli et al., 2013).

These challenges are contextualized with the demands of using climate

model output in impact studies in the next section.

6.4.2.6 Implications for impact studies: ensembles

In addition to a review of previous performances, some studies use a

ranking approach to assess and select a subset climate models from of the

large number of available simulations (e.g. Jury et al., 2015, McSweeney

et al., 2015) to create a climate ensemble; it is also possible to start with an

ensemble and further subset the best-performing members from the group.

However, by reducing the model ensemble one also reduces the information

about the uncertainty in the projections and the ensembles (Wilcke and

Bärring, 2016).

It is argued that the reduction of ensembles to only those that have

minimal biases or other measures of ideal performance comes into conflict

with the motivation of using multiple models in climate change research to

cover and characterize different sources of uncertainties (e.g. Yip et al.,

2011, Wilby and Dessai, 2010, Hawkins and Sutton, 2009). To further

support this argument, while the objective of multi-model ensembles is often

to narrow the range of uncertainty, it has been reported that this

consensus-seeking approach is too limited, and that exploring the

differences between models (e.g. climate, or impact models) is in itself a

valuable approach (Knutti and Sedláček, 2012, Challinor et al., 2014). The
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criteria for selection of a GCM or RCM is also very context-dependent: the

’one-model-one vote’ approach is also flawed as all projections should be

considered to have a non-negligible likelihood of occurring (McSweeney

et al., 2015), while in the real world the choice of climate model may be

dependent solely on the project partners (Wilcke and Bärring, 2016).

However, to create and utilize a very large ensemble of climate models

for projecting future climate change and its impacts (here, in the context of

crop modeling) is also problematic. The use of very large ensembles is

severely limited by the real-world constraints of time, limited computing

resources, and incomplete GCM-RCM combination simulations (Wilcke and

Bärring, 2016). For the latter reason, for example, in this study only two

chosen GCM-RCMs from the r1i1p1 ensemble were available for RCP2.6 at

the time of analysis. Many impact modelers may have problems in handling

GCM-RCM ensembles that are ’too big’ (Wilcke and Bärring, 2016, p.191),

making the research project not feasible.

In addition, the time and resource constraints of using large ensembles

will be faced with other real-world issues of providing projections in a timely

manner. There is great motivation on the part of decision makers, in both

the public and private sectors, to acquire and understand information on

climate change that can inform their decisions (Lemos and Rood, 2010).

Thus, there is also great demand on climate modelers to synthesize climate

and crop modeling information quickly and efficiently: a recent example of

this is the anticipated report on the impacts of half a degree of warming

following the 2015 Paris Agreement: the main proponents of the report due

in 2018 ask: "Can such research be carried out in time with a high enough

level of reliability to properly inform such a momentous policy decision?"

(Mitchell et al., 2016, p.736).
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The complexity of the discourse surrounding BC makes the use of

climate projections for impact projections far from straightforward. While BC

has obvious benefits in making climate projections more directly usable, it is

argued that its limitations also hinder and limit the direct application and use

of climate projections, even after their correction. Therefore, while recent

developments show promise in making BC overcome its main challenges,

and as BC methods become more sophisticated and consider

trend-preserving techniques (e.g. Grillakis et al., 2017, Sippel et al., 2016,

Hempel et al., 2013), it remains that BC methods should be applied with

caution and consideration of the context of their use, and that they are a

stop-gap measure to the need to improve underlying climate model

performances.

6.5 Conclusion

In this chapter, it was investigated how temperatures, precipitation, and

summer climate indices relevant for crop growth are projected to change

under different future emission scenarios. It has been shown that future

projections of temperature show significant warming in both Tmax and Tmin

over the UK and Germany under both RCP8.5 and 2.6. Projections also

show some increases in total annual precipitation, unclear trends in JJA

precipitation, and increases in the number of days where heat stress could

occur for heat-sensitive crops like wheat.

It is also shown that errors from both GCMs and RCMs propagate into

future climate projections, and that the two calibration approaches to BC

(quantile-quantile mapping) are able to demonstrate how the combination of

GCM and RCM can affect the shift in projections and projected climate

changes after correction. The comparative results in this chapter present a

relatively new way of understanding how the calibration of the bias

correction (on evaluation or historical simulations) can be used to
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understand how GCM-RCM pairings can also affect future climate change

projections.

While BC continues to be used as a standard step in impact

assessment, there is ongoing criticism of the scientific basis for BC that

come into conflict with the demands of rapid impact assessments, alongside

real-world constraints. Based on the results of this chapter and the scientific

work around BC, it is concluded that it is crucial that climate change

projections and the impact assessments that rely on them must account for

biases from both the climate models themselves, as well as the methods

used to make projections more credible.



Chapter 7

Multi-method comparison of the

projected impacts of climate

change on yield

7.1 Introduction

In this chapter, projections of future climate from global and regional

climate models (GCM-RCMs) are used in two distinct methods of simulating

crop yield – a process-based crop model (PCM) and statistical crop-climate

models (SCCMs) – in order to address two key research objectives. The

first objective is to quantify how increasing temperatures and changing

rainfall due to climate change will affect wheat production in the UK and

Germany. The intended outcome of the first objective is to add to the

existing body of knowledge on the impacts of climate change on wheat

yields. The second objective is to provide a characterization of how yield

projections are affected by the choices of GCMs and downscaling RCMs,

bias correction, emission scenarios, and impact model methods. This

characterization of uncertainty – a key concept discussed throughout the

thesis – is achieved using an uncertainty partitioning approach.

259
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7.1.1 Comparing the methods of crop models

Numerous scientific studies report that wheat yields at a global and

European scale are generally expected to be negatively affected by climate

change and variability, due to sensitivity to high temperatures, and

potentially increased occurrence of heat stress and drought (Trnka et al.,

2015, Asseng et al., 2014, Porter et al., 2014, Olesen et al., 2011, Trnka

et al., 2011, Porter and Semenov, 2005). The additional adverse effects of

excess water are also projected to potentially reduce wheat yields in the

future (Zampieri et al., 2017). It has been argued that some of these

adverse effects can be mediated by adaptation and genetic breeding

(Moore and Lobell, 2014, Semenov et al., 2014, Reidsma et al., 2009).

Many of these findings are dependent on the crop models, which are

useful tools for adaptation (Chenu et al., 2017). Crop models have decades

of development history and have been used widely around the world to

advance knowledge on crop interactions with genetics, the environment,

and management (the G × E × M pillars of agronomy) for a variety of

purposes (Chenu et al., 2017). However, many crop modeling studies rely

on the results of a single chosen crop model and/or method, which can be

either process-based or statistical in its approach (See Chapter 2 for an

extensive discussion on the differences between approaches).

In light of the need to better characterize crop modeling uncertainty,

there are large coordinated scientific efforts to generate impact projections

from multi-model ensembles. Multi-model ensembles (MMEs) are able to

give a significant contribution to the characterization of uncertainty and are

increasingly used in climate impact assessments (Challinor et al., 2013).

Many comparisons are under the umbrella of the Inter-Sectoral Impact

Model Intercomparison Project (ISI-MIP, Warszawski et al., 2014) of which

the Agricultural Model Intercomparison and Improvement Project (AgMIP,

Rosenzweig et al., 2013) is part. Results from a 30-member crop model
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comparison from AgMIP estimate that global wheat production will fall by

6% for each degree of further temperature increase, in addition to becoming

more variable (Asseng et al., 2014), with more recent studies investigating

the differences in agricultural impacts from 1.5◦ and 2◦C warming, in light of

the Paris Agreement (Schleussner et al., 2018, Ruane et al., 2018, 2017).

MMEs are also useful in exploring the differences between individual

climate models, for instance the Coupled Model Intercomparison Project

(CMIP6, Eyring et al., 2016).

Despite the usefulness of MMEs to characterize uncertainty (in this

case, the range of possible future yield outcomes), reducing uncertainty is

still dependent on the continued improvement of crop models in climate

change impact assessments. Improving the crop models can improve the

accuracy of simulations and reduce the number of models needed in a

MME to a more practical number for impact studies (Maiorano et al., 2017).

However, it has been argued in this study (e.g. Chapter 2, 3) that MMEs and

communities of practice like AgMIP are largely focused on PCMs, and that

PCM-only MMEs and the community of practice surrounding MIPs miss the

role and function of statistical approaches in understanding and comparing

projected climate change impacts.

Reasons for this exclusion are that statistical approaches have been

long criticized as they are often thought to be lacking in complexity (e.g.

Semenov et al., 2012). Evidence exists, however, that SCCMs could be

useful for understanding impacts and adaptation where sufficient data is

present (e.g. Ray et al., 2015, Iizumi et al., 2013, Hawkins et al., 2013a,

Lobell and Burke, 2010). Multi-method comparisons between PCMs and

SCCMs, also discussed in Chapter 2, are seen as a way to better elucidate

the differences between crop modeling methods. In spite of this valuable

comparison, multi-method crop model studies are at a relatively early stage

(Moore et al., 2017, Watson et al., 2015), so this study aims to contribute to

that field.
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A review of the literature shows that crop model studies fall into one of

two ‘camps’, PCMs or SCCMs (Lobell and Asseng, 2017, p.1) – in this work

they are referred to as ‘communities of practice’ (See Chapter 1). Based on

the review of climate and impact modeling studies that have informed this

thesis, it is argued that differences between the practices of these crop

modeling communities have led to relatively few comparisons. It is also

argued that there is a disciplinary gap between the climate modeling and

the impact modeling communities of practice, leading to opposing views on

what may seem like straightforward and useful processes. For example,

downscaling and bias correction – both common methods in the impact

assessment process – are highly debated and criticized within climate

modeling studies (e.g. the added value debate, and the practice of bias

correction (Maraun et al., 2017, Maraun, 2016), see Chapters 4 and 6).

This gap is a reason why the results of key multi-method comparative

studies are interesting: despite major methodological differences, initial

comparative studies have found no major systematic differences in the

projected impacts of major crops to warming from either PCMs or SCCMs,

apart from the issue of how the CO2 effect is modeled (Lobell and Asseng,

2017, Liu et al., 2016). Other factors such as uncertainties in climate data

and differences in calibration also contribute to the observed differences

between the respective yield projections of different methods (Watson et al.,

2015). In light of this scientific discourse, this chapter aims to contribute to

this emerging area of study of crop model method comparison, and to

support robust crop impact assessment by using methods to decompose

and quantify uncertainty.

7.1.1.1 Uncertainty decomposition in impact assessments

The concept and practice of partitioning uncertainty is used often in

climate projections, and has also been used in crop impact studies. In
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climate studies, uncertainty partitioning (also termed uncertainty

decomposition) is the method of determining the fraction of uncertainty

caused by three main identified sources of uncertainty in climate

projections: climate models, future emission scenario, and natural or

internal variability (Yip et al., 2011, Hawkins and Sutton, 2011, 2009), with

other statistical analysis of uncertainty completed with Bayesian methods

(e.g. Northrop and Chandler, 2014). In a recent climate projections study,

the use of different bias correction methods and forcing data sets was found

to be a significant contributor total uncertainty, potentially more than

different GCMs and RCPs (Iizumi et al., 2017).

Uncertainty partitioning using analysis of variance (ANOVA) statistical

tests is also a well-practiced method in hydrological impact studies, which,

similar to agricultural impact studies, also follow the impact chain from

RCP-driven GCM to impact model (e.g. Hattermann et al., 2018, Vetter

et al., 2017, Bosshard et al., 2013). In an agricultural impact assessment

study for wheat in China (Vermeulen et al., 2013), uncertainty was

partitioned into climate models, crop models, and natural variability. Their

contribution to uncertainty changed over time, but climate model uncertainty

was larger than that of the crop model (Vermeulen et al., 2013). In another

study that investigated wheat projections in India, uncertainty

decomposition methods found that crop model uncertainty dominates the

fractional uncertainty in yield projections (Koehler et al., 2013). This was

largely due to how temperature-driven process were represented, with

uncertainty from these crop developmental processes larger than climate

model uncertainty. Bias correction was not found to be a major contributing

factor to uncertainty in their study (Koehler et al., 2013).

Given the relatively recent focus on multi-methods and re-evaluating the

purpose and application of bias correction, there are opportunities to

contribute knowledge to this emerging field to study the ‘intermediate’ steps

in the actual impact assessment cascade (See Chapter 1, Fig. 1.4) and one
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of the identified research niches is to characterize how these steps between

climate and crop models affect yield projections. In particular, focusing on a

multi-method context was an identified research gap in the literature review.

7.1.2 Chapter approach and objectives

The approach of this chapter is to build upon the methods and results of

previous chapters, firstly: it is informed by the literature review to determine

research opportunities in the crop-climate discipline and a review of the

development and performance of GCMs, RCMs, and crop modeling

methods. Secondly, the yield projections of this chapter use two different

approaches to crop modeling that were comparatively evaluated and used

for a yield hindcast (Chapters 3 and 5). Lastly, the climate model output for

the PCM and SCCM are taken from the state-of-the-art European

Coordinated Regional Downscaling Experiment (EURO-CORDEX, Jacob

et al., 2014), and these were evaluated for the past (Chapters 4, 5) an

bias-corrected for the future with two calibration methods (See Chapter 6).

7.1.2.1 Chapter research questions

The objectives of the chapter are: (1) to generate wheat yield projections

until the end of the century through two different crop modeling methods,

and (2) to characterize their uncertainty as components of downscaled

global climate models (GCM-RCMs), bias correction (BC), and the crop

modeling method. Although emission scenario uncertainty is also taken into

consideration, the approach is limited by availability of data (See the

following Data and Methods section). The research questions are:

(1) How are wheat yields in the UK and Germany projected to be

affected by changes in temperature and precipitation?

(2) How much do the projections of PCMs and SCCMs differ,
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including between different emission scenarios?

(3) How do yield projections change after bias correction of

climate input?

(4) How much variance in yield projections is caused by the

choice of climate model, crop model method, and whether

climate model output is bias corrected?

(5) Based on the results of research question 4, are there

opportunities to reduce or better characterize the most

significant source of uncertainty identified for the study?

The aim of the chapter is to provide evidence to fill the gap in the need

for more comparative method studies while considering current issues and

debates in climate and crop modeling.

7.2 Data and methods

The data and methods of this chapter are largely dependent on the

previous’ chapters results. This section contains a a brief summary of the

climate and crop models used in previous chapters, followed by the

methods needed to address the chapter research questions. Figure 7.1

gives an overview of the chapter design.

7.2.1 Climate model output

Daily projections of future precipitation, and maximum and minimum

temperature from six GCM-RCM combinations were processed and

bias-corrected in Chapter 6, and the summer climate indices developed for

the statistical crop-climate model (SCCM) were also derived from these

projections. The six GCM-RCM combinations, detailed in Section 4.3.2 and

Table 4.1 in Chapter 4 are: CCLM-MPI, RACMO-ECEARTH, RCA-CC,
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RCA-HadGEM, RCA-IPSL, and RCA-MPI. Simulations forced by the

RCP8.5 and RCP2.6 emission scenarios (Moss et al., 2010, van Vuuren

et al., 2011) are taken from EURO-CORDEX (Jacob et al., 2014).

Figure 7.1: Overview of Chapter 7 research design.

Climate model output is processed to a regular lat-lon grid over the UK,

Germany, and four German states representing South, West, East, and

North Germany (NUTS codes DE2, DEA, DED, and DEF). Additional solar

radiation data for the PCM is also obtained from EURO-CORDEX under

RCP8.5 and RCP2.6. It is not corrected in order to focus on the effect of BC

on temperature and precipitation, and because BC of solar radiation can be

challenging given the difficulty in obtaining high-quality observational data

due to different equipment, their calibration and maintenance, and sparse

ground stations (Urraca et al., 2017b). However, emerging datasets and

satellite observations show promise in improving the evaluation of solar

radiation (Frank et al., 2018, Urraca et al., 2017b,a).
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7.2.1.1 Bias correction method

GCM-RCM outputs were bias-corrected in the Chapter 6 using

quantile-quantile mapping (QQ mapping), which included a reduction of

drizzle days and five-fold cross-validation step, based on the methods from

Maraun and Widmann (2015), Teutschbein and Seibert (2012) and Piani

et al. (2010). In Chapters 5 and 6, BC historical GCM-RCM and RCM-only

evaluation simulations (reanalysis-driven) from a past reference period

(1976-2005 and 1981-2010, respectively) were used to calibrate the

correction for future climate projections, namely called BC-Hist and

BC-Eval. By doing so, the effect on the range of simulations based on the

BC calibration was examined more carefully as a method of exploring the

error from a GCM-RCM pair.

In this chapter, the climate model output corrected by these two different

calibration approaches (BC-Eval and BC-Hist), along with uncorrected

climate model projections, all forced by two different emission scenarios

(RCP8.5 and 2.6) are used as input to the crop models.

7.2.2 Review of selected crop models and their calibration

7.2.2.1 Process-based and statistical crop model

The PCM selected for the study is CERES-Wheat/DSSAT (Jones et al.,

2003), which was evaluated in Chapter 3. Crop growth in CERES-Wheat is

based on radiation use efficiency (RUE) and crop thermal time/ growing

degree-days (GDD), which are computed based on the daily maximum and

minimum temperatures (Jones et al., 2003) (See Chapter 3). Similar to

previous chapters, crop parameters from Nain and Kersebaum (2007) are

used, and yield is only simulated with the PCM at the regional German level.

For other PCM parameters, fine-scale soil data (1 km gridded resolution) is

taken from a soil database (IRI et al., 2015). Based on a long-term field
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experiment in Germany (Merbach and Schulz, 2013), optimal levels of

mineral-based fertilizers are provided. These crop calibration parameters

are maintained for all regions to simplify the comparison of yield responses

to temperature and precipitation, and default parameters are maintained

whenever possible to facilitate comparison. The CO2 fertilization effect is

also not included in simulations, and this is acknowledged to be a limitation

of the study. It is not included here for the simplicity of comparing results

between the PCM (which can include the CO2 effect) and SCCMs.

Challenges in including the CO2 effect remains a significant limitation of

statistical approaches to crop modeling (Lobell and Asseng, 2017).

National and regional SCCMs have been developed and evaluated in

Chapter 3, based generally on the work of Hawkins et al. (2013a) and Lobell

and Burke (2010). The SCCMs for the chosen geographical study areas

(both country- and regional-level) are based on heat stress indices for

wheat, where TH is the number of days above 31◦C between June and

August (JJA), P̄S is total JJA precipitation. The coefficient of the time trend

is maintained as year 2010 from where future yield projections begin. The

significance of these climate indices varies per region. For Germany, DE2

and DED (South and East Germany) these are: TH , P̄S and TH × P̄S. The

UK and DEA only have TH and P̄S, while DEF only has P̄S as a predictor.

For more information on both the SCCMs and PCM, see Chapter 3.

7.2.2.2 Revisiting PCM and SCCM evaluation results

In this chapter, the robustness and credibility of the future yield

projections are dependent on the skillful performance of the crop model, for

example in their evaluation (See Chapter 3 and Challinor et al., 2017).

However, it was shown that the while the SCCM showed highly satisfactory

performance relative to observed regional yields, the PCM only showed

significant correlation for one region (DED). While the PCM simulated
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median yields for other regions within the range of the observed regional

yields in DEA and DEF, it was argued that the use of an input-intensive

field-based PCM at the regional scale brings errors due to input and

aggregation error (See Chapter 3).

There was some improvement to the PCM simulated yields when the

climate input used for CERES-Wheat was corrected with BC (Chapter 5),

but its limitations at the regional level still remain. However, the

multi-method comparison in this chapter is contigent on the feasibility of the

projections from the PCM, which has been previously evaluated and

validated for the regional level in Germany (e.g. Nain and Kersebaum,

2007), for where it is used in this chapter. Despite the unimpressive PCM

evaluation results in Chapter 3, the PCM is still used here in the chapter –

while recognizing its limitations – in order to provide a perspective on how

this common approach (e.g. field-scale models are used at larger scales

half the time (Challinor et al., 2017)) may add to the uncertainty of yield

projections.

7.2.3 Yield comparison: statistical methods

The projected yields from both crop modeling approaches are compared

to each other in 30-year intervals: 2011-2040, 2041-2070, and 2071-2100

(early, mid and late century, respectively) and to hindcasted yields (with the

respective method and past bias-corrected climate model output) as

baseline/reference yields from 1976-2005. In essence, this means that

BC-Hist projected yields are compared to past BC-Hist yield simulations,

BC-Eval projected yields to past BC-Eval yield simulations, respective to

each crop model method. Although observations are commonly used as a

baseline in impact studies (e.g. Hattermann et al., 2018, Soltani et al.,

2016), this comparison allows for an better account of climate model biases.
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How yields compare using uncorrected and BC climate projections (BC-

Eval and BC-Hist) is also explored. The mean and variance (coefficient of

variation or CV, the standard deviation over the mean) of yields are used

to assess change relative to the hindcast reference period. Analysis also

includes using linear regression and the Student’s t-test to identify significant

trends and differences in mean relative to the baseline yield, respectively.

7.2.4 Uncertainty decomposition

7.2.4.1 Defining the sources of uncertainty

An uncertainty decomposition method is used to characterize and

partition uncertainty from different sources in the impact modeling cascade.

Following the framing of Ruiz-Ramos and Mínguez (2010), uncertainty in

yield projections is generally defined as coming from (1) climate models, (2)

crop models, and (3) the methods to link them, and this framework is

adopted for the study. This partitioning is used to define the cascade of

uncertainty in the impact projections (Fig. 7.2).

Figure 7.2: Research model of the cascade of uncertainty in yield projections.
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Following this framing, the uncertainty in yield projections in this chapter

is partitioned into three main effects, namely: (1) the climate model (GCM-

RCM) choice, (2) the crop modeling method (either PCM or SCCM), and (3)

the BC calibration, defined as using either (1) uncorrected, (2) BC-Eval, or (3)

BC-Hist climate projections. While considering scenario uncertainty would

also provide valuable insight into the analysis, because of the availability

of only two GCM-RCMs for the RCP2.6 emission scenario, uncertainty is

calculated separately for RCP8.5 and RCP2.6 to avoid imbalanced weighting

of the GCMs. In future work, an additional analysis of crop model parameters

would also provide a more thorough analysis of what components of the crop

modeling method contribute to uncertainty.

For the uncertainty decomposition, the research design has resulted in

48 projections of yield for each German region: 36 for RCP8.5 and 12 for

RCP2.6. This is broken down as follows: for RCP8.5, 6 GCM-RCMs × 3

types of correction calibration × 2 crop modeling methods = 36 future yield

projections; For RCP2.6, 2 GCM-RCMs × 3 types of correction calibration ×

2 crop modeling methods = 12 future yield projections.

7.2.4.2 ANOVA as uncertainty partitioning method

The uncertainty partitioning method is performed using an analysis of

variance (ANOVA) approach to quantify the identified sources of uncertainty

in the impact modeling cascade. ANOVA is useful to characterize and split

uncertainty into contributing sources and it additionally allows the

determination of significant variations in the impact chain (Hattermann

et al., 2018, Vetter et al., 2017). ANOVA is a form of statistical hypothesis

testing for more than two groups, where the variation between and among

groups is tested, where the null hypothesis is that all groups are simply

random samples of the same population (Vetter et al., 2017). A similar

ANOVA approach has been adopted in a climate model context (e.g. Yip
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et al., 2011), and in several hydrological impact studies (e.g. Hattermann

et al., 2018, Vetter et al., 2017, Bosshard et al., 2013).

Adapting the approach of the Hattermann et al. (2018) study, the total

sum of squares (SST) is used to express the total variation that can be

attributed to the various factors, identified in Fig. 7.2. SST is calculated as

deviations of single yield projections (Y ) from the grand mean of yield

projections (Ȳ ) (Equation 7.1), which is defined per 30-year future period. In

this work, due to the scenario availability limitation, the three factors used

for variance decomposition are defined as the GCM-RCMs (N=6), crop

model method (CM) (N=2) and BC calibration (BC) (N=3) for each RCP.

SST =

NGCM∑
i=1

NCM∑
i=1

NBC∑
i=1

(Yijk − Ȳ )2 (7.1)

Further first- and second-order interactions (e.g. between the

GCM-RCM and crop modeling method, GCM and BC) are also included in

the ANOVA, with the SST therefore being broken down into smaller sums of

squares (SS) (Equation 7.2). In essence, interaction effects in ANOVA

indicate that there may be a variable or effect that can influence the

relationship between an independent and dependent variable: in this case,

yield and the chosen effects. There is some debate on how to interpret main

effects when interactions are also significant, and these limitations of using

ANOVA are discussed in the next subsection.

SST = SSGCM + SSCM + SSBC + SSGCM×CM + SSGCM×BC + SSCM×BC+

SSGCM×CM×BC

(7.2)

To interpret ANOVA results, R software (aov) is used to calculate the

F-test value, which is used for determining the significance of any variation

in the levels (GCMs, crop model methods and BC calibration). In this study
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variance is analyzed over the three future 30-year periods to analyze if

uncertainty from these sources also changes over time. Ternary plots (R

ggtern (Hamilton, 2018)) are used to represent the fractional uncertainty

from each source, per scenario, similar to other studies (e.g. Hattermann

et al., 2018, Vetter et al., 2017, Bosshard et al., 2013) from which the

uncertainty approach is based.

7.2.4.3 Limitations to uncertainty analysis

There are limitations to the use of ANOVA as an approach to analyze

uncertainty. For example, due to the design of the study with a small

combination of GCM-RCMs, ANOVA is applied here in fixed factor mode. A

factor is fixed when the levels under study are the only ones of interest, and

the conclusions drawn from the analysis apply only to this specific setting

(Hattermann et al., 2018). The use of ANOVA in a climate model context

has also been previously criticized when it was used with an unequal

numbers of runs at each GCM-scenario combination (e.g. Yip et al., 2011

criticized by Northrop and Chandler, 2014). Additionally, the study’s limited

information at the country-level scale means that this uncertainty analysis is

only applied to the regional scale in Germany where PCM and SCCM crop

projections can be compared. In addition, while ANOVA has been a

valuable tool in agronomical studies, there has been some debate how it

should be reported (including interaction terms). The use (and misuse) of

ANOVA has led to a debate on statistical rigor in science journals (e.g.

McIntosh, 2015).

In light of these criticisms of ANOVA approaches, the yield projections

under the different RCPs are analyzed separately in this study to prevent

imbalanced weighting, although this prevents the analysis of scenario

uncertainty jointly with GCM-RCM, BC, and method interactions. To handle

interaction terms for the ANOVA in this study, although the focus is given to
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the main effects (GCM-RCM, BC, and Method), when the interaction term is

significant and has a large F-value, these results are also reported as

non-negligible. This is because when interaction terms are not considered,

the importance of individual uncertainty sources is potentially overestimated

(Bosshard et al., 2013). In order to perform a more thorough quantification

of interaction terms, multiple realizations of each impact modeling chain

combination with different realizations of GCMs, BC, and crop modeling

methods (Bosshard et al., 2013, Yip et al., 2011) are needed, which can be

done in future work, and therein also investigate the effect of natural

variability on uncertainty.

It is clear that in future studies, more available simulations with different

GCM-RCMs, and RCPs could make the analysis of uncertainty more

robust. However, despite these limitations, it is argued that the analysis of

uncertainty in this comparative and interdisciplinary context is relatively

novel in the field. Evidence from this analysis can be used to further

characterize uncertainty in the impact chain.

7.2.4.4 Objectives and limitations of the comparative approach

The research design of the study is to use a PCM

(DSSAT/CERES-Wheat, Jones et al., 2003, see Chapter 3 for a detailed

description of its modeled processes) and a climate index-based SCCM

(See Chapter 3 for its development and Hawkins et al., 2013a, Lobell and

Burke, 2010), existing regional crop calibration parameters for the PCM

(Nain and Kersebaum, 2007), and not including the effect of CO2, to be able

to feasibly compare SCCM and PCM results. While this design limits the

analysis of phenology, CO2 effect, among other non-climate factors, the

focus on temperature and precipitation gives insight as to how wheat yields

could potentially respond to these important influences.
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Additionally, focus is given to the effect of BC, which has been

well-discussed in previous chapters as a contentious step in the climate

modeling community, but generally accepted in impact analyses. It is crucial

here to re-iterate the focus of the research, which is to fin ‘value exploring

the differences’ (e.g. Challinor et al., 2014, p.78) not only between GCMs or

crop models, but between the crop modeling methods.

7.3 Results

In this section, the yield projections generated by different crop modeling

methods are reported and compared, giving focus to before and after using

BC climate model output and relative to the respective baseline yield

hindcast. The results of the partitioning of uncertainty are also reported.

Similar to the previous chapters, the ensemble results are shown here for

clarity, but additional information on the individual GCM-RCM-driven yield

projections is also provided in the results tables. Again, projected changes

are relative to the respective past raw, BC-Eval, BC-Hist simulations (SCCM

or PCM).

7.3.1 Crop yield projections: comparing the effect of crop

model and BC methods

7.3.1.1 National statistical yield projections

At the country level, it can be observed that future yields in the UK are

projected to increase relative to baseline yields, and that yields are fairly

constant until the end of the century (Fig. 7.4a). Ensemble projections show

that yields may increase for the UK under both RCP8.5 and RCP2.6 (R2=0.16

and 0.17, respectively). These gains are fairly small, approximately 1.4 ton

increases relative to the baseline yield (raw historical-driven yields) for the
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RCP8.5 ensemble mean for all three 30-year future periods (Table 7.1), with

larger gains projected under RCP2.6 (1.7 t/ha).

UK yield projections from individual GCM-RCMs also show increases

relative to the baseline, with these projected changes generally decreasing

after using BC-Hist and BC-Eval climate model output for the SCCM,

although projected ensemble mean yield increases are also approximately

1 t/ha: for example, gains under the RCP8.5 ensemble mean are 0.9 t/ha

(BC-Eval) and 1.4 t/ha (BC-Hist).

In contrast, large decreases in yield are projected for Germany under the

RCP8.5 scenario (R2=0.32) (Fig. 7.4b, Table 7.2). Raw RCA-MPI under

RCP2.6 also shows a significant negative trend, although the R2 is small

(R2=0.05) and the ensemble RCP2.6 scenario does not show significant

trends with raw climate model output. While the projected changes in yield

are all positive relative to their respective baseline yield, it can be observed

that these projected yield changes decrease across the three 30-year future

periods. For example, the projected changes in yield from raw simulations

from RCA-MPI show 1.9 t/ha increases relative to the RCA-MPI raw

historical yield baseline between 2011-2040.

By the mid-century (2041-2070), this decreases to 1.8 and then 1.3 t/ha

by the end of the century. This pattern of yield increases, followed by

decreasing yields in the mid- and late- century can generally be observed

across all yield projections from individual GCM-RCMs, under both

scenarios, and with different BC calibration methods for Germany (Table

7.2). Some significant yield decreases lower than the reference period are

projected for the last 30 years of the century by RCA-HadGEM.



7.3. RESULTS 277

In terms of variation, it can be observed that the CV – the extent of

variability with regard to the mean – is low for all ensembles of UK yield

projections for all BC calibration approaches, which means that yield

simulations are fairly close to each other for the UK (Fig. 7.3A). CV is

observed to increase for Germany – which means that yields deviate more

from the mean – for both future emission scenarios by the late century

(2071-2100) (Fig. 7.3B).

Although the results for the country-level in the UK are limited to the

statistical approach (due to lack of UK region yield data, including reported

calibration parameters), in the next section, yield projections from both the

SCCM and the PCM for the four German regions are reported.

Figure 7.3: Coefficient of variation for SCCM yield projections, (A) UK and (B)
Germany. Lines represent the 5-year simple moving average for the ensemble mean
of yield projections, under BC calibration approach (Raw, BC-Eval and BC-Hist), for
both the RCP8.5 and RCP2.6 scenario.
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Fig. 7.4a. UK. Fig. 7.4b. Germany.

Figure 7.4: Yield projections with the SCCM: Fig. 7.4a is for the UK and Fig. 7.4b is
for Germany. (A) uses uncorrected climate model output, (B) uses BC-Eval and (C)
uses BC-Hist using scenarios RCP8.5 and RCP2.6. Inset plot shows the spread of
simulations for early, mid, and late century intervals (30-year intervals). The SCCM
E-OBS hindcast is also shown as reference of crop model performance.
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Table 7.1: UK SCCM crop yield projections.
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CCLM-MPI 1.4 1.5 1.5 +, 0.11* 0.7t 0.8t 0.8t +, 0.13* 1.4 1.4t 1.5 +, 0.11*
20.3 21.1 23.6 9 10.3 11.1 20 20.8 22.5

RACMO-ECEARTH 1.3 1.4 1.4 +, 0.06* 0.9t 1t 1.1t +, 0.07* 1.3 1.3t 1.4 +, 0.06*
19.6 20.9 22.2 12.9 13.8 14.5 18.6 19.5 20.6

RCA-CC 1.3 1.2 1.2 -, 0 0.5t 0.5t 0.4t -, 0.01 1.2t 1.2 1.1t -, 0.01
18.9 18.2 17.3 6.9 6.4 5.9 17.8 17.4 16.5

RCA-HadGEM 1.3 1.4 1.4 +, 0.03 0.9t 1t 1.1t +, 0.03 1.3 1.3t 1.4 +, 0.03
20.6 20 21.6 12.9 13.5 14.4 19 19 19.8

RCA-IPSL 1.3 1.4 1.5 +, 0.07* 0.8t 0.9t 1t +, 0.07* 1.3 1.3t 1.4t +, 0.07*
20.8 21 21.8 11.4 12 13.1 18.9 19.4 20.4

RCA-MPI 1.4 1.5 1.6 +, 0.11* 0.7t 0.8t 0.9t +, 0.11* 1.3t 1.4t 1.5t +, 0.11*
20.2 23.5 23.4 9.5 10.9 12.1 19.1 21.3 21.6

RCP85_Mean 1.3 1.4 1.4 +, 0.16* 0.8t 0.8t 0.9t +, 0.17* 1.3 1.3t 1.4 +, 0.16*
20.1 21.5 21.6 10.4 11.2 11.9 18.6 19.8 20.2

RCA-HadGEM_RCP26 1.3 1.4 1.5 +, 0.11* 0.7t 0.8t 0.8t +, 0.13* 1.3 1.4 1.4t +, 0.11*
19.7 22 22.3 9.1 10.4 11.2 18.8 20.3 20.9

RCA-MPI_RCP26 1.8 1.8 1.9 +, 0.06* 0.9t 1t 1.1t +, 0.07* 1.4t 1.5t 1.6t +, 0.06*
26 28.3 28.2 12.9 13.7 14.5 20.9 22.2 22.7

RCP26_Mean 1.6 1.6 1.7 +, 0.17* 0.8t 0.9t 0.9t +, 0.19* 1.4t 1.4t 1.5t +, 0.16*
22.9 25.1 25.2 11 12.1 12.8 19.9 21.3 21.8

Uncorrected BC-Eval BC-Hist

Table 7.2: Germany SCCM crop yield projections.
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CCLM-MPI 2 2.1 2.1 +, 0.01 1.4t 1.4t 1.4t +, 0.01 1.9t 1.7t 1.3t -, 0.21*
33.5 33.1 35.1 20.3 21.4 21.4 29.9 28.5 21.4

RACMO-ECEARTH 2 1.9 1.9 -, 0.05* 1.7t 1.5t 1.3t -, 0.18* 2.1s 1.8t 1.4t -, 0.25*
31.8 30.2 30.4 25.2 22.5 19.3 34.5 31.9 23.3

RCA-CC 1.9 1.9 1.7 -, 0.1* 1.4t 1.3t 1.1t -, 0.18* 2s 2s 1.6t -, 0.31*
31.4 31.9 27.6 20.5 20 16.9 33.5 31.5 27.2

RCA-HadGEM 1.7 1.1 0.1 -, 0.22* 0.8t 0.1t -1.4t -, 0.22* 2.1s 1.5s 0.3s -, 0.27*
28.8 18 1.1 12.4 1.8 -20.5 34.8 24.6 4.9

RCA-IPSL 1.9 1.8 1.5 -, 0.04* 1.6t 1.2t 0.6t -, 0.12* 2.6s 2s 1.1t -, 0.21*
31.5 29.6 24.8 23.8 18.6 9 43.4 34.1 17.5

RCA-MPI 1.9 1.8 1.3 -, 0.16* 1.3t 1.1t 0.3t -, 0.23* 2s 1.7t 0.8t -, 0.27*
29.9 31.1 20.9 20.2 17 4.4 33.5 29 13.1

RCP85_Mean 1.9 1.8 1.4 -, 0.32* 1.3t 1.1t 0.5t -, 0.41* 2.1s 1.8 1.1t -, 0.53*
30.3 29.1 23.2 20 16.5 7.9 37.6 30 18

RCA-HadGEM_RCP26 1.8 1.8 1.8 +, 0.01 1.5t 1.5t 1.5t +, 0.01 2.2s 2s 1.6t -, 0.21*
28.2 30 29.4 22.4 23.4 22.9 36.1 33.7 26.2

RCA-MPI_RCP26 2.2 2.1 2 -, 0.05* 1.7t 1.6t 1.4t -, 0.18* 2.2 1.9t 1.5t -, 0.25*
34.5 33.8 32.8 26.4 23.8 20.4 36.2 31.7 25

RCP26_Mean 2 1.9 1.9 -, -0.01 1.5t 1.5t 1.4t -, 0.09* 2.2s 1.9 1.5t -, 0.34*
31.3 31.9 31.1 23.4 22.6 20.6 36.2 32.7 25.6

Uncorrected BC-Eval BC-Hist

Projected changes (t/ha) are in white rows and percentage in gray. All changes are relative
to the respective baseline yield hindcast. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected
change.
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7.3.2 Regional comparison of crop yield projections

In this section, key changes and results are highlighted per region to

answer the research questions: how do different methods project yield

changes? Does the BC method also affect the sign and/or magnitude of

projected changes?

7.3.2.1 Projected changes and trends in yield and its variability

(1) DE2, South Germany

Yield projections for this region show significant negative trends across

the three 30-year future periods when using the SCCM with GCM-RCM

output (Uncorrected, BC-Eval and BC-Hist) for RCP8.5: R2=0.45, 0.35 and

0.5, respectively (Fig. 7.6a, Table 7.3). Uncorrected and BC-Eval ensemble

yield projections under RCP2.6 show small but significant positive trends

(R2<0.06) while RCP2.6 BC-Hist yields show a negative trend (R2=0.19).

Among the GCM-RCMs, uncorrected RCA-HadGEM used for the SCCM

typically projects large negative yield changes, with a change of -2.9 t/ha

(relative to baseline yield) projected by the end of the century. RCA-MPI,

RCA-IPSL, and the RCP8.5 ensemble mean also project decreases in yield

that would bring mean yields lower than the reference period for all three BC

calibrations. Generally, it can be observed that very poor yields are

anticipated in the latter part of the century with RCP8.5.

For the PCM projections (Fig. 7.6b), although the trends in yields are

significant, they have small R2 values: for example, the RCP8.5 ensemble

mean using raw GCM-RCM output (R2=0.07). RCP8.5 BC-Eval or BC-Hist

do not show any significant trends. Ensemble RCP2.6 projections also

show small but significant positive linear trends (R2<0.06) for all BC

approaches (Table 7.4). The projected changes in yield from individual

GCM-RCMs are largely negative when raw GCM-RCM output is used,
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although these losses are quite small (under 1 t/ha). However, after BC,

most of these projected changes increase relative to the yield projections

made with raw GCM-RCM output. For example, after BC-Eval, yield

changes are mostly positive (although under 1 t/ha), apart from

RCA-HadGEM, which still projects yield losses of about 0.8 (0.1) t/ha

RCP8.5 (RCP2.6) from 2071-2100. In contrast, after BC-Hist,

RCA-HadGEM projects positive yield changes under both scenarios.

The t-test results show that most SCCM mean yield projections are

significantly different to the baseline, apart from RCP8.5 for the middle of

the century (2041-2070) for all BC (See Table 7.11 at the end of the

Results). Based on the projected changes and t-test results, unlike the

SCCM projections where yields steadily decrease, RCP8.5 ensemble PCM

yields tend to show small increases, with more variation in the mid-century.

This is reflected in the analysis of CV (Fig. 7.5 I), where PCM yields show

more even deviation relative to the mean. The CV for the SCCM yields, in

contrast, steadily grows towards more variation for RCP8.5.

Figure 7.5: Coefficient of variation for SCCM and PCM yield projections, German
regions (I-IV). Lines represent the 5-year simple moving average for the ensemble
mean of yield projections with a different BC calibration approach (Raw, BC-Eval
and BC-Hist), for both the RCP8.5 and RCP2.6 scenario.
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Fig. 7.6a. DE2 SCCM. Fig. 7.6b. DE2 PCM.

Figure 7.6: Yield projections for DE2 (South Germany): Fig. 7.6a shows the SCCM
projections and Fig. 7.6b shows the PCM projections. (A) uses uncorrected climate
model output, (B) uses BC-Eval and (C) uses BC-Hist. Inset plot shows spread of
simulations for early, mid, and late century (30-year intervals). The SCCM and PCM
E-OBS hindcasts are also shown as reference of crop model performance.
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Table 7.3: South Germany (DE2) SCCM crop yield projections.
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CCLM-MPI 0.9 1.1 1.4 +, 0.15* 0.4t 0.5t 0.6t +, 0.08* 1s 0.8t 0.3t -, 0.14*
18.4 18.6 23.3 6.6 8.4 9.8 16.3 14.4 5.9

RACMO-ECEARTH 0.9 0.9 0.8 -, 0 0.8t 0.8t 0.8 -, -0.01 1s 0.9 0.7t -, 0.05*
14.2 13.8 13.3 12.9 13.4 13 19.1 17.4 11.7

RCA-CC 1 1 0.8 -, 0.09* 0.7t 0.7t 0.8 -, -0.01 1.3s 1.2s 1.2s -, 0
17 18.4 13.2 12.3 11.6 12.3 22.8 20.3 20.7

RCA-HadGEM 0 -1 -2.9 -, 0.29* -0.5t -1.5s -3.2s -, 0.22* 1.5s 0.7s -1.3t -, 0.32*
0.8 -15.7 -46.3 -9.2 -24.5 -54.2 26.2 12.6 -26

RCA-IPSL 0.7 0 -1 -, 0.21* 0.6t -0.1t -1.3s -, 0.22* 2s 1.1s -0.4t -, 0.3*
10.9 0 -18.4 10.7 -2.1 -21.3 35.3 19.3 -6.4

RCA-MPI 0.7 0.4 -0.6 -, 0.22* 0.7 0.3t -0.6 -, 0.14* 1.1s 0.7s -0.4t -, 0.21*
12.3 6.6 -9.3 11.7 4.7 -9.3 19.6 12.1 -7.4

RCP85_Mean 0.7 0.4 -0.2 -, 0.45* 0.4t 0t -0.6s -, 0.35* 1.3s 0.9s 0s -, 0.5*
11.3 6.3 -4.1 6.4 0.8 -9.3 26.8 15.6 0.5

RCA-HadGEM_RCP26 -0.1 0.1 0.3 +, 0.15* 0.6s 0.7s 0.8s +, 0.08* 1.6s 1.4s 0.9s -, 0.14*
-1.3 1.4 5.5 9.9 11.8 12.5 29.4 25.4 17

RCA-MPI_RCP26 0.6 0.6 0.6 -, 0 1s 1.1s 1s -, -0.01 1.2s 1s 0.8s -, 0.05*
10.4 10.3 9.5 17.2 17.7 16.9 22.2 17.9 15.1

RCP26_Mean 0.3 0.4 0.5 +, 0.06* 0.7s 0.7s 0.8s +, 0.04* 1.4s 1.2s 0.9s -, 0.19*
4.6 5.8 7.5 11.1 12.3 12.3 25.8 21.6 16

Uncorrected BC-Eval BC-Hist

Table 7.4: South Germany (DE2) PCM crop yield projections
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CCLM-MPI -0.9 -0.7 -0.8 +, 0.02 0.1s 0.3s 0.1s +, -0.01 -0.8s -0.6s -0.5s +, 0
-10.6 -8 -9.1 0.8 3 1.2 -9.2 -8.1 -6.3

RACMO-ECEARTH -0.5 -0.2 -0.1 +, 0.01 0.2s 0.1s 0.4s +, -0.01 0.8s 0.4s 0.6s -, 0
-6.1 -2.3 -1.6 2 1.6 4.7 10.4 5.5 6.7

RCA-CC 0 0.2 0.2 +, 0.03 0.5s 0.7s 0.7s +, 0.01 0.2s 0.4s 0.7s +, 0.03*
-0.3 2.6 2.6 6.3 8.5 8.1 2 4.6 9.3

RCA-HadGEM -0.2 0.3 -0.2 +, -0.01 -0.8s -0.3t -0.8s +, -0.01 0s 0.6s 0.3s +, -0.01
-2.7 3.5 -2.4 -9.7 -3.3 -10 0.1 8 3.5

RCA-IPSL -0.1 0.1 0.5 +, 0.04* 0.2s 0.2s 0.5 +, 0.01 0.7s 0.6s 0.7s +, -0.01
-1.6 1.4 5.3 2.8 2.4 5.8 8.6 8.1 8.6

RCA-MPI -0.1 0 0 +, -0.01 0.6s 0.7s 0.5s -, -0.01 0.1s 0.1s 0 +, -0.01
-0.7 -0.3 -0.3 7 8.6 6.3 0.8 1.2 0.3

RCP85_Mean -0.3 -0.1 -0.1 +, 0.07* 0.1s 0.2s 0.2s +, 0.01 0.2s 0.3s 0.3s +, 0
-3.8 -0.6 -0.8 0.7 2.6 1.8 2.1 3 3.7

RCA-HadGEM_RCP26 -0.3 -0.4 0.2 +, 0.02 -0.6t -0.7t -0.1t +, 0 0.2s 0.2s 0.7s +, 0.01
-4.6 -4.1 3 -7.7 -8.6 -1.7 3 1.9 8.7

RCA-MPI_RCP26 -0.6 0 0 +, 0.04* 0s 0.7s 0.8s +, 0.05* -0.6 0.1s -0.1t +, 0.03
-8.6 0.6 0.2 0.3 8.4 9.2 -8.1 1.3 -1.3

RCP26_Mean -0.5 -0.2 0.1 +, 0.06* -0.4t -0.2 0.2s +, 0.04* -0.2t 0.1s 0.3s +, 0.05*
-6.6 -1.8 1.6 -5.5 -1.9 2 -2.6 1.6 3.7

Uncorrected BC-Eval BC-Hist

Projected changes (t/ha) are in white rows and percentage in gray. All changes are relative
to the respective baseline yield hindcast. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected
change.
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(2) DEA, West Germany

A comparison of yield projections shows that the spread of PCM yield

simulations after BC is larger than both the SCCM range and the raw PCM

yield simulation range (Figs 7.7a and 7.7b). This large contrast in variation

around the mean can also be observed in the CV of yields (Fig. 7.5 II).

In terms of linear trends, the RCP8.5 ensemble mean of SCCM

projected yields shows significant negative trends under all BC (Table 7.5).

This is in contrast to the SCCM yield projections with uncorrected

GCM-RCM output: only RCA-CC, RCA-HadGEM, RCA-MPI and the

ensemble mean have significant trends. Individual SCCM GCM-RCM yield

projections also all show significant negative trends, apart from BC-Eval

CCLM-MPI. PCM yield projections only show positive significant trends for

RCP2.6 yield projections, but BC-Eval PCM projections show negative

trends for RCA-MPI and the RCP8.5 mean (R2=0.17 and 0.04), and positive

trends for all BC-Eval RCP2.6 yield projections (Table 7.6). Under BC-Hist,

only RCA-HadGEM shows a significant negative (positive) trend with the

PCM under RCP8.5 (2.6) (both with R2=0.09).

In terms of changes, most GCM-RCMs used as input to the SCCM and

PCM project yield losses under RCP8.5. For the SCCM, this is shown as

’decreasing increases’ in yield while the PCM generally projects yield

changes lower than the baseline. For example, with the SCCM, CCLM-MPI

projects initial increases of 1.8 t/ha (0.9 and 1.6 for BC-Eval and BC-Hist)

which fall in the next two 30-year future periods. CCLM-MPI used with the

PCM also projects growing losses, but generally lower than the baseline

yields: -0.6, 0.2, and -0.8 t/ha (Uncorrected, BC-Eval and BC-Hist) by the

end of the century. Some large projected decreases relative to their

respective baseline are from BC-Eval RCA-MPI (between 4-5 t/ha losses),

and BC-Hist RCA-HadGEM (between 3-4 t/ha losses).
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Fig. 7.7a. DEA SCCM. Fig. 7.7b. DEA PCM.

Figure 7.7: Yield projections for DEA (West Germany): Fig. 7.7a shows the SCCM
projections and Fig. 7.7b shows the PCM projections. (A) uses uncorrected climate
model output, (B) uses BC-Eval and (C) uses BC-Hist. Inset plot shows spread of
simulations for early, mid, and late century (30-year intervals). The SCCM and PCM
E-OBS hindcasts are also shown as reference of crop model performance.
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Table 7.5: West Germany (DEA) SCCM crop yield projections.
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CCLM-MPI 1.8 1.9 1.8 +, 0 0.9t 1.1t 1.2t +, 0.1* 1.6t 1.5t 1.2t -, 0.12*
26.2 26.2 27.9 12.5 14.7 16.1 23.3 21.8 18.3

RACMO-ECEARTH 1.7 1.6 1.6 -, 0.02 1.5t 1.3t 1.2t -, 0.1* 1.9s 1.6 1.3t -, 0.23*
24.7 22.4 23.5 21 18 16.9 28 21.3 18.6

RCA-CC 1.5 1.5 1.2 -, 0.06* 1t 0.9t 0.6t -, 0.1* 1.5 1.5 0.9t -, 0.22*
21.8 21.9 16.8 13.1 12.7 8.1 22.6 21.7 13.3

RCA-HadGEM 1.6 1.1 0.5 -, 0.32* 1.1t 0.6t -0.2t -, 0.29* 2s 1.6s 0.9s -, 0.36*
24.4 16.4 6.9 15.4 8.7 -2.1 30.5 23.3 11.7

RCA-IPSL 1.8 1.7 1.5 -, 0.02 1.5t 1.4t 1.1t -, 0.06* 1.6t 1.3t 0.8t -, 0.16*
26 24.4 21.9 20.8 18.9 14.5 22.7 18.7 11.2

RCA-MPI 1.6 1.6 1.2 -, 0.1* 1.1t 1t 0.6t -, 0.14* 1.5t 1.4t 0.8t -, 0.22*
22.2 23.5 17.2 14.6 13.4 8.3 23 20.7 12.6

RCP85_Mean 1.7 1.5 1.3 -, 0.33* 1.2t 1t 0.7t -, 0.4* 1.7 1.5 1t -, 0.56*
23.6 22.9 18.9 16.1 14.3 10.1 23.2 21.2 14.2

RCA-HadGEM_RCP26 1.6 1.6 1.6 +, 0 1t 1.1t 1.3t +, 0.1* 1.9s 1.7s 1.5t -, 0.12*
22.4 24.3 23.7 13.8 15.8 17.2 27.9 24.9 21.4

RCA-MPI_RCP26 2 1.9 1.9 -, 0.02 1.5t 1.3t 1.2t -, 0.1* 1.7t 1.4t 1.1t -, 0.23*
29.3 28 27.8 20.8 17.8 16.7 25.6 20.3 16.5

RCP26_Mean 1.8 1.8 1.8 -, -0.01 1.2t 1.2t 1.2t -, -0.01 1.8 1.6t 1.3t -, 0.29*
25.8 26.2 25.7 17 16.5 16.6 26.7 22.6 19

Uncorrected BC-Eval BC-Hist

Table 7.6: West Germany (DEA) PCM crop yield projections.
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CCLM-MPI -0.7 -0.8 -0.6 -, -0.01 0.3s 0.3s 0.2s -, 0 -1.2t -1.1t -0.8t +, -0.01
-8.1 -9.8 -7.3 4.4 4.1 2.7 -15.6 -15.7 -10.4

RACMO-ECEARTH -0.5 -0.5 -0.3 +, -0.01 -0.4t -0.7s -0.6s -, -0.01 0s -0.2t 0.1s +, -0.01
-6.5 -6.1 -3.9 -5.5 -9.1 -7.1 -0.2 -2.5 1.5

RCA-CC 0.1 0 -0.1 -, 0.01 0.6s 0.7s 0.6s +, -0.01 0.2s 0.4s 0.5s +, 0
1.2 0.3 -1 7.5 9.6 7.5 2.3 4.9 6.3

RCA-HadGEM -0.3 0 -0.4 -, -0.01 -1s -0.8t -1.2s -, -0.01 -3.3s -3.1t -4.1s -, 0.09*
-3.6 -0.3 -4.9 -13.1 -10.3 -15.4 -41.2 -42.8 -62.3

RCA-IPSL 0.2 0 0.2 -, -0.01 0.5s 0 0.4s -, -0.01 1.5s 0.6s 1s -, 0.01
2.2 -0.3 1.9 6.4 0.1 4.8 17.8 8.6 12.1

RCA-MPI -0.4 -0.1 -0.2 +, -0.01 -4.4s -4.7s -5.2s -, 0.17* -0.5s -0.4s -0.4s -, -0.01
-4.5 -1.2 -2.9 -55.6 -59.3 -65.7 -6.4 -5.3 -5.6

RCP85_Mean -0.3 -0.2 -0.3 -, -0.01 -0.7s -0.8s -0.9s -, 0.04* -0.6s -0.6s -0.6s -, 0
-3.2 -2.7 -3 -8.5 -10 -11.5 -8.5 -7.8 -8.4

RCA-HadGEM_RCP26 -0.1 0.2 0.8 +, 0.07* -1.1t -0.5t 0t +, 0.06* 0.2s 0.3s 1.2s +, 0.09*
-1.5 1.9 10.2 -13.4 -6.5 -0.1 2.2 3.6 14.8

RCA-MPI_RCP26 -0.4 0 0.2 +, 0.04* 0s 0.6s 0.7s +, 0.04* -0.5s 0 0t +, 0.02
-5.7 0.3 2.1 -0.1 7.1 8.7 -6.8 -0.4 -0.1

RCP26_Mean -0.3 0.1 0.5 +, 0.11* -0.4s 0.2s 0.5 +, 0.09* -0.2t 0.1 0.6s +, 0.1*
-3.6 1.1 6.2 -4.9 2.1 6.2 -2.3 1.6 7.4

Uncorrected BC-Eval BC-Hist

Projected changes (t/ha) are in white rows and percentage in gray. All changes are relative
to the respective baseline yield hindcast. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected
change.
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(3) DED, East Germany

DED ensemble mean yield projections from the SCCM under RCP8.5

show significant negative trends with all raw and BC GCM-RCM output (Fig.

7.8b, Table 7.7). Before BC, only the RCP8.5 SCCM yield projections from

RACMO-ECEARTH, RCA-HadGEM, RCA-MPI, and RCP2.6 RCA-MPI had

significant negative trends. After BC-Eval, RCP8.5 RCA-IPSL also gains a

significant negative trend, and after BC-Hist all individual GCM-RCMs yield

projections apart from RCA-CC have significant negative trends.

Projections with the SCCM for RCP2.6 also show significant negative

trends, with the R2 value growing after BC, e.g. the RCP26 mean has

R2=0.03, 0.11, and 0.24 for raw, BC-Eval and BC-Hist yield projections.

Similar to other regions, DED SCCM yield projections generally show

’decreasing increases’, meaning that after an initial increase in the early

future period, these yield gains fall by the end of the century. In the case of

RCP8.5, Raw, BC-Eval and BC-Hist RCA-HadGEM, BC-Eval and BC-Hist

RCA-MPI, these projected changes are negative for 2071-2100.

In contrast, few significant trends are observed for PCM yields, but raw

projected changes are mostly negative, although these are typically less

than 1 t/ha (Table 7.8). After BC, negative yield losses respective to the

baseline yield are still projected for BC-Hist CCLM-MPI, BC-Eval and

BC-Hist RACMO-ECEARTH, BC-Eval and BC-Hist RCA-HadGEM, and

BC-Hist RCA-MPI, with the largest yield losses at around 1 t/ha for BC-Eval

RCA-HadGEM. Similarly, RCA-HadGEM SCCM yield projections also

projected the largest losses. SCCM projections also show large variability

compared to PCM CV (Fig. 7.5 III).
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Fig. 7.8a. DED SCCM. Fig. 7.8b. DED PCM.

Figure 7.8: Yield projections for DED (East Germany): Fig. 7.8a shows the SCCM
projections and Fig. 7.8b shows the PCM projections. (A) uses uncorrected climate
model output, (B) uses BC-Eval and (C) uses BC-Hist. Inset plot shows spread of
simulations for early, mid, and late century (30-year intervals). The SCCM and PCM
E-OBS hindcasts are also shown as reference of crop model performance.
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Table 7.7: East Germany (DED) SCCM crop yield projections.
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CCLM-MPI 1.4 1.5 1.3 -, -0.01 1.2t 1.3t 1.2t +, -0.01 1.2t 0.9t 0.1t -, 0.13*
26.9 28.1 28.7 20.9 23.2 22.5 21.2 16.2 2.7

RACMO-ECEARTH 1.4 1.2 1.1 -, 0.07* 1.4 1t 0.6t -, 0.15* 1.5s 1t 0.6t -, 0.12*
27.1 22.5 20.7 26 18.8 11 32.1 21.8 11

RCA-CC 1.5 1.5 1.4 -, -0.01 1.3t 1.3t 1.3t -, 0 1.6s 1.5 1.7s +, -0.01
29.3 27.7 26.3 24.1 21.9 22.1 32.3 27.6 31.9

RCA-HadGEM 0.7 0.2 -0.9 -, 0.09* 0t -0.8t -2.1s -, 0.1* 1.7s 1s -0.5t -, 0.16*
15.1 3.8 -17.2 -0.8 -15.4 -40 33.4 22.5 -11.3

RCA-IPSL 1.2 1.2 0.8 -, 0 1.3s 0.9t 0.3t -, 0.06* 2s 1.2 0.4t -, 0.11*
22.9 22 15 25.1 16.6 4.6 38 24.3 7.4

RCA-MPI 1.3 1.3 0.7 -, 0.06* 1.4s 1t -0.1t -, 0.16* 1.3 0.8t -0.4t -, 0.15*
22.7 27.9 12.2 24 18.5 -2.2 25.2 16.4 -9.3

RCP85_Mean 1.3 1.1 0.7 -, 0.15* 1t 0.7t 0.1t -, 0.27* 1.6s 1.1 0.3t -, 0.32*
23.4 21.9 14 18.3 12.3 1 34.5 20.7 6.2

RCA-HadGEM_RCP26 1.4 1.5 1.3 -, -0.01 1.6s 1.7s 1.6s +, -0.01 2.1s 1.8s 1.1t -, 0.13*
26.1 28.9 24.8 29.8 31.9 28.5 45.4 34.2 21.6

RCA-MPI_RCP26 1.7 1.5 1.4 -, 0.07* 1.7 1.3t 0.9t -, 0.15* 1.6t 1.1t 0.7t -, 0.12*
32 28.1 25.6 32.2 25.1 16.5 33.9 20.4 13.4

RCP26_Mean 1.6 1.5 1.3 -, 0.03* 1.4t 1.3t 1t -, 0.11* 1.8s 1.4t 0.9t -, 0.24*
29.1 28.5 25.2 26.5 24 18.2 39.7 27.3 17.5

Uncorrected BC-Eval BC-Hist

Table 7.8: East Germany (DED) PCM crop yield projections.
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CCLM-MPI -0.9 -0.7 -0.7 +, -0.01 0.8s 0.9s 1s +, -0.01 -0.7s -1t -0.6s -, -0.01
-10.4 -8.4 -7.9 11.5 13 13.4 -9.8 -14.4 -7.9

RACMO-ECEARTH -0.1 -0.2 0 +, -0.01 0.5s 0.1s -0.1t -, 0.02 1.1s 0.1s -0.1t -, 0.06*
-0.8 -2.2 -0.2 6.8 1.3 -1.4 15.5 2 -1.3

RCA-CC 0.4 0.1 0 -, 0.02 1.3s 1.4s 1.4s +, -0.01 -0.5t -0.3t 0 +, 0
4.8 1.4 0.5 17.9 20.2 19 -7.4 -4.5 -0.5

RCA-HadGEM -0.2 0.1 -0.5 -, -0.01 -0.5s 0t -1s -, -0.01 -0.2 0.2s -0.4t -, -0.01
-2.4 1.7 -6.2 -7.3 -0.4 -13.3 -2.1 3 -6.7

RCA-IPSL 0.3 -0.2 0.4 +, 0 1.1s 0.7s 1s +, -0.01 1.9s 1.1s 1.8s +, -0.01
3 -2.2 5.1 15.1 9.3 14.8 24 14.8 23.7

RCA-MPI 0 0 0 +, -0.01 1.3s 0.8s 0.7s -, 0.02 0.2s -0.3t -0.2t -, 0
-0.3 -0.2 -0.1 18 11.2 9.3 3.4 -4.2 -2.1

RCP85_Mean -0.1 -0.1 -0.1 +, -0.01 0.8s 0.7s 0.5s -, 0.01 0.3s 0s 0.1s -, 0.01
-1 -1.6 -1.5 10.6 9.4 7.3 5.1 -0.5 1

RCA-HadGEM_RCP26 0 0 0.5 +, 0 -0.4t -0.3t 0.4t +, 0.03 -0.1t -0.1t 0.5 +, 0.01
0.5 0.1 5.8 -5.7 -3.6 6.1 -1 -0.8 7.1

RCA-MPI_RCP26 -0.7 0.3 0.1 +, 0.06* 0.2s 1.3s 1.3s +, 0.07* -0.8s 0.1t 0.1 +, 0.06*
-9.2 3.8 1.3 3.1 18.5 18.1 -11.4 1.4 1.5

RCP26_Mean -0.3 0.2 0.3 +, 0.06* 0s 0.6s 0.9s +, 0.09* -0.5s 0t 0.3 +, 0.07*
-4.4 2 3.5 -0.6 8.2 12.8 -6.2 0.3 4.3

Uncorrected BC-Eval BC-Hist

Projected changes (t/ha) are in white rows and percentage in gray. All changes are relative
to the respective baseline yield hindcast. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected
change.
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(4) DEF, North Germany

Although individual GCM-RCMs show some small significant positive

trends, no significant trends are observed for the RCP8.5 ensemble means

for either crop modeling method (Tables 7.9, 7.10), and the significant

positive trends for the ensemble SCCM RCP2.6 projections (raw and

BC-Eval) have small R2 values (R2<0.07). This means that in terms of linear

trends, the effects of future climate on yields in this region are unclear

based on the SCCM and PCM. The spread and CV of SCCM projections in

DEF is also very small (Fig. 7.9a) compared to the PCM projections (Fig.

7.9b) and CV (Fig. 7.5 IV).

In terms of projected changes, small yield gains (approximately 1 t/ha)

are projected for the raw, BC-Eval and BC-Hist RCP8.5 ensemble mean of

SCCM projections. Also with the SCCM, individual GCM-RCMs project

increases relative to the baseline period; however, unlike other regions

these do not show the pattern of ’decreasing increases’ observed in other

regions, and projected changes are fairly even through the three future

periods. SCCM BC-Eval and BC-Hist projected changes are generally lower

than the SCCM raw projected changes (Table 7.9).

For the PCM, the raw ensemble mean of yield projections under RCP8.5

shows no projected yield changes (Table 7.10). However, after BC, small

negative yield losses (lower than the baseline yields) of under 0.5 t/ha are

projected with BC-Eval and BC-Hist. Negative projected changes are also

observed for many individual GCM-RCM yield projections over different

future periods, and the effect of BC on these changes relative to the raw

projected changes varies. The largest yield losses are projected with

RCP8.5 BC-Eval CCLM-MPI: -4.6 t/ha by the end of the century. Overall,

the projected changes to wheat yields in this region are less clear than in

other regions based on ensemble SCCM and PCM yields.
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Fig. 7.9a. DEF SCCM. Fig. 7.9b. DEF PCM.

Figure 7.9: Yield projections for DEF (North Germany): Fig. 7.9a shows the SCCM
projections and Fig. 7.9b shows the PCM projections. (A) uses uncorrected climate
model output, (B) uses BC-Eval and (C) uses BC-Hist. Inset plot shows spread of
simulations for early, mid, and late century (30-year intervals). The SCCM and PCM
E-OBS hindcasts are also shown as reference of crop model performance.
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Table 7.9: North Germany (DEF) SCCM crop yield projections.
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CCLM-MPI 1.3 1.3 1.4 +, 0.07* 0.7t 0.8t 0.8t +, 0.09* 1.3 1.4s 1.4 +, 0.08*
16.6 17.1 18.8 8.8 9.7 10.6 17.1 17.7 18.9

RACMO-ECEARTH 1.2 1.2 1.3 +, -0.01 1t 1t 1.1t +, -0.01 1.1t 1.2 1.2t -, -0.01
15.5 16.6 17.4 12.5 13.1 13.5 14.7 14.7 15.7

RCA-CC 1.1 1 0.9 -, 0.02 0.6t 0.5t 0.5t -, 0.02 0.9t 1 0.9 -, 0
14 13.2 12.3 7.3 6.7 6 12.2 12.9 11.5

RCA-HadGEM 1.2 1.1 1.2 -, -0.01 1.2 1.1 1.1t -, -0.01 1.2 1.1 1.1t -, -0.01
17 14.7 15.7 14.7 13.5 13.9 15.6 13.8 14

RCA-IPSL 1.3 1.3 1.3 +, -0.01 1t 1t 1t +, -0.01 1t 1t 1t +, -0.01
17.3 16.7 17.4 12.2 12.1 12.9 13.2 12.8 13.7

RCA-MPI 1.2 1.3 1.4 +, 0.09* 0.7t 0.8t 1t +, 0.09* 1.1t 1.2t 1.3t +, 0.07*
15 17.9 18.5 9 10.7 12.1 14.2 16.6 17.1

RCP85_Mean 1.2 1.2 1.3 +, 0.02 0.8t 0.9t 0.9t +, 0.03 1.1t 1.1t 1.2t +, 0.01
16 16.5 16.7 10.7 11 11.5 13.8 15 15.1

RCA-HadGEM_RCP26 1.1 1.2 1.2 +, 0.07* 0.7t 0.8t 0.8t +, 0.09* 1.1 1.1t 1.2 +, 0.08*
14.4 16 16.3 9 9.9 10.7 13.8 15.1 15.6

RCA-MPI_RCP26 1.6 1.6 1.7 +, -0.01 1t 1t 1.1t +, -0.01 1.2t 1.3t 1.3t -, -0.01
20.4 22.1 22 12.4 13 13.4 15.8 16.7 16.7

RCP26_Mean 1.3 1.4 1.4 +, 0.05* 0.8t 0.9t 1t +, 0.07* 1.2t 1.2t 1.2t +, 0.02
17.4 19.1 19.2 10.7 11.4 12 14.8 15.9 16.2

Uncorrected BC-Eval BC-Hist

Table 7.10: North Germany (DEF) PCM crop yield projections.
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CCLM-MPI -0.5 -0.6 -0.2 +, -0.01 -3.6t -3.7t -4.6t -, 0.23* -1.1t -1.2t -0.7t +, -0.01
-7.1 -8.2 -1.9 -51.4 -52.1 -61.8 -13.9 -15.8 -8.9

RACMO-ECEARTH -0.3 -0.5 -0.3 +, -0.01 -0.2t -0.5 -0.2t +, -0.01 -0.3 -0.8s -0.2t +, -0.01
-3.9 -6.6 -3.9 -2.8 -6.8 -2.6 -4.7 -13.1 -2.9

RCA-CC 0 -0.1 -0.3 -, 0 0.7s 0.8s 0.5s -, -0.01 0.4s 0.8s 0.2s -, -0.01
-0.5 -1.2 -4.1 9.8 11.5 6.7 5.1 9.7 3.3

RCA-HadGEM -0.5 0.1 0.5 +, 0.04* -1.2s -0.5t -0.3t +, 0.03 -0.2t 0.4s 0.6s +, 0.02
-5.4 1.9 6.6 -16.7 -7 -4.7 -2.4 6.3 9.4

RCA-IPSL -0.1 0 0 +, -0.01 0.6s 0.5s 0.5s +, -0.01 1.5s 0.8s 1.1s -, 0
-1 -0.2 -0.3 8 6.3 7.3 18.1 11.4 13.7

RCA-MPI -0.5 -0.2 -0.5 -, -0.01 0.4s 0.6s 0.5s -, -0.01 -0.7s -0.6s -0.4t +, 0
-7 -2.7 -7.1 5.7 7.9 6.2 -10.1 -7.2 -5.8

RCP85_Mean -0.3 -0.2 -0.1 +, 0 -0.5s -0.4s -0.5s -, -0.01 -0.1t -0.1t 0.1s +, 0
-4 -2.6 -1.7 -6.1 -5 -7 -1.2 -1 1.3

RCA-HadGEM_RCP26 -0.2 0.2 0.7 +, 0.03 -0.9t -0.4t 0.1t +, 0.03* 0s 0.1t 1s +, 0.06*
-3 2.5 8.6 -11.5 -5.9 0.9 -0.1 1.4 13.6

RCA-MPI_RCP26 -0.5 -0.5 -0.2 +, 0 0.4s 0.4s 0.6s +, 0 -0.7s -0.4t -0.9s -, -0.01
-6.4 -5.3 -3 5.2 5.5 8.6 -10.5 -4.8 -11.7

RCP26_Mean -0.3 -0.1 0.2 +, 0.03 0s 0.2s 0.6s +, 0.03 -0.4s -0.1 0.1t +, 0.02
-4.7 -1.4 2.8 -0.2 2.7 7.7 -5.3 -1.7 1

Uncorrected BC-Eval BC-Hist

Projected changes (t/ha) are in white rows and percentage in gray. All changes are relative
to the respective baseline yield hindcast. (∗) indicates a significant (p <0.05) trend (+/-).
In addition, a s(t) indicates a relative increase (decrease) to the uncorrected projected
change.
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7.3.3 Summary of projected yield changes

7.3.3.1 Significant differences of yield projections

In this section, the significance of the projections relative to the

respective past yield hindcast are summarized for country-level SCCM and

a comparison of regional SCCM and PCM results. At the national level,

yields simulated with the SCCM all show significant differences for all three

future periods respective to their baseline yields. At the regional level, the

mean of SCCM yield projections for DEA (West Germany) and DEF (North

Germany) are significantly different to their respective baseline yields (e.g.

raw projections to raw historical hindcast), based on a t-test (Table 7.11).

For yields simulated for German regions with a PCM, it can be observed

that in the mid-century (2041-2070), yield projections are generally not

significantly different to their baseline yields. Based on the lack of significant

linear trends as reported in the previous section, this indicates that yield

changes are small in the mid-century across all BC projections. Changes

during this mid-century future period are typically less than half a ton (both

gains and losses) particularly in DE2 (Table 7.4) and DEF (Table 7.10) for

the mean ensemble yields.

7.3.3.2 Comparing projected percentage changes to yield between

methods

The mean projected percentage yield changes (relative to the respective

baseline yield) per BC method (Raw, BC-Eval and BC-Hist) and averages

across all these simulations are shown for each region in Figures 7.10

(RCP8.5) and 7.11 (RCP2.6). This analysis shows that all SCCM and PCM

projected percentage changes in yield are significantly different to each

other under RCP2.6.
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For DEA and DEF, across all future periods, SCCM and PCM projected

percentage changes are significantly different from one another under

RCP8.5. However, there are some instances where the differences are not

significant. For instance, projected yield changes in DE2 (2041-2070 and

2071-2100) and DED (2071-2100) are of similar magnitudes. These

similarities and differences in projected yield changes are further explored

in the discussion section. In the following section, the yield projections are

analyzed to characterize how their ranges (uncertainty) are influenced by

the choices in the different GCM-RCMs, crop modeling methods and the BC

approach.

Table 7.11: Significant differences between ensemble projected and baseline yields
(SCCM and PCM), German regions.

SCCM PCM
Region Correction 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100

Raw RCP8.5
Raw RCP2.6
BC-Eval RCP8.5
BC-Eval RCP2.6
BC-Hist RCP8.5

DE2

BC-Hist RCP2.6
Raw RCP8.5
Raw RCP2.6
BC-Eval RCP8.5
BC-Eval RCP2.6
BC-Hist RCP8.5

DEA

BC-Hist RCP2.6
Raw RCP8.5
Raw RCP2.6
BC-Eval RCP8.5
BC-Eval RCP2.6
BC-Hist RCP8.5

DED

BC-Hist RCP2.6
Raw RCP8.5
Raw RCP2.6
BC-Eval RCP8.5
BC-Eval RCP2.6
BC-Hist RCP8.5

DEF

BC-Hist RCP2.6

A shaded box indicates a significant difference between projected yields and their
baseline/reference, based on a t-test (p<0.05).
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Figure 7.10: Summary of regional projected yield changes: crop modeling method
and BC comparison for RCP8.5. A * indicates that the mean of the SCCM and PCM
change is significantly different (based on a t-test).

Figure 7.11: Summary of regional projected yield changes: method and BC
comparison for RCP2.6. A * indicates that the mean of the SCCM and PCM change
is significantly different (based on a t-test).
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7.3.4 Uncertainty analysis

ANOVA results show that, in this study, the uncertainty in yield

projections is overwhelmingly influenced by the choice in crop modeling

method across all four German regions when considering GCM-RCM, BC

approach, and the respective interaction terms (Figs. 7.12, 7.13). For

example, in the ternary plots for RCP8.5 and RCP2.6, across all future

30-year intervals, most values are located in the lower right corner,

indicating that the choice of crop modeling method is the dominant share of

uncertainty in the study, when considering only the main effects included in

the ANOVA. F-test values are used to determine the significance of the

fractional partitions, with the percentages shown in Tables 7.12 and 7.13.

For DE2, the crop model method contribution to uncertainty is largest in

the middle of the century (2041-2070) with up to 80% of the variance

attributed to the crop model method (Fig. 7.13). Approximately 50% of the

uncertainty in DED and DEF are also explained by the crop modeling

method across all 30-year periods, but this variance contribution also

decreases between 2071-2100. However, in DEA, while the choice in crop

modeling method is still a significant contributor to uncertainty, it has a

smaller influence of approximately 20% in the early- and mid-century, and

this falls to only 8% by the last 30-year period. This can also be observed in

the ternary plots, where DEA is often farther from the rightmost corner

(Method) and closer to the GCM corner. For DEA, the uncertainty from the

choice in GCMs becomes more dominant (24%) than the crop model

method for 2071-2100.

The fall in the influence of crop modeling method is also observed for

DEA under RCP2.6, where other interactions between the GCM and the

method (49.2% in 2041-2070), GCM and the BC approach (25.9% in 2071-

2100) become more dominant compared to the crop modeling method (Table

7.13), which can confound the results of the ANOVA.
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Figure 7.12: Ternary plots for German regional yield simulations to show uncertainty partitions, in percentage of the sum of squares with
ANOVA: under I. RCP8.5 and II. RCP2.6 for (A) early century, (B) mid-century and (C) late century. Uncertainty is decomposed into:
GCM-RCM combination (GCM), crop modeling method (Method) and Bias correction calibration (BC).
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Figure 7.13: Uncertainty partitions per region, interval and scenario, considering interactions. Areas show the percentage of the sum of
squares with ANOVA: using the under I. RCP8.5 and II. RCP2.6 for (A) early century, (B) mid-century and (C) late century. Uncertainty is
decomposed into: GCM-RCM combination (GCM), BC calibration, crop modeling method (Method), and their second-order interactions.
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Table 7.12: Fractional uncertainty, RCP8.5.
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GCM 14.7%* 12%* 24.3%* 15.0% 13.3% 24.2% 15.5%* 10%* 24.4%* 12.9%* 13.8%* 10.9%

BC 0.1% 0.1% 0.1% 4.2% 6.3% 7.0% 2%* 6.8%* 4.6%* 2.8% 2.7% 4.2%

Method 77.4%* 80%* 63.7%* 23.8%* 20.4%* 8.2% 64.1%* 62%* 53.9%* 45.5%* 42.5%* 38.5%*

GCM:BC 3.1% 3.1%* 2.2%* 18.1% 21.5% 21.2% 5.2% 7.5%* 5.3%* 8.6% 9.0% 14.3%

GCM:Method 1.2% 2.7%* 8.9%* 15.1% 10.4% 11.0% 6.6%* 9.4%* 10.4%* 20.7%* 21.9%* 15.9%

BC:Method 2.1%* 1.1%* 0.2% 4.0% 4.4% 3.1% 4.3%* 2.9%* 0.1% 3.3% 3.3% 4.8%

GCM:BC:Method 1.4% 0.9% 0.5% 19.8% 23.7% 25.4% 2.2% 1.3% 1.3% 6.3% 6.8% 11.5%

DE2 DEA DED DEF

Table 7.13: Fractional uncertainty, RCP2.6.
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GCM 12.5%* 16.9%* 4.8%* 14.6% 22%* 8.1% 5.6%* 12.2%* 5.8%* 5.7% 3.6%* 0.0%

BC 1.0% 0.5% 0.7% 8.0% 7.7% 24.8% 12.6%* 5.9%* 4.7%* 0.6% 1.5% 3.2%

Method 75.6%* 74.3%* 88.6%* 52.2%* 12.2%* 16.1% 72.7%* 75.9%* 88%* 74.7%* 75.4%* 70.40%*

GCM:BC 4.7% 3.4% 3.7%* 4.1% 5.5% 25.9% 4.6%* 2.5%* 0.9% 0.7% 0.1% 5.9%

GCM:Method 0.5% 1.9% 0.1% 14.0% 49.2%* 8.4% 1.5%* 2.5%* 0.2% 14.5%* 14.3%* 1.6%

BC:Method 4.6% 2.3% 2.0% 3.5% 2.7% 7.8% 2.9% 1.0% 0.2% 2.2% 4.9%* 10.1%

Residuals 1.1% 0.6% 0.1% 3.6% 0.6% 8.9% 0.2% 0.1% 0.2% 1.5% 0.1% 8.7%

DE2 DEA DED DEF

(∗) indicates a significant F-test value (p <0.05).

Based on this analysis, generally, after crop modeling method, it can be

reported that that the next largest source of variance is the choice of

GCM-RCM in the study. BC is the least important influence on the fractional

uncertainty contribution in the study for both RCP8.5 and RCP2.6 scenarios

in the study design, typically under 10%.

These results – crop projections (UK, Germany), regional PCM and

SCCM yield comparisons, and the uncertainty decomposition – are

discussed in the next section.
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7.4 Discussion

In this chapter, the research questions are addressed through the

comparison of SCCM and PCM yield projections, and the uncertainty

decomposition analysis. For the first part of the discussion, the results are

framed to help answer the first research question, which is how are wheat

yields in the UK and Germany projected to be affected by climate change –

in addition, how do the results in this chapter compare to previous findings?

7.4.1 Outlook for future wheat yields

7.4.1.1 National-level yields for the UK (SCCM)

UK yield projections in this chapter were produced with a SCCM based

on the number of hot days and total JJA precipitation (See Chapter 3 for

more information on the crop model approaches). Because the projections

for the increase in the number of hot days over the entire UK are quite low,

and the projected decreases in summer rainfall, while significant, are also

small (~30mm decreases based on the RCP8.5 ensemble mean from EURO-

CORDEX simulations, see Chapter 6), the resulting UK yield projections are

observed to behave fairly constantly into the future – meaning without large

changes in mean or variability – relative to the baseline yields.

The results of the chapter with the UK SCCM show that there is actually

potential for yields to increase under climate change scenarios,

approximately up to 1.4 t/ha based on the ensemble uncorrected SCCM

projections. Ensemble yield projections under RCP8.5 and RCP2.6 showed

positive trends, and projected changes were significantly different to the

baseline yields. These potential yield gains are approximately equal under

RCP8.5 and RCP2.6 (~1-1.5 t/ha), with yields using BC input showing

similar trends (Fig. 7.14).
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Figure 7.14: Average projected yield changes, UK SCCM.

7.4.1.2 Comparison of UK yield projections to previous studies

The SCCM results of potential gains in wheat yield for the UK (~10-20%

relative to respective baselines) are in general agreement with other impact

projections, e.g. the UK Climate Change Risk Assessment 2017 (CCRA,

Brown et al., 2016), modeling and review studies (e.g. Rial-Lovera et al.,

2017, Röder et al., 2014, Cho et al., 2012, Ferrara et al., 2010) which also

project small potential increases in yield for the UK. It should be noted that

the previous UK CCRA in 2012, developed with statistical approaches, was

heavily criticized (e.g. Semenov et al., 2012) for overestimating the potential

percentage increase in yield, as the relationship between yields and

temperature was overestimated, and the influence of factors such as heat

stress around flowering were underestimated (Brown et al., 2016, Semenov

et al., 2012).

Therefore, while the SCCM results for the UK shown here prove to be

robust enough to share similar results to previous studies, and the

heat-based indices are specific to heat stress around flowering (anthesis),

the lack of inclusion of other important genetic-environment-management

(G × E ×M ) interactions, and crucially, the CO2 fertilization effect – which
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may even potentially make these yield gains larger – make these crop

projections a relatively simple analysis of the effects of changes to

temperature and precipitation on UK wheat yield. Additionally, known issues

with statistical models such as the issue of response stationarity mean that

these results are also affected by these limitations.

Known important crop growth influences such irrigation, radiation,

changing crop varieties and management also strongly influence crop

yields. Provided with sufficient data on these numerous influencing factors,

a regional analysis of the UK wheat production sector’s risk to climate

change could provide more robust results, and allow for a comparison with a

PCM (similar to the following discussion for Germany) to better characterize

uncertainty in the yield projections for the UK. However, the issues

discussed surrounding the application of a field-based PCM to a regional

scale (e.g. scale and aggregation error, see Chapter 3) should also be

recalled in the regional yield context.

Despite these limitations, a key finding of this analysis, shared with other

UK wheat studies, is that based on empirical relationships, wheat yields can

actually show positive responses to changes in temperature and

precipitation; it is argued that there may be unique opportunities for

adaptation that can take advantage of these potential yield gains, however

small. Beneficial changes to wheat varieties, technology and management

practices, existing adaptation measures, and improved technology – which

have already been shown to influence yield more than climate (e.g. Moore

and Lobell, 2015, 2014, Semenov et al., 2012, Semenov and Shewry, 2011,

Semenov, 2009) – are also argued to improve the outlook for wheat yields,

if adaptation measures are planned, timed, and managed well.
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7.4.1.3 National and regional-level yields for Germany (SCCM)

In contrast to the yield projections in the UK, the SCCM projections of

yield for Germany, and German regions, show evidence of negative yield

trends and increased yield variability into the future. At the country-level,

SCCM projections under the RCP8.5 scenario (across raw and all BC

approaches) and RCP2.6 (across BC-Eval and BC-Hist), show that the

projected increases in the number of hot days and reduction in summer

precipitation (See Chapter 6), could reduce the yield gains over time, as

compared to the respective baseline yields.

Trends of ’decreasing increases’ (from ~20% to as low as 2% relative

to the respective baseline) were observed for Germany, and the ensemble

RCP8.5 SCCM DE2, DEA and DED yield projections (Figs. 7.15, 7.16).

SCCM yield projections for the northernmost German state (DEF) did not

show significant trends for either emission scenario. Projected changes for

Germany and its regions, apart from DEF, showed diminishing positive yield

changes relative to baseline yields (1976-2005). The positive sign of change

relative to the SCCM hindcast means that wheat yields are not projected to

go as low as the baseline, but could show reductions to yield over time, as

shown in Fig. 7.16. The positive projected yield changes are also related to

the rapid rise in observed yields until 2010, which means that the baseline

yield level is lower than where yield projections begin in 2011.

7.4.1.4 Comparison of German yield projections to previous studies

These projected decreases in yield are in agreement with previous

studies which have focused on the impact of climate change on wheat

production in Germany, which is one of the largest producers of wheat in

Europe, second only to France (Lüttger and Feike, 2018), where warming

climatic conditions have been found to pose threats to wheat production

(Strer et al., 2018, Trnka et al., 2015). For example, a crop modeling study
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Figure 7.15: Average projected yield changes, Germany SCCM).

Figure 7.16: Projected yield changes, German regions (I-IV). SCCM and PCM yield
projections are shown in subfigures (A) and (B), respectively.

projected negative changes in wheat yield when considered without the

CO2 effect (Kersebaum and Nendel, 2014), as was also projected in the

statistical approach of this study. Another modeling study divided Europe

into ’environmental zones’ considering climate, where Germany was

considered to be composed of the Atlantic North (roughly the DEF region in

this study), and Continental climates (other regions). Their study found that

the impacts of climate change on winter wheat are negative across most of

these zones (Olesen et al., 2011).
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While the general results of SCCM projections for Germany are shown

to match previous studies (i.e. decreasing yields due to increases in heat

stress), how do the PCM projections compare?

7.4.2 Comparing crop modeling methods: projected yield

changes and trends

In order to compare the regional Germany SCCM and PCM yield

projections, which have different relative baselines (e.g. PCM projections to

past PCM hindcasts, and similarly for SCCMs), percentage yield changes

are shown in the comparison of yield projections in Figs. 7.10 and 7.11 in

the Results section. These results show that yield projections from different

crop modeling methods have varying levels of agreement, depending on the

region. For example, mean changes in yield were generally dissimilar

across crop modeling methods in German regions in DEA and DEF, while

yield projections showed some agreement in DE2 and DED.

Differences were also observed in trends between yield projected by

different crop modeling methods: ensemble RCP8.5 SCCM yield projections

typically showed significant negative trends in DE2, DEA, and DED, but

RCP8.5 PCM yield projections typically showed no significant trends for any

regions. RCP2.6 yield projections from either crop modeling method

typically did not show significant trends, or had very small R2 values.

SCCM projections generally showed patterns of ’decreasing increases’,

meaning that projected changes in yield were positive respective to the past

yield baseline, but these yields decreased over time towards the end of the

century (Fig. 7.16). In contrast, apart from DEF where both the SCCM and

PCM showed relatively ’flat’ yield trends and changes, PCMs used with raw

climate model output tended to project negative yield losses below baseline

yields but did not have clear patterns for these decreases.
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While some studies have found projections of yields to generally be in

agreement between crop modeling methods – for example, in multi-method

studies that have found generally similar outcomes between methods when

investigating yield responses to temperature (Liu et al., 2016), and to both

temperature and precipitation (Lobell and Asseng, 2017) – the results of this

chapter show that there are observable differences between yield

projections to be explored when using different crop modeling methods.

How and why do these differences arise, and what can they be attributed to

in the modeling/simulation process? These are explained in the following

subsections.

7.4.2.1 Role of temperature and precipitation in wheat yield

projections

Firstly, one potential reason for the differences between crop model

method yield projections is how temperature and precipitation are utilized

and modified in the PCM and in the SCCMs. It is argued that the way

temperature and precipitation are related to yield within the mechanisms of

the crop model has an influence on the differences between yield

projections. For instance, SCCMs, including the ones used in this study,

generally have much fewer predictors for yield, particularly when compared

to PCMs that use daily weather, and also contain various input parameters

related to management and genetics. Thus, more weight is given to the

predictive power of climate in the SCCMs of the study.

Given the relatively small changes to the number of hot days for the UK

(See Chapter 6), the results show that SCCM UK wheat yield projections

show very low variation around the mean. In addition, the smaller coefficient

of JJA precipitation in SCCMs makes the temperature-based index more

critical for yields in SCCMs. The more flexible structure of SCCMs also

means that heat stress can be more easily and directly represented in
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SCCMs. This is useful as it has been found that uncertainties in crop yield

predictions in most regions are dominated by uncertainties in future

temperature, rather than precipitation (Watson et al., 2015, Lobell and

Burke, 2008).

In contrast, the way temperature and precipitation can be specifically

represented as heat stress indices in SCCMs is mismatched with the way

climate is represented as daily values in PCMs such as

CERES-Wheat/DSSAT. CERES/DSSAT uses daily temperature to calculate

other parameters, including, leaf area index, photosynthesis, nitrogen

fixation, and soil temperature (Jones et al., 2003), which follow less linear

mechanisms than those used by the SCCMs in the study. In addition, the

rate of wheat development in the CERES module is governed by thermal

time in the form of growing degree-days (GDD) based on the daily

maximum and minimum temperatures (Jones et al., 2003). There are

certain GDD required to progress from one growth stage to another,

including the crucial anthesis and grain-filling stages, which in turn also

interact with other input parameters.

The different ways the climate data are modified and used within the

SCCM and PCM, alongside the large differences in their structure and input

parameters, manifests clearly in the variation between yield projections.

Hence, it is argued that while SCCMs can be devised to fit a variety of

empirical data and scales, as well as focus on relevant climate indices, or

other predictive factors (e.g. soil, Kristensen et al., 2011), PCMs are much

less flexible and are limited by their structure and represented processes in

order to make yield projections. It was also previously shown in Chapter 3

how yield simulations are highly sensitive to the genetic input parameters

used in the PCM, so the importance of aggregation and input parameter

errors cannot be discounted; this is revisited in the next section.
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7.4.3 Revisiting evaluation results and their impacts on

future yield projections

In Chapter 3, it was shown how the evaluation performance of the PCM

was very different to the well-correlated yield simulations from the SCCM

approach to both a yield baseline hindcast (with climate observations) and

actual yield observations. Although BC of RCM evaluation climate output

was able to improve the PCM yield simulations in Chapter 5 (reducing error

relative to the yield hindcast), it is important to consider how the performance

of the crop model method in the past will influence future yield simulations.

The issue of ‘reasonable performance’ was discussed in Chapter 3,

where it was reported that, as with this study, many field-based PCMs are

applied to scales beyond their original design (e.g. Challinor et al., 2017,

Ewert et al., 2011, Hansen and Jones, 2000), which leads to issues of

spatial and aggregation error of input parameters. Despite this scale

mismatch (See also Chapter 2 discussion on the limitations of the PCM

approach), the included plant growth processes, proven simulation ability of

PCMs, and the importance of comparing the outcomes of two vastly

different crop modeling approaches has been argued to at least justify the

approach used in this chapter to explore their differences.

However, as seen in the results, the difference in crop modeling method

can influence the outcomes for yield projections, even though they were

driven by the same climate data. In this case, the decomposition of

uncertainty with ANOVA reveals how important the choice of crop modeling

method is.

7.4.3.1 Dominance of uncertainty by crop modeling method

Although care must be taken when extrapolating results beyond this

study, in the results of the uncertainty analysis (Section 7.3.4, Figs. 7.12,
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7.13), it was shown that crop modeling method dominates the uncertainty

based on ANOVA results. Given the large methodological differences

between crop modeling methods, this result is not unexpected. The large

differences in methods – and their associated limitations – have led to a

large range of plausible yield projections (See Figs. 7.4a-7.9b), one that is

greater than other factors such as the choice of GCM-RCM, whether these

GCM-RCMs were bias-corrected or not, and also inclusive of potential

interactions between the main chosen effects.

This is an opportunity for future research, and related to reearch

question 5: knowing that crop modeling method contributes most to large

uncertainties in future crop yield projections, how can this be addressed?

Some recommendations can be made here, also following the

recommendations for ’good practices in crop modeling’ and benchmarks for

evaluating skill (e.g. Challinor et al., 2017, Müller et al., 2017): for example,

reducing the uncertainties associated with the crop modeling method itself.

This means reducing input error and aggregation by using crop models at

appropriate scales; when impossible (e.g. for lack of an appropriate model

for a crop, or lacking regional data), the deficiencies of the modeling

process should be transparently outlined and documented.

Another opportunity to address RQ5 would be to reduce the number of

extraneous variables that can influence yield simulation outcomes: for

example, by using and carefully selecting experimental parameters to

provide better consistency in data and improve the comparability to

outcomes from other methods, in this case the SCCM projections. Given

the differences in outcome and the influence of the crop modeling method,

should one crop modeling approach be used over the other?
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7.4.4 Advantages and disadvantages of different crop

modeling approaches

In this study, SCCMs and PCMs have been shown to produce both

diverging and similar yield projections. There are numerous reasons why

statistical approaches can be considered adequate for modeling the

impacts of future climate change. For instance, general recommendations

from multi-method studies are that statistical approaches are useful for

testing relatively simple crop-climate relationships and extrapolate based on

observed relationships (Watson et al., 2015). Additionally, empirical

modeling is considered suitable for analyzing past and current crop-yield

patterns (Soltani et al., 2016). On the other hand, statistical approaches are

critiqued for their lack of complexity and stationarity, and that they are

missing the representation of numerous factors apart from climate that

influence plant growth and development (See Chapter 2 for a further

discussion on the limitations of statistical approaches).

There are also numerous reasons why PCMs remain advantageous over

SCCMs in several contexts. For example, the differences between PCMs

and SCCMs in how they handle CO2 is well known. In particular, SCCMs

are criticized because they do not include CO2 effects. Although the study

does not focus on CO2 effects, the impact that its inclusion into crop models

is still important to discuss. For instance, CO2 in modeling studies may

change yield projections: in the same Kersebaum and Nendel (2014) study

which found negative yield effects due to climate change in Germany, the

addition of the CO2 effect and resulting reduced transpiration made yield

projections shift towards increasing yields. CO2 is an important

consideration for climate change studies, as increased atmospheric CO2

concentration directly increases photosynthesis in C3 plants like wheat, and

also decreases stomatal conductance, which thereby increases crop water

use efficiency (Kersebaum and Nendel, 2014). Therefore, while climate



7.4. DISCUSSION 311

change has the potential to reduce crop yield, the fertilization effect of CO2

tends to increase yield (Erda et al., 2005) – although it should be noted that

C3 crop photosynthesis increases beyond a CO2 concentration of 1000

ppm (Kersebaum and Nendel, 2014).

Apart from the importance of the CO2 effect, the response of wheat crop

phenology to climate change also needs to be considered. Although it is

well-acknowledged that extreme temperatures and heat stress are likely to

reduce wheat yields (Rezaei et al., 2015, Asseng et al., 2014), including

phenology responses to climate change and CO2 also can also affect

potential yield responses. For example, in their study, Rezaei et al. (2015)

found that because of warming causing an acceleration of crop phenology,

a cooling effect was observed: earlier wheat crop heading (the stage prior

to anthesis/flowering) compensated for the enhanced warming and heat

stress due to climate change. Despite this beneficial avoidance of anthesis

occurring around the hottest days of the year (and when more hot days are

possible), heat stress could still then adversely affect the crop during the

grain filling stage, which occurs after anthesis (Rezaei et al., 2015). Since

different cultivars (varieties) of wheat also respond differently to temperature

and precipitation changes, the choice of cultivar is also an important factor

to be considered in climate change impact assessments (Rezaei et al.,

2018), something that can be considered by PCMs.

Other important factors that influence yield include the inputs and

management used for wheat growing. For instance, in a recent analysis of

the relationship between wheat yield volatility, inputs (e.g. capital, labor,

energy, fertilizer, inter alia) and weather in Germany, both inputs and

weather affected yield projections, with a slight majority of the projected

changes attributed to input variability (Albers et al., 2017). When input

choices were left out, it was found that weather impacts and common

shocks would be overestimated (Albers et al., 2017). Given that PCMs are

able to incorporate CO2 effects, phenology and inputs can be considered
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justification that the systems-based understanding of cropping systems,

including wheat physiology, can be considered advantageous for many

reasons compared to statistical approaches.

However, PCMs run at significant cost (Lobell and Asseng, 2017), and

have been criticized for their input-intensive nature (Lobell and Burke,

2010), and infrequent reporting of crucial calibration parameters, among

other issues related to upscaling and input parameters (See Chapter 2 and

3 discussion). In addition, a crop modeling study that considers all these

above-mentioned factors that influence yield would be very difficult to

implement fairly in a comparative approach with statistical approaches. It is

argued that the comparison of an extremely complex or intensively

calibrated PCM to a structurally simple SCCM would lead to unbalanced

results on how different crop modeling methods compare to each other, and

if one projection is more plausible than the other, hence the research design

was to use regional crop parameters and maintain simulation defaults

whenever possible.

It is thus important to ask, how can climate change impact assessments

move forward with multi-method comparisons, while considering the

challenges of comparing fundamentally different approaches? While more

recommendations are discussed in the subsequent Conclusions chapter, it

is argued that while it makes sense to consider the complexity of crop

growth and development in modeling studies to project a well-informed crop

response to climate change, finding the data and calibrating it to run PCMs

to simultaneously factor in these numerous parameters (cultivar, inputs,

phenology, climate, CO2) is a challenging task. Furthermore, it could make

yield projections highly specific and difficult to extrapolate beyond the

selected geographical region for which the PCM was run.

Therefore, the comparison of SCCMs and PCMs remains challenging.

Any expectations that they will have the same projected changes, are
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likewise challenging, given the numerous differences between crop

modeling methods. It is argued that rather than this be detrimental to the

emerging field of crop model method comparison, this should encourage

more comparisons and investigation. It is additionally argued that the depth

of agronomical knowledge from developing and using PCMs and their ability

to model complex G×E ×M interactions, alongside the powerful, rapid and

transparent methods of statistical approaches, are therefore worth the

larger effort, cost, and time in using both methods comparatively.

7.4.5 Other influences on uncertainty

After crop modeling method, GCMs were typically the next largest

influence on the uncertainty. In climate model uncertainty decomposition

studies, climate model uncertainty has been shown to be a major source of

uncertainty particularly in the early and mid-century for temperature

(Hawkins and Sutton, 2009) and precipitation (Hawkins and Sutton, 2011).

In the same vein, hydrological impact studies which also use a single impact

model have found that climate models dominate fractional uncertainty in

most seasons and compared to other factors like RCP scenario and

hydrological model uncertainty (Hattermann et al., 2018, Vetter et al., 2017,

Bosshard et al., 2013). In agricultural impact studies, climate model

uncertainty was greater than a single regional crop model (GLAM), inclusive

of the effect of adaptation and natural variability (Vermeulen et al., 2013). In

a study that specifically investigated crop model parameterizations, (Koehler

et al., 2013) found that the representation of temperature-driven processes

in the crop model (also GLAM) was on average larger than climate model

uncertainty, indicating the relative importance of crop development.

If the large influence of the crop modeling method was excluded from the

analysis, it has been shown that the choice of GCM-RCM is very influential

over the fractional uncertainty in impact assessments, although this is also

temporally variable (e.g. Hawkins and Sutton, 2009, Northrop and Chandler,
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2014, Vetter et al., 2017, Hattermann et al., 2018). This brings the results

from Chapter 6 back into focus, where the importance of selecting GCM-

RCM combinations with small biases was emphasized.

Based on the results of the uncertainty decomposition, DEA was the

only region where the crop modeling method did not unequivocally

dominate over other sources of uncertainty, other interactions became more

important in the ANOVA. For example, in DEA (RCP8.5) in the mid-century,

the contribution of uncertainty from the interaction between GCM and BC

method, as well as GCM-BC-Method, was larger than crop model method

uncertainty, although these contributions are not significant based on the

results of the F-test (Table 7.12). By the end of the century, GCMs, although

still not significant based on the F-test, overtake crop modeling method in

fractional uncertainty.

These results show that the consideration of first- and second- order

terms in the ANOVA can reveal relevant interactions between the choice of

method and the other variables in the impact assessment cascade. First-

and second-order interactions in the ANOVA also show interesting results

which characterize the contribution of BC to uncertainty in yield projections,

and these are discussed in the next section.

7.4.5.1 Effect of bias correction on projected changes to yield

In the uncertainty decomposition analysis, the choice of whether BC was

applied or not, including the calibration approach (BC-Eval or BC-Hist) in the

end did not show a large influence over yield variability. The influence of BC

was dwarfed by crop model method and GCM-RCM uncertainty (Figs. 7.12-

7.13). In the study of Koehler et al. (2013) which analyzed uncertainty in

yield projections with a regional PCM and a 17-member projection ensemble

and corrected by linear and change-factor methods, BC was also not found

to be a significant source of uncertainty.
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In the yield projections of the study, the use of BC-Eval or BC-Hist

occasionally modified the significance of the linear trend (particularly for the

SCCM results), for example in DEA and DED SCCM simulations where R2

values for the negative tended to increase after BC (Tables 7.5 and 7.7).

The uncertainty analysis reveals that in lieu of BC itself, the fractional

uncertainty of the interaction between GCM and BC method was found to

be more important across all regions and both emission scenarios (Tables

7.12 and 7.13), meaning the way that BC modified the selected GCM-RCMs

was more influential on yield uncertainty than the BC approach on its own.

This links back to the importance of the choice of GCM-RCM combination

for impact studies, which was discussed at the end of Chapter 6. Poorly-

performing GCM-RCMs which contain large biases change significantly after

BC, as shown in Chapter 6 where projections ’jump’ from the historical range

and magnitude of temperature and precipitation to a corrected range. This

shift and jump in climate model output in turn results in changes to yield

simulations. In contrast, when GCM-RCMs have small biases, BC does not

have a large impact on climate model output, and resulting yield simulations

are then fairly similar as well. Whether BC is in itself important is argued to

be thus more dependent on the choice of GCMs and RCMs.

7.4.6 Novel results and implications

The clear influence of crop modeling method in the study, including its

interactions with GCM-RCM and BC method, is a key finding. The choice

of PCM or SCCM in impact analyses can lead to a large range of plausible

outcomes for wheat yields in the face of climate change. Previous studies

have made clear progress in better characterizing uncertainty in agricultural

impact projections in the cascade of uncertainty. However, they often do not

take multi-method approaches to impact assessment.

To the author’s knowledge, although there are emerging studies which
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have analyzed multi-method approaches, there have not been many studies

which have taken an fractional uncertainty approach to analyzing yield

projections between methods, including a focus on bias correction, so the

results presented here are novel. Although it is important to note that these

findings are contextual to the research design and data (recalling that

ANOVA is used here in fixed-factor mode), there are many more research

opportunities to explore from this point to analyze how much crop modeling

method affects uncertainty in other geographies, including the CO2 effect,

and considering scenario uncertainty, crop model parameterization, among

other future research pathways. These opportunities for future work, as well

as other recommendations for multi-method comparisons in the context of

uncertainty, are discussed in the final Conclusions chapter.

7.5 Conclusion

The impacts of climate change, specifically changes to temperature and

precipitation, are shown in the research to present both opportunities and

threats to wheat yields in the UK and Germany. While small increases are

projected for the UK, yield projections are generally toward yield decreases

across Germany. While computationally costly process-based crop models

have been often placed in contention with the structurally simple statistical

approaches to modeling yield, the results here show that their projected

yield changes can also sometimes be in agreement. However, there remain

differences that are valuable to be explored further, and by following good

practices in crop modeling, extraneous variables and input errors that

influence uncertainty and yield projections can also be reduced.

Continuing multi-method comparisons for yield projections can be costly

in terms of time and effort, but the uncertainty analysis in this chapter reveals

how important the influence that the choice of crop modeling method has on

yield projections under climate change.
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Conclusions

In this chapter, the results of the analysis are reviewed to derive

conclusions and recommendations about the outcomes and novel findings

of the study. Opportunities to deepen the research are highlighted,

alongside critical discussion of key limitations in the study. The research

spans the disciplines of climate and crop sciences in an attempt to provide

knowledge with a focus on uncertainty by comparing different methods –

with the context of the communities of practice that drive these different

choices – to understand how intermediate steps and decisions can have

impacts on the range of yield projections in a study. To do so, the study has

used a number of methods in climate modeling, crop modeling, and the

necessary steps to link the two. By doing so, an uncertainty analysis

focusing on contributions from climate and crop models, as well as bias

correction, downscaling and crop modeling method, was completed.

The research was conducted focusing on the ‘what’ and ‘how’ in attempt

to better understand the methods behind impact assessment. Firstly, what

are the impacts of climate change on wheat production in Europe? Secondly,

how is this typically or normally performed? By addressing these questions,

a number of key areas that need better focus on in the impact simulation

cascade were identified, and are discussed here.

317
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8.1 Revisiting research gaps

The review of related literature identified the following gaps in climate-

crop impact assessments. Some of these are the following:

• Going beyond the assumption that RCMs automatically provide more

skill or information.

� This was addressed in Chapter 4 where RCMs showed some

advantages over their driving GCMs, but results showed that these

gains depended on the climate variable. For example, maximum and

minimum temperatures from RCMs showed better agreement, but

RCM precipitation was not necessarily better than GCM precipitation.

• Investigating the effect of the BC method on climate and yield

projections.

� This was addressed in Chapters 5 and 7. It was shown that all BC

methods improved climate simulations relative to observations, but

quantile-quantile mapping also improved other features of the climate

model output. The improvement of climate model output has

downstream improvements in yield simulations.

� In Chapter 7, it was shown that the calibration of BC (BC-Eval or BC-

Hist, calibrated on the RCM evaluation period or the historical period,

respectively) affected the magnitude or yield changes, and in some

instances changed the direction or significance of the future yield trend.

• Differentiating the error contributed by the choice of the GCM and

RCM in a way to understand how this affects future projected climate

changes.

� This was addressed in Chapter 6. BC-Eval and BC-Hist were shown

to be able to distinguish several ‘cases’ of pairings of GCMs and RCMs,

which emphasized the importance of selection of well-perfoming GCM-
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RCM pairs as this may have impacts on future climate projections and

further downstream in impact assessments.

• Investigating the differences between crop modeling approaches.

• Better characterization of the ‘intermediate’ steps in the linkages

between climate and crop models (See Figs. 1.2-1.4); and

• Remembering the larger context of uncertainty in impact assessments.

� The last three points are further discussed in the following section.

8.2 General discussion of results

Analysis of the impacts of climate change on wheat yields

A main objective of the work was to analyze how climate change may

impact wheat yields in the future periods until the end of this century. The

projections of yield for the chosen sites, the UK and Germany, show that

changes in temperature and precipitation will affect yields, providing both

threats to wheat production and opportunities for adaptation (Chapter 7).

The sensitivity of wheat to rising temperatures particularly around flowering

is well-known, but warming climates may actually be beneficial for some

wheat-growing areas in Europe, and this was shown in the results with the

statistical crop-climate model for the UK, where projections ranged from

10-20% increases relative to a historical baseline.

While yield projections were also of similar magnitudes for Germany, the

increases in the current and next decade were followed by yield declines.

The trends and magnitude of these changes varied between crop modeling

method, and also if bias correction (with different calibrations, BC-Eval or

BC-Hist) were applied.

The analysis of wheat yields from the past (1981-2010, Chapter 3) also

showed that periods of heat stress with many hot days and periods of low
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summer rain, have already had impacts on wheat yields in both the UK and

Germany. In this analysis, it was also shown that yields in the UK and

Germany have been stagnating, particularly after the year 1999 (Chapter 3),

and this has previously been linked to both climate and external factors.

With the climate change projections from multiple climate models (both

directly from simulations and bias-corrected), showing potential increases in

the number of hot days, more so for Germany and its regions than the UK, it

is clear that heat stress is a present and future risk for wheat yields.

Uncertainty decomposition and analysis in a multi-method context

A key focus and result of this study is the decomposition of uncertainty

that revealed the choice of crop model method (process-based or statistical)

as a major source of uncertainty in the yield projections of the study,

followed by climate model and bias correction (Chapter 7). This is a key

finding for the study, but one that cannot have been entirely unexpected: it

was thoroughly discussed in Chapter 1, the literature review in Chapter 2

and the evaluation of crop model performance in Chapter 3 that there are

fundamental differences between the two main methods of simulating crop

yields (PCMs and SCCMs). The result of the uncertainty analysis is

contributed to in part by the differences in the theoretical purpose and

practices of the compared crop model method.

These fundamental differences are manifested in the type of input and

processes modeled in process-based models (PCMs) and statistical

crop-climate models (SCCMs). Statistical approaches are fed with relatively

simple empirical data (large-scale climate indices and yield patterns), but

PCMs rely on a large set of input parameters to drive fine-scale processes

behind the crop model, for example (in DSSAT/CERES-Wheat) calculating

the number of growing degree days to determine the wheat crop growth

stage, how much of the available fertilizer has been assimilated, to how this

affects the number of grains per head of wheat, and finally their weight to



8.2. GENERAL DISCUSSION OF RESULTS 321

calculate yield. These differences, alongside the original intended scale of

application (field-based for the PCM, regional and larger for the SCCM) are

also responsible for the input and aggregation errors that led to diverging

crop model performances in their evaluation in Chapter 3.

It was discussed in Chapter 7 that the input- and detail-oriented

approaches of PCMs contain valuable information (e.g. the CO2 effect)

fundamental to an accurate representation of crop growth and development.

However, it was also discussed that the opportunities and benefits provided

by statistical approaches (e.g. transparency, simplicity, and greater

applicability in perhaps data-poor regions) are valuable; furthermore, many

process-based approaches are themselves built on empirical data and

statistical models.

Each approach also has their associated limitations: stationarity and

(over)simplicity for SCCMs, and challenging implementation for PCMs.

Some of the challenges and issues of comparing crop modeling methods

were summarized, based on the literature review (Chapter 2), as calibration

differences, scale mismatches, upscaling and aggregation errors, and

stationarity. The research also revealed the complexity and importance of

calibrating parameters such as the genetic cultivar coefficients. Because of

the large number of processes these parameters control, better reporting of

their use in studies should be promoted for reproducibility – but regional and

long-term field experiments that provide valuable calibration data for PCMs

should also be supported as they provide invaluable knowledge from the

field that can be used for validation and evaluation.

These differences, while valuable, have resulted in different communities

of practice, which are argued to underpin the development and collaboration

between these different ‘camps’ of crop model methods. These differences

(between models, and between communities) are also perhaps are why crop

model comparison studies are only recently coming into focus despite both
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camps having decades of scientific research and development. For example,

the prominent multi-model ensembles that compare crop model differences

are largely limited to PCMs.

Apart from the need for more multi-method studies, it was argued that

multi-method comparisons should be contextualized within the cascade of

uncertainty from climate models to impact models, which this study has

achieved. It has also been reported that multi-method studies for agriculture

and crops are still in the beginning stages, so the results of the study

contribute to growing body of knowledge on the differences between crop

modeling methods while using uncertainty decomposition methods.

Rather than the challenges of comparison being a basis for continuing

to work in disciplinary (or crop model method) silos, it is argued that there

are valuable similarities, as well as differences, that should be the focus of

initiatives and efforts in understanding crop yields, and hence future food

security.

Downscaling, bias correction and calibration

The work also focused on extensively on climate models, particularly

around methods which are typically taken as standard in impact

assessment: downscaling and bias correction (Chapters 4 and 5).

Dynamical downscaling has been shown as a way to develop spatially and

temporally higher-resolution climate simulations, which are typically

required by crop models. However there is an ongoing scientific debate

around added value, as regional climate models (RCMs) still rely on global

climate models (GCMs) that have many limitations and parameterized

processes (as reviewed in Chapter 2) that can lead to bias in climate

simulations relative to observations, even when downscaled (Chapter 4).

While some added value from RCMs was found in the study, the gains

were not unequivocal, and the tests to determine this added value were
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challenging. Thus, it is a key recommendation of the study that while added

value can be found in downscaling, it is important to justify the use of

downscaling methods in impact assessment.

This recommendation is also important as RCMs were shown in the

work to also introduce their own error into climate simulations (Chapter 5).

Some of these errors were post-processed using a number of bias

correction methods that ranged from simple scaling to more complex

distribution-based transformation. Also echoing the different communities of

practice within crop modeling, bias correction is also a debated topic within

the climate modeling discipline, where it is sometimes seen as solely a

post-processing step that does not address underlying error. While this is

true – that bias correction cannot improve the actual representation of

climate processes within models – both simple and complex bias correction

methods (e.g. scaling and quantile mapping) were shown here in the work

to reduce errors in RCM simulations. Bias correction was able to improve

yield hindcasts generated by two different crop modeling methods (Chapter

5).

Two different calibration approaches to bias correction of future climate

change projections were also presented as a new way of thinking about

GCM-RCM combinations and how different pairs of climate models can

affect projected changes in temperature and precipitation (Chapter 6), and

these were also analyzed in the context of uncertainty and multi-method

approaches (Chapter 7). This approach has value for selecting GCM-RCM

pairs in impact assessment, as it has been shown in previous studies (see

Chapter 7 discussion, and papers from e.g. Hawkins and Sutton (2009))

that the choice of climate models has a large impact on uncertainty. An

important outcome of the research is understanding how poorly (or well-)

paired GCMs and RCMs are, considering the focus and discussion on the

cascade of uncertainty.
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8.3 Limitations of the study

Some of the limitations of the study have already been discussed in each

relevant chapter. These previously mentioned limitations of the study include

the lack of analysis at the regional level for the UK, which would have made

the multi-method comparison of UK wheat yields possible. However, due to

data limitations with UK regional data at the time of writing, this was not a

feasible step as climate-crop analyses are more robust with data from more

than 30 years. Not enough climate model runs for RCP2.6 simulations also

hindered the inclusion of scenario uncertainty in the decomposition analysis

(Chapter 7). The analysis would have been enhanced by including more

simulations, and considering other experimental ensembles of GCMs, and

RCMs. The relatively small number of simulations also limits the ANOVA in

the uncertainty decomposition to a fixed-factor mode, so using the results of

the study outside of the research design should be done with caution.

Other challenges included the lack of regional data for use with the PCM

at the regional level in Germany. This includes both the genetic parameters

and regional data for evaluation and calibration. While the use of generic or

even default parameters has been reported as a standard practice, it is

apparent that carefully calibrating each region would have provided more

local-specific results which could have improved the correlation of yield

hindcasts to observations, for example in DE2 (South Germany). In

addition, the work with PCM considered temperature and precipitation

changes, but not changes in CO2. However, these choices are rationalized

as necessary steps in the analysis since the focus of the study was to

create yield projections from the PCM that were feasibly comparable to the

SCCM. Other limitations which merit further investigation are how to

manage the ‘technology’ trend in the SCCM that remained the same over

time (i.e. dealing with stationarity).
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More extensive tests and statistical analyses – such as a possible focus

on the duration of extreme events, a focus on winter climate, and a more

complete characterization of added value, for example – are also not carried

out in the study, but are presented as ways the work can be taken forward

into the future.

8.4 Recommendations for future research and

impact analyses

These identified limitations are also ways to outline several opportunities

to continue the work of this thesis: for example, including more climate

models, scenarios, and simulations can provide a better characterization

and quantification of uncertainty using ANOVA, and also provide a fuller

picture of both known and unknown unknowns. Additionally including other

crop models (both PCMs and SCCMs), and a focus on their input

parameters and yield responses, can also enhance the uncertainty analysis

carried out in the research. As mentioned in Chapter 3, accessible

databases of crop yields, climate, crop parameters should be supported for

better dissemination of information, but also reproducibility.

The work carried out in this thesis was originally designed to offer steps

in better characterizing and understanding uncertainty in yield projections.

Some of the recommendations from the work include, as previously

discussed, going beyond implicit claims: be it for the value of downscaling,

the choice of one bias correction method (or calibration over the other), or

that one crop modeling method is superior to the other. Other

recommendations are following examples and guidelines for good crop

modeling practice: this means thorough and rigorous evaluation and

calibration with sufficient input information, an understanding of the

underlying processes in models, and critical analysis of the results.
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Uncertainty analyses, such as the ANOVA method used in this study,

should also become a more integrated component of impact assessment

studies, considering how important the cascade of uncertainty is. An

additional recommendation is to consider how the selection of GCMs and

RCMs (although these are mostly decided upon for reasons of data

availability or convenience, as discussed in previous chapters) can affect

future climate and yield projections, so developing a systematic way for

selection is recommended (e.g. ranking, reviewing previous studies, or the

BC-Eval/BC-Hist approach presented here).

Another big-picture recommendation, in the vein of promoting more multi-

method studies, is that the different communities of practice (climate, crop,

and the in-between) collaborate and communicate more effectively to better

resolve and develop join approaches to understanding food security.

Resolving the crop model method ‘conflict’

A large focus of the work was comparing crop modeling methods, so

some recommendations are also discussed here: the results of the work

agree with previous recommendations that SCCMs/statistical approaches

are a rapid and useful way of understanding future changes to yield based

on a number of chosen indices. They are also extremely useful in

understanding past relationships between yields and climate.

However, given the complexity of how crops are actually cultivated and

produced – including the choice of what variety of wheat, how intensively it is

managed, and how it can also be affected by many other factors apart from

climate, PCMs provide decades of valuable agronomical knowledge and a

systems-based understanding of crop development. At present, their ability

to handle changes in CO2 and incorporate changes to cropping patterns,

also make them very suitable for future yield projections.
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Both approaches have serious limitations and issues. But rather than

these two methods be pitted against each other – as they are frequently

done in previous studies – these approaches can be complementary. For

example, the relatively inflexible structure of PCMs to focus on important

periods of crop development, such as heat stress, can be aided by statistical

approaches. While SCCMs are argued to be too basic to include complex

crop responses, they are extremely useful in places with limited data, and can

thus guide where future research and support are needed. Both approaches

provide ways to understand future climate change impacts, and both also

help in understanding uncertainty.

8.4.1 Concluding remarks

The impacts of climate change on important food crops like wheat are

not just a distant threat: climate change and variability are already affecting

agriculture. Gaining knowledge on potential impacts and ways human

communities around the world can adapt are invaluable for adaptation and

food security. While research that uses climate and crop models has made

tremendous progress in representing the complexity of the interactions

between temperature, precipitation, and yield, the cascade of uncertainty

remains due to different methods, the inherent shortcomings of models, and

our own limitations in knowledge.

A key recommendation that is important to this work is that both the

strengths and limitations of the impact assessment studies (and the

methods and data they use) are communicated transparently to better

understand where more work is needed, in order to support more

collaborative initiatives to prepare, adapt, and transform to our changing

climate.
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Climate analysis and RCM evaluation
In this appendix, supplementary information is provided on the evaluation of

reanalysis-driven RCM simulations from 1981-2010, particularly on the seasonal

and daily timestep, as well as individual regional RCM evaluation-driven crop

simulations (SCCM and PCM). It is structured in the following way:

A. Country, regional, and site climate analysis: Observations of climate

1. Temperature trends

2. Precipitation trends

3. Climate index trends

B. Seasonal analysis (Hot day index and JJA total precipitation)

1. Statistical analysis (correlation, RMSE and mean bias) for the UK and

Germany climate simulations

2. Statistical analysis (correlation, RMSE and mean bias) for regional German

climate simulations

C. Daily analysis of Tmax, Tmin and precipitation

1. Statistical analysis (correlation, RMSE, mean bias, and Kolmogorov-Smirnov

(KS) test statistics) for the UK and Germany climate simulations

2. Statistical analysis (correlation, RMSE and mean bias, and

Kolmogorov-Smirnov (KS) test statistics) for regional German climate

simulations

3. Empirical cumulative distribution function and probability density function

graphs for the UK and Germany climate simulations

4. Empirical cumulative distribution function and probability density function

graphs for regional German climate simulations

5. Taylor diagrams for climate model simulations of the UK and Germany climate

6. Taylor diagrams for climate model simulations of regional German climate
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7. Statistical analysis (correlation, RMSE and mean bias) for SCCM yield

simulations for regional German climate simulations using uncorrected and

bias-corrected RCM output

8. Statistical analysis (correlation, RMSE and mean bias) for PCM yield

simulations for regional German climate simulations using uncorrected and

bias-corrected RCM output

A. Country, regional, and site climate analysis

In this section of results, a brief analysis of climate trends is discussed for

temperature, precipitation, and the summer climate indices for the UK, Germany

and the four German states.

A1. Temperature trends

National level

E-OBS data between 1961-2013 shows that the highest average temperatures

(Tavg) in the UK and Germany are, as expected, in the summer months of July and

August (Fig. A1A, A2A). For example, E-OBS data shows Tavg above 20◦C in July

and August in Germany. The December-February (DJF) months typically had the

coolest Tavg, followed by March-May (MAM), September-November (SON) for both

countries (Figs. A1B, A2B). Seasonal and annual Tavg show significant positive

trends for the UK and Germany (Fig. A1C, A2C), Table A1).

German regional level and site level

Climate analysis of the four chosen German regions (1979-2014, to match

regional yield data) show similar monthly, seasonal and annual temperature trends

compared to national-level climate averages (Figs. A3-A6). The coolest Tmax, on

average, are observed in DEF, the northernmost German state used in the

analysis. Trend analysis showed that DE2 and DEF all show significant increasing

trends for Tavg, Tmax and Tmin while DEA and DED only show increasing trends
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for annual Tmax. All regions show significant increasing Tavg trends for MAM and

JJA seasons, with DEF also showing a significant increasing trend for SON (Table

A1).

The monthly, seasonal and annual cycle of temperature and precipitation are

also analyzed for BL for the period 1978-2014 (Fig. A7). The hottest months are

between JJA. Tmin is, on average, below freezing during DJF. Seasonal Tavg shows

no significant trends but annual Tavg has increased since 1978 in BL.

Table A1: Temperature trend analysis.

Region
Annual DJF MAM

Tavg Tmax Tmin Tavg Tmax Tmin Tavg Tmax Tmin
UK 0.18* NS 0.42* 0.07* NS 0.08* 0.09* NS 0.21*
Germany 0.28* 0.31* 0.2* 0.06* 0.07* NS 0.21* 0.26* 0.11*

DE2 (S Germany) 0.23* 0.28* 0.13* NS NS NS 0.15* 0.21* NS
DEA (W Germany) 0.16* 0.26* NS NS NS NS 0.1* 0.2* NS
DED (E Germany) NS 0.15* NS NS NS NS NS 0.11* NS
DEF (N Germany) 0.23* 0.27* 0.17* NS NS NS 0.11* 0.17* NS
BL (site) 0.2* 0.15* 0.11* NS NS NS 0.13* NS NS

Table A1 continued.

Region
JJA SON

Tavg Tmax Tmin Tavg Tmax Tmin
UK 0.08* NS 0.4* 0.09* NS 0.17*
Germany 0.27* 0.22* 0.32* NS NS NS

DE2 (S Germany) 0.16* 0.2* NS NS NS NS
DEA (W Germany) 0.1* 0.17* NS NS NS NS
DED (E Germany) 0.09* 0.16* NS NS NS NS
DEF (N Germany) 0.15* 0.15* 0.1* 0.12* 0.11* 0.11*
BL (site) 0.22* 0.18* 0.12* NS NS NS

(∗) indicates statistical significance (p <0.05), and a positive trend.

A2. Precipitation trends

E-OBS precipitation data for the UK and Germany shows that distinct rainy

periods: in the UK, most precipitation is received between October to January (Fig.

A1D) while Germany has generally lower precipitation totals and receives relatively

even rainfall throughout the year, with a small peak in the JJA months (Fig. A2D);

this is reflective of their respective geography and corresponding climate. German

states show similar climate patterns to Germany overall, with DE2 and DED also
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receiving more rainfall in JJA. DEA and DEF show more even patterns of rainfall

distribution throughout the year. The precipitation records for BL are similar to

German regions and Germany overall: the most precipitation occurs during the

summer and the driest month is typically February.

Both countries do not show any significant trends in seasonal precipitation, but

there is a small positive trend in annual UK precipitation, although the R2 value is

small (R2=0.09). Apart from these, the only significant linear trends are a negative

trend in precipitation between March-May in DEA (R2=0.15), and increasing

precipitation in JJA for the BL site (R2=0.1). Apart from DEA, no region showed

significant trends in annual or seasonal rainfall (Figs. A3-A6).

A3. Climate index trend analysis

Analysis of E-OBS data shows that there are significantly more days above 31◦C

(TH ) averaged over Germany compared to the UK between 1961-2013 (Fig. A8A-

B). In Germany, hot days are observed particularly in the years that also showed low

summer precipitation: for example, 1964, 1976, 1983, 1994, 2003, 2006 and 2010.

While the UK had notable hot years in the summers of 1976, 1990, 2003, and 2006,

the TH index is low and there are no significant trends. TH in Germany increased

significantly between 1961-2013 (R2=0.13).

At the regional level, analysis of summer climate predictors shows that North

Germany (DEF) experienced relatively fewer hot days than other German regions:

for example during the heat wave of 2003, there were seventeen observed days

above 31◦C in JJA averaged over the whole DE2 region; in DEF this was only three

days. High numbers of hot days also coincide with relatively low summer

precipitation, again for years 1994, 2003, and 2006, giving evidence for some

interaction between the two climate predictors (Figs. A9). The number of hot days

is observed to be increasing in DE2 and DEA (R2=0.11 and 0.09, respectively).
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Figure A1: UK climate averages, 1961-2013.

Figure A2: Germany climate averages, 1961-2013.
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Figure A3: South Germany (DE2) climate averages, 1979-2014.

Figure A4: West Germany (DEA) climate averages, 1979-2014.
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Figure A5: East Germany (DED) climate averages, 1979-2014.

Figure A6: North Germany (DEF) climate averages, 1979-2014.
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Figure A7: Bad Lauchstädt climate averages, 1978-2014.

Figure A8: Hot day count (TH ) and mean summer precipitation (P̄S) in (A) the UK
and (B) Germany.
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Figure A9: Hot day count (TH ) and mean summer precipitation (P̄S) in German
regions (A)-(D).
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B. Seasonal analysis (Hot day index and JJA total

precipitation)

B1. National level

Table A2: Statistical comparison between seasonal (summer, June-August or JJA)
climate indices, UK and Germany, 1981-2010. (* is p <0.05).

Table A2a. Hot day index (days above 31◦C).

Model and
BC method

UK Germany
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM NA 0.31 -0.13 0.72, * 3.49 -2.73
Raw RACMO NA 0.31 -0.13 0.68, * 2.97 -2
Raw RCA NA 0.31 -0.13 0.61, * 4.72 0.63
Linear BC CCLM NA 0.31 -0.13 0.85, * 2.24 -1.13
Linear BC RACMO NA 0.31 -0.13 0.64, * 2.73 0.13
Linear BC RCA NA 0.27 0.01 0.66, * 5.94 2
Variance BC CCLM NA 0.31 -0.13 0.85, * 2.2 -1.03
Variance BC RACMO NA 0.31 -0.13 0.64, * 2.54 -0.8
Variance BC RCA NA 0.31 -0.13 0.64, * 4.03 -0.57
QQ BC CCLM NA 0.31 -0.13 0.8, * 2.28 -1.1
QQ BC RACMO NA 0.31 -0.13 0.54, * 2.91 -0.8
QQ BC RCA NA 0.33 -0.06 0.58, * 4.47 -0.47

Table A2b. Total JJA precipitation.

Model and
BC method

UK Germany
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.96, * 47.32 -42.98 0.7, * 35.7 -16.32
Raw RACMO 0.92, * 24.85 -1.83 0.73, * 35.08 0.78
Raw RCA 0.8, * 55.41 40.24 0.53, * 57.03 -4.55
Linear BC CCLM 0.96, * 17.16 -0.89 0.71, * 33.5 0.25
Linear BC RACMO 0.92, * 24.29 0.7 0.73, * 35.1 1.29
Linear BC RCA 0.8, * 35.9 1.21 0.53, * 59.61 0.91
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.96, * 18.25 -4.46 0.71, * 32.19 -2.79
QQ BC RACMO 0.91, * 25.75 -2.18 0.71, * 41.31 -2.69
QQ BC RCA 0.8, * 37.84 -3.25 0.52, * 66.16 -2.54
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B2. Regional level

Table A3: Statistical comparison between seasonal (summer, June-August or JJA)
hot day index (days above 31◦C), German regions, 1981-2010. (* is p <0.05).

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.75, * 3.03 -1.93 0.67, * 3.38 -2.54
Raw RACMO 0.63, * 2.7 -0.83 0.62, * 2.7 -1.17
Raw RCA 0.62, * 7 3.87 0.64, * 5.42 1.59
Linear BC CCLM 0.81, * 2.75 -0.09 0.77, * 2.21 -1.01
Linear BC RACMO 0.58, * 3.21 0.71 0.59, * 4.16 1.09
Linear BC RCA 0.64, * 7.47 4.01 0.68, * 6.83 3.03
Variance BC CCLM 0.81, * 2.95 0.14 0.77, * 2.2 -0.74
Variance BC RACMO 0.6, * 2.72 -0.49 0.66, * 3.16 0.23
Variance BC RCA 0.66, * 4.41 0.07 0.67, * 4.22 0.26
QQ BC CCLM 0.81, * 2.99 0.41 0.71, * 2.54 -0.47
QQ BC RACMO 0.59, * 2.71 -0.39 0.51, * 4.16 0.39
QQ BC RCA 0.64, * 4.71 0.17 0.62, * 4.97 0.33

Table A3 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.84, * 2.98 -2.23 0.42, * 1.81 -0.83
Raw RACMO 0.61, * 3.27 -1.33 0.81, * 1.36 -0.8
Raw RCA 0.61, * 5.08 1.24 0.73, * 2.18 0.17
Linear BC CCLM 0.87, * 2.07 -0.69 0.57, * 1.57 -0.46
Linear BC RACMO 0.64, * 3.34 0.77 0.82, * 1.01 -0.1
Linear BC RCA 0.68, * 7.02 3.37 0.69, * 3.26 1
Variance BC CCLM 0.87, * 2.14 -0.36 0.56, * 1.72 -0.26
Variance BC RACMO 0.62, * 3.5 -0.03 0.78, * 1.14 0.07
Variance BC RCA 0.71, * 4.9 0.94 0.7, * 3.1 0.84
QQ BC CCLM 0.82, * 2.76 -0.03 0.43, * 2.18 0
QQ BC RACMO 0.55, * 3.63 0.07 0.68, * 1.48 0.2
QQ BC RCA 0.7, * 4.99 0.87 0.7, * 3.31 0.8
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Table A4: Statistical comparison between seasonal (summer, June-August or JJA)
total precipitation, German regions, 1981-2010. (* is p <0.05).

Model and
BC method

DE2 (South Germany) DEA (West Germany)
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.48, * 58.89 18 0.55, * 66.97 -49.81
Raw RACMO 0.58, * 54.89 -21.46 0.6, * 48.96 -6.95
Raw RCA 0.44, * 106.9 -87.41 0.57, * 58.57 -8.95
Linear BC CCLM 0.49, * 53.13 -1.87 0.58, * 50.87 -0.6
Linear BC RACMO 0.59, * 54.14 -0.54 0.59, * 50.01 0.69
Linear BC RCA 0.42, * 89.93 0.49 0.57, * 62.07 1.97
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.5, * 52.87 -0.57 0.62, * 45.11 -5.3
QQ BC RACMO 0.57, * 64.3 0.62 0.58, * 56.99 -1.8
QQ BC RCA 0.42, * 97.46 0.49 0.57, * 64.9 -2.92

Table A4 continued.

Model and
BC method

DED (East Germany) DEF (North Germany)
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.46, * 59.6 -26.92 0.58, * 82.3 -61.23
Raw RACMO 0.43, * 60.46 -2.49 0.6, * 59.22 -21.08
Raw RCA 0.5, * 70.44 20.51 0.3 84.12 9.58
Linear BC CCLM 0.47, * 58.83 1.46 0.59, * 63.01 -1.08
Linear BC RACMO 0.45, * 59.77 0.36 0.58, * 58.64 3
Linear BC RCA 0.49, * 66.63 -1.01 0.31 82.9 3.11
Variance BC CCLM 1, * 0 0 1, * 0 0
Variance BC RACMO 1, * 0 0 1, * 0 0
Variance BC RCA 1, * 0 0 1, * 0 0
QQ BC CCLM 0.47, * 56.74 -2.19 0.59, * 60.78 -2.33
QQ BC RACMO 0.47, * 70.38 4.02 0.54, * 67.72 1.78
QQ BC RCA 0.49, * 78.3 3.07 0.32 87.82 0.45
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C. Daily analysis of Tmax, Tmin and precipitation

C1. Statistical analysis (correlation, RMSE and mean bias)
for the UK and Germany climate simulations

Table A5: Statistical comparison between daily values of RCM evaluation
simulations and observations, UK and Germany, 1981-2010. (* is p <0.05).

Table A5a. Maximum temperature.

Model and
BC method

UK Germany
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.94, * 2.31 -1.27 0.97, * 2.47 -1.49
Raw RACMO 0.94, * 2.4 -1.48 0.96, * 2.63 -0.92
Raw RCA 0.92, * 2.43 -1.13 0.94, * 3.1 -0.9
Linear BC CCLM 0.94, * 1.92 0 0.97, * 1.93 0
Linear BC RACMO 0.95, * 1.76 -0.01 0.96, * 2.38 -0.02
Linear BC RCA 0.93, * 2.05 -0.01 0.94, * 2.83 -0.02
Variance BC CCLM 0.95, * 1.72 0 0.97, * 1.95 0
Variance BC RACMO 0.95, * 1.74 -0.01 0.96, * 2.33 -0.02
Variance BC RCA 0.94, * 1.97 -0.01 0.95, * 2.76 -0.02
QQ BC CCLM 0.95, * 1.73 -0.08 0.97, * 1.98 -0.09
QQ BC RACMO 0.95, * 1.77 -0.08 0.96, * 2.36 -0.09
QQ BC RCA 0.93, * 1.98 -0.08 0.94, * 2.79 -0.09

Table A5b. Minimum temperature.

Model and
BC method

UK Germany
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.94, * 1.8 0.53 0.96, * 2.03 0.53
Raw RACMO 0.93, * 1.74 0.36 0.95, * 2.3 -0.86
Raw RCA 0.92, * 1.95 0.74 0.93, * 2.38 0.27
Linear BC CCLM 0.93, * 1.66 0 0.96, * 1.86 0.01
Linear BC RACMO 0.93, * 1.67 -0.01 0.95, * 2.02 -0.01
Linear BC RCA 0.92, * 1.79 0 0.93, * 2.35 0
Variance BC CCLM 0.93, * 1.69 0 0.96, * 1.84 0.01
Variance BC RACMO 0.93, * 1.7 0 0.95, * 1.98 -0.01
Variance BC RCA 0.92, * 1.82 0 0.93, * 2.32 0
QQ BC CCLM 0.93, * 1.69 -0.06 0.96, * 1.87 0
QQ BC RACMO 0.93, * 1.72 -0.07 0.95, * 2.02 -0.01
QQ BC RCA 0.92, * 1.83 -0.06 0.93, * 2.34 0
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Table A5c. Precipitation.

Model and
BC method

UK Germany
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.72, * 2.36 -0.36 0.7, * 2.11 0.11
Raw RACMO 0.7, * 2.4 -0.04 0.68, * 2.15 0.22
Raw RCA 0.64, * 2.75 0.36 0.58, * 2.43 0.31
Linear BC CCLM 0.72, * 2.47 -0.01 0.7, * 2.11 0
Linear BC RACMO 0.71, * 2.4 0 0.68, * 2.08 0.01
Linear BC RCA 0.66, * 2.56 -0.01 0.58, * 2.33 0.01
Variance BC CCLM 0.75, * 2.32 0 0.75, * 1.9 0
Variance BC RACMO 0.73, * 2.37 0 0.72, * 2.01 0
Variance BC RCA 0.69, * 2.56 0 0.64, * 2.29 0
QQ BC CCLM 0.72, * 2.48 0.03 0.71, * 2.1 0.02
QQ BC RACMO 0.69, * 2.87 0.04 0.68, * 2.3 0.03
QQ BC RCA 0.65, * 2.91 0.03 0.58, * 2.58 0.03

Table A6: Kolmogorov-Smirnov (KS) test statistics on the distribution of daily
maximum and minimum temperature, and precipitation from RCM evaluation
simulations and observations, UK and Germany, 1981-2010.

Model and
BC method

UK Germany
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.09, * 0.06, * 0.06, * 0.07, * 0.06, * 0.11, *
Raw RACMO 0.14, * 0.04, * 0.12, * 0.06, * 0.07, * 0.12, *
Raw RCA 0.11, * 0.06, * 0.1, * 0.07, * 0.02, * 0.11, *
Linear BC CCLM 0.02, * 0.02 0.06, * 0.01 0.02, * 0.11, *
Linear BC RACMO 0.01 0.02 0.11, * 0.02 0.02 0.12, *
Linear BC RCA 0.02 0.01 0.09, * 0.02, * 0.02 0.11, *
Variance BC CCLM 0.01 0.01 0.06, * 0.01 0.01 0.11, *
Variance BC RACMO 0.01 0.01 0.08, * 0.01 0.01 0.12, *
Variance BC RCA 0.01 0.01 0.08, * 0.01 0.01 0.11, *
QQ BC CCLM 0.02 0.01 0.01 0.01 0.01 0.02, *
QQ BC RACMO 0.01 0.02 0.05, * 0.01 0.01 0.03, *
QQ BC RCA 0.01 0.01 0.04, * 0.01 0.01 0.03, *

(∗) indicates statistical significance (p <0.05).
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C2. Statistical analysis (correlation, RMSE and mean bias)
for the German regional climate simulations

Table A7: Statistical comparison of daily values of maximum temperature from
RCM evaluation simulations and observations, German regions, 1981-2010. (* is
p <0.05).

Model and
BC method

DE2 (South Germany) DEA (West Germany)
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.96, * 2.93 -1.7 0.96, * 2.87 -1.61
Raw RACMO 0.94, * 3.16 -0.87 0.94, * 2.93 -1.16
Raw RCA 0.92, * 3.68 -0.72 0.92, * 3.32 -1.01
Linear BC CCLM 0.97, * 2.35 0 0.96, * 2.33 0.01
Linear BC RACMO 0.95, * 2.96 -0.02 0.95, * 2.63 -0.02
Linear BC RCA 0.93, * 3.44 -0.01 0.93, * 3.08 -0.02
Variance BC CCLM 0.96, * 2.39 0 0.96, * 2.33 0.01
Variance BC RACMO 0.95, * 2.88 -0.02 0.95, * 2.59 -0.02
Variance BC RCA 0.93, * 3.3 -0.01 0.93, * 3.01 -0.02
QQ BC CCLM 0.96, * 2.41 -0.05 0.96, * 2.35 -0.08
QQ BC RACMO 0.95, * 2.9 -0.06 0.95, * 2.62 -0.08
QQ BC RCA 0.93, * 3.32 -0.06 0.93, * 3.05 -0.08

Table A7 continued.

Model and
BC method

DED (East Germany) DEF (North Germany)
Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.96, * 3 -1.53 0.96, * 2.49 -1.09
Raw RACMO 0.94, * 3.15 -0.96 0.95, * 2.76 -1.09
Raw RCA 0.92, * 3.66 -1 0.93, * 3.05 -0.92
Linear BC CCLM 0.96, * 2.55 0 0.96, * 2.22 0
Linear BC RACMO 0.95, * 2.95 -0.02 0.95, * 2.4 -0.02
Linear BC RCA 0.93, * 3.42 -0.01 0.94, * 2.8 -0.02
Variance BC CCLM 0.96, * 2.58 0 0.96, * 2.23 0
Variance BC RACMO 0.95, * 2.9 -0.02 0.95, * 2.44 -0.02
Variance BC RCA 0.93, * 3.39 -0.01 0.93, * 2.82 -0.02
QQ BC CCLM 0.96, * 2.6 -0.05 0.96, * 2.25 -0.12
QQ BC RACMO 0.95, * 2.93 -0.06 0.95, * 2.47 -0.12
QQ BC RCA 0.93, * 3.42 -0.05 0.93, * 2.85 -0.12
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Table A8: Statistical comparison of daily values of minimum temperature from
RCM evaluation simulations and observations, German regions, 1981-2010. (* is
p <0.05).

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.95, * 2.43 0.79 0.93, * 2.35 0.06
Raw RACMO 0.94, * 3.08 -1.44 0.92, * 2.67 -0.93
Raw RCA 0.91, * 2.91 0.28 0.9, * 2.77 -0.05
Linear BC CCLM 0.95, * 2.25 0.01 0.93, * 2.24 0.01
Linear BC RACMO 0.93, * 2.55 0 0.92, * 2.44 -0.01
Linear BC RCA 0.91, * 2.87 0.01 0.9, * 2.76 -0.01
Variance BC CCLM 0.95, * 2.23 0.01 0.93, * 2.23 0.01
Variance BC RACMO 0.94, * 2.46 0 0.92, * 2.36 -0.01
Variance BC RCA 0.92, * 2.78 0 0.9, * 2.7 -0.01
QQ BC CCLM 0.95, * 2.25 0 0.93, * 2.25 0.01
QQ BC RACMO 0.93, * 2.48 0 0.92, * 2.39 0.01
QQ BC RCA 0.92, * 2.8 0 0.9, * 2.71 0.02

Table A8 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.94, * 2.58 0.42 0.93, * 2.4 0.59
Raw RACMO 0.92, * 3.13 -1.13 0.92, * 2.44 0.14
Raw RCA 0.9, * 3.1 0.32 0.9, * 2.73 0.34
Linear BC CCLM 0.94, * 2.43 0.01 0.93, * 2.24 0
Linear BC RACMO 0.92, * 2.81 0 0.92, * 2.37 -0.02
Linear BC RCA 0.9, * 3.07 0 0.9, * 2.7 -0.02
Variance BC CCLM 0.94, * 2.41 0.01 0.93, * 2.29 0
Variance BC RACMO 0.92, * 2.71 0 0.92, * 2.42 -0.02
Variance BC RCA 0.9, * 3.02 0 0.91, * 2.67 -0.02
QQ BC CCLM 0.94, * 2.45 0.03 0.93, * 2.32 -0.06
QQ BC RACMO 0.92, * 2.74 0.02 0.92, * 2.46 -0.06
QQ BC RCA 0.9, * 3.05 0.03 0.9, * 2.69 -0.06
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Table A9: Statistical comparison of daily values of precipitation from RCM evaluation
simulations and observations, German regions, 1981-2010. (* is p <0.05).

DE2 (South Germany) DEA (West Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.6, * 3.7 0.46 0.55, * 3.59 -0.2
Raw RACMO 0.58, * 3.48 0.18 0.56, * 3.54 0.16
Raw RCA 0.44, * 3.7 -0.18 0.46, * 3.89 0.24
Linear BC CCLM 0.6, * 3.4 0 0.53, * 3.93 0
Linear BC RACMO 0.57, * 3.41 0 0.55, * 3.49 0
Linear BC RCA 0.43, * 3.94 0.01 0.45, * 3.79 0.01
Variance BC CCLM 0.66, * 3.15 0 0.63, * 3.28 0
Variance BC RACMO 0.62, * 3.3 0 0.59, * 3.46 0
Variance BC RCA 0.5, * 3.82 0 0.52, * 3.75 0
QQ BC CCLM 0.61, * 3.53 0.04 0.57, * 3.76 0.04
QQ BC RACMO 0.57, * 3.77 0.05 0.54, * 4 0.07
QQ BC RCA 0.42, * 4.48 0.06 0.45, * 4.27 0.07

Table A9 continued.

DED (East Germany) DEF (North Germany)Model and
BC method Correl. RMSE Mean bias Correl. RMSE Mean bias

Raw CCLM 0.43, * 3.83 0.19 0.47, * 3.72 -0.33
Raw RACMO 0.44, * 3.78 0.4 0.47, * 3.65 0.05
Raw RCA 0.34, * 4.16 0.58 0.38, * 4.22 0.36
Linear BC CCLM 0.42, * 3.86 0.01 0.46, * 4.12 -0.01
Linear BC RACMO 0.45, * 3.47 0.01 0.47, * 3.66 0.01
Linear BC RCA 0.34, * 3.7 0 0.38, * 3.95 0.01
Variance BC CCLM 0.52, * 3.36 0 0.56, * 3.5 0
Variance BC RACMO 0.5, * 3.43 0 0.51, * 3.68 0
Variance BC RCA 0.4, * 3.78 0 0.44, * 3.95 0
QQ BC CCLM 0.44, * 3.8 -0.01 0.49, * 3.99 0.03
QQ BC RACMO 0.44, * 3.97 0.03 0.46, * 4.23 0.07
QQ BC RCA 0.33, * 4.22 0.02 0.36, * 4.53 0.06
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Table A10: Kolmogorov-Smirnov (KS) test statistics on the distribution of daily
maximum and minimum temperature, and precipitation from RCM evaluation
simulations and observations, German regions, 1981-2010.

Model and
BC method

DE2 (South Germany) DEA (West Germany)
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.53, * 0.35, * 0.55, * 0.57, * 0.22, * 0.57, *
Raw RACMO 0.13, * 0.52, * 0.7, * 0.15, * 0.49, * 0.71, *
Raw RCA 0.07, * 0.06, * 0.23, * 0.08, * 0.05, * 0.2, *
Linear BC CCLM 0.05, * 0.1, * 0.23, * 0.07, * 0.06, * 0.26, *
Linear BC RACMO 0.06, * 0.02, * 0.18, * 0.08, * 0.03, * 0.23, *
Linear BC RCA 0.02, * 0.01 0.23, * 0.01 0.03, * 0.2, *
Variance BC CCLM 0.02, * 0.02, * 0.23, * 0.01 0.02, * 0.26, *
Variance BC RACMO 0.02, * 0.01 0.18, * 0.02, * 0.03, * 0.23, *
Variance BC RCA 0.01 0.01 0.23, * 0.01 0.02, * 0.2, *
QQ BC CCLM 0.01 0.01 0.23, * 0.01 0.02 0.26, *
QQ BC RACMO 0.01 0.01 0.18, * 0.01 0.02, * 0.23, *
QQ BC RCA 0.01 0.01 0.02, * 0.01 0.02, * 0.02, *

Table A10 continued.

Model and
BC method

DED (East Germany) DEF (North Germany)
Tmax Tmin Precip Tmax Tmin Precip

Raw CCLM 0.53, * 0.31, * 0.65, * 0.52, * 0.25, * 0.6, *
Raw RACMO 0.13, * 0.5, * 0.76, * 0.2, * 0.51, * 0.71, *
Raw RCA 0.07, * 0.06, * 0.27, * 0.06, * 0.07, * 0.23, *
Linear BC CCLM 0.05, * 0.08, * 0.3, * 0.09, * 0.04, * 0.32, *
Linear BC RACMO 0.07, * 0.02, * 0.27, * 0.09, * 0.03, * 0.26, *
Linear BC RCA 0.02, * 0.02, * 0.27, * 0.01 0.03, * 0.23, *
Variance BC CCLM 0.01 0.02, * 0.3, * 0.01 0.02 0.32, *
Variance BC RACMO 0.02, * 0.02, * 0.27, * 0.02 0.03, * 0.26, *
Variance BC RCA 0.01 0.01 0.27, * 0.01 0.02 0.23, *
QQ BC CCLM 0.01 0.02, * 0.3, * 0.01 0.01 0.32, *
QQ BC RACMO 0.02 0.02 0.27, * 0.01 0.02, * 0.26, *
QQ BC RCA 0.02 0.02 0.03, * 0.01 0.02, * 0.02, *

(∗) indicates statistical significance (p <0.05).
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C3. Cumulative distribution and probability density
functions: National level

Figure A10: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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Figure A11: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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C4. Cumulative distribution and probability density
functions: regional level

Figure A12: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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Figure A13: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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Figure A14: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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Figure A15: Empirical cumulative and probability distribution function (i-iv: CDF and
v-viii: PDF) plots for daily observed and evaluation RCM-simulated values of (A)
maximum temperature, (B) minimum temperature, and (C) precipitation.
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C5. Taylor diagrams for RCM evaluation simulations of
temperature and precipitation relative to observations:
National level

Figure A16: Taylor diagrams, daily (A) maximum temperature, (B) minimum
temperature, and (C) precipitation for the UK and Germany, 1981-2010.
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C6. Taylor diagrams, regional level

Figure A17: Taylor diagrams, daily (A) maximum temperature, (B) minimum
temperature, and (C) precipitation for German regions, 1981-2010.
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C7. Statistical analysis for SCCM yield simulations for
regional German climate simulations using uncorrected
and bias-corrected RCM output

Table A11: SCCM yield simulations, DE2 (South Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.62, * 0.59, * 0.45 0.53 -0.15 -0.18
Raw RACMO 0.69, * 0.4, * 0.35 0.56 0.06 0.03
Raw RCA 0.53, * 0.17, 1.02 1.24 -0.32 -0.35
Linear BC CCLM 0.72, * 0.68, * 0.37 0.46 -0.12 -0.14
Linear BC RACMO 0.62, * 0.28, 0.41 0.64 -0.03 -0.06
Linear BC RCA 0.55, * 0.23, 0.96 1.15 -0.47 -0.49
Variance BC CCLM 0.88, * 0.62, * 0.24 0.49 -0.09 -0.12
Variance BC RACMO 0.77, * 0.43, * 0.31 0.56 -0.02 -0.05
Variance BC RCA 0.79, * 0.49, * 0.32 0.56 -0.1 -0.13
QQ BC CCLM 0.73, * 0.7, * 0.38 0.46 -0.13 -0.16
QQ BC RACMO 0.58, * 0.37, * 0.4 0.58 -0.05 -0.08
QQ BC RCA 0.45, * 0.26 0.85 0.99 -0.31 -0.34

Table A12: SCCM yield simulations, DEA (West Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.92, * 0.69, * 0.61 0.8 0.55 0.48
Raw RACMO 0.88, * 0.64, * 0.35 0.68 0.14 0.07
Raw RCA 0.88, * 0.63, * 0.37 0.72 -0.08 -0.15
Linear BC CCLM 0.89, * 0.63, * 0.33 0.69 0.08 0.01
Linear BC RACMO 0.84, * 0.57, * 0.42 0.78 -0.1 -0.17
Linear BC RCA 0.83, * 0.63, * 0.51 0.79 -0.27 -0.34
Variance BC CCLM 0.97, * 0.68, * 0.18 0.64 0.05 -0.02
Variance BC RACMO 0.94, * 0.66, * 0.25 0.68 -0.03 -0.1
Variance BC RCA 0.9, * 0.59, * 0.34 0.76 -0.03 -0.1
QQ BC CCLM 0.9, * 0.61, * 0.3 0.7 0.07 0
QQ BC RACMO 0.8, * 0.53, * 0.43 0.79 -0.03 -0.1
QQ BC RCA 0.84, * 0.62, * 0.43 0.73 -0.02 -0.09

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast or observations.
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Table A13: SCCM yield simulations, DED (East Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.77, * 0.71, * 0.51 0.6 0.27 0.22
Raw RACMO 0.63, * 0.42, * 0.54 0.76 0.04 -0.01
Raw RCA 0.62, * 0.44, * 1.11 1.27 -0.51 -0.56
Linear BC CCLM 0.82, * 0.71, * 0.39 0.56 -0.02 -0.07
Linear BC RACMO 0.64, * 0.37, * 0.66 0.91 -0.18 -0.23
Linear BC RCA 0.55, * 0.38, * 1.67 1.79 -0.74 -0.79
Variance BC CCLM 0.92, * 0.69, * 0.27 0.58 -0.02 -0.07
Variance BC RACMO 0.83, * 0.56, * 0.4 0.7 0.1 0.05
Variance BC RCA 0.86, * 0.73, * 0.42 0.6 -0.07 -0.12
QQ BC CCLM 0.85, * 0.71, * 0.39 0.58 -0.1 -0.15
QQ BC RACMO 0.49, * 0.26 0.79 1.02 -0.15 -0.2
QQ BC RCA 0.48, * 0.28 1.44 1.61 -0.49 -0.54

Table A14: SCCM yield simulations, DEF (North Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.91, * 0.65, * 0.34 0.57 0.25 0.16
Raw RACMO 0.91, * 0.6, * 0.24 0.57 0.09 -0.01
Raw RCA 0.79, * 0.7, * 0.35 0.53 -0.04 -0.13
Linear BC CCLM 0.89, * 0.66, * 0.26 0.55 0 -0.09
Linear BC RACMO 0.9, * 0.59, * 0.24 0.59 -0.01 -0.11
Linear BC RCA 0.8, * 0.7, * 0.34 0.52 -0.01 -0.11
Variance BC CCLM 1, * 0.62, * 0.03 0.58 0 -0.09
Variance BC RACMO 1, * 0.62, * 0.03 0.58 0 -0.09
Variance BC RCA 1, * 0.62, * 0.03 0.58 0 -0.09
QQ BC CCLM 0.89, * 0.65, * 0.25 0.56 0.01 -0.08
QQ BC RACMO 0.86, * 0.56, * 0.28 0.61 -0.01 -0.1
QQ BC RCA 0.77, * 0.7, * 0.36 0.52 0 -0.1

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast or observations.
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C8. Statistical analysis for PCM yield simulations for
regional German climate simulations using uncorrected
and bias-corrected RCM output

Table A15: PCM yield simulations, DE2 (South Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.48, * 0.2 0.88 2.39 -0.17 2.21
Raw RACMO 0.29 -0.06 1.49 2.56 -0.37 2.02
Raw RCA 0.37 0.05 1.31 2.31 -0.49 1.9
Linear BC CCLM 0.58, * 0 1.07 2.47 -0.32 2.07
Linear BC RACMO 0.51, * 0.16 1.1 2.42 -0.3 2.09
Linear BC RCA 0.44, * 0.16 1.17 2.39 -0.34 2.05
Variance BC CCLM 0.74, * 0.17 0.81 2.41 -0.28 2.11
Variance BC RACMO 0.79, * 0.22 0.72 2.48 -0.19 2.2
Variance BC RCA 0.66, * 0.29 0.9 2.4 -0.26 2.13
QQ BC CCLM 0.56, * 0.11 1.25 2.37 -0.5 1.89
QQ BC RACMO 0.53, * 0.15 1.1 2.54 -0.2 2.19
QQ BC RCA 0.42, * 0.15 1.57 2.44 -0.56 1.82

Table A16: PCM yield simulations, DEA (West Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.37 0.05 1.7 1.7 -0.18 0.07
Raw RACMO 0.16 0.11 1.81 1.57 0.56 0.8
Raw RCA -0.07 -0.11 2.19 1.98 1.16 1.41
Linear BC CCLM 0.33 -0.04 1.81 1.87 -0.08 0.17
Linear BC RACMO 0.23 0.09 1.81 1.67 0.4 0.65
Linear BC RCA 0.15 0.07 1.71 1.43 0.37 0.61
Variance BC CCLM 0.92, * -0.18 0.58 1.71 -0.06 0.19
Variance BC RACMO 0.9, * -0.12 0.65 1.64 0.06 0.31
Variance BC RCA 0.89, * -0.11 0.69 1.54 0.09 0.34
QQ BC CCLM 0.29 0.01 1.95 1.93 -0.21 0.04
QQ BC RACMO -0.02 0.38, * 2.21 1.59 0.31 0.55
QQ BC RCA 0.03 0.15 1.91 1.48 0.27 0.51

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast or observations.
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Table A17: PCM yield simulations, DED (East Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.51, * 0.06 1.21 2.18 0.11 1.65
Raw RACMO 0.19 0.14 1.59 2.51 0.61 2.16
Raw RCA 0.23 0 1.86 3.1 1.31 2.86
Linear BC CCLM 0.47, * 0.01 1.56 2.11 -0.44 1.11
Linear BC RACMO 0.42, * 0.4, * 1.3 1.78 -0.19 1.36
Linear BC RCA 0.22 0 1.97 2.27 -0.4 1.15
Variance BC CCLM 0.86, * 0.44, * 0.75 1.69 -0.34 1.21
Variance BC RACMO 0.84, * 0.47, * 0.68 1.67 -0.22 1.33
Variance BC RCA 0.69, * 0.41, * 0.93 1.58 -0.33 1.22
QQ BC CCLM 0.42, * -0.03 1.64 2.14 -0.43 1.11
QQ BC RACMO 0.32 0.41, * 1.55 1.81 -0.3 1.24
QQ BC RCA 0.24 0.08 1.59 1.95 -0.29 1.26

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast or observations.

Table A18: PCM yield simulations, DEF (North Germany).

Correlation RMSE Mean biasModel and
BC method EOBS Obs EOBS Obs EOBS Obs

Raw CCLM 0.11 0.13 1.85 1.79 -0.19 -0.97
Raw RACMO 0.26 -0.23 1.53 1.38 0.54 -0.24
Raw RCA 0.27 -0.16 1.92 1.54 1.15 0.37
Linear BC CCLM 0.01 0.21 2.11 1.87 -0.09 -0.87
Linear BC RACMO 0.23 -0.03 1.68 1.69 0.15 -0.63
Linear BC RCA 0.31 0.04 1.61 1.61 0.26 -0.52
Variance BC CCLM 0.91, * -0.2 0.59 1.73 0.16 -0.62
Variance BC RACMO 0.92, * -0.26 0.57 1.84 0.1 -0.68
Variance BC RCA 0.83, * -0.14 0.83 1.75 0.21 -0.57
QQ BC CCLM -0.06 0.25 2.25 1.99 -0.24 -1.02
QQ BC RACMO 0.06 0.05 1.99 1.91 -0.14 -0.92
QQ BC RCA 0.19 0.08 1.87 1.81 0.14 -0.64

(∗) indicates statistical significance (p <0.05). A green color indicates an improvement
(larger r, smaller RMSE or bias) relative to the yield hindcast or observations.
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Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M. L.,

Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P., Koenigk, T.,

McGrath, R., Miranda, P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F.,

Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willén, U. (2010).

EC-Earth. Bulletin of the American Meteorological Society, 91(10):1357–1364.

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F. (2013). A trend-

preserving bias correction – The ISI-MIP approach. Earth System Dynamics, 4(2):219–

236.

Herrera, S., Fita, L., Fernández, J., and Gutiérrez, J. M. (2010). Evaluation of the mean

and extreme precipitation regimes from the ENSEMBLES regional climate multimodel

simulations over Spain. Journal of Geophysical Research, 115(D21):D21117.

Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T., and Brown, S. J. (2012). Calibration

Strategies: A Source of Additional Uncertainty in Climate Change Projections. Bulletin of

https://cran.r-project.org/package=ggtern
https://cran.r-project.org/package=ggtern


368 BIBLIOGRAPHY

the American Meteorological Society, 93(1):21–26.

Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E.,

Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B. T.,

Kersebaum, K. C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack,

E., Raynal, H., Roggero, P. P., Rötter, R. P., Siebert, S., Specka, X., Tao, F., Teixeira, E.,

Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J., and Ewert, F. (2016). Impact of

spatial soil and climate input data aggregation on regional Yield Simulations. PLoS ONE,

11(4):1–23.

Högy, P. and Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of

wheat. Journal of Cereal Science, 48(3):580–591.

Huffman, T., Qian, B., De Jong, R., Liu, J., Wang, H., McConkey, B., Brierley, T., and Yang, J.

(2015). Upscaling modelled crop yields to regional scale: A case study using DSSAT for

spring wheat on the Canadian prairies. Canadian Journal of Soil Science, 95(1):49–61.

Hurrell, J. W. and Deser, C. (2009). North Atlantic climate variability: The role of the North

Atlantic Oscillation. Journal of Marine Systems, 78(1):28–41.

Hwang, S., Graham, W. D., Geurink, J. S., and Adams, A. (2014). Hydrologic implications

of errors in bias-corrected regional reanalysis data for west central Florida. Journal of

Hydrology, 510:513–529.

Iizumi, T. and Ramankutty, N. (2015). How do weather and climate influence cropping area

and intensity? Global Food Security, 4:46–50.

Iizumi, T., Sakuma, H., Yokozawa, M., Luo, J.-J., Challinor, A. J., Brown, M. E., Sakurai, G.,

and Yamagata, T. (2013). Prediction of seasonal climate-induced variations in global food

production. Nature Climate Change, 3(10):904–908.

Iizumi, T., Takikawa, H., Hirabayashi, Y., Hanasaki, N., and Nishimori, M. (2017).

Contributions of different bias-correction methods and reference meteorological forcing

data sets to uncertainty in projected temperature and precipitation extremes. Journal of

Geophysical Research, 122(15):7800–7819.

Intergovernmental Panel on Climate Change (IPCC) (2012). Summary for Policymakers.

In Intergovernmental Panel on Climate Change, editor, Managing the Risks of Extreme

Events and Disasters to Advance Climate Change Adaptation, pages 3–21. Cambridge

University Press, Cambridge.

Intergovernmental Panel on Climate Change (IPCC) (2013). Summary for Policymakers.

In Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.

Xia, V. B., and (eds.), P. M., editors, Climate Change 2013: The Physical Science Basis.

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and



BIBLIOGRAPHY 369

New York, NY, USA.

Intergovernmental Panel on Climate Change (IPCC) (2014). Summary for policymakers.

In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and

Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change. Technical report.

IPCC (2014). Synthesis Report. In Pachauri, R. and Meyer, L., editors, Fifth Assessment

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, UK and Geneva, Switzerland.

IRI et al. (2015). Soil grids for DSSAT. International Research Institute for Climate and

Society (IRI), Michigan State University (MSU), HarvestChoice, and the International

Food Policy Research Institute. Available online from the Harvard Dataverse, https:

//doi:10.7910/DVN/1PEEY0.

J, L. (2006). Plotrix: a package in the red light district of r. R-News, 6(4):8–12.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A.,

Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin,

G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,

S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann,

S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot,

S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.

(2014). EURO-CORDEX: new high-resolution climate change projections for European

impact research. Regional Environmental Change, 14(2):563–578.

Jaeger, E. B., Anders, I., Lüthi, D., Rockel, B., Schär, C., and Seneviratne, S. I. (2008).

Analysis of ERA40-driven CLM simulations for Europe. Meteorologische Zeitschrift,

17(4):349–367.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical

Learning, volume 103 of Springer Texts in Statistics. Springer New York, New York, NY.

Jamieson, P., Porter, J., Goudriaan, J., Ritchie, J., van Keulen, H., and Stol, W. (1998).

A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and

SWHEAT with measurements from wheat grown under drought. Field Crops Research,

55(1-2):23–44.

Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L., Wilkens, P., Singh,

U., Gijsman, A., and Ritchie, J. (2003). The DSSAT cropping system model. European

Journal of Agronomy, 18(3-4):235–265.

Jury, M. W., Prein, A. F., Truhetz, H., and Gobiet, A. (2015). Evaluation of CMIP5 models

in the context of dynamical downscaling over Europe. Journal of Climate, 28(14):5575–

5582.

https://doi:10.7910/DVN/1PEEY0
https://doi:10.7910/DVN/1PEEY0


370 BIBLIOGRAPHY

Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C. (2012). The impact of North Atlantic sea

surface temperature errors on the simulation of North Atlantic European region climate.

Quarterly Journal of the Royal Meteorological Society, 138(668):1774–1783.

Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans,

J. P., Fosser, G., and Wilkinson, J. M. (2017). Do convection-permitting regional climate

models improve projections of future precipitation change? Bulletin of the American

Meteorological Society, 98(1):79–93.

Kersebaum, K. and Nendel, C. (2014). Site-specific impacts of climate change on wheat

production across regions of Germany using different CO2 response functions. European

Journal of Agronomy, 52:22–32.

Kettlewell, P. S., Stephenson, D. B., Atkinson, M. D., and Hollins, P. D. (2003). Summer

rainfall and wheat grain quality: Relationships with the North Atlantic Oscillation. Weather,

58(4):155–164.

Kirtman, B. P., Bitz, C., Bryan, F., Collins, W., Dennis, J., Hearn, N., Kinter, J. L., Loft, R.,

Rousset, C., Siqueira, L., Stan, C., Tomas, R., and Vertenstein, M. (2012). Impact of

ocean model resolution on CCSM climate simulations. Climate Dynamics, 39(6):1303–

1328.

Kjellström, E., Bärring, L., Nikulin, G., Nilsson, C., Persson, G., and Strandberg, G. (2016).

Production and use of regional climate model projections – A Swedish perspective on

building climate services. Climate Services, 2-3:15–29.
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